GENERALIZED MAXIMAL INDEPENDENCE

PARAMETERS FOR TREES

CENTRE FOR NEWFOUNDI AND STUDIES

TOTAL OF 10 PAGES C
MAY BE XEROXED

(Without Author’s Permission)

JOHN MERCER

F rchy it
i ‘;’H |I-r- v.f[' i} R :
4 rL It Ay _F':[r el
. I-|II III . i
x Q; 2 p"
R N e

f..,um !

2
Gl

- e
: m l,n (; J

“'m ATl

e

nd ‘3~ i r %t *1‘%;‘ o

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
‘computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and print margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Leaming ’
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

®

UMI

i+l

Vour e Ve tbnce

Our e ey s

L’auteur a accordé une licence non

i)
dmnuumw Bblothique natorale
Acquisitior -A“ " m_"h‘ﬂ
Bib
395 Welington Strest. 395, rus Welington
Omawa ON K1A ONA Onawa ON K1A ON4
Canace Canada

The author has granted a non-

exclusive licence allowing the

National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the

exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format

L’auteur conserve la propriété du
droit d”auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son

: o

0-612-73617-2

Generalized Maximal
Independence Parameters for Trees

by

© John Mercer

B.Sc. (Hons.) (Meworial University. St. John's. Canada) 1999

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

(June. 2001)

Abstract

An independent set I C 1" of a graph G V.E) is said to be

k-maximal if there does not exist two sets X and ¥ such that X C 1.
Y € (V=D |X| < kand (7 = X)UY is an independent set of
cardinality larger than |[]. This definition generalizes the traditional
concept of maximality of independent sets.

The problem of finding the smallest k-maximal set for a given graph

of

is .V P-hard for many simple cl. of graphs, such as the cla

bipartite graphs. Here we investigate the MINIMUM £-MAXIMAL 1N-

DEPENDENT SET (MIN k-Mis) problem for trees. We characterize the

k-maximal independent sets for trees and we present an O(n?) time

algorithm for the Mix Is problem under this restriction. We will

an test an independent set for k-maximality in O(n)

also show that we

rime for trees.

Contents

-

Introduction

~

Preliminaries

w

Characterization of k-maximality

3.1 Selectedcases

3.2 Characterization for general k

IS

The k-M1s problem

4.1 Detecting C; configurations

4.2 n-pass algorithm for detecting k-maximality

4.3 l-pass algorithm for detecting k-maximality .

o

5.1 The 2k+1 conditions

5.2 Top-level algorithm

54 Summary

®

Summary

Minimizing the subtrees

Dynamic programming algorithm for min k-mis problem

List of Figures

- ow e

Y

-t

Reduction for D hardness proof
Two sets ing the property of 1
Two sets ing the property of 2- lity

Two sets demonstrating the labeling scheme I'y

Two sets ing the property of -maximality

A d-maximal independent set
A free tree F; € F and its corresponding configuration
A free tree F; € F; and its corresponding configuration

The recursive nature of configurations

Two partial configurations

Table of symbols

Tmportant classcs

Symbol Meaning Page
D Complexity class 3
Cx Set of configurations of size k %
Pu Set of partial configurations of size k | 38
Fre Set of free trees of size k %
C((T.N) | Set of configurations in (T.[) %
Ip(T.r.i.k) | Set of suboptimal independent sets | 52
Zo(T.r.i.k) | Set of suboptimal independent sets | 53

Tmportant symbols and conventions !

Symbol Meaning page |
G = (V.E) | An undirected, finite graph 3
T =(V.E) | A trec graph 1
T | Subtrees of a rooted tree T 33
Tree labeling function 13
1 The root vertex of a tree T’ 34
A vertex of a graph or tree 1

The vertex set of a graph
A set of independent vertices in a graph | 1
Two vertex sets of a graph 3
Tree T and independent set I C V(T) | 25
Configuration of X and Y in T' 2!
Partial configuration of X and ¥ in T 38

1 Introduction

A set I of independent vertices of a graph G is said to be mazimal if there is
no vertex v ¢ I such that /U {v} is also an independent set of G. The MIN-
IMUM MAXIMAL INDEPENDENT SET problem - the problem of of finding the
smallest possible maximal independent set for a graph G - is a classic prob-
lem in complexity theory. The decision problem corresponding to MINIMUM

MAXIMAL INDEPENDENT SET is an example of a N P-complete problem (7.

The theory of maximal independent sets has received some attention.
Cook [6] showed that the LEXICOGRAPHICALLY FIRST MAXIMAL INDEPEN-
DENT SET problem is P-complete. Karp and Widgerson [9] proved that
the MAXIMAL INDEPENDENT SET problem is complete for NC. Berron and
Mata - Montero [1] showed that the MINIMUM MAXIMAL INDEPENDENT SET
problem s linear time solvable when the input is restricted to graphs of fixed

treewidth.

[u this paper. we present an investigation into the complexity of the
MINIMUM k-MAXIMAL INDEPENDENT SET (MIN A-MIS) problem when the

input is restricted to tree graphs. This problem, first suggested by Cockayne

ct al. [3]. is a generalization of the N P-complete problem described above.
The generalized problem has been found to be N P-hard even for some very
simple classes of input graphs. such as bipartite graphs [11]. This problem

has not been solved for any graph classcs other than path or cycle graphs. In

this paper we will show that the problem has time complexity O(n?) when
the input s restricted to tree graphs.

The type of generalization that is used in the MIN k-MIS problem was
first suggested by Bollobis ct al. [2] in reference to the MAXIMUM MINIMAL

DOMINATING SET PROBLEM. A subset S C V of vertices in a graph G =

aid to be dominating if cach vertex v € (V —) is adjacent to at

(V.E) is

least one vertex in S. The paper by Bollobés was followed up by Cockayne’s

paper on the generalized independent set problem. Both papers give upper
and lower bound results for simple graph types. such as the classes of path
and cycle graphs.

There has been some interest in k-maximality from the algorithmic point

of view. McRae [11] proved that the MIN k-MIS problem is N P-complete

with fixed k = 2 for bipartite graphs and line graphs of bipartite graphs.

Manlove [10] proved that the MIN k-Mis problem is N P-hard for the planar
graphs with maximum degree 3. Manlove also gave lincar time algorithm for
the MIN k-MIS problem for the case where k = 2 and the input is restricted

to trees.

In Section 2 of this paper. we will give a thorough description of the

MIN k-Mis problem. We will give a formal description of the problem and

some basic ies of k- imal ind dy sets. We will

show that the k-MAXIMAL INDEPENDENT SET problem of testing an vertex

set for A-maximal i is coN P- plete, and we will show that
the MIN k-MiS problem is DP-hard.

In Section 3. we will give a useful characterization of k-maximality for
those independent sets that correspond to tree graphs. In particular we
will show that, for any fixed k. we can test a st I for the property of k-
maximality by searching for a fixed number of discrete patterns in the set
I and its corresponding tree T. We will show that there is a one-to-one
relationship between the set of patterns and the set of unrooted trees.

In Sections 4 and 5. we will use the characterization from Section 3

to prove some algorithmic results. In Section 4. we will present a lincar

o

time algorithm for testing an independent sct I that corresponds to a tree
T for the property of k-maximality. In Section 5 we will show a O(n%)
dynamic programming algorithm for the MIN k-MiS problem when the input
is restricted to tree graphs. We will conclude in Section 6 with a summary

and a discussion of open problems.

2 Preliminaries
We define an k-maximal independent set as follows:

Definition 2.1 Let G be an undirected. finite graph. For any integer k. the
set [€ V(G) is k-mazimal if:

o [is an independent set, and

o there does not exist X and Y. where X C I and Y C (V(G) - I) such

that:
— X =0 <k
— ¥ = |X| + 1. and
- (I-X)UY is an independent set.
In other words. an i set [is k-maximal if a larger i

set cannot be constructed by first removing £ < k vertices from [and then
adding £ + 1 vertices (or more).

The parameter k represents freedom in adding new vertices to the inde-
pendent set. Thus. a k-maximal independent set may not be (k+1)-maximal.
Let I(k.G) represent the set of all k-maximal independent sets of a graph

G. Then the following is true:

I(1.6) 2 1(2.G) 2 --- 2 I(IV(G)|.G)

The set I(1.G) is precisely the set of independent sets that are mazimal
in the traditional sense. The set I(|V'(G)|.G) is the set of all independent
sets that are mazimum.

We are now ready to give a definition for the MINIMUM Kk-MAXIMAL

INDEPENDENT SET problem. formulated as a decision problem.

MINIMUM A-MAXIMAL INDEPENDENT SET (decision). Given a

s there a A-maximal

graph G and two positive integers k and

independent set for G of size less than or equal to "7

[t is casy to show a many-one reduction from the MINIMUM MAXIMAL IN-

DEPENDENT SET problem to the MIN k-MiS problem. or from the compliment
of the MAXIMUM INDEPENDENT SET problem to the MIN A-MIS problem.
Both the MINIMUM MAXIMAL INDEPENDENT SET and the MAXIMUM INDE-
PENDENT SET problems are examples of classic N P-complete problems (7).
Thus. the MIN k-MIS problem is hard for the classes NP and coN P.

The MIN k-MIS problem is an example of a problem that is more difficult
than any of the problems in the class N'P (under the assumption that P #
NP). In fact. this problem is at least as hard as any of the problems in the
class DP. The class D is defined as {LN Ly : Ly € NP. Ly € coN P}. The

class D” is a superclass of NP and coN P.
Theorem 2.1 The MIN k-MiS problem is hard for the class D¥.

Proof. We will a give a many-one reduction from the EXACT MAXIMUM

INDEPENDENT SET (E-MIS) problem to the MIN k-Mis problem. First, we

need to show that the E-Mis problem is DP-complete. We define the E-Mis

problem below.

EXACT MAXIMUM INDEPENDENT SET (E-MIS). Given a graph G
and a number 4. is it true that the largest independent set of G

has size exactly k?

The EXACT CLIQUE problem was proven to be complete for D [15]. The

definition for this problem is given below.

EXACT CLIQUE (Ec). Given a graph G and an integer

true that the largest clique of G has size exactly k?

A clique of size k in a graph G is a set of k vertices such that every pair
of vertices in the set is connected. The existence of a maximum cligue of

size k in the graph G implies that there is a maximum independent set of

size k in the complement graph of G and vice versa. So. the EC problem is
equivalent of the E-MIS problem.

We are now ready to give the reduction from the E-MIS to the MIN k-

sis. Let (G.k) be any instance of the EXACT MAXIMUM INDEPENDENT SET

problem. To the graph G. we add
o aset X of k + 2 additional vertices.

o (IV(G)i - (k+2)) additional edges connecting each r € X to cach
ve V(@)

® a vertex y. and

o k+2 additional edges connecting y to cach z €

Figure 1: Construction of G’ (where k = 2)

Call this new graph G'. A diagram of this construction for k = 2 is
given in Figure 1. This construction adds O(n) extra vertices and O(n?)
extra edges where 7 is the number of vertices in the graph G. Furthermore.

¢ in O(n?) steps.

this construction can be performed easil
We will now show that the graph G contains a maximum independent set

of size k if and only if the graph G’ contains a (k+1)-maximal independent

set of size less than or equal to k + 1.

less than or

Assume that [is a (k+1)-maximal independent set of si
cqual to k+1inG'. If I' contains a vertex in Y. then by construction I’ does
not contain the vertex y or any vertex v € V°(G). Thus. either I/ C X or
I' C(V(G) U {y}). IfI' C X then I' cannot be maximal. since the vertices

of X arc disjoint and |I’] < |X|. So. we can assume that I’ C (V(G) U {y})

In this case. we know that y € I’ since I is maximal and y is not connected

to any vertex in V(G). All that remains

V(G).

is to choose up to k vertices from

We will now attempt to construct a (k+1)-maximal independent set I’ of
size less than or equal to k+ 1 under the condition that (1) G has a maximum
independent set of size less than k. (2) G has a maximum independent set of
size greater than k. and (3) G has a maximum independent sct of size equal
to k. We will find that /" can be constructed if and only if condition (3)
hiolds. From the previous discussion. we can assume that ' C (V(G) U {y})
and y € 1

(1) If G has a maximum independent set [of size less than k. then there
are at most k vertices in the set I’ (including the vertex y). In this case. I’
would not be (k+1)-maximal since (I' - I') U X is an independent set of

cardinality larger than /”.

(2) Assume that G has a maximum independent set I of size greater
than k. Let I’ be any independent set of G’ such that I' € (V(G) U {y})
and |I'| < k + L. Then then set Ig = I'NV(G) has cardinality at most k
and the set (I' = [;) U T is an independent set of cardinality larger than .
Thus. I' cannot be (k+1)-maximal.

(3) Let I be a maximum independent set for G. The st I' = [U {y}
is a (k+1)-maximal independent set of size k + 1. We cannot remove the

subset [and add k + 1 vertices.

nce [is a maximum independent set of
G. We cannot add any of the vertices from the set .\ since cach vertex in
X is connected to k + 1 vertices from 1. and we can only remove at most k
vertices at a time.

To swmmarize. if G has an independent set of size k then there is an
(k+ 1)-maximal independent set of size (k+1) in G, and if G docs not have

an independent set of size k then there is no (k+1)-maximal independent set

of size (k+ 1). So. EXACT MAXIMUM NDENT SET can be p
time many-one reduced to MINIMUM A-MAXIMAL INDEPENDENT SET. and

therefore MIN k-Mis is DP-hard. ©

Let us now consider the slighely easier problem of testing an independent

set for k-maximality. The definition is given below.

k-MAXIMAL INDEPENDENT SET (k-Mis). Given a graph G =
(V. E). a subset I of the vertices of G. and a positive integer k:

is [a k-maximal independent set in the graph G?

We can test an i set for imality (under the

definition) in O(n) time. This docs not hold true for k-maximality. It turns

out that the k-Mis problem is coN P-complete.

Theorem 2.2 the k-MAXIMAL INDEPENDENT SET (k-MiS) problem is com-

plete for coN P.

Proof: First we will show that the k-Mis problem is a member of coN P.
Let k-Mis€ denote the complement of the k-Mis problem. If an independent
set [is not k-maximal with respect to the graph G. then by definition there

exists some X € [and ¥ C (V(G) - 1) with |X| < & such that (/- X)UY is

an independeut set that is larger than 1. Thus. we can nondeterministically

validate a k-Mis¢ instance using the alorithm given below.

function Compliment-k-MIS (G.1.k) return boolean is
begin
k to see if [is an independent set
f [is not an independent set then
| loop forever
end if
guess a number & where 1 <i <k
guess a set X C [such that |X| =i
g t Y C (V(G) — I) such that [Y] > i
if such ¥ and Y exist and (7 — X)U'Y is an independent set then
| return true
| endif
end Compliment-k-MIS

We can check to sec if the set [is independent by testing each edge of

G to sce if the edge connects two vertices of 1. This be done in O(n) steps.
where 7 is the number of edges in the input graph. We can also guess the
subsets | X| and |¥] in O(n) steps. Therefore. the algorithm above has time
complexity O(n).

We will now show a many-one reduction from the N P-complete problem

MAXIMUM INDEPENDENT SET to the k-MisC problem. The definition for the

MAXIMUM INDEPENDENT SET problem is given below.

MAXIMUM INDEPENDENT SET. Given a graph G and an integer

k. is it true that G has an independent set of size greater than

or equal to k?

Let (G.K) be an ins

nce of the MAXIMUM INDEPENDENT SET problem.
We will reduce this instance to an instance (G. I'. &) of the k-MisC problem.

To the graph G we add
® Aset X of k — 1 additional vertices. and
o [V(G)]-(k — 1) additional edges connecting cach vertex z € X to each
vertex v € V(G).

Call this new graph G'. To complete the reduction we set [' = X and
K = k. If we assume that k < [V]. the construction can be performed in
O(n?) time. If & > |V] then the MAXIMUM INDEPENDENT SET instance is

trivially false. so we map these instances to a false instance of k-wis®’.

If G has a maximal independent set [of size k or greater. then (I'- X)Ul
is an independent set of cardinality lasger than & and so I’ would not be

k-maximal. If G does not have an independent set I of size larger than

k then by construction we cannot remove £ < k vertices from /' and add
£+ 1 vertices. So. the set [' is k-maximal with respect to G’ if and only
if there is a set of & independent vertices in the graph G. The MAXIMUM
INDEPENDENT SET can be reduced to the k-MicC problem, therefore k-Mis©

is N P-complete and k-Mis is coN P-complete. O

3 Characterization of k-maximality

In this section. we will focus on the structural and algorithmic propertics of

k-maximal independent sets for tree graphs.

10

! it i! dent set (b) is 1 imal. but

Figure 2: Two i ..
the independent set (a) is not.

3.1 Selected cases

We will now observe the structural propertics of k-maximal independent
sets for certain values of k. We do this so that we can understand the way
in which the introduction of the parameter & affects the difficulty of the
problem. Later ou. we will use the ideas developed in this section to create

more general description of k-maximal independent sets.

First. let us consider k = 1. This is equivalent to the standard definition

of imality. That is. an i set [isal set

for a tree T if there is no vertex y ¢ [such that (I —{})U{y} is independent.

Consider the independent sets in Figure 2. Iu this figure. we we sce
two pictorial representations of a tree graph with black nodes representing
two independent sets. Let us call these sets I, and Iy The set [, is not

. is not

L-maximal. since I, U {14} is an independent set. The set I, howev
l-maximal. We cannot add any more vertices to . since any new vertex
will be adjacent to at least one of the vertices that are already in I,. Clearly.
the following is true:

Observation 3.1 For tree T and independent set I C V(T), we can add a

11

vertez v to the independent set if and only if v is not adjacent to any vertices

in the independent set.

Corollary 1 An independent set I of T is l-mazimal if and only if there is

no vertez v € (V(T) - I) that is not adjacent to any verter in I

The corollary suggests a very simple strategy for detecting 1-maximality.
This strategy is outlined in the Test-1-Maximality algorithm given below.
function Test-1-Maximality (T./) return boolean is
begin
for cach vertex v € (V(T) — I) loop
for cach neighbor vertex w of v loop
| check toseeifwe I
end loop
if v is not adjacent to a vertex in [then return true
end loop

return false
end Test-1-Maximality

The main loop will be repeated at most O(n) times. where n is the
number of vertices in the tree. The ueighbor check will be executed exactly
twice for each edge. Since there are O(n) edges in the tree. it follows that
the total time required to check all of the ucighbor vertices will be O(n).

Therefore. the algorithm has lincar time complexity.

2-maximality

We will now cousider the problem of testing a set of independent vertices of
a tree for the property of 2-maximality.

Recall that any l-maximal set is also 2-maximal. So. by the definition
of k-maximality we can say that an independent set [is 2-maximal if and

ouly i

Figure 3: Two ind dent sets. The i set (b) is 2- imal. but
the independent set (a) is not.

e [is l-maximal. or

o there exists subsets X C [and ¥ C (V(T) = I) such that |X| = L.

[¥] =2 and (I - X)UY is independent.

Consider the independent sets of Figure 3. Again. let us call these sets
I, and I. The independent set [, is the l-maximal set from before. This

independent set is not 2-maximal. since (I, - {v5})U{vr. vy} is independent.

The independent set [, however. is a 2-maximal independent set. as it can

be casily verified.

The simple strategy adopted in Test-1-Maximality will not help us to
detect 2-maximality. In order to detect 2-maximality. we need to consider
the effect of removing any one of the vertices from I. We will employ a

labeling scheme to help us.

Definition 3.1 Let G = (V. E) be a graph and let and [C V' be an inde-
pendent set. The labeling function Ty corresponding to the independent set
-V}

For all v in V. we define T;(v) as follous:

I is a function Ty =V — {x.0.1

o [fuisin I then Tyfv) = x.

(b)

e
witx) e(x)
o (1) u (1)

Figure 4: Labeled trees. The independent set (b) is 2-maximal. but the
independent set (a) is not.

o Otherwise. Ty(v) = I where I is the number of elements in I that are

adjacent to v

For any given tree T. and independent set . we can compute all of the
labels for all of the vertices of T in linear time by a slight modification of
the Test-1-Maximality algorithm.

Once we can have labeled a tree T according to ;. we can prove or
disprove the 2-maximality of . Whenever a l-maximal independent set is

not 2-maxinial. certain patterns will appear in the labeling of 7. An example

labeling is giv

1 in Figure 4. These are the sets [, and I from before.

Consider the vertices vs and vg in [,. Recall that thi;

independent set is
not 2-maximal. We can remove the vertex v; from the independent set and
then add the vertices v; and vy to the independent set. Notice that the three
vertices involved this transformation are connected in the pattern 1 — x — .

It turns out that any | imal i set that is not 2- imal will

contain this pattern. so we can use this pattern as a test for 2-maximality.

Lemma 3.2 Let [be a set of independent vertices of a tree T such that [

is 1-mazimal. Then the set [is 2-mazimal if and only if the labeling of T

14

according to T does not contain a path of three vertices showing the pattern

1-x—-1.

Proof: (=) Let I be any 2-maximal independent set. If the labeling of

— L. then we can

T according to ['; contains a path of three vertices 1 —
increase the cardinality of / by removing the middle vertex and then adding
the two end vertices. So I cannot contain the pattern 1 — x — L. as required.
(4+=) Assume that the labeling does not contain a path with the pattern
1 - x — 1 If I is not 2-maximal. then there are three vertices . ;. and go.

such that:
erel

o {y.p2} C(V(T) =). and

o (I = {£}) U {yi. y2} is independent.

We will show that in this case the labeling of T must contain the connected
path 1 — x — L in this casc.

Now the set [is l-maximal. so the vertices gy and y» cannot be added
to I unless the vertex £ is removed from /. Therefore. £ must be adjacent
to both y; and . Also notice that yy and g can only be adjacent to one
clement of I (namely. the vertex 7). If this were not true. then we would

not be able to add y; and y simply by removing . Under these couditions.

it follows that the path 1 — x — 1 must be present in the graph T. This

not possible. therefore / must 2-maximal. O

Now that we know how to detect 2-maximality in a L-maximal graph.

we can detect 2-maximality in general.

15

Theorem 3.1 An independent set I C V in a tree T = (V. E) is 2-mazimal
if and only if it docs not contain a vertez with the label O or path of vertices

with the pattern 1 - x — 1.

Proof: At the start of Section 3.1. we stated that an independent set is
2-maximal if and only if one of two conditions are satisfied. We know that

the first condition is satisficd if and only if (V/(T) - /) does not contain a

vertex that is not adjacent to any vertex in [. This is equivalent to
that the labeling I'; of T does not contain a vertex with the label 0. By
Lemma 3.2. the second condition will hold if and only if the labeling contains

a path of vertices in pattern 1 - x — 1. O

3-maximality

We will now consider the problem of testing a st of independent vertices of
a tree T for the property of 3-maximality.

Recall that any 2-maximal set is also 3-maximal. So. by the definition
of k-maximality we can say that an independent set [is 3-maximal if and

only if:
® [is 2-maximal. or

subsets X C [and ¥ C (V(T) = 1) such that [X

® there exist

[¥] = 3.and (I - X) UY is independent.

Consider the independent sets shown in Figure 5. Call these sets /, and
Iy The independent sct /, is the 2-maximal sct from Figure 3. This sct
is not 3-maximal. for if we let X = {vy.0,} and let ¥ = {v2.vq,05}. then
(I — X)UY is independent. However. I is a 3-maximal independent set.

as it can be easily verified.

ry (x)

(a)
2 (2)
s (2)
v (x)
vy (X)
vs (1)
Figure 5: Two i sets. The i set (b) is 3-maximal. but

the independent set (a) is not.

Notice that. in the independent ,. the five vertices involved in the re-
placement are connected in the pattern 1 = x —2 — x — LIt turns out

that any 2 imal independent set that is not 3-maximal will contain this

pattern. so we can use this pattern as a test for 3-maximality.

Lemma 3.3 Let [be a 2-mazimal independent set with respect to the tree
graph T. The set [is 3-mazimal if and only if the labeling of T does not

contain a path containing five vertices with the labels 1 — x =2 - x - 1.

Proof: The proof is similar to that of Lemma 3.2. (=) Assume that
I'is 3-maximal. If the labeling of T contains a path showing the pattern
1-x =2 x — L. then we can increase the size of I by removing the two
x vertices from [and then adding the three numbered vertices to /. This
contradicts the 3-maximality of 1. so the labeling must not contain a path
with this pattern.

x=1.

(=) Assume that there are is no path with the labels 1 — x
in order. If I is not 3-maximal. Then there are five vertices. £1. Zz. yi. y2.

and yy. such that:

o {zim}C L

® {y1.y2.y3} € (V(T) = I). and
® (I = {r1.22}) U {1n.y2.y3} is independent.

We will show that the labeling of T must contain a path of the form
l-x-2-x-1.

We can deduce three facts. Firstly. each y, vertex must be adjacent to
cither £, or ra. Otherwise. by definition we would be able to add y, without
removing any vertices from the independent set. thus contradicting the 2-
maximality of I. Secondly, the vertex r; must be adjacent to more than one
y vertex. Otherwise. we could add the remaining two y vertices by removing
just one vertex (r2). again contradicting the 2-maximality of /. A similar
argument can be applied to show that r; is adjacent at least two y vertices.
Finally. the vertices r; and ra must not be adjacent. since they are part of
the original independent set.

Under these conditions. it should be clear that the path 1 - x —2—x -1
wmust be present in the graph T. This is impossible. so I must be 3-maximal.

o

Now that we know how to detect 3-maximality in a 2-maximal graph.

we can detect 3-maximality in general.

Theorem 3.2 Let T = (V.E) be a tree and let [be an independent set.

The set I

mazimal if and only if it does not contain a vertez with the
label 0 or sequence of vertices in the pattern | = x ~ 1 or a sequence of

vertices in the pattern 1 — x =2~ x — L.

Proof: At the start of Section 3.1, we stated that an independent set is

3-maximal if and only if one of two conditions are satisfied. We know that

18

atisfied if and only if the labeling of T docs not contain

the first condition is

the label 0 o a sequence of vertices in the pattern 1 - x — L. By Lemma
the second condition will hold if and only if the labeling contains a path of

vertices with the pattern [- x -2 -x-1. 0

3.2 Characterization for general k

In the previous section. we have shown how we can test a set of independent
vertices of a tree graph for the property of l-maximality. 2-maximality. or 3-

maximality by first labeling the vertices of the tree according to a particular

scheme (['7) and then searching for patterns in the labeled tree.

It turns out that this strategy will generalize to any value of k. [n this
section. we will derive these patterns and show that the patterns correspond
one-to-one with the set of free trees. A free tree is a tree with no established

root.

Recall that an independent set is k-maximal if there does not exist two

s X and ¥ such that X € L. YN/ =0 |X| < kand (I - X)UY is

sel

an independent set that is larger than . [f we compare the definition of

k-maximality to (k+ 1)-maximality we obscrve:

Observation 3.4 Let T = (V. E) be a tree. and let I be an set of indepen-
dent vertices of T such that I is k-mazimal but not (k+1)-mazimal for some

k> 1. Then there are subsets X and Y of V' such that:
o |X|=k XCL
o V| =(k+1). Y C(V~1). and
o ((I-X)UY) is a independent set.

19

If an independent set [in T is k-maximal and there are no sets X and ¥
that satisfy the above criteria. then / must also be (k+1)-maximal. We can
use this fact to prove k-maximality by first testing for 1-maximality. then
2-maximality. and so on up to k. Note that this strategy may not lead to a
polynomial time algorithm for detecting k-maximality. since the number of
possible configurations of X and Y. as we shall see. will grow exponentially
in k. However. the ideas presented in this section will form a basis for a

O(n) time algorithm that we will describe later.

For next part of thi we will be considering an i

set [inatree T = (V. E) that is k-maximal but not (k+1)-maximal. By
definition of /. there must be two subsets X and Y of V" that satisfy the

above criteria.

Properties of X and Y

First of all. we show that the vertices of X and Y will form a connected

subgraph of T.

Theorem 3.3 The subgraph of T induced by the vertices X U'Y is a con-

nected graph.

Proof: Assume for the sake of contradiction that X UY contains m

XNV(G,) and

connected components Gi..... G with m > 1. Let X,

Y, = ¥ N¥(G,). for 1 < i < m. By definition. none of the vertices in ¥; arc

S in X, for all j # i. Thercfore. (1 - X)UY,

connected to any vertic

independent set for all i.
By definition. we kuow that cither X, or Y, is nonempty for all i. We can
deduce that Y, is nonempty for all i. for otherwise (I — (X - X)) UY would

be a larger i set. icting the k imality of 7. We can

also deduce that each X, will be nonempty. for otherwise /UY, would be an

set. licting the 1 imality of T. Hence Xj...... X is

a partition of X and Yj.....Y,, is a partition of Y.

By the pigeonhole principle. there must be at least one (X,.Y;) pair such

that }.X,| < [¥i|. Theset X, is smaller than X. sincem > 1. So (I~

JUtiis

an independent set that is larger than /. This contradicts the k-maximality

of I. so your assumption must be false. C

As a consequence of Theorem 3.3. we know that the subgraph induced by
X UY is a tree. We will call this tree T'. Note that 7" may occur anywhere
within the tree T

We can deduce even more information about the way in which the ver-

tices of X and Y are connected.

Observation 3.5 No two vertices in X are adjacent in the tree T. Like-

wise. no two vertices in Y are adjacent in the tree T.

The vertices of X in the graph are disconnected because X' C [and [
is an independent set. The vertices of Y are disconnected because the set
(I - X)UY is an independent sct by definition. Thus the vertices in the
tree T alternate between vertices in X and vertices in Y.

‘We can also set a minimum on the number of ¥ vertices that are adjacent

to any vertex in X.

Theorem 3.4 Each verter r € X is adjacent to at least two vertices in Y.

Proof: Clearly. each vertex £ € X must be adjacent to at least one

vertex in Y. If this was not true, then we could add the & + 1 vertices in ¥

21

by removing the k — 1 vertices from X — {z}. contradicting the k-maximality
of I.

Now assume for the sake of contradiction that r is adjacent to exactly
one vertex y € ¥. Let X' = X - {z} and ¥’ = ¥ - {y}. None of the vertices
in Y’ are adjacent to any of the vertices in [/ — X’. thus we can increase the
size of the independent set by removing the X’ vertices and adding the ¥
vertices. But |X'| < k — L. which contradicts the k-maximality of I. Thus.

our assumption must be false.0

Next we hiave a rather surprising result about the way in which the X

vertices are counccted to the Y vertices.
Theorem 3.5 Each verter £ € X is adjacent to ezactly two vertices in Y

In Theorem 3.4 we have shown that each r vertex is adjacent to at least two
vertices in Y. and clearly no r vertex can be adjacent to another vertex in
X. So. it is sufficient to show that r cannot be adjacent to more than two
vertices in the tree induced by X UY.

Let 7" be the tree induced by X U Y. Let us say for the sake of contra-
diction that r is adjacent to m vertices in the tree T". with m > 2. Fix r as
T

Let X, =V(T,)NX and ¥, = V(T,)NY forall | <i < m. Eachy, €Y, can

the root. Now the tree induced by XUY will have m subtrees T}.

only be adjacent to r or a vertex r, € X,
Now we will establish some propertics for the sets X, and Y,. First of
all. the root of cach subtree of 7' will be a vertex from the set Y. There are
at least two subtrees of T”. so it follows that |¥;| < |Y| for all i.
Consider any subtree T} of T". It follows from the k-maximality of T'
and the cardinality of the Y; sets that [X,| < |¥i| = 1. for otherwise (I —

2

(X - Xi))u(Y - Y,) would be an independent set that is larger than [and
thus J would not be k-maximal. Now consider any two subtrees T and ’I;

of T'. We know that

INISIK- L IX5I<IY-1
=X+ 1Y <Yl +]Y -2

= |X,UX,U{z} <KUYl

The tree T' contains at least three subtrees. and cach of these subtrees

contains at least one vertex from Y. It follows that (Y, U})) C Y. So.

IXUX,Ufeh < MUY <iY|

= X,uX,u{s}i<ViuYl<k+1

=X, UX,U{zH <k

The vertices of ¥, U ¥, can only be adjacent to = or vertices in X, U X,.
Thus. if we let X = X, UX,U{z} and ¥' = Y, UY;. then ([- X')UY"
is a valid independent set that is larger than 1. But |X’| < k. which is a

contradiction since [is k-maximal. O

In contrast. we can connect a vertex in ¥ to any number of vertices in

X.

Observation 3.6 For all k. there exists a configuration (T'. X.Y') such that

a vertez y € Y is adjacent to k vertices in X.

23

Figure 6: Tree with an independent set shown in black.
Let X = {£1.....x} and ¥ = {yy.....e_;}. Let us consider the case
where YUY =V and the tree is connected as follows:
® z, is connected to y, for all 1 <: < k. and

o 1, is connected to g, forall 1 <i < k.

An cxample of this graph for k = 4 is presented in Figure 6. In the
example. it is clear that we can remove four vertices from / and add five.
but we cannot remove three vertices and add four. It is casy to show that.
in general. the graph described above will be k-maximal but not (k+1)-

maximal. Thus. a vertex in ¥ may be connected to any number of vertices

Forbidden Configurations

In this section we will show a one-to-one correspondence between the set of
all possible pairs of vertices (X.Y) and the set of free trees.

Lot 7" be the graph induced by some X and Y. Now consider the graph

F defined in this way:

V(F) = {or.....oe}
E(F) = {{r..0,}I(3z € X){{w. r} € E(T).{y,. s} € E(T)}}

In other words. F graphically expresses the property that two Y vertices
v and y, are connected by a third vertex r € X. Using the properties of
X and Y outlined in the previous section. we will show that (1) F is a tree
and (2) X and Y are uniquely defined by F.

Bt first. we will formalize our meaning of a configuration.

Definition 3.2 Define a configuration to be a triple (X.Y') such that. for
some tree T and independent set [C V(T). such that X C I and ¥ C
V(T =)

o |X|=i¥|-1.

o (I=X)UY is an independent set of T.

o there do not exist two sets X' C X and Y' C Y such that | X'] = |¥Y'|—1
and (I - X')UY" is an independent set of T. and

o T' is the tree induced by the subset X UY inT.

The configuration (T"..X.Y) contains all the information regarding the

arrangement of X and ¥ within some tree T. Each (T. 1) pair may contain

wany (T"..X.Y) triples that satisfy the conditions described above.

Definition 3.3 Define C((T.I)) to be the set of all configurations (T'. X.Y)
that can be found in the tree T with independent set [C T.

Notice that the same configuration may be shared by more than one
(T.I) pair. For example. if (T". X.Y) € C((T.1)). then (T". X.¥) € C((T". X)).

We will group the configurations according to their size.

Definition 3.4 Let Cx be the set of all possible configurations (T'.X.Y)
such that | X| =k and (T'.X.Y) € C((T.I)) for some (T.I).

We can now restate the definition of k-maximality in terms of config-
urations. An independent sot [is k-maximal with respect to the tree T

Y) such that (T". X.¥) € C((T.1)) and

f there is no configuration (T
(r.x.v)elUc

In Section 3.1. we solved the k-Mis problem for trees and where k =

1.

labeling T of the vertices of the input tree T. In effect. we were scarching

..3 by searching for the patterns 0. 1 = x —L.or 1 = x =2 - x — Lin the

for the configurations from the sets Cy. Cy. and C,.

The x vertices in the patterns correspond to the X vertices of a config-
uration. The numbered vertices correspond to the Y vertices. Notice that
in all three cases. we can determine from the numbers in the labeling that
the Y vertices are not adjacent to any of the vertices in (I — X). thus the
set (I — X) UY will be an an independent set as required. This idca holds
true for the general case. thus we can search for configurations by labeling

the input graph according to I and scarching for patterns in this graph.

We are now ready to show the one-to-one correspondence between the

C sets and the set of free trees.

Theorem 3.6 Let Fy. be the set of free trees F' such that [V(F)| = k. For

each fized k. there is a one-to-one and onto function gy, : Ci = Fie--

Figure 7: A free tree Fg € Fg and its corresponding configuration

Proof: We construct the function gy as follows. The vertices fi..... fert

et Of Y. For cach pair

n..

of Fiwy will correspond to the vertic
{f £, } of vertices in F we join {f,. f,} with an cdge if an only if the vertices
4 and y, are adjacent to a vertex £ € X. An example of a configuration
and its corresponding free trec Fy € F; is given in Figure 7.

We will first show that the constructed graph F is indeed a free tree.

rtices

Assume for sake of contradiction that there is no path between the
£, and f,. Then there is no path between the vertices y, and y, of T".

Now assume for the sake of contradiction that

contradicting Theorem
F contains a cycle. In this eventuality. there would be a cycle in T'. This

a subgraph of the tree T. F is a conuceted graph

is impossible. since T*
and F does ot contain any cycles. therefore F' is a tree as required.

Now we will show that g is one to one. Notice that we can uniquely
reconstruct the configuration (77, X.Y) from the tree F. If F has k + 1
vertices. then there will be & vertices in X. k + 1 vertices in Y. and thus

2% + 1 vertices in T". Let ¥ = {y1.....yge1} and let {fi..... fi-1} be the

set of vertices in f. For cach edge {f,. f,} in F. we connect y, and y, in

Figure 8: A free tree F; € F5 and its correspouding coufiguration

to one of the heretofore unconnected vertices in X. Clearly this will be the
original configuration (7. X. ¥). There is only way to foliow this procedure,

s0 the configuration (T”. X.Y) is unique.

It remains to show that g is an onto function. We will prove this by

induction. The basis for the induction is Fy. There is only one free tree

with two vertices. and that is the graph containing two points with and

edge in between. If we use the strategy described above to reconstruct

the ion. we will get the described in the proof of

Theorem 3.1. So the function gi is onto for k = 1. For the inductive step.

assume that The function gx—y : Ck— — Fi is onto. We will show that the

function gy is onto. let ey be any instance of Fi,,. If we remove one leaf

node (and the corresponding cdge) from Fi.., we will get an instance Fi of

Fie-

Consider the configuration g~!(Fi..,). We compute the inverse of g in the
manner described previously. The configuration of g=!(Fi) will appear as a
substructure of the configuration g='(Fi.,). The g~'(Fi+1) configuration
will have two additional vertices: one X vertex connected to the substructure

¢7'(Fx) and a ¥ vertex connected to the new X vertex. An example of

this can be seen in Figurcs 7 and 8. If you compare the two figures. you

can see that the second ion appears as a subs of the first
configuration.

By the inductive assumption we know that g='(Fk) is in Cx_,. Thus if
two subsets X and ¥ are configured according to g='(Fk) in a tree T. then T
is not (k—1)-maximal. Let g™ (Fis1) = (Tuew- Xnew- Yaew)- If we compare
Thew to T. we sce that The, has two extra vertices. Call these vertices 1 and
/. The vertex 2 will be connected ta 5’ and some vertex y € Yoy that is
part of the substructure defined by g~'(Fx). We show the tree T, is not k-

maximal. then we show that (Tye - Ynew) € C(T 1)) for some tree T

and independent set 7 € V(T). Hence. (T Tuew- Xnew- Yaew)new. Xuew. Yaeu)
is a configuration.

We will firs

show that T, is not k-maximal. There arc three ci

(1) If we remove the k — 1 vertices in X. we will only be able to add & — 1
vertices (the set ¥ — {y}). This is because the vertex ' preveuts us from
adding the vertex y to the independent set.

(2) If we remove some proper subset S of X. then we can only add the

sot of vertices in Yyeq: that are neither adjacent to 2’ nor adjacent to any of

the vertices in S (for a total of at most |S| vertices. which is not enough).

(3) If we remove y and some proper subset of § C X. we can only add
' plus the set of vertices in ¥ that are only adjacent to vertices in S or ',
for at total of 1 +|S| vertices. So Ty, is not k-maximal. as required.

Xnew then (Thew. Xnew: Ynew) € CUT.1)).

Now if T = Tpew and [=
Therefore 9! (Fy~1) is a configuration for all Fis) € Fi-1. Therefore. g is

onto for all k. which is what we wanted to show. O

With this result. we have developed a characterization of the true in-

29

stances of the k-yis problem when the input is restricted to trees. We know
that any k-Mis instance (T. 1) is a true instance if and ouly if / is an inde-
pendent set that does not contain any of the configurations from the sets
o Ci—1. We know that the C, sets are finite because they correspond
one-to-one with the set of free trees of a fixed size. We also know that we
can generate any set C, very casily by starting with the set of free trees of

size i + 1 and using the computable function g,7'.

However. it is not practical to generate and test for all of the possible
configurations. The number of possible free trees will grow exponentially
with the size of the input value k. The theory for enumeration of graphs with
specific properties was developed by Cayley [4] and continued by Polya [16].
Polya gave a very elegant technique for computing the number of rooted
trees of a fixed size. Let trees(r) be the number of rooted trees with r

vertices. Then we have:

trees(z) = rcxp{EE‘:, lras(r")/k} y

The techniques developed by Cayley and Polya were used to produce
a counting series for the number of free trees of a fixed size in terms of
trees(z) [M4]. Let freetrees(x) be the number of free trees with r vertices.
Then we have:

freetrees(r) = trees(r) — %(lm«:\'"(:) — trees(z?))

The proofs for the two equations above are summarized nicely by Harary
and Palmer [8].

So. as we can see. the cardinality of F; will grow exponeutially as the

30

value of k increases. The chart below [8] gives the value of ¢(k) (and thus

the cardinality of F3) for small values of k.

t(k) for £ <= 24
E]k aR] kKR K i)
T 1] 7 48|13 313919 30195
2 1|8 15|14 4766 |20 823065
3 219 28615 T4 21 2144505
4 410 71916 19320 | 22 5623756
5 9|11 130117 48620 | 23 14828074
6 20 | 12 1842 | 18 123867 | 24 39299897

4 The k-Mis problem

In this section we will show that the k-Mis problem can be solved in O(n)
time for trees. This section is broken down into three parts. In part one we
present the theoretical results that are necessary for proving the correctness
of our approach. In part two we present a simple O(n?) algorithm for the
k-Mis problem. and in part three we give a linear time algorithm for the

problem.

4.1 Detecting C, configurations
At the end of the last chapter. we established that it is infeasible to solve
the k-MAXIMAL INDEPENDENT SET problem by the brute-force approach of

searching for all possible configurations of size at most k — 1. This is because

the number of configurations is exponential on the size of the input graph.

Further complicating the problem is the fact that some configurations may

be very large (on the order of the size of the iuput graph). thus making it

difficult to design a recursive solution to the problem.

31

Ideally. we would like to have some way of looking at a single vertex
and determining whether or not it is a part of a configuration of a certain
size. This is not possible. because this information would depend upon
the vertices that are in the vicinity of v. However. it is possible to make
a determination about v using a small amount of information about the

subtrees that are induced by fixing v as the root of the input tree. This

is due to the recursive structure of the Cy sets: cach configuration can be
broken up into a number of smaller configurations. and we can join any two
configurations into one larger configuration. Thus. it is sufficient to keep a
list of the configuration sizes that occur in each of the subtrees of v.

This section is broken up into two parts: one dealing with the case that

v € I. and the other dealing with the case that v ¢ /.

Independent set vertices

We will start with a lemma about the recursive structure of configurations.

Lemma 4.1 Let (T.X.Y) € Ci be a configuration with k > 0. and fir
any one vertez r € X as the root (thus r € I). Then the tree T has two
subtrees. which we will call Ty and To. If we let X! = X N V(T,) and
Y, = YOV(T) for i € {1.2}. then (T1.X1.Y}) and (Tp. X2.Ya) will be
configurations. Furthermore. if (Ti. X1.Y1) € C; and (T2. X3.Y2) € C,. then

pra=k-1L

Proof: Thisisa of the between
valid configuratious and free trees. Using the function g described in The-
orem 3.6 we can get the free tree Fy. € Fyy that corresponds to the
configuration (T..X.Y). Now if we remove the edge in Fi.; corresponding

to the vertex r in (T..X.Y), then we get two free trees Fp.y € Fpyy and

32

Figure 9: The configuration shown in this figure can be broken down into
two smaller configurations.

Fyei € Fyer such that Fp.y is the free tree that corresponds to the C,

instance (Ty. X1.Y;). Fye1 corresponds to the Cy instance (T.

(p+1) + (g+1) = (k+1). T

Au example of this is illustrated in Figure 9. As you can sce. the subtree
Ty is part of a configuration from Cz and the subtree Ty is part of a configu-
ration from the set Cy. We can imagine that any configuration C; with large
& will be built out of two smaller configurations. and these will in turn be
built out of smaller configurations. and so on.

The inverse of Lemma .1 is also true:

Lemma 4.2 Let (T).X,.Y]) and (Ya) be any two configurations.

where Ty and Ty are arbitrarily rooted at vertices yi € Yi and y € Ya
respectively. Let T be a tree with a root verter x and two subtrees Ty and
Ty Ifwelet X = X, UXa2U{z} and ¥ = ¥; UYy. then (T.X.Y) isa
configuration. Furthermore, if (T\. X\.Y) € C and (Ty. Xa.Y3) € C,. then
(DXY) EChen

Proof: Slight modification of the proof of Lemma 4.1. O

Notice that in Lemma 4.2 the particular form of (Ty. X1. Y1) and (Tz. X2.Y3)
does not affect the construction of the Cpeqe1 instance.

In the next theorem. we show how Lemmas 4.1 and 4.2 can be applied
to help determine whether or not an independent set vertex r is part of a

configuration of a certain size.

Theorem 4.1 Let (T.I) be such that T is a tree and [C V(T) is an in-
dependent set. Fir a vertez v € [as the rot. Thus T will have m subtrees
Ty ...T. Now. there exists a configuration (T'. X.Y) € Cx such that r € X

if and only if there are two distinct subtrees T, and Ty of T such that:

o T, contuins a configuration (T}. X,.Y) € C, such that the root of T, is

in Yy

o T, contains a configuration (T]. X,.Y)) € Cy such that the root of T,
is in Y): and

eptq=k-1L.

Proof: According to Lemma 4.1, if r is part of a Ci configuration then
we can split this configuration into two smaller configurations by removing
Y,) and (T}. X,.Y;).
Y,) and (T}.X,.Y;)

the vertex r. These are the two configurations (7}

According to Lemma 4.2. the existence of the (T}.
configurations imply that r is part of a coufiguration from the set Cx. Thus

the conditions described above are both nccessary and sufficient. O

With this result. we see that we only need a small amount of information

about each subtree to ine if r is a part of a. ion of size k. For
each subtree T, we keep track of k boolean values indicating whether of not

the root of the subtree T, is part of a configuration in €, for 0 < j < (k—1).

34

Notice that we do not need to know the form of the configuration. just
the size. We will store this information in a two dimensional array a of
boolean values. where a[i. j] is true iff the root of the ith subtree is part a
configuration from the sct C;.

s of r. then we can

Once we have this information about the subtre

determine if r is part of a Cx by the algorithm below.

function Test-indset-vertex-for-Ck (k.a) return boolean is
begin
for each pair i. j of unique numbers from {1.....m} loop
for each pair of nonncgative numbers p.q such that p+q = k-1 loop
| if afi. p] and a[j.q] then return true
‘ end loop
end loop
return false
end Test-indset-vertex-for-Ck

The outer loop will be executed O(mn?) time where m is the number
of subtrees. and the inner loop will be executed O(k) times. The answer
is trivially false if & > |[V(T)|. so we can assume that & < n. Thus. this
algorithm will run in O(n?) time.

We can simplify the problem considerably by taking note of the fact that
we will not be looking for configurations of some exact size when we solve
the k-MiS or MIN k-MIS problems. Rather. we would only need to prove
that r was part of some configuration of size less than k. In this case. it is
sufficient to determine the size of the smallest possible configuration that
includes r. and compare this configuration to the value k.

Naturally. the smallest configuration would be built out of the two small-
est sub-configurations. So. for each tree we only need to keep track of one

value. which is the size of the smallest possible configuration that includes

the root of that subtree. We will store these values in an m-length integer
array a. These values will be computed by the function min-sizeof-Ck-
white-r which we will give later. In the case where the subtrec does not
contain any configurations. we use some sentinel value instead (say -1).

The algorithm is given below.

function min-sizeof-Ck-black-r (T'r. I) return integer is
begin
if T is a leaf then return -1
“ construct the array a
idr 1
for cach subtree T, of T loop
if root(T.) ¢ I then
alids] + min-sizeof-Ck-white-r(T,. root(T;))
idr + ide +1
end if
end loop
* compute minimum Ci
if there are less than two nonnegative array clements then
| return -1
end if
find the two smallest nonnegative elements afi] and aj]
return afi] + a[j] + 1
end min-sizeof-Ck-black-r

We can determine the number of nonnegative elements in the array in
O(m) time. and we can find the two smallest nonnegative elements in O(m)
time. Thus. the algorithm has a running time of O(m) excluding the time

taken to exccute min-sizeof-Ck-white-r.

Non-independent set vertices

In this scction, we will show how we can check to see if the non-independent

set vertex v is part of a configuration of a certain size. using information

36

Pt

Figure 10: Two partial configurations P; and P, can be formed by removing
an edge from (T.X.Y)

obtained from the subtrees of v. But before we start. we need to introduce

the notion of a partial configuration.

Definition 4.1 Definc partial configuration to be a three tuple (T'. X'.Y")

such that there exists some configuration (T.X.Y) where

o T' is one of the connected components that is created by deleting an

edge in the tree T,

o X'=V(T)NX. and

o« Y =V(T')NY.

An example of a partial configuration is given in Figure 10. If we remove
or “cut’ the central edge. we form two partial configurations P, and P,.

Partial configurations may have onc of two forms. As we showed before.

the subtree of a ion may also be a i This situation

is illustrated by the tree Py in Figure 10 if we fix the topmost vertex of P
as the root. The other possibility is that a partial configuration may be a

configuration with an extra X vertex attached to one of the Y vertices. This

37

is illustrated by the tree P. It is the latter case that we are interested in.

so we will give this case a separate definition.

Definition 4.2 A strictly partial configuration is partial configuration (T'. X'.Y")
such that (T'. X".Y") ¢ C, for any i. Furthermore. for all k > 0. definc the

set Py to be the set of strictly partial configurations such that | X'} = k.

We will now formalize the propertics of the strictly partial configurations.

Let (T..

(.Y') be any coufiguration. and let (7", X".Y") be a strictly par-
tial configuration that is formed by taking a subtree of T. Then there is
only one vertex of degree 1 in T’ that in the set X. Recall that (T".X'.}")

is formed by choosing and edge of (T. X.Y) and then considering all of the

vertices and cdges that oceur to one side of that edge. Now. any edge that
is part of a configuration will be between two vertices: one r € X. and

one y € Y. If we consider the vertices and edges on the ¥ side of the cut.

then we get a partial configuration that is also a ion. This is a
consequience of Lemma 4.1. Thus. a strictly partial configuration can only
be formed by considering the X side of the cut. It follows that 7" will have
exactly one vertex of degree 1 from the set X. and that will be the vertex
that is incident with the cut cdge.

Let = be the X vertex from (7', X".Y’) that is incident with the cut
edge. 16 T is the tree induced by (X' - {£}) UY". then (T". X ~ {£}.1")

isa ion. This is also a of Lemma 4.1.

We are now ready to present a lemma that is analogous to Lemma 4.1.

Lemma 4.3 Let (T'. X.Y) € Ci be a configuration with k > 0. and fiz any
one verter y € X as the root. Then the tree T' has m subtrees. which we

will call T}....Th. If we let X! = X NV(TY) and ¥, = X N V(T}) for

38

| < i € m. then (T\.X,.Y,) will be a strictly partial configuration for all

i. Furthermore. if m is an integer function such that (i) = |X,| for all

1 <i < m. then S (i) = k.

Proof: We know that each of the (TV. X,.Y;) tuples arc partial configu-
rations by definition. But they are also strictly partial configurations. since
they each have a degree 1 vertex from the set X. (namely. the root of each
T!). and we know that every degree | vertex in a configuration is from the

set Y. Furthermore the sets Xj..... X, form a partition of the set X. and

s0 £ 7(i) = k as required. O
The inverse of Lemma 4.3 is also true:

Lemma 4.4 Let {(T{. Xi.Y1).....(T;. Xon. Yim)} be any nonempty set of
m strictly partial configurations. Also for each | < i < m. let £, € X, be
the unique verter in X, such that r, is a degree | verter in T,. Fir 1, as the
root of T, for all i. Then there is a unique tree T' with root vertez y and m
subtrees Tj..... T

IFX =Um X ¥ = (UR, YUy} and T' is as described above. then
(T'.X.Y) € Cy. where 7 is an integer function such that w(i) = |X,| for
k.

1<i<mand S2 (i

Proof: We will prove this by induction. Our basis will be the case
where m = L. If y was not connected to any vertex. then y by itself would
form a configuration from the sct Co. But y is connected to the vertex
1 € X, from the strictly partial configuration (T}. X1.Y1). Now we know
from our discussion of strictly partial configurations that if we ‘remove’

the vertex) from (T}, X1.¥;) we will get a configuration. Thus. £ joins

two configurations in the manner of Lemma 4.2. Therefore. (T.X.Y) is a
configuration as required.

For the inductive step. assume that we can connect (m-1) strictly partial
configurations to the vertex y to form a configuration from the set C, for
some p. Similar to the basis case. £, connects the C, instance to a Cg
instance that is part of the (. Xin.¥:). in the manner of Lemma 4.2.
Thus the first part of this lemma is true by induction. Furthermore the sets

P, {10, ¢

form a partition of the set X. and so £t x(i) =

as required.

Combining Lemmas 4.3 and 4.4, we get the following theorem:

Theorem 4.2 Let the pair (T. 1) be such that T is a tree and [CV(T) is a
nonempty independent set I. Fiz a vertezr ¢ [as the root. Let r be adjacent
to exactly m vertices in I. and without loss of generality let Ty.. ... T; with
1 < m be the subtrees of r that have a verter from [as the root. There
.Y) € Cx with r € Y if and only if there are

exists a configuration (T.
[strictly partial configurations (T}. X}.¥7)....(T{. X{.¥}) corresponding to
the subtrees Ty..... Ty such that:

o forall 1 < i <L (T.X..Y,) is in the subtree T;:

o forall 1 < i < L. the root of T, is the unique X verter that has degree
1inT!: and

o if 7 is an integer function such that 7(i) = |X,| for all 1 < i <. then

k.

Zioli)

Proof: (==) Assume that (T.]) and r are as described above. and r

is part of a configuration from the set Ci. Call this configuration (T. X.Y).

Then according to Lemma 4.3, r will be connected to a number of strictly
partial configurations.

Now r is adjacent to [vertices in [. so r cannot be connected to more
than { strictly partial configurations. Also note that all of the vertices
that are adjacent to r and members of I must be part of the configuration
(T.X.Y). Thus. r is counccted to exactly [strictly partial configurations
s (T

ately from Lemma 4.3.

1.Y{). The remainder of the proof follows immedi-

(+=) Assume that (T{. X{.Y{).....(T}. X[. ¥{) are as described above.

Then by Lemma 4.4. we can form a new configuration by joining the strictly
partial configurations to the vertex r. provided that r is not adjacent to

in

any other vertices in I. thus r will be adjacent to exactly [vertices

[as required. Furthermore. the T4 x(i) = k property will hold because

X X forms a partition of the set X. and the vertices of X' will be

distributed across the partition. O

As was in the case when r € . we see that we only need a small amount of

information about cach subtree to determine if r is a part of a configuration

of size k. In fact. we only need to look at the ! subtrees Ty .T; that have
a independent set vertex as their root.

Let afi. j] be an [x k matrix of boolcan values such that afi. j] is set to
true iff the root of the 7; contains a configuration from the set P,.

We will use dynamic programming. Let D be an I x k matrix of boolean
values such that D[i. j] is true if and only if there is a configuration (T. X.Y) &
€, in the tree induced by r and the subtrees Ty....T;. We can can define

Dli.] recursively in this way:

Diljl=allj] forallj
true if there exist p and q such that p+ ¢

Dli.jl = and D[i — 1.a] and afi.b]

false otherwise

Using memoization. we can compute D cfficiently. Then we simply re-

turn the valuc of D[L.]. An algorithm is given below:

function test-nonindset-vertex-Ck (k.a) return boolean is
begin
set D[L.j] « a[l.j] forall 1 <j <k
for i = 2 to | loop
set D[i. j] « false forall 1 < j <1
for cach p.q such that Di — L.p| and afi.q] loop
| ifp+q<kthen Di.p+q] « truc
end loop
end loop
if D[1.k] then return true
return false
end test-nonindset-vertex-Ck

The inner “for’ loop will be repeated O(k?) times. and the outer loop will

be repeated O(m) times, for a total running time of O(n?) at most.

Again. [t is much casier to prove that a particular vertex v is part of some
configuration of size less than k. In this case. it is sufficient to determine the
size of the smallest possible configuration that includes r, and compare this
configuration to the value k. The smallest configuration must be built from
the smallest possible partial configurations. so we only need to keep track of

the smallest partial configuration for each of the subtrees T}.... . T;. We will

42

store these values in an integer vector a in such a way that afi] contains the
size of the smallest partial configuration for 7;. In the case where the subtree
T, does not contain any strictly partial configurations. we set ai] to -1. The
values for a can be computed by the function min-sizeof-Ck-black-r which
we gave in a previous section.

is given below:

The algorit

function min-sizeof-Ck-white-r (T.r. [) return integer is
gin

if T is a leaf then return 0

“construct the array a

idr 1

for cach subtree T, of T loop

if root(T,)inl then
afidz] min-sizeof-Ck-black-r(T;. root(T;))
idr « ide + 1

end if

end loop

* compute minimum Cy

to idz loop.

—1 then return -1
sum + sum + ali]

end loop

return sum

end min-sizeof-Ck-white-r

This algorithm will run in linear time on the number of subtrees of r.

excluding the time taken to execute min-sizeof-Ck-black-r.

f-Ck-black-r and min-sizeof-Ck-white-r al-

Now that the
gorithms have been defined. we see that these algorithms will call each other

recursively on the subtrees of T and the results will be gathered at the root.

The values at each node can be computed in linear time on the number of

43

subtrees. and so the total tinic for this recursive procedure will be O(|V'(E))).

In the next section. we will use this procedure to solve the k-MAXIMAL IN-

DEPENDENT SET problem.

4.2 n-pass algorithm for detecting k-maximality

In the last section we gave two algorithms. min-sizeof-Ck-white-r and
min-sizeof-Ck-black-r that can be use to compute the size of the smallest
configuration that includes the root vertex r of T. In this section. we will

combine these functions together to produce an O(n?) time algorithm for

the k-MAXIMAL INDEPENDENT SET problem.

Let (T.1.k) be an input to the k-Mis problem. If [is an independent
set that is not k-maximal. then there exists some vertex v € V(T) and some
configuration (T, X. V) such that | X| < k and either v € X or v € ¥. Thus
it is sufficient to compute. for each v. the size of the smallest configuration
(T".
that v ¢ ¥). To do thi

.Y) such that v € X (in the case that v € I) or v € ¥ (in the case

we will itcratively apply min-sizeof-Ck-white-r

and min-sizeof-Ck-black-r to each vertex. An algorithm is given on the

following page.

function npass-test-k-maximality (T. 1. k) return boolean is
begin
if I is not an independent sct then return false
for each vertex v € V(T) loop
size &0
fix v as the root
if v € [then
| size « min-sizeof-Ck-black-r(T.v.1)

¢ min-sizeof-Ck-white-r(T.-.1)

> k then return false
end loop
return true

end npass-test-k-maximality

Thi fdereideit st testiaE e in O(n) time. The two

recursive calls can be completed in O(|V/(T)]) time. The main loop will

be exccuted |V/(T)] times. for a total running time of O(n?).

4.3 l-pass algorithm for detecting k-maximality

nt a O(n) time algorithm for the k-Mis. This al-

fu this section. we p

gorithm will solve the k-MIS problem for any (7. 1.&) instance in a single

pass through the tree.

Our strategy as we pass up the tree will be to look at every vertex
v € V(T) and determine whether or not v is part of a configuration of size
less than k. Simultaneously, we will check to ensure that [is an independent
set. If [is an independent set and no v is found such that v is part of a
configuration of size less then k. then (T, I. k) is a true instance. Notice that
the choice of the root does not matter in this strategy. so at the start of the

algorithm we will choose one vertex from V(T) and fix it as the root.

15

There is some amount of overlap in this strategy. For cach configura-
tion (7".X.Y) in (T.1). there will be several vertices that are part of the
(T". X.Y) configuration. To reduce the overlap we note that. for any config-
uration (7”. X.Y). there will be one vertex v € X UY that is closest to the
root. Any vertex in the set X UY will either be a descendent of the vertex
v or will be equal to the vertex v itself.

Given the above result. we see that we can prove k-maximality if we can
prove that there is no vertex v € T(V) such that v is part of a configuration

(T'. X.Y) where none of the X or Y vertices occur above v in the tree.
For the next part of the discussion. we will need a new definition.

Definition 4.3 For any tree T with root r € V(T) and for any verter v €
V(T). define T, to be the tree induced by v and all of the descendents of v.

Cousider a vertex v. I (T X.Y) € C((T.I)) and none of the X.Y
vertices occur above v. then (T, X.Y) € C((Ti. [N V(T,)). On the other
hand. (T". X.Y) € C((T.. 10 V(T,))) does not always imply (T'.X.¥) €
c(T.1).

So. we will need some way to test to sce whether or not a configuration
(T'. X.Y) of (T,. TN V(T,)) is in C((T-1)). It turns out that this is simple
to do.

Let p(v) be the parent of v. First we will consider the case where v € X.

Y) must be a configuration in

If p(v) ¢ I it is casy to sec that (7"
C((T.1)). 1f p(v) € I then I is not an independent set so we can trivially
reject this k-Mis instance.

Now consider the case where v € Y. Ifp(v) ¢ I then again (T". X. Y) will
be in C((T.1)). But, if p(v) € I then (T". X.Y) will not be a configuration

16

in C((T.1)) (since we must remove X U {p(v)} from I before we can add

the Y vertices).

So just by looking at the vertex v and the vertex p(v). we can test to see if
X.¥)in C((

in C((T.I)). Now if we wish to prove k-maximality. we must check for all

INV(T))) is a configuration

the potential configuration (T".

v € V(T) every configuration of T, of size less than k to make sure that is
it is not a configuration in C((T.1)). If a configuration is of size k or larger

we can ignore it. since it will not affect the k-maximality of (T.1).

We will now give an outline of our 1-pass strategy. We will compute four
values for each vertex v € V. The intuition is. firstly. that we can solve the
k->is problem if we have these values for the root. and secoudly. we can
define the values for each vertex v in terms of the children of v. Thercfore.

we can solve the problem by computing these values for the root recursively.

Our four values are described below:

1. A boolean value isinl which is true if v is in [and false otherwisc.

2. A boolean value invalid which is true if and only if there is some
configuration (T”. X.Y) of size smaller than k whose *highest’ node is

an descendent of v.

b

Au integer config. which is the size of the smallest configuration
(T".X.Y) in C((Te. I N V(T,))) such that v € X UY. We set config

to —1 if there are no configurations of sizc less than or equal to k.

An integer spcon fig which is the size of the smallest strictly partial

configuration (T". X". ¥') in C((Te.. [N V/(T,))) such that v € X and v

=

has degree L in T". We set speon fig to ~1 if there are no such strictly

partial configurations of size less than or equal to k.

So if we have these four values for the root vertex r. we can say that the
instance (T.I.k) is true if invalid = false and config = 1.

In the case that a vertex v is a leaf node. then this information is trivial to

obtain. For v € I we will have isin/ = true. invalid = false. config = 1.

\d speon fig = —1. For v ¢ I we will have isin] = false. invalid = false.

config = 0. and spconfig =

Now for each interior vertex we

n compute config and speonfig in

the same manner as min-sizeof-Ck-black-r and min-sizeof-Ck-whit
The value isin can be computed for v by testing for membership in the set
I. Finally. invalid must be true if it is true for some descendant of v or if
v & I and there is some child of v for which config # —1. Otherwise invalid
must be false.

We will now give an algorithm for our l-pass strategy. The function
onepass-Test-k-maximality solves the k-MIs problem using the functions

get-p black-r and get-p hite-r to compute the values of

isinl. invalid. config. and speon fig for the interior vertices.

48

procedure get-params-black-r (T. r. var invalid.
var con fig. var speonfig) is
begin
for i =1 to m locp
1, +root(T;)
ifr, € I then
| get-params-black-r(T.. r,. invalid[i]. con figli]. spcon figli])
else
| get-params-white-r(T,. r,. invalid(i]. con fig[i]. spcon figli])
end if
end loop

invalid « false

for i = 1 to m loop

| if invalid(i] = true or root(T,) € I then invalid + true
end loop

if con fig]] contains less than 2 nonnegative array clements then
| config e -1
else
find the smallest nonnegative elements con figli]. con figlj]
con fig con figli] + con figls]
end if

minval + x

for i = 1 to m loop
| if (root(T) ¢ I) and con figli] # —1 then
| | minval «min(minval.configli])

| end if

if minval = x then speonfig « (1) else spconfig « minval + 1
end get-params-black-t

procedure get-params-white-r (T r. var invalid.
var config. var spconfig) is
begin
for i = 1 to m loop
o +root(T,)
if r, € I then
| get-params-black-r(T;. ry. invalid[i]. con figli]. speon ig{i])
else
| get-params-white-t(T;. ry. invalidfi]. con figli]. speon figli])
end if
end loop

invalid « false
for i = 1 to m loop
if invalid[i] = true or (configli] # -1 and (root(T:) ¢ I)) then
| invatid « true
end if
end loop

sum 0
for i = 1 to m loop
| if root(T) € I then
| if spconfigli] = —1 then
config ~1
return
else
| sum « sum + speon figli]
end if
end if
end loop
config — sum

speon fig — —1
end get-params-white-r

50

function onepass-test-k-maximality (7. I. k) return boolcan is
begin

fix a vertex r € V(T) as root

ifr € [then

| get-params-black-r(T. r. invalid. con fig. speonfig)

else

| get-params-white-r(T. r. invalid. con fig. spcon fig)

end if

if invalid = true then

| return true

else if config = -1 then
return true

else

| return false

end onepass-test-k-maximality

The functions get-p black-r get-p hite-r will take O(m)

time. where m is the number of children of the current vertex. Thus the

total time taken for onepass-test-k-maximality will be O(|E]).

5 Dynamic programming algorithm for min k-mis
problem

In this section. we will present a dynamic programming algorithm for the
MINIMUM A-MAXIMAL INDEPENDENT SET (DECISION) problem for trees. Re-
call the MIN k-MiIS problem takes as input a graph G and two integers k and
&' and returns true if there exists a k-maximal independent set [for G of
size less than or equal to k.

The input to this problem will be a tree-graph T and an integer k <
|V(T)|. The first step will be to fix one vertex r € V(T) as the root of T.

Then for each vertex v € V(T'). we will compute the size of the smallest

5l

independent set for the tree T, under a fixed number of conditions. We will
need 2k+1 conditions. The conditions are such that for cach vertex r. we

ize of the optimal independent sets for T, given the size of the

can compute
of the optimal independent sets for the children of v.

The first & conditions will be cases where v is part of the computed
optimal independent set. The second set of & + 1 conditious will be cases
where v is not part of the independent set. In the next part of this section.
we will describe these 2k+1 conditions in detail. After that. we will show

how we can compute the size of the optimal independent sets for T, given

the sizes of the optimal independent sets for the subtrees of T...

5.1 The 2k+1 conditions

Recall the 1-pass algorithm for k-maximality given in Section 4.3. In that
section. we described how we could determine the size (measured by |X|)
of the smallest configuration that included the root vertex r of T using in-
formation about the smallest configurations and the smallest strictly partial
configurations in the subtrees of T.

We will use a similar idea tiere. For each subtree. we will optimize the
subtree according to a number of conditions. Each condition will place
different restrictions on the number of configurations and strictly partial

configurations that can occur in the subtree.

Independent set vertices

Definition 5.1 Let T be a tree with root . We define the set Ip(T.r.i.k)
to be the set of all independent sets I of T that satisfy the following criteria:

o all the configurations of (T. 1) are of size k or greater. and

o all the strictly partial configurations (T". X.Y) such that r € X and r

has degree 1 inT' are of size i or greater.

Notice that the st Zp(T.r. 1.k) is precisely the set of k-maximal indepen-
dent sets in the rooted tree T under the assumption that r € [. Also. if
we start with Ip(T.r.1.k) and we incrementally increase the value of the
third paramecter. we incrementally reduce the number of independent sets
that are included in Zp(T. 7. i.k).

By definition the following inclusion holds:
Ip(Tor. L k) DIp(T.r.2.k) 2 -+ 2 Ip(Torak—1.k) 2 Ip(T.r. k. k)

Now we are ready to describe the first set of & couditions. For each

ze of the smallest independent sct in

i1 < i<k owe will find the s
Ip(T.r.

labeled py.pi-i...pi. with cach p, corresponding to the set Zp(T.r. i k).

s of these independent sets in A variables

. k). We will store the

If the set Zp(T.r.i.k) is empty. then we will set the value of p, to infinity.

The following inequality will hold:
mE<pS S-S

Non-independent set vertices

Definition 5.2 Let T be a tree with root r. We define the set Ie(T.r.i.k)

lo be the set of all independent sets I of T that satisfy the following criteria:

o all the configurations of (T, I) that do not include the oot r are of size

k or greater, and
o all the configurations that include the root r are of size i or greater.

53

Notice that the set Ze(T. r. k. k) is precisely the set of k-maximal inde-
pendent sets for the tree T with root r under the assumption that r ¢ /.
As we reduce the value of the third parameter. we gradually increase the
number of independent sets that are included in Ze(T.r.i. k).

By definition the following inclusion holds:

Io(Torkok) € Ze(T.rk=1.k) € - € Te(Tor. LK) C Te(T.r.0.K)

Now we are ready to describe the second set of (k+1) conditions. For
each i. where 0 < i < k. we will fiud the smallest independent set from

Ie(Torick). We will store the sizes of these independent sets in (k+

1) variables named cg.cx_y.....co. with each ¢, corresponding to the set
Ie(T.r. i k). If the Ze(T.r.i. k) set is empty. then we will set the value of

¢, to infinity. Now the following inequality will hold:

5.2 Top-level algorithm

Consider the ¢, and p, values discussed in the previous section. If we can to
compute these values for the root vertex r of T. then it is an easy matter to
find the size of the minimum k-maximal independent set.

From our previous discussion Zp(T.r.1.k) is the set of all k-maximal
independent sets such that r € I, and Ze:(T. . k. k) is the set of all k-maximal
independent sets such that r ¢ I. The p; and c; values are the sizes of

s in Zp(T.r. 1.k) and Ze(T.r. k. k) respectively.

the smallest independent se

‘Therefore. the size of the smallest k-maximal independent set is the smallest

of py and cx.

5.3 Minimizing the subtrees

In this section, we will describe how one can compute the size of the p, and

¢, values for a tree T, given the same information for the subtrees of T;.
This task is naturally split into two steps: first we assume that r € [

and we compute the p, values. then we assume r ¢ 7 and compute the ¢,

values.

Suppose r is a leaf node. If r € I. then there would be no strictly

v of INVI(T,) is

partial configurations in (T,. /N V(T;)) and the cardinality

L Thus py = - = pgey = L. Ifr ¢ [, then (T,. 1N V'(T3)) contains one

coufiguration from Cy and the cardinality of N V/(Ty) is 0. Thus ¢ = 0 and

For the remainder of this section will assume that the ¢, and p; values
for the children of v are stored in two dimensional arrays ¢ and p. Let cfi. j]
be the value for ¢, for the ith subtree and let pli.j] be the value for p, for

the ith subtree.

Computing p....pc

In this section we will show how the p, values for each vertex can be

puted i We begin by ishing some properties of the

Ip(T.r. ts. Then we will show how the smallest member of Zp(T.r.i.k)

can be built from For the i of this section.

let T be a rooted tree with root r and m subtrees Ti.....T,, corresponding

to m vertices vy.....Um.

o
&

The first two lemmas outline some necessary conditions for membership

in Zp(T.ri.

Lemma 5.1 for all | <i <k and all 1 < j < m. if [€ Tp(T.r.i.k). then

the set INV(T)) is in Zo(Ty.vy.i — 1K)

Proof: Suppose [N V/(T}) is not in the class Zo(Ty. vy..i — 1.k) for some
Jj. Then (T,.I N V(T;)) contains cither a configuration of size less than
k that does not include the vertex v,. or a configuration of size less than
i -1 that includes v,. In the first case. the set [will not be k-maximal. a
contradiction. In the second case. the pair (T. I) would contain a strictly
partial configuration (T”. X'.}") of sizc less than i such that r € X' and r

has degree 1 in T". a contradiction. O

Lemma 5.2 If [€ Ip(T.r.i.k). then there are no two vertices v, and vy,

such that:

o [AV(T,) is in To(T.r.p.k) but is not in To(T.r.p+ L.k):

o [AV(Ty) is in Ie(T.r.q.k) but is not in Te(T.r.q + L.k): and

e prq+l<k.
Proof: Suppose v, and vy exist with the defined properties. Then (Ty, [0
V(T,)) contains a configuration from Cp and (T, I N V(7)) contains a con-
figuration from C,. It follows that (T.I) contains a configuration of size
p+q+1 where p+q+ 1 < k. a contradiction since I € Zp(T.r.i k). O

The necessary conditions for membership in Zp(T.r.i. k) described in

Lemmas 5.1 and 5.2 are also sufficient.

Theorem 5.1 [is in Ip(T.r.i.k) if and only if
o Forall1 <j<m. IOV(T)) is in Ze(Ty. vy i - 1K)
o there are no two subtrees T, and Ty such that the oot of T is part of

a configuration from the set Cy. the root of Ty is part of a configuration
from the set Cq. and p+q+1 < k.

Proof: Lemmas 5.1 and 5.2 show that the two conditious are necessary.

It remains to show that they are sufficient. The first condition ensures that

I does ot contain any strictly partial configurations of size smaller than i.
The second condition ensurcs that neither the root of I nor any other vertex
of T is part of a configuration of size smaller than k. Thus I is a member

k). O

of the class Zp(T.

Let us demonstrate the use of this theorem with an example. Consider

the case where & 5 and the tree T has three children T}.Ty. and T.

Assume that we have computed the arrays ¢ and p in for the children of 7.

We compute py.pa.. ... ps for the vertex r-

Let us start with the value p;. By Theorem 5.1, [€ Ip(T.r.5.5) im-
plies that (T,.1 N V(T})) is in Zo(T,.v,.4.5) for i = 1.2.3. By the same

theorem. we see that this condition is also sufficient. So all that we have to
do is find size of the smallest set in cach of the three classes Ze(T}. vy. 4.5).
Ze(Ta.v2.4.5). and Ze(Ta.v3.4.5). This has already been computed as
ef1.4]. ¢[2.4]. and ¢[3.4]. Thus we set ps — c[L.4] +c[2. 4] +c[3. 4] + 1. The

values py and py can be computed in a similar way.

The calculation for p2 is a bit more claborate. Our strategy will be to

optimize I under two disjoint cases. and then take the optimum value of

57

the two. If I € Zp(T.r.2.6). then exactly one of the following statements is

true:

L. I € Ip(T.r.3.6). or

. so there is a subtree T, such that [0 V(T}) is a

2.1 ¢ Zp(T.

member of the class Z¢(T,. v,. 1.6) but is not a member of the class

(T, v,.2.6).

We have already optimized I under the first case. so it remains to opti-
mize under the second case.

Assume that the second statement is true. Then the root vertex v; of T, is
part of a configuration in C; for some i. Now it follows from Lemma 5.2 that

the set 71 V(T,) must be from the class Ze(T.r.3.6) for i # j. According

to Theorem 5.1. this necessary condition is also sufficient. So all we have to
do is optimize the independent sets of the subtrees under these conditions.
The size of the optimal subtrees are readily available in the c[i. j] array. Of
course. we do not know the optimum value for i. so we will try all three

possibilities. This can be done in time linear in the number of subtrees.

The valuc p; can be computed in the same way that p; was computed.

The algorithm compute-p-array ou page 59 computes py.....px for a
vertex r. This algorithm contaius two nested loops that are executed k and
m times respectively. Thus, we can compute the p; values for a particular

node in O(k - m) time.

58

function compute-p-array (T. r. k) return array of integer is
begin

for i =1 to m loop

| cfi-1.k] « compute-c-array(T;.root(T;).k)

end loop

for j =k to 1 by —1 loop
‘compute p,
if2+j+1 >k then
sum e S cli. j]
preturn[j] = sum
else
“find the maximum difference
hiej. loek-j-1 idrel
mazdiff «— (c[1. hi] = c[1.lo])
for i = 2 to m loop
i (cfi. hi] - cli.lo]) > mazdiff then
J mazdiff + (cli. hi] - cli.lo])
| ide i
end if
end loop

sum 0
for i = 1 to m loop
| ifi = idr then sum « sum + cli.lo] else sum « surm + cli. hi]

end loop

‘compare sum to preturn[j + 1]
if sum < preturn]j + 1] then
| preturn(j] « sum
else
| preturnlj] « preturn(j + 1]
end if

end if
end loop
return preturn

end compute-p-array

Computing co..... ok

In this section we will show how the ¢; values for each vertex can be com-
puted recursively. Similarly to the previous section. we will establish some
properties of the Ze(T. r.1. k) classes. and then use these properties to show
that the smallest Z(T. 7. 4. k) set can be built from suboptimal components.

Let T. T,. v, and r be as described in the previons section.

The first two lemmas outline some necessary conditions for membership

in Ze(T.r. 0. k).

Lemma 5.3 If [€ Ze(T.r.i.k) then for all L < j < m. [NV(T)) is cither
in (T vy ke k) or Ip(T).vy. 1K),

Proof: By the definition of Ze(T.r.i.k). all of the configurations of

(T.I) that do not include the root r must be of size & or greater. Thus. the

set 1N V(T)) must be a member cither of Ze:(T), . k) in the case that

vy ¢ I.or Ze(Ty.v). 1. k) in the case that vy € [. O

Notice that. by the inclusion properties of the Zp classes. any indepen-

dent set £ in Zp(T}. 0, 1. k) may also in Zp(T,. v;.q. k) for some ¢ > 1.

Lemma 5.4 Let us say that the vertes r of T is adjacent to | vertices in I.

Without loss of generality. assume that v, € [for all 1 < j <l and v, ¢ [

Jorall (1+1) < j < m. If L is in the set To(T.r.i.k). then there is an integer

Junction = such that:
o INV(T)) is in Zp(Tj.v).7(j).k) for all 1 < j <1 and

o B iw() 20

Proof: Suppose that that there is no integer function 7 that satis-
fies these requirements. Define the function 7 to be an integer function
such that w(j) is the size of the smallest strictly partial configuration of T,
that includes the root vertex v; of T. By the assumption. we know that
£!_y7(j) < i. Then by theorem 4.2. The root vertex r is part of a configu-
ration of (7. I) of size less than i. This contradicts the membership of / in

Io(T.rick). ©
The two necessary conditions described above are also sufficient.

Theorem 5.2 Let us say that r is adjacent to | independent set vertices.
Without loss of generality. assume that v, € [forall 1 < j <landv, ¢ [
Jor all (1+1) < j <. Then [is in the set Io(T.r.i. k) if and only if

o forall (1+1) < j < m. [OV(T)) is in Ze(T. vy k. k): and

o there is an integer function m such that ijxnu) >iand INV(T)) is

in Ip(T). 0. w(j).K) for all 1 < j <1

Proof: Lemmas 5.3 and 5.4 prove that the conditions described above
are necessary. [t remains to show that they are sufficient. The second
condition ensures that the size of the smallest configuration that includes
the root vertex r is of size greater than or equal to i. Both conditions serve
to ensure that (T.1) does not contain any strictly partial configurations of
size less than & that do not include the root vertex r. Thus. [is a member

of Ze(T.r.ik). O

Now consider the case where [is the smallest member of the class
ZIe(T.r.i.k). By the theorem above. the subtrees of I N V(7)) must cach

be a member of oue of one of the sets Zp(T).v;. L.K)..... Ip(Ty.v, k. k).

61

or Zc(T).v).k.k). Since I is as small as possible. it follows that all of
the I N V(T)) sets must be as small as possible for their respective classes.
otherwise we could replace one of the I N V(T;) sets with a smaller set.
contradicting the minimality of /. Therefore. the set [must be built out of
suboptimal components.

We will now show how to compute in the value cp..... ¢ for the root
vertex r using the A+ 1 values py..... px. and cg corresponding to vy. ... e
As before. we will store these values in the two dimensional arrays ¢ and p.
Our basic strategy for computing ¢, will be to choose the optimal subtrees

in such a way that:
o LisinZe(T.r.i.k): and
o [is minimal.

For cach subtree T). we will choose exactly one value from the set
{pli- 1. .- plj- k1], clj. K]}

The first step in our strategy is would be to decide which subtrees would
benefit from the choice c[j. k]. Recall from section 3.1 that py <..... < Pke1-
So if efj.k] > plj. 1]. there would be no reason to choose the value c[j. k] for
the tree T): it would always be more beneficial to choose the value p{j. 1].

Let us say that therc are £ subtrees T, of T for which c[j.k] > p[s. 1]
Consider the independent set that is formed by choosing p[j. 1] in the case
that cfj.k] > p[j.1] and by choosing c[j. k| otherwise: In other words. we
choose min({p[j. 1]... .. p[j.k + 1].c[j.K]}) for each j. Call this set I*. The
set I* is the smallest possible independent set that can be formed from the

optimal subcomponents.

Without loss of generality, assume that {vy..... ve} C I". Now there is
an integer function 7 such that INV/(T}) is in Zp(Ty. v;, 7(j). k) for 1 < i < €.
and Ef_7(j) = €. Thus. I" meets all of the conditions for membership for
b 7 2 R SRR Zc(T.r.L.k). I' is clearly the smallest possible indepen-

= ce = |I]. Now all

dent set for these classes. so we will set co = ¢ =

that remains is to determine the values for ce.y.....ck.

Our strategy for computing ¢, in the case that ¢ > € + 1 will be to start
with the independent set /* and then gradually replace the subcomponents
of I" with more restrictive (and possibly larger) subcomponents. until we can
form a function 7 such that Zp(Ty. v,. 7(j). k) for 1 < i < fand £f_ w(j) =
i. We will design our replacement strategy in such a way that we ensure the
wminimality of the new independent set.

Say. for example. that the value c[j. k] was chosen for the tree T,. We
may wish to replace the c[j. k] value with the p[j. 1] value. We know by the
definition of I* that c[j. k] < p[j. 1]. so the replacement would increase the
size of the independent set by some nonnegative integer value. Likewise. we
could replace the value p[j. 1] with p[j.2]. the value p[j.2] with p[j.3]. and
50 on. Each time we make a replacement. we would also be increasing the

maximum size of T\, 7(j) by 1. We will make replacements in this manner

until Tf_x(j) =

We need to minimize the cost of making : — ¢ replacements in the man-
ner described above. These replacements will be distributed among the m
subtrees. For the nth replacement in the subtree 7). we associate a positive

integer cost. The cost is related to the relative increase in the size of the

independent set. It is casy to see that this problem reduces to the problem

described below:

OPTIMAL DISTRIBUTION PROBLEM. Given a collection of n balls.
m boxes. and an m x n dimensional array of integers called cost.
minimize the cost of distributing the 1.2..... n — . or n balls
among m boxes. where costi. j] is the cost of placing j balls in

the ith box.

We can solve this problem using a divide-and-conquer approach. The
algorithm for this problem is given on page 65. This is a recursive function

that returns a one-dimensional array called totalcost. where totalcost[i] is

the minimum cost of placing i balls into the boxes.

The basis

step (when m = 1) will take O(n) time and will be exccuted
exactly one time per box for a total contribution of O(n-m). The recursive
step will take O(n?) and will be executed O(m) times for a total contribution

of O(n? - m).

64

function optimal-distribution (n. m. cost) return array of integer is
begin
ifm =1 then
* basis case
totalcost(0] « 0
for i = 1 to n loop
| totalcost(i] = c[L.i]
end loop
else
* inductive step
mid = [m/2]
lcost «— optimal-distribution(n. mid. cost{l..mid. 1..n])
reost « optimal-distribution(n, m — mid. cost{(mid + 1)..m. L..n])
for i = 1 to n loop
bestsofar —
for j =0 to i loop
| if leost(j] + reost[i — j] < bestsofar then
| bestsofar « lcost(j] + reostli - j]
end if
end loop
‘ totalcostfi] « bestsofar
end loop
end if
return totalcost
end optimal-distribution

The algorithm compute-c-array on page 66 computes cg. o for a

vertex r. This algorithm will be O(k? - m) time for each vertex in V(T).

function compute-c-array (T. r. k) return array of integer is
begin
for i = 1 to m loop
cfi.0..k] « compute-c-array(T;.root(T,).k)
pli. 1..k] « compute-p-array(T;.toot(T).k)
end loop

‘compute |[*]. £. and cost.
size 0. £ 0
for i = 1 to m loop
if cfi.k] < pli. 1] then

size & size + cli. k]

for j = I to k loop costli. j] « pli.j| — pli.j - 1]
else

size « size + pli. 1]

=0+1

costli. 1] pli. 1] - c[i.k]
| for j =2tok -1 loop costli.j] « pli.j + 1] - pli.]]
end if
end loop

for i = 1 to min({£.k}) loop cret(i] « size if £ < k then
totalcost « optimal-distribution(k — £ + 1. m. cost)
for j =€+ 1 to k loop
| creturn(j] « size + totalcost(j — ¢]
end loop
end if

end compute-c-array

5.4 Summary

Now that we have all of the components. we will put them together to form

our algorithm for the MIN k-MiS problem. The first step of the algorithm

will be to input T and k. Then we fix any r € V(T) as the root. Recur-

sively. we compute the 2 - k conditions for the root vertex. and then we use

this information to compute the size of the smallest k-maximal set as in

66

Section 5.2. The algorithm is given below.

function compute-c-array (T k. ¥') return boolcan is
begin

fix some r € V(T) as root

€[0..k] compute-c-array(T.root(r).k)

plL.k] — compute-p-array(T.coot(r).k)

if k] < k or p(L] < K then return true

elsercturn false

end compute-c-array

Let us compute the running time for this algorithm. The basis step will
take O(n) time. Then for each interior vertex. we compute the values for
the 2k+1 conditions. It will take O(k -) time to compute cq.cx and
it will take O(k? - m) time to compute p.....pg. where m is the number
of children for the vertex in question. The O(k - m) term is negligible so
we can say that we take O(k? - m) for each interior node. We can tighten
the bound further by taking note that the sum of all of the m terms will be
(IV(T)|=1). Thus we can say that the total time taken to compute all of
the interior vertices is O(k? - n). or O(n®) if we assume that k < n. Finally
the top level calculation of the can be computed in O(1) time. So total time
for the algorithm is the sum of the time taken by the basis, top-level. and

recursive steps. or O(n?).

ion version of the MIN k-

The algorithm that we used to solve the de:
Mis problem implicitly constructs a k-maximal independent set of smallest
cardinality. So. we could easily convert this algorithm so that it returns a

k- imal i set of smallest inality. and thus we could solve

the non-decision version of the MIN k-MIS problem. We would do this using
traceback pointers. Whenever we compute a ¢; or p; value. we keep track

of how the value was generated in terms of the ¢ or p; values at the child

67

nodes. From these pointers. we can reconstruct the smallest k-maximal

independent set.

6 Summary

The k-maximal independent sets have a rich and interesting structure. In
this thesis. we have characterized the structure of the k-maximal indepen-
dent sets for trees. We have used this characterization to solve two problems
related to k-maximal independent sets. We first gave a linear time solution
to the k-MAXIMAL INDEPENDENT SET problem for trees. and then we gave
an O(n) time algorithm for the MINIMUM k-MAXIMAL INDEPENDENT SET

independent set problem also for trees.

There still are many interesting open problems related to the k-maximal

independent sets. Several problems were suggested by Cockayne et al. [
and many of these problems remain unsolved to this day.

Our success with the MIN k-Mis problem for trees would suggest some
other interesting problems. For example. one could investigate the parallel
complexity of the MIN k-Mis problem for trees. [t seems that this prob-
lem may be solved in polynomial time using the technique of parallel tree
contraction 12].

Another interesting avenue of research would be to investigate the com-
plexity of the MIN A-MIS problem for tree-width bounded graphs. Many
graph problems that are polynomial-time solvable for trees are also polyno-
mial time solvable for graphs with fixed tree-width. A particularly relevant

example would be the MINIMUM MAXIMAL INDEPENDENT SET problem [1].

68

References

[1] V. Beron. and M. Mata-Montero A Linear Time Algorithm for the
Minimum a-Maximal [ndependent Set on Treewidth Bounded Graphs.

TEMAS. 5, Vol. 2. pp. 3-15. May-August 1998.

B. Bollobds. E. Cockayne. and C. M. Mynhardt. Generalized Minimal

=

Domination Parameters. Disc. Math. 86. pp. 89-97. 1990

[3] M. Borowiecki. D. Michalak. and E. Sidorowicz. Generalized domina-

dence and i in graphs. D Matem-

tion. i
aticae Graph Theory 17(1). pp. 147-153. 1997.

[4] A. Cayley. A theorem ou trees. Quart. J. Math. Ozford Ser. 23 pp.
376-378. 1889.

[5] E. J. Cockayne. G. MacGillivray and C. M. Mynhardt. G
maximal independence parameters for paths and cycles. Quaestions

Mathematicae. 13(2). 1990

S. Cook. An observation on time-storage trade-off. Journal of Computer

=

and Systems Science, 9(3). pp. 308-316. 1974

7] M. Garey and D. Johnson Computers and Intractability: A Guide to

the Theory of NP-Completeness. June 1979.

[8] F. Harary aud E. Palmer. Graphical Enumeration. Academic Press New

York and London. 1973.

{9] R Karp and A. Wigderson. A fast parallel algorithm for the maximal

independent set problem. J. of the ACM. pp. 762-773. 1985.

69

[10]

{1

(12]

(16]

D. Manlove. Mini i and imini imisation problems: a

partial order-based approach. PhD thesis. University of Glasgow. De-

partment of Computing Science. June 1998.

A. A. McRac. Geueralizing NP-completencss proofs for bipartite and

chordal graphs. PhD thesis. Clomson University. Department of Com-

puter Science. South Carolina. 1994.

M. Reid-Miller. G. L. Miller. and F. Modugno. List Ranking and Par-
allel Tree Contraction. In J. H. Rief. editor. Synthesis of Parallel Algo-

rithms. Morgan Kayfmann Publishers. Inc.. 1993.

C.M. Mynhardt. Generalised maximal independence and clique num-

bers of graphs. Quaestiones Mathematicae. 11 pp. 383-398 1988.
R. Otter. The number of trees. Ann. of Math. 49 pp. 583-599, (1948).

C. H. F dimitriou and M. is. The Ce ity of Facets

(and Some Facets of Complexity) J. Comp. Sys. Sci.. 28. pp. 244-259.
1984,

G. Polya and R. C. Read. Combinatorial Enumeration of Groups.
Graphs. and Chemical Compounds. Springer-Veralag New York. Inc.

1987.

« b 1.: P al

; H-q' F "d[‘Hl T

; \H#ﬁ!" '|('|l”'l— .
L o e i

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Information To Users
	0006_Copyright Information
	0007_Title Page
	0008_Abstract
	0009_Table of Contents
	0010_List of Figures
	0011_Table of Symbols
	0012_Chapter 1 - Page 1
	0013_Page 2
	0014_Chapter 2 - Page 3
	0015_Page 4
	0016_Page 5
	0017_Page 6
	0018_Page 7
	0019_Page 8
	0020_Page 9
	0021_Chapter 3 - Page 10
	0022_Page 11
	0023_Page 12
	0024_Page 13
	0025_Page 14
	0026_Page 15
	0027_Page 16
	0028_Page 17
	0029_Page 18
	0030_Page 19
	0031_Page 20
	0032_Page 21
	0033_Page 22
	0034_Page 23
	0035_Page 24
	0036_Page 25
	0037_Page 26
	0038_Page 27
	0039_Page 28
	0040_Page 29
	0041_Page 30
	0042_Chapter 4 - Page 31
	0043_Page 32
	0044_Page 33
	0045_Page 34
	0046_Page 35
	0047_Page 36
	0048_Page 37
	0049_Page 38
	0050_Page 39
	0051_Page 40
	0052_Page 41
	0053_Page 42
	0054_Page 43
	0055_Page 44
	0056_Page 45
	0057_Page 46
	0058_Page 47
	0059_Page 48
	0060_Page 49
	0061_Page 50
	0062_Chapter 5 - Page 51
	0063_Page 52
	0064_Page 53
	0065_Page 54
	0066_Page 55
	0067_Page 56
	0068_Page 57
	0069_Page 58
	0070_Page 59
	0071_Page 60
	0072_Page 61
	0073_Page 62
	0074_Page 63
	0075_Page 64
	0076_Page 65
	0077_Page 66
	0078_Page 67
	0079_Chapter 6 - Page 68
	0080_References
	0081_Page 70
	0082_Blank Page
	0083_Blank Page
	0084_Inside Back Cover
	0085_Back Cover

