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ABSTRACT 

 

Oil spills have been regarded as one of the major contributors to marine pollution. With 

the rapidly changing environmental conditions and the diverse uncertainties in the data 

associated with the observation or meteorological and oceanographic data, the simulation 

of an oil spill is challenging to be accurate and reliable enough for supporting response 

management. Furthermore, with the different assumptions, structures and translations of 

various simulation models, results could significantly vary even with the same inputs. The 

objectives of this research are therefore 1) to compare three widely used models for 

offshore oil spill simulation and evaluate their capabilities under harsh environmental 

conditions; and 2) to develop a Design of Experiment (DOE) based approach for analyzing 

uncertainties associated with the spill modeling input and parameters to help improve 

offshore oil spill simulation. 

 

In this research, the Terra Nova oil spill occurred on November 21, 2004, the largest oil 

spill in offshore Newfoundland, was chosen as a case study. The models, namely 

GNOME/ADIOS2 and OSCAR, were employed for the simulation of fate and transport of 

the spilled oil. During the simulation, ocean currents data from the Hybrid Coordinate 

Ocean Model (HYCOM) and surface wind data measured by the National Climate Data 

Center (NCDC) were used. The simulation results indicated that 43.7% of the spilled oil 

evaporated or dispersed in the first two days. With the model of OSCAR, 87.4% of the 

total spilled oil was evaporated or dispersed, while 10.8% was biodegraded. Only 1.6% of 
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oil remained on the sea surface after six days, which agreed well with the historical data. 

The results from GNOME showed a more reasonable match with the observations from 

the RADARSAT-1 satellite images regarding the spill plume, shape and location as 

compared to those from OSCAR. But on the other hand, OSCAR showed better 

performance in simulating weathering process.  

 

To facilitate a better understanding of the oil fate and transport, and to improve simulation 

performance, a DOE aided method was developed for sensitivity analysis, parameter 

calibration and interaction analysis of key factors during spill simulation. The interactions 

between wind speed and direction, and the currents have been analyzed and the effects of 

their interactions have been studied. In this case study, the key factors “Windage” and 

“Wind speed scale” both had the negative effects on the modeling response, but their 

interaction showed positive effects. The “Along current uncertainty” and “Diffusion 

coefficient” caused the negative and positive effects, respectively, but leading to the 

positive effects by their interaction. The results indicated that when adjusting the primary 

factors in order to optimize the response, interactions between factors may lead an opposite 

way and missed the optimal solution. The validation through the case study showed 

consistency with high values of R2 (e.g., 0.93 and 0.95 for deviations of coverage and 

distance between the observed and simulated spills respectively). The results indicated that 

this DOE aided parameterization method could potentially be a useful tool for the 

evaluation of the contribution of multiple parameters and be applied as a new calibration 

method for other oil spill simulation models.   
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CHAPTER 1: INTRODUCTION 
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1.1 Background 

 

An oil spill is often referred to an accidental release of liquid petroleum hydrocarbons into 

the environment. Spills may occur on land, in ocean or coaster waters. Due to natural 

reasons such as earthquakes and hurricane, or anthropogenic problems as equipment 

malfunctions and operational mistakes, oil spills can happen during oil and gas exploration, 

drilling, transportation, storage and utilization processes. 

 

Many large-scale oil spills in the history resulted in the catastrophic impacts. In 1989, 

Exxon Valdez tanker hit a reef off the Alaskan coast, and released 11 million gallons of 

crude into the ocean. Oil washed onto 1,300 miles of coastline, resulting in carcasses of 

more than 250,000 birds and 2,800 sea otters (Piatt et al., 1990). In 1991, the Gulf War oil 

spill occurred in Kuwait was the largest oil spills in history, between 5 and 10 million 

barrels of oil poured into the Persian Gulf (Ross, 1991). In 2010, the Gulf of Mexico oil 

spill was officially the largest accidental spill in American history. It began when an oil 

well a mile below the surface of the Gulf blew out, causing an explosion on BP’s 

Deepwater Horizon rig. Oil flowed possibly at a rate as high as 2.5 million gallons a day 

until capping the well. An estimated 206 million gallons of oil spilled and 572 miles of 

Gulf shoreline was oiled (Azwell et al., 2011). Totally, 1.82 million gallons of dispersant 

were used during this accident (Sumaila et al., 2012; Ruiz, 2013). 

 

To deal with the potential oil spill accidents, accurate real-time observations and 

monitoring are critical considerations to the marine security agencies with data of 

climatology, meteorology, wind, currents and spilled oil (Marta-Almeida et al., 2013). 
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Remote sensing technologies, such as infrared sensors, visible sensors, microwave, laser 

fluorosensors, and ultraviolet sensors can be used as efficient tools to detect surface spills 

(Jha et al., 2008; Ferraro et al., 2009). Among the satellite sensors, Synthetic Aperture 

Radar  (SAR) has been widely applied to provide precious synoptic imagery of the position, 

size, and shape of oil spills due to its considerable wild coverage and imaging capability 

under various circumstances (Singha et al., 2013; Li et al., 2014a). Many efforts have been 

undertaken to obtain statistical information on oil pollution from SAR images (Bern et al., 

1993; Brekke et al., 2005; Cheng et al., 2011; Leifer et al., 2012; Li et al., 2013). 

 

In addition to oil spill monitoring by satellite imagery, oil transport forecast models have 

been developed and used during the past 20 years (Reed et al., 1999). The purpose of oil 

spill modeling is to predict the movement of oil slicks through the data of ocean currents, 

winds, tides and other parameters (Drozdowski et al., 2011). Oil drifting models have 

frequently been utilized to predict oil slick and its fate (Huang, 1983; ASCE, 1996). 

Nowadays, some state-of-the-art oil drift models include OSCAR (Reed et al., 1995a), 

OILMAP (Howlett et al., 1993), GULFSPILL (Al-Rabeh et al., 2000), ADIOS (Lehr et al., 

2002), , MOHID (Carracedo et al., 2006) , OD3D (Hackett et al., 2009), the Seatrack Web 

SMHI model (Ambjörn, 2006), MEDSLIK (Lardner et al., 1998; De Dominicis et al., 2013), 

GNOME (Beegle-Krause, 2001) and OILTRANS (Berry et al., 2012). These models are 

usually driven by a time series of ocean currents, ocean surface wind vectors, the 

temperature in sea depths, etc. In operational practice, the models can be run in near-real 

time for the prediction of oil spill trajectories after the oil spill data derives from SAR 

images or aircraft. The results of simulation could provide crucial, consultative advice to 
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the emergency response authorities to effectively predict or mitigate the negative impacts 

on the marine environment. 

1.2 Challenges in marine oil spill simulation 

 

The offshore oil and gas industry in Newfoundland and Labrador (NL) has maintained 

rapid growth during the past decade due to the energy demand and the new exploration of 

offshore oil fields as well as the technological advances in oil drilling and extraction even 

in deep waters. Growing association between offshore oil and gas development and 

economic growth resulted in the increase of maritime transit and storage activities, which 

poses increasing environmental risks and especially possibility of oil-related accidents. In 

offshore Newfoundland, more than 2700 barrels oil has been released into the ocean since 

1997 due to 340 spill accidents (Li et al., 2014b). Development and implementation of a 

regional marine spill model for oil related accidental response is of great value but a 

significant challenge particularly in harsh environment prevailing in NL (Li et al., 2014a). 

 

Simulation models are useful tools in supporting decision making on oil spill preparedness 

and response. However, The success of their application depends not only on how good 

weathering and trajectory formulations are chosen in the model, and also on how accurate 

and reliable the inputs can be provided by the models or observation (Sebastiao and Soares, 

2006). Due to the errors in the wind, wave and currents data from the atmospheric and 

oceanographic modeling or monitoring which may affect the accuracy of oil spill 

simulation (Edwards et al., 2006; Price et al., 2006), parameter uncertainties should be 
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considered carefully when applying the oil spill models to the real situations. Significant 

differences between the simulated and actual buoy observations have been reported in 

many past spill events (Abascal et al., 2009; Kim et al., 2014). Therefore, parameterization 

and uncertainty and sensitivity analysis are essential to minimize the discrepancy between 

simulated and observed data and improve the accuracy and confidence of the oil spill 

modeling results. 

 

Traditional sensitivity analysis methods adjust one parameter at a time while keeping other 

parameters fixed. The applications have been found in many previous studies conducted 

on various models (Lenhart et al., 2002; Holvoet et al., 2005; Jing and Chen, 2011). 

However, the limitation is the incapability of revealing the interactions between parameters. 

The potentially significant variables might be ignored (Saltelli, 1999; Montgomery, 2008; 

Peeters et al., 2014). As well known in the previous studies, there exists a close 

interdependence of oil spill weathering processes (Reed et al., 1999). Due to the 

incapability of revealing the interactions between parameters, traditional One-factor- at-a-

time (OFAT) method could ignore the potentially significant variables and their interactive 

impacts. Therefore, a method to find the multiple optimal values of the parameters to 

minimize the differences between numerical and actual trajectories is needed. 

 

To address this issue, design of experiment (DOE) aided method provides a 

parameterization option. DOE is a widely used statistical methodology, which can analysis 

the interactions between parameters and the corresponding responses (Czitrom, 1999; Park, 

2007;  Veličković et al., 2013; Sarikaya and Güllü, 2015). DOE was originally developed 
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to determine the relationship between factors affecting a process and guide the setup for 

physical experiments. In recent studies (Wu et al., 2012), DOE was used to conduct 

sensitivity analysis and parameterization for a hydrological model SLURP.  With the 

optimization of the predicted regression equation, a greater goodness-of-fit value compared 

to the one achieved by the automatic calibration function was produced.  

 

Though the effectiveness of parameterization and interaction analysis in the numerical 

models has been proven. DOE method has rarely been used in oil spill simulation models, 

in which uncertainties commonly exist and knowledge concerning interactions between 

each parameter is inadequate.  

 

1.3 Objectives 

 

The goals of this research are to find a better way to simulate oil spills with the rapidly 

changing weather conditions in the harsh environments given the varied capabilities of 

different simulation models, and to minimize the effects of the errors in the input data and 

the uncertainties with the modeling parameters. The key tasks of this research are 1) to 

apply three widely used models for offshore oil spill simulation and evaluate their 

capabilities under harsh environmental conditions; and 2) to develop and test a DOE based 

approach for analyzing uncertainties associated with the input and parameters during 

offshore oil spill simulation. 
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1.4 Structure of the thesis 

 

The aims of this research are to facilitate a better understanding of the oil fate and transport, 

and to improve simulation performance with a DOE aided method for sensitivity analysis, 

parameter calibration and interaction analysis of key factors during spill simulation.    

 

Chapter 2 proves a comprehensive review of the background of marine oil spills and marine 

oil spill simulation.  

 

Chapter 3 presents the testing and comparison of three oil spill models, GNOME/ADIOS2 

and OSCAR through a real case study.  

 

Chapter 4 describes the DOE aided method for oil spill model calibration, sensitivity 

analysis, and interaction analysis along with a case demonstration.  

 

Chapter 5 summarizes the achievements of the research and provides recommendations for 

the future work. 
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CHAPTER 2: LITERATURE REVIEW 
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2.1 Marine Oil spills 

2.1.1 Background 

 

An oil spill is defined as a discrete event in which oil is discharged caused by human errors, 

by accident, or with purposeful activities. Oil is defined as a petroleum-derived substance 

as defined in MARPOL Annex I, excluding liquefied natural or petroleum gas (Etkin, 

2001). A significant amount of oil is spilled into the sea from operational discharge, 

collision, pipeline-breaks, blow-outs and human error (Tri et al., 2013). In the past decades, 

oil spills lead to a growing concern since they can cause long-term damage to the marine, 

coastal and estuarine ecosystem, beaches, coastal wetlands, fisheries and tourism, and 

threaten the health of humankind in the affected communities (Liu and Sheng, 2014). 

 

Historical data shows that almost 60% of the total amount of spilled oil result from the 

large-scale accidents which account for 0.1% of the spilling incidents (Fingas, 2010). From 

1978 to 1995, more than 4100 major oil spills had been recorded (Etkin and Welch, 1997). 

In all the spill events, only 5% of spills released more than 10,000 gallons which represent 

more than 90% of the total spilled amount (Etkin, 2001). Since the mid1980s, more than 

60% of all large-scale (greater than 700 tons) oil spills in the past 40 years have occurred 

with the steadily increased seaborne oil transportation (Berry et al., 2012). Oil tankers and 

collisions are the leading causes of large oil spills which accounting for about two third of 

the total during 1970–2010 (Kim et al., 2014). Until the 1990s when large pipeline and 

facility spills occurred, tanker spills dominated the oil spill picture of 74 % world widely 

(Etkin, 2001). In the last two decades, close to half of the oil pollution in the oceans are 
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fuels and 29% are crude oil (Brekke and Solberg, 2005). Although the number of large oil 

spills has been decreasing, it is still a major problem for marine environmental conservation 

and sustainability.  

 

Although the sources of oil input into the sea are diverse, OCEAN National Research 

Council (NRC) of Canada categorized them into four groups: natural seeps, petroleum 

extraction, petroleum transportation, and petroleum consumption (Board and Board, 2003).  

And based on some studies, an estimate of more than 1,300,000 metric tons (380,000,000 

gallons) of oil entered the sea annually (Kvenvolden and Cooper, 2003; Council, 2003). 

 

Large-scale oil spills happened in the history worldwide, and some of them had resulted in 

catastrophic impacts.  

 

In 1989, Exxon Valdez tanker hit Bligh Reef in Prince William Sound off the Alaskan 

coast, dumping 11 million gallons of crude into the ocean. This incident was the largest 

tanker oil spill in the U.S. history at that time. Oil washed onto 1,300 miles of coastline, 

resulting in carcasses of more than 250,000 birds and 2,800 sea otters (Piatt et al., 1990). 

 

Large-scale oil spill continued to occur, like the Torrey Canyon oil spill (36 million gallons, 

1967 in UK), the Sea Star oil spill (35.3 million gallons, 1972 in Gulf of Oman), the Ekofisk 

blowout (1977 in Norway), Amoco Cadiz oil spill (69 million gallons, 1978 in France), 

Atlantic Empress oil spill (90 million gallons, 1979 in Trinidad and Tobago), Castillo de 
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Bellver oil spill (79 million gallons, 1983 in South Africa), and Gulf War oil spill (5-10 

million barrels, 1991 in Arabian Gulf). 

 

Particularly in 2010, the Deepwater Horizon oil spill (i.e., also known as the BP oil spill) 

(Bly, 2011) that occurred in the Gulf of Mexico. About 4.9 million barrels (approximately 

486,000 tons) of crude oil (Ramseur, 2010) was released at a water depth of 1520 m 

(McNutt et al., 2011) resulting in impacts that can last for several decades. The spill is 

officially the largest accidental spill in America. It began when an oil well a mile below 

the surface of the Gulf blew out, causing an explosion on BP’s Deepwater Horizon rig. Oil 

flowed possibly at a rate as high as 2.5 million gallons a day until the well was capped. An 

estimated pollution of 9900 km2 of water surface (Wei et al., 2015) and 572 miles of Gulf 

shoreline was oiled. Totally, 1.82 million gallons of dispersant was used during this 

accident (Ruiz, 2013, Sumaila et al., 2012). The injection of chemical dispersants was 

successful in reducing the amount of oil that reached the surface, but it resulted in a large 

volume of oil drifting at depth (Beegle-Krause et al., 2006). 

2.1.2 Fate and transport of spilled oil 

 

Fate and transport of spilled oil are a series of processes which take place after an oil spill, 

including spreading, evaporation, emulsification, dispersion, advection, photo-oxidation, 

biodegradation, dissolution, and sedimentation (Reed et al., 1999; Spaulding, 1988; Yang 

et al., 2015). To understand and quantify the physical and chemical processes during oil 

spill, researchers have conducted many studies (Fay, 1971; Lehr et al., 1984; Mackay et al., 
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1980; Stiver and Mackay, 1984; Delvigne, 1989; Berry et al., 2012; Goeury et al., 2014). 

Both experimental and modeling studies proved the oceanic and atmospheric physical 

variables and chemical and physical processes could affect the oil fate and transport 

significantly. (Reed et al., 1999; Hackett et al., 2006; Heydariha and Ghiassi, 2010; Liu et 

al., 2011; Marta-Almeida et al., 2013; Goeury et al., 2014). 

 

Oil spreading is the process of the spilled volume of oil, under the influence of viscous, 

gravitational, buoyancy and, surface tension forces, spreading into a thin slick to cover a 

large area (Drozdowski et al., 2011). The process of oil spreading in still water is fairly 

well understood (Økland Gjøsteen et al., 2003). Several models of spreading have been 

developed over the last decades (Blokker, 1964; Fay, 1969; Hoult, 1972; Fannelop and 

Waldman, 1972; Di Pietro and Cox, 1979; Mackay et al., 1980; Aamo et al., 1997; AI-

Rabeh et al., 2000; Beegle et al., 2001; Berry et al., 2012; De Dominicis et al., 2013). There 

are two dimensions to spreading: thickness of the oil while it spreads and the extension of 

the oil contaminated area (Venkatesh et al., 1990). Spreading of the oil slick is an important 

process in the early stages of oil slick transformation and also affected by the weathering 

processes. A general equation of the rate of change of area of spreading oil is given as eq. 

(2-1), which is developed by Mackey et al. (1980). 

𝑑𝐴

𝑑𝑡1
= 𝐾𝐴1/3{𝑉𝑚/𝐴]4/3                                                                                             (2-1) 

Where A is the area of slick, Vm is the volume of spilled oil, K is a constant and t1 is the 

time. 
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Advection is the physical process involving the drifting of the surface oil slick and the 

subsurface oil which governing the location of oil (Økland Gjøsteen et al., 2003). The 

advection of surface oil is affected by surface current and wind drag on oil, considering 

that most oils are initially buoyant and float on the sea surface (Mackay et al., 1980). The 

advection of suspended oil is the movement of oil droplets in the water column affected by 

the water current. Advection velocity, V, can be calculated by the mean wind speed and 

currents, and local turbulent diffusion (Davidson et al., 2006), as shown in eq. (2-2). 

𝑉 = 𝑉𝑚 + 𝑉𝑡                                                                                                                 (2-2) 

Where Vmean is the mean velocity, and Vt is the local turbulent diffusion. 

 

Evaporation is one of the most important characteristic changes in oil spilling. More than 

three fourth of light crudes and 40% of medium crudes can evaporate in several days after 

a spill. And only 10% of heavy or residual oils of its initial mass will be lost in the first few 

days due to evaporation (Aamo et al., 1997). Because of its significant impact on the spill 

mass balance, many spill models incorporate evaporation as a critical component. The rate 

of evaporation will differ drastically at where the spill accidents occur with the various 

sunshine periods and temperatures in a year. The remained oil at the surface will be less 

with surface slick exposing to more sunlight (Fingas et al., 2006). The volume fraction of 

evaporated oil is given in eq. (2-3) (Stiver and Mackey, 1984): 

𝐹𝑣 = ln [1 + 𝐵 (
𝑇𝐺

𝑇
) θ exp (A −

B𝑇0

T
)] (

𝑇

𝐵𝑇𝐺
)                                                                (2-3) 

θ =
𝑘𝑎𝑡

𝑉0
                                                                                                                         (2-4) 

Where A and B are constants from the experimental data. T0 is the initial boiling point. TG 

is the slope of the boiling temperature curve. T is the environmental temperature. θ is the 
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evaporative exposure, where k is the mass transfer coefficient, V0 is the initial volume of 

the spilled oil, a is the spilled area, t is the spilled time. 

 

Dissolution is the process that separates molecules in the oil components going into the 

water phase. Stable oil can be dispersed and come into being smaller oil droplets and/or 

micelles (Berry et al., 2012). Usually, less than one percent of spilled oil on the water 

surface will be dissolved. Some numerical models do not consider dissolution because of 

the small effect on the mass balance. However, the dissolution can be of great importance 

considering the most soluble oil components are usually the most toxic, which could lead 

to serious effects on biological systems even with low concentrations. The rate of 

dissolution was calculated by Cohen et al. (1980) with eq. (2-5). 

𝑑𝐷𝑖𝑠𝑠

𝑑𝑡
= 𝐾1𝑓𝑠𝐴𝑠𝑆 = 𝑆0𝑒𝑎𝑡                                                                                               (2-5) 

Where K1 is the dissolution mass transfer coefficient, fs is the surface fraction covered by 

oil, As is the oil slick area, S is the solubility in water and S0 is the solubility of fresh oil, a 

is a constant and t is the time after spill. 

 

Dispersion is defined as the breakup of the oil slick on the surface into oil droplets, then 

spread and diffusion in the water column. The droplet sizes, droplet buoyancy, and the 

turbulence in the water are of particular interest. With the exposure to wind and waves, oil 

on the surface could disperse into oil droplets. Big size of droplets may disperse into the 

water column. Smaller droplets are unstable and could resurface to the water surface (Stiver 

and Mackay, 1984; Delvigne, 1989). The dispersion model proposed by Delvigne and 
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Sweeney (1988) has been used in the ADIOS, OSCAR and OILMAP models. It is shown 

in eq. (2-6). 

𝑄 = 𝐶0𝐷𝑒0.57𝑑0.7∆𝑑𝑑0                                                                                                  (2-6) 

Where Q is the entrained mass of oil droplets, C0 is a constant, De is the dissipating breaking 

wave energy per unit surface area, d0 is the droplet size and ∆d is the range of droplet size. 
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Figure 1 Diagram of basic oil in water processes related to spill trajectory modelling (after 

Drozdowski et al., 2011). 
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An oil emulsion is a dispersion of water droplets in oil. Based on water content and 

rheological measurements, oil emulsions are categorized into four distinct water-in-oil 

types: stable, meso-stable, entrained and unstable (Sunil et al., 2005).  Because each type 

exhibits unique physical properties, when water-in-oil emulsions form, the physical 

properties of oil spills change significantly (Fingas, 2009). Mackey et al. (1980) developed 

eq. (2-7) to model the process of emulsification. This equation has been used in ADIOS 

and SINTEF. 

𝑑𝑌

𝑑𝑡
= 𝐾𝑈2(1 −

𝑌

𝑌𝑚𝑎𝑥
)                                                                                                      (2-7) 

Where K is a constant, Y is the fraction of water in oil and Ymax is the final fraction. 

 

Sedimentation is the adhesion of oil to sediments and never back into water column (Anon, 

2003). Some studies has been concentrated on the interactions between clay and oil 

stranded on the coastline. But it was found that oil attached to fine particles (clay) is more 

available for biodegradation (Anon, 2003). The rate of oil loss by sedimentation process is 

shown in eq. (2-8). 

𝑑𝐴𝑑

𝑑𝑡
= 1.4 ∗ 10−12𝑆𝐿(1 − 0.023𝑆𝑎)                                                                               (2-8) 

where SL is the sediment load, Sa is the salinity (Korotenko et al., 2000). 

 

Beside evaporation and dissolution, the dispersion is one of the most critical processes 

removing oil from the water surface. 

 



 18 

2.1.3 Marine oil spills in Newfoundland and Labrador 

 

In the offshore NL, the three active offshore oil fields, Hibernia, Terra Nova, and White 

Rose, produce about 0.27 million barrels of crude oil per day or 10% of Canada’s total 

crude oil production (C-NLOPB, 2012). All three of these production operations locate at 

the Grand Banks. Hibernia produced more than 86 million barrels of oil in 2010, as the 

world’s largest offshore oil platform. It is located 170 nautical miles east of St. John’s, 

Newfoundland. Hibernia became operational in the 1997 and had produced 61% of all oil 

on the Grand Banks (Turner et al., 2010). The Terra Nova field is located 21 nautical miles 

southeast of Hibernia and operated from 2002. White Rose oil field is located 30 miles 

away from the Hibernia and operated from 2005. Until 2009, more than one billion barrels 

of oil has been produced from all three fields (Turner et al., 2010).  

 

Oil spills in the NL offshore happened more often than environmental assessments 

predicted. In the typical harsh environment of offshore Newfoundland, 340 spills with 

more than 2,700 barrels of oil have been spilled into the ocean since 1997 (Li et al., 2014b). 

About 1,048 accidents were recorded from 1980 to 2005 in the South Coast of 

Newfoundland, Canada. The oil industry in Newfoundland maintained rapid growth due to 

the exploration of offshore oil fields, which increased environmental risks and brought a 

higher possibility of oil-related accidents.  

 

A tragedy happened on the offshore drilling platforms of the Grand Banks region in 1982. 

84 people were killed on a drill platform which was built for unrestricted open ocean 
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operations and designed to withstand 100-knot winds and 110-foot waves. In the harsh 

environment of the Grand Banks region, accidents could cause a significant oil spill and 

possibly a loss of life (McGrath, 2014). 

 

In November 21st, 2004, two mechanical failures in produced water separation process 

caused more than 1,000 barrels of oil released into ocean. This accident happened at Terra 

Nova floating production, storage and offloading vessel (FPSO) resulted in more than 

10,000 sea birds killing directly by the 793 km2 oil slick coverage (Wilhelm et al., 2007). 

Based on the record of Petrocanada, two vessels were on the site and ready to deploy booms 

and skimmers on 22th. But cleanup operation was not started until 23rd because of terrible 

weather condition. (Martin, 2004). Large-scale oil spill has not been happened in offshore 

NL, but the booming oil industry could raise the risk of accident. Harsh environment in the 

NL might lead to a catastrophic damage to the marine ecosystem. The case study of Terra 

Nova can be helpful in prevention and response planning of oil spills in this area. 

 

This region also happens to be one of the most dangerous shipping areas in the world 

(McGrath, 2014). The cold Labrador Current, originating off of the west coast of Greenland 

flowing north then back south, interacts with the warm Gulf Stream which flows north 

along the east shore of the United States, creating vast regions of fog with limited visibility. 

This limited visibility is a significant danger to shipping and a limitation to visual aerial 

reconnaissance in the event of an emergency at sea. With the opening of the Arctic Ocean 

and the increase in the shipping and offshore drilling in this area, a comprehensive plan 

must be developed before an internationally significant oil spill occurs. 
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2.2 Marine oil spill simulation 

2.2.1 Modeling inputs and preparation 

 

No matter where the spill occurs, we mainly use the spill trajectory models for the 

prediction of where the oil is most likely to go, based on information about the ocean 

currents, winds, and other environmental variables.  

 

Ocean currents can be varied in time and space. Thus, information at one location or one 

instant in time is insufficient for tracking an oil spill in an extended period of time.  For the 

accuracy of oil trajectory models, numerical ocean models that resolve the spatial and 

temporal variability of the ocean currents that have been validated against observations are 

required. Atmospheric conditions such as the wind, temperature, and precipitation, are 

necessary driving forces for ocean currents and oil behavior. The output from atmospheric 

models can provide wind data of nowcasts, forecasts for two to ten days or hindcasts that 

go back a few decades (Large and Yeager, 2004). 

 

Unless the spill occurs in an area of stable mean or tidal currents, wind-induced drift is 

often the most important factor determining surface oil slick trajectories over timescales of 

a few days (Spaulding, 1988). Systematic measurements of drift currents below and of 

airflows above an air-water interface have been made under various wind conditions. The 

current near but not immediately below the water surface is found to follow a Kármán-

Prandtl (logarithmic) velocity distribution. The current immediately below the water 
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surface varies linearly with depth. The transitions of the current boundary layer to various 

regimes appear to lag behind, or to occur a t a higher wind velocity than, those of the 

airflow. The fraction of the wind stress supported by the wave drag seems to vary with the 

wind and wave conditions: a large fraction is obtained at low wind velocities with shorter 

waves and a small fraction is obtained a t high wind velocities with longer waves. At the 

air-water interface, the wind-induced current is found to be proportional to the friction 

velocity of the wind. The Stokes mass transport, related to wave characteristics, is only a 

small component of the surface drift in laboratory tanks. However, in terms of the fraction 

of the wind velocity, the mass transport increases, while the wind drift decreases, as the 

fetch increases. The ratio between the total surface drift and the wind velocity decreases 

gradually as the fetch increases and approaches a constant value of about 3·5% at very long 

fetches. The currents are induced by the combination of wind stress, pressure gradients, 

density gradients, tidal forcing and wave induced (Stokes) drift. 

  

Based on the past studies, oil at surface layer moves at a speed which is 2.5 to 4.4% of the 

wind speed (Spaulding, 1988; Reed et al., 1999)  and at an angle of 0 to 25 degrees 

clockwise relative to the wind direction (Samuels et al., 1982; Spaulding, 1988). As a result 

of the underestimation of the surface current speeds, 1-3% of the wind speed is added to 

the trajectory model solution (Wang et al., 2007). The Hybrid Coordinate Ocean Model 

(HYCOM), is a generalized hybrid coordinate ocean model developed by the HYCOM 

Consortium, and have been used for supporting oil spill modeling. (Halliwell, 2004; 

Chassignet et al., 2006). 
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Remote sensing is a vulnerable tool for the observation of the distribution and fate of oil 

slicks on the ocean’s surface (Kvenvolden and Cooper, 2003; Hu et al., 2009), and also 

plays a major role in oil spill trajectory monitoring. Remote sensing using airborne and 

space borne sensors is the most efficient technique for oil slick monitoring, oil slick 

movement forecasting, detection, identification and classification of oil covered regions as 

well as global scale (Nirchio et al., 2005; Migliaccio et al., 2007). Recently, a large number 

of airborne and space borne imagery have been acquired and analyzed for the 2007 Hebei 

Spirit oil spill in the Yellow Sea (Yim et al., 2012) and the aforementioned marine oil spill 

modeling and response, such as 2011 Deepwater Horizon oil spill (Leifer et al., 2012; 

Dietrich et al., 2012). 

 

Among the satellite sensors, Synthetic Aperture Radar (SAR) can provide images during 

day and night and regardless of any weather conditions has been widely used to provide 

information about the location and size of oil spills (Migliaccio et al., 2012; Li et al., 2013). 

However, SAR images work best in limited wind regimes between 2 and 14 m/s (Brekke 

and Solberg, 2005), with best results for winds around 5–6 m/s. Low wind speeds below 

2-3 m/s could produce false alarms with a high probability of oil slick look-alikes due to 

local wind variability, and at higher wind speeds, light oil is mixed and dispersed. Also, oil 

spill signatures appear distinguishable in SAR images only within a certain range of wind 

speeds between 3 and 10 m/s. Due to weathering and spreading processes, the thinner oil 

will be invisible (Brekke and Solberg, 2005; Solberg, 2012). At higher wind speeds only 

thick oil will be visible. The brightness of the image reflects of the microwave 

backscattering properties of the surface. Today, Two leading providers of satellite SAR 
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images for oil spill monitoring are RADARSAT-1 and ENVISAT (Brekke and Solberg, 

2005; Migliaccio et al., 2012). RADARSAT-1 is Canada's first commercial Earth 

observation satellite. It utilized synthetic aperture radar (SAR) to obtain images of the 

Earth's surface to manage natural resources and monitor global climate change. As of 

March 2013, the satellite was declared non-operational and is no longer collecting data. 

Envisat ("Environmental Satellite") is a large inactive Earth-observing satellite which is 

still in orbit. Operated by the European Space Agency (ESA), it was the world's largest 

civilian Earth observation satellite. 

 

The lifetime of an oil spill will depend on the type and amount of oil spilled, and weather 

conditions like sea temperature and wind and current conditions which affect the processes 

of evaporation, emulsification, and dispersion (Kotova and Espedal, 1998). Lighter 

components of oil will evaporate, and the rate of evaporation depends on oil type, thickness, 

wind speed, and sea temperature. Dispersion is a major factor in deciding the lifetime of 

an oil spill, and it is strongly dependent on the sea state. When monitoring an area on a 

daily basis, small spills of lighter oils are often not observed for several days, but larger oil 

spills are more persistent. During the Deepwater Horizon accident in the Gulf of Mexico, 

the oil was visible on satellite images for 70 days (Graber et al., 2006). 

 

These types of observations could provide the input data for estimating the partitioning of 

the oil. In operational use, after the oil spill information is obtained from SAR images, 

trajectory models such as GNOME can be run in near-real time for the prediction of oil 

https://en.wikipedia.org/wiki/Canada
https://en.wikipedia.org/wiki/Earth_observation_satellite
https://en.wikipedia.org/wiki/Earth_observation_satellite
https://en.wikipedia.org/wiki/Synthetic_aperture_radar
https://en.wikipedia.org/wiki/Earth_observation_satellite
https://en.wikipedia.org/wiki/European_Space_Agency
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spill trajectories. In this way, the simulation results can be used by the authorities to 

respond to decrease the pollution’s impact on the marine environment within a short time. 

 

2.2.2 Marine oil spill models 

 

In the last three decades, the transport and fate processes of oil spills have been studied 

based on the trajectory method and mass balance approach, and various oil spill models 

have been developed (Mackay et al., 1980; Huang, 1983). Some detailed overview of oil 

spill models is given by Reed et al. (1999), Hackett et al. (2006) and Li et al. (2016). In 

general, commonly used operational oil spill models include GNOME, MOTHY, OSCAR, 

ADIOS, OILMAP and OSIS. 

 

Six ocean models were used to predict oil spill trajectories in the Deepwater Horizon oil 

spill (Liu et al., 2011). Satellite-based observations were applied to reduce the errors in the 

trajectories simulation. Several oil spill models have been developed based on transport 

and weathering processes (Mackay et al., 1980; Huang, 1983). The Oil Weathering Model, 

OWM (Daling and StrØm, 1999) and the Oil Spill Contingency and Response model 

system, OSCAR (Aamo et al., 1997b) are used in simulation and prediction of oil spills, 

which have been tested extensively in laboratory and experimental field spills (Daling and 

StrØm, 1999; Daling et al., 2003). 
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Bergueiro López et al. (2007) used the EUROSPILL, OILMAP, GNOME and ADIOS 

models in simulating an oil spill at the Casablanca Platform (Tarragona, Spain) under a 

variety of environmental conditions (Bergueiro et al., 2007). OILBRICE oil spill spreading 

and drift model was developed by Environment Canada in the 1980’s (El-Tahan and 

Warbanski, 1987) for the treatment of oil spilled in ice. Another spill model, Coastal Zone 

Oil Spill Model (COZOIL), was developed for near-shore interactions for use in Alaskan 

waters (Howlett and Jayko, 1998).  

 

In general, there are two methods for modeling oil spills, the Eulerian, and the Lagrangian 

method. In classical field theory the Lagrangian specification of the field is a way of 

looking at fluid motion where the observer follows an individual fluid parcelas it moves 

through space and time. Plotting the position of an individual parcel through time gives 

the pathline of the parcel. This can be visualized as sitting in a boat and drifting down a 

river. The Eulerian specification of the flow field is a way of looking at fluid motion that 

focuses on specific locations in the space through which the fluid flows as time passes. This 

can be visualized by sitting on the bank of a river and watching the water pass the fixed 

location.The Lagrangian and Eulerian specifications of the flow field are sometimes 

loosely denoted as the Lagrangian and Eulerian frame of reference. However, in general 

both the Lagrangian and Eulerian specification of the flow field can be applied in any 

observer's frame of reference, and in any coordinate system used within the chosen frame 

of reference. The Eulerian approach treats the particle phase as a continuum while the 

Lagrangian method considers particles as a discrete phase and tracks the pathway of each 

particle (Maslo et al., 2014). 

https://en.wikipedia.org/wiki/Classical_field_theory
https://en.wikipedia.org/wiki/Fluid_parcel
https://en.wikipedia.org/wiki/Pathline
https://en.wikipedia.org/wiki/Frame_of_reference
https://en.wikipedia.org/wiki/Coordinate_system
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To avoid numerical diffusion which is often caused by the significant discrepancies in the 

Eulerian models, the majority of current oil spill models use the Lagrangian approach. 

Beside models based on the particle-tracking method (Coppini et al., 2011; De Dominicis 

et al., 2013), the smoothed particle hydrodynamics method has also been used (Violeau et 

al., 2007). However, with the increasing computer power and the implementation of the 

third order numerical schemes the use of Eulerian models is increasing again (Tkalich, 

2006; Heydariha and Ghiassi, 2010). 

 

From two-dimensional trajectory-type model to three-dimensional models (Cucco et al., 

2012) including transport and weathering processes (Chao et al., 2003), accurate forecast 

of oil transport trajectories have resulted in the significant advancement during the last two 

decades (ASCE, 1996; Hackett et al. 2006; Li et al., 2016).  

 

The Lagrangian models (Lonin, 1999; Zheng et al., 2003) represent the oil slick by a large 

set of hydrocarbon packets. Each packet is advected by the action of current and wind. 

However, to guarantee the calculation efficiency, the number of particles in these models 

must be restricted to limit the computational time. In Eulerian oil spill models (Tkalich et 

al., 2003; Papadimitrakis et al., 2006), the mass and momentum equations are solved for 

the oil slick. The main drawback of the Eulerian formulation is the problem of numerical 

dispersion, especially for small pollutant sources. Numerical dispersion is a difficulty with 

computer simulations of continua (such as fluids) wherein the simulated medium exhibits 

a higher dispersivity than the true medium. It occurs whenever the dispersion relation for 

https://en.wikipedia.org/wiki/Dispersion_relation
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the finite difference approximation is nonlinear. Consequently, recently published 

numerical models couple Lagrangian and Eulerian approaches. Because hydrodynamics is 

already in a Eulerian framework, including advection and diffusion of tracers, it appeared 

very straightforward to treat dissolved oil in a Eulerian way, though numerical diffusion 

may seem as a drawback in the long run (Goeury et al., 2014). 

 

Three methods have been developed to simulate the movement of oil in an ocean model: 

particle-tracking, tracers, and spillets. For the particle-tracking method, oil is 

parameterized as a finite number of particles, each assigned a primary location and mass. 

Advection is provided for each particle independently from the ocean (or ice) velocity field. 

Random processes can be added (as random kicks) to simulate the dispersion (spreading, 

diffusion) of the oil, independent of ocean current. The distribution of particles represents 

the whole oil spill in a statistical fashion.  The higher the resolution of the model and the 

longer the simulation, the more particles are required to achieve reasonable statistics over 

the resolved current structure and to account for the spreading of the particles over time. 

For the tracer method, the area where the oil spill to be tracked is represented by a fine-

resolution grid. The spill occupies the cells that best represent its physical extent. At each 

time step, the oil field is advected from cell to cell using the local currents, in combination 

with imposed diffusion/spreading such that mass is conserved.  Also, each cell sees its 

environment and interacts with the atmosphere, ocean accordingly. As a result, the 

computation takes longer than the other methods. Another disadvantage is the relative 

complexity of the formulation compared to the other methods. The spillet method is almost 

identical to the particle approach with the exception that the spillet has more degrees of 
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freedom than a particle. In essence, the total spill is represented by a some smaller spills, 

each with the ability to spread according to a spreading theory such as Fay’s equation(Fay, 

1969). The spillet model can be regarded as a compromise between the particle and tracer 

methods (Økland Gjøsteen et al., 2003). 

 

GNOME (Beegle-Krause, 2001; Beegle-Krause and O’Connor, 2005) is an oil spill 

trajectory model developed by the Emergency Response Division of National oceanic and 

Atmospheric Administration (NOAA)’s Office of Response and Restoration. GNOME 

requires, in general, fewer parameters than the majority of other oil spill models and can 

be applied to any region in the world with few inputs, in opposition to most of the available 

oil spill models. Wind and currents data from the implemented operational ocean modeling 

system can be easily converted to GNOME inputs (Marta-Almeida et al., 2013). The output 

from the model consists of graphics, movies, and data files for post-processing in a GIS 

system. GNOME has been validated against observations for many oil spill events, for 

example in the Gulf of Mexico (Klemas, 2010; Cheng et al., 2011), in the Persian Gulf 

(Farzingohar et al., 2011), in the Rajaee Port of Bandar Abbas, Iran (Farzingohar et al., 

2011), in the Black Sea (Marta-Almeida et al., 2013) and Bosphorus Strait (Basar et al., 

2006). 

 

The “best estimate” solution shows the model result with all of the input data assumed to 

be correct.  However, models, observations, and forecasts are rarely perfect.  Consequently, 

we have incorporated in GNOME our understanding of the uncertainties (such as variations 

in the wind or currents) that can occur.  This second solution allows the model to predict 
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other possible trajectories that are less likely to occur, but which may have higher 

associated risks.  We call the trajectory that incorporates these uncertainties the “minimum 

regret” solution because it gives you information about areas that could be impacted if, for 

example, the wind blows from a somewhat different direction than you have specified, or 

if the currents in the area flow somewhat faster or slower than expected. In some cases, the 

areas within the minimum regret solutions might be especially valuable or sensitive to 

oiling. 

 

Diagnostic Mode using realistic nowcasts and forecasts from oceanic and atmospheric 

numerical models. GNOME supports several types of pollutants and simple weathering 

algorithms. The oil spills are modeled as Lagrangian elements (splots) advected with the 

surface Eulerian current velocity field (Csanady, 2012). It can accurately predict both best 

guess trajectories and uncertainties(Bergueiro et al., 2007). Uncertainty on the input 

parameters and forcing fields can also be taken into account resulting in the Minimum 

Regret trajectories uncertainty bound.  

 

ADIOS is NOAA's oil weathering model.  A library of approximately one thousand oils is 

integrated into the ADIOS to help estimate the amount of time that spilled oil will remain 

in the marine environment, and to develop cleanup strategies. ADIOS calculations combine 

real-time environmental data, such as wind speed, with chemical and physical property 

information in its oil library. The program provides an output on oil weathering parameters 

such as evaporation, dispersion into the water column, and changes in oil density and 

viscosity. 
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OSCAR is a commercial model developed at SINTEF (Reed et al., 1995b; Aamo et al., 

1997a). The oil spill contingency and response (OSCAR) model, which was specifically 

designed to support oil spill contingency and  response  decision-making, was  used to 

simulate the behavior and fate of the hypothetical oil spill (Niu et al., 2014).  OSCAR is a 

3-dimensional particle-based model that simulates the evolution of oil on the water surface, 

along shorelines, and dispersed and dissolved oil concentrations in the water column. 

OSCAR includes a 3D advection model, data-based oil weathering, a chemical fates model, 

an oil spill combat model and a biological exposure model for fish and other species. The 

oil is modelled as particles. OSCAR addresses the following surface processes: surface 

spreading and advection, entrainment in the water column, emulsification (mousse 

formation), and volatilisation (dissolution). In the water column, horizontal and vertical 

advection and dispersion of entrained and dissolved hydrocarbons are simulated by random 

walk procedures. The algorithms used to simulate these processes controlling physical fates 

of substances are described by Aamo et. al. (1993) and Reed et al. (1994a, b; 1995a, b). 

OSCAR has been validated in considerable detail (Reed et al., 1996; Reed et al., 2000). 

 

2.3 Uncertainty analysis 

 

Uncertainties should be considered carefully when the numerical model applied to the real 

situations. Calibration and optimization, uncertainty and sensitivity analysis, are essential 

to be conducted to minimize the discrepancy between simulation and observation. 
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Parameter uncertainties have been extensively studied (Galt, 1997; Sebastiao and Soares, 

2006; Abascal et al., 2009; Price et al., 2003; Xu et al., 2013) , particularly integrated with 

sensitivity analysis and model calibrations (Boufadel et al., 2014; Kim et al., 2014). The 

University of Amsterdam developed a model, Complex Evolution Metropolis (SCEM-UA), 

to obtain the optimal coefficients using the global optimization algorithm Shuffled (Vrugt 

et al., 2003). And a modified version has been developed by Duan et al. (1992). This 

method can find both the most likely parameter set in the feasible space and underlying 

posterior probability distribution (Abascal et al., 2009). 

 

Kim et al. (2014) tried to use a varied wind drift factor instead of a fixed wind drift factor 

to improve the performance in the transport of oil slicks. The result suggested that, to some 

extent, wind drift factor was characterized with strong tidal currents.  

 

One-factor-at-a-time (OFAT) is the most commonly used sensitivity analysis methods. 

This method simply adjusts one parameter at a time while keeping other parameters fixed. 

Its applications have been found in many previous studies conducted on various models 

(Holvoet et al., 2005; Lenhart et al., 2002; Jing and Chen, 2011). However, limitation of 

the OFAT is the incapability of revealing the interactions between parameters. The 

potentially significant variables might be ignored (Saltelli, 1999; Montgomery, 2008; 

Peeters et al., 2014).  As well known in the previous studies, there exists a close 

interdependence of oil spill weathering processes (Reed et al., 1999). Therefore, a 

calibration method to find the multiple optimal values of the parameters to minimize the 

differences between numerical and actual trajectories is needed. 
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To address this issue, the design of experiment (DOE) provides a parameterization option. 

DOE is a widely used statistical methodology, which can analyze the interactions between 

parameters and the corresponding responses (Czitrom, 1999; Park, 2007; Veličković et al., 

2013; Sarikaya and Güllü, 2015).  

 

DOE was originally developed to determine the relationship between factors affecting a 

process and guide the setup for physical experiments. In recent studies (Wu et al., 2012), 

DOE was used to conduct sensitivity analysis and parameterization for a hydrological 

model SLURP.  With the optimization of the predicted regression equation, a greater 

goodness-of-fit value compared to the one achieved by the automatic calibration function 

was produced.  

 

Though the effectiveness of parameterization and interaction analysis in the numerical 

models has been proven. DOE method has rare application in oil spill modeling, in which 

uncertainties commonly exist, and knowledge concerning interactions between each 

parameter is inadequate.  
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2.4 Summary 

 

In the past decades, oil spills led to a growing concern about the increasing contamination 

of water bodies and shoreline areas. With the rapid growth of the oil industry, the 

exploration of offshore oil fields, and maritime transit and storage activities, environmental 

risks and possibility of oil-related accidents are increasing. Many large-scale oil spills in 

the history resulted in the catastrophic impacts. To overcome this problem, the 

establishment of oil spill simulation and response systems is in great demand.  

 

To fulfill the simulation of oil spill, researchers have conducted many studies to understand 

and qualify the physical and chemical processes during oil spills. Both experimental and 

modeling studies proved the oceanic and atmospheric physical variables and chemical and 

physical processes could affect the oil fate and transport significantly. The fate and 

transport processes of oil spills have been studied based on the trajectory method and mass 

balance approach, and various oil spill models have been developed.  

 

Proper weathering and spreading formulations, and accurate inputs data, are two significant 

factors to make sure the success application of oil spill models in real cases.  Uncertainties 

should be considered carefully with calibration and optimization, uncertainty and 

sensitivity analysis, to minimize the discrepancy between simulation and observation. 
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CHAPTER 3: SIMULATION OF MARINE OIL SPILLS AND 

MODELS COMPARISON BY A CASE STUDY IN THE 

NEWFOUNDLAND OFFSHORE AREA 
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3.1 Introduction 

 

 

Offshore oil spill is one of the major marine pollutions and can induce both social and 

environmental problems (Alpers and Espedal, 2004). Marine and coastal and estuarine 

environments can be negatively affected and significant damage can be produced to the 

associated marine ecosystem, coastal wetlands and nearby communities (Liu and Sheng, 

2014).  

Large-scale oil spills happened world-widely in the past decades. Such as Exxon Valdez 

spill in 1989 (Loughlin, 2013), Gulf of Mexico spill in 2010 (Azwell et al., 2011; McNutt 

et al., 2011; Wei et al., 2015). Historical data shows that almost 60% of the total amount 

of spilled oil was contributed by the large-scale accidents which account for only 0.1% of 

the total spilling incidents  (Fingas, 2010). Exceed 1,300,000 metric tons of petroleum was 

released into the sea per year (Kvenvolden and Cooper, 2003; Council, 2003). Precise 

detection, tracking and prediction of spilled oil would favor aquatic life, seabirds, and 

resource monitoring and management, as well as the protection and preservation of the 

marine environment.  

To deal with the oil spill disasters, accurate real time observations and monitoring are key 

considerations to the marine security agencies (Marta-Almeida et al., 2013). Synthetic 

aperture radar (SAR) is a form of radar that is used to create 2- or 3-dimensional images of 

objects, such as landscapes. SAR uses the motion of the radar antenna over a target region 

to provide finer spatial resolution than conventional beam-scanning radars. Remote sensing 

technologies, especially SAR are commonly used as efficient tool to detect the surface 

https://en.wikipedia.org/wiki/Radar
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spills to provide precious synoptic imagery of the position, size and shape of oil spills 

because of its considerable wild coverage and imaging capability under various 

circumstances (Jha et al., 2008; Ferraro et al., 2009; Cheng et al., 2011; Singha et al., 2013; 

Li et al., 2014a). 

In addition to oil spill monitoring by satellite imagery, the demand of more accurate oil 

transport forecast models have been increased. Oil spill models are usually driven by a 

time series of ocean currents, ocean surface wind vectors, the temperature in sea depths, 

etc. Some of the most sophisticated Lagrangian operational models are OSCAR (Reed et 

al., 1995a), OILMAP (Howlett et al., 1993), GULFSPILL (Al-Rabeh et al., 2000), ADIOS 

(Lehr et al., 2002), , MOHID (Carracedo et al., 2006) , OD3D (Hackett et al., 2009), the 

Seatrack Web SMHI model (Ambjörn, 2006), MEDSLIK (De Dominicis et al., 2013, 

Lardner et al., 1998), GNOME (Beegle-Krause, 2001) and OILTRANS (Berry et al., 2012). 

The purpose of oil spill modeling is to predict and simulate the fate and transport of spilled 

oil through the input of ocean currents, winds, tides and other parameters (Drozdowski et 

al., 2011).  

The oil industry in Newfoundland maintained rapid growth during the past decade with the 

exploration of offshore oil fields. Environmental risks increased and brought higher 

possibility of oil-related accidents. Since 1997, 340 spill accidents have been happened in 

the offshore Newfoundland, which have been impacted the marine ecosystem at a large 

scale (Li et al., 2014b). During the Terra Nova oil spill happened in 2004, which is the 

largest offshore oil spill in NL, more than 10,000 seabirds were killed directly by the 

covered oil slicks within 793 km2 (Wilhelm, 2006, 2007). To overcome such disasters, the 



 37 

establishment of a response system based on oil spill simulation and prediction is in high 

demand.  

This chapter is organized in the following way:  Section 2 introduced the target incident 

and the harsh environment in the region of the case study. Oil spill modeling approaches 

were described in Section 3. The acquired data for the model inputs was introduced in 

Section4. The model validation was discussed in Section 5. Section 6 compared the oil spill 

simulation results from two models with detailed discussion and conclusions. Summary 

was given in Section 7. 

3.2 Terra Nova oil spill 

Newfoundland and Labrador (NL) produces about 0.27 million barrels of oil per day, 

accounting for 10% of Canada’s total crude oil (Li et al., 2014b). The study area, Grand 

Bank, is located at 350 kilometres southeast of St. John’s, Newfoundland, Canada. There 

are three operational oil production fields in the Grand Bank, including Hibernia, Terra 

Nova and White Rose. Among them, The Terra Nova field is located at 46° 28' N, 48°27' 

W, and has been put into operation since 2002. The cold Labrador Current flows north then 

back south and introduces cold water to the region. Another warm Gulf Stream which flows 

north along the east coast of the United States. This interaction of cold and warm current 

creates extensive foggy regions with little visibility. Icebergs calved from Greenland’s 

glaciers are also brought by the Labrador Current. With the increasing activities of offshore 

drilling and shipping in the area, a prediction and response plan is a must before an 

internationally-significant oil spill happens (McGrath, 2014). 
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In November 21st, 2004, two mechanical failures in produced water separation process 

caused more than 1,000 barrels or 160,000 liters of oil released into ocean. This accident 

happened at Terra Nova FPSO resulted in more than 10,000 sea birds killing directly by 

the 793 km2 oil slick coverage (Wilhelm et al., 2007). Based on the record of Petrocanada, 

two vessels were on the site and ready to deploy booms and skimmers on 22nd. But cleanup 

operation was not started until 23rd because of terrible weather condition. (Martin, 2004). 

It remains the largest marine oil spill in the history of NL. Large-scale oil spill has not been 

happened in offshore NL, but the booming oil industry could raise the risk of accident. 

Harsh environment in the NL might lead to a catastrophic damage to the marine ecosystem. 

The case study of Terra Nova can be helpful in prevention and response planning of oil 

spills in this area. 

The presence of sea ice, low temperature, limited visibility and strong wind are all existing 

harsh environment elements which affect oil spill recovery operations and effectiveness of 

oil recovery technologies such as booming, herding and skimming (Brandvik et al., 2006; 

Jing et al., 2012). Generally, oil spills in the regions with harsh weather conditions, fragile 

ecosystems and limited access to sea transport services are more challenging issue to deal 

with (Hung et al., 2010; Turner et al., 2010).  And the damage is likely to be more 

significant without in time oil recoveries as a result of the restricted support from aircrafts, 

vessels and satellite remote sensing (Fingas, 2010). During the Terra Nova spill event in 

2004, cleanup operations were not initiated until 23th (the third day) because of the harsh 

environment and weather conditions, and only about five present of oil was recovered 

based on the record. According to the spill observation data, the domain oil slick was 
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determined as 6.1 litres and measured 1,500m by 100m by flight report on 27th (Welhelm, 

2006).  
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Figure 2  Study area: location of Terra Nova FPSO at Grand Banks, NL, Canada 
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3.3 Modeling approach 

3.3.1 GNOME and ADIOS2 

The GNOME is an oil spill trajectory model developed by the Emergency Response 

Division of NOAA’s Office of Response and Restoration. Wind and currents data from the 

ocean models can be easily converted to GNOME inputs (Marta-Almeida et al., 2013). In 

the simulation of GNOME, The spilled oils are modeled as point masses as Lagrangian 

elements. It can simulate the fate and trajectory with the movers as the surface Eulerian 

current velocity field, the wind field and the diffusion as a random walk (Csanady, 2012). 

The Best Guess solution represents the most likely movement path and extension of the 

spill, whereas the Minimum Regret trajectory provides an uncertainty bound on the input 

parameters and forcing fields. 

 

ADIOS2 is NOAA's oil weathering model. Since GNOME only includes several oil types, 

oil fate can derive from the ADIOS2. ADIOS2 has better evaporation and oil fate estimates 

with a library of more than one thousand types of oil, which can be helpful in developing 

cleanup and recovery strategies. Environmental data were combined with the chemical and 

physical property information in the oil library. Oil weathering parameters such as 

evaporation and dispersion can be calculated as an output.  

3.3.2 OSCAR 

 

The Oil Spill Contingency and Response (OSCAR) model (Reed et al., 1995a; Aamo et al., 

1997a; Reed et al., 2004) was developed by SENTIF. It is a 3-dimensional particle-based 
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dynamic, simulation tool for contingency and response decision-making for oil spills. The 

behavior of fate and effects of released contaminant can be simulated on the water surface, 

along shorelines, in the water column and the ocean or shoreline sediments (Niu et al., 

2014).  

 

Oil characteristics database are key components of the system and provide chemical and 

toxicological parameters required by the model. An environmental database such as sea ice 

coverage and biological resource can be used as input to explore the results in a more 

complicated system; Response options database provide the results of different responses 

with skimmers or/with dispersant spread from air or subsurface. OSCAR employs surface 

spreading, advection, entrainment, emulsification to determine transport and fate at the 

surface. In the water column, horizontal and vertical advection and dispersion of entrained 

and dissolved hydrocarbons are simulated. 

 

3.3.3 Comparisons of two models 

 

GNOME and ADIOS2 can be applied to any region in the world with fewer inputs than 

most of the oil spill models (Marta-Almeida et al., 2013). It can be set up efficiently for 

real-time response and forecast simulations by providing a land-sea mask, ocean currents 

and climatological wind data (Samuels et al., 2013). GNOME can predict trajectories and 

uncertainties accurately and has been applied in many cases, which was implemented and 

validated successfully in many accidents (Bergueiro et al., 2007). The examples could be 

documented from cases in the Gulf of Mexico (Klemas, 2010; Cheng et al., 2011), Persian 
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Gulf (Farzingohar et al., 2011), the Black Sea (Marta-Almeida et al., 2013), Bosphorus 

Strait (Basar et al., 2006) and Rajaee Port of Bandar Abbas in Iran (Farzingohar et al., 

2011).  

 

OSCAR couples weathering, surface trajectory, water column, and oil spill response 

components. The behavior of individual working groups, such as vessel-skimmer and 

helicopter dispersant systems, are simulated, each with an assigned strategy and work area. 

Environmental factors such as winds and waves, and available daylight relate functionally 

to effectiveness of mechanical cleanup. The application of chemical dispersants is 

simulated based on observations from field trials (Daling et al., 1995; Lewis et al., 1995). 

The weathering and transport algorithms of OSCAR has been tested and verified in 

accidents and experiments (Daling and StrØm, 1999; Reed et al., 2000; Daling et al., 2003).  

 

In GNOME, ADIOS2 and OSCAR, the evaporation equation was developed by Stiver and 

Mackey (1984), in which an evaporative exposure parameter τ was introduced. For 

constant wind speed, the evaporative exposure parameter may be expressed as eq. (3-1). 

τ =  Kt/ℎ                                                                                                                    (3-1) 

For cases with variable wind with eq. (3-2).  

τ =  ∫ (K/ℎ) dt                                                                                                              (3-2) 

Where K is the surface mass transfer coefficient, h is the initial film thickness and t is the 

exposure time. 
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In ADIOS and SINTEF, the dispersion equation (3-3) was used, which was developed by 

Delvigne and Sweeney (1988). The number and size distribution of oil droplets driven into 

the water column by breaking waves was measured as the volume of entrainment Q, 

Q =  𝑐𝑑𝑖𝑠𝑝𝐷𝑒
0.57𝑓𝑏𝑤𝑉𝑑𝑖𝑠𝑝                                                                                                (3-3) 

Where De is the dissipation of wave energy per unit surface area, cdisp is an experimentally 

determined parameter, fbw is the fraction of breaking waves per wave period per unit, Vdisp 

is the volume of oil entrained per unit volume of water. 

 

In GNOME diffusion and spreading are treated as stochastic process. 

A stochastic or random process is a mathematical object usually defined as a collection 

of random variables. Classical diffusion as given in eq. (3-4). 

𝜕C/𝜕t=D∇2C                                                                                                                              (3-4) 

Where C is the concentration of a material and D is the diffusion coefficient which 

recognized the characteristics of oil spills as they move with water and wind. 

 

The method of calculating spreading is very similar to the method used to compute 

diffusion, except the spreading happens only in the direction of the wind. 

dσ2/dt=S(t)                                                                                                                                  (3-5) 

Where σ2 is the variance of the spilled oil locations. S(t) is a spreading parameter that is a 

function of time because the wind velocity is a function of time. 

In OSCAR, spreading is calculated according to eq. (3-6) developed by Mackay et al. 

(1980): 

dA/dt=Kh1.33A0.33                                                                                                        (3-6)                      

https://en.wikipedia.org/wiki/Mathematical_object
https://en.wikipedia.org/wiki/Random_variable
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Where A is the area of the slick, h is the thickness of the slick, t is time, K is an empirical 

constant. In the model, spreading stops when the slick reached a minimum thickness. 

 

Although both the GNOME/ADIOS2 and OSCAR have been applied in many oil spill 

cases worldwide, which have shown good performance in most of the accidents, neither of 

them have been used in the NL region. As one of the most common used tools in the oil 

spill response, the capability in the harsh environment of NL offshore is still unknown. 

With the same equations of evaporation and dispersion, the simulation results can be 

different in the two models. GNOME is good at the spreading simulation, especially 

compared with two other models in the case of Gulf of Mexico (Cheng et al., 2011). 

OSCAR derived its oil weathering data with field tests in the cold environment around 

Norway (Reed et al., 2000), which is similar to the environment at offshore NL. Their 

abilities of simulating spreading and weathering processes can be compared during this 

case. 

 

3.4 Data acquisition 

3.4.1 Wind and currents 

 

For any model, reliable environmental observations and predictions are the basis for an 

accurate prediction of the oil spill trajectory. The data collected provide an overall picture 

of meteorological and oceanographic conditions. To simulate the movement of the oil spill 

detected in the SAR images, ocean wind, and current inputs were required to force the 



 46 

models. The accessibility to high-quality information on ocean circumstances dominating 

factor to monitor and predict marine oil spills in the model (Hackett et al., 2009). In this 

study, ocean currents in the Grand Banks were obtained from the HYCOM model, with the 

spatial resolution 1/8° (Fig. 3), which is developed by the National Ocean Partnership 

Program (NOPP), as part of the U.S. Global Ocean Data Assimilation Experiment 

(GODAE). As an ocean general circulation model (OGCM), HYCOM (Halliwell, 2004; 

Chassignet et al., 2006) can (a) retain its water mass characteristics for centuries, (b) have 

high vertical resolution in the surface mixed layer for proper representation of 

thermodynamical processes, (c) maintain sufficient vertical resolution in unstratified or 

weakly-stratified regions of the ocean, and (d) have high vertical resolution in coastal areas.  
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Figure 3  Ocean currents derived from the HYCOM at 2004-11-21
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The fig. 3 shows the circulation of ocean current with the spatial resolution 1/8° and the 

temporal resolution 3h. The cold Labrador Current, originating off of the west coast of 

Greenland flowing north then back south, interacts with the warm Gulf Stream which flows 

north along the east shore of the United States in this area. Continental shelf separate the 

ocean current into two part. Ocean current from south with water temperature can be as 

warm as 10-15 degrees centigrade. Cold Labrador Current is dominant in the Grand Banks 

area, with cold temperature as 5 degrees centigrade from north. The meeting of two currents 

creates vast regions of fog with limited visibility. This limited visibility is a significant 

danger to shipping and a limitation to visual aerial reconnaissance in the event of an 

emergency at sea. Also, a higher evaporation rate can be noticed under this circumstance, 

which can affect the simulation of weathering process of spilled oil.  

   

In addition to ocean currents, surface wind is another important input parameter for the 

drift models (Cucco et al., 2012). In open water, unless the spill accident occurs in tidal 

currents,  wind-induced drift (Stokes drift) is the most important factor in the simulation of 

oil slick trajectories (Spaulding, 1988). In the oil trajectory modeling, 1-3% of the wind 

speed was commonly added as a result of the underestimation of surface current speeds 

(Wang et al., 2007). Some researchers proved that surface layer of oil moves at a speed 

which is 2.5 to 4.4% of the wind speed (Spaulding, 1988; Reed et al., 1999) and at an angle 

of 0 to 25 degrees clockwise relative to the wind direction (Samuels et al., 1982; Spaulding, 

1988). In this study, the hourly 10-m wind measurements from NCDC (National Climate 

Data Center) are used to force the models. In this study, the sea surface wind field is 

obtained from near real-time blended ocean winds with six-hour aggregation with a spatial 
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resolution of 0.25° *0.25°. As shown in Fig. 4, from November 21st to November 25th, 

2004, the winds are strong, blowing toward the southeast with speeds more than 12 m/s, 

and on November 26, the wind direction changed toward the north. Overall, the oil slick 

traveled south, almost reaching the continental shelf edge, and then traveled back north on 

26th in response to changes in wind direction (Wilhelm et al., 2007), which fits good with 

the wind data. According to the simulation results, when the wind direction was consistent 

with the current, oil slick moved faster to south during 21th and 25th. This might be caused 

by the current direction, as shown in Fig.3. When the current has a reverse direction with 

wind after 25th, the oil slick moved much slower. The movement of oil slick is determined 

mainly by wind and current at the same time. Wind with speeds higher than 7.7 m/s can 

break the surface oil film that the weathering process of spilled oil in Terra Nova case was 

faster than usual (Cheng et al., 2011).
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Figure 4  (a) Wind field at 2004-11-21 06:00 (b) Wind field at 2004-11-23 00:00 (c) Wind field at 2004-11-25 12:00 (d)Wind field at 2004-11-26 18:00
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3.4.2 SAR images 

 

Remote sensing technology plays a key role in oil spill trajectory monitoring and important 

in the observation of oil slick fate and distribution on the ocean surface (Kvenvolden and 

Cooper, 2003; Hu et al., 2009). Among the satellite sensors, SAR with wide coverage has 

been widely used to provide images during day and night (Migliaccio et al., 2012; Li et al., 

2013) and regardless of any weather conditions. Today, RADARSAT-1 and ENVISAT are 

the two main providers of satellite SAR images for oil spill monitoring (Brekke and 

Solberg, 2005). Oil slick can be effectively observed from RADARSAT (Peterson et al., 

2008). The observed information could provide the data support for modeling the fate and 

transport of the spilled.  

 

The RADARSAT-1 satellite was launched in November 1995. Equipped with a powerful 

SAR, it is capable of acquiring images with different incidence angles, dual polarization 

and wide swath coverage. Users have access to a variety of beam selections that can image 

with resolutions from 20 to 150 m. In this study, the RADARSAT-1  was used to detect oil 

spill information. Fig. 5 shows the oil slick observed on 23rd November, 2004. The SAR 

image was derived from Environment Canada, which was taken on 09:21 UTC (5:51 AM 

local time), 23th November, 2004. 

 

 

 



 53 

 

 

 

 

 

 

 

Figure 5  Satellite images RADARSAT-1 image at 9:21 UTC on November 23th, 2004 (derived from 

Environment Canada) 
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3.5 Modeling settings 

 

In this study, we set the amount of oil spilled as 1000 barrels which were released in the 

Terra Nova spill in 2004 and the spill zone (modeling domain) shape from the SAR images. 

As described in Section 3.3, a time series of HYCOM current fields and the winds data 

from NCDC were input to the GNOME and OSCAR models to perform the simulation. 

GNOME allows users to select different types of weathering or non-weathering for various 

kinds of spills, i.e., gasoline, diesel, medium crude and fuel oil. GNOME defines the oil 

type as “medium crude” which fits the terra nova with medium density, low sulphur crude 

oil. In the ADIOS2 and OSCAR, the oil type can be found as “Terra Nova” in their oil 

library. 

 

If the current data, wind data, diffusion parameters and windage (i.e., how much force the 

wind exerts on the oil to move it in the direction that the wind is blowing) are accurate, 

good simulation results will be produced. To compare the capabilities of two models with 

the same input, we assumed that there was no errors in both the current and wind data. 

Based on the manual, considering the high waves and complicated weather condition 

during the oil spill case, we set the windage as 1.5–3% and the minimum uncertainty error 

of both along-current and cross-current directions as 10% in magnitude, the diffusion 

coefficient and its uncertainty factor are set as 100,000 cm2/s and 2, respectively.   

 

3.6 Results and discussion 
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Figure 6  A combined figure with GNOME (blue), OSCAR (red), and Black solid lines represent the oil slick covered area by observation
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Figure 7  Result from the GNOME compared with the SAR image 
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Fig. 6 shows the modeling results by both modeling systems (i.e. GNOME and OSCAR) 

in comparison with the observation. There were shifts between observed and simulated oil 

slicks. The result of GNOME shows a 3-minute (about 5.5 km distance) deviation 

compared with the satellite image. Wind speed and direction were changing rapidly, and 

the high waves were promoting slick breakup during the extreme weather in the first two 

days.  In general, compared with the actual spill observation, after 7 days run of the model, 

the simulated oil polluted area of GNOME coincides with the observation data and SAR 

image better in terms of shape and location than the OSCAR. Compared with the 

observation reported in Wilhelm et al. (2007), shown the estimated impacted area derived 

from aerial surveillance and information provided by the East Coast Response Center 

(ECRC), OSCAR has a worse performance. As we notice that different equations of 

spreading were applied in the two models, which might lead to the shifts in the simulation 

results. The effects of the two equations will be further studied in the future work. 
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Figure 8  Result of oil weathering by AIDOS2 simulation 
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Figure 9  Result of oil weathering by OSCAR 
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In the Fig. 8, the simulation results indicated that 43.7% of the oil was evaporated and 

dispersed in the first two days. In the Fig. 9, with the model of OSCAR, 87.4% of total 

spilled oil was evaporated and dispersed, 10.8% was biodegraded and 0.3% were settled to 

the sea bed. Only 1.6% of oil floated on the sea surface after six days, which is more 

consistent with the observed data. Note that in this study, only evaporation and dispersion 

were considered as weathering processes in the ADIOS2 due to the model limitation. In 

the OSCAR, sediment and biodegradation were also taken into account.  

 

Although the same equations of dispersion and evaporation processes were applied in the 

two modeling systems, the results of evaporation and dispersion processes simulations 

were quite different as shown in Figs. 8 and 9, especially the dispersion results. This might 

be caused by the difficulty in calculating De and fbw. De is the dissipation of wave energy 

per unit surface area, and fbw is the fraction of breaking waves per wave period per unit. 

Anyway, the comparison indicated that the simulation results could be different even with 

the same simulation equations in these two models. 

 

In the harsh environment conditions, wind field plays a major role in driving the movement 

of the spilled oil. High waves can enhance the breakup of the oil slick and dispersion 

process. Strong winds and associated high waves can affect the spreading, evaporation and 

dispersion processes. Lacking of sunlight could reduce the oxidization, biodegradation and 

evaporation along with low temperature. 
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According to the spill observation data, only about five present of oil was recovered, the 

domain oil slick was determined as 6.1 litres on 27th (Welhelm, 2006). When comparing 

with the historical record, more oil were evaporated and dispersed than those of the 

simulation result from the GNOME/ADIOS2. In this case, OSCAR showed a better 

performance on weathering process simulation than that of GNOME/ADIOS2. The shift 

of oil affected area between the observed and simulated results might be caused by the high 

waves which can promote weathering processes and oil slick breakup, especially in the 

first two days after the spill and the rapid change of wind direction.  

 

3.7 Summary 

In this chapter, an oil spill event from the Terra Nova FPSO in the Grand Banks in 

November 2004 was used as a real case to evaluate the capabilities of the two model 

systems. Furthermore, two model systems, GNOME/ADIOS2, and OSCAR, were 

discussed and compared. The ocean current fields from HYCOM and wind data from 

NCDC were obtained and prepared to force the models. The result comparison showed a 

better performance of oil slick location simulation by GNOME. On the other hand, better 

weathering simulation result derived from the OSCAR in this case. Two systems could 

showed different result even with the same input data due to their adoption of different 

equations and associated assumptions in the weathering and spreading simulation. Even 

with the same equations for some weathering processes such as dispersion and evaporation, 

results from different simulation models could still be varied. In the harsh marine 

conditions, wind field played a major role in driving the movement of the spilled oil.  
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In the harsh environments such as those prevailing in the Grand Banks region, a similar 

accident as the Terra Nova spill in the future could cause more significant ecosystem 

impact and possibly a loss of life if with strong winds and higher waves. Finding a more 

accurate and reliable way to simulate oil spills with the rapidly changing conditions in the 

harsh environments by evaluating and understanding of the capabilities and limitations of 

spill simulation models is significantly meaningful and necessary. 
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CHAPTER 4: A DOE AIDED UNCERTAINTY ANALYSIS METHOD 

AND APPLICATION IN MARINE OIL SPILL MODELING 
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4.1 Introduction 

 

The oil spill is always defined as the release of liquid petroleum hydrocarbon into the 

marine. Large-scale oil spills occurred in the world history, and some of them had resulted 

in catastrophic impacts. (Piatt et al., 1990; Sumaila et al., 2012; Ruiz, 2013).  To deal with 

the oil spill accidents, oil spill model has been generally accepted as a useful tool in spill 

simulation, and further be used to support decision making of spill response. However, The 

success of its application depends not only on the weathering and spreading formulations, 

and also on the accurate input data and model parameters (Sebastiao and Soares, 2006). 

Therefore, in marine oil spill modeling, parameter calibration and optimization, uncertainty 

and sensitivity analysis, are essential to help minimize the discrepancy between simulated 

and observed data.  

 

Sensitivity analysis is to obtain all the information flowing in or out of a model, often refers 

to one or a series of procedures to determine how much total model uncertainty can be 

attributed to the uncertainty associated with each individual model factors. Sensitivity 

analysis is paramount in model validation where attempts are made to compare the 

simulation results to the observed results, which can help to improve the simulation 

performance with a method to determine the significant parameters and their importance. 

 

Uncertainty refers to lack of knowledge or incomplete information about specific factor, 

parameters, model structure, input/output, or measurement errors. The environment may 

appear more complex than imply (e.g., wind and temperature can both contribute to the 
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evaporation process, also with the interaction between the wind and current). Oil spill 

simulation models always suffer from a number of model uncertainties, especially in the 

prediction of calibration process. Possible sources of uncertainties in the oil spill modeling 

are from the model inputs, and model parameters. Input uncertainty, results from bias and 

errors in the input data, always influence final responses significantly. Uncertainties of 

model parameters exist because of the empirical estimation of value obtaining. The 

interactions between the parameters also cause uncertainties. Parameter uncertainty is need 

to be controlled and quantified, because of the immeasurable parameters and errors in the 

data used for parameter calibration. Normally, hydro-meteorological data are the most 

widely used model input data for oil spill modeling, and model outputs are sensitive to 

input data. In this study, the uncertainties of input data (wind speed and direction, current 

speed and direction) have been considered with the range of possibility. The influence of 

input data has been minimized with the calibration. Parameters, such as windage (also 

known as wind reduced-drift) and diffusion coefficient can be varied in a large scale in 

different places and change with the continuous changing of wind and current. 

 

Parameter uncertainties have been extensively studied (Galt, 1997; Sebastiao and Soares, 

2006; Abascal et al., 2009; Price et al., 2003; Xu et al., 2013) , particularly integrated with 

sensitivity analysis and model calibrations (Boufadel et al., 2014; Kim et al., 2014). 

Traditional sensitivity analysis methods (e.g. One-factor-at-a-time) have been found in 

extensive studies involved modeling processes (Lenhart et al., 2002; Holvoet et al., 2005; 

Jing and Chen, 2011). However, the key limitation of this method is the incapability of 

revealing the interactions between parameters. The potentially significant variables might 
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be ignored (Saltelli, 1999; Montgomery, 2008; Peeters et al., 2014).  As well known in the 

previous studies, there exist close interdependence of oil spill weathering processes (Reed 

et al., 1999). Therefore, a calibration method to find the multiple optimal values of the 

parameters to minimize the differences between modeled and actual data is needed. Due to 

the incapability of revealing the interactions between parameters, traditional One-factor- 

at-a-time (OFAT) method could ignore the potentially significant variables and their 

interactive impacts. To address this issue, the DOE provides an alternative option. DOE is 

a widely used statistical methodology, which can effectively analyze the interactions 

between parameters and the corresponding responses (Czitrom, 1999; Park, 2007; 

Veličković et al., 2013; Sarikaya and Güllü, 2015). In recent studies (Wu et al., 2012; Li et 

al., 2016), DOE was used to conduct sensitivity analysis and parameterization for a 

hydrological model SLURP, and improve simulation performance of a groundwater 

modeling BioF&T 3D. A greater goodness-of-fit value can be achieved by optimization of 

the predicted regression equations.  

 

Though the advantages in parameterization and the capability of interaction analysis in the 

numerical models has been proven, DOE method has rarely been used in  oil spill modeling, 

in which uncertainties commonly exist, and knowledge concerning interactions between 

each parameter is inadequate.  

 

4.2 A DOE aided uncertainty analysis method 
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A factorial design is one of the most widely applied approaches in the DOE methodologies 

(Gruendling et al., 2009; Karimi et al., 2010). Factorial design can be used in determining 

the influence of multiple factors in a system, which is proven satisfactory in dealing with 

linear problems. If the relationship between the parameters and responses can be 

adequately represented and the optimal values of the responses captured, the factorial 

design will be one of the most efficient methods for optimization (Wu et al., 2012). 

Otherwise, in which interacting effects between parameters with clear curvatures, a 

nonlinear method should be applied. Minimum run resolution V, as one of the most widely-

used factorial design method, was implemented in this study. While linear optimization 

could be used for the linear DOE model, which was obtained by fractional factorial design, 

to predict the optimal values.  

 

The overall framework of the DOE aided parameterization method is as illustrated in 

Fig.10. This process can be fulfilled by the following steps: 

 

1) Choose the most relevant input parameters in oil spill model. The effects of the 

parameters can usually be found in the model’s manual and literature. The 

parameters can be chosen based on traditional sensitivity analysis method. 

2) Determine the upper and lower bounds of the chosen parameters based on the 

measurements, manuals, or suggested values from the experts and previous studies. 

The boundary can also determine based on the trial tests by running the numerical 

model, in comparison with the observed data or literature. 
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3) Select and calculate the responses which can represent the goodness-of-fit between 

observation and numerical simulation. 

4) Analyze the relationships between responses and the corresponding parameter 

combinations using the DOE method. 

5) Analyze the sensitivity and interactions between the responses and the 

corresponding parameters using the DOE method. The regression equations for the 

predicted responses can be produced.  

6) Apply the minimum resolution V method to optimize the DOE predicted responses. 

The optimal parameters set can be obtained and then input into the numerical model 

to achieve the actual responses. 

7) Compare the actual responses with the predicted optimized responses, and check if 

the optimized responses sufficiently close to the actual ones. If yes, go to step 8. 

Otherwise, go to step 4 or reselect DOE method. 

8) The optimal response and the corresponding parameter combinations can be 

determined. 

9) Verify the oil spill model for potential predictions. 
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Figure 10  The overall framework of the application of DOE aided method 
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4.3 Case study 

 

The study area, Grand Bank, is located at 350 kilometres southeast of St. John’s, 

Newfoundland, Canada. The Terra Nova field is located at 46° 28' N, 48°27' W, and has 

been put into operation since 2002. In November 21st, 2004, more than 1,000 barrels of oil 

released into ocean. This accident happened at Terra Nova FPSO resulted in more than 

10,000 sea birds killing directly by the 793 km2 oil slick coverage (Wilhelm et al., 2007). 

It remains the largest marine oil spill in the history of NL. The case study of Terra Nova 

can be helpful in prevention and response planning of oil spills in this area. The GNOME 

is an oil spill trajectory model developed by the Emergency Response Division of NOAA’s 

Office of Response and Restoration. With its Minimum Regret trajectory mode, parameter 

uncertainties should be determined to obtain a better performance in oil spill simulation. 

To have a better understanding of the Terra Nova spill case, and to explore the interactions 

between parameters in the GNOME, a DOE aided parameterization method is needed. 

4.3.1 Parameter analysis 

 

 

In the oil spill simulation models, the important parameters and their effects are usually 

provided in the model’s manuals. For the GNOME model, it has been applied in many case 

studies, through the literature, the suggestions of local experts, and the trial tests, the upper 

and lower bounds for each parameter can be determined. Six parameters are considered to 

be important in the calibration method and described as follows: 
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(1) Windage, A, is the movement of oil by the wind.  It is typically about 3% of the 

wind speed based on analytical derivation and empirical observation that oil tends 

to spread out in the direction of the wind (Stolzenbach et al., 1977).  Experience 

and observation have led us to use a factor in the range 1-4%, possibly adjusted 

based on overflight reports (Lehr and Simecek-Beatty, 2000).  

(2) Along current uncertainty, B, means forward and backward percentages of the 

velocity.  

(3) Cross current uncertainty, C, means left and right percentages of the velocity, that 

are used in the direction perpendicular to the velocity to make up the cross-current  

uncertainty range.  

(4) Wind speed scale, D, is related to how much the wind speeds are likely to be in 

error.  

(5) Angle scale (radians), E, is related to how much the wind forecast directions will 

be off.   

(6) Random spreading, i.e. diffusion, F, is done by a simple random walk with a square 

unit probability. Following the GNOME Technical Documentation, a low value of 

F would be 1,000 cm2/s, and a high value would be between 100,000 to 1,000,000 

cm2/s. The chosen values of the upper and lower bounds are shown in Table 1. 
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Table 1  Key parameters and their upper and lower bound values 

 

Factor (parameter) Lower bound 

value 

Upper bound value 

A: windage (%) 1.2 1.5 
B: along current uncertainty (%) 

unuuncertainty (%) 

5 50 

C: cross current uncertainty (%) 5 50 

D: wind speed scale 1 5 

E: wind direction scale (radians) 0.2 0.8 

F: Diffusion coefficient (cm2/s) 100000 150000 
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4.3.2 Response selection 

 

When using a SAR image to calibrate the result from the trajectory models, coverage 

between the oil slicks from SAR image and the simulated result from the models could be 

one of the most significant response for consideration. As the uncertainty ranges are 

considered in the parameter analysis, the spreading area, slick location and the distribution 

of the oil particles (each particle represents certain volume of spilled oil) will change at a 

large scale. To calculate the coverage value from the different sets of parameters, a 

consistent method should be considered. One method is to count the number of cells in the 

simulated binary image occupied oil particles that overlap with the grid cells with oil in the 

satellite image, then to calculate the matching rate in terms of the number of overlapping 

cells and partially covered cells (Kim et al., 2014). This method can be useful if without 

considering the uncertainty in the simulation model. Different scenarios of parameter 

values could result in various oil particles distribution. Some may cause a high density in 

the slick center but very few and scattered in the outer edge, or output as hypodispersion. 

Various distribution may lead to a cell that overlapped with both but only a few particles 

inside, which should not be regarded as fully covered. Particularly in the models like 

GNOME and OSCAR, more than a thousand of particle number could be set as initial 

particles. The difference of covered number can be significant. In this study, a modified 

method was developed. As shown in Fig. 11, to avoid the overestimated coverage, this 

study assumed that five or more particles in on cell can be considered as 100% covered. 

One particle in the cell was calculated as 20% coverage. The size of cells can be varied in 

different cases. Response R1 is shown in eq. (4-1). 
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R1= Do/ Asim                                                                                                                (4-1) 

Where Asim is the number if total covered cells by the simulated oil slick, and Do is the 

number of particles overlapped with the observed coverage in satellite images.  

  



 75 

 

 

 

 

Figure 11  A sample image from the GNOME simulation showing oil particles distribution in the case 

study 
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The distance between the simulated and the observed location of oil slicks can also 

represent the goodness-of-fit in trajectory models. Response R2 derived from the distance 

between the central locations of the simulated oil slick and the observed oil-covered area. 

The central locations P were calculated as shown in eq. (4-2). 

P= (P1+P2+…+ Pi)/i                                                                                                      (4-2) 

Where Pi is the geographic coordinate values of latitudes and longitudes. 

 

Although the covered area R1 and the distance R2 can both represent the goodness-of-fit, 

in some cases, considering the diffusion and advection of oil slicks, while the covered area 

is large enough, the distance between the simulated location and observed oil slick could 

be far away. It should be taken into account with a new response which can reflect the R1 

and R2 at the same time. Ideally, when the simulated result has the best matches the 

observed one, the distance should also be the closest approaching to zero. A response R3 

was proposed in this study to represent the interaction between R1 and R2 as shown in eq. 

(4-3). 

R3=R1/R2                                                                                                                       (4-3) 

Where R1is the coverage between the simulated and observed oil slicks, and R2 is the 

distance between the central locations of the simulated and observed oil slicks. To obtain 

good simulation results, maximum value of R1, R3 and minimum R2 would be acquired 

with optimization.  
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4.4 Results and discussion 

4.4.1 Modeling sensitivity 

 

Totally 23 groups of simulation runs were conducted by the spill model with different 

combinations of parameters. The sequence of simulations was randomly generated by 

using the minimum run resolution V factorial design. In this study, Design Expert 7.1® 

was used to analyze the effects of different parameters. The analysis of variance (ANOVA) 

for the three responses (R1-R3) are shown in Tables 2-4. The half-normal and normal 

probability plots of response R1 are shown in Figs. 12 and 13. The result indicated that 

factors A (Windage), D (Wind speed scale), E (Wind direction scale), AD (interaction 

between windage and wind speed), BF (interaction between along current and diffusion), 

and DE (interaction between wind speed and direction) stood as significant to the model. 

Factors B and F on their own were not significant. However, their interaction, BF, was 

significant. Hence for the hierarchical reasons, these two factors were included for further 

analysis. There was no significant curvature measured by the difference between the 

average of center points and the average of the factorial points in the design space. There 

were four main diagnostic plots to check the assumptions of ANOVA, including “normal 

probability plot of residuals”, “residuals vs. predicted”, “residuals vs. run”, and “predicted 

vs. actual” (Figs. 14-17). With R2 as response, A and EF were significant factors. With R3 

as response, factors A, D, E, AD, BE, and DE are significant model terms. Similarly, the 

analysis results and the associated diagnostic plots for R2 and R3 are provided in Figs. 18-

27. 



 78 

 

Table 2  ANOVA of minimum runs of design resolution V for response R1 

 

Source Sum of 

Squares 

df Mean 

square 

F 

value 

p-value 

(Prob>F) 
Model 

 

0.076 8 9.9495E-

003 

23.70 <0.0001* 
A:Windage 0.018 1 0.018 45.40 <0.0001* 
B:Along 

current 

1.134E-003 1 1.134E-

003 

2.83 0.1163 
D: Wind speed 2.248E-003 1 2.248E-

003 

5.61 0.0340* 
E: Wind 

direction 

0.028 1 0.028 68.92 <0.0001* 
F: Diffusion 2.006E-005 1 2.006E-

005 

0.050 0.8264 
AD 3.869E-003 1 3.869E-

003 

9.66 0.0083* 
BF 2.839E-003 1 2.839E-

003 

7.09 0.0196* 
DE 4.055E-003 1 4.055E-

003 

10.12 0.0072* 
Curvature 7.137E-005 1 7.137E-

005 

0.18 0.6799 
Residual 5.209E-003 13 4.007E-

004 

  
Cor Total 0.081 22    
Std. Dev. 0.020 R2 0.9358   
Mean 0.10 Adj R2 0.8963   
C. V. % 19.32 Pred R2 N/A   
Press N/A Adeq 

Precision 

16.162   
*means significant 
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Table 3  ANOVA of minimum runs of design resolution V for response R2 

 

Source Sum of 

Squares 

df Mean 

square 

F 

value 

p-value 

(Prob>F) 
Model 174.23 4 43.56 88.47 <0.0001* 
A:Windage 149.10 1 149.10 302.8

1 

<0.0001* 
E: Wind 

direction 

0.080 1 0.080 0.16 0.6911 
F: Diffusion 0.56 1 0.56 1.14 0.3007 
EF 4.47 1 4.47 9.09 0.0078* 
Curvature 8535E-003 1 8.535E-

003 

0.017 0.8968 
Residual 8.37 17 0.49   
Cor Total 182.61 22    
Std. Dev. 0.70 R2 0.9542   
Mean 25.87 Adj R2 0.9434   
C. V. % 2.71 Pred R2 N/A   
Press N/A Adeq 

Precision 

18.362   
*means significant 
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Table 4  ANOVA of minimum runs of design resolution V for response R3 

 

Source Sum of 

Squares 

df Mean 

square 

F 

value 

p-value 

(Prob>F) 
Model 8.651E-005 8 1.081E-

005 

21.24 <0.0001* 
A:Windage 1.109E-005 1 1.109E-

005 

21.79 0.0004* 
B:Along 

current 

1.208E-006 1 1.208E-

006 

2.37 0.1474 
D: Wind speed 1.963E-006 1 1.963E-

006 

3.86 0.0713 
E: Wind 

direction 

4.044E-005 1 4.044E-

005 

79.42 <0.0001* 
F: Diffusion 1.114E-008 1 1.114E-

008 

0.022 0.8847 
AD 5.266E-006 1 5.266E-

006 

10.34 0.0068* 
BF 3.549E-006 1 3.549E-

006 

6.97 0.0204* 
DE 4.686E-006 1 4.686E-

006 

9.20 0.0096* 
Curvature 1.796E-007 1 1.796E-

007 

0.35 0.5627 
Residual 6.619E-006 13 5.091E-

007 

  
Cor Total 9.331E-005 22    
Std. Dev. 7.135E-004 R2 0.9289   
Mean 3.898E-003 Adj R2 0.8852   
C. V. % 18.30 Pred R2 N/A   
Press N/A Adeq 

Precision 

15.185   
*means significant 
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Figure 12  Half-normal probability plot for response R1 
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Figure 13  Normal probability plot for response R1 
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Figure 14  Diagnostic plots for assumption of ANOVA: normal probability of residuals for response 

R1 
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Figure 15  Diagnostic plots for assumption of ANOVA: residuals vs. predicted for response R1 
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Figure 16  Diagnostic plots for assumption of ANOVA: residuals vs. run for response R1 
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Figure 17  Diagnostic plots for assumption of ANOVA: predicted vs. actual for response R1 
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Figure 18   Half-normal probability plot for response R2 
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Figure 19  Normal probability plot for response R2 
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Figure 20  Diagnostic plots for assumption of ANOVA: normal probability of residuals for response 

R2 
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Figure 21  Diagnostic plots for assumption of ANOVA: residuals vs. predicted for response R2 
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Figure 22  Diagnostic plots for assumption of ANOVA: residuals vs. run for response R2 
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Figure 23  Diagnostic plots for assumption of ANOVA: actual vs. predicted for response R2 
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Figure 24  Diagnostic plots for assumption of ANOVA: residuals vs. windage for response R2 
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Figure 25  Diagnostic plots for assumption of ANOVA: normal probability of residuals for response 

R2 
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Figure 26  Half-normal probability plot for response R3 
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Figure 27  Normal probability plot for response R3 
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Figure 28  Diagnostic plots for assumption of ANOVA: residuals vs. predicted for response R3 
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Figure 29  Diagnostic plots for assumption of ANOVA: residuals vs. run for response R3 
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Figure 30  Diagnostic plots for assumption of ANOVA: actual vs. predicted for response R3 
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Figure 31  Diagnostic plots for assumption of ANOVA: residuals vs. windage for response R3 
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Viewed from Fig. 14, all the residuals were close to the diagonal line; therefore, the normal 

distribution assumption was satisfied. In Fig. 15, because all the residual points were 

scattered randomly all over the graph within the upper and lower bounds instead of 

accumulating in the other areas, the assumption of homoscedasticity was fulfilled. Fig. 16 

indicated that all the residual points were spread within upper and lower bounds, showing 

no patterns. This plot approves that the independence assumption was satisfied. In Fig. 17, 

all the points were close to the diagonal line, showing that the “predicted vs. actual” plot 

was satisfactory and the model fitted well with the observation. Therefore, all the 

diagnostic plots indicated that all the required assumptions of ANOVA were met. Similary, 

viewed from Figs. 18-31, responses R2 and R3 also met all the required assumptions of 

ANOVA. It was indicated that the DOE aided method can meet the requirement of 

parameters analysis of oil spill simulation results derived from GNOME.   

 

Figs. 32-34 show the 3D surface model graphs of the interactions of significant parameters. 

It clearly shows that to obtain the highest R1 value, the maximum values for “Along current 

uncertainty” (B), “Wind direction scale” (E), “diffusion coefficient” (F), and the minimum 

values for “Windage” (A) and “Wind speed scale” (D) were preferred. Fig. 35 shows the 

interaction between “Wind direction” and “diffusion” when R2 as the response. We can 

noticed that either the uncertainties of wind direction or the diffusion can lead to the 

negative effect to the value of R2 (with further distance), but when the uncertainties of both 

were large enough, the effect became positive. The figs. 36-38 show that R3 had the similar 

trend of interactions of the important parameters with those of R1, which meant coverage 

showed a stronger effect than the distance if considered both values in the response R3. So 
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in the simulation of oil spill, the performance of shape and location of oil slick is more 

important than the distance between simulated and observed results. Once the information 

were collected from DOE process, prediction could be conducted to check the accuracy of 

this response model. 

  



 103 

 

 

 

 

 

 

Figure 32  Three dimensional surface graph of interaction between factors B and F for response R1 
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Figure 33  Three dimensional surface graph of interaction between factors A and D for response R1 
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Figure 34  Three dimensional surface graph of interaction between factors E and D for response R1 
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Figure 35  Three dimensional surface graph of interaction between factors E and F for response R2 
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Figure 36  Three dimensional surface graph of interaction between factors E and D for response R3 
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Figure 37  three dimensional surface graph of interaction between factors B and F for response R3 
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Figure 38  Three dimensional surface graph of interaction between factors A and D for response R3 
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4.4.2 Calibration and validation  

 

The predicted regression equations for responses R1, R2 and R3 in terms of coded factors 

are given as follows:  

 
R1 = 0.11 − 0.030 ∗ A + 7.466 ∗ 10−3 ∗ B − 0.010 ∗ D + 0.037 ∗ E − 9.930 ∗ 10−4 ∗ F + 0.014 ∗ A ∗ D + 0.012

∗ B ∗ F − 0.014 ∗ D ∗ E                                                                                                                        (4 − 4) 

R2 = 25.91 − 2.67 ∗ A + 0.061 ∗ E + 0.16 ∗ F − 0.46 ∗ E ∗ F                                                                                    (4 − 5) 

R3 = 4.004 ∗ 10−3  − 7.420 ∗ 10−4 ∗ A + 2.437 ∗ 10−4 ∗ B − 3.069 ∗ 10−4 ∗ D + 1.417 ∗ 10−3 ∗ E − 2.340 ∗ 10−5

∗ F + 5.187 ∗ 10−4 ∗ A ∗ D + 4.289 ∗ 10−4 ∗ B ∗ F − 4.893 ∗ 10−4 ∗ D ∗ E                         (4 − 6) 

 

Similar to the previous conclusion based on the ANOVA analysis in Section 4.4.1, the 

highest R1 value was derived by taking the maximum values for “Along current 

uncertainty”, “diffusion coefficient” and “Wind direction scale”, the minimum values for 

“Windage” and “Wind speed scale”. The optimized results were further verified by using 

Lingo® through linear optimization for eq. (4-4). To validate the predicted maximum R1, 

these values combined with other parameters using their original values were set as the 

new input data for the GNOME model. The new simulation results showed that the R1 for 

the new setting was 0.252, which was close to the R1 value of 0.231 as predicted by the 

minimum resolution V response model. 

 

The simulated data were also used to calculate the R2 and R3. R2 with the new setting was 

22, which was close to the R2 value of 22.55 as predicted by the minimum resolution V 

response model. R3 with the new setting was 0.0087, which was close to the R3 value of 

0.0081 as predicted by the minimum resolution V response model. It demonstrated that the 
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proposed DOE aided parameterization method was capable of and effective in determining 

the optimal combination of parameters in the GNOME model in order to improve the 

performance of oil spill simulation. In this case, the minimum resolution V response model 

could adequately represented the relationship between key parameters and the three 

responses calculated from both observation and simulation from the GNOME model. 

 

The coefficient list and the final equations obtained from ANOVA of minimum resolution 

V response model were very useful to investigate the contribution of different parameters 

and to help researchers evaluate the uncertainties of parameters in the oil spill modeling. 

The coefficient list of responses R1, R2 and R3 are shown in Tables 5-7. 
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Table 5  Coefficient list of the significant terms for response R1 

 

Factor Coefficient 

Estimate 

df Standard 

Error 

95% CI 

Low 

95% CI 

High 

VIF 

Intercept 0.11 1 4.336E-003 0.097 0.12  
A: Windage -0.030 1 4.460E-003 -0.040 -0.020 1.09 
B: Along 

Current 

7.466E-003 1 4.438E-003 -2.121E-

003 

0.017 1.08 
D: Wind speed -0.010 1 4.385E-003 -0.020 -9.132E-

004 

1.06 
E: Wind 

direction 

0.037 1 4.460E-003 0.027 0.047 1.09 
F: Diffusion -9.930E-004 1 4.438E-003 -0.011 8.594E-

003 

1.08 
AD 0.014 1 4.524E-003 4.285E-

003 

0.024 1.11 
BF 0.012 1 4.557E-003 2.286E-

003 

0.022 1.13 
DE -0.014 1 4.524E-003 -0.024 -4.619E-

003 

1.11 
Center Point 8.644E-003 1 0.020 -0.036 0.053 1.00 
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Table 6  Coefficient list of the significant terms for response R2 

 

Factor Coefficient 

Estimate 

df Standard 

Error 

95% CI 

Low 

95% CI 

High 

VIF 

Intercept 25.91 1 0.15 25.59 26.22  
A: Windage -2.67 1 0.15 -2.99 -2.35 1.05 
E: Wind 

direction 

0.061 1 0.15 -0.26 0.38 1.02 
F: Diffusion 0.16 1 0.15 -0.16 0.48 1.02 
EF -0.46 1 0.15 -0.78 -0.14 1.04 
Center Point 0.094 1 0.72 -1.42 1.61 1.00 
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Table 7  Coefficient list of the significant terms for response R3 

 

Factor Coefficient 

Estimate 

df Standard 

Error 

95% CI 

Low 

95% CI 

High 

VIF 

Intercept 4.004E-003 1 1.546E-004 3.670E-

003 

4.338E-

003 

 
A: Windage -7.420E-004 1 1.590E-004 -1.085E-

003 

-3.986E-

004 

1.09 
B: Along 

Current 

2.437E-004 1 1.582E-004 -9.804E-

005 

5.855E-

004 

1.08 
D: Wind speed -3.069E-004 1 1.563E-004 -6.446E-

004 

3.076E-

005 

1.06 
E: Wind 

direction 

1.417E-003 1 1.590E-004 1.073E-

003 

1.760E-

003 

1.09 
F: Diffusion -2.340E-005 1 1.582E-004 -3.651E-

004 

3.184E-

004 

1.08 
AD 5.187E-004 1 1.613E-004 1.703E-

004 

8.671E-

004 

1.11 
BF 4.289E-004 1 1.625E-004 7.798E-

005 

7.799E-

004 

1.13 
DE -4.893E-004 1 1.613E-004 -8.377E-

004 

-1.409E-

004 

1.11 
Center Point 4.337E-004 1 7.301E-004 -1.144E-

003 

2.011E-

003 

1.00 
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Table 5 shows the estimated coefficient for each significant factor, which came from the 

regression analysis. The positive coefficient means the factor has the positive effects on 

the response. In this case, the positive effect indicated when the value of that particular 

factor was increasing, the R1 value would be higher, which meant to obtain better model 

performance. As it was shown in Table 5, the main factor (B) “Along current uncertainty” 

(7.466E-003), (E) “Wind direction scale” (0.037), interaction (AD) of “Windage” and 

“Wind speed scale” (0.014), and interaction (BF) of “Along current uncertainty” and 

“Diffusion coefficient” (0.012) have positive effects to the R1. On the other hand, the main 

factor (A) “Windage” (–0.030), (D) “Wind speed scale” (-0.010), (F) “Diffusion coefficient” 

(-0.930E-004) and interaction (DE) of “Wind speed” and “Wind direction” (–0.014) 

showed the negative effects to R1. Therefore, according to these coefficients, the (E) 

“Wind direction scale” (0.037) had the greatest positive impact on the final response and 

the (A) “Windage” (–0.030) had greatest negative effect. This means when considering 

coverage as response, among the parameters, the windage and wind direction affect the 

simulation modeling at the largest scale. And low value of windage and high value of wind 

direction scale can improve the performance of simulation in this case study. 

 

It is interesting to note that the main factors (A) “Windage” and (D) “Wind speed scale” 

both had negative effects on R1, but the interaction (AD) showed a positive effect. The 

main factor (B) “Along current uncertainty” had a positive effect and (F) “Diffusion 

coefficient” (-0.930E-004) had a negative effect, but the interaction (BF) had a positive 

effect, which means (B) “Along current uncertainty” showed a more positive effect than 

we thought. 
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The interaction between “Windage” and “Wind speed scale”, (AD), showed a significant 

effect in the simulation. When considering the wind drift in oil spill simulation, 3% of wind 

speed was always added to the oil slick movement according to the manuals and literatures. 

In some other studies, 1-4% of windage was considered as a proper range. The interaction 

between “Along Current” and “Diffusion”, (BF), showed a negative effect. Compared with 

the current fields from the HYCOM model, the currents moved mainly from the south to 

north direction around the spill area. The interaction between “Along Current” and 

“Diffusion” explained how the oil slicks were diffused with the movement of ocean 

currents. However, the interaction of “Wind Speed” and “Wind Direction” showed that the 

wind fields had more significant effect on the movement of oil slick than the current fields. 

The case study also indicated that the choice of parameters and their values during 

calibration was critical since they could affect the simulation result significantly. This also 

disdosed the value of the proposed method. 

 

Just adjusting the main factor to optimize the response might not the most efficient way in 

some cases. Interactions between factors might lead to an opposite way, and cause missing 

the desired response. Therefore, to efficiently obtain the optimal response, the sensitivity 

of a factor should be evaluated by taking the collective effects of that both the factors and 

the interactions into account. 

 

In the validation and prediction of maximum responses R1 and R3, the same set of 

parameters was chosen for GNOME model. And the results showed that R1 and R3 for the 

new settings were both close to the predicted values.  But R2 showed the result which was 
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not good enough. We noticed that the windage played a major role in all the three responses 

and the interaction of wind speed and direction was also showed effect when the distance 

was considered as response. Windage, which was one of the most important factors in oil 

spreading and advection, showed a significant effect in the numerical oil trajectory 

modelling.  Ideally, when the simulated result had the best overlap with the observed oil 

coverage, the distance was supposed to be the shortest. But in the calibration, optimal 

parameters were selected in the presence of trade-offs, so the optimal solutions could not 

be achieved for responses R1 and R2 at the same time. As indicated by the results, the DOE 

predicted responses well fitted the results with the optimized parameters in the simulation 

model. Meanwhile, complicated interactions between the parameters in the oil trajectory 

model were found.  

 

4.5 Summary 

 

 

This chapter presented a study for gaining a better understanding of the oil spill simulation 

and particularly the impacts of uncertainties in parameters, and a new DOE aided 

parameterization method for improving simulation performance. The DOE method was 

combined into the GNOME model for the parameters calibration, sensitivity analysis, and 

their interaction analysis in the oil spill model. A set of responses was also proposed for 

facilitating the calibration process. A real case study based on the Terra Nova 2004 oil spill 

was carried out for testing and demonstration. 
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It was found that the DOE aided parameterization method could efficiently identify the key 

parameters and their interactions for the oil spill simulation models. After developing and 

optimizing the regression equations predicted by DOE, the results showed that obtained 

responses closely matched with those achieved from simulations of the numerical models. 

The impacts of individual parameters on the model and the interactions between parameters 

were further discussed.  

 

Due to the incapability of revealing the interactions between parameters, traditional OFAT 

method could ignore the potentially significant variables and their interactive impacts. The 

proposed method which could analyze the interactions between parameters and the 

corresponding responses showed the high value and was strongly recommended for the oil 

spill simulation. 

 

More parameters, such as temperature, salinity, tides and application of dispersants, can be 

considered in the future oil spill modeling studies. The application of the proposed method 

could also be potentially extended to different fate and transport models, in which 

parameter uncertainties and interactions need to be quantified in an efficient way. 

 

 

During the spill events happened away from the coastlines and under harsh environmental 

conditions, more dynamic and effective decision making schemes considering limited 

access time, equipment and man power are much desired. With the application of oil spill 

models, parameters need to be calibrated with historical weather data. This could cost the 

precious recovery time, and affect the accuracy of oil slick movement prediction. In order 
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to shorten the process of preparation and calibration, the choosing of proper simulation 

models and best set of modeling parameters are critical. This study could be of great value 

for oil spill events in the Grand Banks in terms of improving the simulation and prediction, 

and for the researchers and responders in dealing with more efficient spill response in the 

future. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 
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5.1 Summary 

 

 

In the past decades, marine oil spills have led to a growing concern about the increasing 

contamination of oceans and shoreline areas. The petroleum industry worldwide 

maintained a rapid growth due to the continuous exploration of new offshore oil and gas 

fields and technological advancement in drilling and production even in deep waters. The 

close association between oil industry development and economic needs has resulted in the 

increase of offshore petroleum and maritime transit activities, which have increased 

environmental risks posed by potential oil-related accidents. Oil spill modeling for 

response management has been well recognized as a powerful and necessary means. 

Therefore, the development and improvement of spill modeling capability for supporting 

better response decision making are in great demand. 

 

To understand and quantify the physical and chemical processes when oil spills occur in 

harsh marine environments, many studies have been conducted. The presence of low 

temperature, high wave, and strong wind present key challenges for oil spill observation 

and simulation. The oceanic and atmospheric physical variables and chemical and physical 

processes can affect the oil fate and transport significantly. 

 

In the last three decades, the transport and fate processes of oil spills have been well studied, 

and various oil spill models have been developed. No matter where the spill occurs, the 

spill model can be used for the prediction of where the oil is most likely to become and go, 

based on information of ocean currents, winds, and other environmental variables. 



 122 

However, the success of the application depends not only on the weathering and spreading 

formulations in the model, and also on the preparation of input data from the numerical 

models or observation data, and the handling of key parameters and their values, Due to 

the unavoidable errors or inaccuracy in the input data such as wind, wave and currents 

information, parameter uncertainties should be considered more carefully. Therefore, 

parameter calibration, and uncertainty and sensitivity analysis are critical to minimize the 

discrepancy between simulated and observed data and improve modeling performance and 

reliability. 

 

In this research, two widely used oil spill modeling systems, GNOME/ADIOS2 and 

OSCAR, were first compared and evaluated. An oil spill event from the Terra Nova FPSO 

in the Grand Banks in November 2004 was used as a case study. The ocean current fields 

from HYCOM and wind data from NCDC were used to support the modeling efforts. The 

comparison indicated the better results of oil slick transport simulation by GNOME than 

that of OSCAR. On the other hand, more accurate weathering simulation results derived 

from the OSCAR than that of GNOME/ADIOS2. In the harsh environment conditions, it 

was clear that the wind field played a more important role in driving the movement of the 

spilled oil. Consequently, in this case, GNOME/ADIOS2 showed a better overall 

performance than OSCAR. 

A DOE aided parameterization method was developed and combined into the GNOME 

model for the parameters calibration, sensitivity/uncertainty analysis, and their interaction 

analysis in the oil spill modeling process. The results of this method and validation process 

showed a good agreement with the observation by using the Terra Nova spill as case study. 
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The DOE method was proved as a feasible and effective calibration tool for the oil spill 

models.  With the DOE method, better understanding of the impacts of modeling 

parameters and their interactions, and improved performance of spill simulation were 

obtained by using the proposed method.  

In this study, DOE aided method had been proven with the capability of identifying key 

parameters and their interactions for oil spill simulation models efficiently. With the 

development and optimization of regression equations predicted by DOE, responses values 

which matched well with those achieved from numerical modeling simulation could be 

obtained. With the introduction of the DOE aided approach, analyzing uncertainties 

associated with the modeling parameters during offshore oil spill simulation was fulfilled. 

The interactions between wind speed and direction, and the currents analyzed and the 

effects of their interactions were studied. The interactions between parameters, more 

parameters, like temperature, salinity, tides and the application of dispersants could be 

further studied with field trials and field experimental measurements in the future. The 

proposed DOE aided parameterization method could also be potentially extended to 

different oil spill models.  

In order to shorten the process of preparation and calibration processes in real oil spill case 

happened in certain areas, the choosing of models and modeling parameters are critical. 

This study could be valuable for oil spills happened in the Grand Banks area with the 

improvement of the simulation and prediction processes for the researchers and decision 

makers in dealing with spill response. 
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5.2 Research contributions 

 

 

This research has led to following major contributions: 

 

 

1)  The oil spill fate, transport and effect, as well as the modeling methods were 

reviewed in details leading to the discussion on modeling needs and challenges. 

2) Two widely recognized modeling systems, GNOME/ADIOS2 and OSCAR, were 

introduced and compared. Especially through a real spill (Terra Nova spill in 2004) 

case study.  

3) Through the comparison, the capabilities of the two modeling systems in simulating 

oil spills under harsh environmental conditions were evaluated in the first time. 

Providing valuable information for scientific researchers and practical responders 

when applying the models in the future. 

4) A DOE aided parameterization method for analyzing uncertainties associated with 

modeling parameters during marine oil spill simulation was proposed to minimize 

the effects of errors in the input data which derived from the observation or 

meteorological and oceanographic models and the uncertainties in the modeling 

parameters, resulting in significant improvement of modeling performance. 

5) The interactions between key parameters such as wind speed and direction, and 

currents were quantified and their effects on spill simulation were analyzed for 

better understanding of spill modeling mechanisms and influencing factors. 
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5.3 Publications 

 

Paper under preparation 

 

1. Zheng X., and Chen B. (2017). Simulation of marine oil spills and models 

comparison by a case study in the Newfoundland offshore area. Marine Pollution 

Bulletin. (Under preparation) 

2. Zheng X., Wu H.J., and Chen B. (2017). Design of Experiment Aided 

Uncertainty Analysis for Marine Oil Spill Modeling. In: Proceedings of the 40th 

AMOP Technical Seminar on Environmental Contamination and Response, June 

6 to 8, 2017, Alberta, Canada. (Under review) 

3. Zheng X., Wu H.J., and Chen B. (2017). Marine oil spill simulation and 

uncertainty analysis- a case study in the Newfoundland offshore area. Journal of 

Environmental Engineering. (Under preparation) 

 

Refereed Journal Publication 

 

1. Li P., Chen B., Li Z.L., Zheng X., Wu H.J., Jing L., and Lee K. (2014). A Monte 

Carlo simulation based two-stage adaptive resonance theory mapping approach 

for offshore oil spill vulnerability index classification. Marine Pollution Bulletin. 

86(2): 434-442. 
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      Other Refereed Publication 

 

1. Zheng X., Chen B. and Wu H.J. (2014). “Interpolation method and uncertainty 

analysis in oil spilling trajectory model”. The International Society for 

Environmental Information Sciences (ISEIS) 2014 Annual Conference, August 6-

8, 2014, St. John’s, Canada. 

2. Li P., Chen B., Jing L., Li Z.L. and Zheng X. (2013). “A Monte Carlo simulation-

based two-stage adaptive resonance theory mapping model for site classification in 

offshore oil spill and leakage monitoring”, Posters of 4th Annual Arctic Oil & Gas 

North America, April 10-11, St. John’s, Canada. 

3. Li P., Chen B., Jing L., Li Z.L. and Zheng X. (2014). An integrated simulation-

based optimization approach for devices allocation and operation in offshore oil 

spill response. Abstract for oral presentation in the 5th Annual Arctic Oil & Gas 

North America Conference, March 25-27th, St. John’s, Canada. 

4. Li P., Zheng X., Chen B. and Zhang B.Y. (2015). A new simulation-optimization 

coupling approach for offshore oil spill responses. Oral presentation in the 38th 

AMOP Technical Seminar on Environmental Contamination and Response, June 

2-4, Vancouver, Canada. 

5. Chen B., Li Z.L., Ma Y.C. and Zheng X. (2013). “Carbon capture and storage: 

policies and technologies”, Technical report, prepared for the Green Development 

Programme, United Nations Development Programme (UNDP), August 31, 237 

pages. 
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5.4 Recommendations 

 

 

 

1. Three widely used marine oil spill models, namely GNOME, ADIOS2 and OSCAR, 

have been applied in the Terra Nova case to compare and evaluate their capabilities 

under the harsh marine environment. As we notice that different equations of 

spreading were applied in the GNOME and OSCAR, which might lead to the shifts 

in the simulation results. The effects of the different equations will be further 

studied in the future work. 

 

2. A DOE aided parameterization method has been developed for analyzing 

uncertainties associated with the input and modeling parameters during offshore oil 

spill simulation. DOE method has been approved to be a useful tool in the 

uncertainty analysis and calibration in oil spill models. More oil spill models and 

real cases need to be applied to evaluate the capabilities of the proposed method. 

 

 

3. Six parameters have been considered to be important in the calibration method. 

More parameters, such as temperature, salinity, tides and the application 

dispersants can be considered in the future’s work with the proposed method. 

 

4. More complicated oil spill cases, such as the ones with ice covered, with response 

process like booming and skimming, can be considered in the future work to 

improve the applicability and commonality of the proposed method.  
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