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Abstract 
 

With the heavy demand for sustainable fuel sources instead of fossil fuels, fuel cells 

employing alcohols are becoming more attractive. The high theoretical efficiency (97%) of 

direct ethanol fuel cells (DEFCs) based on proton exchange membrane (PEM) technology 

together with the high energy density and availability of bioethanol make DEFCs important as 

power sources. However, the low faradic efficiency of DEFCs, the poisoning of the anode by 

adsorbed carbon monoxide (COads) during ethanol oxidation and crossover of fuel from the 

anode to the cathode are major issues in DEFCs technology.  

          The main purpose of this research was to improve the faradic efficiency of DEFCs. 

Therefore, different potential waveforms were applied to an ethanol electrolysis cell with 

aqueous ethanol supplied to the anode and nitrogen at the cathode, in order to increase the 

yield of carbon dioxide and therefore increase cell efficiency relative to operation at a fixed 

potential. 

          Also, we have developed a novel electrochemical method to measure the average 

number of electrons generated during oxidation of ethanol to carbon dioxide. The method is 

based on quantitative oxidation of fuel that crosses through the membrane to avoid the errors 

that would otherwise result from crossover. It is useful for rapid screening of catalysts, and 

allows performances (polarization curves) and n-values to be determined simultaneously under 

well controlled transport conditions. This method was also used for determination of n values 

for a cell in anode polarization mode and a real fuel cell. 
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1.1 Introduction 
 

Humankind is facing many challenges with the use of fossil fuels. The first and foremost is 

global warming due to greenhouse gases such as carbon dioxide (CO2). CO2, which is the main 

product of the consumption of gasoline and other fossil fuels, can increase the temperature of 

our planet’s atmosphere.1 Also, the exploitation and purification of fossil fuels may cause 

other environmental problems. Therefore, it is reasonable to search for alternative kinds of 

energy sources. One attractive alternative source of clean energy production is fuel cells. In 

fuel cell technology, which has been a prime focus of many research groups around the world, 

the electrochemical oxidation of a fuel such as hydrogen,2-4 methanol,5-8 or ethanol9-11 is the 

source of energy production. Although energy generation from methanol and ethanol are 

relatively new, energy production from hydrogen in fuel cells has been studied for a long time.  

The idea of energy production from the electrochemical oxidation of hydrogen was 

developed by William Grove in 1839, who demonstrated that when hydrogen and oxygen 

were fed to two platinum electrodes in a separated electrolyte, current was produced.12 

Ludwig Mond and Carl Langer developed experiments with a hydrogen fuel cell that 

generated 6 A per square foot at 0.73 V. They used an electrolyte soaked up by a porous non-

conducting material.13 Although more than 150 years have passed since Grove’s and Mond’s 

fuel cells, until recently there have been only a few efforts for the commercialization of fuel 

cells. In the first half of the 20th century, there were some individual attempts to evolve the 

idea of fuel cells and power production from fuel cells. For instance, Francis Bacon 

demonstrated a fuel cell with a hydrogen / oxygen redox system using alkaline electrolytes and 

nickel electrodes in 1932.12 Harry Karl Ihrig made a tractor with a 20-horsepower (15 kW) 
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fuel cell in the same year.14 However, the turning point in the fuel cell industry was the early 

1960s, when NASA utilized a polymer electrolyte membrane fuel cell (PEMFC) for the 

Gemini space program and an alkaline fuel cell (AFC) for the Apollo program for energy 

production purposes.15, 16 Since 1961, fuel cells have been used as supplementary power 

sources in many space programs. However, despite these developments, no market was found 

for fuel cells. In the last decade of the 20th century, due to global warming awareness, resource 

problems, and international rules such as Zero Emission Mandates, authorities forced 

industries to switch to electric vehicles (EVs) with a supplementary fuel-cell power source. At 

the end of the 1990s, many vehicle companies around the globe started to develop fuel cell-

EVs as their products. Today, not only is energy production from fuel cells growing for 

transportation but fuel cells have also become energy sources for residential heat and power.17, 

18 

Most of the fuel cells described earlier were based on solid polymer electrolytes. 

Proton exchange membrane fuel cells (PEMFCs) are a type of solid polymer fuel cell that can 

produce high power densities. The key part of a PEMFC is a proton-exchange membrane that 

is responsible for the movement of hydrogen ions from the anode to the cathode. Oxidation of 

fuel at the anode produces hydrogen ions (H+). The membrane that is placed between the 

electrodes allows hydrogen ions to migrate from the anode to the cathode (proton conduction). 

This structure allows a simple and compact fuel cell for energy production.  

By the end of the 1960s, the DuPont Company developed a perfluorosulfonic acid 

membrane called “Nafion®”. Nafion has many advantages such as higher conductivity and 

greater lifespan other ion-exchange membranes.19, 20 Due to these superior characteristics, 

Nafion has become the main part of PEMFCs. Moreover, due to the high durability of Nafion 
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membrane in acidic media, direct alcohol fuel cells (DAFCs) have become an alternative 

source in the production of clean energy.21 

The hydrogen fuel cell (HFC) is the first fuel cell that was studied. The simple anodic 

and cathodic reactions of HFCs at high thermodynamic potential (1.23 V) have made HFCs 

fashionable systems for power and heat production. For instance, in the United States, 

legislators authorized the National Fuel Cell Bus program in 2006 to address the demands for 

commercialization of fuel cell electric buses (FCEBs). In the summer of the same year, 18 

FCEBs were operative at six different locations in the U.S.22 For the Winter Olympics of 

2010, the BC transit system used a fleet of 20 New Flyer buses with the Ballard fuel cells. In 

China, Korea and Japan, many automotive industries are developing their transportation 

systems with fuel cell technologies.23 Despite the hazardous issues involved with hydrogen 

storage, use of liquid hydrogen can make HFCs a reliable alternative heating source. Some 

studies in the UK are showing that utilizing fuel cells that are powered by hydrogen from gas 

networks can decrease the cost of heat generation at peak demand times.17, 24  

Direct alcohol fuel cells (DAFCs) have the same structure as hydrogen fuel cells. A 

membrane (Nafion) divides two electrodes from each other. However, instead of the oxidation 

of hydrogen at the anode, the oxidation of low molecular weight alcohols such as methanol, 

ethanol and recently ethylene glycol takes place at the anode25-27 in DAFCs. During the same 

process, the reduction of oxygen happens at the cathode.  

 Energy and current production from direct methanol fuel cells (DMFCs) has been at 

the centre of studies for a long time. The energy density of methanol is 6.09 kWh kg-1. This 

value, which is reasonably close to the energy density of gasoline (10 kWh kg-1), can make 

methanol an attractive alternative power source.28 In DMFCs, oxidation of methanol to carbon 
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dioxide and hydrogen ions occurs at the anode. Then, protons migrate from the anodic solution 

to the cathodic through the ion-exchange membrane (Nafion). At the cathode, the reduction of 

oxygen to water takes place. The thermodynamic reversible potential of methanol oxidation is 

close to the equilibrium potential of hydrogen: 

𝐶𝐻3𝑂𝐻 + 𝐻2𝑂 → 𝐶𝑂2 + 6𝐻+ + 6𝑒−     𝐸0 =  +0.02 𝑉                                      (1.1) 

However, in comparison to oxidation of hydrogen, methanol oxidation to carbon 

dioxide has very sluggish kinetics.29 This is largely due to the formation of carbon monoxide 

at the surface of the platinum catalyst, which is called the poisoning of platinum by carbon 

monoxide.30 Many research groups have studied the methanol oxidation reaction (MOR) to 

enhance the direct oxidation of methanol to carbon dioxide without formation of intermediate 

species such as carbon monoxide.31-34 According to many studies, platinum (Pt) alloys with 

secondary metals such as Ru,35, 36 Sn,37, 38 and Rh 39, 40 can decrease platinum poisoning. 

Poisoning of platinum is not the only issue for DMFCs. Also, use of methanol in fuel cell has 

been the centre of debate due to its toxicity, since methanol is a hazardous compound for 

human life and nature. Although the lethal dose of methanol for humans is not known, some 

studies report that the lethal dose is about 100 mL, while some others report a lethal dose as 15 

mL of 40% methanol.41 

Presently, due to the disadvantages of methanol that were discussed, energy production 

from the ethanol oxidation reaction (EOR) and direct ethanol fuel cells (DEFCs) is of growing 

interest. One of the reasons is related to the high energy density of ethanol. With an energy 

density of ca. 8 kWh kg-1 (even higher than the energy density of methanol), ethanol has 

become a promising fuel for the production of clean energy. Also, unlike the transportation 

and storage of hydrogen, the transportation and storage of ethanol is less hazardous. Moreover, 
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ethanol can be produced from a wide range biomass and renewable sources, such as 

feedstocks like corn, grape, sugar cane, sunflowers, and potatoes.  

Although there are advantages to use of ethanol, oxidation of ethanol to carbon dioxide 

is very complex.42, 43 Ethanol oxidation involves two commonly accepted pathways. In both 

pathways, formation of acetaldehyde has a key role. The first pathway involves formation of 

adsorbed acetaldehyde and then further oxidation of acetaldehyde to acetic acid (partial 

oxidation of ethanol to acetic acid). In the second pathway, the cleavage of the bond between 

the carbons in adsorbed acetaldehyde leads to the formation of adsorbed CHx and CO. 

Formation of adsorbed CO is followed by oxidation of adsorbed CO to carbon dioxide 

(complete oxidation of ethanol to carbon dioxide). In the complete oxidation of ethanol to 

carbon dioxide, the C-C bond in adsorbed acetaldehyde needs to be broken at the surface of 

platinum. As a result of this C-C bond cleavage, CO and CHx are formed and cover the surface 

of the catalyst. Although both carbon monoxide and CHx oxidize to carbon dioxide at high 

enough potentials, it has been reported that CHx at the surface of platinum can aslo be reduced 

to methane.44, 45  The complete oxidation of ethanol to carbon dioxide generates more 

electrons than methanol oxidation (12 and 6 electrons for ethanol and methanol, respectively). 

This high electron generation by ethanol oxidation (EOR) makes DEFC an interesting source 

for energy production for many proposes such as stationary and portable power sources.46, 47 

Acetaldehyde and acetic acid are by-products of the EOR. Therefore, due to the low 

electron generation in the formation of acetaldehyde (2 electrons) and acetic acid (4 electrons), 

the efficiency of DEFCs decreases drastically. One of the main aims of ethanol oxidation 

studies is to find platinum-alloy catalysts to favour the ethanol oxidation through the complete 
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pathway. These catalysts should also decrease the poisoning of platinum by carbon 

monoxide.48-50 

Although the efficiency of the EOR is an immense issue in DEFCs, crossover of 

ethanol from the anodic solution to the cathode is another challenge. 51 Ethanol crossover 

decreases the efficiency of EOR due to the loss of fuel. Also, at the cathode, formation of 

adsorbates and products by chemical reactions between ethanol and oxygen can affect the 

electrochemical reduction of oxygen. Moreover, crossover of ethanol to the cathode can cause 

a “mix-potential”, which leads to a decrease in the cathode potential and cell voltage.52 The 

purpose of thesis reported in this thesis was to find solutions to these problems. 

1.2 Proton Exchange Membrane (PEM) Fuel Cell 
 

A fuel cell is a device that converts the chemical energy of a fuel to electricity and heat 

without combustion. PEMFCs are based on a solid thin layer assembly. The most important 

parts of a PEMFC is the membrane and electrode assembly (MEA). Fuel cell MEAs have 

three major components: an anode, a cathode and an electrolyte membrane. At the anode, 

oxidation of fuel takes place. As a result of the oxidation reaction, electrons are produced and 

moved from the anode to the cathode via the external circuit. At the cathode, with the presence 

of the oxidant (O2) and electrons, reduction occurs. The main role of the membrane is to 

separate the anode and cathode reactants. Also, the membrane allows the migration of ions 

(protons that are generated during fuel oxidation) from the anode to the cathode. As discussed 

earlier, PEMs are the main membranes used widely in DEFCs or DMFCs.53 A schematic 

diagram of a MEA for a PEMFC is shown in Figure 1.1. 
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1.2.1 Nafion Membrane 
 

Because all of the experiments in this thesis were conducted with a fuel cell with a Nafion 

membrane, the main focus in this section will be on Nafion and its structure. Nafion is one of 

the most widely used membranes in PEMFCs. It has two moieties: a hydrophobic backbone 

(tetrafluoroethylene) as a continuous phase (polymer moiety) and a sulfonic acid (-SO3H) 

domain which provides hydrophilic regions. The hydrophilic regions act as a water reservoir, 

while the hydrophobic domain is essential for the stability of Nafion. Figure 1.2 shows the 

chemical structure of Nafion. 

 

 

Figure 1.1 Schematic diagram of an MEA for the PEMFC that 

                 was used in this project. 

Proton exchange 
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The equivalent weight (EW) or ion exchange capacity of Nafion is defined as grams of 

dry Nafion per mole of acid groups (sulfonic acid groups) when the polymer is in the acid 

form.54, 55 The relation between EW and n is EW = 100n + 446, where 100 (g/mol) is the 

molar mass of  the tetrafluoroethylene subunit (-CF2CF2-) and 446 (g/mol) of is the molar 

mass of the perfluorovinyl ether sulfonic acid side chains, C7F13O5SH. For instance, for a 

Nafion 117 film, the number 117 refers to 1100 EW (n=14) and a thickness of 0.007 inches. In 

the case of Nafion 115, the number 115 indicates 1100 EW and thickness 0.005 inches. 

The main role of the hydrophilic moiety is to transport protons (H+) from the anode to 

the cathode. In order to provide high performances, the membrane should have a high proton 

conductivity, be impermeable to oxygen and fuel (methanol or ethanol), possess a high 

chemical stability, and also be an electrical insulator. 12, 56, 57 Generally, a membrane should 

have excellent characteristics for all of these aspects. However, most PEM (including Nafion) 

are good in only some of these properties and not all, and contribute significantly to the 

efficiency losses in fuel cells.  

As mentioned above, a key parameter of a PEM is its ability to conduct protons 

through the membrane. For instance, consider the following oxidation reaction at the anode of 

a hydrogen fuel cell with a Nafion membrane, 

Figure 1.2 Chemical structure of Nafion. 
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𝐻2  → 2 𝐻+ + 2 𝑒−                                                                 (1.2) 

Protons that are produced at the anode must pass through the membrane to reach the 

cathode. At the cathode, the reduction of oxygen in the presence of electrons and protons takes 

place. The ability of Nafion to shuttle protons from the anode to the cathode is dependent on 

the water and acidic content of the Nafion. To understand how these depend on proton 

exchange, some explanation is needed.  

Generally, proton transfer in a PEM occurs through water conduction. When a proton 

is introduced into an aqueous solution, it leads to the formation of a hydrogen bond with water 

molecules in the solution. When a new hydrogen bond is formed, the surrounding bonds are 

weakened (proton defect). As a result of this protonic defect, a contraction of hydrogen bond 

occurs in the vicinity of the defect. This process leads to movement of a proton from one water 

molecule to the next water molecule in the solution. This is called the Grotthuss mechanism.58 

In this mechanism, introduction of a proton would be followed with the formation of a 

hydrogen bond between the proton and water molecules (Eigen ion, H9O4
+). This positively 

charged ion can lose a proton via a cleavage of hydrogen bound to the neighboring water 

molecule (Zundel ion). As a result, the extra proton moves thorough the solution. The same 

process occurs in PEMs (Figure 1.3).55, 56, 59-61 
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Figure 1.3 Grotthuss mechanism adopted with permisson.59  

In Nafion, proton mobility not only can be explained by the Grotthuss mechanism but 

also it can be assisted by the diffusion of the hydrogen atom of the sulfonic acid groups.62    

Therefore, acidic strength governs how easily a proton dissociates from the sulfonate counter-

ion. For the dissociation of a proton, which is bound and immobilized in dry Nafion, the 

presence of water molecules is crucial.63 Water molecules increase the hydrogen dissociation 

from the sulfonic acid and at the same time, enhance proton transport (from the oxidation of 

fuel) through the membrane. The ratio of water molecules per sulfonic acid group is expressed 

by λ. It has been reported that when λ = 3, effective dissociation of protons occurs. 

Nonetheless, for complete dissociation, the water content must be higher (λ > 6), with the ideal 

λ for Nafion 117 at ambient temperature being 16 < λ < 20).64, 65 Based on the role of water 

molecules in proton transport, it is expected that with higher water contents in the membrane, 

the conductivity of the membrane would increase. However, with high numbers of water 

molecules, the sulfonate groups become more diluted. As a result, the conductivity of the 

membrane would decline.66 Thus, the water content of the membrane is an important factor 

influencing the efficiency of PEM fuel cells (PEMFCs). 
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Another important factor that governs proton mobility in Nafion is the structure of the 

polymer (tetrafluoroethylene backbone). As mentioned earlier, the hydrophilic regions 

(sulfonic acid groups) swell in the presence of water molecules. The swelling of the membrane 

leads to the formation of channels that  allow protons to move thorough the membrane.67 

Figure 1.4, below,  represents this process. 

 

 

While protons are crossing the membrane via the hydrophilic region, the hydrophobic 

regions of Nafion maintain structural integrity. Finally, the distance between sulfonic acid 

groups in the membrane can affect proton mobility. High numbers of sulfonic acid groups, 

which would lead to low gaps inside the membrane, would increase the conductivity of the 

membrane due to the fact that more shuttles are provided for introduced protons to traverse 

through the membrane (see Figure 1.5).64, 68-70 

 

Figure 1.4 Proton conductivity in PEM.67 
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It is important to note that some other factors, such as temperature and the chemical 

structure of the polymer chain of the membrane, can also affect proton mobility. The study of 

these parameters was beyond the scope of this thesis. 

1.3 Direct Methanol Fuel Cells (DMFCs) 
 

Although hydrogen in fuel cells is one of the important new means of energy generation, it 

suffers from many difficulties. Hydrogen storage and transportation are the main problems for 

fuel cells that use hydrogen as a fuel. Thus, the search for non-hazardous fuels is essential. 

Alcohols are one of the alternative sources for energy production in FCs. Among those, 

methanol was the first alcohol to be used in the fuel cell industry. Unlike hydrogen, methanol 

is liquid at room temperature, and it can be stored easily. Moreover, methanol can be produced 

from many natural sources, such as feedstocks. Finally, by the usage of methanol in fuel cells, 

the design and structure of such cells would become smaller than HFCs.24, 71-73  

Figure 1.5 Schematic representations of distance between sulfonic acid  

                                     groups in a PEM (left: Nafion with low numbers of sulfonic  

                                     acid groups, right: Nifion with high numbers of sulfonic acid  

                                     groups). Adopted from reference 13.  
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At the anode side of a direct methanol fuel cell, the oxidation of aqueous methanol to 

carbon dioxide occurs at the surface of a platinum based catalyst. At the cathode, the reduction 

of oxygen to water takes place. The anodic and cathodic reactions of a DMFC are, 

𝐶𝐻3𝑂𝐻 + 𝐻2𝑂 → 𝐶𝑂2 + 6 𝐻+ + 6 𝑒−                                                   (1.3) 

𝑂2 +  4𝐻+ + 4𝑒−  → 2𝐻2𝑂                                                         (1.4) 

 

And the overall reaction is, 

𝐶𝐻3𝑂𝐻 + 1.5 𝑂2 → 𝐶𝑂2 + 2 𝐻2𝑂                                                   (1.5) 

 

However, during the complete oxidation of methanol, formation of adsorbed 

intermediates such as CO can cover the surface of the catalyst, which can inhibit further 

methanol oxidation to carbon dioxide. Thus, the CO layer at the surface of Pt must be 

oxidized. Oxidation of CO to CO2 needs a hydroxyl group (at the surface of platinum) from 

water dissociation. These multiple steps in the mechanism decrease the kinetics of the 

methanol oxidation reaction (MOR) greatly in comparison to the hydrogen oxidation reaction 

(HOR) in hydrogen fuel cells.29, 34, 74  

Also, the incomplete oxidation of methanol may lead to the formation of formic acid 

and formaldehyde, which are the by-products of methanol oxidation. The incomplete 

oxidation of methanol generates fewer electrons than complete oxidation (4 or 2 electrons for 

formic acid and formaldehyde, respectively).75 Therefore, due to the lower electron production 
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of incomplete oxidation, the efficiency of DMFCs would decrease dramatically in comparison 

to the complete oxidation of methanol to carbon dioxide. 

A major problem of DMFC is methanol crossover from the anode to the cathode. Even 

at very low concentrations, methanol can cross the membrane. Methanol at the cathode can 

react chemically with oxygen. This chemical reaction does not produce any Faradaic current, 

and consumes oxygen; therefore, the efficiency of the cell is decreased. 

1.4 Direct Ethanol Fuel Cells (DEFCS) 
 

Oxidation of ethanol can be a good alternative source of energy. Among renewable alcohols, 

ethanol has some advantages over the others. First, the energy density of ethanol is ca 8.0 kWh 

kg-1 which is greater than methanol and close to the energy density of gasoline, 6 kWh kg-1 

and 10 kWh kg-1, respectively. Moreover, ethanol is a less toxic alcohol that can be produced 

from a variety of feedstocks such as corn, sugar cane, straw, cotton and other biomass. The 

high energy density of ethanol corresponds to 12 e- per molecule for the total electrochemical 

oxidation reaction. To convert this amount of electron generation to energy, electrochemical 

oxidation of ethanol (EOR) should occur at the anode, while an oxidant gas such as oxygen 

reduces at the cathode. Pt and Pt alloys can be good electrodes for electrochemical reactions of 

ethanol.76, 77 

The following equation describes the complete electrochemical oxidation of ethanol at 

the anode: 

𝐶2𝐻5𝑂𝐻 + 3 𝐻2𝑂 → 12 𝐻+ + 12 𝑒− + 2 𝐶𝑂2                                      (1.6) 
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At the cathode reduction of oxygen takes place as in eq. 1.4. Since, E° 
CO2/EtOH = + 

0.084 V and E° 
H2O/O2 = +0.1.229 V vs. the standard hydrogen electrode, ∆E = E° 

H2O/O2 - E° 
CO2/ 

EtOH  = 1.145 V for the cell. 

 

 

 

 

 

 

 

 

 

 

 

However, due to the slow kinetics of the anodic and cathodic reactions, high over 

voltages are necessary for electrochemical oxidation of ethanol.78 In addition, incomplete 

oxidation will decrease the energy density of ethanol. Acetic acid and acetaldehyde are the 

two main products of incomplete oxidation of ethanol. Hence, it is essential to study complete 

and incomplete EOR reactions. 

 

Figure 1.6 Schematic of a DEFC 
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1.4.1 Oxygen Reduction Reaction (ORR) 
 

In DEFCs, O2 is used as the oxidant. Electrochemical reduction of O2 is a multielectron 

reaction that can take place through two different pathways, as shown in equations 1.7 and 1.8. 

 

𝑂2 +  4𝐻+ + 4𝑒−  → 2𝐻2𝑂                                                            (1.7) 

𝑂2 +  2𝐻+ + 2𝑒− →  𝐻2𝑂2                                                                     (1.8) 

The first pathway, in which water is the result of oxygen reduction, is the favorable reaction in 

DEFCs. This can be attributed to two major reasons. Firstly, the standard potential at 

equilibrium (E0) for first pathway is higher than the standard potential of the second pathway, 

1.23 V and 0.67 V vs. SHE, respectively. This is a very important factor due to the fact that 

the reversible cell potential (Erev
0) is equal to the difference between potentials of the anode 

and cathode (Erev
0 = Ecathode – Eanode). Hence, the higher the Ecathode, the higher cell 

performance. Secondly, the peroxide production in the second pathway at the cathode can 

damage the membrane.79, 80  

Platinum is the best single component catalyst for the ORR. Which pathway is 

followed is dependent on the lattice structure of the surface Pt. It has been reported that the 

four electrons pathway is favourable for platinum with (100) and (110) structures. On the 

other hand, Pt (111) is selective for the two electrons pathway.81-83 The ORR via the four 

electron pathways occurs as follows, 84 

𝑃𝑡 − 𝑂2 +  𝐻+ +  𝑒−  → 𝑃𝑡 − 𝑂𝑂𝐻                                        (1.9) 

𝑃𝑡 − 𝑂𝑂𝐻 + 𝐻+ + 𝑒−  → 𝑃𝑡 − 𝑂 +  𝐻2𝑂                                   (1.10) 
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𝑃𝑡 − 𝑂 + 𝐻+ +  𝑒−  → 𝑃𝑡 − 𝑂𝐻                                                   (1.11) 

𝑃𝑡 − 𝑂𝐻 +  𝐻+ +  𝑒−  → 𝑃𝑡 − 𝑂𝐻2                                              (1.12) 

Due to the high cost of platinum and also the sluggish kinetics of the ORR, many 

studies have focused on finding alternative catalysts. It has been reported that Pt alloys with 

transition metals such as Co, Cr, and Ni enhanced the ORR and decrease the cost of the 

catalyst.85-87 It is important to note that the ORR efficiency can also be affected by ethanol 

crossover from the anode to the cathode. The presence of ethanol at the cathode leads to 

chemical reactions that do not produce any current. Also, there is a mixed potential at the 

cathode and intermediates from ethanol oxidation can poison the cathode. 

1.4.2   Ethanol Oxidation Reaction (EOR) 
 

For oxidation of ethanol to carbon dioxide, cleavage of the C-C bond must take place. 

Platinum, is one of the most favourable catalyst for this. At the anode, before the breakage of 

the bond between carbons, ethanol must be adsorbed at the Pt surface. However, adsorption of 

ethanol may follow different pathways that lead to distinct products such as, carbon dioxide, 

acetic acid, acetaldehyde and other compounds. Generally, the adsorption and then oxidation 

of ethanol on platinum in acidic media can be summarized in two parallel paths.88, 89 

 

Pathway (1):  𝐶2𝐻5𝑂𝐻 → (𝐶2𝐻4𝑂𝐻)𝑎𝑑𝑠  → 𝐶1, 𝐶2 → 𝐶𝑂2 (complete or total 

oxidation) 
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Pathway (2):  𝐶2𝐻5𝑂𝐻 → (𝐶2𝐻4𝑂𝐻)𝑎𝑑𝑠  → 𝐶𝐻3𝐶𝐻𝑂 → 𝐶𝐻3𝐶𝑂𝑂𝐻 (partial or 

incomplete or oxidation). 

As can be seen, the first step of both pathways is absorption of ethanol at the Pt surface. In this 

step, ethanol loses one proton and one electron: 

𝑃𝑡 + 𝐶𝐻3𝐶𝐻2𝑂𝐻 → 𝑃𝑡 − (𝐶𝐻3𝐶𝐻𝑂𝐻) +  𝐻+ +  𝑒−                               (1.13)                    

The second step is almost the same for complete and incomplete oxidation, where Pt-

(CH3CHOH)ads releases the second electron and proton: 

𝑃𝑡 − (𝐶𝐻3𝐶𝐻𝑂𝐻)𝑎𝑑𝑠  → 𝑃𝑡 − (𝐶𝐻3𝐶𝐻𝑂)𝑎𝑑𝑠 +  𝐻+ +  𝑒−                    (1.14) 

At this point, acetaldehyde can desorb as a product, or dehydrogenation continues to form an 

adsorbed acetyl group as shown in eq. 1.15:  

  𝑃𝑡 − (𝐶𝐻3𝐶𝐻𝑂)𝑎𝑑𝑠  → 𝑃𝑡 − (𝐶𝐻3𝐶𝑂)𝑎𝑑𝑠 +  𝐻+ +  𝑒−                       (1.15) 

At low potentials, adsorbed acetaldehyde plays a key role in both the complete and incomplete 

oxidation of ethanol. In pathway (1), after the formation of an adsorbed acetyl group on Pt 

from adsorbed acetaldehyde rupture of the C-C bond occurs. As a result, an adsorbed methyl 

group and carbon monoxide are formed on Pt (eq. 1.16). Both of these intermediates cause 

catalyst poisoning: 

𝑃𝑡 − 𝐶𝑂 − 𝐶𝐻3 → 𝑃𝑡 − 𝐶𝑂 + 𝑃𝑡 − 𝐶𝐻3                                     (1.16) 

Once carbon monoxide is formed, adsorption of ethanol on the Pt would be inhibited. Thus, 

further oxidation of adsorbed species would be slow. At high enough potentials, dissociation 

of water occurs according to the following reaction: 
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𝑃𝑡 +  𝐻2𝑂 → 𝑃𝑡 − 𝑂𝐻 +  𝐻+ + 𝑒−                                         (1.17) 

Adsorbed hydroxyl groups on Pt are needed for CO oxidation, 

𝑃𝑡 − 𝐶𝑂 + 𝑃𝑡 − 𝑂𝐻 → 2𝑃𝑡 + 𝐶𝑂2 + 𝐻+ + 𝑒−                                            (1.18) 

Following formation of the adsorbed acetyl group (eq. 1.16), adsorbed hydroxyl can react with 

it instead of rupture of the C-C bond and acetic acid can form (partial or incomplete 

oxidation), 

𝑃𝑡 − 𝐶𝑂 − 𝐶𝐻3 + 𝑃𝑡 − 𝑂𝐻 → 𝑃𝑡 + 𝐶𝐻3𝐶𝑂𝑂𝐻 +  𝐻+ +  𝑒−                     (1.19) 

In the partial oxidation pathway, formation of acetic acid is the end of the EOR for DEFCs, 

since it can not be oxidized further at attainable anode potentials. Therefore, searching for 

conditions under which pathway (1) becomes dominant is crucial. Conditions are also needed 

to inhibit the formation of poisoning species such as carbon monoxide.45, 90 

1.4.3 Effect of Pt alloys on EOR 
 

Although platinum is a good catalyst for the EOR, it is highly susceptible to poisoning by 

carbon monoxide during ethanol oxidation. Another drawback is the high cost of platinum for 

commercialization of DEFC. Therefore, searching for catalysts that increase the efficiency of 

the EOR, and also decrease cost is crucial. 

Platinum poisoning by carbon monoxide is illustrated in Figure 1.5. Carbon monoxide, which 

is an intermediate during the EOR, can be adsorbed at Pt in both linear and bridged forms. The 

interaction between platinum and carbon monoxide is very strong and it needs high potentials 

to oxidize CO to CO2. As mentioned in the last section, oxidation of adsorbed CO to CO2 
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requires a hydroxyl group on the platinum adjacent to Pt-CO. Formation of a hydroxyl group 

on the Pt involves dissociative adsorption of a water molecule. Since formation of CO on the 

platinum occurs at lower potentials than the formation of Pt-OH, most of the platinum sites are 

already poisoned by CO before dissociation of water molecules and formation of Pt-OH 

(illustrated in Figure 1.7, below). 

 

 

 

One of the most studied methods for oxidation of CO to CO2, is the development of 

catalysts based on Pt alloys such as PtRu91, 92, PtSn93, 94,  and PtRh.95, 96 Use of platinum alloys 

as catalyst for EOR can shift dissociative adsorption of ethanol to lower potentials, and Pt-OH 

may be formed earlier so that CO can be oxidized to CO2. The mechanism of carbon 

monoxide oxidation to carbon dioxide by platinum alloys can often be explained by a 

bifunctional mechanism and/or the ligand effect.96-98 

In the bifunctional mechanism, Pt alloys with secondary or tertiary metals are capable 

of decreasing the dissociative adsorption potential of water. Hence, the overpotential that is 

needed to oxidize adsorbed CO to CO2 would be altered to lower values. This leads to the 

Figure. 1.7 Simplified mechanism for CO oxidation into CO2. 
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availability of sufficient sites for adsorption of –OH groups. The close proximity of the 

adsorbed CO and OH species increases the kinetics of the CO oxidation to CO2. The ethanol 

oxidation mechanism at binary alloys composed of Pt and a second metal (M) that can activate 

H2O at low potentials is described by equations 1.20 to 1.23; 

 

𝐶𝐻3𝐶𝐻2𝑂𝐻 → 𝑃𝑡 − 𝐶𝐻3𝐶𝐻2𝑂𝐻𝑎𝑑𝑠                                                 (1.20) 

𝑃𝑡 − 𝐶𝐻3𝑂𝐻𝑎𝑑𝑠 → 𝑃𝑡 − 𝐶𝑂𝑎𝑑𝑠 + 6 𝐻+ + 6 𝑒−                              (1.21) 

𝑀 + 𝐻2𝑂 → 𝑀 − 𝐻2𝑂𝑎𝑑𝑠                                                      (1.22) 

𝑃𝑡 − 𝐶𝑂𝑎𝑑𝑠 + 𝑀 − 𝑂𝐻𝑎𝑑𝑠 → 𝑃𝑡 +  𝑀 + 𝐶𝑂2 + 𝐻+ + 𝑒−                              (1.23) 

 As mentioned above, the bond between platinum and carbon monoxide is very strong, 

and, the strength of this interaction makes it difficult to oxidize carbon monoxide to CO2. The 

tenacity of Pt-CO can be explained by the molecular orbital theory of platinum (M) and 

carbon monoxide. As can be seen from Figure 1.8, a M-CO bond consists of two main 

components; 

 

 

  

 

 

 

Figure. 1.8 CO and M (Pt) molecular 

          orbital formation.97  
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First, a σ bonding interaction occurs due to overlap of a filled lone pair on the carbon 

atom with an empty Pt (M) orbital (dσ). This leads to electron density transfer from the CO 

molecule to the metal centre. Second, there is a π bonding interaction takes place due to 

overlap of filled platinum d orbitals with the 2π* antibonding molecular orbital of the CO 

molecule. As a result, Pt-CO becomes a stable intermediate and it is difficult to oxidize CO to 

CO2. However, introduction of secondary metal to platinum (Pt) alloys can cause weakening 

of the Pt-CO bond (ligand or electronic effect). In the Pt alloys, a modification of the empty 

electron density of Pt takes place, with a shift of the Fermi energy level with respect to the 

energy of the CO molecular orbital. 97 In such a situation the interaction of the Pt-CO bond 

loses its stabilizing effect.  Many research groups have studied the effect of Pt alloys on the 

EOR reactions. It has been reported that Pt-based catalysts that can enhance the kinetics of the 

EOR reaction.98,99  

 

1.4.4 Incomplete EOR 
 

Incomplete ethanol oxidation will produce many undesirable products that will decrease the 

efficiency of a DEFC. Quantification and measurement of these by-products have been studied 

by many research groups. For instance, differential mass spectroscopy (DEMS)92,100-101, in situ 

Fourier transform infra red spectroscopy (FTIRS)88,78,102, NMR spectroscopy103 and also some 

chromatography techniques100,104 have been used to determine the product distribution of the 

EOR reaction. Although some studies have been shown that acetic43 and acetaldehyde45-46 are 
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the main by-products of the EOR, formation of ethyl acetate105, methane106 and ethane106-107 

have been also reported. Moreover, ethane-1,1–diol105, ethoxyhydoxyethane105, and formic 

acid 105,108 have also been observed as minor products. 

         Complete oxidation of ethanol is a very complex reaction. Based on some reports,44, 104 it 

is suggested that the production of CO2 primarily results from an acetaldehyde intermediate 

(incomplete EOR) and only small amounts of CO2 are produced from the direct oxidation 

from ethanol (complete EOR).  

As mentioned earlier, the use of Pt alloys can significantly increase the performance of 

the cell. PtRu and PtSn have been shown to give the best performance and the best power 

density for EOR in DEFCs. However, it has also been shown that when Ru or Sn is introduced 

into the platinum structure, the selectivity towards CO2 is significantly decreased (in 

comparison to pure Pt)94. Beyhan et al.95 demonstrated that the introduction of Sn into a Pt 

electrode lowered both the yields of CO2 and acetaldehyde, while significantly increasing the 

acetic acid yield. This suggests that in order to adsorb dissociated ethanol on the surface and 

break the C-C bond, adjacent Pt sites are needed. When the C-C bond in ethanol is not 

cleaved, adsorbed acetaldehyde covers the surface and by the bifunctional mechanism, the Sn 

activates H2O forming OHads, and the acetaldehyde and OHads react to form acetic acid.89  

𝐻2𝑂 + 𝑆𝑛 → 𝑆𝑛(𝑂𝐻)𝑎𝑑𝑠 +  𝐻+ + 𝑒−                                        (1.24) 

𝑃𝑡(𝐶𝑂)𝑎𝑑𝑠 + 𝑆𝑛(𝑂𝐻)𝑎𝑑𝑠 → 𝑃𝑡 + 𝑆𝑛 + 𝐶𝑂2 +  𝐻+ + 𝑒−                                (1.25) 

𝑃𝑡(𝐶𝐻3𝐶𝐻𝑂)𝑎𝑑𝑠 + 𝑆𝑛(𝑂𝐻)𝑎𝑑𝑠 → 𝑃𝑡 + 𝑆𝑛 + 𝐶𝐻3𝐶𝑂𝑂𝐻 +  𝐻+ +  𝑒−                (1.26) 
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Neto et al101 reported the same effect on partial oxidation of ethanol by a PtRu alloy. 

They mentioned that although Ru can oxidize adsorbed species to carbon monoxide according 

to the bifunctional mechanism, the main effect is on the activity of the partial oxidation of 

ethanol to acetic acid.  

To bring this section to a proper end, it is important to note that the development of 

new anode catalysts is a very complicated procedure, as a balance between performance and 

selectivity is needed. As the performance of a catalyst is increased, it is generally found that 

the selectivity towards complete oxidation is decreased102, and vice versa. As Pt catalysts are 

typically the best for selectivity towards CO2, one of the objectives for improving catalyst 

technology is to increase the performance of the electrode while leaving the CO2 yield 

unchanged.    

1.4.5 Fuel Crossover 
 

Fuel crossover in the cell is a great challenge for the efficiency of DMFCs and DEFCs. 

Generally, fuel crossover (methanol and ethanol crossover) is the phenomenon whereby fuel 

permeates through the membrane from the anode to the cathode. Not only does crossover 

waste fuel, but the reaction between fuel and oxidant also forms products (undesirable 

products) that decrease current generation and cell efficiency.  

In this project, the crossover of methanol and ethanol in a DMFC and DEFC were 

studied. Due to the fact that the reactions that are involved in methanol crossover are simpler 

than those in ethanol crossover, the current section focuses only on methanol crossover.  
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As mentioned in the previous section, the Nafion membrane needs to be hydrated for 

proton conduction. During proton transport through the membrane, water molecules also move  

 

 

 

 

 

 

 

 

 

through the membrane, a process which is called “electro-osmotic drag”. Due to the high 

solubility of methanol in water, methanol molecules will crossover with water molecules in 

the membrane by electro-osmotic drag. However, electro-osmotic drag is not the only source 

of methanol crossover. At the anode side, when methanol is in contact with the membrane, 

methanol diffuses via the membrane to the cathode (due to the methanol concentration 

gradient between the anode and cathode).  Figure 1-9 depicts these two phenomena. 

There are several factors that can effect the crossover of methanol. It has been reported 

that the methanol crossover rate increases with increasing temperature.103 Also, the same trend 

occurs with increasing  methanol concentration.104, 109,110 Use of a thicker membrane is one 

solution to limit methanol crossover. It has been shown that increasing the membrane 

thickness and also use of membranes of higher equivalent weight (EW), decrease MeOH 

crossover.110 However, when the thickness of the membrane is increased, its resistance to 

Figure. 1.9 Methanol crossover in a DMFC. 
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proton transport become an issue. A thicker membranes cause high ohmic loss in the cell 

voltage and the efficiency of the FC declines. 

The structure of the membrane can also affect methanol crossover.111 Nafion is the 

most widely used membrane material in DMFCs. Generally, methanol crossover and proton 

permeability increase with an increase in the number of sulfonic groups in the membrane.110 

Therefore, finding membranes other than Nafion or the synthesis of other polymeric 

membranes is vital to overcoming methanol crossover in DMFCs. 

Methanol crossover in not the only type of crossover in DMFCs. Oxygen can also 

traverse from the cathode compartment to the anode side via the membrane. Oxygen crossover 

is a serious disadvantage for the efficiency of DMFCs. Oxygen solubility increases with 

elevation in the hydrophobicity of the membrane and also increases with the number of water 

molecules in the membrane.85 The effect of oxygen crossover in DMFCs or DEFC is beyond 

the scope of this project. 

 

1.5 Fuel Cell Performance 
 

To understand how a DEFC performs, it is important to review the basics of fuel cell 

thermodynamics and electrochemistry. Generally, in a power source system, the open circuit 

potential (OCP) describes the electrical output of the cell. To put it simply, the OCP is the 

potential difference in the cell when there is no current flow and it is one of the most important 

parameters when describing the behaviour of the cell. When the cell is operating under 

thermodynamically reversible conditions, the potential difference between electrodes is called 
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the “reversible cell potential” (Erev). However, in a fuel cell conditions, there are differences in 

the OCP and Erev. The Erev can be calculated from thermodynamic data under standard 

conditions: 

 ∆G0 = −1325 kJ mol -1  ; ∆H0 = -1366 kJ mol -1  

This gives the Erev at equilibrium:112 

𝐸𝑟𝑒𝑣 =
∆𝐺0

𝑛𝐹
=  

1325 × 103

12 ×96485
                                               (1.27) 

= E0
cathode – E0

anode = 1.144 V                                        (1.28) 

Where F = 96485 C is the Faraday constant and n = 12 is the number of electrons exchanged 

per molecules for complete oxidation of ethanol to carbon dioxide. From the Gibbs free 

energy (equation 1.27), the energy density (Eρ) of ethanol is; 

𝐸𝜌 =
∆𝐺0

3600 𝑀
                                                          (1.29) 

M is molar mass of methanol, 

 Eρ ≈ 8 kWh kg -1 

The theoretical energy efficiency of an ethanol fuel cell under standard conditions is defined 

as the ratio between the Gibbs free energy (∆𝐺0) and the enthalpy of combustion (∆H0); 

ɛrev = 
∆𝐺0

∆𝐻0 
                                                   (1.30) 

∆𝐺0 =  ∆𝐻0 − 𝑇∆𝑆0                                                         (1.31) 
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= 1 −  
𝑇∆𝑆0

∆𝐻0  = 
1325

1366
 = 0.97  

However, under experimental conditions not only does the energy efficiency drop 

dramatically, but the OCP also decreases (the OCP is always less than Erev in a fuel cell). 

These losses from the ideal value (Erev) are due to three main factors as illustrated in the 

schematic curve of cell potential (voltage) versus cell current of a DEFC shown in Figure 1.1 

 

 

 

 

Figure. 1.10 Schematic polarization curve for a DEFC. 
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As can be seen from this figure, the OCP is lower than the reversible cell potential (Erev 

= 1.14 V). This potential loss can be related to the mixed potential due to ethanol crossover. 

The first region of the polarization curve at high potentials is often called the activation 

polarization (ηact). The activation polarization is due to slow electron transfer (charge transfer) 

in the anodic and cathodic reactions. Indeed, during ethanol oxidation many undesirable 

intermediates and species are produced. These limit the rate of electron transfer between the 

solution and electrode. Therefore, the rate determining step is sluggish and an overpotential 

beyond the equilibrium potential is needed to overcome this step. The overpotential (ηact) that 

is required to drive anodic and/or cathodic reactions can be positive or negative. Here, the ηact 

> 0 for an anodic reaction (in this case, oxidation of ethanol), and the ηact< 0 for a cathodic 

reaction (in this case, reduction of oxygen). For a better understanding of ηact, it is good to 

introduce some electrochemical theory. 

The overpotential for oxidation of ethanol at the anode (ηact) can be described by the 

Tafel equation (e.g 1.32), 

ƞ𝑎𝑐𝑡 = 𝑏 ln(
𝑖

𝑖0
)                                                          (1.32) 

Where, i0 is the exchange current. Generally, the exchange current, is the current when the 

reaction is at equilibrium (E = Eeq) and it is equal to the anodic and cathodic currents (i0 = ia = 

ic). The i0 for a common redox system can range from 10-6 μA to 1 A. In the Tafel equation, 

the parameter b is,  

𝑏 =  
𝑅𝑇

𝑛𝛼𝐹
                                                                (1.33) 
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In this equation, R is the ideal gas constant, T is temperature in Kelvin, n is the number 

of electrons transferred the during electrochemical rate limiting step, F is the Faraday constant 

and 𝛼 is the charge transfer coefficient. The constant 𝛼 reflects the symmetry of the free 

energy curve for the electrochemical reaction. It varies from zero to unity (0<  𝛼 < 1). The 

theoretical current vs. overpotential curve for a generic electrochemical reaction (eq. 1.34) 

with α = 0.5 is shown, 

𝑂 + 𝑛𝑒− ↔ 𝑅                                                                (1.34) 

 

 

 

 

 

 

 

 

           

A plot of ƞact vs. log of i (equation 1.32 (the Tafel equation)), known as a Tafel plot, can give 

us important information about the kinetics of an electrochemical reaction. Examples are 

shown in Figure 1.12. 

 

Figure. 1.11 Theoretical current-potential curve for reaction 1.34, 

                     assuming α=0.5.113 

 



32 
 

 

 

 

The exchange current represents the rate of the forward reaction (e.g. oxidation of 

ethanol) equilibrium potential. Thus, faster electrochemical reactions have higher values of i0 

which leads to lower activation overpotentials (ƞact). It is important to note that in the case of 

DEFCs, sluggish electrochemical oxidation/reduction of ethanol and oxygen at the anode and 

cathode leads to very low exchange currents. Thus, high anodic and cathodic overpotentials 

are needed to drive these slow electrochemical reactions. This can be offset by raising the cell 

temperature or using more effective catalysts.35 

The second region in figure 1.10 is called ohmic polarization or ohmic loss. Ohmic 

loss is a common issue in all electronic devices. This loss is mainly due to the resistance to 

flow of current (electrons) and movement of protons (proton conduction) in the membrane. As 

Figure. 1.12 Tafel plots for fast and slow electrochemical 

                     reactions.114  
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can be seen from the figure, ohmic loss results in a linear relation between the current and 

potential of the cell. The magnitude the ohmic loss can be calculated from Ohm’s law 

(equation 1.39);113 

𝑉 = 𝑖𝑅                                                              (1.39) 

Where i is the current and R is the resistance of the cell. To reduce ohmic loss it is necessary 

to increase the conductivity of the electrodes, increase the conductivity of membrane, and/or 

to decrease the distance between the electrodes. 

The last region in the figure 1.10 is called concentration polarization. Here, the main 

reason for the loss of potential is slow mass transfer of reactants to the electrode surfaces. For 

a better understanding, it is preferable to simplify the discussion by focusing on the oxidation 

of ethanol at the anode. The electrochemical oxidation of ethanol occurs within the anode 

catalyst layer, and causes a concentration gradient of methanol within the porous carbon fiber 

paper backing layer. This stagnant thin layer is called the diffusion layer (Nernst diffusion 

layer) and is shown as δ in figure 1.13. The concentration of ethanol at the surface of the 

electrode (concentration of ethanol between the electrode surface and the diffusion layer) is 

shown as CEtOH(x=0), where x is the distance from the electrode surface). The concentration of 

ethanol in the bulk solution, beyond δ, is shown as Cbulk.  
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In electrochemistry, current can be calculated by, 

𝑖 = 𝑛 𝐹 𝐴 𝑓                                                            (1.40) 

Where A is the area of the electrode and f is the flux of molecules (ethanol molecules in this 

case). The flux (f) has the unit of mol cm-2 s-1. The flux can be calculated from equation 

1.41,110 

 

𝑓 =  𝐷
∆𝐶𝐸𝑡𝑂𝐻(𝑥)

𝛿
                                                             (1.41) 

Figure. 1.13 Schematic of the electrode reactions 
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Where, D is the diffusion coefficient with unit of cm-2 s-1 and  
∆𝐶𝐸𝑡𝑂𝐻(𝑥)

𝛿
 is the concentration 

gradient of ethanol at the distance x from the electrode. Now, with rearrangement of equations 

1.40 and 1.41, current will be given by equation 1.42, 

i 

𝑛𝐹𝐴
= 𝐷

∆𝐶𝐸𝑡𝑂𝐻(𝑥)

𝛿
                                              (1.42) 

Here,  

∆𝐶𝐸𝑡𝑂𝐻(𝑥) =  𝐶𝑏𝑢𝑙𝑘 −  𝐶𝐸𝑡𝑂𝐻(𝑥=0)                                       (1.43) 

When, the rate of electrochemical oxidation of ethanol is limited by the diffusion of ethanol to 

the anode, CEtOH(x=0) = 0 (or more accurately, CEtOH(x=0) << Cbulk) and  ∆𝐶𝐸𝑡𝑂𝐻(𝑥>𝛿) ≈

 𝐶𝑏𝑢𝑙𝑘. The current under this condition is called the limiting current, where,  

𝑖𝑙𝑖𝑚 = 𝑛𝐹𝐴𝑓𝐷 
𝐶𝑏𝑢𝑙𝑘

𝛿
                                                  (1.44) 

At the limiting current, the rate of ethanol mass transfer from the bulk solution to the electrode 

surface is at its maximum value. Therefore, increasing the overpotential can not increase the 

current beyond the limiting current value. 

1.6 Project goal 
 

The first objective of this project was to improve the efficiency of an ethanol electrolysis cell. 

This was achieved by the use of different types of potential waveforms (cyclic and linear 

sweep potentials). It is very important to find a suitable potential wave form to increase the 

oxidation of adsorbed carbon monoxide to carbon dioxide.  
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The second goal of this project was to improve the efficiency of a DEFC by using 

sinusoidal (AC) potential cycling conditions and elevated temperatures. It has been clearly 

shown that applying a sinusoidal potential waveform improves the cell efficiency and 

oxidation of carbon monoxide to carbon dioxide and can increase the cell efficiency. 

The third object of the project was to develop a simple and novel method to determine 

the average number of electrons transferred during electrochemical oxidation of ethanol, and 

any other fuel, in conventional fuel cell hardware. This method is based on the fact that fuel 

crossing the membrane can be quantitatively electrochemically oxidized at the anode when the 

fuel solution is supplied to the cathode. 

The final goal of this project was to validate the method for a real FC and for a cell 

operated in an anode polarization mode. To test the method in these modes, methanol was 

used as the fuel for all experiments. Furthermore, the model was extended to provide the 

average number of electron transferred at potential below the limiting current, and estimates of 

the crossover loss. 

 

 

 

 

 

 



37 
 

References 
 

1. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z, Wang H, Shen J. A review of 

    PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J Power 

    Sources 2007; 165:739-56. 

2. Jacobson M. Z, Colella W. G, Golden D. M. Cleaning the air and improving health with  

    hydrogen fuel-cell vehicles. Science 2005; 308:1901-5. 

3. Trimm D. L, Önsan Z. I. Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles.  

    Catalysis Reviews 2001; 43:31-84. 

4. Girishkumar G, Rettker M, Underhile R, Binz D, Vinodgopal K, McGinn P, Kamat P. 

    Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel 

    cells. Langmuir 2005; 21:8487-94. 

5. Wasmus S, Küver A. Methanol oxidation and direct methanol fuel cells: A selective review. 

     J Electroanal Chem 1999; 461:14-31. 

6. Schultz T, Zhou S, Sundmacher K. Current status of and recent developments in the direct 

    methanol fuel cell. Chem Eng Technol 2001; 24:1223-33. 

7. Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis 

    Today 1997; 38:445-57. 

8. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson D. P. A review of anode catalysis in  

    the direct methanol fuel cell. J Power Sources 2006; 155:95-110. 

9. Berg H, Libergreen A. Direct ethanol fuel cells. 2015. 

10. Lamy C, Rousseau S, Belgsir E, Coutanceau C, Léger J. Recent progress in the direct 

      ethanol fuel cell: Development of new platinum–tin electrocatalysts. Electrochim Acta 



38 
 

      2004; 49:3901-8. 

11. Rousseau S, Coutanceau C, Lamy C, Léger J. Direct ethanol fuel cell (DEFC): Electrical  

      performances and reaction products distribution under operating conditions with different 

      platinum-based anodes. J Power Sources 2006; 158:18-24. 

12. O'Hayre R. P, Cha S, Colella W, Prinz F. B. Fuel cell fundamentals. John Wiley & Sons 

      New York; 2006. 

13. Revankar S. T, Majumdar P. Fuel cells: Principles, design, and analysis. CRC Press; 2014. 

14. Pukrushpan J. T, Stefanopoulou A. G, Peng H. Control of fuel cell power systems: 

      Principle modeling, analysis and feedback design. Springer Science & Business Media; 

      2004. 

15. Prater K. The renaissance of the solid polymer fuel cell. J Power Sources 1990; 29:239-50. 

16. Li X, Fields L, Way G. Principles of fuel cells. Platinum Metals Rev 2006; 50:200-1. 

17. Dodds P. E, Staffell I, Hawkes A. D, Li F, Grünewald P, McDowall W, Ekins P. Hydrogen 

      and fuel cell technologies for heating: A review. Int J Hydrogen Energy 2015; 40:2065-83. 

18. Steele B. C, Heinzel A. Materials for fuel-cell technologies. Nature 2001; 414:345-52. 

19. Mauritz K. A, Moore R. B. State of understanding of nafion. Chem Rev 2004; 104:4535- 

      86. 

20. Tiwari R, Garcia E. The state of understanding of ionic polymer metal composite  

      architecture: A review. Smart Mater Struct 2011; 20:083001. 

21. Lamy C, Belgsir E, Leger J. Electrocatalytic oxidation of aliphatic alcohols: Application to 

      the direct alcohol fuel cell (DAFC). J Appl Electrochem 2001; 31:799-809. 

22. Johnston B, Mayo M. C, Khare A. Hydrogen: The energy source for the 21st century. 

      Technovation 2005; 25:569-85. 



39 
 

23. Hua T, Ahluwalia R, Eudy L, Singer G, Jermer B, Asselin-Miller N, Wessel S, Patterson 

     T, Marcinkoski J. Status of hydrogen fuel cell electric buses worldwide. J Power Sources 

      2014; 269:975-93. 

24. Simmons K, Guezennec Y, Onori S. Modeling and energy management control design for 

      a fuel cell hybrid passenger bus. J Power Sources 2014; 246:736-46. 

25. Livshits V, Peled E. Progress in the development of a high-power, direct ethylene glycol 

      fuel cell (DEGFC). J Power Sources 2006; 161:1187-91. 

26. Peled E, Livshits V, Duvdevani T. High-power direct ethylene glycol fuel cell (DEGFC) 

      based on nanoporous proton-conducting membrane (NP-PCM). J. Power Sources 

       2002; 106:245-8. 

27. Livshits V, Philosoph M, Peled E. Direct ethylene glycol fuel-cell stack—Study of 

      oxidation intermediate products. J Power Sources 2008; 178687-91. 

28. Kamarudin S. K, Achmad F, Daud W. R. W. Overview on the application of direct 

      methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrogen Energy 2009; 

      34:6902-16. 

29. Li X, Faghri A. Review and advances of direct methanol fuel cells (DMFCs) part I: 

      Design, fabrication, and testing with high concentration methanol solutions. J Power  

      Sources 2013; 226:223-40. 

30. Iwasita T. Electrocatalysis of methanol oxidation. Electrochim Acta 2002; 47:3663-74. 

31. Bouzek K, Mangold K, Jüttner K. Electrocatalytic activity of platinum modified 

      polypyrrole films for the methanol oxidation reaction. J Appl Electrochem 2001; 31:501-7. 

32. Haner A. N, Ross P. N. Electrochemical oxidation of methanol on tin-modified platinum 

      single-crystal surfaces. J Phys Chem 1991; 95:3740-6. 



40 
 

33. Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger J, Lamy C. In situ FTIRS study 

      of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium 

      bulk alloy electrodes. J Electroanal Chem 1998; 444:41-53. 

34. Laborde H, Leger J, Lamy C. Electrocatalytic oxidation of methanol and C1 molecules on  

      highly dispersed electrodes part 1: Platinum in polyaniline. J Appl Electrochem 1994; 

      24:219-26. 

35. Chrzanowski W, Wieckowski A. Surface structure effects in platinum/ruthenium methanol 

      oxidation electrocatalysis. Langmuir 1998; 14:1967-70. 

36. Gasteiger H. A, Markovic N, Ross Jr P. N, Cairns E. J. Methanol electrooxidation on well- 

      characterized platinum-ruthenium bulk alloys. J Phys Chem 1993; 97:12020-9. 

37. Cathro K. The oxidation of Water‐Soluble organic fuels using Platinum‐Tin catalysts. J  

      Electrochem Soc 1969; 116:1608-11. 

38. Katayama A. Electrooxidation of methanol on a platinum-tin oxide catalyst. J Phys Chem  

      1980; 84:376-81. 

39. De Souza J, Queiroz S, Bergamaski K, Gonzalez E, Nart F. Electro-oxidation of ethanol 

      on Pt, Rh, and Pt/Rh electrodes. A study using DEMS and in-situ FTIR techniques. The 

       Journal of Physical Chemistry B 2002;1 06:9825-30. 

40. Williams C. T, Takoudis C. G, Weaver M. J. Methanol oxidation on rhodium as probed by 

      surface-enhanced Raman and mass spectroscopies: Adsorbate stability, reactivity, and  

      catalytic relevance. The Journal of Physical Chemistry B 1998; 102:406-16. 

41. Kruse J. Methanol poisoning. Intensive Care Med 1992; 18:391-7. 

42. Antolini E. Catalysts for direct ethanol fuel cells. J Power Sources 2007; 170:1-12. 

43. Camara G, Iwasita T. Parallel pathways of ethanol oxidation: The effect of ethanol 



41 
 

      concentration. J Electroanal Chem 2005; 578:315-21. 

44. Wang H, Abruna H. D. Electrocatalysis of direct alcohol fuel cells: Quantitative DEMS 

      studies. In: Fuel cells and hydrogen storage. Springer; 2011. 

45. Guillén-Villafuerte O, García G, Arévalo M. C, Rodríguez JL, Pastor E. New insights on 

       the electrochemical oxidation of ethanol on carbon-supported Pt electrode by a novel  

      electrochemical mass spectrometry configuration. Electrochemistry Communications 

      2016; 63:48-51. 

46. Kirubakaran A, Jain S, Nema R. A review on fuel cell technologies and power electronic 

     interface. Renewable and Sustainable Energy Reviews 2009; 13:2430-40. 

47. Pichonat T, Gauthier-Manuel B. Recent developments in MEMS-based miniature fuel 

      cells. Microsystem Technologies 2007; 13:1671-8. 

48. Akhairi M, Kamarudin S. K. Catalysts in direct ethanol fuel cell (DEFC): An overview. Int 

      J Hydrogen Energy 2016; 41:4214-28. 

49. Wang X, Zhu F, He Y, Wang M, Zhang Z, Ma Z, Li R. Highly active carbon supported 

      ternary Pd.Sn.Ptx (x= 0.1–0.7) catalysts for ethanol electro-oxidation in alkaline and acid 

      media. J Colloid Interface Sci 2016; 468:200-10. 

50. Zignani S, Baglio V, Sebastián D, Siracusano S, Aricò A. Enhancing ethanol oxidation 

      rate at Pt.Ru electro-catalysts using metal-oxide additives. Electrochim Acta 2016; 

      191:183-91. 

51. Song S, Zhou W, Tian J, Cai R, Sun G, Xin Q, Kontou S, Tsiakaras P. Ethanol crossover 

      phenomena and its influence on the performance of DEFC. J Power Sources  

      2005; 145:266-71. 

52. Vigier F, Rousseau S, Coutanceau C, Leger J, Lamy C. Electrocatalysis for the direct 



42 
 

       alcohol fuel cell. Topics in Catalysis 2006; 40:111-21. 

53. Sopian K, Daud W. R. W. Challenges and future developments in proton exchange  

      membrane fuel cells. Renewable Energy 2006;31(5):719-27. 

54. Bi W, Gray G. E, Fuller T. F. PEM fuel cell Pt∕ C dissolution and deposition in Nafion 

      electrolyte. Electrochemical and Solid-State Letters 2007; 10:101-4. 

55. Nafion® membranes: Molecular diffusion, proton conductivity and proton conduction 

      mechanism. MRS proceedingsCambridge Univ Press; 1992. 

56. Curtin DE, Lousenberg R. D, Henry T. J, Tangeman P. C, Tisack ME. Advanced materials  

      for improved PEMFC performance and life. J Power Sources 2004; 131:41-8. 

57. Gamburzev S, Appleby A.J. Recent progress in performance improvement of the proton 

      exchange membrane fuel cell (PEMFC). J Power Sources 2002; 107:5-12. 

58. Bose S, Kuila T, Nguyen T. X. H, Kim N. H, Lau K, Lee J. H. Polymer membranes for 

      high temperature proton exchange membrane fuel cell: Recent advances and challenges. 

      Progress in Polymer Science 2011; 36:813-43. 

59. Agmon N. The grotthuss mechanism. Chemical Physics Letters 1995; 244:456-62. 

60. Cukierman S. Et tu, grotthuss! and other unfinished stories. Biochimica Et Biophysica 

      Acta (BBA)-Bioenergetics 2006; 1757:876-85. 

61. Sone Y, Ekdunge P, Simonsson D. Proton conductivity of nafion 117 as measured by a 

      four‐electrode AC impedance method. J Electrochem Soc 1996; 143:1254-9. 

62. Peckham T. J, Schmeisser J, Rodgers M, Holdcroft S. Main-chain, statistically sulfonated 

      proton exchange membranes: The relationships of acid concentration and proton mobility 

      to water content and their effect upon proton conductivity. Journal of Materials Chemistry  

      2007; 17:3255-68. 



43 
 

63. Kim Y. S, Dong L, Hickner M. A, Glass T. E, Webb V, McGrath J. E. State of water in 

      disulfonated poly (arylene ether sulfone) copolymers and a perfluorosulfonic acid 

      copolymer (nafion) and its effect on physical and electrochemical properties. 

      Macromolecules 2003; 36:6281-5. 

64. Paddison S. The modeling of molecular structure and ion transport in sulfonic acid based  

      ionomer membranes. Journal of New Materials for Electrochemical Systems 

      2001;4(4):197-208. 

65. Kreuer K. On the development of proton conducting polymer membranes for hydrogen  

      and methanol fuel cells. J Membr Sci 2001; 185:29-39. 

66. Kreuer K. On the development of proton conducting polymer membranes for hydrogen 

     and methanol fuel cells. J Membr Sci 2001; 185:29-39. 

67. Peighambardoust S, Rowshanzamir S, Amjadi M. Review of the proton exchange 

       membranes for fuel cell applications. Int J Hydrogen Energy 2010; 35:9349-84. 

68. Morris DR, Sun X. Water‐sorption and transport properties of Nafion 117 H. J Appl 

      Polym Sci 1993; 50:1445-52. 

69. Slade S, Campbell S, Ralph T, Walsh F. Ionic conductivity of an extruded Nafion 1100 

      EW series of membranes. J Electrochem Soc 2002; 149: A1556-64. 

70. Tsampas M, Pikos A, Brosda S, Katsaounis A, Vayenas C. The effect of membrane 

      thickness on the conductivity of Nafion. Electrochim Acta 2006; 51:2743-55. 

71. Thomas C, James B. D, Lomax F. D, Kuhn I. F. Fuel options for the fuel cell vehicle:  

      Hydrogen, methanol or gasoline? Int J Hydrogen Energy 2000; 25:551-67. 

72. Ross D. Hydrogen storage: The major technological barrier to the development of 

      hydrogen fuel cell cars. Vacuum 2006; 80:1084-9. 



44 
 

73. Ogden J. M, Steinbugler M. M, Kreutz T. G. A comparison of hydrogen, methanol and 

     gasoline as fuels for fuel cell vehicles: Implications for vehicle design and infrastructure  

     development. J Power Sources 1999; 79:143-68. 

74. Liu Z, Ling X. Y, Su X, Lee J. Y. Carbon-supported Pt and PtRu nanoparticles as catalysts  

     for a direct methanol fuel cell. The Journal of Physical Chemistry B 2004; 108:8234-40. 

75. Stalnionis G, Tamašauskaitė-Tamašiūnaitė L, Pautienienė V, Jusys Z. Modification of a Pt  

      surface by spontaneous Sn deposition for electrocatalytic applications, oxidation of CO, 

      formaldehyde, formic acid, and methanol. Journal of Solid State Electrochemistry  

      2004; 8:900-7. 

76. Zakaria Z, Kamarudin SK, Timmiati S. Membranes for direct ethanol fuel cells: An 

      overview. Appl Energy 2016; 163:334-42. 

77. Zhou W, Song S. Q, Li W. Z, Zhou Z. H, Sun G, Xin Q, Douvartzides S, Tsiakaras P. 

      Direct ethanol fuel cells based on PtSn anodes: The effect of sn content on the fuel cell 

      performance. J Power Sources 2005; 140:50-8. 

78. Vigier F, Coutanceau C, Hahn F, Belgsir E, Lamy C. On the mechanism of ethanol 

       electro-oxidation on Pt and PtSn catalysts: Electrochemical and in situ IR reflectance 

       spectroscopy studies. J Electroanal Chem 2004; 563:81-9. 

79. Lankiang S, Chiwata M, Baranton S, Uchida H, Coutanceau C. Oxygen reduction reaction 

      at binary and ternary nanocatalysts based on Pt, Pd and Au. Electrochim Acta 2015; 

      182:131-42. 

80. Deng Y, Wiberg GKH, Zana A, Arenz M. On the oxygen reduction reaction in phosphoric 

      acid electrolyte: Evidence of significantly increased inhibition at steady state conditions. 

      Electrochim Acta 2016; 204:78-83. 



45 
 

81. Marković N, Gasteiger H, Grgur B, Ross P. Oxygen reduction reaction on Pt (111): Effects 

      of bromide. J Electroanal Chem 1999; 467:157-63. 

82. Park J, Zhang L, Choi S, Roling L. T, Lu N, Herron J. A, Xie S, Wang J, Kim M. J,  

      Mavrikakis M. Atomic layer-by-layer deposition of platinum on palladium octahedra for  

      enhanced catalysts toward the oxygen reduction reaction. ACS Nano 2015; 9:2635-47. 

83. Yeo Y, Vattuone L, King D. Calorimetric heats for CO and oxygen adsorption and for the  

      catalytic CO oxidation reaction on Pt (111). J Chem Phys 1997; 106:392-401. 

84. Zhang J. PEM fuel cell electrocatalysts and catalyst layers: Fundamentals and applications.  

      Springer Science & Business Media; 2008. 

85. Hwang BJ, Kumar SMS, Chen C, Monalisa L, Cheng M, Liu D, Lee J. An investigation of 

      structure-catalytic activity relationship for Pt-Co/C bimetallic nanoparticles toward the 

      oxygen reduction reaction. The Journal of Physical Chemistry C 2007; 111:15267-76. 

86. Mukerjee S, Srinivasan S, Soriaga M. P, McBreen J. Effect of preparation conditions of Pt 

      alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction- 

      XRD, XAS, and electrochemical studies. J Phys Chem 1995; 99:4577-89. 

87. Stamenkovic V, Schmidt T, Ross P, Markovic N. Surface composition effects in  

      electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy 

      surfaces. The Journal of Physical Chemistry B 2002; 106:11970-9. 

88. Hitmi H, Belgsir E, Léger J, Lamy C, Lezna R. A kinetic analysis of the electro-oxidation 

      of ethanol at a platinum electrode in acid medium. Electrochim Acta 1994; 39:407-15. 

89. Wang Y, Zou S, Cai W. Recent advances on electro-oxidation of ethanol on Pt-and Pd 

      based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015; 5:1507 

       34. 



46 
 

90. Nonaka H, Matsumura Y. Electrochemical oxidation of carbon monoxide, methanol, 

      formic acid, ethanol, and acetic acid on a platinum electrode under hot aqueous conditions. 

      J Electroanal Chem 2002; 520:101-10. 

91. Antolini E. Catalysts for direct ethanol fuel cells. J Power Sources 2007; 170:1-12. 

92. Fujiwara N, Friedrich K, Stimming U. Ethanol oxidation on PtRu electrodes studied by 

      differential electrochemical mass spectrometry. J Electroanal Chem 1999; 472:120-5. 

93. Ma Y, Wang H, Ji S, Linkov V, Wang R. PtSn/C catalysts for ethanol oxidation: The 

      effect of stabilizers on the morphology and particle distribution. J Power Sources 2014; 

       247:142-50. 

94. Vigier F, Coutanceau C, Hahn F, Belgsir E, Lamy C. On the mechanism of ethanol 

      electro-oxidation on Pt and PtSn catalysts: Electrochemical and in situ IR reflectance 

      spectroscopy studies. J Electroanal Chem 2004; 563:81-9. 

95. Beyhan S, Léger J, Kadırgan F. Understanding the influence of Ni, Co, Rh and Pd addition 

      to PtSn/C catalyst for the oxidation of ethanol by in situ Fourier transform infrared  

      spectroscopy.  Applied Catalysis B: Environmental 2014; 144:66-74. 

96. Cantane D, Ambrosio W, Chatenet M, Lima, Fabio Henrique Barros de. Electro-oxidation 

      of ethanol on Pt/C, Rh/C, and Pt/Rh/C-based electrocatalysis investigated by on-line 

       DEMS. J Electroanal Chem 2012; 681:56-65. 

97. Wong YT, Hoffmann R. Chemisorption of carbon monoxide on three metal surfaces: 

Nickel (111), palladium (111), and platinum (111): A comparative study. J Phys Chem  

      1991; 95:859-67. 

98. Brouzgou A, Podias A, Tsiakaras P. PEMFCs and AEMFCs directly fed with ethanol: A 

      current status comparative review. J Appl Electrochem 2013; 43:119-36. 



47 
 

99. Xu Y, Zhang B. Recent advances in porous Pt-based nanostructures: Synthesis and  

      electrochemical applications. Chem Soc Rev 2014; 43:2439-50. 

100. Pereira M Jimenez M, Elizalde M, Robledo A, Alonso A, Study of the electrooxidation of 

       ethanol on hydrophobic electrodes by DEMS and HPLC, Electrochimica Acta 2004; 

       49:3917–3925. 

101. Neto A, Giz M, Perez J, Ticianelli E, Gonzalez E, The electro-oxidation of 

       ethanol on Pt/Ru and Pt/Mo particles supported on high-surface-area carbon, Journal of 

       the Electrochemical Society 2002; 109:272–279. 

102. Dos Anjos A, Hahn F, Leger J, Kokoh K. B, Tremiliosi G,Feliu J,Herrero E, Waszczuk P, 

        Crown A, Mitrovski K, Wieckowski A, In situ FTIRS studies of the electrocatalytic  

        oxidation of ethanol on Pt alloy electrodes, Journal of Solid State Electrochemistry 2007; 

        11: 58-64.   

103. Altawraneh R, Pickup P. G, Journal of Electrochemical Society 2017; 164:861-865. 

104. Rousseau S, Coutanceau C, Lamy C, Léger J. Direct ethanol fuel cell (DEFC): Electrical 

        performances and reaction products distribution under operating conditions with different  

        platinum-based anodes. J Power Sources 2006; 158:18-24 

105. Kim I, Han O. H, Chae S, Paik Y, Kwon S.H, Lee K, Sung Y. E, H. Kim, Catalytic 

        reaction in direct ethanol fuel cell, Chem. Int. Ed. Engl. 2011; 50:2270-2274. 

106. Wang H, Jusys W, Behm R. J, Ethanol electrooxidation on carbon-supported Pt, Pt/Ru 

        and Pt/Sn3, J. Power Sources 2006; 154: 351-359. 

107. Taneda K, Yamazaki Y, Study of direct ethanol fuel cell Electrochim. Acta 2006; 52: 

        1627-1631. 

108. Simoes F. C, Dos Anjos D. M, Vigier F, Leger J.M, Hahn F, Coutanceau C, Gonzalez 



48 
 

         E.R, Tremiliosi G, de Andrade A, Olivi P, Kokoh P, Electroactivity of tin modified 

         platinum electrodes for ethanol electrooxidation J. Power Sources 2007; 167:1-5 

109. Liu J, Zhao T, Chen R, Wong C. The effect of methanol concentration on the 

       performance of a passive DMFC. Electrochemistry Communications 2005;7: 288-94. 

110. Scott K, Taama W, Argyropoulos P, Sundmacher K. The impact of mass transport and 

       methanol crossover on the direct methanol fuel cell. J Power Sources 1999; 83:204-16. 

111. Luan Y, Zhang H, Zhang Y, Li L, Li H, Liu Y. Study on structural evolution of  

       perfluorosulfonic ionomer from concentrated DMF-based solution to membranes.  

       Membr Sci 2008; 319:91-101. 

112. Guenot B, Cretin M, Lamy C. Clean hydrogen generation from the electrocatalytic 

        oxidation of methanol inside a proton exchange membrane electrolysis cell (PEMEC): 

        Effect of methanol concentration and working temperature. J Appl Electrochem  

       2015; 45:973-81. 

113. Rayment C, Sherwin S. Introduction to fuel cell technology. Department of Aerospace 

and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 2003; 

46556:11-2. 

114. Wang J. Electrochemical glucose biosensors. Chem Rev 2008; 108:814-25. 

  

 

 

 



49 
 

 

 

 

 

CHAPTER 2 

Experimental 
 

 

 

 

 

 

 

 

 

 



50 
 

2.1. Chemicals and Materials 
 

Chemicals used include: anhydrous ethanol (Commercial Alcohols Inc.), methanol (Fisher 

Scientific), sodium hydroxide (Sigma-Aldrich), formaldehyde (Fisher-Aldrich), formic Acid, 

hydrochloric acid (Sigma-Aldrich), sodium citrate (Anachemia), sodium nitroprusside (Sigma-

Aldrich), potassium ferricyanide (Fisher Scientific), and Nafion® solution (5% Dupont) 

Industrial grade nitrogen, oxygen and 5% H2/N2 from Air Liquide were used in fuel cell 

experiments. CO2 (Air Liquide) was used in detector calibration. 

The cell that in all of the experiments reported in this work was a 5 cm2 single cell fuel 

cell from Fuel Cell Technology Inc. Nafion® 115 and 117 membranes were the only PEMs 

used in this work. All homemade electrodes used TorayTM (0.26 mm) carbon fiber paper 

(CFP). Commercial Pt anodes and cathodes (4 mg cm-2 loading of Pt black on TorayTM CFP) 

that were used in many of the experiments were donated by Ballard Power Systems. 

2.2 Preparation of electrodes and Nafion membranes 
 

Homemade electrodes described in this work were prepared using literature methods.1,2A 

catalyst ink was prepared by first dispersing the catalyst in sufficient 5% Nafion® solution 

(Aldrich) and the resulting mixture was sonicated for ca. 30 min. The ink was then well 

dispersed over a 5 cm2 piece of CFP (TorayTM). The catalyst was then allowed to dry 

overnight in a fumehood. 

For low or room temperature (RT) experiments, MEAs were prepared by hot-pressing 

the electrodes and a Nafion® 115 membrane together at a temperature of 135 °C for 90 

seconds at a pressure of 200 kg cm-2 using a Carver laboratory press. 
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2.3. Electrochemical Measurements 
 

Electrochemical measurements were carried out with a Hokuto Denko HA-301 potentiostat 

with sinusoidal voltage in chapter 4 generated by a Solatron 1250 frequency response 

analyzer.  

 

Figure 2.1. Illustration of the three modes of cell operation used in this work. 

  The cell was operated as an electrolysis cell and a fuel cell (Fig. 2.1).  When the cell 

was in electrolysis mode (crossover mode (2.1 A)3 or anode polarization mode (2.1 B)4) 

oxidation of fuel (methanol or ethanol) took place at the anode (positive potential applied 

relative to the cathode). At the cathode, reduction of protons to hydrogen took place. In both 

electrolysis modes, the cathode acts as a dynamic hydrogen electrode (DHE)3. According to 

Ren and Gottesfeld3, at currents below 100 mA, the potential of the cathode would be less than 

2 mV lower than RHE. To study the effect of crossover of fuel, the cell was operated in fuel 

cell mode (2.1 C). In this mode, electrochemical oxidation of fuel took place at the anode 

while at the cathode, oxygen was reduced to water. It is important to note that errors resulting 

from the IR drop of the cell (R=0.05 Ω) had an insignificant effect on the applied potential. 
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2.4. CO2 Analysis Instrumentation 
 

2.4.1. Nondispersive Infrared (NDIR) Carbon Dioxide Detector5-7 

 

All of the CO2 measurements reported in this work were carried out using a commercial 

Telaire 7001 CO2 detector. The detector uses a dual beam absorption infrared method with a 

gas flow-through inlet. It consists of an IR source which delivers light through a tube of air 

(Figure 2.1). The detector uses an optical filter which eliminates all wavelengths of light 

except for those absorbed by CO2. When the tube is flushed with N2, none of IR waves are 

absorbed and all of the light is detected at the far end of the tube. Once CO2 is introduced into 

the detector, the IR waves are absorbed by the CO2, leading to a decrease in light detected. 

The difference in IR light detected (CO2/N2 to N2) is used to determine the concentration of 

CO2 present in the detector. Beer’s law represents the correlation between the analyzed 

concentration and intensity of light by the following:                                                       

                                                                         
𝐼

𝐼0
= 𝑒𝑘𝐶                                                                (2.1) 

where 𝐼 is the intensity of the light striking the detector, 𝐼0 is the measured intensity of the 

light in the empty gas chamber, 𝑘 is a system dependent constant and 𝐶 is the  
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Figure 2.2 Gas chamber tube of a NDIR CO2 monitor consisting of an IR lamp, optical filter     

and IR detector. 

 

concentration of the gas to be measured. CO2 calibration gasses are use to obtain 𝑘 for the 

device. Logger Pro3 software was used for recording CO2 detector signals. 

2.5 Methanol analysis 
 

The concentration of methanol in the cell exhaust was measured by UV-Visible spectroscopy. 

Methanol concentration was determined according to Zhan et al.8 According to their method, 

ionization of methanol to methoxy anions can occur in an alkaline solution, as shown in 

equation 2.2. 

 

𝐶𝐻3𝑂𝐻 + 𝑂𝐻− ⇄ 𝐶𝐻3𝑂− +  𝐻2𝑂                                                          (2.2)                                              

 

IR lamp

Gas inlet Gas outlet

Optical filter

IR detector
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Then due to exchange between  𝐶𝐻3𝑂− and the OH- adduct ([𝐹𝑒(𝐶𝑁)5𝑁𝑂2𝐻)]3−) of sodium 

nitroprusside ([FeⅢ(CN)5NO])2- , ([𝐹𝑒(𝐶𝑁)5𝑁𝑂2𝐶𝐻3])3− can be formed according equation 

2.3. 

 

𝐶𝐻3𝑂− + [𝐹𝑒(𝐶𝑁)5𝑁𝑂2𝐻)]3− →  [𝐹𝑒(𝐶𝑁)5𝑁𝑂2𝐶𝐻3]3− + 𝑂𝐻−                    (2.3) 

 

The concentration of [𝐹𝑒(𝐶𝑁)5𝑁𝑂2𝐶𝐻3]3− can be determined by UV-Visible 

spectroscopy.  An Agilent Technologies Cary 100 UV-Vis Spectrophotometer was used for 

measurement of methanol concentration.  

         UV-Visible spectroscopy is an analytical technique for measurement of chemical 

compounds by absorption of electromagnetic radiation. UV-Visible spectroscopy is based on 

measurement of the transmittance of the light beam when an electromagnetic light beam 

passes through a solution that contains analyte.  
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3.1 Introduction  

  
With the heavy demand for sustainable fuel sources instead of fossil fuels, fuel cells 

employing alcohols are becoming very attractive.1-7 In comparison to methanol, ethanol has 

important advantages but also presents much more difficult challenges. First and foremost, 

there is already a well-developed infrastructure for renewable production of ethanol, and it is 

less toxic than methanol. Furthermore, the energy density of ethanol (8.0 kWh kg-1) is greater 

than that of methanol (6.0 kWh kg-1) and closer to the energy density of gasoline (10 kWh kg-

1). Consequently, there is rapidly growing development of direct ethanol fuel cells (DEFCs) 

based on proton exchange membrane technology.5-8 

The main challenge in the development of DEFCs is that their efficiencies are very low 

relative to the theoretical value of 97%,3 and relative to efficiencies that can be achieved with 

hydrogen, methanol, and formic acid. The overall energy efficiency of a DEFC is determined 

by its electrochemical efficiency (theoretical efficiency x cell potential/reversible cell 

potential), the ethanol oxidation efficiency (i.e. the average number of electrons passed per 

molecule (nav) relative to the maximum available (nmax = 12 for ethanol)), and the loss of 

ethanol to crossover.9 The complete oxidation of ethanol involves the transfer of 12 electrons 

(eq. 3.1), while incomplete oxidation of ethanol to acetaldehyde (n = 2; eq. 3.2) or acetic acid 

(n = 4; eq. 3.3) will reduce the efficiency of the fuel cell considerably.     

CH3CH2OH + 3 H2O → 2 CO2 + 12 e- + 12 H+                         (3.1) 

CH3CH2OH → CH3CHO + 2 e- + 2 H+                                     (3.2) 

  CH3CH2OH + H2O  → CH3CO2H + 4 e- + 4 H+                      (3.3)    
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 The electrochemical efficiency (voltage efficiency) is determined by the cell voltage, 

and so is strongly influenced by the activity of the anode catalyst. Much effort has therefore 

been applied to understanding the mechanism of the anodic oxidation of ethanol,8,10-14 and the 

development of more active electrocatalysts.8,15 PtRu, PtSn, PtRuSn, and PtRuRh based 

catalysts have been found to be particularly active and many other combinations of Pt with 

other metals and oxides have shown high activity.15 One of the key issues limiting the 

performance of the anode catalyst during ethanol oxidation is poisoning of the anode by 

strongly adsorbed CO and other intermediates (collectively referred to as COads herein) on the 

catalyst surface. Thus, to increase the efficiency and performance of DEFCs, the formation of 

COads should be inhibited and/or the catalyst should efficiently oxidize COads to CO2.  

 The ethanol oxidation efficiency (chemical efficiency; nav/12) depends on the 

completeness of the ethanol oxidation reaction, and is determined by the weighted average 

yields (%product) of all of the products. If it is assumed that CH3CHO, CH3CO2H, and CO2 are 

the only products, nav is given by eq. 3.4 (note that one molecule of ethanol produces two 

molecules of CO2). 

   nav = (2x%CH3CHO + 4x%CH3CO2H + 6x%CO2)/(%CH3CHO+%CH3CO2H+%CO2/2) (3.4) 

It is clear from this relationship that chemical efficiency can be greatly increased by 

increasing the yield of CO2. This has been achieved mainly by increasing the operating 

temperature of the cell,16-22 which promotes cleavage of the C-C bond and has the added 

benefit of increasing the activity of the catalyst (increased voltage efficiency). However, 

operation of PEM type DEFCs is limited to ca. 90 °C by the durability of the membrane and 

boiling point of ethanol. 
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 Previously, we have shown that the yield of CO2 produced from ethanol oxidation can 

be greatly increased by pulsing the potential or current at the anode in order to promote the 

oxidation of adsorbed intermediates at a high potential and allow ethanol to adsorb and 

dissociate at a lower potential.23 Ethanol vapor in a nitrogen stream was used as the fuel in 

order to achieve a rapid response in the analysis of CO2 using a flow through non-dispersive 

infrared (NDIR) CO2 detector. That work has been extended here to conditions more 

representative of a DEFC. Thus an aqueous ethanol solution (0.1 M) was fed to the anode, the 

cell was operated at temperatures up to 80 oC, and Pt and PtRu anode catalysts were 

compared. However, nitrogen was used at the cathode, rather than air, so that the anode 

potential could be more accurately controlled and CO2 was not produced by the chemical 

reaction of ethanol with O2 either at the cathode24 or anode.25 Under these conditions, the 

cathode acts as a dynamic hydrogen pseudo reference electrode (DHE). A previously reported 

experimental set-up24 was modified as illustrated in Fig 3.1. The CO2 concentration in the 

combined anode and cathode exhausts was monitored so that the results were not impacted by 

crossover losses. 24-26 
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Figure 3.1. Schematic diagram of the electrolysis cell and CO2 analysis system. 

 Potential cycling at a fixed sweep rate was employed here, rather than current or 

voltage pulses or AC perturbations, because this is a standard and widely used 

electroanalytical method. This provides more useful diagnostic information and allows 

comparisons with the extensive literature on ethanol voltammetry. The cell was operated with 

a dynamic hydrogen cathode (DHE) to provide a stable reference potential for the 

voltammetric (current vs. potential) measurements. The potential cycling results are compared 

with sweep and hold experiments in which a linear potential sweep was applied, and then the 

potential was held at the upper limit for the rest of the experiment. This mimics the initial 

forward scan in the corresponding cycling experiments, avoids the large current spike that 

accompanies a potential step, and represents constant potential behavior after the 30-80 s for 

the initial sweep.   

 The primary goals of this work were to determine whether the previously demonstrated 

strategy of adsorbing ethanol at low potentials and oxidatively stripping adsorbed 
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intermediates (primarily CO) at higher potentials would be effective at higher temperatures 

and with a PtRu anode catalyst, and to begin to explore how the efficiency of CO2 production 

depends on the potentials employed. From a practical perspective, this knowledge could be 

used to improve the efficiency of DEFCs and ethanol electrolysis cells (EEC) which have 

recently been reported for producing clean hydrogen from ethanol.27 Although, our 

experimental configuration is essentially an EEC, since H2 is produced at the cathode, the 

dependence of CO2 yields on anode potentials, temperature and catalyst should also provide a 

good guide to the behavior of a DEFC. Pulsed current, triangle, sawtooth, trapezoidal, and AC 

waveforms have been reported to prolonging the run time and life cycle of batteries.28 Also,  

pulsing has been used to improve the performance of methanol fuel cells29 and CO tolerance 

of hydrogen fuel cells,30 and to decouple the parallel routes for the electrochemical oxidation 

of methanol.30 Similar studies with DEFCs and EECs are therefore very pertinent.  

3.2 Experimental 
 

3.2.1 Chemicals and materials 
 

Anhydrous ethanol (Commercial Alcohols Inc.) was used as received and double distilled 

water was used throughout all experiments. Cathodes and Pt anodes consisted of 4 mg cm-2 Pt 

black on TorayTM carbon fiber paper. PtRu anodes consisted of 5.5 mg cm-2 PtRu black on 

TorayTM carbon fiber paper. NafionTM 115 membranes (Ion Power) were cleaned at 80 °C in 

3% H2O2(aq) and 1 M H2SO4(aq), rinsed with water, and stored in water. 
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3.2.2 The cell  
 

A 5 cm2 commercial fuel cell (Fuel Cell Technology Inc.) was used. The anode inlet and outlet 

were both modified to prevent the ethanol solution from contacting any metal parts of the 

hardware. Membrane and electrode assemblies were prepared by pressing a 5 cm2 anode and a 

5 cm2 cathode onto a NafionTM 115 membrane in the cell. The cell was operated with an anode 

feed of 0.10 mol L-1 ethanol solution at 0.69 mL min-1. The cathode feed was N2 at typically 

ca. 0.8 mL s-1. The cell was operated with a Hokuto Denko HA-301 potentiostat and HB-104 

function generator. 

3.2.3 CO2 analysis  
 

Both the anode solution and the cathode gas (N2) were passed into a 125 mL flask to collect 

the liquid. The N2 stream exiting the flask was passed through a Telaire 7001 non-dispersive 

infrared CO2 detector. The quantity of CO2 detected over a specified period was calculated 

from the integral of the CO2 concentration (ppm) readings (moles CO2 = ∫(ppmCO2∙ṅ/106)dt, 

where ṅ is the N2 flow rate in mol s-1. The flow rate of N2 reaching the detector was measured 

for each set of experiments and was typically ca. 0.8 mL s-1 (~3x10-5 mol s-1). No corrections 

were made for the amount of CO2 remaining in the liquid in the collection flask because based 

on Henry’s Law they would be too small (ca. 2% or lower) to significantly influence the 

estimated CO2 yields. However, CO2 retention does contribute to the slow response seen in the 

CO2 concentration plots (see below).    
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 The CO2 detector was calibrated daily using CO2 in N2 standards prepared by injecting 

pure CO2 in to an N2 stream. The precision and accuracy of the system has been evaluated in a 

previous study, with relative standard deviations typically 5-10% at the CO2 concentrations 

measured in this work.26 The start times of the CO2 traces reported here have been corrected 

for the minimum time required for the CO2 to reach the detector. This causes the CO2 

collection time to be 50-100 s shorter than the cell run time. 

3.3 Results and discussion 
 

3.3.1 Potential cycling vs. fixed potential at ambient temperature 
 

Figs. 3.2 and 3.3 illustrate how the current and production of CO2 varied for two different 

potential waveforms, linear sweep with the potential held at the upper limit of 0.9 V, and 

potential cycling between 0.1 and 0.9 V. In both cases, the cell was operated for a total of 30 

min. The sharp initial rise in the current in both experiments can be attributed mainly to the 

oxidation of adsorbed ethanol and partially oxidized intermediates (pre-adsorbed species).31 

Since adsorbed CO is the primary intermediate, and the direct precursor to CO2, all of the pre-

adsorbed species are collectively referred to as COads in this paper.  

In the sweep and hold experiment, the current began to decay when the potential was 

held at 0.9 V, and reached an approximately steady value. In contrast, the current continued to 

be modulated in the potential cycling experiment, with the current decreasing during the 

reverse scans (0.9 to 0.1 V) and increasing on the forward scans (0.1 to 0.9 V). Apart from 

short periods at the end of each cycle due to discharging of the double layer (and possibly a 

small amount of methane production17), the current remained positive (oxidation of ethanol at 
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the anode). The amplitude of the current response initially decreased with cycling, but then 

became reasonably steady. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Current vs. time plots for electrolysis of 0.1 M ethanol at ambient temperature at Pt 

black anode using a linear potential sweep from 0.1 V vs. DHE with a potential hold at the 

upper limit of 0.9 V (dashed), and potential cycling between 0.1 and 0.9 V (solid). Sweep rate 

= 10 mV s-1. 

 

As previously reported,23 the initial potential scan to 0.9 V produced a burst of CO2 

that can be attributed mainly to the oxidation of pre-adsorbed species (COads). In the sweep 



66 
 

and hold experiment, there was only transient CO2 production, while cycling the potential 

continuously between 0.1 V and 0.9 V resulted in sustained CO2 production. As previously 

reported for pulsed operation of a cell,23 the sustained CO2 production in the potential cycling 

experiment can be attributed to the formation of a new layer of COads at the lower potentials of 

each potential scan. 

 Analysis of the transient CO2 response for the sweep and hold experiment provides 

important information on the response time of the CO2 analysis system and the amount of 

COads. Previous work with ethanol vapor indicated that the oxidation of COads is much faster 

than the timescale in Fig. 3.3, as would be expected at 0.9 V. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. CO2 concentration vs. time plots for the electrolyses shown in Fig. 2. Data for 

                    sweep and hold (dotted) and potential cycling (solid) are shown. Lower potential =  

                    0.1 V; Upper potential = 0.9 V. 
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The breadth of the transient CO2 response in Figure 3.3 for the sweep and hold 

experiment can therefore be taken as representative of the signal broadening due to the flow 

and collection system used here to transfer the CO2 produced by the cell from the liquid 

EtOH(aq) exhaust to the N2 stream for analysis. Much faster responses can be achieved (e.g. 

20 s),23 but the system here was designed to allow for long-term, high temperature operation 

of the cell with liquid EtOH(aq) rather than for a fast response.    

  Since the CO2 reading dropped to zero in the sweep and hold experiment, it is a 

reasonable approximation to assume that most of the CO2 produced in this experiment was due 

to the oxidation of COads, and not from oxidation of ethanol diffusing to the electrode from the 

anode solution. Integration of this CO2 transient provides the number of moles of CO2 

produced, 3.8 µmol, with should be a reasonable estimate of the number of moles of COads 

(stripping of pure CO adsorbed on the type of anode used here produced ca. 6.2 µmol of CO2, 

corresponding to an active Pt area of ca. 2500 cm2). 

The potential cycling experiment shown in Fig. 3.3 produced 11.3 µmol of CO2. Of 

this, ca. 4 µmol would have been due to COads, as in the sweep and hold experiment, leaving > 

7 µmol due to sustained ethanol oxidation. Since there may have also been some oxidation of 

ethanol from solution in the sweep and hold experiment, this is taken to represent a lower limit 

on the ethanol oxidized during the cycling experiment.  

The important distinction that we are making here is between the oxidation of species 

already adsorbed on the electrode surface before the start of the experiment (i.e. COads) and the 

oxidation of ethanol that diffuses to the electrode (from the solution) during the experiment. 

We have done this by showing that CO2 production at constant potential is dominated by the 
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former. This has very important implications in the determination of faradaic yields for 

ethanol oxidation, and the result at constant potential allows us to make a correction to account 

for the effects of the pre-adsorbed species.  

Of central importance in the development of DEFC technology is the faradaic yield for 

CO2 production (CO2 yield), which is defined by eq. 3.5. 

CO2 yield = 6FmolCO2/Q                                              (3.5) 

Here, molCO2 is the measured moles of CO2 and Q is the charge passed by the cell. Application 

of this equation to the data from Figs. 3.2 and 3.3 produces apparent CO2 yields of 6.1% and 

21.6%, for the sweep and hold and potential cycling experiments, respectively. These are 

“apparent” yields because it is clear that much of the CO2 is derived from COads rather than 

ethanol from the solution, and so eq. 3.5 is inaccurate in this situation. If all of the CO2 was 

from COads in the sweep and hold experiment, the actual CO2 yield from ethanol would have 

been zero.  

To obtain more accurate yields of CO2 for the potential cycling experiment, corrections 

should be made to account for both the CO2 produced from COads (molads) and the charge 

required to oxidize the COads to CO2, as shown in eq. 3.6. 

CO2 yield = 6F(molCO2 – molads)/(Q – nFmolads)                             (3.6) 

Here, n is the average number of electrons required to produce CO2 from the adsorbed species. 

It can range from 2 for adsorbed CO to 6 for adsorbed ethanol. The amount of CO2 produced 

in the sweep and hold experiment is assumed to provide a reasonable estimate of molads. Since 

the value of n is unknown, we report here the values for the two extremes, which are 14.7% 
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for n = 2 and 15.5% for n = 6. These are average values for the whole 30 min experiment 

depicted in Figs. 2 and 3. However, it is clear from the comparison of the sweep and hold and 

cycling CO2 profiles that the yield of CO2 must have increased substantially over the first half 

of the cycling experiment. From an operational perspective, the sustained higher yield in the 

2nd half of the experiment is more relevant. This can easily be estimated by applying eq. 3.5 to 

the region of approximately steady state CO2 production after ca. 900 s, where the effects of 

the transient CO2 from COads would have been minor. The CO2 yield was thus calculated to be 

26.5%, which should be a good estimate of the sustained production of CO2 from ethanol 

being fed to the cell. 

 In considering which of the above methods is most appropriate for calculation of CO2 

yields, we must consider the origin of the adsorbates. When ethanol is introduced into the cell, 

it will spontaneously adsorb onto the Pt anode catalyst and there will be some electron transfer 

to the Pt as C-H and C-C bonds are oxidized. A first step is illustrated by eq. 7. 

Pt + CH3CH2OH → Pt–OCH2CH3 + e- + H+                       (3.7) 

This reaction and parallel/subsequent oxidation steps will cause the anode open circuit 

potential to decrease and produce a variety of adsorbates in various oxidation states.31 In 

addition, traces of oxygen in the system will contribute to the oxidation of the adsorbates 

without changing the anode potential. Since these processes result in partial oxidation of a 

substantial amount of ethanol without any charge being passed by the cell, including products 

from the adsorbates in the calculations of yields will produce large errors. These would be 

extremely difficult to accurately correct for, and so the most accurate approach is to apply eq. 
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3.5 (and similar equations for other products) to data (charges and product amounts) collected 

after the products from the adorbates have been flushed from the analysis system. 

 These results and considerations illustrate the complexities of trying to define and 

measure product yields from ethanol oxidation. Even with product collection over a 30 min 

period, the effects of pre-adsorbed intermediates are large, and many hours could be required 

to produce acceptable accuracy in some cases. The error can be minimized, however, by 

beginning product collection after a delay to avoid the collection of products from adsorbed 

species. An alternative method would be to carry out a pre-conditioning to remove (oxidize) 

the adsorbates. However, we have found this to be unsatisfactory because a fresh layer of 

adorbates form when the cell is returned to the initial potential, or the anode is allowed to 

return to its open circuit potential. The charged passed during these processes would then have 

to be accounted for in determining the true CO2 yield. 

3.3.2 Effects of potential limits at ambient temperature 
 

For most efficient operation of a DEFC, in addition to high levels of conversion of ethanol to 

CO2, the cell potential should be as high as possible at the power output required for the 

application. In the experiments described here, the cell potential is the anode potential vs. 

DHE. Therefore low cell potentials in this work would correspond to high efficiencies in a fuel 

cell and also in an ethanol electrolysis cell (EEC) producing hydrogen at the cathode.27 

 The results in Fig. 3.3 show that CO2 yields can be increased greatly and sustained by 

potential cycling, and this increases the chemical efficiency of the cell. In order to optimize 

the operation of either a DEFC or EEC, maximization of the yield of CO2 should be balanced 
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against minimizing the average anode potential and maximizing the power output of the cell 

(which increases with increasing anode potential to a certain point). To this end, experiments 

were run in potential cycling mode with various upper and lower limits (i.e. various average 

anode potentials and average power usage) to explore how the CO2 yield depends on the 

voltage efficiency and power. The potential sweep rate was maintained at 10 mV s-1 for these 

experiments. Since long term performances are of interest here, CO2 yields were determined 

by applying eq. 5 to just the final 800 s of each experiment, although other parameters are 

reported for averages (current and power) or integrals (total CO2) over the full duration of 

each experiment. 

Table 3.1 summarizes results for a series of experiments in which the lower potential 

limit was set at 0.1 V while the upper limit was varied from 0.6 V to 0.9 V. The power can 

only be calculated for an EEC, since the cell was not operated as a fuel cell. 
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Table 3.1. Summary of data for the electrolysis of 0.1 M ethanol at ambient temperature at a Pt 

                  black anode under potential cycling conditions. The lower potential limit was 0.1 V. 

                  a Power consumption for an EEC. 

 It is clear from the data in Table 3.1 that significant production of CO2 from ethanol in 

solution can only be achieved with an upper potential of at least 0.8 V, and even then the CO2 

produced was found to decline (not shown) from a peak of 400 ppm at ca. 300 s to 240 ppm at 

1700 s. It should be noted that the total CO2 produced when the upper potential was 0.7 V was 

less than the CO2 that could be produced from pre-adsorbed species (3.8 µmol), indicating that 

the actual CO2 yield was much less than the value of 8.4% reported in Table 3.1. These results 

can be explained by the high potentials required to oxidize adsorbed CO. At Pt, this reaction 

occurs primarily over the range of ca. 0.6-0.8 V vs. RHE,32 which corresponds approximately 

with the observation of CO2 evolution reported in Table 3.1.  

From the data in Table 3.1 it can be shown, using eq. 3.4, that increasing the upper 

potential from 0.8 V to 0.9 V increases the chemical efficiency by 5-11% depending on the 

CH3CHO/CH3CO2H ratio. However, this is negated in the overall cell efficiency by the 14% 

Upper potential 

/ V 

Average current 

/ mA 

Total CO2 

/ µmol 

Average CO2 

yield after 900 s 

Average powera 

/ mW 

0.6 4.1 0 0 2.0 

0.7 8.7 1.6 8.4% 4.9 

0.8 13.4 9.1 21.3% 8.6 

0.9 17.0 11.3 26.5% 11.6 
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increase in the average cell voltage required (or decreased cell voltage for a fuel cell). 

Nonetheless, this could still be of net benefit for an EEC because of the high current and 

therefore higher rate of hydrogen production. This would not likely be the case for a DEFC, 

however, where the very low cell potential at the upper anode potential limit (if attainable) 

would lead to very low overall efficiencies.  

Table 3.2 summarizes results for a series of experiments in which the upper potential 

limit was set at 0.9 V while the lower limit was varied from -0.2 V to +0.6 V.  
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Table 3.2. Summary of data for the electrolysis of 0.1 M ethanol at ambient temperature at a Pt 

                  black anode under potential cycling conditions. The upper potential limit was 0.9 V. 

Lower potential 

/ V 

Average current 

/ mA 

Total CO2 

/ µmol 

Average CO2 

yield after 900 s 

Average powera 

/ mW 

-0.2 14.6 2.6 6.6% - 

-0.1 16.5 7.4 14.7% - 

0 14.9 7.2 16.6% 10.1 

0.1b 15.1 7.0 18.3% 10.3 

0.2 16.3 8.6 21.2% 11.3 

0.3 15.5 7.6 18.5% 10.7 

0.4 18.4 9.3 19.9% 13.0 

0.5 16.9 6.5 12.1% 12.3 

0.6 16.3 1.8 1.9% 12.5 

                 a Power consumption for an EEC. Not meaningful when negative cell potentials 

                  were employed. b Values differ from those in Table 3.1 because this is a different 

                  data set for a different MEA. 

 

Although the use of negative potentials has little relevance to the operation of a fuel 

cell, it is relevant to an EEC where the anode could possibly be activated at such potentials. 

However, it can be seen from the results that low potentials were not beneficial, with CO2 

yields falling slightly for lower potential limits below 0.2 V and then sharply at -0.2 V. The 

lower yields in these cases may be due to adsorption of hydrogen atoms which can interfere 

with ethanol adsorption and dissociation. In light of these results, and the benefits of running 
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the cell at high average current and power, the lower potential limit should be set to the 

highest value that does not compromise selectivity for the complete oxidation to CO2. From 

the data in Table 3.2, this is 0.4 V (since the slightly higher yield at 0.2 V is within the 

experimental uncertainty). This potential is clearly sufficiently low for dissociative adsorption 

and oxidation of ethanol to occur on the time scale of the cycling, while 0.5 V is not low 

enough for these processes to occur efficiently.   

3.3.3 Operation at elevated temperatures  
 

Although the results presented in the previous sections are scientifically significant, the 

practical benefits of dissociative oxidation of ethanol to CO2 at ambient temperature may be 

only minor. Of key technological importance is whether the benefits of potential cycling are 

maintained at the higher temperatures employed in applications, and whether lower anode 

potentials can be employed at higher temperatures. To explore this, experiments akin to those 

described above were run at 50 ºC and 80 ºC.  The lower potential limit was maintained at 0.1 

V in these experiments in order to allow comparison with the upper limit effects in Table 3.1, 

and to ensure that the lower potential did not begin to limit ethanol absorption when the sweep 

rate was increased. 

Fig. 3.4 depicts apparent CO2 yields versus time for potential cycling between 0.1 V 

and 0.7 V at ambient temperature, 50 ºC and 80 ºC. These CO2 yields were calculated by using 

eq. 3.1 for each CO2 ppm reading (converted to mol s-1) and the average current (C s-1) over 

the experiment. Although this results in significant errors in the actual yield at each point, it 
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preserves the form of the CO2 meter response (i.e. it provides a scaling of the CO2 readings 

based on the charge passed at each temperature), which is informative.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3.4. Apparent CO2 yields vs. time for electrolysis of 0.1 M ethanol at a Pt black anode  

                   during potential cycling between 0.1 V and 0.7 V at ambient temperature, 50 ºC  

                   and 80 ºC. 

 

An upper limit of 0.7 V was selected for Fig. 3.4 because it best illustrates the benefits 

of increasing the temperature. As seen in Table 3.1, an upper limit of 0.7 V was insufficient 
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for complete adsorbate removal at ambient temperature, resulting in a large drop in CO2 yield 

relative to an upper limit of 0.8 V, and a decreasing yield at long times (Fig. 3.4). However, 

increasing the temperature resulted in large increases in CO2 yield (Fig. 3.4) and at 80 ºC the 

CO2 production was sustained for the duration of the experiment. In addition, increasing the 

temperature increased the average currents and power greatly, and much more CO2 was 

produced (Table 3.3). 

Table 3.3. Effects of temperature on cell performance parameters for the electrolysis of 0.1 M 

                  ethanol at ambient temperature at a Pt black anode for potential cycling between 0.1 

                  V and 0.7 V at 10 mV s-1 

Temperature / 

ºC 

Average current 

/ mA 

Total CO2 

/ µmol 

Average CO2 

yield after 900 s 

Average powera 

/ mW 

Ambient 8.7 1.6 8.4% 4.9 

50 25.4 11.0 16.0% 14.6 

80 50.8 48.2 31.9% 28.7 

. 

 Since complete oxidation of ethanol to CO2 requires the cleavage of the strong C-C 

bond, higher temperatures generally increases CO2 yields, and this has been well 

documented.16-22 In addition, CO oxidation is promoted by higher temperature. Both of these 

effects are expected to decrease the benefits of potential cycling relative to its effects at 

ambient temperature. To explore this, potential cycling and sweep and hold experiments at 80 

ºC were compared. At this temperature, a sweep rate of 100 mV s-1 during potential cycling 

was found to provide higher CO2 yields than 10 mV s-1, and so only the 100 mV s-1 data are 

reported here.   
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 It is clear from the data in Table 3.4 that even at 80 ºC higher CO2 yields can be 

obtained at higher average currents when potential cycling is employed. 

 

Table 3.4. Average currents and CO2 yields for the electrolysis of 0.1 M ethanol at 80 oC at a Pt  

                 black anode under sweep (10 mV s-1) and hold, and potential cycling (100 mV s-1) 

                 conditions. The lower potential limit was 0.1 V. (-) results too uncertain to report. 

 

The yield of 65% obtained for potential cycling is one of the highest reported for 

ethanol oxidation at 80 ºC. For example, a value of 35% was measured by liquid 

chromatography for a DEFC with a Pt anode operated at 80 oC and a current density of 8 mA 

cm-2,25 while a maximum of 50% at 70 oC was reported for a differential electrochemical mass 

spectrometry (DEMS) study of ethanol oxidation (0.1 M) at a gas diffusion electrode 

containing 4.3 mg cm-2 Pt black.17 

Upper 

potential 

/ V 

Average current after 900 s / 

mA 

Average CO2 yield after 900 s 

Sweep and hold cycling Sweep and hold cycling 

0.4 21.4 - 45.6% - 

0.5 65.5 - 34.3% - 

0.6 83.5 28.4 33.5% 35.1% 

0.7 82.5 53.1 28.4% 44.6% 

0.8 69.9 82.7 23.2% 65.0% 

0.9 74.9 121 11.9% 45.8% 
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 The decrease in yield seen in Table 3.4 as the potential was increased in the sweep and 

hold experiments is consistent with the trend reported in other studies [e.g.21,23], which is due 

to a decreasing tendency for C-C bond breaking and increasing oxygen coverage.19 The 

opposite trend was observed from 0.6 to 0.8 V in the cycling experiments, which illustrates the 

benefits of using higher potentials to periodically strip adsorbates from the electrode.   

 

3.3.4 PtRu Anode Catalyst 
 

The results for cycling between 0.1 V and 0.8 V shown in Table 3.4 are attractive for 

operation of an EEC but not of practical value for a DEFC because the potential required to 

strip COads from anode is too high to be produced by the cell. A Pt black anode catalyst was 

used in all experiments reported to this point. However, in practical applications, bi- or tri- 

metatallic catalysts with higher activities and which can oxidize adsorbed CO at lower 

potentials are normally preferred.8,15 PtRu was chosen here because it provides higher cell 

potentials than Pt in DEFCs, and allows adsorbed CO to be stripped at significantly lower 

potentials. It therefore offers the realistic possibility of increasing yields in a DEFC under 

potential cycling conditions. In addition, it should increase the efficiency of EECs. 

 Figs. 3.5 and 3.6 show current and CO2 concentration traces for ethanol oxidation at 80 

oC at a PtRu anode for cycling and sweep and hold experiments with an upper potential limit 

of 0.6 V. 
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Figure 3.5. Current vs. time plots for electrolysis of 0.1 M ethanol at 80 oC at a PtRu black 

                  anode using a linear potential sweep from 0.1 V vs. DHE with a potential hold at 

                  the upper limit of 0.6 V (dashed), and potential cycling between 0.1 and 0.6 V 

                  (solid). Sweep rate = 10 mV s-1 

 

 

 

 

 

 

 

 

Figure 3.6.  CO2 concentration vs. time plots for the electrolyses shown in Fig. 5. Data for 

                    sweep and hold (dashed) and potential cycling (solid) are shown. Lower potential 

                    = 0.1 V; Upper potential = 0.6 V. 
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       Average currents and CO2 yields for these experiments and others with different 

upper potential limits are presented in Table 3.5. 

 

Table 3.5. Average currents and CO2 yields for the electrolysis of 0.1 M ethanol at 80 oC at a 

                 PtR black anode under sweep (10 mV s-1) and hold, and potential cycling (10 mV s- 

                            1) conditions. The lower potential limit was 0.1 V. 

 

 

As expected,22,26 CO2 yields were generally lower with the PtRu catalyst relative to Pt 

under the same conditions. However, higher currents were obtained at lower potentials, 

demonstrating the higher activity of PtRu for ethanol oxidation, and potential cycling was still 

very effective at increasing CO2 yields. In addition, less positive upper anode potentials were 

required to obtain the benefits of cycling, as required for a DEFC. For example, cycling 

between 0.1 V and 0.6 V produced an average current of 110 mA, which was slightly higher 

Upper 

potential 

/ V 

Average current after 900 s / 

mA 

Average CO2 yield after 900 s 

Sweep and hold cycling Sweep and hold cycling 

0.4 103 34.4 13.2% 17.3% 

0.5 133 73.3 13.2% 23.3% 

0.6 131 110 11.2% 27.1% 

0.7 121 111 7.8% 32.4% 

0.8 132 130 4.6% 28.3% 
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than the 103 mA produced at a constant potential of 0.4 V, while the CO2 yield during cycling 

was more than double (27.1%) that at constant potential (13.2%). The same cycling 

experiment with a Pt anode produced a higher CO2 yield of 35.1% but a much lower average 

current of 28.4 mA (Table 3.4). These comparisons, and others based on the data in Tables 3.4 

and 3.5 illustrate the trade-off required between efficiency (determined mainly by the anode 

potential and CO2 yield) and power. 
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3.4 Conclusions 
 

Previous observations that potential modulation can increase the chemical efficiency of 

ethanol oxidation by promoting CO2 production have been extended to the electrolysis of 

ethanol in aqueous solution. The effects of potential limits, temperature and Pt vs. PtRu anode 

catalysts have been explored. In all cases, cycling the potential has been shown to increase the 

yield of CO2 and in many cases the effects are substantial. For example, at ambient 

temperature with a Pt anode the yield has been increased from << 6.4% to 26%, while a yield 

65% has been achieved at 80 oC. PtRu provides lower CO2 yields than Pt, but significantly 

decreases the anode potential required. At 80 oC a maximum yield of 32.4% was obtained 

under cycling conditions, while the best yield at constant potential was only 13.2%. 

 These results demonstrate how the efficiency of direct ethanol fuel cells and ethanol 

electrolysis cells can be improved by employing potential modulation techniques. It can be 

anticipated that further optimization of the operational parameters (potential waveform and 

limits, sweep rate, temperature) will lead to higher efficiencies, and that efficient oxidation of 

ethanol can be sustained indefinitely. 
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4.1 Introduction   
 

Direct ethanol fuel cells (DEFCs) based on proton exchange membrane (PEM) technology are 

attractive as part of a long-term renewable energy strategy because of their high theoretical 

efficiency (97%)2 together with the ready availability and high energy density of bioethanol.3,4 

However, their high anode overpotentials, crossover of ethanol to the cathode, and incomplete 

oxidation of ethanol to acetaldehyde and acetic acid currently make them impractical. 

 The most serious of these issues is the formation of acetic acid, which cannot be 

oxidized further under PEM DEFC operating conditions.5 This decreases the energy efficiency 

greatly because only 4 electrons are passed per ethanol molecule (eq. 4.1) relative to 12 for the 

complete oxidation to CO2 (eq. 4.2).  

CH3CH2OH + H2O → CH3CO2H + 4 e- + 4H+                                                     (4.1) 

CH3CH2OH + 3 H2O → 2 CO2 + 12 e- + 12 H+                (4.2) 

 The efficiency for the complete oxidation can be monitored and assessed by measuring 

the faradaic yield of CO2 produced by the cell, given by eq. 4.3,  

  CO2 yield = 6FmolCO2/Q                    (4.3) 

where molCO2 is the moles of CO2 produced and Q is the charge passed. The yield of CO2 has 

been found to depend strongly on the catalyst employed, temperature, ethanol concentration, 

and current (or cell potential).3,5,6 The yield of CO2 increases with increasing temperature, 

decreases as the ethanol concentration is increased, and generally has been found to decrease 

with increasing current (decreasing cell potential).6 It has been reported that pulsing of the 

current applied to an ethanol electrolysis cell can increase the CO2 yield by promoting the 
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oxidation of adsorbed intermediates at a high current while ethanol adsorbs and dissociates at 

open circuit.7 Pulsing has also been applied to hydrogen8 and methanol fuel cells9 to mitigate 

CO poisoning. That principle has been applied here to the operation of a PEM DEFC by using 

a sinusoidal (AC) potential waveform.   

4.2 Experimental 
 

Anhydrous ethanol (Commercial Alcohols Inc.) was used as received and double distilled 

water was used throughout all experiments. Cathodes consisted of 4 mg cm-2 Pt black on 

TorayTM carbon fiber paper; anodes consisted of 5.5 mg cm-2 PtRu black on TorayTM carbon 

fiber paper. NafionTM 117 membranes (Dupont) were cleaned at 80 °C in 3% H2O2(aq) and 1 

M H2SO4(aq), rinsed with water, and stored in water. 

 A 5 cm2 commercial fuel cell (Fuel Cell Technology Inc.) was used. Membrane and 

electrode assemblies were prepared by pressing (room temperature; ca. 1.5 MPa) a 5 cm2 

anode and a 5 cm2 cathode onto a NafionTM 117 membrane in the cell. 10 The cell was 

operated with an anode feed of 0.10 mol L-1 ethanol solution at 0.69 mL min-1. The cathode 

feed was air at 20 mL min-1. The cell was operated with a Hokuto Denko HA-301 potentiostat 

with the sinusoidal voltage generated by a Solartron 1250 frequency response analyzer. For 

CO2 analysis both the anode solution and the cathode gas were passed into a 125 mL flask to 

collect the liquid. The gas stream exiting the flask was passed through a Telaire 7001 non-

dispersive infrared CO2 detector.11 The CO2 traces have been corrected for the delay in the 

detector response due to tubing and flask, and the background reading prior to passing current 
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though the cell, due to CO2 produced by the chemical reaction of ethanol and O2 arising from 

crossover of both through the membrane.12,13 

4.3 Results and discussion 
 

Fig. 4.1. shows how the cell voltage was varied, and the corresponding current as a function of 

time, in an experiment at a bias potential of 0.4 V, frequency of 0.1 Hz, and amplitude (rms) 

of 0.1 V. An expanded section towards the end of the experiment is shown, to illustrate the 

steady state behavior. The average current over this period was 73 mA, while an average of 79 

mA was obtained over the full 1200 s of the experiment.  

 

 

Figure 4.1. Cell potential (solid) and current (dotted) vs. time plots for operation of a DEFC at 

                   80 oC under AC potential cycling conditions. Potential bias = 0.4 V; frequency =  

0.1 Hz; amplitude = 0.1 V rms. 
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It can be seen from Fig. 4.1 that the current dropped to close to zero at the cell 

potential peaks. During this part of the cycle, ethanol will adsorb and dissociate on the 

electrode with limited production of undesirable products (acetaldehyde and acetic acid) 

because the current is low. At the minima in the cell potential, the current was high with a 

significant contribution due the oxidation of adsorbed CO, as demonstrated by in situ infrared 

spectroscopy14 and mass spectrometry.15 This leads to enhanced selectivity for the complete 

oxidation of ethanol to CO2 as illustrated in Fig. 4.2, which compares CO2 vs. time traces for 

operation of the cell as in Fig. 4.1 and for operation at a constant potential of 0.4 V.  

Figure 4.2. CO2 concentration vs. time plots for the combined anode and cathode exhaust 

                  streams from a DEFC at 80 oC at a constant potential of 0.4 V (dotted) and under 

                  AC potential cycling conditions (solid; bias = 0.4 V; frequency = 0.1 Hz; amplitude =  

                    0.1 V rms). 
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Here, the much higher concentration of CO2 exiting the cell during AC potential 

cycling indicates that more ethanol was oxidized completely to CO2.  Although the average 

current was slightly lower in the constant potential experiment (60 mA vs. 79 mA), it is very 

clear from the data in Fig. 4.2 that the CO2 yield was significantly higher in the AC 

experiment. Based on the charge passed and the moles of CO2 produced (moles CO2 = 

∫(ppmCO2∙ṅ/106)dt, where ṅ is the N2 flow rate in mol s-1) over the full runs, the average CO2 

yields calculated using eq. 4.3 were 17.8% for AC operation and 9.8% at constant potential. 

However, these values are underestimated because of the long time (ca. 600-800 s) required 

for the CO2 level in the collection flask to approach equilibrium. More accurate steady-state 

yields of 25.6% for AC operation and 11.6% at constant potential were therefore estimated 

(eq. 4.3) by integrating the current (Fig. 4.1) and CO2 readings (Fig. 4.2) over just the final 

200 s (i.e. 900 to 1100 s). The much higher steady-state CO2 yield obtained under AC 

operation indicates that a higher fraction of the ethanol consumed underwent the complete 12 

electron oxidation to CO2. Consequently, it can be inferred that a lower fraction was oxidized 

to the acetaldehyde and acetic acid byproducts. Although these results do not provide any 

direct mechanistic information, it can be inferred from previous mechanistic studies14,15 that 

oxidation of adsorbed CO contributed significantly to the enhanced CO2 yield. During each 

potential cycle, this CO would have been replenished at high cell potentials by partial 

oxidation of ethanol flowing through the cell.7  

The mechanism of the electrochemical oxidation of ethanol at Pt based electrodes is 

still under intensive experimental16,17 and theoretical18 investigation.6 The main initial pathway 

involves partial oxidation of adsorbed ethanol to adsorbed acetaldehyde, which can desorb as 
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the first product.15 However, further oxidation (dehydrogenation) can easily occur to an 

adsorbed acetyl species (CH3COads), which is the common intermediate for both acetic acid 

and CO2 formation.18,19 One of these theoretical studies18 “highlights the need for careful 

control of oxidant surface coverage that will allow facile C-C bond cleavage while still 

providing sufficient levels of CO oxidation”. The results shown in Fig. 4.2 demonstrate that 

this can be achieved to a significant extent by potential cycling. 

 A series of additional experiments were performed in order to explore whether higher 

yields could be obtained under other AC operation conditions, and to check whether the 

difference in the average current contributed to the difference in CO2 yields between the two 

sets of data in Fig. 4.2. Bias potentials from 0.3-0.4 V were used because this is the optimum 

operating potential range. At higher potentials the current is too low to be very useful, while 

lower potentials are not very useful and produce much lower cell efficiencies. The results are 

summarized in Table 1. It can be seen from these results that decreasing the DC potential 

increased the average current, but did not have a significant effect on the CO2 yield. AC 

operation of the cell at a lower bias potential and lower frequency resulted in lower CO2 

yields, although they were still significantly higher than any obtained at constant potential. 

Changing the amplitude at 0.35 V did not change the average current nor CO2 yield 

significantly. These experiments, and a number of others that are not reported here, indicated 

that the cycling conditions in Fig. 4.1 were close to optimum for the cell and other operating 

conditions employed in this work.    
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 Fig. 4.3 compares a polarization curve for the cell with current and voltage data from 

Fig. 1. The current during AC operation doesn’t track the steady-state current exactly because 

of the charging current due to the double layer capacitance of the electrodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4.3. Polarization curve (■; current averaged over 1 min after 4 min at each potential) 

                   and current vs. potential for AC potential cycling (dotted; potential bias = 0.4 V;  

                   frequency = 0.1 Hz; amplitude = 0.1 V rms). 
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The average current at most potentials is slightly higher under AC operation indicating 

improved cell performance under cycling conditions. This is most notable at high currents, 

while the cell underperforms at low currents during AC cycling.   

The highest percentage increase in CO2 yield obtained in this work was 121%, for the 

experiments at 0.4 V shown in Figs. 4.1 and 4.2. Although this appears to be substantial, its 

effect on the efficiency of the cell is much lower because of the nature of the relationship 

between CO2 yield and efficiency, and also because AC operation of the cell decreases the 

potential efficiency. If we neglect the effects of crossover, the overall efficiency (εcell) of a 

DEFC is given by eq. 4.4,14 

    εcell = εrev x εE x εF                                                             (4.4) 

Where εrev is the theoretical efficiency (97%), εE is the potential efficiency (Ecell/Erev where 

Erev is the reversible cell potential of 1.14 V under the conditions used here), and εF is the 

faradaic efficiency given by eq. 4.5, 

εF =100/ (%CO2 + 3 x %CH3CO2H + 6 x %CH3CHO                            (4.5) 

where the % terms are the faradaic yields of each of the three major products.  

 Faradaic efficiencies calculated using eq. 4.5 are plotted in Fig. 4.4 as a function of the 

CO2 yield for various ratio of acetaldehyde to acetic acid.  
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Figure 4.4. Theoretical relationships between faradaic efficiency and CO2 yield at acetaldehyde 

(AL): acetic acid (AA) ratios of 1.0 (solid), 0.5 (dotted), and 0 (dashed). 

 

It can be seen that increasing the yield of CO2 has a much greater effect on the cell 

efficiency at high CO2 yields. For the data in Table 4.1 at 0.4 V, and assuming a faradaic 

acetic acid yield of 50% ,11,12 εF was 25.5% at constant potential and increased to 31.1% under 

AC cycling. However, the potential efficiency (weighted for the moles of ethanol converted at 

each potential during cycling) decreased from 35.0% to 29.4% when the potential was cycled 

because more ethanol was oxidized at lower cell potentials. Overall, cycling increased the cell 

efficiency (eq. 4.4) from 8.7% to 8.9%. Although not large, this 2% increase in cell efficiency 

was achieved with a 25% increase in the average current (Table 4.1) and a 4.3% increase in 

average power. 
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Table 4.1. Summary of data for operation of a DEFC at 80 oC at constant potential and under 

                 AC potential cycling conditions. Currents and yields are averages after 900 s of  

                 operation. 

DC potential 

/ V 

Frequency 

/ Hz 

Amplitude 

/ V 

Average current 

/ mA 

Average CO2 

yield 

0.30 no AC  106 13.0% 

0.30 0.05 0.12 131 14.5% 

0.35 0.03 0.12 93.1 16.4% 

0.35 0.03 0.13 89.8 17.9% 

0.35 0.03 0.15 103 16.8% 

0.40 no AC  57.5 11.6% 

0.40 0.1 0.1 72.0 25.6% 

        

 From a practical point of view, the PtRu catalyst used here is not suitable for use in 

DEFCs because of the low yields of CO2 that it produces. Pure Pt produces much higher CO2 

yields than PtRu because it promotes C-C bond cleavage, but its potential efficiency is lower 

because higher potentials are needed to oxidize CO.6,20 Other alloy catalysts such as PtSn can 

deliver higher potential efficiency as well as improved CO2 yields.6 Fig. 4.4 shows that the 

benefits of AC cycling would high for such catalysts because of the higher slopes at higher 

CO2 yields. Increasing the cell temperature would also increase CO2 yields3 and this should 

also increase the benefits of AC cycling.  



100 
 

4.4 Conclusions 
 

It has been demonstrated that potential cycling with a sinusoidal waveform can greatly 

increase the yield of CO2 produced by a DEFC, and that this leads to a significant increase in 

the faradaic efficiency of the cell. Although this is partially offset by a decrease in potential 

efficiency, there can be a net benefit in overall cell efficiency, and/or power density. It is 

demonstrated, in theory, that AC cycling (or other potential modulation) of DEFCs with better 

catalysts has the potential to significantly enhance their efficiencies. This could be a 

significant factor in their commercialization. 
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5.1. Introduction  

  
The high theoretical efficiency (97%)2 of direct ethanol fuel cells (DEFCs) together with their 

zero theoretical net carbon dioxide emission when operated with bioethanol,3,4 make them 

attractive as power sources. However, the formation of acetaldehyde and acetic acid in proton 

exchange membrane (PEM) DEFCs greatly decreases the energy efficiency and increases 

emissions. Oxidation of ethanol to acetaldehyde produces only two electrons per molecule (eq. 

1; n = 2), while oxidation to acetic acid produces four electrons (eq. 5.2; n = 4), and the 

complete oxidation to CO2 produces twelve (n = 12; eq. 3).  

  CH3CH2OH → CH3CHO + 2 e- + 2 H+                      (5.1)    

  CH3CH2OH + H2O → CH3CO2H + 4 e- + 4 H+                               (5.2)    

  CH3CH2OH + 3 H2O → 2 CO2 + 12 e- + 12 H+               (5.3) 

 If we neglect the effects of fuel crossover through the membrane, the overall efficiency 

(εcell) of a DEFC is given by eq. 5.4,5 

    εcell = εrev x εE x εF      (5.4) 

Where εrev is the theoretical efficiency (97%), εE is the potential efficiency (Ecell/Erev where 

Erev is the reversible cell potential of ca. 1.14 V), and εF is the faradaic efficiency. The faradaic 

efficiency is the ratio of the average number of electrons obtained per molecule of ethanol 

(nav) to the theoretical value of 12 (εF = nav/12). It can be estimated by analysis of the products 

exiting the DEFC by using eq. 5.5.6-8 
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 εF = 100/(%CO2 + 3 x %CH3CO2H + 6 x %CH3CHO)                            (5.5) 

Where the % terms are the faradaic yields of each of the three major products.  

 The determination of nav values by product analysis is time consuming and expensive, 

requires all products to be identified and quantified, and involves considerable sources of 

inaccuracy. These include a multitude of crossover effects9,10, and low/uncertain product 

collection efficiencies. A better approach is to measure the charge for oxidation of a known 

amount of ethanol, as reported by Hitmi et al.11 who measured the charge (Q), and 

concentration change (ΔC)  for electrolysis of a known volume (V0) of ethanol solution. For 

the electrolysis of ethanol at 0.8 V vs. RHE in 0.1 M HClO4 at 10 °C, they obtained nav values 

(from eq. 5.6) ranging from ca. 2 to 4 as the concentration was decreased.  

nav = Q/FΔCV0                                          (5.6) 

These low values indicate that the main products were acetic acid at low concentrations and 

acetaldehyde at high concentrations. 

 The attraction of approaches based on eq. 5.6 is that this equation can be applied 

simply to any fuel without knowledge of, or analysis of, the reaction products. The difficulty, 

however, lies in the determination of ΔC under conditions that are relevant to fuel cells (flow 

conditions at elevated temperatures and with fuel and oxygen crossover). We present here a 

simple electrochemical methodology to determine nav for ethanol, and potentially any other 

fuel, in conventional fuel cell hardware, without any reactant or product analysis, and without 

errors due to crossover. It is based on the principle that fuel crossing through the membrane 

can be quantitatively electrochemically oxidized at the anode when a fuel solution is passed 
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through the cathode compartment and N2 is passed through the anode compartment.12 Under 

these conditions, reactions 5.1-5.3 occur simultaneously at the anode while hydrogen is 

evolved at the cathode from protons crossing the membrane from the anode. 

At high fuel flow rates, the limiting current (Ilim) is related to the flux (f, in mol s-1) of fuel 

crossing the membrane by eq. 5.7. 

     Ilim = navFf                                                    (5.7) 

At lower flow rates the current decreases because of depletion of the fuel as it passes 

through the cathode flow field. This effect is modeled here, and it is shown that the decrease in 

current (I) with decreasing flow rate depends on nav and can be used to provide good estimates 

of nav values. The method has been validated by using methanol, and then used to determine 

nav values for ethanol oxidation. 

 

5.2. Experimental 
 

Methanol (99.8% from ACP Chemical Inc.) and anhydrous ethanol (Commercial Alcohols 

Inc.) were used as received and double distilled water was used throughout all experiments. 

Electrodes consisted of 4 mg cm-2 Pt black on TorayTM carbon fiber paper. NafionTM 115 

membranes (Dupont) were cleaned at 80 °C in 3% H2O2(aq) and 1 M H2SO4(aq), rinsed with 

water, and stored in water. 

 A 5 cm2 commercial fuel cell (Fuel Cell Technology Inc.) was used. In order to use 

very low fuel flow rates provided by a syringe pump, this cell was modified so that a syringe 

needle entered directly into to the inlet on the graphite cathode flow field plate (sealed with 
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epoxy). Membrane and electrode assemblies (MEA) were prepared by pressing (room 

temperature; ca. 1.5 MPa) a 5 cm2 anode and a 5 cm2 cathode onto a NafionTM 115 membrane 

in the cell.13 The cell was operated with a cathode feed of aqueous ethanol or methanol 

solution from a syringe pump, and a cathode feed of N2 at ca. 10 cm3 min-1. Under these 

conditions, the cathode approximates a dynamic hydrogen electrode, since the cathode 

reaction is H+ + e- → ½H2. The cell was operated at a fixed potential of 0.6 or 0.7 V with a 

Hokuto Denko HA-301 potentiostat.  

 

5.3. Modeling 
 

Fig. 5.1 shows schematic cross-sections of the channel in the fuel (cathode) flow field. The 

crossover of fuel to the anode generates a current (I = navFf) and decreases the concentration 

of the fuel as it passes through the flow field. Consequently, C, f and I all decrease with 

distance (x) though the flow field. Although the ridges of the flow field cover a significant 

fraction of the MEA area, the electrodes are sufficiently porous to allow crossover though the 

full area. Consequently, the width parameter (w) includes these ridges. The electrodes are 

assumed to have a negligible influence on the flux of fuel across the membrane,12 although 

this is not a necessary assumption for the determination of nav. 
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Figure 5.1 Schematic cross-sections of the cell along the fuel flow field (top) and across a 

                  channel in the fuel flow field (bottom). 

 

 Assuming steady state conditions under which there are linear concentration gradients 

of the fuel across the membrane,12 concentration profiles along the fuel flow field can be 

obtained by integration of eq. 5.8, 

𝑑𝐶(𝑥)

𝑑𝑥
=

−𝐷𝐶(𝑥)

𝑙ℎ𝑣
                                                                         (5.8) 

Where D is the diffusion coefficient for the fuel in the membrane, l is the thickness of the 

membrane, h is the height of the flow channel, and v is the flow velocity (cm s-1). Since, the 

flow velocity is u/hw, where w is the channel width and u is the volumetric flow rate (cm3 s-1), 

the resulting concentration profile can be written as eq. 5.9, 
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𝐶(𝑥) = 𝐶0 exp (−
𝑤𝐷𝑥

𝑙𝑢
)                                                            (5.9) 

 

Where C0 is the initial concentration of the fuel. 

The constant D/l can be obtained from the limiting current at high flow rates by using 

eq. 5.10, 

𝐼𝑙𝑖𝑚 =
𝑛𝑎𝑣𝐹𝐴𝐶0𝐷

𝑙
                                                                      (5.10) 

Where A is the MEA area (wd, where d is the length of the flow field). A small correction (ca. 

1%) for the effects of electroosmotic drag would be required to determine D/l accurately,12 but 

is not needed here because this error is canceled out when eq. 5.10 is used again below to 

obtain eq. 5.12. There may also be an error in D/l due to the pressure drop across the 

membrane. 

 The current can be obtained by integration of the current density along the flow field 

using eq. 5.11.14 

𝐼 =  ∫
𝑛𝑎𝑣𝐹𝐷𝐶(𝑥)𝑤

𝑙
 𝑑𝑥                                                          (5.11)  

𝑑

0

 

Substitution of eqs. 5.9 and 5.10 gives eq. 5.12, 

𝐼 = (𝐼𝑙𝑖𝑚/𝑑) ∫ 𝑒𝑥𝑝 (−
𝐼𝑙𝑖𝑚𝑥

𝑛𝑎𝑣𝐹𝐶0𝑢𝑑
) 𝑑𝑥                                                    (5.12) 

𝑑

0

 

which yields eq. 5.13. 
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𝐼 =  𝑛𝑎𝑣𝐹𝐶0𝑢 (1 − 𝑒𝑥𝑝 (−
𝐼𝑙𝑖𝑚

𝑛𝑎𝑣𝐹𝐶0𝑢
))                                                     (5.13) 

 This result is analogous to that for electrolysis of a solution flowing through a porous 

working electrode,14 since it is assumed that there are negligible concentration gradients 

perpendicular to the flow direction in the flow channel and cathode. It is also assumed that the 

effect of lateral diffusion along the flow field is negligible, which is reasonable given that at 

the lowest flow rate employed here (5 µL min-1) lateral diffusion would be only ca. 0.4 cm 

along the ca. 30 cm flow channel at 80 oC.  

5.4. Results and discussion  
 

5.4.1. Methanol oxidation 
 

Fig. 5.2 shows polarization curves for the oxidation of methanol and ethanol in crossover 

mode, where a constant flux of the fuel reaches the anode by diffusion across the membrane.12 

These experiments were conducted at constant potentials with a sufficiently high fuel flow rate 

to avoid significant changes in concentration along the flow field. 
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Figure 5.2 Polarization curves for oxidation of 0.1 M methanol (□) and 0.1 M ethanol 

                 (■) at 50°C. 

 

The plateau currents at high potential (Ilim) result from oxidation of all of the fuel 

reaching the anode, which provides the maximum concentration gradient across the 

membrane. This limiting current provides a measure of nav through eq. 5.7, if the flux is 

known. This requires knowledge of the diffusion coefficient (D) and membrane thickness (l).12 

Although this is potentially an excellent way to determine nav values, it is not straightforward. 

Diffusion coefficients vary with operating conditions, and the membrane thickness can vary if 

the hydration level changes (e.g. with temperature). To obtain accurate results, it is necessary 

to determine D and l, or the flux (f), for each experiment. This is achieved here by making 
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multiple measurements at different fuel flow rates. Then nav and Ilim (proportional to f) can be 

obtained from two or more measurements by fitting eq. 5.13 to the experimental results.  

It can be seen from eq. 5.13 that the current per unit concentration of reactant (I/C0) vs. 

flow rate can be described by two variables, the limiting current per unit concentration of 

reactant (Ilim/C0) and the number of electrons passed per molecule that crosses the membrane 

(nav). The results are independent of the length or volume of the flow field and independent of 

the choice of fuel (e.g. ethanol vs. methanol here). 

Fig. 5.3 shows theoretical (eq. 5.13) plots of current vs. fuel flow rate together with 

experimental data for 0.1 M methanol at 50 °C.  

 

 

 

 

 

 

 

 

 

Figure 5.3 Calculated (eq. 13 with Ilim/C0 = 0.3 A M-1) current vs. flow rate curves and  

                  experimental data for 0.1 M methanol at 50 °C. 
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It can be seen that for a fixed value of Ilim/C0 (set at 0.3 A M-1 to match the 

experimental data) there is a systematic change in the rate of current decay as nav is changed. 

Consequently, the theoretical plots can be used as working curves to determine nav. The 

experimental data points for methanol oxidation in Fig. 5.3 are close to the theoretical curve 

for n = 6, as expected for complete oxidation to CO2. Several reports have previously shown 

that methanol can be oxidized to CO2 at high faradaic efficiency at fuel cell electrodes.15-17 

The deviation of the experimental data from the n = 6 curve can be accounted for by partial 

oxidation of some of the methanol to formaldehye (n = 2) and formic acid (n = 4).15-18 Using 

the solver feature of Excel, a nav value of 4.9 was found to give the best fit (least squares) to 

the experimental data in Fig. 5.3. 

Fig. 5.4 shows theoretical (eq. 5.9) examples of how the concentration changes as fuel 

passes through the flow field at several different flow rates.  

 

 

 

 

 

 

 

 

Figure 5.4 Calculated (eq. 5.9) concentration profiles for selected flow rates with C0 = 0.1 M, 

                  Ilim = 30 mA and nav = 6. 
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In the limiting current region (e.g. 1 mL min-1) there is little change in concentration, 

while at low flow rates (e.g. 0.005 mL min-1) the concentration of fuel leaving the cell can 

become negligible. Under these latter conditions, the current becomes linearly dependent on 

the flow rate (see n = 3 simulation in Fig. 5.3), and nav values can be obtained directly from eq. 

6 with ΔC = C0. This equation can be rewritten as eq. 5.14.  

    nav = I/uFC0                                     (5.14) 

Although equation 14 appears to be attractive for determining nav, it takes a long time 

to obtain steady state currents at the low flow rates required, and both random and systematic 

(e.g. due to fuel losses) errors can become prohibitive.  

Since it is not necessary to make measurements at more than two flow rates to 

simultaneously determine Ilim and nav, their values can be determined independently at each 

flow rate employed, with the highest flow rate measurement as the reference value to provide 

the closest initial estimate of Ilim. This allows possible changes in nav with concentration (the 

average concentration changes with flow rate) to be identified, which is important for 

ethanol.11-19 It can also provide an assessment of the quality of the data at each flow rate.  

Table 5.1 shows nav values (found using solver) obtained from the current at each flow 

rate and the current at 0.5 mL min-1. The value of 6.9 at 0.2 mL min-1 is clearly inaccurate 

because it is above the theoretical value of 6. This can be attributed to the large uncertainly 

arising from the small difference in the currents at 0.2 and 0.5 mL min-1. The other nav values 

are all reasonable, and give an average of 4.73±0.45. There is no indication that nav changes 

systematically with flow rate. Based on these results, and the uncertainties and inaccuracies 
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than can arise at very low flow rates, it was concluded that the optimum low flow rate to use 

would be between ca. 0.01 and 0.05 mL min-1.  

Table 5.1. Apparent nav values from two point fits to eq. 5.13 with a high flow rate of 0.5 mL 

                 min-1 as a function of the second (lower) flow rate, for 0.1 M methanol and ethanol 

                 solutions at 50 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

Consequently, flow rates of 0.02 and 0.5 mL min-1 were selected for routine 

determinations of Ilim and nav. Using these two flow rates only, multiple (8) measurements with 

0.1 M methanol at 50 °C over a period of months provided average values of Ilim = 37.0±4.5 

mA and nav = 5.27±0.49. The uncertainties (standard deviations) indicated here are due to 

Lower flow rate / 

mL min-1  

nav 

methanol 

 

ethanol 

0.20 6.9 3.3 

0.15 4.8 2.4 

0.09 4.9 2.8 

0.05 4.4 3.4 

0.02 5.5 4.0 

0.01 4.6 4.5 

0.005 4.3 4.6 
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noise and drift in the current measurements as well as random variations in the characteristics 

of the MEA from day to day. 

5.4.2. Ethanol oxidation 
 

Fig. 5.5 shows experimental currents over a range of flow rates for the oxidation of 0.1 M 

ethanol supplied to the cathode side of the cell, at 50 oC, together with the best fit theoretical 

curve (eq. 5.13).  

 

 

 

 

 

 

 

 

 

Figure 5.5 Current vs. flow rate for oxidation of 0.1 M ethanol at 50 °C (points) and best fit 

                  Curve calculated by using eq. 5.13 with Ilim/C0 = 0.198 A M-1 and nav = 4.23. 

 

The best fit nav for this full data set was 4.2, while using the currents at just 0.02 and 

0.5 mL min-1 gave a value of 4.0. These low values, relative to n = 12 for complete oxidation 

to CO2, are consistent with the low CO2 yields that have been reported for ethanol oxidation at 
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this temperature.19 Further experiments at 0.6 V (0.7 V was used for Fig. 5.5), gave nav = 

4.69±0.12. The increase with decreasing potential is consistent with a differential 

electrochemical mass spectrometry study19 that demonstrated higher CO2 yields at lower 

potentials. However, other studies have shown that this trend can be reversed under some 

conditions.16-20 Unfortunately the methodology employed here can only currently be used in 

the limiting current region, which means that nav values at potentials below 0.6 V are not yet 

available. 

Table 5.1 shows apparent nav values obtained from the current at each flow rate in Fig. 

5.5, and the current at 0.5 mL min-1. In contrast to the data for methanol in Table 5.1, the 

apparent nav values for ethanol show a clear increase with decreasing flow rate. This is 

consistent with reports that CO2 yields from ethanol oxidation increase with decreasing 

concentration,16-19 since the average concentration of ethanol in the flow field decreases with 

decreasing flow rate (see Fig. 5.4). As for methanol, flow rates of 0.02 and 0.5 and mL min-1 

were selected for routine determinations of Ilim and nav for ethanol oxidation. For the data in 

Fig. 5.5, this provided the closest result to the full fit value of 4.2, and so provides the best 

“characteristic value” for assessing the effects of changing operating conditions, and in future 

for changing the catalyst.  

Table 5.2 summarizes additional result for ethanol oxidation under a variety of 

operating conditions. The trends in nav with temperature and ethanol concentration are 

consistent with trends in CO2 yields from other studies,16-19 which have clearly established that 

CO2 yields increase sharply with increasing temperature and decrease with increasing 

concentration. Based on eq. 5.5, the very high nav of 9.4 for 0.1 M ethanol at 80 °C 
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corresponds to a faradaic CO2 yield of between 86% and 94%, depending on the ratio of acetic 

acid to acetaldehyde produced as byproducts. Such high yields can be attributed to the use of 

mass transport limited currents here, which result in very low concentrations of ethanol at the 

anode catalyst surface.16 

Table 5.2.  nav and Ilim results, from currents at 0.02 and 0.5 and mL min-1, for ethanol 

                  oxidation under a variety of operating conditions. Averages with standard 

                  deviations are for 2 or 3 measurements on different days. 

 

 

Measurement of the CO2 yield in a similar crossover experiment at 0.5 mL min-1 gave 

a CO2 yield of 65%,16 and it can be seen from the data in Table 5.1 that the CO2 yield would 

have been significantly higher at 0.02 mL min-1. 

Ethanol 

concentration /M 

Temperature / °C 

Cell potential 

/V 

nav Ilim / mA 

0.10 50 0.6 4.7±0.12 26.1±2.9 

0.10 50 0.7 3.9±0.11 25.0±6.2 

0.10 80 0.7 9.4±0.18 75.8±5.2 

1.00 50 0.7 3.0 94.4 

1.00 80 0.7 6.6 238 
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It is notable that the limiting currents reported in Table 5.2 for 1 M ethanol are only ca. 

3-4 times higher than those for 0.1 M ethanol, while a 10 fold increase is expected for a 

constant nav (eq. 5.10), and is observed (approximately) for methanol oxidation.12,21 This 

difference can be qualitatively accounted for by the observed decreases in nav values with 

increasing ethanol concentration, although a quantitative comparison is complicated because 

the reported “characteristic” nav values are higher than they would be at the limiting current. 

 

5.5. Conclusions 
 

Simple electrochemical methodology is presented for the determination of the average number 

of electrons (nav) obtained from methanol, ethanol, or any other fuel, in conventional fuel cell 

hardware, without any reactant or product analysis, and without errors due to crossover. For 

methanol oxidation, the method is shown to provide nav values close to the theoretical value of 

6, while for ethanol oxidation nav values correlate well with product distributions reported in 

the literature. The results validate the methodology as a useful tool for catalyst screening, and 

confirm previous reports that very high yields of CO2 can be obtained with low ethanol 

concentrations at 80 °C. This methodology can also be applied to a DEFC operating normally, 

although corrections need to be made for the loss of ethanol due to crossover, including 

crossover of O2 from the cathode. 
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Chapter 6 

Determination of the Efficiency of 

Methanol Oxidation in a Direct Methanol 

Fuel Cell 
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6.1 Introduction   

 

Wasteful harvesting, processing and consumption of fossil fuels can cause sever damages on 

environmental areas. Global warming which is a serious problem due to massive exploitation 

and purification of fossil fuels, can increase the temperature of our planet’s atmosphere. As a 

result of global warming, polar ices start to melt down. The melt down of polar ices and glaciers 

lead to sea level rise and coastal flooding. These disasters can cause many ecological, 

economical and environmental challenges.  Therefore, it is reasonable to search for alternative 

kinds of energy sources. 

Fuel cells are attractive alternatives to fossil fuels for production of energy from renewable 

energy sources1,2. Among all renewable energy sources, methanol and ethanol are promising 

fuels for production of energy for many reasons. Firstly, their energy densities (ca. 6 and 8 

kWh/kg, respectively) are very close to the energy density of gasoline (ca. 10 kWh/kg).3 

Secondly, ethanol can be easily produced from many feedstocks such as sugarcane, corn, grape, 

cotton, potato, sunflower and even biomass. Also, unlike the transportation of hydrogen, 

transporting methanol and ethanol is less hazardous.  

In a direct methanol fuel cell (DMFC), the complete oxidation of methanol occurs at the 

anode according to the following reaction. 

CH3OH + H2O            6 H+ + 6 e- + CO2                                        (6.1) 

Hydrogen ions pass to the cathode through the membrane and react with oxygen. As a result, 

reduction of oxygen takes place at the cathode, 
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         O2 + 4 H+ + 4 e-            2 H2O                                                      (6.2)     

Thus, the total net reaction will be, 

CH3OH + 1.5 O2            CO2 + 2 H2O.                                              (6.3) 

And the ΔE◦
Rxn = Ecathode - Eanode = 1.23 - 0.046 = 1.18 V.4 However, the actual cell voltage is 

lower than the theoretical value of ca. 1.18 V due to slow kinetics at both the anode and 

cathode, and poisoning of the platinum catalyst at the anode by adsorbed species such as COads 

and CHXads.5-7 Moreover, a chemical reaction of methanol with O2 occurs at the cathode due to 

the crossover of methanol through the membrane, and this decreases the cell voltage and 

efficiency of DMFCs. Also, it has been reported that during the oxidation of methanol, 

formaldehyde and formic acid are produced as by-products. Oxidation of methanol to 

formaldehyde and formic acid generates 2 and 4 electrons, respectively.8-10 As a result of this 

incomplete oxidation of methanol, the cell efficiency declines drastically.  

            The overall efficiency of a direct methanol fuel cell can be written as eq. 6.4,11 

𝜺cell = 𝜺rev  𝜺E  𝜺F                                                             (6.4) 

Where 𝜺rev is theoretical efficiency, 𝜺E is the potential efficiency (𝜺E is equal to Ecell/Erev where 

Erev is the reversible cell potential of 1.18 V), and 𝜺F is the faradic efficiency. The faradaic 

efficiency is the ratio of the average number of electrons obtained per molecule of methanol 

(nav) to the theoretical value of 6 (𝜺F = nav/6). It is important to note that nav is determined by 

the products distribution from the oxidation of methanol at the anode. It can be determined 

directly from the charge required to oxidize a known amount of methanol, or indirectly from 

measurement of all products quantitatively. Determination of nav by product analysis suffers 

from inaccuracies and errors caused by methanol crossover and the volatility of the products. 
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Hence, we have reported an electrochemical method to measure nav for methanol oxidation in 

DMFC hardware. This method is based on the electrochemical oxidation of fuel (methanol) at 

the anode when it crosses through the Nafion membrane from the cathode side of the DMFC 

to the anode compartment. To prohibit chemical reaction between oxygen and methanol, 

nitrogen was passed though the anode compartment.  

             The mass transport limited current (Ilim) for oxidation of methanol when it crosses the 

membrane at high fuel flow rates and high overpotentials can be used to determine nav, 

𝐼𝑙𝑖𝑚 = 𝑛𝑎𝑣𝑓𝐹                                                        (6.5) 

Where F is the Faraday constant and f is the flux (mol cm-2 s-1) of fuel through the membrane. 

At low fuel flow rates, the fuel concentration decreases as it passes through the cathode 

flow field. Hence, the local mass transport limited current density decreases with distance 

along the cathode flow field, and the total current decreases as the fuel flow rate is decreased. 

It has been shown that the relationship between current and fuel flow rate follows eq. 6.6,12  

 

I =  navFCinu (1 − exp (−
Ilim

navFCinu
))                                              (6.6) 

In the chapter 5.3, eq. 6.6 is used to determine nav values for a cell under crossover 

mode of operation in which methanol and ethanol were fed to the cell. However, it is more 

common to operate the cell as a fuel cell or in an anode polarization mode. Anode polarization 

curves are used to evaluate how a catalyst performs and measuring nav in this mode can 

provide an indication of the product distribution in the cell. When the cell is operating in fuel 

cell mode it can produce power for industry and domestic purposes. Therefore, it is quite 
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useful to test eq. 6.6 for these two modes of operation. Again, it is good to recall that fuel 

losses due to crossover in a fuel cell decrease the efficiency of fuel cell. As a result, this 

method can not only give insight about product distribution but also may reveal the losses of 

fuel in the various operation modes. 

Moreover, in the previous chapter, eq. 6.6 was only tested for the mass transport 

regions where the current was at the limiting value. In a fuel cell, currents are norally lower 

than the limiting current and so it is important to explore the method for potentials below the 

limiting current region.  

The purpose of the work described in this chapter was to test eq. 6.6 for the different 

modes of operation of the cell shown schematically in Fig. 6.1. Furthermore, to evaluate and 

enhance the accuracy of the method, the concentration of methanol in the cell exhaust was 

measured by UV-visible spectrophotometry. Parts of this work have been published.17  

 

 

 

 

 

 

 

 

Figure 6.1. Illustration of the three modes of cell operation used in chapter 6. 



130 
 

6.2 Experimental 
 

All the chemicals and apparatus that were used for experiments in this section were the same 

as in chapter 5.   

Concentrations of methanol in the anode exhaust solution were measured 

spectrophotometrically with a Cary 100 UV-Visible Spectrophotometer. A sodium 

nitroprusside chromogenic reagent13 (2 mL; prepared from 100 mL sodium nitroprusside 

solution (10% w/v), 100 mL potassium ferricyanide solution (10% w/v), 100 mL sodium 

hydroxide solution (5% w/v) and 300 mL of deionized water) was added to 2 mL samples 

collected from the cell, and the absorbance was measured at 481 nm. Formaldehyde does not 

interfere at levels below 0.6 mg mL-1 (20 mM) for 1.2 mg mL-1 (37 mM) methanol.13 Based in 

the nav values obtained in this work, the formaldehyde levels in the anode exhaust could not 

have exceeded 17 mM, and would have been much less due to further oxidation to formic 

acid, and diffusion into the cathode exhaust stream.14  Also, no interference was seen when 20 

mM formic acid was added to a 50 mM solution. 

6.3 Result and discussion 
 

6.3.1 Crossover mode 

 

In chapter 5, we described our method for determining nav for the cell in crossover mode. In 

this mode, methanol is pumped to the cathode and the anode is supplied by N2. Methanol 

diffuses from the cathode to the anode. In the anode, by imposing a potential, fuel can be 

oxidized to carbon dioxide, formaldehyde and formic acid (Fig 6.1 A). However, the method 
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for determining nav would not be accurate if there was leakage of methanol from the cell or 

methanol was not quantitatively electrochemically oxidized in the anode. Therefore, the 

method may encounter errors and inaccuracies. The purpose of this section was to assess the 

accuracy. It is important to recall that in crossover mode, the cathode acts as a dynamic 

reference electrode. 

To check the accuracy of the method by using measurements of methanol 

concentration in the cell exhaust (Cexhaust), it was necessary to calculate the theoretical 

concentration of methanol coming out of the cell.  

In chapter 5, we showed that under steady state conditions, the concentration profile 

along the fuel flow field (
𝑑𝐶(𝑥)

𝑑𝑥
) can be written as eq. 6.7: 

𝑑𝐶(𝑥)

𝑑𝑥
=  −

𝐷 𝐶(𝑥)

𝑙ℎ𝑣
                                                            (6.7) 

D is diffusion coefficient (cm-2 s-1), l is the thickness of the membrane, h is the height of the 

flow channel and v is the flow velocity (cm s-1).  The flow velocity can be written as, 

𝑣 =  
𝑢

ℎ𝑤
                                                                             (6.8) 

Where u is the volumetric flow rate (cm3 s-1) and w is the width of channel. Substitution of eq. 

6.8 and 6.7 gives eq. 6.9,  

𝑑𝐶(𝑥)

𝑑𝑥
=  −

𝑤𝐷𝐶(𝑥)

𝑙𝑢
                                                                (6.9) 

The parameter D/l can be obtained from the limiting current, 



132 
 

𝐼𝑙𝑖𝑚  =
𝑛𝑎𝑣𝐹𝐴𝐷𝐶𝑖𝑛

𝑙
                                                           (6.10) 

Where F is the Faraday constant, A is the membrane area (A = wd, where d is the length of 

flow field), Cin is the initial concentration of methanol solution. Rearrangement of eq. 6.10 for 

D/l and then substitution of equation. 6.10 and 6.9 gives eq. 6.11, 

𝑑𝐶(𝑥)

𝑑𝑥
=  −

𝐼𝑙𝑖𝑚𝐶(𝑥)

𝐹𝑛𝑎𝑣𝑢𝐶𝑖𝑛𝑑
                                                              (6.11) 

Now, from the law of natural growth from calculus,  

𝑑𝐶(𝑥)

𝑑𝑥
=  𝐾𝐶(𝑥)                                                                      (6.12) 

By rearrangement and taking the integral of eq. 6.12,  

𝑑𝐶(𝑥)

𝐶(𝑥)
=  𝐾𝑑𝑥                                                                       (6.12) 

∫
𝑑𝐶(𝑥)

𝐶(𝑥)
= ∫ 𝐾𝜕𝑥                                                                    (6.13) 

By solving eq. 6.13, 

ln 𝐶(𝑥) = 𝐾𝑥 + 𝐶                                                                        (6.14) 

𝐶(𝑥) = 𝑒𝑘𝑥 . 𝑒𝑐                                                                          (6.15) 

And finally,   

𝐶(𝑥) = 𝐴 𝑒𝐾𝑥                                                                            (6.16) 

the same method of calculus can be applied to eq. 6.11: 
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∫
𝑑𝐶(𝑥)

𝐶(𝑥)

𝐶(𝑒𝑥ℎ𝑎𝑢𝑠𝑡)

𝐶(𝑖𝑛)

 =  ∫
− 𝐼𝑙𝑖𝑚

𝑢 𝐹𝑛𝑎𝑣𝑢𝐶𝑖𝑛𝑑
 𝑑𝑥

𝑑

0

                               (6.17) 

𝑙𝑛
𝐶𝑒𝑥ℎ𝑎𝑢𝑠𝑡

𝐶𝑖𝑛
=  − 

𝐼𝑙𝑖𝑚

𝐹𝑛𝑎𝑣𝑢𝐶𝑖𝑛𝑑
 𝑑                                           (6.18) 

With antilog from eq. 6.18, 

𝐶𝑒𝑥ℎ𝑎𝑢𝑠𝑡

𝐶𝑖𝑛
=  exp (− 

𝐼𝑙𝑖𝑚

𝐹𝑛𝑎𝑣𝑢𝐶𝑖𝑛
)                                          (6.19) 

And finally, 

𝐶𝑒𝑥ℎ𝑎𝑢𝑠𝑡 = 𝐶𝑖𝑛  exp (− 
𝐼𝑙𝑖𝑚

𝐹𝑛𝑎𝑣𝑢𝐶𝑖𝑛
)                                 (6.20) 

 Eq. 6.20. depicts how the concentration of methanol coming out of the cell decreases 

as the flow rate is decreased. In this equation, Cin is equal to the initial concentration of 

methanol pumped into the cell (Cin = C0). Therefore, this equation can be used to calculate 

expected methanol concentration in the cell exhaust. 

Table 6.1 shows experimental results and parameters derived from them for two 

different concentrations of methanol at high and low fuel flow rates (0.5 and 0.02 ml min-1, 

respectively). As discussed in chapter 5, it is not necessary to make measurements at more 

than two flow rates to determine Ilim and nav. A high flow rate can be used for estimation of the 

limiting current in the mass transfer region and low a flow rate is suitable for obtaining nav due 

to the fact that the decrease in current and concentration of methanol are strongly related to 

nav.  
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Also, two different concentrations of methanol (50 and 100 mM) were selected to 

show that the method is independent of fuel concentration. These experiments were performed 

at sufficiently high constant potential to make sure that the current was in the mass transport 

region. During the experiment, samples were collected from the cathode exhaust (Fig. 6.1A) at 

0.5 and 0.02 mL min-1 for analysis of the methanol concentration in the cell's exhaust by UV-

visible spectrophotometry. The experimental values of current at different flow rates and 

concentrations of methanol were measured while the current readings were stable and free of 

fluctuations.   

Table 6.1. Theoretical and experimental results for Ilim, Cexhaust and nav for 50 and 100 mM 

                 MeOH at two different flow rates at 50 ͦC and 0.7 V. 

 

The values of Ilim and nav in this table were determined by simultaneously solving eq. 

6.6 for the two flow rates. Then, the values of Cexhaust (for each concentration of methanol) 

were determined by using results of nav, Ilim and eq. 6.20. As can be seen from table 6.1, the 

experimental and calculated Cexhaust agreed well for 50 mM methanol while discrepancies were 

C0 

(mM) 

Flow rate 

(mL min-1) 

I/mA 

(experimental) 

Ilim/mA 

(calculated) 

Cexhaust/mM 

(experimental) 

Cexhaust /mM 

(calculated) 

 

nav 

 

50 

0.5 18.6  46.1 46.0  

5.7 0.02 9.1 19.4 8.4 6.0 

 

100 

0.5 36.5  87.2 95.8  

5.3 0.02 17.2        38.1 15.1 34.7 
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somewhat higher at 100 mM, but still within reasonable experimental uncertainty given that 

only two flow rates were employed. Since, in crossover mode, a very high potential was 

applied to the anode, methanol can only exit the cell from the cathode. Therefore, the 

reasonable agreement in the experimental Cexhaust (at the high flow rates) and C0 are showing 

that there was no leakage of methanol in the cell.  

On the other hand, the amount of methanol that crosses the membrane from the 

cathode to the anode, is electrochemically oxidized to products. The nav values in the table 6.1 

are representative of relative rates of electrochemical reactions 5.1, 5.2 or 5.3. They are close 

to the value of 6 for complete oxidation of methanol to carbon dioxide, however, they indicate 

that there was also some partial oxidation of methanol to formaldehyde and/or formic acid. 

Although variation in the characteristics of the membrane (hydration level, thickness, 

etc.) and electrodes (e.g. accumulation and oxidation of adsorbates) during the course of 

experiments can effect the method, the data in the Table 6.1 shows it is valid and provides 

reasonable estimates of nav. However, data obtained at additional flow rates should be 

employer to increase precision.17  

` 

6.3.2 Anode polarization mode 

 

Evaluation of fuel cell catalyts is often performed in an anode polarization mode (Fig. 6.1 B). 

In this mode, the cell acts as an electrolysis cell in which fuel is pumped to the anode and N2 

supplied to the cathode. In this cell set-up, the cathode acts as a dynamic hydrogen electrode, 

and chemical reaction with oxygen (used as the cathode in a fuel cell) is avoided. 
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To check the validity of eq. 6.6 for operation of a cell in anode polarization mode, 

methanol was pumped to the anode (Fig. 6.1 B). Now, there are three pathways for the methanol: 

electrochemical oxidation at the anode, crossover from the anode to the cathode via the 

membrane and exhaust of unreacted methanol from the anode. Therefore, in addition to 

measuring the current vs. flow rate to determine nav, the methanol concentration in the cell 

exhaust was measured by UV-visible spectrophotometry (λ=481 nm).  

 

 

 

 

 

 

 

 

           

  

        

                 

Figure 6.2. Anode polarization curves for the oxidation of 111 mM and 21.9 

                  mM methanol at 50 ͦC in the cell configurations in Fig. 6.1B. The 

                  methanol flow 

                   was 0.5 mL min-1. 
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To check the validity of eq. 6.6 for different concentrations of methanol, solutions with 

concentrations of 21.9 mM and 111 mM methanol were pumed to the cell in ande polarization 

mode. The temperature of the experiments was fixed at 50 ͦC. To reach the mass transport 

region (the limiting current value), a potential of 0.7 V was applied to the anode of the cell. 

Fig. 6.2 shows the polarization curves, these experiments, which were conducted at a 

sufficiently high flow rate (0.5 mL min-1) to prevent significant changes in concentration of 

fuel in the flow field. The high current generation (Ilim) at each concentration is because of 

oxidation of all the fuel reaching the anode. It can be seen from this figure that the limiting 

current decreased when methanol concentration was decreased,  from ca. 85 mA to ca. 17 mA 

for 111 mM methanol and 21.9 mM methanol, respectively.  

Table 6.2 shows experimental currents, anode exhaust concentrations, and apparent nav 

values for the cell in Fig. 6.2B, when the cathode was purged with nitrogen.  

Table 6.2. Theoretical and experimental results for Ilim, Cexhaust and nav for 21.9 mM and 111 

                  mM MeOH at two different flow rates at 50 ͦC and 0.7 V for the cell in anode 

                  polarization mode. 

 

C0 

(mM) 

Flow rate 

(mLmin-1) 

I/mA 

(experimental) 

Ilim/mA Cexhaust/mM 

(experimental) 

Cexhaust /mM 

(calculated) 

 

nav 

 

21.9 

0.5 17.1  17.4 17.0  

4.3 0.02 3.01 19.3 3.5 0.04 

 

111 

0.5 84.0  85.4 90.0  

5.0 0.05 44.4 93.2 27.7 13.6 
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The measured concentration of methanol in the cell exhaust (Cexhuast), Ilim and nav 

values in the table 6.2 were detremined by simulitaenously solving the eq. 6.6 and 6.20 for two 

different flow rates. In anode polarization mode, when the potential was in the limiting current 

region (the plateaus at the polarization curves in Fig. 6.2) all of the methanol reaching to the 

anode catalyst layer is oxidized. Therefore, crossover of methanol from the anode throught the 

membrane can not occur. In Table 6.2, the high concentrations of methanol in the anode 

exhaust at the high flow rate confirms that methanol crossover was negligible. From table 6.2, 

the values of nav were 4.3 and 5 for 21.9 and 111 mM methanol, respectively. These low 

electron generations indicate that methanol undergoes some partial oxidation to formaldehyde 

and/or formic acid under these condition. It has been shown that partial oxidation of methanol 

to formaldehyde or formic acid leads to lower electron generation at the surface of platinum.15, 

16 

As can be seen from table 6.2, there was a significant difference between the 

experimental and calculated Cexhaust values at the low fuel flow rate for 21.9 mM methanol. 

From the table 6.2, at the low flow rate (0.02 mL min -1) for 21.9 mM methanol, the 

experimental Cexhaust (measured by UV-vis spectrophotometry) was ca. 3.5 mM, while the 

calculated Cexhaust (from eq. 6.20) is ca. 0.04 mM. This high value of the experimental Cexhaust 

can be attriburted to the oxidation of the methanol molecules that had been adsorbed (during 

the previous experiment at 0.5 mL min-1) into porous anode graphite plate. Note that the 

higher experimental Cexhaust over the calculated Cexhaust (27.7 mM vs. 13.6 mM) at 111 mM 

methanol clearly shows that crossover has not taken place in the cell.  
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To check eqs. 6.6 and 6.20 for a potential below the limiting curent region, where crossover is 

inevitable, the anode potential was decreased from 0.7 V to the half-wave potential of 0.35 V. 

During experiments with 111 mM methanol, we became concerned that the production of 

carbon dioxide bubbles at high methanol concentration could cause an error in the application 

of eq. 6.6.  Moreover, at the high concentration of fuel, the ohmic resistance of the cell 

becomes a significant phenoemenon in the cell. Therefore, experiments were conducted only 

with 21.9 mM methanol. 

Table 6.3 depicts the experimental and calculated results for current and Cexhaust of the 

cell in an anode polarization mode for 21.9 mM methanol, with the potential constant at 0.35 

V (half-wave potential).  

Table 6.3. Theoretical and experimental results for Ilim, Cexhaust and nav for 21.9 mM MeOH at 

                 Different flow rates at 50 ͦC and 0.35 V for the cell in anode polarization mode. 

 

Solving eq. 6.6 for the data in table 6.3 gave nav = 5.1. The calculated Cexhaust values were 

determined by using calculated Ilim and nav values. The calculated concentrations of methanol 

in the cell exhaust were 19.8 mM and 1.9 mM for high and low flow rates, respectively. In 

table 6.3, at the half-wave potential, the experimental limiting current was only ca. 50% of the 

current at 0.7 V. It is important to note that in the cell, electrochemical oxidation of methanol 

C0 

(mM) 

Flow rate 

(mL min-1) 

I/mA 

(experimental) 

Ilim/mA 

(calculated) 

Cexhaust/mM 

(experimental) 

Cexhaust /mM 

(calculated) 

 

nav 

 

21.9 

0.5 8.3  17.8 19.8  

5.1 0.02 3.6 8.8 4.6 1.9 
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produces a faradaic current. Crossover of methanol to the cathode results in loss of methanol 

that will not produce any current. The higher calculated Cexhaust vs. the experimental Cexhaust 

(19.8 mM vs 17.8 mM) clearly shows that the was significant crossover of fuel from the anode 

to the cathode. 

In order to account for methanol crossover at potentials below the limiting current 

region, the model described in chaper 6 has been modified. The modified treatment can be 

found in our published paper. 17 

 

6.3.3 Operation of the cell as a fuel cell 
 

Fuel cells are attractive energy production devices due to their many advantages over fossil 

fuels. However, fuel crossover from the anode to the cathode, and also oxygen crossover from 

the cathode to the anode can decrease the cell efficiency18-20. Therefore, to study the effect of 

fuel crossing from the anode to the cathode on the use of eq. 6.6, the cell was operated in fuel 

cell mode (Fig. 6.1C). In this mode (galvanic cell), methanol was pumped to the anode while 

air was passed through the cathode. There are four pathways for the methanol: electrochemical 

oxidation at the anode, chemical reaction with oxygen that crosses over from cathode to the 

anode, crossover to the cathode and exhaust from the anode. The purpose of this section was 

the measurement values of nav for a real fuel cell and assessment of the effect of crossover.              

Fig. 6.4 shows a polarization curve for a cell operated as a fuel cell (Fig. 6.1 C). To 

ensure that the current reached the mass transport region, a low concentration of methanol was 
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pumped to the anode (21.25 mM methanol). In fuel cell mode, both the anode and the cathode 

potentials change as the potential is varied. 

 

 

 

 

 

 

 

 

 

Based on the polarization curve, two different potentials were selected for the nav 

measurements: a constant potential of 0 V where the fuel cell is operating in the mass transport 

region and 0.4 V (half-wave) where crossover takes place due to the mixed diffusion and kinetic 

control of the current. Table 6.4 illustrates data for experiments when 21.25 mM methanol was 

pumped to the anode of fuel cell at low and high fuel flow rates at these two different potentials. 

In this table, nav values were obtained by fitting the current values to equation 6.6.   

In the limiting current region (0 V), where current generation is limited by the mass 

transport of methanol from the bulk to the anode catalyst layer, fuel crossover should not take 

place. The much higher value of the experimental Cexhaust (18.8 mM) than the calculated 
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Fig. 6.3. Fuel cell polarization curves for the oxidation of 21.25 mM methanol 

              at 50 ͦC in the cell configuration shows in Fig. 6.1C. The methanol 

              flow rate was 0.5 mL min-1. The cathode. was purged with air. 
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Cexhaust (15.5 mM) at the high flow rate (Table 6.4) clearly implies that methanol crossover was 

minimal. It also indicates that nav has been underestimated by use of equation 6.6. 

Table 6.4. Theoretical and experimental results for Ilim, Cexhaust and nav for 21.25 mM MeOH at 

                  two different flow rates at 50 ͦC for a fuel cell at two different potentials. 

 

Solving eq. 6.6 for the limiting current region (0 V) gave nav = 4.0. This low value of 

electron generation in the mass transport region indicates a partial oxidation of methanol to 

formaldehyde and/or formic acid at the surface of the anode catalyst layer (complete oxidation 

of methanol to carbon dioxide produces 6 electrons). In fact, it has been shown that partial 

oxidation of methanol to formic acid can be a significant reaction in a fuel cell.12, 20-22  

Although oxygen crossover from the cathode could lead to chemical reaction in the 

anode and decrease the methanol concentration, the high concentration of methanol in the cell 

exhaust at the low flow rate shows that this was not significant. 

In the potential region below the limiting current, crossover of methanol from the 

anode to the cathode is inevitable in the cell. When the potential was constant at 0.4 V, there 

Potential 

(V) 

Flow rate 

(mL min-1) 

Ilim/mA 

(experimental) 

Ilim/mA 

(calculated) 

Cexhaust/mM 

(experimental) 

Cexhaust /mM 

(calculated) 

 

nav 

 

0 

0.5 18.4  18.8 15.5  

4 0.02 2.7 21.5 2.5 0.008 

 

0.4 

0.5 9.4  18.04 17.3  

2.9 0.02 2.00 10.4 3.15 0.12 
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would have been a significant methanol concentration at the interface between the anode 

catalyst layer and the membrane. This would lead to loss of methanol into the cathode and 

chemical reaction between oxygen and fuel. As a result of this chemical reaction, the 

efficiency of the fuel cell would be decreased dramatically.  

In table 6.4 when the potential was below the limiting current region, the calculated 

limiting current dropped to ca. 48% of the limiting current in the mass transfer region. Solving 

eq. 6.6 for the currents at a fixed potential of 0.4 V (Table 6.4) gave an nav of 2.9. This low 

value, together with the low calculated concentration of methanol in the Cexhaust at the high 

flow rate, indicattes that eq. 6.6 is inaccurate here due to crossover. This was confirmed by 

modelling of the effects of crossover in our published paper. 17 

6.4 Conclusion 
 

Measurements of mass transport limited currents for methanol oxidation in fuel cell hardware 

as a function of flow rate can provide an estimate of the average number of electrons obtained 

per methanol molecule (nav). Measurements of nav were performed in two different potential 

ranges. In the high potential region, current generation reaches the limiting current value, 

where mass transport of fuel to the electrode is controlled by methanol diffusion. As a result, 

imposing a high potential to the anode may lead to oxidation of methanol to carbon dioxide, 

formic acid/formaldehyde. In the lower potential region (e.g. at the half-wave potential) 

crossover of methanol across the membrane takes place.  Methanol crossover caused errors at 

the lower potentials where the current was less than current in the mass transport region. Also, 
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it was shown that in the lower potential region, analysis of methanol concentration is 

necessary. 

It was found that when the cell was operated in anode polarization mode, incomplete 

oxidation of methanol to formic acid/formaldehyde was significant in the mass transport 

region. It was shown that errors and inaccuracies due to crossover of methanol were 

significant in the lower potential region in anode polarization mode. 

In the fuel cell mode, incomplete oxidation of methanol to formic acid was 

significant in the mass transfer region. At potentials below the limiting current region, the low 

value of nav (2.9) indicated that fuel crossover needs to be taken into account. 

Finally, it is clear that use of only two flow rates of fuel (especially with the low 

flow rate of 0.02 mL min-1) is not enough for accurate determination of nav value. Also, 

adsorption of fuel into the graphite plates of the cell can be caused of error in nav calculation. 

Therefore, to obtain better results, it is necessary to use more different flow rates of fuel for 

determination of nav value. Additionally, the cell needs to be modified to fill the pores of the 

graphite plates.  
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Chapter 7 

 

 

Summary and future work 
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7.1 Summary 
 

It was shown that potential modulation increased the chemical efficiency of a direct ethanol 

fuel cell and an ethanol electrolysis cell by promoting carbon dioxide production. Also, the 

effect of potential limits for Pt and Pt-Ru anode catalysts was explored. It was shown that 

when cyclic potentials were applied to the cell, the yield of carbon dioxide was more than that 

of the cell with linear sweep potentials. Also, with the application of cyclic potentials, the 

amplitude of the current was reasonably positive and stable. In contrast, the current generation 

decayed very quickly with use of constant potentials. The effect of temperature was 

investigated on the ethanol oxidation reaction. It was shown that the chemical efficiency of the 

ethanol oxidation reaction was increased at higher temperatures. Furthermore, it was found 

that although the Pt-Ru anode provided lower yields of carbon dioxide than Pt, it significantly 

decreased the anode potential.  

An AC voltage was applied on the fuel cell. It was shown that with the sinusoidal 

waveform, the carbon dioxide production and current generation were increased. With the AC 

potential, ethanol was adsorbed and dissociated at the cell potential peaks. In the minima of 

the cell potential, when the current was high, adsorbed carbon monoxide was oxidized to 

carbon dioxide and as a result, the chemical efficiency of the ethanol oxidation reaction 

increased. 

A new methodology for determining the average number of electrons (nav) released 

during ethanol oxidation was developed. This method, which was independent of the type of 

fuel, was based on the quantitative oxidation of fuel at the anode when it passed through the 

membrane. It was found that the nav values were related to the dependence of the cell current 
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on the fuel flow rate. To eliminate any error due to oxygen crossover, the anode was purged 

with nitrogen. Fuel (ethanol or methanol solution) was pumped to the anode (crossover mode). 

It was shown that in crossover mode and at high potential (the limiting potential and mass 

transfer region), when ethanol solution was pumped to the cathode, the nav values increased 

with increasing in temperature of the cell. On the contrary, when the concentration of ethanol 

was increased, nav values decreased.  

To increase the accuracy of the method, the concentration of fuel in the cell exhaust 

was determined by UV-visible spectroscopy. Also, the method was applied on an electrolysis 

cell in anode polarization mode (methanol at the anode, nitrogen at the cathode). It was shown 

that at the mass transfer region in anode polarization mode, incomplete oxidation of methanol 

to formic acid/formaldehyde was a significant pathway. The method was also used for the cell 

in anode polarization mode for potentials below the mass transfer region where fuel crossover 

is inevitable.  

Finally, the method was checked for a real fuel cell. The low value of nav when zero 

potential was applied to the fuel cell, indicated that partial oxidation of methanol was 

significant. However, at 0.4 V an unreasonably low value of nav indicates that crossover 

caused errors for the method. Hence, the method needed some modifications.  

 

7.2 Future work  
 

Based on the results obtained in this research, there are some areas that should be further 

explored. Other catalysts (such as Pt-Sn or Pt-Rh) should be used to investigate potential 

modulation on the ethanol oxidation reaction. In this work, only the chemical yield of carbon 
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dioxide was measured with an IR-detector. However, for better analysis, other ethanol 

oxidation products such as acetic acid, acetaldehyde, ethane and methane should be measured. 

One way is the use of in situ infrared spectroscopy such as subtractively normalized interfacial 

Fourier transform infrared spectroscopy (SNIFTIRS) or single potential alteration surface 

infrared spectroscopy (SPAIRS). These spectroelctrochemical techniques can provide more 

accurate data about EOR products. 

     As mentioned in the chapter 3, the response time of the carbon dioxide detector was 

long. Therefore, for more accurate and precise reading of carbon dioxide signal, it is necessary 

to develop a system with a shorter response time to the carbon dioxide signal.  

     Also, the method that was developed for determination of the nav value needs 

further modification for the potentials below the mass transfer region. One way to achieve this 

goal is to input a new mathematical term in eq. 5.13 as a crossover parameter. Also, to 

enhance the accuracy of the method, the anode and the cathode exhausts of the cell in the 

anode polarization mode and a real fuel cell should be measured quantitatively. To achieve 

this, the anode and cathode exhaust should be combined and measured with a spectroscopy 

technique, such as NMR.  

    The method that we developed here, was only evaluated for the methanol and 

ethanol oxidation reactions at platinum catalyst. It should be further examined for other 

catalysts such as Pt-Ru, Pt-Sn1-3 and Pt-Rh4 which have shown better activities toward the 

ethanol oxidation reaction. 
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