
Continuous Authentication and its Application in

Personal Health Record Systems.

by

c© Navid Shekoufa

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

August 2017

St. John’s Newfoundland

Abstract

Authenticating users in commercial smartphones is currently a naive process

putting the smartphone owner in security risks in events such as unauthorized device

sharing, device loss or theft, and session hijacking. With the recent interest of gov-

ernmental and health organizations to provide their users with applications that can

be run on their smartphones, securing these devices with measures above the cur-

rent solutions is imperative. In this research, we propose a continuous authentication

module for a Personal Health Record system that monitors its users for authenticity

over time via their touch biometrics and denies access to those who can not satisfy

authentication criteria.

The proposed solution can be used in any smartphone application that is highly

sensitive in terms of privacy and security which needs continuous authentication while

running. We will also propose a notification module that helps to build transparency

for the user about how their shared personal information is used in the system, so they

will be more willing to trust our application. The proposed continuous authentication

was implemented in an actual Personal Health Record system for Android enabled

smartphones to make it more secure and practical to use. The results show an average

precision of above 95% in detecting whether a user is the legit owner of a smartphone

or not. Finally, we composed an open-source dataset for touch biometrics and made

it available to the public. This is the first publicly available dataset related to touch

biometrics.

ii

Acknowledgements

I would first like to thank my supervisor, Prof. Saeed Samet at Memorial Uni-

versity of Newfoundland and Labrador. The door to Prof. Samet’s office was always

open whenever I faced a challenge or had a question about my research. He allowed

this research to be my own work, but always guided me in the right direction whenever

he thought I needed it.

Also, I must express my very profound gratitude to my parents and to my spouse,

for providing me with unfailing support and continuous encouragement throughout

my years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them.

iii

Contents

Abstract ii

Acknowledgements iii

List of Tables vii

List of Figures viii

1 Preliminary Definitions 1

2 Introduction 7

3 Related Work 13

4 Research Questions and Methodology 20

4.1 Composing an open-source dataset for touch dynamics 22

4.1.1 Data Collection . 22

4.1.2 Determining the optimal feature set for model creation 24

4.1.3 Designing a mobile application to gather touch data 25

4.1.4 Processing the raw aggregated data 27

iv

4.2 Designing a continuous authentication module 28

4.2.1 Composing .arff files from the gathered raw data 28

4.2.2 Choosing an appropriate machine learning technique 30

4.2.3 Creation of the models . 31

4.2.4 The design of the module . 32

4.3 Designing a Detailed Notification System 35

4.3.1 Reviewing current health related applications 35

4.3.2 Design . 38

5 Implementation 43

5.1 TouchSense application . 43

5.1.1 Software environment . 44

5.1.2 Hardware environment . 44

5.1.3 Implementation details . 45

5.2 Automatic model creation application 48

5.2.1 Software environment . 49

5.2.2 Hardware environment . 49

5.2.3 Implementation details . 49

5.3 Continuous authentication module in PHR 53

5.3.1 Software environment . 53

5.3.2 Hardware environment . 54

5.3.3 Implementation details . 54

6 Results 59

6.1 TouchSense usage results . 59

v

6.2 The effect of removing outliers in the gathered data 62

6.3 Evaluating the importance of each feature 68

6.4 Deciding the best performing and most practical classifier 75

7 Conclusion and Future Work 80

Bibliography 83

A Code Snippets of TouchSense and PHR 91

vi

List of Tables

4.1 A summary of the three assessed health-related applications. 36

6.1 The correlation values of all attributes for each device’s classifier. . . 70

vii

List of Figures

2.1 OS Device Shipments, 2015 [4]. 9

4.1 An example arff file, composed from the gathered raw data, that Weka

accepts as an input for our data mining process. 29

4.2 The flow of events when the continuous authentication mechanism is

in action. 33

4.3 Screen-shots of the main menu of the three assessed applications. a)

Personal Health Record PHR. b) Mobile Health Record and c) Track

My Medical Records . 38

4.4 The flow of events when an access to a sensitive document takes place. 39

4.5 The design of PHR application’s notification setting page. 40

4.6 A PHR application’s notification showing up in the Android’s notifi-

cation center. 41

4.7 A PHR application’s notification page with ”instant revoke” and ”dis-

miss” functionalities. 42

5.1 Two screen-shots of the TouchSense application. 45

5.2 The pop-up message that the user sees upon finishing the experiment. 46

viii

5.3 When the user responds to the pop-up, they can start the experiment

over again. 48

5.4 The user will receive an alert when the continuous authentication mod-

ule detects that they are no longer authorized to access the application. 58

6.1 TouchSense installed by different users. 60

6.2 The geographical distribution of the users who installed TouchSense. 61

6.3 The percentage of installs on each Android version. 62

6.4 Mean Absolute Error for ten different AndroidIds. 64

6.5 False Positive Rate for ten different AndroidIds. 65

6.6 Classifier Precision for ten different AndroidIds. 66

6.7 ROC Area for ten different AndroidIds. 67

6.8 Feature reduction results for 95f7f7d8b82fbe3a. 72

6.9 Feature reduction results for cb05c98191aebd7e. 72

6.10 Feature reduction results for a2f9246cfc48e9c9. 73

6.11 Feature reduction results for 6ae57ac86337d0c8. 73

6.12 Feature reduction results for 868cfad405c82e9a. 74

6.13 Feature reduction results for 5351e9daeaa79450. 74

6.14 Mean Absolute Error values of four classifiers (NN, J48, RC and BN)

for ten different participants. 76

6.15 True Positive Rate values of four classifiers (NN, J48, RC and BN) for

the same ten participants. 77

6.16 False Positive Rate values of four classifiers (NN, J48, RC and BN) for

the same ten participants. 77

ix

6.17 ROC Area values of four classifiers (NN, J48, RC and BN) for the same

ten participants. 79

x

Chapter 1

Preliminary Definitions

This chapter gives definitions of important terms used throughout the document.

• Cloud Computing: It provides ubiquitous, on-demand access-through-network

to a shared set of configurable computing devices that could easily be provi-

sioned and released with least management requirements or interactions from

the service provider parties [28].

• Internet of Things: It is a relatively new concept that has attracted much

attention in the scenario of wireless telecommunication. The main idea behind

it is the universal presence of a variety of things (objects) around us such as

different sensors, actuators and smartphones which are able to communicate

with each other to reach a unified objective [5].

• Internet of Everything: This is a more pervasive realization of Internet of

Things. As processing capabilities of computing devices increases and as more

and more people use smart devices and connect them to each other in more

1

valuable and meaningful ways, Internet of Things moves towards Internet of

Everything [8].

• Computer Security: When talking about computer security, the goal is to

address three important aspects of any computing system: confidentiality to

ensure only authorized parties can access assets, integrity to make sure that

the correctness of assets is guaranteed and only authorized parties can modify

them, and availability to certify that assets are available to authorized parties

whenever they need them [37].

• Computer Privacy: this term refers to the rights of users of computing devices

to specify to whom, how, when and in what details they are willing to share

their personal information [48].

• Authentication: In a communication between two parties, authentication as-

sures both sides that they know each other’s actual identity [14].

• Authorization: In an environment with multiple users and shared assets, it

is essential to limit access privileges (authorizations) to different parties. For

example, in a database, available authorization types can be read, write and

create which can be granted to some users and denied from some others [39].

• Encryption: It is involved with translating data from an understandable for-

mat to a meaningless ”encrypted” one and is commonly used to protect sensitive

information from unauthorized parties [1].

• Anonymization, randomization and suppression: A dataset of private in-

formation usually has attributes that can lead to revealing the identity of people.

2

Anonymization sanitizes data aiming to reduce leakage of private information.

Randomization is the process of adding noise to a dataset and suppression is

about hiding parts of data that can result in information disclosure.

• Challenge-response protocol: It is used to authenticate parties. The flow

of this protocol is as below [7]:

– Alice sends an ID to Bob in order to identify herself to Bob.

– Bob sends a challenge related to the sent ID back to Alice.

– Alice sends a response to the challenge along with a data element if she

validates the challenge. The response is based on the sent data element.

– Bob accepts the data element if he validates the response.

• One Time Password (OTP): OTP can be a sheet of paper containing pass-

words or an electronic device that is able to generate different passwords each

time requested. Ideally, a malicious user fails to impersonate a party without

having access to that sheet of paper or the electronic device [34].

• Usage session: A usage session starts right after a user is authenticated to use

a system until the privilege is taken away from them for whatever reason. In

most smartphones, a usage session is usually the time between entering a lock

or pin code, and switching the screen off.

• Session hijacking: It is a client-side attack which happens when a malicious

user steals the session information related to a rightful user of a specific website

and uses that information to override authentication to that website [32].

3

• Personal Health Record (PHR) system: Its main objective is to give

the full control of health information access to the patient as the data owner.

It also enables fast sharing of patient information with physicians and health

professionals and helps with reducing the need for storing patients’ information

on papers, allowing them to have their whole medical history in one place. [13].

• Biometrics: Generally, it is defined as any personal physical characteristic

that is automatically measurable, robust and distinguishable and can be used

to identify a party [51].

• Social engineering: It is an approach for unauthorized access to personal

information of computing devices via non-technical means. As an example, one

can call a library information service, trying to impersonate a library member.

He asks the server if his postal address has been updated in the library directory,

giving the member’s name as the identifier. The clerk looks the name up, and

reads the current address to the impersonator. In this scenario the malicious

user has gained unauthorized access to someone’s postal address through non-

technical means [44].

• Digital signature: Generally, it is considered as a set of features extracted

from an entity, stored somewhere such as a file or database table for later

authentication purposes. A significant trait of digital signature is that it is

enough to substantially represent the content of the original entity, so that if it

is tampered with, the receiving party will know, verifying the digital signature

with the entity’s content [26].

4

• Pattern recognition: It is the process in which specific persons or machines

understand complex and seemingly independent events as identifiable patterns.

It is the principal idea behind almost every machine learning technique [6].

• Classification: It is the process of categorizing a dataset into mutually exclu-

sive groups in a way that all the members in a group are as similar as possible

to each other while being as far as possible in comparison with the members of

the other groups [20].

• Bayesian network: It is a mathematical approach that represents a joint

probability distribution P among a set variables V . A bayesian network is

usually used to model domain knowledge, especially in medicine [45].

• Genetic Programming: It is an inductive machine learning technique that

evolves a computer program to accomplish a predefined task by a collection of

stated examples and has been applied to complex, nonlinear problems, especially

where the domain of the solution is not known or easily guessable [50]

• Support Vector Machine (SVM): This technique is a powerful statistical

learning method which is used for binary-class classifications. It is capable of

finding non-linear solutions for complex problems which other machine learning

techniques can not find appropriate solutions for [46].

• Overfitting: Overfitting is a problem that can happen in many machine learn-

ing techniques such as SVMs and bayesian networks. It occurs when a complex

generated model performs better on training data than a simpler one but per-

forms worse on test data [31].

5

• Application Programming Interface (API): It is a set of functions, proto-

cols and resources for developing software applications. APIs allow developers

to use third-party services much more easily [2].

• Integrated Development Environment (IDE): It is a programming envi-

ronment with a graphical user interface, a text editor for writing codes, a com-

piler and/or interpreter and also, a debugger. Examples of IDEs are Eclipse,

JBuilder, DreamWeaver and WebStorm [3].

6

Chapter 2

Introduction

Before 1990s, computing devices, were mostly isolated and keeping them secure was

usually considered as a human task, done by the administrator of the devices. After

the Internet stepped into the computing world, and we slowly began to realize the

distributed computing capabilities of connected devices, things changed a lot and

everything became much more complicated.

Cloud computing, Internet of Things or even Internet of Everything are the most

recent realizations of the Internet revolution back in 1990s, enabling highly scalable

distributed environments where data and information are not kept inside an isolated

computing device, but are rather distributed amongst a huge amount of computing

nodes all around the world. In such a distributed environment, keeping sensitive data

and information secure is not a human task done by a sole administrator.

In our modern world, the Internet revolution has introduced lots of challenges

in the field of security and privacy. A lot of research has been done to address

these challenges. Solutions such as authentication, authorization, anonymization,

7

randomization, suppression, and different types of encryption over sensitive data are

amongst the products of research done in this field.

One of the well-known solutions to secure a computing system is authentication.

Basically, authentication is done via entering a password before having access to a

sensitive source. This approach is the most straightforward mechanism for making

sure a party is authenticated. However, recently, the authentication process has been

enriched with other mechanisms such as challenge-response questions, security tokens,

one time passwords (OTP) and two-step verifications.

With different sensors, computing devices can master more complex and accurate

authentication approaches, as well. Using built-in cameras and finger-print read-

ers, biometric authentication can be used in computing devices. However, these

approaches usually require special conditions to operate properly and are also expen-

sive.

The biggest problem with such approaches is that the whole process will be done

once, initially, hence putting the computing system at security risks such as unau-

thorized device sharing, device lost/theft and session hijacking [43]. These security

risks are more visible when the computing systems we are referring to are portable

smartphones.

Smartphones have become inseparable entities from our everyday life. Our gen-

eration is highly dependent on the functionalities introduced by such devices, to the

extent that life can get extremely difficult without them. Also, the technology in the

field grows so fast that currently the computational landscape has changed drastically

and in some scenarios smartphones outperform laptops and desktops [10]. Having this

in mind, it’s a legit assumption that currently, there are more security risks to address

8

with regards to smartphones in comparison with traditional laptops and desktops.

Figure 2.1: OS Device Shipments, 2015 [4].

According to [4], smartphones having Android Operating System (OS), are the

most popular devices in the world. See Figure 2.1 for details on OS device shipments

in 2015. The most frequently used authentication methods in smartphones having

an Android Operating System are entering an unlock pattern, or a short-length pin

code and touching a sequence of specific areas on the screen. These methods are

all considered as static authentication, meaning they run only at the beginning of a

usage session.

Static authentication may seem convenient for most scenarios in using a smart-

phone, and actually is the only authentication mechanism that is available in com-

mercial smartphones nowadays. On the other hand, continuous authentication is a

whole other concept in the way users are authenticated and monitored to stay so,

throughout the whole session of device usage.

Acquiring information about user’s biometrics sounds like a great idea for enabling

continuous authentication. In the most naive approach, the user can be asked to

provide biometric information such as fingerprints or iris pattern via some sensors,

9

every few seconds or minutes. This approach is not really practical for multiple

reasons. Providing sensors for reading fingerprints or iris patterns is costly. Also, it

will be a huge burden for the user to provide such information every now and then.

Moreover, providing information such as iris pattern requires special conditions, such

as enough light intensity and having a front camera.

Recently, research has been done on considering touch behavior of smartphone

users as a biometric feature, hence making it possible to create a model of the behavior

of a smartphone owner and deciding if the current user is the actual owner or not.

This approach is gaining popularity because it requires no extra sensors and peripheral

devices to be connected to smartphones. All the required information for creating

such a model will be gathered from touch sensors that are already there in all touch

enabled smartphones.

As mentioned before, continuous authentication can help preventing risks such as

unauthorized device sharing, device lost or theft and session hijacking. These risks

are more pronounced when smartphones have sensitive applications and information

installed on them. Health-care applications are indeed amongst the most sensitive

applications and recently, people tend to use these types of applications on their

smartphones more frequently.

Using touch dynamics as a biometric feature for smartphones can help a lot in this

scenario, where users are not only asked to pass through a traditional authentication

method, but also will be continuously monitored so that they will stay authenticated

throughout the whole usage session.

In this proposed research, the main focus will be on applying continuous authenti-

cation on a secure revocable Personal Health Record (PHR) System, done by Debnath

10

et al. [13], to make it robust against the shortcomings of traditional approaches for

authentication. Such a system will be used to share patient’s information among

health professionals very quickly. However, since the information being shared is sen-

sitive personal healthcare information, highest security measures must be involved in

the whole process. All the information in the system is stored in an encrypted man-

ner to minimize the security risks that reside in the communication between different

parties of the application.

In this research, the concerns regarding authentication of the user will be studied

and a continuous authentication mechanism will be proposed that ascertains that

once a user is authenticated, they will stay so, unless the usage session is terminated

deliberately. This is a huge concern, because once someone has been authorized to

access such a sensitive application and the information inside it, no encryption mech-

anism can help. In order to realize this ongoing authentication process, a smartphone

owner’s touch biometrics will be considered as the criteria for detecting the authen-

ticity of the current user of the smartphone.

A classification model will be created based on the touch behavior of a user (the

way a user touches the screen of their smartphone) that will be used later on to tell

if the current touch behavior - while using an application such as PHR - belongs to

the rightful user or not. The touch behavior information will be gathered using an

Android application called “TouchSense”, developed as a byproduct of this research.

The dataset, gathered by TouchSense will be made available to the public, so that

other researchers can easily have access to an open-source, well-documented touch

dynamics dataset.

Also, a detailed notification and audit module design for the PHR application will

11

be proposed to let its users have more control over their sensitive documents, stored

in the application and provide a transparent approach for the users to revoke the

access of the different roles involved in the system to their documents.

In the next chapter a literature review will be presented about the related work

in the field of authentication. In Chapter 4 research questions and objectives will

be outlined followed by the research methodology, while Chapter 5 describes the

implementation of the proposed approach. In Chapter 6, the results of the research

are presented. Finally concluding remarks and future work are given in Chapter 7.

12

Chapter 3

Related Work

As mentioned in the previous chapter, authentication is one of the oldest, yet most

common approaches to provide security for a computing system. Authentication is

the first and most important line of defense in a system of trusted and open networks.

The authentication mechanisms proposed in [49, 9, 23], are among the first efforts

to create robust techniques by solving problems such as revealing of a password by

gaining access to stored information in a system and preventing information leakage

by intercepting a user’s communication.

Wegman et al. [49], in 1981, provided solutions such as avoiding storing passwords

as plain-texts in a computing system and encrypting the information to be commu-

nicated, to address the two problems above. However, they indicate that solving the

problem with inadvertent password disclosure is not as straightforward as hashing

mechanisms and encryption systems. They hint that using some mechanisms for

physically recognizing the user entering a password, such as a voice signature, can be

a solution to alleviate the challenge.

13

As different approaches for authentication will be reviewed in the rest of this

section, we will see that mechanisms involved with physically distinguishing different

users are referred to as biometrics and have been a vibrant field of research. More

recent examples of research in the field of human biometrics for authentication can

be found in [18, 38, 47, 22].

The most preliminary and also most widely used authentication mechanism is us-

ing password. Generally, the user provides an identifier such as a user name or a token

card, along with a password, in order to be authenticated. In most secure systems

the password entered will not be stored as plain-text. Password authentication has

several vulnerabilities such as:

• Password might be easy to guess.

• It may be revealed by writing it down and leaving it in a highly visible area.

• Eavesdropping and social engineering can help password discovery [15].

One-time passwords are another mechanism for authentication which help in

adding more security to a computing system. McDonald [27] claims that in the 1990s,

a major attack was to passively capture and replay passwords in order to authenti-

cate users. To prevent such attacks they suggest password encryption to create an

encrypted password that can be used only once, and cannot be reused to create other

passwords. Such an encoded password is referred to as one-time password. Goyal et

al. have improved the idea of one-time password by securing it against eavesdropping

and server database collusion, simultaneously [19].

There are scenarios where authenticating communicating parties is not necessary.

As an example, when downloading an application update, the application server does

14

not need to authenticate the user who is downloading the update, and the user is not

worried about which server to download the update from. However, the user would

like to make sure that the data to be downloaded is from a trusted, non-malicious

source. In such scenarios, digital signature is considered as an authentication ap-

proach [15].

Using biometric features such as fingerprint, iris pattern and voice signature can

help us create robust authentication systems. With the recent progresses in pattern

recognition, there are already sensors on commercial computing devices that can sense

these patterns and classify them with an outstanding performance and accuracy [40].

Levy et al. propose a random fingerprint biometrics authentication process for the

users of e-learning courses [24]. They indicate that implementing such authentication

is presumed to reduce exam cheating in e-learning environments. This approach

performs well for online courses, because they provide a hassle free environment for

users to use a fingerprint sensor in order to be identified. Such an approach would

not perform well in environments where users may wear gloves, need a quick response

time for using a computing system or even have greasy fingers.

As mentioned, there are challenges for using such authentication mechanisms. As

another example, image processing has had a great progress over the course of time,

however the sensor which takes a photo of the user’s eyes for iris pattern recognition,

say a smartphone’s front camera, should be able to record high quality images so

that the classification can perform reasonably. Also, the environment has a huge

effect on such biometric authentication approaches. Light intensity can affect the

images recorded from a smartphone’s camera, and noisy environments can reduce the

performance of speech recognition [43].

15

Since availability is an essential security guaranty, an authentication method

should always be available. The problems mentioned about physiological biomet-

rics violate the availability of related approaches. However biometrics are not limited

to only physiological features such as fingerprint, voice and iris pattern. There are

behavioral biometrics, as well. As an example, the pattern in which a user is working

on their laptop’s keyboard can be a unique behavior, making it a behavioral biomet-

ric feature for that user. Some authentication systems using keystroke dynamics are

proposed in [35, 11, 52].

However, limiting the solutions to secure authentication challenge to only physi-

cal keyboards and its keystroke dynamics, neglects a vast group of computing devices

that are part of our everyday lives. Most of today’s commercial smartphones don’t

have a built-in physical keyboard. Instead, they can sense touch dynamics. The most

common used keyboards in smartphones are soft keyboards which respond to user’s

touches on the screen. Recent research has shown that touch dynamics can be consid-

ered as a good source for behavioral biometrics that can enable user authentication

[30, 42, 29].

Traditional authentication methods such as passwords and lock patterns or pass-

codes are widely used in commercial smartphones. Given the fact that smartphone

usage is usually in short intervals of time [17] unlike desktop computers, authenticat-

ing users, using password or passcode entry can be a cumbersome demand from the

user. This is why smartphones should be able to continuously authenticate the user

in the background with the least involvement from them.

User authentication can be done continuously, by constantly monitoring the user’s

touch dynamics. This way a user can steadily get authenticated beyond the initial

16

authentication. This possibility is one of the most noticeable advantages of using

touch biometrics over other physiological biometrics [43]. Ensuring that a user will

be continuously authenticated is also a great security guarantee for sensitive applica-

tions that can be run on smartphones. Recent interest of banks, governmental and

healthcare organizations to provide mobile applications for their users, increases the

need for such robust authentication approaches in commercial devices.

Among the most recent trends in healthcare applications are Personal Health

Record (PHR) systems. PHR enables fast sharing of patient information with physi-

cians and health professionals. It totally eliminates the need for storing patients’

information on papers and allows patients to have their whole medical history in one

place. [13].

According to [25], one of the big barriers of a successful implementation of PHR

systems is security concerns that users have. Security and privacy issues are a prin-

cipal barrier for implementing PHR systems. People usually don’t like to store their

personal health information in applications they don’t trust. Sending information

to third party cloud infrastructures requires a solid trust between users and cloud

provider. Debnaht et al. [13] have proposed a solution to make PHRs more secure

by implementing a secure revocable policy-based system with a fine grained access

control mechanism. Its main purpose is to protect against untrusted cloud service

providers, and malicious users. Also, a hierarchical access revocation method is pro-

posed in this research which allows a user to revoke any other users’ access to their

private information at any time, instantly.

One of the questions that needs an answer in order to find solutions for such trust

issues is that how can a mobile health system show its users, in a fluent manner,

17

what data is being stored, what are the inferences that could be made based on the

shared data, and where and how the information would be used. The user receives

notifications if any violations occur regarding the policies agreed-upon [21].

Also, implementing a continuous authentication system that can guard the sensi-

tive PHR information accessible on the user’s smartphone from malicious users, can

reduce this concern and make PHR systems more usable and practical. Having con-

tinuous authentication in place, guarantees that a smartphone is actually used by its

owner, and prevents access to sensitive data when the smartphone is being used by a

different person.

There are challenges in implementing continuous authentication, especially when

the targets are smartphones. The biggest challenge is that there is no open-source

usable dataset for users’ touch dynamics accessible for researchers, imposing them to

go through a cumbersome survey and data gathering process to be able to work on

improving models for touch dynamics.

Another important consideration for implementing such mechanisms is minimizing

power consumption. Decreasing sampling rate [36, 33] and holding complex opera-

tions until the device is being charged [12] are among the solutions to reduce power

consumption.

Since this is a data classification problem, choosing a suitable classifier is a chal-

lenge. Bayesian network is one of the popular classifiers used for classifying touch

dynamics data [16]. Saevanee et al. [41] proposed a classifier using a probabilistic

neural network. They claim that using only the finger pressure feature to feed in the

neural network classifier produces a high accuracy rate of 99%.

Accuracy maximization is another crucial challenge in implementing continuous

18

touch dynamics authentication. In creating models for instrumenting a classifier, it

is desirable to have a low false positive rate also referred to as miss alarm rate or

Type I error. In our context, keeping the false positive rate down means less invalid

users being falsely accepted. Also, the false negative rate should be as low as possible,

meaning fewer valid users being falsely rejected.

Since user’s touch dynamics behavior can change over time, data adjustment is

done to update the templates stored, indicating a user’s touch behavior. In [12],

a method is proposed that can capture such gradual changes and update the base

templates after each successful authentication.

Taking into account all the challenges, and possibilities to progress, the next

chapter will address research questions and objectives of this thesis along with the

research methodology.

19

Chapter 4

Research Questions and

Methodology

A user can get authenticated using multiple authentication methods, as discussed in

the previous chapter.

In the previous chapter, we mentioned that the most challenging barrier in the

way of implementing PHRs practically is users’ trust into using such an application

in a secure way. Gaining users’ trust does not seem to be easy, considering entering

an unlock pattern, inputting a short-length pin code or touching a sequence of spe-

cific areas on the screen are the most common authentication approaches on today’s

commercial smartphones which are all prone to many security issues.

A crucial research question would be, how to gain users’ trust and help them use

sensitive applications with an ease of mind on their smartphones. As a result, the

main objective of this research is to design a continuous authentication approach using

touch dynamics behavior of users to authenticate them on the go, in the background,

20

all the time.

The next research question is how to provide a mechanism for PHR systems -

that are mainly involved with giving access to sensitive health data of different users

to a hierarchy of different medical roles - so that users know whenever their data is

accessed via another role in the application. These accesses can fall into two main

categories: valid accesses and invalid ones.

Another objective is to design a notification module that can be used in PHR

systems, so that users can define what notifications about which types of accesses

and events in the system they want to receive. Such a notification module will take

the responsibility to keep the user informed of any selected event that is related to

their sensitive information stored in the system.

Last but not least, the absence of an open-source dataset for studying touch

dynamics is a huge burden for every researcher interested in the field. A by-product

of this thesis is a complete and well documented dataset related to touch dynamics

of different users, available to public.

To summarize, based on the raised questions, the goals of this research are as

follows:

• Preparing an open-source dataset for touch biometrics accessible to all re-

searchers interested in researching on continuous authentication. This is a pre-

requisite for creating our continuous authentication mechanism.

• Implementing a continuous authentication mechanism using touch biometrics

on Android smartphones to be able to authenticate the user continuously, in

the background.

21

• Integrating the created continuous authentication mechanism into PHR.

• Designing a detailed notification system for PHR so that the user can under-

stand who accesses their sensitive information and when.

To fulfill the mentioned objectives, in the reminder of this chapter, the research

methods involved and the required steps will be illustrated.

4.1 Composing an open-source dataset for touch

dynamics

As mentioned earlier, an open-source dataset for touch dynamics can be a really

valuable asset for the researchers in this field. On top of that, it is an essential

ingredient for this research to create a continuous authentication system.

As a result, one of the contributions of this thesis is to compose a well-documented

dataset that the whole classifier model creation process will be built upon. The

dataset will be available to the public, so that it can be used in other research on

continuous authentication using touch biometrics.

In order to create such a dataset the following stages were completed:

4.1.1 Data Collection

After studying the related work done in this field and considering some innovative

ideas, the following features were gathered using our “TouchSense” Android applica-

tion, which will be fully described in section 5.1.3.

22

• Pressure: this feature indicates the pressure applied by the user’s touch action

on the screen. This is a normalized value between 0 and 1. The closer to 1, the

heavier the pressure.

• Size: this feature indicates the size of the user’s touch action, i.e. the number

of pixels affected on the screen. This is a normalized value between 0 and 1.

The closer to 1, the bigger the size.

• Touch Major: this feature reports the major axis of an ellipse that represents

the touched area by the user.

• Touch Minor: this feature reports the minor axis of an ellipse that represents

the touched area by the user.

• Duration: this feature represents the time interval from the moment a finger

touches the screen up until when the finger looses contact with it. The value is

stored in milliseconds.

• Fly Time: this feature depicts the time interval between each consecutive

touch and is stored in milliseconds. It has more meaning when we are interested

in touch biometrics for typing words or numbers. In this context fly time means

the time consumed between finishing typing a character and starting to type

the next one.

• Shake: This feature records the amount of the vibration of the smartphone

while the user performs touch events. This basically shows the speed that the

device moves from point (x1, y1) to point (x2, y2). In this research we would

23

like to see the results of considering this feature as an innovative biometric for

touch behavior.

• Orientation: This feature records whether the touch behavior has been

recorded while the device was in the landscape orientation or the portrait one.

A value of 1 represents portrait while a value of 2 depicts landscape.

• Word or Number: This feature records whether the touch behavior belongs

to typing in a word or a number. A value of 1 represents typing a word while

a value of 2 indicates typing a number.

4.1.2 Determining the optimal feature set for model creation

The review helped defining an initial set of features for creating a dataset that will

be used in the training, test and validation processes to create the final classifiers.

Defining the optimal feature set is a challenging task because taking too many

features into account can lead to an overfitted model which can perform well, only

for the training dataset. On the other hand, having too few features will result in a

very general and simple model that can not guarantee a high accuracy classifier. The

trade-off in here needs to be fine tuned via a series of trial and error experiments in

order to reach the optimal feature set. A detailed experiment will be illustrated in

Chapter 6 to discuss how the most contributing features have been selected to create

the classifiers.

24

4.1.3 Designing a mobile application to gather touch data

An android application was developed called TouchSense. It was made available to

the public via Google Play Store 1. The details of how it was implemented will be

addressed in Chapter 5. The application was implemented in such a way that it

prompts the user to type in 30 random words or numbers and while the user interacts

with the keyboard, it listens for the touch inputs corresponding to those actions and

stores them in a data file. Once all the 30 prompts are fulfilled, the application sends

the aggregated data to a secure Amazon S3 server along with the smartphone’s unique

Android ID for further processing and composing the actual dataset.

There were a couple of limitations applied to TouchSense which will be discussed

below:

• Listening to touch behavior while typing: In an application like PHR or

any other sensitive mobile application such as mobile banking and electronic

government applications, an action which happens most frequently is typing in

some words and/or numbers. They could be prompted because of a password

requirement, or simply because the user needs to fill in a form to submit in the

application. It was decided that listening to all of the touch events may result

in deriving a poor classifier as a touch biometric for each user. This limitation

was applied because, usually each user has a special typing behavior. Hence,

listening to only those touch events that are related to typing could provide us

with a more informative dataset.

• Frequency of Words vs. Numbers: We decided to show random words for

1available at: https://play.google.com/store/apps/details?id=org.mun.navid.touchsense

25

the user to type in more often than prompting them for numbers. In fact the

probability of a user being prompted to type in a word is 70% while a number

will be shown only 30% of the times. This is because, usually applications such

as PHR are involved with filling in forms that contain mostly fields dealing with

alphabetic characters rather than numeric values.

• Custom Soft Keyboard vs. Android Soft Keyboard: For security rea-

sons, Android OS masks all the touch events when a user uses the Android soft

keyboard as an input mechanism. This input medium is launched as a third

party application when the user wants to input some text in a form inside an

application such as PHR. Unfortunately, since all the touch events are masked

by default, there is no practical way to listen to touch events when using the

standard Android keyboard except for rooting the device.

However, rooting a device is an advanced operation and is not something that

general users are willing to do in order to have an extra feature incorporated

in their phones. It also involves some risks such as causing damage to the OS

or even bricking the phone. Creating custom soft keyboards in Android is a

common practice. In fact one can design a custom keyboard that looks just like

the standard Android keyboard with almost the same functionality. We decided

- instead of requiring a rooted smartphone which would significantly reduce the

targets of our research - to implement a custom keyboard and use that instead

of the standard one to gather touch information.

26

4.1.4 Processing the raw aggregated data

Some of the features gathered required preprocessing before a classifier model could

be created based on the dataset. Since the application was available to the public,

and there could be no limitations on the devices used during each experiment, and

due to often drastic variances in installed Android operating systems on each brand

of smartphone, the gathered data had to be preprocessed.

After the dataset was collected it was noticed that among the 41 participants’

devices, 22 of them would store a value of 1.0 for the touch pressure feature in all

events, i.e. those devices could not sense the amount of pressure applied by a touch

action and would simply send a value of 1.0 instead, to indicate that a touch event has

happened, while the other 19 devices could perfectly store accurate values for each

pressure applied to the screen. Considering all those data in one bucket would be

inappropriate and would result in misleading higher accuracy in the classifiers made

for each device.

To prevent this problem, it was decided to create two categories. One for those

participants whose devices could sense the applied pressure and one for those without

this ability. With this approach the classifier models for each device could be built

based on the category that they belonged to.

Additionally, all the outliers of the data had to be removed from the dataset

before any further attempts to create the classifier models. Smartphone users can not

always be persistent with the way that they interact with their devices, hence there

could be some outliers in the raw data gathered from each device. To remove those,

Weka’s preprocessing filter called InterquartileRange - a filter for detecting outliers

27

and extreme values based on interquartile ranges - was used.

4.2 Designing a continuous authentication module

The most important goal of this research is to provide PHR and potentially all sen-

sitive applications in medical, banking and governmental areas with a continuous

authentication module that can learn the way users interact with their smartphones

through recording their touch behavior and creating a model from the gathered data.

To realize this objective, a set of consecutive steps were taken which will be covered

next.

4.2.1 Composing .arff files from the gathered raw data

To create our classifier models we will be using Weka application. Weka stands for

Waikato Environment for Knowledge Analysis and is a suite of machine learning

software written in Java and has been developed at the University of Waikato, New

Zealand. It is a free software licensed under GNU General Public License.

To perform a machine learning task, one needs a dataset. We already described

how we composed our datasets in the previous section. However, it is not possible to

use the composed datasets in Weka unless they are converted to a specific file format

with .arff extension. This file format is the most standard one that Weka accepts as

an input for data mining tasks. In Figure 4.1, an example dataset in this format is

illustrated.

28

Figure 4.1: An example arff file, composed from the gathered raw data, that Weka

accepts as an input for our data mining process.

According to Figure 4.1, an arff file starts with “@RELATION” followed by a

string that indicates the name of the relation. Following the relation name, there

are multiple lines starting with “@ATTRIBUTE”. Each such line indicates a feature

used in the relation, plus a line indicating the class of the relation. For our dataset,

as we mentioned earlier, we used 9 features hence, we have 10 lines starting with

the “@ATTRIBUTE” tag, with the last one depicting the relation’s class. In this

example we have two classes, “5b454e4ad8ae49f9”, which is the AndroidID of one of

the participants’ devices and “Others”, indicating data gathered from all the other

29

devices.

Each feature attribute has a name and a type. In the above example, you can

see the names used for the features and the types that each feature’s value should

be stored. After pointing out all the attributes, the next line is a single “@DATA”

followed by as many data rows that there are in the dataset. In Figure 4.1, you

can see the first 15 rows of the gathered data for a user with the AndroidID of

“5b454e4ad8ae49f9”. An important thing to notice in the order of the represented

data in each line is that data should be stored with the exact same order that the

attributes have been defined and it should be comma-separated. Also, the last item

in each line indicates the class that the row belongs to.

4.2.2 Choosing an appropriate machine learning technique

The next step, after preparing the required arff files for each participant, is to use

a machine learning technique in order to create a user-customized classifier model.

Researchers have used a variety of different techniques such as Naive Bayes Network,

Genetic Programming (GP), Neural Network (NN) or Support Vector Machine (SVM)

and have obtained different results.

Undoubtedly, the appropriate technique must be chosen based on the complex-

ity of the defined problem space. Some techniques perform better when the model

tends to be non-linear, some other are more preferable for providing linear models as

the solution. Some models require a very long training time and some have notice-

ably higher response time that contradicts the need to use online classification in an

application like PHR.

30

Based on the literature review, creating a classifier for a user’s touch dynamics

is definitely a non-linear problem. Hence, MultilayerPerceptron, RandomCommittee

and J48 were chosen as possible better options for deriving non-linear models from

the compiled datasets. In Chapter 6, a set of experiments have been done to find

out which technique can lead to better performance according to the datasets that

have been instrumented. On top of that, the selected technique will be compared to

a BayesNet classifier which has been used as the machine learning technique in most

of the research in this field.

The nominated techniques will be benchmarked in different scenarios and the

one that can create a model with the lowest False Positive and False Negative rate

will be chosen. Having a lower False Positive rate is of more importance in our

application since we would like to create models that will perform better on detecting

unauthorized users correctly, i.e., it could be tolerable, to some extent, if the classifier

doesn’t recognize a smartphone user as the legit owner but it would not be a desirable

behavior if the model produces a high chance of incorrectly classifying unauthorized

users as the legit ones. It should be taken into consideration that the desired model

should be as general as possible while having a high accuracy at the same time.

4.2.3 Creation of the models

Now that we have our arff files ready, and we have selected an appropriate machine

learning technique, the next step is to create our classifier models. For this purpose, we

developed a J2EE application that automates the whole model creation process. Once

the application is run, all the existing raw data gathered from different participants

31

are downloaded from a designated S3 bucket called “touch-info”. Each downloaded

file will be keyed based on the device’s AndroidID, thus giving us the opportunity

to create participant specific arff files and classifier models using the AndroidID that

has been recorded.

Then, the corresponding arff files will be composed automatically based on what

we described in the previous section. These arff files will be considered as the training,

testing and validation dataset for our next step which is using Weka’s Java API to

build a classifier model with 10-fold cross validation.

After each model is created, it will be named using the participant’s AndroidID

and will be stored as a model file which is a serialized format that Weka uses to

save a classifier model. When all the models are created locally, they will be then

uploaded to another S3 bucket, called “model-info”, keyed with the same AndroidID

used to store the arff files. Having the keyed model files, accessible via an S3 bucket

is considered the first practical step towards enabling continuous authentication in

our PHR application.

In the next section, we will describe how the prepared models are used in our

PHR application.

4.2.4 The design of the module

After successfully creating the models, the next step is to use the users’ models as a

functional module in our PHR application. Once the classifier model is there in the

application, giving inputs to it will result in the desired classification results. The

implementation objective is to get touch inputs from a user’s actions when using the

32

PHR application: In this scenario, the first thing that PHR does is to send a

request to the S3 server’s “models-info” bucket, checking if there exists a model

file with the same name as the device’s AndroidID. It will find the model file

and will request a push operation from the bucket to the PHR application’s

shared memory. Once the file is loaded into the memory successfully, it will be

written into the PHR’s cache so that it can be used later on.

When the model is in place, the whole process that was mentioned in Figure

4.2 will become functional.

• A new user who has not participated in “TouchSense” will run our

PHR application: In this scenario, our PHR application has already sent a

request to the S3 server’s “models-info” bucket along with the AndroidID of

the device and S3 has replied with a “file not found” message. When PHR

receives this message, it will automatically pop up a warning that in order

to enable continuous authentication the user needs to install the “TouchSense”

application from Google Play Store and participate in the data gathering process

at least once, so that a personalized classifier model can be created for the new

user.

There will be a URL in the pop-up that can direct the user to the “TouchSense”

application page in Google Play Store, so that they can install it easily. Af-

ter the user finishes participating in the data gathering process, our automatic

model creator describe in Section 5.2.3 will build the customized classifier for

the AndroidId corresponding to their smartphone and will upload it to the S3’s

“models-info” bucket. The user will be prompted to restart their PHR applica-

34

tion, and upon the next run of the application the first scenario mentioned above

will take place and the user will be able to use the continuous authentication

module.

4.3 Designing a Detailed Notification System

Unarguably, users do not tend to trust an application involved with their sensitive

information such as banking transactions and health records unless they can under-

stand, transparently, where their information is stored and how it will be accessed

by other parties in the application. The main goal of designing a notification system

for PHR is to update its users with any actions done by other parties that require

accessing their information.

Most of the current health applications, in particular PHRs don’t provide this

type of transparency to their users. However, it is inevitable that without having

users’ trust there is not a big chance for a sensitive application to be widely used.

Thus, building up a true trust between our PHR application and its users is one of

the primary goals of this research. The steps required to fulfill this goal would be as

follows:

4.3.1 Reviewing current health related applications

There are quite a lot of health related applications for Android devices on Google Play

Store. In an attempt to discover if those applications have considered transparency

in giving information about providing access to critical documents to the users or

giving them the ability to set some rules for enabling or disabling access to specific

35

documents or actors in the system, three popular applications were installed and

assessed. The following gives a report about the experience.

“Personal Health Record PHR” 2, “Mobile Health Record” 3 and “Track My

Medical Records” 4 were the three applications that we assessed to see if they have

any means to build the required trust between them and their users.

Table 4.3.1 gives a brief information about the number of downloads, the required

permissions, the applications’ ratings and latest update date for the above three

applications.

Name Downloads Latest Update Required Permissions Play Store Rating

Personal Health Record PHR 5,000 - 10,000 July 29, 2016 full network access 2.9

Mobile Health Record 1,000 - 5,000 March 24, 2017

find accounts on the device, read your contacts,
read phone status and identity,

read the contents of your USB storage,
modify or delete the contents of your USB storage,

receive data from Internet,
control vibration, prevent device from sleeping 4.9

Track My Medical Records 10,000 - 50,000 November 8, 2013
view network connections,

full network access 3.9

Table 4.1: A summary of the three assessed health-related applications.

According to the above table, “Mobile Health Record” has the highest rating (4.9)

and at the same time the lowest number of downloads by the users. It also requires

many sensitive permissions to operate. “Personal Health Records PHR” has the

lowest rating (2.9) but has a slightly higher number of downloads. Its only required

permission request is to have full network access. On the other hand, “Track My

2Available at: https://play.google.com/store/apps/details?id=com.drchrono.onpatient
3Available at: https://play.google.com/store/apps/details?id=com.bidhee.familyhealthnepal
4Available at: https://play.google.com/store/apps/details?id=com.freehealthtrack.free.health.track

36

Medical Records” has a relatively high number of downloads and a fair rating of 3.9.

It requires viewing network connections and full network access to operate.

Among the three applications, one thing in common is requesting for full network

access. This is a really bold permission to give to an application that is related to one’s

sensitive health related information. Granting this permission to any application of

this kind can enable it to send patients’ information over the network to anywhere

without them even noticing. This is exactly where users start to second guess their

trust with such applications.

All these three applications’ functionalities were completely assessed and there

were no signs of any module that gives their users some kind of control on their

health related documents. Controls such as setting limitation on the audience of

some of the documents and setting notifications for accesses by specific roles in the

application or at least, to some special documents.

In Figure 4.3, you can see three screen-shots of the main menu of the three ap-

plications. As can be seen, there are no notification and access control modules

implemented in any of them.

37

Upon receiving a notification, the user will be provided with the functionality to

revoke the access to the related document to the actor that initiated the notification

or they can simply dismiss it.

If the user dismisses a notification by a mistake or they change their mind about

a specific document, role or user, they can always browse through their stored audits

and take the desired actions accordingly. We believe that such a design makes the

most crucially sensitive aspect of our PHR application completely transparent to the

user hence, giving them more reasons to trust us and use our application.

The aim of designing the notification module is to make accessing a user’s sensitive

documents as transparent as possible.

Figure 4.5: The design of PHR application’s notification setting page.

40

First of all, the user should be able to turn notification ’on’ and ’off’ on differ-

ent documents and roles. Figure 4.5 shows two muck-ups of the PHR application’s

setting page after the designed module is implemented. Figure 4.5(a) depicts the sit-

uation when the user wants to set notification rules on accesses to specific documents

and Figure 4.5(b) corresponds to setting notification rules on specific accesses from

particular users.

Upon accessing those documents that have notification enabled or the users that

are in the access-sensitive group, a notification will be issued from the PHR applica-

tion (Figure 4.6).

Figure 4.6: A PHR application’s notification showing up in the Android’s notification

center.

41

When a user taps on their PHR notifications from the notification center, they

will be redirected to the notification page of the PHR application (Figure 4.7), where

they can instantly revoke the access notified to them or dismiss the notification.

Figure 4.7: A PHR application’s notification page with ”instant revoke” and ”dismiss”

functionalities.

42

Chapter 5

Implementation

In this chapter, the software and hardware requirements and configurations regarding

TouchSense, the automatic model creation application and the continuous authenti-

cation module and its integration into the PHR application will be outlined, followed

by a brief description of the whole implementation process for each application.

5.1 TouchSense application

As discussed in the previous chapter, the design and implementation of the Touch-

Sense application was the first step to make creating a continuous authentication

module possible. Thus, in this section we will first explain the implementation pro-

cess of this application.

43

5.1.1 Software environment

The application has been built using API 14: Android 4.0 (Ice Cream Sandwich) so

that it can run on most of the Android based smartphones both modern and older

ones. The reason this API level has been chosen for developing TouchSense is to find

as many willing users to participate in the data gathering phase, hence choosing a

higher API level would minimize our chances of finding enough participants.

The operating system used for developing this application was 64-bit Ubuntu 16.04

LTS (Xenial Xerus). Also, the Integrated Development Environment (IDE) used for

building, running and testing the application was Android Studio 2.1.2.

5.1.2 Hardware environment

All the implementation and build processes have been performed using a single node

desktop computer with the following hardware configuration:

• Installed memory (RAM): 8 GB.

• Processor: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60 GHz.

Also, the run and test processes have taken place on a OnePlus 3T smartphone

with the following hardware details:

• Installed memory (RAM): 6 GB.

• Processor: 2.35GHz Qualcomm Snapdragon 821 quad-core.

44

Once the user accepts to send the gathered data, the text file in the memory will

be uploaded to an Amazon S3’s bucket called “touch-info” along with the AndroidID

of the user’s smartphone. This AndroidID will be used as an identification parameter

that can uniquely distinguish a smartphone’s data among the other participants’ data

that reside on the “touch-info” bucket. Each raw file sent from a smartphone is named

in the following format:

AndroidID-Timestamp.txt

The following code snippet shows how AndroidID is retrieved from the device in

the TouchSense application:

String androidId =

android.provider.Settings.Secure.getString(getContentResolver(),

android.provider.Settings.Secure.ANDROID_ID);

As can be seen in Figure 5.3, no matter what the response of the user is, after

the pop-up is closed the NEXT button will change to START OVER. Once the user

touches the button, a new experiment will start and upon completion the data can

be sent as a new file to the Amazon S3 server, if only the user agrees.

47

To automate the process of transforming the raw text files into arff files, and then

building the classifiers from the generated arff files, a J2EE application was developed.

In the following sections we will describe the software and hardware environments used

to develop this application and its implementation details.

5.2.1 Software environment

This application has been built using J2EE technology. Spring framework version

4.0.6.RELEASE has been used as the primary framework. For database interactions,

Hibernate version 4.3.6.Final has been utilized. Also the chosen database is MySQL

version 5.1.31. We have used Servlet API version 3.1.0 to enable a RESTful api

for our TouchSense application to send requests and receive responses. Also, the

Integrated Development Environment (IDE) used for building, running and testing

the application is IntelliJ IDEA 15.0.6.

5.2.2 Hardware environment

The hardware environment is the same as the environment used for developing Touch-

Sense. However, since this application is not a mobile application, there is no need to

test it on a smartphone. As a result, all the tests have been run on the same machine

that the development took place.

5.2.3 Implementation details

This application contains one RESTful API endpoint called ’/automate’ which han-

dles the following operations:

49

• Reading all the raw files that reside in the “touch-info” bucket.

• Converting the raw files to appropriate arff files so that they can be used with

Weka’s API later on.

• Updating all the existing arff files with the new raw data received from Amazon

S3.

• Creating models based on the updated arff files.

• Uploading the created local models to Amazon S3’s “models-info” bucket to be

used in PHR, later.

• Deleting the local model files.

• Uploading the updated arff files to Amazon S3’s “arff-info” bucket.

• Deleting the local arff files.

• Deleting the local and remote raw files.

Throughout this chapter, pseudocodes are used to demonstrate the implementa-

tion process. For more details, refer to Appendinx A which contains the code snippets

of each pseudocode. The following pseudocode demonstrates a high level representa-

tion of what happens in the automate endpoint:

50

1: myCredentials ← BasicAWSCredentials(ACCESSKEY, SECRETKEY)

2: s3Client ← AmazonS3Client(myCredentials)

3: readAllRawFilesAndConvertToArff(s3Client)

4: readAllArffFiles(s3Client)

5: updateArffFiles()

6: createModels()

7: uploadLocalModelsToS3(s3Client)

8: deleteLocalModelFiles()

9: deleteLocalRawFiles()

10: uploadLocalArffFilesToS3(s3Client)

11: deleteLocalArffFiles()

At line 3 of the above pseudocode, the readAllRawFilesAndConvertToArff() func-

tion will send a request to Amazon S3 server to list all the raw files that exist in the

“touch-info” bucket and downloads them all to the temp folder of the tomcat web

server that runs the application. After all the raw files are downloaded, the function

goes through each one of them and converts them to arff files, as described in Chapter

4.

It should be mentioned that after this process is done, all the other arff files

that are already inside Amazon S3’s “arff-info” bucket should be updated with the

information in the downloaded raw files. The update is done so that all the rows

of the new raw files will be added to the existing arff files as rows indicating the

51

“Others” class, since those are features collected from another smartphone with a

different AndroidID. This is the reason why at lines 4 and 5 all the existing arff files

will be read from S3 and then will be updated using the updateArffFiles() function.

Then, at line 6, the createModels() function is called. This function uses Weka’s

Java API to build a classifier for each updated arff file which is stored in the temp

folder of the tomcat running the application. The below pseudocode shows how this

operation is done:

1: fileDirectory ← the path to tmp directory for arff files

2: modelDirectory ← the path to tmp directory for model files

3: if modelDirectory does not exist then

4: create the directory

5: for each arffFile in fileDirectory do

6: androidId ← first part of arffFile name

7: create an instance of RandomCommittee classifier

8: create an Instances object from Weka library using the content of the arffFile

9: set the class index of the Instances object

10: build the classifier using the Instances object

11: write the serialized classifer to modelDirectory using the androidId value for

the file name.

The above pseudocode shows that the createModels() function iterates through

all the arff files in fileDirectory. Extracts the androidId for each arff file from its

52

file name at line 6. Then, at line 7, creates a classifier instance. In this example,

RandomCommittee has been used as a classifier. In order to train the classifier

instance, an Instances object should be created. Lines 8 to 10 show this operation by

reading an arff file into the instance object, called inst.

The class index is set for the instance object at line 9. At line 10, the classifier is

built based on the created instance object. Finally, at line 11, the created classifier will

be serialized into a file with androidId as the name and .model as the extention, in the

modelDirectory, so that later on it can be uploaded to our Amazon S3’s “models-info”

bucket for later use.

5.3 Continuous authentication module in PHR

As mentioned before, one of the main objectives of this research is to provide PHR

system with a continuous authentication mechanism. The target PHR system to

apply this security measure to, is the one implemented by Debnath et al. [13] for An-

droid devices. In the following sections, we will describe the implementation process

of this module in PHR.

5.3.1 Software environment

The application uses API 22: Android 5.1 (Lollipop) which is compatible with most

of the Android smartphones in the market, today. The operating system used for

developing this module is 64-bit Ubuntu 16.04 LTS (Xenial Xerus). Also, the Inte-

grated Development Environment (IDE) used for building, running and testing the

application is Android Studio 2.1.2.

53

5.3.2 Hardware environment

All the implementation and build processes have been performed using a single node

desktop computer with the following hardware configuration:

• Installed memory (RAM): 8 GB.

• Processor: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60 GHz.

Also, the run and test processes have been performed on an LG G3 smartphone

with the following hardware specification:

• Installed memory (RAM): 3 GB.

• Processor: 2.5 GHz quad-core Krait 400.

5.3.3 Implementation details

The automatic model creation application that was described in the previous section

takes care of creating the classifier model for each smartphone that has been involved

in an experiment via TouchSense, at least once. After the model is created, it will

be uploaded to the “models-info” bucket on an Amazon S3 server, ready to be used

by the PHR application. In the remainder of this section, we will describe how PHR

uses those created models in its continuous authentication module.

When a user runs their PHR application, the first thing the application does is

to send a request to Amazon S3’s “models-info” bucket along with the smartphone’s

AndroidID to lookup the classifier model created for that smartphone. Two scenarios

could happen:

54

• The classifier model does not exist for the sent AndroidID: This

basically means that the owner of the smartphone hasn’t yet completed at least

one experiment using the TouchSense application. In this case, a popup will be

shown to the user indicating that in order to use the continuous authentication

feature, they need to install TouchSense and run the experiment. The URL to

TouchSense’s page on Google Play Store will be provided so that the user can

easily download the application and start to use it.

• The classifier model exists for the sent AndroidID: In this case, upon

receiving a success response from the first request, the PHR application sends

another request to download the designated classifier model into the application.

After sending the download request the model will be downloaded into the

memory and using Weka’s API for Android, the classifier will be instantiated

and ready in the memory to be used by PHR. The following pseudocode shows

the entire process of obtaining the assigned classifier model in PHR.

1: classifierFile ← the serialized .model file stored in the application context named

by the device’s androidId

2: if classifierFile does not exist then

3: fetch it from S3’s ’models’ bucket

4: testClassifier ← the instantiated classifer from classifierFile

5: create an instance of RandomCommittee classifier

6: let the keyboard use the testClassifier

55

At line 3, the request to download a file named androidId + “.model” is sent to

S3. Then, at line 4 the testing classifier instance, named testClassifier will be created

using Weka’s Android API so that the classifier can be used in the memory.

Now that we have the testing classifier ready in the memory, let’s see how it

actually works. The following pseudocode shows the testing classifier in action.

1: define pressure, size, touchmajor, touchminor, duration, flytime, shake, orienta-

tion, and type as the attributes of the dataset

2: classValues ← [androidID, “Others”]

3: create a classAttribute instance and set it to classValues

4: create an Attributes instance and add all the attributes defined at line 1

5: create the empty dataset “touch” with the above attributes

6: when a touch happens gather all the values regarding each attribute and put it

in an instance of the “touch” dataset

7: prediction ← the result of calling the classifier’s classifyInstance function for the

created instance

8: if prediction equals 0 then

9: the touch belongs to the legit owner

10: keep a history of this event in the classifyResults list

11: else

12: the touch does not belong to the legit owner

13: keep a history of this event in the classifyResults list

56

As can be seen from the above pseudocode, from line 1 to 5 the instance required

for the classifier to make a decision will be made based on the input features as

the user uses the custom keyboard to enter data. As the instance is instantiated,

the classifier’s classifyInstance() method will be called and it will return a double

value as the result. If the returned value is equal to 0, it means that the instance

belongs to the owner of the smartphone, hence it adds a value of ‘true’ to a list called

classifyResults. Otherwise, a value of ‘false’ will be added to the classifyResults list.

After each successful completion of typing a word or number, if the number of

‘true’ values in the classifyResults array list is above 70% of all the values in the

list, the user can continue using the PHR application. However, if at any time, this

value drops below 70%, the user will be automatically logged out, and will be asked

to enter their credentials to access PHR again. The pop-up showing the warning of

losing control of the current session is shown in Figure 5.4

57

Figure 5.4: The user will receive an alert when the continuous authentication module

detects that they are no longer authorized to access the application.

When this module detects an access violation via the background classification

mechanism covered in Section 5, the user will immediately be informed and logged

out of the system. The user should provide some type of credentials to be able to

access the system again.

The type of credentials required could be set by the legit user of the application

during the registration process. The user can have different options such as entering a

password, challenge-response, two-way authentication and security questions to take

action after authentication is voided via the continuous authentication module.

58

Chapter 6

Results

In this chapter, the results of the research will be outlined. First, details about

the participants of the TouchSense application, its usage and the geographical dis-

tribution of the participants will be illustrated. Then, a set of experiments about

both the gathered touch behavior dataset and the classifiers used in the continuous

authentication module will be run and their results will be described in details.

6.1 TouchSense usage results

The TouchSense application was installed 55 times in total, starting from the 16th of

March, 2017 until the 2nd of April, 2017. Figure 6.1 shows this information.

59

leading versions that hosted TouchSense are Android version 6.0 and 7.0, respectively.

Figure 6.3: The percentage of installs on each Android version.

6.2 The effect of removing outliers in the gathered

data

To investigate the effect of outliers in the gathered data on the classifiers that are built

for each participant, we used ten datasets from ten different participants and applied

Weka’s “InterquartileRange” filter to detect the outliers in each dataset and removed

them using the “RemoveWithValues” filter. The original and the new datasets were

62

trained using J48 decision tree classifier and the results were compared together.

The interquartile range filter is an unsupervised filter that can be applied to

attributes of a dataset to detect outliers and extreme values and it works based

on interquartile ranges. Obviously, the filter skips the class attribute. Outliers are

computed using the following formula:

Q3 +OF ∗ IQR < x <= Q3 + EV F ∗ IQR (6.1)

With:

Q1 = 25% quartile

Q3 = 75% quartile

IQR = Interquartile range, difference between Q1 and Q3

OF = Outlier factor, the factor for determining the thresholds for outliers

EV F = Extreme value factor, The factor for determining the thresholds for extreme

values

Figures 6.4 to 6.7 plot Mean Absolute Error, False Positive Rate, Classifier Preci-

sion and ROC Area, respectively for 10 different participants’ classifier models named

using the AndroidId of each participant’s device. The classifier used in this experi-

ment is J48 decision tree. The blue marks depict the results for data with outliers

and the orange marks showcase the results for data without outliers.

63

Figure 6.4: Mean Absolute Error for ten different AndroidIds.

The less the value of mean absolute error the better the performance of a classifier.

In Figure 6.4 it can be seen that in most of the cases the mean absolute error value

for the dataset without outliers is slightly less than the one with outliers, except for

the second device.

64

Figure 6.5: False Positive Rate for ten different AndroidIds.

False positive rate is a very important indicator for us to assess the quality of the

built classifiers. In the continuous authentication case, it is less tolerable to classify a

non-legit user as the owner of a smartphone (False Positive) compared to classifying a

legit owner as a non-owner incorrectly (False Negative). Hence, the plot in Figure 6.5

illustrates the false positive rate for ten different participants’ classifiers and compares

the results for when the dataset contains outliers (blue marks) versus when the data

has no outliers (orange marks). The plot confirms that, however very slightly, but in

most cases the false positive rate is lesser when data has no outliers.

65

Figure 6.6: Classifier Precision for ten different AndroidIds.

The classifier precision answers this question: “Given a positive prediction from

the classifier, how likely is it to be correct?” and this is a very important question.

If our classifier detects a touch behavior as a legit owner behavior or detects one as

a non-legit user, we would like to be as confident as possible about this decision.

Figure 6.6 shows the classifier precision for when data contains outliers (blue marks)

and when the data has no outliers (orange marks). This figure also confirms that the

precision is relatively better when the outliers are removed from the data.

66

Figure 6.7: ROC Area for ten different AndroidIds.

The accuracy of a classifier can be measured by the area under the ROC curve.

An area of 1 represents a perfect result; an area of 0.5 represents a worthless result.

In Figure 6.7, the ROC area for 10 different participants’ classifiers can be seen for

when data contains outliers (blue marks) and when the data has no outliers (orange

marks). It can be concluded that the ROC area is greater for when the data lacks

outliers in most of the cases.

Generally, the four figures above confirm that our classifiers perform better when

the outliers are removed from the dataset. However, the difference is really insignifi-

cant. This can validate our data gathering approach, confirming that the users have

been reasonably honest when performing the experiments, i.e. they have been consis-

67

tent throughout the whole experiment with their touch behavior. If there were lots

of differences in their behavior, we would have seen more outliers in our dataset and

as a result, this experiment would have shown more significant differences between

the classifiers’ performances in each category.

6.3 Evaluating the importance of each feature

Using our TouchSense application, we gathered nine features for each touch interac-

tion of the users with their smartphones. As mentioned in Chapter 4, the features

were as below. The values in the parentheses show the name of each attribute as

stored in the datasets.

• Pressure (pressure)

• Size (size)

• Touch major (touchmajor)

• Touch minor (touchminor)

• Touch duration (duration)

• Touch fly-time (flytime)

• Device’s vibration (shake)

• Device’s orientation (orientation)

• Type of the phrase whether word or number (type)

68

For this experiment, we used an attribute evaluator algorithm called “Correlation-

AttributeEval” from Weka to assess the contribution of each feature in our gathered

data and decide if we should eliminate some of them in order to obtain better perform-

ing classifiers or not. “CorrelationAttributeEval” evaluates the worth of an attribute

by measuring the correlation (Pearson’s) between it and the class.

We ran this algorithm for twenty different datasets of participants. Table 6.1 shows

the rank (correlation value) of all attributes for each dataset. In the last row, the

mean of the correlation values that each attribute has been assigned to is calculated.

Those with larger values contribute more and the ones with smaller values can be

regarded as the least contributing features.

First thing to notice when looking at Table 6.1 is that the correlation value for

the orientation feature is 0 for all the datasets. This is actually because none of the

participants used the TouchSense application in the landscape mode, although it was

functional in that mode as well. As a result, the orientation feature can be safely

removed from the dataset since it doesn’t contribute to it in any way.

There can be multiple reasons why none of the users used the landscape mode.

Generally, some users prefer to use their smartphones in the portrait mode. Also,

some users only use the landscape mode on their tablets which have bigger screen

sizes. Another reason can be the lack of an appropriate application design specific

to the landscape mode. The TouchSense application uses the same design for both

modes of operation, however, for a better user experience each mode should have its

own specific design.

69

Item AndroidId pressure size touchmajor touchminor duration flytime shake orientation type

1 2befe3dcb10c2ad0 0.36080 0.42090 0.11480 0.11730 0.05390 0.32000 0.06030 0 0.09030

2 5b454e4ad8ae49f9 0.11290 0.10600 0.38550 0.27940 0.02290 0.01070 0.03220 0 0.08170

3 6ae57ac86337d0c8 0.37869 0.07620 0.48289 0.52376 0.04588 0.04008 0.17063 0 0.00615

4 17dbd51fc956e866 0.35120 0.14270 0.14090 0.16150 0.25130 0.08190 0.06880 0 0.05070

5 25bde1742e198e2b 0.25630 0.25890 0.18700 0.21030 0.03570 0.08220 0.09490 0 0.05400

6 27ca8bffd5d26872 0.16360 0.02660 0.13700 0.13300 0.01810 0.08140 0.09380 0 0.04090

7 69c6095d09e85e74 0.04420 0.13820 0.02990 0.01990 0.03450 0.05820 0.01410 0 0.08370

8 95f7f7d8b82fbe3a 0.40090 0.05220 0.52930 0.57250 0.07800 0.03940 0.04610 0 0.01670

9 401a0549143041f5 0.26280 0.37150 0.20966 0.20418 0.02637 0.07621 0.16616 0 0.00777

10 868cfad405c82e9a 0.20291 0.04274 0.05310 0.04326 0.14295 0 0.13646 0 0.02374

11 5351e9daeaa79450 0.17350 0.14050 0.14700 0.14610 0.02900 0.11130 0.06610 0 0.03980

12 3663248fa7abf026 0.11770 0.12880 0.01470 0.03190 0.21850 0.03870 0.06760 0 0.04460

13 a2f9246cfc48e9c9 0.14520 0.25060 0.14230 0.13830 0.03100 0.02540 0.05990 0 0.01900

14 a139bad3e9cef57e 0.24172 0.21156 0.13314 0.12906 0.03507 0.06503 0.09208 0 0.00689

15 b7d6def4b9f4c030 0.10390 0.18570 0.13700 0.13410 0.02040 0.06300 0.01520 0 0.02470

16 cb05c98191aebd7e 0.18240 0.17010 0.14130 0.14120 0.13410 0.03570 0.16100 0 0.01750

17 d2d0d48fc14007e9 0.14940 0.27960 0.13280 0.13810 0.09550 0.04560 0.03000 0 0.02970

18 e6c172ca6be05a41 0.35830 0.34000 0.19690 0.19030 0.01490 0.02610 0.05910 0 0.06040

19 eb1c0682c66e6379 0.03410 0.57360 0.23110 0.23130 0.30920 0.24230 0.16170 0 0.09630

20 fb58815420addb16 0.16426 0.17709 0.19923 0.11765 0.00954 0.08643 0.00577 0 0.07226

Mean 0.21024 0.20467 0.18728 0.18316 0.08034 0.07650 0.08010 0 0.04334

Table 6.1: The correlation values of all attributes for each device’s classifier. The first

column shows the AndroidId of each of the twenty participants’ smartphones. The

rest of the columns show the recorded attributes’ correlation values.

70

Looking at the last row, based on the mean value of the correlation values for each

column the features can be ranked as bellow:

1. pressure (0.21024)

2. size (0.20467)

3. touchmajor (0.18728)

4. touchminor (0.18316)

5. duration (0.08034)

6. shake (0.08010)

7. flytime (0.07650)

8. type (0.04334)

Now that we have the ranking of our eight features, we will start by eliminating the

last ranked feature and create classifiers for six participants, and then will eliminate

the next least ranked feature and again will create classifiers with the new data set.

We do so, until we have eliminated three least significant features and will compare

the resulting classifiers with the original one which involves all the recorded features.

All the classifiers in this experiment have been built using J48 decision tree.

The following six figures show the ROC Area and precision changes of the resulting

classifiers when the three least contributing features are removed from the datasets

of six random participants, one after one.

71

Figure 6.8: Feature reduction results for the participant with AndroidId:

95f7f7d8b82fbe3a.

Figure 6.9: Feature reduction results for the participant with AndroidId:

cb05c98191aebd7e.

72

Figure 6.10: Feature reduction results for the participant with AndroidId:

a2f9246cfc48e9c9.

Figure 6.11: Feature reduction results for the participant with AndroidId:

6ae57ac86337d0c8.

73

Figure 6.12: Feature reduction results for the participant with AndroidId:

868cfad405c82e9a.

Figure 6.13: Feature reduction results for the participant with AndroidId:

5351e9daeaa79450.

74

As can be seen from the above figures, removing ’type’ from the features set leads

to a slight increase in the resulting classifiers’ precision and also enhances the ROC

Area value. Going further with removing the next feature which is ’flytime’ has a

more visible enhancement effect on the precision and ROC Area values in most of the

cases. However, in all the figures, it is apparent that moving forward and removing

’shake’, the third least significant feature, results in an obvious decrease in both the

precision and ROC Area of the resulting classifiers.

Having too many features in a dataset can lead to overfitted classifiers that do a

poor job on classifying new instances. On the other hand, too few features result in

extremely general classifier models that usually lack performance. We would like to

have a specialized but not over-fitted model while it is still general enough to perform

well on unseen instances. Hence, there is a trade-off to select the appropriate number

of features for our datasets, indeed. In this experiment, we showed that removing

the two least significant features in our dataset results in better precision and ROC

Area values. However, that is where we should stop reducing the dimensionality of

our dataset, since removing the next feature decreases the performance, significantly.

6.4 Deciding the best performing and most prac-

tical classifier

The last experiment is designed to help with deciding the best performing and most

practical classifier for our continuous authentication module. In this experiment,

we used ten random datasets, gathered using the TouchSense application from ten

75

different participants and built four different classifier models for them using Multilay-

erPercepteron (NN), J48 decision tree (J48), RandomCommittee (RC) and BayesNet

(BN), all from Weka. Then, the resulting classifiers were compared together based

on 4 different criteria: Mean Absolute Error, True Positive Rate, False Positive Rate

and ROC Area. The following figures illustrate the results of this experiment.

Figure 6.14: Mean Absolute Error values of four classifiers (NN, J48, RC and BN)

for ten different participants.

As can be seen in Figure 6.14, the mean absolute error value for BN and NN are

significantly worse than J48 and RC. However, J48 and RC have very close behavior

with RC showing a slightly better performance.

Figures 6.15 and 6.16 show the values of True Positive Rate (TPR) and False

Positive Rate (FPR) for the same ten participants, respectively.

76

Figure 6.15: True Positive Rate values of four classifiers (NN, J48, RC and BN) for

the same ten participants.

Figure 6.16: False Positive Rate values of four classifiers (NN, J48, RC and BN) for

the same ten participants.

77

According to Figure 6.15, BN has the best TPR when compared to the three

other classifiers. The other classifiers have a similar trend and RC is just slightly

better in having a higher TPR. However, at the same time, Figure 6.16 shows that

BN is the worst classifier when it comes to the FPR. This basically indicates the

trade off between TPR and FPR. Again, the three other classifiers are really similar

in behavior with NN having a small advantage.

As mentioned earlier, it is obvious that a rational business decision when trying to

build a model for continuous authentication is to design a classifier with a decent True

Positive Rate and most importantly a very low rate of False Positive. Considering

this, BN is instantly ruled out. Although it has the best True Positive Rate, it is

doing far worse than the other three classifiers when it comes to FPR. Among the rest

of the classifiers, NN has a very slightly better rate of FPR while being noticeably

worse in terms of TPR. Between RC and J48, the better performing classifier is RC

for having both better TPR and FPR than J48.

78

Figure 6.17: ROC Area values of four classifiers (NN, J48, RC and BN) for the same

ten participants.

Finally, Figure 6.17 shows that RC has a better ROC Area value in comparison

with J48, which again confirms our choice. Although NN and BN have overall better

ROC Area values, their high FPR rules them out from being chosen as the best

performing classifier.

79

Chapter 7

Conclusion and Future Work

Security issues are among the most important factors that prevent a user from us-

ing computer applications, especially in case of applications that request access to

personal and private information. With the recent evolution in the way mobile appli-

cations are developed and used, more healthcare software is accessible to public. An

important barrier in the way of using such health related applications is that the users

usually have no intention to share their private health information in an untrusted

environment where many security challenges may exist.

One of the significant security issues with using sensitive applications in a smart-

phone is that in today’s market, the authentication mechanisms incorporated in these

“smart” devices are not smart enough. Entering a pin code, a password, a sequence

of touches on specific regions of the screen or a combination of these approaches are

the most frequently used methods in commercial smartphones.

There are also few devices that support scanning fingerprints to enable a more

robust authentication in exchange for a noticeably higher price. Also, face and voice

80

recognition methods have been used for authentication purposes; however the per-

formance of these machine learning techniques are dependent on the quality of the

capturing devices and also the amount of noise in the surrounding environment.

Considering the touch dynamics of a user as a biometric trait, we proposed a

continuous authentication module that uses touch sensors - which are already built-

in all the commercial, touch-enabled smartphones - to capture the touch behavior of

a user continuously and decide if the flow of touch events belongs to them or not via

a classifier model.

We also proposed the design of a notification and audit module that provides

the users of our PHR application with detailed information about accesses to their

personal health documents by the different hierarchy of roles in the system, giving

them the possibility to revoke access to specific roles instantly, based on the received

notifications. They will also be able to see a full access history to each document they

own in the application, on-demand. We believe that adding this kind of transparency

and letting the users of an application know exactly how, when and with whom their

assets are shared will build the trust required for an application to be used widely

and readily.

There are some areas that this research can continue and evolve. The first sug-

gestion would be to keep track of the users’ touch behavior in the PHR application

and send their touch behavior data frequently to our Amazon S3 server to update the

existing arff files and consequently, the classifier models for all of the users, in order

to create better classifiers that take the gradual behavior of the users into account.

Right now, the user’s classifier models get updated only when a new user uses the

TouchSense application or a returning user runs a new experiment in the application.

81

Another suggestion would be to provide a suitable design for the landscape mode

of the TouchSense application and encourage the users to use both modes of oper-

ation when using the application to gather meaningful information about a device’s

orientation and assess its effects on the resulting classifiers.

Finally, it was already mentioned that the existence of a notification module in

the PHR application is a vital addition. In this research the design of this module

was outlined. The next step would be to implement the design and add it to the PHR

application.

82

Bibliography

[1] Encryption definition, 11 2014. Available at: http://techterms.com/

definition/encryption, Fetched at: 18/09/2016.

[2] What is api - Application Program Interface?, 09 2015.

Available at: http://www.webopedia.com/TERM/A/API.html, Fetched at:

18/09/2016.

[3] What is Integrated Development Environment?, 04 2015. Available at:

http://www.webopedia.com/TERM/I/integrated-development-envi

ronment.html, Fetched at: 18/09/2016.

[4] Windows comes up third in OS clash two years early, 4 2016.

Available at: http://www.computerworld.com/article/3050931/mic

rosoft-windows/windows-comes-up-third-in-os-clash-two-years-

early.html, Fetched at: 18/09/2016.

[5] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer

networks, 54(15):2787–2805, 2010.

83

[6] R. A. Baron. Opportunity recognition as pattern recognition: How entrepreneurs

connect the dots to identify new business opportunities. The Academy of Man-

agement Perspectives, 20(1):104–119, 2006.

[7] A. Belapurkar, G. Krishnamurthy, and A. R. Azeez. Challenge-response data

communication protocol, Sept. 28 2001. US Patent App. 09/967,774.

[8] I. Bojanova, G. Hurlburt, and J. Voas. Today, the internet of things. tomor-

row, the internet of everything. beyond that, perhaps, the internet of anythinga

radically super-connected ecosystem where questions about security, trust, and

control assume entirely new dimensions. information-development, page 04, 2013.

[9] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. In

Proceedings of the Royal Society of London A: Mathematical, Physical and En-

gineering Sciences, volume 426, pages 233–271. The Royal Society, 1989.

[10] E. Chin, A. P. Felt, V. Sekar, and D. Wagner. Measuring user confidence in

smartphone security and privacy. In Proceedings of the Eighth Symposium on

Usable Privacy and Security, page 1. ACM, 2012.

[11] M. Choraś and P. Mroczkowski. Keystroke dynamics for biometrics identification.

In International Conference on Adaptive and Natural Computing Algorithms,

pages 424–431. Springer, 2007.

[12] H. Crawford, K. Renaud, and T. Storer. A framework for continuous, transparent

mobile device authentication. Computers & Security, 39:127–136, 2013.

84

[13] M. K. Debnath, S. Samet, and K. Vidyasankar. A secure revocable personal

health record system with policy-based fine-grained access control. In Privacy,

Security and Trust (PST), 2015 13th Annual Conference on, pages 109–116.

IEEE, 2015.

[14] W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentication and authenti-

cated key exchanges. Designs, Codes and cryptography, 2(2):107–125, 1992.

[15] R. Duncan. An overview of different authentication methods and protocols.

SANS Institute, 2001.

[16] T. Feng, X. Zhao, B. Carbunar, and W. Shi. Continuous mobile authentication

using virtual key typing biometrics. In 2013 12th IEEE International Conference

on Trust, Security and Privacy in Computing and Communications, pages 1547–

1552. IEEE, 2013.

[17] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song. Touchalytics: On

the applicability of touchscreen input as a behavioral biometric for continu-

ous authentication. IEEE transactions on information forensics and security,

8(1):136–148, 2013.

[18] G. Gilchrist and S. D. Viavant. Trusted biometric client authentication, Dec. 26

2000. US Patent 6,167,517.

[19] V. Goyal, A. Abraham, S. Sanyal, and S. Y. Han. The n/r one time password

system. In International Conference on Information Technology: Coding and

Computing (ITCC’05)-Volume II, volume 1, pages 733–738. IEEE, 2005.

85

[20] S. Jun Lee and K. Siau. A review of data mining techniques. Industrial Man-

agement & Data Systems, 101(1):41–46, 2001.

[21] D. Kotz, C. A. Gunter, S. Kumar, and J. P. Weiner. Privacy and security in

mobile health: A research agenda. Computer, 49(6):22–30, 2016.

[22] A. Kumar, D. C. Wong, H. C. Shen, and A. K. Jain. Personal verification using

palmprint and hand geometry biometric. In International Conference on Audio-

and Video-Based Biometric Person Authentication, pages 668–678. Springer,

2003.

[23] L. Lamport. Password authentication with insecure communication. Communi-

cations of the ACM, 24(11):770–772, 1981.

[24] Y. Levy and M. Ramim. A theoretical approach for biometrics authentication

of e-exams. Nova Southeastern University, USA, pages 93–101, 2007.

[25] L. S. Liu, P. C. Shih, and G. R. Hayes. Barriers to the adoption and use of

personal health record systems. In Proceedings of the 2011 iConference, pages

363–370. ACM, 2011.

[26] C.-S. Lu and H.-Y. Liao. Structural digital signature for image authentication:

an incidental distortion resistant scheme. IEEE Transactions on Multimedia,

5(2):161–173, 2003.

[27] D. L. McDonald, R. J. Atkinson, and C. Metz. One time passwords in every-

thing (opie): Experiences with building and using stronger authentication. In

Proceedings of the 5th USENIX UNIX Security Symposium, 1995.

86

[28] P. Mell and T. Grance. The nist definition of cloud computing. 2011.

[29] Y. Meng, D. S. Wong, et al. Design of touch dynamics based user authentication

with an adaptive mechanism on mobile phones. In Proceedings of the 29th Annual

ACM Symposium on Applied Computing, pages 1680–1687. ACM, 2014.

[30] Y. Meng, D. S. Wong, R. Schlegel, et al. Touch gestures based biometric authen-

tication scheme for touchscreen mobile phones. In International Conference on

Information Security and Cryptology, pages 331–350. Springer, 2012.

[31] T. M. Mitchell. Learning from labeled and unlabeled data. Machine learning,

10:701, 2006.

[32] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W. Joosen. Sessionshield:

Lightweight protection against session hijacking. In International Symposium on

Engineering Secure Software and Systems, pages 87–100. Springer, 2011.

[33] Y. Niu and H. Chen. Gesture authentication with touch input for mobile devices.

In International Conference on Security and Privacy in Mobile Information and

Communication Systems, pages 13–24. Springer, 2011.

[34] K. G. Paterson and D. Stebila. One-time-password-authenticated key exchange.

In Australasian Conference on Information Security and Privacy, pages 264–281.

Springer, 2010.

[35] A. Peacock, X. Ke, and M. Wilkerson. Typing patterns: A key to user identifi-

cation. IEEE Security & Privacy, 2(5):40–47, 2004.

87

[36] G. P. Perrucci, F. H. Fitzek, G. Sasso, W. Kellerer, and J. Widmer. On the

impact of 2g and 3g network usage for mobile phones’ battery life. In Wireless

Conference, 2009. EW 2009. European, pages 255–259. IEEE, 2009.

[37] C. P. Pfleeger and S. L. Pfleeger. Security in computing. Prentice Hall Profes-

sional Technical Reference, 2002.

[38] J. C. Poss, D. Boye, and M. W. Mobley. Biometric voice authentication, June 10

2008. US Patent 7,386,448.

[39] F. Rabitti, D. Woelk, and W. Kim. A model of authorization for object-oriented

and semantic databases. In International Conference on Extending Database

Technology, pages 231–250. Springer, 1988.

[40] R. Raghavendra, C. Busch, and B. Yang. Scaling-robust fingerprint verification

with smartphone camera in real-life scenarios. In Biometrics: Theory, Applica-

tions and Systems (BTAS), 2013 IEEE Sixth International Conference on, pages

1–8. IEEE, 2013.

[41] H. Saevanee and P. Bhattarakosol. Authenticating user using keystroke dynamics

and finger pressure. In 2009 6th IEEE Consumer Communications and Network-

ing Conference, pages 1–2. IEEE, 2009.

[42] F. E. Sandnes and X. Zhang. User identification based on touch dynamics. In

Ubiquitous Intelligence & Computing and 9th International Conference on Au-

tonomic & Trusted Computing (UIC/ATC), 2012 9th International Conference

on, pages 256–263. IEEE, 2012.

88

[43] P. S. Teh, N. Zhang, A. B. J. Teoh, and K. Chen. A survey on touch dynamics

authentication in mobile devices. Computers & Security, 59:210–235, 2016.

[44] S. T. Thompson. Helping the hacker? library information, security, and social

engineering. Information Technology and Libraries, 25(4):222, 2006.

[45] I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing

bayesian network structure learning algorithm. Machine learning, 65(1):31–78,

2006.

[46] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector

machine learning for interdependent and structured output spaces. In Proceedings

of the twenty-first international conference on Machine learning, page 104. ACM,

2004.

[47] P. Tuyls, A. H. Akkermans, T. A. Kevenaar, G.-J. Schrijen, A. M. Bazen, and

R. N. Veldhuis. Practical biometric authentication with template protection. In

International Conference on Audio-and Video-Based Biometric Person Authen-

tication, pages 436–446. Springer, 2005.

[48] G. J. Udo. Privacy and security concerns as major barriers for e-commerce:

a survey study. Information Management & Computer Security, 9(4):165–174,

2001.

[49] M. N. Wegman and J. L. Carter. New hash functions and their use in authenti-

cation and set equality. Journal of computer and system sciences, 22(3):265–279,

1981.

89

[50] P. Whigham and P. Crapper. Modelling rainfall-runoff using genetic program-

ming. Mathematical and Computer Modelling, 33(6):707–721, 2001.

[51] J. D. Woodward Jr, C. Horn, J. Gatune, and A. Thomas. Biometrics: A look at

facial recognition. Technical report, DTIC Document, 2003.

[52] Y. Zhong, Y. Deng, and A. K. Jain. Keystroke dynamics for user authentica-

tion. In 2012 IEEE computer society conference on computer vision and pattern

recognition workshops, pages 117–123. IEEE, 2012.

90

Appendix A

Code Snippets of TouchSense and

PHR

This appendix includes all the code snippets that describe the implementation pro-

cess of the TouchSense application along with the modifications applied to the PHR

application to enable continuous authentication.

This function updates the arff files based on the received raw files. It then creates the

models from the updated arff files and uploads them to Amazon S3’s “model-info”

bucket.

1 @RequestMapping(value = {"/automate"}, method = RequestMethod.GET)

2 public String createModels(ModelMap model) throws IOException {

3 AWSCredentials myCredentials = new BasicAWSCredentials(ACCESS_KEY,

SECRET_KEY);

4 AmazonS3Client s3Client = new AmazonS3Client(myCredentials);

5 try {

91

6 readAllRawFilesAndConvertToArff(s3Client);

7 readAllArffFiles(s3Client);

8 updateArffFiles();

9 createModels();

10 uploadLocalModelsToS3(s3Client);

11 deleteLocalModelFiles();

12 deleteLocalRawFiles();

13 uploadLocalArffFilesToS3(s3Client);

14 deleteLocalArffFiles();

15 } catch (AmazonServiceException ase) {

16 System.out.println("Caught an AmazonServiceException, " +

17 "which means your request made it " +

18 "to Amazon S3, but was rejected with an error response " +

19 "for some reason.");

20 System.out.println("Error Message: " + ase.getMessage());

21 System.out.println("HTTP Status Code: " + ase.getStatusCode());

22 System.out.println("AWS Error Code: " + ase.getErrorCode());

23 System.out.println("Error Type: " + ase.getErrorType());

24 System.out.println("Request ID: " + ase.getRequestId());

25 } catch (AmazonClientException ace) {

26 System.out.println("Caught an AmazonClientException, " +

27 "which means the client encountered " +

28 "an internal error while trying to communicate" +

29 " with S3, " +

30 "such as not being able to access the network.");

92

31 System.out.println("Error Message: " + ace.getMessage());

32 } catch (Exception e) {

33 e.printStackTrace();

34 }

35

36 List<Smartphone> smartphones = service.findAllSmartphones();

37 model.addAttribute("smartphones", smartphones);

38 return "allsmartphones";

39 }

This function iterates through all the arff files and creates a serialized classifier for

each one and writes the created model in the models directory.

1

2 private void createModels() throws Exception {

3 File fileDirectory = new File(System.getProperty("java.io.tmpdir") +

"\\arffs");

4 File modelDirectory = new File(System.getProperty("java.io.tmpdir") +

"\\models");

5 if (!modelDirectory.exists()) {

6 modelDirectory.mkdirs();

7 }

8 for (File arffFile : fileDirectory.listFiles()) {

9 String androidId = arffFile.getName().split("\\.")[0];

10 classifier = new RandomCommittee();

93

11 Instances inst = new Instances(

12 new BufferedReader(

13 new FileReader(arffFile)));

14 inst.setClassIndex(inst.numAttributes() - 1);

15 classifier.buildClassifier(inst);

16 SerializationHelper.write(modelDirectory.getPath() + "\\" + androidId

+ ".model", classifier);

17 }

18 }

This function sends a getObject request to S3 server and instantiates the classifier

model to be used in PHR.

1

2 private Classifier loadModel(String androidId) throws Exception {

3 File classifierFile = new

File(getApplicationContext().getFilesDir()+"\\"+androidId+".model");

4 AWSCredentials myCredentials = new BasicAWSCredentials(ACCESS_KEY,

SECRET_KEY);

5 AmazonS3Client s3Client = new AmazonS3Client(myCredentials);

6 S3Object modelObject = s3Client.getObject(MODELS_BUCKET, androidId +

".model");

7 if (modelObject == null) {

8 return null;

9 }else{

94

10 try {

11 IOUtils.copy(modelObject.getObjectContent(), new

FileOutputStream(classifierFile));

12 } catch (Exception e) {

13 return null;

14 }

15 }

16 FileInputStream fis = new FileInputStream(classifierFile);

17 testClassifier = (Classifier) weka.core.SerializationHelper.read(fis);

18 if (testClassifier != null) {

19 mKeyboardView.setClassifier(testClassifier);

20 }

21 Message message = mHandler.obtainMessage();

22 message.sendToTarget();

23 return testClassifier;

24 }

This method gets all the features required for the classifier to classify an instance and

decides if a set of features belongs to the smartphone being used by the legit owner

or to the ”Others”.

1 private void testClassifier(float pressureAverage, float sizeAverage,

float touchMajorAverage, float touchMinorAverage, long elapsedTime,

long elapsedFlyTime, float speed, int orientation, int wordOrNumber) {

2 Attribute pressureAttribute = new Attribute("pressure");

95

3 Attribute sizeAttribute = new Attribute("size");

4 Attribute touchmajorAttribute = new Attribute("touchmajor");

5 Attribute touchminorAttribute = new Attribute("touchminor");

6 Attribute durationAttribute = new Attribute("duration");

7 Attribute flytimeAttribute = new Attribute("flytime");

8 Attribute shakeAttribute = new Attribute("shake");

9 Attribute orientationAttribute = new Attribute("orientation");

10 Attribute typeAttribute = new Attribute("type");

11 ArrayList<String> myClassValues = new ArrayList<String>(2);

12 myClassValues.add(androidId);

13 myClassValues.add("Others");

14

15 // Create nominal attribute "classAttribute"

16 Attribute classAttribute = new Attribute("class", myClassValues);

17

18 // Create vector of the above attributes

19 ArrayList<Attribute> attributes = new ArrayList<Attribute>(9);

20 attributes.add(pressureAttribute);

21 attributes.add(sizeAttribute);

22 attributes.add(touchmajorAttribute);

23 attributes.add(touchminorAttribute);

24 attributes.add(durationAttribute);

25 attributes.add(flytimeAttribute);

26 attributes.add(shakeAttribute);

27 attributes.add(orientationAttribute);

96

28 attributes.add(typeAttribute);

29 attributes.add(classAttribute);

30

31 // Create the empty dataset "touch" with above attributes

32 Instances touch = new Instances("touch", attributes, 0);

33

34 // Make classAttribute the class attribute

35 touch.setClassIndex(classAttribute.index());

36

37 Instance inst = new DenseInstance(10);

38

39 // Set instance’s values for the attributes "pressureAttribute",

"sizeAttribute", and

40 //"classAttribute"

41 inst.setValue(pressureAttribute, pressureAverage);

42 inst.setValue(sizeAttribute, sizeAverage);

43 inst.setValue(touchmajorAttribute, touchMajorAverage);

44 inst.setValue(touchminorAttribute, touchMinorAverage);

45 inst.setValue(durationAttribute, elapsedTime);

46 inst.setValue(flytimeAttribute, elapsedFlyTime);

47 inst.setValue(shakeAttribute, speed);

48 inst.setValue(orientationAttribute, orientation);

49 inst.setValue(typeAttribute, wordOrNumber);

50 inst.setValue(classAttribute, androidId);

51

97

52 // Set instance’s dataset to be the dataset "touch"

53 inst.setDataset(touch);

54

55 try {

56 double pred = classifier.classifyInstance(inst);

57 if(pred == 0){

58 classifyResults.add(true);

59 }else{

60 classifyResults.add(false);

61 }

62 } catch (Exception e) {

63 e.printStackTrace();

64 }

65 }

98

