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Abstract

Vector-borne infectious diseases such as malaria, dengue, West Nile fever, Zika fever

and Lyme disease remain a threat to public health and economics. Both vector life

cycle and parasite development are greatly influenced by climatic factors. Under-

standing the role of seasonal climate in vector-borne infectious disease transmission

is particularly important in light of global warming.

This PhD thesis is devoted to the study of global dynamics of four vector-borne in-

fectious disease models. We start with a periodic vector-bias malaria model with con-

stant extrinsic incubation period (EIP). To explore the temperature sensitivity of the

EIP of malaria parasites, we also formulate a functional differential equations model

with a periodic time delay. Moreover, we incorporate the use of insecticide-treated bed

nets (ITNs) into a climate-based mosquito-stage-structured malaria model. Lastly,

we develop a time-delayed Lyme disease model with seasonality. By using the the-

ory of basic reproduction ratio, R0, and the theory of dynamical systems, we derive

R0 and establish a threshold type result for the global dynamics in terms of R0 for

each model. By conducting numerical simulations of case studies, we propose some

practical strategies for the control of the diseases.
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Chapter 1

Preliminaries

In this chapter, we present some terminologies and known results which will be used

in this thesis. They are involved in chain transitivity and attractivity, uniform persis-

tence and coexistence states, monotone dynamics, and the theory of basic reproduc-

tion ratio.

1.1 Chain transitivity and attractivity

Let X be a metric space with metric d and f : X → X a continuous map. A bounded

set A is said to attract a bounded set B in X if limn→∞ supx∈B{d(fn(x), A)} = 0. A

subset A ⊂ X is said to be an attractor for f if A is nonempty, compact, and invariant

(f(A) = A), and A attracts some open neighborhood U of itself. A global attractor for

f : X → X is an attractor that attracts every point inX. For a nonempty invariant set

M , the setW s(M) := {x ∈ X : limn→∞ d(fn(x),M) = 0} is called the stable set ofM .

The omega limit set of x is defined as ω(x) = {y ∈ X : fnk(x) → y, for some nk → ∞}

[109, Section 1.1].

Definition 1.1.1. Let A ⊂ X be a nonempty invariant set (i.e., f(A) = A). We call
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A internally chain transitive if for any a, b ∈ A and any ǫ > 0, there is a finite sequence

x1, . . . , xm in A with x1 = a, xm = b such that d(f(xi), xi+1) < ǫ, 1 ≤ i ≤ m− 1. The

sequence {x1, . . . , xm} is called an ǫ-chain in A connecting a and b.

Lemma 1.1.2. [109, Lemma 1.2.1] Let f : X → X be a continuous map. Then the

omega (alpha) limit set of any precompact positive (negative) orbit is internally chain

transitive.

Theorem 1.1.3. [109, Theorem 1.2.1] Let A be an attractor and C a compact inter-

nally chain transitive set for f : X → X. If C ∩W s(A) 6= ∅, then C ⊂ A.

Theorem 1.1.4. [109, Theorem 1.2.2] Assume that each fixed point of f is an isolated

invariant set, that there is no cyclic chain of fixed points, and that every precompact

orbit converges to some fixed point of f . Then any compact internally chain transitive

set is a fixed point of f .

1.2 Uniform persistence and coexistence states

Let f : X → X be a continuous map and X0 ⊂ X an open set. Define ∂X0 := X \X0,

and M∂ := {x ∈ ∂X0 : f
n(x) ∈ ∂X0, n ≥ 0}, which may be empty.

Theorem 1.2.1. [109, Theorem 1.3.1 and Remark 1.3.1] Assume that

(C1) f(X0) ⊂ X0 and f has a global attractor A;

(C2) There exists a finite sequence M = {M1, . . . ,Mk} of disjoint, compact, and

isloated invariant sets in ∂X0 such that

(a) Ω(M∂) := ∪x∈M∂
ω(x) ⊂ ∪k

i=1Mi;

(b) no subset of M forms a cycle in ∂X0;
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(c) Each Mi is isolated in X;

(d) W s(Mi) ∩X0 = ∅ for each 1 ≤ i ≤ k.

Then there exists δ > 0 such that for any compact internally chain transitive set L

with L 6⊂Mi for all 1 ≤ i ≤ k, we have infx∈L d(x, ∂X0) > δ.

Definition 1.2.2. A function f : X → X is said to be uniformly persistent with

respect to (X0, ∂X0) if there exists η > 0 such that lim infn→∞ d(fn(x), ∂X0) ≥ η for

all x ∈ X0.

Recall that the Kuratowski measure of noncompactness, α, is defined by

α(B) = inf{r : B has a finite cover of diameter < r},

for any bounded set B of X. A continuous map f : X → X is said to be compact

(completely continous) is f maps any bounded set to a precompact set in X.

Definition 1.2.3. A continuous mapping f : X → X is said to be point dissipative if

there is a bounded set B0 in X such that B0 attracts each point in X; α-condensing

if f takes bounded sets to bounded sets and α(f(B)) < α(B) for any nonempty closed

bounded set B ⊂ X with α(B) > 0.

Let (M, d) be a complete metric space, and let ρ : M → [0,+∞) be a continuous

function. We define

M0 := {x ∈M : ρ(x) > 0} and ∂M0 := {x ∈M : ρ(x) = 0}.

Assume that f :M →M is a continuous map with f(M0) ⊂M0.

Definition 1.2.4. f is said to be ρ-uniformly persistent if there exists ǫ > 0 such that

lim infn→+∞ ρ(fn(x)) ≥ ǫ, ∀x ∈M0.
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For a given open subset M0 ⊂ M , let ∂M0 := M \ M0. Then we can use the

continuous function ρ :M → [0,∞), defined by ρ(x) = d(x, ∂M0), ∀x ∈M , to obtain

the traditional definition of persistence [52].

Next, we assume thatM is a closed and convex subset of a Banach space (X, ‖·‖),

that ρ :M → [0,+∞) is a continuous function such that M0 = {x ∈M : ρ(x) > 0} is

nonempty and convex, and that f : M → M is a continuous map with f(M0) ⊂ M0

[52].

Theorem 1.2.5. [52, Theorem 4.5] Assume that

(1) f : X → X is point dissipative and ρ-uniformly persistent.

(2) fn0 is compact for some integer n0 ≥ 1.

(3) f is α-condensing.

Then f : X0 → X0 admits a global attractor A0, and f has a fixed point in A0.

Suppose T > 0, a family of mappings Φ(t) : X → X, t ≥ 0, is called a T -periodic

semiflow on X if it possesses the following properties:

(1) Φ(0) = I, where I is the identity map on X.

(2) Φ(t+ T ) = Φ(t) ◦ Φ(T ), ∀t ≥ 0.

(3) Φ(t)x is continuous in (t, x) ∈ [0,∞)×X.

The mapping Φ(T ) is called the Poincaré map associated with this periodic semiflow.

In particular, if (2) holds for any T > 0, Φ(t) is called an autonomous semiflow.



5

1.3 Monotone dynamics

1.3.1 The comparison principle

For x, y ∈ R
n, we define

x ≤ y ⇔ xi ≤ yi for i ∈ N and x≪ y ⇔ xi < yi for i ∈ N,

where N = {1, . . . , n}. The spaces AC(J) and L(J) consist of all functions from J to

R
n that are absolutely continuous or integrable in J , respectively. Here and below,

J = [a, b], J0 = (a, b]. A measurable set M ⊂ J is said to be dense at a if the set

M ∩ [a, a + ǫ] has positive measure for every ǫ > 0. For measurable vector-valued

functions ϕ, ψ we write ϕ≪ ψ at a+ if the set {t ∈ J : ϕ(t) ≪ ψ(t)} is dense at a.

We consider the nonlinear equation

u′(t) = f(t, u(t)) a.e. in J (1.1)

and assume for simplilcity that f(t, x) is defined in the strip S = J ×R
n and satisfies

the following conditions: f(t, ·) is continuous in R
n for almost all (fixed) t ∈ J , f(·, x)

is measurable in J for all (fixed) x ∈ R
n, f(·, 0) ∈ L(R), and for each constant A > 0

there is a function m(·) ∈ L(J) such that

|f(t, x)− f(t, y)| ≤ mA(t)|x− y| for t ∈ J and |x|, |y| ≤ A.

The defect P of a function v ∈ AC(J) with respect to equation (1.1) is defined by

(Pv)(t) = v′(t)− f(t, v(t)).
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The function f is said to be quasimonotone increasing in x if fi(t, x) is (weakly)

increasing in xj for all j 6= i, or equivalently, if

x ≤ y, xi = yi ⇒ fi(t, x) ≤ fi(t, y) a.e. in J (i = 1, . . . , n).

Theorem 1.3.1. [91, Theorem 4] Assume that the function f(t, x) satisfies the con-

ditions given above and is quasimonotone inceasing in x, and let v, w ∈ AC(J) satisfy

v(a) ≤ w(a) and Pv ≤ Pw a.e. in J.

Then each of the following conditions is sufficient for the strong inequality v ≪ w in

J0:

(i) v(a) ≪ w(a).

(ii) Pv ≪ Pw at a+.

(iii) For every pair (α, β) of nonempty, disjoint index sets with α ∪ β = N , there

are j ∈ β, k ∈ α such that fj(t, x) is strictly increasing in xk for t ∈ M,x ∈ U ,

where M ⊂ J is dense at a and U is a neighborhood of v(a).

1.3.2 Global attractivity and convergence

Let E be an ordered Banach space with positive cone P such that int(P ) 6= ∅. For

x, y ∈ E, we write x ≥ y if x− y ∈ P , x > y if x− y ∈ P \ {0} and x≫ y if x− y ∈

int(P ). If a < b, we define the order interval [a, b] := {x ∈ E : a ≤ x ≤ b}. The cone

P is said to be normal if there exists a constant M such that 0 ≤ x ≤ y implies that

‖x‖ ≤M‖y‖.

Definition 1.3.2. Let U be a subset of E, and f : U → U be a continuous map. The
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map f is said to be monotone if x ≥ y implies that f(x) ≥ f(y); strictly monotone if

x > y implies that f(x) > f(y); strongly monotone if x > y implies that f(x) ≫ f(y).

Lemma 1.3.3. [109, Lemma 2.2.1] Let P be normal, and S : E → E a continuous

and monotone map. Assume that S has a fixed point x∗ ∈ E such that

(1) S(x) ≪ x∗ ≪ S(y) whenever x≪ x∗ ≪ y.

(2) x∗ attracts every point in some open neighborhood W of x∗.

Then x∗ is Liapunov stable for S.

Recall that a continuous mapping f : X → X is said to be asymptotically smooth

if for any nonempty closed bounded set B ⊂ X for which f(B) ⊂ B, there is a

compact set J ⊂ B such that J attracts B. Denote the Fréchet derivative of f at

u = a by Df(a) if it exists, and let r(Df(a)) be the spectral radius of the linear

operator Df(a) : E → E.

Theorem 1.3.4. [109, Theorem 2.3.4] Let V = [0, b] with b ≫ 0, and f : V → V be

a continuous map. Assume that

(1) f : V → V satisfies either

(i) f is monotone and strongly subhomogeneous, or

(ii) f is strongly monotone and strictly subhomogeneous.

(2) f : V → V is asymptotically smooth, and every positive orbit of f in V is

bounded.

(3) f(0) = 0, and Df(0) is compact and strongly positive.

Then there exists threshold dynamics:
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(a) If r(Df(0)) ≤ 1, then every positive orbit in V converges to 0.

(b) If r(Df(0)) > 1, then there exists a unique fixed point u∗ ≫ 0 in V such that

every positive orbit in V \ {0} converges to u∗.

1.4 Basic reproduction ratio

In epidemiology, the basic reproduction number (ratio) R0 is the expected number

of secondary cases produced, in a completely susceptible population, by a typical

infective individual [90]. R0 serves as a threshold value to measure the effort needed

to control the infectious disease. Ever since the celebrated works by Diekmann et al.

[24] and by van den Driessche and Watmough [90], there have been numerous papers

on the analysis of R0 for various autonomous epidemic models. Recently, there are

also quite a few investigations on the theory and applications of R0 for models in

a periodic environment ( see, e.g., [6, 7, 8, 32, 88, 94] and the references therein).

More recently, the theory of basic reproduction ratio R0 has been developed by Zhao

for periodic and time-delayed population models with compartmental structure (see

[110]). In this section, we first present the R0 theory for periodic and time-delayed

models which we will use in chapters 2, 3 and 5. Then we introduce the theory of

R0 for periodic models which we will use in chapter 4. At last, we will introduce the

algorithm for numerical computation of R0 for periodic and time-delayed models.

1.4.1 The theory of R0 for periodic and time-delayed models

In this subsection, we introduce the theory of the basic reproduction ratio for peri-

odic and time-delayed models developed by Zhao [110]. Let τ be a nonnegative real

number and m be a positive integer, C = C([−τ, 0],Rm), and C+ = C([−τ, 0],Rm
+ ).

Then (C,C+) is an ordered Banach space equipped with the maximum norm and the
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positive cone C+. Let F : R → L(C,Rm) be a map and V (t) be a continuous m×m

matrix function on R. Assume that F (t) and V (t) are ω-periodic in t for some real

number ω > 0. For a continuous function u : [−τ, σ) → R
m with σ > 0, define ut ∈ C

by

ut(θ) = u(t+ θ), ∀θ ∈ [−τ, 0]

for any t ∈ [0, σ).

We consider a linear and periodic functional differential system on C:

du(t)

dt
= F (t)ut − V (t)u(t), t ≥ 0. (1.2)

System (1.2) may come from the equations of infectious variables in the linearization of

a given ω-periodic and time-delayed compartmental epidemic model at a disease-free

ω-periodic solution. As such, m is the total number of the infectious compartments,

and the newly infected individuals at time t depend linearly on the infectious indi-

viduals over the time interval [t − τ, t], which is described by F (t)ut. Further, the

internal evolution of individuals in the infectious compartments (e.g., natural and

disease-induced deaths, and movements among compartments) is governed by the

linear ordinary differential system:

du(t)

dt
= −V (t)u(t). (1.3)

Let Φ(t, s), t ≥ s, be the evolution matrices associated with system (1.3), that is,

Φ(t, s) satisfies

∂

∂t
Φ(t, s) = −V (t)Φ(t, s), ∀t ≥ s, and Φ(s, s) = I, ∀s ∈ R,
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and ω(Φ) be the exponential growth bound of Φ(t, s), that is,

ω(Φ) = inf
{
ω̃ : ∃M ≥ 1 such that ‖Φ(t+ s, s)‖ ≤Meω̃t, ∀s ∈ R, t ≥ 0

}
.

We assume that

(H1) Each operator F (t) : C → R
m is positive in the sense that F (t)C+ ⊆ R

m
+ .

(H2) Each matrix −V (t) is cooperative, and ω(Φ) < 0.

We assume that the ω-periodic function v(t) is the initial distribution of infectious

individuals. For any given s ≥ 0, F (t − s)vt−s is the distribution of newly infected

individuals at time t − s, which is produced by the infectious individuals who were

introduced over the time interval [t− s− τ, t− s]. Then Φ(t, t− s)F (t− s)vt−s is the

distribution of those infected individuals who were newly infected at time t − s and

remain in the infected compartments at time t. It follows that

∫ ∞

0

Φ(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds

is the distribution of accumulative new infections at time t produced by all those

infectious individuals introduced at all previous times to t.

Let Cω be the ordered Banach space of all continuous and ω-periodic functions

from R to R
m, which is equipped with the maximum norm and the positive cone

C+
ω := {v ∈ Cω : v(t) ≥ 0, ∀t ∈ R}. Define a linear operator L : Cω → Cω by

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω. (1.4)

We define the spectral radius of L as the basic reproduction ratio R0 = r(L).

Let U(ω, 0) be the Poincaré map of system (1.2) on C. The following result shows
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that R0 is a threshold value for the stability of the zero solution for periodic system

(1.2).

Theorem 1.4.1. [110, Theorem 2.1] The following statements are valid:

(i) R0 = 1 if and only if r(U(ω, 0)) = 1.

(ii) R0 > 1 if and only if r(U(ω, 0)) > 1.

(iii) R0 < 1 if and only if r(U(ω, 0)) < 1.

Thus, R0 − 1 has the same sign as r(U(ω, 0))− 1.

In the case where τ = 0, Theorem 1.4.1 reduces to Theorem 2.2 in [94]. Let

W (t, s, λ) be the evolution operator of the following system on R
m:

dw

dt
=

[
−V (t) +

F (t)

λ

]
w, t ∈ R. (1.5)

Then we have the result

Theorem 1.4.2. [94, Theorem 2.1] The following statements are valid:

(i) If ρ(W (ω, 0, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of L,

and hence R0 > 0.

(ii) If R0 > 0, then λ = R0 is the unique solution of ρ(W (ω, 0, λ)) = 1.

(iii) R0 = 0 if and only if ρ(W (ω, 0, λ)) < 1 for all λ > 0.

1.4.2 Numerical computation of R0

In this subsection, we introduce the method proposed by Posny and Wang [70] to

numerically calculate the basic reproduction ratio R0. Let the operator L be defined
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as in (1.4). For any given φ ∈ Cω, we have

(Lφ)(t) =

∫ ∞

0

Φ(t, t− s)F (t− s)φ(t− s+ ·)ds

=

∫ ∞

0

K(t, s)φ(t− s)ds

=
∞∑

k=0

∫ ω

0

K(t, s+ kω)φ(t− s)ds

=

∫ ω

0

(
∞∑

k=0

K(t, s+ kω))φ(t− s)ds

=

∫ ω

0

G(t, s)φ(t− s)ds,

(1.6)

where G(t, s) =
∑∞

k=0K(t, s+ kω). Our aim is to explicitly determine the maximum

eigenvalue λ of the operator L such that (Lφ)(t) = λφ(t) for all ω-periodic functions

φ ∈ Cω.

We approximate G by a finite sum

G(t, s) ≈
M∑

k=0

K(t, s+ kω), (1.7)

for some integer M > 0. We find it unnecessary to pick a large value for M , owing to

the exponential decay of the terms in the summation.

Let us partition the interval [0, ω] uniformly into n nodes labeled as ti = i · ω
n
for

i = 0, . . . , n− 1. Using the trapezoidal rule, we can approximate the integral in (1.6)

with second-order accuracy:

(Lφ)(t) ≈ ω

n

(
n−1∑

i=1

G(t, ti)φ(t− ti) +
1

2
G(t, t0)φ(t− t0) +

1

2
G(t, tn)φ(t− tn)

)
.
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Since φ(t) is ω-periodic, it is clear that φ(t− t0) = φ(t− tn). For convenience let

G̃(t, t0) ≡
1

2
[G(t, t0) +G(t, tn)].

Then

(Lφ)(t) ≈ ω

n

[
G̃(t, t0)φ(t− t0) +

n−1∑

i=1

G(t, ti)φ(t− ti)

]
.

Now (Lφ)(t) = λφ(t) can be written as a matrix equation,

ω

n

[
G̃(t, t0) G(t, t1) G(t, t2) . . . G(t, tn−1)

]




φ(t− t0)

φ(t− t1)

φ(t− t2)

...

φ(t− tn−1)




= λφ(t).

Setting t = tj(0 ≤ j ≤ n− 1) in the above equation yields

ω

n

[
G̃(tj, t0) G(tj, t1) G(tj, t2) . . . G(tj, tn−1)

]




φ(tj − t0)

φ(tj − t1)

φ(tj − t2)

...

φ(tj − tn−1)




= λφ(tj). (1.8)

Again, by the periodicity of φ(t), it follows that

φ(tj − t0) = φ(tj), φ(tj − t1) = φ(tj−1), . . . ,

φ(tj − tj−1) = φ(t1), φ(tj − tj) = φ(t0), φ(tj − tj+1) = φ(tn−1),

. . . , φ(tj − tn−2) = φ(tj+2), φ(tj − tn−1) = φ(tj+1),
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and we can rearrange the terms in equation (1.8) to obtain

ω

n

[
G(tj, tj) G(tj, tj−1) . . . G̃(tj, t0) . . . G(tj, tj+2) G(tj, tj+1)

]




φ(t0)

φ(t1)

...

φ(tj)

...

φ(tn−2)

φ(tn−1)




= λφ(tj).

(1.9)

Note that this equation holds for all j = 0, . . . , n − 1, thus generating a matrix

system. The coefficient matrix, denoted by A, is given by

A =




G̃(t0, t0) G(t0, tn−1) . . . . . . . . . G(t0, t2) G(t0, t1)

G(t1, t1) G̃(t1, t0) . . . . . . . . . G(t1, t3) G(t1, t2)

...
...

. . . . . . . . .
...

...

G(tj, tj) G(tj, tj−1) . . . G̃(tj, t0) . . . G(tj, tj+2) G(tj, tj+1)

...
...

. . . . . . . . .
...

...

G(tn−2, tn−2) G(tn−2, tn−3) . . . . . . . . . G̃(tn−2, t0) G(tn−2, tn−1)

G(tn−1, tn−1) G(tn−1, tn−2) . . . . . . . . . G(tn−1, t1) G̃(tn−1, t0)




.

(1.10)

Therefore, equation (1.9) can be put into a compact form,

ω

n
Aφ̃ = λφ̃, (1.11)

where A, defined in equation (1.10), is a matrix of dimension (nm) × (nm), and

φ̃ = [φ(t0), φ(t1), . . . , φ(tn−1)]
T is a vector of dimension (nm) × 1. Hence, to find the

basic reproduction ratio defined by R0 = ρ(L), it is equivalent to find the maximum
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λ such that (1.11) is valid; i.e.,

R0 ≈
ω

n
ρ(A).

In the case where τ = 0, we can use Theorem 1.4.2 (ii) and the standard bisection

method to compute R0 numerically.



Chapter 2

A periodic vector-bias malaria

model with incubation period

2.1 Introduction

Malaria is one of the most common infectious diseases which cause public health

problems and dampen economics [85]. Although the modern world is continuing to

make impressive progress in reducing malaria cases and deaths, an estimated 3.3

billion people in 97 countries and territories are still at risk of being infected with

malaria, and 1.2 billion are at high risk. According to the recent estimates, 198 million

cases of malaria occurred globally in 2013 and the disease led to 584000 deaths, with

90% of deaths occurring in Africa and most cases and deaths occurring in sub-Saharan

Africa [99].

Mathematical models provide powerful tools for explaining and predicting malaria

transmission trend, and also for quantifying the effectiveness of different intervention

and eradication strategies in malaria endemic regions. The first mathematical model
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for malaria transmission was introduced by Ross [76] and later extended by Mac-

Donald [50]. Since then great progress has been made in mathematical modeling of

malaria transmission dynamics; see, e.g., [17, 18, 25, 47, 103], and references therein.

In this chapter we propose a mathematical model which takes into account the

following three aspects:

Climate Factor. Malaria is caused by five species of Plasmodium protozoan par-

asites (vivax, malariae, ovale, knowlesi and falciparum) and is transmitted among

humans by the bites of female Anopheles mosquitoes. Environmental factors, such

as temperature, humidity, rainfall and wind patterns have great impact on mosquito

reproduction, development and longevity and the parasite survival in its life cycle in

mosquito. For example, a change in temperature from 12◦C to 31◦C reduces the num-

ber of days required for breeding from 65 days to 7.3 days [42]. The sporogony of the

parasites in vector is completed in 55 days at 16◦C, which reduces to 7 days at 28◦C

[53]. Thus, it is necessary to incorporate seasonal climate factors into a mathematical

model.

Extrinsic Incubation Period (EIP). Female Anophelesmosquitoes pick up Plasmod-

ium parasites in a blood meal taken from an infectious human host. The parasites

then go through several developmental stages before they migrate to the mosquito

salivary glands. The time parasites spent in completing its development within the

mosquito and migrating to the salivary glands is known as the extrinsic incubation

period (EIP). Once in the salivary glands the parasites can be transmitted to a suscep-

tible human host when the mosquito takes another blood meal [10, 11]. Transmission

of malaria to such a susceptible human host cannot occur until the EIP is completed

[69]. The longevity of a female adult mosquito ranges from 3 to 100 days and the

EIP takes from 10 to 30 days. For the mosquitoes that live so short that the EIP

cannot be completed before they die, they don’t transmit malaria at all. While for
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those that live long enough to survive the EIP, they will remain infectious for the rest

of their lives. Thus, the EIP directly influence the number of infectious mosquitoes.

An appropriate candidate to depict the EIP in mathematics is time delay.

Vector-bias Effect. According to the experiment result in [39], during their develop-

ment within the human, malaria parasites make infectious humans more attractive to

mosquitoes via chemical substances to enhance their transmission. Another theoreti-

cal analysis of optimal feeding behavior and the mechanics of blood sucking indicates

that mosquitoes may maximize their rates of protein intake during feeding by choos-

ing malaria-infected human hosts [34]. All these results show that mosquitoes may

prefer infectious hosts to susceptible ones. This difference between the probabilities of

picking humans is the so called “vector-bias”. We will incorporate such a vector-bias

term into our model to see what impact it has on the epidemiology of malaria.

The rest of this chapter is organized as follows. In the next section, we present

the model and the hypotheses on which it is formulated. We introduce the basic

reproduction ratio R0, and prove a threshold result on the global dynamics in terms

of R0 in section 2.3. In section 2.4, we use some monthly reported data to simulate the

malaria transmission trend in Maputo Province, Mozambique. Numerical simulations

on the long term behaviour of the infectious compartments are also carried out to

illustrate our analytic result. A brief discussion is given in section 2.5.

2.2 Model formulation

Our model is motivated by the malaria transmission models in [17, 47, 103]. The

biological interpretations for parameters are listed in Table 2.1. Let the state vari-

ables Ih(t), Sm(t), Im(t) represent the numbers of infectious humans, susceptible and

infectious female adult mosquitoes at time t, respectively. Compared with the life
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span of a mosquito, the longevity of a human is quite long. The climate factor has

little impact on human activities. Thus, we treat all the parameters related to hu-

mans as constants. We suppose that the total number of humans stabilizes at H.

Let ρ be the rate at which humans remove from the infectious compartment due to

recovery and disease-induced death. We use dh to denote the natural death rate of

humans. Let µ(t) be the recruitment rate at which female adult mosquitoes emerge

from larvae. Vector-bias effect is a phenomenon that vectors show different preference

weights in host selection. To depict such a phenomenon, we introduce the parameters

p and l, which are defined as the probabilities that a mosquito arrives at a human

at random and picks the human if he is infectious and susceptible, respectively [17].

A larger probability corresponds to a higher preference weight. Since infectious hu-

mans are more attractive to mosquitoes, we assume that p ≥ l. The biting rate β(t)

of mosquitoes is the number of bites per mosquito per unit time at time t. Then

β(t)Im(t) is the number of bites by all infectious mosquitoes per unit time at time t.

We suppose that the total number of bites made by mosquitoes equals to the number

of bites received by humans. We also assume that a mosquito will not bite the same

person for more than once. Then β(t)Im(t) is also the number of humans that are bit-

ten by infectious mosquitoes per unit time at time t . Among all the humans that are

bitten by infectious mosquitoes, only those originally susceptible ones may contribute

to the increase of Ih(t). Hence, we need to derive the probability that a human is

susceptible under the condition that a mosquito picks him. Obviously, this probability

equals to l(H−Ih(t))
pIh(t)+l(H−Ih(t))

, the ratio between the total bitten susceptible humans and

the total bitten humans. We neglect the incubation period within humans which is

short compared to the longevity of a human. Thus, the number of newly occurred
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infectious humans per unit time at time t is

cβ(t)
l(H − Ih(t))

pIh(t) + l(H − Ih(t))
Im(t),

where c is the probability of transmission of infection from an infectious mosquito to

a susceptible human given that the contact between the two occurs.

Similarly, pIh(t)
pIh(t)+l(H−Ih(t))

is the probability that a human is infectious under the

condition that a mosquito picks him. Then the number of newly occurred infected

mosquitoes per unit time at time t is

bβ(t)
pIh(t)

pIh(t) + l(H − Ih(t))
Sm(t),

where b is the transmission probability per bite from infectious humans to suscepti-

ble mosquitoes. The newly infected mosquitoes need to survive the EIP to become

infectious. Let τ be the length of the EIP and dm(t) be the mortality rate for adult

female mosquitoes, then the probability that a mosquito survives the EIP at time t

is e−
∫ t
t−τ

dm(s)ds. Thus, the number of newly occurred infectious mosquitoes per unit

time at time t is

e−
∫ t
t−τ

dm(s)ds bβ(t− τ)pIh(t− τ)

pIh(t− τ) + l(H − Ih(t− τ))
Sm(t− τ).

Consequently, we have the following model:

dIh(t)

dt
=

cβ(t)l(H − Ih(t))

pIh(t) + l(H − Ih(t))
Im(t)− (dh + ρ)Ih(t),

dSm(t)

dt
= µ(t)− bβ(t)pIh(t)

pIh(t) + l(H − Ih(t))
Sm(t)− dm(t)Sm(t), (2.1)

dIm(t)

dt
= −dm(t)Im(t) + e−

∫ t
t−τ

dm(s)ds bβ(t− τ)pIh(t− τ)Sm(t− τ)

pIh(t− τ) + l(H − Ih(t− τ))
,
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where all constant parameters are positive, and β(t),µ(t),dm(t) are positive, continu-

ous and ω-periodic functions for some ω > 0 with µ(t) > 0 and
∫ ω

0
dm(t)dt > 0. It is

easy to see that the function

a(t) := e−
∫ t
t−τ

dm(s)ds

is also ω-periodic, and hence, model (2.1) is an ω-periodic and time-delayed system.

Table 2.1: Biological interpretations for parameters in model (2.1)

Parameter Description
c Probability of transmission of infection from an infectious mosquito to a

susceptible human given that contact between them occurs
β(t) Biting rate of mosquitoes to humans
l Probability that a mosquito arrives at human at random and picks the

human if he is susceptible
p Probability that a mosquito arrives at human at random and picks the

human if he is infectious
H The total number of humans
dh Human natural death rate
ρ Rate at which human is removed from the class of infectious (i.e., recovery

and disease-induced death rate)
µ(t) Recruitment rate at which female adult mosquitoes emerge from larvae.
b Probability of transmission of infection from an infectious human to a

susceptible mosquito given that contact between them occurs
dm(t) Mortality rate for female adult mosquitoes
τ Extrinsic Incubation Period

2.3 Threshold dynamics

In this section, we will use the theory in section 1.4 to obtain the basic reproduction

ratio for our model. It is easy to see that the scalar linear periodic equation

dSm(t)

dt
= µ(t)− dm(t)Sm(t) (2.2)
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has a unique positive ω-periodic solution

S∗
m(t) =

[ ∫ t

0

µ(r)e
∫ r
0 dm(s)dsdr +

∫ ω

0
µ(r)e

∫ r
0 dm(s)dsdr

e
∫ ω
0 dm(s)ds − 1

]
e−

∫ t
0 dm(s)ds,

which is globally asymptotically stable.

Linearizing system (2.1) at its disease-free periodic solution (0, S∗
m(t), 0), we then

obtain the following system of periodic linear equations for the infective variables Ih

and Im:
dIh(t)

dt
= −a11(t)Ih(t) + a12(t)Im(t),

dIm(t)

dt
= a21(t)Ih(t− τ)− a22(t)Im(t),

(2.3)

where a11(t) = dh + ρ, a12(t) = cβ(t), a22(t) = dm(t), and

a21(t) = a(t)
bβ(t− τ)pS∗

m(t− τ)

lH
.

Let C = C([−τ, 0],R2), C+ = C([−τ, 0],R2
+). Then (C,C+) is an ordered Banach

space equipped with the maximum norm and the positive cone C+. For any given

continuous function v = (v1, v2) : [−τ, σ) → R
2 with σ > 0, we define vt ∈ C by

vt(θ) = (v1(t+ θ), v2(t+ θ)), ∀θ ∈ [−τ, 0],

for any t ∈ [0, σ). Let F : R → L(C,R2) be a map and V (t) be a continuous 2 × 2

matrix function on R defined as follows:

F (t)ϕ =




a12(t)ϕ2(0)

a21(t)ϕ1(−τ)


 , V (t) =



a11(t) 0

0 a22(t)


 .

We assume that the ω-periodic function v(t) is the initial distribution of infectious

individuals. For any given s ≥ 0, F (t − s)vt−s is the distribution of newly infected
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individuals at time t − s, which is produced by the infectious individuals who were

introduced over the time interval [t− s− τ, t− s]. Then Φ(t, t− s)F (t− s)vt−s is the

distribution of those infected individuals who were newly infected at time t − s and

remain in the infected compartments at time t. It follows that

∫ ∞

0

Φ(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds

is the distribution of accumulative new infections at time t produced by all those

infectious individuals introduced at all previous times to t.

Let Cω be the ordered Banach space of all continuous and ω-periodic functions

from R to R
2, which is equipped with the maximum norm and the positive cone

C+
ω := {v ∈ Cω : v(t) ≥ 0, ∀t ∈ R}. Define a linear operator L : Cω → Cω by

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω,

where Φ(t, s), t ≥ s, is the evolution matrix associated with the following system

dv(t)

dt
= −V (t)v(t),

that is, Φ(t, s) satisfies

∂

∂t
Φ(t, s) = −V (t)Φ(t, s), ∀t ≥ s, and Φ(s, s) = I, ∀s ∈ R.

It then easily follows that

Φ(t, s) =



e−

∫ t
s
a11(r)dr 0

0 e−
∫ t
s
a22(r)dr



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and

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds

=

∫ ∞

0

Φ(t, t− s)




a12(t− s)v2(t− s)

a21(t− s)v1(t− s− τ)


 ds

=

∫ ∞

0




e−
∫ t
t−s

a11(r)dra12(t− s)v2(t− s)

e−
∫ t
t−s

a22(r)dra21(t− s)v1(t− s− τ)


 ds

=




∫∞

0
e−

∫ t
t−s

a11(r)dra12(t− s)v2(t− s)ds
∫∞

τ
e−

∫ t
t−s+τ

a22(r)dra21(t− s+ τ)v1(t− s)ds




=

∫ ∞

0

K(t, s)v(t− s)ds, ∀t ∈ R, v =



v1

v2


 ∈ Cω,

where

K(t, s) =




0 e−
∫ t
t−s

a11(r)dra12(t− s)

e−
∫ t
t−s+τ

a22(r)dra21(t− s+ τ) 0


 , if s ≥ τ,

and

K(t, s) =



0 e−

∫ t
t−s

a11(r)dra12(t− s)

0 0


 , if s < τ.

Following section 1.4, we define R0 = r(L). Let P̂ (t) be the solution maps of system

(2.3), that is, P̂ (t)ϕ = ut(ϕ), t ≥ 0, where u(t, ϕ) is the unique solution of system

(2.3) with u0 = ϕ ∈ C([−τ, 0],R2). Then P̂ := P̂ (ω) is the Poincaré map associated

with linear system (2.3). Let r(P̂ ) be the spectral radius of P̂ . By Theorem 1.4.1, we

have the following result.

Lemma 2.3.1. R0 − 1 has the same sign as r(P̂ )− 1.
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Let

W := C([−τ, 0], [0, H])× C([−τ, 0],R+)× R+.

Then we have the following preliminary result for system (2.1).

Lemma 2.3.2. For any ϕ ∈ W , system (2.1) has a unique nonnegative bounded

solution u(t, ϕ) on [0,∞) with u0 = ϕ, and ut(ϕ) ∈ W for all t ≥ 0.

Proof. For any ϕ = (ϕ1, ϕ2, ϕ3) ∈ W , we define

f̃(t, ϕ) =




cβ(t)l(H−ϕ1(0))
(p−l)ϕ1(0)+lH

ϕ3 − (dh + ρ)ϕ1(0)

µ(t)− bβ(t)pϕ1(0)
(p−l)ϕ1(0)+lH

ϕ2(0)− dm(t)ϕ2(0)

−dm(t)ϕ3 + e−
∫ t
t−τ

dm(s)ds bβ(t−τ)pϕ1(−τ)ϕ2(−τ)
(p−l)ϕ1(−τ)+lH



.

Since f̃(t, ϕ) is continuous in (t, ϕ) ∈ R+ ×W , and f̃(t, ϕ) is Lipschitz in ϕ on each

compact subset of W , it then follows that system (2.1) has a unique solution u(t, ϕ)

on its maximal interval [0, σϕ) of existence with u0 = ϕ (see, e.g., [29, Theorems 2.2.1

and 2.2.3]).

Let ϕ = (ϕ1, ϕ2, ϕ3) ∈ W be given. If ϕi(0) = 0 for some i ∈ {1, 2}, then

f̃i(t, ϕ) ≥ 0. If ϕ3 = 0, then f̃3(t, ϕ) ≥ 0. If ϕ1(0) = H, then f̃1(t, ϕ) ≤ 0. By [84,

Theorem 5.2.1 and Remark 5.2.1], it follows that for any ϕ ∈ W , the unique solution

u(t, ϕ) of system (2.1) with u0 = ϕ satisfies ut(ϕ) ∈ W for all t ∈ [0, σϕ).

Clearly, 0 ≤ u1(t, ϕ) ≤ H for all t ∈ [0, σϕ). In view of the second and third

equations of system (2.1), we have

du2(t)

dt
≤ µ(t)− dm(t)u2(t), ∀t ∈ [0, σϕ),

du3(t)

dt
≤ −dm(t)u3(t) + e−

∫ t
t−τ

dm(s)dsbβ(t− τ)u2(t− τ), ∀t ∈ [0, σϕ).

Thus, both u2(t) and u3(t) are bounded on [0, σϕ), and hence, [29, Theorem 2.3.1]

implies that σϕ = ∞.
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For any given ϕ ∈ W, let u(t, ϕ) = (u1(t), u2(t), u3(t)) be the unique solution of

system (2.1) satisfying u0 = ϕ. Let

w(t) := e−
∫ t
t−τ

dm(s)dsu2(t− τ) + u3(t).

Then (u1(t), u3(t)) can be regarded as a solution of the following nonautonomous

system:

du1(t)

dt
=
cβ(t)l(H − u1(t))

(p− l)u1(t) + lH
u3(t)− (dh + ρ)u1(t),

du3(t)

dt
= −dm(t)u3(t) +

bβ(t− τ)pu1(t− τ)

(p− l)u1(t− τ) + lH
(w(t)− u3(t)).

(2.4)

It easily follows that w(t) satisfies

dw(t)

dt
= −dm(t)w(t) + e−

∫ t
t−τ

dm(s)dsµ(t− τ), (2.5)

and system (2.5) has a unique positive ω-periodic solution

K(t) := e−
∫ t
t−τ

dm(s)dsS∗
m(t− τ),

which is globally attractive in R. Thus, system (2.4) has a limiting system:

dv1(t)

dt
=
cβ(t)l(H − v1(t))

(p− l)v1(t) + lH
v2(t)− (dh + ρ)v1(t),

dv2(t)

dt
= −dm(t)v2(t) +

bβ(t− τ)pv1(t− τ)

(p− l)v1(t− τ) + lH
(K(t)− v2(t)).

(2.6)
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Note that z(t) = (u1(t), u3(t), w(t)) satisfies the following ω-periodic system:

du1(t)

dt
=
cβ(t)l(H − u1(t))

(p− l)u1(t) + lH
u3(t)− (dh + ρ)u1(t),

du3(t)

dt
= −dm(t)u3(t) +

bβ(t− τ)pu1(t− τ)

(p− l)u1(t− τ) + lH
(w(t)− u3(t)),

dw(t)

dt
= −dm(t)w(t) + e−

∫ t
t−τ

dm(s)dsµ(t− τ).

(2.7)

Clearly, system (2.1) is equivalent to (2.7). It suffices to study system (2.7). Let

Ω := C([−τ, 0], [0, H])× R
2
+.

We then have the following preliminary result for system (2.7).

Lemma 2.3.3. For any ϕ ∈ Ω, system (2.7) has a unique solution z(t, ϕ) with z0 = ϕ,

and zt(ϕ) ∈ Ω, ∀t ≥ 0.

Proof. For any ϕ ∈ Ω, define

f̂(t, ϕ) =




cβ(t)l(H−ϕ1(0))
(p−l)ϕ1(0)+lH

ϕ2 − (dh + ρ)ϕ1(0)

−dm(t)ϕ2 +
bβ(t−τ)pϕ1(−τ)
(p−l)ϕ1(−τ)+lH

(ϕ3 − ϕ2)

−dm(t)ϕ3 + e−
∫ t
t−τ

dm(s)dsµ(t− τ)



.

Since f̂(t, ϕ) is continuous in (t, ϕ) ∈ R × Ω, and f̂(t, ϕ) is Lipschitz in ϕ on each

compact subset of Ω, it then follows that system (2.7) has a unique solution z(t, ϕ)

with z0 = ϕ on its maximal interval [0, σϕ) of existence.

Let ϕ = (ϕ1, ϕ2, ϕ3) ∈ Ω be given. If ϕ1(0) = 0, then f̂1(t, ϕ) ≥ 0. If ϕi = 0 for

some i = 2, 3, then f̂i(t, ϕ) ≥ 0. If ϕ1(0) = H, then f̂1(t, ϕ) ≤ 0. By [84, Theorem

5.2.1 and Remark 5.2.1], it follows that for any ϕ ∈ Ω, the unique solution z(t, ϕ) of

system (2.7) with u0 = ϕ satisfies zt(ϕ) ∈ Ω for all t ∈ [0, σϕ).

Since equation (2.5) has a globally attractive periodic solution K(t), it follows
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that z3(t, ϕ) = w(t) is bounded on [0, σϕ), that is, there exists B > 0 such that

w(t) ≤ B, ∀t ∈ [0, σϕ). In view of the second equation of system (2.7), we have

du3(t)

dt
≤ −dm(t)u3(t) + bβ(t− τ)B.

Hence, z2(t, ϕ) = u3(t) is also bounded on [0, σϕ). Then [29, Theorem 2.3.1] implies

that σϕ = ∞.

Let

G(t) := C([−τ, 0], [0, H])× [0, K(t)], t ≥ 0.

Then we have the following result for system (2.6).

Lemma 2.3.4. For any ϕ ∈ G(0), system (2.6) has a unique solution v(t, ϕ) with

v0 = ϕ, and vt(ϕ) ∈ G(t), ∀t ≥ 0.

Proof. For any ϕ ∈ G(0), define

f(t, ϕ) =




cβ(t)l(H−ϕ1(0))
(p−l)ϕ1(0)+lH

ϕ2 − (dh + ρ)ϕ1(0)

−dm(t)ϕ2 +
bβ(t−τ)pϕ1(−τ)
(p−l)ϕ1(−τ)+lH

(K(t)− ϕ2)


 .

Since f is continuous in (t, ϕ) ∈ R × G(0), and f is Lipschitz in ϕ on each compact

subset of G(0), it then follows that system (2.6) has a unique solution v(t, ϕ) with

v0 = ϕ on its maximal interval [0, σϕ) of existence.

Let ϕ = (ϕ1, ϕ2) ∈ G(0) be given. If ϕ1(0) = 0, then f1(t, ϕ) ≥ 0. If ϕ2 = 0, then

f2(t, ϕ) ≥ 0. If ϕ1(0) = H, then f1(t, ϕ) ≤ 0. By [84, Theorem 5.2.1 and Remark

5.2.1], it follows that the unique solution v(t, ϕ) of system (2.6) with v0 = ϕ satisfies

vt(ϕ) ∈ C([−τ, 0], [0, H])× R+.

It remains to prove that v2(t) ≤ K(t), ∀t ∈ [0, σϕ). Suppose this does not hold.
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Then there exists t0 ∈ [0, σϕ) and ǫ0 > 0 such that

v2(t0) = K(t0) and v2(t) > K(t), ∀t ∈ (t0, t0 + ǫ0).

Since

dv2(t0)

dt
= −dm(t0)v2(t0) = −dm(t0)K(t0) <

dK(t0)

dt
,

there exists ǫ1 ∈ (0, ǫ0) such that v2(t) ≤ K(t), ∀t ∈ (t0, t0+ ǫ1), which is a contradic-

tion. This proves that vt(ϕ) ∈ G(t), ∀t ∈ [0, σϕ). Clearly, vt(ϕ) is bounded on [0, σϕ),

and hence, [29, Theorem 2.3.1] implies that σϕ = ∞.

Note that the linearized system of (2.6) at (0,0) is

dv1(t)

dt
= −(dh + ρ)v1(t) + cβ(t)v2(t),

dv2(t)

dt
=
bβ(t− τ)pK(t)

lH
v1(t− τ)− dm(t)v2(t),

(2.8)

which is the same as system (2.3).

Let P be the Poincaré map of the linear system (2.8) on the space C([−τ, 0],R)×R,

and r(P ) be its spectral radius. Then we have the following threshold type result for

system (2.6).

Lemma 2.3.5. The following statements are valid:

(i) If r(P ) ≤ 1, then v∗(t) = (0, 0) is globally asymptotically stable for system (2.6)

in G(0).

(ii) If r(P ) > 1, then system (2.6) admits a unique positive ω-periodic solution

v̄(t) = (v̄1(t), v̄2(t)) which is globally asymptotically stable for system (2.6) in

G(0) \ {0}.
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Proof. Let S(t) be the solution maps of system (2.6), that is, S(t)ϕ = vt(ϕ), t ≥ 0,

where v(t, ϕ) is the unique solution of system (2.6) with v0 = ϕ ∈ G(0). It follows from

Lemma 2.3.4 that S(t) maps G(0) into G(t), and S := S(ω) : G(0) → G(ω) = G(0) is

the Poincaré map associated with system (2.6). By the continuity and differentiability

of solutions with respect to initial values, it follows that S is differentiable at zero and

the Frechét derivative DS(0) = P .

For any given ϕ, ψ ∈ G(0) with ϕ ≥ ψ, let v(t) = v(t, ϕ) and v̄(t) = v(t, ψ). Define

A(t) :=
bβ(t− τ)pv1(t− τ)

(p− l)v1(t− τ) + lH
, B(t) :=

bβ(t− τ)pv̄1(t− τ)

(p− l)v̄1(t− τ) + lH
.

Since v1(t − τ) = ϕ1(t − τ) and v̄1(t − τ) = ψ1(t − τ), ∀t ∈ [0, τ ], we have A(t) ≥

B(t), ∀t ∈ [0, τ ]. In view of v(0) = ϕ(0) ≥ ψ(0) = v̄(0), the comparison theorem

for cooperative ordinary differential systems implies that v(t) ≥ v̄(t), ∀t ∈ [0, τ ].

Here we have regarded A(t) and B(t) in system (2.6) as two given functions of t

on [0, τ ]. Repeating this procedure for t ∈ [τ, 2τ ], [2τ, 3τ ], . . . , it then follows that

v(t, ϕ) ≥ v(t, ψ), ∀t ∈ [0,∞). This implies that S(t) : G(0) → G(t) is monotone for

each t ≥ 0.

Next we show that the solution map S(t) is eventually strongly monotone. Let

ϕ > ψ and denote v(t, ϕ) = (ȳ1(t), ȳ2(t)), v(t, ψ) = (y1(t), y2(t)).

Claim 1. There exists t0 ∈ [0, τ ] such that ȳ2(t) > y2(t), ∀t ≥ t0.

We first prove that ȳ2(t0) > y2(t0) for some t0 ∈ [0, τ ]. Otherwise, we have

ȳ2(t) = y2(t), ∀t ∈ [0, τ ], and hence, dȳ2(t)
dt

= dy2(t)
dt

, ∀t ∈ (0, τ). Thus, we have

[
bβ(t− τ)pȳ1(t− τ)

(p− l)ȳ1(t− τ) + lH
− bβ(t− τ)py1(t− τ)

(p− l)y1(t− τ) + lH

]
[K(t)− y2(t)] = 0, ∀t ∈ [0, τ ]. (2.9)

Since ϕ > ψ and ϕ2 = ȳ2(0) = y2(0) = ψ2, ϕ1 > ψ1. Then there exists an open

interval (a, b) ⊂ [−τ, 0] such that ϕ1(θ) > ψ1(θ), ∀θ ∈ (a, b). It follows from equation
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(2.9) that y2(t) = K(t), ∀t ∈ (a+ τ, b+ τ), and hence,

dK(t)

dt
=
dy2(t)

dt
= −dm(t)K(t), ∀t ∈ (a+ τ, b+ τ),

which contradicts with the fact that

dK(t)

dt
= −dm(t)K(t) + e−

∫ t
t−τ

dm(s)dsµ(t− τ).

Let

g1(t, y) := −dm(t)y +
bβ(t− τ)py1(t− τ)

(p− l)y1(t− τ) + lH
[K(t)− y].

Since
dȳ2(t)

dt
= −dm(t)ȳ2(t) +

bβ(t− τ)pȳ1(t− τ)

(p− l)ȳ1(t− τ) + lH
[K(t)− ȳ2(t)]

≥ −dm(t)ȳ2(t) +
bβ(t− τ)py1(t− τ)

(p− l)y1(t− τ) + lH
[K(t)− ȳ2(t)]

= g1(t, ȳ2(t)),

we have

dȳ2(t)

dt
− g1(t, ȳ2(t)) ≥ 0 =

dy2(t)

dt
− g1(t, y2(t)), ∀t ≥ t0.

Since ȳ2(t0) > y2(t0), the comparison theorem for ODEs (see Theorem 1.3.1) implies

that ȳ2(t) > y2(t), ∀t ≥ t0.

Claim 2. ȳ1(t) > y1(t), ∀t > t0.

We first prove that for any ǫ > 0, there exists an open interval (c, d) ⊂ [t0, t0 + ǫ]

such that H > ȳ1(t), ∀t ∈ (c, d). Otherwise, there exists ǫ0 > 0 such that H =

ȳ1(t), ∀t ∈ (t0, t0 + ǫ0). It then follows from the first equation of system (2.6) that

0 = −(dh + ρ)H, which is a contradiction. Let

f1(t, y) :=
cβ(t)l[H − y]

(p− l)y + lH
y2(t)− (dh + ρ)y.
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Then we have
dȳ1(t)

dt
=
cβ(t)l[H − ȳ1(t)]

(p− l)ȳ1(t) + lH
ȳ2(t)− (dh + ρ)ȳ1(t)

>
cβ(t)l[H − ȳ1(t)]

(p− l)ȳ1(t) + lH
y2(t)− (dh + ρ)ȳ1(t)

= f1(t, ȳ1(t)), ∀t ∈ (c, d),

and hence,

dȳ1(t)

dt
− f1(t, ȳ1(t)) > 0 =

dy1(t)

dt
− f1(t, y1(t)), ∀t ∈ (c, d).

Since ȳ1(t0) ≥ y1(t0), it follows from 1.3.1 that ȳ1(t) > y1(t), ∀t > t0.

In view of Claims 1 and 2, we obtain

(ȳ1(t), ȳ2(t)) ≫ (y1(t), y2(t)), ∀t > t0.

Since t0 ∈ [0, τ ], it follows that

(ȳ1t, ȳ2(t)) ≫ (y1t, y2(t)), ∀t > 2τ,

that is, vt(ϕ) ≫ vt(ψ), ∀t > 2τ. This shows that S(t) : G(0) → G(t) is strongly

monotone for any t > 2τ .

For any given ϕ ∈ G(0), ϕ ≥ 0, 0 ≤ λ ≤ 1, let v(t, ϕ) and v(t, λϕ) be the solutions

of (2.6) satisfying v0 = ϕ and v0 = λϕ, respectively. Denote x(t) = λv(t, ϕ) and

z(t) = v(t, λϕ). Let f(t, ϕ) be defined as in the proof of Lemma 2.3.4. Note that for

any ψ ∈ G(t) and λ ∈ [0, 1], we have f(t, λψ) ≥ λf(t, ψ). Then

dx(t)

dt
= λ

dv(t, ϕ)

dt
= λf(t, vt(ϕ)) ≤ f(t, λvt(ϕ)) = f(t, xt).

Clearly, dz(t)
dt

= f(t, zt) and x0 = λv0(ϕ) = λϕ = z0. By the comparison theorem
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for FDEs (see [84, Theorem 5.1.1]), we have x(t) ≤ z(t), ∀t ≥ 0, that is, λv(t, ϕ) ≤

v(t, λϕ), ∀t ≥ 0, and hence, λvt(ϕ) ≤ vt(λϕ), ∀t ≥ τ. This shows that the solution

map S(t) : G(0) → G(t) is subhomogeneous. Next, we prove that S(t) : G(0) → G(t)

is strictly subhomogeneous for any t > τ . For any given ϕ ∈ G(0) with ϕ ≫ 0 and

λ ∈ (0, 1), let

f2(t, r) :=
cβ(t)l[H − r]

(p− l)r + lH
z2(t)− (dh + ρ)r,

g2(t, r) :=
cβ(t)l[H − r]

(p− l)r + lH
.

Since g2(t, r) is strictly decreasing in r and v1(t, ϕ) > λv1(t, ϕ), λv2(t, ϕ) ≤ v2(t, λϕ) =

z2(t), ∀λ ∈ (0, 1), ∀t > 0, it follows that

dx1(t)

dt
< g2(t, x1(t))z2(t)− (dh + ρ)x1(t) = f2(t, x1(t)),

and hence,

dx1(t)

dt
− f2(t, x1(t)) < 0 =

dz1(t)

dt
− f2(t, z1(t)), ∀t > 0.

Note that x1(0) = λϕ1(0), z1(0) = λϕ1(0). By Theorem 1.3.1, we then obtain x1(t) <

z1(t), ∀t > 0. This implies that vt(λϕ) > λvt(ϕ), ∀t > τ .

Now we fix an integer n0 such that n0ω > 2τ . It then follows that Sn0 =

S(n0ω) : G(0) → G(0) is strongly monotone and strictly subhomogeneous. Note

that DSn0(0) = DS(n0ω)(0) = P (n0ω) = P n0(ω) = P n0 , and r(P n0) = (r(P ))n0 . By

Theorem 1.4.1 and Lemma 1.3.3, as applied to Sn0 , we have the following threshold

type result:

(a) If r(P ) ≤ 1, then v∗(t) = (0, 0) is globally asymptotically stable for system (2.6)

in G(0).

(b) If r(P ) > 1, then there exists a unique positive n0ω-periodic solution v̄(t) =
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(v̄1(t), v̄2(t)), which is globally asymptotically stable for system (2.6) in G(0) \

{0}.

It remains to prove that v̄(t) is also an ω-periodic solution of system (2.6). Let v̄(t) =

v(t, ψ). By the properties of periodic semiflows, we have Sn0(S(ψ)) = S(Sn0(ψ)) =

S(ψ), which implies that S(ψ) is also a positive fixed point of Sn0 . By the uniqueness

of the positive fixed point of Sn0 , it follows that S(ψ) = ψ. So v̄(t) is an ω-periodic

solution of system (2.6).

Next, we use the theory of chain transitive sets (see 1.1) to lift the threshold type

result for system (2.6) to system (2.7).

Theorem 2.3.6. The following statements are valid:

(i) If r(P ) ≤ 1, then the periodic solution (0, 0, K(t)) is globally asymptotically

stable for system (2.7) in Ω.

(ii) If r(P ) > 1, then system (2.7) admits a unique positive ω-periodic solution

(v̄1(t), v̄2(t), K(t)), which is globally asymptotically stable for system (2.7) in

Ω \ {0} × {0} × R+.

Proof. Let P̃ (t) be the solution maps of system (2.7), that is, P̃ (t)ϕ = zt(ϕ), t ≥ 0,

where z(t, ϕ) is the unique solution of system (2.7) with z0 = ϕ ∈ Ω. Then P̃ := P̃ (ω)

is the Poincaré map of system (2.7). Then {P̃ n}n≥0 defines a discrete-time dynamical

system on Ω. For any given ϕ̄ ∈ Ω, let z̄(t) = (u1(t), u3(t), w(t)) be the unique

solution of system (2.7) with z̄0 = ϕ̄ and let ω(ϕ̄) be the omega limit set of the orbit

{P̃ n(ϕ̄)}n≥0 for the discrete-time semiflow P̃ n.

Since equation (2.5) has a unique positive ω-periodic solution K(t), which is glob-

ally attractive, we have limt→∞(w(t)−K(t)) = 0, and hence, limn→∞(P̃ n(ϕ̄))3 = K(0).

Thus, there exists a subset ω̃ of C([−τ, 0], [0, H])×R+ such that ω(ϕ̄) = ω̃×{K(0)}.
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For any φ = (φ1, φ2, φ3) ∈ ω(ϕ̄), there exists a sequence nk → ∞ such that

P̃ nk(ϕ̄) → φ, as k → ∞. Since u1(nkω) ≤ H and u3(nkω) ≤ w(nkω), letting nk → ∞,

we obtain 0 ≤ φ1 ≤ H, 0 ≤ φ2 ≤ K(0). It then follows that ω̃ ⊆ C([−τ, 0], [0, H]) ×

[0, K(0)] = G(0). It is easy to see that

P̃ n|ω(ϕ̄)(φ1, φ2, K(0)) = Sn|ω̃(φ1, φ2)× {K(0)}, ∀(φ1, φ2) ∈ ω̃, n ≥ 0.

By Lemma 1.1.2, ω(ϕ̄) is an internally chain transitive set for P̃ n on Ω. It then easily

follows that ω̃ is an internally chain transitive set for Sn on G(0).

In the case where r(P ) ≤ 1, it follows from Lemma 2.3.5 that (0, 0) is globally

asymptotically stable for Sn in G(0). By Theorem 1.1.3, we have ω̃ = {(0, 0)}, and

hence, ω(ϕ̄) = {(0, 0, K(0))}. Then P̃ n(0, 0, K(0)) → (0, 0, K(0)) as n→ ∞. Clearly,

(0, 0, K(0)) is a fixed point of P̃ . This implies that statement (i) is valid.

In the case where r(P ) > 1, by Lemma 2.3.5 (ii) and Theorem 1.1.4, it follows

that either ω̃ = {(0, 0)} or ω̃ = {(v̄10, v̄2(0))}, where v̄10(θ) = v̄1(θ), ∀θ ∈ [−τ, 0]. We

further claim that ω̃ 6= {(0, 0)}. Suppose, by contradiction, that ω̃ = {(0, 0)}, then

we have ω(ϕ̄) = {(0, 0, K(0))}. Thus, limt→∞(u1(t), u3(t)) = (0, 0), and for any ǫ > 0,

there exists T = T (ǫ) > 0 such that |w(t) − K(t)| < ǫ for all t ≥ T . Then for any

t ≥ T (ǫ), we have

du1(t)

dt
≥ cβ(t)l(H − u1(t))

(p− l)u1(t) + lH
u3(t)− (dh + ρ)u1(t),

du3(t)

dt
≥ −dm(t)u3(t) +

bβ(t− τ)pu1(t− τ)

(p− l)u1(t− τ) + lH
(K(t)− ǫ− u3(t)).

(2.10)

Let rǫ be the spectral radius of the Poincaré map associated with the following periodic
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linear system:

du1(t)

dt
= −(dh + ρ)u1(t) + cβ(t)u3(t),

du3(t)

dt
=
bβ(t− τ)pu1(t− τ)

lH
(K(t)− ǫ)− dm(t)u3(t).

(2.11)

Since limǫ→0+ rǫ = r(P ) > 1, we can fix ǫ small enough such that rǫ > 1. By similar

result to Lemma 2.3.5 (ii), it follows that the Poincaré map of the following system

du1(t)

dt
=
cβ(t)l(H − u1(t))

(p− l)u1(t) + lH
u3(t)− (dh + ρ)u1(t),

du3(t)

dt
= −dm(t)u3(t) +

bβ(t− τ)pu1(t− τ)

(p− l)u1(t− τ) + lH
(K(t)− ǫ− u3(t)).

(2.12)

admits a globally asymptotically stable fixed point (ū10, ū3(0)) ≫ 0. In the case where

ϕ̄ ∈ Ω \ {0} × {0} × R+, we have (u1(t), u3(t)) > 0 in R
2 for all t > 0. In view of

(3.17) and (3.19), the comparison principle implies that

lim inf
n→∞

(u1nω(ϕ), u3(nω, ϕ)) ≥ (ū10, ū3(0)) ≫ 0,

which contradicts limt→∞(u1(t), u3(t)) = (0, 0). It then follows that ω̃ = {(v̄10,v̄2(0))},

and hence, ω(ϕ̄) = {(v̄10, v̄2(0), K(0))}. This implies that limt→∞(z̄(t)− (v̄1(t), v̄2(t),

K(t))) = (0, 0, 0).

It is easy to see that u2(t) = e
∫ t+τ
t

dm(s)ds(w(t + τ) − u3(t + τ)). Then in the case

where r(P ) ≤ 1, we have limt→∞(u2(t)−S∗
m(t)) = 0, and in the case where r(P ) > 1,

we have limt→∞(u2(t)− û2(t)) = 0, where

û2(t) := e
∫ t+τ
t

dm(s)ds(K(t+ τ)− v̄2(t+ τ)) > 0.

As a straightforward consequence of Theorem 2.3.6, we have the following result for
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system (2.1).

Theorem 2.3.7. The following statements are valid for system (2.1):

(i) If r(P ) ≤ 1, then limt→∞ ‖(u(t, ϕ)− (0, S∗
m(t), 0))‖ = 0, ∀ϕ ∈ W ;

(ii) If r(P ) > 1, then limt→∞ ‖(u(t, ϕ) − (v̄1(t), û2(t), v̄2(t)))‖ = 0, ∀ϕ ∈ W \ {0} ×

C([−τ, 0],R+)× {0}.

To describe the global dynamics of system (2.1) in terms of R0, we need the

following result.

Lemma 2.3.8. r(P ) = r(P̂ ).

Proof. For any ψ ∈ Y := C([−τ, 0],R) × R, let v(t, s, ψ) = (v(1)(t, s, ψ),v(2)(t,s,ψ))

be the unique solution of linear system (2.8) with vs(s, ψ) = ψ, where vt(s, ψ) =

(v
(1)
t (s, ψ), v(2)(t, s, ψ)), ∀t ≥ s. For any ϕ ∈ X := C([−τ, 0],R2), let u(t, s, ϕ) be

the unique solution of linear system (2.8) with us(s, ϕ) = ϕ, where ut(s, ϕ)(θ) =

u(t+θ, s, ϕ), ∀θ ∈ [−τ, 0]. Let U(t, s) and Û(t, s) be the evolution operators of system

(2.8) on Y and X, respectively, that is,

U(t, s)ψ = vt(s, ψ), ∀ψ ∈ Y, ∀t ≥ s,

Û(t, s)ϕ = ut(s, ϕ), ∀ϕ ∈ X, ∀t ≥ s.

By the uniqueness of solutions, we have

v(t, s, ψ) = u(t, s, ϕ), ∀t ≥ s,

provided that ψ = (ψ1, ψ2) ∈ Y and ϕ = (ϕ1, ϕ2) ∈ X satisfy ψ1 ≡ ϕ1 and ψ2 = ϕ2(0).

Recall that the exponential growth bound of an evolution family V (t, s) (t ≥ s) on a
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Banach space is defined as

ω(V ) = inf{ω̃ : ∃M ≥ 1 : ∀s ∈ R, t ≥ 0 : ‖V (t+ s, s)‖ ≤Meω̃t}.

Let ω(U) and ω(Û) be the exponential growth bounds of U(t, s) and Û(t, s), respec-

tively. Then we have the following two claims.

Claim 1. For any given δ > 0, ω(U) ≤ ω(Û) + δ.

Indeed, by the definition of ω(Û), there exists Mδ > 1 such that

‖Û(t+ s, s)ϕ‖X ≤Mδe
(ω(Û)+δ)t‖ϕ‖X , ∀t ≥ 0, ∀s ∈ R, ∀ϕ ∈ X.

This implies that

‖u(t+ s, s, ϕ)‖R2 ≤Mδe
(ω(Û)+δ)t‖ϕ‖X , ∀t ≥ 0, ∀s ∈ R, ∀ϕ ∈ X.

For any ψ = (ψ1, ψ2) ∈ Y , let ψ̃ = (ψ1, ψ̃2), where ψ̃2(θ) = ψ2 ∈ R, ∀θ ∈ [−τ, 0].

Clearly, ψ̃ ∈ X. Then v(t, s, ψ) = u(t, s, ψ̃), ∀t ≥ s, s ∈ R. Since ‖ψ̃‖X = ‖ψ‖Y , we

have

‖v(t+ s, s, ψ)‖R2 = ‖u(t+ s, s, ψ̃)‖R2

≤Mδe
(ω(Û)+δ)t‖ψ̃‖X

=Mδe
(ω(Û)+δ)t‖ψ‖Y , ∀t ≥ 0, ∀s ∈ R.

It follows that there exists M̃δ ≥Mδ such that

‖U(t+ s, s)ψ‖Y = ‖vt+s(s, ψ)‖Y ≤ M̃δe
(ω(Û)+δ)t‖ψ‖Y , ∀t ≥ 0, ∀s ∈ R, ∀ψ ∈ Y,

and hence, ‖U(t + s, s)‖ ≤ M̃δe
(ω(Û)+δ)t, ∀t ≥ 0. By the definition of ω(U), we then

obtain ω(U) ≤ ω(Û) + δ.
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Claim 2. For any given δ > 0, ω(Û) ≤ ω(U) + δ.

Indeed, by the definition of ω(U), there exists Kδ > 1 such that

‖U(t+ s, s)ψ‖Y ≤ Kδe
(ω(U)+δ)t‖ψ‖Y , ∀t ≥ 0, ∀s ∈ R, ∀ψ ∈ Y.

It then follows that

‖v(t+ s, s, ψ)‖R2 ≤ Kδe
(ω(U)+δ)t‖ψ‖Y , ∀t ≥ 0, ∀s ∈ R, ∀ψ ∈ Y.

For any ϕ = (ϕ1, ϕ2) ∈ X, let ϕ̂ = (ϕ1, ϕ2(0)). Clearly, ϕ̂ ∈ Y . Then u(t, s, ϕ) =

v(t, s, ϕ̂), ∀t ≥ s, s ∈ R. Since ‖ϕ̂‖Y ≤ ‖ϕ‖X , we have

‖u(t+ s, s, ϕ)‖R2 = ‖v(t+ s, s, ϕ̂)‖R2

≤ Kδe
(ω(U)+δ)t‖ϕ̂‖Y

≤ Kδe
(ω(U)+δ)t‖ϕ‖X , ∀t ≥ 0, ∀s ∈ R.

It follows that there exists K̃δ ≥ Kδ such that

‖Û(t+ s, s)ϕ‖X = ‖ut+s(s, ϕ)‖X ≤ K̃δe
(ω(U)+δ)t‖ϕ‖X , ∀t ≥ 0, ∀s ∈ R, ∀ϕ ∈ X,

and hence, ‖Û(t+ s, s)‖ ≤ K̃δe
(ω(U)+δ)t, ∀t ≥ 0, s ∈ R. By the definition of ω(Û), we

then have ω(Û) ≤ ω(U) + δ.

In Claims 1 and 2 above, letting δ → 0+, we obtain that ω(U) ≤ ω(Û) and

ω(Û) ≤ ω(U), and hence, ω(U) = ω(Û). Note that P̂ = Û(ω, 0) and P = U(ω, 0). By

[88, Proposition A.2], we have ω(U) = ln r(U(ω,0))
ω

, and ω(Û) = ln r(Û((ω,0))
ω

. This implies

that r(P ) = r(P̂ ).

Combining Lemmas 2.3.1 and 2.3.8 and Theorem 2.3.7, we have the following
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threshold type result on the global dynamics of system (2.1).

Theorem 2.3.9. The following statements are valid for system (2.1):

(i) If R0 ≤ 1, then the disease-free periodic solution (0, S∗
m(t), 0) is globally asymp-

totically stable for system (2.1) in W .

(ii) If R0 > 1, then system (2.1) admits a unique positive ω-periodic solution (v̄1(t),

û2(t), v̄2(t)), which is globally asymptotically stable for system (2.1) in W \{0}×

C([−τ, 0],R+)× {0}.

2.4 A case study

In this section, we first study the malaria transmission case in Maputo province,

Mozambique. Then we verify our obtained threshold type result in terms of R0.

We also study how the vector-bias effect and the EIP length influence the disease

transmission. The numerical simulations are done in Matlab by using dde23 and

CFTOOL.

Mozambique is a sub-Saharan African country. Malaria is the primary cause of

mortality in Mozambique, resulting in an estimated 44000 − 67000 malaria-specific

deaths each year for all age groups [60]. The sub-tropical climate of Maputo Province

is favorable for malaria transmission. The summer season lasts from October to

March, while the winter season goes from April to September. To implement simula-

tions on the seasonal transmission pattern in Maputo Province, we need to evaluate

the values of all parameters in our model.
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2.4.1 Parameter estimation

According to Mozambique Population Census in September 2007 (see http://www.geo

hive.com/cntry/mozambique.aspx), Maputo Province has a population of 1205709,

which can be chosen as the value of H. According to the CIA WorldFact Book (see

https://www.cia.gov/library/publications/the-world-factbook/fields/2102.html), the

life expectancy of Mozambique is 52.94 years. Using this number we estimate the

human natural death rate as dh = 1
52.94×12

= 0.00157 Month−1. The values of p and l

may vary from 0 to 1 and p ≥ l [17, 34, 39]. The estimation of parameters is listed in

Table 2.2.

Table 2.2: Parameter values

Parameter Value Dimension Reference
H 1205709 dimensionless see text
dh 0.00157 Month−1 see text
ρ 0.0187 Month−1 [18]
c 0.011 dimensionless [18]
b 0.2 dimensionless [18]
τ [10/30.4, 30/30.4] Month [69]
p (0, 1) dimensionless [17]
l (0, 1) dimensionless [17]
β(t) to be evaluated Month−1 see text
µ(t) to be evaluated Month−1 see text
dm(t) to be evaluated Month−1 see text

The results in [107] show that malaria incidence is strongly and positively cor-

related with temperature of Maputo Province. Thus, we can evaluate the periodic

parameters by using the monthly mean temperatures of Maputo Province from 1990

to 2012 (obtained from Climate Change Knowledge Portal website: http: // sdwebx.

worldbank. org/ climateportal), as shown in Table 2.3.

Table 2.3: Monthly mean temperatures for Maputo Province (in ◦C)

Month Jul Aug Sep Oct Nov Dec
Temperature 19.19 20.77 22.23 23.66 24.57 26.08
Month Jan Feb Mar Apr May June
Temperature 26.75 26.65 26.22 24.61 21.94 19.77
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By appealing to the method of estimating the biting rate in [46], the temperature-

dependent contact rate per unit time in Maputo can be expressed as

β̄(C) =
30.4 Month−1

107.204− 13.3523C + 0.677509C2 − 0.0159732C3 + 0.000144876C4
,

where C is the temperature in ◦C.

The biting rate of mosquitoes in Maputo Province can then be fitted by

β(t) = 6.983− 1.993 cos(πt/6)− 0.4247 cos(πt/3)− 0.128 cos(πt/2)

− 0.04095 cos(2πt/3) + 0.0005486 cos(5πt/6)− 1.459 sin(πt/6)

− 0.007642 sin(πt/3)− 0.0709 sin(πt/2) + 0.05452 sin(2πt/3)

− 0.06235 sin(5πt/6) Month−1.

The mortality rate for adult female mosquitoes can be evaluated as

d̄m(C̄) = 3.04 + 29.564 exp
(
− C̄ − 278◦K

2.7035

)
Month−1,

(see [80, 87]), where C̄ is the temperature in degrees Kelvin (K) (The temperature

in K equals to the temperature in ◦C plus 273.15) in the range [278, 303]. Thus,

the mortality rate for adult female mosquitoes dm(t) in Maputo Province can be

approximated by

dm(t) = 3.086 + 0.04788 cos(πt/6) + 0.01942 cos(πt/3) + 0.007133 cos(πt/2)

+ 0.0007665 cos(2πt/3)− 0.001459 cos(5πt/6) + 0.02655 sin(πt/6)

+ 0.01819 sin(πt/3) + 0.01135 sin(πt/2) + 0.005687 sin(2πt/3)

+ 0.003198 sin(5πt/6) Month−1.

Motivated by [46], we suppose that the recruitment rate of mosquitoes from larvae
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is proportional to the biting rate, i.e., µ(t) = k × β(t) Mosquitoes/Month, where k

is a positive constant number. We estimate k = 5 × 1205709 to keep the mosquito

population at a relatively reasonable level compared with the human population.

2.4.2 Model validation

In this subsection, we simulate the malaria transmission case in Maputo Province

based on the data from the second picture of Figure 11 in [83]. From that picture

we can observe that the number of monthly malaria cases exhibit an obvious seasonal

fluctuation which is consistent with the seasonal variation of temperature in Maputo

Province. We can also see that the reported cases decrease dramatically in 2007 since

after a series of initiatives in malaria prevention and treatment. However, the cases

rise again in 2011 which may be due to the emergence and spread of drug resistance.

The monthly new cases correspond to the term cβ(t)l(H−Ih(t))Im(t)
(p−l)Ih(t)+lH

in the first equation

of system (2.1). We choose l/p = 1
4
. Since the period of our system is ω = 12 months,

we use the truncation of Fourier series with period 12 to fit the monthly new cases.

The fitted results for the endemic periods from July 2007 to June 2009 and from July

2010 to December 2012 are shown by the dotted green curves in Figures 2.1 and 2.2,

respectively.

For the endemic period from July 2007 to June 2009, to depict the success of

prevention and treatment, we choose the biting rate as (1 − α)β(t), where α = 20%

is the efficiency in reduction of the biting rate, which may be due to the use of

insecticide-treated bed nets. We set the probability of successful transmission from

an infectious mosquito to a susceptible human as 0.75c = 0.75 × 0.011 and that

of successful transmission from an infectious human to a susceptible mosquito as

0.8b = 0.8× 0.2 to estimate the effect of some antimalarial drugs. The EIP is chosen

as 15/30.4 month. The initial functions are chosen as the constant functions Ih(θ) =
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337598, Sm(θ) = 2712343, Im(0) = 2000 for all θ ∈ [−τ, 0]. The simulation result is

shown by the blue curve in Figure 2.1. For the endemic period from July 2010 to

December 2012, to simulate the failure of treatment due to drug resistance, we set

the probability of successful transmission from an infectious mosquito to a susceptible

human as c = 0.011 and that of successful transmission from an infectious human to

a susceptible mosquito as b = 0.2. The EIP is chosen as 15/30.4 month. The initial

functions are Ih(θ) = 361713, Sm(θ) = 2712343, Im(0) = 2000 for all θ ∈ [−τ, 0]. The

simulation result until the year 2020 is shown by the blue curve in Figure 2.2.
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Figure 2.1: The simulation result for the number of new malaria cases from July 2007
to June 2009. The red stars represent data from [83]. The dotted green curve is the
fitted result by using CFTOOL. The blue curve is the simulation result of our model.

2.4.3 Long term behaviour

By the ω-periodicity of K(t, s) in t, it easily follows that

[Lφ](t) =

∫ ∞

0

K(t, s)φ(t− s)ds =

∫ ω

0

G(t, s)φ(t− s)ds, ∀t ∈ R, φ ∈ Cω,

where G(t, s) =
∑∞

k=0K(t, s + kω). Consequently, we can use the numerical method

in [70] to calculate R0. Under the same set of parameter values as that of Figure
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Figure 2.2: The simulation result of new malaria cases from July 2010 to December
2020. The red stars represent data from [83]. The dotted green curve is the fitted
result by using CFTOOL. The blue curve is the simulation result of our model.

2.4.2, we get R0 = 2.6854. In this case, a positive periodic solution with period

12 is observed. The periodic fluctuations of the infectious compartments are shown

in Figure 2.3. By employing some measures to fight against malaria such as using

insecticide-treated nets or clearance of mosquito breeding sites, if we can decrease

the biting rate to 0.7β(t), and increase the mosquito mortality rate and the EIP to

1.6dm(t) and 21/30.4 months, respectively, then R0 = 0.5449. In this case, we observe

that both the infectious human population and the infectious mosquito population

tend to 0, which means that the disease dies out eventually (see Figure 2.4). These

numerical simulation results consist with our analytic results in the previous section.

The impacts of the length of the EIP and the vector-bias level on malaria trans-

mission are shown in Figures 2.5 and 2.6, respectively. Both figures are obtained in

the case of R0 > 1. As can be seen from Figure 2.5, more humans will be infected

if the EIP is shorter. This is consistent with our intuition since shortening the EIP

may lead to greater population of infectious mosquitoes. To explore the vector bias
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Figure 2.3: Long term behaviour of the infectious compartments where R0 = 2.6854.
(a) Time series of Ih. (b) Time series of Im.
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Figure 2.4: Long term behaviour of the infectious compartments where R0 = 0.5449.
(a) Time series of Ih. (b) Time series of Im.
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effect, we simulate the number of infectious humans for two different EIP values:

τ = 15/30.4 and τ = 21/30.4. For each value of τ , we choose three different values of

l/p. From Figure 2.6, we see that the ignorance of the vector-bias effect (i.e., l/p = 1)

will eventually overestimate and underestimate the number of infectious humans in

the case where τ = 15/30.4 and τ = 21/30.4, respectively.
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Figure 2.5: The effect of the Extrinsic Incubation Period.

2.5 Discussion

In this chapter, we have proposed a malaria transmission model including three fac-

tors: seasonality, the EIP and the vector-bias effect. We incorporated seasonality into

the model by assuming that the parameters related to mosquitoes are periodic func-

tions, and employed constant time delay to depict EIP. To investigate the vector-bias

effect, we introduced two parameters p and l, that is, the probabilities that a mosquito

arrives at a human at random and picks the human if he is infectious and susceptible,

respectively. Indeed, letting q := l/p, we can write the model system as the following
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Figure 2.6: The vector-bias effect. (a) τ = 15/30.4; (b) τ = 21/30.4.

one:

dIh(t)

dt
=

cβ(t)q(H − Ih(t))

(1− q)Ih(t) + qH
Im(t)− (dh + ρ)Ih(t),

dSm(t)

dt
= µ(t)− bβ(t)Ih(t)

(1− q)Ih(t) + qH
Sm(t)− dm(t)Sm(t),

dIm(t)

dt
= −dm(t)Im(t) + e−

∫ t
t−τ

dm(s)ds bβ(t− τ)Ih(t− τ)Sm(t− τ)

(1− q)Ih(t− τ) + qH
,

where q may be interpreted as the relative attractivity of susceptible host versus

infectious one. By the definition of the operator L, it easily follows that R0 depends

on q rather than the values of p and l. Using the theory of R0 recently developed in

[110], we have successfully obtained R0 for our model. By appealing to the theory of

monotone and subhomogeneous systems and the theory of chain transitive sets, we

have obtained a threshold type result on the global dynamics of the model system in

terms of R0, that is, the disease will die out if R0 < 1 and will eventually stabilize at

a positive periodic state if R0 > 1.

We have evaluated all parameters by using some published data and simulated the

malaria transmission case in Maputo Province, Mozambique. The simulated curve and

the real-data-fitted curve match well. Our simulation result shows that malaria will
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persist and exhibit seasonal fluctuation in the next few years if no intervention is taken.

By employing the algorithm in [70], we numerically calculated the basic reproduction

ratio R0. The numerical simulation results in Figures 2.3 and 2.4 about long term

behaviours of the infectious compartments have verified the obtained analytic result.

We have explored the influences of the length of the EIP and the vector-bias effect

on the transmission of malaria. We found that a shorter length of the EIP is related

to a higher number of the infectious humans. Thus, prolonging the length of the EIP

is helpful for the control of the disease. In reality, it is not easy to directly extend the

EIP. Possibly we may develop some drugs with such an effect that once a mosquito

bites a malaria-infected patient who takes the drugs, then the EIP of this mosquito

will be prolonged, that is, the patients who take the drugs serve as a vector to let the

drugs make effect on mosquitoes.

The EIP is strongly temperature sensitive, taking from about 10 days to over 30

days. The higher the temperature, the shorter the EIP [50, 69]. Hence, the EIP delay

in our model may be modified to a temperature-dependent delay, while this would

increase the difficulty of mathematical analysis. We will solve this interesting problem

in the next chapter.



Chapter 3

A malaria transmission model with

temperature-dependent incubation

period

3.1 Introduction

Malaria is the most prevalent human vector-borne disease, with an estimated 214

million malaria cases and about 438 thousand deaths worldwide in 2015 [98]. Both the

mosquito life cycle and the parasite development are strongly influenced by seasonally

varying temperature. Understanding the role of temperature in malaria transmission

is of particular importance in light of climate change [57]. A number of malaria models

have been developed to study the climate effects on malaria transmission (see, e.g.,

[21, 46, 57, 95, 96] and the references therein). Malaria parasites manipulate a host

to be more attractive to mosquitoes via the chemical substances [39]. Kingsolver [36]

proposed the first malaria model to account for the greater attractiveness of infectious

humans to mosquitoes. Chamchod and Britton [17] modeled such vector-bias effect in
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terms of the different probabilities that a mosquito arrives at a human at random and

picks the human if he is infectious or susceptible. Recently, the vector-bias effect has

also been incorporated into some climate-based malaria models(see, e.g., [95, 96]).

In Chapter 2, we developed a periodic vector-bias malaria model with incuba-

tion period and established the global dynamics in terms of the basic reproduction

ratio. We remarked that the constant delay in the model may be modified to a

time-dependent delay since the EIP is highly sensitive to temperature. The aim of

the current chapter is to solve this problem. We develop a delay differential equa-

tions model of malaria transmission in which the delay is periodic in time. To our

knowledge, this is the first mosquito-borne disease model that takes into account the

time-dependent delay. Several population models with time-dependent delays have

been developed (see, e.g., [10, 54, 55, 75, 101]), however, little mathematical analy-

sis is carried out to understand the asymptotic behavior of these models. Recently,

Lou and Zhao [49] studied the global dynamics of a host-macroparasite model with

seasonal developmental durations by introducing a periodic semiflow on a suitably

chosen phase space. We will use the theoretical approach developed in [49] to analyze

our model.

The rest of this chapter is organized as follows. In the next section, we give

the underlying assumptions and formulate the model. In the following section, we

establish the threshold dynamics of the model in terms of the basic reproduction

ratio. In section 3.4, we carry out a case study for Maputo Province, Mozambique. A

brief discussion concludes the chapter.
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3.2 The model

The purpose of this section is to formulate a mathematical model of malaria trans-

mission that incorporates a temperature-dependent delay. The model with a constant

EIP is governed by the following system of delay differential equations:

dIh(t)

dt
=

cβ(t)l(H − Ih(t))

pIh(t) + l(H − Ih(t))
Im(t)− (dh + ρ)Ih(t),

dSm(t)

dt
= µ(t)− bβ(t)pIh(t)

pIh(t) + l(H − Ih(t))
Sm(t)− dm(t)Sm(t), (3.1)

dIm(t)

dt
= −dm(t)Im(t) + e−

∫ t
t−τ

dm(s)ds bβ(t− τ)pIh(t− τ)Sm(t− τ)

pIh(t− τ) + l(H − Ih(t− τ))
.

We refer the readers to Chapter 2 of this thesis for more details about the derivation

of model (3.1). To introduce the temperature-dependent incubation period, we use

the arguments similar to those in [62, 68]. We consider the exposed compartment

where mosquitoes are infected but not infectious yet. Let Em(t) be the number of

the exposed mosquitoes at time t, and M(t) the number of newly occured infectious

mosquitoes per unit time at time t. Then we have the following system:

dIh(t)

dt
=

cβ(t)l(H − Ih(t))

pIh(t) + l(H − Ih(t))
Im(t)− (dh + ρ)Ih(t),

dSm(t)

dt
=µ(t)− B(t, Ih(t), Sm(t))− dm(t)Sm(t),

dEm(t)

dt
=B(t, Ih(t), Sm(t))−M(t)− dm(t)Em(t),

dIm(t)

dt
=M(t)− dm(t)Im(t),

(3.2)

where B(t, Ih(t), Sm(t)) =
bβ(t)pIh(t)Sm(t)
pIh(t)+l(H−Ih(t))

. Let q be the development level of infection

such that q increases at a temperature-dependent rate γ(T (t)) = γ(t), q = qE = 0

at the transition from Sm to Em, and q = qI at the transition from Em to Im.

The variable q describes how complete the parasite developmental stages are in the
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mosquito (in other words, how complete the latency stage is). Let ρ(q, t) be the

density of mosquitoes with development level q at time t. Then M(t) = γ(t)ρ(qI , t).

Let J(q, t) be the flux, in the direction of increasing q, of mosquitoes with infection

development level q at time t. Then we have the following equation (see, e.g., [38])

∂ρ

∂t
= −∂J

∂q
− dm(t)ρ.

Since J(q, t) = γ(t)ρ(q, t), we have

∂ρ(q, t)

∂t
= − ∂

∂q
[γ(t)ρ(q, t)]− dm(t)ρ(q, t). (3.3)

For the Em state, system (3.3) has the boundary condition

ρ(qE, t) =
B(t, Ih(t), Sm(t))

γ(t)
.

To solve system (3.3) with this boundary condition, we introduce a new variable

η = h(t) := qE +

∫ t

0

γ(s)ds.

Let h−1(η) be the inverse function of h(t), and define

ρ̂(q, η) = ρ(q, h−1(η)), d̂m(η) = dm(h
−1(η)), γ̂(η) = γ(h−1(η)).

In view of (3.3), we then have

∂ρ̂(q, η)

∂η
= −∂ρ̂(q, η)

∂q
− d̂m(η)

γ̂(η)
ρ̂(q, η). (3.4)

This equation is identical in form to the standard von Foerster equation (see [61]).
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Let V (s) = ρ̂(s+ q − η, s). It follows from (3.4) that

dV (s)

ds
= − d̂m(s)

γ̂(s)
V (s).

Since η − (q − qE) ≤ η, we have

V (η) = V (η − (q − qE))e
−

∫ η

η−(q−qE)
d̂m(s)
γ̂(s)

ds
,

and hence,

ρ̂(q, η) = ρ̂(qE, η − q + qE)e
−

∫ η
η−q+qE

d̂m(s)
γ̂(s)

ds
.

Define τ(q, t) to be the time taken to grow from infection development level qE to

level q by a mosquito who arrives at infection development level q at time t. Since

dq

dt
= γ(t), it follows that

q − qE =

∫ t

t−τ(q,t)

γ(s)ds, (3.5)

and hence,

h(t− τ(q, t)) = h(t)−
∫ t

t−τ(q,t)

γ(s)ds = h(t)− (q − qE).

By a change of variable s = h(ξ), we then see that

∫ η

η−q+qE

d̂m(s)

γ̂(s)
ds =

∫ t

t−τ(q,t)

dm(ξ)dξ.
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It follows that

ρ(q, t) =ρ̂(q, h(t))

=ρ(qE, t− τ(q, t))e−
∫ t
t−τ(q,t) dm(ξ)dξ

=
B(t− τ(q, t), Ih(t− τ(q, t)), Sm(t− τ(q, t)))

γ(t− τ(q, t))
e−

∫ t
t−τ(q,t) dm(ξ)dξ.

Define τ(t) := τ(qI , t). We then obtain

γ(t)ρ(qI , t) = B(t− τ(t), Ih(t− τ(t)), Sm(t− τ(t)))
γ(t)

γ(t− τ(t))
e−

∫ t
t−τ(t) dm(ξ)dξ.

Letting q = qI in (3.5), we have

qI − qE =

∫ t

t−τ(t)

γ(s)ds (3.6)

Taking the derivative with respect to t on both sides of (3.6), we obtain

1− τ ′(t) =
γ(t)

γ(t− τ(t))
.

Thus, there holds 1 − τ ′(t) > 0. In virtue of (3.6), it easily follows that if γ(t)

is a periodic function, then so is τ(t) with the same period. Substituting M(t) =
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γ(t)ρ(qI , t) into system (3.2), we arrive at the following model system:

dIh(t)

dt
=

cβ(t)l(H − Ih(t))

pIh(t) + l(H − Ih(t))
Im(t)− (dh + ρ)Ih(t),

dSm(t)

dt
=µ(t)− B(t, Ih(t), Sm(t))− dm(t)Sm(t),

dEm(t)

dt
=B(t, Ih(t), Sm(t))− dm(t)Em(t)

− (1− τ ′(t))B(t− τ(t), Ih(t− τ(t)), Sm(t− τ(t)))e−
∫ t
t−τ(t) dm(ξ)dξ,

dIm(t)

dt
=(1− τ ′(t))B(t− τ(t), Ih(t− τ(t)), Sm(t− τ(t)))e−

∫ t
t−τ(t) dm(ξ)dξ

− dm(t)Im(t),

(3.7)

where all constant parameters are positive, and µ(t), β(t), dm(t), τ(t) are positive,

continuous and ω-periodic functions for some ω > 0. The biological interpretations

for parameters of model (3.14) is listed in Table 3.1. It is easy to see that the function

a(t) := e−
∫ t
t−τ(t) dm(ξ)dξ

is also ω-periodic. Thus, model (3.7) can be written as u′(t) = F (t, ut) with F (t +

ω, φ) = F (t, φ) (see the proof of Lemma 2.3.2), and hence, it is an ω-periodic functional

differential system. Note that the term 1 − τ ′(t) is involved in the development rate

from the Em state to the Im state, which is different from previous works with constant

time delays (see, e.g., system (1) in [95]).

3.3 Global dynamics

In this section we study the global dynamics of system (3.7). We will use the theory

in section 1.4 to derive the basic reproduction ratio R0. Since the third equation of

system (3.7) is decoupled from the other equations, it suffices to study the following
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Table 3.1: Biological interpretations for parameters of model (3.7)

Parameters Description
τ(t) Extrinsic Incubation Period
b transmission probability per bite from infectious humans to mosquitoes
c transmission probability per bite from infectious mosquitoes to humans
β(t) mosquito biting rate
µ(t) recruitment rate at which female adult mosquitoes emerge from larvae
dm(t) natural death rate of female adult mosquitoes
dh natural death rate of humans
ρ removal rate of humans from the infectious compartment (i.e., recovery

rate and disease-induced death rate)
p probability that a mosquito arrives at a human at random and picks the

human if he is infectious
l probability that a mosquito arrives at a human at random and picks the

human if he is susceptible
H the total number of humans

system:

dIh(t)

dt
=

cβ(t)l(H − Ih(t))

pIh(t) + l(H − Ih(t))
Im(t)− (dh + ρ)Ih(t),

dSm(t)

dt
= µ(t)− B(t, Ih(t), Sm(t))− dm(t)Sm(t), (3.8)

dIm(t)

dt
= (1− τ ′(t))B(t− τ(t), Ih(t− τ(t)), Sm(t− τ(t)))e−

∫ t
t−τ(t) dm(ξ)dξ

−dm(t)Im(t).

It is easy to see that the scalar linear periodic equation

dSm(t)

dt
= µ(t)− dm(t)Sm(t) (3.9)

has a unique positive ω-periodic solution

S∗
m(t) =

[ ∫ t

0

µ(r)e
∫ r
0 dm(s)dsdr +

∫ ω

0
µ(r)e

∫ r
0 dm(s)dsdr

e
∫ ω
0 dm(s)ds − 1

]
e−

∫ t
0 dm(s)ds,

which is globally attractive in R.

Linearizing system (3.8) at its disease-free periodic solution (0, S∗
m(t), 0), we then
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obtain the following system of periodic linear equations for the infective variables Ih

and Im:
dIh(t)

dt
= −a11(t)Ih(t) + a12(t)Im(t),

dIm(t)

dt
= a21(t)Ih(t− τ(t))− a22(t)Im(t),

(3.10)

where a11(t) = dh + ρ, a12(t) = cβ(t), a22(t) = dm(t), and

a21(t) =
(1− τ ′(t))bβ(t− τ(t))pS∗

m(t− τ(t))e−
∫ t
t−τ(t) dm(ξ)dξ

lH
.

Let τ̂ = max0≤t≤ω τ(t), C = C([−τ̂ , 0],R2), C+ = C([−τ̂ , 0],R2
+). Then (C,C+)

is an ordered Banach space equipped with the maximum norm and the positive cone

C+. For any given continuous function v = (v1, v2) : [−τ̂ , σ) → R
2 with σ > 0, we

define vt ∈ C by

vt(θ) = (v1(t+ θ), v2(t+ θ)), ∀θ ∈ [−τ̂ , 0],

for any t ∈ [0, σ). Let F : R → L(C,R2) be a map and V (t) be a continuous 2 × 2

matrix function on R defined as follows:

F (t)ϕ =




a12(t)ϕ2(0)

a21(t)ϕ1(−τ(t))


 , V (t) =



a11(t) 0

0 a22(t)


 .

Then the internal evolution of the infective compartments Ih and Im can be expressed

by

dv(t)

dt
= −V (t)v(t).

Let Φ(t, s), t ≥ s, be the evolution matrix of the above linear system. That is,

Φ(t, s) satisfies

∂

∂t
Φ(t, s) = −V (t)Φ(t, s), ∀t ≥ s,
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and

Φ(s, s) = I, ∀s ∈ R,

where I is the 2× 2 identity matrix. It then easily follows that

Φ(t, s) =



e−

∫ t
s
a11(r)dr 0

0 e−
∫ t
s
a22(r)dr


 .

Let Cω be the ordered Banach space of all continuous and ω-periodic functions

from R to R
2, which is equipped with the maximum norm and the positive cone

C+
ω := {v ∈ Cω : v(t) ≥ 0 for all t ∈ R}.

Suppose that v ∈ Cω is the initial distribution of infectious individuals. Then for

any given s ≥ 0, F (t − s)vt−s is the distribution of newly infectious individuals at

time t− s, which is produced by the infectious individuals who were introduced over

the time interval [t− s− τ̂ , t− s]. Then Φ(t, t− s)F (t− s)vt−s is the distribution of

those infectious individuals who newly became infectious at time t− s and remain in

the infectious compartments at time t. It follows that

∫ ∞

0

Φ(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds

is the distribution of accumulative new infections at time t produced by all those

infectious individuals introduced at all previous time to t.

Define a linear operator L : Cω → Cω by

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω.

Following 1.4, we define R0 = r(L), the spectral radius of L. Let P̂ (t) be the solution

maps of system (3.10), that is, P̂ (t)ϕ = ut(ϕ), t ≥ 0, where u(t, ϕ) is the unique
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solution of (3.10) with u0 = ϕ ∈ C. Then P̂ := P̂ (ω) is the Poincaré map associated

with linear system (3.10). Let r(P̂ ) be the spectral radius of P̂ . By Theorem 1.4.1,

we have the following result.

Lemma 3.3.1. R0 − 1 has the same sign as r(P̂ )− 1.

Let

W := C([−τ̂ , 0], [0, H])× C([−τ̂ , 0],R+)× R+.

Then we have the following preliminary result for system (3.8).

Lemma 3.3.2. For any ϕ ∈ W , system (3.8) has a unique nonnegative bounded

solution u(t, ϕ) on [0,∞) with u0 = ϕ, and ut(ϕ) := (u1t(ϕ), u2t(ϕ), u3(t, ϕ)) ∈ W for

all t ≥ 0.

Proof. For any ϕ = (ϕ1, ϕ2, ϕ3) ∈ W , we define

f̃(t, ϕ) =




cβ(t)l(H−ϕ1(0))
(p−l)ϕ1(0)+lH

ϕ3 − (dh + ρ)ϕ1(0)

µ(t)− bβ(t)pϕ1(0)
(p−l)ϕ1(0)+lH

ϕ2(0)− dm(t)ϕ2(0)

−dm(t)ϕ3 + (1− τ ′(t)) bβ(t−τ(t))pϕ1(−τ(t))ϕ2(−τ(t))
(p−l)ϕ1(−τ(t))+lH

e−
∫ t
t−τ(t) dm(ξ)dξ



.

Since f̃(t, ϕ) is continuous in (t, ϕ) ∈ R+ ×W , and f̃(t, ϕ) is Lipschitz in ϕ on each

compact subset of W , it then follows that system (3.8) has a unique solution u(t, ϕ)

on its maximal interval [0, σϕ) of existence with u0 = ϕ (see, e.g., [29, Theorems 2.2.1

and 2.2.3]).

Let ϕ = (ϕ1, ϕ2, ϕ3) ∈ W be given. If ϕi(0) = 0 for some i ∈ {1, 2}, then

f̃i(t, ϕ) ≥ 0. If ϕ3 = 0, then f̃3(t, ϕ) ≥ 0. If ϕ1(0) = H, then f̃1(t, ϕ) ≤ 0. By [84,

Theorem 5.2.1 and Remark 5.2.1], it follows that for any ϕ ∈ W , the unique solution

u(t, ϕ) of system (3.1) with u0 = ϕ satisfies ut(ϕ) ∈ W for all t ∈ [0, σϕ).
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Clearly, 0 ≤ u1(t, ϕ) ≤ H for all t ∈ [0, σϕ). In view of the second and third

equations of system (3.8), we have

du2(t)

dt
≤ µ(t)− dm(t)u2(t),

du3(t)

dt
≤ −dm(t)u3(t) + (1− τ ′(t))bβ(t− τ(t))u2(t− τ(t))e−

∫ t
t−τ(t) dm(ξ)dξ,

for all t ∈ [0, σϕ). Thus, both u2(t) and u3(t) are bounded on [0, σϕ), and hence, [29,

Theorem 2.3.1] implies that σϕ = ∞.

For any given ϕ ∈ W, let u(t, ϕ) = (u1(t), u2(t), u3(t)) be the unique solution of

system (3.8) satisfying u0 = ϕ. Let

w(t) := e−
∫ t
t−τ(t) dm(s)dsu2(t− τ(t)) + u3(t).

Then (u1(t), u3(t)) can be regarded as a solution of the following nonautonomous

system:

du1(t)

dt
=
cβ(t)l(H − u1(t))

(p− l)u1(t) + lH
u3(t)− (dh + ρ)u1(t),

du3(t)

dt
= −dm(t)u3(t) + (1− τ ′(t))

bβ(t− τ(t))pu1(t− τ(t))

(p− l)u1(t− τ(t)) + lH
[w(t)− u3(t)].

(3.11)

It easily follows that w(t) satisfies

dw(t)

dt
= −dm(t)w(t) + µ(t− τ(t))(1− τ ′(t))e−

∫ t
t−τ(t) dm(s)ds, (3.12)

and system (3.12) has a unique positive ω-periodic solution

K(t) := e−
∫ t
t−τ(t) dm(s)dsS∗

m(t− τ(t)),
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which is globally attractive in R. Thus, system (3.11) has a limiting system:

dv1(t)

dt
=
cβ(t)l(H − v1(t))

(p− l)v1(t) + lH
v2(t)− (dh + ρ)v1(t),

dv2(t)

dt
= −dm(t)v2(t) + (1− τ ′(t))

bβ(t− τ(t))pv1(t− τ(t))

(p− l)v1(t− τ(t)) + lH
(K(t)− v2(t)).

(3.13)

Note that z(t) = (u1(t), u3(t), w(t)) satisfies the following ω-periodic system:

du1(t)

dt
=
cβ(t)l(H − u1(t))

(p− l)u1(t) + lH
u3(t)− (dh + ρ)u1(t),

du3(t)

dt
= −dm(t)u3(t) + (1− τ ′(t))

bβ(t− τ(t))pu1(t− τ(t))

(p− l)u1(t− τ(t)) + lH
(w(t)− u3(t)),

dw(t)

dt
= −dm(t)w(t) + µ(t− τ(t))(1− τ ′(t))e−

∫ t
t−τ(t) dm(s)ds.

(3.14)

Clearly, system (3.8) is equivalent to (3.14). It suffices to study system (3.14). Let

Ω := C([−τ̂ , 0], [0, H])× R
2
+.

We then have the following preliminary result for system (3.14).

Lemma 3.3.3. For any ϕ ∈ Ω, system (3.14) has a unique solution z(t, ϕ) with

z0 = ϕ, and zt(ϕ) := (z1t(ϕ), z2(t, ϕ), z3(t, ϕ)) ∈ Ω for all t ≥ 0.

Proof. For any ϕ ∈ Ω, define

f̂(t, ϕ) =




cβ(t)l(H−ϕ1(0))
(p−l)ϕ1(0)+lH

ϕ2 − (dh + ρ)ϕ1(0)

−dm(t)ϕ2 + (1− τ ′(t)) bβ(t−τ(t))pϕ1(−τ(t))
(p−l)ϕ1(−τ(t))+lH

(ϕ3 − ϕ2)

−dm(t)ϕ3 + µ(t− τ(t))(1− τ ′(t))e−
∫ t
t−τ(t) dm(s)ds



.

Since f̂(t, ϕ) is continuous in (t, ϕ) ∈ R × Ω, and f̂(t, ϕ) is Lipschitz in ϕ on each

compact subset of Ω, it then follows that system (3.14) has a unique solution z(t, ϕ)

with z0 = ϕ on its maximal interval [0, σϕ) of existence.
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Let ϕ = (ϕ1, ϕ2, ϕ3) ∈ Ω be given. If ϕ1(0) = 0, then f̂1(t, ϕ) ≥ 0. If ϕi = 0 for

some i = 2, 3, then f̂i(t, ϕ) ≥ 0. If ϕ1(0) = H, then f̂1(t, ϕ) ≤ 0. By [84, Theorem

5.2.1 and Remark 5.2.1], it follows that for any ϕ ∈ Ω, the unique solution z(t, ϕ) of

system (3.14) with u0 = ϕ satisfies zt(ϕ) ∈ Ω for all t ∈ [0, σϕ).

Since system (3.12) has a globally attractive periodic solution K(t), it follows that

z3(t, ϕ) = w(t) is bounded on [0, σϕ), that is, there exists B > 0 such that w(t) ≤ B

for all t ∈ [0, σϕ). In view of the second equation of system (3.14), we have

du3(t)

dt
≤ −dm(t)u3(t) + b(1− τ ′(t))β(t− τ(t))B, ∀t ∈ [0, σϕ).

Hence, z2(t, ϕ) = u3(t) is also bounded on [0, σϕ). Then [29, Theorem 2.3.1] implies

that σϕ = ∞. �

Let

Y (t) := C([−τ̂ , 0], [0, H])× [0, K(t)], t ≥ 0.

Then we have the following result for system (3.13).

Lemma 3.3.4. For any ϕ ∈ Y (0), system (3.13) has a unique solution w(t, ϕ) with

w0 = ϕ, and wt(ϕ) := (w1t(ϕ), w2(t, ϕ)) ∈ Y (t) for all t ≥ 0.

Proof. For any ϕ ∈ Y (0), define

f(t, ϕ) =




cβ(t)l(H−ϕ1(0))
(p−l)ϕ1(0)+lH

ϕ2 − (dh + ρ)ϕ1(0)

−dm(t)ϕ2 + (1− τ ′(t)) bβ(t−τ(t))pϕ1(−τ(t))
(p−l)ϕ1(−τ(t))+lH

(K(t)− ϕ2)


 .

Since f is continuous in (t, ϕ) ∈ R × Y (0), and f is Lipschitz in ϕ on each compact

subset of Y (0), it then follows that system (3.13) has a unique solution w(t, ϕ) with

w0 = ϕ on its maximal interval [0, σϕ) of existence.
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Let ϕ = (ϕ1, ϕ2) ∈ Y (0) be given. If ϕ1(0) = 0, then f1(t, ϕ) ≥ 0. If ϕ2 = 0, then

f2(t, ϕ) ≥ 0. If ϕ1(0) = H, then f1(t, ϕ) ≤ 0. By [84, Theorem 5.2.1 and Remark

5.2.1], it follows that the unique solution w(t, ϕ) of system (3.13) with w0 = ϕ satisfies

wt(ϕ) ∈ C([−τ̂ , 0], [0, H])× R+.

It remains to prove that w2(t) ≤ K(t) for all t ∈ [0, σϕ). Suppose this does not

hold. Then there exists t0 ∈ [0, σϕ) and ǫ0 > 0 such that

w2(t0) = K(t0) and w2(t) > K(t), ∀t ∈ (t0, t0 + ǫ0).

Since

dw2(t0)

dt
= −dm(t0)w2(t0) = −dm(t0)K(t0) <

dK(t0)

dt
,

there exists ǫ1 ∈ (0, ǫ0) such that w2(t) ≤ K(t) for all t ∈ (t0, t0 + ǫ1), which is a

contradiction. This proves that wt(ϕ) ∈ Y (t) for all t ∈ [0, σϕ). Clearly, wt(ϕ) is

bounded on [0, σϕ), and hence, [29, Theorem 2.3.1] implies that σϕ = ∞. �

Let

G(t) := C([−τ(0), 0], [0, H])× [0, K(t)], t ≥ 0.

Lemma 3.3.5. For any ϕ ∈ G(0), system (3.13) has a unique solution v(t, ϕ) with

v0 = ϕ, and vt(ϕ) := (v1t(ϕ), v2(t, ϕ)) ∈ G(t) for all t ≥ 0.

Proof. Let τ̄ = mint∈[0,ω] τ(t). For any t ∈ [0, τ̄ ], since t− τ(t) is strictly increasing in

t, we have

−τ(0) = 0− τ(0) ≤ t− τ(t) ≤ τ̄ − τ(τ̄) ≤ τ̄ − τ̄ = 0,

and hence,

v1(t− τ(t)) = ϕ1(t− τ(t)).
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Therefore, we have the following ordinary differential equations for t ∈ [0, τ̄ ]:

dv1(t)

dt
=
cβ(t)l(H − v1(t))

(p− l)v1(t) + lH
v2(t)− (dh + ρ)v1(t),

dv2(t)

dt
= −dm(t)v2(t) + (1− τ ′(t))

bβ(t− τ(t))pϕ1(t− τ(t))

(p− l)ϕ1(t− τ(t)) + lH
(K(t)− v2(t)).

Given ϕ ∈ G(0), the solution (v1(t), v2(t)) of the above system exists for t ∈ [0, τ̄ ].

In other words, we have obtained values of ψ1(θ) = v1(θ) for θ ∈ [−τ(0), τ̄ ] and

ψ2(θ) = v2(θ) for θ ∈ [0, τ̄ ]. It is easy to see that v1(t) ≤ H and v2(t) ≤ K(t) for all

t ∈ [0, τ̄ ].

For any t ∈ [τ̄ , 2τ̄ ], we have

−τ(0) = 0− τ(0) ≤ τ̄ − τ(τ̄) ≤ t− τ(t) ≤ 2τ̄ − τ(2τ̄) ≤ 2τ̄ − τ̄ = τ̄ ,

and hence, v1(t − τ(t)) = ψ1(t − τ(t)). Solving the following system of ordinary

differential equations for t ∈ [τ̄ , 2τ̄ ] with v1(τ̄) = ψ1(τ̄) and v2(τ̄) = ψ2(τ̄):

dv1(t)

dt
=
cβ(t)l(H − v1(t))

(p− l)v1(t) + lH
v2(t)− (dh + ρ)v1(t),

dv2(t)

dt
= −dm(t)v2(t) + (1− τ ′(t))

bβ(t− τ(t))pψ1(t− τ(t))

(p− l)ψ1(t− τ(t)) + lH
(K(t)− v2(t)).

We then get the solution (v1(t), v2(t)) on [τ̄ , 2τ̄ ]. We also have v1(t) ≤ H and v2(t) ≤

K(t) for all t ∈ [τ̄ , 2τ̄ ]. Repeating this procedure for t ∈ [2τ̄ , 3τ̄ ], [3τ̄ , 4τ̄ ],..., it then

follows that for any ϕ ∈ G(0), system (3.13) has a unique solution v(t, ϕ) with v0 = ϕ,

and vt(ϕ) := (v1t(ϕ), v2(t, ϕ)) ∈ G(t) for all t ≥ 0. �

Remark 3.3.6. By the uniqueness of solutions in Lemmas 3.3.4 and 3.3.5, it follows

that for any ψ ∈ Y (0) and φ ∈ G(0) with ψ1(θ) = φ1(θ) for all θ ∈ [−τ(0), 0] and

ψ2 = φ2, we have w(t, ψ) = v(t, φ) for all t ≥ 0, where w(t, ψ) and v(t, φ) are solutions
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of system (3.13) satisfying w0 = ψ and v0 = φ, respectively. Similarly, we define

Π := C([−τ(0), 0], [0, H])× R
2
+,

and

Ψ := C([−τ(0), 0], [0, H])× C([−τ(0), 0],R+)× R+.

For any ψ ∈ Ω and φ ∈ Π with ψ1(θ) = φ1(θ) for all θ ∈ [−τ(0), 0] and ψ2 = φ2,

ψ3 = φ3, we have z(t, ψ) = z̃(t, φ) for all t ≥ 0, where z(t, ψ) and z̃(t, φ) are solutions

of system (3.14) satisfying z0 = ψ and z̃0 = φ, respectively. It follows that Π is

positively invariant for system (3.14). For any ψ ∈ W and φ ∈ Ψ with ψ1(θ) =

φ1(θ), ψ2(θ) = φ2(θ) for all θ ∈ [−τ(0), 0] and ψ3 = φ3, we have u(t, ψ) = ũ(t, φ) for

all t ≥ 0, where u(t, ψ) and ũ(t, φ) are solutions of system (3.8) satisfying u0 = ψ and

ũ0 = φ, respectively. It then follows that Ψ is positively invariant for system (3.8).

Let S(t) be the solution maps of system (3.13), that is, S(t)ϕ = vt(ϕ), t ≥ 0,

where v(t, ϕ) is the unique solution of system (3.13) with v0 = ϕ ∈ G(0). By similar

arguments to those in [49, Lemma 3.5], we have the following result.

Lemma 3.3.7. S(t) : G(0) → G(t) is an ω-periodic semiflow in the sense that (i)

S(0) = I; (ii) S(t + ω) = S(t) ◦ S(ω) for all t ≥ 0; (iii) S(t)ϕ is continuous in

(t, ϕ) ∈ [0,∞)×G(0).

Note that the linearized system of (3.13) at (0, 0) is

dv1(t)

dt
= −(dh + ρ)v1(t) + cβ(t)v2(t),

dv2(t)

dt
=

(1− τ ′(t))bβ(t− τ(t))pK(t)

lH
v1(t− τ(t))− dm(t)v2(t).

(3.15)

Let P be the Poincaré map of the linear system (3.15) on the space C([−τ(0), 0],

R) × R, and r(P ) be its spectral radius. Then we have the following threshold type
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result for system (3.13).

Lemma 3.3.8. The following statements are valid:

(i) If r(P ) ≤ 1, then v∗(t) = (0, 0) is globally asymptotically stable for system (3.13)

in G(0).

(ii) If r(P ) > 1, then system (3.13) admits a unique positive ω-periodic solution

ṽ(t) = (ṽ1(t), ṽ2(t)) which is globally asymptotically stable for system (3.13) in

G(0) \ {0}.

Proof. It follows from Remark 3.3.6 that S(t) maps G(0) into G(t), and S := S(ω) :

G(0) → G(ω) = G(0) is the Poincaré map associated with system (3.13). By the

continuity and differentiability of solutions with respect to initial values, it follows

that S is differentiable at zero and the Frechét derivative DS(0) = P .

For any given ϕ, ψ ∈ G(0) with ϕ ≥ ψ, let v̄(t) = v(t, ϕ) and v(t) = v(t, ψ) be

the unique solutions of system (3.13) with v0 = ϕ and v0 = ψ, respectively. Let

τ̄ = mint∈[0,ω] τ(t). Define

A(t) =:
v̄1(t− τ(t))

(p− l)v̄1(t− τ(t)) + lH
, B(t) :=

v1(t− τ(t))

(p− l)v1(t− τ(t)) + lH
.

Since

−τ(0) = 0− τ(0) ≤ t− τ(t) ≤ τ̄ − τ(τ̄) ≤ τ̄ − τ̄ = 0, ∀t ∈ [0, τ̄ ],

we have

v̄1(t− τ(t)) = ϕ1(t− τ(t)) and v1(t− τ(t)) = ψ1(t− τ(t)), ∀t ∈ [0, τ̄ ],

and hence, A(t) ≥ B(t) for all t ∈ [0, τ̄ ]. In view of v̄(0) = ϕ(0) ≥ ψ(0) = v(0),
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the comparison theorem for cooperative ordinary differential systems implies that

v̄(t) ≥ v(t) for all t ∈ [0, τ̄ ].

Repeating this procedure for t ∈ [τ̄ , 2τ̄ ], [2τ̄ , 3τ̄ ], ..., it follows that v(t, ϕ) ≥ v(t, ψ)

for all t ∈ [0,∞). This implies that S(t) : G(0) → G(t) is monotone for each t ≥ 0.

Next we show that the solution map S(t) is eventually strongly monotone. Let ϕ > ψ,

and denote v(t, ϕ) = (ȳ1(t), ȳ2(t)), v(t, ψ) = (y1(t), y2(t)).

Claim 1. There exists t0 ∈ [0, τ̄ ] such that ȳ2(t) > y2(t) for all t ≥ t0.

We first prove that ȳ2(t0) > y2(t0) for some t0 ∈ [0, τ̄ ]. Otherwise, we have

ȳ2(t) = y2(t) for all t ∈ [0, τ̄ ], and hence, dȳ2(t)
dt

= dy2(t)
dt

for all t ∈ (0, τ̄). Thus, we have

[

bβ(t− τ(t))pȳ1(t− τ(t))

(p− l)ȳ1(t− τ(t)) + lH
−

bβ(t− τ(t))py1(t− τ(t))

(p− l)y1(t− τ(t)) + lH

]

(1− τ ′(t))(K(t)− y2(t)) = 0, ∀t ∈ [0, τ̄ ]. (3.16)

Since ϕ > ψ and ϕ2 = ȳ2(0) = y2(0) = ψ2, we have ϕ1 > ψ1. Then there exists

an open interval (a, b) ⊂ [−τ(0), 0] such that ϕ1(θ) > ψ1(θ) for all θ ∈ (a, b). Let

h(t) = t − τ(t). Since h′(t) > 0, the inverse function h−1(t) exists. It follows from

(3.16) that y2(t) = K(t) for all t ∈ (h−1(a), h−1(b)), and hence,

dK(t)

dt
=
dy2(t)

dt
= −dm(t)K(t), ∀t ∈ (h−1(a), h−1(b)),

which contradicts the fact that

dK(t)

dt
= −dm(t)K(t) + µ(t− τ(t))(1− τ ′(t))e−

∫ t
t−τ(t) dm(s)ds.

Let

g1(t, y) := −dm(t)y + (1− τ ′(t))
bβ(t− τ(t))py1(t− τ(t))

(p− l)y1(t− τ(t)) + lH
(K(t)− y).
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Since

dȳ2(t)

dt
= −dm(t)ȳ2(t) + (1− τ ′(t))

bβ(t− τ(t))pȳ1(t− τ(t))

(p− l)ȳ1(t− τ(t)) + lH
(K(t)− ȳ2(t))

≥ −dm(t)ȳ2(t) + (1− τ ′(t))
bβ(t− τ(t))py1(t− τ(t))

(p− l)y1(t− τ(t)) + lH
(K(t)− ȳ2(t))

= g1(t, ȳ2(t)),

we have

dȳ2(t)

dt
− g1(t, ȳ2(t)) ≥ 0 =

dy2(t)

dt
− g1(t, y2(t)), ∀t ≥ t0.

Since ȳ2(t0) > y2(t0), the comparison theorem for ordinary differential equations (see

Theorem 1.3.1) implies that ȳ2(t) > y2(t) for all t ≥ t0.

Claim 2. ȳ1(t) > y1(t) for all t > t0.

We first prove that for any ǫ > 0, there exists an open interval (c, d) ⊂ [t0, t0 + ǫ]

such that H > ȳ1(t) for all t ∈ (c, d). Otherwise, there exists ǫ0 > 0 such that

H = ȳ1(t) for all t ∈ (t0, t0 + ǫ0). It then follows from the first equation of system

(3.13) that 0 = −(dh + ρ)H, which is a contradiction. Let

f1(t, y) :=
cβ(t)l(H − y)

(p− l)y + lH
y2(t)− (dh + ρ)y.

Then we have
dȳ1(t)

dt
=
cβ(t)l(H − ȳ1(t))

(p− l)ȳ1(t) + lH
ȳ2(t)− (dh + ρ)ȳ1(t)

>
cβ(t)l(H − ȳ1(t))

(p− l)ȳ1(t) + lH
y2(t)− (dh + ρ)ȳ1(t)

= f1(t, ȳ1(t)), ∀t ∈ (c, d),

and hence,

dȳ1(t)

dt
− f1(t, ȳ1(t)) > 0 =

dy1(t)

dt
− f1(t, y1(t)), ∀t ∈ (c, d).
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Since ȳ1(t0) ≥ y1(t0), it follows from Theorem 1.3.1 that ȳ1(t) > y1(t) for all t > t0.

In view of Claims 1 and 2, we obtain

(ȳ1(t), ȳ2(t)) ≫ (y1(t), y2(t)), ∀t > t0.

Since t0 ∈ [0, τ̄ ], it follows that

(ȳ1t, ȳ2(t)) ≫ (y1t, y2(t)), ∀t > τ̄ + τ(0),

that is, vt(ϕ) ≫ vt(ψ) for all t > τ̄ + τ(0). This shows that S(t) : G(0) → G(t) is

strongly monotone for any t > τ̄ + τ(0).

For any given ϕ≫ 0 in G(0) and λ ∈ (0, 1), let v(t, ϕ) and v(t, λϕ) be the solutions

of system (3.13) satisfying v0 = ϕ and v0 = λϕ, respectively. Denote x(t) = λv(t, ϕ)

and z(t) = v(t, λϕ). As in the proof of Lemma 3.3.5, by the comparison theorem for

ordinary differential equations, we have x(t) > 0 and z(t) > 0 for all t ≥ 0. Moreover,

for all θ ∈ [−τ(0), 0], we have

x1(θ) = λϕ1(θ) = z1(θ), x2(0) = λϕ2 = z2(0).

For any t ∈ [0, τ̄ ], we have −τ(0) ≤ t − τ(t) ≤ τ̄ − τ̄ = 0, and hence, z1(t − τ(t)) =

x1(t− τ(t)) = λϕ1(t− τ(t)). Thus, x(t) satisfies the following differential inequality:

dx1(t)

dt
<
cβ(t)l(H − x1(t))

(p− l)x1(t) + lH
x2(t)− (dh + ρ)x1(t),

dx2(t)

dt
< −dm(t)x2(t) + (1− τ ′(t))

bβ(t− τ(t))pz1(t− τ(t))

(p− l)z1(t− τ(t)) + lH
(K(t)− x2(t)),

for all t ∈ [0, τ̄ ]. Since x(0) = z(0), it follows from the comparison theorem for

ordinary differential systems (see Theorem 1.3.1) that x1(t) < z1(t) and x2(t) < z2(t)
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for all t ∈ (0, τ̄ ]. By similar arguments for any interval (nτ̄ , (n+ 1)τ̄ ], n = 1, 2, 3, · · · ,

we can get x1(t) < z1(t) and x2(t) < z2(t) for all t > 0, that is, v(t, λϕ) ≫ λv(t, ϕ)

for all t > 0. Therefore, vt(λϕ) ≫ λvt(ϕ) for all t > τ(0).

Now we fix an integer n0 such that n0ω > τ̄ + τ(0). It then follows that Sn0 =

S(n0ω) : G(0) → G(0) is strongly monotone and strictly subhomogeneous. Note that

DSn0(0) = DS(n0ω)(0) = P (n0ω) = P n0(ω) = P n0 , and r(P n0) = (r(P ))n0 . By

Theorem 1.3.4 and Lemma 1.3.3 as applied to Sn0 , we have the following threshold

type result:

(a) If r(P ) ≤ 1, then v∗(t) = (0, 0) is globally asymptotically stable for system

(3.13) in G(0).

(b) If r(P ) > 1, then there exists a unique positive n0ω-periodic solution ṽ(t) =

(ṽ1(t), ṽ2(t)), which is globally asymptotically stable for system (3.13) in G(0) \

{0}.

It remains to prove that ṽ(t) is also an ω-periodic solution of system (3.13). Let ṽ(t) =

v(t, ψ). By the properties of periodic semiflows, we have Sn0(S(ψ)) = S(Sn0(ψ)) =

S(ψ), which implies that S(ψ) is also a positive fixed point of Sn0 . By the uniqueness

of the positive fixed point of Sn0 , it follows that S(ψ) = ψ. So ṽ(t) is an ω-periodic

solution of system (3.13). �

Next, we use the theory of chain transitive sets (see section 1.1) to lift the threshold

type result for system (3.13) to system (3.14).

Theorem 3.3.9. The following statements are valid:

(i) If r(P ) ≤ 1, then the periodic solution (0, 0, K(t)) is globally asymptotically

stable for system (3.14) in Π;
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(ii) If r(P ) > 1, then system (3.14) admits a unique positive ω-periodic solution

(ṽ1(t), ṽ2(t), K(t)), which is globally asymptotically stable for system (3.14) in

Π \ ({0} × {0} × R+).

Proof. Let P̃ (t) be the solution maps of system (3.14), that is, P̃ (t)ϕ = zt(ϕ), t ≥ 0,

where z(t, ϕ) is the unique solution of system (3.14) with z0 = ϕ ∈ Π. Then P̃ := P̃ (ω)

is the Poincaré map of system (3.14). Then {P̃ n}n≥0 defines a discrete-time dynamical

system on Π. For any given ϕ̄ ∈ Π, let z̄(t) = (u1(t), u3(t), w(t)) be the unique

solution of system (3.14) with z̄0 = ϕ̄ and let ω(ϕ̄) be the omega limit set of the orbit

{P̃ n(ϕ̄)}n≥0 for the discrete-time semiflow P̃ n.

Since equation (3.12) has a unique positive ω-periodic solution K(t), which is

globally attractive, we have limt→∞(w(t) − K(t)) = 0, and hence, limn→∞ (P̃ n(ϕ̄))3

= K(0). Thus, there exists a subset ω̃ of C([−τ(0), 0], [0, H])×R+ such that ω(ϕ̄) =

ω̃ × {K(0)}.

For any φ = (φ1, φ2, φ3) ∈ ω(ϕ̄), there exists a sequence nk → ∞ such that

P̃ nk(ϕ̄) → φ, as k → ∞. Since u1nkω ≤ H and u3(nkω) ≤ w(nkω), letting nk → ∞, we

obtain 0 ≤ φ1 ≤ H, 0 ≤ φ2 ≤ K(0). It then follows that ω̃ ⊆ C([−τ(0), 0], [0, H]) ×

[0, K(0)] = G(0). It is easy to see that

P̃ n|ω(ϕ̄)(φ1, φ2, K(0)) = Sn|ω̃(φ1, φ2)× {K(0)}, ∀(φ1, φ2) ∈ ω̃, n ≥ 0,

where S is the Poincaré map associated with system (3.13). By Lemma 1.1.2, ω(ϕ̄) is

an internally chain transitive set for P̃ n on Π. It then follows that ω̃ is an internally

chain transitive set for Sn on G(0).

In the case where r(P ) ≤ 1, it follows from Lemma 3.3.8 (i) that (0, 0) is globally

asymptotically stable for Sn in G(0). By Theorem 1.1.3, we have ω̃ = {(0, 0)},

and hence, ω(ϕ̄) = {(0, 0, K(0))}. Then P̃ n(ϕ̄) → (0, 0, K(0)) as n → ∞. Clearly,
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(0, 0, K(0)) is a fixed point of P̃ . This implies that statement (i) is valid.

In the case where r(P ) > 1, by Lemma 3.3.8 (ii) and Theorem 1.1.4, it follows that

either ω̃ = {(0, 0)} or ω̃ = {(ṽ10, ṽ2(0))}, where ṽ10(θ) = ṽ1(θ) for all θ ∈ [−τ(0), 0].

We further claim that ω̃ 6= {(0, 0)}. Suppose, by contradiction, that ω̃ = {(0, 0)},

then we have ω(ϕ̄) = {(0, 0, K(0))}. Thus, limt→∞(u1(t), u3(t)) = (0, 0), and for any

ǫ > 0, there exists T = T (ǫ) > 0 such that |w(t) −K(t)| < ǫ for all t ≥ T . Then for

any t ≥ T , we have

du1(t)

dt
≥ cβ(t)l(H − u1(t))

(p− l)u1(t) + lH
u3(t)− (dh + ρ)u1(t),

du3(t)

dt
≥ −dm(t)u3(t) + (1− τ ′(t))

bβ(t− τ(t))pu1(t− τ(t))

(p− l)u1(t− τ(t)) + lH
(K(t)− ǫ− u3(t)).

(3.17)

Let rǫ be the spectral radius of the Poincaré map associated with the following periodic

linear system:

du1(t)

dt
= −(dh + ρ)u1(t) + cβ(t)u3(t),

du3(t)

dt
= (1− τ ′(t))

bβ(t− τ(t))pu1(t− τ(t))

lH
(K(t)− ǫ)− dm(t)u3(t).

(3.18)

Since limǫ→0+ rǫ = r(P ) > 1, we can fix ǫ small enough such that rǫ > 1. By similar

result to Lemma 3.3.8 (ii), it follows that the Poincaré map of the following system

du1(t)

dt
=
cβ(t)l(H − u1(t))

(p− l)u1(t) + lH
u3(t)− (dh + ρ)u1(t),

du3(t)

dt
= −dm(t)u3(t) + (1− τ ′(t))

bβ(t− τ(t))pu1(t− τ(t))

(p− l)u1(t− τ(t)) + lH
(K(t)− ǫ− u3(t))

(3.19)

admits a globally asymptotically stable fixed point (ū10, ū3(0)) ≫ 0. In the case where

ϕ̄ ∈ Π \ ({0} × {0} × R+), we have (u1(t), u3(t)) > 0 in R
2 for all t > 0. In view of
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(3.17) and (3.19), the comparison principle implies that

lim inf
n→∞

(u1nω(ϕ̄), u3(nω, ϕ̄)) ≥ (ū10, ū3(0)) ≫ 0,

which contradicts limt→∞(u1(t), u3(t)) = (0, 0). It then follows that ω̃ = {(ṽ10,ṽ2(0))},

and hence, ω(ϕ̄) = {(ṽ10, ṽ2(0), K(0))}. This implies that limt→∞ (z̄(t)− (ṽ1(t), ṽ2(t),

K(t))) = (0, 0, 0). �

By the definition of w(t), we have u2(t − τ(t)) = (w(t) − u3(t))e
∫ t
t−τ(t) dm(s)ds. In

the case where r(P ) ≤ 1, we have

lim
t→∞

(u2(t− τ(t))− S∗
m(t− τ(t)))

= lim
t→∞

(w(t)− u3(t)−K(t))e
∫ t
t−τ(t) dm(s)ds

=0.

It follows that limt→∞(u2(t)− S∗
m(t)) = 0. In the case where r(P ) > 1, we have

lim
t→∞

(u2(t− τ(t))− û2(t)) = 0,

where û2(t) := e
∫ t
t−τ(t) dm(s)ds(K(t) − ṽ2(t)) is a positive ω-periodic function. Let x =

h(t) := t − τ(t). Then we have limx→∞(u2(x) − û2(h
−1(x))) = 0 and x + ω =

t+ω− τ(t) = t+ω− τ(t+ω) = h(t+ω). It follows that û2(h
−1(x+ω)) = û2(t+ω) =

û2(t) = û2(h
−1(x)). Replacing x by t, we have

lim
t→∞

(u2(t)− û2(h
−1(t))) = 0,

where û2(h
−1(t)) is a positive ω-periodic function.

As a straightforward consequence of Theorem 3.3.9, we have the following result
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for system (3.8).

Theorem 3.3.10. The following statements are valid for system (3.8):

(i) If r(P ) ≤ 1, then the disease-free periodic solution (0, S∗
m(t), 0) is globally asymp-

totically stable for system (3.8) in Ψ;

(ii) If r(P ) > 1, then system (3.8) admits a positive ω-periodic solution (ṽ1(t),

û2(h
−1(t)), ṽ2(t)), which is globally asymptotically stable for system (3.8) in

Ψ \ ({0} × C([−τ(0), 0],R+)× {0}).

By the same arguments as in [49, Lemma 3.8], we have r(P ) = r(P̂ ). Combining

Lemma 3.3.1 and Theorem 3.3.10 we have the following result on the global dynamics

of system (3.8).

Theorem 3.3.11. The following statements are valid for system (3.8):

(i) If R0 ≤ 1, then the disease-free periodic solution (0, S∗
m(t), 0) is globally asymp-

totically stable for system (3.8) in Ψ;

(ii) If R0 > 1, then system (3.8) admits a positive ω-periodic solution (ṽ1(t), û2(h
−1(t)),

ṽ2(t)), which is globally asymptotically stable for system (3.8) in Ψ \ ({0} ×

C([−τ(0), 0],R+)× {0}).

In the rest of this section, we derive the dynamics for the variable Em(t) in system

(3.7). It is easy to see that

Em(t) =

∫ t

t−τ(t)

B(ξ, Ih(ξ), Sm(ξ))e
−

∫ t
ξ
dm(s)dsdξ. (3.20)

In the case where R0 ≤ 1, we have

lim
t→∞

[(Ih(t), Sm(t))− (0, S∗
m(t))] = 0.
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It then follows from (3.20) that

lim
t→∞

Em(t) = 0.

In the case where R0 > 1, we have

lim
t→∞

[(Ih(t), Sm(t))− (ṽ1(t), û2(h
−1(t)))] = 0.

By using the integral form (3.20), we obtain

lim
t→∞

[Em(t)−
∫ t

t−τ(t)

B(ξ, ṽ1(ξ), û2(h
−1(ξ)))e−

∫ t
ξ
dm(s)dsdξ] = 0.

Let ξ = η + ω. It then follows that

∫ t+ω

t+ω−τ(t+ω)

B(ξ, ṽ1(ξ), û2(h
−1(ξ)))e−

∫ t+ω
ξ

dm(s)dsdξ

=

∫ t+ω

t+ω−τ(t)

B(ξ, ṽ1(ξ), û2(h
−1(ξ)))e−

∫ t+ω
ξ

dm(s)dsdξ

=

∫ t

t−τ(t)

B(η + ω, ṽ1(η + ω), û2(h
−1(η + ω)))e−

∫ t+ω
η+ω

dm(s)dsdη

=

∫ t

t−τ(t)

B(η, ṽ1(η), û2(h
−1(η)))e−

∫ t
η
dm(s)dsdη

=

∫ t

t−τ(t)

B(ξ, ṽ1(ξ), û2(h
−1(ξ)))e−

∫ t
ξ
dm(s)dsdξ

Thus,

E∗
m(t) =

∫ t

t−τ(t)

B(ξ, ṽ1(ξ), û2(h
−1(ξ)))e−

∫ t
ξ
dm(s)dsdξ

is a positive ω-periodic function. Consequently, we have the following result on the

global dynamics of system (3.7).

Theorem 3.3.12. The following statements are valid for system (3.7):
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(i) If R0 ≤ 1, then the disease-free periodic solution (0, S∗
m(t), 0, 0) is globally asymp-

totically stable;

(ii) If R0 > 1, then system (3.7) admits a unique positive ω-periodic solution (ṽ1(t),

û2(h
−1(t)), E∗

m(t), ṽ2(t)), which is globally asymptotically stable for all nontrivial

solutions.

3.4 A case study

In this section, we study the malaria transmission case in Maputo Province, Mozam-

bique. We will use the same values as those in section 2.4.1 for all the constant and

the periodic parameters except τ(t). The values of p and l may vary from 0 to 1 and

p ≥ l (see [17, 34, 39]). In the following simulations, we take p = 0.8 and l = 0.6.

According to [21], the relationship between the EIP and the temperature is given

by

τ(T ) =
111

T − 16
,

where T is temperature in ◦C, 111 is the total degree days required for parasite

development, and 16 is the temperature at which the parasite development ceases.

We take July 1 as the starting point. By using the monthly mean temperatures

of Maputo Province (see Table 2.3), we obtain the following approximation for the

periodic time delay τ(t) in CFTOOL (see Figure 3.1):

τ(t) =1/30.4(17.25 + 8.369 cos(πt/6) + 4.806 sin(πt/6) + 3.27 cos(πt/3)

+ 2.857 sin(πt/3) + 1.197 cos(πt/2) + 1.963 sin(πt/2)

+ 0.03578 cos(2πt/3) + 1.035 sin(2πt/3)− 0.3505 cos(5πt/6)

+ 0.6354 sin(5πt/6)− 0.3257 cos(πt) + 0 sin(πt))Month.
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Figure 3.1: The fitted curve of EIP.

To compute R0 numerically, we first write the operator L into the integral form of

[70] by using the similar method to that in [49]. Since

F (t− s)ϕ =




a12(t− s)ϕ2(0)

a21(t− s)ϕ1(−τ(t− s))


 ,

we have

[Lv](t) =

∫ ∞

0
Φ(t, t− s)F (t− s)v(t− s+ ·)ds

=

∫ ∞

0




e−
∫ t
t−s

a11(r)dr 0

0 e−
∫ t
t−s

a22(r)dr







a12(t− s)v2(t− s)

a21(t− s)v1(t− s− τ(t− s))


 ds

=




∫∞

0 e−
∫ t
t−s

a11(r)dra12(t− s)v2(t− s)ds
∫∞

0 e−
∫ t
t−s

a22(r)dra21(t− s)v1(t− s− τ(t− s))ds


 .

Let t − s − τ(t − s) = t − s1. Since the function y = h(x) = x − τ(x) is strictly

increasing, the inverse function x = h−1(y) exists. Solving t−s1 = h(t−s), we obtain

s = t−h−1(t−s1), ds1 = d(s+τ(t−s)) = (1−τ ′(t−s))ds and ds = 1
1−τ ′(h−1(t−s1))

ds1.
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Therefore, ∫ ∞

0

e−
∫ t
t−s

a22(r)dra21(t− s)v1(t− s− τ(t− s))ds

=

∫ ∞

τ(t)

e
−

∫ t

h−1(t−s1)
a22(r)dra21(h

−1(t− s1))v1(t− s1)

1− τ ′(h−1(t− s1))
ds1

=

∫ ∞

τ(t)

e−
∫ t

h−1(t−s)
a22(r)dra21(h

−1(t− s))v1(t− s)

1− τ ′(h−1(t− s))
ds.

Define

K21(t, s) =





0, s < τ(t),

e
−

∫ t
h−1(t−s)

a22(r)dr
a21(h−1(t−s))

1−τ ′(h−1(t−s))
, s ≥ τ(t),

and K12(t, s) = e−
∫ t
t−s

a11(r)dra12(t− s), K11(t, s) = K22(t, s) = 0. Then we can rewrite

[Lv](t) =

∫ ∞

0

K(t, s)v(t− s)ds

=
∞∑

j=0

∫ (j+1)ω

jω

K(t, s)v(t− s)ds

=
∞∑

j=0

∫ ω

0

K(t, jω + s)v(t− s− jω)ds

=

∫ ω

0

G(t, s)v(t− s)ds,

where G(t, s) =
∑∞

j=0K(t, jω+s). Consequently, we can use the numerical method in

[70] to compute R0. We set ω = 12 months. By using the obtained parameter values

above, together with initial functions Ih(θ) = 337598, Sm(θ) = 2712343, Em(0) =

1000, Im(0) = 2000 for all θ ∈ [−τ̂ , 0], we get R0 = 3.1471 > 1. In this case,

the disease will persist and exhibit periodic fluctuation eventually (see Figure 3.2).

By employing some malaria control measures such as using insecticide-treated nets,

spraying or clearance of mosquito breeding sites, if we can decrease the biting rate to

0.7β(t), and increase the mosquito mortality rate to 1.5dm(t), then R0 = 0.6591 < 1.

In this case, we observe that the infectious human population, the exposed and the
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infectious mosquito populations tend to 0, which means that the disease is eliminated

from this area eventually (see Figure 3.3). These numerical simulation results consist

with the analytic results in the previous section.
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Figure 3.2: Long term behaviour of the solution of system (3.7) when R0 = 3.1471 > 1.

We define the time-averaged EIP duration as

[τ ] :=
1

ω

∫ ω

0

τ(t)dt.

It follows that [τ ] = 17.2500/30.4 month. By using this time-averaged EIP duration

and keeping all the other parameter values the same as those in Figure 3.2, we obtain

R0 = 1.8540, which is less than 3.1471 in Figure 3.2. Figure 3.4 compares the long

term behaviour of the infectious compartments of model (3.7) under two different
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Figure 3.3: Long term behaviour of the solution of system (3.7) when R0 = 0.6591 < 1.
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Figure 3.4: Comparison of the long term behaviour of the infectious compartments
of model (3.7) under two different EIP durations (red curve: temperature-dependent
EIP; blue curve: time-averaged EIP).

values of the EIP durations: the periodic τ(t) and the constant [τ ]. Figure 4(a)

indicates that the use of the time-averaged EIP [τ ] may underestimate the number

of infectious humans in Maputo. In Figure 4(b), we see that the amplitude of the

periodic fluctuation of infectious mosquitoes is obviously smaller when [τ ] is used. In

addition, the peak and the nadir of the periodic fluctuation of Im are underestimated

and overestimated, respectively.

3.5 Discussion

Malaria is strongly linked to climate conditions through the impact of climate on

the vector and the parasite ecology. Of all the environmental conditions, temper-

ature plays the most important role in malaria transmission. Both the mosquito

Anopheles and the parasite Plasmodium are extremely sensitive to temperature. In

particular, the duration of the EIP of Plasmodium is determined by temperature (see,

e.g., [10, 57]). An increasing number of malaria models have incorporated the effects

of temperature on mosquito life cycle. However, none of the existing deterministic
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malaria transmission models has taken into account the dependence of the EIP on

temperature.

In this chapter, we developed a malaria transmission model that, for the first time,

incorporates a temperature-dependent EIP. The model is a system of delay differential

equations with a periodic time delay. By using the theory recently developed by Zhao

[110], we derived the basic reproduction ratio R0. Incorporation of the periodic delay

increases challenges for theoretical analysis. Fortunately, the work by Lou and Zhao

[49] throws light on mathematical analysis of delay differential system with periodic

delays. Following the theoretical approach in [49] we defined a phase space on which

the limiting system generates an eventually strongly monotone periodic semiflow. By

employing the theory of monotone and subhomogeneous systems and the theory of

chain transitive sets, we established a threshold type result on the global dynamics in

terms of the basic reproduction ratio R0: if R0 < 1, then malaria will be eliminated;

if R0 > 1, then the disease will persist and exhibit seasonal fluctuation.

Using some published data from Maputo Province, Mozambique and formula re-

lated to mosquito life cycle, we obtained estimations for all the constant and periodic

parameters. We fitted the curve of the EIP for Maputo Province by appealing to the

Detinova prediction curve. With the algorithm proposed by Posny and Wang [70],

we numerically calculated the basic reproduction ratio R0. The numerical simulation

about the long term behaviour of solutions is consistent with the obtained analytic

result. To compare our results with those for the constant EIP case, we also con-

ducted numerical simulations for the long term behaviour of infectious compartments

by using the time-averaged EIP. It turns out that the adoption of the time-averaged

EIP may underestimate both the number of infectious humans and the basic repro-

duction ratio. Thus, the models incorporating the temperature-dependent EIP are

more helpful for the control of the malaria transmission.



Chapter 4

A climate-based malaria model

with the use of bed nets

4.1 Introduction

Malaria remains the most severe and complex health challenge facing the vast ma-

jority of the countries in the sub-Saharan Africa [89]. The World Health Organiza-

tion estimated that there were 214 million malaria cases in 2015, resulting in about

438 thousand deaths [98]. Some commonly used strategies in combatting malaria

include antimalarial drugs, larvicides, insecticides and intermittent preventive treat-

ment. Insecticide-treated bed nets (ITNs) is the preferred tool for reducing malaria

transmission and alleviating disease burden [22, 41]. In addition to providing a phys-

ical barrier between humans and mosquitoes, the insecticide used to treat the bed

nets repels mosquitoes, and if a mosquito fails to be repelled, it will often rest on

the bed net, and may then be killed by contacting the insecticide [12]. A number of

studies in Africa have demonstrated that high coverage of ITNs benefits not only the

users but also the whole local community. Since the pioneering work of Ronald Ross
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[76], who proved that malaria is transmitted by mosquitoes and proposed the first

malaria model, much modeling work has been done to study malaria transmission

dynamics (see, e.g., [4, 5, 37, 46, 50, 92] and the references therein). In recent years,

several models have been proposed to investigate the impact of bed net use (see, e.g.,

[2, 19, 35, 58, 59] and the references therein).

As mentioned in [1], most of the existing malaria models include only adult

mosquitoes. Indeed, mosquitoes undergo four distinct development stages during

a lifetime: egg, larva, pupa, and adult. Quite a few researchers have incorporated

the different stages of mosquitoes into their models (see, e.g., [1, 43, 48, 57, 97]).

While it is appropriate to assume that only adult mosquitoes are involved in the

malaria transmission, the dynamics of the juvenile stage have significant effects on

the dynamics of the mosquito population, and hence the disease transmission dynam-

ics [1]. In particular, since larval control is a hot recommended strategy in fighting

against malaria, it is necessary to develop a mathematical model which includes the

two key stages of mosquitoes (juvenile and adult) so that we can better understand

the mosquito population dynamics and gain some insights into the design of disease

control strategies.

Recent experimental and field study results indicate that malaria parasites manip-

ulate a host to be more attractive to mosquitoes via chemical substances. (see, e.g.,

[39]). Only a few mathematical models have accounted for the greater attractiveness

of infectious humans to mosquitoes (see, e.g., [17, 36, 59, 95, 103] and the references

therein). Incorporating such vector-bias effect in malaria models will give us a better

description and a more accurate quantification of the disease dynamics.

The purpose of this chapter is to develop an ordinary differential equations model

that, for the first time, incorporates the juvenile mosquito stage, the impact of ITNs
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use, the vector-bias effect and seasonality simultaneously. This work uses the dy-

namical systems theory to obtain the qualitative properties of human and mosquito

population sizes.

The rest of this chapter is organized as follows. In the next section, we formulate

the model and give the underlying assumptions. In section 4.3, we establish the

threshold dynamics of the model via the vector reproduction ratio and the basic

reproduction ratio. In section 4.4, we do a case study for Port Harcourt, Nigeria. A

brief discussion concludes the chapter.

4.2 Model formulation

In order to formulate the model, we consider two stages of mosquitoes: the juvenile

stage and the adult one. By juvenile, we mean any of the three aquatic stages:

egg, larva and pupa. Let Lv(t) be the number of juvenile mosquitoes at time t.

The adult mosquito population is grouped into two compartments, susceptible and

infectious, the numbers of which at time t are denoted by Sv(t) and Iv(t), respectively.

Letting Nv(t) be the number of all adult mosquitoes at time t, we have Nv(t) =

Sv(t)+Iv(t). Let Ih(t) be the number of infectious humans at time t. We assume that

the total human population size Nh remains constant for a specified region. Then the

number of susceptible humans at time t is Nh−Ih(t). To study the human population

dynamics we only need to know how Ih(t) changes with time t. Thus, for the human

population we only consider the equation for Ih(t) in our model. Let dh be the human

natural death rate. We use ρ to denote the recovery and disease-induced death rate of

humans. Let λL(t) and µL(t) be the birth rate and the natural death rate of juvenile

mosquitoes, respectively. According to [43] and [72], larval crowding and competition

for limited resources are quite common in some breeding sites. To account for such



87

a phenomenon, we also incorporate the density-dependent mortality rate of juvenile

mosquitoes, denoted by α. We use λv(t) to denote the birth rate of adult mosquitoes.

Following [2], we model the biting rate of mosquitoes by the linearly decreasing

function of the proportion of ITNs use k:

β(t, k) = βv(t)− k(βv(t)− βr(t)), 0 ≤ k ≤ 1,

where βv(t) is the natural biting rate of mosquitoes, and βr(t) is the reduced biting

rate of mosquitoes due to the physical barrier provided by ITNs between the human

and the mosquito. If k = 0, which means that no one uses ITNs, then the biting rate

would remain at its natural level βv(t). The biting rate will be reduced to a minimum

value βr(t) if k = 1, when everyone uses ITNs. We model the death rate of adult

mosquitoes by the following linearly increasing function of k:

µ(t, k) = µv(t) + µ̄k, 0 ≤ k ≤ 1,

where µv(t) is the natural death rate of adult mosquitoes and µ̄k is mosquitoes’ death

rate due to their contact with the insecticide on bed nets.

Let p and l be the probabilities that a mosquito arrives at a human at random

and picks the human if he is infectious and susceptible, respectively. Since infectious

humans are more attractive to mosquitoes, we assume that p ≥ l. We denote the biting

rate of mosquitoes by β(t, k), which is the number of bites per mosquito per unit time

at time t. Then β(t, k)Iv(t) is the number of bites by all infectious mosquitoes per unit

time at time t. We assume that a mosquito does not bite the same person for more

than once. Since the total number of bites made by mosquitoes equals to the number of

bites received by humans [13], β(t, k)Iv(t) is also the number of humans that are bitten

by infectious mosquitoes per unit time at time t . Among all the humans that are
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bitten by infectious mosquitoes, only those originally susceptible ones may contribute

to the increase of Ih(t). Hence, we need to derive the probability that a human is

susceptible under the condition that a mosquito picks him. Obviously, this probability

equals to l(Nh−Ih(t))
pIh(t)+l(Nh−Ih(t))

, the ratio between the total bitten susceptible humans and

the total bitten humans. For simplicity, we neglect both the intrinsic incubation

period within humans and the extrinsic incubation period within mosquitoes. Thus,

the number of newly occurred infectious humans per unit time at time t is

cβ(t, k)
l(Nh − Ih(t))

pIh(t) + l(Nh − Ih(t))
Iv(t),

where c is the probability of transmission of infection from an infectious mosquito

to a susceptible human given that the contact between the two occurs. Similarly,

pIh(t)
pIh(t)+l(Nh−Ih(t))

is the probability that a human is infectious under the condition that

a mosquito picks him. Then the number of newly occurred infectious mosquitoes per

unit time at time t is

bβ(t, k)
pIh(t)

pIh(t) + l(Nh − Ih(t))
Sv(t),

where b is the transmission probability per bite from infectious humans to susceptible

mosquitoes. The model system is governed by

dLv(t)

dt
= λL(t)(Sv(t) + Iv(t))− µL(t)Lv(t)− αLv(t)

2 − λv(t)Lv(t),

dSv(t)

dt
= λv(t)Lv(t)− bβ(t, k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
Sv(t)− µ(t, k)Sv(t),

dIv(t)

dt
= bβ(t, k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
Sv(t)− µ(t, k)Iv(t),

dIh(t)

dt
= cβ(t, k)

l(Nh − Ih(t))

pIh(t) + l(Nh − Ih(t))
Iv(t)− (dh + ρ)Ih(t),

(4.1)
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where all constant parameters are positive, and λL(t), µL(t), λv(t), β(t, k), µ(t, k)

are positive, continuous functions ω-periodic in time t for some ω > 0. For reader’s

convenience, we list all the parameters and their biological interpretations in Table

4.1.

Table 4.1: Biological interpretations for parameters of model (4.1)

Parameters Description
Lv(t) the number of juvenile mosquitoes (eggs, larvae and pupae)
Sv(t) the number of susceptible adult mosquitoes
Iv(t) the number of infectious adult mosquitoes
Ih(t) the number of infectious humans
λL(t) birth rate of juvenile mosquitoes
µL(t) natural death rate of juvenile mosquitoes
α density-dependent death rate of junenile mosquitoes
λv(t) birth rate of adult mosquitoes
b transmission probability per bite from infectious humans to mosquitoes
c transmission probability per bite from infectious mosquitoes to humans
k proportion of effective ITNs use (0 ≤ k ≤ 1)
βv(t) mosquito biting rate
βr(t) reduced mosquito biting rate due to ITNs
µv(t) natural death rate of adult mosquitoes
µ̄k death rate of adult mosquitoes due to contact with insecticide on bed nets
dh natural death rate of humans
ρ removal rate of humans from the infectious compartment (i.e., recovery

rate and disease-induced death rate)
p probability that a mosquito arrives at a human at random and picks the

human if he is infectious
l probability that a mosquito arrives at a human at random and picks the

human if he is susceptible
Nh the total number of humans

4.3 Global stability analysis

In what follows, we use the theory developed in [94] to derive two threshold parameters

for the model: the vector reproduction ratio Rv and the basic reproduction ratio R0.
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Note that system (4.1) is equivalent to the following one:

dLv(t)

dt
= λL(t)Nv(t)− µL(t)Lv(t)− αLv(t)

2 − λv(t)Lv(t),

dNv(t)

dt
= λv(t)Lv(t)− µ(t, k)Nv(t),

dIv(t)

dt
= bβ(t, k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
(Nv(t)− Iv(t))− µ(t, k)Iv(t),

dIh(t)

dt
= cβ(t, k)

l(Nh − Ih(t))

pIh(t) + l(Nh − Ih(t))
Iv(t)− (dh + ρ)Ih(t).

(4.2)

Then the mosquito population is described by

dLv(t)

dt
= λL(t)Nv(t)− µL(t)Lv(t)− αLv(t)

2 − λv(t)Lv(t),

dNv(t)

dt
= λv(t)Lv(t)− µ(t, k)Nv(t).

(4.3)

Linearizing system (4.3) at (0, 0), we get the following linear cooperative system:

dLv(t)

dt
= λL(t)Nv(t)− (µL(t) + λv(t))Lv(t),

dNv(t)

dt
= λv(t)Lv(t)− µ(t, k)Nv(t).

(4.4)

We rewrite system (4.4) as dv
dt

= (F̃ (t)− Ṽ (t))v, where

F̃ (t) =



0 λL(t)

0 0


 , Ṽ (t) =



µL(t) + λv(t) 0

−λv(t) µ(t, k)


 .

Let Ỹ (t, s), t ≥ s, be the evolution operator of the linear periodic system

dy

dt
= −Ṽ (t)y.
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That is, for each s ∈ R, the 2× 2 matrix Ỹ (t, s) satisfies

d

dt
Ỹ (t, s) = −Ṽ (t)Ỹ (t, s), ∀t ≥ s, Ỹ (s, s) = I,

where I is the 2× 2 identity matrix.

Let Cω be the ordered Banach space of all ω-periodic functions from R to R
2,

equipped with the maximum norm and the positive cone C+
ω := {φ ∈ Cω : φ(t) ≥

0, ∀t ∈ R}. According to [94, Section 2], we assume that φ(s) ∈ Cω is the initial

distribution of adult mosquitoes. Then F̃ (s)φ(s) is the distribution of new juvenile

mosquitoes produced by the adult ones who were introduced at time s. Given t ≥ s,

then Ỹ (t, s)F̃ (s)φ(s) gives the distribution of those mosquitoes who were newly born

into the juvenile mosquito compartment at time s and remain alive (either as juvenile

mosquitoes or as adult ones) at time t. It follows that

ψ(t) :=

∫ t

−∞

Ỹ (t, s)F̃ (s)φ(s)ds =

∫ ∞

0

Ỹ (t, t− a)F̃ (t− a)φ(t− a)da

is the distribution of accumulative new juvenile and adult mosquitoes at time t pro-

duced by all those adult mosquitoes φ(s) introduced at previous time to t.

We define a linear operator L̃ : Cω → Cω by

(L̃φ)(t) =

∫ ∞

0

Ỹ (t, t− a)F̃ (t− a)φ(t− a)da, ∀t ∈ R, φ ∈ Cω.

It then follows from [94] that the vector reproduction ratio is Rv := ρ(L̃), the spectral

radius of L̃. Let r1 be the principal Floquét multiplier of system (4.4), that is, the

spectral radius of the Poincaré map associated with system (4.4). By [94, Theorem

2.2], Rv − 1 has the same sign as r1 − 1. As a straightforward consequence of [109,

Theorem 3.1.2], we have the following result.
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Lemma 4.3.1. The following statements are valid:

(i) If Rv ≤ 1, then (0, 0) is globally attractive for system (4.3) in R
2
+.

(ii) If Rv > 1, then system (4.3) admits a unique positive ω-periodic solution (L∗
v(t),

N∗
v (t)), which is globally attractive for system (4.3) in R

2
+ \ {(0, 0)}.

Let W := R
3
+ × [0, Nh]. We then have the following result for system (4.2).

Lemma 4.3.2. For any ϕ ∈ W , system (4.2) has a unique nonnegative bounded

solution u(t, ϕ) on [0,∞) with u(0) = ϕ, and u(t, ϕ) ∈ W for all t ≥ 0.

Proof. For any ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ W , we define

f̂(t, ϕ) =




λL(t)ϕ2 − µL(t)ϕ1 − αϕ2
1 − λv(t)ϕ1

λv(t)ϕ1 − µ(t, k)ϕ2

bβ(t, k) pϕ4(ϕ2−ϕ3)
pϕ4+l(Nh−ϕ4)

− µ(t, k)ϕ3

cβ(t, k) l(Nh−ϕ4)ϕ3

pϕ4+l(Nh−ϕ4)
− (dh + ρ)ϕ4




.

Since f̂(t, ϕ) is continuous in (t, ϕ) ∈ R+ ×W , and f̂(t, ϕ) is Lipschitz in ϕ on each

compact subset of W , it follows that system (4.2) has a unique solution u(t, ϕ) on its

maximal interval [0, σϕ) of existence with u(0) = ϕ (see, e.g., [29, Theorems 2.2.1 and

2.2.3] ).

Let ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ W be given. If ϕi = 0 for some i ∈ {1, 2, 3, 4}, then

f̂i(t, ϕ) ≥ 0. If ϕ4 = Nh, then f̂4(t, ϕ) ≤ 0. By [84, Theorem 5.2.1 and Remark

5.2.1], it follows that for any ϕ ∈ W , the unique solution u(t, ϕ) of system (4.2) with

u(0) = ϕ satisfies u(t, ϕ) ∈ W for all t ∈ [0, σϕ).

Clearly, 0 ≤ u4(t, ϕ) ≤ Nh for all t ∈ [0, σϕ). It follows from Lemma 4.3.1 that

there exists B1 > 0 and B2 > 0 such that u1(t, ϕ) ≤ B1, u2(t, ϕ) ≤ B2, ∀t ∈ [0, σϕ).
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In view of the third equation of system (4.2), we have

du3(t, ϕ)

dt
≤ bβ(t, k)B2 − (bβ(t, k) + µ(t, k))u3(t, ϕ).

Hence, u3(t, ϕ) is also bounded on [0, σϕ). Then [29, Theorem 2.3.1] implies that

σϕ = ∞. �

If limt→∞(Lv(t) − L∗
v(t)) = limt→∞(Nv(t) − N∗

v (t)) = 0, the last two equations in

system (4.2) give rise to the following limiting system:

dIv(t)

dt
= bβ(t, k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
(N∗

v (t)− Iv(t))− µ(t, k)Iv(t),

dIh(t)

dt
= cβ(t, k)

l(Nh − Ih(t))

pIh(t) + l(Nh − Ih(t))
Iv(t)− (dh + ρ)Ih(t).

(4.5)

The following result implies that the domainG(t) := [0, N∗
v (t)]×[0, Nh] is positively

invariant for system (4.5).

Lemma 4.3.3. For any ϕ = (ϕ1, ϕ2) ∈ G(0), system (4.5) has a unique solution

v(t, ϕ) with v(0) = ϕ and (Iv(t, ϕ), Ih(t, ϕ)) ∈ G(t), ∀t ≥ 0.

Proof. For any ϕ ∈ G(0), define

f̃(t, ϕ) =




bβ(t, k)pϕ2(N∗

v (t)−ϕ1)
pϕ2+l(Nh−ϕ2)

− µ(t, k)ϕ1

cβ(t, k) l(Nh−ϕ2)ϕ1

pϕ2+l(Nh−ϕ2)
− (dh + ρ)ϕ2


 .

Since f̃ is continuous in (t, ϕ) ∈ R × G(0) and f̃ is Lipschitz in ϕ on each compact

subset of G(0), it follows that system (4.5) has a unique solution v(t, ϕ) with v(0) = ϕ

on its maximal interval [0, σϕ) of existence.

Let ϕ = (ϕ1, ϕ2) ∈ G(0) be given. If ϕ1 = 0, then f̃1(t, ϕ) ≥ 0. If ϕ2 = 0,

then f̃2(t, ϕ) ≥ 0. If ϕ2 = Nh, then f̃2(t, ϕ) ≤ 0. By [84, Theorem 5.2.1 and Remark
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5.2.1], it follows that the unique solution v(t, ϕ) of system (4.5) with v(0) = ϕ satisfies

v(t, ϕ) ∈ R+ × [0, Nh].

It remains to prove that v1(t) ≤ N∗
v (t), ∀t ∈ [0, σϕ). Suppose this does not hold.

Then there exists t0 ∈ [0, σϕ) and ǫ0 > 0 such that

v1(t0) = N∗
v (t0) and v1(t) > N∗

v (t), ∀t ∈ (t0, t0 + ǫ0).

Since

dv1(t0)

dt
= −µ(t0, k)v1(t0) = −µ(t0, k)N∗

v (t0) <
dN∗

v (t0)

dt
,

there exists ǫ1 ∈ (0, ǫ0) such that v1(t) ≤ N∗
v (t), ∀t ∈ (t0, t0 + ǫ1), which is a contra-

diction. This proves that v(t, ϕ) ∈ G(t), ∀t ∈ [0, σϕ). Clearly, v(t, ϕ) is bounded on

[0, σϕ), and hence, [29, Theorem 2.3.1] implies that σϕ = ∞. �

Linearizing system (4.5) at (0, 0), we get the following linear system

dIv(t)

dt
= −µ(t, k)Iv(t) + bβ(t, k)

pN∗
v (t)

lNh

Ih(t),

dIh(t)

dt
= cβ(t, k)Iv(t)− (dh + ρ)Ih(t).

(4.6)

We rewrite system (4.6) as du
dt

= (F (t)− V (t))u, where

F (t) =




0 bβ(t, k)pN
∗

v (t)
lNh

cβ(t, k) 0


 , V (t) =



µ(t, k) 0

0 dh + ρ


 .

Let Y (t, s), t ≥ s, be the evolution operator of the linear periodic system

dy

dt
= −V (t)y.
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That is, for each s ∈ R, the 2× 2 matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = I,

where I is the 2× 2 identity matrix.

We assume that ϕ(s) ∈ Cω is the initial distribution of infectious mosquitoes and

infectious humans. Then F (s)ϕ(s) is the distribution of new infections produced by

the infectious mosquitoes and infectious humans who were introduced at time s. Given

t ≥ s, then Y (t, s)F (s)ϕ(s) gives the distribution of those infectious mosquitoes and

infectious humans who were newly infected at time s and remain in the infectious

compartments at time t. It follows that

∫ t

−∞

Y (t, s)F (s)ϕ(s)ds =

∫ ∞

0

Y (t, t− a)F (t− a)ϕ(t− a)da

is the distribution of accumulative new infections at time t produced by all those

infectious mosquitoes and infectious humans ϕ(s) introduced at previous time to t.

We define a linear operator L : Cω → Cω by

(Lϕ)(t) =

∫ ∞

0

Y (t, t− a)F (t− a)ϕ(t− a)da, ∀t ∈ R, ϕ ∈ Cω.

It then follows from [94] that the basic reproduction ratio is R0 := ρ(L), the spectral

radius of L. The following lemma gives a threshold type result for the limiting system

(2.6).

Lemma 4.3.4. The following statements are valid:

(i) If R0 ≤ 1, then (0, 0) is globally attractive for system (4.5) in G(0).

(ii) If R0 > 1, then system (4.5) admits a unique positive ω-periodic solution (I∗v (t),



96

I∗h(t)), which is globally attractive for system (4.5) in G(0) \ {(0, 0)}.

Proof. Let S(t) be the solution maps of system (4.5), that is, S(t)(Iv(0), Ih(0)) =

(Iv(t), Ih(t)), t ≥ 0, where (Iv(t), Ih(t)) is the unique solution of system (4.5) with

(Iv(0), Ih(0)) ∈ G(0). It follows from Lemma 4.3.3 that S(t) maps G(0) into G(t), and

S := S(ω) : G(0) → G(ω) = G(0) is the Poincaré map associated with system (4.5).

Let (ȳ1(0), ȳ2(0)) ≥ (y1(0), y2(0)). Let (ȳ1(t), ȳ2(t)) and (y1(t), y2(t)) be the solu-

tions of system (4.5) with initial values (ȳ1(0), ȳ2(0)) and (y1(0), y2(0)), respectively.

Then the comparison theorem for cooperative ordinary differential systems implies

that (ȳ1(t), ȳ2(t)) ≥ (y1(t), y2(t)), ∀t ≥ 0, that is, S(t) : G(0) → G(t) is monotone for

each t ≥ 0.

Next, we show that S(t) : G(0) → G(t) is strongly monotone for each t > 0.

Suppose (ȳ1(0), ȳ2(0)) > (y1(0), y2(0)). Then the comparison theorem for cooperative

ordinary differential systems implies that

(ȳ1(t), ȳ2(t)) > (y1(t), y2(t)), ∀t ≥ 0.

We proceed with two cases.

Case 1. ȳ1(0) > y1(0).

Let

g1(y) := bβ(t, k)
py2(t)

(p− l)y2(t) + lNh

(N∗
v (t)− y)− µ(t, k)y.

Since
dȳ1(t)

dt
= bβ(t, k)

pȳ2(t)

(p− l)ȳ2(t) + lNh

(N∗
v (t)− ȳ1(t))− µ(t, k)ȳ1(t)

≥ bβ(t, k)
py2(t)

(p− l)y2(t) + lNh

(N∗
v (t)− ȳ1(t))− µ(t, k)ȳ1(t)

= g1(ȳ1(t)),
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we have

dȳ1(t)

dt
− g1(ȳ1(t)) ≥ 0 =

dy1(t)

dt
− g1(y1(t)), ∀t ≥ 0.

Since ȳ1(0) > y1(0), Theorem 1.3.1 implies that ȳ1(t) > y1(t), ∀t ≥ 0.

To prove ȳ2(t) > y2(t), ∀t > 0, we first prove that for any ǫ > 0, there exists an

open interval (a, b) ⊂ [0, ǫ] such that Nh > ȳ2(t), ∀t ∈ (a, b). Otherwise, there exists

ǫ0 > 0 such that Nh = ȳ2(t), ∀t ∈ (0, ǫ0). It then follows from the second equation of

system (2.6) that 0 = −(dh + ρ)Nh, which is a contradiction. Let

f1(y) := cβ(t, k)
l(Nh − y)

(p− l)y + lNh

y1(t)− (dh + ρ)y.

Then we have

dȳ2(t)

dt
= cβ(t, k)

l(Nh − ȳ2(t))

(p− l)ȳ2(t) + lNh

ȳ1(t)− (dh + ρ)ȳ2(t)

> cβ(t, k)
l(Nh − ȳ2(t))

(p− l)ȳ2(t) + lNh

y1(t)− (dh + ρ)ȳ2(t)

= f1(ȳ2(t)), ∀t ∈ (a, b),

and hence,

dȳ2(t)

dt
− f1(ȳ2(t)) > 0 =

dy2(t)

dt
− f1(y2(t)), ∀t ∈ (a, b).

Since ȳ2(0) ≥ y2(0), it follows from Theorem 1.3.1 that ȳ2(t) > y2(t), ∀t > 0.

Case 2. ȳ1(0) = y1(0).

Since (ȳ1(0), ȳ2(0)) > (y1(0), y2(0)) and ȳ1(0) = y1(0), we must have ȳ2(0) > y2(0).

By similar arguments to those in Case 1, we see that for any ǫ > 0, there exists an
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open interval (a, b) ⊂ [0, ǫ] such that Nh > ȳ2(t), ∀t ∈ (a, b). Then we have

dȳ2(t)

dt
= cβ(t, k)

l(Nh − ȳ2(t))

(p− l)ȳ2(t) + lNh

ȳ1(t)− (dh + ρ)ȳ2(t)

≥ cβ(t, k)
l(Nh − ȳ2(t))

(p− l)ȳ2(t) + lNh

y1(t)− (dh + ρ)ȳ2(t)

= f1(ȳ2(t)), ∀t ∈ (a, b),

and hence,

dȳ2(t)

dt
− f1(ȳ2(t)) ≥ 0 =

dy2(t)

dt
− f1(y2(t)), ∀t ∈ (a, b).

Since ȳ2(0) > y2(0), it follows from Theorem 1.3.1 that ȳ2(t) > y2(t), ∀t > 0.

To prove ȳ1(t) > y1(t), ∀t > 0, we first prove that for any ǫ > 0, there exists

(a1, b1) ⊂ [0, ǫ] such that ȳ1(t) < N∗
v (t), ∀t ∈ (a1, b1). Otherwise, there exists ǫ1 > 0

such that ȳ1(t) = N∗
v (t), ∀t ∈ (0, ǫ1). By the first equation of system (4.5), we have

dȳ1(t)

dt
=
dN∗

v (t)

dt
= −µ(t, k)N∗

v (t), t ∈ (0, ǫ1),

which contradicts the fact that

dN∗
v (t)

dt
= λv(t)L

∗
v(t)− µ(t, k)N∗

v (t).

Let

g1(t) := bβ(t, k)
py2(t)

(p− l)y2(t) + lNh

(N∗
v (t)− y)− µ(t, k)y.
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Since
dȳ1(t)

dt
= bβ(t, k)

pȳ2(t)

(p− l)ȳ2(t) + lNh

(N∗
v (t)− ȳ1(t))− µ(t, k)ȳ1(t)

> bβ(t, k)
py2(t)

(p− l)y2(t) + lNh

(N∗
v (t)− ȳ1(t))− µ(t, k)ȳ1(t)

= g1(ȳ1(t)), ∀t ∈ (a1, b1),

we have

ȳ1(t)

dt
− g1(ȳ1(t)) > 0 =

dy1(t)

dt
− g1(y1(t)), ∀t ∈ (a1, b1).

Since ȳ1(0) = y1(0), Theorem 1.3.1 implies that ȳ1(t) > y1(t), ∀t > 0.

Consequently, S(t) : G(0) → G(t) is strongly monotone for each t > 0.

For any given x = (x1, x2) ∈ G(0), λ ∈ [0, 1], let v(t, x) and v(t, λx) be the solutions

of system (4.5) satisfying v(0) = x and v(0) = λx, respectively. Denote u(t) = λv(t, x)

and z(t) = v(t, λx). Define f by

f(t, x) =



bβ(t, k) px2

(p−l)x2+lNh
(N∗

v (t)− x1)− µ(t, k)x1

cβ(t, k) l(Nh−x2)
(p−l)x2+lNh

x1 − (dh + ρ)x2


 .

Note that for any ψ ∈ G(t) and λ ∈ [0, 1], we have f(t, λψ) ≥ λf(t, ψ). Then

du(t)

dt
= λ

dv(t, x)

dt
= λf(t, v(t, x)) ≤ f(t, λv(t, x)) = f(t, u(t)).

Clearly, dz(t)
dt

= f(t, z(t)) and u(0) = λv(0, x) = λx = z(0). By the comparison

principle we have u(t) ≤ z(t), ∀t ≥ 0, that is, λv(t, x) ≤ v(t, λx), ∀t ≥ 0. This shows

that the solution map S(t) : G(0) → G(t) is subhomogeneous.

Next, we prove that for any t > 0, S(t) : G(0) → G(t) is strictly subhomogeneous.
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For any given x ∈ G(0) with x≫ 0 and λ ∈ (0, 1), let

f2(r) := cβ(t, k)
l(Nh − r)

(p− l)r + lNh

z1(t)− (dh + ρ)r,

g2(r) := cβ(t, k)
l(Nh − r)

(p− l)r + lNh

.

Since g2(r) is strictly decreasing in r and λv1(t, x) ≤ v1(t, λx), v2(t, x) > λv2(t, x), ∀λ ∈

(0, 1), ∀t > 0, it follows that

du2(t)

dt
= λ

dv2(t, x)

dt

= λcβ(t, k)
l(Nh − v2(t, x))

(p− l)v2(t, x) + lNh

v1(t, x)− (dh + ρ)λv2(t, x)

< cβ(t, k)
l(Nh − λv2(t, x))

(p− l)λv2(t, x) + lNh

z1(t)− (dh + ρ)λv2(t, x)

= cβ(t, k)
l(Nh − u2(t))

(p− l)u2(t) + lNh

z1(t)− (dh + ρ)λv2(t, x)

= g(u2(t))z1(t)− (dh + ρ)u2(t)

= f2(u2(t)),

and hence,

du2(t)

dt
− f2(u2(t)) < 0 =

dz2(t)

dt
− f2(z2(t)), ∀t > 0.

Note that u2(0) = λv2(0, x) = λx = v2(0, λx) = z2(0). By Theorem 1.3.1, we then

obtain u2(t) < z2(t), ∀t > 0. Thus, λv(t, x) < v(t, λx), ∀t > 0.

Let P be the Poincaré map associated with system (4.6) on R
2 and r(P ) be its

spectral radius. By the continuity and differentiability of solutions with respect to

initial values, it follows that S is differentiable at zero and the Frechét derivative

DS(0) = P. By Theorem 1.3.4, as applied to S, we have the following result:

(a) If r(P ) ≤ 1, then (0, 0) is globally attractive for (4.5) in G(0).

(b) If r(P ) > 1, then system (4.5) admits a unique positive ω-periodic solution
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(I∗v (t), I
∗
h(t)), which is globally attractive for system (4.5) in G(0) \ {(0, 0)}.

By [94, Theorem 2.2], R0 − 1 has the same sign as r(P )− 1. Therefore, we have the

desired threshold type result in terms of R0. �

Next, we use the theory of chain transitive sets (see section 1.1) to lift the threshold

type result for system (4.5) to system (4.2).

Theorem 4.3.5. The following statements are valid:

(i) If Rv ≤ 1, then (0, 0, 0, 0) is globally attractive for system (4.2) in W .

(ii) If Rv > 1 and R0 ≤ 1, then (L∗
v(t), N

∗
v (t), 0, 0) is globally attractive for system

(4.2) in W \ {(0, 0, 0, 0)};

(iii) If Rv > 1 and R0 > 1, then (L∗
v(t), N

∗
v (t), I

∗
v (t), I

∗
h(t)) is globally attractive for

system (4.2) in W \ R2
+ × {(0, 0)}.

Proof. Let {Ψ(t)}t≥0 be the periodic semiflow associated with system (4.2) on W ,

that is,

Ψ(t)(x) := (Lv(t, x), Nv(t, x), Iv(t, x), Ih(t, x))

is the unique solution of system (4.2) with initial value x ∈ W . Then Ψ := Ψ(ω) is the

Poincaré map of system (4.2), and {Ψn}n≥0 defines a discrete-time dynamical system

on W . For any given x ∈ W , let L be the omega limit set of the discrete-time orbit

{Ψn(x)}n≥0. It follows from Lemma 1.1.2 that L is an internally chain transitive set

for Ψn on W .

In the case where Rv ≤ 1, by Lemma 4.3.1(i), we have

lim
n→∞

((Ψn(x))1, (Ψ
n(x))2, (Ψ

n(x))3) = (0, 0, 0).
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Then there exists a subset L1 of R such that

L = {(0, 0, 0)} × L1.

For any given y = (y1, y2, y3, y4) ∈ L, there exists a sequence nk → ∞ such that

Ψnk(x) → y as k → ∞. Since 0 ≤ (Ψnk(x))4 = Ih(nkω, x) ≤ Nh for all x ∈ W , letting

nk → ∞, we obtain 0 ≤ y4 ≤ Nh. It then follows that L1 ⊂ [0, Nh]. It is easy to see

that

Ψn|L(0, 0, 0, y4) = {(0, 0, 0)} ×Ψn
1 |L1(y4),

where {Ψ1(t)}t≥0 is the solution semiflow associated with the following system:

dIh(t)

dt
= −(dh + ρ)Ih(t). (4.7)

Since L is an internally chain transitive set for Ψn, it follows that L1 is an internally

chain transitive set for Ψn
1 . Since 0 is globally attractive for system (4.7) in R, it

follows from Theorem 1.1.3 that L1 = {0}, and hence, L = {(0, 0, 0, 0)}. This implies

that statement (i) is valid.

In the case where Rv > 1, by Lemma 4.3.1(ii), we have

lim
n→∞

((Ψn(x))1, (Ψ
n(x))2) = (L∗

v(0), N
∗
v (0)).

Then there exists a subset L2 of R2 such that

L = {(L∗
v(0), N

∗
v (0))} × L2.

For any given z = (z1, z2, z3, z4) ∈ L, there exists a sequence nj → ∞ such that

Ψnj(x) → z as j → ∞. Since 0 ≤ (Ψnj(x))3 = Iv(njω, x) ≤ Nv(njω, x) and 0 ≤
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(Ψnj(x))4 = Ih(njω, x) ≤ Nh for all x ∈ W , letting nj → ∞, we obtain 0 ≤ z3 ≤

N∗
v (0), 0 ≤ z4 ≤ Nh. It then follows that L2 ⊂ [0, N∗

v (0)]× [0, Nh] = G(0). It is easy

to see that

Φn|L(L∗
v(0), N

∗
v (0), z3, z4) = {(L∗

v(0), N
∗
v (0))} × Sn|L2(z3, z4).

Since L is an internally chain transitive set for Ψn, it follows that L2 is an internally

chain transitive set for Sn.

In the case where Rv > 1 and R0 ≤ 1, by Lemma 4.3.4 (i), we have

lim
n→∞

((Ψn(x))3, (Ψ
n(x))4) = (0, 0), ∀x ∈ G(0).

It then follows from Theorem 1.1.3 that L2 = {(0, 0)}, and hence, L = {(L∗
v(0), N

∗
v (0),

0, 0)}. This implies that statement (ii) is valid.

In the case where Rv > 1 and R0 > 1, by Lemma 4.3.4 (ii), we have

lim
n→∞

((Ψn(x))3, (Ψ
n(x))4) = (I∗v (0), I

∗
h(0)), ∀x ∈ G(0) \ {(0, 0)}.

It follows from Theorem 1.1.4 that

either L2 = {(0, 0)} or L2 = {(I∗v (0), I∗h(0))}.

We further claim that L2 6= {(0, 0)}. Suppose, by contradiction, that L2 = {(0, 0)}.

Then we have limt→∞(Iv(t, x), Ih(t, x)) = (0, 0) uniformly for x ∈ G(0), and for any

ǫ > 0, there exists T = T (ǫ) > 0 such that

|(Lv(t, x), Nv(t, x))− (L∗
v(0), N

∗
v (0))| < ǫ
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for all t ≥ T and x ∈ G(0). Then for any t ≥ T , we have

dIv(t)

dt
≥ bβ(t, k)

pIh(t)

(p− l)Ih(t) + lNh

(N∗
v (t)− ǫ− Iv(t))− µ(t, k)Iv(t),

dIh(t)

dt
= cβ(t, k)

l(Nh − Ih(t))

(p− l)Ih(t) + lNh

Iv(t)− (dh + ρ)Ih(t).

(4.8)

Let rǫ be the spectral radius of the Poincaré map associated with the following linear

system:
dĪv(t)

dt
= bβ(t, k)

pĪh(t)

lNh

(N∗
v (t)− ǫ)− µ(t, k)Īv(t),

dĪh(t)

dt
= cβ(t, k)Īv(t)− (dh + ρ)Īh(t).

Since limǫ→0+ rǫ = r(P ) > 1, we can fix ǫ small enough such that rǫ > 1 and ǫ <

mint∈[0,ω]N
∗
v (t). By similar result to Lemma 4.3.2 (ii), it follows that the Poincaré

map of the following system

dĪv(t)

dt
= bβ(t, k)

pĪh(t)

(p− l)Īh(t) + lNh

(N∗
v (t)− ǫ− Īv(t))− µ(t, k)Īv(t),

dĪh(t)

dt
= cβ(t, k)

l(Nh − Īh(t))

(p− l)Īh(t) + lNh

Īv(t)− (dh + ρ)Īh(t)

(4.9)

admits a globally attractive fixed point (Ī∗v (0), Ī
∗
h(0)) ≫ 0. Since x ∈ W \R2

+×{(0, 0)},

(Iv(t, x), Ih(t, x)) > 0 for all t > 0. In view of (4.8) and (4.9), the comparison principle

implies that

lim inf
n→∞

(Iv(nω, x), Ih(nω, x)) ≥ (Ī∗v (0), Ī
∗
h(0)) ≫ 0,

which contradicts limt→∞(Iv(t, x), Ih(t, x)) = (0, 0). It then follows that L2 = {(I∗v (0),

I∗h(0))}, and hence, L = {(L∗
v(0), N

∗
v (0), I

∗
v (0), I

∗
h(0))}. This implies that statement

(iii) is valid. �

Since system (4.1) is equivalent to (4.2), we have the following result on the global

dynamics of our model system.
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Theorem 4.3.6. The following statements are valid:

(i) If Rv ≤ 1, then (0, 0, 0, 0) is globally attractive for system (4.1) in W .

(ii) If Rv > 1 and R0 ≤ 1, then (L∗
v(t), N

∗
v (t), 0, 0) is globally attractive for system

(4.1) in W \ {(0, 0, 0, 0)}.

(iii) If Rv > 1 and R0 > 1, then (L∗
v(t), N

∗
v (t), I

∗
v (t), I

∗
h(t)) is globally attractive for

system (4.1) in W \ R2
+ × {(0, 0)}.

To finish this section, we remark that when all coefficients are constants, the model

system (4.1) reduces to the following autonomous system:

dLv(t)

dt
= λLNv(t)− µLLv(t)− αLv(t)

2 − λvLv(t),

dSv(t)

dt
= λvLv(t)− bβ(k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
Sv(t)− µ(k)Sv(t),

dIv(t)

dt
= bβ(k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
Sv(t)− µ(k)Iv(t),

dIh(t)

dt
= cβ(k)

l(Nh − Ih(t))

pIh(t) + l(Nh − Ih(t))
Iv(t)− (dh + ρ)Ih(t),

(4.10)

where

β(k) = βv − k(βv − βr), 0 ≤ k ≤ 1,

µ(k) = µv + µ̄k, 0 ≤ k ≤ 1.

Then the matrices F̃ (t), Ṽ (t), F (t) and V (t), respectively, become

F̃ =



0 λL

0 0


 , Ṽ =



µL + λv 0

−λv µ(k)


 ,

F =




0 bβ(k)N∗

v p

lNh

cβ(k) 0


 , V =



µ(k) 0

0 dh + ρ


 .
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For any given ω > 0, we can regard system (4.10) as an ω-periodic system. By [94,

Lemma 2.2 (ii)], we obtain the vector reproduction ratio Rv and the basic reproduction

ratio R0 for system (4.10) as follows:

Rv = ρ(F̃ Ṽ −1) =
λLλv

µ(k)(µL + λv)
,

R0 = ρ(FV −1) =

√
cβ(k)

µ(k)

bβ(k)p

lNh(dh + ρ)

λv
αµ(k)

(
λLλv
µ(k)

− (µL + λv)

)
. (4.11)

By the global attractivity in Theorem 4.3.6, we can easily obtain its analog for au-

tonomous system (4.10), where the ω-periodic solutions are replaced by the corre-

sponding equilibria.

4.4 A case study

In this section, we study the malaria transmission case in Port Harcourt, Nigeria.

Nigeria accounts for a quarter of all malaria cases in the 45 malaria endemic countries

in Africa [98]. Port Harcourt is the capital and largest city of Rivers State, Nigeria.

The topography of Port Harcourt is that of flat plains with a network of rivers,

tributaries and creeks which have a high potential for breeding of mosquitoes. Malaria

transmission is intense year round with a peak during months of March to November

and a nadir during months of December to February [26].

We do the numerical simulations by using ode45 and CFTOOL in Matlab. First,

we need to estimate the constant and periodic parameter values. Port Harcourt has a

population of 1230000 (see https://en.wikipedia.org/wiki/ List of metropolitan areas

in Africa), which can be chosen as the value of Nh. The life expectancy of Nigeria

is 52.11 years (see http://data.worldbank.org). Using this number we estimate the

human natural death rate as dh = 1
52.11×12

= 0.0016 month−1. The values of p and
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l may vary from 0 to 1 and p ≥ l [17, 34, 39]. Unless otherwise stated, we use the

values listed in Table 4.2 for constant parameters in the simulation.

Table 4.2: Parameter values

Parameter Value Dimension Reference
b 0.2 dimensionless [18]
c 0.011 dimensionless [18]
ρ 0.0187 month−1 [18]
p (0, 1) dimensionless [17, 34, 39]
l (0, 1) dimensionless [17, 34, 39]
α 0.000001 dimensionless estimated
k [0,1] dimensionless
dh 0.0016 month−1 see text
Nh 1230000 dimensionless see text
µ̄ 0.01 month−1 estimated
βv(t) to be evaluated month−1 see text
βr(t) 0.1βv(t) month−1 estimated
µv(t) to be evaluated month−1 see text
λL(t) to be evaluated month−1 see text
µL(t) to be evaluated month−1 see text
λv(t) to be evaluated month−1 see text

Since temperature plays a major role in the life cycle of mosquitoes, we evalu-

ate the periodic parameters by using the monthly mean temperatures of Port Har-

court from 1990 to 2012 (obtained from Climate Change Knowledge Portal website:

http://sdwebx.worldbank.org /climateportal), as shown in Table 4.3.

Table 4.3: Monthly mean temperatures for Port Harcourt (in ◦C)

Month Jan Feb Mar Apr May June
Temperature 26.52 28 28.38 27.92 27.18 26.1
Month Jul Aug Sep Oct Nov Dec
Temperature 25.34 25.27 25.49 25.91 26.79 26.34

According to [69], the temperature-dependent mosquito biting rate can be ex-

pressed as

βv(T ) = 30.4× 0.000203T (T − 11.7)
√
42.3− T Month−1,
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where and hereinafter T is the temperature in ◦C. The biting rate of mosquitoes in

Port Harcourt can then be fitted by

βv(t) =0.1554 cos(πt/6) + 0.9065 sin(πt/6)− 0.2284 cos(2πt/6)

− 0.2764 sin(2πt/6)− 0.0578 cos(3πt/6)− 0.1473 sin(3πt/6)

− 0.0208 cos(4πt/6)− 0.1573 sin(4πt/6)− 0.0118 cos(5πt/6)

− 0.0510 sin(5πt/6) + 9.6794 Month−1.

Since ITNs are only used at night, even if the entire human population uses ITNs,

they can still be bitten by mosquitoes at daytime. We assume that

βr(t) = ξβv(t), ξ ∈ (0, 1),

and we take ξ = 0.1 in the simulation.

It follows from [79] that the birth rates of juvenile and adult mosquitoes and the

death rate of juvenile mosquitoes can be respectively given by

λL(T ) = 2.325βv(T ), λv(T ) =
λL(T )

10
,

and

µL(T ) = 30.4× (0.0025T 2 − 0.094T + 1.0257) Month−1.

Then the birth rates of juvenile and adult mosquitoes and the death rate of juvenile

mosquitoes in Port Harcourt can be fitted respectively by

λL(t) = 2.325βv(t), λv(t) =
λL(t)

10
,
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and

µL(t) =0.2240 cos(πt/6) + 1.5699 sin(πt/6)− 0.4849 cos(2πt/6)

− 0.4268 sin(2πt/6)− 0.0835 cos(3πt/6)− 0.3016 sin(3πt/6)

− 0.0210 cos(4πt/6)− 0.2684 sin(4πt/6)− 0.0051 cos(5πt/6)

− 0.0845 sin(5πt/6) + 9.0288 Month−1.

According to [53, 57], the death rate of adult mosquitoes is evaluated as

µv(T ) =
30.4

−0.03T 2 + 1.31T − 4.4
Month−1.

Then the death rate of adult mosquitoes in Port Harcourt can be approximated by

µv(t) =0.0168 cos(πt/6) + 0.1406 sin(πt/6)− 0.0503 cos(2πt/6)

− 0.0343 sin(2πt/6)− 0.0064 cos(3πt/6)− 0.0307 sin(3πt/6)

− 0.0003 cos(4πt/6)− 0.0235 sin(4πt/6) + 0.0007 cos(5πt/6)

− 0.0070 sin(5πt/6) + 3.3136 Month−1.

The long term behaviors of solutions of system (4.1) are shown in Figures 4.1,

4.2 and 4.3. Based on Theorem 1.4.2 (ii), we can numerically calculate the vector

reproduction ratio Rv and the basic reproduction ratio R0. Larval source deduction

will reduce the rate at which gravid female mosquitoes encounter oviposition sites

[104], leading to a decrease in the recruitment rate of larval mosquitoes. In Figure 4.1,

we suppose the birth rate of juvenile mosquitoes to be 0.8λL(t), which can be achieved

by spraying or eliminating mosquito breeding sites. We also assume that 50% of the

humans use ITNs effectively. In this case, Rv = 0.9041 < 1 and all compartments

converge to 0 eventually meaning that mosquitoes are eliminated from this region. In

Figure 4.2, we keep the birth rate of juvenile mosquitoes as λL(t) and suppose that
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Figure 4.1: Long term behaviour of the solutions of system (4.1). Here the birthrate
of juvenile mosquitoes is set to be 0.8λL(t), k = 0.5. In this case, Rv = 0.9041 < 1.

80% of the humans use ITNs. We calculate Rv = 1.3549 > 1 and R0 = 0.8620 <

1. In this case, the juvenile mosquito and susceptible adult mosquito populations

exhibit periodic fluctuations. And both the infectious mosquito and infectious human

populations converge to 0, which means that malaria is eliminated from this area. In

Figure 4.3, we suppose that 50% of the humans use ITNs and keep other parameter

values the same as those in Figure 4.2. In this case, we obtain Rv = 1.3561 > 1

and R0 = 1.6979 > 1. All compartments fluctuate periodically, which means that

the disease will persist. The simulation results shown in Figures 4.1, 4.2 and 4.3

are consistent with the conclusion of Theorem 2. Figure 4.4 shows the relationship

between R0 and k. Clearly, R0 is a decreasing function of k. We also see that if over
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Figure 4.2: Long term behaviour of the solutions of system (4.1). Here k = 0.8 and
Rv = 1.3549 > 1, R0 = 0.8620 < 1.
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Figure 4.3: Long term behaviour of the solutions of system (4.1). Here k = 0.5 and
Rv = 1.3561 > 1, R0 = 1.6979 > 1.
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Figure 4.4: The basic reproduction ratio R0 versus the proportion of bed net use k.

75% of the humans use ITNs in Port Harcourt, then R0 can be reduced to less than

1, and hence, malaria can be eliminated from this area.

To study the impact of the vector-bias effect, we simulate the relationships between

R0 and k under three different vector-bias levels. As shown in Figure 4.5, for each

vector-bias level, R0 is a decreasing function of k. It is worthwhile to note that the

ignorance of the vector-bias effect (i.e., p = l) underestimates R0.
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Figure 4.5: R0 versus k under different vector-bias levels.

Following [94], given a continuous periodic function g(t) with the period ω, we
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define its average as

[g] :=
1

ω

∫ ω

0

g(t)dt.

Then the time-averaged parameter values of system (4.1) are [βv] = 9.6794, [βr] =

0.1[βv], [µv] = 3.3136, [µL] = 9.0288, [λL] = 2.325[βv], [λv] = [λL]/10. Using these

parameter values and formula (4.11), we can calculate the basic reproduction ratio

[R0] of the time-averaged autonomous system (4.10). As can be seen from Figure 4.6,

compared with R0, the basic reproduction ratio [R0] of the time-averaged autonomous

system underestimates the infection risk a little bit. Although the difference between

the values of R0 and [R0] in Figure 4.6 seems little, sometimes it may lead to great

difference in designing disease control strategies, especially when applied to a large

community of people.
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Figure 4.6: R0 versus k and [R0] versus k.

4.5 Discussion

An important issue in developing mathematical models is to identify which biological

factors are necessary to include and which can be omitted. Usually this is determined
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by the purpose of a study. Considering that climate factors have a great impact on

the mosquito life cycle and the parasite survival in mosquitoes, we incorporated sea-

sonality by developing an ordinary differential equations model with some parameters

being periodic functions. In our model, we considered the juvenile stage of mosquitoes

in addition to the adult one. This enables us to better understand the mosquito pop-

ulation dynamics, and hence, the malaria transmission dynamics. The incorporation

of such juvenile stage may also provide some insights into designing larval control

strategies. Insecticide-treated bed net use is one of the effective measures in malaria

control. To investigate the effect of ITNs, we modeled the biting rate and the death

rate of mosquitoes as functions of the proportion of bed net use. To better under-

stand malaria transmission dynamics and to provide more accurate information for

the design of control measures, we also incorporated the effects of different feeding

biases by mosquitoes towards humans.

By using the theory of monotone and subhomogeneous systems and the theory of

chain transitive sets, we have obtained a complete classification of global dynamics

of the model in terms of the vector reproduction ratio Rv and the basic reproduction

ratio R0: (i) If Rv < 1, then mosquitoes will die out eventually; (ii) If Rv > 1 and

R0 < 1, then malaria will be eliminated; (iii) If Rv > 1 and R0 > 1, then the disease

will persist and exhibit seasonal fluctuation.

By using some published data about Port Harcourt, Nigeria and formula related

to mosquito life cycle, we estimated all the constant and periodic parameters. The

analytic results are well verified by numerical simulations. Our findings show that if

75% of the human population in Port Harcourt were to use ITNs, then malaria could

be eliminated from this area. We have also found that the basic reproduction ratio

may be underestimated if we ignore the vector-bias effect. Compared with R0, the

basic reproduction ratio [R0] of the time-averaged autonomous system underestimates
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the risk of infection, which confirms the necessity of incorporating seasonality.

In our model, we neglected both the extrinsic incubation period in mosquitoes and

the intrinsic incubation period in human hosts. Upon infection, human individuals

will move to the exposed compartment, where parasites in their bodies are still in

the asexual stages. Since individuals in the exposed class do not have gametocytes in

their blood, they are not able to transmit the disease to susceptible mosquitoes until

they enter into the infectious class. Susceptible mosquitoes that feed on infectious

humans will take gametocytes in blood meals and enter into the exposed class. After

fertilisation, sporozoites are produced and migrate to the salivary glands ready to

infect any susceptible host, the mosquito is then considered as infectious [57]. It

would be interesting to modify our model by incorporating such exposed classes of

human hosts and mosquitoes. We leave this as a future work.



Chapter 5

Dynamics of a time-delayed Lyme

disease model with seasonality

5.1 Introduction

Lyme disease is one of the most common vector-borne diseases in North America,

Europe, and parts of Asia, with thousands of cases reported annually [9, 40]. The

disease is caused by the spirochete bacterium Borrelia burgdorferi and is transmitted

by ticks. Ixodes scapularis ticks (also known as black-legged ticks) are the principal

vectors of Lyme disease in North America and exhibit a two-year life cycle with four

life stages: eggs, larvae, nymphs and adults. Larvae and nymphs mainly attack white-

footed mice [86]. Larvae that obtain a blood meal drop off their hosts and then molt

into nymphs. At the beginning of the second year, nymphs quest for a second host.

After a blood meal, they drop off their hosts and may mature to the adult stage.

Adults feed almost exclusively on white-tailed deer, and all mating occurs there.

Females eventually drop off the deer they have parasitized, lay their eggs nearby, and

die. A female that has engorged and subsequently mated produces around 2000 fertile
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eggs, and nearly all hatch [81].

There have been a range of modeling works in the study of different aspects of Lyme

disease transmission. Some researchers proposed reaction-diffusion models to explore

the effect of vectors’ stage structure and spatial heterogeneity on the transmission

dynamics (see [16, 93, 105, 108, 112]). The models developed in [15, 27, 31, 45, 63, 77]

revealed the dilution effects of host population. As mentioned in [3], seasonal vari-

ations in temperature, humidity and resource availability have strong effect on tick

population dynamics. Climate impacts tick survival mostly during non-parasitic pe-

riods of the life cycle: outside certain ranges of temperature and rainfall tick popu-

lations cannot survive, because these conditions directly kill the ticks [66] or inhibit

host-seeking activity [71]. Within these limits, temperature may also determine de-

velopment rates [66]. Ogden et. al. [65, 64] proposed simulation models to investigate

climate change effects on tick dynamics. Zhang and Zhao [108] developed a reaction-

diffusion Lyme disease model with seasonality and studied its global dynamics. Wu

et al. [100] established a temperature-driven map of the basic reproduction number

of I. Scapularis ticks for Canada east of the Rocky Mountains.

The purpose of this chapter is to propose and analyze a time-delayed Lyme disease

model with seasonality. Our model is motivated by the Lyme disease models in

[93, 108]. We consider three different life stages of tick population: larvae, nymphs,

adults, and two host populations: mice and deer. Let M(t) and m(t) be the densities

of susceptible and infected mice at time t, respectively. Let L(t), N(t), n(t), A(t),

a(t) be the densities of tick larvae, susceptible tick nymphs, infectious tick nymphs,

uninfected adult ticks, infected adult ticks at time t, respectively. Let H(t) be the

density of deer at time t. Let rh be the birth rate of deer. Let µM , µL, µN , µA, µh

be the mortality rates per mouse, per tick larva, per tick nymph, per adult tick, and

per deer, respectively. Let τl be the feeding duration of tick larvae on mice, τn be the
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feeding duration of tick nymphs on mice, and τa be the feeding duration of adult ticks

on deer. Let β be a mouse’s susceptibility to infection when bitten by an infectious

tick nymph. Let βT be a tick’s susceptibility to infection when feeding on an infected

mouse. Let α1(t) and α2(t) be the individual biting rates of tick larvae and nymphs

on mice, respectively. Then the drop-off rate of susceptible tick larvae from a mouse,

i.e., the recruitment rate of susceptible questing tick nymphs, can be described as

e−(µL+µM )τlα1(t− τl)[M(t− τl) + (1− βT )m(t− τl)]L(t− τl).

The drop-off rate of infectious tick larvae from a mouse, i.e., the recruitment rate of

infectious questing tick nymphs, is

e−(µL+µM )τlα1(t− τl)βTm(t− τl)L(t− τl).

The drop-off rate of susceptible tick nymphs from a mouse, i.e., the recruitment rate

of susceptible questing adult ticks, is

e−(µN+µM )τnα2(t− τn)[M(t− τn) + (1− βT )m(t− τn)]N(t− τn).

The drop-off rate of infectious tick nymphs from a mouse, i.e., the recruitment rate

of infected questing adult ticks, is

e−(µN+µM )τnα2(t− τn)[(M(t− τn) +m(t− τn))n(t− τn) + βTm(t− τn)N(t− τn)].

Since it is more reasonable to consider the birth rates of mice and ticks as density

dependent, following [77], we suppose that the per capita birth rate of mice is given
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by

BM(M +m) = rM exp(−M +m

KM

),

where rM is the maximal individual birth rate of mice, KM is the carrying capacity for

mice. Let r(t) be the maximal birth rate of ticks and c(t) be the strength of density

dependence for adult ticks. We suppose that the per capita birth rate of ticks is given

by

BT (t, Tb) = r(t) exp(−c(t)Tb),

where Tb is the density of egg-laying adults, which are exactly those that fall off from

deer after blood meals, and it is given by

Tb = e−(µA+µh)τaξ[A(t− τa) + a(t− τa)]H(t− τa),

where ξ is the individual biting rate of adult ticks on deer. In the case where there is

no competition among ticks, we have c(t) ≡ 0, and hence, BT (t, Tb) = r(t).

Consequently, we have the following model:

dM

dt
= (M +m)BM(M +m)− µMM − α2(t)βMn,

dm

dt
= α2(t)βMn− µMm,

dL

dt
= TbBT (t, Tb)− µLL− α1(t)L(M +m),

dN

dt
= e−(µL+µM )τlKN(t− τl)− [γ + α2(t)(M +m) + µN ]N,

dn

dt
= e−(µL+µM )τlKn(t− τl)− [γ + α2(t)(M +m) + µN ]n,

dA

dt
= e−(µN+µM )τnKA(t− τn)− (µA + ξH)A,

da

dt
= e−(µN+µM )τnKa(t− τn)− (µA + ξH)a,

dH

dt
= rh − µhH,

(5.1)
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Figure 5.1: The schematic diagram for ticks. Here KN = e−(µL+µM )τlKN(t− τl), Kn =
e−(µL+µM )τlKn(t − τl), KA = e−(µN+µM )τnKA(t − τn), Ka = e−(µN+µM )τnKa(t − τn).
Notation is defined in Table 5.1.

where

KN(t) = α1(t)[M(t) + (1− βT )m(t)]L(t),

Kn(t) = α1(t)βTm(t)L(t),

KA(t) = α2(t)[M(t) + (1− βT )m(t)]N(t),

Ka(t) = α2(t)[(M(t) +m(t))n(t) + βTm(t)N(t)].

We incorporate the seasonality into our model by assuming that the birth rate

and the biting rate of ticks are time-dependent. More precisely, we suppose that

α1(t), α2(t), r(t) and c(t) are positive, continuous and ω-periodic functions for some

ω > 0, and that all the other parameters are positive constants. Here we do not take

into account the case where c(t) ≡ 0 because we may use a positive but sufficiently
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small periodic function to approximate it from the viewpoint of mathematical mod-

eling. Hence, model (5.1) is an ω-periodic and time-delayed system. The biological

interpretations for all variables and parameters are also listed in Table 5.1.

Table 5.1: Biological interpretations for variables and parameters in model (5.1)

Parameter Description
M the density of susceptible mice
m the density of infected mice
L the density of questing tick larvae
N the density of susceptible questing tick nymphs
n the density of infectious questing tick nymphs
A the density of uninfected questing adult ticks
a the density of infected questing adult ticks
H the density of deer
τl the feeding duration of tick larvae on mice
τn the feeding duration of tick nymphs on mice
τa the feeding duration of adult ticks on deer
BM (M +m) the per capita birth rate of mice
rM the maximal individual birth rate of mice
KM the carrying capacity for mice
BT (t, Tb) the per capita birth rate of ticks
r(t) the maximal birth rate of ticks
c(t) the strength of density dependence for adult ticks
Tb the density of egg-laying adult ticks
β a mouse’s susceptibility to infection when bitten by an infectious tick nymph
βT a tick’s susceptibility to infection when feeding on an infected mouse
α1(t) individual biting rate of tick larvae on mice
α2(t) individual biting rate of tick nymphs on mice
γ biting rate per tick nymph to humans
ξ individual biting rate of adult ticks on deer
µM mortality rate per mouse
µL mortality rate per questing tick larva
µN mortality rate per questing tick nymph
µA mortality rate per questing adult tick
µh mortality rate per deer
rh birth rate of deer

The rest of this chapter is organized as follows. In the next section, we first

discuss the disease-free dynamics and then introduce the basic reproduction ratio R0.

In section 5.3, we establish the global dynamics for the model system in terms of R0.

In section 5.4, we do a case study for the Lyme disease transmission in Long Point,

Ontario. A brief discussion completes the chapter.
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5.2 Basic reproduction ratio

In this section, we study the disease-free periodic solution and derive the basic repro-

duction ratio for the model. We start with a preliminary result on a system of linear

delay differential equations.

Let r = (r1, r2, ..., rn) ∈ R
n
+. Define

Cr =
n∏

i=1

C([−ri, 0],R), C+
r =

n∏

i=1

C([−ri, 0],R+).

Then (Cr, C
+
r ) is an ordered Banach space. For ϕ, ψ ∈ Cr, we write ϕ ≤ ψ if ψ−ϕ ∈

C+
r ; ϕ < ψ if ψ − ϕ ∈ C+

r \ {0}; ϕ≪ ψ if ψ − ϕ ∈ int(C+
r ).

Consider the linear periodic system

du(t)

dt
= L(t)ut, (5.2)

where u(t) = (u1(t), u2(t), ..., un(t)), ut = (u1t , u
2
t , ..., u

n
t ) and uit(s) = ui(t + s) for

s ∈ [−ri, 0], 1 ≤ i ≤ n. Assume that L : R → L(Cr,R
n) is continuous, L(t+T ) = L(t),

∀t ∈ R, for some constant T > 0, and Li(t)φ ≥ 0 whenever φ ≥ 0 and φi(0) = 0.

Let ut(ϕ) be the solution semiflow associated with system (5.2), that is,

[ut(ϕ)]i(s) = ui(t+ s, ϕ), ∀s ∈ [−ri, 0], 1 ≤ i ≤ n,

where u(t, ϕ) = (u1(t, ϕ), u2(t, ϕ), ..., un(t, ϕ)) is the unique solution of (5.2) with

u0 = ϕ ∈ Cr. It follows from [84, Theorem 5.2.1] that ut(ϕ) ∈ C+
r for all ϕ ∈ C+

r , t ≥ 0.

Define the Poincaré map P̄ : Cr → Cr by P̄ (ϕ) = uT (ϕ). Then P̄ n(ϕ) = unT (ϕ) for

any integer n ≥ 0. Motivated by [102, Proposition 2.1], we have the following result.

Lemma 5.2.1. Assume that µ is a positive eigenvalue of P̄ having a strongly positive
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eigenvector ϕ∗, that is, P̄ϕ∗ = µϕ∗, µ > 0, ϕ∗ ≫ 0. Then there exists a positive T -

periodic function v̄(t) = (v̄1(t), v̄2(t), ..., v̄n(t)) such that ū(t) = eλ0tv̄(t) is a positive

solution of system (5.2), where λ0 =
lnµ

T
.

Proof. Let u(t) = eλtv(t). Let Eλ be a map from Cr to Cr defined by

[Eλ(ϕ)]i(s) = eλsϕi(s), ∀s ∈ [−ri, 0], 1 ≤ i ≤ n.

Then (ut)i(s) = ui(t + s) = eλ(t+s)vi(t + s) = eλteλs(vt)i(s) = eλt[Eλ(vt)]i(s), ∀s ∈

[−ri, 0], 1 ≤ i ≤ n. Hence, ut = eλtEλ(vt). It follows that

du(t)

dt
= eλt

dv(t)

dt
+ λeλtv(t) = L(t)eλtEλ(vt).

We then obtain a system of linear periodic equations with parameter λ:

dv(t)

dt
= −λv(t) + L(t)Eλ(vt). (5.3)

Define Q̄λ : Cr → Cr by Q̄λ(ϕ) = vT (ϕ, λ), where v(t, ϕ, λ) is the unique solution

of system (5.3) through ϕ. Then

[Q̄λ(ϕ)]i(s) = [vT (ϕ, λ)]i(s) = vi(T + s, ϕ, λ) = e−λ(T+s)ui(T + s, Eλ(ϕ))

for all s ∈ [−ri, 0], 1 ≤ i ≤ n, and hence,

[Q̄λ(ϕ)]i = e−λT [E−λ(uT (Eλ(ϕ)))]i = e−λT [E−λ(P̄ (Eλ(ϕ)))]i, 1 ≤ i ≤ n.

Thus,

[Q̄λ(E−λ(ϕ
∗))]i = e−λT [E−λ(P̄ (ϕ

∗))]i = µe−λT [E−λ(ϕ
∗)]i, 1 ≤ i ≤ n.
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Letting λ = λ0 =
lnµ

T
, we get

[Q̄λ0(E−λ0(ϕ
∗))]i = [E−λ0(ϕ

∗)]i, 1 ≤ i ≤ n,

that is, Q̄λ0(E−λ0(ϕ
∗)) = E−λ0(ϕ

∗). Thus, E−λ0(ϕ
∗) is a positive fixed point of Q̄λ0 .

It follows that v̄(t) := v(t, E−λ0(ϕ
∗), λ0) is a positive T -periodic solution of (5.3) with

λ = λ0, and hence, ū(t) = eλ0tv̄(t) is a positive solution of system (5.2).

Recently, the theory of basic reproduction ratio has been developed by Zhao [110]

for periodic and time-delayed population models with compartmental structure. In

what follows, we use this theory to obtain the basic reproduction ratio for our model.

We first consider the disease-free periodic solution of (5.1). Letting m = 0, n = 0, a =

0 in (5.1), we then get the following system of delay differential equations:

dM

dt
=MBM(M)− µMM,

dL

dt
=e−(µA+µh)τaξA(t− τa)H(t− τa)r(t) exp(−c(t)e−(µA+µh)τaξA(t− τa)H(t− τa))

− µLL− α1(t)LM,

dN

dt
=e−(µL+µM )τlα1(t− τl)M(t− τl)L(t− τl)− (γ + α2(t)M + µN)N,

dA

dt
=e−(µN+µM )τnα2(t− τn)M(t− τn)N(t− τn)− (µA + ξH)A,

dH

dt
=rh − µhH.

(5.4)

In order to avoid the extinction of the mice population, we further assume that

(A1) rM > µM .

It then easily follows that the ordinary differential system dM
dt

= MBM(M) − µMM

admits a globally stable positive steady state M∗ := KM ln rM
µM

. Since limt→∞H(t) =

rh
µh

:= H∗ and limt→∞M(t) = M∗ if M(0) > 0, we focus on the following limiting
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system:

dL

dt
=H∗e−(µA+µh)τaξA(t− τa)r(t) exp(−c(t)H∗e−(µA+µh)τaξA(t− τa))

− (µL + α1(t)M
∗)L,

dN

dt
=e−(µL+µM )τlα1(t− τl)M

∗L(t− τl)− (γ + α2(t)M
∗ + µN)N,

dA

dt
=e−(µN+µM )τnα2(t− τn)M

∗N(t− τn)− (µA + ξH∗)A.

(5.5)

Let Z1 = C([−τl, 0], R), Z2 = C([−τn, 0], R), Z3 = C([−τa, 0], R), Z+
1 =

C([−τl, 0], R+), Z
+
2 = C([−τn, 0], R+), Z

+
3 = C([−τa, 0], R+), Z = Z1 × Z2 × Z3,

Z+ = Z+
1 × Z+

2 × Z+
3 . Define f̃(t, ϕ) = (f̃1, f̃2, f̃3), where

f̃1 = H∗e−(µA+µh)τaξϕ3(−τa)r(t) exp(−c(t)H∗e−(µA+µh)τaξϕ3(−τa))

−(µL + α1(t)M
∗)ϕ1(0),

f̃2 = e−(µL+µM )τlα1(t− τl)M
∗ϕ1(−τl)− (γ + α2(t)M

∗ + µN)ϕ2(0),

f̃3 = e−(µN+µM )τnα2(t− τn)M
∗ϕ2(−τn)− (µA + ξH∗)ϕ3(0).

It is easy to see that for any φ ∈ Z+ with φi(0) = 0 for some i, we have f̃i(t, φ) ≥ 0. It

then follows from [84, Theorem 5.2.1] that wt(ϕ) ∈ Z+ for all ϕ ∈ Z+ and t ∈ [0, σϕ),

where [0, σϕ) is the maximal interval of existence for the solution w(t, ϕ) of (5.5)

satisfying w0 = ϕ.

Let P1(t) be the solution maps of system (5.5), that is, P1(t)ψ = wt(ψ), t ≥ 0,

where w(t, ψ) is the unique solution of system (5.5) satisfying w0 = ψ ∈ Z+. Then

P1 := P1(ω) is the Poincaré map associated with system (5.5) on Z+. Let ρ(DP1(0))
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be the spectral radius of the Frechét derivative of P1 at 0. Since

dL

dt
= H∗e−(µA+µh)τaξA(t− τa)r(t) exp(−c(t)H∗e−(µA+µh)τaξA(t− τa))

−(µL + α1(t)M
∗)L,

≤ r(t)

c(t)
e−1 − (µL + α1(t)M

∗)L,

system (5.5) is dominated by the following cooperative system:

dL̄

dt
=
r(t)

c(t)
e−1 − (µL + α1(t)M

∗)L̄,

dN̄

dt
=e−(µL+µM )τlα1(t− τl)M

∗L̄(t− τl)− (γ + α2(t)M
∗ + µN)N̄ ,

dĀ

dt
=e−(µN+µM )τnα2(t− τn)M

∗N̄(t− τn)− (µA + ξH∗)Ā.

(5.6)

It is easy to see that the linear inhomogeneous equation

dL̄

dt
=
r(t)

c(t)
e−1 − (µL + α1(t)M

∗)L̄

has a globally attractive positive ω-periodic solution L̄∗(t), that is, limt→∞(L̄(t) −

L̄∗(t)) = 0. Thus, solutions of (5.6) are bounded and ultimately bounded. By the

comparison principle ([84, Theorem 5.1.1]), solutions of system (5.5) exist globally

on [0,∞) and are ultimately bounded. This implies that the discrete-time semiflow

{P n
1 }∞n=0 is point dissipative on Z+.

Note that the linearized system of (5.5) at (0, 0, 0) is

dv1
dt

= r(t)H∗e−(µA+µh)τaξv3(t− τa)− (µL + α1(t)M
∗)v1(t),

dv2
dt

= e−(µL+µM )τlα1(t− τl)M
∗v1(t− τl)− (γ + α2(t)M

∗ + µN)v2(t),

dv3
dt

= e−(µN+µM )τnα2(t− τn)M
∗v2(t− τn)− (µA + ξH∗)v3(t).

(5.7)
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Let P̃ be the Poincaré map associated with system (5.7) on Z. By the continuity and

differentiability of solutions with respect to initial values, it follows that P1 is differ-

entiable at zero and the Frechét derivative DP1(0) = P̃ . Denote τ = max{τl, τn, τa}.

Assume that

(A2) r(P̃ ) > 1, where r(P̃ ) is the spectral radius of P̃ .

Let (L̄∗(t), N̄∗(t), Ā∗(t)) be the unique positive ω-periodic solution of system (5.6).

To obtain the global dynamics of system (5.5), we need the following additional as-

sumption:

(A3) H∗e−(µA+µh)τaξĀ∗(t− τa) <
1

c(t)
for all t ∈ [0, ω].

Theorem 5.2.2. Let (A1), (A2) and (A3) hold. Then system (5.5) admits a unique

positive ω-periodic solution (L∗(t), N∗(t), A∗(t)) which is globally attractive in Z+ \

{0}, and hence, system (5.1) admits a unique disease-free periodic solution (M∗, 0,

L∗(t), N∗(t), 0, A∗(t), 0, H∗).

Proof. Define

Y := [0, L̄∗
0]Z1 × [0, N̄∗

0 ]Z2 × [0, Ā∗
0]Z3 ,

where L̄∗
0 ∈ Z1, N̄

∗
0 ∈ Z2, Ā

∗
0 ∈ Z3, and L̄∗

0(θ) = L̄∗(θ) for all θ ∈ [−τl, 0], N̄∗
0 (θ) =

N̄∗(θ) for all θ ∈ [−τn, 0], Ā∗
0(θ) = Ā∗(θ) for all θ ∈ [−τa, 0]. Recall that P1 is the

Poincaré map associated with system (5.5) on Z+. For any ψ ∈ Z+, we have

0 ≤ (L(t, ψ), N(t, ψ), A(t, ψ)) ≤ (L̄(t, ψ), N̄(t, ψ), Ā(t, ψ)), ∀t ≥ 0.

Then

0 ≤ (Lt(ψ), Nt(ψ), At(ψ)) ≤ (L̄t(ψ), N̄t(ψ), Āt(ψ)), ∀t ≥ 0.
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Letting t = nω, we have

0 ≤ (Lnω(ψ), Nnω(ψ), Anω(ψ)) ≤ (L̄nω(ψ), N̄nω(ψ), Ānω(ψ)), ∀n ≥ 0,

that is,

0 ≤ P n
1 (ψ) ≤ P̄ n

1 (ψ), ∀n ≥ 0, (5.8)

where P̄1 is the Poincaré map associated with (5.6) on Z+.

Note that limt→∞((L̄(t, ψ), N̄(t, ψ), Ā(t, ψ))− (L̄∗(t), N̄∗(t), Ā∗(t))) = 0. Then

lim
t→∞

‖(L̄t(ψ), N̄t(ψ), Āt(ψ))− (L̄∗
t , N̄

∗
t , Ā

∗
t )‖ = 0.

Letting t = nω, we then have (L̄∗
nω, N̄

∗
nω, Ā

∗
nω) = (L̄∗

0, N̄
∗
0 , Ā

∗
0), and hence,

lim
n→∞

‖(L̄nω(ψ), N̄nω(ψ), Ānω(ψ))− (L̄∗
0, N̄

∗
0 , Ā

∗
0)‖ = lim

n→∞
‖P̄ n

1 (ψ)− (L̄∗
0, N̄

∗
0 , Ā

∗
0)‖ = 0.

This, together with (5.8), implies that ω(ψ) ⊆ Y, ∀ψ ∈ Z+.

For any given ǫ ∈ (0, 1), let P̃ǫ(t) be the solution maps of the following system on

Z+:

dv1
dt

= r(t)(1− ǫ)H∗e−(µA+µh)τaξv3(t− τa)− (µL + α1(t)M
∗)v1(t),

dv2
dt

= e−(µL+µM )τlα1(t− τl)M
∗v1(t− τl)− (γ + α2(t)M

∗ + µN)v2(t),

dv3
dt

= e−(µN+µM )τnα2(t− τn)M
∗v2(t− τn)− (µA + ξH∗)v3(t).

(5.9)

Let P̃ǫ := P̃ǫ(ω). For any given ϕ, ψ ∈ Z+ with ϕ ≥ ψ, let v(t, ϕ) and v(t, ψ) be

the unique solutions of system (5.9) satisfying v0 = ϕ and v0 = ψ, respectively. By

[84, Theorem 5.1.1], we have v(t, ϕ) ≥ v(t, ψ), ∀t ≥ 0, that is, P̃ǫ(t) : Z+ → Z+ is

monotone. Next we prove that P̃ǫ(t) : Z+ → Z+ is eventually strongly monotone.
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Let ϕ, ψ ∈ Z satisfy ϕ > ψ. Denote v(t, ϕ) = (ȳ1(t), ȳ2(t), ȳ3(t)) and v(t, ψ) =

(y1(t), y2(t), y3(t)). Without loss of generality, we assume that ϕ1 > ψ1.

Claim 1. There exists t0 ∈ [0, τl] such that ȳ2(t) > y2(t), ∀t ≥ t0.

We first prove that ȳ2(t0) > y2(t0) for some t0 ∈ [0, τl]. Otherwise, we have

ȳ2(t) = y2(t), ∀t ∈ [0, τl], and hence, dȳ2(t)
dt

= dy2(t)
dt

, ∀t ∈ (0, τl). Thus, we have

e−(µL+µM )τlα1(t− τl)M
∗(ȳ1(t− τl)− y1(t− τl)) = 0, ∀t ∈ [0, τl].

It follows that ȳ1(t− τl) = y1(t− τl), ∀t ∈ [0, τl], that is, ϕ1(θ) = ψ1(θ), ∀θ ∈ [−τl, 0],

which contradicts the assumption that ϕ1 > ψ1.

Let

g1(t, y) := e−(µL+µM )τlα1(t− τl)M
∗y1(t− τl)− (γ + α2(t)M

∗ + µN)y.

Since

dȳ2(t)

dt
= e−(µL+µM )τlα1(t− τl)M

∗ȳ1(t− τl)− (γ + α2(t)M
∗ + µN)ȳ2(t)

≥ e−(µL+µM )τlα1(t− τl)M
∗y1(t− τl)− (γ + α2(t)M

∗ + µN)ȳ2(t)

= g1(t, ȳ2(t)),

we have

dȳ2(t)

dt
− g1(t, ȳ2(t)) ≥ 0 =

dy2(t)

dt
− g1(t, y2(t)), ∀t ≥ t0.

Since ȳ2(t0) > y2(t0), the comparison theorem for ordinary differential equations

(see Theorem 1.3.1) implies that ȳ2(t) > y2(t), ∀t ≥ t0.

Claim 2. ȳ3(t) > y3(t), ∀t > t0 + τn.

Let

g2(t, y) := e−(µN+µM )τnα2(t− τn)M
∗y2(t− τn)− (µA + ξH∗)y.
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Then we have

dȳ3(t)

dt
= e−(µN+µM )τnα2(t− τn)M

∗ȳ2(t− τn)− (µA + ξH∗)ȳ3(t)

> e−(µN+µM )τnα2(t− τn)M
∗y2(t− τn)− (µA + ξH∗)ȳ3(t)

= g2(t, ȳ3(t)), ∀t > t0 + τn,

and hence,

dȳ3(t)

dt
− g2(t, ȳ3(t)) > 0 =

dy3(t)

dt
− g2(t, y3(t)), ∀t > t0 + τn.

Since ȳ3(t0+τn) ≥ y3(t0+τn), it follows from Theorem 1.3.1 that ȳ3(t) > y3(t), ∀t >

t0 + τn.

Claim 3. ȳ1(t) > y1(t), ∀t > t0 + τn + τa.

Let

g3(t, y) := r(t)(1− ǫ)H∗e−(µA+µh)τaξy3(t− τa)− (µL + α1(t)M
∗)y.

Then we have

dȳ1(t)

dt
= r(t)(1− ǫ)H∗e−(µA+µh)τaξȳ3(t− τa)− (µL + α1(t)M

∗)ȳ1(t)

> r(t)(1− ǫ)H∗e−(µA+µh)τaξy3(t− τa)− (µL + α1(t)M
∗)ȳ1(t)

= g3(t, ȳ1(t)), ∀t > t0 + τn + τa,

and hence,

ȳ1(t)

dt
− g3(t, ȳ1(t)) > 0 =

dy1(t)

dt
− g3(t, y1(t)), ∀t > t0 + τn + τa.

Since ȳ1(t0 + τn + τa) ≥ y1(t0 + τn + τa), it follows from Theorem 1.3.1 that
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ȳ1(t) > y1(t), ∀t > t0 + τn + τa.

In view of the above three claims, we obtain

(ȳ1(t), ȳ2(t), ȳ3(t)) ≫ (y1(t), y2(t), y3(t)), ∀t > t0 + τn + τa.

Since t0 ∈ [0, τl], it follows that

(ȳ1t, ȳ2t, ȳ3t) ≫ (y1t, y2t, y3t), ∀t > 4τ,

that is, vt(ϕ) ≫ vt(ψ), ∀t > 4τ. This shows that P̃ǫ(t) : Z+ → Z+ is strongly monotone

for any t > 4τ. It follows from [29, Theorem 3.6.1] that the linear operator P̃ǫ(t) is

compact on Z+. Choose an integer n0 > 0 such that n0ω > 4τ . Since P̃ n0
ǫ = P̃ǫ(n0ω),

[44, Lemma 3.1] implies that r(P̃ǫ) is a simple eigenvalue of P̃ǫ having a strongly

positive eigenvector, and the modulus of any other eigenvalue is less than r(P̃ǫ). It

then follows from Lemma 5.2.1 that there is a positive ω-periodic function v̄(t) =

(v̄1(t), v̄2(t), v̄3(t))
T such that v∗(t) = e

ln r(P̃ǫ)
ω

tv̄(t) is a positive solution of system

(5.9).

Since limǫ→0+ r(P̃ǫ) = r(P̃ ) > 1, we can fix an ǫ0 ∈ (0, 1) such that r(P̃ǫ0) > 1.

Futher, we choose a sufficiently small positive number δ0 such that

r(t)e−c(t)v ≥ r(t)(1− ǫ0), ∀t ≥ 0, 0 ≤ v ≤ δ0.

Since limφ→0 P1(t)(φ) = 0 uniformly for t ∈ [0, ω], there exists δ1 > 0 such that

‖H∗ξe−(µA+µh)τaP1(t)(φ)‖ ≤ δ0, ∀t ∈ [0, ω], ‖φ‖ ≤ δ1.

Claim 4. lim supn→∞ ‖P n
1 ψ‖ ≥ δ1 for all ψ ∈ Z+ \ {0}.
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Suppose, by contradiction, that lim supn→∞ ‖P n
1 φ‖ < δ1 for some φ ∈ Z+ \ {0}.

Then there exists an integer N0 ≥ 1 such that ‖P n
1 φ‖ < δ1, ∀n ≥ N0. For any t ≥ N0ω,

we have t = nω + t′ with n ≥ N0, t
′ ∈ [0, ω] and

‖H∗ξe−(µA+µh)τaAt(φ)‖ ≤ ‖H∗ξe−(µA+µh)τaP1(t)(φ)‖

= ‖H∗ξe−(µA+µh)τaP1(t
′)(P n

1 φ)‖

≤ δ0.

Then for all t ≥ τa+N0ω we have 0 ≤ H∗ξe−(µA+µh)τaA(t−τa, φ) ≤ δ0. It then follows

that

dL(t, φ)

dt
= H∗e−(µA+µh)τaξA(t− τa)r(t) exp(−c(t)H∗e−(µA+µh)τaξA(t− τa))

−(µL + α1(t)M
∗)L

≥ r(t)(1− ǫ0)H
∗e−(µA+µh)τaξA(t− τa)− (µL + α1(t)M

∗)L

for all t ≥ τa + N0ω. Since φ > 0, there exists t0 ∈ [0, τ ] such that at least one of

L(t0, φ) > 0, N(t0, φ) > 0, A(t0, φ) > 0 holds. Without loss of generality, we assume

that L(t0, φ) > 0. It then follows that L(t, φ) > 0 for all t ≥ t0, that there exists

t1 ∈ [τl, τl + τ ] such that N(t1, φ) > 0, and hence, N(t, φ) > 0 for all t ≥ t1, and that

there exists t2 ∈ [τl + τn, τl + τn+ τ ] such that A(t2, φ) > 0, and hence, A(t, φ) > 0 for

all t ≥ t2. Hence, L(t, φ) > 0, N(t, φ) > 0, A(t, φ) > 0 for all t ≥ 3τ . We can choose

a sufficiently small real number k̄ > 0 such that

(L(t, φ), N(t, φ), A(t, φ)) ≥ k̄(v∗1(t), v
∗
2(t), v

∗
3(t)), ∀t ∈ [N̄ω, N̄ω + τ ],

where N̄ω ≥ max{τa + N0ω, 3τ}. By [84, Theorem 5.1.1], we have (L(t, φ), N(t, φ),

A(t, φ)) ≥ k̄(v∗1(t), v
∗
2(t), v

∗
3(t)), ∀t > N̄ω + τ. Thus, limt→∞ L(t, φ) = limt→∞N(t, φ)



134

= limt→∞A(t, φ) = ∞, a contradiction.

For any φ ∈ Y , we have φ ≤ (L̄∗
0, N̄

∗
0 , Ā

∗
0). Since system (5.5) is dominated by the

cooperative system (5.6), it follows from [84, Theorem 5.1.1] that

(L(t, φ), N(t, φ), A(t, φ)) ≤ (L̄∗(t), N̄∗(t), Ā∗(t)), ∀t ≥ 0, φ ∈ Y.

For any given ϕ, ψ ∈ Y with ϕ ≥ ψ, let w(t, ϕ) and w(t, ψ) be the unique solutions

of system (5.5) satisfying w0 = ϕ and w0 = ψ, respectively. Define

E(t, x) := r(t)xe−c(t)x.

By virtue of (A3), we see that for any φ ∈ Y ,

∂E

∂x
(t,H∗e−(µA+µh)τaξA(t− τa, φ))

= [1− c(t)H∗e−(µA+µh)τaξA(t− τa, φ)]r(t)e
−c(t)H∗e−(µA+µh)τaξA(t−τa,φ)

≥ [1− c(t)H∗e−(µA+µh)τaξĀ∗(t− τa)]r(t)e
−c(t)H∗e−(µA+µh)τaξA(t−τa,φ)

> 0.

It then follows that f̃i(t, ϕ) ≥ f̃i(t, ψ) whenever ϕ ≥ ψ and ϕi(0) = ψi(0) holds for

some i ∈ {1, 2, 3}. By [84, Theorem 5.1.1], we have w(t, ϕ) ≥ w(t, ψ), ∀t ≥ 0, that is,

P1(t) : Y → Y is monotone. Next we prove that P1(t) : Y → Y is eventually strongly

monotone. Let ϕ, ψ ∈ Y satisfy ϕ > ψ. Denote w(t, ϕ) = (w̄1(t), w̄2(t), w̄3(t)),

w(t, ψ) = (w1(t), w2(t), w3(t)). By similar arguments to those in the proof of Claims

1 and 2, we have

Claim 5. There exists t0 ∈ [0, τl] such that w̄2(t) > w2(t), ∀t ≥ t0.

Claim 6. w̄3(t) > w3(t), ∀t > t0 + τn.

Now we prove the following claim.
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Claim 7. w̄1(t) > w1(t), ∀t > t0 + τn + τa.

Let

f1(t, y) := E(t,H∗e−(µA+µh)τaξw3(t− τa))− (µL + α1(t)M
∗)y.

Since ∂E
∂x
(t,H∗e−(µA+µh)τaξA(t− τa, φ)) > 0, we have

dw̄1(t)

dt
= E(t,H∗e−(µA+µh)τaξw̄3(t− τa))− (µL + α1(t)M

∗)w̄1(t)

> E(t,H∗e−(µA+µh)τaξw3(t− τa))− (µL + α1(t)M
∗)w̄1(t)

= f1(t, w̄1(t)), ∀t > t0 + τn + τa,

and hence,

dw̄1(t)

dt
− f1(t, w̄1(t)) > 0 =

dw1(t)

dt
− f1(t, w1(t)), ∀t > t0 + τn + τa.

Since w̄1(t0 + τn + τa) ≥ w1(t0 + τn + τa), it follows from Theorem 1.3.1 that w̄1(t) >

w1(t), ∀t > t0 + τn + τa. In view of the above three claims, we obtain

(w̄1(t), w̄2(t), w̄3(t)) ≫ (w1(t), w2(t), w3(t)), ∀t > t0 + τn + τa.

Since t0 ∈ [0, τl], it follows that

(w̄1t, w̄2t, w̄3t) ≫ (w1t, w2t, w3t), ∀t > 4τ,

that is, ut(ϕ) ≫ ut(ψ), ∀t > 4τ. This shows that P n
1 : Y → Y is strongly monotone

for nω > 4τ .

Since f̃(t, ϕ) is strictly subhomogeneous in ϕ, by the same argument as in the

proof of [111, Theorem 3.3], we can deduce that P1 is strictly subhomogeneous on Y .

Thus, P n
1 is also strictly subhomogeneous on Y for any integer n > 0.
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We fix an integer n0 such that n0ω > 4τ . It then follows that P n0
1 = P1(n0ω) :

Y → Y is strongly monotone and strictly subhomogeneous. Let P̃ (t) be the solution

map of linear system (5.7) on Z. Note that DP n0
1 (0) = DP1(n0ω)(0) = P̃ (n0ω) =

(P̃ (ω))n0 = P̃ n0 and r(P̃ n0) = (r(P̃ ))n0 . Since (A2) holds, Theorem 1.3.4, as ap-

plied to P n0
1 , implies that there exists a unique positive n0ω-periodic solution w̄(t) =

(L∗(t), N∗(t), A∗(t)) which is globally attractive for system (5.5) in Y \ {0}.

Now we prove that w̄(t) is also an ω-periodic solution of system (5.5). Let w̄(t) =

w(t, ψ∗). By the properties of periodic semiflows, we have P n0
1 (P1(ψ

∗)) = P1(P
n0
1 (ψ∗))

= P1(ψ
∗), which implies that P1(ψ

∗) is also a positive fixed point of P n0
1 . By the

uniqueness of the positive fixed point of P n0
1 , it follows that P1(ψ

∗) = ψ∗. So w̄(t) =

(L∗(t), N∗(t), A∗(t)) is an ω-periodic solution of system (5.5).

By Lemma 1.1.2, for any ψ ∈ Z+, ω(ψ) is an internally chain transitive set for

P1 : Z+ → Z+. Since ω(ψ) ⊆ Y , it follows from Theorem 1.1.4 that either ω(ψ) = 0

or ω(ψ) = ψ∗, ∀ψ ∈ Z+. Claim 4 implies that ω(ψ) 6= 0, ∀ψ ∈ Z+ \ {0}. Hence,

ω(ψ) = ψ∗, ∀ψ ∈ Z+ \ {0}. Thus, system (5.5) admits a unique positive ω-periodic

solution w(t, ψ∗) = (L∗(t), N∗(t), A∗(t)) which is globally attractive in Z+ \ {0}.

Linearizing system (5.1) at its disease-free periodic solution (M∗, 0, L∗(t), N∗(t),

0, A∗(t), 0, H∗), we then obtain the following system of periodic linear equations for

the infective variables m, n and a:

dm

dt
=− µMm+ α2(t)βM

∗n,

dn

dt
=e−(µL+µM )τlα1(t− τl)βTL

∗(t− τl)m(t− τl)− (γ + α2(t)M
∗ + µN)n,

da

dt
=e−(µN+µM )τnα2(t− τn)(M

∗n(t− τn) + βTN
∗(t− τn)m(t− τn))− (µA + ξH∗)a.

(5.10)

Since the third equation of system (5.10) is decoupled from the first two equations of

system (5.10), it suffices to use the following system to define the basic reproduction
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ratio:

dm

dt
= −µMm+ α2(t)βM

∗n,

dn

dt
= e−(µL+µM )τlα1(t− τl)βTL

∗(t− τl)m(t− τl)− (γ + α2(t)M
∗ + µN)n.

(5.11)

Denote a11(t) = µM , a12(t) = α2(t)βM
∗, a22(t) = γ + α2(t)M

∗ + µN , and

a21(t) = e−(µL+µM )τlα1(t− τl)βTL
∗(t− τl).

Let C = C([−τl, 0],R2), C+ = C([−τl, 0],R2
+). Then (C,C+) is an ordered Banach

space equipped with the maximum norm and the positive cone C+. For any given

continuous function v = (v1, v2) : [−τl, σ) → R
2 with σ > 0, we define vt ∈ C by

vt(θ) = (v1(t+ θ), v2(t+ θ)), ∀θ ∈ [−τl, 0],

for any t ∈ [0, σ). Let F : R → L(C,R2) be a map and V (t) be a continuous m ×m

matrix function on R defined as follows:

F (t)ϕ =




a12(t)ϕ2(0)

a21(t)ϕ1(−τl)


 , V (t) =



a11(t) 0

0 a22(t)


 .

Let Φ(t, s), t ≥ s, be the evolution matrix associated with the following system:

dv(t)

dt
= −V (t)v(t),

that is, Φ(t, s) satisfies

∂

∂t
Φ(t, s) = −V (t)Φ(t, s), ∀t ≥ s, and Φ(s, s) = I, ∀s ∈ R.



138

It then easily follows that

Φ(t, s) =



e−

∫ t
s
a11(r)dr 0

0 e−
∫ t
s
a22(r)dr


 .

According to section 1.4, we assume that the ω-periodic function v(t) is the ini-

tial distribution of infectious individuals. For any given s ≥ 0, F (t − s)vt−s is the

distribution of newly infected individuals at time t − s, which is produced by the

infectious individuals who were introduced over the time interval [t − s − τl, t − s].

Then Φ(t, t− s)F (t− s)vt−s is the distribution of those infected individuals who were

newly infected at time t − s and remain in the infected compartments at time t. It

follows that

∫ ∞

0

Φ(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds

is the distribution of accumulative new infections at time t produced by all those

infectious individuals introduced at all previous times to t.

Let Cω be the ordered Banach space of all continuous and ω-periodic functions

from R to R
2, which is equipped with the maximum norm and the positive cone

C+
ω := {v ∈ Cω : v(t) ≥ 0, ∀t ∈ R}. Define a linear operator L : Cω → Cω by

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω.
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It follows that

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds

=

∫ ∞

0

Φ(t, t− s)




a12(t− s)v2(t− s)

a21(t− s)v1(t− s− τl)


 ds

=

∫ ∞

0




e−
∫ t
t−s

a11(r)dra12(t− s)v2(t− s)

e−
∫ t
t−s

a22(r)dra21(t− s)v1(t− s− τl)


 ds

=




∫∞

0
e−

∫ t
t−s

a11(r)dra12(t− s)v2(t− s)ds
∫∞

τl
e
−

∫ t
t−s+τl

a22(r)dra21(t− s+ τl)v1(t− s)ds




=

∫ ∞

0

K(t, s)v(t− s)ds, ∀t ∈ R, v =



v1

v2


 ∈ Cω,

where

K(t, s) =




0 e−
∫ t
t−s

a11(r)dra12(t− s)

e
−

∫ t
t−s+τl

a22(r)dra21(t− s+ τl) 0


 , if s ≥ τl,

and

K(t, s) =



0 e−

∫ t
t−s

a11(r)dra12(t− s)

0 0


 , if s < τl.

Following section 1.4, we define R0 = r(L). Let P̂ (t) be the solution maps of system

(5.11), that is, P̂ (t)ϕ = ut(ϕ), t ≥ 0, where u(t, ϕ) is the unique solution of (5.11)

with u0 = ϕ ∈ C([−τl, 0],R2). Then P̂ := P̂ (ω) is the Poincaré map associated with

linear system (5.11) on C([−τl, 0],R2). Let r(P̂ ) be the spectral radius of P̂ . By

Theorem 1.4.1, we have the following result.

Lemma 5.2.3. R0 − 1 has the same sign as r(P̂ )− 1.
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This result shows that the sign of R0 − 1 determines the stability of the zero

solution of linear periodic system (5.11), and hence, R0 is a threshold value for the

local invasion of the disease.

5.3 Threshold dynamics

In this section, we study the global dynamics of system (5.1) in terms of R0. We first

present the following preliminary result.

Lemma 5.3.1. For any ϕ ∈ C([−τ, 0],R8
+), system (5.1) has a unique nonnegative

solution through ϕ, and solutions are ultimately bounded.

Proof. For any ϕ ∈ C([−τ, 0],R8
+), we define

f(t, ϕ) = (f1, f2, f3, f4, f5, f6, f7, f8),

where

f1 =(ϕ1(0) + ϕ2(0))BM(ϕ1(0) + ϕ2(0))− µMϕ1(0)− α2(t)βϕ1(0)ϕ5(0),

f2 =α2(t)βϕ1(0)ϕ5(0)− µMϕ2(0),

f3 =e
−(µA+µh)τaξ(ϕ6(−τa) + ϕ7(−τa))ϕ8(−τa)r(t) exp(−c(t)e−(µA+µh)τaξ(ϕ6(−τa)

+ ϕ7(−τa))ϕ8(−τa))− µLϕ3(0)− α1(t)ϕ3(0)(ϕ1(0) + ϕ2(0)),

f4 =e
−(µL+µM )τlα1(t− τl)[ϕ1(−τl) + (1− βT )ϕ2(−τl)]ϕ3(−τl)− [γ + α2(t)(ϕ1(0)

+ ϕ2(0)) + µN ]ϕ4(0),

f5 =e
−(µL+µM )τlα1(t− τl)βTϕ2(−τl)ϕ3(−τl)

− [γ + α2(t)(ϕ1(0) + ϕ2(0)) + µN ]ϕ5(0),
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f6 =e
−(µN+µM )τnα2(t− τn)[ϕ1(−τn) + (1− βT )ϕ2(−τn)]ϕ4(−τn)

− (µA + ξϕ8(0))ϕ6(0),

f7 =e
−(µN+µM )τnα2(t− τn)[(ϕ1(−τn) + ϕ2(−τn))ϕ5(−τn) + βTϕ2(−τn)ϕ4(−τn)]

− (µA + ξϕ8(0))ϕ7(0),

f8 =rh − µhϕ8(0).

Since f(t, ϕ) is continuous in (t, ϕ) ∈ R+ × C([−τ, 0],R8
+), and f(t, ϕ) is Lipschitz in

ϕ on each compact subset of C([−τ, 0],R8
+), it then follows that system (5.1) has a

unique solution u(t, ϕ) on its maximal interval [0, σϕ) of existence with u0 = ϕ (see,

e.g., [29, Theorem 2.2.1 and 2.2.3]).

Let ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8) ∈ C([−τ, 0],R8
+) be given. If ϕi(0) = 0 for

some i ∈ {1, 2, 3, 4, 5, 6, 7, 8}, then fi(t, ϕ) ≥ 0. By [84, Theorem 5.2.1 and Remark

5.2.1], it follows that for any ϕ ∈ C([−τ, 0],R8
+), the unique solution u(t, ϕ) of system

(5.1) with u0 = ϕ satisfies ut(ϕ) ∈ C([−τ, 0],R8
+) for all t ∈ [0, σϕ).

For the mice population M(t) +m(t), we have

d(M +m)

dt
= (M +m)rM exp(−M +m

KM

)− µM(M +m).

It follows that for any M(0) +m(0) > 0, there holds

lim
t→∞

(M(t) +m(t)) =M∗.

For the larval tick population L(t), we have

dL

dt
= Tbr(t) exp(−c(t)Tb)− µLL− α1(t)L(M +m)

≤ r(t)

c(t)
e−1 − µLL.
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It is easy to see that the linear inhomogeneous equation

dL̄

dt
=
r(t)

c(t)
e−1 − µLL̄

has a globally attractive positive ω-periodic solution L̄∗(t). Then, by the comparison

principle, we have

lim sup
t→∞

(L(t)− L̄∗(t)) ≤ 0.

It follows that there exists B1 > 0 such that

d(N + n)

dt
= e−(µL+µM )τlα1(t− τl)[M(t− τl) +m(t− τl)]L(t− τl)

−[γ + α2(t)(M +m) + µN ](N + n)

≤ B1α1(t− τl)− (γ + µN)(N + n)

for sufficiently large t. Note that the linear inhomogeneous equation

dU

dt
= B1α1(t− τl)− (γ + µN)U

has a globally attractive positive ω-periodic solution U∗(t). By the comparison prin-

ciple, we obtain

lim sup
t→∞

(N(t) + n(t)− U∗(t)) ≤ 0.

Thus, there exists B2 > 0 such that

d(A+ a)

dt
= e−(µN+µM )τnα2(t− τn)[M(t− τn) +m(t− τn)][N(t− τn) + n(t− τn)]

−(µA + ξH)(A+ a)

≤ B2α2(t− τn)− µA(A+ a)



143

for sufficiently large t. Since the linear inhomogeneous equation

dV

dt
= B2α2(t− τn)− µAV

has a globally attractive positive ω-periodic solution V ∗(t), the comparison theorem

implies that

lim sup
t→∞

(A(t) + a(t)− V ∗(t)) ≤ 0.

For the deer population H(t), it is easy to see that

lim
t→∞

H(t) = H∗.

Consequently, solutions of system (5.1) are ultimately bounded.

Let

X = C([−τn, 0],R2
+)× C([−τl, 0],R+)× C([−τn, 0],R2

+)× C([−τa, 0],R3
+),

X0 = {φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8) ∈ X : φi(0) > 0, i = 2, 5, 7}.

Let P (t) be the solution maps of system (5.11) on the space C([−τl, 0],R+) × R+.

Then P := P (ω) is the Poincaré map of system (5.11) on the space C([−τl, 0],R)×R.

Let r(P ) be the spectral radius of P . Then we have the following threshold type result

for system (5.1).

Theorem 5.3.2. Let (A1), (A2) and (A3) hold. Then the following statements are

valid:

(i) If r(P ) < 1, then the disease-free periodic solution (M∗, 0, L∗(t), N∗(t), 0,

A∗(t), 0, H∗) is globally attractive for system (5.1) in X.
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(ii) If r(P ) > 1, then system (5.1) admits a positive ω-periodic solution and there

exists a real number η > 0 such that any solution (M(t, ϕ), m(t, ϕ), L(t, ϕ),

N(t, ϕ), n(t, ϕ), A(t, ϕ), a(t, ϕ), H(t, ϕ)) of system (5.1) with ϕ ∈ X0 satisfies

lim inft→∞(m(t), n(t), a(t)) ≥ (η, η, η).

Proof. We first consider the case where r(P ) < 1. By arguments similar to those in

proving that P̃ǫ(t) is eventually strongly monotone, we can show that P (t) is strongly

positive on C([−τl, 0],R) × R for each t > 2τl. It follows from [29, Theorem 3.6.1]

that the linear operator P (t) is compact on C([−τl, 0],R)×R for each t > 2τl. Choose

an integer n0 > 0 such that n0ω > 2τl. Since P n0 = P (n0ω), [44, Lemma 3.1]

implies that r(P ) is a simple eigenvalue of P having a strongly positive eigenvector,

and the modulus of any other eigenvalue is less than r(P ). Let µ = ln r(P )
ω

. By

Lemma 5.2.1, there exists a positive ω-periodic function v(t) = (v1(t), v2(t))
T such

that u(t) = eµtv(t) is a positive solution of system (5.11).

Let Pǫ(t) be the solution maps of the following perturbed linear periodic system

on the space C([−τl, 0],R)× R:

dm

dt
=− µMm+ α2(t)β(M

∗ + ǫ)n,

dn

dt
=e−(µL+µM )τlα1(t− τl)βT (L

∗(t− τl) + ǫ)m(t− τl)− [γ + α2(t)(M
∗ − ǫ) + µN ]n,

(5.12)

and Pǫ := Pǫ(ω). Since limǫ→0 r(Pǫ) = r(P ) < 1, we can fix a sufficiently small ǫ > 0

such that r(Pǫ) < 1. It is easy to verify that Pǫ(t) is also compact and eventually

strongly monotone on C([−τl, 0],R) × R for each t > 2τl. As discussed above, there

is a positive ω-periodic function vǫ(t) = (vǫ1(t), vǫ2(t)) such that uǫ(t) = eµǫtvǫ(t) is a

positive solution of (5.12), where µǫ =
ln r(Pǫ)

ω
< 0. Clearly, limt→∞ uǫ(t) = 0.
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Let M =M +m,N = N + n,A = A+ a, then we have

dM
dt

=MBM(M)− µMM,

dL

dt
=e−(µA+µh)τaξA(t− τa)H(t− τa)r(t) exp(−c(t)e−(µA+µh)τaξA(t− τa)H(t− τa))

− µLL− α1(t)LM,

dN
dt

=e−(µL+µM )τlα1(t− τl)M(t− τl)L(t− τl)− (γ + α2(t)M+ µN)N ,

dA
dt

=e−(µN+µM )τnα2(t− τn)M(t− τn)N (t− τn)− (µA + ξH)A,
dH

dt
=rh − µhH.

(5.13)

Since (M∗, L∗(t), N∗(t), A∗(t), H∗) is globally attractive for the solutions of system

(5.4) in (C([−τn, 0],R+)\{0})× (Z \{0})×C([−τa, 0],R+), (M
∗, L∗(t), N∗(t), A∗(t),

H∗) is also globally attractive for the solutions of system (5.13) in (C([−τn, 0], R+) \

{0})×(Z\{0})×C([−τa, 0], R+). It follows that there exists a sufficiently large integer

n1 > 0 such that n1ω ≥ τl and M
∗ − ǫ ≤ M(t) ≤ M∗ + ǫ, L(t− τl) ≤ L∗(t− τl) + ǫ,

∀t ≥ n1ω. We then have

dm

dt
= α2(t)βMn− µMm

≤ α2(t)β(M
∗ + ǫ)n− µMm,

dn

dt
= e−(µL+µM )τlα1(t− τl)βTm(t− τl)L(t− τl)− (γ + α2(t)(M +m) + µN)n

≤ e−(µL+µM )τlα1(t− τl)βTm(t− τl)(L
∗(t− τl) + ǫ)− (γ + α2(t)(M

∗ − ǫ) + µN)n

for all t ≥ n1ω. Choose a sufficiently large number K > 0 such that (m(t), n(t))T ≤

Kuǫ(t), ∀t ∈ [n1ω, n1ω + τl]. Then [84, Theorem 5.1.1] implies that (m(t), n(t))T ≤

Kuǫ(t), ∀t ≥ n1ω + τl. Hence, limt→∞m(t) = limt→∞ n(t) = 0. By using the chain

transitive sets arguments (see, e.g., section 1.1), it follows that limt→∞ a(t) = 0,

limt→∞M(t) = M∗, limt→∞H(t) = H∗, limt→∞(L(t) − L∗(t)) = limt→∞(N(t) −
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N∗(t)) = limt→∞(A(t)− A∗(t)) = 0. This proves statement (i).

In the case where r(P ) > 1, we appeal to the persistence theory for periodic

semiflows. Let ∂X0 := X \ X0 = {φ ∈ X : φi(0) = 0 for some i ∈ {2, 5, 7}}. Let

Q(t) be the solution maps of system (5.1) on X, that is, Q(t)ψ = ut(ψ), t ≥ 0, where

u(t, ψ) is the unique solution of system (5.1) satisfying u0 = ψ ∈ X. Then Q := Q(ω)

is the Poincaré map associated with system (5.1).

From the second, fifth and seventh equations of system (5.1) it is easy to see

that Q(t)X0 ⊆ X0 for all t ≥ 0. Lemma 5.3.1 implies that the discrete-time system

{Qn : X → X}n≥0 is point dissipative and Qn is compact for sufficiently large n. It

then follows from [52, Theorem 2.9] that Q admits a global attractor in X. Now we

prove that Q is uniformly persistent with respect to X0.

Let M1 = (0, 0, 0, 0, 0, 0, 0, H∗), M2 = (M∗, 0, 0, 0, 0, 0, 0, H∗), M3 = (M∗, 0, L∗
0,

N∗
0 , 0, A

∗
0, 0, H

∗), where L∗
0(θ) = L∗(θ) for all θ ∈ [−τl, 0], N∗

0 (θ) = N∗(θ) for all

θ ∈ [−τn, 0], A∗
0(θ) = A∗(θ) for all θ ∈ [−τa, 0]. Choose a small positive integer δ0

such that M∗ > 2δ0. Since limφ→M1(Q(t)φ −M1) = 0 uniformly for t ∈ [0, ω], there

exists δ1 > 0 such that for any φ ∈ X0 with ‖φ−M1‖ < δ1, we have ‖Q(t)φ−M1‖ <

δ0, ∀t ∈ [0, ω].

Claim 1. lim supn→∞ ‖Q(nω)φ−M1‖ ≥ δ1 for all φ ∈ X0.

Suppose, by contradiction, that lim supn→∞ ‖Q(nω)ψ−M1‖ < δ1 for some ψ ∈ X0.

Then there exists an integer N1 ≥ 1 such that ‖Q(nω)ψ −M1‖ < δ1 for all n ≥ N1.

For any t ≥ N1ω, we have t = nω + t′ with n ≥ N1 and t′ ∈ [0, ω], and hence,

‖Q(t)ψ−M1‖ = ‖Q(t′)Q(nω)ψ−M1‖ < δ0. It follows thatM(t, ψ) < δ0, m(t, ψ) < δ0

for all t ≥ N1ω. Since ψ ∈ X0, ψ2(0) > 0, and hence, limt→∞(M(t, ψ) +m(t, ψ)) =

M∗ > 2δ0, a contradiction.

Since L∗(t) is a positive ω-periodic solution, we can choose γ0 > 0 such that

inft≥0 L
∗(t) > γ0. Since limφ→M2 ‖Q(t)φ − M2‖ = 0 uniformly for t ∈ [0, ω], there
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exists γ1 > 0 such that for any φ ∈ X0 with ‖φ−M2‖ < γ1, we have ‖Q(t)φ−M2‖ <

γ0, ∀t ∈ [0, ω]. By similar arguments, we can prove the following claim:

Claim 2. lim supn→∞ ‖Q(nω)φ−M2‖ ≥ γ1 for all φ ∈ X0.

Since limφ→M3 ‖Q(t)φ − Q(t)M3‖ = 0 uniformly for t ∈ [0, ω], for any given ǫ >

0, there exists η1 > 0 such that for any φ ∈ X0 with ‖φ − M3‖ < η1, we have

‖Q(t)φ−Q(t)M3‖ < ǫ, ∀t ∈ [0, ω].

Claim 3. lim supn→∞ ‖Q(nω)φ−M3‖ ≥ η1 for all φ ∈ X0.

Suppose, by contradiction, that lim supn→∞ ‖Q(nω)ψ−M3‖ < η1 for some ψ ∈ X0.

Then there exists N3 ≥ 1 such that ‖Q(nω)ψ −M3‖ < η1 for all n ≥ N3. For any

t ≥ N3ω, we have t = nω + t′ with n ≥ N3, t
′ ∈ [0, ω] and ‖Q(t)ψ − Q(t)M3‖ =

‖Q(t′)Q(nω)ψ − Q(t′)Q(nω)M3‖ = ‖Q(t′)Q(nω)ψ − Q(t′)M3‖ < ǫ for all t ≥ N3ω.

Therefore, M(t) > M∗ − ǫ, M(t) +m(t) < M∗ + ǫ and L(t− τl) > L∗(t− τl)− ǫ for

all t ≥ N3ω + τl. Let rǫ be the spectral radius of the Poincaré map associated with

the following system:

dm

dt
=− µMm+ α2(t)β(M

∗ − ǫ)n,

dn

dt
=e−(µL+µM )τlα1(t− τl)βT (L

∗(t− τl)− ǫ)m(t− τl)− (γ + α2(t)(M
∗ + ǫ) + µN)n.

(5.14)

Then limǫ→0+ rǫ = r(P ) > 1. Fix a sufficiently small ǫ such that rǫ > 1, M∗ − ǫ > 0

and L∗(t − τl) − ǫ > 0 for all t ≥ 0. By Lemma 5.2.1, system (5.14) has a solution

w(t) = eλtv(t), where v(t) = (v1(t), v2(t)) is positive and ω-periodic, λ = ln rǫ
ω

> 0.
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Clearly, limt→∞w(t) = ∞. For all t ≥ N3ω + τl, we have

dm

dt
= α2(t)βMn− µMm

≥ α2(t)β(M
∗ − ǫ)n− µMm,

dn

dt
= e−(µL+µM )τlα1(t− τl)βTm(t− τl)L(t− τl)− (γ + α2(t)(M +m) + µN)n

≥ e−(µL+µM )τlα1(t− τl)βTm(t− τl)(L
∗(t− τl)− ǫ)− (γ + α2(t)(M

∗ + ǫ) + µN)n,

Since m(t, ψ) > 0, n(t, ψ) > 0 for all t ≥ 0, we can choose a sufficiently small k > 0

such that

(m(t, ψ), n(t, ψ)) ≥ kw(t), ∀t ∈ [N3ω + τl, N3ω + 2τl].

By [84, Theorem 5.1.1], it follows that

(m(t, ψ), n(t, ψ)) ≥ kw(t) for all t ≥ N3ω + 2τl.

Hence, limt→∞m(t, ψ) = limt→∞ n(t, ψ) = ∞, a contradiction.

Define

M∂ := {φ ∈ ∂X0 : Q
n(φ) ∈ ∂X0, ∀n ≥ 0}.

For any given ψ ∈ ∂X0, we have ψ2(0) = 0 or ψ5(0) = 0 or ψ7(0) = 0.

If ψ2(0) = 0, we have the following two cases:

Case 1. ψ1(0) = 0.

Since d(M+m)
dt

= (M + m)BM(M + m) − µM(M + m) and ψ1(0) + ψ2(0) = 0,

M(t, ψ) = m(t, ψ) = 0, ∀t ≥ 0. Then from the fourth, fifth, sixth and seventh

equations of (5.1) we have N(t, ψ) → 0, n(t, ψ) → 0, A(t, ψ) → 0, a(t, ψ) → 0 as

t→ ∞. In view of the third equation of (5.1), we have L(t, ψ) → 0 as t→ ∞. In this

case, Qn(ψ) →M1 as n→ ∞.
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Case 2. ψ1(0) > 0.

Since ψ1(0) > 0, from the first equation of (5.1) we have M(t, ψ) > 0, ∀t ≥ 0. We

proceed with the following two subcases:

Subcase 1. m(t, ψ) = 0, ∀t ≥ 0.

From the second equation of (5.1) we get n(t, ψ) = 0, ∀t ≥ 0. Then from the

seventh equation of (5.1), we have a(t, ψ) → 0 as t → ∞. In this subcase, Qn(ψ) →

M2 or M3 as n→ ∞.

Subcase 2. m(t0, ψ) > 0 for some t0 > 0.

From the second equation of (5.1) we have m(t, ψ) > 0, ∀t ≥ t0. We have two

possibilities:

(i) L(t, ψ) = 0, ∀t ≥ 0.

From the fourth and fifth equations of (5.1) we get N(t, ψ) → 0, n(t, ψ) → 0 as

t→ ∞. Then from the sixth and seventh equations of (5.1), we have A(t, ψ) → 0

and a(t, ψ) → 0 as t → ∞. From the second equation of (5.1) we obtain

m(t, ψ) → 0 as t→ ∞. Thus, Qn(ψ) →M2 as n→ ∞.

(ii) L(t1, ψ) > 0 for some t1 > 0.

From the third equation of (5.1) we have L(t, ψ) > 0, ∀t ≥ t1. By the fifth

equation of (5.1), it follows that n(t, ψ) > 0 for t > max{t0, t1}+ τl. Then from

the seventh equation of (5.1), we have a(t, ψ) > 0 for t > max{t0, t1}+ τl + τn.

Thus, Qn(ψ) ∈ X0 for nω > max{t0, t1}+ τl + τn.

For the case where ψ5(0) = 0 or ψ7(0) = 0, we can do similar analysis. Finally, we

see that for any given ψ ∈M∂ , Q
n(ψ) →M1 as n→ ∞, or Qn(ψ) →M2 as n→ ∞, or

Qn(ψ) → M3 as n → ∞. Thus,
⋃

φ∈M∂
ω(φ) ⊆ {M1, M2, M3}. Further, no subset of

{M1,M2,M3} forms a cycle in ∂X0. With the above three claims, we see thatM1, M2
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andM3 are isolated invariant sets for Q in X, and W s(Mi)∩X0 = ∅, i = 1, 2, 3, where

W s(Mi) is the stable set ofMi for Q. By the acyclicity theorem on uniform persistence

for maps (see, e.g., Theorem 1.2.1), it follows that Q : X → X is uniformly persistent

with respect to X0. Note that there exists an equivalent norm for C([−τ, 0],R8) such

that for each t > 0, the solution map Q(t) of system (5.1) is an κ-contraction on

C([−τ, 0],R8
+), where κ is the Kuratowski measure of noncompactness (see, e.g., [29,

Theorem 3.6.1]). It then follows from Theorem 1.2.5 that system (5.1) admits an ω-

periodic solution Q(t)φ∗ with φ∗ ∈ X0. ThenM(t, φ∗) ≥ 0, m(t, φ∗) > 0, L(t, φ∗) ≥ 0,

N(t, φ∗) ≥ 0, n(t, φ∗) > 0, A(t, φ∗) ≥ 0, a(t, φ∗) > 0, H(t, φ∗) = rh
µh

> 0. We claim

that there exists some t̄ ∈ [0, ω] such that M(t̄, φ∗) > 0. If it is not the case, then

M(t, φ∗) ≡ 0 for all t ≥ 0, due to the periodicity of M(t, φ∗). From the first equation

of system (5.1) we get 0 = m(t, φ∗)BM(m(t, φ∗)) > 0, which is a contradiction. Since

dM(t, φ∗)

dt
≥ −(µM + α2(t)β max

t∈[0,ω]
n(t, φ∗))M(t, φ∗),

it follows that M(t, φ∗) > 0 for all t ≥ t̄. Now the periodicity of M(t, φ∗) implies that

M(t, φ∗) > 0 for all t ≥ 0. By similar arguments, we can show that L(t, φ∗) > 0,

N(t, φ∗) > 0, A(t, φ∗) > 0 for all t ≥ 0. Therefore, (M(t, φ∗), m(t, φ∗), L(t, φ∗),

N(t, φ∗), n(t, φ∗), A(t, φ∗), a(t, φ∗), H(t, φ∗)) is a positive ω-periodic solution of system

(5.1).

By Theorem 1.2.5 with ρ(x) = d(x, ∂X0), it then follows that Q : X0 → X0 has a

compact global attractor A0. For any φ ∈ A0, we have φi(0) > 0 for all i = 2, 5, 7. Let

B0 :=
⋃

t∈[0,ω]Q(t)A0. Then ψi(0) > 0, i = 2, 5, 7 for all ψ ∈ B0. Moreover, B0 ⊆ X0

and limt→∞ d(Q(t)φ,B0) = 0 for all φ ∈ X0. Define a continuous function p : X → R+

by

p(φ) = min
i=2,5,7

{φi(0)}, ∀φ ∈ X.
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Since B0 is a compact subset of X0, we have infφ∈B0 p(φ) = minφ∈B0 p(φ) > 0. Conse-

quently, there exists η > 0 such that

lim inf
t→∞

min(m(t, φ), n(t, φ), a(t, φ)) = lim inf
t→∞

p(Q(t)φ) ≥ η.

This completes the proof.

By the same arguments as in Lemma 2.3.8, we have r(P ) = r(P̂ ). Combining

Lemma 5.2.3 and Theorem 5.3.2, we have the following result.

Theorem 5.3.3. Let (A1), (A2) and (A3) hold. Then the following statements are

valid:

(i) If R0 < 1, then the disease-free periodic solution (M∗, 0, L∗(t), N∗(t), 0, A∗(t),

0, H∗) is globally attractive for system (5.1) in X.

(ii) If R0 > 1, then system (5.1) admits a positive ω-periodic solution and there

exists a real number η > 0 such that any solution (M(t, ϕ), m(t, ϕ), L(t, ϕ),

N(t, ϕ), n(t, ϕ), A(t, ϕ), a(t, ϕ), H(t, ϕ)) of system (5.1) with ϕ ∈ X0 satisfies

lim inft→∞(m(t), n(t), a(t)) ≥ (η, η, η).

5.4 A case study

In this section, we investigate the Lyme disease transmission in Long Point, Ontario,

which is one of the endemic areas for Lyme disease in Canada.

Values for constant parameters in model (5.1) are obtained and estimated from

[15, 16, 51, 64, 65]. We list them in Table 5.2. According to [64, 65, 66], the dura-

tion of development and activity of ticks are mainly affected by temperatures. Thus,

we evaluate the periodic parameters in model (5.1) by using the monthly mean tem-

perature data from 1981 to 2010 (obtained from the Environment Canada website:
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http://www.climate.weatheroffice.gc.ca, see Table 5.3) of Delhi CDA station which is,

among all the currently functioning weather stations, the closest to Long Point.

Table 5.2: Values for constant parameters in model (5.1)

Parameter Value Dimension Reference
τl 3 day [64]
τn 5 day [64]
τa 10 day [64]
rM 2 day−1 [15]
KM 3000 dimensionless [51]
β 1 dimensionless [64]
βT 0.9 dimensionless [16]
γ 0.005 day−1 [16]
ξ 0.1/30.4 day−1 Estimated from [64]
µM 0.012 day−1 [64]
µL 0.006 day−1 [64]
µN 0.006 day−1 [64]
µA 0.006 day−1 [64]
µh 0.01/30.4 day−1 Estimated from [65]
rh 0.2/30.4 day−1 Estimated from [65]

Table 5.3: Monthly mean temperatures for Delhi CDA (in ◦C)

Month Jan Feb Mar Apr May June
Temperature −5.4 −4.7 0 6.9 13.2 18.5
Month Jul Aug Sep Oct Nov Dec
Temperature 21.1 20 15.5 9.4 3.5 −2.2

It follows from Figure 1 in [66] that the preoviposition period of female adults and

the preeclosion period for egg masses are given in days, respectively, by

Y = 1300C−1.42, Y = 34234C−2.27,

where C > 0 is the temperature in ◦C. We assume that 5% of adult ticks are pregnant

females and the maximum number of eggs produced by each pregnant tick is 3000
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[64]. Then the maximal birth rate of ticks per day can be expressed as

0.05× 3000

1300C−1.42 + 34234C−2.27
.

Substituting the temperatures in Table 5.3 into the above formula we can get 12

values, each of which represents the mean maximal birth rate for the corresponding

month. For simplicity, we assume that the mean maximal birth rate for a month is

also the mean maximal birth rate for each day in that month. Thus, we obtain a

vector with 365 elements. After we put this vector into CFTOOL, we can get the

following fitted function for the temperature-dependent maximal birth rate of ticks:

r(t) = c+
7∑

n=1

(
an cos

2nπt

365
+ bn sin

2nπt

365

)
,

where a1 = −41.05, b1 = −13.6, a2 = 15.3, b2 = 12.5, a3 = 0.6696, b3 = −1.877, a4 =

−1.76, b4 = −3.236, a5 = −0.9198, b5 = −0.03388, a6 = 0.3419, b6 = 2.435, a7 =

0.3846, b7 = 0.04198, c = 27.04.

According to [64, 65], the biting rates of larvae and nymphs to mice depend on the

mice-finding probability and the activity proportion of immature ticks. The activity

proportion of immature ticks is temperature-dependent. The relationship between

the activity proportion and temperature is shown in Figure 3 of [65]. By the same

method as in getting r(t), we obtain the following fitted function for the temperature-

dependent activity proportion of immature ticks:

θ(t) = c+
7∑

n=1

(
an cos

2nπt

365
+ bn sin

2nπt

365

)
,

where a1 = −0.1057, b1 = −0.0374, a2 = 0.0481, b2 = 0.04018, a3 = −0.009363,

b3 = −0.01734, a4 = 0.001915, b4 = 0.001805, a5 = −0.004033, b5 = −0.003589,
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a6 = 0.001028, b6 = 0.006714, a7 = 0.001692, b7 = −0.002853, c = 0.06712. In

[64], the daily mice-finding probabilities of questing tick larvae and nymphs are given,

respectively, by

λql = 0.0013m0.515 and λqn = 0.002m0.515,

where m is the total number of mice. Then the daily biting rate of larvae and nymphs

to one mouse can be given, respectively, by

α1(t) =
0.0013M∗0.515

M∗
θ(t) and α2(t) =

0.002M∗0.515

M∗
θ(t).

Note that for any given φ ∈ Cω, we have

(Lφ)(t) =

∫ ∞

0

K(t, s)φ(t− s)ds

=
∞∑

k=0

∫ ω

0

K(t, s+ kω)φ(t− s)ds

=

∫ ω

0

(
∞∑

k=0

K(t, s+ kω))φ(t− s)ds

=

∫ ω

0

G(t, s)φ(t− s)ds,

where G(t, s) =
∑∞

k=0K(t, s + kω). Then we can use the method in [70] to calculate

R0. Setting the initial function values as M(θ) = 200,m(θ) = 0, L(θ) = 100, N(θ) =

60, n(θ) = 25, A(θ) = 50, a(θ) = 20, H(θ) = 20 for θ ∈ [−τ, 0]. With the above

obtained constant and periodic parameter values, we obtain R0 = 2.5530 > 1. In this

case, the solution converges to a positive periodic solution eventually. The time series

of n(t) and a(t) are shown in Figure 5.2. If we decrease the maximal birth rate of ticks

to 0.1r(t), then the solution converges to a disease-free periodic solution, which means

that the disease dies out eventually. In this case, we calculate R0 = 0.7980 < 1. The

long term behaviour of the questing nymph and adult tick populations are shown in
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Figure 5.3 and Figure 5.4, respectively.
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Figure 5.2: Long term behaviour of the solution, where R0 = 2.5530. (a) Time series
of n(t); (b) Time series of a(t).

5.5 Discussion

In this project, we have proposed a periodic and time-delayed Lyme disease model.

By using the theory developed in [110], we have derived the basic reproduction ratio

R0 for our model. By appealing to the theory of monotone and subhomogeneous

systems, the theory of uniform persistence for periodic semiflows and the theory of

chain transitive sets, we have obtained a threshold type result on the global dynamics

of the model in terms of R0 under some additional conditions, that is, the disease will

die out if R0 < 1 and will persist if R0 > 1.
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Figure 5.3: Long term behaviour of the solution, where R0 = 0.7980. (a) Time series
of N(t); (b) Time series of n(t).
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Figure 5.4: Long term behaviour of the solution, where R0 = 0.7980. (a) Time series
of A(t); (b) Time series of a(t).
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In the case where c(t) ≡ 0, the limiting system (5.5) is exactly the linear system

(5.7). By the same arguments as those for linear system (5.9) in the proof of Theorem

5.2.2 (just letting ǫ = 0 there), it follows that there is a positive ω-periodic function

v̄(t) such that v∗(t) = e
ln r(P̃ )

ω
tv̄(t) is a positive solution of linear system (5.7). Note

that for any real number δ > 0, δv∗(t) is also a solution of system (5.7). Then the

standard comparison arguments imply that every positive solution of system (5.7)

tends to zero if r(P̃ ) < 1, and to infinity if r(P̃ ) > 1, as t → ∞. Thus, under the

assumption (A2) (that is, r(P̃ ) > 1), the tick population grows without bound in

the absence of the disease. This also explains why we need to use a positive but

sufficiently small periodic function to deal with the case where c(t) ≡ 0.

Numerically, we have evaluated all the parameters by using some published data

and simulated the Lyme disease transmission case in Long Point, Ontario, Canada.

The simulation results show that Lyme disease will persist and exhibit periodic fluctu-

ation in Long Point in the next few years if no further intervention is taken (see Figure

5.2). By employing the algorithm in [70], we numerically calculated the basic repro-

duction ratio for our model. By using the monthly mean temperatures from 1981 to

2010 in Long Point, we obtain R0 = 2.5530 > 1. After we decrease the maximal birth

rate of tick larvae by 90%, we get R0 = 0.7980 < 1. The long term behaviour of the

solution in Figures 5.3 and 5.4 indicates that the solution converges to a disease-free

periodic solution. This implies that we may eliminate Lyme disease in Long Point by

reducing the recruitment rate of tick larvae. Therefore, it may be helpful to regularly

search for the spots where adult ticks usually lay eggs, like in sheds, in woodpiles,

under rocks and in the crevices of walls. Since tick eggs are static, it is more feasible

to focus on the clearance of eggs than to think about killing ticks of the other three

life stages.



Chapter 6

Conclusions and future work

In this chapter, we briefly summarize the results of this thesis and present some

possible projects as future work.

6.1 Research summary

This PhD thesis is devoted to the study of global dynamics of some climate-based

vector-borne infectious disease models. In chapter 2, we proposed a periodic vector-

bias malaria model with incubation period. A constant delay is employed to depict the

extrinsic incubation period (EIP) in that model. We modified the model by changing

the constant delay into a temperature-dependent delay in chapter 3. In chapter 4,

we incorporated the control measure of bed net use into a simple mosquito-stage-

structured malaria model. In chapter 5, we developed a time-delayed Lyme disease

model with seasonality.

By using the recently developed R0 theory for periodic and time-delayed models

by Zhao [110] and the theory of R0 for periodic models by Wang and Zhao [94], we

derived the basic reproduction ratios for these models. By appealing to the theory of

monotone and subhomogeneous systems, the theory of chain transitive sets and the
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theory of uniform persistence (see, e.g., [109]), we obtained the threshold dynamics of

these models. For the malaria models in chapters 2 and 3, we proved that the disease-

free periodic solution is globally asymptotically stable if R0 < 1 and the positive

periodic solution is globally asymptotically stable if R0 > 1. For the malaria model in

chapter 4, we obtained the threshold type result in terms of the vector reproduction

ratio Rv and the basic reproduction ratio R0, that is, the mosquito-free equilibrium is

globally attractive is Rv < 1; the disease-free periodic solution is globally attractive

if Rv > 1 and R0 < 1; the positive periodic solution is globally attractive if Rv > 1

and R0 > 1. For the Lyme disease model in chapter 5, we showed that the disease-

free periodic solution is gloablly attractive if R0 < 1; the model system is uniformly

persistent and admits a positive periodic solution if R0 > 1.

By conducting case studies, we proposed some practical strategies for the control

of the diseases. For the models in chapters 2 and 3, based on data from Maputo

Province, we find that prolonging the length of the EIP is helpful for the control of

malaria, and the basic reproduction ratio may be underestimated if the time-averaged

EIP is used. For the model in chapter 4, we parameterized the model with data from

Port Harcourt, Nigeria. The simulation results suggest that the use of ITNs has a

positive effect on reducing R0, and that malaria may be eliminated from this area if

over 75% of the human population were to use ITNs. In addition, we find that the

ignorance of the vector-bias effect may underestimate the basic reproduction ratio

R0. Another notable result is that the infection risk would be underestimated if the

basic reproduction ratio [R0] of the time-averaged autonomous system were used. In

chapter 5, we studied the Lyme disease transmission in Long Point, Ontario, Canada.

The simulation result indicates that Lyme disease is endemic in this region. We find

that Lyme disease will be eliminated from this area if we decrease the recruitment

rate of larvae, which implies that we may control Lyme disease by preventing tick
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eggs from hatching into larvae.

6.2 Future work

6.2.1 The comprehensive effects of multiple measures in the

control of malaria

In recent years, emphasis has been put on integrating multiple strategies for malaria

control. However, most mathematical models consider only one control measure (e.g.,

the bed net use or the vaccine). It is necessary to develop mathematical models

which take into account multiple malaria control measures so that we can provide

more realistic suggestions for the disease control.

6.2.2 A malaria transmission model with heterogeneous host

mixing

The heterogeneity of the population has gained some attention in infectious disease

transmission dynamics, that is, a discrete number of types of individuals are dis-

tinguished by some epidemiologically significant characteristics such as age groups,

species, or routes by which they were infected (see, e.g., [14, 30, 56, 106] and the

references therein). Rowe et al. proposed that blood group O protects against se-

vere Plasmodium falciparum malaria through the mechanism of reduced resetting.

Their findings provide insights into malaria pathogenesis and suggest that the selec-

tive pressure imposed by malaria may contribute to the variable global distribution

of ABO blood groups in the human population [78]. We may consider developing a

mathematical model for malaria involving different human host blood groups.
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6.2.3 Modelling the effect of a double-edged drug on preven-

tion of malaria transmission

At the end of chapter 2, we pointed out that prolonging the length of the EIP is

helpful for the control of malaria transmission and we may develop some drugs for

malaria-infected people so that once a mosquito bites an infected person who takes

the drugs, then the EIP of malaria parasites in that mosquito will be prolonged, that

is, the patients who take the drugs serve as a vector to let the drugs make effect on

mosquitoes. This kind of drug is double-edged since it can not only alleviate symptoms

of patients but also extend the EIP of malaria parasites in mosquitoes. It is interesting

to develop a mathematical model to predict the effect of human individuals taking

such EIP-extending drugs in a real malaria endemic region, like in a Sub-Saharan

African country.

6.2.4 The effects of migratory birds on Lyme disease trans-

mission

In recent years, northward invasive spread of the tick vectors from the United States

endemic foci to non-endemic Canadian habitats is a public health concern [23, 67].

Migratory songbirds play an integral role in the wide spread of ticks, especially during

northward spring migration [82]. The data reveal that 35% of I. scapularis nymphs

removed from northward-migrating birds were infected with B. burgdorferi [82]. We

can develop mathematical models to study the roles that the bird migration plays

in the geographic distribution of I. scapularis, and hopefully, we may propose some

strategies for Lyme disease control.
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6.2.5 Dynamics of a sea lice model in a seasonally changing

environment

Sea lice cause substantial economic losses on salmon farms [20]. Due to the eco-

nomic importance of salmons, control of sea lice on salmon farms has been named

one of the top priorities in aquaculture research by both scientists and aquaculture

practitioners [33]. Sea lice exhibit temperature-dependent development rates and

salinity-dependent mortality [74]. A variety of deterministic and stochastic models

have been proposed to predict sea lice dynamics (see, e.g., [28, 73] and the references

therein). However, little mathematical analysis has been carried out to understand

the dynamical behaviors of the solutions. We propose to derive and analyze a sea lice

model of functional differential equations with time-periodic delays. We can further

consider models involving control measures for sea lice on salmon farms.

6.2.6 Summary

Since the life cycles of mosquitoes, ticks and sea lice are all strongly affected by the

seasonally varying temperatures, we can develop non-autonomous ordinary differential

equations models with periodic coefficients. Infected mosquitoes will undergo the EIP

before they are able to transmit malaria. Larvae, nymphs and adult ticks have different

feeding durations on mice and deer. The salmon louse, Lepeophtheirus salmonis,

exhibit 8 distinct life stages, consisting of nauplius I/II, coopepodid, chalimus I/II,

pre-adult I/II, and adult. The length of time that a nauplius or chalimus requires to

mature to their respective next life stages depends on water temperature [74]. One

way to depict the EIP of mosquitoes, the feeding duration of ticks, the waiting period

of nauplius and chalimus is by time delays. Therefore, we can also develop delay

differential equations models for the above projects. To be more realistic, we can even
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let the delays be periodic in time. The basic reproduction ratio is a key threshold

parameter providing information for disease risk and control [90]. We need to derive

the basic reproduction ratio and try to obtain the asymptotic behaviour of the model

or some bifurcation results. To illustrate the analytic results and to provide insightful

suggestions for the disease control, we will also collect some related data and conduct

numerical simulations of case studies.
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[7] N. Bacaër and E. H. Ait Dads, On the biological interpretation of a definition for
the parameter R0 in periodic population models, J. Math. Biol. 65 (2012), 601-621.
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