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ABSTRACT 

Second generation bioethanol produced primarily from lignocellulosic biomass resources 

has attracted great attention over the past two decades due to its numerous advantages such 

as: (i) potential to reduce environmental impacts in comparison to fossil fuels (ii) capability 

to mix with gasoline and use in vehicles without modifications in regular engines, and (iii) 

not competing with food resources that are being used in first generation ethanol. 

Simultaneous Saccharification and Fermentation (SSF) approach was proffered for this 

research over the Separate Hydrolysis and Fermentation (SHF) method to mitigate the 

inhibition impacts of hydrolysis products and reduce the capital costs of process.  SSF 

process was experimentally studied in a batch media at various levels of enzyme loading 

and sugars concentration to investigate the interactive influences of sugars concentration 

and enzyme loading on the final ethanol yield and concentration.  Results indicate that 

cellulase inhibition by cellobiose and glucose is remarkable when enzyme loading is 

increased from intermediate to high level, particularly at high initial sugars concentrations. 

The acquired experimental data from batch SSF reactions were consequently applied to 

determine five major kinetic parameters (k1, k2, Keq, λ, and µ) of kinetic models which 

incorporate the synergistic effects of supplementing β-glucosidase with cellulase on 

cellulose conversion and end-product inhibitions. The accuracy and reliability of the 

derived kinetic parameters were then verified by the good agreement between experimental 

results and the simulation concentration profiles of sugars and ethanol using tuned 

parameters under different reaction conditions. 
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Multi-objective optimization of the SSF process based on mechanistic  kinetic and reaction 

models was carried out in this study to further improve the SSF performance by 

simultaneously maximizing the ethanol yield/concentration and minimizing enzyme 

loading. Controlled elitist genetic algorithm, a variant of NSGA II, was used for bi-

objective optimization of three case studies with a varied combination of objectives and 

constraints. The optimized objectives in each case were validated by experiments at the 

corresponding operating parameters. Comparing the results with non-optimized 

experiments proved that optimization is capable of improving the objectives.  

Lower environmental impact is an important criterion when selecting the best technology 

for lignocellulose to bioethanol conversion. In this study, the influence of pretreatment 

process design on the environmental performance of the chained ethanol production 

process was evaluated by life cycle analysis.  Resulting substrates by two pretreatment 

designs led to significant differences in final ethanol concentration. The amount of 

produced ethanol as the functional unit in the life cycle analysis of a bioethanol production 

plant will significantly affect the environmental performance of the system. LCA was 

performed in small scale (pretreatment unit) and large scale (bioethanol plant) for both 

scenarios and results confirmed that pretreatment process leading to higher final ethanol 

concentration helps to mitigate the environmental impacts of the whole production process 

in most environmental impact categories 
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1 INTRODUCTION 

1.1 Research Background and Problem Statement 

Ethanol produced from inexpensive and abundant lignocellulosic biomass has been 

considered as one of the most attractive and promising renewable energy sources [1]. 

Lignocellulosic biomass refers to inedible plant materials made up primarily of cellulose, 

hemicelluloses, and lignin. Biochemical conversion of lignocellulosic biomass, which 

involves the release of monomeric sugars from cellulose and hemicellulose and their 

fermentation into ethanol, is currently the dominant technology for bioethanol production 

[2]. Although the cost of biochemical ethanol production has been reduced remarkably due 

to the advances in enzyme biotechnology, there are still economic, technical and 

environmental challenges for implementing lignocellulosic ethanol on the industrial scale.  

Overcoming the natural recalcitrance of lignocellulosic biomass by chemical, 

physicochemical or biological pretreatments is necessary to efficiently convert biomass 

into ethanol. The alterations of macroscopic and microscopic structures of biomass 

occurred during pretreatment basically include removal of lignin, decrease in the 

crystallinity of cellulose, and increase in the surface area and porosity of the biomass. Due 

to the variety of biomass sources, there is no stand-alone pretreatment method for all 

biomass. Selection of pretreatment method and its conditions depends on the nature of 

biomass, processing efficiency and cost. Moreover, an unavoidable problem encountered 

in pretreatment step is the generation of lignocellulose-derived by-products that act as 

inhibitors for enzymes and fermenting microorganisms in the subsequent conversion steps 
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[3, 4]. Development of cheap detoxification methods to remove and/or neutralize inhibitors 

and strategies to lower the pretreatment cost deserves further study. 

Pretreated biomass comprising water-insoluble solids (mainly cellulose and lignin) and a 

liquid fraction composed of partially hydrolyzed hemicellulosic sugars typically undergoes 

enzymatic hydrolysis and fermentation to finally convert into ethanol. These operations 

can be carried out consecutively (separate hydrolysis and fermentation), simultaneously 

(simultaneous saccharification and fermentation) or fully consolidated (consolidated 

bioprocessing) [5].  Although separate hydrolysis and fermentation (SHF) allows two 

reactions to be operated under their optimal conditions (temperature, pH, nutrient 

composition, solid loading), severe inhibition of cellulolytic enzyme activity by released 

glucose or cellobiose is the main problem which significantly reduces the depolymerization 

efficiency. Consolidated bioprocessing (CBP) is a one-step process in which 

lignocellulosic biomass is directly converted into ethanol by special microorganism or 

microbial consortium without pretreatment. However, lacking of suitable and efficient 

microorganism/microbial consortium makes CBP somewhat risky [6]. Simultaneous 

saccharification and fermentation (SSF) is capable of attenuating inhibition of cellulolytic 

enzymes by intermediately consuming glucose released from cellulose. Nonetheless, SSF 

carried out at enzyme suboptimal temperatures slows the hydrolysis rate, careful 

optimization of SSF conditions must be done for balanced hydrolysis and fermentation 

rates [7-9].   

Although a good ethanol yield is usually achieved in SSF, final ethanol concentration and 

productivity is still quite low compared with starch- and sugar-based ethanol production 
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processes. High substrate loadings, which are inevitable for achieving ethanol 

concentration, are hardly achievable due to the limitations of mixing and mass transfer 

caused by the high viscosity of the medium and high toxicity due to the pre-concentration 

of inhibitors [10,11]. Moreover, SSF performance (i.e., ethanol yield or concentration) is 

also highly influenced by the amount of enzyme used. Higher enzyme concentrations can 

increase the conversion of cellulose into glucose, and consequently, the concentration of 

ethanol, but also increases the operating cost [12]. Understanding the interactions between 

enzyme and substrate loadings is therefore important in optimizing the SSF performance. 

So far, most of the optimization studies of SSF process are based on statistically designed 

experiments, which are valid only in range of parameters studied and therefore cannot be 

applied to wider ranges directly [13-16]. Systematic optimization of SSF based on 

experimentally validated kinetic model is highly needed for more accurate and widely 

applicable optimization results.  

As environmental awareness increases, industries and businesses are assessing how their 

activities affect the environment. Life cycle assessment (LCA) has been a strong tool to 

analyse the environmental impacts of any process and product and been implemented in 

recent years for LCA of bioethanol. Major objectives of performed studies on LCA of 

bioethanol have been concentrated on either contrasting the environmental impacts of 

bioethanol and conventional fossil fuels (mainly gasoline) [17, 18], or comparing the LCA 

results of bioethanol production from different sources of biomass [19,20]. The 

significance of influence of process design on the environmental performance of the 

bioethanol production has been discounted in literature and requires more consideration. 



4 
 

Pretreatment as a key process for an ethanol plant could be considered for LCA study at 

different process designs. Research on how process design and technology improvements 

in an ethanol plant affect the environmental performances of the system is required. 

 

1.2 Objectives 

This PhD study addresses the technical and environmental challenges of second generation 

bioethanol production by incorporating the modeling, simulation and optimization of batch 

SSF process as well as LCA assessment of ethanol plant with different process designs. 

Specifically, the objectives of this study are to i) identify the interactions of enzyme and 

substrate loadings on SSF; ii) determine the kinetic parameters over wide initial sugars 

concentrations and enzyme loadings; iii) perform multi-objective optimizations of SSF 

process to simultaneously maximize ethanol yield and minimize enzyme consumptions; 

and iv) analyze the environmental impacts of second-generation ethanol plant via LCA 

analyses with different process designs. 

 

1.3 Thesis Contribution 

This thesis contributes to the better understanding of SSF process and highlights the 

importance of process design on output of an ethanol plant and accordingly environmental 

impacts of the ethanol production process. It implements a kinetic model which alongside 

the hydrolysis of cellulose, considers the simultaneous fermentation of glucose and 

mannose. This model uses a wider range of fermentable sugars concentration to tune five 
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kinetic parameters based on the batch SSF experiments and offers a domain for each 

parameter depending on the enzyme usage and sugars concentration. The good agreement 

among modeling and experimental results confirms the reliability of the model for further 

application in process optimization. Moreover, this study firstly attempted a multi-

objective optimization of SSF process based on the experimentally-verified mechanistic 

kinetic model. In contrast to extensive researches on single objective optimization of SSF, 

this work offers an optimization intending to optimize two objectives by providing a set of 

solutions that reflects the trade-offs between the objectives. This set of solutions unlike the 

one solution in single objective optimization enables the decision makers to perform the 

reaction in optimum condition at various situation of process.  

Furthermore, the originality of this thesis also contributes to offer the life cycle assessment 

of an ethanol production plant at two different pretreatment designs and two levels of 

analysis. To the best of my knowledge, no research has been so far investigated the 

environmental performance of an ethanol plant with a certain type and amount of feedstock 

but different process designs. Based on two pretreatment scenarios, LCA study compares 

the environmental impacts of pretreatment unit in the first level and whole ethanol plant in 

the second level. This approach also helps the decision makers to alongside the economic 

issues, compare the environmental influences of each process for large scale production of 

bioethanol. 
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1.4 Proposed Methodology and Scope of Work 

The scope of this study covers the simultaneous saccharification and fermentation process 

in the batch media as well as environmental performance of an ethanol plant at two 

pretreatment designs through life cycle assessment.  

The interactive influence of the initial concentrations of fermentable sugars and enzyme 

loading on the batch SSF process was explored by experiments firstly. Impacts of initial 

sugars concentration and enzyme loading on the ethanol yield and final concentration were 

investigated. Product inhibition impact and the role of enzyme loading on the SSF 

efficiency were investigated by performing SSF experiments in a batch reactor and results 

are discussed in details.  

The acquired experimental results then were implemented for kinetic modeling of the SSF 

process. The applied kinetic model reported by Philippidis et al. [21] and Pettersson et al. 

[22] was chosen and developed to achieve the kinetic parameters at various combinations 

of sugars concentration and enzyme loading based on the experimental data. Five major 

kinetic parameters were determined by least square fitting of experimental measurements. 

The validity of the derived kinetic parameters was verified by comparing the simulated 

ethanol concentration profiles estimated using kinetic parameters with experimental results 

of batch SSF under different operating conditions. 

In order to render the process economically, optimization of multi-objectives have been 

considered. Objectives such as ethanol yield or cellulose conversion must be maximized 

while the amount of enzyme loading and required enzyme per unit of produced ethanol 
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need to be minimized in favor of feasible production of ethanol. The kinetic model was 

implemented to optimize the process in different cases of optimization. In each case two 

objectives were assigned to be optimized regarding to subjected constraint and defined 

range of decision variables. The results of optimization are presented as optimal solutions 

diagram and in each case of optimization, results have been validated experimentally 

regarding to the specified operation parameters. 

Investigating the importance of the pretreatment process design on the environmental 

performance of a bioethanol production plant through life cycle analysis is also in the scope 

of this thesis. The bioethanol production plant designed by National Renewable Energy 

Laboratory (NREL) [23] was selected for this study which uses dilute acid pretreatment. 

Two scenarios for pretreatment unit were studied and some modifications based on the 

Wayman et al. (2009) [24] and Humbird et al. (2011) [25] were applied in the new scenario. 

The effectiveness of different scenarios¬ of pretreatment units on the life cycle analysis 

results of the individual unit as well as of the whole production plant was studied.  

Comparative LCA study based on two pretreatment designs, provide an insightful tool to 

compare the environmental impacts of each process in limited and large perspective of an 

ethanol production plant. 

 

1.5 Organization of the Thesis 

A comprehensive literature review of cellulosic ethanol production, different technologies 

for pretreatment, hydrolysis and fermentation approaches, modeling of SSF process, and 

optimization of SSF process have been presented in chapter 2. Chapter 3 investigates the 
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interactions of major components involved in the SSF process through various experiment 

runs and analyze the role of enzyme loading amount and sugars concentration on final 

ethanol concentration. Chapter 4 focuses on a kinetic model that kinetic parameters are 

tuned by using experimental results. Inhibition impacts of produced product for each 

process have been discussed and reliable kinetic model with adjusted parameters for each 

range of operation parameters were achieved. Chapter 5 presents the multi-objective 

optimization of SSF process. Optimization was performed for three case studies with 

different objectives and constraints combination and results were validated experimentally. 

Chapter 6 analyzes the environmental impacts of pretreatment unit and whole bioethanol 

plant at two pretreatment scenarios. Base scenario was modified by some changes in 

process designs. Life cycle analysis at two levels for two pretreatment scenarios was 

performed and environmental impacts of two cases were compared. Chapter 7 makes a 

summary of the thesis and illustrates the main conclusions of this work. Recommendations 

for future studies on this subject has been provided at the end of this chapter. 
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2 LITERATURE REVIEW 

Modern societies have a high and increasing dependency on fossil fuels [1] and the scarcity 

of these resources in the future will cause serious problems as above 80% of required 

energy is provided by fossil resources [2, 3]. Additionally, because of the increasing rate 

of the world’s population, many concerns have been debated regarding environmental 

issues caused by fossil fuels’ consumption such as acid rain and global warming [4-7]. 

Thus, investigation of alternative sources of energy such as renewable fuels is obligatory.  

Biofuels are produced in the forms of solid, liquid, and gas from renewable biomass and 

include bioethanol, biogas, biobutanol, and biodiesel [5, 8-10]. Bioethanol is one of the 

most important and prevalent biofuels in the market and replaces some portion of fossil 

fuels [11, 12].  

Current bioethanol, which is blended with gasoline for the market, is generated from sugar 

cane and corn, is called first generation bioethanol. Due to the competition of the sources 

with food resources, this first generation has been questioned as a sustainable source. For 

this reason, second generation of biofuels which could be produced by lignocellulosic 

biomass has attracted the interest of researchers [13-16]. 

There are two major pathways for producing bioethanol from lignocellulosic biomass: (1) 

biochemical conversion and (2) thermochemical conversion [17, 18]. In the 

thermochemical conversion route, raw biomass is first gasified at the temperature of about 

800°C and then the produced syngas (hydrogen, carbon dioxide, and carbon monoxide) 

will be converted to a mixture of alcohols in the presence of a catalyst. Separation of 
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produced alcohols will be performed in the next step through the distillation process. The 

biochemical conversion pathway includes four major steps: pretreatment, hydrolysis, 

fermentation, and product recovery [17-21]. The biochemical conversion route is the main 

subject of this thesis and will be discussed in details in the following sections. 

 

2.1 Lignocellulosic Biomass 

Lignocellulosic biomass has attracted many researchers in the last decades as one of the 

most promising and sustainable sources for producing bioethanol [22]. Forestry and 

agricultural residues, the most abundant sources of lignocellulosic materials, are low-cost 

and sustainable feedstocks for bioethanol production [23]. Three major components create 

the structure of lignocellulosic biomass: cellulose, hemicellulose, and lignin. Cellulose, 

hemicellulose, and lignin contents of lignocellulosic materials are different in amount and 

their entangled structure. These components create a complex matrix where lignin and 

hemicellulose surround cellulose and protect it from access to the enzyme which causes 

recalcitrance of enzymatic hydrolysis of cellulose [24-29]. Different lignocellulosic 

biomass sources have various amount of cellulose, hemicellulose, and lignin. Lignin is a 

random aromatic compound which hinders cellulosic bioethanol production due its strong 

linkages to cellulose and hemicellulose. The complex nature of lignin polymerization 

makes a challenge for cellulose separation and further depolymerisation. Prior to cellulose 

hydrolysis, the lignin content of biomass must be removed in order to provide access for 

the enzyme to reach the cellulose. Lignin content of softwood is higher than for other 

biomass which means that cellulose and hemicellulose amount of softwood is lower which 
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makes the softwood pretreatment more severe. In addition to this, amongst the same 

categories of biomass, hemicellulose content also varies in sub-components. While xylan 

is a major part of hemicellulose in agriculture residues and even hardwoods, the majority 

of hemicellulose content in softwoods is mannan. These different compositions in major 

components will cause a different output combination of the pretreated product and highly 

influence the subsequent ethanol production units, hydrolysis and fermentation [30-36].  

 

2.2  Biochemical Conversion of Lignocellulosic Biomass to Ethanol 

The process of biochemical conversion of lignocellulosic biomass into bioethanol consists 

of different steps. As is shown in Figure 2.1, the main steps start with pretreatment and 

then are followed by enzymatic hydrolysis (saccharification) and fermentation and finally, 

the product will be purified using separation processes such as distillation or dehydration. 

The pretreatment process treats the raw biomass to release cellulose and hemicellulose by 

cleaving the bonds that lignin has created around their polymeric chains. Most of the 

hemicellulose and some portion of the cellulose are hydrolysed in the pretreatment step 

and monomeric sugars are released. Unconverted cellulose is hydrolysed in the hydrolysis 

process to liberate glucose. Potentially, the produced glucose and released sugars from 

pretreatment could be fermented to ethanol in the fermentation process. Purification of the 

produced bioethanol takes place in the last step [37-39]. In the following sections, three 

main steps including pretreatment, hydrolysis, and fermentation are further discussed in 

details.  
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Figure 2.1. Main steps of bioethanol production from lignocellulosic biomass 

 

2.3   Pretreatment of Lignocellulosic Biomass 

Lignocellulosic biomass is an abundant and affordable resource for bioethanol production, 

but to convert this rich polysaccharide content resource into feasible ethanol, a pretreatment 

process is unavoidable. The recalcitrant character of lignocellulosic biomass enables it to 

resist any kind of deformation in the crystalline structure of biomass and therefore makes 

it more difficult to hydrolyze the cellulose fiber into monomeric sugars [40-42]. The main 

purpose of the pretreatment process is to make the cellulose available for enzyme 

hydrolysis and this occurs by diminishing the recalcitrance of lignocellulosic biomass 

through breaking the strong linkage between hemicellulose and lignin to cellulose and 

removing them [41, 42].  

Numerous pretreatment methods have been investigated. Regarding the composition of the 

raw biomass, different technologies might be more effective in disrupting the 

lignocellulosic structure of biomass. In general they can be categorized into three main 

approaches: biological pretreatment, physical pretreatment, and chemical pretreatment. 

The biological pretreatment method uses microbes for removing lignin and despite low 
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energy consumption, the slow rate of reaction and degradation of materials prevent its 

being a promising methodology [11].  

Physical methods of pretreatment include ball milling, extrusion, and comminution and are 

mostly applied for size reduction and to fractionate the lignocellulosic biomass to increase 

the accessible surface area of the biomass and enhance the enzymatic hydrolysis. The main 

obstacle of using these methods is that their energy consumption is high and also they are 

not feasible for some lignocellulosic biomass such as softwood, although implementing 

them alongside the chemical pretreatment methods is recommended and enhances the 

performance of the pretreatment. This is called physicochemical pretreatment [43-48].  

Chemical pretreatments are the most promising pretreatment technologies. These methods 

use chemical substances to release cellulose from lignocellulosic biomass by removing 

hemicellulose or lignin. According to agent used, chemical pretreatments can be 

categorized as three major types: Acid pretreatment, Alkaline pretreatment, and 

Organosolv pretreatment.  

 

2.3.1 Acid pretreatment 

Acid pretreatment, which is also called acid hydrolysis, is the most cited and traditional 

method of pretreatment for lignocellulosic biomass. In this approach several organic 

(fumaric acid and maleic acid (C4H4O4)) and inorganic acids (sulfuric acid (H2SO4), 

hydrochloric acid (HCl), phosphoric acid (H3PO4), and nitric acid (HNO3)) are used [49-

55]. However, due to the better efficiency and lower cost, sulfuric acid is the most common 



18 
 

agent for pretreatment of the wide range of biomass [56, 57]. Acid pretreatment enhances 

the cellulose accessibility by hydrolyzing the hemicellulose and amorphous cellulose 

fractions of the biomass. Dilute acid (0.2-5 wt %) with a residence time of lower than an 

hour is usually preferred to concentrated acid due to the corrosive and toxic properties of 

concentrated acid which increase the cost of an operation to provide a corrosion resistance 

reactor and recover the used acid [58-60]. The major problem with acid pretreatment is the 

reaction conditions such as temperature, pH, and residence time, which must be carefully 

chosen to prevent the components such as hydrolyzed sugars from hemicellulose from 

converting to furfural and HMF (5-hydroxymethylfurfural), which are inhibitors of the 

hydrolysis process [61, 62]. SO2 was also studied as an acid catalyst by Monavari et al. 

(2009) [63] for softwood pretreatment and showed promising method for this type of 

biomass.  

Among all the pretreatment methods, steam explosion, which is a physicochemical method, 

is one of the most investigated approaches for pretreatment of lignocellulosic biomass. This 

method can be applied in the presence or absence of an acid catalyst (H2SO4 or SO2) when 

biomass material is exposed to high pressure saturated steam (160-230˚C) for a few 

minutes. Quick release of the pressure causes the removal of hemicellulose from the 

structure of the lignocellulosic biomass, but removal of lignin is not so considerable. This 

method has the capability to be used for most biomass such as agricultural residue and 

softwood. In the case of softwood, an acid catalyst is mandatory to improve the efficiency 

of the pretreatment process [43, 44, 46, and 64]. Two key parameters in this method are 

temperature and retention time. Degradation of hemicellulose to fermentable sugars 
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depends on the duration of the retention time of the substrate. A high retention time causes 

the degradation of sugars into inhibitory substances such as furfural and 5-hydroxylmethyl-

furfural (HMF), which are inhibitors of the hydrolysis process [65, 66]. 

 

2.3.2 Alkaline Pretreatment 

Alkaline pretreatment is mainly implemented for delignification of low lignin content 

biomass such as hardwood or agricultural residue. In this method various alkali agents such 

as ammonia, sodium hydroxide, and calcium hydroxide have been investigated to break 

the linkage between polysaccharides and lignin and to dissolve the lignin in order to make 

the cellulose and hemicellulose more accessible. Alkaline pretreatment uses a lower 

temperature and pressure in comparison to other pretreatment technologies; however, the 

reaction time could be extended to days [64, 66-69]. The main advantage of alkaline 

pretreatment over acid pretreatment is milder reaction conditions (temperature and 

pressure), although conversion of alkali to salts causes problems for an ethanol production 

plant [38]. Recovering the alkali, the treatment of produced salts as well as the precipitation 

of salts in the utility sections of the plant are the challenges of alkaline pretreatment [70]. 

Ammonia fiber explosion (AFEX) is one of the most studied physicochemical techniques 

of alkaline pretreatment. In this method, the biomass is soaked in ammonia at a temperature 

of approximately 100oC and under high pressure for 5-60 min and then this is followed by 

a sudden decrease of the pressure which causes breakage of the lignin linkages and 

reduction of the lignin content [71-73]. The moderate reaction conditions and higher pH of 
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reaction media prevent the recovered sugars from converting to undesired inhibitors, in 

comparison to the steam explosion technique. However, the higher price of ammonia and 

requirement of the system for ammonia recovery alongside the inefficiency of AFEX for 

high lignin content biomass are comparative drawbacks of this method [38, 70].  

 

2.3.3 Organosolv pretreatment 

Organosolv pretreatment is the technique which uses the organic mixture of an alcohol 

such as methanol or ethanol with an acid such as acetic or formic acid to remove lignin 

from the lignocellulosic biomass. Lower molecular weight alcohols for this technique are 

preferred due to their low boiling points which makes the solvent recovery process easier.  

This method can be implemented with or without an acid catalyst such as sulfuric or 

hydrochloric acid to solubilize lignin, hydrolyze hemicellulose and achieve cellulose rich 

feed for the hydrolysis process [74-76].  

The main advantages of organosolv pretreatment are the easy recovery of solvents and the 

capability of the technique to separate the lignin content of biomass, which can be 

considered as a by-product of a biorefinery plant. The main problem associated with this 

technique is the requirement to remove and recover the solvent in order to make the process 

economically feasible, which increases the energy consumption of the plant. Also, the 

hydrolysate product must be washed thoroughly to remove the existing solvent that would 

act as an inhibitor in enzymatic hydrolysis and fermentation processes [77-79].  
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2.4 Enzymatic Hydrolysis (Saccharification) and Fermentation 

Producing bioethanol from lignocellulosic biomass will be followed by two key processes 

after the pretreatment step: hydrolysis of cellulose (and hemicellulose) and fermentation of 

released sugars to ethanol. The following sections will describe two processes individually 

and compare two major approaches to performing hydrolysis and fermentation: Separate 

Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation 

(SSF).  

2.4.1 Separate Hydrolysis and Fermentation (SHF) 

After the pretreatment process, hydrolysis of pretreated materials to fermentable sugars is 

the next important process. Hydrolysis of the cellulose into fermentable sugars is still the 

main barrier in the commercial-scale cellulosic ethanol production process, due to the high 

cost of enzymes [80-82] and low efficiency of the process which is inevitably caused by 

end product inhibition [83, 84]. The hydrolysis process of cellulose polymers to produce 

glucose consists of three major sub-processes which are operated by three classes of 

enzymes. Endo-1,4-beta-glucanases (EC 3.2.1.4) enzyme breaks 1,4-beta-linkages of the 

amorphous structure of cellulose . Free ends of the cellulose polymer will be hydrolyzed 

to cellobiose by exo-1,4-beta-glucanases (EC 3.2.1.91) and β-glucosidase (EC 3.2.1.21) 

and then reacts on cellobiose molecules to cleave them into glucose molecules [85-87]. 

Fermentation is the subsequent process of hydrolysis in order to ferment the fermentable 

sugars such as glucose, mannose, and xylose into ethanol. These hydrolyzed sugars are 

coming from either hydrolysis or pretreatment. Different types of microorganisms are 

currently being used for this purpose but the most common and frequently used 
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microorganism is Saccharomyces cerevisiae or baker’s yeast [88, 89]. The advantages of 

saccharomyces cerevisiae over the other microorganisms include: high tolerance of ethanol 

and inhibitors coming from pretreated hydrolysate [90-93], having GRAS (generally 

regarded as safe) status, mature process technology, and wide usage in industry [94]. On 

the other hand, a major drawback of the S. cerevisiae is that it cannot utilize the pentose 

sugars such as xylose existing in pretreated hydrolysate [95, 96]. To overcome this barrier, 

recombinant genetically engineered microorganisms have recently been shown to be a 

promising solution [97-100]. 

The Separate Hydrolysis and Fermentation (SHF) process occurs in sequentially separate 

reactors for hydrolysis and fermentation; therefore, each process can be performed at its 

own optimum condition. For instance, the optimum temperature for the hydrolysis process 

is 45-50˚C, while for the fermentation process 30-37˚C is the best range of temperature 

[101-103]. Another advantage of SHF is that due to the separate units, lignin removal after 

the hydrolysis is conceivable; thus, the fermentation process can be performed in 

continuous mode with cell recycling [104]. Nevertheless, there are some drawbacks 

involved in performing the SHF process. The largest obstacle of SHF is the inhibitory roles 

that glucose and cellobiose play in the reaction media as the end-product and intermediate 

product of hydrolysis, respectively. Both cellobiose and glucose have inhibitory impacts 

on cellulase and; additionally, glucose effectively inhibits the β-glucosidase [105-107]. To 

overcome this problem, solids loading must be lowered and enzyme loading must be 

increased, which may not make the process economically feasible [108]. The other major 

disadvantage of SHF is the high possibility of contamination. The hydrolysis processing 
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time is lengthy and due to the existence of produced sugars, might be a suitable 

environment for growing undesired microbes in the reaction media [103]. 

2.4.2 Simultaneous Saccharification and Fermentation (SSF) 

Integration of hydrolysis and fermentation processes to one step is called Simultaneous 

Saccharification and Fermentation (SSF). In this approach, the pretreated biomass serves 

as the substrate; therefore, there are some fermentable sugars already in the liquid fraction 

which will be fermented immediately and the solid portion consists of cellulose. Cellulose 

will be hydrolyzed in the reaction media and the produced glucose will be consumed 

quickly by microorganisms to produce ethanol. Extensive research has demonstrated that 

SSF improves the biomass conversion by decreasing the inhibitory impact of converted 

sugars. A higher enzymatic hydrolysis rate of reaction and higher ethanol yield are reported 

for SSF due to the diminishment of the product inhibition impact of glucose on enzymes 

[105, 109-111]. Another major advantage of SSF over SHF is the lower risk of 

contamination, mainly due to lower available sugars and the presence of ethanol in the 

reactor [103]. In addition, decreasing the cost of the operation by implementing one vessel 

for both reactions must be considered as an economic advantage of SSF [103]. 

Nevertheless, compromising the reaction conditions of hydrolysis and fermentation are the 

major challenges in implementing SSF. As is mentioned in the previous section, each 

hydrolysis and fermentation has optimum operation conditions. The differences between 

optimum reaction conditions for hydrolysis and fermentation make the optimal operation 

condition (pH: 5 and temperature: 37°C) not flexible for SSF in order to compromise 

between enzyme and yeast requirements [112, 113].  
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Accumulation of produced ethanol in the reaction media can also cause another 

disadvantage with the SSF process, due to its inhibitory impact on microorganisms and 

enzyme. Studies show that ethanol is capable to significantly decrease the enzyme activity 

[103, 114]. 

 

2.5 Kinetic Modeling of SSF Process 

Industrialization of ethanol production from lignocellulosic biomass by relying on the 

experimental data to establish the basic concepts of the process would cost significant 

resources and time [115]. Many researchers in recent years have been attracted to 

developing kinetic models to simulate and analyze the behavior of the parameters involved 

in the SSF process during ethanol production [115-118]. Moreover, optimization of the 

SSF process without implementing a kinetic model alongside reliably tuned parameters is 

impossible. Although several mathematical models have been proposed and developed for 

enzymatic hydrolysis and fermentation individually [119-125], developing the kinetic 

models for the SSF process and scaling up the application of kinetic models are still 

required [126-129]. Kadam et al. (2004) [119] proposed a kinetic model based on the 

Langmuir isotherm for hydrolysis process on pretreated corn stover. The details of 

proposed model by Kadam et al. are presented in Table 2.1. 

 

 



25 
 

Table 2.1. Kinetic model for hydrolysis reaction proposed by Kadam et al. [119] 

Reaction Formulation 

Cellulose to cellobiose reaction with glucose, 
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This proposed model assumes that cellulose can be hydrolyzed into two products: glucose 

and cellobiose. The produced cellobiose can be further cleaved into glucose. This kinetic 

model also considers the products inhibition (glucose and cellobiose) as well as substrate 

inhibition (xylose) on the hydrolysis reaction and KiIG, KiIB, and KiIX represent the 

inhibition constants for glucose, cellobiose, and xylose, respectively. [119].  

A kinetic model of glucose and xylose fermentation was performed by Krishnan et al. 

(1999) [120] using recombinant saccharomyces cerevisiae to compare the growth rate of 

glucose, xylose, and a mixture of both. The fermentation kinetic model is demonstrated in 

Table 2.2. 
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Table 2.2. Kinetic model for fermentation reaction proposed by Krishnan et al. [120] 
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Depending on the type of the used substrate (S), this model can be used for both glucose 

and xylose fermentation. Kinetic parameters of the model, however, are determined 

through single substrate experiments. Substrate inhibition (glucose and xylose (S)) and 

product inhibition (ethanol (E)) were incorporated in the proposed model to analyze the 

inhibition impacts on the growth rate of microorganism (yeast) and the production rate of 

ethanol [120]. 

The proposed kinetic model by van Zyl et al. (2011) [129] for SSF process considers the 

glucose, cellobiose, and ethanol inhibition on the hydrolysis process and ethanol inhibition 

on the fermentation process. The model is illustrated in Table 2.3. 
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Table 2.3. Kinetic model for SSF process proposed by van Zyl et al. [129] 
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The model is based in the study done by South et al. (1995) [116] which is based on the 

created complex between enzyme and substrate (EC). Cellobiose (B), glucose (G), and 

ethanol (E) inhibition impacts on SSF reaction are investigated in this model. In this study, 

cellulose is the only primary substrate and other pretreatment products such as recovered 

sugars from hemicellulose are neglected. The ramp function (tanh(t/τ)) in the cellulose 

hydrolysis reaction is accounted for the delay that occurred in the first 10 hours of the 

reaction due to the non-productive bonding of the exoglucanase enzyme and substrate. 

Nevertheless, more investigation of this phenomenon is required. Moreover, in this model 

the Langmuir isotherm is considered for cellobiose formation as does Kadam et al. [119] 

but glucose formation is modeled based on Michaelis-Menten kinetics [129]. Depending 

on the regional interest and the type of the available biomass, these proposed models are 

applicable in a narrow range of substrate and operational conditions.  
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One of the comprehensive kinetic models for the SSF process is proposed by Philippidis et 

al. [105, 106, 126, and 127] and later developed by Pettersson et al. [130]. In the first 

version of the model, glucose is produced either directly from the hydrolysis of cellulose 

or through cleavage of a cellobiose molecule into two glucose molecules. The primary 

model also considered the cellulose as substrate and therefore only the inhibition effects of 

cellobiose, glucose, and ethanol are studied [126]. Pettersson et al. [130] later developed 

the model by incorporating mannose as the substrate for the SSF process. In the developed 

model, ethanol production from fermentation of mannose as well as the inhibitory impact 

of mannose on yeast performance have been taken into account [130]. Three kinetic 

parameters are tuned by Pettersson et al. [130] at a certain concentration of fermentable 

sugars.  

Although in the developed model, in addition to glucose fermentation, mannose 

fermentation is also considered [130], two main drawbacks still need to be considered. The 

first problem is that for tuning the kinetic parameters, only concentrations of ethanol and 

glucose are considered, while there are other substances that could be influential in 

modeling, such as cellobiose and mannose concentration. The other disadvantage is that 

kinetic parameters are tuned in a certain range of sugars concentration, while the achieved 

hydrolysate from pretreatment could be diluted and mixed with solid fraction in different 

amounts, depending on the other operational conditions of the SSF process, which can be 

determined by optimization the of process. These two drawbacks need to be considered to 

analyse the interactive influence of the initial concentrations of fermentable sugars and 

enzyme loading, to provide an insight into SSF process optimization. More details of this 
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model and recommendations to improve its performance for a wider concentration range 

of glucose and mannose are discussed in chapter four of this thesis. 

 

2.6 Multi-Objective Optimization of SSF Process 

Feasible production of cellulosic ethanol is not achievable unless the optimization of the 

process is performed and due to the decisive role of the SSF process, optimization of this 

process seems to be unavoidable. Numerous studies have used a single objective such as 

ethanol productivity [131, 132] or ethanol yield [133, 134]; however, ethanol production 

optimization, like all industrial cases, involves more than one objective, which in most 

situations might be in conflict.  

Optimization studies on the SSF process mainly rely on the experiments’ results. 

Triwahyuni et al. (2015) [135] optimized the SSF process by means of a series of 

experiments performed with different amounts of enzyme loading to maximize the ethanol 

yield. Various reaction times are studied by Wahono et al. (2015) [131] to maximize the 

final ethanol concentration. Response surface methodology is implemented in some cases, 

after acquiring experimental data to extract a regression model from experimental results 

[134, 136, and 137]. These studies have mainly investigated the effects of the key 

parameters such as cellulose loading, yeast amount, enzyme dosage, solution pH, 

temperature, and reaction time on ethanol production. Nevertheless, these optimization 

studies are limited to the specific set of the experiments and may not be applicable to a 

wider range of parameters of the SSF process.  
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Kinetic behaviour of parameters involved in the SSF process, such as sugars concentration, 

cellulose amount, and enzyme loading, determine the performance of the process. The 

kinetic model analyzes the interactions among the components and provides a perspective 

of the outcomes of the interactions such as inhibition and deactivation of the enzyme and 

yeast by the products and primary substrate. Optimization of the SSF process without 

considering the complex reactions and interactions among the components using a reliable 

kinetic model does not provide a comprehensive result. 

 

2.6.1 Single Objective vs Multi-Objective Optimization 

Despite the extensive studies on optimization of ethanol production using response surface 

methodology, implementing a reliable kinetic model to optimize the SSF process is rarely 

investigated. In recent reported studies, Wang et al. (2016) [138] optimized the cell, 

enzyme, and substrate amount based on a strict kinetic model to maximize the final ethanol 

concentration. Unrean et al. (2016) [139] optimized the SSF process for maximum ethanol 

concentration by integrating a dynamic metabolic model of yeast with a hydrolysis model 

in order to optimize the substrate and yeast loadings.  

As can be seen, all these studies have optimized a single objective whilst optimizing one 

objective will not necessarily lead to the best solution that satisfies other objectives. 

Therefore, to achieve a cost-effective approach for cellulosic ethanol production, 

optimizing multi-objectives which may also be in conflict is crucial. Multi-objective 

optimization offers a set of optimal solutions that illustrates trade-offs among different 
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objectives. In the case of the SSF process, while maximum ethanol yield or highest ethanol 

concentration as the product is the first objective, enzyme consumption the second 

objective, must be the lowest in order to have an optimized process, despite the fact that 

under certain circumstances, increasing the amount of enzyme may improve the ethanol 

yield or final ethanol concentration.  

In a general form, the multi-objective optimization problem can be formulated as follow:  

Objectives: to be minimized/ maximized: fn(x); i=1,2,…, N 

Constraints: to confine the results: gm(x) ≥0;  m=1,2,…, M 

            hk(x)=0;  k=1,2,…, K  

Decision variables:   Lower bound≤ xi ≤ Upper bound;  i=1,2,…, J 

For a multi-objective problem, a solution will be defined as a vector that consists of J 

decision variables. Objectives (fn(x)) will be optimized regarding defined constraints 

(gm(x)) and the limitation of operation parameters (xi) [140]. 

2.6.2 Genetic Algorithms for Multi-Objective Optimization 

Traditional techniques of multi-objective optimization use a weighing method for multiple 

objectives and transform the problem into a single objective optimization. Weighing 

factors of objectives are determined in advance, regarding preferences and considerations. 

Each set of weighing factors will provide a single solution for the optimization problem 

and varying the factors would result in a new solution. The achieved set of solutions creates 

a pareto solution for the multi-objective optimization problem. 
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According to Deb (2001) [141], traditional procedures can be categorized as preference-

based multi-objective optimization, which requires additional information in order to 

convert the problem into a single objective optimization. The optimal solution will then be 

achieved by solving the single objective optimization. On the contrary, a second category, 

which is called ideal multi-objective optimization, does not depend on the higher level 

information to produce optimal solutions; however, high level information can be later 

implemented to select the most desired solution from the set of pareto optimal solutions.  

In addition, preference solutions are time consuming, due to the necessity of apply different 

weighing factors for each run. Also, by increasing the number of objectives, preference 

techniques require more information and constraints for the user to solve the multi-

objective optimization problem [141].  

Nowadays, evolutionary optimization algorithms have been implemented for multi-

objective optimization, due to their approach of using a population based method to 

develop new population of solutions in each iteration from one solution in an iteration. The 

major reasons for using evolutionary techniques in recent years are their applicability for 

wide ranges of operations, simplicity to use in different applications, and flexibility for 

different case studies [141, 142]. Recently, evolutionary (Genetic) optimization algorithms 

have been widely used for multi-objective problems as a set of pareto optimal solutions is 

required for this kind of problems and can be provided by these approaches in a single run 

[141-145]. 
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Multi-objective problems in recent decades have been optimized by means of several 

variants of genetic algorithms such as: Strength Pareto Evolutionary Algorithms (SPEA) 

[146] and SPEA2 [147], Vector Evaluated Genetic Algorithms (VEGA) [148], Niched 

Pareto Genetic Algorithms (NPGA) [149], and Non-dominated Sorting Genetic 

Algorithms (NSGA) [150]. 

Among different procedures of evolutionary optimization algorithms, the Non-dominated 

Sorting Genetic Algorithm II (NSGA II) has attracted more attention [140]. The main 

advantages of NSGA II over other genetic algorithms are the search through the main 

domain for global optimum solutions, a reduction of the computational complexity, and 

also an increase in the diversity of the population, by introducing the crowded comparison 

operator [151]. In general, the main aspects of the NSGA II are: (i) implementing elitism 

that can store all non-dominated solutions and then improving convergence properties, (ii) 

guaranteeing the diversity and distribution of solutions, and (iii) applying a non-dominated 

procedure in order to sort the individuals regarding the level of non-domination [143, 151, 

and 152].  

2.7 Life Cycle Analysis of Bioethanol Production 

The process of compilation and evaluation of the inputs and outputs of a product or system 

including materials, products, energy, and by-products to quantify the environmental 

impacts of the system is called life cycle assessment/analysis (LCA). LCA methodology 

provides a quantified tool for investors and decision makers to compare the results of an 

LCA study of different cases or among different products to assess the products and designs 

from the environmental point of view. Each LCA study considers four main phases which 
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must be carefully determined regarding the analyzed system or product: (I) Goal and scope 

of the study as well as the system boundary, (II) Life cycle inventory to identify the inputs 

and outputs, (III) Quantification of the life cycle impacts, and (IV) Interpretation of the 

assessment results [153, 154]. Regarding the objective of the study, all inputs and outputs 

of the system must be normalized based on the functional unit, which acts as a reference 

for all involved materials and energy of the system. The system boundary would also be 

defined to clarify the limits of the considered system which determines that which units 

and processes are included in the assessment and which must be excluded [155-157].  

Life cycle analysis has been practiced in great deal of researches for bioethanol production 

from different points of view. In some cases, bioethanol as a fuel has been compared with 

current fossil fuels at different ratios of combination [158-160]. Patrizi et al. (2013) [160] 

studied the impact of replacing 10% of required gasoline (E10) with second generation 

bioethanol through LCA and 6% diminishment in total CO2 emission was achieved. 

Increasing the proportion of ethanol in the mixture of ethanol-gasoline has always shown 

a significant decrease in GHG emissions. Morales et al. (2015) [161] compared the 

greenhouse gas (GHG) emissions of various blends of ethanol and gasoline and GHG 

emission reduces more than 40% in the case of using E85 (85% ethanol). The amount of 

reduction highly depends on the raw material used for ethanol production and as the ethanol 

portion in mixture increases, the role of raw biomass in production stage becomes more 

significant. Generally, in all case studies, GHG emissions decreased compared with 

conventional fossil fuels; however, the reduction amounts highly depend on the sources of 

the biomass. [161-163]. 
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 Different types of biomass as sources of ethanol production have been studied. Munoz et 

al.(2014) [162] compared the life cycle of ethanol from four agricultural feedstocks with 

fossil-based ethanol and in all bio-based cases GHG emission diminished; however, for 

some other environmental impacts, such as land use, fossil-based ethanol presented a better 

performance. LCA results for each type of biomass have been shown to be highly 

dependent on the method of the biomass production, cultivation technologies, geographical 

location of biomass, fertilizers used, and the sources of the consumed energy [165-168].   

The most considered impact in LCA studies is for greenhouse gases (GHG) emissions, 

which has been analyzed for different combinations of ethanol-gasoline, when the blended 

ethanol was achieved from various sources of biomass. Nevertheless, few research has 

addressed other environmental impact categories such as acidification, ozone layer 

depletion, respiratory organics/inorganics, and carcinogens. These impact categories are 

mainly caused by raw materials preparation, e.g. using fertilizers in agricultural practices 

[169-171]. 

Comparison of the LCA results for ethanol production from a specific feedstock, which 

reflects the importance of the process design on the environmental performance of the 

ethanol production plant, has yet to be considered.  
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3 Experimental Analysis of Impacts of Enzyme Loading and Sugars 

Concentration on SSF Process 1 
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Abstract 

Enzyme loading and initial concentration of fermentable sugars are the key parameters in 

the simultaneous saccharification and fermentation (SSF) process to produce bioethanol. 

                                                           
1 Shadbahr et al. International Journal of Chemical Engineering and Applications, 2016, 7(6): 383-387. 
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To study the interactive influence of enzyme loading and initial concentration of sugars on 

the final ethanol yield and concentration, batch SSF experiments were carried out at three 

enzyme loadings (10, 15 and 20 FPU/g cellulose) and two levels of initial concentrations 

of fermentable sugars (glucose and mannose). Results indicated that the maximum ethanol 

yield and concentration were obtained at high level of sugar concentration with 

intermediate enzyme loading (15 FPU/g cellulose). Increasing the enzyme loading from 

intermediate level (15 FPU/g cellulose) to high level (20 FPU/g cellulose) diminished the 

ethanol yield due to the inhibitory effect of the glucose and insufficient amount of yeast.  

Keywords: Bioethanol, Enzyme loading, Ethanol Yield, Simultaneous saccharification and 

fermentation 

 

3.1 Introduction 

Bioethanol produced from lignocellulosic biomass have been considered as one of the most 

attractive and promising renewable energy sources [1]. The most abundant sources of 

lignocellulosic materials are forestry and agricultural residues which are considered as 

renewable, low-priced, noncompetitive to food sources, and available sources for future 

energy [2]. The chemical composition of the lignocellulosic materials mainly consists of 

cellulose, hemicellulose, and lignin. Compositions of the lignocellulosic materials are 

different in cellulose, hemicellulose, and lignin contents as well as in the structure of the 

materials and how they entangled together. In the complicated created matrix of the 

lignocellulosic material, cellulose is well protected and surrounded by hemicellulose and 
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lignin which makes the cellulose recalcitrant for degradation and producing glucose out of 

it. In order to make the cellulose more accessible for enzymes, pretreatment of the 

lignocellulosic substrate is unavoidable to have an efficient enzymatic cellulose hydrolysis 

in next step [3-6].  

Numerous research studies have demonstrated that SSF process is capable of improving 

the biomass conversion by reducing the inhibitory impact of converted sugars [7-10]. 

Usually, a high ethanol concentration and yield from SSF is prerequisite to make the 

process economically feasible. Nevertheless, the contribution of enzyme costs to the 

economics of lignocellulosic biofuel production continues to be a major barrier for the 

commercial-scale production of bioethanol [11-13]. There is potential for cost reduction 

by optimizing the operating conditions of SSF process so that maximum ethanol 

concentration and yield can be achieved at relative lower enzyme loading.  

Main factors affecting the final ethanol concentration and yield of SSF process include 

substrate concentration, enzyme loading, solution pH, and reaction temperature [14 and 

15]. Due to the compromise between reaction conditions for hydrolysis and fermentation 

processes, the optimal pH (5.0) and reaction temperature (37°C) of SSF process turned out 

to be very restricted [14 and 16]. Dissimilarly, the optimal substrate concentration and 

enzyme loading are very difficult to be determined [17-19]. To obtain high ethanol 

concentration and yield, a high substrate concentration and, hence high water insoluble 

solids (WIS), has to be used in the SSF process [20-22]. However, high substrate 

concentration leads to substrate inhibition, which substantially lowers the rate of the 

hydrolysis and metabolism of yeast [21]. For optimal enzyme loading, increasing the 
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dosage of enzymes, to a certain extent, is able to enhance the yield and rate of the 

hydrolysis, but also significantly increases the cost of the process [23]. Systematic 

optimization of the SSF process regarding the substrate concentration and enzyme loading 

needs to be carried out.    

Monomeric sugars released from the pretreatment process are also served as the feedstock 

of SSF process. The initial concentration of the fermentable sugars varies based on the 

pretreatment method and the raw biomass materials used. The concentration of fermentable 

sugars definitely affects the final ethanol concentration and yield of a SSF process because 

sugar concentrations have significant impacts on the reaction rates of both enzymatic 

hydrolysis and fermentation. It is therefore important to investigate how the initial 

concentrations of fermentable sugars influence the SSF process. So far very limited 

research work has been performed to address this issue [24]. In the current study, the 

interactive influence of the initial concentrations of fermentable sugars and enzyme loading 

on the SSF of cellulose to ethanol has been explored to provide the profound insight on the 

process improvement. 

 

3.2 Materials and Methods 

3.2.1 Feedstock 

Extra pure microcrystalline cellulose, ACS grade glucose and 99% mannose were used as 

feedstock for SSF process. Cellulose content was adjusted to 5% (w/v) and initial 
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fermentable sugar concentration was considered at high and low levels in order to evaluate 

the impact of sugars concentration on ethanol yield.  

 

3.2.2 Enzymes  

To provide the activities of 10, 15, and 20 FPU/g cellulose, cellulose enzyme from 

Trichoderma reesei (ATCC 2921), was utilized and supplemented with β-Glucosidase with 

the fixed activity of 30 U/g cellulose. 

 

3.2.3 Yeast preparation 

Preparation of the yeast for fermentation process consists of four steps: (1) Propagation of 

saccharomyces cerevisiae cells purchased from VWR onto the agar plate under the sterile 

condition and storage in fridge at 4°C; (2) Preparation of YPD solution from YPD broth 

(HIMEDIA) with the concentrations of yeast extract, peptone, and dextrose being 10, 20, 

and 20 g/L respectively; (3) Addition of the cells to autoclaved YPD solution and shaking 

in a rotary shaker at 30°C for 24 hours; (4) Separation of the grown cells by centrifuge, 

washing the cells with DI water twice and storage in fridge for further use. 

 

3.2.4 SSF experiments 

An experimental setup consists of 250 mL jacketed stirred tank reactor and a Jualbo FP 50 

heated/refrigerated circulator for temperature control. Experiments were carried out at 
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37°C and pH of 5.0 for 96 hours. During SSF experiments, solution pH was monitored 

with accumet AB 15 plus pH meter and adjusted by 1M NaOH solution. Agitation was 

provided by a baffled magnetic stirrer at the speed of 350 rpm. Three chemical components 

were also added as nutrients supplementary to reactor with the following concentrations: 

(NH4)2HPO4: 0.5 g/L, MgSO4.7H2O: 0.025 g/L, and Yeast Extract: 1g/L. 

The SSF process takes place in a single reactor with a series of the simultaneous reactions 

presented in equation 1.  Produced glucose from the hydrolysis process is then fermented 

to ethanol by yeast. 

Cellulose → Cellobiose → Glucose → Ethanol (3-1) 

In order to evaluate the SSF performance, ethanol yield was considered as the determinant 

parameter. Total amount of sugars in the reaction media includes glucose, mannose, and 

convertible glucose from cellulose and defined as:   

Total sugars = [G]0 + [M]0 + 1.111 [C]0 (3-2) 

Where the [G]0, [M]0, and [C]0 are the initial amount of the glucose, mannose, and 

cellulose, respectively. The constant 1.111 is the stoichiometry conversion factor of 

cellulose to glucose. According to total available sugars, the theoretical maximum ethanol 

that can be calculated as: 

MaxEthanol = 0.511*[Total sugars] (3-3) 
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The constant 0.511 is the stoichiometry conversion factor of glucose to ethanol. The 

ethanol yield is defined as the ratio of experimentally produced ethanol to maximum 

theoretical ethanol by Eq. 4. 

)]C[111.1]M[]G([511.0

]E[]E[
(%)Yield

000

0f




   (3-4) 

 

3.2.5 Analysis method 

The Dionex HPLC system including a binary HPG-3200SD pump, an ACC-3000 

autosampler, RefractoMax 521 RI detector, and Chromeleon 7 software were used for the 

analysis of concentartions of ethanol, glucose, mannose, and cellobiose. All the samples 

were taken in duplicate, centrifuged, filtered by 0.2 µm sterile filter and finally stored in a 

freezer for further analysis. Two Agilent columns: Agilent Hi-Plex H and Agilent Hi-Plex 

Pb columns were implemented to analyze the samples. Temperature for the RI detector 

was adjusted at 55°C and for the HPLC column was set to 50°C. DI water and 0.005 M 

sulfuric acid both with the flowrate of 0.7 mL/min, were used as the mobile phases for 

Agilent Hi-Plex Pb and Agilent Hi-Plex H columns respectively. 

 

3.3 Results and Discussions 

In order to investigate the impacts of initial sugars concentration and enzyme loading on 

the ethanol yield and productivity in SSF process, six experiments were performed at 
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different conditions of investigated parameters. Table 3.1 shows the detailed conditions of 

the six experiments. 

Table 3.1. Initial sugar concentrations, enzyme and yeast loadings for SSF experiment 

Exp. 

 

Glucose 

Concentration 

(g/L) 

Mannose 

Concentration 

(g/L) 

Cellulase 

(FPU/g 

cellulose) 

β-Glucosidase  

(U/g cellulose) 

Yeast g dry 

cell/L 

1 5 4.5 
10 

30 5 

2 10 9 

3 5 4.5 
15 

4 10 9 

5 5 4.5 
20 

6 10 9 

Note: The amount of cellulose substrate was fixed at 5% (w/v) for all the experiments 

 

It must be noted that the other parameters of the reaction such as pH, temperature, time of 

the process, sampling, and analysis of the samples were performed in the same condition 

for all the experiments. Final ethanol concentration after 96 hours of SSF process is 

presented by [E]f whereas the initial concentration of ethanol is stated by [E]0 in Eq. 4. 

As seen from Figure 3.1, Exp. 4 with the initial concentrations of 10 g/L for glucose and 9 

g/L for mannose and enzyme loading of 15 FPU/g cellulose has the highest ethanol yield 

among all the experiments. The concentration profiles of glucose, mannose, cellobiose and 

ethanol are presented in Figure 3.2. 



68 
 

 

Figure 3.1. Ethanol yield% of the six SSF experiments 

 

In each case, glucose and mannose present in the feedstock were quickly converted to 

ethanol, accompanied by dramatic changes in the concentrations of glucose, mannose and 

ethanol within the first 2 hours. After that, the concentrations of glucose and mannose 

varied very slightly. Concentration of cellobiose, an intermediate product converted from 

cellulose by means of cellulase enzyme, increased quickly to peak values in the first 2 

hours and then declined gradually. In addition, increasing the cellulase loading helps to 

enhance the conversion of cellulose, which is disclosed by the higher cellobiose 

concentration obtained from Exps. 3 & 4 shown in Figure 3.2c. 



69 
 

 
 

  

Figure 3.2. Concentration profiles of (a) glucose (b) mannose (c) cellobiose and (d) ethanol for SSF 

experiments 

 

3.3.1 Impact of initial concentration of fermentable sugars 

Initial sugar concentration plays an important role in the SSF reaction. As seen from Figure 

3.2d, increasing the glucose concentration from 5 to 10 g/L and mannose from 4.5 to 9 g/L 

led to the higher ethanol concentration and yield when low and intermediate levels of 

enzyme loadings were used. Nonetheless, at relative higher enzymatic loading (20 FPU/g 
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cellulose), increasing the initial concentration of sugars resulted in a decrease in ethanol 

yield although a slightly higher concentration of ethanol was obtained in case of Exp. 6 

(Figure 3.3). 

This is reasonable, with a fixed yeast concentration being used in the SSF process, higher 

concentration of fermentable sugars in the feedstock helps to produce more amount of 

ethanol, leading to higher ethanol concentration (reaction volume unchanged). But the 

increase in ethanol production is limited by the yeast loading and performance. As a result, 

the ethanol yield with respect to the total sugars in the media decreases at high initial 

concentration of sugars. 

 

 

Figure 3.3. Comparison of ethanol concentration for Exps. 5 and 6 with enzyme loading of 20 FPU/g 

cellulose 
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3.3.2 Impact of enzyme loading 

Impacts of cellulase loading on ethanol yield and concentration were illustrated in Figures 

3.1 and 3.4, respectively. For each level of initial concentration of sugars, the highest 

ethanol yield and concentration were obtained with an enzyme loading of 15 FPU/g 

cellulose. In spite of the amount of soluble glucose and mannose present at the start of SSF, 

increasing cellulase loading from 10 FPU/g cellulose to 15 FPU/g cellulose helps to 

improve both ethanol yield and ethanol concentration as illustrated in Figures 3.1 & 3.2c. 

However, such an enhancement in ethanol production was not observed when further 

increasing the cellulase loading to 20 FPU/g cellulose due to the inhibitory effect of the 

cellobiose and glucose. High enzyme loading in the SSF process accelerates the rate of 

enzymatic hydrolysis, leading to higher concentrations of cellobiose and glucose, which 

according to Ishmayana et al. (2011) [25], exposes the yeast to high osmotic stress, 

influences on fermentation performance of the yeast and reduces the amount of produced 

ethanol. This means that for certain cellulose and yeast loading, there is an optimum 

enzyme loading, beyond which ethanol yield and concentration cannot be increased. 
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Figure 3.4. Impact of enzyme loading on the ethanol concentration at different initial sugar concentrations 

(a) 5 g/L glucose, and 4.5 g/L mannose; and (b) 10 g/L glucose, and 9 g/L mannose 

 

3.3.3 Interactive impacts of cellulase loading and initial concentration of sugars 

For SSF process with fixed substrate and yeast loading, the interplay between the enzyme 

loading and initial concentration of fermentable sugars is obvious. With lower initial 

concentration of sugars, the enhancement of ethanol yield and concentration is easily 

attainable by employing higher enzyme loading. However, due to the strong inhibitory 

effect of cellobiose and glucose, high enzyme loading results in a significant decrease in 

ethanol yield and concentration when the feedstock contains very high concentration of 

fermentable sugars. This provides useful information with respect to the optimization of 

SSF process. Depending on the substrate and sugar concentration in the feedstock of SSF, 

enzyme loading should be selected strategically. 
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3.4 Conclusion 

Influences of enzyme loading and initial concentration of fermentable sugars on the final 

ethanol concentration and yield of SSF process was studied in this work. Results indicated 

that there is a saturation of enzyme loading for each level of sugar concentration. With 5% 

(w/v) cellulose and 5 g dry cell/L yeast loading, ethanol concentration and yield cannot be 

improved by purely increasing the enzyme loading. Moreover, interactive impact of 

enzyme loading and initial concentration of fermentable sugars on SSF process was 

observed. High enzyme loading helped to increase the final ethanol concentration and yield 

if the initial concentration of fermentable sugars was low.  However, high enzyme loading 

resulted in a decrease in ethanol concentration and yield when feedstock contains high 

concentration of fermentable sugars. Therefore, enzyme loading of SSF process need to be 

selected strategically from the process economics perspective. 
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4 Kinetic Modeling of Simultaneous Saccharification and 

Fermentation Process2 
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and correcting the achieved results, and contributed in preparing, reviewing and revising 
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development of the study, analysis and discussion of the modeling results, and research 

methodology design. Faisal Khan also assisted in reviewing and revising the manuscript. 

 

Abstract 

Kinetic modeling and dynamic analysis of the simultaneous saccharification and 

fermentation (SSF) of cellulose to ethanol was carried out in this study to determine the 

key reaction kinetics parameters and product inhibition features of the process. To obtain 

                                                           
2 Shadbahr et al. Energy Conversion and Management, 2017, 141: 236-243. 
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the more reliable kinetic parameters which can be applied for a wide range of operating 

conditions, batch SSF experiments were carried out at three enzyme loadings (10, 15 and 

20 FPU/g cellulose) and two levels of initial concentrations of fermentable sugars (glucose 

and mannose). Results indicated that the maximum ethanol yield and concentration were 

achieved at high level of sugar concentrations with intermediate enzyme loading (15 FPU/g 

cellulose). Dynamic analysis of the acquired experimental results revealed that cellulase 

inhibition by cellobiose plays the most important role at high level of enzyme loading and 

low level of initial sugar concentrations. The inhibition of glucose becomes significant 

when high concentrations of sugars were present in the feedstock.  Experimental results of 

SSF process also reveal that an efficient mixing between the phases helps to improve the 

ethanol yield significantly.  

Keywords: Simultaneous saccharification and fermentation, Enzyme loading, Bioethanol; 

Glucose; Mannose, Ethanol Yield 

 

4.1 Introduction 

Ethanol produced from lignocellulosic biomass, the most abundantly available raw 

material on Earth has been considered as one of the most attractive and promising 

renewable energy sources [1]. Lignocellulosic material, obtained as a by-product of the 

agriculture/forestry industries or energy crops, is mainly composed of cellulose, 

hemicellulose, and lignin, among which cellulose and hemicellulose are digestible by 

microorganisms for energy [2]. Due to the complexity of the lignocellulosic 
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macromolecular structure, biochemical conversion of lignocellulosic biomass consists of 

four processing steps: (1) pretreatment to liberate cellulose and hemicellulose. The main 

purpose of this step is to disorganize the crystalline structure of macro- and micro fibrils to 

release the polymer chains of cellulose and hemi-cellulose [3, 4]; (2) enzymatic hydrolysis 

of polysaccharides; (3) fermentation of monomeric sugars and (4) ethanol recovery and 

dehydration [5-7]. The current technology of lignocellulosic ethanol does not support the 

cost-efficient production, preventing its commercialization [8]. Exploration of cost-

reduction strategy is essential for the commercialization of lignocellulosic ethanol.  

Cost-competitive technology can be developed by improving the performance of 

enzymatic hydrolysis and fermentation, the key processing steps in lignocellulosic ethanol. 

The reasons are twofold. Firstly cellulase, the enzyme used in hydrolysis of cellulose 

contributes significantly to the cost of the bioethanol production, accounting for 20–30% 

of the total cost [9, 10].  Secondly, the cost of the downstream ethanol distillation is directly 

bound up with the ethanol concentration attainable from the fermentation of monomeric 

sugars.  Ethanol concentration higher than 40g/L is prerequisite to make the distillation 

process economically feasible [11]. Therefore, reducing the cost of lignocellulosic ethanol 

can be achieved by optimizing the hydrolysis and fermentation processes so that maximum 

ethanol concentration and yield are attainable at relative lower enzyme consumption. 

Extensive research has demonstrated that SSF, the simultaneous saccharification 

(hydrolysis) of cellulose to fermentable sugars and fermentation of sugars to ethanol, helps 

to achieve higher ethanol productivity by reducing the inhibitory impact of converted 

sugars [12-15]. Nonetheless, SSF process is exceptionally complex and its performance 
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(reaction conversion, final ethanol yield and concentration) is greatly influenced by many 

factors such as the type of lignocellulosic feedstock, the substrate concentration, the type 

and amount of cellulolytic enzymes and microorganisms, solution pH and reaction 

temperature [16, 17]. The optimal pH (≈ 5.0) and reaction temperature (37°C) [18, 19] of 

SSF process turned out to be quite rigid because a compromise between optimal pH and 

temperatures of the cellulolytic enzymes and the yeast is needed [16, 20]. Dissimilarly, 

determination of the optimal substrate concentration and enzyme loading is not 

straightforward [5, 21, 22]. Usually, a high substrate concentration has to be used in the 

SSF process to obtain high ethanol concentration and yield [23-25]. However, high 

substrate concentration causes substrate inhibition, which substantially lowers the rate of 

the hydrolysis and metabolism of yeast [24]. Increasing the dosage of enzymes, to a certain 

extent, helps to increase the conversion rate of substrate, and hence improve the final 

ethanol yield and concentration. But high enzyme consumption significantly increases the 

operating cost [26]. Finding an optimum combination of substrate concentration and 

enzyme/microorganism loading for a specific feedstock is challenging in this regard. 

Kinetic modeling of cellulose bioconversion is an important tool in predicting the rates of 

enzymatic hydrolysis and fermentation as well as the dynamic features of the process [27, 

28]. Kinetic modeling of SSF process is an influential step toward industrialization of 

bioethanol production from lignocellulosic biomass due to the fact that establishing the 

concepts of production process with emphasizing on the experimental data is not sufficient 

and it costs plenty of time and resources. Moreover, proper kinetic model and reliable 

model parameters are indispensable for optimizing the performance of SSF process. 
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Although a number of kinetic models have been developed over the past years for SSF 

process [29-32], these models were usually tuned for specific substrates over a relatively 

narrow range of operating conditions. In this study, kinetic model of a batch SSF process 

was developed to incorporate the variations of substrate composition and enzyme loading. 

Obviously hydrolysate fraction of the pretreated biomass could be diluted in different 

ratios, which could lead to varied initial sugars concentration in the SSF feedstock. 

Evaluating kinetic model and kinetic parameters to variation of sugars concentration helps 

to obtain the more reliable kinetic parameters which can be applied for a wide range of 

operating conditions and biomass compositions. Therefore, in the current study, kinetic 

model parameters were estimated by fitting the models to experimental data obtained from 

a wide range of operating conditions. Dynamic characteristics and rate limiting causes of 

the SSF process were analyzed through the interactive influence of the initial 

concentrations of fermentable sugars and enzyme loading on the bioconversion of cellulose 

to ethanol.   

 

4.2 Kinetic Modeling  

Simultaneous enzymatic hydrolysis and fermentation of cellulose is a complex multistep 

process and interactions between enzymes with solid substrate as well as the product 

inhibition mechanism are not fully understood. A modified mathematical model based on 

those reported by Philippidis et al. [12, 31, 32] and Pettersson et al. [33] were used in this 

study to quantify the enzymatic hydrolysis and sugar fermentation. The kinetic model 

assumes that cellulase hydrolyzes cellulose to cellobiose with negligible formation of 
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glucose through the cooperation of endo- and exoglucanases and β-glucosidase converts 

one mole of cellobiose (342.29 g/mol) to two moles of glucose (180.16 g/mol). In addition, 

fermentation of mannose, a C-2 epimer of glucose which is usually present in a pretreated 

softwood substrate is also taken into account. One mole of glucose or mannose (180.16 

g/mol) will be fermented to two moles of ethanol (46.06 g/mol) and two moles of carbon 

dioxide (44.01 g/mol).  The reaction network for the biochemical conversion of cellulose 

is supposed to follow the route listed below: 

)X(Cellmass&)E(Ethanol)G(ecosGlu)B(Cellobiose)C(Cellulose
GX21 r,rrr

  

)X(Cellmass&)E(Ethanol)M(Mannose
MX r,r

  

Figure 4.1. Reaction network of SSF process 

 

The rates of reactions listed in Figure 4.1 are expressed by Eqs. 4-1 to 4-5. 
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The mass balance for the key components in the SSF process can be described by the 

equations listed below: 
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Ed
 511.0  (4-11) 

In this study, ethanol yield with respect to total sugars in the media, including initial 

glucose and mannose and potential sugar which is convertible from cellulose by hydrolysis 

reaction, was used to evaluate the SSF performance. Total amount of sugars can be 

calculated based on the stoichiometry of the components involved in the process as 

illustrated below:  

Total sugars = [G]0 + [M]0 + 1.111 [C]0 (4-12) 

where [G]0, [M]0 and [C]0 are the initial concentrations of glucose, mannose and cellulose 

respectively. The theoretical maximum ethanol that can be achieved is calculated based on 

the total sugars in media and is defined as: 

Theoretical maximum ethanol =       000 111.1511.0 CMG   (4-13) 

The constant 0.511 is the conversion factor of glucose to ethanol extracted from 

stoichiometry of the reaction. Based on the theoretical maximum ethanol produced from 

SSF process, the ethanol yield can be calculated by the following equation:   
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Ethanol yield (%) = 
   

      000

0

111.1511.0 CMG

EE f




 (4-14) 

where [E]0 and [E]f represent the initial and final concentration of ethanol. 

 

4.3 Materials and Methods 

4.3.1 Feedstock 

Feedstock for batch SSF process in this research includes extra pure microcrystalline 

cellulose, ACS grade glucose and 99% mannose purchased from Fisher Scientific. To 

investigate the influence of the initial sugar concentrations on the final ethanol 

concentration and yield, two levels of sugar concentration were used in the experiment. At 

the first level concentrations of 5 g/L and 4.5 g/L were used for glucose and mannose, 

respectively. For the second level of the experiments, glucose and mannose concentrations 

were increased to 10 g/L and 9 g/L, respectively. The amount of insoluble cellulose was 

fixed at 5% (w/v) for all the experiments and fresh ultrapure water was used for all steps 

of the experiments. 

 

4.3.2 Enzymes 

The commercial enzyme cellulase from Trichoderma reesei (ATCC 26921) supplemented 

with β-Glucosidase from almonds was purchased from Sigma-Aldrich. Filter paper units 

(FPU) were calculated using Santos et al. [34]. The amount of enzymes added to the 
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reactants provides the activities of 10, 15, and 20 FPU/g cellulose. The activity for the β-

Glucosidase was fixed at 30 U/g cellulose for all experiments. 

 

4.3.3 Yeast preparation 

Inoculum was prepared on the agar plate from the saccharomyces cerevisiae demo plate 

purchased from the VWR Canada under the sterile condition, and then stored at 4 °C. The 

YPD broth from the HIMEDIA was used for the preparation of YPD solution with the 

concentrations of 10, 20, and 20 g/L for yeast extract, peptone, and dextrose, respectively. 

The YPD solution then sterilized in autoclave for 30 minutes at the pressure of 15 psi and 

temperature of 121°C. When the temperature of YPD solution reached room temperature, 

the cells were added to solution and placed in the rotary shaker and incubated at 30 °C with 

the speed of 200 rpm for growing. After 24 hours, grown cells were centrifuged for 10 

minutes at 4500 rpm centrifuge to separate cells from the YPD solution. The separated 

cells were washed and centrifuged twice by ultrapure water and then stored in fridge at 4 

°C for use. 

 

4.3.4 SSF experiments 

The SSF experiments were carried out in a 250 mL jacketed flask (Bellco, US) with an 

active volume of 100 mL. The reaction temperature was controlled by a Julabo FP 50 

heated/refrigerated circulator (Allentown, PA, US). Experiments were conducted at 37 °C 

and pH of 5.0 for 96 hrs. During SSF experiment, solution pH was monitored using an 

Accumet AB 15 plus pH meter and adjusted by 1M NaOH solution. For agitation, a baffled 
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magnetic stirrer was used to provide the agitation at the speed of 350 rpm. In addition to 

the reactants, enzymes, and yeast, three chemical components were also added to reactor 

supplement the reaction as nutrients with the following final concentrations: (NH4)2HPO4: 

0.5 g/L, MgSO4.7H2O: 0.025 g/L, and Yeast Extract: 1.0 g/L.  The samples were taken at 

2,   4, 8, 12, 18, 24, 36, 48, 60, 72, 84, and 96 hours for analysis. The summary of the SSF 

experimental conditions are given in Table 4.1. 

Exp. #3 and Exp. #4 were carried out twice to examine the repeatability of the experimental 

methodology. It is confirmed that experiment results are duplicable and the ethanol yields 

under the conditions of Exp. #3 and Exp. #4 were achieved with ±2%. 

 

 

Table 4.1. Initial sugar concentrations, enzyme and yeast loadings for SSF experiment 

Exp. # 

 

Glucose 

Concentration 

(g/L) 

Mannose 

Concentration 

(g/L) 

Cellulase  

(FPU/g cellulose) 

β-Glucosidase   

(U/g cellulose) 

Yeast 

g dry cell/L 

1 5 4.5 
10 

30 5 

2 10 9 

3 5 4.5 
15 

4 10 9 

5 5 4.5 
20 

6 10 9 

Note: The amount of cellulose substrate was fixed at 5% (w/v) for all the experiments 

 

4.3.5 Analytical method 

Analysis of the samples was performed by HPLC system for the concentration of ethanol, 

glucose, cellobiose, and mannose. All the samples were taken in duplicate and after 

centrifuge and filtration by 0.2 µm sterile filter stored in a freezer for further analysis. 
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Samples were analyzed using Agilent Hi-Plex H and Agilent Hi-Plex Pb columns by 

Dionex Ultimate 3000 HPLC system equipped with a Refractive Index detector 

(RefractorMax 520). Temperatures of the RI detector and HPLC column were set to 55°C 

and 50°C, respectively. 0.005 M sulfuric acid solution and ultrapure water, with the 

flowrate of 0.7 mL/min, were used as the mobile phases for Agilent Hi-Plex H and Hi-Plex 

Pb columns respectively. 

 

4.3.6 Numerical method 

The values of inhibition parameters Km, K1B, K1E, K1G and K2G, the enzyme parameter KL 

as well as the microorganism parameters KE, KG, ms, and YXG were determined through a 

number of specific experiments by Philippidis et al. and were used directly in this study as 

the operating conditions of SSF experiment in this work are quite close to those reported 

by Philippidis et al. [12, 31, 32].  

The remaining kinetic parameters (k1, k2, Keq, λ and μm) were determined by minimizing 

the differences between experimental data and predicted amount at the same time.  An error 

function F(p), defined as the sum of square deviations of the calculated concentration 

profiles from the experimentally measured curves, is used as the objective function to 

obtain the best-fit values of kinetic parameters. 

2mod
,

exp
,

1 1

][min)( jiji

n

i

m

j

ccpF  
 

 (4-15) 
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Where, 
exp
, jic and 

mod
, jic  are the measured and model predicted concentrations of component 

i at sampling point j. The best–fit kinetic parameters were determined by minimizing the 

scalar function F(p) using “fmincon”, a constraint nonlinear optimization solver from 

MATLAB 2014b. Model predicted concentrations of sugars and ethanol, 
mod
, jic were 

obtained by solving the initial problem ODEs (listed in Eqs. 6-11) by ode15s, a stiff ODE 

solver which uses the backward differentiation formula (BDF, also known as Gear’s 

method).   

 

4.4 Results and Discussion 

4.4.1 Kinetic parameters 

Experimental measurements from Exp. #1- Exp. #4 were used to determine the kinetic 

parameters and two sets of kinetic parameters were finally obtained with respect to the 

different initial sugar concentrations. The best-fit values of the kinetic parameters are listed 

in Table 4.2. Figure 4.2 illustrates the comparison between model predictions and the 

measured experimental results of ethanol concentration from Exp. #1 - Exp. #4. Results 

from Table 4.2 indicated that cellulase adsorption saturation constant, Keq, converged to a 

uniform value regardless of the variation of operating conditions. Higher initial sugar 

concentration resulted in strong product inhibition of enzymatic hydrolysis, leading to 

smaller values of k1, λ and k2. Meanwhile, higher initial sugar concentration accelerated the 

growth rate of microorganisms due to the presence of more nutrients, reflected from the 

convergence of a higher value of μm.  
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To verify the validity of the derived kinetic parameters, the kinetic parameter values listed 

in Table 4.2 were used to simulate the ethanol concentration obtained from the batch SSF 

process under the operating conditions of Exp. #5 and Exp. #6 with the highest cellulase 

loading being used. 

 

  
Figure 4.2. Kinetic modeling and experimental ethanol concentration at different initial sugar 

concentration: (a) Glucose: 5 g/L and Mannose 4.5 g/L; and (b) Glucose: 10 g/L and Mannose 9 g/L 

 

The comparison of the simulation results and the corresponding experimental data is shown 

in Figure 4.3, from which a very good agreement between the model predictions and 

experimental results is observed.  

The validity of the derived parameters is also proved by comparing them with those 

determined by other work under similar operating conditions.  The values of the parameters 

listed in Table 4.2 are quite consistent with those reported by Pettersson et al., van Zyl et 

al., and Philippidis, et al. [30, 32, 33]. 
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Table 4.2. Estimated kinetic parameters at different levels of sugar concentrations 

Tuned Parameters Low Sugar Level (Exp.#1, 3 &5) High sugar level (Exp. #2, 4 & 6) 

k1  h-1 0.165-0.256 0.043-0.074 

λ  h-1 0.058-0.064 0.019-0.039 

Keq  FPU/g 117.90 117.81 

k2  g/U·h 0.24-0.33 0.19-0.20 

μm h-1 0.18-0.21 0.39-0.40 

Other parameters* 

K1B g/L 5.85 KM g/L 10.56 

K1E g/L 50.35 KG g/L 3.73×10-5 

K1G g/L 53.16 KL L/g 0.0053 

K2G g/L 0.62 ms  0 

KE g/L 50 YXG g/g 0.113 

* The values of these parameters come from Pettersson et al., [33]. 

 

  
Figure 4.3. Comparison of model prediction and experimental ethanol concentrations at enzyme loading of 

20 FPU/g cellulose 

 

4.4.2 Dynamic characteristics of the SSF process 

The dynamic features of the SSF process can be analyzed from the measured concentration 

profiles of glucose, mannose, cellobiose and ethanol illustrated in Figure 4.4. In each case, 

glucose and mannose present in the feedstock were quickly converted to ethanol, 
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accompanied by dramatic variations in the concentrations of glucose, mannose and ethanol 

within the first 2 hours. After that, the concentrations of glucose and mannose decreased 

very slowly whereas the concentration of ethanol ascended gradually. Concentration of 

cellobiose, an intermediate product converted from cellulose by enzymatic hydrolysis, 

increased quickly to peak values in the first 2 hours and then declined gradually till the end 

of the experiments.  

Experimental results of the SSF process indicated that initial concentrations of fermentable 

sugars (glucose and mannose) have great impact on ethanol concentration. As seen from 

Figures 4.4c & 4.4d, increasing the glucose concentration from 5 to 10 g/L and mannose 

from 4.5 to 9 g/L in the feedstock led to an escalation of ethanol concentration from 2.5 - 

4.1 g/L (Exp. #1, #3 & #5) to about 6.5 – 7.6 g/L (Exp. #2, #4 & #6) after 2 hrs of SSF 

experiment. The highest ethanol concentration was obtained from Exp. #4 with the high 

level sugar concentration in the feedstock and intermediate enzyme loading (15 FPU/g 

cellulose). It is clearly seen from Figure 4.4 that high concentration of sugars in the 

feedstock led to a strong inhibition effect on hydrolysis and fermentation when high 

enzyme loading (Exp. #6) was applied, under which a final ethanol concentration of 10.49 

g/L was reached.    

 

4.4.3 Product inhibition on enzymatic hydrolysis  

Cellulase inhibition by hydrolysis products (cellobiose and glucose) has long been known. 

It is widely reported that cellobiose was the stronger inhibitor of cellobiose formation 

(reaction r1) and glucose inhibition in reaction r2 should be greater than cellobiose 
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inhibition [12, 35]. Experimental results from this study proved the strong inhibition of 

cellobiose and glucose on enzymatic hydrolysis. As seen from Table 4.3, the combination 

of the highest enzyme loading and high initial 
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Figure 4.4. Concentration profiles of cellobiose (a), sugars (b), and ethanol (c & d) for SSF experiments 

sugar concentration (Exp. #6) provides very low ethanol yield and ethanol concentration. 

Similar inhibition effect can also be observed from the experiments using low level of 

initial sugars, both ethanol yield and final ethanol concentration obtained from Exp. #5 are 

much lower than those from Exp. #3. 

 

Table 4.3. Final ethanol yield and concentration from SSF with different operating conditions 

Exp. # Ethanol Yield, % Ethanol Concentration, g/L 

1 27.45 9.13 

2 30.72 11.70 

3 31.98 10.63 

4 37.32 14.22 

5 29.69 9.87 

6 27.54 10.49 

 

The product inhibition mechanism can be better understood by investigating the reaction 

rates of enzymatic hydrolysis (r1, and r2) based on different initial concentrations of sugars. 
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At low level of initial sugars, the highest reaction rate of r1 and r2 occurred in Exp. #3 as 

seen from Figure 4.5a, followed by those from Exp. # 5. The reaction rates of r1 and r2 are 

the lowest from Exp. #1. Reaction rates obtained at different enzyme loadings demonstrate 

that increasing enzyme loading from 10 to 15 FPU/g cellulose accelerated the conversion 

rate of cellulose (r1), and relative higher amount of cellobiose produced from r1 is the main 

cause for the attainment of higher r2 and the subsequent conversion of glucose. However, 

further increase of enzyme loading to 20 FPU/g cellulose resulted in the accumulation of 

cellobiose in the substrate, which strongly inhibited the cellulase activity, leading to 

reduced reaction rates in r1 and r2 from Exp. #5. These results clearly indicate that 

cellobiose inhibition is dominant during the SSF process when low concentrations of 

sugars were used in the feedstock. In order to overcome the impact of cellobiose inhibition 

at high level of enzyme loading, changing the mode of the SSF reaction from batch to fed-

batch seems to be promising. Gradually adding the enzyme into the reaction media ensures 

that there is fresh enzyme available any time for hydrolysing the remaining cellulose in 

reactor.  Another solution to resolve the inhibition impact is implementing the continuous 

design instead of batch mode.  
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Figure 4.5. Comparison of dynamic reactions rates for simultaneous enzymatic hydrolysis and 

fermentation 

 

In case of high initial concentrations of sugars being used, inhibition of glucose became 

significant, which is reflected from the much slower reaction rates (r1 and r2) obtained from 

Exps. #2, #4 and #6 (Figure 4.5b). Likewise, reaction rates of r1 and r2 are the highest from 

Exp. #4 when intermediate level of enzyme loading (15 FPU/g cellulose) was employed, 

followed by those from Exp. #2 (lowest enzyme loading, 10 FPU/g cellulose) and Exp. #6 

(highest enzyme loading, 20FPU/g cellulose). The lowest reaction rates of r1 and r2 from 

Exp. #6 proved the strongest inhibition effects of both cellobiose and glucose. The higher 

concentrations of cellobiose and glucose in Exp. #6, according to Ishmayana et al. [36], 

expose the yeast to high osmotic stress, influences on fermentation performance of the 

yeast and reduces the amount of produced ethanol. These results clearly Figure 4.5 also 

reveals that in the certain dosage of enzyme loading, glucose inhibition causes the 

significant decrease in r1 and r2. Comparing the reaction rates of Exp. #1 and Exp. #2 for 

instance highlights the significant inhibition impact of glucose at higher initial sugar level. 
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For SSF process with fixed substrate and yeast loading, the interplay between the enzyme 

loading and initial concentration of fermentable sugars is obvious. With lower initial 

concentration of sugars, the enhancement of ethanol yield and concentration is easily 

attainable by employing higher enzyme loading. However, due to the strong inhibitory 

effect of glucose, high enzyme loading results in a significant decrease in ethanol yield and 

concentration when the feedstock contains very high concentration of fermentable sugars. 

This provides useful information with respect to the optimization of SSF process. 

Depending on the substrate and sugar concentration in the feedstock of SSF, enzyme 

loading should be selected strategically. 

The kinetic model and the acquired kinetic parameters are able to help the future studies 

regarding the optimization of SSF process. The five kinetic parameters were tuned in 

different conditions of the SSF reaction to evaluate the response of the system to various 

reaction conditions, therefore optimization of the SSF process in a wider range of sugars 

concentration and enzyme loading would be possible through this model for further studies. 

 

4.4.4 Impact of Agitation  

Inhomogeneity caused by inadequate mixing when working with high water insoluble solid 

content has been previously addressed in several ways. Several research articles reported 

that purely increasing the agitation speed does not have significant influence on final 

ethanol yield. In this work, two agitation modes were used to evaluate the impact of 

agitation on final ethanol concentration and yield. Two additional batch SSF runs were 

performed by implementing a magnet stirrer with the speed of 600 rpm instead of the 
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baffled stirrer with the speed of 350 rpm while keeping other operating conditions the same 

as Exp. #4 and Exp. #5. The effect of agitation mode on the ethanol concentration is 

presented in Figure 4.6.  

 

 
 

Figure 4.6. Comparison of the ethanol concentration in (a) Exp. #4 and (b) Exp. # 5 by using baffled stirrer 

and magnet stirrer 

 

Results from Figure 4.6 reveal that magnet stirrer helps to enhance the ethanol yield for 

Exp. #4 from 37.32% to 41.53% and for Exp. #5 from 29.69% to 35.15%. Comparing the 

results of Exp. #4 and Exp. #5 reveals that stirring is an influential parameter that must be 

taken into account. Increasing the agitation rate in case of high solids loading significantly 

improves the SSF efficiency [37] and as it can be seen from Figure 4.6, in both cases 

efficient agitation rate enhances the final ethanol concentration. The lower efficiency of 

the baffled stirrer might be due to incomplete mixing or even the formation of some blind 

spots in the reactor. These disadvantages led to insufficient interaction between enzyme 
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and cellulose, as well as yeast and sugars. It causes diminish in efficiency of the system 

and in general decreases the ethanol yield. 

 

4.5 Conclusion 

Variations in the enzyme loading and initial sugar concentration lead to different product 

inhibition mechanism of batch SSF process.  At low sugar concentrations, main cellulase 

inhibitory is caused by cellobiose. However, at high initial sugar concentrations, inhibition 

effects from cellobiose and glucose are both important. These inhibition effects are more 

remarkable in the batch media of process due to the accumulation of the end-products of 

the hydrolysis process. Moreover, at relative low enzyme loading, adding fermentable 

sugars to the reaction media diminishes the glucose inhibitory impacts and increases the 

final ethanol yield and concentration.  

Results from this study also demonstrated that initial sugar concentration has significant 

influence on the reaction rate and rate constants. Higher initial sugar concentration resulted 

in strong product inhibition of enzymatic hydrolysis, leading to smaller values of k1, λ and 

k2. Meanwhile, higher initial sugar concentration accelerated the growth rate of 

microorganisms due to the presence of more nutrients, reflected from the convergence of 

a higher value of μm.  

Finally, results from batch SSF experiments with two agitation methods reveal that a better 

mixing between the solid substrate and liquid mixture helps to improve the ethanol yield 

significantly. 
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5 Multi-Objective Optimization of Simultaneous Saccharification and 

Fermentation Process 
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Abstract 

A multi-objective optimization of simultaneous saccharification and fermentation process 

for cellulosic ethanol production was carried out to simultaneously maximize the ethanol 

yield/cellulose conversion and minimize the enzyme consumption by manipulating the 
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initial sugar concentrations, and cellulose and enzyme loadings. The study was based on 

an experimentally verified kinetic model. Several bi-objective optimization problems with 

different combinations of objectives and constraints were solved by a controlled elitist 

genetic algorithm, a variant of the non-dominated sorting genetic algorithm II (NSGA-II). 

The optimal operating conditions attained through optimization were verified by 

experiments. Significant performance improvement of ethanol yield, cellulose conversion 

and enzyme loading is achieved by systematic optimization. The optimal operation 

conditions are highly sensitive to kinetic model and relevant kinetic parameters. Therefore, 

uttermost care must be paid in choosing the kinetic model and its parameters.  

Keywords: Simultaneous saccharification and fermentation, Cellulose, Bioethanol, Multi-

objective optimization 

 

5.1 Introduction  

Second-generation bioethanol produced from lignocellulosic biomass, i.e., waste plant 

matter from forestry or agriculture is a potential alternative to fossil fuels due to its 

renewable nature and availability [1,2]. The bioconversion of nonedible polysaccharides 

(cellulose and hemicellulose) in agricultural residues to ethanol is commercially viable. 

However, bioconversion of woody biomass, from forestry residues, to ethanol has not yet 

been translated from demonstration scale due to high capital and operating costs [3,4]. In 

addition to the issues associated with removing the lignin, there are several technical 

challenges, e.g., low depolymerisation efficiency of cellulolytic enzymes, high end-product 
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inhibition and insufficient mixing at high substrate concentration which need to be 

overcome to make the cellulosic ethanol more competitive with fossil-based transportation 

fuels. 

Although simultaneous saccharification and fermentation (SSF) helps to mitigate the 

inhibitory effect of converted sugars by in-situ ethanol fermentation [5,6], the performance 

(reaction conversion, final ethanol yield and concentration) is highly dependent on the type 

of lignocellulosic feedstock, the substrate concentration, the type and amount of 

cellulolytic enzymes and microorganisms, solution pH and reaction temperature among 

others [7]. Moreover, SSF is usually requires a high substrate loading to achieve a high 

enough ethanol concentration to make the process economically viable but high substrate 

loading limits mixing and mass transfer of the hydrolysis fermentation system and 

subsequently the overall performance of the process. Simultaneously optimizing substrate 

concentration and enzyme/microorganism loading could potentially minimize these 

transport phenomena limitations while maximizing ethanol formation [8-10]. 

Optimization of SSF process based on statistically designed experiments has been widely 

studied [11-16]. Benjamin et al., (2014) [13] applied a central composite design (CCD) 

under response surface methodology to maximize the combined sugar yield and ethanol 

concentration for batch and fed-batch SSF of sugarcane. A three-factor-three-level Box-

Behnken design was employed to predict the optimum substrate concentration, enzyme 

loading, and inoculum size for maximum ethanol yield from cassava peel [14]. Cavalaglio 

and co-workers (2016) [15] identified the optimal water-insoluble substrate amount, 

optimal liquid fraction and enzyme loading of a SSF bioconversion of Phragmites Australis 
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through CCD.  A Taguchi orthogonal array design was implemented by Das et al., (2016) 

[16] to find the optimum operation conditions (cellulose and hemicellulose loading, yeast 

amount, solution pH and temperature) for ethanol production from Eichhornia crassipes. 

These studies outline the main impacts and interaction of the key operating parameters of 

SSF process. However, the accuracy of optimization results is highly dependent on the 

design of the set of experiments and therefore difficult to compare or draw major trends 

from. Furthermore, response surfaces are valid only in range of parameters studied and 

therefore cannot be applied to wider ranges directly. Systematic optimization of SSF 

process based on mechanistic mathematical model is more attractive as it provides more 

reliable and accurate predictions of system performance. 

In contrast to the many studies using response surface methodology, optimization using 

mechanistic kinetic and reactor model is less well studied. Wang et al., (2016) [17] assessed 

the effects of substrate, enzyme and cell feeding strategies on fed-batch simultaneous 

saccharification and co-fermentation (SSCF) of SO2-catalyzed steam pre-treated wheat 

straw based on a rigorous kinetic model and developed an optimal multi-feed strategy for 

maximum ethanol concentration. Unrean et al., (2016) [10] developed a SSF model to 

quantitatively characterize dynamic response of yeast cell growth, hydrolysis and 

fermentation kinetics. The model was used to optimize the fed-batch SSF performance to 

maximize ethanol yield and validated with experiments. Liu et al., (2016) [18] optimized 

the reaction temperature of a SSF process for ethanol production by incorporating a 

temperature-dependent kinetic model. All these optimization studies for bioethanol 

production involved a single objective function (ethanol concentration or ethanol yield) 
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without considering the costs associated with enzyme consumption. Maximum ethanol 

yield and minimum enzyme loading can’t be achieved simultaneously. Optimization 

studies incorporating these conflicting objectives would be invaluable to process engineers 

and decision makers.  

In this study, multi-objective optimization (MOO) of SSF to maximize the cellulose 

conversion/ethanol yield and to minimize enzyme loading was carried out based on 

enzymatic hydrolysis kinetics and a dynamic metabolic model of yeast cell.  To the best of 

our knowledge, the present work is the first attempt to investigate the improvement of SSF 

performance by systematic multi-objective optimization using a validated kinetic model. 

After the careful assessment of the interactions between of substrate concentration and 

enzyme loading, several bi-objective optimization problems were defined and solved by a 

controlled elitist genetic algorithm for Pareto optimal solutions. Fast convergence to the 

true Pareto optimal fronts and well-distributed solutions were obtained in three case studies 

with different combinations of objectives and constraints. The reliability and accuracy of 

the bi-objective optimization of SSF were verified by comparing the experimental results 

with the model predictions. This optimization study not only gives us deeper insight into 

interactions of key operating parameters of SSF process, but also provides a methodology 

to balance these interactions into an optimized process.  
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5.2 Multi-objective Optimization of SSF  

5.2.1 Kinetic modeling of SSF process 

A model to predict the ethanol production in SSF is prerequisite for the optimization 

investigation. An integrative model combining the kinetic of enzymatic hydrolysis and 

dynamic fermentative metabolism model developed by Philippidis et al. [19-21] and 

Shadbahr et al. (2016) [22] was employed in this study. This model considers the 

fermentation of glucose and mannose alongside simultaneous enzymatic hydrolysis of 

cellulose to glucose, and is capable of predicting the dynamic profiles of released sugars 

and ethanol over wide range of operating conditions [21]. Detailed kinetic and reactor 

model as well as the methodology used for determination of the reaction kinetic parameters 

were presented in our previous study [22]. The model and kinetic parameters used here are 

the same as those reported previously [22]. 

 

5.2.2 Formulation of optimization problems 

The SSF process involves the interaction between the enzyme which hydrolyses solid 

substrate to sugars and yeast which utilizes the sugars for growth and fermentation [23]. 

Optimal operation of SSF relies on balancing the rates of hydrolysis and fermentation, 

which can be achieved by proper selection of the initial substrate loading, the enzyme 

dosage and inoculum size. The conversion of cellulose (X), the final ethanol yield (Y) 

and/or ethanol concentration ([E]f) are the key performance parameters of SSF process. 

The operating cost of SSF is impacted most dramatically by the enzyme loading. As such, 

maximization of ethanol yield is the main objective function for the optimization of SSF 



112 
 

process. This objective can be further specified to maximization of cellulose conversion, 

an important indicator of the depolymerisation efficiency of cellulolytic enzymes.  

Minimization of enzyme consumption, which is essentially in conflict with the first 

objective, can be considered as another objective function. Several combinations of the two 

objective functions are outlined in Table 5.1. Definitions of the objective functions 

considered in this study are listed below. 
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Table 5.1. Optimization problem formulations for SSF of cellulose 

Case  Objectives Constraints Decision variables 

I Max I1(u) = X 

Min I2(u) = Z 

[E]f  ≥ 12 g/L 5.0 ≤ [G]0 ≤ 10.0 (g/L) 

[M]0 =0.9[G]0 

5.0 ≤ [C]0 ≤ 8.0 % (w/v)  

10.0 ≤ [enz] ≤ 20.0 (FPU/g cellulose) 

II Max I1(u) = Y 

Min I2(u) = Z 

[E]f  ≥12 g/L Same as Case I 

III Max I1(u) = Y 

Min I2(u) = [enz] 

Y ≥ 30% or 

X ≥ 20% 

Same as Case I 
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Important operating parameters in SSF process include initial concentration of fermentable 

sugars, cellulose loading, dosage of the enzymes, and the loading of yeast strain. Earlier 

experiments indicate that SSF performance was not significantly influenced by the dosage 

of β-Glucosidase and the loading of yeast strain [19,22,24]. In addition, results from many 

simulations runs of SSF process indicated that cellulose conversion and final ethanol 

yield/concentration are greatly influenced by initial sugars concentration, cellulose and 

cellulase loadings. Therefore, in this multi-objective optimization study, three variables 

(initial concentration of fermentable sugars, cellulose loading, and dosage of cellulase) 

were used as decision variables due to the significant impact on the performance of SSF. 

The lower and upper bounds of the decision variables used for the optimization are 

summarized in Table 5.1 and are based on the experimental stability and process economy 

of SSF process reported in open literature [20,22,24]. To achieve a better and fast 

convergence of Pareto optimal solutions, a constraint was defined in each bi-objective 

optimization problem. The optimization problem formulation is summarized in Table 5.1. 

 

5.2.3 Controlled elitist multi-objective genetic algorithm 

The genetic algorithm (GA), an adaptive heuristic search method based on population 

genetics, has been proved to be one of the most robust optimizers for MOO problems [25-

28]. GA mimics the principles of natural genetics and natural selection in solving 

optimization problems through four basic operators, namely inheritance, cross-over, 

reproduction and mutation [29,30]. However, GA sometimes fails to address complex high 

dimensional multi-modal problems where fitness function evaluation becomes 
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computationally complex [31]. In this study, a controlled elitist GA, which not only 

improves the chance of finding global optimal solutions but also increases the diversity of 

the population is employed to solve bi-objective optimization problems. Bi-objective 

optimization problems listed in Table 5.1 were performed by implementing “gamultiobj” 

tool (controlled elitist GA) provided by MATLAB R2016b. The computational parameters 

used in the algorithm are provided in the Table 5.2. 

Table 5.2. Computational parameters used by generic algorithm 

Parameter Value 

Population size 50 

Elite count 0.05 * population size 

Mutation function Constraint dependent 

Crossover function Constraint dependent 

Migration fraction 0.2 

Generations 100 * variables 

Stall generations 50 

 

 

5.3 Experimental Method 

Experimental investigations of batch SSF process were carried out to verify the 

optimization results. The experimental methods with respect to feedstock and enzyme 

compositions, yeast preparation, SSF experiments, and analytical method are explained 

elsewhere [22] and not included here for brevity. The SSF experiments were performed at 

37 ºC in 250 mL jacketed flask with 100 mL active volume and the solution pH maintained 

at 5.0 over the 96 hours reaction time. Other operating conditions are summarized in Table 

5.3. Exp. #1 in Table 5.3 was conducted twice to check the repeatability of the experiments 

and the results of Exp. #1 are the average values from two runs.  
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Table 5.3. Optimal operating conditions of SSF process for experimental validations 

Exp. # [G]0 (g/L) [M]0 (g/L) [C]0 %(w/v) [enz] (FPU/g cellulose) 

1 10.0 9.0 8.0 10.0 

2 10.0 9.0 5.32 12.23 

3 6.88 6.19 5.07 10.0 

* The activity for the β-Glucosidase and yeast loading were fixed at 30 U/g cellulose and 5.0 g 

dry cell/L for all experiments, respectively. 

 

5.4 Results and Discussion 

The solutions of bi-objective problems listed in Table 5.1 give rise to Pareto-optimal sets 

and the range of trade-offs between the competing objectives. The predicted enhancement 

of SSF performance by bi-objective optimization was verified by experiment using optimal 

operating conditions. 

5.4.1 Case I: Maximization of cellulose conversion and minimization of enzyme 

consumption per ethanol produced  

Figure 5.1a presents the Pareto optimal solutions for simultaneous maximization of 

cellulose conversion and minimization of enzyme consumption per 1 g/L ethanol produced 

(hereinafter referred to unit enzyme consumption). Not surprisingly, the objectives are in 

conflict, and cellulose conversion increases as the unit enzyme consumption increases. 

However, there is an upper bound of cellulose conversion (roughly 30%) which cannot be 

further improved by purely increasing the enzyme loading and/or varying the feedstock 

conditions. 
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Each point on the Pareto optimal front corresponds to a set of decision variables, which are 

plotted in Figures 5.1.b-d. Figure 5.1b illustrates that higher cellulose loading resulted in 

reduced cellulose conversion even though higher enzyme loading was used. The result is 

logical and a result of two factors. First, inhibition of cellulose hydrolysis by cellobiose, 

glucose and ethanol is more severe as cellulose loading increases, leading to a reduced 

conversion of cellulose. Secondly, cellulase activity is profoundly influenced by the direct 

physical contact between cellulolytic enzyme and substrate. Higher solid loading limits the 

cellulose accessibility to cellulase, which limits the effectiveness of cellulase. Therefore, 

to maximize cellulose conversion, lower cellulose loading with relatively higher enzyme 

loading would be an option. A similar impact of initial sugar concentrations (glucose and 

mannose) on cellulose conversion is also observed (Figure 5.1c). At higher initial 

concentrations of sugars there is a resulting increase in inhibition of hydrolysis by the end 

product. Figure 5.1d summarizes the optimum enzyme loading as a function of cellulose 

conversions. In general, increasing enzyme loading (ignoring sugars concentration and 

cellulose loading) improves the hydrolysis rate, particularly at lower initial sugar 

concentrations. From Figure 5.1e, it is clear operating conditions leading to highest final 

ethanol concentration were different with those for maximum cellulose conversion.  

In order to confirm that the obtained Pareto solutions of Case I are the true global optimal 

solutions, optimization was also carried out on divided domains of sugar concentrations 

and cellulose loading. That is, optimization was performed at low sugar (5.0-7.5 g/L 

glucose and 4.5-6.75 g/L mannose) and high sugar concentrations (7.5-10.0 g/L glucose 

and 6.75-9.0 g/L mannose), low cellulose (5.0-6.5% w/v) and high cellulose loading (6.5-
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8.0% w/v) separately while keeping the same lower and upper limits for the other two 

variables.  Figure 5.2 compares the results of five different optimization scenarios. The 

converged Pareto optimal solutions of Case I are the global optimums with respect to the 

two objectives in the defined searching domain (Figure 5.2). 

Batch SSF experiment (Exp. #1) under the calculated optimal operating conditions was 

carried out to validate the optimization results. The maximum optimized final ethanol 

concentration was 14.11 g/L and ethanol yield was 25.60%. The experimental average final 

ethanol concentration and ethanol yield (Exp. #1) are 13.8 g/L and 25.03%, very close to 

the optimization predictions. This confirms the approach of using systematic multi-

objective optimization in SSF analysis. 
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Figure 5.1. Pareto optimal solutions and corresponding decision variables for Case I, (a) objectives trade-

offs, cellulose conversion vs (b) cellulose loading, (c) glucose concentration, (d) enzyme loading, and (e) 

ethanol concentration 



119 
 

 

Figure 5.2. Comparison of optimization results at different ranges of sugar and cellulose concentrations 

 

5.4.2 Case II: Maximization of ethanol yield and minimization of enzyme 

consumption per ethanol produced 

With our validated model, the next step is to determine conditions where ethanol yield is 

maximized and the unit enzyme consumption minimized. The same constraint and ranges 

of decision variables as those of Case I were used. Well-distributed Pareto optimal 

solutions and the corresponding optimal sets of decision variables are illustrated in Figure 

5.3. A trade-off exists between the two objectives; it is challenging to reduce the unit 

enzyme consumption without sacrificing the ethanol yield. Similar to Case I, ethanol yield 

cannot be continuously increased by optimizing the operating conditions and there is an 

upper limit of ethanol yield for batch SSF.  
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As seen from Figure 5.3c, optimal solutions for initial glucose concentration converge to 

the higher bound (logically higher initial sugar concentrations tend to increase ethanol 

yield). Maximizing ethanol yield as an objective forces the optimizer to restrict the sugar 

concentration to a narrow range. A significant scatter in other two decision variables, [C]0 

and [enz] accompanied the convergence of Pareto solutions. As illustrated from Figures 

5.3b and 5.3d, different combinations of cellulose loading and enzyme loading are able to 

generate the same or very close objective values (points A, B and C in Figure 5.3a), the set 

of solutions ultimately chosen (by the optimizer) for generating the Pareto optimal points 

is determined by parameters randomly generated and convergence by the optimization 

algorithm. Figure 5.3 demonstrates the impact of the variables on the targeted objectives. 

For example, when low cellulose loading and high concentration of fermentable sugars 

(glucose and mannose) are selected, increasing enzyme loading results in higher ethanol 

yield and/or lower unit enzyme consumption. However, if high cellulose loading and sugar 

concentrations are used, increasing enzyme loading has little impact on ethanol yield due 

to the severe product inhibition. 
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Figure 5.3. Pareto optimal solutions and corresponding decision variables for Case II with experimental 

validation. (a) objectives trade-offs, ethanol yield vs (b) cellulose loading, (c) glucose concentration, and 

(d) enzyme loading 

 

The optimized variables from Case II were also verified by batch SSF process under the 

operating conditions of Exp. #2 (Table 5.3). This time, small deviations from the calculated 

optimum objective values were obtained. The predicted ethanol yield and unit enzyme 

consumptions are 34.06% and 0.89 FPU L/g-g, comparable to experimental values of 

33.53% and 0.91 FPU L/g-g respectively. The enhancement of SSF performance through 

optimization (Figure 5.4) was assessed by comparing ethanol yields and unit enzyme 
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consumptions from three non-optimized experiments [22]. Experimental point D is 

certainly better than points E and F in terms of the two objectives. However, all the points 

on the Pareto set are better than the experimental points, leading to increase of ethanol yield 

or remarkable reduction in unit enzyme consumption. 

 

 

Figure 5.4. Enhancement of SSF performance by optimization in Case II 

 

5.4.3 Case III: Maximization of ethanol yield and minimization of enzyme loading 

The total amount of enzyme consumption is one of the key factors impacting the overall 

cost of bioethanol production by SSF. To study this in the third case, Case III, 

maximization of ethanol yield and minimization of enzyme loading were investigated 

under two scenarios with different constraints: (I) ethanol yield not less than 30% (Y ≥ 
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30%); and (II) cellulose conversion not lower than 20% (X ≥ 20%). Comparison of the 

optimization results for the two scenarios is presented in Figure 5.5.  

Figure 5.5a show the converged Pareto optimal solutions from the two scenarios differ 

slightly. For constrained optimization problems, constraints can be considered as high-

priority (hard) objectives which must be satisfied before the optimization of the remaining 

soft objectives (ethanol yield and enzyme loading in this case) takes place [32]. As such, 

as one varies the high priority objectives from Y ≥ 30% to X ≥ 20% the solution changes. 

For instance, when lower enzyme loadings (≤ 12.0 FPU/g) are selected, the constraint of 

Y ≥ 30% forces higher sugar concentrations and lower cellulose loading to achieve 

maximum ethanol yield, whereas X ≥ 20% forces the optimizer to select lower sugar and 

cellulose concentrations. This reveals that increasing sugar concentrations in the feedstock 

are favorable to the attainment of maximum ethanol yield at low enzyme loading. However, 

when enzyme loading is higher than 12.0 FPU/g both scenarios converged to the same 

Pareto front.  

Enzyme loading converged to values lower than 14.5 FPU/g and cellulose loading 

converged to lower bound in both scenarios, indicating that maximum ethanol yield or 

cellulose conversion cannot be achieved by purely increasing the enzyme loading. 

Balanced rates of hydrolysis and fermentation rates as a result of proper combination of 

feedstock condition and enzyme loading are essential for the optimal operation of batch 

SSF. This observation is in agreement with the conclusions of experimental investigators 

[8,33,34].  
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 Figure 5.5. Pareto optimal solutions and corresponding decision variables of Case III. (a) objectives trade-

offs, ethanol yield vs (b) cellulose loading, and (c) glucose concentration 

Experimental validation of optimization results for Case III was also performed. Under the 

same operating conditions, predicted ethanol concentration by optimization is 10.56 g/L 

and corresponding to ethanol yield of 30.09%, again in good agreement with experimental 

values from Exp. #3 of 10.29 g/L and 29.32%. Enhancement of SSF performance with 

respect to maximizing ethanol yield and minimizing enzyme loading by optimization can 

be shown by comparison of our previous (non-optimized) experimental results (Figure 5.6) 
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[22]. To achieve the same ethanol yield, enzyme consumption can be reduced more than 

50% by optimization.    

 

 

Figure 5.6. Enhancement of SSF performance by optimization in Case III 

 

5.5 Conclusion 

Multi-objective optimization of SSF for bioethanol production was investigated in this 

study by employing the controlled elitist GA. The objective of the study is to maximize 

ethanol yield/cellulose conversion and minimize enzyme consumption by optimizing the 

initial sugar concentrations, the cellulose and enzyme loadings. Simultaneous 

maximization of cellulose conversion and minimization of enzyme consumption per 

ethanol produced were performed. Results indicated that higher cellulose loading and sugar 

concentrations in the feedstock resulted in reduced cellulose conversion due to the strong 

product inhibition. In the second case, maximization of ethanol yield and minimization of 

enzyme consumption per ethanol produced were used as the objective functions. This time, 
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optimal solutions for initial glucose concentration converge to the higher bound, whereas 

cellulose loading and enzyme loading were converged to wider ranges. Therefore, enzyme 

loading needs to be properly selected based on cellulose loading for the attainment of 

maximum ethanol yield and minimum unit enzyme consumption. Optimization aimed at 

maximization ethanol yield and minimization of enzyme loading was finally conducted. 

Results reveal that high sugar concentrations in the feedstock is beneficial to high ethanol 

yield when low enzyme loading.  In case of higher cellulose conversion is also desired, 

ethanol yield can be maximized only by properly selecting the enzyme loading for balanced 

rates of hydrolysis and fermentation.  

Batch SSF experiments conducted under the predicted optimal operating conditions were 

used to verify the optimization results. Good agreement between the experimental 

measurements and optimization predictions was obtained, indicating that performance 

enhancement of SSF is attainable by systematic optimization based on reliable and robust 

kinetic models. The results and findings of this study can further be applied in a pilot plant 

to evaluate the performance of process in a larger scale. 

 

Nomenclature 

[C]0 Initial cellulose loading (w/v) 

[E]0 Initial ethanol concentration (g/L) 

[E]f Final ethanol concentration (g/L) 

[enz] Enzyme loading (FPU/g cellulose) 

[G]0 Initial glucose concentration (g/L) 
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[M]0 Initial mannose concentration (g/L) 

X Cellulose conversion (%) 

Y Ethanol yield (%) 

Z Enzyme consumption per 1 g/L ethanol generated 
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6 Comparative Life Cycle Analysis of Bioethanol production 3 
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method and results, and reviewed and revised the manuscript. The co-author Yan Zhang 
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Abstract  

Pretreatment as a crucial step in the process of ethanol production has significant influences 

on the process efficiency and on the environmental performance of the bioethanol 

production from lignocellulosic biomass. In present life cycle analysis (LCA) study, two 

cases for pretreatment of woodchips were considered as the focal point of the ethanol plant. 

One was assumed as base scenario whereas the second is the proposed alternative by 

                                                           
3 Shadbahr et al. Applied Biochemistry and Biotechnology, 2015, 175:1080–1091 
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implementation of modifications on the base design. In the first stage, LCA results of 

pretreatment unit showed lower environmental impacts in respiratory inorganics and land 

use than in new scenario, while the base scenario revealed better performance in fossil 

fuels. The results of the second stage of LCA study demonstrated improvement in proposed 

design in most categories of environmental impacts such as 18.5 % in land use as well as 

17 % improvement in ecosystem quality. 

Keywords: Bioethanol, Life cycle assessment, Lignocellulosic biomass, Pretreatment, 

Environmental impacts 

 

6.1 Introduction 

Increased effort is being made to improve the economic viability and technological 

advancement of processes that convert lignocellulosic biomass to bioethanol. Compared 

with the first generation bioethanol which is derived from sugar and starch produced by 

food crops [1, 2], the second generation bioethanol, which is produced from non-edible 

lignocellulosic biomass, offers the potential to provide a significant source of energy 

sustainably, affordably, and with greater environmental benefits [3–6]. Lignocellulosic 

biomass mainly consists of cellulose, hemicellulose, and lignin. This type of feedstock is 

available in abundance in the forms of agricultural residues, forestry residues, yard waste, 

municipal solid waste, and wood products [7]. However, the high production cost still 

hinders the production of lignocellulosic ethanol on an industrial scale. 
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Recently, biochemical conversion of lignocellulosic biomass through saccharification and 

fermentation has become a major pathway for ethanol production due to the advantages of 

this technology, such as mild operating conditions, a lower rate of by-product formation, a 

lower consumption of energy [8], etc. The biochemical process for converting 

lignocellulose to fuel ethanol involves four steps: (a) delignification to liberate cellulose 

and hemicellulose from their complex with lignin, (b) hydrolysis (saccharification) of 

cellulose and hemicellulose to produce fermentable sugars, (c) fermentation of hexose and 

pentose to ethanol, and (d) product separation and ethanol purification [9]. Among these 

steps, delignification of lignocellulosic raw material by pretreatment is the rate-limiting 

and the most challenging task. The efficiency of the pretreatment method to break the lignin 

structure and disrupt the crystalline structure of biomass determines the accessibility and 

digestibility of cellulose and, hence, governs the overall process economy of 

lignocellulosic ethanol [6, 10, 11]. Pretreatment still has great potential for improvements 

in efficiency and lowering of costs through further research and development [12]. 

Apart from the long-term economic viability of lignocellulosic ethanol, the environmental 

impacts of bioethanol production also attract a major concern. The environmental impacts 

of the bioethanol production system can be evaluated through life cycle assessment (LCA), 

a proven methodology to quantitatively analyze the environmental burden of a product or 

process over its entire life. Although many LCA studies have shown environmental 

benefits associated with lignocellulosic ethanol, most studies have focused on assessing 

the farming systems/different feedstocks with generic assumption of the ethanol 

conversion process [13, 14] or comparing the LCA results of bioethanol production system 
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with those of conventional fossil energy systems [15, 16]. Very few have addressed the 

specific environmental issues related to the conversion process due to process uncertainties 

and non-availability of commercial scale plants [17]. Research on how process design and 

technology improvements in an ethanol plant affect the environmental performances of the 

system is still required.  

In the present study, environmental impacts of the chain process of ethanol production from 

woody biomass were investigated through life cycle analysis at two levels for two scenarios 

in pretreatment. Dilute sulfuric acid pretreatment of wood chips reported by National 

Renewable Energy Laboratory (NREL) [18] was selected in the base scenario. In the new 

pretreatment scenario, some modifications were applied to the base case. In this study, the 

effectiveness of different pretreatment designs on the life cycle analysis results of the 

individual unit as well as of the whole production plant was considered. By comparative 

LCA study of the two scenarios, this work aims to evaluate the influence of process design 

on the environmental impacts of cellulose bioethanol production. 

 

6.2 Materials and Methods 

6.2.1 Bioethanol Production System 

The plant for producing bioethanol from lignocellulosic biomass consists of several units, 

such as pretreatment, saccharification and fermentation, product recovery, wastewater 

treatment, and power and steam production. Figure 6.1 shows the process of the bioethanol 

conversion system with woodchips used as the feedstock [18]. It must be noted that in this 
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study, two scenarios for the pretreatment unit were investigated from an environmental 

impact point of view. The influences of different designs of the pretreatment on the life 

cycle analyses of the individual unit as well as for the whole production plant were studied. 

Except for the pretreatment unit, other units such as saccharification and fermentation, 

product recovery, wastewater treatment, and power and steam production are assumed in 

the same operational conditions for both cases. 

After pretreatment, most of the pretreated products are sent to the saccharification and 

fermentation unit and a small fraction of the products is used in the cellulase production 

unit to produce the required enzyme for hydrolysis of unconverted polymer sugars (mostly 

cellulose). Fermentation in this design occurs simultaneously with saccharification in a 

single reactor where the produced sugars (mainly glucose from cellulose and xylose from 

xylan) are immediately exposed to the fermentation process for conversion to ethanol. 

Products of the simultaneous saccharification and co-fermentation (SSCF) unit which 

contain ethanol, water, and sugars are then fed along with the unconverted lignin to the 

product recovery unit, where high purity ethanol is obtained by the distillation and 

dehydration processes. Ethanol is then sent to storage, and the remaining mixture of water 

and soluble and insoluble solids is sent to the wastewater treatment unit where wastewater 

is first separated from solids and then treated in anaerobic and aerobic digestion pools. The 

recovered water is used in the plant as recycled water. Solid phase (mostly lignin) from the 

wastewater treatment unit and biogas produced from anaerobic digestion are burned in the 

waste combustion unit to generate steam and electricity [18]. Electricity generated by waste 

combustion exceeds the demand of the plant and can be exported to the grid. Therefore, it 
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is usually considered as the co-product of the process, which is counted as a credit to the 

environmental impacts of the bioethanol production plant. 

 

6.3 Life Cycle Assessment 

6.3.1 Goal and Scope 

The main goal of this study is to investigate the influence of process design on the 

environmental impacts of bioethanol production by comparing the LCA results from a 

basic design of a bioethanol plant with results after implementing some modifications in 

the pretreatment step of the process. What processes are included in the analysis and what 

are excluded must be clearly defined for LCA study. As explained later in pretreatment 

scenarios, two cases of the life cycle assessment for bioethanol production were studied, 

with each case being evaluated at two levels. At the first level, LCA was carried out on the 

sub-system boundary which only includes the pretreatment unit for the two cases. The 

second level was performed on all the units included in a bioethanol production plant which 

is shown in Figure 6.1. The defined system boundary for the first level is presented in 

Figures 6.2 and 6.3. It must be emphasized that capital goods and facilities are excluded 

from analysis in this study as boundary system for each step shows that. 

The functional unit plays the role of a reference for calculating the amount of inputs, 

outputs, and energy demand of the system. In this context, the functional unit for first-level 

analysis is 1 kg of pretreated woodchips which are the product of pretreatment, and the 
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functional unit of the second level of analysis is 1 kg of produced ethanol which is the main 

product of the bioethanol production plant. 

 

Figure 6.1. Bioethanol production plant and boundary system for all units in life cycle analysis [18] 

 

6.3.1.1 Pretreatment Scenarios 

Liberating the sugars (xylose, mannose, arabinose, and glucose) from the cellulose and 

hemicellulose contents of lignocellulosic biomass requires the pretreatment of the biomass, 

which is the bottleneck of the biochemical production of bioethanol. The conversion rate 

of cellulose (the main part of lignocellulosic biomass) to glucose in the hydrolysis step 

strongly depends on the accessibility to the enzyme and reactivity of cellulose which are 

obtained from the pretreatment unit. Compared with other types of lignocellulosic biomass 

materials such as herbaceous plants and agricultural residues, woody biomass has more 

lignin content [19, 20] and this characteristic causes more recalcitrance of the woody 

biomass to enzymatic hydrolysis. As a result, more energy is demanded for pretreatment. 
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However, the lower content of pentose in woody biomass in comparison to agricultural 

feedstocks is an advantage. This is because the lower rate of conversion of pentose to 

ethanol in fermentation and lower pentose content lead to a decrease in the amount of 

degradation products such as furfural and hydroxymethylfurfural (HMF) in pretreatment 

and hydrolysis which are acting as inhibitors for saccharification and fermentation [21, 22]. 

The feedstock for this study is yellow poplar chips, which are seen in the design by NREL 

[18]. The chemical composition of the feedstock is presented in Table 6.1.  

Table 6.1. Chemical composition of the analyzed feedstock [18] 

Component % Dry Basis 

Cellulose 42.67 

Xylan 19.05 

Arabinan 0.79 

Mannan 3.93 

Galactan 0.24 

Acetate 4.64 

Lignin 27.68 

Ash 1 

Moisture 47.90 

  

In this study, two scenarios for pretreatment were investigated from the life cycle 

perspective. The base case was originated from the design of NREL [18]. In this design, 

dilute sulfuric acid pretreatment of yellow poplar chips was adopted, which is currently the 

most widely used technology for lignocellulosic biomass pretreatment. In the base case, 

the process was started with the pretreatment reactor and the pretreated biomass was 

separated into solid and liquid phases. Then, the liquid phase was detoxified in the lime 

addition unit, and its pH was readjusted by adding sulfuric acid. The main purpose of the 



140 
 

detoxification in the acid pretreatment method is to reduce the amount of some hydrolyzed 

products such as acetic acid, furfural, and HMF which play inhibitory roles in next process 

unit (SSCF). Precipitation of lime and sulfuric acid as gypsum and then separation of 

gypsum from the detoxified liquid phase led to a loss of significant amount of sugars. The 

conditioned liquor was then mixed with the separated solid phase, and the mixture was sent 

to saccharification and fermentation for further reactions. A flow diagram of the base case 

is shown in Figure 6.2. 

 

Figure 6.2. Pretreatment unit step in base case scenario 
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Figure 6.3. Pretreatment unit step in new scenario 
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detoxifying the hydrolyzed products of pretreatment [24]. The flow diagram of the new 

scenario for pretreatment is shown in Figure 6.3. 

 

6.3.2 Life Cycle Inventory 

Life cycle inventory is the most time-consuming part of the LCA study. In this step, all 

input and output materials as well as the consumed and produced energy of the defined 

system boundary must be considered and must be normalized according to the defined 

functional unit. One of the most popular softwares for conducting LCA is Simapro 7.3 [25, 

26] which includes several inventory databases and different impact assessment methods. 

Ecoinvent 2.0 [27] was chosen as inventory database, and Ecoindicator 99 [28] was used 

according to the designed plant by NREL for the production of ethanol from woodchips 

[18]. In the second scenario, modifications were made to the pretreatment unit based on 

Wyman et al. [23] and Humbird et al. [24] while other units in the new scenario are 

assumed to be the same as the base scenario. General process conditions of the pretreatment 

reactor for both cases are compared in Table 6.2.  

Table 6.2. Pretreatment process conditions of both scenarios 

Parameter Base case New case 

Acid concentration 0.5% 2% 

Residence time 10 minutes 1.1 minutes 

Temperature 190ºC 190ºC 
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The required inventory data for the base case of this LCA study was extracted from the 

NREL report, not only for the pretreatment unit but also for all other units involved in the 

production process. The major efforts for inventory data in this study were done by 

generating the required data for new case. Every small change in the parameters of 

pretreatment affects the performance either directly or indirectly of the following units in 

the plant. In this regard, all the input and output materials and energy for each unit were 

calculated based on the quality and quantity of the pretreatment products. Additional 

amount of hydrolyzed hemicellulose and cellulose as well as the produced inhibitors were 

considered in order to calculate the required chemicals, air, water, and energy.  

Due to the aforementioned modifications on the pretreatment unit, sugar recovery and 

inhibitor production for the two scenarios are different. Sugar recovery and inhibitor 

production of new scenario are compared with the base scenario presented by Wooley et 

al. [18] and results are illustrated in Table 6.3. Usually, degradation of pentose sugars 

(mainly xylose) and hexose sugars (mainly glucose) to furfural and 5-hydroxymetylfurfural 

(HMF), respectively, is increased by increasing the residence time in the pretreatment 

reactor. Due to the short residence time used in the new scenario of pretreatment, a 

significant increase in sugar recovery from hydrolysis and ethanol yield from fermentation 

can be obtained. In the new scenario, all produced acetic acid (a kind of inhibitor of sugar 

fermentation) liberated from the acetyl groups of hemicellulose in the pretreatment unit is 

neutralized by the addition of ammonia before more processing in the saccharification and 

fermentation unit [24]. 
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Table 6.3. Comparison of sugar recovery and inhibitor production of two cases 

Reaction Conversion (Base Scenario) Conversion (New Scenario) 

Cellulose to Glucose Cellulose  8% Cellulose  23% 

Cellulose to HMF Cellulose  0 Cellulose  0.3% 

Xylan to Xylose Xylan  80% Xylan 62.4% 

Xylan to Furfural Xylan  10% Xylan 5% 

Mannan to Mannose Mannan  80% Mannan 62.4% 

Mannan to HMF Mannan 15% Mannan 5% 

Galactan to Galactose Galactan  80% Galactose 62.4% 

Galactan to HMF Galactan  15% Galactan 5% 

Arabinan to Arabinose Arabinan  80% Arabinan 62.4% 

Arabinan to Furfural Arabinan  10% Arabinan 5% 

Acetate to Acetic Acid Acetate  100% Acetate 100% 

 

6.3.3 Life Cycle Impact Assessment  

There are several impact assessment methods for analyzing the life cycle of a product, and 

these can be divided into two general groups. The first group of methods is called the 

midpoint approach (problem oriented) such as CML 2001, and the second group is called 

the endpoint approach (damage oriented) such as Ecoindicator 99 [28]. Ecoindicator 99 

was chosen for this study to evaluate and compare the environmental impacts and damages 

caused by a bioethanol production plant, and it has an advantage of simplicity for 

interpretation of results for using the single-point indicator scores. The score points of each 

environmental impact are the environmental burden of materials or processes, and higher 

score points represent higher environmental impact and damages. The impact categories 
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which are analyzed in this study based on the Ecoindicator 99 are carcinogens, respiratory 

inorganic, respiratory organic, climate change, radiation, ozone layer, ecotoxicity, 

eutrophication and acidification, land use, minerals, and fossil fuels. In Ecoindicator 99, 

there are three main damage categories, i.e., human health, ecosystem, and resources. 

Based on the predefined contribution of each impact in each category, the resultant 

damages in three categories are obtained and compared for both pretreatment cases. 

 

6.3.4 Interpretation  

Interpretation is the last stage of the life cycle assessment study. In this step, impact 

categories and damages caused are discussed, and the most influential reasons for an 

increase in impacts and damages are investigated. The recommendations for improvement 

or modification of the situation from the LCA point of view are presented. 

 

6.4 Results and Discussions  

In the present study, two levels of LCA are applied. The first level is conducted at the 

modifications of the pretreatment unit. The second level is conducted at all units in the 

plants to evaluate the impacts of conventional process. For each level of study, after 

determining the functional unit and system boundary, the amount of input materials and 

energy transfer across the system boundary are identified and normalized. Once inventory 

is established, impacts are assessed using Ecoindicator 99 approach [25]. In the subsequent 

section, results are discussed briefly. 
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6.4.1 Comparative Life Cycle Analysis of Pretreatment Unit  

In the current study for the first level of analysis, a functional unit is defined as 1 kg of 

pretreated woodchips for both cases. The required materials and energy for both cases 

regarding to functional unit are shown in Table 6.4.  

Table 6.4. Required materials and energy for pretreatment in both scenarios 

Input Materials and Energy Base Scenario New Scenario 

Woodchips (kg) 1.97 1.90 

Water (kg) 4.15 3.57 

Sulfuric Acid (kg) 0.023 0.020 

Ammonia (kg) 0.014 0.019 

Lime (kg) 0.009 - 

Energy (kWh) 0.018 0.018 

 

The analyses of the two scenarios are performed based on the Ecoindicator 99 impact 

assessment methodology. Comparison of the environmental impacts of the two cases is 

illustrated in Figure 6.4. As can be seen from Figure 6.4, the most dominant environmental 

impacts in pretreatment unit in both cases are fossil fuels, respiratory inorganics, and land 

use. Results show that in some environmental impact categories such as climate change, 

both scenarios have the same performance, and in some categories, the new scenario shows 

lower environmental impacts for respiratory inorganics and land use. However, the base 

case shows better environmental efficiency in fossil fuels impact. The main reason for the 

increase in fossil fuels impact for the new case is the consumption of more ammonia in the 
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new scenario. It must be noted that the effects of existing furfural and ethanol in recycled 

water from the wastewater treatment plant are also considered in this study. 

 

Figure 6.4. Comparison of environmental impacts of two scenarios on pretreatment unit 

 

6.4.2 Comparative Life Cycle Analysis of Bioethanol Plant  

The second level of life cycle analysis in the current study was carried out based on all the 

units of the bioethanol plant. The major objective of this study is to assess the life cycle of 

all system boundary by considering all the inputs (raw materials, water, chemicals, etc.) 

and outputs (ethanol, gas emissions, and others). The system boundary for this level of 

study is presented in Figure 6.1 [18], and the functional unit of this level is defined as 1 kg 

of produced ethanol for each case. The implemented impact assessment methodology for 

this level of study is Ecoindicator 99. As mentioned earlier in the units’ description, in 
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addition to the main product, ethanol, electricity generation from unconverted wood 

components (mainly lignin) is also considered as the co-product of the bioethanol 

production plant and as a credit for environmental impacts as well as the damage 

categories. 

 

Figure 6.5. Comparison of environmental impacts of both scenarios with considering the excess produced 

electricity 

The excess produced electricity in the waste combustion unit of the plant can be exported 

to the grid and thus reduces the electricity generation from other resources such as natural 

gas or coal. As a result, credits for different environmental impact categories and damage 

categories are shown as the negative amount on the diagrams, which signifies a remarkable 

reduction in each impact. The comparison between the two scenarios in this situation is 

demonstrated in Figure 6.5, and the reduction percentage of each impact is presented in 

Table 6.5. The results of comparison for damage categories are also illustrated in Figure 

6.6, and the improvement percentages are given in Table 6.6. 
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Table 6.5. Improvements in impact categories in new case compared to base case 

with considering excess produced electricity 

Environmental Impact Category Percentage of Improvement (%) 

Carcinogens 15.68  

Resp. organics 63.69 

Resp. inorganics 6.43 

Climate change 17.81 

Radiation 17.60 

Ozone layer 8.96 

Ecotoxicity 4.68 

Acidification/ Eutrophication 13.23 

Land use 18.50 

Minerals 9.80 

Fossil fuels -11.52 

 



150 
 

 

Figure 6.6. Comparison of damage categories of two scenarios with considering the excess produced 

electricity 

 

The improvements in environmental impacts as well as in the damage categories in the new 

case in comparison with the base case are due to two main factors. The first reason is the 

increase in produced ethanol in the new scenario for pretreatment in comparison to the base 

scenario. Based on the new scenario design, ethanol productivity in the new case is about 

28 % higher than that of the base case under the same reaction conditions for 
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Table 6.6. Improvements in damage categories in new case compared to base case with considering excess 

produced electricity 

Environmental Impact Category Percentage of Improvement (%) 

Human Health 11.44 

Ecosystem Quality 17.81 

Resources -10.53 

 

The second factor affecting the environmental impacts of bioethanol production is the 

amount of inhibitors generated. As shown in Table 6.2, residence time in the pretreatment 

reactor in the new case is much shorter than in the base case, which leads to a decrease in 

the formation of inhibitors such as furfural and HMF. Lower amounts of furfural and HMF 

cause a decrease in the inhibitory effect, while improving the liberating of sugars in 

saccharification and conversion of sugars to ethanol in fermentation. Another inhibitor 

which is produced in pretreatment is acetic acid, which is almost neutralized in the new 

case by ammonia before saccharification. However, in the base case, ion exchange and 

lime addition cannot remove acetic acid completely which results in some inhibitory effect 

on saccharification and fermentation. 

 

6.5 Conclusion  

Environmental performance of the chain process of ethanol production with dilute acid 

pretreatment for a designed plant by NREL [18] was investigated in this study for two 

pretreatment scenarios. Results from the first-level (single pretreatment unit) LCA study 

indicate that the proposed scenario (referred as new scenario) helps to lower the 
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environmental impacts for respiratory inorganics and land use, while the base scenario has 

better performance in fossil fuels. This is because more ammonia is consumed in the new 

scenario, which leads to an increased amount of fossil fuels consumption. A different trend 

of LCA results is observed when the system boundary is extended to the whole ethanol 

production plant. Results from the second-level study for the new scenario offer better 

performance in most environmental impact and damage categories. In this level, when the 

produced electricity is considered as a coproduct, credits for different environmental 

impact categories and damage categories can be obtained for both cases. Further analysis 

of the LCA results shows that an increased ethanol yield is the main factor for the reduced 

environmental impacts in the new scenario. 
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7 Summary, Conclusion, and Recommendations 

 

7.1 Summary 

Cellulosic ethanol production has been investigated from different points of view. In the 

first step, experimental studies on simultaneous saccharification and the fermentation 

(SSF) process were performed to evaluate the influences of sugars concentration and 

enzyme loading on the amount of produced ethanol and ethanol yield. Experiments were 

conducted at two different sugars concentration level and three various enzyme loadings.  

Results of the experiments on the SSF process were implemented in a proposed kinetic 

model to adjust five significant kinetic parameters. Tuning the kinetic parameters based on 

the experimental results enabled the kinetic model to predict the behavior of the system 

without running unnecessary experiments which cost more money and time. A reliable 

kinetic model with verified results is a key tool in the optimization approach of ethanol 

production.  

Multi-objective optimization of the SSF process was the next step in this study. The kinetic 

model was used to optimize the defined objectives regarding decision variables and 

constraints. Three cases of optimization with different combinations of objectives and 

constraints were optimized by controlled elitist GA and the results were validated by 

experiments for each case. Multi objective optimization is a significant step toward 

industrialization of bioethanol production from cellulosic resources. 

In the last chapter, environmental performance of the chained production process was 

evaluated to highlight the key role of process design on the productivity of a plant as well 
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as the environmental impacts of the production process. Life cycle assessment (LCA) has 

been implemented for this study to compare the results of two pretreatment scenarios in 

two limited and expanded levels.  

 

 

7.2 Conclusions 

This general objectives of this thesis are to present a new perspective on environmental 

performance of bioethanol production and optimization of the SSF process, towards 

commercialization of cellulosic ethanol production. The specific conclusions could be 

categorized as follows: 

 

7.2.1 Interactive Influence of Enzyme Loading and Sugars Concentration on SSF 

Process 

Experimental studies on the SSF reactions in the batch conditions were performed and it 

was observed that increasing the amount of enzyme loading would not necessarily lead to 

higher ethanol concentration and ethanol yield. Six batches of SSF experiments revealed 

that with the fixed amount of cellulose there is a saturation limit for enzyme at each level 

of fermentable sugars (glucose and mannose) concentration. This means that, beyond the 

optimum point for enzyme loading, increasing the enzyme amount not only does not help 

to increase ethanol yield or ethanol concentration, but also raises the cost of the process. 

Therefore, simulation of the results of experiments with a reliable kinetic model would be 

beneficial to analyse the performance of the batch SSF process. 
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7.2.2 Kinetic Modeling of Simultaneous Saccharification and Fermentation of 

Cellulose to Ethanol 

Kinetic modeling of the SSF process clarifies the mechanism of inhibition impacts of 

monomer (glucose) and dimer (cellobiose) sugars in the batch media. Inhibition effects of 

hydrolysis products are more notable in a batch reactor, due to the accumulation of glucose 

and cellobiose in the media. Results indicate that while at high sugars concentration both 

cellobiose and glucose play inhibitory roles on enzyme, at low sugars level, cellobiose 

mainly acts as inhibitor for enzyme and prevent it from reaching the cellulose. Moreover, 

at a low level of enzyme loading, increasing the amount of fermentable sugars enhances 

the final ethanol concentration as well as the ethanol yield. 

Initial sugars influence on reaction rates and rate constants have also been investigated. It 

is concluded that higher amounts of sugars in media, which means more nutrients for the 

microorganism, improves the growth rate of the microorganism. Nonetheless, higher 

product inhibition of hydrolysis due to the higher sugars concentration is reflected in lower 

values of the hydrolysis rate constants.  

A reliable kinetic model which considers the interaction of involved components (sugars, 

ethanol, and enzyme) and their restrictive roles in the SSF process is a key tool to optimize 

the SSF process.  

 

7.2.3 Multi-Objective Optimization of SSF Process  

Three bi-objective optimization cases for the SSF process were designed and optimized by 

controlled elitist GA (gamultiobj tool from MATLAB R2016b). Interactions of the 
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components involved in the SSF process are reflected in tuned kinetic parameters, as well 

as selected objectives and constraints for each case significantly affecting on the results of 

the optimization.  

The first case was designed to maximize the cellulose conversion and minimize the enzyme 

consumption per produced ethanol. Optimized operational conditions in this case show that 

higher cellulose loading and sugars concentration lead to lower cellulose conversion, due 

to the product inhibition. Maximizing the ethanol yield with the simultaneous minimization 

of the enzyme consumption per produced ethanol was studied as the objective of the second 

optimization case. Optimal solutions in this case resulted in converging of the glucose 

concentration to a higher bond, while enzyme loading and cellulose loading could be 

chosen in a wider range. In order to satisfy both objectives in this case, proper selection of 

enzyme loading based on cellulose loading must be considered. Maximum ethanol yield 

and minimum enzyme loading aimed for optimization in the final case. High sugars 

concentration is beneficial to high ethanol yield, while cellulose loading converges to the 

lower defined range. Comparing the results of this case with two different constraints 

reveals that appropriate selection of a constraint notably influences the optimization results, 

especially at a lower loading of the enzyme.  

Optimization results of each case have been validated by running batch SSF experiments 

and good agreement among predicted results and experimental measurements has been 

attained, which proves that the findings of this study can be further expanded to larger 

scales to improve the performance of the SSF process.  
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7.2.4 Life Cycle Analysis of Bioethanol Production with Different Pretreatment 

Designs 

Life cycle analysis of bioethanol production with two scenarios for the pretreatment 

process reveals the significant role of pretreatment in ethanol production. For example, 

replacing the lime with ammonia improves the removing inhibitors more efficiently, which 

enhances the hydrolysis process and therefore increases the ethanol yield. Increasing the 

ethanol yield basically diminishes the most environmental impacts. 

Nevertheless, it should be considered that although in the first or second level of LCA 

study, most of the environmental impacts (such as respiratory inorganics and land use) 

decreased due to the change in pretreatment design, some other impacts (fossil fuels) 

increased. In general it can be concluded that applying modifications to the pretreatment 

unit improved the environmental performance of the ethanol production plant at both levels 

of study. Damage categories have also shown better results for the new scenario in 

comparison to the base scenario. 

 

7.3 Recommendations 

This presented work highlights the kinetic behavior of the SSF process for optimization of 

bioethanol production in a batch system and also the significant role of process design in 

the environmental performance of bioethanol production. This study can be extended in 

the following suggested areas to overcome the limitations of production of second 

generation ethanol.  
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7.3.1 Economic analysis of ethanol production with various process designs 

As was shown, process design significantly affects the environmental performance of the 

bioethanol production process. Currently, although attention to phenomena such as global 

warming and greenhouse gas emissions has made the life cycle assessment a key factor for 

decision makers, economic evaluation and comparison of the various process designs still 

play determining roles in the commercialization of bioethanol production. Therefore, it is 

highly recommended to perform economic analysis alongside LCA studies of various 

options for a process such as pretreatment. Allocating a weight for each parameter and 

comparing the achieved results would be an interesting topic for further studies on 

bioethanol production. 

 

7.3.2 Multi-objective optimization of fed-batch system for SSF process 

Fed-batch design for the SSF process reduces product inhibition impacts of ethanol, 

glucose, and cellobiose and also enables the system to hydrolyse more cellulose, due to the 

lower amount of the inhibited enzyme. Optimization of the SSF process in a fed-batch 

design has been mostly investigated experimentally to achieve the highest ethanol 

concentration. However, multi-objective optimization of ethanol production in a fed-batch 

system is recommended for further studies. The desired objectives could be achieved by 

implementing an appropriate kinetic model with reliable kinetic parameters to optimize the 

involved operating parameters such as strategies for feeding the fed-batch system by 

cellulose as well as the rate of enzyme loading and yeast amount in the system. Other 

decision variables in this regard should also be considered, such as fermentable sugars 
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concentration. Multi-objective optimization of the SSF process in a fed-batch design would 

provide decision makers with an invaluable insight into feasible bioethanol production.  
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Appendix (A) Experiment Apparatus 

The reaction system of batch SSF process mainly consists of a 250 mL jacketed flask 

(Bellco, US) and a Julabo FP 50 heated/refrigerated circulator (Allentown, PA, US) for 

temperature control. 

 

 

Figure A-1. Reaction system for batch SSF process 

 

Analysis of the samples was performed by Dionex Ultimate 3000 HPLC system for the 

concentrations of ethanol, glucose, cellobiose, and mannose.  Ultimate 3000 HPLC system 

SSF Batch 

Reactor 

Julabo F50 

Circulator for 

temperature Control 
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was equipped with an online degasser, a binary HPLC pump, an autosampler and a 

refractive index detector as illustrated in Fig. A-2.  

 

HPLC Pump 

(HPG-3200SD) 

HPLC Autosampler 

(ACC-3000) 

Samples’ Vials 

HPLC Oven 
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Figure A-2. Dionex Ultimate 3000 HPLC system  
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