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Abstract 

CD24 is a variably glycosylated, glycophosphatidylinositol (GPI)-anchored cell surface 

protein. Its expression is dynamic during cellular differentiation and ligand interaction. 

While several decades of research have established that CD24 engages in many cell-type 

specific functions in many cases the ligands of CD24 are unknown, and researchers have 

relied on the use of antibodies to mimic ligand binding. Furthermore, as a GPI-anchored 

protein, CD24 must rely on in cis signalling partners, however little has been elucidated 

on the cell membrane-proximal signalling activities of CD24. Therefore, the work 

presented in this thesis presents a more comprehensive examination of CD24 expression, 

and function in multiple cell types, followed by an in-depth analysis in immature B 

lymphocytes. In B cells, CD24 is known to mediate the induction of apoptosis. To predict 

in cis and in trans partners of CD24, an analysis of CD24 mRNA expression, and its 

potential ligands was performed. In some tissues, such as B cells, an association was 

identified between CD24 and putative ligands, including Siglec-2. In other tissues, no 

significant associations were identified. Our previous investigation suggested that CD24 

is involved in vesicle trafficking, Consistent with this, CD24 surface protein expression 

was shown to be dynamic within 1 h of Ab stimulation in WEHI-231 immature B cells 

and in ex vivo primary immature B cells. I found CD24 promotes the generation of 

plasma membrane-derived microvesicles (MVs). These MVs transported CD24 between 

cells. MVs also carried a variety of nucleic acid cargo, identified by RNA-Seq, and 

protein cargo as determined by mass spectrometry and flow cytometry. The incorporation 

of these cargos into MVs was variably influenced by CD24 stimulation. Overall, these 
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data suggest that MVs generated in response to CD24 play a role in regulating 

mitochondria, and immune cell activation. Finally, a unifying hypothesis on the function 

of CD24 is presented herein, proposing its role as a moderating rheostat of cellular 

signalling rather than a de novo signalling receptor. Together, this work has significantly 

advanced our understanding of CD24 in B cells, and may provide insight for studies in 

other cell types or in diseases such as leukemia. 
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Chapter 1: Introduction 

1.1 Identification of the CD24 cell surface receptor 

The protein now termed CD24 was first identified in 1978 during a screen of 

mouse monoclonal antibodies (mAbs), for the identification of novel leukocyte antigens 

(1). During this screen, 5 cell lines produced mAbs (M1/75.21, M1/22.54, M1/89.1, 

M1/9.47 and M1/69.16) that recognized a common antigen, which was speculated to be 

carbohydrate-based due to its stability under high temperature.. Therefore, at the time, 

this antigen was termed the Heat Stable Antigen (HSA) and was found to be present on 

thymic-based leukocytes and red blood cells (RBCs). Of these mAbs, M1/69 was found 

to have the highest avidity for this newly identified antigen. Subsequently, other groups 

identified additional mAbs (J11d, B2A2) which bound to the same antigen (2). However, 

these groups disagreed as to the nature of the antigenic determinant. In parallel, studies in 

humans identified CD24 as a B lymphocyte (B cell) associated marker using the BA-1 

mAb (3). Subsequently, it was found that the CD24 antigen was a glycoprotein, and 

differentially expressed during B cell development, with higher expression on developing 

versus. mature B cells (3, 4).  

Concurrent studies began to examine the structural composition of the mature 

CD24 protein in greater detail (5-7). Cloning of mouse HSA/CD24 identified the 

precursor peptide to be 76 amino acid residues in length (5). Furthermore, the initial 26 

amino acids and the terminal 20 amino acids were predicted to be a cytoplasmic 

localization signal and a glycophosphatidylinositol (GPI)-anchor signal, respectively, and 

cleaved from the mature peptide (5). Ultimately, the mature peptide product was 
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predicted to be approximately 30 amino acids in length and have a size of approximately 

3 kDa (6). Further refinement to the sequence analysis established the likely mature 

peptide to be 27 amino acids and approximately 2.7 kDa in size (7). In mouse, two other 

genomic sequences were identified with homology to HSA/CD24. The three sequences 

were denoted as HSA-A, HSA-B and HSA-C, where the B and C sequences were deemed 

to be intronless retroposons (7). A gene duplication event was thought to create HSA-C 

from –A, and HSA-B (containing a short poly-A tail) arose from a transcript originating 

from –C. While it has yet to be established if the –B or –C genes remain active, the –C 

transcript was functional in the evolutionary past.  

Several studies confirmed that CD24 is anchored on the plasma membrane of 

multiple cell types via the GPI modification (2, 8). Cells treated with phospholipase C 

(PLC), which cleaves GPI anchor moieties from the plasma membrane, exhibit a 

profound reduction in CD24 protein levels. In multiple studies, however, this loss was not 

complete and a small amount of CD24 is retained by cells (2, 8). Due to this partial, but 

not complete loss, it was speculated that variants of CD24 may exist that are not GPI-

anchored. However, another study found that patients with paroxysmal nocturnal 

hemoglobinuria do not express CD24 (8). This condition is caused by the inability to 

synthesize the GPI anchor structure, leading to a loss of all GPI-anchored proteins (9). 

The lack of CD24 expression in these patients therefore strongly argues against a 

secondary, non-GPI anchored isoform. Further, the retention of CD24 on cells following 

PLC treatment could be facilitated by in cis interactions with other proteins or structures 

on the plasma membrane (10) with the continued detection of CD24 following PLC 

treatment demonstrating that these in cis interactors cannot also be GPI anchored entities. 



 3 

When the sequence of the human CD24 transcript was characterized, comparison 

of the sequencing information of CD24 and HSA established them to be homologous cell 

surface protein in human and mouse (5, 6).  Similar to the mouse protein sequence, 

human CD24 was estimated to be 80 amino acids in length, with a 26-amino acid N-

terminal signal domain and a 27 to 29 amino acid C-terminal GPI anchor sequence (6). 

Overall, this post-translational processing results in a mature peptide, then thought to be 

between 31 to 35 amino acids in length (6). While sequence homology was noted 

between the two species, it was determined that the most conserved regions were in the 

N- and C- terminal signal domains, and considerable variation existed in the mature 

protein core (6). As with the murine sequence, CD24 pseudogenes have also been 

identified in humans (11), with unknown expression or functional significance. 

Interestingly, transcript variants of mouse CD24, with unknown function, have been 

identified (12).  

As sequencing data for more species has become available, CD24, and CD24-like 

sequences have been identified in numerous species (13). Overall, CD24 is evolutionarily 

at least 200 million years old and has been identified in reptiles, birds, and mammals 

(including aquatic species), however it has not been identified in marsupials or 

monotremes (13). The reason for its absence in these species is unknown. In each case, it 

was found that the evolution of the CD24 gene has more stringently conserved the N- and 

C- terminal processing sequences, while the core peptide has undergone considerable 

variation (13). Areas of higher conservation in the core mature peptide are primarily on 

amino acid residues capable of being glycosylated during post-translational modification. 

Furthermore, a conserved proline-rich domain has been identified in the C-terminal 
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region of the mature peptide. Overall, across evolutionary history, the CD24 gene 

encodes for a small protein that, following processing, is affixed to the outer leaflet of the 

plasma membrane via a GPI anchor (Figure 1.1). 

 

1.2 CD24 is a heavily and variably glycosylated protein 

Since its discovery, several groups have observed the CD24 protein does not have a well-

defined mass, but instead ranges in size from approximately 20 to 70 kDa (2, 5, 14, 15). 

The discrepancy between predicted peptide size based on this sequence data and the 

measured sizes found in multiple studies was resolved by identifying CD24 as being 

post-translationally modified by extensive glycosylation. The glycosylation of the mature 

CD24 peptide had previously been established (2, 3), however the degree to which these 

glycosylations contributed to the mature protein size had not been appreciated. 

Glycosylation can occur on the nitrogen present in asparagine (Asn/N) residues, or on the 

oxygen present in serine (Ser/S) and threonine (Thr/T) residues, and is termed N-linked 

or O-linked, respectively. The first sequence analysis of murine CD24 showed there are 

four potential N-linked, and seven potential O-linked glycosylation sites (5). 

Early studies on the structure of CD24 used tunicamycin to inhibit the N-linked 

glycosylation, which resulted in an approximately 20-kDa structure remaining. This was 

originally thought to be the core peptide, as it retained M1/69 binding (2). Later studies, 

removing N-linked glycosylations via endoglycosidases also produced a structure 

between 20 and 30 kDa in size, however with the combined sequence data, it was 

determined that O-linked glycosylation must contribute considerably to the remaining   
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Figure 1.1: Schematic representation of the mature CD24 protein expressed on the 
cell surface. The consensus sequence of the mature CD24 core peptide across 56 species 
is shown in black. The conserved potential O- and N- linked glycosylation sites have 
representative glycosylations shown in purple and orange, respectively. Glycosylations 
are depicted as chains of carbohydrate monomers but do not represent a specific 
structure. The glycophosphatidylinositol anchor structure is represented by four hexose 
carbohydrate rings (blue circles) with a lipid tail inserted into the outer leaflet of the 
plasma membrane. Cholesterol esters, enriched in lipid raft microdomains are shown in 
yellow. Src family protein tyrosine kinases (SKFs) are a family of CD24-associated 
signalling proteins, and the multiple family members are represented by grey ovals. 
Known in vivo and in vitro CD24 ligands are indicated in the grey box 
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size of the peptide, since the peptide core is only 2.7 kDa in size (5). Treatment with 

sodium hydroxide to strip these O-glycans resulted in additional loss of size, confirming 

the presence of these O-linked glycans. Subsequently, it was determined that 4 of the 7 

potential O-linked residues were glycosylated on erythrocyte-expressed CD24 (16). 

Stripping O-linked glycosylation also resulted in a loss of binding of the M1/69 mAb, 

clearly demonstrating that the M1/69 epitope is associated with one of these O-linked 

glycosylation sites (5). The overwhelming contribution of these glycosylations to the 

mature peptide size, as well as the strong conservation of the potential glycosylation 

amino acid residues in the mature peptide, argue that the underlying biological 

function(s) of CD24 are dependent on these moieties.  

 

1.3 CD24 interacts with a wide variety of cell-specific ligands  

One of the first identified roles for CD24 is its ability to modulate cell adhesion 

events. As previously stated, CD24 is expressed on B cells. Using mAbs, it was shown 

that blocking or sequestering CD24 restricts the ability of B cells to homoaggregate (17). 

Subsequently, it was shown that CD24 alters the ability of the integrin very late antigen 

(VLA-4) to bind to either vascular cell adhesion molecule-1 (VCAM-1) or fibronectin 

ligands (18). CD24 mediates adhesion in neuronal cells via in cis interactions with the L1 

cell adhesion molecule (L1CAM), neural cell adhesion molecule (NCAM1) (19), and can 

also interact with contactin and TAG-1. Thus, CD24 can act as a cell adhesion molecule 

de novo, and can influence the behavior of other cell adhesion molecules. 
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Functionally, CD24 regulates neuronal outgrowth in a cell-type specific manner. 

The process of neurite outgrowth involves forming axonal connections between neurons, 

and is important for the developing nervous system and synaptic remodeling such as is 

required for learning and memory (20). CD24, via L1, restricts neurite outgrowth in 

dorsal root ganglia, but promotes outgrowth in cerebellar neurons (21). An overall 

functional significance of this CD24-mediated activity has not been elucidated, however 

these brain regions are responsible for processing sensory information, particularly pain 

(22) and motor activity (23).  

CD24 has affinity for the selectin family of adhesion molecules. Leukocyte (L-), 

Platelet (P-) and Endothelial (E-) selectin have each been documented to bind to CD24 in 

various contexts (24-26). For example, CD24/P-Selectin binding mediates the binding of 

monocytes and neutrophils to endothelial cells (24), as well as cell rolling, a process 

involved in extravasation and metastasis, in the KS breast cancer cell line (27). In MCF-7 

breast cancer cells, an in vitro assay of cell rolling showed this process is mediated 

through interaction between CD24 and E-selectin (26). Finally, though modest binding of 

CD24 to L-selectin is documented, no biological role has yet been identified (24). Based 

on these previous studies, however, it is reasonable to hypothesize that this interaction 

may be important for leukocyte cell adhesion, or potentially target cell recognition, or 

immune cell extravasation.  

 CD24 interacts in cis with a moderator of Toll-like receptor (TLR) signalling, 

Siglec-G, and in trans with the danger associated molecular pattern (DAMP) protein 

HMGB1 (28, 29). Cells release DAMPs while under physiological stress. These DAMPs 

promote immune responses to mitigate this stress, or in the event of unrecoverable cell 
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damage, to promote removal of the damaged cells (30). The DAMP HMGB1 can interact 

with TLRs on liver-derived DCs to promote inflammation (29, 31). Left unchecked, this 

leads to sepsis and death (29, 31). The role of Siglec-G is to restrict TLR signalling in 

response to these DAMPs, however Siglec-G cannot bind them de novo. In this case, 

CD24 acts as an adapter, binding both HMGB1 and Siglec-G, activating Siglec-G and 

ultimately inhibiting TLR-4 signalling (29). This mechanism of action represents a new 

paradigm of CD24-based ligand interaction. I have expanded on this idea into a general 

mechanism through which the cell-specific activity of CD24 may be explained (10). I 

propose that CD24 acts as a rheostat to properly attune other receptors to extracellular 

cues. It remains to be seen if this is a generalizable mechanism of CD24 activity, or a 

tissue-specific function, however I have also suggested a series of testable criteria 

through which this hypothesis may be evaluated, which is presented in Chapter 5 of this 

thesis. 

 A significant outstanding issue is that, in many cases, the tissue-specific ligands 

associated with CD24 activity have not been identified. For example, the ability of CD24 

to regulate B cell survival has been known for nearly 30 years (32), however the 

endogenous ligand responsible for this activity has not been identified and thus CD24-

mediated apoptosis has only been investigated using Ab-mediated stimulation (33). A 

second outstanding question with regard to CD24-ligand interaction is the tissue-specific 

nature of these associations. The evolutionary conservation of glycosylation sites in the 

mature CD24 sequence (13), as well as the substantial physical contribution of these 

modifications to the mature expressed protein suggests that CD24/environment 

interactions are mediated through glycans. Furthermore, CD24 is variably glycosylated, 
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even when isolated from a cell line or homogenous tissue. This variable mosaic of 

glycosylation may explain how CD24 interacts with different ligands in a cell type- 

and/or tissue-specific fashion (5, 10, 14, 15). The tissue-specific pattern of CD24 

glycosylation points to a mechanism through which these interactions may be directed. 

By altering the nature and number of CD24 glycosylations, it may be possible for CD24 

to selectively interact with ligands contextually. Thus, even though many cells express 

CD24, they do not necessarily possess equivalent ligand binding capacity and are limited 

in their ability to mediate specific interactions and events. As the cell-specific ligands of 

CD24 are largely unknown, even when the activity of CD24 itself has been well 

characterized, most studies rely on the use of mAbs to mimic CD24-ligand interactions. 

Considerable effort will therefore be required to identify the natural in vivo ligands of 

CD24 on a cell-by-cell basis.  

 

1.4 CD24 expression and function in the immune system 

1.4.1 Hematopoiesis and CD24 expression 

All blood and immune cells arise from a common stem cell progenitor, the 

hematopoietic stem cell (HSC), in a process termed hematopoiesis (Figure 1.2). During 

this process, CD24 is known to be expressed on many of the immature, developing 

hematopoietic precursor cells, and is only retained once they reach maturity in some 

cases. This suggests that CD24 may regulate a common biological process or principle in 

HSC-lineage cells, and that elucidating the behaviour of CD24 in any of these cells may 

aid in furthering our understanding of its role in this group.  
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Figure 1.2: Hematopoietic-lineage cells. Hematopoietic development begins in the 
bone marrow. HSC = Hematopoietic stem cell, CLP = Common lymphoid progenitor, 
CMP = Common myeloid progenitor. B cell development is divided into Hardy fractions 
(Fr) A to F. T cell precursors migrate to the thymus (orange) prior to the double negative 
(DN) 1 stage. T cell development progresses through DN stages before the double 
positive (DP) and intermediate single positive (Int) stages. Other developmental lineages 
of the CLP and CMP are shown in simplified progressions, indicating the first committed 
progenitor and mature cell form of each cell type. The relative expression of CD24 is 
indicated with a series of green +. Increasing numbers of + indicate higher levels of 
expression. A minimal, or relatively low level of expression is indicated by +/-. A 
question mark (?) indicates no data on expression of CD24 in a given cell type. 
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Hematopoiesis occurs through the differentiation of long-lived HSCs resident in highly 

specialized niches. The location of these niches changes throughout organismal 

development. In early embryogenesis in mammals, HSCs reside in the yolk sac (34).  

At this time, HSCs only give rise to selected cell types, dominated by the need for red 

blood cell (RBC) generation to support continuing embryonic development. This is 

referred to as primitive hematopoiesis. Later in embryogenesis, HSCs migrate into the 

developing aorta-gonad-mesonephros, seeding the developing aorta (34). In mid-

gestation, they migrate further to the fetal liver (35). During this time, HSCs begin 

generating a wider range of effector lineages. This second wave of hematopoietic 

differentiation is referred to as definitive hematopoiesis, which may continue throughout 

an organism’s life. Finally, near the end of gestation, HSCs migrate into the red bone 

marrow of the long bones such as the femur, among other bone marrow niches. By 

adulthood, hematopoiesis is restricted to a small number of bones such as the pelvis or 

sternum (36).  

 The HSC is a multipotent stem cell, capable of giving rise to many distinct 

effector lineages (37). It first differentiates into one of two oligopotent stem cells, which 

are restricted to a single effector sub-type. These restricted stem cells are called the 

common myeloid progenitor (CMP), and the common lymphoid progenitor (CLP) (38). 

The myeloid lineage ultimately gives rise to the effectors of the innate immune system, 

erythrocytes (red blood cells) and to megakaryocytes/platelets. The mature cells of the 

innate immune system are the granulocytes comprising basophils, neutrophils, 

eosinophils, as well as monocytes/macrophages, and mast cells. Each of these effector 

cells is generated through a further series of lineage-specific differentiation and 
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maturation stages from the common myeloid progenitor before the emergence of the 

mature cell from the bone marrow. In contrast, the lymphoid lineage cells comprise the 

adaptive immune system and include B, T and Natural killer (NK) cells. Both the 

myeloid and lymphoid cell lineages can give rise to a professional antigen presenting cell 

(APC) called a dendritic cell (DC). 

 

1.4.2 CD24 function and expression in myeloid cells 

Unlike lymphoid cells, comparatively less is known about the function of CD24 

in myeloid cells. CD24 is expressed on neutrophil progenitors, and other granulocytes, 

but not in monocyte cells (39). Indeed, the use of CD24 expression was proposed as a 

potential discriminator of the pro-monocyte lineage, which were negative for CD24 

expression (CD24-), from the granulocyte lineage. However, it has been found that CD24 

appears to be a highly specific and sensitive marker for identifying acute myeloid 

leukemia, where cancerous, but not healthy, myeloid cells express CD24 (40). However, 

data from mice suggest that CD24 may in fact be expressed in at least some populations 

of monocytes, and that it is involved in their P-selectin-mediated adhesion (41). Further 

studies in granulocyte cells show that CD24 stimulation is capable of triggering caspase-

mediated apoptosis in mature neutrophils in a manner consistent with that observed in B 

cells (42). Overall, there is a dearth of knowledge regarding the expression patterns and 

the functional consequences of CD24 in cells of myeloid origin. 
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1.4.3 CD24 expression in lymphoid cell development 

The CLP gives rise to the effectors of the adaptive immune system, and CD24 has 

been most extensively studied during the differentiation, maturation and functioning of 

these effectors (Figure 1.2). Early in differentiation, the CLP first becomes lineage 

restricted into either immature DCs, progenitor (pro-) B cells or early double negative 

(DN) T cells. Comparatively little is known about the subsequent process of DC 

development, and upon maturity they are divided into at least two groups, by their 

expression of CD8, or lack thereof (43). It is known that these groups are not completely 

independent, and differentiation of CD8- to CD8+ DCs requires expression of CD24 (44), 

however its role is unknown. Other studies have demonstrated that CD24 is functionally 

important for mature DCs in directing immune responses, as will be described in section 

1.4.4.  

In contrast, B and T cell development has been exhaustively detailed, and more is 

known about roles for CD24 in these cells. B cells, like all cells of hematopoietic origin, 

are generated from HSC fate commitment through a highly coordinated, and well-defined 

differentiation process. This development occurs in the mammalian bone marrow during 

definitive hematopoiesis. Functionally, B cells are defined by their expression of the B 

cell receptor (BCR). Functionally, the BCR is activated via its ligation with soluble or 

particulate foreign material (usually protein), termed antigens (Ags). With co-stimulation 

via receptors such as CD40, this results in B cell activation and the production of 

antibodies (Abs) which bind and neutralize these Ags, and can recruit other immune 

effectors during immune challenge. 
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Unlike other proteins, there is not a single gene that encodes for the heavy and 

light chains of the BCR. Instead, gene segments comprising the immunoglobulin (Ig) 

gene loci are selectively rearranged together to form the final product (45). The mature 

receptor is a heterodimer composed of two identical heavy chains, generated from the 

heavy chain loci, termed IgH, each linked by disulfide bonds to two identical light chains 

called IgL, (Figure 1.3). Each heavy and light chain pair is anchored to the plasma 

membrane via a short transmembrane/intracellular domain. The BCR is partnered with a 

co-receptor heterodimer, CD79a and b (46). These co-receptors contain signaling 

domains called an immunoreceptor tyrosine-based activation motif (ITAM). This domain 

is responsible for initiating signal transduction from the BCR into the cytoplasm.  

The earliest developing B cells are termed progenitor (pro-) B cells (Figure 1.2). 

At this stage of development, IgH rearrangement occurs. The IgH locus consists of 3 

gene segments, termed Variable (V), Diversity (D), and Joining (J) responsible for the 

creation of the antigen binding domain, with a fourth region called the Constant (C) 

domain (47). Multiple alleles of each V, D and J segment exist to permit the generation of 

a diverse repertoire of BCRs in the B cell population. Rearrangement first occurs between 

the D and J segments, followed by the V segment. The VDJ chain is then linked to one of 

5 C domains, termed Alpha (IgA), Gamma (IgG), Delta (IgD), Epsilon (IgE) or Mu 

(IgM) (47). Simultaneously, a surrogate light chain (SL) is also generated. At the end of 

pro-B cell development, the IgH and SL chains are linked via disulfide bonds in a manner 

like the association between IgH and IgL in the mature BCR. This IgH/SL complex is 

referred to as the pre-B cell receptor. (48). Expression of the pre-BCR on the plasma   
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Figure 1.3 The B cell receptor. The mature B cell receptor (BCR) is comprised of a 
heterodimer of two heavy chains (IgH) and two light chains (IgL) with the associated 
CD79a/b heterodimer signalling partner. The IgH domains contain a small 
transmembrane domain. The V, D, and J segments of the antigen binding domains in the 
IgH and IgL chains are shown in red, green and orange, respectively. The constant 
domains (C) of IgH and IgL are shown in blue. The CD79a/b co-receptors, with 
associated ITAM domains are indicated.  
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membrane of the developing cell denotes the transition from the pro- to pre-B cell stage 

(Figure 1.2). Functionally, the pre-BCR is responsible for transducing pro-survival 

signals (49). However, this signalling occurs at a lower level than occurs following B cell 

activation via antigen binding. B cells undergo a developmental checkpoint at the pro- to 

pre-B cell transition whereby overactive pre-BCR signalling results in apoptosis, to 

prevent the generation of auto-reactive B cells (50).  

During the pre-B cell development phase, rearrangement of the IgL gene 

segments occurs. Unlike IgH, the IgL antigen binding domain is composed of only the V 

and J gene segments, with their own antigen binding domain (47). Following successful 

rearrangement, the IgL and IgH chains are linked, and expressed on the cell surface. 

These cells are termed immature B cells (48, 51). After bone marrow development, naïve 

B cells leave the bone marrow for the periphery. These B cells simultaneously express 

IgM, and to a lesser degree IgD-class BCRs. Upon antigenic stimulation in the periphery, 

B cells become restricted to expressing a BCR of a single isotype. This process is termed 

class switch recombination (CSR). Due to the arrangement of the C domains, IgM and 

IgD may be expressed in a single cell via alternative RNA splicing. Switching to either 

IgG, IgE or IgA (in that order) requires the induction of DNA recombination via enzymes 

such as Activation Induced Cytidine Deaminase (AICDA) and the removal of upstream C 

domains from the genome, resulting in a permanent switch to a new BCR isotype (52). 

The generated Ab will also share this fate and B cells may switch to additional 

downstream C isotypes. B cells will thus express a BCR which may have any one of the 5 

C domains, but each cell will generate a single BCR (46). Which of the C isotypes is 

expressed is dependent on the activity of cytokines including interleukin (Il)-4, Il-10 and 
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Il-6 (53). These activated B cells also produce soluble antibodies that are derived from 

the same rearranged IgH and IgL genes, but lack the transmembrane domain and are thus 

released into the extracellular environment.  

The stages of B cell development were further refined using single-cell analysis 

via flow cytometry (54). The gain and loss of specific cell surface receptors and proteins, 

including CD24, during each developmental phase were used to classify cells into groups 

called Hardy fractions. Following commitment of HSCs to CLPs, the first three Hardy 

fractions represent the Pro-B cells (Figure 1.2). The earliest committed B cells acquire 

expression of the first pan-B cell marker, B220 and are termed Hardy fraction A. Hardy 

fraction B cells retain B220 and gain expression of CD24. Finally, Hardy fraction C cells 

increase their level of CD24 expression and acquire BP1/Ly56. Hardy fractions A, B and 

C all express CD43, which progressively declines as maturation continues. A sub-

population of cells, termed Hardy fraction C’, express the highest levels of CD24, and 

become bone marrow stroma-contact independent. When the pre-BCR is expressed, cells 

enter Hardy Fraction D as Pre-B cells. At this stage, CD24 expression declines, and 

continues to fall in subsequent Hardy fractions until it is expressed at low levels, if at all, 

by the end of bone marrow development. Immature, BCR expressing B cells are termed 

Hardy fraction E. Finally, freely circulating (naïve) B cells are termed Hardy fraction F.  

CD24 is also expressed throughout T cell development (13). Unlike B cells, T 

cells mature primarily in the thymus. Analogous to B cells, T cells are defined by their 

expression of the T cell receptor (TCR), which is generated from rearrangement of the 

either the TCR-a and TCR-b gene segments, or in a minority of cells, the TCR-g and 
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TCR-δ gene segments (55). Thymic T cell development is a process by which cells are 

educated to respond to foreign antigens without responding to endogenous proteins, only 

in the context of specific antigen presentation proteins called the Major 

Histocompatibility Complex (MHC) (55). Mature T cells are sub-divided based on 

expression of one of two mutually exclusive co-receptors, CD4 or CD8 (56). Acquisition 

of these co-receptors is used to differentiate T cell developmental stages. In the earliest 

four phases, double negative (DN1-4) cells do not express either CD4 or CD8, however 

CD24 is present on these cells. An intermediate, CD8 single positive phase is followed by 

the CD4/CD8 double positive (DP) stage (55). CD24 expression is mainly confined to 

these earlier developmental stages and is used as a marker for distinguishing the DN 

stages (57). At this point, T cells are selectively directed into either the CD4+ or CD8+ 

effector lineages and expression of the other receptor is lost. During this final 

commitment stage, CD24 expression declines and does not re-appear in T cells unless 

they are activated in an immune response.  

 

1.4.4 CD24 is an important regulator of B cells 

 In addition to mediating B cell adhesion, CD24 is a potent negative regulator of 

pro-/pre-B cell survival and can alter the activation of mature B cells in the spleen. Ab-

mediated engagement of CD24, using the M1/69 mAb, is capable of inducing apoptosis 

in isolated mouse bone marrow pro-B cells in a dose-dependent fashion (33). As Ab have 

two identical antigen binding domains, a single M1/69 Ab can interact with at most two 

CD24 molecules. However, the effect of Ab-mediated CD24 stimulation can be 
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potentiated by incubating the M1/69 Ab with a secondary Ab that enhances the ability to 

cross-link multiple CD24 molecules on the cell surface. The ability of Abs to induce 

apoptosis definitively requires engaging multiple CD24 molecules simultaneously, as 

treatment with a monovalent Ab fragment, containing only a single binding domain, had 

no effect on B cell apoptosis (33). Thus, the induction of CD24 apoptosis likely requires 

surpassing a signalling threshold involving the activation of multiple CD24 molecules on 

the surface. Mature B cells are insensitive to the apoptotic signal transduced by CD24, 

however they are rendered unable to respond to pro-proliferative stimulation (33).  

The ability to induce cell death is also mediated by the anti-CD24 mAb 20C9. It is 

unknown if these Abs bind to unique, or overlapping epitopes. Therefore, identifying the 

various CD24 mAbs binding regions should be a future study to determine if CD24-

mediated apoptosis is a universal response or is dependent on specific mAb/CD24 (and 

thus CD24/ligand) interactions.  

 The in vivo activity of CD24 to modulate B cell survival was examined through 

the creation of a whole body CD24 knockout (CD24 KO) mouse (58) and a lymphocyte-

specific CD24 over-expressing transgenic (CD24 Tg) mouse (32). In CD24 KO mice, B 

cell development is disrupted at the pro- to pre-B cell transition stage (58). Compared to 

wild type (WT) mice, the absence of CD24 causes a loss of approximately 50% of the 

late pro-B cell (Hardy fraction C to D) population. Curiously, no losses were observed in 

either earlier or later B cell fractions, and the numbers of mature circulating B cells and 

plasma concentrations of Ab were not significantly different between CD24 WT or KO 

animals (58). This indicates that this developmental block is not absolute, or that the loss 
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of CD24 expression may be compensated for in B cells through other mechanisms such 

as increased proliferation at later stages of B cell development. 

Unlike the CD24 KO mice, which have a total-body loss of CD24 expression, the 

CD24 over-expressing transgene is under the control of the TCR Vβ promoter, meaning it 

should only be active in thymocytes (T cells) and the hematopoietic T cell progenitors. 

However, this transgene is also active in B cells; potentially because B and T cells share a 

common hematopoietic lineage. The insertion of the CD24 transgene resulted in a 41% 

increase in CD24 expression in early (Hardy Fraction A) pro-B cells, a 23% increase in 

expression within late pro-B cells, and a 20% increase in pre-B cells but did not result in 

any increases in the immature B cell population. These CD24 Tg mice exhibited a loss of 

approximately 50% in the pro- and pre-B cell bone marrow fractions compared to WT 

controls. Unlike CD24 KO, however, immature, naïve populations of B cells were also 

reduced by approximately 25% in CD24 Tg mice (32) . Subsequently, this loss of B cells 

was shown to be the result of their increased apoptosis rather than a defect in 

hematopoiesis. Interestingly, CD24 Tg mice exhibit a loss of immature T cells at the 

CD4/CD8 double positive stage, but not in the earlier double negative phases (59). As 

previously discussed, CD24 expression can be highly dynamic. In combination with the 

data generated via CD24 KO and CD24 Tg mice, it is apparent that the function of CD24 

is closely tied with the level and timing of its expression, and that an alteration of either 

of these parameters has a dramatic effect on its function in lymphocyte populations in 

general, and B cells, in specific. 

 Subsequent studies used human and mouse cell lines in vitro to determine 

mechanistic elements of CD24-mediated B cell apoptosis. Following on the work of 
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Chappel, et al. (1996), several studies have established a reproducible method for 

inducing apoptosis in multiple cell lines using primary anti-CD24 mAb pre-incubated 

with secondary Abs to form multimeric Ab complexes that enhance CD24 crosslinking 

and stimulation (33). Several primary anti-CD24 Abs have been used, including M1/69 

and ALB-9 in mouse cell lines, or L30 in human cells (60-62). Multiple cell lines of 

different developmental stages have been examined, including: human Burkitt’s 

lymphoma P32/SH and Namalwa cells (61); human Pro-B cell lines NALM-16, NALM-

20, NALM-27, LC4-1 and KM-3; human Pre-B cells NALM-6, NALM-17 and P30/OHK 

(62); and mouse ex vivo primary B cells (33, 60). My own analysis, presented here in 

Chapter 3 demonstrates the WEHI-231 B cell lymphoma cell line to be sensitive to 

CD24-mediated apoptosis (60), further demonstrating that CD24-mediated apoptosis is 

not a result of a specific culture or experimental design, but is rather a global aspect of 

CD24 in B cell biology.   

 

1.4.5 Functions of CD24 in T cells and DCs. 

The ability of CD24 expressed on B cells to act as a co-stimulatory molecule for 

CD4+ T cells was among the first functions identified for CD24 in immune cells (63). In 

this case B cells acted as antigen presenting cells for CD4+ T cells. B cells presented 

antigens for TCR stimulation via MHC, and CD24 was responsible for providing a co-

stimulatory signal. Blocking CD24 on B cells using the mAb 20C9 prevented this co-

stimulation, indicating that CD24 interacted with an unknown partner on the T cell 

surface. Furthermore, while mature T cells generally lack CD24 expression, its 
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expression is transiently induced during CD4 and CD8 T cell activation. (64). When 

stimulated on these cells, it can also enhance proliferation in response to TCR and co-

receptor stimulation. These data together showed that CD24 can act both in cis and in 

trans to promote T cell proliferation in response to activation. 

Independent of their activation, T cells undergo a process called homeostatic 

proliferation required to maintain T cell numbers while at immunological rest (65). In 

addition to supporting T cell activation, CD24 is also known to regulate homeostatic 

proliferation of these cells (66, 67). Unlike in activated T cells, CD24 negatively 

regulates homeostatic proliferation signalling to restrict T cell growth. Without CD24, T 

cells rapidly proliferate in vivo, resulting in the death of their host mice (67). 

Interestingly, the ability for CD24 to restrict homeostatic proliferation was not dependent 

on being directly expressed on the T cells. Instead it could also operate in trans if 

expressed on DCs. This result strongly suggests that CD24 acts through an in cis partner 

on the T cell plasma membrane and can be acted upon in cis in CD24-expressing T cells, 

or in trans via DCs.  

CD24 expressed on DCs is involved in regulating the induction of immune 

responses. As described in section 1.3, CD24 in partnership with Siglec-G is a negative 

regulator of DAMP-induced sepsis and is also a negative regulator of graft-versus-host 

(GVH) disease (68). When expressed on T cells, CD24 may be stimulated in trans via 

Siglec-G expressed on DCs. This interaction selectively inhibits T cell responses to the 

graft tissue. In the absence of Siglec-G on DCs, CD24-expressing T cells exhibit 

increased activation, leading to a shorter graft survival time (68). This response is 

contradictory with the pro-activation stimulatory effect CD24 during immune responses, 
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but may be explained by the potential for different cis interacting partners. CD24/Siglec-

G signalling is consistently associated with the restriction of T cell activation; thus, it is 

possible that the pro-proliferative effect is mediated through a different partner. 

Together, these data clearly show that CD24 is an important regulator of the 

immune system through selectively regulating T cell proliferation and activation, and 

altering DC-mediated immune activation. 

 

1.5 Signalling in response to CD24 stimulation 

Over a period of nearly 30 years, many studies, across diverse fields, have 

elucidated many aspects of CD24-mediated signalling, and its ability to affect cellular 

processes. Among the first evidence of CD24’s signal transduction capability was 

demonstrated using human chronic lymphoblastic leukemia B cells. When stimulated 

using the mAb anti-CD24 VIBE3, no stimulation occurred, however enhancing CD24 

crosslinking by treating cells with a goat-anti-mouse secondary Ab induced a modest 

increase in free intracellular calcium, as occurs during CD19 stimulation and B cell 

activation (8). Similarly, stimulation of CD24 on neutrophils via the same VIBE3 anti-

CD24 primary and goat-anti-mouse secondary Ab also results in calcium flux (19) and 

can induce activation as indicated by a respiratory burst (8).  

A series of studies elucidated several plasma membrane-proximal mediators of 

CD24 signaling. First, in the human small cell lung cancer cell lines SW2 and K562, 

CD24 was shown to be associated with the Src family tyrosine kinases (SFK) (69). The 

SFK proteins share a conserved SH2, SH3 and tyrosine kinase domains. The family 
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consists of 9 members; blk, fgr, fyn, hck, lck, lyn, src, yes, and yrk (70). Biologically, 

these proteins are involved in cytoplasmic signal transduction from associated 

transmembrane signalling receptors and mediate events such as cell adhesion, migration, 

and lymphocyte activation. Whereas their dysregulated activation is a mark of cellular 

transformation during cancer development (70). The association of CD24 with the SFK 

members appears to be cell specific, with SW2 showing an association with c-fgr, and lyn 

in K562 cells (69) while B cell lymphomas showed a signalling and physical association 

between CD24 and the SFKs lck, hck and lyn, but not fyn (71). An association between 

CD24 and lyn was shown in human Burkitt’s lymphoma cells (61) whereas CD24 is 

associated with src  in the MTLy breast cancer cell line (72).  Collectively, these studies 

show that CD24 signals through multiple members of the Src family proteins. 

Downstream from these proteins, CD24 is associated with a number of signalling 

intermediates that transduce multiple cellular outcomes. As a function of its induction of 

B cell apoptosis, CD24 induces a transient, but robust activation of the ERK1/2 mitogen 

activated protein kinase (MAPK), and a sustained activation of the p38 MAPK (62). The 

activation of p38 was necessary for the CD24-mediated progression of apoptosis, as 

inhibition of p38 via SC68376 abrogated its effect. The downstream cell death pathway 

was dependent on activation of multiple caspases, including Caspase 2, 3, 7 and 8 (62). 

Curiously, co-ligation of CD24 and the BCR did not promote B cell apoptosis at optimal 

concentrations for either antibody used independently, however sub-optimal antibody 

stimulation of both CD24 and the BCR simultaneously was capable of inducing B cell 

apoptosis. The nature of the association between CD24 and the BCR remains unknown.  
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Unlike the situation in B cells, CD24 signalling promotes colorectal cancer 

proliferation and survival through p38 signalling (73). Further clouding this issue, CD24 

is capable of inducing apoptosis in DN and DP thymic T cells, however this process is 

caspase independent (74). The CD24 apoptosis pathway in these cells was independent of 

other death inducing receptors, such as Fas and tumor necrosis factor receptor (TNFR). 

Instead, this apoptotic program was mediated through the loss of the Bcl-2 pro-survival 

proteins in the mitochondria, a loss of mitochondrial membrane integrity and their release 

of pro-apoptotic components (74). Finally, in ex vivo human neutrophils, mAb 

stimulation of CD24 likewise induces apoptosis in a time-dependent fashion (42). In 

these cells, apoptosis occurs through mitochondrial membrane depolarization, as 

evidenced via fluorescent imaging, and requires the activation of caspases 3 and 9. It was 

also shown in these cells that CD24 expression was strongly influenced by stimulation 

with lipopolysaccharide (LPS), heat killed bacteria, or with the pro-inflammatory 

cytokines TNF-a, IFN-g, or GM-CSF. By itself, IL-1b did not affect CD24 however in 

combination with sub-optimal TNF-a or IFN-g, increases in CD24 expression were also 

observed. CD24 was down-regulated in neutrophils from sepsis patients, leading to a 

reduction in neutrophil apoptosis potentially indicating a role for CD24 in regulating the 

duration or intensity of the neutrophil response (42). 

As CD24 is GPI-anchored, it does not possess transmembrane signalling 

potential, and must therefore operate through additional signalling intermediates on the 

plasma membrane. While there is ample evidence of the intracellular signalling 

intermediates influence by CD24, little is firmly established with regard to these 
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membrane-associated partners. The previously discussed associations between CD24 and 

L1, Siglec-G and integrins remain the only known membrane interactors. Thus, future 

studies will be required to better elucidate these partners. Furthermore, the ability for 

CD24 to interact with a variety of the SFKs means there are many potential combinations 

of cell-type specific CD24 signalling ‘networks’ which may be generated. 

 

1.6 Extracellular vesicles (EV) 

1.6.1 The identification, classification and biogenesis of EV subtypes 

Extracellular vesicles (EVs) refer to the heterogeneous collection of membrane-

enclosed structures that are released by cells. After their first identification in 1946, EVs 

were frequently discounted as cellular debris without a definitive biological function. 

Indeed, they were first named as ‘platelet dust’. It was not until 1999 that researchers 

determined that this platelet dust was composed of several different vesicle subtypes, and 

that these structures mediated functions such as platelet aggregation and procoagulant 

activity. Subsequently, it was discovered that most, if not all, cells release EVs with 

varying compositions of proteins and nucleic acids and that they participate in numerous 

physiological processes. EVs are now broadly categorized, based on their size, 

morphology, mechanism of biogenesis, as well as their overall protein, lipid, and nucleic 

acid composition, into one of three major classifications: exosomes, microvesicles, or 

apoptotic bodies. 

Exosomes are the smallest EV subtype, ranging in size from 30 to 100 nm. Unlike 

the other subtypes of EVs, exosomes are stored in the cytosol within structures called 
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multivesicular bodies (MVB) (75). The MVB is a cytosolic organelle that forms from 

invagination of the plasma membrane (PM) to form a vesicle called an endosome via 

endocytosis (76). During this invagination, proteins resident in the PM are internalized 

within the endosome. The resulting vesicle has an inverted topology from the original 

plasma membrane. Proteins internalized via endocytosis may be directed into multiple 

fates. Upon fission from the PM, endosomes are termed early endosomes. From here, 

they may be selected for recycling back to the PM (called a recycling endosome), 

exchange cargo with the trans-Golgi network (called a late endosome), or be selected for 

proteolytic degradation by fusion with a lysosome (77). In the early endosome, continued 

invagination results in the formation of smaller vesicles that remain inside the endosomal 

lumen. Additional small trans-golgi vesicles may also enter the endosome at this time. 

The accumulation of these smaller vesicles defines the formation of the MVB, with the 

interior vesicles referred to as exosomes. Release of exosomes from the MVB involves 

the early endosome re-fusing to the PM and discharging the exosomes into the 

extracellular space via exocytosis. 

The selection of proteins for endocytic internalisation is incompletely understood, 

but thought to involve protein ubiquitination (76). Proteins appear to be selected for 

internalization via mono- or low-number ubiquitination, as opposed to 

polyubiquitination, which is associated with lysosomal degradation (76). However, there 

are also ubiquitin-independent selection mechanisms as well (78). Once ubiquitinated, 

these proteins are recognized by endosomal-sorting complex required for transport 

(ESCRT) proteins. Organization of the membrane components is thought to be mediated 

by tetraspannin proteins as well. These include CD63, CD9 and CD81, which have been 
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suggested as non-exclusive markers of exosomes (75, 79). During protein sorting to 

endosomes destined for MVB formation, PM-resident proteins are bound by ALIX and 

syntenin (80). These adapters redirect the ESCRT-mediated endosome formation from 

the lysosomal degradation pathway and towards MVB formation.   

 The direction of endosomes into their various fates is also regulated through the 

activity of Rab GTPases (81). The Rab family of proteins consists of over 60 members 

and it is thought that specific Rabs, or combination of Rabs, on the surface of vesicles is 

used as a protein sorting system within the cell (82). The Rab proteins act as adapter 

molecules to co-ordinate the activity of various cytoskeletal binding proteins, adapter 

proteins, and intracellular motors. GTP-bound Rab is recognized by Rab effector 

proteins, which serve as the linkers to the vesicle transport machinery (83). Inactivation 

of Rab by GTPase activity, either through auto-hydrolysis or via the action of Rab 

GTPase activating proteins (RabGAP) results in the loss of Rab-effector binding and 

serves as the “stop” signal during trafficking (81). Vesicle internalization is known to be 

regulated via Rab13, Rab21 and Rab5 (with potentially others). Direction of early 

endosomes into the late endosome occurs via Rab7, as does transition to the lysosome. 

Exocytosis, however is mediated through Rabs 14, 11, 25 and 27 (81-84). 

 Exosome production was first described during the process of reticulocyte 

maturation into mature RBCs. Here, cytosolic and membrane components, such as the 

transferrin receptor are packaged into exosomes within MVB for release as a means to 

removing components of the cell that are not necessary for RBC function (85). Ongoing 

research has since shown that exosomes are also involved in immune signal modulation, 
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antigen presentation, hemostasis and even act as transforming vectors during 

carcinogenesis (86, 87).  

The next major category of EVs are microvesicles (MVs), which are distinguished 

from exosomes by their direct budding from the plasma membrane, with no cytosolic 

biogenesis or storage intermediates. On average, MVs tend to be larger, but more 

heterogeneous than exosomes, ranging from 100 to 1000 nm. The identification of MVs 

as a discrete EV population is relatively recent, with the recognition that platelets produce 

distinct EV populations which have distinct compositions: one from the surface and the 

other from the cytosol (88). Unlike exosomes, MV budding occurs via outward PM 

movement. MV biogenesis is thought to be associated with cholesterol-rich regions of the 

PM called lipid rafts (87, 89). MV are highly enriched in negatively-charged 

phospholipids, most notably phosphatidylserine (PS) (90). Whereas cells normally 

sequester PS to the inner leaflet of the PM, MVs are enriched for these lipids on their 

outer surface (75). This translocation has successfully been exploited as a potential 

biomarker of MVs through detection of PS with proteins like Annexin V or Lactadherin 

(88, 91).  

 The mechanism of formation is the major distinguishing feature between 

exosomes and MVs. Several studies have noted that cell surface receptor clustering, such 

as performed by the anti-CD24 antibody stimulation method described in this thesis, is 

frequently associated with MV formation (92). Canonically, MV biogenesis begins via 

calcium influx following receptor stimulation, to activate calpain (93). Calpain, does not 

act against a specific protein substrate but instead targets selected amino acid sequences 

present in any protein for cleavage. Among its targets are cytoskeletal and cell adhesion 
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proteins, including cadherins and actin organizational proteins (94). Thus, this calcium 

influx and calpain activation can render areas of the PM more fluid through the loss of 

these rigid structures. This process is not necessarily dependent on calcium/calpain as 

other proteins can selectively remodel the actin cytoskeleton such as the Arp2/3 complex 

and cofillin (95). Thus, it is likely that MV formation can also be induced through 

calcium-independent means. 

During the process of membrane outward budding, the intrinsic organization of 

the PM is altered. PS is translocated from the inner to the outer leaflet of the PM under 

the guidance of the floppase enzyme (75, 90). The re-distribution of membrane charge 

and composition appears to be the driving force for outward membrane bending (90). 

Unlike exosomes, the organization of the membrane occurs, at least partially, 

independent of ESCRT activity (92). Following membrane budding, membrane scission 

occurs under the direction of small GTPases such as ARF6 (96). Related to the Rab 

proteins, ARF6 signalling recruits Erk to the PM, which subsequently recruits the 

molecular motor myosin light chain kinase (96). These, and likely other proteins that 

have yet to be identified, ultimately separate the MVs from the cell body.  

The biogenesis of MVs has drawn parallels with viral shedding (97, 98), 

suggesting these processes may be evolutionarily related or that virus budding is a 

specialized form of MV release. Both viral and MV budding occur directly from the 

plasma membrane through disruption of the intrinsic membrane topology. Unlike MV 

budding, viral budding occurs under the direction of the Gag protein. In common, 

however, both MV and viral budding do not require the full ESCRT complex, but only 

recruit specific components (99). Functionally both MVs and viruses are capable of 
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transporting material that can induce cellular transformation in recipient cells, which is 

suggestive of a common biological functioning principle (98). Thus, it is possible that the 

process of MV biogenesis using intrinsic host proteins and DNA may have been co-opted 

evolutionarily by viruses. Future studies are required to further elucidate the functional 

and physical relationships between these processes.  

Several studies and data presented in chapter 4 of this thesis also strongly point 

toward an active process driving cargo incorporation or exclusion in MV membranes 

rather than a random incorporation (100-103). MV composition is heterogeneous, and 

heavily dependent on the cell of origin (97, 104). The first evidence demonstrating 

selective compositional organization identified that the lipid composition of neutrophil 

EVs is enriched for cholesterol, diacylglycerol while maintaining consistent proportions 

of other phospholipids, relative to the cell PM (105). 

The first MV protein sorting mechanism identified involves the selective 

inclusion of proteins with specific PM anchors, including myristoylation, 

phosphatidylinositol binding domains, prenylation and palmitoylation (100). These 

targeting specificities were identified by creating fusion proteins with C-terminal amino 

acid sequences to direct specific post-translational modification. The addition of unique 

post-translational modifications via these sequences to the C-terminal of proteins could 

selectively sort proteins to areas of MV generation on the PM. In contrast, specific site-

directed mutagenesis to prevent this post-translational modification could abrogate the 

selection of proteins for MV incorporation. Interestingly, the inclusion of different post-

translational modifications had different sorting efficiencies, ranging from 100% MV 

inclusion for myristoylated and palmitoylated proteins, to approximately 30% for 



 33 

phosphatidylinositiol-binding domains, and 15% for prenylation (100). This strongly 

suggests that MV sorting is under the direction of multiple mechanisms, or that multiple 

domains within a protein may be required for efficient trafficking. The authors noted that 

the most efficient sorting tags were used by retrovirus budding and recognized the Gag 

protein, further suggesting a link between MV budding and virus release. 

There is also evidence that extracellular post-translational modification is a 

determinant for EV-protein incorporation. In this case, proteins with modifications of N-

linked glycans such as high mannose polyactosamine (Poly-LacNAc) and a2,6 sialic 

acids are preferentially incorporated into EVs (101). As with the previous example, 

manipulation of these glycosylations results in differential protein selection for EV 

release. The surface receptor EWI is intrinsically glycosylated with three N-linked chains, 

and present in EVs released from SK-Mel-5 human melanoma (101). When de-

glycosylated on these N-linked residues using either glycosylation inhibiting enzymes, 

deglycosylases, or via mutation of the appropriate amino acids, incorporation of EWI into 

EVs was lost without loss of other EV-incorporated proteins (101).  

Evidence for an mRNA sorting mechanism has also been identified. In this case, 

cells and EVs were shown to have differential inclusion of mRNA species (102). In the 

mouse liver cell line MLP29, mRNAs with a 12-nucleotide targeting sequence were 

selectively enriched in EVs when compared to the cell of origin. This sequence was 

enriched in the 3’ UTR of nearly 40% of EV transcripts and forms a stem-loop structure 

(102). Incorporation of this sequence into other transcripts also induced their enrichment 

into EVs. Other studies have suggested a similar “mRNA zip code” of 25 nucleotides that 
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incorporate the miR-1289 binding site and are capable of promoting inclusion of 

transcripts into MVs (103). Taken together, these data strongly suggest that the packaging 

of EVs, and MVs in particular, is not a random process but a carefully regulated event, 

and further indicates that EVs are generated to mediate specific cell-specific processes. 

The third type of EVs are apoptotic bodies. These EVs are distinct from exosomes 

and MVs in that they are not actively produced by viable cells, but are generated during 

apoptosis in a process called membrane blebbing. They are typically substantially larger 

than exosomes or MVs, and range in size from 1 to 5 µm (106). They may be formed via 

the breakup of the cell body in the execution phase of apoptosis (107), or through a 

recently-identified mechanism where cytoplasmic protrusions extend from the cell and 

bud off in a ‘beads-on-a-string’ formation (108). Apoptotic bodies tend to be short-lived 

in vivo, as they are rapidly removed by scavenging cells, such as macrophages (107). 

Functionally, these EVs are generated to prevent the release of harmful cytosolic contents 

into the extracellular environment during the cell death process, and potentially damaging 

neighboring cells (109). The larger size of apoptotic bodies allows them to incorporate 

cellular contents, such as nuclear material or organelles, which cannot be accommodated 

in smaller EVs. The initial stages of apoptotic body formation are similar to those of MVs 

in that the scramblase enzyme, functionally related to the flippase and floppase enzymes, 

induce PS redistribution to the outer leaflet of the PM (110). This membrane asymmetry 

is used by circulating immune cells to identify apoptotic cells and to initiate their 

clearance (111). While the precise recognition receptors for apoptotic cells and bodies by 

macrophages, and other cells, are completely characterized, evidence suggests that 

recognition involves recognition of N-glycosylated proteins on the apoptotic cell or body 
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and sialic-binding proteins, such as Siglec-1 (CD169) on immune cells (111, 112). As 

apoptotic bodies are generated during the execution-phase of regulated cell death, they 

are frequently termed cellular debris. As such, comparatively less has been established 

about their biological roles, or the physiological consequences of their interaction with 

other non-apoptotic cells.  

 

1.6.2 EVs participate in numerous biological processes 

1.6.2.1 EV functions in healthy cells 

 Ongoing research has identified EVs as important mediators of numerous 

processes in both healthy and diseased states, and has identified their potential utility as 

therapeutic tools. EV production may be ubiquitous as they have been identified as being 

generated from numerous cell types and isolated from virtually all body fluids (113). 

Thus, the use of EVs to influence their environment likely represents an intrinsic 

behaviour of cells. The manners by which EVs can affect recipient cells are not limited to 

a single mechanism, as delivery of cargo proteins, cell surface receptors, mRNA, miRNA 

and potentially other transcripts such as long non-coding RNA (lncRNA) have each been 

documented to influence recipient cells. Ultimately, the effect of EVs on cell behaviour 

appears to be highly dependent on their cell of origin. 

Among the earliest studied functions for EVs are their role in modulating clotting 

responses to regulate coagulation and haemostasis. EVs released by platelets carry 

coagulation-modulating factors, including Tissue Factor (TF) and PS, which promote 

platelet aggregation (88, 113). These EVs may circulate freely through the blood, and 
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following a loss of haemostasis, be released by cells at wound sites to promote clot 

formation. However, these EVs can also restrict clotting through inactivation of clotting 

factors. For example, EVs can induce clotting factor V inactivation through active protein 

C or inhibition of Tissue Factor (114), possibly as a mechanism to prevent excess clot 

formation, which is of interest to research on obstructive arterial disease.  

 During immune challenge, EVs are known to act as regulators of antigen 

presentation, cellular activation and survival, or to induce immune tolerance to antigens. 

As early as 1996, it had been established that activated B cells release MHC-II bearing 

exosomes as a mechanism for antigen presentation and inducing immune responses (86). 

It is now understood that EVs can alter immune activation via APCs such as DCs and B 

cells through a variety of means. For example, cytomegalovirus infects endothelial cells, 

which in turn release EV-bearing viral antigens. These EVs can interact with MHC-

bearing APCs in vitro, and allow for the activation of CD4+ T cells (115). Furthermore, it 

is possible for EVs to directly activate T cell responses. Here, APC-generated EVs 

selectively incorporate MHC-I-bound antigens, along with the ICAM cell adhesion 

molecule and the B7 T-cell costimulatory molecule. Binding of these APC-derived EVs 

can induce the activation of CD8+ cytotoxic T cells (116). The classical paradigm of 

immune activation requires the direct interaction of APCs with immune effectors in areas 

of high lymphocyte density, such as lymph nodes. These findings suggest it may be 

possible to elicit immune responses more systemically. These data may also be of interest 

in studies on immune function in areas of immune privilege, such as the brain, cornea or 

in tumours. EVs can cross physical barriers, like the blood brain barrier (117). Thus, in 

cases of traumatic injury or malignancy, EVs maybe capable of generating immune 
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responses that would otherwise not be possible due to the inability of immune effectors to 

directly interact with the tissue.  

 EVs do not necessarily transduce pro-activation signals in immune cells. As 

opposed to APC-derived EVs, those released directly by activated T cell effectors appear 

to be inhibitory, or even pro-apoptotic. For example, leukemic T and B cells may release 

the MICA/B, ULBP1 and ULBP2 ligands of the NKG2D receptor via exosomes (118). 

NKG2D is an activating receptor on NK cells, and promotes the recognition and 

destruction of malignant or infected cells (119). The secretion of NKG2D-ligand bearing 

exosomes by these cells acts via steric inhibition to prevent NKG2D-mediated NK cell 

activation by the leukemia cells, thus functioning as a decoy to prevent NK cells from 

destroying the tumour cells (118). T cells also release Apo2 and Fas-ligand via MVs to 

induce apoptosis in nearby T cells as a mechanism of immunomodulation (120). T cells 

may even be competitively inhibitory by altering the survival of APCs. Activated CD8+ 

T cells release exosomes bearing T cell receptors with their recognized antigen, and Fas-

ligand. These exosomes can bind to antigen-bearing APCs via TCR-MHCI interactions, 

and induce apoptosis of the APCs via Fas-Fas ligand (121). Furthermore, the ligation of 

MHCI on the APC surface can induce its internalization, preventing antigen recognition 

by other T cells and thus inhibiting other CD8+ T cells (121). The purpose of these 

immunosuppressive EVs is to dampen and down-regulate already active immune 

responses rather than to initiate a response. In this regard, they may act as a 

counterbalance to prevent excessive response and destruction of healthy host cells. This is 

of interest in understanding the regulation of overactive immune responses, such as sepsis 
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or autoimmune diseases, but may also be relevant in non-pathological states like 

pregnancy. 

EVs play critical roles in fertility and pregnancy. During spermatogenesis, EVs, 

called epididysomes, are released by epididymal cells as sperm transit along the 

reproductive tract. Epididysomes transfer a wide variety of cargo to sperm cells by fusing 

to the surface of the sperm (113). Among the most important in humans is the GPI-

anchored P34H glycoprotein (122). Large quantities of P34H create a glyco-shell around 

the sperm head that permits binding to the zona pellucida of the oocyte and allows for 

fertilization. Without this epididysome-mediated transfer, oocyte penetration does not 

occur (123). Other cargo includes enzymes responsible for energy metabolism thought to 

enhance sperm motility (124). EVs from the prostate called prostasomes also carry key 

immune regulators to inhibit the destruction of sperm by the maternal immune system 

(113). 

During pregnancy, syncytiotrophoblast cells release exosomes and other EVs 

called syncytial membrane-released microvesicles/microparticles (STBM) to regulate 

immune tolerance of the mother to the developing embryo (125, 126). A fetus represents 

a partially foreign entity to the maternal immune cells due to the contribution of 

paternally-derived cell surface receptors. Both exosomes and STMBs carry a variety of 

different immunomodulatory factors. These include Fas-ligand to induce apoptosis of 

immune cells (127) and NKG2D to inhibit NK cells in a manner analogous to that 

described with T cells (126). They also carry T cell inhibitory molecules PD-L1 which 

inhibit T cell activation through the PD-1 receptor (128). To permit engraftment and 

prevent rejection, the fetus secrets EVs into the amniotic fluid and at the maternal/fetal 
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interface to promote regulatory T cell development and inhibit effector T cell and other 

immune effector cells from responding to the fetus. These fetal-derived EVs were the 

first observed to carry CD24, and its association with EVs is a largely unexplored facet of 

CD24’s biological functioning. 

 

1.6.2.2 Cancer cells exploit EVs for multiple functions 

The ability for EVs to alter cellular behaviour has been of significant interest in 

the study of cancer. The release of EVs from tumour cells was first documented in 

lymphocyte cell lines derived from a B cell Hodgkin’s lymphoma patient (129). These 

EVs were reported to be 400 to 1200 angstroms in size (40 to 120 nm), which makes their 

identification as exosomes likely, despite the inability to classify them fully at the time.  

As with their counterparts released from non-malignant cells, EVs from cancer 

cells carry a variety of protein and nucleic acid cargo that can influence recipient cells 

and aid tumour growth or metastasis. Furthermore, the production of EVs from cancer 

cells is correlated with their increased metastatic potential and invasiveness in patients 

(97). 

Within two years of their identification from the Hodgkin’s lymphoma patient-

derived cell line, studies had demonstrated that EVs from malignant cells can act as 

transformation vectors, turning non-malignant, or low-grade malignant cells into more 

aggressive forms. EVs collected from the highly metastatic F10 sub-clone of the B16 

mouse melanoma cell line transported material to the poorly metastatic F1 sub-clone 

(130). The transferred proteins were incorporated into the PM of the F1 sub-clone and 
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rendered the cells more aggressively metastatic in lung tissue. The PM-residency of the 

transferred components was demonstrated by showing CD8+ T cells reactive against F10 

antigens could lyse F1 cells only following EV transfer, however, the determinants 

increasing the metastatic potential of the F1 cells were not identified.   

 Cancer cells can also secrete EVs to directly benefit the developing tumour and 

not simply to transform neighbouring cells. For example, hypoxia is a limiting factor of 

tumour growth and spreading. In response to hypoxic stress, A431 squamous cell 

carcinoma releases exosomes (and possibly other EVs) enriched with proteins involved in 

angiogenesis and extracellular matrix remodelling (131). These EVs can stimulate 

increased angiogenesis in vivo. Similarly, chronic lymphoblastic leukemic (CLL) B cells 

demonstrate an elevated release of EVs, which can incorporate into bone marrow stromal 

cells, in a time dependent fashion (132). Following incorporation, these stromal cells 

show increased activation of mTOR and AKT, leading to their production of vascular 

endothelial growth factor (VEGF) (132). Increased vascularization through the promotion 

of angiogenesis may represent a mechanism through which cancer cells can more easily 

spread during metastasis. EVs can also support tumour growth directly through the 

delivery of pro-survival, or pro-proliferative signalling receptors, such as a constitutively 

active variant of the epidermal growth factor receptor (EGFR) (133). 

 The ability for cancer-derived EVs to influence cells can be mediated through 

RNA transfer. Studies have shown that EVs package mRNA and miRNA transcripts that 

are biologically active in recipient cells. The human MDA-MB-231 breast cancer cell line 

is highly metastatic and produces exosome-sized EVs (134). When transfected with a 

Cre- recombinase reporter, these EVs incorporate the Cre mRNA (135). When 
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ultracentrifuge-isolated EVs carrying Cre were injected into mice carrying LoxP-

transfected T47D breast cancer cells Cre was successfully integrated, translated, and 

became biologically active, demonstrating the ability for mRNA to generate functional 

products in recipient cells in vivo (135). The released MDA-MB-231 EVs were also 

enriched in mRNA that participates in cell migration and adhesion. Following 

incorporation of these EVs, T47D cells became more metastatic, with increased 

infiltration into surrounding tissues and distal sites (135) Similarly, miRNAs miR-105 

and miR-181c transported by EVs have been shown to aid in metastasis through the 

blood brain barrier by disrupting tight junction proteins and actin localization, 

respectively, in endothelial cells (136, 137). 

 The most recent research has established that cells can release multiple types of 

EVs (such as exosomes and MVs) simultaneously (138). These EV sub-sets are 

compositionally distinct (138, 139). For example, MVs, but not exosomes, released from 

one prostate cancer cell line were heavily enriched in transcripts regulating prostate 

cancer, and more heavily for rRNA. Conversely, exosomes were more variable in the 

transcripts they carry (139). Therefore, future studies on the ability for EV to influence 

diseases, such as cancer, will be influenced heavily by the methodology used to isolate 

EV, and must account for the intrinsic intra-population heterogeneity of different EV sub-

types. 
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1.6.2.3 The utility of EVs for diagnostics and therapeutics 

 Finally, a current trend in EV research is the investigation of their utility as 

diagnostic or therapeutic tools. Among the most simplistic but reliable diagnostic is the 

association between increased EV release in different biological or pathological 

conditions. This increase has been identified in the numbers of circulating EVs in plasma 

from melanoma, breast and esophageal squamous cell carcinoma cancer patients (140-

142), in drug or alcohol-induced liver disease (143, 144), and in end-stage renal disease 

(145). Increased exosome production has been associated with advancing pregnancy, 

which has been suggested as a means for monitoring complications during gestation 

(146). 

 Beyond the simple monitoring of EV numbers, the composition of EVs has been 

examined for potential diagnostic utility. The ability for EVs to carry RNA, and their 

presence in, and ready isolation from, most biofluids have made them attractive targets 

for identifying signatures of disease. Ovarian cancer is frequently diagnosed at an 

advanced stage due to an absence of definitive symptoms, difficulties in early detection, 

and the lack of a non-invasive diagnostic which can be used for general population 

screening. In addition to increases in the numbers of circulating EVs, ovarian cancer EVs 

exhibit increases in miRNA previously established as biomarkers of the disease (147). 

The profile of miRNA isolated from these EVs was highly correlated with the originating 

tumour, and distinct from that of EVs isolated from healthy individuals. The ease of 

detection, as facilitated by routine blood collection makes this an attractive possibility for 

population screening. 
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  Other tumours also shed EVs that have diagnostically relevant transcripts and 

proteins. These include glioblastoma, which frequently contain mRNA for the mutant 

EGFRvIII, which is absent in EVs from healthy tissue (148) Similarly, hepatocarcinoma 

cells release EVs enriched for the lncRNA ROR, a marker of Transforming Growth 

Factor b-induced treatment resistance (149). The resistance to treatment by the mAb 

Herceptin, an antagonist of Human Epidermal Growth Factor Receptor-2 (Her2), in 

human breast cancer can be mediated by exosomes. In this case, Her2 overexpressing 

tumours selectively release Her2+ exosomes to bind circulating Herceptin, allowing the 

tumour to escape the Herceptin-mediated inhibition (150). The monitoring of Her2+ EVs 

in patient plasma may therefore be useful in diagnosing treatment resistance and allow 

earlier therapeutic adjustment. 

An early study on MV-mediated receptor transfer examined their role in 

mediating RBC survival. In paroxysmal nocturnal hemoglobinurina (PNH) patients, 

RBCs are deficient in the GPI-linked cell surface receptors CD55 and CD59. These 

receptors down-regulate complement-mediated cell lysis, and in their absence, cells are 

more susceptible to destruction via complement (9). CD55 and CD59 are present on MVs 

isolated from healthy donor RBCs. Transfer of these MVs, and their incorporated CD55 

and CD59 in vitro protected RBCs isolated from PNH patients from complement-

mediated lysis, however, this protection was lost when MVs were pre-treated with 

phospholipase C to cleave GPI-anchored proteins. (151). This study noted that long-term 

RBC storage increases RBC vesicle release, and it was hypothesized that blood stored for 

transfusion may be enriched for RBC MVs (152). Subsequently, it was demonstrated that 
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stored blood from healthy donors could be used to transfer CD55 and CD59 to PNH 

patients (152), however, remission of PNH was not evaluated in response to receptor 

transfer. 

 EVs have also been investigated for their potential to deliver small molecules or 

therapeutic agents to cells. In Parkinson’s disease, neuron damage occurs through the 

generation of reactive oxygen species (ROS) (153). One possible therapeutic strategy 

being considered is the delivery of ROS scavengers, such as the catalase enzyme, to 

abrogate ROS-induced damage. In vivo studies in C57BL/6 mice showed EVs could be 

selectively loaded with active catalase, that these EVs could cross the blood brain barrier, 

and that the EVs could reduce brain inflammation (154).  

EVs have been used to deliver apoptotic-inducing agents to cancer cells. Tumour 

Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL) is a pro-apoptotic signalling 

receptor typically down-regulated in tumour cells (155). EVs have been used to deliver 

TRAIL to multiple cell lines in vitro, resulting in their apoptosis without affecting 

neighbouring healthy cells (156). Similarly, a caspase vector with a Schwann cell p0 

promoter has been used to induce apoptosis in Schwann cell tumours in a mouse 

xenograft model (157). Interestingly, these cells also shed EVs (potentially as apoptotic 

bodies) containing the active vector, which destroyed neighbouring cells resulting in near 

complete tumour remission (157). 

 Recently, it has been shown that CD24 is released on EVs from both human and 

mouse cells in vitro and in vivo. CD24 was first identified on EVs derived from mouse 

and human urine and amniotic fluid (158). Interestingly, using CD24-knockout dams 

mated to CD24-positive males resulted in heterozygous pups. Vesicles isolated from the 
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amnion in CD24-knockout dams carried CD24, which demonstrates the vesicles isolated 

from amnion came from the developing fetus rather than being maternally derived. This 

study suggested that CD24 was not a driver of EV biogenesis, as comparable numbers of 

EVs were successfully isolated from WT and CD24 KO mice. Since that time, CD24 has 

been identified on EV freely circulating in blood plasma (159) and saliva (160), and it is 

incorporated in EV released from both healthy and cancerous tissues (159, 161). 

However, no functional role has been associated with CD24 on these EVs, and it remains 

unclear if it is simply incorporated or if CD24 may play some role in EV biogenesis. 

 Our lab first investigated the potential signalling mechanism of CD24 through a 

guilt-by-association bioinformatics analysis of publically available B cell transcriptomics 

data generated by the Immunological Genome Project (60). Our analysis showed that 

during B cell development, CD24 was co-expressed with 39 unique genes, suggesting a 

common regulatory scheme with potentially related, or complementary functions (60). 

Among these associations, there was an over-representation of genes associated with 

cytoskeletal organization and vesicle trafficking suggesting that CD24 may participate in 

these processes. I also identified that CD24 expression is highly dynamic following 

antibody-mediated stimulation of ex vivo isolated primary mouse B cells, with expression 

both decreasing and increasing. As other GPI-anchored proteins have been identified as 

signalling via endocytosis-based processes, I hypothesized that CD24 may signal through 

a balance of endocytosis and exocytosis-based events. However, the association between 

CD24 and EVs in other systems suggests that it may participate in signalling through 

these mediators as well. My research has thus focused on the investigation of these 

possibilities.  
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1.7 Research objectives 

Given the current state of knowledge with respect to CD24-mediated cell signalling, my 

research focused on three major objectives: 

 

1. Identify putative tissue-specific CD24 ligands to better elucidate potential 

interacting partners and their potential processes using publically available gene 

expression microarray data. 

 

2. Examine the association between Ab-mediated stimulation changes in CD24 

expression on the B cell surface with endocytosis, exocytosis, or EV release. 

 

3. Characterize B cell EV released in response to Ab-mediated stimulation of CD24. 

.  

My work lead to the generation of a testable hypothesis on a generalizable mechanism of 

CD24 signalling based on its known in cis associations with transmembrane signalling 

co-receptors. 
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1.8 Publications arising from data presented in this thesis 

The results presented in this thesis have all been published as follows: 

1. DC Ayre, NK Pallegar, NA Fairbridge, M Canuti, AS Lang and SL Christian. 

(2016). Analysis of the structure, evolution, and expression of CD24, an 

important regulator of cell fate. Gene 590, 324-337 (13). This data is presented as 

chapter 2. The data presented in this chapter is used under copyright license from 

publisher Elsevier, with the copyright permission presented in appendix A.	

*This publication contains data generated from the co-first author that is 

not included within this thesis. Only data analysis performed by DCA is 

presented here.	

Author contributions: NKP performed the genomic structure analysis. DCA performed 

the transcriptomic expression and structural analysis. NKP, MC, and ASL performed the 

phylogenetic analysis. NAF, DCA, NKP, and SLC conceived the idea and participated in 

its design. All authors helped draft the manuscript and approved the final manuscript.  

2.  DC Ayre, M Elstner, NC Smith, ES Moores, AM Hogan and SL Christian. 

(2015). Dynamic regulation of CD24 expression and release of CD24-containing 

microvesicles in immature B cells in response to CD24 engagement. Immunology 

146(2), 217-233 (60). This data is presented as chapter 3. The data presented in 

this chapter is used under copyright license from publisher John Wiley and Sons, 

with the copyright permission presented in appendix A. 
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Chapter 2: Structure and Expression of CD24 and Potential Ligands  

2.1 Introduction 

 As discussed in chapter 1 of this thesis, the CD24 protein is conserved in 

numerous mammalian, reptilian and avian species. In mice and humans, it is translated as 

a precursor protein of 80 or 76 amino acids, respectively, before the cleavage of N- and 

C-terminal sequences. These peptide sequences are responsible for directing the protein 

to the plasma membrane and for the attachment of the GPI anchor moiety, leaving a 

mature protein that is between 27 and 30 amino acids in length. This protein core is then 

heavily post-translationally modified with a variable mosaic of N- and O- linked 

glycosylations resulting in a final protein size which ranges between 20 and 80 kDa (14). 

This protein is then expressed in a wide variety of cells and tissues, and has demonstrated 

binding with numerous tissue-specific ligands. Furthermore, the relationship between 

CD24 and its ligands is highly complex. Multiple ligands have been identified for CD24 

with many of these interactions known to be cell-type specific. No published research has 

attempted to predict which interactions may be present across different tissues based on 

the known expression of CD24 and its various potential ligands.  

I performed an analysis of the consensus sequence of CD24 from 56 different 

species. I found within animal clades, there was a high degree of conservation, but 

between phyla this conservation was diminished (13). There was poor conservation of the 

mature CD24 protein across species. The most stringent conservation occurred in areas 

responsible for anchoring the glycosylation chains (13). However, the number of 

glycosylation sites, and whether these sites are conserved as N- or O-linked attachment 
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areas, varied between species. Therefore, I then examined the three-dimensional structure 

of CD24 to determine if there was a relationship between CD24 protein conservation, 

potential secondary or tertiary protein structures, and thus the ability for CD24 to interact 

with ligands. I examined the co-expression of CD24 with various known or potential 

ligands across multiple tissues. Overall, my analysis identified that the mature CD24 

protein exists as an intrinsically disordered protein, with limited amino acid-directed 

structure. Furthermore, the expression of CD24 and its known ligands only occurs 

together in some tissues or cell types. 
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2.2 Materials and Methods 

2.2.1 CD24 protein structure predictions.  

The CD24 pro-peptide and mature peptide consensus sequences were generated 

using BioEdit from the unique amino acid sequences (Additional File 3) and visualized 

using WebLogo (163). These sequences were then analyzed by i-Tasser (164) and 

SPINE-D (165) for secondary structure predictions. 

 

2.2.2 Gene expression analysis.  

Microarray-based whole transcriptome data for the mouse tissues indicated were 

retrieved from the Gene Expression Omnibus (GEO) for the accession numbers listed in 

Table 2.1. Publication references for these data, where provided, are indicated. Robust 

Multi-Array Average (RMA) normalization of gene expression was performed in R 3.0.2 

via R Studio 0.98.1091 using the Bioconductor, Biobase, and Oligo packages (166-169) 

and the pd.mogene.1.0.st.v1, pd.mouse430.2 and pd.moe430a annotation files. Using the 

online Affymetrix NetAffx tool, probe IDs for the selected genes of interest were 

identified for the three platforms. CD24, its known ligands, and closely related protein 

family members were included in each analysis, and appropriate lineage and non-lineage 

markers were included for each tissue (Table 2.2). RMA normalized data were then 

filtered using these probe IDs and gene expression data averaged between replicates. The 

Moe430a and Mouse430.2 arrays frequently contain multiple probe IDs for each gene. 

Therefore, each probe ID was examined individually and probes with values that did not 

represent known gene expression patterns or clear outliers were excluded from the 

analysis as indicated   
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Table 2.1 Mouse tissues used to determine expression profiles for CD24 and selected 

genes. 

Cell / Tissue GEO Accession 
Number and 

Reference 

Platform 

Bone marrow derived, 
developing B cells  

GSE15907 (170) GPL6246-Affymetrix Mouse Gene 
1.0 ST Array 

Developing T cell GSE15907 (170) GPL6246-Affymetrix Mouse Gene 
1.0 ST Array 

Dendritic cells  GSE15907 (170) GPL6246-Affymetrix Mouse Gene 
1.0 ST Array 

Embryonic liver  GSE13149 (171)  GPL1261-Affymetrix Mouse 
Genome 430 2.0 Array 

Mature, adult liver 
post-hepatectomy  

GSE4528  
(No associated 
publication) 

GPL339-Affymetrix Mouse 
Expression 430A Array 

Prenatal whole brain  GSE8091 (172) GPL1261-Affymetrix Mouse 
Genome 430 2.0 Array 

Post-natal and adult 
whole brain 

GSE11528 (173) GPL6886 - Mouse Genome 430 2.0 
Arraya 

Foetal placenta GSE11220 (174) GPL1261-Affymetrix Mouse 
Genome 430 2.0 Array 

Maternal decidua GSE11220 (174) GPL1261-Affymetrix Mouse 
Genome 430 2.0 Array 

Embryonic whole 
testis 

GSE6881 (175) GPL1261-Affymetrix Mouse 
Genome 430 2.0 Array 

Embryonic whole 
ovary 

GSE6882  
(175) 

GPL1261-Affymetrix Mouse 
Genome 430 2.0 Array 

Embryonic and 
mature cornea 

GSE43155 (176) GPL6246-Affymetrix Mouse Gene 
1.0 ST Array 

 

a Platform GPL6886 - Mouse Genome 430 2.0 Array is identical to the GPL1261-

Affymetrix Mouse Genome 430 2.0 Array. The authors used custom annotation files in 

analysis, which were not required for this analysis. 
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Table 2.2 Gene symbols, names and Probe IDs for all genes used in expression analysis. 

MGI 
Gene 
Symbol 

Gene 
Name 

Alternative 
Name 

MoGene 
1.0 Probe 

ID 

affy_moe430a 
Probe ID(s)a 

affy_mouse430_
2 Probe ID(s)a 

CD24A n/a CD24, Heat 
Stable Antigen 
(HAS) / 
Nectadrin, Ly-52 

10362896 1416034_at, 
1437502_x_at, 
1448182_a_at 

1416034_at, 
1437502_x_at, 
1448182_a_at 

SELL L-Selectin SEL-Lb, CD62L, 
LECAM-1, Lnhr, 
Ly-22, Lyam-1, 
Ly-m22 

10351197 1419480_at, 
1419481_at 

1419480_at, 
1419481_at 

SELP P-Selectin SEL-P b, CD62P, 
Grmp 

10351206 1420558_at, 
1449906_at 

1420558_at, 
1440173_x_at, 
1449906_at 

SELE E-Selectin SEL-E b, CD62E, 
Elam 

10351182 1421712_at 1421712_at 

L1CAM L1 Cell 
Adhesion 
Molecule 

CD171, L1, L1-
NCAM, NCAM-
L1 

10605113 1421958_at, 
1450435_at 

1421958_at, 
1450435_at 

CD22 Siglec-2 
(Human) 

Lyb8, Lyb-8 10562132 1419768_at, 
1419769_at 

1419768_at, 
1419769_at 

Siglece Sialic Acid 
Binding Ig-
like Lectin 
E 

Siglec-5 
(Human), 
mSiglec-E, 
SiglecL1 

10552369 1424975_at 1424975_at 

Siglecg Sialic Acid 
Binding Ig-
like Lectin 
G 

mSiglec-G, 
Siglec-10 
(Human) 

10552380 N/A 1435955_at 

CD80 n/a B7-1, B7.1, 
CD28l, Ly-53, 
Ly53 

10435704 1427717_at, 
1451950_a_at 

1427717_at, 
1451950_a_at 

CD86 n/a B70, B7-2, B7.2, 
CD28l2, Ly58, 
Ly-58, MB7-2 

10439312 1420404_at, 
1449858_at 

1420404_at, 
1449858_at 

Itgam n/a CD11b, 
CD11b/CD18, 
CD11B(p170), 
Complement 
component 
receptor 3 alpha, 
complement 
receptor type 3, 
Cr3, Ly-40, Mac-
1, Mac-1a, Mac-
1 alpha 

10557862 1422046_at 1422046_at 

Il3ra Interleukin 
3 receptor, 
Alpha 
Chain 

CD123, IL-3 
receptor alpha 
chain, SUT-1 

10412760 1419712_at 1419712_at 
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Gapdh Glyceraldeh
yde-3-
phosphate 
dehydrogen
ase 

Gapd, G3PD 10545765 1418625_s_at, 
AFFX-
GapdhMur/M325
99_3_at, AFFX-
GapdhMur/M325
99_5_at, AFFX-
GapdhMur/M325
99_M_at 

1418625_s_at, 
AFFX-
GapdhMur/M3259
9_3_at, AFFX-
GapdhMur/M3259
9_5_at, AFFX-
GapdhMur/M3259
9_M_at 

Rplp0 ribosomal 
protein, 
large, P0 

36B4, Arbp, 
L10E, LP0 

10524718 1419441_at 1419441_at 

Actb Actin, Beta Actx, A-X actin-
like protein, beta-
actin 

10535381 1419734_at, 
1436722_a_at, 
AFFX-b-
ActinMur/M1248
1_3_at, AFFX-b-
ActinMur/M1248
1_5_at, AFFX-b-
ActinMur/M1248
1_M_at 

1419734_at, 
1436722_a_at, 
AFFX-b-
ActinMur/M12481
_3_at, AFFX-b-
ActinMur/M12481
_5_at, AFFX-b-
ActinMur/M12481
_M_at 

CD19 n/a B4, CVID3 10567863 1450570_a_at 1450570_a_at 
CD4 n/a L3T4, Ly-4 10547894 1419696_at, 

1427779_a_at 
1419696_at, 
1427779_a_at 

CD8b1 n/a Ly-3, Ly-C, Lyt-
3, Leu2, P37 

10538979 1426170_a_at 1426170_a_at 

CD8a n/a Ly-2, Ly-35, Ly-
B, Lyk-2, Leu2, 
p32 

10538993 1425335_at, 
1451673_at 

1425335_at, 
1444078_at, 
1451673_at 

Gpt Glutamic 
pyruvic 
transaminas
e, soluble 

AAT1, ALT1, 
GPT1 

10424979 1426502_s_at 1426502_s_at 

NCAM1 Neural cell 
adhesion 
molecule 1 

CD56, E-NCAM, 
NCAM, NCAM-
1, NCAM-120, 
NCAM-140, 
NCAM-180, 
MSK39 

10593293 1426865_a_at, 
1450437_a_at 

1426865_a_at, 
1450437_a_at 

 

aProbe IDs in red were removed from analysis as the gene expression values obtained 

were inconsistent with other Probe IDs or with known expression. 

bSelectin genes were labelled as either Sele-L, Sele-P, Sele-E in expression profile figures 

for ease of identification. 
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(Table 2.2). When a single gene was represented multiple times within an array, gene 

expression values for all probe IDs representing a single gene were averaged (see 

Supplemental File 1 for means and standard deviations for each gene). 

 

2.2.3 Statistical analysis  

High and low gene expression was defined as values within 25% of the maximum 

and the minimum gene expression within each panel, and shown as green and pink bars, 

respectively. Statistically significant changes to CD24 gene expression were determined 

by 1-way ANOVA followed by Tukey post-hoc test, if significant. Positive correlation 

between the expression of CD24 and all other genes was determined using a one-tailed 

Spearman’s rank correlation analysis at a p-value of 0.05. All statistics were done in R 

(167). 
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2.3 Results 

2.3.1 The Structure of CD24 

I used the consensus sequence of CD24 derived from the alignment of the 

previously analyzed species to predict secondary structure and organization at the protein 

level. The consensus sequence was longer than the sequence for any individual species as 

it includes rare and unique amino acid insertions from each species added into the single 

sequence. Secondary structure prediction of the precursor CD24 protein using i-Tasser 

suggested that there are two alpha-helical regions (Figure 2.1A). One is in the N-terminal 

region, from residues 3 to 29, which corresponds to the signal sequence. The second is in 

the C-terminal domain, from residues 86 to 96, which corresponds to a portion of the 

GPI-anchor signal sequence. No secondary structure could be predicted for the region of 

the precursor protein that corresponds to the mature peptide between residues 42 to 77. 

As the N- and C-terminal regions are cleaved from the mature peptide during post-

translational processing (14), I also analyzed the mature core peptide in isolation (Figure 

2.1B). Similarly, no discrete secondary structure was predicted for the mature peptide in 

isolation. As expected from the secondary structure prediction results, no tertiary 

structure was confidently predicted for either the precursor or the mature peptide. 

In agreement with the secondary structure prediction, analysis of the intrinsic 

disorder of the CD24 precursor protein via SPINE-D revealed that this protein is likely to 

be highly intrinsically disordered, with an average probability score of 0.62 (Figure 

2.1A). In the N-terminal region of the precursor protein, the region from residues 24 to 37 

has a probability of disorder of 0.32, indicating it is likely an ordered region. This area 
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Figure 2.1: Visualization of CD24 secondary structure motifs and sequence 
alignment. The predicted secondary structures of the CD24 (A) pro-peptide and (B) 
mature peptide were assessed using i-Tasser and SPINE-D. The predicted disorders of the 
pro- and mature peptide are represented with a blue line. Areas predicted by i-Tasser to 
contain alpha-helical domains are shown in green. Black bars represent the average 
probability of disorder predicted by SPINE-D for two ordered domains in the N- and C-
terminal regions and the mature peptide. (C) A graphical representation of the mature 
CD24 peptide alignment is shown. Letter height indicates relative abundance of a given 
amino acid in each position. Error bars show a Bayesian 95% confidence interval. Asn 
and Arg residues are shown are red, while Ser and Thr residues are shown in orange. 
Hydrophobic amino acids are in blue and all other amino acids are in black. Known Mus 
musculus N-glycosylated residues are indicated with * and known O-linked 
glycoslyations are indicated with °. Potential N-linked glycosylation sites are shown with 
+, based on the Asn x(Ser/Thr) glycosylation motif. Amino acid positions 14 and 21-24 
are shown as gaps as they do not align or are not present in most sequences analyzed 
(Additional File 3). The likelihood of a given residue existing in a disordered state was 
predicted using SPINE-D and the probability of disorder is shown above the sequence. 
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partially overlaps with the alpha-helical domain predicted by i-Tasser (Figure 2.1A). In 

the C-terminal region, there is another ordered region from residues 88 to 97, with a 

probability of disorder of 0.42, overlapping with the predicted alpha-helical region of the 

GPI-anchor signal sequence. The central domain of the precursor protein containing the 

mature core peptide from positions 42 to 77 had a high average probability of disorder 

value of 0.80. Furthermore, when analyzed in isolation, I found that the intrinsic disorder 

of the mature peptide increased to an average of 0.94, primarily due to a loss of order at 

the N-terminus (Figure 2.1B). Therefore, post-translational processing of the CD24 

protein causes reduced order in the peptide core, however, it is not precisely known how 

the addition of glycosylations and/or the GPI-anchor influence the structure or disorder of 

the surface protein. 

Visualization of the alignment of the mature core peptide clearly reveals that 

several of the known O-glycosylation sites as well as known and predicted N-

glycosylation sites (177) are highly conserved (Figure 2.1C). Specifically, there were 12 

highly conserved Ser or Thr residues that could be modified by O-linked glycosylation, 

and five highly conserved Asn residues that can be N-glycosylated, based on the 

consensus sequence of Asn-X-(Thr/Ser) where X can be any amino acid except proline 

(178). Of the potentially glycosylated residues, there are three highly conserved residues 

that are known to be N-linked, and four highly conserved residues that are likely to be O-

linked, at least in the case of erythrocyte-derived mouse CD24 (16).  

In addition to the glycosylation sites, there are two clearly identifiable regions 

with highly conserved sequences, from positions 9 to 19 and 28 to 35 of the mature 

protein. The second, a proline-rich region, partially overlaps with the CD24 domain as 
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annotated by the Pfam database (PF14984) (179), which begins at position 26 and ends 

within the GPI-anchor signal peptide at position 75. However, as the Pfam domain 

PF14894 includes the GPI-anchor peptide it does not accurately represent the mature core 

peptide. Nevertheless, the high conservation of key glycosylation residues supports 

previous work showing that glycosylation of CD24 dictates ligand specificity and 

therefore function of CD24 (6, 31, 180). 

 

2.3.2 Dynamic regulation of CD24 gene expression and its putative ligands during 

cellular development 

CD24 is dynamically regulated throughout development at the mRNA and protein 

levels in multiple cell types (14, 15, 181, 182), and is highly expressed in the developing 

embryo (183). Multiple ligands for CD24 have been identified, which interact with CD24 

either in cis or in trans. Putative in cis interactions can be predicted using global 

transcriptomic analysis of purified populations of cells at different stages of development 

while putative in trans interactions can be predicted using global transcriptomic analysis 

of whole tissues. Thus, I performed analyses on the expression levels of CD24 and 

previously identified ligands and closely related family members in developing cells of 

the immune system, in immune privileged sites, in developing and regenerating liver 

cells, and in the whole embryonic and adult brain. For each cell type, I also analyzed the 

expression of key lineage markers and genes known to have high or low expression to 

confirm that the transcript data of interest accurately represented the cell type and stage at 

the transcript level. I analyzed the correlation between the expression of CD24 and the 
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genes of interest as well as establishing boundaries for low/no, moderate, and high 

expression, as described in section 2.2.3. The GEO accession numbers and appropriate 

publication references are provided in table 2.1, as previously indicated. 

 

2.3.2.1 Immune cells 

I analyzed the expression of CD24 and genes encoding putative ligands in B cells 

(Figure 2.2A), T cells (Figure 2.2B), and DCs (Figure 2.2C), in which CD24 is known 

to positively regulate apoptosis, homeostatic proliferation, and repression of activation, 

respectively (15). 

B cells develop in the bone marrow occurs through discrete stages from multi-

lymphoid progenitor (MLP) to the common lymphoid progenitor (CLP) and then to 

committed B cell stages (Hardy fractions A through F). I used CD19 expression to 

confirm lineage specificity (48) and found that, as expected, CD19 expression increases 

at the Fraction B stage, where irreversible B cell commitment occurs, until the Fraction E 

(immature) phase whereupon expression plateaus (Figure 2.2A). In agreement with the 

original studies (54), I found that while CD24 expression is generally moderate during B 

cell development, its expression increases from moderate to high at the committed B cell 

stage, Fraction B, followed by a decline when cells reach maturity and then remains 

moderate with a slight decline in plasma cells (Figure 2.2A). 

I found that the expression patterns of Siglec-2, Siglec-G and CD19 significantly 

correlated with CD24 expression (Figure 2.2A). Siglec-2 and -G are  

expressed at a low level at the onset of B cell development, and their expression increases   
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Figure 2.2: CD24, CD24 ligand, and lineage marker expression during immune cell 
development. Data show expression of CD24 (black), known CD24 ligands (orange), 
Siglecs (blue), lineage markers (green), and normalizer genes and non-lineage markers 
(grey), n=3-4. (A) B cell development is divided into bone marrow and splenic stages. 
MLP, multilineage progenitor stem cells; CLP, common lymphoid progenitor cells; FrA 
through FrF, Hardy Fractions A, B/C, C’, D, E and F; T1-T3, splenic transitional B cells, 
stages 1 through 3; and PC, terminally differentiated plasma cells. (B) T cell development 
is divided into Progenitor T cells (left panel) and Splenic CD4+ and CD8+ T cells (right 
panel). ETP, early T progenitor; DN2, double negative 2; DN3a, double negative 3a; 
DN3b, double negative 3b; DN4, double negative 4; ISP, immature single positive; DP, 
double positive; EPS, early positive selection; CD4-PSI, CD4+ positive selection 
intermediate; CD4-INT, CD4+ intermediate; CD4-SEMI, CD4+-semi-mature; CD4-MAT, 
CD4+-mature; CD4-NAI, naïve CD4+; CD4-MEM, CD4+-memory; CD8-PSI, CD8+ 
positive selection intermediate; CD8-INT, CD8+ intermediate; CD8-SEMI, CD8+-semi-
mature; CD8-MAT, CD8+-mature; CD8-NAI, naïve CD8+; and CD8-MEM, CD8+-
memory. (C) DCs are divided into immune organ-derived (left panel; spleen and thymus) 
and non-immune organ-derived (right panel; lung, lung lymph node and small intestine). 
DC lineages are classified by expression of CD4, CD8, CD11b and CD103. TNDC, triple 
negative DC; PCDC-CD8+, CD8+ plasmacytoid DC; and PCDC-CD8-, CD8- 
plasmacytoid DC. Significant changes in CD24 expression compared to the leftmost 
stage shown per panel by 1-way ANOVA and Tukey post-hoc analysis #P<0.05. Genes 
with significant positive correlation to CD24 indicated within graph * P<0.05, ** P<0.01, 
***P<0.005.  
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rapidly and peaks in Fraction E cells. While Siglec-G showed a moderate decline in 

expression in splenic cells, Siglec-2 expression was maintained at higher levels 

throughout B cell development and activation. Although L-selectin was highly expressed 

at the same stages as CD24, its expression pattern did not correlate significantly with 

CD24. Neither P- nor E-selectin was expressed to a significant level at any of the stages. 

As epithelial cells were not present in this purified population, identification of trans 

ligands between different cell types was not possible. High expression of L-selectin 

suggests that interactions between B cells could be mediated by L-selectin and CD24, 

however, there are no published reports on such an interaction. While Siglec-2 has not 

previously been demonstrated to be a CD24 ligand, it can bind the α2, 6-linked sialic 

acids that are present on CD24 suggesting that Siglec-2 could be a potential ligand for 

developing B cells (68, 184).  

 T cells develop from CLP cells that migrate from the bone marrow to the thymus 

where they further develop through the double negative (DN) stages, through the double 

positive (DP) stage and then to the early positive selection stage. As expected, CD4 and 

CD8 mRNA expression were both high by the DP stage and remained high in CD4-

positive or CD8-postive T cells, respectively (Figure 2.2B). In comparison to B cells, 

CD24 is more equally expressed through T cell development (Figure 2.2B). Both CD4- 

and CD8-positive T cell populations maintain CD24 expression until they reach maturity 

whereupon it declines dramatically and remains low. Mature, naïve and memory T cells 

are equally capable of re-entering the cell cycle given the correct activation signals but 

are considered effector cell types, like antibody-producing plasma cells. 
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Moderate expression of Siglec-5 and Siglec-G is detectable in the Early T 

Progenitor phase (ETP) followed by loss of expression in every other phase of T cell 

development. Unlike the expression patterns in B cell development, none of the Siglec 

genes would be viewed as strong candidates for ligands of CD24 to mediate homotypic 

interactions. This is consistent with the role that CD24 expression plays in co-stimulation 

of T cells (63). I found a significant correlation between CD24 and P-selectin expression 

patterns, however, since P-selectin is expressed at very low levels, this correlation likely 

does not have biological meaning. 

DCs can be found in lymphoid organs, such as the spleen, thymus, and lymph 

nodes, as well as in non-lymphoid tissue, where they act as the sentinels of the immune 

system and present antigen to T cells (185). I found that CD24 expression was highly 

variable among DC subsets (Figure 2.2C). In general, CD24 expression was moderate to 

high in all the DC subsets except in CD4+ splenic DC and plasmacytoid DC where CD24 

expression was low.   

 Expression of genes encoding putative and known CD24 ligands was also highly 

variable (Figure 2.2C). Overall, Siglec-G was moderately expressed in most DC subsets 

consistent with the known cis inhibition of Siglec-G by CD24 in bone marrow-derived 

DCs (29). Even though bone marrow-derived DCs are not represented in this expression 

dataset, I would predict that the Siglec-G - CD24 interaction may also be an important 

interaction in many other DC subsets, particularly in non-lymphoid organs but less likely 

in lymph node DCs or CD8+(CD4-CD11-) splenic DCs. Plasmacytoid DCs (PCDCs) arise 

from CLPs whereas other DC subsets originate from the myeloid lineage (185). 

Interestingly, L-selectin is highly expressed in both subsets of PCDCs but not in any 
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other DC subset. I found there was no strong correlation between CD24 levels and any 

ligand except for L1CAM, however this correlation may not be biologically meaningful as 

the expression of L1CAM is low in nearly all of the DC subsets analyzed. 

 Overall, these data support a putative role for Siglec-2 and Siglec-G acting as cis 

ligands in B cell development, but do not support a role for these ligands in developing T 

cells. Analysis of individual DC subsets at the biological level will be necessary to 

identify ligands due to the large variability of CD24 and ligand expression in the different 

subsets. 

 

2.3.2.2 Immune-privileged sites 

 Sites of immune privilege are maintained to prevent the immune system from 

recognizing and responding to endogenous antigens by inhibiting classical immune 

responses in these areas. Sites of immune privilege include the maternal/fetal interface, 

the gonads and the cornea (186). As CD24 is best characterized as an immunoregulatory 

protein, it may also have a role in mediating responses at immune-privileged sites. 

 During pregnancy, the maternal decidual tissue and the fetal placenta maintain the 

maternal/fetal interface and establish immune privilege (187). This must be maintained 

through the pregnancy as its loss can lead to rejection of the fetus (188). Transcriptomic 

analysis clearly shows that CD24 is expressed in both the placenta and the decidua at 

moderate levels during all stages of murine gestation (Figure 2.3A-B). Of the known 

CD24 ligands, I identified that only L1CAM has elevated expression in these tissues. In 

the mouse placenta L1CAM expression is constant throughout pregnancy (Figure 2.3A)   
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Figure 2.3. CD24, CD24 ligand and lineage marker expression in immune-privileged 
sites. Data show expression of CD24 (black), known CD24 ligands (orange), Siglecs 
(blue), lineage markers (green), and normalizer genes and non-lineage markers (grey); 
n=3-4. Development is divided into embryonic (E) and postnatal (P) days in (A) Placenta, 
(B) Decidua, (C) Testis, (D) Ovary and (E) Cornea. Significant changes in CD24 
expression compared to the earliest stage shown per panel by 1-way ANOVA and Tukey 
post-hoc analysis #P<0.05. Genes with significant positive correlation to CD24 indicated 
within graph * P<0.05, ** P<0.01, ***P<0.005. 
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while in the decidual tissue L1CAM expression is initially comparable to that of CD24 

but steadily declines through pregnancy until birth (Figure 2.3B). Accordingly, I found a 

significant correlation of CD24 expression with L1CAM in decidual, but not placental 

tissue. Also, in the decidua, but not the placenta, there is an increasing trend of Siglec-2 

and Siglec-G expression during pregnancy reaching moderate levels at birth (Figure 

2.3B). While no known function for CD24 has been shown in these tissues, CD24-

bearing exosomes, originating from the fetus, have been found to accumulate in amniotic 

fluid (158). 

 I also found that CD24 is expressed at high levels in both the embryonic testes 

and ovaries (Figure 2.3C-D). In both cases, expression of CD24 is elevated in the earlier 

stages of fetal development and declines to a moderate level closer to birth. Even though 

changes in CD24 expression showed significant correlation to Siglec-G in testes, and L-

selectin and Siglec-5 in ovary, expression of the selectins, siglecs and L1CAM is low 

throughout testicular or ovarian development.  

Immune privilege is also maintained in the eye (186) where CD24 has been 

shown to be involved in wound healing and where CD24 promoter hypomethylation and 

resultant overexpression is associated with the tissue overgrowth induced by corneal 

damage in humans (189). I found that CD24 is highly expressed in corneal tissue through 

embryonic development and into post-natal life (Figure 2.3E). With respect to putative 

CD24 ligands, L1CAM is also expressed in the cornea, appearing at moderate levels 2-3 

weeks after birth and maintained at a relatively constant level (Figure 2.3E). This trend 

in expression correlated significantly with CD24 expression. There is no appreciable 

expression of any of the other putative CD24 ligands or family members in the cornea. 
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 Combined, these data clearly show that CD24 is generally highly expressed in 

areas of immune privilege, with little dynamic regulation of expression in contrast to 

what is seen in immune effector cells. The maintenance of CD24 expression suggests that 

CD24 likely serves a specific function in these tissues that has not yet been described. 

Surprisingly, its expression was not well correlated with any known CD24 ligands in any 

of these tissues. Since these expression studies were performed in whole tissue, 

identification of both cis and trans ligands is possible. Therefore, in these tissues it is 

possible that CD24 may act as its own ligand, or that an as-yet unknown ligand remains 

to be identified.  

 

2.3.2.3 Brain and Liver 

 CD24 is also a biomarker for stem cells or progenitor cells, capable of 

differentiation and proliferation, in the brain (190), liver (191), small intestine (192), and 

mouse mammary tissue (193). 

 Brain tissue undergoes rapid development and proliferation during fetal 

maturation before entering a more quiescent state upon maturity. The fetal liver is 

responsible for hematopoietic cell development while the adult liver has critical roles in 

digestion and detoxification, and is capable of full regeneration of function following 

injury. Using these tissues as examples of rapid embryonic growth followed by a shift in 

function and/or growth, I examined the expression of CD24 and genes encoding its 

putative ligands. 
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 In whole brain, CD24 is highly expressed throughout all the fetal time points 

examined (Figure 2.4A). CD24 expression remains elevated at birth followed by a 

decline by 14 days of age, with a further reduction by 56 days of age (Figure 2.4B). 

NCAM1, chosen as a lineage marker since its expression was best described in brain, 

showed increasing expression during fetal development, which remained high in the 

adult. The CD24 expression pattern correlated significantly with both L1CAM and 

NCAM1 expression in developing and mature brain tissue. CD24, NCAM1, and L1CAM 

have been shown to be functionally related in neuronal signalling (19). In these studies, it 

was shown that CD24, L1CAM and NCAM1 co-migrate on the cell surface suggesting 

they may form cooperative signalling complexes. However, the comparatively low 

expression of CD24 with respect to L1CAM or NCAM1 in mature brain tissue suggests 

that L1CAM and NCAM1 participate in other biological roles distinct from their role 

with CD24. 

In the fetal liver, I found that CD24 expression is high throughout all stages of 

embryonic development whereupon it drops to low levels between 3 and 21 days after 

birth (Figure 2.5A). During the time frame when CD24 expression is high, I observed 

very low transcript expression of known CD24 ligands. CD24 expression correlated with 

L-selectin expression, however due to the very low level of L-selectin expression, this 

correlation not likely biologically relevant. I observed the gain of glutamic pyruvate 

transaminase (GPT) expression, a gene expressed by liver hepatocytes (194), that 

occurred at the same times as the drop in CD24 expression.  
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Figure 2.4. CD24, CD24 ligand and lineage marker expression during embryonic 
and postnatal brain development. Data show expression of CD24 (black), known 
CD24 ligands (orange), Siglecs (blue), lineage markers (green), and normalizer genes and 
non-lineage markers (grey); n=3-6. (A) Embryonic brain development is divided by 
embryonic (E) day. (B) Postnatal brain development is divided by postnatal (P) days 
where P0 is day of birth. Significant changes in CD24 expression compared to the earliest 
stage shown per panel by 1-way ANOVA and Tukey post-hoc analysis #P<0.05. Genes 
with significant positive correlation to CD24 indicated within graph * P<0.05, 
***P<0.005. 
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Figure 2.5. CD24, CD24 ligand and lineage marker expression during liver 
development and post-partial hepatectomy. Data show expression of CD24 (black), 
known CD24 ligands (orange), Siglecs (blue), lineage markers (green), and normalizer 
genes and non-lineage markers (grey); n=2. (A) Liver development is divided into 
Embryonic (E) and Post-natal (P) periods with numbers indicating days where P0 is day 
of birth and AD is adulthood. (B) Samples from liver are divided into pre-operative (Ctrl) 
and post-operative samples denoted by hours post-hepatectomy. Significant changes in 
CD24 expression compared to the earliest stage shown per panel by 1-way ANOVA and 
Tukey post-hoc analysis #P<0.05. Genes with significant positive correlation to CD24 
indicated within graph * P<0.05, ** P<0.01. 
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Gain in GPT expression is consistent with the shift in liver function from hematopoietic 

cell development in the fetal liver (35) to metabolic regulation in the post-fetal liver (195) 

providing an overall indicator of the progression of liver maturation.  

 As CD24 expression is frequently associated with highly proliferative cells, or as 

a marker of cells that are more stem-cell like, I analyzed the expression of CD24 in liver 

responding to partial hepatectomy.  

I found that after partial hepatectomy CD24 expression remains low, comparable 

to that of normal adult liver, except for a brief increase at 36h (Figure 2.5B). The 

expression levels of CD24-associated ligands are likewise unaffected by surgical 

resection of the liver and remained low or absent. CD24 expression did not correlate with 

any known ligands.   
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2.4 Chapter 2 Discussion 

This is the first comprehensive analysis of CD24 regarding its sequence 

homology across species, and expression in multiple tissues and developmental states. 

Although the mature CD24 peptide is only between 26 and 41 residues, depending on the 

species from which it is isolated, I was able to generate a consensus sequence among 56 

disparate species which highlights the constraints on CD24 sequence diversity among 

species Moreover, using transcriptomic data covering the development of multiple cell 

types I was able to link the dynamic regulation of CD24 expression in the murine model 

with putative ligands or, in some cases, suggest that novel ligands may exist in tissues 

that do not express any of the known ligands. 

Analysis of the predicted structure of the consensus mature peptide sequence did 

not reveal any secondary structure for CD24. As such, CD24 may be considered an 

intrinsically disordered protein. Intrinsically disordered proteins represent a 

comparatively new paradigm in understanding protein structure and the suggestion is that 

many proteins exist without a defined secondary or tertiary structure as a basis of their 

molecular function (196). Protein functions thought to depend on intrinsic disorder 

include flexible linker domains and phosphorylation sites (196, 197). Given that CD24 is 

heavily glycosylated in its mature form, it is also plausible that this disorder gives the 

mature protein additional flexibility to maximize its glycosylation potential through 

minimizing steric interactions. The glycosylations may impose order on the structure, 

thereby making structure prediction from the amino acid sequence alone not possible. 

As mentioned, the amino acid sequence of CD24 possesses conserved 

glycosylation sites, as well as a proline-rich domain near the C-terminal region of the 
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mature peptide. The conservation of glycosylation sites strongly suggests that they are 

critical regions that define the biological activity of CD24, including the localization of 

CD24 to the extracellular surface of the plasma membrane. Interestingly, the sites and 

degree of glycosylation can also vary within and between species. For example, the 

comparison of CD24 between humans and mouse reveals human CD24 is enriched in Ser 

and Thr, and missing two Asn residues, compared to mouse (6). This may result in 

greater O-linked and fewer N-linked glycosylations. The mature core protein only 

contributes approximately 3.5 kDa with the remaining and variable mass of CD24 is 

made up by differing glycosylations (6, 14). Thus, while the presence of multiple 

potential glycosylation sites is maintained, the number and type varies in a cell- and 

species-dependent manner.  

Physically, the gain or loss of these glycosylation sites may have a significant 

impact on the size or shape of the mature CD24 peptide. O-linked glycans may contribute 

up to 2.5Å to total protein length (198). Thus, mouse CD24 would be predicted to extend 

at least 10Å beyond the plasma membrane. The presence of significantly more O-linked 

glycosylation sites in the human sequence suggests that it may be held in a more rigid 

conformation and extend even further from the cell surface. The evolution of the 

conserved glycosylation sites in CD24 suggests that the function of the protein is 

critically dependent on its status as a glycophosphoprotein, with additional flexibility 

depending on the nature of the individual glycosylations.  

 Functionally, CD24 has been associated with a wide range of biological 

processes. Gene ontology annotation by NCBI has associated mouse CD24 with 59 

processes, including apoptotic signalling, cell migration, adhesion, lipid homeostasis, cell 
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proliferation and neuronal development. To analyze the expression of CD24 over the 

course of cellular development, I chose to examine published expression data from 

specific cell types and whole tissues, where roles for CD24 have been identified or could 

be predicted based on the function of the tissue. In addition, I selected transcriptomic 

datasets with well-defined cellular stages isolated by fluorescence-activated cell sorting 

(FACS) or whole tissues isolated at multiple times over the course of development.  

 As expected, I observed a dynamic regulation of CD24 expression during B cell 

development, and I have clearly found that there is dynamic expression in T cell 

development. In both B and T cells, CD24 expression is high in immature populations 

and declines or is absent in mature cells. My data also support previous observations that 

DCs demonstrate lineage-dependent expression of CD24 where it functions as a co-

stimulator molecule for the specific activation of both CD4+ and CD8+ T cells (199). 

In my analysis of whole tissues, I found that CD24 was not regulated as 

dynamically as compared to isolated cells, which likely reflects the presence of multiple 

types of cells at multiple stages of development, each contributing to the total observed 

expression level. I observed high levels of CD24 expression in the major 

immunologically privileged sites including the testes, ovaries and cornea, which did not 

change substantially over the course of development. These results suggest that CD24 is 

actively maintained through development into maturity. In contrast, I found that in brain 

and liver tissue, CD24 is highly expressed during fetal development, but drops rapidly 

after birth and is either lost, or maintained at substantially diminished levels after 

maturity. Interestingly, in liver, CD24 expression remains suppressed even following 

surgical resection during which time liver cells rapidly proliferate to reconstitute organ 
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volume. The regrowth of liver, however, involves mature hepatocytes rather than relying 

on the proliferation and differentiation of naïve or stem cell populations (195). As such, it 

may be that CD24 is not involved in regulating proliferation per se, but is involved in 

organizing or moderating the growth and development of undifferentiated or stem-cell 

like populations into mature tissue. This hypothesis is consistent with recent data 

showing that CD24 expression levels mark reprogramming-responsive cells during 

pluripotent stem cell development (200). 

CD24 is also associated with regulating homeostatic proliferation and fate 

determination (14, 15). The role of CD24 in regulating matrix remodelling and stromal 

proliferation in corneal tissue (189) and in regulating similar processes in adult brain and 

epithelial tissues (201) suggests that CD24 may be a more generalized regulator of cell 

fate, by controlling the number and rate of cells that are allowed to proliferate and 

differentiate into mature tissues, and thus its expression is maintained in tissues where 

this capacity is maintained. In contrast, CD24 expression is not maintained in other self-

renewal processes, such as in liver regeneration that is dependent on the division of 

mature cells. 

The association of CD24 with its known ligands is similarly complex to its known 

cell-type specific roles, with many different tissue-specific interactions. My analysis 

suggests that there may be novel associations between known ligands, or that novel 

ligands exist in some tissues. For example, there is a correlation between CD24 

expression and Siglec-G and Siglec-2 (CD22) in B cells. At present, the ligand for CD24 

in B cells is unknown but given the known association between CD24 and Siglec-G in 

DCs, it is a likely candidate in B cells. Furthermore, interaction of CD24 with Siglec-2, 
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another member of the Siglec family, warrants additional investigation. In decidual 

tissue, L1CAM expression is more closely related to CD24 expression than other potential 

ligands. The interaction between L1CAM and CD24 has only been shown in neurons, but 

their co-expression in these tissues suggests it is possible this interaction may occur in the 

decidua during gestation. 

As CD24 is GPI-linked and cannot intrinsically signal through the plasma 

membrane, it must be associated with cis-acting elements to propagate signals into the 

cell on which it is expressed. However, CD24 can engage in trans and cis interactions 

simultaneously. For example, the cis interaction of CD24 with Siglec-G (human Siglec-

10) along with the trans interaction with HMGB1 can down-regulate the damage-induced 

immune response (29). Future discovery of CD24 ligands must include an analysis of 

both cis and trans ligands. 

Overall, I have also shown that the CD24 protein exists in an intrinsically 

disordered state and that the most evolutionarily constrained regions are related to sites of 

N- and O-linked glycosylation, which mediate CD24-ligand interactions and possibly 

affect the protein structure. Moreover, CD24 is dynamically expressed in multiple tissues 

throughout cellular development in the mouse model. The regulation of CD24 expression 

is not necessarily related to cell proliferation, but is more likely associated with 

developmental maturity. Furthermore, CD24 expression across tissues and cell types is 

not well correlated with any given known CD24 ligand, indicating roles for numerous 

ligands in mediating the biological activity of CD24. Overall, the data presented here are 

a valuable resource for further elucidation of CD24-mediated biology, including ligand 

discovery.
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Chapter 3: CD24 stimulation is associated with the formation of plasma 

membrane-derived microvesicles 

3.1 Section introduction 

The CD24 cell surface receptor lacks an intracellular signalling domain. Despite 

this, it has been shown conclusively antibody-mediated engagement of CD24 can induce 

the activation of the Src-family tyrosine kinases (SFKs) (61, 62), calcium influx (8), and 

leads to activation of multiple mitogen activated protein kinase (MAPK) signalling 

intermediates with a variety of downstream consequences. In human and mouse B cells, 

CD24 signalling results in the activation of the MAPK Jnk, and initiates the caspase 

cascade resulting in cell death (61, 62).  

The dynamic nature of the rise and fall of CD24 expression in B cell maturation 

defines a signature I used to identify 39 co-expressed genes (60). Among these genes, I 

found significant associations with cytoskeletal organization and vesicle trafficking 

processes, suggesting that CD24 may be associated with these events. Other GPI-

anchored receptors are known to initiate signalling events via their endocytosis, such as 

with CD48 (202), and CD55 (203). Thus, here I have examined the possibility that CD24 

operates through endocytosis and/or exocytosis processes.  

I first validated the use of the mouse WEHI-231 B cell lymphoma cell line as a 

model for CD24-mediated apoptosis in B cells. I found that that CD24 expression is 

highly dynamic following Ab-mediated stimulation within 1 hour, however the inhibition 

of endocytosis and exocytosis did not influence the expression dynamics of CD24. 

Instead, CD24 activation was associated with the formation of plasma membrane-derived 
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EVs, with characteristics consistent with classifying them as MVs. Furthermore, I found 

that these MVs are predominantly CD24-positive. Once stimulated, populations of B 

cells were capable of exchanging CD24 between stimulated cells. As the GPI-anchor is 

intrinsic to the plasma membrane, and required for CD24 retention this process is likely 

mediated through the membrane incorporation of CD24-bearing MVs exchanged by these 

cells. While these findings do not identify a cell-intrinsic signalling mechanism, or an in 

cis signalling partner, they do identify a novel mechanism through which CD24 

signalling may be capable of affecting cell behaviour in an endocrine or paracrine-similar 

fashion. 
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3.2 Materials and Methods 

3.2.1 Cell Culture 

All materials for cell culture were obtained from Life Technologies (Carlsbad, 

CA) unless otherwise indicated. Isolated bone-marrow derived immature B cells and the 

BALB/c x NZB mouse WEHI-231 pre-B cell lymphoma cell line (ATCC, Manassas, 

VA) were maintained in RPMI 1640 media supplemented with 10% heat-inactivated fetal 

bovine serum (FBS), 1% antibiotic/antimycotic (100 units of Penicillin, 100 units of 

streptomycin and 0.25 µg/mL amphotericin B) 1 % sodium pyruvate and 0.1% b-

mercaptoethanol (complete media) at 37°C and 5% CO2. 

 

3.2.2 Primary Bone Marrow B Cell Isolation 

Male C57BL/6 mice (3 to 6 weeks of age) were sedated using isoflurane and 

euthanized via cervical dislocation following Memorial University of Newfoundland 

animal care, and CCAC guidelines. Femurs were removed and bone marrow was flushed 

out with Quin saline (QS; 25 mM NaHEPES, 125 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 

mM Na2HPO4, 0.5 mM MgSO4, 1 g/L glucose, 2mM Glutamine, 1 mM Sodium pyruvate, 

50 µM 2-Mercaptoethanol, pH 7.2), using a 21-gauge needle. Single-cell suspensions 

were produced using a 100 µm nylon mesh. The EasySep Mouse B Cell Isolation Kit (cat 

no. 19854, StemCell Technologies, Vancouver, BC, Canada) was used to enrich bone 

marrow isolates following the manufacturer’s protocol. Fc-receptors were blocked on the 

B cells in this isolation using anti-mouse CD16/CD32 (Fc�III/II receptor) Abs. All 

experiments and analyses were performed on total isolated bone marrow-derived B cells. 
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 3.2.3 Flow Cytometry 

Cells were resuspended in 0.2 µm-filtered Phosphate Buffered Saline (PBS; 18.6 

mM NaH2PO4•H2O, 84.1 mM Na2HPO4, 1.5 M NaCl) containing 1% heat-inactivated 

fetal bovine serum (Thermo Fisher) (refered to as FACS buffer) unless stated otherwise. 

Flow cytometry data were collected on a FACSCalibur flow cytometer using CellQuest 

Pro v4.0.2 software (BD Biosciences, San Jose, CA) or a FACSAria II cell sorter using 

FACSDiva v8.0 software (BD Biosciences), at the Medical Education and Laboratory 

Support Services or the Cold-Ocean Deep-Sea Research Facility of Memorial University, 

respectively. Analysis was performed using FlowJo v10.0.5 (Tree Star, Ashland, OR.). 

Cell death experiments using Annexin V and Propidium iodide (PI) were analyzed 

ungated while CD24 expression was analyzed after gating on the live cell population 

based on FSC/SSC. 

 

3.2.4 Apoptosis Assay 

3.2.4.1 Annexin V / PI staining:  

WEHI-231 cells (5x105 cells/mL) in complete media were treated for up to 24 h 

with either functional grade 10 µg/ml primary mAb M1/69 rat anti-mouse CD24 (cat no. 

16-0242-85) or 10 µg/mL matching primary isotype Ab (cat no. 16-4031-85) both from 

eBioscience (San Diego, CA), or with primary Abs that had been pre-incubated with 5 

µg/ml goat anti-rat secondary Ab (secondary; cat no. 112-005-003, Jackson 

ImmunoResearch, West Grove, PA). Primary and secondary antibodies were always pre-

incubated prior to addition to cells at a 2:1 ratio to ensure efficient cross-linking of 
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primary Ab and to ensure no excess secondary Ab was present. Furthermore, I have 

confirmed that isotype pre-incubated with secondary Ab did not bind to either WEHI-231 

or primary B cells. Cells with treatment times less than 24 h were centrifuged to remove 

Ab-treated media and then resuspended in complete media and incubated at 37˚C for a 

total of 24 h and then analyzed for cell death. For staining, cells were resuspended in 

Annexin V binding buffer (10 mM HEPES buffer, 70 mM NaCl, 2.5 mM CaCl2) at pH 

7.4. Apoptosis was measured using AnnexinV-Alexa488 and PI using the Dead Cell 

Apoptosis kit (Life Technologies) following the manufacturer’s instructions. Cells were 

analyzed by flow cytometry on a FACSCalibur flow cytometer using CellQuest Pro 

v4.0.2. 

 

3.2.4.2 Caspase activation:  

Cells were treated for up to 3 h as described above. Thirty minutes prior to the 

indicated time, cells were incubated with 5 µM CellEventTm Caspase-3/7 Green Detection 

Reagent (Life Technologies) following the manufacturer’s protocol, and then analyzed by 

flow cytometry on a FACSCalibur flow cytometer using CellQuest Pro v4.0.2.. 

 

3.2.5 CD24 surface expression  

WEHI-231 cells (5x105 cells/ml in QS) were rested at 37°C for 15 min. Cells were 

then incubated with 10 µg/ml of M1/69 anti-mouse CD24 Ab that had been pre-incubated 

with 5 µg/ml of biotinylated goat-anti-rat secondary Ab for 1, 5, 15, 40 or 60 min, or left 

untreated. Cells were arrested in 3 mL of ice-cold FACS buffer and then washed with 



 84 

FACS buffer followed by staining with 0.25 µg streptavidin-linked FITC (cat no. 11-

4317-87, eBioscience) for 30 min in FACS buffer at 4°C. Cells were washed 3 times with 

FACS buffer and then analyzed by flow cytometry. To determine if CD24 epitopes were 

saturated by the addition of the pre-incubated primary and secondary Ab, cells were 

stimulated as above, or left untreated, followed by fixation with 4% paraformaldehyde for 

20 min at room temperature, followed by 3 washes with FACS buffer. Fixed, untreated 

cells (control) were incubated with 10 µg/ml of M1/69 anti-mouse CD24 Ab that had 

been pre-incubated with 5 µg/ml of biotinylated goat-anti-rat secondary Ab for 30 min at 

4°C. All cells were then stained with 0.25 µg streptavidin-linked FITC and with 0.06 µg 

M1/69-APC (cat. no. 17-0242-80, eBioscience) for 30 min at 4°C. Cells were then 

washed with FACS buffer and analyzed by flow cytometry on a FACSCalibur flow 

cytometer using CellQuest Pro v4.0.2. 

 

3.2.6 Inhibition of Endocytosis and Exocytosis 

WEHI-231 cells, resuspended at 5.0x105 cells/mL in QS, were pre-incubated in 

200 µM Pitstop 2 (Abcam, Cambridge, UK), 50 µM Dynasore (Abcam), 40 µM Exo1 

(Abcam), 10 µM Brefreldin A (Life Technologies) or vehicle control (DMSO) at 37˚C 

for 30 min and then treated with primary and secondary Ab, as above, with inhibitor 

concentrations maintained at half the original concentration, for up to 1 h. 

3.2.7 CD24 exchange 

Isolated bone marrow B cells or WEHI-231 cells (5x105 cells/ml in QS) were 

resuspended as above and were rested at 37°C for 15 min. Cells were then incubated for 
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15 min at 37˚C with 10 µg/mL M1/69 anti-CD24 Ab that had been pre-incubated with 5 

µg/mL biotinylated secondary Ab and either Streptavidin-FITC (0.25 µg) or Streptavidin-

eFluor660 (0.125 µg, cat no. 50-4317-80, eBioscience). Cells were centrifuged at 500 x g 

for 5 min to remove unbound Ab and then resuspended in QS. Equal amounts of FITC-

labelled and eFluor660-labelled cells were mixed at either on ice (control) or at 37˚C for 

the indicated times. Cells were washed with FACS buffer and then analyzed by flow 

cytometry on a FACSCalibur flow cytometer using CellQuest Pro v4.0.2. 

 

3.2.8 Transmission electron microscopy 

WEHI-231 cells were stimulated as described above and then centrifuged and 

resuspended in Karnovsky fixative for 24 h. TEM was performed by the Medical 

Education and Laboratory Support Services facility of Memorial University according to 

standard protocols. Briefly, 85 nm resin-embedded sections were mounted on 300 mesh 

copper grids, and then stained with 3% Uranyl acetate in a 30% ethanol. Grids were 

examined using a JEOL 1200 EX electron microscope (JEOL, Peabody, MA) and images 

captured using a SIA-L3C digital camera (SIA, Duluth, GA). 

 

3.2.9 Isolation of EV 

WEHI-231 cells in QS were left untreated, or stimulated as described above for 

15 min or 60 min at 37°C with either 10 µg/ml of M1/69 anti-mouse CD24 Ab that had 

been pre-incubated with 5 µg/ml of biotinylated goat-anti-rat secondary Ab. Enrichment 

of EV was performed similarly to previously published studies (132, 204). All steps were 
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performed at 4˚C. Briefly, cells were centrifuged for 5 min at 400 x g to pellet cells then 

the supernatant was centrifuged for 5 min at 2000 x g to pellet cell debris. M1/69 anti-

mouse CD24 Ab (10 µg/ml) pre-incubated with 5 µg/ml of biotinylated goat-anti-rat 

secondary Ab was added to the supernatant from untreated cells, when indicated. The 

supernatant was centrifuged for 1 h at 16,800 x g to pellet EV. The pelleted EV were 

resuspended in a residual volume of 25 µl QS, and 25 µL of 2x Annexin V binding buffer 

was added. EV were stained with 5 µl of Annexin-V Alexa 488 and 0.06 µg streptavidin-

APC (eBioscience). EVs were analyzed on the FACSAria II with 0.2 µm and 0.4 µm 

beads (Bangs Laboratories, Inc., Fishers, IN) used to establish a sizing gate for EV using 

SSC following established protocols (205, 206). 

 

3.2.10 Statistical Analysis.  

 Statistical analyses were performed in R v3.0.2 (167). Student’s t-test was used to 

determine differences between 2 groups. ANOVA was used to determine differences 

between more than 2 groups followed by either a priori analysis using a generalized 

linear model (207) for more than two groups or Student’s t-test for two groups with 

significance given in each figure. Tukey HSD was used for a posteriori analysis of all 

pairwise comparisons if the ANOVA was found to be significant. 
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3.3 Results 

3.3.1 Antibody-mediated engagement of CD24 causes apoptotic cell death in the WEHI-

231 B cell line. 

In order to test the hypothesis that engagement of CD24 may regulate vesicle-

mediated transport or associated processes, I first validated that engagement of CD24 

would induce apoptosis, a well-established function of CD24, in the WEHI-231 B cell 

lymphoma cell line, which expresses high level of CD24. To mimic ligand engagement, 

the cells were treated for 24 h with primary rat anti-mouse CD24 Ab or isotype antibody 

either with or without additional cross-linking induced by pre-incubating the primary Ab 

with a secondary anti-rat IgG Ab. The secondary Ab was added to increase the cross-

linking of CD24 as well as to increase the avidity of anti-CD24 Ab binding. 

I found that WEHI-231 cells did not undergo apoptosis in response to the isotype 

alone or with secondary Ab, or anti-CD24 primary Ab engagement alone but did undergo 

significant induction of apoptosis when stimulated with both primary and secondary Ab 

(Figure 3.1A-B). In addition, enhanced clustering with primary and secondary Ab, but 

not with primary Ab alone, significantly increased very late apoptotic or necrotic cell 

death.  

 CD24 crosslinking has been shown to activate multiple caspases, including 

Caspases-2, -3, -7 and -8. Similar to previous reports (62), I found that there was 

significantly upregulated caspase-3/7 activity in WEHI-231 cells after 3 hours of Ab 

stimulation (Figure 3.2A). Similarly, caspase-3/7 activity was significantly upregulated  
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Figure 3.1. Enhanced crosslinking of CD24 induces cell death in the WEHI-231 B 
cell line. Cells were treated with isotype control or anti-CD24 primary Ab, with or 
without secondary for 24 h. Cell death was assessed after 24 h of antibody stimulation 
using Annexin V-Alexa488 and Propidium iodide staining. (A) Shown are representative 
dot plots, and (B) mean ± SEM of percent Annexin V-positive apoptotic cells or necrotic 
Annexin V-negative, PI-positive cells, n=3, Student’s paired t-test,  * P< 0.05, ** P<0.01 
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Figure 3.2. CD24 engagement activates caspase-3/7 in WEHI-231 and primary B 
cells. (A) WEHI-231 cells or (B) Primary cells were treated as for Figure 3.1. Shown are 
representative histograms of caspase-3/7 activation (left panel) and the mean ± SEM of 
the mean fluorescent intensity (right panel), n=3, Statistical significance was assessed 
using Students’ paired t-test * P<0.05, ** P≤0.01. (C) WEHI-231 cells were removed 
from the Ab-treated media after 15 min of stimulation and replaced with untreated media 
for 2 h 45 min, or left with Ab for 3 h. Shown is the mean ± SEM of the mean fluorescent 
intensity, n=3, statistical significance was assessed using a 1-way ANOVA followed by a 
posteriori analysis by Tukey post-hoc, * P<0.05, ** P<0.01, *** P<0.001. 
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in primary cells at the same time point (Figure 3.2B) demonstrating that CD24 mediated 

cell death operates in an analogous fashion in WEHI-231 cells to that of primary cells.  

I  next investigated whether prolonged engagement with anti-CD24 Ab 

stimulation was required to induce caspase-3/7 activation, by removing unbound Ab from 

WEHI-231 cells after 15 min of stimulation. I found with only 15 min of Ab exposure, 

there was significantly less caspase activity after 3 h, compared to cells exposed 

continuously to Ab (Figure 3.2C). These data demonstrate that effect CD24-mediated 

apoptosis induction requires prolonged, engagement in conditioned media, rather than a 

transient engagement, to induce the maximum amount of caspase 3/7 activation. 

 Together, these data demonstrate that CD24-induced cell death occurs in a 

comparable fashion between WEHI-231 cells and primary ex vivo bone marrow cells (33, 

61) and that WEHI-231 can serve as a model for elucidating the function of CD24 in B 

cells. 

 

3.3.2 Ab-mediated engagement of CD24 dynamically regulates CD24 surface expression 

Engagement of receptors by their ligand can cause changes to their own surface 

expression, which may be mediated by vesicle formation and/or membrane re-

organization, as exemplified by the BCR (208, 209). Therefore, I next examined if 

expression of CD24 surface protein was altered following Ab-mediated engagement.  

I found that WEHI-231 cells responded with a time-dependent, dynamic change 

in CD24 surface expression. I have previously shown that primary cells increase their 

expression of CD24 over the course of 1 h, following antibody-mediated CD24 
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stimulation (60). In comparison, WEHI-231 cells showed an immediate loss of CD24 

expression by 1 min before recovering baseline CD24 surface expression by 15 min and 

then further increasing the amount of cell surface protein over the course of 60 min 

(Figure 3.3 A-B).  

I confirmed that the changes to CD24 surface expression was not an artefact of 

the short incubation times by determining if there were any epitopes available for binding 

of anti-CD24 Ab after stimulation. To do this, cells were fixed after treatment and then 

incubated with an APC-conjugated anti-CD24 antibody, which will label any unbound 

epitopes (Figure 3.3C). CD24 on untreated cells was readily detected by the anti-CD24-

APC (Figure 3.3D, APC only). However, this binding was significantly diminished in 

cells that had previously been treated with anti-CD24 primary plus secondary Ab (Figure 

3.3D). Furthermore, the degree of binding of the anti-CD24-APC Ab did not vary with 

the different incubation times with stimulating Ab indicating that the surface CD24 had 

been saturated by the stimulating Ab at all times examined.  

 

3.3.1 The dynamic regulation of CD24 protein expression does not depend on classical 

endocytosis or exocytosis processes. 

To test the hypothesis that CD24 is associated with endocytosis and/or exocytosis, 

I disrupted these processes in WEHI-231 cells through chemical inhibition. Primary cells 

were not able to withstand treatment with the chemical inhibitors without undergoing cell 

death so these cells were not analyzed further. Endocytosis was disrupted   
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Figure 3.3. CD24 protein expression is dynamically regulated after CD24 
engagement in WEHI-231 cells. (A) WEHI-231 cells were stimulated for the indicated 
times with anti-CD24 primary Ab and biotinylated secondary Ab. Surface CD24 
expression was assessed using streptavidin-FITC. Shown are representative histograms. 
(B) Mean ± SEM of the relative mean or the modal fluorescence intensity, n=3, statistical 
significance was assessed using a 1-way ANOVA followed by a priori analysis of 0 min 
to 1 min via Student’s one-tailed, uneven variance t-test * P<0.05, and from 1 min to 60 
min via generalized linear model regression analysis. ### P<0.001. (C) Schematic of CD24 
epitope availability assessment. Cells were stimulated for 1 min to 60 min with anti-
CD24 primary Ab and biotinylated secondary Ab, followed by detection with 
streptavidin-FITC (green star) as in A and B. Cells were then fixed and available CD24 
epitopes (orange diamond) detected by addition of anti-CD24 Ab directly conjugated to 
APC (red circle). (D) WEHI-231 were stimulated for the indicated times as above and 
relative surface CD24 expression (white) and free epitopes (grey) detected. The mean ± 
SEM of the relative mean fluorescence intensity, n=3, statistical significance was 
assessed using a 1-way ANOVA followed by a priori analysis of 0 min to 1 min via 
Student’s one-tailed, uneven variance t-test ** P<0.01, *** P<0.005, and from 1 min to 
60 minvia generalized linear model regression analysis. n.s.not significant, ### P<0.001.  
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by pre-incubation with Pitstop2, which disrupts both clathrin and non-clathrin mediated 

endocytosis, or Dynasore, which prevents dynamin-mediated internalization. Analysis of 

surface expression showed that Pitstop 2 pre-treatment alone significantly increased 

CD24 protein expression on the cell surface (Figure 3.4A). However, Pitstop2 pre-

treatment did not prevent the loss or subsequent increase in CD24 surface expression. 

Treatment with Dynasore had no effect on either the decrease or increase in CD24 

surface expression in response to Ab-mediated cross-linking (Figure 3.4A).  

To determine if the dynamic changes in CD24 surface expression depend on 

exocytosis, a process that regulates the formation of exosomes (210) and synaptic vesicle 

release (211), cells were pre-treated with the ER to Golgi transport inhibitors Exo1 or 

Brefeldin A. I found that treatment with either of these inhibitors did not alter CD24 

dynamics at any time point examined, indicating that CD24 surface protein levels are not 

regulated via classical exocytosis of newly packaged vesicles (Figure 3.4B).  

 

3.3.2 CD24 expression is not a function of endocytosis or exocytosis 

Since neither endocytosis nor exocytosis were involved in regulating the levels of 

CD24 surface expression, I next analyzed if CD24 could be lost from the cell surface by 

the generation of plasma-membrane derived EV released into the extracellular 

environment. I first analyzed changes in size and surface complexity of B cells using flow 

cytometry following Ab-mediated crosslinking. Both WEHI-231 cells and primary cells 

showed a large increase in subcellular-sized objects within 15 min of CD24 engagement 

(Figure 3.5A), a time-point that is generally considered too early to be   
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Figure 3.4. Changes to CD24 cell surface expression are not dependent on classical 
endocytosis or exocytosis. WEHI-231 cells were pre-treated with (A) Dynasore, or 
Pitstop2, and (B) Brefeldin A, or Exo1. DMSO was used as a vehicle control in all cases. 
Cells were treated as described for Figure 3.3 and CD24 detected using streptavidin-
FITC. Mean ± SEM of the relative modal fluorescence intensity relative to DMSO 
control treated (Ctrl) is shown, n=3, statistical significance was determined by a priori 
analysis of each time point using 1-way ANOVA, different letters represent different 
groups at P<0.05. 
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Figure 3.5. CD24 antibody-mediated cross-linking induces release of extracellular 
microvesicles. (A) WEHI-231 and Primary B cells stimulated with primary and 
secondary Abs  as described for Figure 3.1, for the indicated times. Shown are 
representative dot plots with the percentage of sub-cellular sized objects in the upper left 
corner, n=7-8 for primary cells, n=3 for WEHI-231. (B) Transmission electron 
micrographs of WEHI-231 treated with anti-CD24 primary and secondary Ab for the 
indicated times. Scale bar=2 µm for the main image and 1 µm for the inset. (C) Box-and-
whisker plot of vesicle sizes observed from the TEM. A minimum of 3 images were 
analyzed with 17, 58 and 46 EV analyzed at 0, 5, and 15 min, respectively. No significant 
differences in EV size were found by 1-way ANOVA. (D) Microvesicles isolated from 
WEHI-231 cells after 15 min of treatment with anti-CD24 primary and eFluor660-labeled 
secondary Ab analyzed by confocal microscopy. CD24 (purple), Annexin V-Alexa488 
(green), and DAPI (blue) were detected by confocal microscopy. Note: no DAPI-positive 
particles were observed. Scale bar= 10 µm. (E) Analysis of isolated microvesicles from 
WEHI-231 cells. Cells were left unstimulated for 60 min (ctrl) or stimulated with anti-
CD24 primary and biotinylated secondary anti-rat Ab for 15 or 60 min. Representative 
dot plots of isolated vesicles were detected using AnnexinV-Alexa488 and streptavidin-
APC, after gating on the EV-sized population, n=4. (F) Mean ± SEM of the total 
percentage of AnnexinV+ EV (upper panel) and the percentage of AnnexinV+ EV that 
are CD24+ (lower panel). n=4, significance was assessed via 1-way ANOVA followed by 
Tukey post-hoc test. Different letters represent significantly different groups at P<0.05. 
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associated with the generation of apoptotic bodies and would be prior to significant 

induction of caspase based on my data. In addition, the appearance of this sub-cellular 

fraction was coincident with the time frame showing dynamic changes in CD24 surface 

expression.  

 

3.3.3 CD24 is associated with extracellular microvesicle formation. 

To determine if WEHI-231 cells could produce EV in response to CD24 

engagement, I used transmission electron microscopy (TEM) to image WEHI-231 cells 

after treatment with anti-CD24 primary and secondary Abs (Figure 3.5B). These images 

show that engagement of CD24 causes the generation of large numbers of small, plasma 

membrane-derived EV within 5 min. By 15 min (a time-point that is coincident with the 

appearance of large numbers of subcellular sized particles in the bulk population), the 

number of EVs closely associated with the cell was reduced.  

As described in chapter 1, EVs are heterogeneous in both composition and size, 

ranging from 50 nm to above 1000 nm in diameter (212, 213). The EVs imaged by TEM 

ranged in size between 78 nm and 511 nm, with no significant change in size in response 

to CD24 engagement (Figure 3.5C). The morphology of these vesicles by TEM indicates 

that they are formed and released directly by budding from the PM, a defining 

characteristic of MVs (214).  While a definitive surface marker for EV has not yet been 

identified they are unlike exosomes in that they are enriched in surface 

phosphatidylserine (75, 215), which can be detected by Annexin V binding. Thus, to 

further characterize the plasma-membrane derived vesicles, I viewed EV that has been  
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isolated from WEHI-231 cells after 15 min of CD24 engagement under confocal 

microscopy (Figure 3.5D). The isolated EV are sub-cellular sized and do not contain 

DNA as evidenced by their DAPI-negative character. Moreover, CD24 co-localized with 

Annexin V in a portion of these EV, demonstrating that the EV maintained the same 

orientation of surface proteins as the plasma membrane. When treated with Triton X-100, 

a non-ionic detergent that disrupts the plasma membrane, I observed an essentially 

complete loss of Annexin-V positive particles (data not shown), further demonstrating 

that these are membrane bound particles. 

To quantify the number of EV that contain CD24, I analyzed isolated EV released 

after treatment of WEHI-231 cells using the FACSAria II, which can identify particles 

less than 1 µm in diameter. Using established strategies, I gated on particles in the size 

range of 0.2 to 0.4 µm and quantified the number of AnnexinV-positive and CD24-

positive EV released after 15 or 60 min of treatment (Figure 3.5E-F). Overall, I found 

that supernatant from unstimulated cells contained an average of 6.9x105 ± 3.1x105 EV-

sized particle after 60 min at 37°C (Figure 7E). After 15 or 60 minutes of Ab stimulation, 

an average of 5.1x105 ± 4x104 to 5.6x105 ± 1.7x104 EV-sized particles were detected, 

respectively (Figure 7E), however this was not significantly different from control cells 

when analyzed by one-way ANOVA (P>0.05). The technical limitations of the 

FACSAria II instrument limit EV detection to particles greater than 200-300 nm in 

diameter, thus EV counts from both conditions may be under-represented. 

In contrast, Annexin V-positive particles, which are generated from and retain the 

orientation of the plasma membrane, increased significantly following 15 min and 60 min 
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of CD24 stimulation (Figure 3.5F). Moreover, the percentage of Annexin V-positive EV 

that carried CD24 increased significantly from 23.1 ± 1.9% in control cells to 47.8 ± 

8.8% and 61.8 ± 3.5% after 15 min and 60 min, respectively Figure 3.5F). These 

findings show that engagement of CD24 promotes the formation of CD24-bearing EVs, 

in addition to altering the composition of EVs released by B cells. 

 

3.3.4  CD24-bearing EV can transport CD24 between cells  

EV can be taken up by other cells via multiple mechanisms to deliver both their 

intracellular and membrane bound cargo (104, 214). Therefore, I next investigated if the 

CD24-bearing EV generated in response to CD24 engagement can be taken up by 

neighbouring cells and thus potentially participate in cell-cell communication. I 

independently stimulated two different populations of WEHI-231 cells for 15 min with 

primary and secondary Ab and labelled each with either streptavidin-conjugated FITC or 

eFluor660. After removal of excess Ab, the differentially labelled cells were mixed 

together for up to 60 min at 37˚C. I found that upon mixing, there was a time- and 

temperature-dependent exchange of CD24 between both WEHI-231 cells and primary 

cells (Figure 3.6A-B). When WEHI-231 cells were mixed on ice (i.e. Ctrl), fewer than 

5% were double-labelled. There was a statistically significant time-dependent increase in 

the number of cells containing both labels over 60 min of co-incubation (Figure 3.6A, 

right panel). In contrast, if the cells were paraformaldehyde-fixed prior to mixing, the 

exchange of CD24 between WEHI-231 cells was essentially abolished and did not vary 

with time (Figure 3.6A). Thus, the exchange of CD24 was dependent on active cellular   
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Figure 3.6. CD24 protein is re-distributed within the B cell population in response to 
engagement of CD24. (A) WEHI-231 cells were treated with anti-CD24 primary and 
secondary anti-rat Ab conjugated to either eFluor660 or FITC. The two populations of 
cells (live or fixed) were then mixed and left on ice or incubated at 37˚C for up to 60 min. 
Shown are representative dot plots (left panel) and mean ± SEM of the percent of double-
positive cells (right panel), n=3, statistical significance was determined by 1-way 
ANOVA followed by generalized linear model regression analysis. n.s .not significant, ### 

P<0.001. (B) Primary B cells were treated with anti-CD24 primary and secondary anti-rat 
Ab. The two populations were mixed immediately before analysis, or were mixed for 60 
min at 37˚C. Shown are representative dot plots (left panel) and the mean ± SEM of the 
percent double-positive cells (right panel), n=3, statistical significance was determined by 
Students’ T-test, * P<0.05.  
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processes and not due to movement of the anti-CD24 primary Ab, secondary Ab, or 

streptavidin-conjugated fluorophore from one cell population to the other. I found that 

primary cells also exchanged CD24 when differentially labelled populations were mixed 

in a similar manner to WEHI-231 cells (Figure 3.6B). Thus, engagement of CD24 causes 

a clear exchange of CD24 protein within a homogenous population of cells in the case of 

WEHI-231, or a more heterogeneous population of bone-marrow derived B cells at 

various stages of development. 
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3.4 Chapter 3 Discussion  

 CD24-mediated cell death has been observed in several mouse and human cell 

lines, as well as in longer-term, in vitro cultures of murine bone marrow extracts co-

cultured with bone marrow stromal cells (33, 61, 62). This study is the first to establish 

that the WEHI-231 cell line may serve as a model system for investigating CD24-

mediated apoptosis. Unlike previous reports, in which engagement of CD24 by primary 

Ab alone was sufficient to induce apoptosis (33), I found that these cells require more 

extensive crosslinking of CD24 via primary and secondary Abs to initiate a substantial 

increase in apoptosis. Therefore, my findings, in agreement with the previously published 

reports (33) suggest that CD24 signalling requires a minimum threshold of stimulation 

that is surpassed upon the additional clustering of CD24 or increased avidity of Ab 

binding.  

 During my validation of WEHI-231 cells as appropriate models for understanding 

CD24-mediated signalling, I refined the timeline of events related to CD24 signalling 

with respect to the induction of apoptosis. I found that upon engagement of CD24 

caspase-3 / -7 activity is substantially and significantly upregulated within 3 hr in both 

primary cells and WEHI-231 cells. The caspase family is divided into initiator caspases, 

such as caspase-8 and executioner caspases, such as caspase-3 and -7 (216). Caspases-3 

and 8 activation, as detected by western blot, occurs within 24 h of anti-CD24 Ab 

stimulation in Pre-B HPB-Null cells (62). My data clearly demonstrates that CD24 

signalling engages apoptotic machinery in primary B cells and WEHI-213 cells by 3 h. 

Furthermore, my results show that removing unbound Ab after a 15 min incubation, 

which is prior to reaching the highest levels of CD24 expression in the timeframe 



 103 

examined, reduced the degree of apoptosis within the population. This suggests that the 

presence of the higher levels of surface CD24 may be necessary to promote maximal 

apoptosis following CD24 engagement.  

 In support of my hypothesis that CD24 is associated with cellular organization, I 

found that CD24 surface protein expression is complex and dynamic in response to Ab-

mediated engagement. WEHI-231 cells show an initial decline, followed by a sustained 

increase in CD24 surface expression. These data demonstrate that in addition to its 

regulation during B cell development, engagement of CD24 can rapidly alter its own 

expression at the single cell level. Thus, these data demonstrate that there is a positive 

feedback loop that increases CD24 surface expression in response to its own engagement. 

I have also established that the loss of CD24 surface expression that occurs within 

1 min in WEHI-231 cells is not due to classical exocytosis or endocytosis but via loss of 

CD24 protein on EV. Through both TEM and flow cytometry, I have established that EV 

appear within 15 min of Ab stimulation and continue to accumulate in the extracellular 

space through 60 min of stimulation. In addition, I observed an increase in both the total 

percentage of Annexin V-positive EV and the percentage of CD24-bearing EV following 

CD24 stimulation. There is not a significant increase in the percentage of CD24+ EV at 

60 min compared to 15 min after CD24 engagement. This likely reflects the steady-state 

equilibrium of EV where EV are continually being released and taken up by the cells. 

 The gain of CD24 surface expression that occurs over the course of 60 min in 

WEHI-231 cells is not mediated via classical exocytosis pathways, which transport 

protein from the ER via the Golgi to the cell surface. My data clearly show that isolated 

EV can mediate the exchange of CD24 between Ab stimulated cells. There is a broader 
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distribution of CD24 surface expression at later time points suggesting that some cells 

acquire more CD24 than other cells. Therefore, at least some of the increase in CD24 

surface protein may be due to the uptake of CD24-bearing EV. However, as both the 

mean and mode of CD24 expression increase at the single cell level, there must be 

additional mechanisms that increase CD24 expression, which are independent of ER to 

Golgi trafficking. For example, it is possible that the increase in CD24 surface expression 

is due to alterations in epitope availability due to conformational changes in response to 

CD24 engagement or due to fusion of pre-formed vesicles proximal to the plasma 

membrane.  

The loss of CD24 due to release of CD24-bearing EV is consistent with the lack 

of effect of both endocytosis and exocytosis inhibitors on CD24 surface expression. 

Previously, CD24 has been associated with exosomes found in urine and amniotic fluid 

that were secreted by maternal and fetal kidney cells (158). However, as these CD24-

bearing vesicles express phosphatidylserine, are not associated with the appearance of 

secretory vesicles, and have an average size of 165±5 nm, these EV cannot be classified 

as exosomes (217). The appearance of CD24 on plasma membrane derived EV is 

consistent with a general role for CD24 on membrane-bound structures released from 

cells.  

Previous studies on EV have shown they can participate in a wide range of cell 

processes including the regulation of lymphocyte activation, cellular proliferation, the 

transfer of signalling molecules, the epigenetic modification of cells and the delivery of 

active second messengers or microRNAs into cells (104, 212-215, 218, 219). The transfer 

of EV in blood transfusions can deliver CD55 and CD59, inhibitors of complement-
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mediated lysis, to host RBCs, preventing their complement-mediated destruction (151, 

152). While defining the precise function of CD24-bearing EV in B cell development 

requires further investigation, given their broad range of functions and their ubiquitous 

nature, the production of these CD24-bearing microvesicles from immature B cells may 

have the potential to affect differentiating B cells as well as the supporting stromal cell 

environment. 
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Chapter 4: The Composition of CD24-Associated EV 

4.1 Introduction 

EV production likely represents an innate, basal cellular process to serve as a cell 

to cell communication vehicle to influence local, or potentially even distant, recipients. 

Therefore, examining EV cargo is critical to understanding how EVs affect the cellular 

microenvironment. 

To better understand the role of EVs induced by CD24 stimulation, I have 

performed a systematic examination of the EVs released by the mouse WEHI-231 B cell 

line following stimulation of CD24. Using a combination of morphology, RNA-Seq, 

proteomics, and flow cytometry I have firmly established that CD24 stimulation 

promotes MV and not exosome release. I found that the RNA cargo and the MV 

proteome are relatively stable in response to stimulation, but MV receptor composition is 

distinct from that of the cell surface. Overall, these data show that B cells constitutively 

release MVs, but that CD24 signalling affects the surface composition in a manner that 

does not reflect their cellular origin, suggesting a regulated system for packaging surface 

proteins in these MV.  
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4.2 Materials and Methods 

4.2.1 Cell Culture 

Cell culture materials were obtained from Thermo Fisher Scientific (San Jose, 

CA) unless otherwise indicated. The WEHI-231 pre-B cell lymphoma cell line (ATCC; 

Manassas, VA) was maintained in RPMI 1640 media supplemented with 10% heat-

inactivated fetal bovine serum (FBS), 1% penicillin and streptomycin, 1% sodium 

pyruvate and 0.1% b-mercaptoethanol (RPMI complete) at 37°C and 5% CO2. 

 

4.2.2 EV Production 

4.2.2.1 Vesicle-free media 

Two aliquots of RPMI complete media were prepared as described (220), with the 

following changes: 20% heat-inactivated FBS (RPMI-20%) was centrifuged at 100,000x 

g for 18 h at 4°C in an SW-28 rotor (Beckman Coulter, Brea, CA) to deplete endogenous 

vesicles from the FBS, and filtered through a 0.22 µm filter and stored at 4°C. Vesicle-

free RPMI for culturing was prepared by mixing equal volumes of vesicle-free RPMI-

20% and FBS-free RPMI-complete media. 

 

4.2.2.2 Stimulation of EV production 

For stimulation and vesicle collection, 5.0 x105 WEHI-231 cells were removed 

from RPMI-complete, washed 1X in vesicle-free RPMI, re-plated in 1 mL vesicle-free 

media and allowed to rest for 5 min at 37˚C. Cells were then stimulated at 37˚C with 

either 10 µg/mL functional grade primary (1°) isotype control Ab (cat no. 16-4031-85) or 
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M1/69 rat anti-mouse CD24 Ab (cat no. 16-0242-85) from eBioscience (San Diego, CA), 

which had been pre-incubated with 5 µg/ml goat anti-rat secondary (2°) Ab (Jackson 

ImmunoResearch; West Grove, PA) for 10 min at room temperature. Either unconjugated 

(cat no. 112-005-003) or biotinylated (112-065-003) 2° Ab was used depending on the 

subsequent analysis. These stimulations are referred to as isotype and anti-CD24, 

respectively. Isotype antibody has previously been demonstrated to not bind to WEHI-

231 cells (60) and is used in place of an unstimulated control. 

 

4.2.3 Nanoparticle Tracking Analysis 

WEHI-231 cells were stimulated as described using biotinylated 2° Ab to remain 

consistent with previous Ab stimulations. Following stimulation, the cells were 

centrifuged at 500 x g for 5 min at 4°C to pellet cells and then centrifuged at 2000 x g for 

5 min at 4°C to pellet cell debris and larger vesicles. Conditioned media from isotype-

treated or anti-CD24-treated WEHI-231 cells were diluted 1:25 in 0.1-µm-filtered PBS 

and immediately analyzed on an LM10 Nanosight system with software version 3.2 

(Malvern; UK). Five videos of 30 sec each were acquired using camera level 15 for all 

samples as well as a background media control. The quintuplicate videos for each sample 

were batch analyzed using a detection threshold of 10. Mean number of particles/ml for 

each batch was used to estimate the original concentration. 
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4.2.4 Isolation of extracellular vesicles (EVs) 

4.2.4.1 Immunoaffinity isolation 

WEHI-231 cells were stimulated as described using biotinylated 2° Ab. Following 

stimulation, the cells were centrifuged at 500 x g for 5 min at 4°C to pellet cells. Cells 

were stained for FACS as described below as needed. Supernatant containing vesicles 

was then centrifuged at 2000 x g for 5 min at 4°C to pellet cell debris and larger vesicles. 

Protease and phosphatase inhibitors (1 mM phenylmethylsulfonyl fluoride (PMSF; 

Sigma-Aldrich, St. Louis MO), 1 mM sodium orthovanadate (Sigma-Aldrich) and 1 µM 

aprotinin (Sigma-Aldrich)) were added to the supernatant. Anti-CD24 M1/69 (10 µg/mL) 

and biotinylated 2° Ab (5 µg/mL) were added to supernatant from isotype-treated cells. 

Supernatant (1 ml) was then incubated with 2.2x106 streptavidin-coated magnetic beads 

(average diameter 4.0 µm; Spherotech; Chicago IL) pre-blocked in 5% bovine serum 

albumin (BSA) in phosphate-buffered saline (PBS) with rotation, overnight at 4°C. Beads 

and the bound EVs were then isolated using an EasySep magnetic separation system 

(StemCell; Vancouver, Canada) followed by FACS analysis (see below). 

 

4.2.4.2 Vn96 peptide 

WEHI-231 cells were stimulated as described using unconjugated 2° Ab. 

Supernatant (1 ml) and cells were collected, centrifuged and treated with protease 

inhibitors as above. Vn96 peptide (22.5 µg) was suspended in 9 µL ME-buffer (New 

England Peptide; Gardner MA) and added to approximately 750 µL of cleared 

supernatant. Vn96 was incubated with supernatant with rotation, overnight at room 
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temperature. Vn96 with bound EV was pelleted by centrifugation at 17,000 x g for 15 

min at room temperature, producing a translucent pellet, following the manufacturer’s 

instructions. No pellet was produced from the supernatant in the absence of Vn96. The 

pellet was further enriched for EV by adding a second aliquot (750 µL) of vesicle-

containing RPMI-media, followed by disrupting the pellet using a 1000-µL pipette and 

incubating with rotation for 1 h at room temperature. Vn96-EV were isolated again by 

centrifugation at 17,000 x g for 15 min at room temperature. Pellets were washed once in 

0.1 µm-filtered PBS and centrifuged at 16,000 x g for 10 min at room temperature. Vn96-

EV pellets were resuspended in buffers appropriate for the subsequent analysis as 

described below. 

 

4.2.5 Transmission electron microscopy 

 EV were isolated using Vn96 from supernatant from isotype and anti-CD24 

treated cells as described above. Two 750-µL aliquots of vesicle-containing media were 

pooled for each Vn96 pull-down. Pellets were resuspended in 20 µL of PBS and MV 

were dispersed by digestion overnight with 25 µg proteinase K enzyme (221) at 37°C. 

The digested samples were centrifuged at 17,000 x g for 15 min at room temperature to 

remove undigested Vn96-EV material. All subsequent steps were performed at room 

temperature. Dispersed EV (10 µl) were placed on formvar-carbon electron microscope 

grids (Canemco; Montreal, Canada) and allowed to dry for 30 min. Grids were floated 

sample-side down pyrogen-free water. Grids were then fixed with 3.7% 

paraformaldehyde for 15 min, followed by two washes with 0.1 µm-filtered water by 
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flotation. Grids were contrasted with 2% uranyl acetate (w/v), followed by one additional 

water wash. All solutions were filtered using 0.1-µm syringe filters (4611; Pall Corp; Port 

Washington, NY). Dried grids were then viewed using a Tecnai Biotwin Transmission 

Electron Microscope (TEM) (FEI; Hillsboro OR). Images were captured using an XR-41 

camera with an AMT capture engine V602 (Advanced Microscopy Techniques; Woburn, 

MA). 

 

4.2.6 Transcriptome analysis 

4.2.6.1 RNA sequencing 

All sequencing materials and equipment are from Thermo Fisher Scientific unless 

otherwise noted. 3 biological replicates of EVs from 2 mL each of isotype, or anti-CD24 

treated cells were isolated by Vn96. Vn96-EV pellets were resuspended in 1 mL of 

TRIzol reagent. Following RNA extraction following the manufacturers protocol, RNA 

quantity was measured by Nanodrop spectrophotometer (Thermo Fisher Scientific). RNA 

samples were then assessed for size and integrity using the Agilent Bioanalyzer with the 

RNA 6000 Pico kit (Agilent; Santa Clara CA). Using RNA concentration values from the 

Bioanalyzer, samples were prepared for sequencing on the IonTorrent PGM per the 

manufacturer’s protocol. In brief, all recovered MV RNA was concentrated to 3 µL by 

vacuum centrifugation. Library preparation (without RNA fragmentation) followed the 

guidelines for the IonTotal RNA-Seq Kit v2. Barcode adapters were used in the cDNA 

amplification process to differentiate isotype (barcode 1) from anti-CD24 (barcode 2) 

stimulated cells. Amplified cDNA was enriched using the Ion PGM Template OT2 200 
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Kit and the Ion OneTouch 2 System. Library density on the IonSphere particles was 

assessed via Qubit (Thermo Fisher Scientific) fluorometric quantitation. Libraries were 

then loaded onto an IonTorrent 316 v2 Chip and sequenced for 550 cycles. All RNA-Seq 

gene expression data have been deposited in the Gene Expression Omnibus (GEO) 

repository under accession number GSE94778. 

 

4.2.6.2 Bioinformatics analysis 

 IonTorrent transcript read counts were pre-processed as per Anders et al. (2013). 

For quality control checks, I used the FastQC software 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Read trimming was 

performed with the FastQ quality trimmer as part of the FASTX toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) using the parameters –Q 33, -t 22, -I 28. Read 

mapping was performed by tmap with parameters –B 18, -a 2, -v stage 1, map1, map2, 

map3. For feature counting, I used the HTSeq framework (222). Analysis of sequencing 

data was performed using R 3.3.1 (167) accessed by RStudio 0.99.902 (166). RNA 

annotation was performed using BioMart (223). Differential gene expression analysis was 

performed using edgeR (224) with Counts Per Million filters of 1.0 and 0.1. 

 

4.2.7 Proteomics 

 Stimulation of EV release, in response to either isotype or anit-CD24 Ab-

mediated stimulation was performed at Memorial University of Newfoundland. EV were 

isolated using Vn96 and provided to the Atlantic Cancer Research Institute (ACRI; 
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Moncton, Canada) for proteomics processing. Sections 4.2.7.1 through 4.2.7.3 were 

performed by staff at ACRI. Mass spectrometry assays were designed to capture 

qualitative data on protein inclusion into EVs and were not optimized for the generation 

of quantitative data on protein abundance between samples. Data analysis (4.2.7.4) was 

performed at Memorial University of Newfoundland. 

 

4.2.7.1 In-Gel Tryptic Digest 

The EV-Vn96 complexes (pellets) were re-suspended in 25 µL of PBS followed 

by addition of 2X Laemmli buffer containing ß-mercaptoethanol (BioRad; Hercules CA), 

heated for 5 min at 95°C and then stored at -20°C. Protein mixtures (45 µL) were 

separated on a 10% SDS-PAGE gel and visualized with Coomassie EZBlue stain (Sigma-

Aldrich). Each gel lane was excised into 12 bands that were distributed into individual 

micro-centrifuge tubes for tryptic digestion. Each of the bands was sequentially treated 

with 10 mM dithiothreitol (Sigma-Aldrich) and 25 mM iodoacetic acid (Sigma-Aldrich) 

to reduce internal disulfide bonds and alkylate free cysteine residues, respectively. Fifty 

µL of a 10 ng/µL solution of modified trypsin (Promega; Madison, WI) in 100 mM 

ammonium bicarbonate (Sigma-Aldrich) were added to each tube for overnight 

enzymatic digestion. The extraction of peptides was achieved using 50% acetonitrile 

(VWR; Mississauga, ON) containing 5% acetic acid (Sigma-Aldrich,). The total volume 

of each sample was reduced by vacuum centrifugation to approximately 45 µL, adjusted 

to 1% acetic acid and stored at -80°C.  
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4.2.7.2 Offline C-18 Solid-Phase Extraction 

Peptide extracts were prepared for offline C-18 clean-up by adding 2% formic 

acid (Sigma-Aldrich)/20% ACN to each sample at a ratio of 1:3. C-18 mini spin-filter 

cartridges (Canadian Life Science; Peterborough, ON) were initially activated with 50% 

ACN and then equilibrated with a 0.5% formic acid/5% ACN solution. Extracted protein 

digests were bound to the C-18 resin, washed with 0.5% formic acid/5% ACN, and eluted 

from each filter with a 70% ACN solution. Sample volumes were then reduced by 

vacuum centrifugation to 45 µL and adjusted to 0.1% aqueous formic acid. 

 

4.2.7.3 Mass Spectrometry Analysis 

Protein tryptic digests were analyzed by gradient nanoLC-MS/MS using a hybrid 

Quadrupole Orbitrap (Q-Exactive, Thermo-Fisher Scientific, San Jose, CA) mass 

spectrometer interfaced to a Proxeon Easy Nano-LC II (Thermo-Fisher Scientific). 

Samples were injected (2 µL) onto a narrow bore (20 mm long x 100 µm inner diameter; 

i.d.) C-18 pre-column packed with 5 µm ReproSil-Pur resin (Thermo-Fisher Scientific). 

High resolution chromatographic separation was then achieved on a Thermo-Scientific 

Easy C-18 analytical column with dimensions of 100 mm by 75 µm i.d. with 3 µm 

diameter ReproSil-Pur particles. Peptide elution was achieved using an acetonitrile/water 

gradient system, with LC-MS grade solvents (VWR, Mississauga, ON). Solvent A 

consisted of 0.1% formic acid in water and solvent B was made up of 90/9.9/0.1 

acetonitrile/water/formic acid. A linear acetonitrile gradient was applied to the C-18 

column from 5-45% solvent B in 60 min followed by 100% B for 10 min at a flow rate of 
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300 nL/min. The outlet diameter of the nano-flow emitter on the Q-Exactive (15 µm) was 

biased to +1.9 kV and positioned approximately 2 mm from the heated (250°C) transfer 

capillary. The S-lens of the mass spectrometer was maintained at 100 V. The Q Exactive 

mass spectrometer was calibrated in positive ion mode with a commercial standard 

solution containing caffeine, MRFA peptide and Ultramark polymer. Mass spectrometric 

data were acquired in data dependent acquisition (DDA) mode, whereby a full mass scan 

from 350 to 1500 This was followed by the acquisition of fragmentation spectra for the 

ten most abundant precursor ion intensities above a threshold of 20,000 intensity units. 

Precursor ion spectra were collected at a resolution setting of 70,000 and an AGC 

(automatic gain control) value of 1x106. Peptide fragmentation was performed using high 

energy collision induced dissociation in the HCD cell and MS/MS spectra were collected 

in the Orbitrap at a resolution of 17,500 and an AGC setting of 1x105. Peptide precursors 

were selected using a repeat count of 2 and a dynamic exclusion period of 20 s. Mass 

spectrometric protein identification data were analyzed using Proteome Discoverer 

version 1.4 (Thermo-Fisher Scientific) employing the SEQUEST scoring algorithm 

(225). FASTA databases were obtained from Uniprot (226) for Mus musculus (44,435 

kb) and from the Global Proteome Machine (227) for contaminants using the contaminant 

repository for affinity purification (cRAP) entries (41 kb).  

Searches were performed with the following settings: (a) enzyme specificity of 

trypsin with 2 allowed missed cleavages, (b) precursor and fragment mass accuracy 

tolerances were 10 ppm and 0.8 Da, respectively, (c) variable modifications of 

methionine oxidation (+ 15.994 Da), and lysine acetylation (+42.011 Da) and ,(d) a fixed 

modification of cysteine carboxymethylation (+58.005 Da). Proteome Discoverer 1.4 
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calculated a strict false discovery rate (FDR) of 0.1% based on the results of a decoy 

(reverse) database search. Peptides were scored with Sequest using minimal Xcorr values 

of 1.62 for +2 ions and 1.79 for +3 ions.  Scaffold (Scaffold 4.3.4, Proteome Software 

Inc., Portland, OR) was then used to validate MS/MS based peptide and protein 

identifications. Peptide identifications were accepted if they could be established at 

greater than 95.0% probability by the Scaffold Local FDR algorithm. Protein 

identifications were accepted if they could be established at greater than 99.0% 

probability and contained at least 2 unique identified peptides.  Protein probabilities were 

assigned by the Protein Prophet algorithm (228). Proteins that contained identical 

peptides were grouped to satisfy the principles of parsimony. The mass spectrometry 

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 

partner repository with the dataset identifier PXD005919. 

 

4.2.8 Ontology Enrichment Analysis 

 Transcriptomics and proteomics data were assessed to identify gene ontologies 

(GO) from EVs using the ToppFun program in the ToppGene suit (229) using official 

gene symbols. P-values were obtained using the probability density function. Other 

associations, including human disease, drug and published proteomics analyses were also 

captured via ToppGene. Bonferroni multiple testing correction (q-value) was performed 

and results were reported with q<0.05. The proteomics GO terms for common and CD24-

enriched MV proteins were compared using the Venn diagram tool from the 

Bioinformatics Institute Ghent (http://bioinformatics.psb.ugent.be/webtools/Venn/). GO 
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terms were grouped into common categories using the online REVIGO tool (230) using 

the associated Bonferroni FDR values from Toppfun and the default REVIGO settings. 

Box sizes for REVIGO plots are reflective of GO enrichment P-values. 

4.2.9 Western Blot 

4.2.9.1 Cells 

Cells were stimulated with either isotype or anti-CD24 Ab for 1 h. Cells were 

pelleted and resuspended in 100 µL of Tris-based RIPA lysis buffer (50 mM Tris-HCl; 

pH 7.6, 0.02% sodium azide, 0.5% sodium deoxycholate, 0.1% SDS, 150 mM NaCl) 

supplemented with 1 mM PMSF (Sigma-Aldrich), 1X HALT protease inhibitor cocktail 

(Thermo Fisher Scientific) and 1 µM aprotinin (Sigma-Aldrich). Cells were lysed for 10 

min on ice, then centrifuged at 17,000 x g for 10 min at 4°C to pellet cell debris. Protein 

was quantified with the Bicinchoninic Acid Protein Assay (Thermo Fisher Scientific) per 

the manufacturer’s protocol. Cell lysates were then prepared in SDS sample buffer (62.5 

mM Tris base, 2% glycerol, 2.3% SDS, 100 mM dithiothreitol, 0.02% bromophenol blue, 

pH 6.8) and boiled for 5 min. Protein (5 µg) was loaded onto a 12% SDS-PAGE gel 

followed by transfer to nitrocellulose membrane. Blocking was performed using 5% 

(w/v) skim milk in TBST. Anti-mouse Ab were diluted in tris-buffered saline with 0.05% 

Tween-20 (TBST) + 5% BSA as follows: 1:1000 HSP90a/b (SC-13119; Santa Cruz; 

Santa Cruz CA), 1:750 SHMT2 (12762S; Cell Signaling Technology; Danvers, MA), 

1:1500 EEF1G (ab72368; Abcam; San Francisco CA), 1:1000 GRB2 (3972S; Cell 

Signaling Technology) and 1:1500 HMGB2 (14163S; Cell Signaling Technology). 

HSP90 was detected using goat-anti-mouse IgG (SC-2005; Santa Cruz) and all others 
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were detected using goat-anti-rabbit IgG (SC-2004; Santa Cruz). Secondary antibodies 

were diluted 1:2000 in TBST + 5% BSA.  Immobilon Western chemiluminescent horse 

radish peroxidase substrate (Millipore; Billerica MA) was used for detection. Images 

were acquired using the AlphaImager gel documentation system with FluorChem HD2, 

v3.4.0 (Protein Simple; San Jose CA). Image manipulation was limited to adjusting 

brightness and contrast to the entire image using Adobe Photoshop CS6 . 

 

4.2.9.2 Extracellular vesicles 

EV were isolated using Vn96 from isotype and anti-CD24 Ab treated cells as 

described above. Two 1-mL aliquots of vesicle-containing media were pooled for each 

Vn96 pull-down representing the total 1 h vesicle production from 1.0x106 cells. Vn96-

EV pellets were dissolved in SDS loading buffer and boiled for 5 min. Half of each 

Vn96-EV sample was loaded onto each 12% SDS-PAGE gel. Proteins were transferred, 

probed and detected as described for cells. 

 

4.2.10 Flow Cytometry 

A FACSAria II SORP cell sorter was used to collect flow cytometry (FACS) data 

using FACSDiva v8.0 software (BD Biosciences; San Jose CA), at the Cold-Ocean Deep-

Sea Research Facility (Memorial University of Newfoundland). Data analysis was 

performed using FlowJo v10.0.5 (Tree Star; Ashland, OR). All reagents were from 

eBioscience (San Diego, CA) and are rat anti-mouse antibodies, unless otherwise stated. 

Colour compensation was performed using single-stained OneComp beads (catalogue 
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number 01-1111) with all fluorophores. Cells were stimulated to produce EV as described 

above using 1° Ab pre-incubated with biotinylated 2° Ab. Isotype or anti-CD24-treated 

cells were stained with 0.5 µg M1/69 CD24-FITC (11-0242) or Streptavidin-FITC (11-

4317), respectively. All cells were stained with 1.25 µg Siglec-2-PE (126111; Biolegend; 

San Diego, CA), 0.625 µg CD63 PerCP-eFluor710 (46-0631), 1.25 µg IgM PE-Cy7 (25-

5790), 0.625 µg Siglec-G APC (17-5833), MHC-II (I-A/I-E) Alexa Fluor 700 (56-5321), 

and 0.625 µg Ter119 APC-eFluor780 (47-5921). Matching isotype Ab controls were used 

to confirm the absence of non-specific Ab binding and to set thresholds. Captured MV 

were stained with the same fluorophores except with 5 µL Annexin V Alexa488 (Thermo 

Fisher Scientific) instead of anti-CD24-FITC or Streptavidin-FITC. 

 

4.2.10.1 Cells 

Cells were suspended in phosphate buffered saline (PBS; 18.6 mM 

NaH2PO4•H2O, 84.1 mM Na2HPO4, 1.5 M NaCl) that contained 1% heat-inactivated fetal 

bovine serum (FACS buffer) unless stated otherwise. Pelleted cells were washed at 4°C 

in 500 µL FACS buffer and resuspended in 100 µL of FACS buffer containing FITC-

conjugated streptavidin, and the directly conjugated Siglec-2 (CD22), CD63, IgM, 

Siglec-G, MHC-II and Ter119 Ab diluted as above. Cells were stained for 30 min at 4°C, 

followed by the addition of 500 µL of FACS buffer. Cells were again washed in 500 µL 

FACS buffer prior to fixation in 100 µL of 4% paraformaldehyde for 20 min at room 

temperature in the dark. FACS buffer (400 µl) was added to cells, which were then 
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assessed on the FACSAria II. For analysis, single cells were gated using the FSC/SSC 

parameters. 

 

4.2.10.2 Extracellular vesicles 

EV were isolated by immunoaffinity isolation. Following magnetic isolation, 

bead-bound MV were washed in 1X Annexin V binding buffer (5 mM HEPES buffer, 

140 mM NaCl, 2.5 mM CaCl2; pH 7.4). Bead-MV complexes were resuspended in 100 

µL of Annexin V binding buffer containing the directly conjugated Siglec-2, CD63, IgM, 

Siglec-G, MHC-II and Ter119 Ab diluted as above and incubated for 20 min at room 

temperature. Samples were diluted with 400 µL of 1X Annexin V binding buffer and 

placed at 4°C until analyzed the same day on the FACSAria II. Analysis was performed 

on singlet beads, gated using FSC/SSC parameters. Non-specific antibody binding to 

beads was established with pre-blocked beads, which were used to set the negative 

fluorescence threshold for all MV fluorescence parameters. 
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4.3 Results 

4.3.1 EV released from isotype and anti-CD24 stimulated WEHI-231 cells are 

morphologically similar. 

 As discussed in chapter 3, I found that Ab-mediated stimulation of CD24 induced 

the formation of CD24-bearing EVs from B cells, that I concluded were plasma-

membrane derived MVs (60). Here I further characterized the size, shape and quantity of 

the EVs released by WEHI-231 cells after anti-CD24 stimulation compared to isotype 

control treatment (Figure 4.1). 

 Particles of MV size were detected using nanoparticle tracking analysis (NTA) 

following 1 h stimulation in both conditions (Figure 4.1A). The mean size from isotype-

treated samples was 122 +/- 54 nm, and from anti-CD24 treated samples was 122 +/- 56 

nm (Figure 4.1B left), consistent with the upper range of exosomes and the lower range 

of MVs (75). Isotype-treated cell supernatant contained an average of 114.7x108 

particles/mL, whereas anti-CD24 stimulated cell supernatant contained an average of 

141.3x108 particles (Figure 4.1B, right). While not reaching statistical significance, each 

supernatant from CD24 treated cells trended towards more particles than the matching 

isotype supernatant, and there was an overall trend towards increased particle numbers 

following CD24 stimulation (p=0.07).  

I next quantified the population of CD24-bearing EVs that express 

phosphatidylserine by flow cytometric-detection of Annexin V on CD24+ EVs captured 

on streptavidin-coated magnetic beads. While individual EVs cannot be analyzed using 

this approach, I found a statistically significant increase in the number of Annexin V+   
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Figure 4.1: The quantification and morphology of MVs released from B cells with 
and without CD24 stimulation. (A) Representative nanoparticle tracking (NPT) plots of 
particle sizes and concentrations in supernatants from cells stimulated with either isotype 
(right) or anti-CD24 (left) Ab after 1 h. Grey lines show ± 1 standard deviation of the 
mean in measurements. n=3 biological replicates with 5 technical replicates each. (B) The 
mean size (left) and concentration (right) ± SEM of particles from supernatants analyzed 
by NPT, n=3. Statistical significance was assessed using Students’ paired t-test, # p=0.08. 
(C) Mean % positive (left) and relative mean fluorescent intensity (MFI; right) of 
Annexin V-FITC beads used to capture CD24-bearing MVs released from isotype or anti-
CD24 stimulated cells for the indicated times, n=3. Statistics assessed by a two-tailed 
Student’s paired t-test. **p<0.01. (D) Representative transmission electron microscopy 
(TEM) images of Vn96-isolated EVs from cells stimulated with either isotype or anti-
CD24 for 1 h. Scale bar =100 nm.  
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beads in response to 1 h anti-CD24 stimulation (Figure 4.1C left) with 14.3 ± 2.3% of 

beads from isotype-treated samples, and 21.2 ± 2.0% of beads from anti-CD24 treated 

samples being Annexin V+ (p=0.009). After 2 h of anti-CD24 stimulation, the number of 

Annexin V+, bead-captured EV was comparable to that of isotype treatment indicating 

that the promotion of Annexin V+ EV formation by CD24 was transitory.  

I isolated EVs from both isotype and anti-CD24 stimulated cells for transmission 

electron microscopy (TEM) analysis using the Vn96 peptide-based capture, as previously 

validated (221). I isolated round structures consistent with the size estimates from the 

NTA, and my previous results using FACS-based bead sizing that showed that CD24 was 

associated with EVs smaller than 200 nm in diameter (Figure 4.1D) (60). There was no 

difference in morphology between EVs isolated from isotype or anti-CD24 stimulated 

cells. 

Together these results indicate that B cells constitutively release EVs that are 

approximately 120 nm in diameter and these vesicles do not vary in their size or 

morphology following CD24 stimulation; however, there is a statistically significant 

increase in the number of phosphatidylserine-positive EVs, indicative of MVs, following 

1 h of anti-CD24 stimulation that does not persist over time. 

 

4.3.2 Individual transcripts are not preferentially packaged but overall protein coding 

transcripts are reduced in EV in response to CD24 stimulation. 

I next used RNA-seq to characterize the RNA carried by EVs released by WEHI-

231 cells. I found that both isotype and anti-CD24 stimulated cells produce EVs that 
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carry RNA of approximately 200 bp, consistent with other reports of RNA isolated from 

MVs (Figure 4.2A; (204)). As there was no evidence of 18S or 28S RNA by Bioanalyzer 

analysis in the EV population, I sequenced all EV RNA without rRNA depletion.  

I did not identify any individual transcripts that were differentially incorporated 

between EVs from 3 biological replicates of isotype or anti-CD24 stimulated cells. 

Surprisingly, I found that 89.5% of the transcripts in all 6 EV samples were annotated as 

either rRNA or ribozyme by BioMART (223). The majority (95.2%) of these transcripts 

were annotated as 5.8S (72.7%) and 5S (22.5%) rRNA, (Figure 4.2B). Indeed, most 

annotated reads from all 6 samples mapped to a single 5.8S rRNA transcript: n-R5-8s1. 

The RNA carried by EVs is strongly influenced by their sub-type and cell of origin; 

however, the lack of 18S and 28S, but presence of 5/5.8S rRNA, is consistent with other 

reports on MV RNA (204, 231). Of the remaining transcripts, approximately 29.1 ± 2.9 

% (3.1% of the total RNA) were mitochondrial non-coding mt-rRNA and mt-tRNA 

(Figure 4.2C).  

Interestingly, I found a statistically significant decrease in the total number of 

protein-coding transcripts in EVs from CD24-stimulated cells (p=0.002). Of the top 50 

protein coding transcripts, 14 were mitochondrial genes. There was also a trend towards 

increased abundance of miRNA transcripts in the EVs (p=0.08) (Figure 4.2C). Even 

though my analysis did not identify any individual statistically significant differentially 

expressed transcripts, these data show there are changes in the overall distribution of 

RNA incorporated into these EVs.  
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Figure 4.2: CD24 stimulation alters the abundance of protein coding transcripts 
loaded into B cell MVs. (A) Representative RNA size distributions of MVs collected 
from cells stimulated with either isotype (right) or anti-CD24 (left) Ab after 1 h. (B) The 
RNA incorporated into MVs from cells after 1 h of either isotype or anti-CD24 Ab 
stimulations categorized into one of 8 sub-categories containing >0.2% of the total RNA, 
n=3 biological replicates. (C) The mean ± SEM percentage of the 8 major non-rRNA 
transcripts with greater than 2% of RNA abundance from MVs isolated from either 
isotype (white bars) or anti-CD24 (grey bars) stimulated cells. n=3, statistics were 
assessed using a two-tailed Student’s t-test, #p=0.07; *p<0.05. 
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I next performed gene ontology (GO) enrichment analysis on the 50 most 

abundant protein coding transcripts using ToppFun (Table 4.1). These were enriched for  

16 Biological Process (BP) terms, 13 Molecular Function (MF) terms and 9 Cellular 

Component (CC) terms, at a Bonferroni-corrected P-value (q-value) of q=0.05 

(Supplemental File 2). Using REVIGO, I visualized the associations between GO terms 

based on their associations to one another (Figure 4.3). The BP terms belonged to one of 

two major groups: Electron transport chain and the Generation of precursor metabolites 

and energy. Similarly, four of the five MF groups belonged to mitochondrial-associated 

functions: NADH dehydrogenase activity, Hydrogen ion transmembrane transporter 

activity, Oxidoreductase activity, and Electron carrier activity. Finally, the CC terms were 

primarily associated as Mitochondrial inner membrane, and Respiratory chain. Overall, 

these data demonstrate that protein-coding transcripts in EVs released by these B cells are 

associated with mitochondrial functions, regardless of CD24 stimulation. 

Finally, across the six samples, I found there were on average 22 distinct miRNA 

transcripts, of which 12 were common to all EVs. Only two, mir6236 and mir5099, were 

annotated and there was a trend towards increased incorporation in these transcripts in 

EVs from anti-CD24 stimulated cells (p=0.09 for both). As the remainder of the common 

transcripts were unannotated or predicted, no functional enrichment analysis could be 

performed.  

 

.   



 128 

Table 4.1 The top 50 most abundant protein coding transcripts from B cell MV. 

Ensmbl Gene 
Name 

Gene 
Description 

Isotype Anti-CD24 
Average 

CPM  
SD 

 
Average 

CPM SD 

ENSMUSG00000035
202 

Lars2 Leucyl-trna 
synthetase, 
mitochondrial 

537.00 467.43 889.67 249.85 

ENSMUSG00000064
351 

mt-Co1 Mitochondrially 
encoded 
cytochrome c 
oxidase I  

174.67 77.39 505.00 284.69 

ENSMUSG00000064
356 

mt-Atp8 Mitochondrially 
encoded ATP 
synthase 8  

231.00 51.96 386.33 276.41 

ENSMUSG00000064
354 

mt-Co2 Mitochondrially 
encoded 
cytochrome c 
oxidase II 

89.33 28.29 270.67 176.02 

ENSMUSG00000064
345 

mt-Nd2 Mitochondrially 
encoded NADH 
dehydrogenase 
2 

59.00 13.00 205.67 139.41 

ENSMUSG00000064
341 

mt-Nd1 Mitochondrially 
encoded NADH 
dehydrogenase 
1 

36.33 1.53 175.33 130.13 

ENSMUSG00000064
370 

mt-Cytb Mitochondrially 
encoded 
cytochrome b 

51.00 16.09 169.00 116.01 

ENSMUSG00000064
357 

mt-Atp6 Mitochondrially 
encoded ATP 
synthase 6 

47.00 4.36 186.67 118.33 

ENSMUSG00000064
367 

mt-Nd5 Mitochondrially 
encoded NADH 
dehydrogenase 
5 

61.33 8.74 175.00 86.13 

ENSMUSG00000064
363 

mt-Nd4 Mitochondrially 
encoded NADH 
dehydrogenase 
4 

27.00 3.46 118.33 74.41 

ENSMUSG00000064
358 

mt-Co3 Mitochondrially 
encoded 
cytochrome c 
oxidase III 

45.00 19.16 134.00 80.17 

ENSMUSG00000065
947 

mt-Nd4l Mitochondrially 
encoded NADH 
dehydrogenase 
4L  

49.67 18.01 85.00 42.67 

ENSMUSG00000019
428 

Fkbp8 FK506 binding 
protein 8 11.00 15.72 24.67 40.13 
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ENSMUSG00000051
627 

Hist1h1
e 

Histone cluster 
1, h1e 10.33 11.02 29.67 5.77 

ENSMUSG00000022
957 

Itsn1 Intersectin 1 
(SH3 domain 
protein 1A) 

8.00 2.00 34.00 4.36 

ENSMUSG00000064
368 

mt-Nd6 Mitochondrially 
encoded NADH 
dehydrogenase 
6 

5.00 1.73 24.67 11.93 

ENSMUSG00000037
375 

Hhat Hedgehog 
acyltransferase 4.33 7.51 5.00 8.66 

ENSMUSG00000064
360 

mt-Nd3 Mitochondrially 
encoded NADH 
dehydrogenase 
3 

2.00 1.73 8.00 5.57 

ENSMUSG00000032
850 

Rnft2 Ring finger 
protein, 
transmembrane 
2 

9.67 13.32 9.33 4.04 

ENSMUSG00000030
560 

Ctsc Cathepsin C 0.00 0.00 3.00 4.36 

ENSMUSG00000060
275 

Nrg2 Neuregulin 2 0.00 0.00 2.67 4.62 

ENSMUSG00000005
442 

Cic Capicua 
homolog 0.67 1.15 3.33 3.51 

ENSMUSG00000031
779 

Ccl22 Chemokine (C-
C motif) ligand 
22 

2.67 2.89 5.33 2.08 

ENSMUSG00000066
026 

Dhrs3 Dehydrogenase/
reductase (SDR 
family) member 
3 

6.00 3.00 3.00 3.61 

ENSMUSG00000025
092 

Hspa12
a 

Heat shock 
protein 12A 6.00 5.29 4.00 2.00 

ENSMUSG00000000
184 

Ccnd2 Cyclin D2 0.00 0.00 3.33 2.52 

ENSMUSG00000063
550 

Nup98 Nucleoporin 98 0.33 0.58 2.33 3.21 

ENSMUSG00000003
970 

Rpl8 Ribosomal 
protein L8 6.33 6.66 6.00 2.65 

ENSMUSG00000031
502 

Col4a1 Collagen, type 
IV, alpha 1  1.33 2.31 3.00 2.65 

ENSMUSG00000037
754 

Ppp1r16
b 

Protein 
phosphatase 1, 
regulatory 
(inhibitor) 
subunit 16B 

3.33 4.93 3.67 1.53 

ENSMUSG00000031
659 

Adcy7 Adenylate 
cyclase 7 1.67 2.89 2.33 2.52 

ENSMUSG00000035
828 

Pim3 Proviral 
integration site 
3 

1.00 1.73 2.67 2.08 
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ENSMUSG00000037
896 

Rcor1 REST 
corepressor 1 0.00 0.00 2.00 2.65 

ENSMUSG00000020
431 

Adcy1 Adenylate 
cyclase 1 0.33 0.58 1.67 2.89 

ENSMUSG00000030
830 

Itgal Integrin alpha L 0.67 0.58 2.67 2.52 

ENSMUSG00000036
499 

Eea1 Early endosome 
antigen 1 0.33 0.58 1.67 2.89 

ENSMUSG00000041
417 

Pik3r1 Phosphatidylino
sitol 3-kinase, 
regulatory 
subunit, 
polypeptide 1 

0.33 0.58 1.67 2.89 

ENSMUSG00000045
318 

Adra2c Adrenergic 
receptor, alpha 
2c 

3.33 3.51 1.67 2.89 

ENSMUSG00000059
436 

Max Max protein 0.00 0.00 1.67 2.89 

ENSMUSG00000034
994 

Eef2 Eukaryotic 
translation 
elongation 
factor 2  

20.67 19.40 11.33 7.02 

ENSMUSG00000039
477 

Tnrc18 Trinucleotide 
repeat 
containing 18 

6.00 6.24 4.67 5.03 

ENSMUSG00000049
517 

Rps23 Ribosomal 
protein S23 0.33 0.58 3.00 1.73 

ENSMUSG00000063
457 

Rps15 Ribosomal 
protein S15 5.00 7.00 4.67 2.08 

ENSMUSG00000039
844 

Rapgef1 Rap guanine 
nucleotide 
exchange factor 
(GEF) 1 

0.67 1.15 2.33 1.53 

ENSMUSG000000750
14 

Gm108
00 

Predicted gene 81.33 106.46 47.33 34.24 

ENSMUSG000000952
80 

Gm217
38 

Predicted gene 14.33 16.65 9.33 2.52 

ENSMUSG000000958
91 

Gm107
17 

Predicted gene 36.33 39.88 15.00 11.36 

ENSMUSG000000955
47 

Gm107
19 

Predicted gene 27.33 32.75 13.33 8.08 

ENSMUSG000000910
28 

Gm107
22 

Predicted gene 23.67 29.70 13.67 9.02 

ENSMUSG000000963
85 

Gm111
68 

Predicted gene 32.33 43.50 11.00 6.24 
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Figure 4.3 REVIGO analysis of Gene Ontologies of RNA Cargo. The 50 most 
abundant protein coding RNA transcripts from isotype or anti-CD24 Ab stimulated cells 
are predominantly associated with mitochondrial function GO terms. No differentially 
expressed transcripts were identified in response to the different Ab treatments. (A) 
Biological processes (BP): NADH dehydrogenase (ubiquinone) activity (yellow), 
hydrogen ion transmembrane transporter activity (blue). (B) Molecular functions (MF): 
Electron transport chain (green). (C) Cellular components: Mitochondrial inner 
membrane (pink). Act. = activity, comp. = compounds, Cyt-c = cytochrome C, gen. = 
generation, en. = energy, mtbl. = metabolites, nucelo. = nucleotide, org. = organic, oxi = 
oxidase, oxi-red = oxidoreductase, phosp. = phosphate, prec. = precursor, recept. = 
receptor, Transp. = transport, term. = terminal  
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4.3.3 CD24 stimulation may enrich specific proteins in the EV cargo of WEHI-231 cells 

I next used mass spectrometry (MS; specifically, nanoLC-MS/MS) to analyze the protein 

cargo in Vn96-isolated EVs from both isotype and anti-CD24 stimulated cells. The total 

EV secretome of cells were assessed in a qualitative way, as equal amounts of EV protein 

could not be compared between samples. I found that the EVs carried a total of 460 

unique proteins, detected at the 2-peptide cut-off level (Supplemental file 3). Fifty-eight 

proteins (mapping to 41 annotated genes) were common to all EVs (Table 4.2). There 

was considerable heterogeneity among EV samples, as no peptides uniquely 

distinguished EVs released by isotype-treated cells from anti-CD24 treated cells. 

However, 79 proteins (mapping to 77 annotated genes) were found in two or more of the 

anti-CD24 stimulated EVs, but present in only a single EV sample from isotype-treated 

cells (Table 4.3), suggesting these proteins may be preferentially enriched into EVs by 

CD24. I did not observe the reciprocal effect of peptides preferentially enriched into EVs 

from isotype-treated cells. Finally, 153 peptides were detected in only one of the 

replicates, suggesting they are incorporated at low abundance, or randomly.  

I used Toppfun to identify the biological functions of proteins enriched in EVs 

from CD24-stimulated cells, by identifying their unique GO terms for the 41 common EV 

proteins. I found that proteins enriched in EVs from CD24-stimulated cells were 

associated with 41 BP (Figure 4.4A), 12 MF (Figure 4.4B) and 13 CC terms (Figure 

4.4C). I identified five major GO associations within the 41 BP, with most terms 

categorized as Cellular amide metabolism, Macromolecular complex assembly, or Protein 

localization to nuclear body (Figure 4.4A). Similarly, I found three major associations in 

MF ontologies, with the largest two being Damaged DNA binding and Transferase   
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Table 4.2 41 peptide sequences common to MV isolated from cells stimulated for 1 h 

with either isotype or anti-CD24. 

Peptide Identifier MGI Symbol Gene / Protein Name 
AK1A1_MOUSE Akr1a1 Aldo-keto reductase family 1, member A1 (aldehyde reductase) 
A6ZI44_MOUSE Aldoa Aldolase A, fructose-bisphosphate 
ANXA2_MOUSE Anxa2 Annexin A2 
CALR_MOUSE Calr Calreticulin 
EF1A1_MOUSE Eef1a1 Eukaryotic translation elongation factor 1 alpha 1 
ENOA_MOUSE Eno1 Enolase 1, alpha non-neuron 
H4_MOUSE Hist1h4a Histone cluster 1, h4a 
HS90A_MOUSE Hsp90aa1 Heat shock protein 90, alpha (cytosolic), class A member 1 
HS90B_MOUSE Hsp90ab1 Heat shock protein 90 alpha (cytosolic), class B member 1 
ENPL_MOUSE Hsp90b1 Heat shock protein 90, beta (Grp94), member 1 
Q3U2G2_MOUSE Hspa4 Heat shock protein 4 
GRP78_MOUSE Hspa5 Heat shock protein 5 
HSP7C_MOUSE Hspa8 Heat shock protein 8 
GRP75_MOUSE Hspa9 Heat shock protein 9 
Q58E56_MOUSE Igh Immunoglobulin heavy chain complex 
PLSL_MOUSE Lcp1 Lymphocyte cytosolic protein 1 
G5E8N5_MOUSE Ldha Lactate dehydrogenase A 
LDHB_MOUSE Ldhb Lactate dehydrogenase B 
MDHC_MOUSE Mdh1 Malate dehydrogenase 1, NAD (soluble) 
Q8CD23_MOUSE Ncl Nucleolin 
PDIA3_MOUSE Pdia3 Protein disulfide isomerase associated 3 
PGAM1_MOUSE Pgam1 Phosphoglycerate mutase 1 
6PGL_MOUSE Pgls 6-phosphogluconolactonase 
Q3ULZ3_MOUSE Psat1 Phosphoserine aminotransferase 1 
PSA1_MOUSE Psma1 Proteasome (prosome, macropain) subunit, alpha type 1 
PSA3_MOUSE Psma3 Proteasome (prosome, macropain) subunit, alpha type 3 
PSA4_MOUSE Psma4 Proteasome (prosome, macropain) subunit, alpha type 4 
PSA6_MOUSE Psma6 Proteasome (prosome, macropain) subunit, alpha type 6 
PSA7_MOUSE Psma7 Proteasome (prosome, macropain) subunit, alpha type 7 
G3X9V0_MOUSE Psme2 Proteasome (prosome, macropain) activator subunit 2 (PA28 b) 
B2CY77_MOUSE Rpsa Ribosomal protein SA 
A2BE93_MOUSE Set SET nuclear oncogene 
TALDO_MOUSE Taldo1 Transaldolase 1 
TKT_MOUSE Tkt Transketolase 
TPIS_MOUSE Tpi1 Triosephosphate isomerase 1 
sp|P21107-
2|TPM3_MOUSE 

Tpm3 Tropomyosin 3, gamma 

TERA_MOUSE Vcp Valosin containing protein 
1433E_MOUSE Ywhae Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein, epsilon polypeptide 
1433G_MOUSE Ywhag Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein, gamma polypeptide 
1433F_MOUSE Ywhah Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein, eta polypeptide 
1433Z_MOUSE Ywhaz Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein, zeta polypeptide 
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Table 4.3 77 peptide sequences enriched in MV from CD24 stimulated cells. 

Peptide Identifier MGI Symbol Description 
ACON_MOUSE Aco2 Aconitase 2, mitochondrial 
ACTN4_MOUSE Actn4 Actinin alpha 4 
ARP3_MOUSE Actr3 ARP3 actin-related protein 3 
Q3U4D1_MOUSE Ahcy S-adenosylhomocysteine hydrolase 
Q3UJW1_MOUSE Aldh2 Aldehyde dehydrogenase 2, mitochondrial 
APEX1_MOUSE Apex1 Apurinic/apyrimidinic endonuclease 1 
ARC1B_MOUSE Arpc1b Actin related protein 2/3 complex, subunit 1B 
sp|P18572|BASI_MOUSE Bsg Basigin 
CAZA1_MOUSE Capza1 Capping protein (actin filament) muscle Z-line, 

alpha 1 
A2AMW0_MOUSE Capzb Capping protein (actin filament) muscle Z-line, 

beta 
TCPB_MOUSE Cct2 Chaperonin containing Tcp1, subunit 2 (beta) 
TCPG_MOUSE Cct3 Chaperonin containing Tcp1, subunit 3 (gamma) 
G5E839_MOUSE Cct4 Chaperonin containing Tcp1, subunit 4 (delta) 
Q3UDB1_MOUSE Cct7 Chaperonin containing Tcp1, subunit 7 (eta) 
CLIC1_MOUSE Clic1 Chloride intracellular channel 1 
KCY_MOUSE Cmpk1 Cytidine monophosphate (UMP-CMP) kinase 1 
DDB1_MOUSE Ddb1 Damage specific DNA binding protein 1 
DLDH_MOUSE Dld Dihydrolipoamide dehydrogenase 
A0A087WS46_MOUSE Eef1b2 Eukaryotic translation elongation factor 1 beta 2 
EF1G_MOUSE Eef1g Eukaryotic translation elongation factor 1 gamma 
IF2A_MOUSE Eif2s1 Eukaryotic translation initiation factor 2, subunit 1 

alpha 
EIF3F_MOUSE Eif3f Eukaryotic translation initiation factor 3, subunit F 
EIF3I_MOUSE Eif3i Eukaryotic translation initiation factor 3, subunit I 
IF4A1_MOUSE Eif4a1 Eukaryotic translation initiation factor 4A1 
FA49B_MOUSE Fam49b Family with sequence similarity 49, member B 
sp|P97807-2|FUMH_MOUSE Fh1 Fumarate hydratase 1 
FLNB_MOUSE Flnb Filamin, beta 
Q3UC72_MOUSE Gdi2 Guanosine diphosphate (GDP) dissociation 

inhibitor 2 
sp|Q9CPV4|GLOD4_MOUSE Glod4 Glyoxalase domain containing 4 
E9Q070_MOUSE Gm8730 Ribosomal protein, large, P0 pseudogene 
B1AT92_MOUSE Grb2 Growth factor receptor bound protein 2 
GSTO1_MOUSE Gsto1 Glutathione S-transferase omega 1 
HMGB2_MOUSE Hmgb2 High mobility group box 2 
sp|O88569|ROA2_MOUSE Hnrnpa2b1 Heterogeneous nuclear ribonucleoprotein A2/B1 
IMPA1_MOUSE Impa1 Inositol (myo)-1(or 4)-monophosphatase 1 
INO1_MOUSE Isyna1 Myo-inositol 1-phosphate synthase A1 
KCD12_MOUSE Kctd12 Potassium channel tetramerisation domain 

containing 12 
FUBP2_MOUSE Khsrp KH-type splicing regulatory protein 
IMB1_MOUSE Kpnb1 Karyopherin (importin) beta 1 
MDHM_MOUSE Mdh2 Malate dehydrogenase 2, NAD (mitochondrial) 
NACAM_MOUSE Naca Nascent polypeptide-associated complex alpha 

polypeptide 
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NUDT5_MOUSE Nudt5 Nudix (nucleoside diphosphate linked moiety X)-
type motif 5 

Q05BN2_MOUSE Pa2g4 Proliferation-associated 2G4 
PABP1_MOUSE Pabpc1 Poly(A) binding protein, cytoplasmic 1 
PCBP1_MOUSE Pcbp1 Poly(rc) binding protein 1 
Q3TJL8_MOUSE Pdia6 Protein disulfide isomerase associated 6 
PUR4_MOUSE Pfas Phosphoribosylformylglycinamidine synthase 

(FGAR amidotransferase) 
6PGD_MOUSE Pgd Phosphogluconate dehydrogenase 
PGK1_MOUSE Pgk1 Phosphoglycerate kinase 1 
PHB_MOUSE Phb Prohibitin 
PHB2_MOUSE Phb2 Prohibitin 2 
SERA_MOUSE Phgdh 3-phosphoglycerate dehydrogenase 
IPYR_MOUSE Ppa1 Pyrophosphatase (inorganic) 1 
B1AXW5_MOUSE Prdx1 Peroxiredoxin 1 
PSA2_MOUSE Psma2 Proteasome (prosome, macropain) subunit, alpha 

type 2 
G3UXZ5_MOUSE Psme1 Proteasome (prosome, macropain) activator subunit 

1 (PA28 alpha) 
Q3TE70_MOUSE Ptpn6 Protein tyrosine phosphatase, non-receptor type 6 
Q3TJ52_MOUSE Rad23b RAD23 homolog B, nucleotide excision repair 

protein 
RANG_MOUSE Ranbp1 RAN binding protein  
A2AFJ1_MOUSE Rbbp7 Retinoblastoma binding protein 7 
RCC2_MOUSE Rcc2 Regulator of chromosome condensation 2 
Q3UK56_MOUSE Rps3 Ribosomal protein S3 
Q3V1Z5_MOUSE Rps4l Ribosomal protein S4-like 
Q3UXP2_MOUSE Ruvbl2 Ruvb-like protein 2 
G3UZ26_MOUSE Shmt1 Serine hydroxymethyltransferase 1 (soluble) 
Q3TFD0_MOUSE Shmt2 Serine hydroxymethyltransferase 2 (mitochondrial) 
SPSY_MOUSE Sms Spermine synthase 
Q3UJL7_MOUSE Srm Spermidine synthase 
F10A1_MOUSE St13 Suppression of tumorigenicity 13 
Q3THQ5_MOUSE Stip1 Stress-induced phosphoprotein 1 
TBB5_MOUSE Tubb5 Tubulin, beta 5 class I 
Q91Y95_MOUSE Txnrd1 Thioredoxin reductase 1 
UCHL3_MOUSE Uchl3 Ubiquitin carboxyl-terminal esterase L3 (ubiquitin 

thiolesterase) 
Q3THL7_MOUSE Vdac1 Voltage-dependent anion channel 1 
VDAC2_MOUSE Vdac2 Voltage-dependent anion channel 2 
Q60950_MOUSE Ybx1 Y box protein 1 
sp|Q9CQV8-
2|1433B_MOUSE 

Ywhab Tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, beta 
polypeptide 
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Figure 4.4: Proteomics analysis suggests that CD24 stimulation causes enrichment 
of proteins from specific functional categories into MVs. Gene Ontology (GO) 
enrichment analysis was performed on proteins common to MVs from all 6 isotype and 
anti-CD24 samples in comparison to the proteins enriched in MVs after 1 h anti-CD24 
stimulation (Tables 4.2 and 4.3). Venn diagrams (left panels) show GO terms associated 
with all MVs or those associated with the proteins enriched in MVs after anti-CD24 
stimulation. The numbers indicate the number of unique GO terms associated with the 
respective protein lists. Enriched GO terms were visualized by REVIGO (230) (right 
panels). (A) CD24-enriched biological process (BP): Cellular amide metabolism 
(yellow), macromolecular complex assembly (green) and protein localization to nuclear 
body (blue). (B) CD24-enriched molecular functions (MF): Damaged DNA binding 
(green), transferase activity (purple) and threonine aldolase activity (blue). (C) CD24-
enriched cellular component annotations were primarily grouped as chaperonin-
containing T-complex (red). A.A. = amino acid, Synth = synthesis, Carb = carboxylic, 
Reg = regulation, Pos. = positive, Leng. = length, org = organization, Maint = 
maintenance, Loc = localization, Est = Establishment, Spm = sperm, Z.P = zona 
pellucida. 
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activity related to one carbon metabolism (Figure 4.4B). Finally, the CC terms were 

primarily categorized as Chaperonin-containing T complex, or other protein-binding 

complexes (Figure 4.4C), which function to regulate protein-protein interactions (232) 

and protein folding. Interestingly, both BP and CC ontologies identified an association of 

binding to the zona pellucida. This glycoprotein structure is composed of proteins and 

glycoproteins on the oocyte surface and is important for spermatozoa binding (233). It is 

well-known that CD24 is a heavily glycosylated protein (101), and this suggests potential 

biological similarity in MV proteins enriched by CD24 and those facilitating sperm:egg 

recognition. 

Overall, as with the transcript analysis, there was a strong association between EV 

protein cargo, and mitochondrial or metabolic functions; however, I found other 

associations that suggest the regulation of protein localization or protein complexes.  

The ToppFun analysis identified associations between the list of CD24-enriched 

EV proteins to multiple published proteomics studies, disease associations and Reactome 

pathways (Supplemental File 3). There were significant correlations with four different 

publications that examine exosome-associated protein cargo from B cells, podocytes, 

prostrate secretions and urine (234-237). B cell CD24-EVenriched proteins were also 

associated with one disease, squamous cell carcinoma of the esophagus (q= 6.54x10-6). 

The most significant pathway associations were metabolism-related, such as carbon 

metabolism (q = 4.95x10-6), serine/glycine biosynthesis (q= 3.9x10-4), TCA cycle (q= 

3.9x10-4) and conversion of glucose to acetyl CoA (q= 3.9x10-4), supporting the 

identified associations with mitochondrial-related functions.  
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 To validate the proteomics data, I selected five proteins for Western blot analysis. 

Owing to the heterogeneity in the MS data, I again selected proteins found in two or more 

anti-CD24 stimulated EV samples, but present in no more than one sample from isotype-

treated cells, with each protein having different biological associations (Table 4.4). I 

examined the expression of these proteins in both isotype or anti-CD24 stimulated cell 

lysates, and their respective Vn96-isolated EVs. Heat Shock Protein (HSP) 90 was used 

as a loading control (using an Ab that detects both HSP90 alpha and beta), as it is 

ubiquitously expressed in cells and was present in all six EV samples analysed by MS.  

By Western blot, HSP90 was found to be readily detectable and comparably expressed in 

all cell lysate and EV samples, and did not vary in response to anti-CD24 stimulation 

(Figure 4.5). SHMT2, EEF1G, HMGB2 and GRB2 were also easily detected in all cell 

lysates; however, GRB2 was detectable only at low level. The expression of these 

proteins in cell lysates was not affected by stimulation (Figure 4.5). In contrast with my 

MS analysis, I observed SHMT2 and EEF1G in EVs from both isotype and anti-CD24 

stimulated cells, with no difference in abundance in response to anti-CD24 stimulation. 

GRB2 was not detected in any EV sample, potentially due to its overall low abundance. 

Finally, there was considerable heterogeneity in HMGB2 in EVs, with two apparent 

phenotypes observed. In two replicates, HMGB2 was present in EVs from the anti-CD24 

stimulated cells, but absent or minimally present in EVs from isotype stimulated cells, as 

predicted by MS. However, in three other replicates, HMGB2 was not detected.  
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Table 4.4 Selected proteins from mass spectrometry data for validation by Western blot 

Protein Name Symbol Rationale 
Heat shock protein 90 HSP90a/b Ubiquitously expressed in cells, and 

present in all EV. Used as Western blot 
loading control (221). 

Serine 
hydroxymethyltransferase 2 
(mitochondrial) 

SHMT2 Enrichment of mitochondrial functions 
seen in transcriptome and proteomics 
data (238) 

Eukaryotic translation 
elongation factor 1 gamma 

EEF1G Enrichment of gene transcription / 
translational processes, and ribosomal 
elements (239, 240). 

High mobility group box 2 HMGB2 Stress inducible protein and highly 
orthologous to known CD24-interacting 
protein HMGB1 (241-243). 

Growth factor receptor bound 
protein 2 

GRB2 Important downstream effector of B cell 
signalling  (244). 
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Figure 4.5: Proteins identified by proteomics analysis of B cell MVs are detectable in 
both cell lysates and MVs of isotype and anti-CD24 stimulated B cells by Western 
blot analysis. Cell lysates (5 µg; equivalent to approximately 2.3x105 cells) and the 
corresponding protein from MVs (from 1.0x106 cells) were analyzed for expression of 
SHMT2, EEF1G, GRB2 and HMGB2. HSP90 was used as a loading control after 
stimulation with isotype (Iso) or anti-CD24 (CD24). n=5. Two different outcomes were 
observed for HMGB2, with MVs from CD24 stimulated cells containing high HMGB2 
(Upper panels, n=2) or HMGB2 being low/absent in all vesicles (lower panels n=3). 
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 Overall, my proteomics analysis suggests that CD24 stimulation may enrich EVs 

with proteins involved with mitochondrial or metabolic functions. While MS analysis 

suggests specific protein enrichments following anti-CD24 stimulation, I was unable to 

confirm these enrichments via Western blot, likely due to differences in the sensitivity 

between the techniques, and intrinsic heterogeneity between EV samples. 

 

4.3.4 CD24 stimulation produces EVs with a distinct surface composition 

I next examined surface protein expression on cells and EVs by FACS in response 

CD24 stimulation. Two receptors, Siglec-2 (CD22) and Siglec-G were selected based on 

their potential in acting as CD24 signalling partners (13, 31, 245). CD63 was selected as 

a marker of EVs (87). The B cell receptor (BCR), detected as IgM, is known to share 

downstream signalling pathways and synergize with CD24 (61). MHC-II was selected as 

a marker of B cell activation and previous associations with activated B cell exosomes 

(235). Finally, Ter119 was selected as a putative negative control as its expression has 

been shown to be limited to erythroid-lineage cells (246). 

 CD24 stimulation causes a statistically significant decrease in the number of 

CD24+ cells compared to isotype-treated cells after 1 h (Figure 4.6A). No effect of 

stimulation time (1 h vs 2 h) was observed. The number of cells that expressed IgM, 

MHC-II, Siglec-2 and Siglec-G did not change in response to either Ab stimulation or 

time (Figure 4.6A), while the number of cells expressing CD63 increased significantly in 
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Figure 4.6: CD24 stimulation induces the formation of a unique B cell MV surface phenotype that does not reflect the 
cells from which they are released. Cells (A,B) and MVs (C,D) were analyzed for their expression of the indicated cell surface 
markers. Data are shown as mean ± SEM at 1 h or 2 h stimulation with either isotype or anti-CD24 Ab. n=3-4. Cells or CD24-
bearing MVs bound to beads were assessed for the percentage of (A) cells or (C) MVs positive for the individual markers, and 
(B/D) their relative mean fluorescent intensities (MFI). Significant differences were assessed by two-way ANOVA followed by 
Tukey post-hoc test, if significant. Main effect of stimulation: § P<0.05, §§ P<0.01. Significant changes compared to time-
matched control: #P<0.1, * P<0.05, ** P<0.01. Non-statistically significant changes have no indicators. 
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response to CD24 stimulation. I previously established that Ter119 is not expressed on 

isolated splenic B cells (data not shown) consistent with literature reports (246), but 

unexpectedly, I found that it is expressed on WEHI-231 cells. Furthermore, significantly 

more cells express Ter119 in response to anti-CD24 stimulation. 

There were also statistically significant changes in the relative abundance 

(measured by mean fluorescent intensity; MFI) of Siglec-2, CD63, Ter119 and IgM on 

the cell surface in response to anti-CD24 stimulation (Figure 4.6B). The relative MFI of 

Siglec-2 and CD63 each increased by 1.4-fold at 1 h and 2 h post-stimulation. There was 

a 2.1-fold increase in Ter119 after 1 h, and a 2.4-fold increase after 2 h of CD24 

stimulation. In contrast, there was a slight, but significant decrease in the relative MFI of 

IgM, as anti-CD24-stimulated cells had a relative MFI of 0.91 after 1 h and 0.87 after 2 h, 

compared with isotype-treated controls. Overall, the changes in MFI were due to the 

stimulation of CD24, but were independent of stimulation duration.  

 I have shown previously that EVs can transfer CD24 protein between cells (60). 

Therefore, I analyzed the expression of the same proteins as above on the population of 

immunoaffinity-isolated, CD24+ EVs to determine if the surface composition differs in 

this population of EVs. This strategy also improves the detection of proteins on the 

overall EV population, as all EVs are measured regardless if they are too small to be 

analyzed by FACS. 

I found that there were no statistically significant differences at 1 h or 2 h in the 

number of beads positive for IgM, Siglec-2, CD63 or Ter119 EVs from isotype or anti-

CD24-stimulated cells (Figure 4.6c). Essentially 100% of beads were positive for IgM 

(99.9 ± 0.1 %) and CD63 (97.7 ± 2.1%); however, only 56.3 ± 12.6% of the beads were 
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positive for Siglec-2. While 79.4% of beads with EVs from isotype-stimulated cells and 

91.2% of beads with EVs from anti-CD24-stimulated cells were positive for Ter119, this 

difference was not statistically significant. Surprisingly, I was unable to detect EVs 

containing Siglec-G or MHC-II from either condition, despite cells being positive for 

both. 

While cells showed an increase in the MFI of Siglec-2 in response to anti-CD24 

stimulation, no difference was observed in EVs (Figure 4.6d), The MFI of CD63 on cells 

increased after anti-CD24 stimulation, which was opposite to the statistically significant 

decrease in CD63 MFI on the EVs at 1 and 2 h. Finally, I found that anti-CD24 

stimulation induced significant decreases in the MFI of IgM on bead-captured EVs, 

which was similar in direction but not magnitude to the change seen with the cells.  

Overall, I found that anti-CD24 stimulation can induce significant effects on the surface 

composition of cells and EVs. Furthermore, I found that select surface receptors are 

excluded from EVs, irrespective of cell stimulation, demonstrating that the membrane 

components of EVs do not necessarily reflect the bulk cell surface, but can be selected for 

via an unknown process. 
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4.4 Chapter 4 Discussion  

Cells produce a variety of different vesicle subtypes, defined in part through their 

mechanism of biogenesis, and in part based on their morphology and composition (113). 

As such, there is considerable overlap between population definitions, and no “gold-

standard” exists to delineate vesicle sub-groups (247). I have therefore followed 

recommendations to examine multiple EV components, including their RNA, 

representative membrane, cytosolic and intracellular proteins, as well as overall 

morphology to define the EV subtype I have isolated in this study (247). 

First, my analysis of the RNA and protein cargo carried by these B cell EV is 

more consistent with reports on MVs rather than exosomes. While RNA profiling is 

relatively new for EV, the RNA cargo carried by the EVs described here resembles that 

of MVs, but not exosomes or apoptotic bodies (204). Specifically, the lack of 18S and 

28S rRNA in the BioAnalyzer analysis, and confirmed by sequencing analyses, and the 

shorter length of the RNA transcripts is more consistent with MVs than with apoptotic 

bodies, or exosomes (204). In the protein cargo, I identified the presence of several HSPs, 

including HSP90a/b, and exploited the presence of membrane-integral HSPs to isolate 

EVs using the Vn96 peptide (221). My MS analysis also identified other proteins 

associated with intracellular compartments under-represented in exosomes, such as 

Calreticulin from the endoplasmic reticulum and Histone cluster 1h4a, providing further 

support that the EV population is primarily composed of MVs and not exosomes (247).  

Secondly, I detected the presence of several integral membrane cell surface 

receptors, including Siglec-2, the IgM, and CD63 by FACS. While CD63 was previously 
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considered an exosome marker, it is now appreciated that different EV species share 

compositional overlaps, and that this marker is not likely to be exclusive to exosomes 

(113, 138). I identified the presence of phosphatidylserine (PS) via Annexin V-staining, 

which is typically associated with MVs rather than exosomes (97). I also found that these 

EVs lack MHC-II, known to be present on exosomes from activated B cells (235).  

Finally, through multiple techniques, including TEM, NPT and my previous 

FACS analysis (Section 3.3.3 and 3.3.4), I have established that the EVs described herein 

range in size from 70 nm to 170 nm. This is on the larger end of sizes reported for 

exosomes, but in line with reports on MVs (75). My previous analysis suggested the EVs 

released from WEHI-231 cells in response to CD24 are plasma membrane derived (as are 

MV) as there was no evidence of multivesicular body formation, as seen in figure 3.5 

(60). Taken together, these data strongly support that most the EV population in this case 

is comprised of MVs, and not exosomes or apoptotic bodies, and that CD24 stimulation 

promotes the genesis of additional phosphatidylserine-positive MVs. 

Within the cargo of these MVs, I observed considerable variability in MV RNA 

and protein composition. My analysis suggests B cells produce MVs with a spectrum of 

compositions following isotype and CD24 stimulation (Figure 4.7). There are several 

potential reasons for this variability. First, vesicle packaging is limited by available 

lumen area. The interior space of exosomes (or similarly sized MVs such as described 

here) is calculated to be 20 nm to 90 nm3 (248). Thus, RNA and proteins compete for 

limited space. My measurements of MV RNA, averaging under 5 ng of total RNA per EV 

isolation from 2 mL of conditioned media (data not shown), agree with other assessments 

and indicate that these MVs package very few transcripts per vesicle (249).   
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Figure 4.7: Summary diagram of the cargo and surface composition of MVs from 
isotype or CD24 stimulated cells. The differences in surface protein, luminal protein, 
and RNA transcriptome between basal and CD24 induced MVs are shown. No change 
indicated by =, absence indicated by X, a significant change indicated by arrows where 
arrows coloured with a gradient indicate a variable difference in abundance as detected 
by Western blot. 
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Thus, small differences in packaging, or skewing towards increased protein inclusion will 

lead to increased heterogeneity. 

Secondly, cells can produce multiple vesicle populations simultaneously (138), 

which may increase the variability of cargo observed when isolating total EV 

populations, as was performed here. Studies using methods that select for a single EV 

sub-population (such as differential centrifugation, sucrose gradient floatation, or size-

exclusion filtration) may exclude some EV populations and thus underestimate total EV 

cargo complexity (250). Additionally, the use of larger sample volumes (158, 251) or 

highly enriched cell culture supernatants (158) may also underestimate heterogeneity by 

reporting the dominant cargo species rather than capturing the population heterogeneity. 

In comparison, my analysis was on a small number of cells in a low volume of media 

with short duration of stimulation.  

Finally, I detected the presence of HSPs, which can participate in protein 

degradation (252-254), and multiple proteasome sub-units in all six of the MV samples. 

This suggests that these MVs may contain proteolytically active components, which 

could result in the degradation of packaged vesicle proteins. This may explain the 

inability to detect some proteins by Western blot that were detected by MS, which relies 

on measurement of peptide fragments and not intact proteins. If degraded in this way, the 

protein may become smaller than is resolvable by SDS-PAGE gels. The loss of an 

epitope can prevent detection of proteins by western blot for various reasons, including 

splice variants of the protein that do not contain the antibody-specific sequence, or 

unappreciated post-translational modifications which may mask the availability of an 

epitope for antibody binding. Another potential cause of discrepancy between the MS and 
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Western blot detection of specific proteins owes to the sensitivity of the techniques. 

Whereas MS can detect single peptide fragments, Western blot requires substantially 

more protein to provide adequate signal, thus low abundance proteins in some samples 

may be detectable by MS whereas not identified via Western blotting. 

The RNA cargo within the B cell MVs was primarily composed of 5.8S and 5S 

rRNA. Since I did not detect the presence of 18S or 28S rRNA by BioAnalyzer or by 

sequencing, I believe that these MVs do not carry these components. This agrees with 

other analyses of MVs from human HMC-1 mast cells and mouse BV-2 microglia cells 

which also lack 18S and 28S rRNA (204). It is unknown what the functional consequence 

of this apparent differential selection of rRNA species may be. 

 These B cell MVs carry protein-coding transcripts from both nuclear and 

mitochondrial genes, with the majority encoding components of the electron transport 

chain; however, I did not identify any differentially included transcripts in response to 

CD24 stimulation. I observed a reduction in the overall abundance of protein coding 

RNA and a trend towards increased miRNA incorporation following stimulation. As 

described in section 1.5, transcripts carried by MVs and EVs are functional, thus the 

inclusion of additional miRNA by these MVs may result in altering of protein translation 

in recipient cells. Only two of the miRNAs were annotated: mir6236 and mir5099. There 

is little information on the function of these miRNAs, however mir5099 expression is 

associated with B cell development (255) and binding to Argonaut, which is a key 

component in miRNA-induced RNA silencing, in helper T cells (256). Overall, the 

purpose of these transcripts and compositional changes in B cell MVs are unknown and 

may therefore be of interest in future studies on the biological function of these MVs. 
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My proteomics analysis suggested that CD24 may affect the protein cargo carried 

by B cell MVs. I found there were 41 unique proteins, identified by MS, carried in all six 

MV samples. A substantial number of these were canonical HSPs, which is expected as 

the Vn96 capture is known to depend, at least partially, on binding to HSPs, which are 

known to be enriched in EVs (113, 221). As previously discussed, a second major group 

of proteins identified in all six MV samples belong to the proteasome complex involved 

in protein degradation. While there were no unique proteins associated with MVs 

released following CD24 stimulation, there were 77 proteins identified as selectively 

enriched in at least 2 of 3 anti-CD24 stimulated MV samples. 

 Many proteins enriched in MVs from CD24 stimulated cells were involved in 

RNA shuttling, processing or stability. These include the KH-type splicing regulatory 

protein (Khsrp), Karyopherin (Importin) b-1 (Kpnb1), Ran binding protein 1 (Ranbp1), 

Heterogenous nuclear ribonucleoprotein A2/B1 (Hnrpa2b1), Poly(A) binding protein, 

cytoplasmic 1 (Pabpc1), and Poly(rC) binding protein 1 (PCBP1). These enriched 

proteins, along with the loss of protein coding mRNA and a trend towards increasing 

miRNA incorporation into MVs from CD24-stimulated cells, suggest a mechanism by 

which select miRNA transcripts could be enriched in MVs and influence recipient cell 

behaviour through their MV-mediated delivery and subsequent effect on the gene 

expression profile of the recipient cells. Future studies are planned to examine how the 

RNA and protein cargo of these MVs could influence recipient cell behaviour. 

When I attempted to validate the CD24-mediated changes in protein cargo using 

four different proteins, representing different biological functions, I found that while all 
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the proteins were present in the cells, only EEF1G, SHMT2, and HMGB2, but not GRB2, 

were detectable in the EVs; however, the abundance of EEF1G and SHMT2 was not 

altered with CD24 stimulation. Interestingly, I found that HMGB2 had variable inclusion 

into MVs from CD24-stimulated cells, with it being highly enriched in MVs in response 

to CD24-stimulation in two biological replicates, but undetectable in MVs in additional 

replicates, regardless of the stimulation. I do not believe that this is a technical error, as 

other MV proteins (such as HSP90) were easily detected in the same replicate and there 

were very high levels of HMGB2 when it was detected. HMGB2 is closely related to 

HMGB1 and HMGB3, which are DAMPS that act in response to cellular stress (241, 

242). Thus, I believe that there may be an additional stress event, which I have not yet 

identified, that allows HMGB2 to be released in response to CD24 stimulation. Studies 

are ongoing to identify additional signals that regulate HMGB2 release.  

Overall, regardless of stimulation, a significant contribution to the MV RNA and 

protein cargo was related to mitochondrial components and functions. This included 

mitochondrial transcripts and proteins involved in metabolite generation and electron 

transport activity. I therefore propose these MVs, regardless of CD24 stimulation, are 

associated with proper mitochondrial maintenance. As with other cancers, B cell 

leukemia or lymphoma cells show increased markers of oxidative stress and reactive 

oxygen species (ROS) formation (257). Increased ROS production can negatively affect 

cell viability, leading to increased caspase activation, and ultimately cell death (258). As 

CD24 stimulation in B cells also results in caspase activation leading to apoptosis (62), 

the additional stress from CD24 stimulation may compound the challenge of dealing with 

ROS in these cells. Thus, the release of mitochondria components in B cell MVs, and the 
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enrichment of these components following CD24 stimulation, may act as a mechanism to 

regulate mitochondrial health. This is consistent with a recently-described process termed 

mitoptosis, which involves the selective sequestering, destruction and disposal of 

dysfunctional mitochondria to mitigate ROS stress and preserve cell viability (259). 

During mitoptosis, these dysfunctional mitochondria may be selectively discarded 

through plasma membrane blebbing (such as occurs in MV formation) in vesicles 50 nm 

to 200 nm in size (259). Therefore, the association reported herein between CD24 

stimulation and an increase in the release of MVs enriched in mitochondrial components 

and cell stress markers, like HMGB2 may be related to mitoptosis, or a similar process, to 

regulate cell health and viability. Future studies will be necessary to test this hypothesis 

Despite the variability in RNA and protein cargo, I observed clear phenotypic 

differences with respect to the cell surface receptor composition of cells and EVs, and 

that CD24 can induce specific changes to this composition. Approximately 50% of cells 

were positive for Siglec-G, regardless of stimulation, and all were positive for MHC-II; 

however, MVs carried neither protein. As both these proteins are integral membrane 

proteins, they must be excluded from the membrane domain from which MVs are 

released. In addition, following CD24 stimulation, cells increased their relative 

expression of Siglec-2 (CD22) but this was not reflected in the MVs. Similarly, CD24-

stimulation caused an increase in the percentage of cells expressing CD63 from 

approximately 50% to 68.3% at 1 h and to 71.5% at 2 h, as well as increasing its relative 

abundance. In contrast, nearly 100% of the MV populations from both conditions 

expressed CD63, and CD24 stimulation caused a decrease in the relative abundance of 

CD63 carried by MVs. These observations clearly demonstrate that MVs are not merely 
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representative of the cells from which they originate, and that aspects of their surface 

composition must be regulated during formation. 

The release of exosomes by B cells is associated with their activation during 

immune signalling (260, 261). My analysis suggests the MVs isolated here are not related 

to B cell activation. First, B cell activation requires BCR stimulation, which was not 

performed here. Also, Siglec-2 is antagonistic to BCR signalling (262), thus the observed 

increase in Siglec-2 expression would be expected to inhibit BCR signalling. 

Additionally, B cell exosomes carry antigen-presenting MHC-II (235) whereas I found no 

MHC-II expression on the MVs captured. Therefore, the distinct surface composition, as 

well as the abundance of mitochondrial contents, argues these MVs are formed and 

released to perform a distinct function compared with exosomes released during B cell 

activation. The functional consequences of these compositional differences are unknown, 

but will likely be an important consideration in understanding the function of exosomes 

compared to MVs. 

The ability of CD24 to promote MV cargo composition changes likely affects the 

function of these MVs, and the specific changes in surface receptors on the MVs may 

influence their intended extracellular targets. Compositionally, the mitochondrial cargo 

carried by these B cell MVs, and potentially enriched by CD24, suggest they may have a 

role in regulating mitochondrial health or stress. 
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Chapter 5: General Discussion 

5.1 Functional potential of CD24 in EV 

While it is clear that CD24 can induce changes in microvesicle (MV) 

composition, a mechanistic role of CD24 itself has yet to be identified. Several studies 

propose that CD24 may be useful as a marker of extracellular vesicles (EVs) (158, 221); 

however, its function has not been elucidated. An examination of the established 

biological functions of CD24 suggests several potential roles. First, it may act as an 

adhesion molecule, potentially for the recognition and binding of EV/MV to cells. 

Alternatively, CD24 present on EV may act as a signalling entity for immune cells, with 

its established ability to affect lymphocyte survival and activation.  

CD24 can mediate cell adhesion events through cell-specific ligands, such as 

selectins (24-26). The ability to enable cell to cell recognition and binding is easily 

extendable to suggest it may enable cell to EV binding. Its heavy glycosylation further 

promotes this hypothesis. It was recently shown that Siglec-1 (CD169) expressed on the 

cell surface is required for exosome capture by macrophages, and for apoptotic vesicle 

recognition by immune cells. This recognition occurs through binding to EV-incorporated 

proteins modified with a2,3 sialic acids (112, 263). 

CD24 is modified by the addition of a2,3- and a2,6 sialic acids, thus it is possible 

that the a2,3 and/or a2,6 sialic acids on CD24 promote interaction of EVs with Siglec-

expressing cells. The data presented in this work demonstrates that Siglec-G, which is 

structurally similar to Siglec-1 (31, 184), is retained on the B cell surface rather than 

incorporated into their MVs. This creates a dynamic whereby cells can create an intrinsic 



 156 

receptor-ligand distribution to facilitate EV recognition. By controlling specific 

glycosylation moieties on their surface, cells may be able to direct EV to specific binding 

partners. For example, not all Siglecs demonstrate equal binding to sialic acid. Siglec-1 

bind preferentially to a2,3 sialic acid, whereas Siglec 2 (CD22) bind to a2,6 sialic acid, 

and Siglec-G (Siglec-10)  has an affinity to both (264, 265). In fact, CD24-Siglec-G 

interactions have been documented via both a2,3 and a2,6 mechanisms (31). By 

enriching the EV surface with specific combinations of glycosylation, cells may be 

specifically targeted by their expression of appropriate Siglec receptors. With its highly 

variable, cell-specific glycosylation patterns CD24 could potentially act as a universal 

“addressing” molecule, by acting as a protein core to which a specific “glyco-address” 

could be attached.  

In addition, protein glycosylation may influence EV formation. Proteins heavily 

enriched for N-linked glycosylation (notably a2,6 sialic acids) are preferentially sorted 

into EV when compared to their relative abundance on the cell surface (101). The 

selective inhibition of a2,6 sialyation was capable of preventing protein inclusion into 

EVs, without altering the quantity of EVs released from a cell, demonstrating that the N-

glycan modification may serve as a determinant of EV protein inclusion. As CD24 is 

heavily enriched for these same structures, it is not necessarily surprising that it is 

enriched in EVs. By extension, however, it is known that CD24 can alter the localization 

of other proteins, such as integrins on the cell surface (71). Furthermore, following its 

stimulation, CD24 induces redistribution of other proteins into lipid raft (or glycolipid-

enriched membrane) domains, such as Lyn and the BCR (61). Therefore, the selective 
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sorting of CD24, and other N-linked glycated proteins, may have direct implications on 

the selection of other cell surface proteins selected for release in EVs. 

 

 5.2 Sorting of CD24 in EVs may have immune cell signalling and survival 

repercussions 

 The presence of CD24 on EV released from B cells may have direct implications 

on the signalling, activation, or survival of other cells in their microenvironment. CD24 is 

most highly expressed in B cells during their bone marrow development, with a re-

activation in transitional, splenic B cells (13, 33, 54). During these periods, CD24-

expressing B cells are resident in areas of high cell density, with large numbers of other B 

cells as well as other developing immune cells, antigen presenting cells, and stromal 

cells. Therefore, the release of CD24-bearing EVs into a heterogeneous, high cell-density 

environment may allow for these EVs to interact with a broad range of cellular targets.  

CD24-bearing EV may retain the ability to induce intracellular signalling in 

recipient cells by co-transporting CD24 with transmembrane signalling partners. Thus, 

these EVs may be capable of directly influencing the induction of apoptosis or activation 

in recipient cells. For B cells, this means CD24-bearing EVs may be able to modulate the 

induction of apoptosis de novo. Therefore, the release of CD24-bearing EV from one cell 

may serve as a pro-apoptotic factor upon their incorporation into a neighbouring cell. The 

potential for a positive-feedback cascade whereby a single B cell releasing CD24-positive 

EV induces apoptosis, and EV release from recipient B cells may spread through a 

population. This possibility may have implications into our understanding of autoimmune 
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disease or leukemia where the balance between pro-apoptotic, pro-proliferative and pro-

activation signalling becomes dysregulated.  

CD24-bearing EV may inhibit the function of the BCR on neighbouring B cells 

owing to their composition which I have identified in this work. The inclusion of CD24 

and CD22 in EVs is likely to be a potent inhibitor of BCR-mediated signalling and 

activation. It has been well-established that CD22 is a negative regulator of the BCR 

(266). CD22 is also known to operate through Lyn, supporting potential complementarity 

with CD24, which can activate these same proteins (262). The transport of CD22 via EV 

to neighbouring B cells thus carries the potential to depress the responsiveness of the 

BCR to stimulation. In congruence with this idea, CD24 is known to affect the 

localization of the BCR on the plasma membrane. Indeed, CD24 stimulation results in co-

localization with the BCR (61). Therefore, EV transport of CD24 may serve to cluster the 

BCR into EV-interacting domains on the PM surface. This would bring these BCRs into 

proximity of CD22, potentiating its ability to inhibit BCR activation. Other components 

of the EVs described in chapter 4 further suggest these vesicles are not involved in 

activation of the B cell since B cells release MCH-II-positive EV in response to 

activation (86). The lack of MCH-II in EV described herein argues they serve a distinct 

function, which is compatible with their potential to inhibit activation. 

These MVs may therefore participate in multiple roles. First, their ability to act as 

mitoptosis-enabling entities may act as a mechanism to attempt to protect B cells from 

BCR-mediated apoptosis. In recipient cells, these MVs may act directly as a BCR-

activation suppressor, to protect cells from the induction of apoptosis in the first place.  
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 The composition of these CD24-bearing MVs may act as an anti-activation 

mechanism for other immune cells in the local environment. The ability of CD24 to 

restrain T cell homeostatic proliferation, or to induce apoptosis in neutrophils suggest 

these MVs could potentially act as an immunomodulatory vector in areas of high immune 

cell density. The lack of MHC-II would similarly prevent these MVs from acting as a 

means of CD4+ T cell antigen presentation, and the generation of a T-cell mediated 

immune response. Therefore, overall the composition of the MVs released from CD24-

stimulated B cells would suggest their role in recipient cells is to act as an immune down-

regulating agent, potentially as a means of maintaining a homeostatic balance of immune 

cell activation and survival (Figure 5.1). 

  

5.3 A Generalized mechanism of CD24 signalling 

5.3.1 CD24 is a signalling rheostat 

A broader question which remains to be answered is the mechanism through 

which the CD24 protein can signal to engage any intracellular effects, such as Src 

tyrosine kinase activation, calcium signalling or the formation of EV, since CD24 lacks a 

transmembrane domain. By examining the wealth of published data on CD24 interactions 

and effects, I propose that rather than act as a signalling receptor in its own right, CD24 

functions as a rheostat to modulate responses transduced by a cell surface transmembrane 

receptor(s) to which it is partnered, and that the partner receptor defines the biological 

outcome. Mechanistically, CD24 likely modulates activation of the receptor through 

direct physical interaction mediated by its modifiable glycoslyations.  
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Figure 5.1 Potential signalling functions of CD24-MVs released from B cells. 
Following antibody-mediated stimulation of CD24, B cell MVs are released containing 
CD24, CD22 and the BCR (among other cargo). These MVs may act to suppress local 
immune responses through several means. They may act to directly inhibit neighbouring 
B cells via CD24/CD22-mediated repression of BCR signalling (left), CD24-mediated 
restriction of T cell proliferation (centre) and regulation of neutrophil cell survival (right).    
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The variable nature of CD24-mediated effects can be explained by its in cis association 

with unique, cell-type specific signalling partners (Figure 5.2). The activity of the partner 

receptor could be further modulated through additional cis or trans elements acting via 

multi-receptor complexes. Moreover, the activity of the partner  

receptor could have additional effects on downstream receptors. The presence of CD24 

may alter the association of cell surface receptors with their canonical ligands, to promote 

or inhibit receptor activation. Ligand - receptor interactions may also promote 

association, or displacement, of CD24 from its receptor partner, which we have termed an 

associative or dissociative ligand, respectively.  

While it is our opinion this is the most parsimonious explanation for the cell-

specific effects mediated by CD24, it does not necessarily suggest a generalized 

mechanism of GPI-anchored protein signalling. GPI-anchored proteins have been shown 

to work through specific transmembrane proteins, as well as to signal via endocytosis or 

lipid kinases (203, 267-271), thus consideration of specific GPI anchored protein 

signalling should be considered on a case-by-case basis. Importantly, we believe that 

CD24 is unique in that it partners with different cell-specific signalling receptors in a 

cell-type dependent manner. 

 

5.3.2 Physical Interactions with Cell Surface Receptors  

CD24 interacts in cis with L1CAM on neuroblastoma cells in a predicted 5:1 ratio 

(19). L1CAM/CD24 associates in cis with NCAM1, forming a tri-molecular complex, 

however no direct interaction between CD24 and NCAM1 was observed. The   
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Figure 5.2. CD24 operates through a combination of in cis and in trans partners to 
affect cell behaviour in a cell-specific manner. A) Schematic diagram showing the 
possible associations of CD24 with partner receptors and ligands. These associations 
selectively tune cellular responses. CD24 association with a signalling partner may be 
enhanced or inhibited through associative and dissociative ligands, respectively. The 
various CD24 interactions may not be mutually exclusive on a single cell, thus leading to 
a mosaic of cellular interactions and activation (green arrow) or inhibitory (red line) 
effects. B) Interactions between specific CD24 glycosylations, ligands and known 
biological outcomes. Glycosylations are depicted as chains of carbohydrate monomers 
(blue squares) but do not represent a specific structure. The ligand-interacting, terminal 
carbohydrate moiety is indicated. L1CAM, Contactin and TAG-1 show both activating 
and inhibitory signals for neurogenesis as both effects can be mediated in discrete regions 
during CNS development.  

Associative 

Trans-acting

Dissociative 
or

or

or
Integrin-like partner

Immune-receptor Partner

Siglec-like partner

CD24

Ligand

Ligand

Plasma Membrane

Glycophosphatidylinositol Anchor

CD24 Peptide Core

α2,3 sialic acidL1CAM α2,3 / α2,6 sialic acid Siglec-G

HNK-1 CarbohydrateP-Selectin

LewisxTAG-1 and Contactin

A

B

Neurogenesis

Adhesion

Sepsis

or

or



 163 

use of Ab against both CD24 or L1CAM to mimic ligand induced a calcium influx, with 

co-stimulation having a synergistic effect (19). This strongly suggests that the physical 

interaction between CD24 and L1CAM is associated with shared signalling processes. 

CD24 also acts in cis with Siglec-G to moderate DC activation (29, 31). In 

dendritic cells from the liver, CD24 forms a complex between Siglec-G and extracellular 

DAMP proteins, such as HMGB1, to alter the activity of Toll-Like Receptors (TLR) (28, 

29). Here, Siglec-G was the signalling partner of CD24, via interaction with the 

glycosylations on CD24. In the presence of CD24, signalling downstream from Siglec-G 

prevents the activation of TLRs by DAMPS. However, in the absence of CD24, the 

inhibition of TLR is lost. Moreover, CD24 is a necessary mediator in this system as 

Siglec-G and HMGB1 were shown to be associative ligands with CD24, but neither 

HMGB1 nor TLR interact directly with Siglec-G in this system. 

 

5.3.3 Interactions with signalling proteins and receptors 

Studies in B cells have shown that CD24 alters the localization of the B Cell 

Receptor (BCR) and associated intracellular signalling proteins within lipid rafts (61). 

Furthermore, engagement of the BCR results in many of the same outcomes regulated by 

CD24, including apoptosis, Protein Tyrosine Kinase (PTK) and Mitogen Activated 

Protein Kinase (MAPK) activity (61, 62). Moreover, co-ligation of both CD24 and the 

BCR with sub-optimal doses of Ab can induce apoptosis, whereas ligation of either alone 

could not, suggesting cooperative signalling (61).  
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CD24 is important in regulating T cell survival. T cells must regulate their 

proliferation to support a long-lived cell population, but can expand their numbers during 

immune activation (272). In the absence of CD24, homeostatic proliferation of T cells is 

markedly reduced. In total-body CD24 knockout mice, homeostatic T cell proliferation is 

dysregulated, causing excessive and destructive T proliferation (67). In contrast, immune-

driven proliferation is less affected by the absence of CD24 (66), likely because it 

depends on TCR co-receptors (273). However, the presence of CD24 on either T cells or 

dendritic cells is sufficient to control homeostatic T cell proliferation, suggesting that 

CD24 can act either in cis on the T cell to regulate TCR signalling, or in trans, where 

DC-expressed CD24 can bind and modulate its partner(s) on the T cell. 

 

5.3.4 Regulation of plasma membrane organization and signalling 

As CD24 lacks an intracellular domain, it cannot directly activate signalling 

pathways. CD24 is resident in highly fluid, cholesterol-rich microdomains, termed lipid 

rafts (274). In B cells and in breast cancer cells the presence of CD24 in lipid rafts 

excludes the CXCR4, the chemokine receptor for Stromal Cell Derived Factor-1 (SDF-1), 

from lipid rafts whereas in the absence of CD24, CXCR4 can enter lipid rafts (275). This 

exclusion prevents the SDF-1 activation of CXCR4-mediated signalling. In contrast, b-

integrin is normally found in non-lipid raft membrane domains, but in the presence of 

CD24 it can translocate into lipid rafts (276) to promote cell-cell adhesion (72). These 

studies suggest that regulating the physical location of receptors is also a function of 

CD24. 
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The ability of CD24 to act as a membrane-organizing factor further supports a 

role for CD24 in interacting with receptors partners to regulate receptor oligomerization 

and localization. It is also possible that CD24 can rapidly or contextually alter its 

associations, which may be another mechanism through which it exerts context-specific 

effects. 

 

5.3.5 Identifying CD24 mechanisms 

 If the ability for CD24 to mediate intracellular signalling is dependent on its 

association with cell-type specific surface receptors, then identification of these partners 

is essential. In some cases, transcriptomic data may be used to predict potential partners 

by their co-expression with CD24 (13). Alternatively, knowledge of common biological 

outcomes between CD24 and cell specific surface receptors could be used to predict 

receptor partners. Visualization of co-localized receptors through high resolution 

microscopy may be employed to demonstrate co-localization on intact cells. 

Alternatively, if there are no known or predicted CD24 interactors expressed in the cell of 

interest, a non-biased approach, such as mass-spectrometry based identification of CD24 

interacting proteins would be necessary.  

Confirming the functional interaction between CD24 and its partner could be 

accomplished in vivo with the use of knockout and transgenic animals and in vitro using 

gene knockout or over-expression vectors, to alter the expression of CD24 and its 

putative signalling partner. Altering the expression of CD24 should disrupt the signalling 

through its partner. For example, if CD24 acts to restrict signalling, then the receptor 
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partner may become hyper-responsive in a CD24 knockout. The inverse relationship 

would be seen if CD24 is a positive regulator of signalling. This relationship may explain 

the loss of developing B cells in both CD24 knockout and CD24-overexpressing mice, 

since the BCR can transduce pro-survival or pro-apoptotic signals, depending on B cell 

developmental status and the strength of BCR stimulation (277, 278). In CD24-knockout 

animals, the BCR may be over-sensitive leading to apoptosis, whereas in transgenic mice 

with constitutively high levels of CD24, the BCR no longer provides supportive tonic 

signalling, leading to apoptosis. 

With whole-body knockout animals, compensatory changes to the expression of 

the signalling partner may occur due to the absence of CD24, to re-establish its signalling 

potential. These changes may be observed by comparing the expression of partner 

receptors in wild type vs. CD24 knockout mice. The generation of inducible CD24 

knock-out models, to prevent compensatory changes in partnered receptors or signalling 

pathways, would negate these concerns. 

Importantly, knockdown or over-expression of the signalling partner would have 

the same biological outcomes as the loss or gain of CD24, respectively. In this case, 

CD24 could still be engaged with ligand or Ab, but would not exert any effect in the 

absence of its partner. 

 Determining the mechanism for CD24-ligand specificity is key. CD24 has been 

shown to vary in size from approximately 30 to 80 kDa, depending on the tissue from 

which it is isolated due to the variable mosaic of different N- and O- linked 

glycosylations (14). The different terminal glycans exhibit unique binding potential to 

cell surface receptors. For example, Siglec-G binds to a2,6 and a2,3 sialic acid (31), 
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whereas P-selectin binds to human natural killer-1 (HNK-1) sulfated carbohydrates (279) 

on CD24. If the binding and activity of CD24 is glycan-dependent, tissue-specific 

glycosylation would create glyco-variants of CD24 capable of interacting with specific 

partners, allowing a selectivity of responsiveness, and preventing systemic effects. 

Therefore, it is our opinion that future studies to identify in cis and in trans partners of 

CD24 should seek to identify the glycan moieties on CD24 mediating those interactions. 

 

5.4 Implications and Conclusions 

This thesis describes a comprehensive analysis on the expression and function of 

CD24 in several cellular contexts, with a primary focus on its role in regulating apoptosis 

in immature, developing B cells from humans and mice. While there are still outstanding 

questions regarding the nature of CD24-ligand interactions, and their cell-specific 

functions, I have validated that co-expression analysis is a viable approach for identifying 

putative signalling partners as a first step in further elucidating these interactions. I have 

further developed a general schema for CD24-mediated activity which is the first to 

attempt to provide a unifying theory on the cell-specific effects attributed to CD24. 

I propose that CD24 influences different cis-interacting partners, or that some 

CD24 “ligands” may not directly interact with CD24, but could interact with an 

associated partner. Thus, this would explain how CD24 is associated with numerous and 

diverse ligands and cellular activities but be widely expressed and evolutionarily 

conserved. As CD24 is also carried on EV, this ability to act in cis or in trans with a 

multitude of partners may be significant for its biological functions.  
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My investigation into the mechanism of CD24-mediated apoptosis in B cells is 

the first to identify it as a regulator of B cell EV release, and a director of B cell EV 

composition. As a director of cell signalling or stress, CD24-laden vesicles may be potent 

signalling modulators that can interact with numerous partners in the cellular 

microenvironment, or even at distal sites. Future studies may now focus on the role of B 

cell EV to alter the function of recipient cells in immune microenvironments. The data 

presented here thus provide a solid foundation for future studies that can elucidate a 

broader understanding of the function of CD24 in regulating B cell development. By 

gaining new insight into this function, we may identify new fundamental principles 

guiding CD24-mediated cell survival and activation as well as a more complete picture of 

how cell fate can be controlled. 
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awarding institution with DOI links back to the formal publications on ScienceDirect. 
  
Elsevier Open Access Terms and Conditions 
You can publish open access with Elsevier in hundreds of open access journals or in 
nearly 2000 established subscription journals that support open access publishing. 
Permitted third party re-use of these open access articles is defined by the author's 
choice of Creative Commons user license. See our open access license policy for more 
information. 
Terms & Conditions applicable to all Open Access articles published with 
Elsevier: 
Any reuse of the article must not represent the author as endorsing the adaptation of the 
article nor should the article be modified in such a way as to damage the author's 
honour or reputation. If any changes have been made, such changes must be clearly 
indicated. 
The author(s) must be appropriately credited and we ask that you include the end user 
license and a DOI link to the formal publication on ScienceDirect. 
If any part of the material to be used (for example, figures) has appeared in our 
publication with credit or acknowledgement to another source it is the responsibility of 
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the user to ensure their reuse complies with the terms and conditions determined by the 
rights holder. 
Additional Terms & Conditions applicable to each Creative Commons user 
license: 
CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new 
works from the Article, to alter and revise the Articl e and to make commercial use of 
the Article (including reuse and/or resale of the Article by commercial entities), 
provided the user gives appropriate credit (with a link to the formal publication through 
the relevant DOI), provides a link to the license, indicates if changes were made and 
the licensor is not represented as endorsing the use made of the work. The full details 
of the license are available at http://creativecommons.org/licenses/by/4.0. 
CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, 
abstracts and new works from the Article, to alter and revise the Article, provided this 
is not done for commercial purposes, and that the user gives appropriate credit (with a 
link to the formal publication through the relevant DOI), provides a link to the license, 
indicates if changes were made and the licensor is not represented as endorsing the use 
made of the work. Further, any new works must be made available on the same 
conditions. The full details of the license are available 
at http://creativecommons.org/licenses/by-nc-sa/4.0. 
CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the 
Article, provided this is not done for commercial purposes and further does not permit 
distribution of the Article if it is changed or edited in any way, and provided the user 
gives appropriate credit (with a link to the formal publication through the relevant 
DOI), provides a link to the license, and that the licensor is not represented as 
endorsing the use made of the work. The full details of the license are available 
at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open 
Access articles published with a CC BY NC SA or CC BY NC ND license requires 
permission from Elsevier and will be subject to a fee. 
Commercial reuse includes: 

• Associating advertising with the full text of the Article 
• Charging fees for document delivery or access 
• Article aggregation 
• Systematic distribution via e-mail lists or share buttons 

Posting or linking by commercial companies for use by customers of those companies. 
  
20. Other Conditions: 
  
v1.9 
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Using Creative Commons Public Licenses 
Creative Commons public licenses provide a standard set of terms and conditions that 
creators and other rights holders may use to share original works of authorship and other 
material subject to copyright and certain other rights specified in the public license 
below. The following considerations are for informational purposes only, are not 
exhaustive, and do not form part of our licenses. 
 
Considerations for licensors: Our public licenses are intended for use by those authorized 
to give the public permission to use material in ways otherwise restricted by copyright 
and certain other rights. Our licenses are irrevocable. Licensors should read and 
understand the terms and conditions of the license they choose before applying it. 
Licensors should also secure all rights necessary before applying our licenses so that the 
public can reuse the material as expected. Licensors should clearly mark any material not 
subject to the license. This includes other CC-licensed material, or material used under an 
exception or limitation to copyright. More considerations for licensors. 
 
Considerations for the public: By using one of our public licenses, a licensor grants the 
public permission to use the licensed material under specified terms and conditions. If the 
licensor’s permission is not necessary for any reason–for example, because of any 
applicable exception or limitation to copyright–then that use is not regulated by the 
license. Our licenses grant only permissions under copyright and certain other rights that 
a licensor has authority to grant. Use of the licensed material may still be restricted for 
other reasons, including because others have copyright or other rights in the material. A 
licensor may make special requests, such as asking that all changes be marked or 
described. Although not required by our licenses, you are encouraged to respect those 
requests where reasonable. More considerations for the public. 
 
Creative Commons Attribution 4.0 International Public License 
By exercising the Licensed Rights (defined below), You accept and agree to be bound by 
the terms and conditions of this Creative Commons Attribution 4.0 International Public 
License ("Public License"). To the extent this Public License may be interpreted as a 
contract, You are granted the Licensed Rights in consideration of Your acceptance of 
these terms and conditions, and the Licensor grants You such rights in consideration of 
benefits the Licensor receives from making the Licensed Material available under these 
terms and conditions. 
 
Section 1 – Definitions. 
a. Adapted Material means material subject to Copyright and Similar Rights that is 
derived from or based upon the Licensed Material and in which the Licensed Material is 
translated, altered, arranged, transformed, or otherwise modified in a manner requiring 
permission under the Copyright and Similar Rights held by the Licensor. For purposes of 
this Public License, where the Licensed Material is a musical work, performance, or 
sound recording, Adapted Material is always produced where the Licensed Material is 
synched in timed relation with a moving image. 
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b. Adapter's License means the license You apply to Your Copyright and Similar 
Rights in Your contributions to Adapted Material in accordance with the terms and 
conditions of this Public License. 
c. Copyright and Similar Rights means copyright and/or similar rights closely 
related to copyright including, without limitation, performance, broadcast, sound 
recording, and Sui Generis Database Rights, without regard to how the rights are labeled 
or categorized. For purposes of this Public License, the rights specified in Section 
2(b)(1)-(2) are not Copyright and Similar Rights. 
d. Effective Technological Measures means those measures that, in the absence of 
proper authority, may not be circumvented under laws fulfilling obligations under Article 
11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar 
international agreements. 
e. Exceptions and Limitations means fair use, fair dealing, and/or any other 
exception or limitation to Copyright and Similar Rights that applies to Your use of the 
Licensed Material. 
f. Licensed Material means the artistic or literary work, database, or other material 
to which the Licensor applied this Public License. 
g. Licensed Rights means the rights granted to You subject to the terms and 
conditions of this Public License, which are limited to all Copyright and Similar Rights 
that apply to Your use of the Licensed Material and that the Licensor has authority to 
license. 
h. Licensor means the individual(s) or entity(ies) granting rights under this Public 
License. 
i. Share means to provide material to the public by any means or process that 
requires permission under the Licensed Rights, such as reproduction, public display, 
public performance, distribution, dissemination, communication, or importation, and to 
make material available to the public including in ways that members of the public may 
access the material from a place and at a time individually chosen by them. 
j. Sui Generis Database Rights means rights other than copyright resulting from 
Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on 
the legal protection of databases, as amended and/or succeeded, as well as other 
essentially equivalent rights anywhere in the world. 
k. You means the individual or entity exercising the Licensed Rights under this 
Public License. Your has a corresponding meaning. 
 
Section 2 – Scope. 
a. License grant. 
1. Subject to the terms and conditions of this Public License, the Licensor hereby 
grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable 
license to exercise the Licensed Rights in the Licensed Material to: 
A. reproduce and Share the Licensed Material, in whole or in part; and 
B. produce, reproduce, and Share Adapted Material. 
2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and 
Limitations apply to Your use, this Public License does not apply, and You do not need 
to comply with its terms and conditions. 
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3. Term. The term of this Public License is specified in Section 6(a). 
4. Media and formats; technical modifications allowed. The Licensor authorizes You 
to exercise the Licensed Rights in all media and formats whether now known or hereafter 
created, and to make technical modifications necessary to do so. The Licensor waives 
and/or agrees not to assert any right or authority to forbid You from making technical 
modifications necessary to exercise the Licensed Rights, including technical 
modifications necessary to circumvent Effective Technological Measures. For purposes 
of this Public License, simply making modifications authorized by this Section 2(a)(4) 
never produces Adapted Material. 
5. Downstream recipients. 
A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed 
Material automatically receives an offer from the Licensor to exercise the Licensed 
Rights under the terms and conditions of this Public License. 
B. No downstream restrictions. You may not offer or impose any additional or 
different terms or conditions on, or apply any Effective Technological Measures to, the 
Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of 
the Licensed Material. 
6. No endorsement. Nothing in this Public License constitutes or may be construed 
as permission to assert or imply that You are, or that Your use of the Licensed Material 
is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or 
others designated to receive attribution as provided in Section 3(a)(1)(A)(i). 
b. Other rights. 
1. Moral rights, such as the right of integrity, are not licensed under this Public 
License, nor are publicity, privacy, and/or other similar personality rights; however, to 
the extent possible, the Licensor waives and/or agrees not to assert any such rights held 
by the Licensor to the limited extent necessary to allow You to exercise the Licensed 
Rights, but not otherwise. 
2. Patent and trademark rights are not licensed under this Public License. 
3. To the extent possible, the Licensor waives any right to collect royalties from You 
for the exercise of the Licensed Rights, whether directly or through a collecting society 
under any voluntary or waivable statutory or compulsory licensing scheme. In all other 
cases the Licensor expressly reserves any right to collect such royalties. 
 
Section 3 – License Conditions. 
Your exercise of the Licensed Rights is expressly made subject to the following 
conditions. 
a. Attribution. 
1. If You Share the Licensed Material (including in modified form), You must: 
A. retain the following if it is supplied by the Licensor with the Licensed Material: 
i. identification of the creator(s) of the Licensed Material and any others designated 
to receive attribution, in any reasonable manner requested by the Licensor (including by 
pseudonym if designated); 
ii. a copyright notice; 
iii. a notice that refers to this Public License; 
iv. a notice that refers to the disclaimer of warranties; 
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v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable; 
B. indicate if You modified the Licensed Material and retain an indication of any 
previous modifications; and 
C. indicate the Licensed Material is licensed under this Public License, and include 
the text of, or the URI or hyperlink to, this Public License. 
2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based 
on the medium, means, and context in which You Share the Licensed Material. For 
example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink 
to a resource that includes the required information. 
3. If requested by the Licensor, You must remove any of the information required by 
Section 3(a)(1)(A) to the extent reasonably practicable. 
4. If You Share Adapted Material You produce, the Adapter's License You apply 
must not prevent recipients of the Adapted Material from complying with this Public 
License. 
 
Section 4 – Sui Generis Database Rights. 
Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of 
the Licensed Material: 
a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, 
reproduce, and Share all or a substantial portion of the contents of the database; 
b. if You include all or a substantial portion of the database contents in a database in 
which You have Sui Generis Database Rights, then the database in which You have Sui 
Generis Database Rights (but not its individual contents) is Adapted Material; and 
 
c. You must comply with the conditions in Section 3(a) if You Share all or a 
substantial portion of the contents of the database. 
For the avoidance of doubt, this Section 4 supplements and does not replace Your 
obligations under this Public License where the Licensed Rights include other Copyright 
and Similar Rights. 
 
Section 5 – Disclaimer of Warranties and Limitation of Liability. 
a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the 
Licensor offers the Licensed Material as-is and as-available, and makes no 
representations or warranties of any kind concerning the Licensed Material, whether 
express, implied, statutory, or other. This includes, without limitation, warranties of title, 
merchantability, fitness for a particular purpose, non-infringement, absence of latent or 
other defects, accuracy, or the presence or absence of errors, whether or not known or 
discoverable. Where disclaimers of warranties are not allowed in full or in part, this 
disclaimer may not apply to You. 
b. To the extent possible, in no event will the Licensor be liable to You on any legal 
theory (including, without limitation, negligence) or otherwise for any direct, special, 
indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, 
or damages arising out of this Public License or use of the Licensed Material, even if the 
Licensor has been advised of the possibility of such losses, costs, expenses, or damages. 
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Where a limitation of liability is not allowed in full or in part, this limitation may not 
apply to You. 
c. The disclaimer of warranties and limitation of liability provided above shall be 
interpreted in a manner that, to the extent possible, most closely approximates an absolute 
disclaimer and waiver of all liability. 
 
Section 6 – Term and Termination. 
a. This Public License applies for the term of the Copyright and Similar Rights 
licensed here. However, if You fail to comply with this Public License, then Your rights 
under this Public License terminate automatically. 
b. Where Your right to use the Licensed Material has terminated under Section 6(a), 
it reinstates: 
1. automatically as of the date the violation is cured, provided it is cured within 30 
days of Your discovery of the violation; or 
2. upon express reinstatement by the Licensor. 
For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may 
have to seek remedies for Your violations of this Public License. 
c. For the avoidance of doubt, the Licensor may also offer the Licensed Material 
under separate terms or conditions or stop distributing the Licensed Material at any time; 
however, doing so will not terminate this Public License. 
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License. 
 
Section 7 – Other Terms and Conditions. 
a. The Licensor shall not be bound by any additional or different terms or conditions 
communicated by You unless expressly agreed. 
b. Any arrangements, understandings, or agreements regarding the Licensed 
Material not stated herein are separate from and independent of the terms and conditions 
of this Public License. 
 
Section 8 – Interpretation. 
a. For the avoidance of doubt, this Public License does not, and shall not be 
interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed 
Material that could lawfully be made without permission under this Public License. 
b. To the extent possible, if any provision of this Public License is deemed 
unenforceable, it shall be automatically reformed to the minimum extent necessary to 
make it enforceable. If the provision cannot be reformed, it shall be severed from this 
Public License without affecting the enforceability of the remaining terms and conditions. 
c. No term or condition of this Public License will be waived and no failure to 
comply consented to unless expressly agreed to by the Licensor. 
d. Nothing in this Public License constitutes or may be interpreted as a limitation 
upon, or waiver of, any privileges and immunities that apply to the Licensor or You, 
including from the legal processes of any jurisdiction or authority. 
Creative Commons is not a party to its public licenses. Notwithstanding, Creative 
Commons may elect to apply one of its public licenses to material it publishes and in 
those instances will be considered the “Licensor.” The text of the Creative Commons 
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public licenses is dedicated to the public domain under the CC0 Public Domain 
Dedication. Except for the limited purpose of indicating that material is shared under a 
Creative Commons public license or as otherwise permitted by the Creative Commons 
policies published at creativecommons.org/policies, Creative Commons does not 
authorize the use of the trademark “Creative Commons” or any other trademark or logo 
of Creative Commons without its prior written consent including, without limitation, in 
connection with any unauthorized modifications to any of its public licenses or any other 
arrangements, understandings, or agreements concerning use of licensed material. For the 
avoidance of doubt, this paragraph does not form part of the public licenses. 
 
Creative Commons may be contacted at creativecommons.org. 
  



 222 

Appendix B: R Scripts 

1. CD24 expression, endocytosis and exocytosis inhibition, epitope saturation 

 
#SURFACE EXPRESSION, WEHI231 
wehi<- read.csv("wehi_rel_cd24.csv", header=T) 
wehi 
colnames(wehi) 
wehi$TIME=as.factor(wehi$TIME) 
summary(wehi) 
wehiMEANAOV<-aov(wehi$MEAN~wehi$TIME) 
summary(wehiMEANAOV) 
TukeyHSD(wehiMEANAOV) 
 
wehiMODEAOV<-aov(wehi$MODE~wehi$TIME) 
summary(wehiMODEAOV) 
TukeyHSD(wehiMODEAOV) 
 
wehi0<-subset(wehi, TIME=="0") 
wehi1<-subset(wehi, TIME=="1") 
wehi.t<-rbind(wehi1,wehi0) 
wehi.t 
t.test(MEAN~TIME, alternative=c("greater"), var.equal=FALSE, 
data=wehi.t) 
t.test(MODE~TIME, alternative=c("greater"), var.equal=FALSE, 
data=wehi.t) 
 
#LINEAR MODEL TIME 1 to 60, WEHI231 
wehi2<-read.csv("wehi_rel_cd24_glm.csv", header=T) 
wehi2 
colnames(wehi2) 
#wehi2$TIME=as.factor(wehi2$TIME) 
wehi2MEANglm<-glm(wehi2$MEAN~wehi2$TIME) 
anova(wehi2MEANglm) 
summary(wehi2MEANglm) 
plot(wehi2MEANglm) 
coef(wehi2MEANglm) 
 
wehi2MODEglm<-glm(wehi2$MODE~wehi2$TIME) 
anova(wehi2MODEglm) 
summary(wehi2MODEglm) 
plot(wehi2MODEglm) 
coef(wehi2MODEglm) 
 
#LINEAR MODEL TIME 1 to 60, WEHI231 
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wehiendo2<-read.csv("wehiendo2.csv", header=T) 
wehiendo2 
colnames(wehiendo2) 
wehiendo2$TIME=as.factor(wehiendo2$TIME) 
wehiendo2glm<-
glm(wehiendo2$CD24~wehiendo2$TIME*wehiendo2$INHIBIT) 
anova(wehiendo2glm) 
summary(wehiendo2glm) 
plot(wehiendo2glm) 
 
#LINEAR MODEL TIME 1 to 60, WEHI231 
wehiexo2<-read.csv("wehiexo2.csv", header=T) 
wehiexo2 
colnames(wehiexo2) 
wehiexo2$TIME=as.factor(wehiexo2$TIME) 
wehiexo2glm<-
glm(wehiexo2$CD24~wehiexo2$TIME*wehiexo2$INHIBIT) 
anova(wehiexo2glm) 
summary(wehiexo2glm) 
plot(wehiexo2glm) 
 
#ENDOCYTOSIS INHIBITION, WEHI231 
wehiendo<- read.csv("wehiendo.csv", header=T) 
wehiendo 
colnames(wehiendo) 
wehiendo$TIME=as.factor(wehiendo$TIME) 
summary(wehiendo) 
wehiendoAOV<-
aov(wehiendo$CD24~wehiendo$TIME*wehiendo$INHIBIT) 
summary(wehiendoAOV) 
 
#One-way anova, Time zero 
wehiendo0<-subset(wehiendo, TIME=="0") 
wehiendo0 
wehiendo0AOV<-aov(wehiendo0$CD24~wehiendo0$INHIBIT) 
summary(wehiendo0AOV) 
TukeyHSD(wehiendo0AOV) 
 
#One-way anova, Time 1 
wehiendo1<-subset(wehiendo, TIME=="1") 
wehiendo1 
wehiendo1AOV<-aov(wehiendo1$CD24~wehiendo1$INHIBIT) 
summary(wehiendo1AOV) 
TukeyHSD(wehiendo1AOV) 
 
#One-way anova, Time 5 
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wehiendo5<-subset(wehiendo, TIME=="5") 
wehiendo5 
wehiendo5AOV<-aov(wehiendo5$CD24~wehiendo5$INHIBIT) 
summary(wehiendo5AOV) 
TukeyHSD(wehiendo5AOV) 
 
#One-way anova, Time 15 
wehiendo15<-subset(wehiendo, TIME=="15") 
wehiendo15 
wehiendo15AOV<-aov(wehiendo15$CD24~wehiendo15$INHIBIT) 
summary(wehiendo15AOV) 
TukeyHSD(wehiendo15AOV) 
 
#One-way anova, Time 40 
wehiendo40<-subset(wehiendo, TIME=="40") 
wehiendo40 
wehiendo40AOV<-aov(wehiendo40$CD24~wehiendo40$INHIBIT) 
summary(wehiendo40AOV) 
TukeyHSD(wehiendo40AOV) 
 
#One-way anova, Time 60 
wehiendo60<-subset(wehiendo, TIME=="60") 
wehiendo60 
wehiendo60AOV<-aov(wehiendo60$CD24~wehiendo60$INHIBIT) 
summary(wehiendo60AOV) 
TukeyHSD(wehiendo60AOV)  
 
 
#EXOCYTOSIS INHIBITION, WEHI231 
wehiexo<- read.csv("wehiexo.csv", header=T) 
wehiexo 
colnames(wehiexo) 
wehiexo$TIME=as.factor(wehiexo$TIME) 
summary(wehiexo) 
wehiexoAOV<-aov(wehiexo$CD24~wehiexo$TIME*wehiexo$INHIBIT) 
summary(wehiexoAOV) 
 
#One-way anova, Time zero 
wehiexo0<-subset(wehiexo, TIME=="0") 
wehiexo0 
wehiexo0AOV<-aov(wehiexo0$CD24~wehiexo0$INHIBIT) 
summary(wehiexo0AOV) 
TukeyHSD(wehiexo0AOV) 
 
#One-way anova, Time 1 
wehiexo1<-subset(wehiexo, TIME=="1") 
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wehiexo1 
wehiexo1AOV<-aov(wehiexo1$CD24~wehiexo1$INHIBIT) 
summary(wehiexo1AOV) 
TukeyHSD(wehiexo1AOV) 
 
#One-way anova, Time 5 
wehiexo5<-subset(wehiexo, TIME=="5") 
wehiexo5 
wehiexo5AOV<-aov(wehiexo5$CD24~wehiexo5$INHIBIT) 
summary(wehiexo5AOV) 
TukeyHSD(wehiexo5AOV) 
 
#One-way anova, Time 15 
wehiexo15<-subset(wehiexo, TIME=="15") 
wehiexo15 
wehiexo15AOV<-aov(wehiexo15$CD24~wehiexo15$INHIBIT) 
summary(wehiexo15AOV) 
TukeyHSD(wehiexo15AOV) 
 
#One-way anova, Time 40 
wehiexo40<-subset(wehiexo, TIME=="40") 
wehiexo40 
wehiexo40AOV<-aov(wehiexo40$CD24~wehiexo40$INHIBIT) 
summary(wehiexo40AOV) 
TukeyHSD(wehiexo40AOV) 
 
#One-way anova, Time 60 
wehiexo60<-subset(wehiexo, TIME=="60") 
wehiexo60 
wehiexo60AOV<-aov(wehiexo60$CD24~wehiexo60$INHIBIT) 
summary(wehiexo60AOV) 
TukeyHSD(wehiexo60AOV) 
 
CD24 exchange between cells 
setwd("~/Desktop") 
getwd() 
exchange<-read.csv("exchange.csv", header=T) 
exchange 
colnames(exchange) 
summary(exchange) 
exchangeAOV<-aov(exchange$DBLPOS~exchange$TIME) 
summary(exchangeAOV) 
 
exchangeglm<-glm(exchange$DBLPOS~exchange$TIME) 
anova(exchangeglm) 
summary(exchangeglm) 
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plot(exchangeglm) 
 
# Saturation and Epitopes 
sat<-read.csv("saturation.csv", header=T) 
sat 
colnames(sat) 
sat$COND=as.factor(sat$COND) 
summary(sat) 
satMEANAOV<-aov(sat$FITC~sat$COND) 
summary(satMEANAOV) 
TukeyHSD(satMEANAOV) 
 
satMODEAOV<-aov(sat$APC~sat$COND) 
summary(satMODEAOV) 
TukeyHSD(satMODEAOV) 
 
#LINEAR MODEL TIME 1 to 60, WEHI231 
sat2<-read.csv("saturation_glm.csv", header=T) 
sat2 
colnames(sat2) 
#wehi2$TIME=as.factor(wehi2$TIME) 
sat2APCglm<-glm(sat2$APC~sat2$COND) 
anova(sat2APCglm) 
summary(sat2APCglm) 
plot(sat2APCglm) 
coef(sat2APCglm) 
 
sat2FITCglm<-glm(sat2$FITC~sat2$COND) 
anova(sat2FITCglm) 
summary(sat2FITCglm) 
plot(sat2FITCglm) 
coef(sat2FITCglm) 
 

2. Gene expression analysis 
#Normalizing and Background Correcting 
library(oligo) 
celfiles=list.celfiles() 
celfiles 
data=read.celfiles(celfiles) 
data 
hist(data) 
boxplot(data) 
genes=rma(data, target="core") 
genes 
hist(genes) 
boxplot(genes) 
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list<-c("10362896", "10351197", "10351206", "10351182", 
"10605113", "10562132", "10552369", "10552380", "10435704", 
"10439312", "10557862", "10412760", "10547894", "10567863", 
"10545765", "10524718", "10571653", "10547894", "10538979", 
"10538993", "10535381") 
genesint<-genes[list] 
genesint 
write.exprs(genesint, file="Dendritic interest.txt") 
write.exprs(genes, file="Dendritic_all.txt") 
 
 

3. RNA-Seq Analysis 
setwd("~/Documents/Graduate Degree/Research/Paper 3 - Ayre 
et al - Vesicles/RNA-Seq") 
getwd() 
source("http://bioconductor.org/biocLite.R") 
biocLite("biomaRt") 
biocLite("edgeR") 
 
#getting the RNA subtypes 
library("biomaRt") 
library("edgeR") 
listMarts() 
ensembl=useMart("ensembl") 
listDatasets(ensembl) 
ensembl = 
useMart("ensembl",dataset="mmusculus_gene_ensembl") 
genes=read.csv("ensmbl.csv",header=TRUE) 
colnames(genes) 
biomart_gene=getBM(attributes=c("ensembl_gene_id", 
"transcript_biotype"),mart=ensembl) 
genes$type=biomart_gene$transcript_biotype[match(genes$Ensem
ble, biomart_gene$ensembl_gene_id)] 
write.csv(genes, file="BiomaRt_Transcript_Annotation.csv") 
 
#Counting RNA species 
features=table(genes$type) 
features 
 
#Reading counts 
setwd("~/Documents/Graduate Degree/Research/Paper 3 - Ayre 
et al - Vesicles/RNA-Seq") 
getwd() 
source("http://bioconductor.org/biocLite.R") 
#biocLite("biomaRt") 
#biocLite("edgeR") 
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#biocLite("locfit") 
#biocLite("statmod") 
 
#getting the RNA subtypes 
library("biomaRt") 
library("edgeR") 
library("locfit") 
library("statmod") 
rawdata=read.delim("Counts_all.txt", header=TRUE, 
row.names="Ensmbl") 
summary(rawdata) 
head(rawdata) 
colnames(rawdata) 
seq=DGEList(counts=rawdata[,3:8], genes=rawdata[,1]) 
group=c(rep("Isotype",3),rep("M1/69",3)) 
y=DGEList(counts=seq, group=group) 
y 
nonint=rownames(y) %in% 
c("no_feature","ambiguous","too_low_aQual","alignment_not_un
ique","not_aligned") 
cpms=cpm(y) 
keep = rowSums(cpms>0.1)>=2 &!nonint 
counts=y[keep, ,keep.lib.sizes=FALSE] 
table(keep) 
d=DGEList(counts=counts, group=group) 
plotMDS(d) 
d=calcNormFactors(d) 
d$samples 
plotMDS(d) 
d=estimateCommonDisp(d, verbose=T) 
d=estimateTagwiseDisp(d) 
plotBCV(d) 
de=exactTest(d, pair=c("Isotype","M1/69")) 
tt=topTags(de, n=nrow(d)) 
head(tt$table) 
nc=cpm(d, normalized.lib.sizes = TRUE) 
rn=rownames(tt$table) 
deg=rn[tt$table$PValue<0.001] 
plotSmear(d, de.tags = deg) 
write.csv(tt$table, file="toptags_edgeR.csv") 
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Supplemental File 1: The mean and standard deviations from the microarray data 

analyzed, for all genes shown in Chapter 2 

 

Supplemental File 2: Gene ontology enrichment analysis of the top 50 protein coding 

transcripts identified in EV from B cells released under isotype or anti-CD24 stimulation. 

 

Supplemental File 3: Gene ontology, pathway, process and disease enrichments 

identified from the proteins enriched in EV released from B cells following anti-CD24 

stimulation. 

 

 

 


