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Abstract

In this thesis, a new approach to the extraction of the directional ocean wave

spectrum from bistatic high frequency (HF) radar data is proposed. The proposed

method relies on the simplification of the second-order bistatic radar cross-section,

analogous to the one presented by Shahidi and Gill [1] for the monostatic case, to

facilitate the use of nonlinear optimization methods, such as regularized nonlinear

least-squares.

Initially, the historic development of the techniques related to the extraction of

the ocean wave spectrum from HF radar data is provided in order to contextualize

the work of this thesis. Then, an overview of the theory related to ocean waves and

the bistatic radar cross-section is shown. Later, the nonlinear optimization method

used in this thesis, Tikhonov regularization in Hilbert spaces, is explained, as well as

the theoretical background necessary to understand the method.

Once the theory is laid out, the simplification of the second-order bistatic HF

radar cross section is presented. The simplification consists of a change of variables

that allow the use of the “sifting” property of the Dirac delta function. This reduces

the dependence of the second-order bistatic cross-section to a single variable. After

the simplification process is shown, the methodology for extracting the directional

ocean wave spectrum from bistatic HF radar data is discussed.

As a proof-of-concept, the method is initially applied to the second-order bistatic

cross section, without the presence of noise. The method successfully extracted the

directional ocean wave spectrum without assuming any function model for the non-

directional ocean wave spectrum, and assuming a cosine-power model for the direc-
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tional spreading function.

Next, the first-order bistatic HF radar cross section is added to the second-order

cross section, and the proposed method is applied, still without noise present. The

proposed method was also able to extract the directional ocean wave spectrum and

very low error is added by the inclusion of the first-order cross section.

Finally, different levels of noise are added to the cross section including the first-

and second- orders, and the presented method is applied for the extraction. Again,

the method yields good results, with acceptable levels of error for the different noise

levels.

This new approach to the extraction of the directional ocean wave spectrum from

bistatic HF radar data presents, to the author’s knowledge, the first nonlinear ex-

traction method for bistatic HF radar data. Further developments of the technique,

such as the use of different nonlinear extraction methods, or a general directional

spreading function, are suggested.
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Chapter 1

Introduction

1.1 Research Rationale

In the past decades, there has been a great focus given to the study of the ocean

surface. Efforts to advance this topic have been driven by groups in different indus-

tries, such as scientists interested in the behaviour of the ocean surface, government

entities interested in monitoring resources and detecting threats in their sovereign

waters, and companies involved in navigation, or in the exploration and development

of ocean-related renewable and non-renewable resources. As these industries develop,

the demand for accurate information about the upper ocean increases, leading to

new technologies and instruments applied to the assessment of and the gathering of

different measurements from the ocean surface. Among these measurements, the di-

rectional ocean wave spectrum is the one that most thoroughly describes the ocean’s

behaviour.

One of the main features of the ocean surface is its inherent randomness, which im-
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plies that stochastic analysis must be applied to understand and predict its behaviour.

Furthermore, the periodicity of the ocean surface also suggests the use of frequency-

domain techniques, of which spectral analysis is the most widely used. Stochastic

spectral analysis can deal with the distribution of energy in different frequencies and

directions, which makes it suitable for ocean surface mapping. The directional ocean

wave spectrum, is the most holistic measurement in the study of the upper ocean, and

other measurements such as significant wave height, peak wave period, and dominant

wave direction can be determined from it. However, obtaining such a measurement

is not an easy task.

Different instruments, such as wave buoys, current meters, and pressure sensors,

are used for ocean surface measurements, while wind information over the ocean, such

as speed and direction, is collected by anemometers installed on ships and buoys [5].

These instruments provide direct measurements of the quantities in question, which

makes their information easy to interpret. Despite this, excepting ship anemometers

and current drifters, these instruments share the disadvantage of being only able to

collect information from the point at which they are installed. This makes mapping

large regions of the ocean with these instruments a costly procedure.

Due to the high costs involved in mapping the ocean surface using the aforemen-

tioned instruments, over the years, the use of remote sensing for this purpose has

increased to deal with the high expense associated with other methods. Microwave

radars have been extensively used and methods to extract ocean information such

as dominant wave direction, wave periods and spectral shape have been developed.

The underlying physical mechanism of oceanographic radar applications relies on the

fact that electromagnetic waves will, at grazing incidence, primarily interact with
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ocean waves having wavelengths that are half the length of the radar’s wavelength

— a process known as Bragg scattering. Considering that microwave radars operate

in wavelengths ranging from 0.1 cm to 100 cm, they will mainly interact with short

ocean waves, which carry a small fraction of the energy of the wave field, that is con-

centrated over ocean waves of decametric wavelengths. Since the interaction between

short and long waves is a complex process, the inference of the ocean wave spectrum

by exploring the relationship between short and long waves is a difficult task.

High-frequency (HF) radars bring the inherent advantage of interacting with de-

cametric wavelength ocean waves, since their operating frequencies range from 3 MHz

to 30 MHz, which allows them to take advantage of Bragg scattering. Also, HF radars

are easily steerable and have the capacity to make over-the-horizon measurements,

either by ground or by sky wave propagation, allowing measurements at distances as

far as 300 km from the source of the transmission in ground wave, or 3000 km in

sky wave propagation. Combining these characteristics, HF radar presents itself as a

useful instrument to observe the ocean surface.

HF radars in radio oceanography are presented in one of the following configu-

rations: monostatic and bistatic. The difference between these configurations lies in

the distance between transmitter and receiver, compared to the distance to the scat-

tering patch. In a monostatic configuration, the distance between transmitter and

receiver is much smaller than the one between them and the scattering patch (i.e. the

transmitter and receiver are essentially co-located), while in a bistatic configuration,

the distance between receiver and transmitter is comparable to the one to the scat-

tering patch [6], although there is still a discussion in the scientific community as to

a precise definition of the term “comparable distance” [7]. This difference between a
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(a) Monostatic Configuration (b) Bistatic Configuration

Figure 1.1: Different radar configurations used for HF radars in radio oceanography

bistatic and a monostatic configuration can be observed in Figure 1.1, where ρ01 is

the vector between transmitter and the first scatter, and ρ0n is the distance between

the nth scatter and the receiver. Each of these configurations has its advantages and

disadvantages.

One phenomenon in radio oceanography that affects the quality of the signal is di-

rect communication between transmitter and receiver. This generates a sharp peak at

zero Doppler shift, obfuscating information coming from the scattering patch. Direct

communications are more likely to occur with radars in a monostatic configuration

due to the proximity of the transmitter to the receiver.

Another advantage of a bistatic configuration over a monostatic one is the re-

duction of costs in building dual radar systems. HF radars, either in monostatic or

bistatic configurations, can only obtain the magnitude of the angle in which the ocean
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waves are travelling. This introduces an ambiguity in the directional characteristic

of the ocean wave spectrum to be extracted from radar data. This problem can be

overcome by the use of dual radar systems, meaning that two radars will be looking at

the same patch of the ocean. In a monostatic configuration, two complete radars —

including transmitter and receiver — would be necessary to implement this system,

while in the bistatic case, only a second receiver would suffice. Therefore, a dual

bistatic radar is more cost-effective than a dual monostatic.

While remote sensing instruments retrieve information over a broad swath of the

ocean, the measurement of sea surface quantities relies on extraction techniques that

are often mathematically complex or dependent on approximations that affect the

accuracy of the results. The mathematical complexity of the extraction of ocean

information from radar data comes from the formulation of the electromagnetic scat-

tering process. In a bistatic configuration, this formulation is even more intricate,

due to the elliptical coordinate analysis that is required in these systems. To simplify

the extraction process, linearizations are often applied to the scattering expressions,

which could potentially affect the accuracy of the results. Therefore, there is a de-

mand for new ocean measurement extraction techniques from HF radar data that

preserve the nonlinearity of the system and increase measurement accuracy.

This thesis proposes a new approach to the extraction of directional ocean wave

spectra from bistatic HF radar data. This new method preserves the nonlinear charac-

teristics of the cross section equations and further simplifies them to a single nonlinear

Fredholm integral equation of the first kind, which is solved by nonlinear least-squares

optimization. This inversion technique has been presented by Shahidi and Gill [1] for

the monostatic case. Here the technique is generalized to a bistatic radar configura-
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tion. The inclusion of first-order scattering in the inversion problem is also considered

in this thesis. Since the extraction of the ocean wave spectrum is an ill-posed prob-

lem, a regularization technique should be used to improve convergence. Moreover,

a smoothness constraint is introduced due to the natural smoothness of ocean wave

spectra in the wavelengths that interact with the HF radar. Due to the unavailabil-

ity of bistatic data to validate the method at the time this thesis was written, the

technique was validated using noise-contaminated synthetic data.

1.2 Literature Review

Interactions between radio and ocean waves were initially reported during World War

II, when radars were first employed at sea. The influence of the sea surface could be

noticed in both microwave and high-frequency radars. Since the main purpose of these

systems was target detection, this influence was referred to as “sea clutter”. As the

name suggests, the early efforts of radio scientists in this topic were directed towards

the removal of clutter, while mathematicians and physicists were interested in the

mechanisms that produced the interference. Scientists, such as Feinberg [8], Blake

[9], and Rice [10], investigated electromagnetic propagation across rough surfaces, but

their work was largely ignored by the radar community until 1955.

At the same time, physical oceanographers were interested in the problem of fore-

casting the ocean surface. Kinsman [11] offered a concise summary on the evolution

of the wave forecasting problem until 1965. Of course, determining details of the

directional ocean wave spectrum forms an important part of wave forecasting. Later

developments on the topic were discussed by Massel [12]. According to Kinsman,
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Pierson introduced the concept of stochastic spectral analysis to oceanography. After

communications with Tuckey, Pierson had the idea of applying spectral analysis, a

statistical method which up to that time had been applied by communication engi-

neers to random signals, to the motion of the ocean surface. His first ideas on the topic

were summarized in a two-volume report [13] published in 1952. In the same year,

Neumann [14] published expressions relating the mean wind and the wave energy.

In 1953, Eckart [15] presented the acoustic scattering cross section of the sea

surface as a function of the spatial spectrum of the surface waves, alluding to the

possibility of obtaining the spatial spectrum of the ocean surface from this cross

section. Since Eckart did not mention Pierson in his paper, this leads to the conclusion

that he independently came up with the idea of using spectral analysis to understand

the ocean surface contemporaneously. However, Eckart mentioned the difficulty of

changing the directional parameter and frequency of the acoustic instrument as the

main drawbacks on the suggestion to obtain the directional ocean wave spectrum.

Based on Eckart’s work, in 1954 Cox and Munk [16] presented what is possibly the first

attempt to obtain sea surface spectral measurements using electromagnetic remote

sensing devices — in this case, aerial photographs. In 1960, Cote et al. [17], in a report

by the Stereo Wave Observation Project (SWOP), having Pierson as one of its group

members, obtained directional wave spectra using stereo photographs. Clearly these

attempts to assess the ocean surface used the visible part of the electromagnetic

spectrum. Later, based on the observations by Moskowitz et al. [18] and on the

similarity theory of Kitaigorodskii [4], Pierson and Moskowitz [19] derived their ocean

wave spectrum model that would later become known as the Pierson-Moskowitz (PM)

spectrum. In the following years, several physical oceanographers proposed different
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spectral models for the ocean surface, accounting for different ocean conditions. These

models are summarized by Massel [12].

The use of HF radars in oceanographic observations was only considered after

Crombie [20] published a paper in which he described an experiment conducted at the

Dominion Physical Laboratory in New Zealand. Crombie observed that the peaks in

the Doppler radar spectrum produced by reflections from the ocean surface occurred

at frequency shifts that could be predicted by Bragg’s law — in other words, the

ocean surface acts as diffraction gratings to the electromagnetic waves. These peaks

were then called “Bragg peaks”, after the physical law that predicts their positions

in the Doppler spectrum. The results obtained by Crombie were later confirmed by

Wait [21], who also noticed that the intensity of the peak was proportional to the

height of the waves that reflected them.

One of the most important contributors to the theory and application of HF radars

in oceanographic measurements is Dr. Donald Barrick. In 1970, after expanding Rice’s

perturbation theory [22, 23] and working on radar signal distortions due to volume

and surface scattering [24], Barrick [25, 26, 27] applied perturbation theory to the

propagation of electromagnetic waves of decametric wavelength — in other words, in

the high-frequency region.

Based on Barrick’s research, efforts on different fronts were made to devise a

technique to extract the ocean wave spectrum from HF radar Doppler data. Munk

and Nierenberg [28] observed that the cross section proposed by Barrick in [25] was

related to Phillip’s saturation constant, a feature of the nondirectional ocean wave

spectrum. In this paper, they speculated on the use of HF radar to obtain the direc-

tional information of the ocean wave spectrum. In 1971, Hasselmann [29] suggested
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that the Doppler spectrum sidebands related to second-order interactions would be

proportional to the nondirectional ocean wave spectrum energy. Then, in 1972, Bar-

rick devised the formulation for the first- [30] and second-order cross sections [31],

where a clear relationship between the ocean wave spectrum and the radar received

signal was presented. After Barrick and Snider [32] studied the statistics of the ocean

wave spectrum, Barrick considered the extraction of ocean wave information. This

resulted in publications on the extraction of wave parameters [33], and the nondirec-

tional wave spectra [34] from the second-order cross section, following Hasselmann’s

insights. In the same year, Lipa [35] proposed a technique to extract the directional

ocean wave spectrum by inverting Barrick’s second-order cross section, where she used

a linearization technique to convert the integral equation to a linear system. Her the-

oretical work was confirmed in 1978 using real HF radar data [36]. In the following

years, Lipa partnered with Barrick and produced several papers on the topic [37–39],

and together they founded CODAR (Coastal Ocean Dynamics Applications Radar)

Ocean Sensors, Inc. with colleagues from the National Oceanic and Atmospheric

Administration, in the United States.

In 1984, Srivastava [40] developed the formulation for the first- and second-order

radar cross sections using Walsh’s theory [41] which was based on generalized func-

tions. Srivastava’s formulation for the first-order cross section matched the one pre-

viously devised by Barrick, however, his second-order formulation also accounted for

off-patch double scattering, as well as wave-wave and field-wave interactions covered

in Barrick’s theory. A summary accounting for different approaches to the scattering

of electromagnetic waves across rough surfaces can be found in [3].

Later, in 1986, Wyatt et al. [42] and Wyatt [43] proposed a new method to extract
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the ocean wave spectrum from HF radar data, extending a model-fitting technique

proposed in a report by Lipa and Barrick [44]. By using this technique, the measured

data were matched with a number of simulated Doppler spectra for different sea

conditions. In 1990, Wyatt published a method in which she extended the Chahine-

Twomey relaxation method [45, 46] to extract the directional ocean wave spectrum

from radar data using Barrick’s equations to describe the scattering. To obtain the

directional characteristics of the spectrum without the inherent left-right ambiguity

present in single-radar systems, Wyatt used a dual monostatic HF radar system,

which allowed a more accurate result.

Using Barrick’s cross section formulation, in 1990 Howell [47] developed an algo-

rithm to extract ocean wave information from data obtained from single, or multiple

narrow beam HF radar systems. Howell’s algorithm was then adapted by Gill [5] to

extract the ocean wave spectrum from wide-beam HF radar data. In 1993, Howell and

Walsh [48] presented the technique in a paper, where they applied the algorithm to

both the Barrick and Walsh et al. [49] cross section estimates. The technique returned

better results with Walsh and Howell’s estimates, confirming the model obtained by

Walsh’s generalized function technique.

The first author to approach ocean spectrum extraction without applying any

linearization technique was Hisaki [50]. Hisaki used an optimization technique to

invert the integral equation in Barrick’s cross section, to which some constraints

were applied due to the ill-posedness of the problem. Later research from Hisaki has

expanded his nonlinear ocean wave spectrum extraction technique, and applied it to

multiple radars [51–56].

A more recent approach to the extraction problem was proposed by Shahidi and
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Gill [1], where the second-order cross section formulation presented by Howell and

Walsh [48] was further reduced to a single-integral nonlinear Fredholm equation of

the first kind, to which optimization techniques were applied to perform the inversion

and obtain the directional ocean wave spectrum. The method has been validated

using real data, which confirms the feasibility of the method [57], and additionally,

a mathematically exact solution to the extraction of the nondirectional ocean wave

spectra has been developed [58].

The developments reviewed to this point in this work, however, only accounted

for the use of monostatic HF radar systems, not involving the bistatic configuration.

Early works on the use of bistatic radars were presented by Pidgeon [59, 60], where he

considered the use of the bistatic configuration for both aerial and satellite observa-

tions, and developing the cross section for the aerial case. According to Teague et al.

[61], the first efforts to implement a bistatic HF surface-radar system came in the late

1960’s, in a collaboration between Peterson, Munk and Nieremberg. Peterson would

later collaborate with Teague and Tyler in order to conduct experiments that would

lead to the first measurements of the directional ocean wave spectra for swell [62].

Further observations by Teague [63] concluded that a more refined, multifrequency

experiment would be necessary to obtain a directional ocean wave spectrum for the

local sea. Later, Barrick [64] explored the theory for the bistatic HF radar cross

section, analyzing different radar configurations such as coast-coast, buoy-coast, and

buoy-satellite. His studies of the bistatic configuration led to the development of the

cross sections for bistatic radar configurations [31]. In the latter work, Barrick men-

tions a report by Nierenberg and Munk [65], in which a bistatic observation technique

for the ocean wave spectrum in ocean wave number space was proposed. However,
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due to the ubiquity of the monostatic radar for HF ground wave propagation, research

on the bistatic case has not evolved at the same pace.

In 1999, Gill [3] presented the first- and second-order cross sections using theWalsh

generalized function approach, later published by Gill and Walsh [66]. This research

also led to further refinement of the generalized function approach, where Walsh and

Gill [67] obtained more detailed expressions for the first three orders of the electric

field in backscatter mode. Zhang and Gill [68] extracted the nondirectional ocean

wave spectra by applying Howell’s algorithm to the bistatic cross section formulation

developed by Gill, obtaining results comparable to the monostatic case. This method,

as explained, relied on linearizations to proceed with the inversion. To the author’s

knowledge, until now a nonlinear extraction method has not been devised for the

extraction of directional ocean wave spectra from bistatic HF radar data.

1.3 Scope of the Thesis

As briefly explained in the end of Section 1.1, a nonlinear approach to the directional

ocean wave extraction from bistatic HF radar data is proposed. This technique is

founded on the work by Shahidi and Gill [1], where a change of variables is applied

to reduce the monostatic second-order cross section expression. To contextualize

the present research, this first chapter introduces the motivation for this work, and

presents an overview of the state of the technology and the evolution of the extraction

techniques.

In Chapter 2, the basic theoretical information required to understand the work

of the thesis is presented. The main goal of the second chapter is to familiarize the
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reader with the topic, introducing the mathematical concepts behind the next steps

of the thesis. In order to introduce the measurement to be extracted, the basics of

ocean wave generation and ocean wave spectrum model are discussed. Later in this

chapter, the bistatic radar cross section equations are detailed and the scattering

mechanisms involved are discussed.

Chapter 3 introduces the nondirectional ocean wave spectrum extraction tech-

nique from the bistatic second-order cross section, previously applied in [1] to the

monostatic case. The extraction process is based on a simplification of the second-

order bistatic cross section obtained by Gill and Walsh [69]. The process involves

a change of variables to a domain that allows the simplification of the second-order

cross section by applying the sifting property of the Dirac delta function. This chap-

ter also explores particulars of the bistatic geometry that impact the simplification

process. The extraction technique is then presented. This involves a discussion of

the extraction methodology and the presentation of results for the noiseless case. In

this work, the Longuet-Higgins directional factor is assumed for the extraction, but

no specific model is assumed for the nondirecitonal spectrum. A good level of accu-

racy is achieved in the extraction. This provides a proof-of-concept for the technique,

which is necessary before proceeding to a more complex situation, where not only the

second-order cross section, but also first-order interactions and noise are considered.

The objective of Chapter 4 is to apply the method to a more realistic situation,

where both first-order peaks and noise are present. First, the method is applied to

the cross section including first- and second-order scatterings, but without any noise.

Then, white Gaussian noise is added to the received radar signal in the time domain.

After obtaining the noise-contaminated power spectral density, the extraction method
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is applied. A fair level of accuracy is obtained, even in extremely noisy scenarios.

In Chapter 5, the conclusions of the research presented in this thesis are summa-

rized. Also, further work on the topic is suggested.
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Chapter 2

Theoretical Background

2.1 Introduction

The main goal of this chapter is to provide fundamental information regarding both

the ocean wave spectrum and the bistatic radar cross section of the ocean surface.

These are central topics in the discussions of this thesis.

Before considering the fundamentals of the ocean wave spectrum, the basic under-

lying mechanisms of ocean wave generation need to be understood. By understanding

the types of waves and how they are generated, the reader will be familiarized with

the types of waves HF radars interact with. Then, the ocean wave spectrum can be

studied in both its non-directional and directional characteristics, and a model for

each of them may be presented.

Once the fundamentals of the ocean wave spectra are known, the bistatic radar

cross section is presented. First, the geometry of this radar configuration is presented,

as well as how this configuration affects the scattering and, consequently, the received
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radar information. Then, the cross sections for the first two orders of scattering

are presented. These cross sections are central to the thesis, since it is from these

equations that the ocean wave spectrum can be extracted.

2.2 Ocean Waves

2.2.1 Ocean Wave Classification

As stated by Massel [12], the ocean and atmosphere form a coupled thermodynamic

system, exchanging mass, energy and momentum on their interface. This implies

that any forcing of one fluid over the other will generate a response that will change

the interfacial conditions of the system. In the case of the ocean-atmosphere system,

waves are the responses from the ocean due to external forces.

According to Kinsman [11], there are several ways to classify ocean waves. One

method, presented by Munk [2] and similar to the one presented by Kinsman, clas-

sifies waves according to their periods, or, reciprocally, their frequencies. In this

classification, there are seven types of waves: capillary, ultra-gravitational, ordinary

gravitational, infra- gravitational, long-period, ordinary tide and transtidal waves.

Figure 2.1 shows the relative energy distribution of each class of waves, as well as

their period bands.

As explained, for example, by Kinsman [11], in general, ocean waves are disper-

sive. This means that the phase velocity of these ocean waves will be dependent

on their wavelengths. This establishes a relationship between angular frequency and

wavelength of the waves, known as the dispersion relation. Knowing the dispersion
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Figure 2.1: Classification of ocean waves according to wave period, with relative

energy amplitude and generating forces for each type of wave. Adaptation from

original by Munk in [2]

relation for ocean waves, it is possible to infer their wavelength if their period is

known. As described, for example, by Phillips [70], the dispersion relation of ocean

surface waves can be written as

ω2 = gK

(

1 + γ
K2

g

)

tanh(Kh), (2.1)

where g is the acceleration due to gravity, K is the magnitude of the ocean wave’s

wave-number, ω is the angular frequency of the ocean wave, γ is the ratio between

the surface tension and water density, and h is the depth of the ocean.

Observing (2.1), a balance between the terms of the sum in parentheses can be

identified. At wave-numbers K <
√

g
γ
, the restoring force for the ocean wave is

predominantly gravitational, whereas for waves with K >
√

g
γ
the restoring force is
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primarily surface tension. This description matches with the proposed classification in

Fig. 2.1, where the first case comprises the waves known as gravitational (or gravity)

waves, while waves in the second case are classified as capillary waves.

Another classification can be made regarding the hyperbolic tangent in (2.1). From

its argument, waves can be classified according to the relationship between depth and

wave-number, or alternatively, wavelength, since K = 2π
λ
, where λ is the wavelength

of the ocean wave. When Kh >> 1, in other words, if the water depth is much larger

than the wavelength, the waves are called deep water waves. Conversely, if Kh ≈ 0,

this means that the depth is much smaller than the wavelength, therefore these waves

are called shallow water waves. If neither of these conditions is satisfied, the wave is

said to be of intermediate depth.

Throughout this thesis, the considered scenario is of deep water gravity waves.

Mathematically, this situation can be described as K <<
√

g
γ
and Kh >> 1. As-

suming both conditions, (2.1) can be rewritten as

ω2 = gK. (2.2)

This is an important condition, since most of the energy in the ocean surface is

concentrated in this wave class. From a wavelength-wave period perspective, (2.2)

can be rewritten as

λ =
g

2π
T 2, (2.3)

where T is the wave period. Taking the relationship described by (2.3) and comparing

to the wave periods in the classification proposed by Munk and expressed in Fig. 2.1,

it may be inferred that deep water gravity waves have wavelengths between 1.56

and 1405 m. As a matter of comparison, HF radars, depending on their operating
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frequency, have transmission wavelengths between 10 and 100 m, while microwave

radars have wavelengths between 25 mm and 30 cm, which are comparable at the

lower end to capillary waves. Given the Bragg scattering mechanism, alluded to in

Section 1.1, the HF radar is much better equipped to measure ocean surface gravity

waves, as compared to microwave radars.

As can easily be observed, waves with different wavelengths coexist in a wave

field, often being superimposed and usually transferring energy between themselves.

Also, a wave field is not independent of its surroundings or of waves generated by

previous or distant winds. Therefore, another classification arises, with these waves

being either classified as sea or swell.

A wave system can be classified as a sea if the waves are generated by local winds.

However, when these waves gain enough energy to move out of their original wave

fields, they are classified as swell. Swell usually has longer wavelengths compared to

local seas, and sea waves travel on the top of swells. Understanding the difference

between sea and swell is important to comprehend the terminology used in wave fore-

casting. For example, the expression “sea-state” refers to waves that were generated

by local winds, and does not consider swells.

Ocean waves are also classified according to their generating or restoring forces.

Massel [12] presents six classes of waves with respect to their generating/restoring

forces:

• Sound waves, generated by the compressibility of the fluid. In the case of

the ocean, sea water is often considered an incompressible fluid or as having

extremely low compressibility values. Therefore, ocean sound waves are very
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small and are usually neglected.

• Capillary waves that, as previously explained, have surface tension as their

restoring force. As explained, for example, by Lamb [71], the maximum wave-

length for a capillary wave is 1.73 cm.

• Surface gravity waves that, as their name suggest, are gravity waves that

occur on the surface. This is the type of wave that was previously explained in

Munk’s classification.

• Internal gravity waves, are gravity waves that happen at the interface of

stratified fluids, such as sea water. The stratification happens due to differences

in density inside the fluid. More information on internal waves can be found in

Cushman-Roisin and Beckers [72].

• Planetary waves, generated by the equilibrium of the potential vorticity due

to changes in depth and latitude. These waves are also known as Rossby waves.

This class of waves, as well as other types that depend on the Earth’s rotation,

can be found in Chapter 9 of the book by Cushman-Roisin and Beckers [72].

Alternatively, Fig. 2.1 presents another classification according to the generating

forces, showing the overlap with the classification according to the wave period. In

the case of surface gravity waves, wind and gravity are the main forces involved in

their generation and restoration processes.
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2.2.2 Wind Wave Generation and Development

One important topic regarding ocean surface gravity waves is the process of wave

generation. As previously stated, different types of waves are generated by different

forces and phenomena, such as gravitational fields for tide and transtidal waves, or

storms and earthquakes for long period waves. In the case of surface gravity waves,

the wind plays the key role in their generation, while gravity acts as a restoring force.

According to Phillips [70] and Massel [12], the development of a more widely

accepted wind wave generation theory came in the 1950’s, especially after the publi-

cation of two papers, one by Phillips [73], and another by Miles [74], both published

in 1957 in the Journal of Fluid Mechanics. Even though the research behind these

papers was developed independently, the two proposed mechanisms are in fact com-

plementary and are also referred to as the Phillips-Miles mechanism.

The Phillips-Miles mechanism can be described in a thought experiment, in which

each part of the theory can be understood. At first, a flat air-sea interface, without

any perturbation from each of the fluids is considered. If pressure variations are

introduced into the atmosphere and transmitted to the air-sea interface, these pressure

variations will resonate on the interface itself, due to the fact that this is a coupled

thermodynamic system. These pressure variations cause small ripples in the ocean

surface as a response to the initial pressure variations. This process is known as the

Phillips’ resonance mechanism.

Phillips’ theory can successfully explain the initial growth of the waves, but cannot

describe their further growth properly. The waves described by Phillips’ theory are

most likely capillary waves, and would propagate and dissipate through the ocean
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surface using its surface tension if these pressure variations were to cease. However,

if a parallel shear flow is applied over the rippled surface, energy will be transferred

from the wind to these small ripples at a much higher rate than Phillips’ theory would

predict. The waves affected by this parallel shear flow would rapidly grow in size and

speed, which would change their restoring forces from surface tension to gravity, as

indicated by (2.1). The process responsible for wave growth due to a shear wind flow

is known as Miles’ shear flow mechanism.

From observations such as the ones made by Elliott [75] and Hasselmann et al. [76],

it is possible to see that in some cases, waves travel faster than the wind that generated

them. According to Stewart [77], this is due to nonlinear interactions between waves

in the wave field. Some theories were developed on how this nonlinear interaction

happens, and some of them are explained in Chapter 13 of [11], or, more recently, in

section 6.2.2 of Massel [12] for deep water waves. One of the explanations is presented

by Hasselmann [78, 79, 80] , arguing that one of the nonlinear processes that occurs

between ocean waves is the energy transfer from shorter to longer waves. Stewart [77]

shows, using the model presented by Pierson and Moskowitz [19], that waves with

the highest energy in a wave field travel at phase speeds 14% higher than the wind

speed blowing at 19.5 m from the ocean surface. These waves, however, cannot grow

indefinitely. As described by Massel [12], when waves meet some criteria, such as

their wave height to wavelength ratio reaching 1/7 or their particle velocity at the

crest being equal to the wave phase speed, they start to destabilize, becoming what

are known as breaking waves. The detailed theory on how and when the waves break

can be found in Massel [81].

What was presented in this section is merely an outline of the Phillips-Miles theory
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with some additions, presented in order to familiarize the reader with the underlying

mechanisms of the object of study, necessary to understand further observations in

both the ocean wave spectrum and in the HF radar mapping of the ocean surface.

However, the purpose here has not been to present the mathematical development

of the theory, but simply to provide a more intuitive approach. A more detailed

explanation, as well as the more recent additions to the theory, can be found in the

work by Massel [12].

2.2.3 The Ocean Wave Spectrum

As mentioned in Section 1.1, the directional ocean wave spectrum is one of the most

holistic measurements of the ocean surface. While observing a given wave field,

particular waves in it will have different wavelengths that will be superimposed and

interacting with each other. Due to the obvious difficulties of measuring each wave

in a given field, spectral analysis will give more detailed information, such as the

energy of waves at a given wavelength, and the direction in which these waves are

propagating.

Consider the sea surface displacements from the mean level ξ(r, t), where r is a

spatial vector in the horizontal plane defined as r = (x, y) = x̂i + yĵ = r θr and the

wave-number vector is defined as K = (Kx, Ky) = Kx̂i + Ky ĵ = K θK. Assuming

that the dispersion relations derived in Section 2.2.1 hold, it is possible to define a

stochastic process A(ω, θK), such that

ξ(r, t) =

∫ ∞

−∞

∫ π

−π

exp[j(K · r+ ωt)]dA(ω, θK). (2.4)

This expression is analogous to the one presented by Pierson [13]. From Equa-
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tion (2.4), the autocorrelation of sea surface displacements can be written in its

simplified form as [12]

R(∆r, τ) =

∫ ∞

−∞

∫ π

−π

exp[j(K ·∆r + ωτ)]Ψ̂(ω, θK)dωdθK, (2.5)

where Ψ̂(ω, θK) is the frequency-dependent directional spectral density function of the

surface waves, also known as the frequency-dependent directional ocean wave spectrum,

and ∆r = (∆x,∆y).

Clearly the directional ocean wave spectrum in Equation (2.5) is dependent on

both direction and frequency of the ocean waves. Another common way to express

the directional ocean wave spectrum is with respect to wave-number. For deep water

gravity waves, where the dispersion relation is given by (2.2), the autocorrelation

function with respect to the wave-number directional ocean wave spectrum Ŝ(K, θK)

is given by [12]

R(∆r, τ) =

∫ ∞

−∞

∫ ∞

−∞
exp[j(K ·∆r +

√

gKτ)]Ŝ(K)dKxdKy

=

∫ ∞

−∞

∫ π

−π

exp[j(K ·∆r+
√

gKτ)]Ŝ(K, θK)KdKdθK.

(2.6)

By observing (2.5) and (2.6), it is possible to deduce a relation between Ψ̂(ω, θK)

and Ŝ(K, θK). Since frequency and wave-number are related by the dispersion rela-

tion, (2.2) can be used to deduce the relationship in the case of deep water gravity

waves. From (2.2),

KdK = 2
ω3

g2
dω, (2.7)

which implies that

Ŝ(K, θK) =
g2

2ω3
Ψ̂(ω, θK). (2.8)
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2.2.3.1 Non-Directional Ocean Wave Spectrum and Directional Factor

In most cases, it is desirable to analyze the power density spectral information inde-

pendent of the direction to which the waves are propagating, for example in the case

of single point measurements. Considering the autocorrelation function R(∆r, τ) of

a single point, i.e. making ∆r = (0, 0),

R(τ) =

∫ ∞

−∞

∫ π

−π

Ψ̂(ω, θK)e
jωτdωdθK (2.9)

If ω is considered independent of the wave direction θK, the expressions for the

directional spectra can be written as

Ψ̂(ω, θK) = Ψ̃(ω)D(θK) (2.10)

where Ψ̃(ω) is the non-directional ocean wave spectrum and D(θK) is the directional

spreading function, or directional factor.

The directional spreading function is chosen such that,

Ψ̃(ω) =

∫ π

−π

Ψ̂(ω, θK)dθK.

This expression implies that

∫ π

−π

D(θK)dθK = 1,

a fundamental characteristic of the directional spreading function.

Substituting (2.10) in (2.9), and integrating over wave direction, the autocorrela-

tion expression becomes

R(τ) =

∫ ∞

−∞
Ψ̃(ω)ejωτdω. (2.11)
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From this expression it is possible to conclude that the autocorrelation function at

a single point and its frequency-dependent non-directional ocean wave spectrum are

Fourier transform pairs. Therefore, the ocean wave spectrum of a single-point mea-

surement can be determined by the Fourier transform of the autocorrelation function.

That is

Ψ̃(ω) =
1

2π

∫ ∞

−∞
R(τ)e−jωτdτ. (2.12)

Since the directional spreading function is the same for both the frequency-dependent

and the wave-number directional ocean wave spectra, (2.8) can be rewritten as

S̃(K) =
g2

2ω3
Ψ̃(ω).

By using this relationship, it is possible to obtain the non-directional wave-number

ocean wave spectrum. It is important to note, however, that from a property of

the Fourier transform, Ψ̃ and S̃(K) are even functions. Due to their symmetry,

these functions are called symmetric ocean wave spectra. These expressions are more

commonly used in theoretical considerations [11, 12], while in practice, non-symmetric

ocean wave spectra are more commonly used. These spectra are defined as

Ψ(ω) =



















2Ψ̃(ω), ω ≥ 0

0, otherwise,

(2.13)

and

S(K) =



















2S̃(K), K ≥ 0

0, otherwise.

(2.14)

Throughout this thesis, the reader will find Ŝ(K, θK) being referred to simply as

the “directional ocean wave spectrum”, or S(K) as the “non-directional ocean wave
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spectrum”. Terms such as “wave-number” and “non-symmetric” will be dropped

from now on to facilitate the writing. However, all results herein presented can be

easily converted to a frequency-dependent directional ocean wave spectrum.

2.2.3.2 Spectral Moments and Traditional Meteorological Measurements

With regards to the non-directional ocean wave spectrum, spectral moments are very

important measurements. The rth-moment of the spectrum is defined as

Mr =

∫ ∞

0

ωrΨ(ω)dω (2.15)

Using (2.2) and (2.8) in (2.15), the form the spectral moments for the wave-number

spectrum can be written as

Mr = (
√
g)r
∫ ∞

0

(√
K
)r+2

S(K)dK. (2.16)

One spectral moment of particular interest is the zero-moment of the spectrum. It

can be understood as the variance of the ocean wave spectrum [12], and it is important

for some measurements of the ocean behaviour. Making r = 0, the variance of the

ocean wave spectrum can be written as

Var[S(K)] =M0 =

∫ ∞

0

KS(K)dK. (2.17)

The zero-moment of the spectrum is particularly important because, by using it, it

is possible to obtain the significant wave height of a patch of the ocean.

The significant wave height H1/3 is one of the measurements used in a more tradi-

tional approach to physical oceanography, such as peak wave period, and mean wave

direction. The significant wave height is defined as the height of the highest 1/3 of
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the waves, and in the past it was empirically obtained [77]. Later, however, a more

theoretical method to obtain the significant wave height was developed. By using the

variance of the spectrum, H1/3 can be defined as

H1/3 = 4
√

M0 = 4

√

∫ ∞

0

KS(K)dK = 4

√

∫ ∞

0

Ψ(ω)dω. (2.18)

Other traditional measurements that can be obtained from the non-directional

ocean wave spectrum are the mean and peak wave periods. The mean wave period

T can be easily calculated using the spectral moments:

T = 2π
M0

M1
. (2.19)

As for the peak wave period, it is necessary to know the frequency, or the wave-

number of the spectrum peak, respectively ωp and Kp. Once this peak is identified,

the peak wave period Tp can be calculated as

Tp =
2π

ωp

=
2π

√

gKp

(2.20)

The last of the mentioned physical oceanography measurements used to describe

wave fields is the mean wave energy direction. The mean wave energy direction θ̄, or

simply mean wave direction, as the name suggests, is the mean direction in which the

waves are propagating. In some conditions, this mean wave direction can be taken to

approximate the direction in which the wind is blowing.

2.2.3.3 Spectral Models

Even though several factors contribute to the generation and development of a wave

field, the overall shape and properties of ocean wave spectra are not entirely random.
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Massel [12] provides a summary of such characteristics, such as a distinct peak, with

the spectrum decreasing to both sides, but faster towards the lowest wave-numbers.

The location and height of the peak are related to the amount of energy that is

provided to the spectrum.

The spectral region farther from the peak and towards higher wave-numbers is

known as the saturation range. Within this range, the ocean wave spectrum follows

an inverse fourth- [82] or fifth-order [70] decay. The saturation range indicates a

balance between the input energy to the wave field — in this case, the wind — and

dissipative mechanisms, such as the breaking of the waves. Section 3.2.2 of Massel

[12] deals with the saturation range in more detail.

Due to the generally well-defined shape of the ocean wave spectrum, many math-

ematical models have been developed in order to describe the spectral distribution

of the ocean waves. Among these models, the Pierson-Moskowitz (PM) model [19] is

one of the most commonly used. Here, a brief explanation of the PM model will be

given. Other spectral models can be found in Massel [12].

Regarding the shape of the directional spreading function, however, not much

is known as compared to the non-directional spectrum. However, this shape can

be described by four main types of functions: cosine-power, hyperbolic functions,

exponential and double peak models. Among the cosine-power models, the Longuet-

Higgins spread function [83] is one of the most well known. Later in this section a

short description of this model will be given. Similar to the non-directional spectral

models, other models can be found in Massel [12].
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Pierson-Moskowitz Model The Pierson-Moskowitz spectral model, also referred

as the PM spectrum, along with the JONSWAP spectrum proposed by Hasselmann

et al. [76], is one of the most famous spectral models in its field. As the title of

the report in which it was first published suggests, the similarity theory of S. A.

Kitaigorodskii [4] is one of the key elements of this spectral model.

In his paper, Kitaigorodskii proposed that the spectral density function of the sea

can be described as a function of the wave frequency ω, acceleration due to gravity

g, friction velocity u∗ of the wind over the water surface, and the wind fetch Xw.

Symbolically,

Ψ(ω) = F (ω, g, u∗, Xw).

A fully-developed sea or, in other words, a sea in which the energies provided by the

wind and absorbed and dissipated by the waves are in equilibrium, is by definition

independent of fetch and of the time over which the wind was blowing over the surface

[84]. In this situation, Kitaigorodskii proposed that the spectrum of a fully-developed

sea could be written as

Ψ(ω) = g2ω−5F

(

u∗ω

g

)

, (2.21)

where F is a dimensionless function that is used for consideration of similarity theory.

In order to determine which function would be appropriate for F , experimental data

was considered. Among the quantities considered in (2.21), however, friction velocity

cannot be readily measured. Kitaigorodskii explicitly states that the wind direction

cannot be used directly, but rather that it should be calculated using the Charnock-

Ellison equation for friction velocity [85], written as

Uz

u∗
=

1

C
log10

(

gz

u∗2

)

+ 11.0,
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where x ≈ 0.4 and Uz is the average wind velocity measured at the level z.

Using the expression provided by Kitaigorodskii, field data for fully developed seas

obtained by Moskowitz et al. [18], and the saturation range proposed by Phillips [86],

Pierson and Moskowitz developed the spectral model that has come to be known

as the Pierson-Moskowitz spectrum, abbreviated as the PM spectrum. The PM

spectrum can be written as

Ψ(ω) = αg2ω−5 exp

[

−β
(

g

ωU19.5

)4
]

, (2.22)

or,

S(K) =
α

2
K−4 exp

[

−β
(

1

U19.5

√

g

K

)4
]

, (2.23)

α and β being dimensionless constants, where α = 8.1×10−3 and β = 0.74. Figure 2.2

shows the Pierson-Moskowitz non-directional ocean wave spectrum for different wind

speeds.

It must be observed that Kitaigorodskii’s suggestion to use Charnock-Ellison’s

friction velocity was not followed in (2.22) and (2.23). According to Pierson and

Moskowitz [19], the use of the Charnock-Ellison’s friction velocity would add more

assumptions to the spectrum, and any imprecision due to the use of the anemometer-

measured velocity would introduce other factors, that are not treated in the report. It

must be observed, however, that even without using friction velocity in its formulation,

the PM spectral model has become the de facto standard for fully developed seas,

even though this assumption has been questioned by later research [12].

Longuet-Higgins Directional Factor This directional factor was first proposed

by Longuet-Higgins et al. [83] in 1961 as an extension of the cosine-power model
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Figure 2.2: Pierson-Moskowitz non-directional spectral model for different wind

speeds

proposed by Pierson et al. [87]. The cardioid-shaped Longuet-Higgins directional

factor can be written as

D(θK, s) =
22s+1

π

Γ2(s+ 1)

Γ(2s+ 1)
cos2s

(

θK − θ̄

2

)

, (2.24)

where s is known as the spreading factor, and Γ is the Gamma function presented,

for example, in [88].

Figure 2.3 shows the spectrum described in (2.24), for various values of the spread-

ing factor s and a mean wind direction of 0◦. A change in the mean wind direction θ̄

changes the direction of the maximum of the directional spreading function, and the

effect of changing θ̄ is not shown in the Figure 2.3, since it only results in a rotation

of the directional spreading function about the origin.

Clearly, the spreading factor s in (2.24) plays a large role in the directional function
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Figure 2.3: Longuet-Higgins directional spreading function for different spreading

factors.

and is found to be a value dependent on the wave frequency. In the literature, however,

s = 2 is largely considered a reasonable value of the spreading factor [3].

Directional Ocean Wave Spectrum By combining the Pierson-Moskowitz non-

directional spectrum and the Longuet-Higgins directional spreading function, it is

possible to simulate the directional spreading function. Analogous to (2.10), it is

possible to write the wave-number directional ocean wave spectrum in terms of a

directional spreading function and a non-directional factor. This is written as

Ŝ(K, θK) = S̃(K)D(θK). (2.25)

Figure 2.4 shows the directional ocean wave spectrum generated by the combina-

tion of the PM spectrum and the Longuet-Higgins directional factor, for a wind speed

U19.5 = 12 m/s, mean wind direction θ̄ = 0◦, and spreading factor s = 2.
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Figure 2.4: Directional ocean wave spectrum generated by a combination of the

Pierson-Moskowitz spectrum and the Longuet-Higgins directional spreading function.

Transmitter frequency fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter look

direction θ01 = 60◦, wind speed U19.5 = 12 m/s, spreading factor s = 2, and wind

direction θw = θ̄ = 0◦.

2.2.4 Wave-Wave Interaction

As explained in previous sections, the waves on the ocean surface described by the

directional ocean wave spectrum Ŝ(K, θK) interact with each other, resulting in com-

posite waves. The wave vector for these composite waves is given by

K = ±K1 ±K2 ± · · · ±Kn,
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where K is the wave vector of a nth-order wave, resulting from the combination of n

first-order waves. Therefore, the ocean surface displacement can be expressed as

ξ(r, t) =

∞
∑

i=1

iξ(r, t), (2.26)

where each iξ(r, t) represents the surface displacement contribution given by ith-

order waves. In terms of Fourier components, a ith-order surface displacement can

be written as

iξ(r, t) =
∑

K,ω

iPK,ω exp [j(K · r+ ωt)] , (2.27)

with the Fourier components for the ith surface displacements iPK,ω being written as

iPK,ω =
∑

K=
∑i

n Kn

ω=
∑i

n ωn

HΓ
i
∏

n=1

1PK,ω. (2.28)

In this expression, HΓ is known as hydrodynamic coupling coefficient [3].

Several different authors have proposed their own formulations for the hydro-

dynamic coupling coefficient, for both deep and shallow water waves. Due to the

importance of this coefficient in the analysis of HF radar Doppler spectra, part of the

work in this field was conducted by researchers in the HF radar community — see,

for example, Weber and Barrick [89] and Walsh et al. [49].

In this thesis, only the first two orders of the Doppler spectrum will be studied.

Since, by definition, there is no hydrodynamic interaction within first-order waves,

their hydrodynamic coefficient is equal to unity. The second-order spectrum, on the

other hand, has a hydrodynamic coupling coefficient for deep water gravity waves

given by [49, 78–80]

HΓ =
1

2

[

K1 +K2 +
g

ω1ω2

(K1K2 +K1 ·K2)

(

gK + (ω1 + ω2)
2

gK − (ω1 + ω2)2

)]

, (2.29)
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where ω1 =
√
gK1 and ω2 =

√
gK2, with K1 and K2 being the magnitudes of K1 and

K2 respectively.

2.3 The Bistatic Radar Cross Section

According to the IEEE Standard for Definitions of Terms for Antennas (IEEE Std
145™-2013) [90], the term scattering cross section is defined as follows:

“For a scattering object and an incident plane wave of a given frequency,

polarization, and direction, an area that when multiplied by the power

flux density of the incident wave would yield sufficient power that could

produce, by isotropic radiation, the same radiation intensity as that in a

given direction from the scattering object.”

In other words, the scattering cross section is a measurement that, if multiplied by

the power flux density of the incident wave, would result in the radiation intensity

from the scattering object by isotropic radiation. The term radar cross section, on the

other hand, is the portion of the scattering cross section with a specific polarization.

It is an important measurement in radio oceanography because, if a mathematical

form of the scattering cross section is derived, it is potentially possible to understand

the contribution of each characteristic of the object to the received signal.

If the radar receiver is situated at the same position as the transmitter, or if it is at

a position that is close enough to the source to be considered at the same position, the

cross section is called monostatic. In a more general case, if the receiver is at any other

position that is not the same as the receiver, the cross section is known as bistatic

[90]. The difference between these two configurations can be seen in Figure 1.1.

In radio oceanography, the formulation of the radar cross section is a vital part

of the process of extracting the directional ocean wave spectrum. Since the ocean
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surface waves are themselves the “scattering objects”, the directional ocean wave

spectrum is a key element of the cross section, and, therefore, it can be obtained from

the received electric field by means of mathematical inversion.

2.3.1 Scattering Mechanisms

When a radar signal is emitted towards the ocean by an onshore transmitter, it

interacts with ocean waves of any order on the ocean surface. After a single scatter,

a portion of the signal will be returned directly to the receiver by waves of different

orders, while other portions may be scattered multiple times before reaching the

receiver. Therefore, the received signal will contain information about multiple waves,

which will introduce a continuum of Doppler shifts on the transmitted signal.

The received electric field is then a combination of parts of the transmitted signal

that went through different paths before arriving at the receiver. Signals that have

travelled through shorter paths will have higher energies compared to ones that have

travelled through longer paths. Therefore, in general, the more interactions a radar

signal has with the ocean, the lower is its mean energy at the receiver.

It is important to notice that most HF radar systems use vertical monopoles

or dipoles at the receiver, which only allow the interrogation of vertically polarized

radiation. This design approach is justified by the fact that horizontally polarized

radiation in the HF band will quickly die out in surface wave propagation over the

ocean [91]. Therefore, only vertically polarized radiation is considered throughout

this thesis.

The interaction between the transmitted signal and ocean waves can occur in two
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different ways: when the signal is scattered by a single nth-order wave, this interaction

is said to be hydrodynamic, whereas when the signal is scattered by multiple first-

order waves, the interaction is said to be electromagnetic. A combination of the

two, when the signal is scattered by multiple nth-order waves is also possible. These

interactions are also classified in orders, taking into account the number of bounces

and the sequence of the waves from which the signal was scattered. Walsh and Gill

[67] provide a thorough explanation of the scattering mechanisms, as well as the

equations for each type of scattering up to third-order.

Another classification of these interactions can be given if the position of the

scatters is also considered. If all the scatters occur at the same remote area of the

ocean, the interaction is known as patch scattering, while if at least one scattering

event occurs close to the transmitter or the receiver, the interaction is known as foot

scattering.

In summary, the received electromagnetic signal E+
0n at a time t from a scattering

ellipse defined by t0 can be analyzed up to its second-order scattering as [66]

E+
0n(to, t) = (E+

0n)11(to, t) + (E+
0n)2P (to, t) + (E+

0n)2T (to, t) + (E+
0n)2R(to, t), (2.30)

where the terms on the right-side of Equation (2.30) are defined as follows:

• (E+
0n)11: First-order scattering, that is a first-order interaction (i.e. single

bounce) between the transmitted signal and a first-order wave (i.e. a wave

that was not generated by superposition).

• (E+
0n)2P : Second-order patch scattering, that is, a second-order effect that hap-

pens within the scattering patch over the ocean. It can be divided into two

parts:
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– Hydrodynamic: A first-order interaction between the transmitted signal

and a second-order wave (i.e. a wave that is formed by a superposition of

two waves). It can be classified independently as a first-order scattering.

– Electromagnetic: A second-order scattering (i.e. double bounce) between

the transmitted signal and two first-order waves.

• (E+
0n)2T : Second-order electromagnetic scattering with one of the first-order

waves near the transmitter followed by one scatter from a first-order wave on

the remote patch

• (E+
0n)2R: Second-order electromagnetic scattering with one of the first-order

waves near the receiver after one scatter from a first-order wave on the remote

patch

From (2.30) and the definition of cross section, the total radar cross section at a

particular Doppler shift ωd up to second-order scattering can be written as

σ(ωd) = σ11(ωd) + σ2P (ωd) + σ2T (ωd) + σ2R(ωd), (2.31)

where σ is the total cross section. The subscript of each of the terms in (2.30) and

(2.31) indicates which type of scattering mechanism the term represents.

Throughout this thesis, only patch scattering up to second-order will be consid-

ered; therefore, σ2T and σ2R and any higher order scattering cross sections will be

neglected.
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2.3.2 Bistatic Geometry

To proceed to the analysis of the bistatic radar cross sections, the bistatic geometry

needs to be understood. For the bistatic configuration, elliptical coordinates are

the natural coordinates of the system. A detailed explanation regarding the use of

elliptical geometry for each type of scattering in the bistatic radar configuration can

be found in the thesis by Gill [3].

As previously mentioned, this present work will only deal with patch scattering

up to second-order. Further information on both patch and foot scattering in the

bistatic configuration can be found in Gill [3]. Figure 2.5 shows the geometry of an

nth-order patch scatter in the bistatic configuration after setting the coordinate origin

at the transmitter, where ρ is the vector between transmitter (Tx) and receiver (Rx);

ρ0i, the vector between the transmitter and the ith scatter, with 1 ≤ i ≤ n; ρn0,

the vector between the last scatter and the receiver; N, the unit vector normal to

the ellipse at the scattering patch (N = 1 θN); T, the tangent to the ellipse at the

scattering patch; K, the resulting wave vector, given by

K =

n
∑

i=1

Ki,

where Ki are the wave vectors for each wave from which the transmitted signal has

scattered (electromagnetic coupling) or each first-order wave in a composite wave

(hydrodynamic coupling); θ0i is the direction of the vector between the transmitter

and the ith scatter; φ, the bistatic angle; and θN is the normal to the scattering ellipse

at the point of scatter.

Observing the properties of an ellipse, the convenience of using this coordinate

system becomes clear. Two properties of the ellipse of interest in this analysis are the
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x
Tx Rx

Figure 2.5: Patch scattering geometry in bistatic configuration (Adapted from Gill

[3])

reflection property and the angle bisection property.

The reflection property of an ellipse states that, if a ray of light is emitted from one

focus of the ellipse and reflects on its inner surface, the ray will always pass through the

other focus [92]. Considering the geometry of the bistatic patch scattering presented

in Fig. 2.5, it can be observed that, if the coordinates are set such that the transmitter

and the receiver are both on the foci of the ellipse, and the scattering patch is always

on the surface of the ellipse, there will always be part of the signal that will bounce

on the scattering patch and be reflected to the receiver. If the reflection property is

combined with the fact that the sum of the distances between the foci and any point

of the ellipse is constant, and that the speed of an electromagnetic wave is constant
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within an isotropic medium, it can be said that a signal transmitted from one of

the foci of the ellipse and scattered by any point on its boundary will arrive at the

receiver at the same time. For a bistatic radar, this ellipse is known as the scattering

ellipse. Therefore, the scattering patch will be defined as the region of the scattering

ellipse that is being observed by the receiver. The area of this patch will be a function

of the beamwidth of the receiver, and if the scattering patch is sufficiently narrow,

the received signal can be treated as coming from a single representative point on

the scattering ellipse [3]. In this work, a bistatic narrow beam radar is considered,

meaning that the aforementioned consideration can be made. For a pulsed narrow

beam radar in bistatic configuration, the width of the scattering patch ∆ρs and the

area of the scattering patch can be respectively defined as

∆ρs =
cτo
2
, (2.32)

and

AP = ∆ρs(ρn0θHPBW ), (2.33)

where τo is the pulse width, c is the speed of light, ρn0 is the distance between the

transmitter and the scattering patch, and θHPBW is the half-power beamwidth of the

receiver antenna.

Another important property to be observed is the angle bisection property. This

property states that if an ellipse with foci F1 and F2 is given, the local normal to

the ellipse at any point P bisects the angle ∠F1PF2. From Fig. 2.5, it is clear

that the vector N is the normal to ellipse at the scattering point P , and that its

extension, represented by the dashed line, divides the angle between ρ0i and ρn0 in

half. In a bistatic geometry, each half of this angle is known as the bistatic angle,
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written as φ. The bistatic angle is one of the main characteristics of the bistatic

configuration, allowing for the analysis and determination of the direction of the

waves being observed by such radar structure.

As the name suggests, in a patch scattering scenario all the scatters are located

within the scattering patch. In this case, since the scattering patch is sufficiently

distant from the transmitter, the following assumptions can be made:

ρ01 = ρ02 = · · · = ρ0n

and

θ01 = θ02 = · · · = θ0n.

In patch scattering, therefore, θ01 is defined as the transmitter look direction.

Using basic properties of triangles, it is easy to arrive at the relationship between

the normal angle θN, transmitter look direction θ01 and the bistatic angle. The

relationship is written as

θN = θ01 + φ. (2.34)

2.3.3 First-Order Bistatic Cross Section

As described by Gill [3], the first-order bistatic radar cross-section can be written as

σ11(ωd) = 24πk2o
∑

m=±1

Ŝ(mK)
K5/2 cosφ√

g
∆ρs Sa

2

[

∆ρs
2

(

K

cosφ
− 2ko

)]

, (2.35)

where ωd is the Doppler shift frequency in rad/s; ko is the wave-number of the trans-

mitted signal; m is a constant chosen such that

m =



















1 ωd ≤ 0

−1 ωd ≥ 0
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∆ρs is the width of the scattering patch, defined by Equation (2.32); and Sa is the

sinc function, given by

Sa(x) =
sin x

x
.

The first-order waves that can be perceived by a radar in a bistatic configuration

has the same direction as the vector normal to the ellipse N. Therefore, the vector

K can be defined as

K = K θN. (2.36)

This shows the importance of (2.34) in operating a bistatic radar. If the transmitter

is a phased array, the beam can be steered in order to change θN and, consequently,

the direction of the observed waves.

In the first-order cross section, the magnitude of the observed wave-number at

a given frequency ωd follows the dispersion relation of the ocean waves, stated in

(2.2) for deep water gravity waves. Using (2.2), the magnitude of the observed wave-

number is given by

K =
ω2
d

g
. (2.37)

Observing the argument of the sinc function in (2.35), it is evident that the ocean

wave spectrum has a peak at

KB = 2ko cosφ, (2.38)

or at the frequencies

ωB = ±
√

2gko cosφ. (2.39)

The maxima of the Doppler spectrum at these frequencies are known as Bragg peaks.

Therefore, by changing the bistatic angle or the transmitter frequency, the ocean
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wave frequency — or wave-number — of the peak energy of the Doppler spectrum

also changes. This allows more versatility in the measurement of the ocean surface.
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Figure 2.6: Simulated first-order bistatic cross section. Transmitter frequency fo =

13.385 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, wind speed

U19.5 = 12 m/s and wind direction θw = θ̄ = 180◦. The two large maxima are the

Bragg peaks.

Figure 2.6 presents a simulated first-order bistatic cross section, generated us-

ing (2.35) . The directional ocean wave spectrum is a combination of the Pierson-

Moskowitz ocean wave spectrum, defined by (2.23), and the Longuet-Higgins direc-

tional spreading function, defined by (2.24).

It is important to notice that (2.35) uses the symmetric non-directional spectrum
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Ŝ(mK), arranged such that the constant m would define which side of the spectrum

is being referred to. Therefore, in order to use (2.23) to simulate (2.35), the condition

expressed by (2.14) must be met, since the Pierson-Moskowitz spectrum is defined as

a non-symmetric spectrum. Therefore,

Ŝ(mK) =
1

2
SPM(K), (2.40)

where SPM is the Pierson-Moskowitz spectrum defined by (2.23), and Ŝ(mK) is the

non-directional part of the directional spectrum in (2.35). This conclusion also applies

to higher-order cross sections.

2.3.4 Second-Order Bistatic Cross Section

As previously stated, the only second-order scattering mechanism taken into account

in this thesis is patch scattering. According to Gill [3], the second-order patch scat-

tering cross section is written as

σ2P (ωd) ≈ 26π2k4o cos
4 φo

∑

m1=±1

∑

m2=±1

∫ π

−π

∫ ∞

0

Ŝ(m1K1)Ŝ(m2K2)‖sΓP‖2

· δ(ωd +m1

√

gK1 +m2

√

gK2)K1dK1dθK1
, (2.41)

where K1 and K2 are chosen such that

K1 +K2 = K, (2.42)

where K = KB θN. This is an important difference between the first- and second-

order cross sections: while in the first-order cross section the magnitude of ~K is

defined by the Doppler frequency, in the second-order, it is the Bragg peak wave-

number as in (2.38). The variables m1 and m2 play a similar role to the one played
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by m in the first-order cross section. In the second-order, however, m1 and m2 are

used to distinguish the four spectral areas defined as

1) ωd < −ωB, m1 = m2 = 1

2) − ωB < ωd < 0,











m1 = −1, m2 = +1, if K1 > K2

m1 = +1, m2 = −1, if K1 < K2

3) 0 < ωd < ωB,











m1 = +1, m2 = −1, if K1 > K2

m1 = −1, m2 = +1, if K1 < K2

4) ωd > ωB, m1 = m2 = −1

(2.43)

Another important feature of the second-order cross section is the symmetricized

coupling coefficient sΓP , defined as

sΓP =
1

2
[ΓP (K1,K2) + ΓP (K2,K1)], (2.44)

where ΓP is the coupling coefficient. In turn, the coupling coefficient is defined as

ΓP (Km,Kn) = HΓ + EΓP (Km,Kn), (2.45)

where HΓ is the hydrodynamic coupling coefficient, defined by (2.29), and EΓP is the

patch scattering electromagnetic coupling coefficient defined as

EΓP (Km,Kn) =
ko

K cos(φ)

{

j
√

Km · (Km − 2koρ̂0n) + ko
k2o +Km · (Km − 2koρ̂0n) + jko∆

· (Km · ρ̂0n)[Kn · (Km − koρ̂0n)]
√

Km · (Km − 2koρ̂0n) + jko∆

} , (2.46)

where ∆ is the normalized surface impedance of the ocean surface [57] and ρ̂0n is the

unit vector in the direction of ρ0n. Since only patch scattering is being considered,

ρ̂01 = ρ̂02, as observed in Fig. 2.5.
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Figure 2.7: Theoretical second-order bistatic cross section. Transmitter frequency

fo = 25 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, wind

speed U19.5 = 15 m/s and wind direction θw = θ̄ = 180◦.

Using the same information as for the simulation of the first-order cross-section,

the second-order cross section was simulated, as shown in Fig. 2.7. In this simulation,

the normalized impedance of the ocean surface was defined as [26]

∆ =
Z

ηo
≈ 1

120π

√

µ

ǫ
, (2.47)

where, Z is the impedance of the ocean surface, ηo = 120π Ω is the impedance of the

free space,

ǫ = ǫrǫo + j

(

σ

ωo

)

is the electric permittivity of sea water with conductivity σ ≈ 4 ✵/m, and relative
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permittivity ǫr = 80, under a transmitter frequency ωo = 2πfo.

The peaks observed in Figure 2.7 are due to singularities in the cross-section.

According to Gill [3], the h− and h+ peaks occur due to a singularity that becomes

more evident when a change of variables is applied to Equation (2.41). Making

Y ≡
√

K1

and

K2 =
√

K2
1 +K2 − 2K1K cos(θK1

− θN),

and applying the Change of Variables Theorem, the second-order cross-section can

be rewritten as

σ2P (ωd) ≈ 27π2k4o cos
4 φo

∑

m1=±1

∑

m2=±1

∫ π

−π

∫

DP

Ŝ(m1K1)Ŝ(m2K2)‖sΓP‖2

· δ(ωd −DP (Y, θK1
))Y 3

∣

∣

∣

∣

∂Y

∂DP

∣

∣

∣

∣

θK1

dDP dθK1
, (2.48)

where

DP (Y, θK1
) = −m1

√
gY −m2

√
g[Y 4 +K2 − 2Y 2K cos(θK1

− θN)]
1

4 ,

and for L = m1m2,

∣

∣

∣

∣

∂Y

∂DP

∣

∣

∣

∣

θK1

=
1

√
g

∣

∣

∣

∣

∣

1 + L
Y 3 − Y K cos(θK1

− θN)

[Y 4 +K2 − 2Y 2K cos(θK1
− θN)]

3

4

∣

∣

∣

∣

∣

.

When θK1
= θN, Y =

√

K
2
=

√
ko cosφ, and L = 1, the denominator of the Jacobian

∣

∣

∣

∂Y
∂DP

∣

∣

∣

θK1

vanishes, causing a singularity at

ωd = ∓
√
2ωB,
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marked as h− and h+ in Figure 2.7. As for the e1 and e2 peaks, they occur due to

singularities in the electromagnetic coupling coefficient EΓP . From Equation (2.46),

a singularity will occur when

Km · (Km − 2koρ̂0n)− k2o∆
2 = 0,

where θ0n = θN − φ. If a (Kmx , Kmy) plane is considered, this equation can be

rewritten as

K2
mx

+K2
my

− (2ko cos θ0n)Kmx − (2ko sin θ0n)Kmy − k2o∆
2 = 0. (2.49)

Geometrically, Equation (2.49) represents the expression for a conic section centred

at (ko cos(θN − φ), ko sin(θN − φ)) and radius ko
√
1 + ∆. Gill [3] demonstrated that

if a perfect conductive surface is considered, i.e. ∆ → 0, the singularities will occur

for K1 = K2 and

ωd = ±2
3

4

√

(1± sinφ)
1

2

cos φ
ωB. (2.50)

However, if a complex ∆ such that Im{∆2} 6= 0 is considered, the left-hand side of

Equation (2.49) will never go to zero, since

Im
{

K2
mx

+K2
my

− (2ko cos θ0n)Kmx − (2ko sin θ0n)Kmy

}

= 0, ∀ Km = (Kmx , Kmy),

and

Im{∆2} 6= 0 ⇐⇒ Im{(a+ jb)2} 6= 0 ⇐⇒ 2jab 6= 0 ⇐⇒ a 6= 0, b 6= 0, ∀ a, b ∈ IR.

Therefore, if ∆ has both nonzero real and imaginary parts, Equation (2.49) will never

go to zero and, instead of singularities, the electromagnetic peaks e+,−
1 and e+,−

2 will

occur at the same frequencies found in Equation (2.50), since ko∆
2 is not dependent

on Km.
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2.4 General Chapter Summary

In this chapter, the theoretical background for the thesis was presented. Section

2.2 presented the fundamental concepts regarding ocean waves, their classification,

generation and development. Later, the ocean wave spectrum was discussed, showing

the mathematical development of the ocean wave spectrum, as well as its fundamental

characteristics. One model for the non-directional ocean wave spectrum and one

for the directional spreading function were presented. At the end of the section,

the problem of wave-wave interaction was addressed, showing how multiple wave

interactions affect the distribution of Fourier parameters on the ocean surface.

In Section 2.3, the bistatic radar cross section was introduced. The definition of

“cross section” was presented, emphasizing the importance of this measurement in

radio oceanography. The scattering mechanisms were also presented, showing how

cross sections are classified, and how the received electric field can be analysed. Then,

the bistatic geometry for patch scattering was introduced, presenting the basic angle

relationships in a bistatic radar. Once the scattering mechanisms and bistatic geome-

try were explained, the first- and second-order cross sections were addressed, detailing

how both geometry and the scattering mechanisms influence the measurement.

From the ideas laid down in this chapter, the problem of wave inversion can be

discussed. In the next chapter, the changes of coordinates for the second-order cross

section will be presented, as well as the method for the extraction of the ocean wave

spectrum using the presented change of variables.
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Chapter 3

Extraction of Ocean Wave

Spectrum from Second-Order

Bistatic Cross Section

3.1 Introduction

In Chapter 2, the fundamentals of ocean wave classification, generation, and devel-

opment were discussed, as well as how the status and behaviour of the ocean can be

quantified using the directional ocean wave spectrum. Being one of the most impor-

tant measurements in forecasting the ocean surface, various technologies have been

developed to obtain the directional ocean wave spectrum. Among the instruments

applied to this analysis, HF radar is one of the most versatile, due to its ability to

measure different parts of the ocean just by steering the receiver beam, if an antenna

such as a phased array is used.
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In radio oceanography, the radar cross section plays a crucial role in the process

of extracting the ocean wave spectrum. If the mathematical formulation of the cross

section, especially, as suggested by Hasselmann [29], of the second-order cross section,

is known, several mathematical inversion methods can be applied to obtain the ocean

wave spectrum. Section 1.2 presented an overview of how these methods evolved.

In this chapter, a new method, similar to the one presented by Shahidi and Gill

[1] for the monostatic case, is applied to obtain the ocean wave spectrum from the

second order bistatic radar cross section. To understand the kind of problem being

dealt with and the need for a simplification of the second-order cross section, the

fundamental mathematical concepts regarding nonlinear inverse problems and their

solution will be presented. First, a brief explanation on Hilbert spaces is necessary,

since it is a concept extensively used in the definition of inverse problems and their

solutions. This will be followed by a definition of well- and ill-posed problems, and

how inverse problems, such as the nonlinear Fredholm equation of the first kind,

relate to these definitions. Then, Tiknonov regularization in Hilbert scales will be

presented, as well as how it can be used to solve nonlinear ill-posed problems. Finally,

the second-order cross section will be simplified to facilitate the use of Tikhonov

regularization to extract the directional ocean wave spectrum, with results of the

extraction subsequently presented.
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3.2 Fundamental Concepts for the Nonlinear Ex-

traction of the Ocean Wave Spectrum

The extraction of the ocean wave spectrum from the second-order cross section is an

example of what is known in mathematics and other fields as an inverse problem.

Inverse problems are a class of problems in which the goal is to obtain the cause of

a phenomenon from observed measurements. In the case of the problem laid out in

this thesis, it is desired to obtain the ocean wave spectrum from HF radar data, more

specifically the radar cross section per unit area. Due to the nonlinear nature the

problem, special care must be taken in choosing the method of solution.

A fundamental concept that frequently arises while studying the solution of inverse

problems is the one of Hilbert spaces.

3.2.1 Vector, Banach, Hilbert, and Euclidean Spaces

The vector space is one of the most basic concepts of linear algebra. A vector space

is a set V which is defined by two laws of composition [93]:

• Addition: ∀u,v ∈ V, ∃w ∈ V, u+ v = w.

• Scalar multiplication: ∀u ∈ V, c ∈ IR, ∃v ∈ V, v = cu.

Consequently, a vector space must satisfy the following axioms:

• By having addition as one of its laws of composition, the vector space V becomes

an abelian group V +, which implies that it meets the following requirements:

– Closure: ∀u,v ∈ V, ∃w ∈ V, u+ v = w
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– Commutativity: ∀u,v ∈ V, u+ v = v + u

– Associativity: ∀u,v,w ∈ V, (u+ v) +w = u+ (v +w)

– Identity element: ∃0V ∈ V, ∀v ∈ V,v + 0V = 0V + v = v.

– Inverse element: ∀v ∈ V, ∃u ∈ V, u + v = v + u = I. In the case of

addition, u = −v.

• Scalar multiplication also satisfies the associativity requirement, meaning that

∀v ∈ V, a, b ∈ IR, (ab)v = a(bv)

• The identity element for scalar multiplication is the real number 1, therefore

1v = v.

• Scalar multiplication satisfies the following distributive laws ∀a, b ∈ IR, ∀u,v ∈

V

(a + b)v = av + bv

a(u+ v) = au+ av

Even though vector spaces are a powerful concept used in different applications

[94], they are still rather limited, since only addition and scalar multiplication are

defined in a vector space. Therefore, spaces that include more operations are often

needed.

One of the most commonly used operators in vector spaces is the norm. By

definition, norm is a functional ‖ · ‖ : V → IR that satisfies the following requirements

∀a ∈ IR,u,v ∈ V [95]:

• Positive homogeneity: ‖av‖ = |a|‖v‖
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• Triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖

• Non-negativity: ‖u‖ ≥ 0. ‖u‖ = 0 ⇐⇒ u = 0V

If a vector space V is equipped with a norm, it is known as a normed space, and the

norm will be noted as ‖ · ‖V . If the distance between elements inside a normed space

V is defined ∀u,v ∈ V as

d(u,v) = ‖v − u‖V ,

then V is known as a metric space with metric d.

Among the most largely used norms in science is the Lp-norm, defined as

‖v‖p =
(

n
∑

i=1

|vi|p
)1/p

(3.1)

for p ∈ IR, p ≥ 1, and v = (v1, · · · , vn). If a normed space is equipped with the

Lp-norm, this space is known as a Lp-space.

According to, for example, Royden and Fitzpatrick [95], a sequence {vn} in a

normed space V is said to be Cauchy in V if, for each ǫ > 0, there is N ∈ IN such

that

‖vn − vm‖ < ǫ, ∀ m,n ≥ N.

If every Cauchy sequence {vn} ∈ V converges to a vector v ∈ V , i.e.

lim
n→∞

‖vn − v‖V = 0,

then V is said to be complete. A complete metric space is then known as a Banach

space.

Another important operator with which vector spaces can be equipped is the inner

product. The inner product is defined by the functional 〈·, ·〉 : V × V → C (or IR),

which satisfies the following statements ∀u,v,w ∈ V, ∀a, b ∈ IR [95, 96]
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• 〈u,v〉 = 〈v,u〉, where 〈u,v〉 is the complex conjugate of 〈u,v〉.

• 〈au+ bv,w〉 = a〈u,w〉+ b〈v,w〉

• 〈v,v〉 ≥ 0, 〈v,v〉 = 0 ⇐⇒ v = 0V

If a vector space is equipped with inner product, this space is known as an inner

product space. If a Banach space H is also an inner product space and has its norm

defined such that, ∀v ∈ V ,

‖v‖2H = 〈v,v〉,

then H is called a Hilbert space.

Now, consider a Hilbert space that is isomorphic to a real space — H ∼= IRn, with

n ∈ IN being the dimension of IRn — with L2-norm as its metric, i.e. H is a real

L2-space. This space is known as an Euclidean space.

In summary, Banach and Hilbert spaces are complete vector spaces that are

equipped with extra functions — Banach spaces being equipped with a norm, and

Hilbert spaces with both a norm and an inner product. Euclidean space is a particular

case of a real n-dimensional Hilbert space that has an L2-norm.

With the basic definitions of vector, Banach, Hilbert and Euclidean spaces in

place, it is important to understand the types of problems that can be presented and

which methods are available to solve them.

3.2.2 Posedness of a problem

Mathematically, a nonlinear problem can be written as [97–99]

F (x) = y0, (3.2)
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where F : D(F ) ⊂ X → Y is a the nonlinear operator between the Hilbert spaces X

and Y , x ∈ X are the parameters of the operator F , and y0 ∈ Y is the output of the

operator F . If x is given and it is desired to obtain y0, the problem is known as a

forward problem, while if y0 is given and x is desired, the problem is classified as an

inverse problem.

A number of problems in science are described as inverse problems, e.g. recon-

struction of a structure by using X-ray tomography, deblurring of images [100], or the

extraction of the ocean wave spectrum herein presented. An often used example of

nonlinear inverse problem is the nonlinear Fredholm equation of the first kind [98].

This type of integral equation is often found while solving inverse problems [101] and

can be written as [102]

y(z) =

∫ b

a

K(z, t)N(x(z))dt, (3.3)

where K(z, t) is known as the kernel of the equation, and N is a nonlinear function

of the input x.

A problem is considered to be well-posed in the Hadamard sense, if and only if,

it simultaneously satisfies the following properties: it has a solution, this solution is

unique, and this solution is uniformly continuous — in other words, given a generic

function g : X → Y , ∀x1, x2 ∈ X , ∀ ε > 0, ∃ δ > 0, ε, δ ∈ IR, such that

‖x1 − x2‖ < δ ⇒ ‖g(x1)− g(x2)‖ < ε.

If a problem does not respect one of the previous statements, it is referred to as being

ill-posed. Inverse problems are almost always ill-posed [103, 104].

Another important definition that must be understood while dealing with integral

equations is the one of well- and ill-conditioned problems. As described, for example,

58



by Vandenberghe [105], a problem is well conditioned if small changes in the problem

input lead to small changes in its output; conversely, if small changes in the problem

parameters lead to a large change in its output, it is considered ill-conditioned. This

definition must not be confused with the definition of ill-posedness, even though these

characteristics might appear together in a problem. A problem can be well-posed and

ill-conditioned if it has a unique solution and the mapping between input and output

is uniformly continuous, even if δ << ε.

In the case of Fredholm equations of the first kind, the problem is considered

ill-posed for both linear [98, 106] and nonlinear [102] equations. It must be noted,

however, that the nonlinear Fredholm equation of the second kind, described as

y(z) = x(z) +

∫ b

a

K(z, t)N(x(z))dt,

are well-posed [102]. Therefore, one available method to solve Fredholm equations

of the first kind is to approximate it to the closest Fredholm equation of the second

kind. This process, suggested independently by Phillips [107] and Tikhonov [97],

is commonly known as Tikhonov regularization. Once the problem is regularized,

a number of methods can be used to solve for the now well-posed problem. Such

techniques include the direct computation method, and the Adomian decomposition

method [102]. Another method, that combines both regularization and an algorithm

to solve the inverse problem is known as regularized nonlinear least squares [104].

3.2.3 Regularized Nonlinear Least-Squares

Nonlinear least-squares is a data fitting technique in which the goal is to find the

set of parameters that minimizes the quadratic deviation between the ideal output

59



of a system and the measured output, normally contaminated with noise or other

perturbations. Consider yδ ∈ Y the measured and y0 the ideal output, where δ is

the perturbation level defined as

‖yδ − y0‖Y ≤ δ. (3.4)

The nonlinear least-squares solution x̂ ∈ D(F ) for (3.2) can be written as

x̂ = min
x

‖F (x)− yδ‖2Y . (3.5)

Among the optimization algorithms that can be used to solve (3.5), one of the most

commonly used is the Levenberg-Marquardt algorithm [108, 109].

As previously discussed, solving for x in a nonlinear Fredholm equation of first kind

as in Equation (3.3) is an ill-posed problem in the Hadamard sense. The direct use of

optimization methods, such as nonlinear least-squares, is insufficient to solve this type

of problem. Tikhonov [97] proposed the inclusion of a regularizing parameter to the

least-squares problem, resulting in the technique known as Tikhonov regularization,

or regularized least-squares . In the case of a nonlinear equation, this method is also

known as regularized nonlinear least-squares.

The solution using the Tikhonov regularization can be written as [110]

x̂ = min
x

‖F (x)− yδ‖2Y + α‖x− x∗‖2X , (3.6)

where α is known as the regularization parameter, and x∗ is a parameter that helps

to define the selection criterion in the case of multiple least-square solutions [110].

Due to its popularity, several improvements have been incorporated into the orig-

inal Tikhonov regularization. One of these improvements is called Tikhonov regular-
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ization in Hilbert scales [99]. In this method, the norm of the regularizing term is

substituted by a stronger norm.

3.2.4 Tikhonov Regularization in Hilbert Scales

Let X0 be the space such that ‖x‖X0
∼ ‖x‖X∀x ∈ X , and (Xs)s∈IR be the Hilbert

scale of X0, defined as a set induced by the application of a densely defined, self-

adjoint and strictly positive operator Y , in which all the powers of Y are defined

[111]. In this space, the norm ‖ · ‖r is defined such that

‖x‖r = ‖Y rx‖X0
∼ ‖Y rx‖X , r ∈ IR. (3.7)

By using the Hilbert scale in the regularization parameter, (3.6) can be rewritten as

[99]

x̂ = min
x

‖F (x)− yδ‖2Y + α‖x− x∗‖2r

= min
x

‖F (x)− yδ‖2Y + α‖Y r(x− x∗)‖2X .
(3.8)

It may be observed that, for r = 0, the form in (3.8) returns to its original form,

expressed by (3.6). In several applications, a differential operator D is used as the

constraint operator Y for the Hilbert scale for L2-spaces [112, 113].

The most often used differential operators in regularizing parameters are the first-

and second-order differential operators, respectively D1 and D2. Using finite differ-

ences, these operators can be written as [113]

D2 =





















−2 1

1
. . .

. . .

. . .
. . . 1

1 −2





















, D1 = (D2)1/2. (3.9)
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The use of a differential operator in the regularization term is also mentioned for the

linear case [114].

3.2.5 Determination of the Regularization Parameter

Once the form of the Tikhonov regularization is known, it is necessary to devise a

formulation for the regularization parameter α. One of the most widely-used methods

to determine the regularization parameter is the L-curve method [115]. This method

uses a log-log plot of the quadratic deviation Φ(x, yδ) versus the regularizing term

Ω(x) for different values of α, which usually has an L-shape. The value of α on the

corner of the L-curve is considered the optimal value of the regularization parameter,

since an equilibrium of both Φ(x, yδ) and Ω(x) is achieved [116].

Over the years, several approaches have been developed. They can be divided

into two main groups: the methods that rely on a priori knowledge, and the ones

that rely on a posteriori knowledge [117]. Since a priori knowledge of the problem is

not always available, a great number of very sophisticated a posteriori methods have

been developed, among them, some iterative methods [118].

Neubauer [119] determined that the best possible convergence rate for nonlinear

Tikhonov regularization is O(δ2/3), where δ is defined in (3.4). In his paper, he

delineated under which conditions this convergence rate can be achieved, and one of

the necessary conditions is that the regularization parameter is given by

α ∼ δ2/3. (3.10)

This is, however, an a priori approach to the regularization problem, since the dis-

crepancy rate δ must be known beforehand. Some modifications can be introduced in
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order to find an optimal parameter choice based on the one proposed by Neubauer.

Substituting the discrepancy parameter by the quadratic deviation in the previous

iteration, the iterative a posteriori regularization parameter based on (3.10) can be

written as

αk = ‖F (xαk−1
)− yδ‖2/3Y . (3.11)

3.3 Simplification of the Second-Order Bistatic

Cross Section

With the tools presented in the previous section, it is possible to obtain a solution

for an inverse problem such as a nonlinear Fredholm equation of the first kind. In

this section, the problem of extracting the directional ocean wave spectrum from the

bistatic second-order cross section will be considered.

Here, the formulation of the second order bistatic radar cross section will be

repeated, to facilitate understanding of the subsequent steps:

σ2P (ωd) ≈ 26π2k4o cos
4 φo

∑

m1=±1

∑

m2=±1

∫ π

−π

∫ ∞

0

Ŝ(m1K1)Ŝ(m2K2)‖sΓP‖2

δ(ωd +m1

√

gK1 +m2

√

gK2)K1 dK1dθK1
(3.12)

Even though Equation (3.12) resembles a nonlinear Fredholm equation of the first

kind, it is a considerably more complicated problem. As can be observed, the expres-

sion for the second-order bistatic cross section can be classified as a double nonlinear

integral Fredholm equation of the first kind, in which Ŝ is the parameter to be in-

verted, and it is presented as a product of two different inputs, m1K1 and m2K2. Its
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kernel includes constraints in K1 and K2 embedded in the Dirac delta function, which

worsens the problem of uniform continuity. In summary, dealing with (3.12), or its

variation presented by Barrick [120], is not a trivial task, especially for the bistatic

radar configuration. These complications led Zhang and Gill [68] to use the lineariza-

tion proposed by Howell [47] to extract the ocean wave spectrum from (3.12) in the

bistatic case. It has also led many other authors to use linearizations and constraints

to solve for the monostatic case. Here, a simplification is sought in order to transform

Equation (3.12) into a nonlinear Fredholm equation of the first kind, a problem with

available and well-known solution techniques, as presented in the previous section.

As proposed by Shahidi and Gill [1], the use of the Dirac delta function in (3.12)

suggests that the second-order radar cross section can be treated as a convolution

integral. To make the integration possible, a change of variables must be applied to

(3.12), allowing the integration of the Dirac delta function and reducing the expres-

sion of the second-order radar cross section to a single nonlinear Fredholm integral

equation of the first kind, which is significantly simpler to solve by means of nonlinear

optimization.

Observing the argument of the Dirac delta in (3.12), the following coordinates

must be used in the simplification:



















Y1 =
√
K1

Y2 =
√
K2.

(3.13)

To use the change of coordinates theorem, the Jacobian of the coordinate transform
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must be calculated. The Jacobain for the change of coordinates is given by

J =

∣

∣

∣

∣

∣

∣

∣

∣

∂K1

∂Y1

∂K1

∂Y2
∂θK1

∂Y1

∂θK1

∂Y2

∣

∣

∣

∣

∣

∣

∣

∣

=
∂K1

∂Y1

∂θK1

∂Y2
− ∂K1

∂Y2

∂θK1

∂Y1
(3.14)

The first row derivatives can be readily calculated, with the results being

∂K1

∂Y1
= 2Y1 (3.15)

and

∂K1

∂Y2
= 0. (3.16)

The fact that the partial derivative in (3.16) is equal to zero, eliminates the need of

calculating the other element of the antidiagonal.

From the relationship described in (2.42), the law of cosines may be used to derive

an expression that relates the magnitudes of K1 and K2 and the angle θK1
:

K2
2 = K1

2 +K2 − 2K1K cos(θN − θK1
). (3.17)

By using the change of variables presented in (3.13), Equation (3.17) can be rewritten

as

Y2
4 = Y1

4 +K2 − 2Y1
2K cos(θN − θK1

). (3.18)

From (3.18), the remaining partial derivative can be written as

∂θK1

∂Y2
=

−2Y 3
2

Y 2
1 K sin(θN − θK1

)
. (3.19)

Therefore, (3.14) can be written as

J =
−4Y2

3

Y1K sin(θN − θK1
)
. (3.20)
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Using the change of coordinates theorem, (3.12) can be rewritten as

σ2P (ωd) ≈ 26π2k4o cos
4 φo

∑

m1=±1

∑

m2=±1

∫ ∞

0

∫ ∞

0

S1(m1K1)S1(m2K2)‖sΓP‖2

δ(ωd +m1
√
gY1 +m2

√
gY2)Y

2
1 ‖J‖dY1dY2, (3.21)

where K1 = Y 2
1 θK1

and K2 = Y 2
2 θK2

. Making

H(Y1, Y2) = 25πk4o cos
4 φo‖sΓP‖2Y 2

1 ‖J‖ (3.22)

and

Ŝ(miKi) = T̂ (mi, Yi, θKi
), i = 1, 2, (3.23)

Equation (3.21) can be rewritten as

σ2P (ωd) ≈ 2π
∑

m1=±1

∑

m2=±1

∫ ∞

0

∫ ∞

0

H(Y1, Y2)T̂ (m1, Y1, θK1
)T̂ (m2, Y2, θK2

)

· δ(ωd +m1
√
gY1 +m2

√
gY2)dY1dY2. (3.24)

By integrating (3.24) over Y2, the second-order cross section can be reduced to a

single integral, as follows:

σ2P (ωd) ≈ 2π
∑

m1=±1

∑

m2=±1

∫ ∞

0

H(Y1, Y2) · T̂ (m1, Y1, θK1
) T̂ (m2, Y2, θK2

) dY1, (3.25)

where Y2 is given by

Y2 = −
(

ωd

m2
√
g
+
m1

m2
Y1

)

. (3.26)

In order to emphasize the directional and non-directional parts of the spectrum, the

definition in (2.10) can be applied to T̂ in Equation (3.25), resulting in

σ2P (ωd) ≈ 2π
∑

m1=±1

∑

m2=±1

∫ ∞

0

H(Y1, Y2) ·
[

T̃ (Y1)D (m1, θK1
)
]

·
[

T̃ (Y2)D (m2, θK2
)
]

dY1. (3.27)
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From Equation (3.26), it is evident that at each Doppler shift ωd, Y2 is a translation

of ±Y1 by a factor of ± ωd√
g
, with the signs varying independently, since m1, m2 = ±1.

This is an important conclusion from the coordinate change presented herein. Since

Y1 and Y2 represent waves in the same scattering patch and this patch is considered

small for a narrow beam radar, the waves in the second-order spectrum share the same

non-directional spectral distribution. Therefore, T̃ (Y2) is a translated form of T̃ (Y1)

for patch scattering with a narrow beam radar. This result allows for simplifications

in the wave extraction process that will be addressed later.

This expression is a reduced form of the second-order bistatic radar cross section,

expressed in (3.12). Still, the angles θK1
and θK2

are present in (3.27). Thus, a

relationship between Y1, Y2 and its angles must be found.

3.3.1 Wave Vector Direction in the New Coordinate Frame

Figure 3.1 presents the details of the second-order patch scattering geometry. As may

be observed, the resulting wave vector K has the same direction as the normal to the

ellipse N, as explained in Section 2.3.4, and has magnitude equal to KB, given by

(2.38). The combination of any K1 and K2 must result in K, as expressed in (2.42).

Unlike the monostatic case presented by Shahidi and Gill [1], the direction of K

does not coincide with the transmitter look direction. Instead, it coincides with the

normal to the ellipse. This introduces a rotation to the wave vector system with

respect to the transmitter coordinates. To take this into account, the angle θN must

be taken into consideration in the scattering analysis.

Being the result of a vector sum, the magnitudes of K, K1, and K2 follow the
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Figure 3.1: Geometry of the wave numbers in the second-order patch scattering

cosine law. This characteristic was previously taken into account while calculating

the Jacobian for the change of variables. From (3.18), it is possible to obtain a

relationship between θK1
, Y1, and Y2. This relationship can be written as

θK1
= θN ∓ arccos

(

Y1
4 − Y2

4 +K2

2KY1
2

)

. (3.28)

Similarly, an expression that relates θK2
, Y1, and Y2 can be found by using the

law of cosines. Since K2 = K−K1 from (2.42),

θK2
= θN ± arccos

(

Y2
4 − Y1

4 +K

2KY2
2

)

. (3.29)

The ∓ and ± signs for the inverse cosine functions in (3.28) and (3.29) are conse-

quences of the trigonometric identity cos(ψ) = cos(−ψ), ∀ψ. The angles are chosen

in pairs such that if the top sign is chosen for one of the angles, the top sign should

also be chosen for the other angle. Therefore, the possible pairs of angles, making
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K = 2ko cosφ, are



















θ−
K1

= θN − arccos

(

Y1
4 − Y2

4 + 4ko
2 cos2 φ

4koY1
2 cosφ

)

θ+
K2

= θN + arccos

(

Y2
4 − Y1

4 + 4ko
2 cos2 φ

4koY2
2 cosφ

)

and


















θ+
K1

= θN + arccos

(

Y1
4 − Y2

4 + 4ko
2 cos2 φ

4koY1
2 cosφ

)

θ−
K2

= θN − arccos

(

Y2
4 − Y1

4 + 4ko
2 cos2 φ

4koY2
2 cos φ

)

.

If the same signs are chosen, the condition in the vector sum expressed in (2.42)

cannot be fulfilled and, therefore, this is not a possible combination.

By adapting the expressions of θK1
and θK2

presented by Shahidi and Gill [1] for

the monostatic case to the non-normalized case, the directions of K1 and K2 can be

respectively written as

θK1Monost.
= ± arccos

(

Y2
4 − Y1

4 −K2

2KY1
2

)

(3.30)

θK2Monost.
= ∓ arccos

(

Y1
4 − Y2

4 −K2

2KY2
2

)

. (3.31)

Due to the scattering geometry in the monostatic case, both possible values in Equa-

tion (3.30) have the same magnitudes. The same observation applies to Equa-

tion (3.31). This reduces the problem of multiple scattering angles for the same

magnitudes of K1 and K2 to a simple multiplication by a factor of two Shahidi [121].

In the bistatic configuration, however, this symmetry is not present due to the direc-

tion of K not being the same as that of the transmitted signal. In this case, the two

angles in Equations (3.28) and (3.29) will have different magnitudes. Therefore, the

cross section needs to be calculated for each possible angle in a (K1,K2) pair.
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From Equations (3.26), (3.28) and (3.29), it is possible to conclude that the second-

order cross section in the new coordinate frame, presented in (3.27), is only dependent

on Y1, since all other variables can be obtained from expressions that relate it with

other quantities, such as Doppler shift ωd, transmitter wave number ko, and bistatic

angle φ. This opens up the possibility of using nonlinear optimization techniques in a

more efficient manner, since the expression in (3.27) is a simplified version of (3.12).

3.4 Methodology

It is desired to obtain the ocean wave spectrum distribution from bistatic HF-radar

data. The radar cross section that represents the bistatic HF-radar data is expressed

by Equation (3.27). As previously mentioned, the problem of solving for the di-

rectional ocean wave spectrum in Equation (3.27) is a nonlinear ill-posed problem.

Therefore, in seeking an optimal solution, the problem should be regularized.

The directional ocean wave spectrum was extracted from synthetic HF-radar data,

generated by simulation using Matlab® for different radar and ocean configurations.

For the non-directional spectrum, the Pierson-Moskowitz model, described by Equa-

tion (2.23), was used. As for the directional spread function, the Longuet-Higgins

model in Equation (2.24) was chosen. In order to speed up the optimization, the

nondirectional ocean wave spectrum was limited to 256 points, which resulted in a

“spiky” returned signal. This choice does not jeopardize the presented method.

In the extraction process, the regularized nonlinear least-squares method pre-

sented in Section 3.2.3 was used, specifically the Tikhonov Regularization in Hilbert

scales, described by Equation (3.8). Since both input and output spaces are Eu-
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clidean, the norms ‖ · ‖X and ‖ · ‖Y can be substituted by the L2-norm described by

Equation (3.1) for p = 2. Regarding the Y operator, the second-order differential

operator D2 described by Equation (3.9) was used. The regularization parameter was

iteratively chosen by using the process described by Equation (3.11). The method

was implemented by modifying the levenbergMarquardt algorithm in Matlab® to

include the regularization parameter. After modification, the nonlinear least-squares

function lsqnonlin was used.

To attest to the efficacy of the proposed method, the root-mean-square error e and

the normalized root-mean-square errorRMSE of each measurement were presented.

For a given estimated variable X with Xr being the reference (or ground truth), both

of size N , these error measurements are defined as

RMSEX =

√

√

√

√

1

N

N
∑

n=1

|X[n ]−Xr[n ]|2,

and

eX =
RMSEX

max(Xr)
.

For the investigations in this thesis, synthetic bistatic HF-Radar data was gen-

erated from different configurations, where wind speed, wind direction, and bistatic

radar configuration are changed in order to observe how the extraction method is

affected by each of these parameters. Moreover, traditional meteorological measure-

ments, such as significant wave height and peak wave period, will also be included

in the error analysis. These meteorological measurements, however, will be obtained

from the directional ocean wave spectrum, and are thus not strictly the objective of

the extraction.

The objective function was designed such that no spectral model was assumed
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for the non-directional spectrum, while the Longuet-Higgins directional function was

assumed for the directional spread function. The translation property found between

T (Y1) and T (Y2) was exploited, and T (Y2) was derived from T (Y1) by spline interpola-

tion and extrapolation using the Matlab® function interp1. Therefore, the variables

for which the problem will be solved are the non-directional ocean wave spectrum T ,

or more specifically Ŝ, mean wind direction θ̄, and spreading factor s.

3.5 Extraction Results and Discussion

3.5.1 Changes in Wind Speed

Figure 3.2 presents the synthetic second-order cross section simulation for differ-

ent wind speeds while Figures 3.3 and 3.4 present the original and extracted non-

directional spectrum and directional spread function for each case. Tables 3.1 and 3.2

present, respectively, the normalized and RMS errors for the extracted spectrum and

for the significant wave height for each wind speed. For all results, errors in the peak

wave period Tmax were equal to zero, meaning that the peak wave period was re-

trieved exactly in all experiments with the new optimization-based method. It must

be emphasized that, at this point, these are results for the idealized synthetic data

that has no noise content.

3.5.2 Changes in Wind Direction

Figure 3.5 presents the synthetic second-order cross section simulation for differ-

ent wind speeds while Figures 3.6 and 3.7 present the original and extracted non-
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Figure 3.2: Synthetic second-order bistatic cross section under different wind speeds.

Transmitter frequency fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter look

direction θ01 = 60◦, spreading factor s = 1.85, and wind direction θw = θ̄ = 15◦.
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Figure 3.3: Comparison between the original and extracted non-directional ocean

wave spectra for different wind speeds. Transmitter frequency fo = 13.385 MHz,

bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading factor s = 1.85,

and wind direction θw = θ̄ = 15◦.
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Figure 3.4: Comparison between the original and extracted ocean wave directional

spread functions for different wind speeds. Transmitter frequency fo = 13.385 MHz,

bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading factor s = 1.85,

and wind direction θw = θ̄ = 15◦.
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Table 3.1: Normalized root-mean-square error for the ocean wave spectrum extraction

under different wind speeds

U19.5 (m/s) eŜ eθ̄ es eH1/3

6 0.28% 0.03% 0.04% 1.65%

10 0.24% 0.05% 0.04% 0.25%

18 0.16% 0.01% 0.00% 0.19%

22 0.09% 0.09% 0.09% 0.11%

Table 3.2: Root-mean-square error for the ocean wave spectrum extraction under

different wind speeds

U19.5 (m/s) RMSEŜ (m2/s) RMSEθ̄ (◦) RMSEs RMSEH1/3
(m)

6 1.02× 10−3 4.33× 10−3 6.50× 10−4 8.93× 10−3

10 5.39× 10−2 8.14× 10−3 7.70× 10−4 4.06× 10−3

18 3.83 1.22× 10−3 6.00× 10−5 9.11× 10−3

22 10.03 1.28× 10−2 1.61× 10−3 7.73× 10−3
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directional spectrum and directional spread function for different wind directions.

Tables 3.3 and 3.4 present, respectively, the normalized and RMS errors for the ex-

tracted spectrum and for the significant wave height for each wind direction. For all

results, as mentioned previously, errors in the peak wave period Tmax were equal to

zero.

3.5.3 Changes in Spreading Factor

Figure 3.8 presents the synthetic second-order cross section simulation for different

values for the spreading factor s, while Figures 3.9 and 3.10 present the original and

extracted non-directional spectrum and directional spread function for each case. Ta-

bles 3.5 and 3.6 present, respectively, the normalized and RMS errors for the extracted

spectrum and for the significant wave height for each spreading factor. For all results,

errors in the peak wave period Tmax were equal to zero.

3.5.4 Changes in Bistatic Configuration

Figure 3.11 presents the synthetic second-order cross section simulation for different

combinations of bistatic angle φ and transmitter look direction θ01, while Figures 3.12

and 3.13 present the original and extracted non-directional spectrum and directional

spread function for each case. Tables 3.7 and 3.8 present, respectively, the normalized

and RMS errors for the extracted spectrum and for the significant wave height for

each combination. For all results, errors in the peak wave period Tmax were equal to

zero.
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Figure 3.5: Synthetic second-order bistatic cross section under different wind direc-

tions. Transmitter frequency fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter

look direction θ01 = 60◦, spreading factor s = 1.85, and wind speed U19.5 = 15 m/s.
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Figure 3.6: Comparison between the original and extracted non-directional ocean

wave spectra for different wind directions. Transmitter frequency fo = 13.385 MHz,

bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading factor s = 1.85,

and wind speed U19.5 = 15 m/s.
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Figure 3.7: Comparison between the original and extracted ocean wave direc-

tional spread functions for different wind directions. Transmitter frequency fo =

13.385 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading

factor s = 1.85, and wind speed U19.5 = 15 m/s.
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Table 3.3: Normalized root-mean-square error for the ocean wave spectrum extraction

under different wind directions

θ̄ (◦) eŜ eθ̄ es eH1/3

15◦ 0.13% 0.10% 0.12% 0.24%

30◦ 0.11% 0.02% 0.03% 0.07%

60◦ 0.11% 0.23% 0.34% 0.09%

90◦ 0.13% 0.89% 0.67% 0.21%

Table 3.4: Root-mean-square error for the ocean wave spectrum extraction under

different wind directions

θ̄ (◦) RMSEŜ (m2/s) RMSEθ̄ (◦) RMSEs RMSEH1/3
(m)

15◦ 7.12× 10−1 1.57× 10−2 2.15× 10−3 8.46× 10−3

30◦ 6.45× 10−1 7.14× 10−3 6.10× 10−4 2.44× 10−3

60◦ 5.90× 10−1 1.35× 10−1 6.36× 10−3 3.02× 10−3

90◦ 7.12× 10−1 8.05× 10−1 1.24× 10−2 7.39× 10−3
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Figure 3.8: Synthetic second-order bistatic cross section under different spreading

factors. Transmitter frequency fo = 13.385 MHz, wind speed U19.5 = 15 m/s, and

wind direction θw = θ̄ = 15◦.
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Figure 3.9: Comparison between the original and extracted non-directional ocean

wave spectra for different spreading factors. Transmitter frequency fo = 13.385 MHz,

wind speed U19.5 = 15 m/s, and wind direction θw = θ̄ = 15◦.
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Figure 3.10: Comparison between the original and extracted ocean wave direc-

tional spread functions for different spreading factors. Transmitter frequency fo =

13.385 MHz, wind speed U19.5 = 15 m/s, and wind direction θw = θ̄ = 15◦.
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Table 3.5: Normalized root-mean-square error for the ocean wave spectrum extraction

under different spreading factors

s eŜ eθ̄ es eH1/3

1.00 0.12% 0.12% 0.13% 0.09%

1.50 0.13% 0.11% 0.12% 0.20%

2.00 0.14% 0.08% 0.09% 0.22%

3.00 0.15% 0.03% 0.04% 0.20%

Table 3.6: Root-mean-square error for the ocean wave spectrum extraction under

different spreading factors

s RMSEŜ (m2/s) RMSEθ̄ (◦) RMSEs RMSEH1/3
(m)

1.00 6.68× 10−1 1.86× 10−2 1.32× 10−3 3.17× 10−3

1.50 7.28× 10−1 1.67× 10−2 1.82× 10−3 6.70× 10−3

2.00 7.74× 10−1 1.25× 10−2 1.84× 10−3 7.56× 10−3

3.00 8.41× 10−1 5.38× 10−3 1.28× 10−3 6.89× 10−3
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Figure 3.11: Synthetic second-order bistatic cross section under different bistatic

configurations. Transmitter frequency fo = 13.385 MHz, spreading factor s = 1.85,

wind speed U19.5 = 15 m/s, and wind direction θw = θ̄ = 15◦.
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Figure 3.12: Comparison between the original and extracted non-directional ocean

wave spectra for different bistatic configurations. Transmitter frequency fo =

13.385 MHz, spreading factor s = 1.85, wind speed U19.5 = 15 m/s, and wind di-

rection θw = θ̄ = 15◦.
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(c) φ = 15.78◦, θ01 = 66.50◦
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Figure 3.13: Comparison between the original and extracted ocean wave directional

spread functions for different bistatic configurations. Transmitter frequency fo =

13.385 MHz, spreading factor s = 1.85, wind speed U19.5 = 15 m/s, and wind direction

θw = θ̄ = 15◦.
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Table 3.7: Normalized root-mean-square error for the ocean wave spectrum extraction

under different bistatic configurations

φ (◦) θ01 (◦) θN (◦) eŜ eθ̄ es eH1/3

30.00◦ 60.00◦ 90.00◦ 0.13% 0.10% 0.11% 0.25%

45.00◦ 30.00◦ 85.00◦ 0.14% 0.04% 0.02% 0.02%

15.78◦ 66.50◦ 82.28◦ 0.15% 0.20% 0.14% 0.39%

55.20◦ 35.50◦ 19.70◦ 0.21% 0.09% 0.11% 0.02%

Table 3.8: Root-mean-square error for the ocean wave spectrum extraction under

different bistatic configurations

φ (◦) θ01 (◦) θN (◦) RMSEŜ (m2/s) RMSEθ̄ (◦) RMSEs RMSEH1/3
(m)

30.00◦ 60.00◦ 90.00◦ 7.12× 10−1 1.57× 10−2 2.15× 10−3 8.46× 10−3

45.00◦ 30.00◦ 85.00◦ 8.10× 10−1 5.95× 10−3 4.30× 10−4 6.50× 10−4

15.78◦ 66.50◦ 82.28◦ 8.37× 10−1 3.02× 10−2 2.60× 10−3 1.34× 10−2

55.20◦ 35.50◦ 19.70◦ 1.16 1.37× 10−2 2.04× 10−3 7.90× 10−4
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3.5.5 Discussion

As can be observed from the results presented in the previous section, the presented

method successfully extracted the directional ocean wave spectrum from the second-

order bistatic HF radar cross section of the ocean surface with fairly high accuracy.

Regarding errors in the non-directional spectrum, the accuracy of the extraction

was slightly affected by changes in the wind direction, even though the results are still

accurate. Larger errors are expected at low wind speeds, since in these cases there is

not enough energy in the spectral region observed by the radar [91]. No particular

trend was observed in the extraction error for the non-directional spectrum due to

changes in the wind direction or in the bistatic configuration.

As for errors in the directional spectrum, the mean wind direction and spreading

function seem to be more affected by changes in the wind speed. In this case, again,

the normalized root-mean-square error was very small, even in the worst case. With

respect to changes in the wind speed, the errors were very small in all cases, with a

higher error value in the U19.5 = 22 m/s case. No particular trends were noticed in

the errors by changing the spreading factor s.

Errors in the significant wave height follow the trend of the non-directional ocean

wave spectrum, since the former was measured from the latter. The peak wave period,

also obtained from the ocean wave spectrum, had errors equal to zero in all the cases,

meaning that the extraction method successfully captured the peak position of the

ocean wave spectra exactly.

The extraction method also proved to be robust to changes in the bistatic config-

uration, with very small error values for all the cases and no noticeable trend.
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As expected, the RMS error was very low in all the cases, with the exception of

the non-directional spectrum error due to changes in the wind speed. In this case,

however, the error is still very small if compared to the magnitudes of the spectrum,

which indicates that the method is accurate. It must be emphasized, however, that

these results were derived from the application of the presented method to an ideal

case, in which there is no noise or presence of first-order scattering. It is not expected

that such close agreement would be obtained from real data.

It was also observed that the regularization parameter presented in (3.11) de-

creases monotonically with the discrepancy δ of the previous iteration, converging to

an optimal parameter. This technique is analogous to the one presented by Orain-

tara et al. [122], where the optimal regularization parameter for the linear Tikhonov

regularization is reached through an iterative process. In all presented cases, the

regularization parameter converged monotonically to zero, which is expected for a

noiseless case. In a noise-contaminated case, however, the regularization parameter

should converge to a non-zero value.

3.6 General Chapter Summary

In this chapter, the extraction of the ocean wave spectrum from the second-order

bistatic cross section was presented. In Section 3.3, a change of variables was intro-

duced to the second-order bistatic cross-section presented by Gill [3], which allowed

for further simplification of the expression, as well as to help identify the direct re-

lationship between variables in the cross-section formulation. These changes later

facilitated the extraction method.
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In Section 3.2.2, the extraction method was presented. A brief explanation on

regularized nonlinear least-squares and Tikhonov regularization in Hilbert spaces was

provided, as well as a formulation for the regularization parameter. Then, the method-

ology was presented, detailing the approach to the ocean wave spectrum extraction

using the techniques presented earlier.

Section 3.5 contained the results of the directional ocean wave spectrum extrac-

tion, providing both normalized and root-mean-square errors for each measurement,

as well as for significant wave height and peak wave period. The method proved

to be successful in extracting the ocean wave spectrum in both its directional and

non-directional components, doing so with high accuracy, with normalized root-mean-

square errors varying between 0% and 0.89% for the extracted parameters, and 1.65%

reaching on the worst case for the significant wave height, an indirect measurement.

Even though the proposed method has been proven successful in the extraction

of the ocean wave spectrum from the second-order bistatic cross section, the second-

order cross section is not available as an independent measurement in the field. How-

ever, being the two most energetic components of the received signal, the first- and

second- order cross sections combined can provide a more realistic approach to the

problem. Also, these results, provided as a proof-of-concept for usefulness of the

method, were obtained for noise-free simulated data, which is, again, not realistic. In

the next chapter, both these situations will be addressed, and the extraction method

will be applied to measurements obtained in noisy environments in the presence of

first-order scattering effects.
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Chapter 4

Nonlinear Extraction of the Ocean

Wave Spectrum from Noisy

Bistatic HF Radar Data

4.1 Introduction

In the previous chapter, a new nonlinear extraction method of the directional ocean

wave spectrum from bistatic HF radar data was presented. The method achieved

a fair level of accuracy, being able to extract the directional spectrum from several

different ocean conditions. The presented cases, however, do not represent realistic

scenarios.

Every measurement, especially in an uncontrolled environment, is likely contam-

inated by noise. This is especially true for HF radar field data. To not take into

account the presence of noise in the extraction method is to account only for the
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best-case scenario. Therefore, the method’s robustness to noise should be tested in

order to determine if the method can be applied to field measurements.

Another point to be considered is that the second-order cross section is not avail-

able independent of other orders of scattering. Higher orders of scattering are, in

general, less energetic than the lower ones, with the first-order being the most en-

ergetic. Consequently, in order to obtain a more realistic case, the first-order cross

section should be considered in the extraction process.

This chapter takes both these aims into account in the extraction process.

4.2 Noiseless Patch Scattering Cross Section

According to Equation (2.31), the patch scattering cross section per unit area of the

ocean surface up to its second order can be written as

σP (ωd) = σ1(ωd) + σ2P (ωd), (4.1)

where σ1 is the first-order cross section described by Eq. (2.35) and σ2P is the second-

order cross section described by Eq. (3.27) after simplification. Since (4.1) contains

the two most energetic scattering cross section orders, the total cross section σ can

be approximated as σP . Throughout the text, this approximation will be considered.

Since the scattering occurs at the same patch of the ocean for both first- and patch

scattering second-order, the ocean wave spectrum for both first-order and the first

scatter of the second-order scattering can be considered the same. This conclusion

plays a role in the extraction of the directional ocean wave spectrum, since the first-

order cross section also carries information about it.
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The same methodology as was presented in Section 3.4 will be applied to the patch

scattering cross section. However, only the changes in variables that were identified

to impact the accuracy of the extraction — i.e. wind speed and wind direction —

will be considered.

4.2.1 Extraction Results

4.2.1.1 Changes in Wind Speed

Figure 4.1 presents the synthetic patch scattering cross section simulation for different

wind speeds, while Figures 4.2 and 4.3 show the original and extracted non-directional

spectrum and directional spread function for each case. Tables 4.1 and 4.2 present,

respectively, the normalized and RMS errors for the extracted spectrum and for indi-

rect meteorological measurements for each wind speed and direction. For all results,

errors in the peak wave period Tmax were equal to zero, meaning that the peak wave

period was retrieved exactly in all experiments.

4.2.1.2 Changes in Wind Direction

Figure 4.4 presents the synthetic patch scattering cross section simulation for dif-

ferent wind directions, while Figures 4.5 and 4.6 show the original and extracted

non-directional spectrum and directional spread function for each case. Tables 4.3

and 4.4 present, respectively, the normalized and RMS errors for the extracted spec-

trum and for indirect meteorological measurements for each wind speed and direction.

For all results, errors in the peak wave period Tmax were equal to zero, meaning that

the peak wave period was retrieved exactly in all experiments.
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Figure 4.1: Synthetic patch scattering bistatic cross section under different wind

speeds. Transmitter frequency fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter

look direction θ01 = 60◦, spreading factor s = 1.85, and wind direction θw = θ̄ = 15◦.
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Figure 4.2: Comparison between the original and extracted non-directional ocean

wave spectra for different wind speeds. Transmitter frequency fo = 13.385 MHz,

bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading factor s = 1.85,

and wind direction θw = θ̄ = 15◦.
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Figure 4.3: Comparison between the original and extracted ocean wave directional

spread functions for different wind speeds. Transmitter frequency fo = 13.385 MHz,

bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading factor s = 1.85,

and wind direction θw = θ̄ = 15◦.
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Table 4.1: Normalized root-mean-square error for the ocean wave spectrum extraction

from the patch cross section under different wind speeds

U19.5 (m/s) eŜ eθ̄ es eH1/3

6.00 2.53% 5.33% 4.44% 0.65%

10.00 0.66% 1.03% 1.27% 0.55%

18.00 0.43% 1.66% 1.80% 0.10%

22.00 0.41% 0.68% 0.62% 0.94%

Table 4.2: Root-mean-square error for the ocean wave spectrum extraction under

different wind speeds

U19.5 (m/s) RMSEŜ (m2/s) RMSEθ̄ (◦) RMSEs RMSEH1/3
(m)

6.00 9.19× 10−3 7.99× 10−1 8.22× 10−2 3.52× 10−3

10.00 1.42× 10−1 1.55× 10−1 2.35× 10−2 8.31× 10−3

18.00 10.20 2.48× 10−1 3.32× 10−2 4.78× 10−3

22.00 48.20 1.02× 10−1 1.15× 10−2 6.87× 10−2
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Figure 4.4: Synthetic patch scattering bistatic cross section under different wind di-

rections. Transmitter frequency fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter

look direction θ01 = 60◦, spreading factor s = 1.85, and wind speed U19.5 = 15 m/s.
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Figure 4.5: Comparison between the original and extracted non-directional ocean

wave spectra for different wind directions. Transmitter frequency fo = 13.385 MHz,

bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading factor s = 1.85,

and wind speed U19.5 = 15 m/s.
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Figure 4.6: Comparison between the original and extracted ocean wave direc-

tional spread functions for different wind directions. Transmitter frequency fo =

13.385 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading

factor s = 1.85, and wind speed U19.5 = 15 m/s.
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Table 4.3: Normalized root-mean-square error for the ocean wave spectrum extraction

from the patch cross section under different wind directions

θ̄ (◦) eŜ eθ̄ es eH1/3

15.00◦ 0.61% 0.66% 1.32% 1.07%

30.00◦ 0.66% 2.95% 2.46% 0.58%

60.00◦ 0.99% 0.23% 0.24% 1.84%

90.00◦ 0.67% 3.95% 0.69% 1.17%

Table 4.4: Root-mean-square error for the ocean wave spectrum extraction under

different wind directions

θ̄ (◦) RMSEŜ (m2/s) RMSEθ̄ (◦) RMSEs RMSEH1/3
(m)

15.00◦ 3.34 9.96× 10−2 2.43× 10−2 3.64× 10−2

30.00◦ 3.60 8.85× 10−1 4.55× 10−2 1.98× 10−2

60.00◦ 5.39 1.39× 10−1 4.51× 10−3 6.24× 10−2

90.00◦ 3.67 3.56 1.28× 10−2 3.97× 10−2

103



4.2.2 Discussion

Comparing with the results obtained in Chapter 3, the inclusion of the first-order

cross section resulted in an increase of the RMS error for changes in both wind speed

and direction.

Regarding changes in the wind speed, the extraction at 6 m/s returned the high-

est relative RMS error for the non-directional spectrum. From its extracted non-

directional spectrum in Figure 4.2, it is evident that the regularization parameter

played a role in the increase of the error value, oversmoothing the spectrum. Also,

as previously explained, at 6 m/s the wave field did not return enough energy to

the receiver for a transmitted signal of 13.385 MHz, making this radar configuration

unsuitable to map wave fields generated by these wind speeds [91]. In the following

experiments, the 6 m/s will then be dropped, giving place to a wind speed within an

appropriate range for a 13.385 MHz HF radar. The trend of decreasing normalized

RMS error for higher wind speeds is confirmed, while for the directional parameters,

this trend is not confirmed.

As for changes in the wind direction, the error for the non-directional spectrum

was relatively stable, while no specific trend could be identified for the directional

parameters. During the optimization, however, it was observed that the algorithm

missed the optimal point for the directional parameters while trying to minimize the

error for the non-directional spectrum. Further studies will be necessary to determine

the cause of this problem.

As expected for the noiseless case, the regularization parameter converged to zero

in all presented conditions.
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4.3 Noise-contaminated Doppler Radar Data

According to the International Telecommunication Union [123, 124], there are three

main sources of radio noise in the HF band: atmospheric noise due to lightning,

cosmic noise, and man-made noise. Noise from these sources usually does not appear

independently, and each of them has a characteristic spectral distribution. However,

if a single cause is not dominant, radio noise can be characterized as white Gaussian

noise [124].

Using the model proposed by Pierson [125] for a stationary Gaussian process, Gill

[3] presented the radio noise voltage as

nr(t) =

∫

ω′

[

h

(

ω′ +
B

2

)

− h

(

ω′ − B

2

)]

ejω
′tejǫ(ω

′)

√

SN(ω′)
dω′

2π

=

∫ B
2

−B
2

ejω
′tejǫ(ω

′)

√

SN(ω′)
dω′

2π
.

(4.2)

The form suggested by Pierson [125] can be applied to any stationary Gaussian

process. According to Barrick and Snider [32], even though the first-order cross section

describes a stationary Gaussian process, the second-order is clearly not Gaussian,

since it is the product of two Gaussian processes. For practical purposes, however,

the second-order cross section can be approximated as a Gaussian process with fair

accuracy [32], which allows the use of Pierson’s form for the received radar signal.

The power spectral density of the received radar signal can be written as

Sσ(ω) =
√

Cσ(ω), (4.3)

where C is the radar attenuation function, defined as

C =
λo

2PTGTGRAp|F(ρ01)F(ρ20)|2
(4π)3ρ012ρ202

, (4.4)
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where:

• GT : Gain of the transmitter.

• GR: Gain of the receiver, which can be defined as

GR = 5.48
(N + 1)ds

λo

for an N -element linear array dipole array.

• PT : Power of the transmitter.

• AP : Area of the scattering patch, defined in Equation (2.33), where θHPBW is

the half-power beamwidth of the receiver, given by

θHPBW = 2.65
λo

(N + 1)πds

for an N -element linear dipole array, with a distance ds between elements.

• λo: wavelength of the transmitter signal.

• ρ01: Distance between the transmitter and the first scatter.

• ρ02: Distance between the second scatter and the receiver.

• F : Transmission path attenuation function. For short distances the Sommerfeld

attenuation function is sufficient. However, for the usual distances in HF radar,

the equation proposed by Wait [21], and later revisited by Dawe [126], should

be used, since it accounts for the Earth’s curvature and impedance of the ocean

surface.
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Using Pierson’s form, the time series of the received radar signal can be written

as

Er(t) =
√
C

∫ B
2

−B
2

ejω
′tejǫ(ω

′)

√

Sσ(ω′)
dω′

2π
(4.5)

In order to simulate the noise-contaminated received radar signal, additive white

Gaussian noise should be applied to the radar received time series. Therefore, the

resulting noise-contaminated received radar signal En would then be written as

En(t) = Er(t) + nr(t).

One way to quantify the noise in a signal is by its signal-to-noise ratio (SNR). The

SNR in dB is defined as

SNRdB = 10 log10

(

PEr

Pnr

)

,

where PEr is the power of the uncorrupted received signal and Pnr is the power of the

noise signal.

According to Howard [127] for example, the power spectral density of a band-

limited process can be written as

S(ωd) =
1

T

∣

∣

∣

∣

∫ T

0

E(t)ejωdtdt

∣

∣

∣

∣

2

(4.6)

The noise-contaminated radar received power spectral density can then be calculated

from (4.6). This signal will have a significantly smaller power than the cross section σ,

since it is calculated from a time series based on Equation (4.3). This introduces some

complexities to the problem, since the problem of inversion would be dependent on the

particular choice of transmitter and receiver. Barrick [33] circumvents this problem
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by normalizing the spectrum by its maximum first-order peak, which eliminates the

dependency on a specific radar, also getting rid of other attenuation factors.

Once the normalized noise-contaminated power spectral density was obtained,

the method described in the previous chapter is applied, where it is compared to a

noiseless normalized cross section.

4.3.1 Extraction Results

In order to focus on the effects of the noise in the extraction results, this section,

unlike the previous ones, will only present the relative RMS errors in graphical form.

Results that are particularly relevant to the discussion will be presented as required.

4.3.1.1 Changes in Wind Speed

Figures 4.7 to 4.11 show, respectively, the normalized RMS errors for the non-

directional ocean wave spectrum, mean wind direction, spreading parameter, signifi-

cant wave height, and peak wave period for different wind speeds and signal-to-noise

ratios.

4.3.1.2 Changes in Wind Direction

Figures 4.12 to 4.16 present, respectively, the normalized RMS errors for the non-

directional ocean wave spectrum, mean wind direction, spreading parameter, signifi-

cant wave height, and peak wave period for different mean wind directions and noise

levels.
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Figure 4.7: Normalized root-mean-square error for the extracted non-directional

ocean wave spectrum under different wind speeds and signal-to-noise ratios. Trans-

mitter frequency fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter look direction

θ01 = 60◦, spreading factor s = 1.85, and wind direction θw = θ̄ = 15◦.
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Figure 4.8: Normalized root-mean-square error for the extracted mean wind direction

θ̄ under different wind speeds and signal-to-noise ratios. Transmitter frequency fo =

13.385 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading

factor s = 1.85, and wind direction θw = θ̄ = 15◦.
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Figure 4.9: Normalized root-mean-square error for the extracted spread parameter

under different wind speeds and signal-to-noise ratios. Transmitter frequency fo =

13.385 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading

factor s = 1.85, and wind direction θw = θ̄ = 15◦.
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Figure 4.10: Normalized root-mean-square error for the calculated significant wave

height H1/3 under different wind speeds and signal-to-noise ratios. Transmitter fre-

quency fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦,

spreading factor s = 1.85, and wind direction θw = θ̄ = 15◦.
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Figure 4.11: Normalized root-mean-square error for the peak wave period Tmax un-

der different wind speeds and signal-to-noise ratios. Transmitter frequency fo =

13.385 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading

factor s = 1.85, and wind direction θw = θ̄ = 15◦.
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Figure 4.12: Normalized root-mean-square error for the extracted non-directional

ocean wave spectrum under different wind directions and signal-to-noise ratios. Trans-

mitter frequency fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter look direction

θ01 = 60◦, spreading factor s = 1.85, and wind speed U19.5 = 15 m/s.
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Figure 4.13: Normalized root-mean-square error for the extracted mean wind di-

rection θ̄ under different wind directions and signal-to-noise ratios. Transmitter fre-

quency fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦,

spreading factor s = 1.85, and wind speed U19.5 = 15 m/s.
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Figure 4.14: Normalized root-mean-square error for the extracted spread parameter

under different wind directions and signal-to-noise ratios. Transmitter frequency fo =

13.385 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦, spreading

factor s = 1.85, and wind speed U19.5 = 15 m/s.
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Figure 4.15: Normalized root-mean-square error for the calculated significant wave

height H1/3 under different wind directions and signal-to-noise ratios. Transmitter

frequency fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 =

60◦, spreading factor s = 1.85, and wind speed U19.5 = 15 m/s.
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Figure 4.16: Normalized root-mean-square error for the calculated peak wave period

Tmax under different wind directions and signal-to-noise ratios. Transmitter frequency

fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter look direction θ01 = 60◦,

spreading factor s = 1.85, and wind speed U19.5 = 15 m/s.
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4.3.2 Discussion

From the results, it is possible to conclude that the presented method was able to

recover the directional ocean wave spectrum in a noisy environment. However, some

considerations must be made.

The cases with lower wind speeds were more affected by an increase in noise levels,

as seen in Figure 4.7. The comparison between noiseless and noisy Doppler spectra in

these situations, as shown in Figure 4.17, might bring some insights to this problem.

As can be observed, the second-order features in all cases presented in Figure 4.17

have been contaminated by noise to such a degree that part of the information from

the non-directional ocean wave spectrum was lost. Therefore, a greater relative error

was observed in these cases. It should be added, however, that even though these

error values were higher if compared to the highest wind speeds, these errors were

still small considering the noise levels that were present in these cases.

For the mean wind direction, on the other hand, there was a higher error in

the 18 m/s and 22 m/s cases, especially in the SNR= −5 dB case. While further

studies will be dedicated to the origin of these errors, earlier results indicate that

the lsqnonlin function continued trying to fit after the closest point to convergence

was reached. As for the spreading factor, the behaviour of its normalized error was

consistent with the one observed for the mean wind direction.

As expected, the relative error of the significant wave height followed the trend

set by the nondirecitonal spectrum. The significant wave height was fairly robust to

noise.

While in previous cases the peak wave period was precisely determined, this was
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Figure 4.17: Comparison between noiseless and noisy synthetic patch scattering

bistatic cross section under different wind speeds and signal-to-noise ratios. Trans-

mitter frequency fo = 13.385 MHz, bistatic angle φ = 30◦, transmitter look direction

θ01 = 60◦, spreading factor s = 1.85, and wind direction θw = θ̄ = 15◦

not the case in the presence of noise. From Figure 4.11 it can be observed that

in most cases, the peak wave period was precisely determined. However, in three

cases — U19.5 = 10 m/s with SNR = −5 dB, U19.5 = 14 m/s with SNR = −5 dB,

and U19.5 = 22 m/s with SNR = 0 dB — Tmax presented errors. Since Tmax was
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directly dependent on the wave number, these error values were dependent on the

discretization of the non-directional spectrum. The resolution of the nondirectional

spectrum in the Y1 domain used throughout the thesis is 0.01172 (rad/m)−2, with the

spectrum spanning from 0.0059 (rad/m)−2 to 2.9951 (rad/m)−2.

With respect to changes in the mean wind direction, the extraction of the non-

directional spectra was reasonably accurate, with error values below 4.5% in all cases.

The directional parameters, on the other hand, were more sensitive to noise, with

error values being as high as 25% for the mean wind direction and 20% for the spread

parameter, for the θ̄ = 15◦ and SNR= −5 dB case. As in the previous cases, the

directional parameters followed the same error trend, while the significant wave height

followed the non-directional wave spectrum error trend.

As for the peak wave period, it can be observed that Tmax was more sensitive to

changes in the mean wave direction than to changes in the wind speed. An interesting

feature observed in Figure 4.16 was that some values were frequently obtained in the

error graph. This was due to the fact that, being dependent on the discretization of

the ocean wave spectrum, the error of the peak wave period is a discrete quantity.

The regularization parameter for each case has converged to a nonzero value, since

it needs to account for the discrepancy added by the noise. This confirms the action

of Tikhonov regularization on the final result.

4.4 General Chapter Summary

In this chapter, the extraction method presented in Chapter 3 was applied to a more

realistic scenario. In the first part of the chapter, the concept of the patch scattering
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cross section was introduced, in which the scatterings were considered up to the

second-order. The extraction results were satisfactory, with a slight variation from

the case presented in the previous chapter.

In the second part of the chapter, the process of noise contamination of the ocean

wave spectrum was presented. Since the addition of noise occurred in the time domain,

Pierson’s model for the time series of a stationary Gaussian process was applied, tak-

ing into account the remarks from Barrick and Snider [32], which consider the second-

order scattering of the ocean surface a Gaussian process for practical purposes. The

noise model was chosen according to recommendations of the International Telecom-

munication Union [123, 124], which indicates the use of additive white Gaussian noise

when there was no dominant cause for the noise. Then, the extraction method was

applied to the noise-contaminated Doppler spectrum, under different noise levels,

where the wind speed and direction were changed independently. It was observed

that the extraction of the directional parameters and peak wave period were more

susceptible to variations in the mean wind direction, while the non-directional ocean

wave spectrum presented consistent results in the same situation. As for changes in

the wind speed, the directional parameters showed high error values at the highest

noise levels and wind speeds.

122



Chapter 5

Conclusions

5.1 General Summary

The present work introduced a new approach to the extraction of the directional

ocean wave spectrum from bistatic HF radar data. The method, based on the ap-

proach presented by Shahidi and Gill [1], consists of the use of a change of variables

to simplify the second-order cross section per unit area of the ocean surface to a

nonlinear Fredholm integral equation of the first kind, and then applying Tikhonov

regularization in Hilbert scales to the inverse problem in question.

Chapter 1 introduced the subject by describing the importance of this research,

being the first method known to the author to deal with the nonlinear extraction of

the directional ocean wave spectrum from bistatic HF radar data. A literature review

was then presented, where previous works in radio oceanography, especially in the HF

band, were described, giving a historical perspective on the topic. Then, the scope of

the thesis was presented.
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Chapter 2 presented the theoretical background of the physical phenomena related

to the mapping of the ocean surface using HF radar. In its first section, a brief

review of the classification, generation and spectral representation of ocean waves

was given. This section was important for understanding the object of study in radio

oceanography, as well as for introducing concepts such as the ocean wave spectrum,

wave vectors and meteorological measurements of the ocean surface, and spectral

effects of wave-wave interaction. Also, the spectral and directional spreading function

models used throughout this thesis were presented in this section. The following

section presented the fundamentals regarding the bistatic radar cross section, in which

the bistatic geometry, scattering mechanisms and the formulations of the first- and

second-order cross sections were given.

Once the fundamentals of the theory and the historical perspective of the topic

were presented, the new extraction method was described in Chapter 3. In the first

section, some fundamental concepts to the presented method were introduced, such

as the idea of Hilbert spaces, posedness of a problem, and regularized nonlinear least-

square. Then, in the same section, Tikhonov regularization in Hilbert scales was pre-

sented, as well as a choice of the regularization parameter. Then, the simplification

of the second-order cross section was presented, as well as the geometrical proper-

ties and spectral scaling and translation that arise after the simplification. These

properties are important in designing the problem in question. Finally, the method

was applied to synthetic second-order HF radar data, retrieving the directional ocean

wave spectrum with a reasonable level of accuracy, with a maximum error of 0.28%

for the spectrum estimation, 0.89% for the mean wave energy direction, 0.67% for

the spreading factor, and 1.65% for the significant wave height. In all cases of this
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chapter, the peak position of the non-directional spectra were exactly obtained.

The results presented in Chapter 3, even though encouraging, only served the

purpose of confirming the theoretical soundness of the proposed method. A more

realistic situation was addressed in Chapter 4, where the first-order cross section and

noise were introduced into the problem. First, the patch scattering cross section,

which contains the cross sections related to the scattering processes that occurred

within the scattering patch, was presented. In this work, the patch scattering cross

section was considered up to second-order. Then, the extraction method was applied

to synthetic patch scattering cross-sections for different wind speeds and directions,

where it generated good results for all ocean conditions to which the radar config-

uration in question was suited. In the second part of Chapter 4, the fundamentals

of radio noise addition were presented, describing the mathematical process of noise

contamination of the radar Doppler data. The extraction method was then applied to

the noise-contaminated bistatic HF radar data, returning good results for most noise

and ocean conditions. The extraction of the non-directional ocean wave spectrum was

consistent, while the directional parameters were susceptible to high levels of noise.

Overall, the method was proven effective for the extraction of the directional ocean

wave spectrum from bistatic HF radar data even in noise-contaminated environments.

These results are important, since, to the author’s knowledge, this is the first nonlinear

extraction method applied to bistatic HF radar data.
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5.2 Suggestions for Future Work

Future work may focus on the analysis of the noise sensitivity of the directional

parameters, as well as generalizing the method for an unknown form of the directional

spreading function, in which no function model is assumed.

Regarding the extraction method, other techniques can be applied to solve the

nonlinear inversion problem. The works of Chavent [104] and Wazwaz [102] con-

tain alternatives to Tikhonov regularization in Hilbert scales. Also, other choices of

regularization parameter can be considered, such that the variations in the regular-

izing factor are also considered. The book by Kaltenbacher et al. [118] presents some

iterative regularization methods that can be applied to the extraction problem.

Furthermore, the method should be tested with real bistatic HF radar data in

order to confirm its efficacy.
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