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Abstract

This thesis develops approaches for estimating and predicting sparse shallow-water
acoustic communication channels. The broadband shallow-water channel has three
characterizations: a large dimension of channel impulse response caused by excessively
long delay spread, fast temporal variability induced by scattering from the moving sea
surface, and a sparse channel structure due to the resolvable paths. Traditional least
square estimation techniques fail to utilize the sparse channel structure, and suffer from
the limitations on the capability of estimating large-dimensional channels with rapid
fluctuations.

Compressed sensing, also known as compressive sensing (CS), has been intensively
studied recently. It has been applied in various areas such as imaging, radar, speech
recognition, and data acquisition. Recently, applying CS to sparse channel estimation
has been largely accepted. This thesis details the application of CS to sparse estimation
of both time-invariant and time-varying shallow-water acoustic channels. Specifically,
various reconstruction algorithms are used to find the sparse channel coefficients. How-
ever, a priori knowledge of channel sparsity is often not available in practice. The
first part of the thesis proposes an improved greedy pursuit algorithm which iteratively
identifies the sparse channel coefficients without requiring a priori knowledge of chan-
nel sparsity. Then, the proposed algorithm is employed to estimate both time-invariant

and time-varying sparse channels. In addition, a comparative study of the state-of-the-
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art of various CS-based signal reconstruction algorithms is performed to gain better
understanding of the mathematical insights.

Furthermore, based on the CS theory, different pilot placement choices will directly
affect the performance of the channel estimation algorithm. The second part of the
thesis investigates the pilot pattern design in sparse channel estimation. Unlike the
equally spaced pilots for conventional channel estimation, randomly placed pilot tones
are most used in existing CS-based channel estimation methods. In order to improve
the efficiency of the optimal pilot pattern searching, a novel pilot pattern selection
scheme is proposed based on the concatenated cyclic difference set. The performance
of the proposed design is also compared with the existing search-based pilot placement
methods. It should be noted that the proposed reconstruction algorithm and the pilot
placement scheme are not restricted to underwater acoustic communication systems,
but they can be applied to sparse channel estimation in other communication systems.

Finally, an outdated channel estimation will lead to severe performance degradation
when the channel varies rapidly. Hence, to predict future channel state information, an
efficient sparse channel prediction scheme is proposed which does not require any sta-
tistical a priori knowledge of channels and noise. A receiver structure which combines
a sparse channel estimator and a decision feedback based adaptive channel predictor is
developed to further improve the prediction accuracy. Simulation results are shown to
demonstrate the performance of the proposed algorithms and schemes. The study of
this thesis contributes to a better understanding of the channel physical constraints on

algorithm design and potential performance improvement.
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Chapter 1

Introduction

The underwater acoustic (UWA) channel is commonly considered as one of the most
challenging communication channels. In the past two decades, we have witnessed signif-
icant advances in the development of high data UWA communications for an increased
number of both military and commercial applications. Extensive research on commu-
nications in underwater environments is still underway. The success of such research
depends on a thorough understanding of the physical constraints of UWA channels so as
to develop effective signal processing techniques based on these constraints. The main
focus in this thesis is on channel estimation for acoustic communications in shallow-
water environments, of which the distinct challenges and features will be discussed in

the following section.

1.1 Challenges in UWA communications

UWA communications represents techniques of sending and receiving messages below
water using sound waves [2,3]. The past two decades have witnessed significant advances
towards the development of UWA communications. In the underwater environment, the

possibility of maintaining signal transmission enables data gathering from submerged



instruments without human intervention. The scope of UWA communications, which
was initially limited to military applications, has now expanded to diverse commercial
fields, with applications like surveillance for environmental systems, information collec-
tion for oceans, lakes and rivers, underwater resource exploration, and remote control
in off-shore oil industry. The most common way of employing UWA communications
is by using hydrophone, which converts the electromagnetic signal into a sound signal.
In fact, the acoustic waves are not the only means for underwater wireless communica-
tions. However, due to the conductive sea water, electromagnetic waves that are used
in radio frequency (RF) bandwidth experience high attenuation. Optical waves, which
have lower attenuation than RF signals, are not suitable for long distance underwater
wireless communication because they suffer from severe scattering and absorption in
water. Therefore, in comparison with RF and optical waves, acoustic waves remain
the primary carrier in underwater wireless communication applications, despite its low
propagation speed and extremely limited bandwidth! [3].

In the past few years, significant techniques in UWA communications have been de-
veloped to improve the performance in terms of operational range, data throughput
and error rate. These advances have made possible a 100 to 1000 fold increase in
achievable data rates. As efficient communication systems have been developing, both
military and commercial industries are now calling for real-time communications with
submarines and autonomous underwater vehicles (AUVs)?, not only for point-to-point
links, but also for networks consisting of multiple mobile and stationary nodes. These

types of networks will provide exchange of various data types ranging from control to

!The typical frequency range of an acoustic link is between 10 and 15 kHz. Though the total
communication bandwidth is very low, the UWA system is inherently wideband in the sense that the
occupied bandwidth is on the order of its center frequency [3].

2Unmanned underwater vehicles or AUVs, which are equipped with a wide variety of sensors and
sonar systems, are widely used in UWA communications to perform missions like underwater survey,
e.g., detecting and mapping submerged wrecks, rocks, and obstructions that pose a hazard to navigation
for commercial and recreational vessels.



video signals, between AUVs and underwater robots which are equipped with various
sensors, sonars, or cameras. Towards achieving these goals, researchers are currently
focusing on the design of efficient modulation and coding schemes, and development of
signal processing techniques for mobile underwater environments.

The UWA channel is considered as one of the most challenging communication media
because of its high time-frequency selectivity [4]. When compared with terrestrial radio
channels, UWA channels exhibit larger time dispersions (on the order of hundreds of
milliseconds). As such, they could cause severe intersymbol interference (ISI), which
requires sophisticated and computationally expensive equalization techniques [5-7]. Or-
thogonal frequency division multiplexing (OFDM), which is employed in several terres-
trial radio communications standards, such as wireless local network (WLAN) and long
term evolution (LTE) [8], is also considered for UWA communications due to its high
data transmission rate, efficient spectral utilization and ability to cope with multipath
fading [9]. As UWA channels have been regarded significantly different from wireless
radio channels, due to the unique characteristics, such as abundance of transmission
paths, large temporal variations, and wideband property in nature. To highlight the
challenges of OFDM communications over UWA channels relative to those over wireless
radio channels, three example systems are compared. Table 1.1 provides a comparison of
parameters in these three systems, which are OFDM UWA communications [9], WLAN

using IEEE 802.11a/g [10] and ultra-wideband (UWB) communication systems [11].

The major challenges noticed from the table are as follows:

1. Multipath delays in UWA communication systems are much larger than those in
WLAN and UWB systems. Typical multipath spreads in UWA channels increase
a thousandfold when compared to the spreads in commonly used radio channels,

which leads to strong frequency selectivity. This has motivated the use of vari-



Table 1.1: Comparison of parameters for UWA, WLAN, and UWB systems

UWA [9] WLAN [10] UWB [11]

Propagation speed 1500 m/s 3 x 10% m/s 3 x 10% m/s
Bandwidth 12 kHz 20 MHz 528 MHz

3 —10 GHz
Carrier frequency 27 kHz 5.2 GHz

frequency hopping
Bandwidth / Carrier frequency 0.44 0.0038 0.0176 — 0.0528
Doppler scaling factor a !(wave- L s s
form time compression) for mov- | 1-3 % 10 7x 10 7x 10
ing terminals with a relative | for ) = 2 m/s for v =20 m/s for v =20 m/s
speed v
Typical multipath spread ~ 10 — 100 ms ~ 500 ns ~ 100 ns
OFDM symbol duration ~ 50 — 150 ms 4 ps 0.3 us

! Doppler scaling factor a = v/c, where c is the wave propagation speed.

ous techniques at the receiver, such as decision feedback equalization (DFE) and

multicarrier transmission schemes to cope with this multipath fading.

. A major difference between UWA and RF wireless communications lies in the fast
variability of the nature of the underwater acoustic medium. Time-variability of
the UWA channels is caused by inherent environmental variations and changes oc-
curred due to transmitter and receiver motion. As such, the significant Doppler
effect becomes the most challenging characteristic of the UWA channels, espe-
cially in shallow water. The relative motion between a transmitter and a receiver
results in changes in the signal duration and frequency, as shown in Figure 1.1.
Particularly, the transmitted signal x(¢), whose duration is T, is modulated onto
a carrier of frequency, f.. y(t) represents the received signal with the frequency
response Y (f). It can be observed that the changes include frequency (time)
shift and frequency (time) spreading. For frequency shift, an offset, af., is intro-

duced, while for frequency spreading, the bandwidth of the signal is scaled by the
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Figure 1.1: Motion-induced changes in the signal duration and frequency [12].

factor of a (also referred to as the Doppler scaling factor [12]). In other words,
the distortion is proportional to the ratio between the relative speed between the
transmitter and receiver and the propagation speed. For comparison, the Doppler
scaling factor in a highly mobile radio system with a relative speed of more than
100 km/h is on the order of 1077, In contrast, for an AUV in an acoustic system
moving at several meters per second (some submarines can move at greater veloci-
ties), the factor is on the order of 1072 [13]. Furthermore, in spite of the intended
motion-induced Doppler effects, different propagation paths can have different
Doppler scaling due to the medium instability, e.g., the current induced platform
instability, and the random displacement of surface reflecting points caused by
waves. As a result, the Doppler scaling which indicates the amount of frequency
(time) compression or expansion of the signal at the receiver side, needs to be

considered for UWA communications.

3. The aforementioned challenges in UWA channels require sophisticated underwater



acoustic system designs which can be computationally complex from a practical
implementation point-of-view. For instance, the computational complexities in-
volved in dealing with ISI in UWA systems, which extends over several ten to
hundreds of symbols, renders many of the methods used in RF wireless systems
impractical. As such, more recent studies have focused on receiver algorithm and

structure designs with reduced complexity.

1.2 Motivation

As previously mentioned, the UWA channel is characterized by a long delay spread
and a significant Doppler effect [3,9,12,13]. Various receiving techniques, e.g., DFE,
have been found useful to combat severe ISI caused by the excessively long delay in
single-carrier modulation systems [14-22]. In multicarrier modulation like OFDM, the
cyclic prefix (CP) is used to compensate for the ISI effect to eliminate the need for
a complex equalizer [3,6,7,9,23-30]. In coherent digital wireless systems, obtaining
accurate estimates of the channel state information (CSI) is critical at the receiver
[24,31-33]. The data-aided channel estimation in OFDM communication systems can
be performed by either inserting pilot tones into certain subcarriers of each OFDM
symbol, or by using all subcarriers as pilots within a specific period [34]. Recently,
studies have suggested that many UWA multipath channels tend to exhibit a sparse
structure in the sense that the majority of the channel impulse response (CIR) taps end
up being either zero or below the noise floor [3,35,36]. Conventional methods for CSI
estimation, such as least square (LS) and minimum mean-square error (MMSE) [37],
cannot exploit the sparsity of the wireless channels and they often lead to excessive
utilization of spectral and energy resources. On the other hand, channel estimation

exploiting the sparsity of channels reduces the required number of pilots, and thus,



effectively improves the spectral and energy efficiency [3,23,27,29, 35, 38, 39].

More recently, advances in the field of compressed/compressive sensing (CS) [40-42]
have led to numerous applications such as imaging, radar, data acquisition, and com-
munications [28]. In communications, it is largely accepted that CS can be applied
to sparse channel estimation [3,28,35]. One of the most noteworthy results in CS
theory® is that the sparse channel coefficients can be reconstructed using optimization
algorithms, and thus a proper reconstruction /recovery algorithm is crucial to obtaining
an accurate or even exact reconstruction of the target signal. Especially, among those
reconstruction algorithms, the matching pursuit (MP) algorithm and its variants are
favoured in single-carrier systems [43] and multicarrier systems [29,44, 45] because of
their low computational complexity. Besides the reconstruction algorithms, the per-
formance of CS-based channel estimation also strongly depends on the design of the
measurement matrix. This issue has led to a large amount of work in CS-based sparse
channel estimation for the OFDM systems focused on the design of pilot patterns with
tractable recovery complexity. It should be noted that such a pilot placement problem
can be viewed as a search problem for the optimum CS measurement matrix which
minimizes the errors in channel estimation. Although an exhaustive search guarantees
the optimum pilot pattern, it is impractical in real applications due to the prohibitively
high complexity. Motivated by the facts stated above, the work in this thesis focuses
on designing a reliable and efficient reconstruction algorithm as well as an efficient pilot
placement scheme for CS-based sparse channel estimation.

The successful application of CS-based signal reconstruction algorithms to the sparse
time-invariant channel estimation demonstrated an improved performance due to the
reduced number of taps to be estimated [26,30]. In order to combine the sparse struc-

ture and rapid fluctuations, a time-varying UWA channel can be represented by its

3An overview on CS theory can be found in Chapter 2.



delay-Doppler spreading function (DDSF) [46], which tends to be sparse because the
multipath and Doppler effects are limited to a few dominant paths [43,47]. An ad-
vantage of the DDSF representation is that the time-varying channel estimation can
have reduced computational complexity, memory storage requirement, and more impor-
tantly, can track the first-order channel dynamics without the need for explicit dynamic
modeling [43]. On the other hand, time-varying multipath fading and an extremely
limited bandwidth are the main constraints on the UWA communication data rate.
Consequently, the tremendous growth in demand for achievable throughput in UWA
communications has created the need for adaptive transmission techniques including
adaptive modulation, adaptive coding, adaptive power control, etc. [48,49]. Thus, not
only the receiver requires the up-to-date CSI for reliable symbol detection, but also the
transmitter requires the fedback CSI from receiver to adaptively adjust modulation,
coding, and power. Considering the feedback and related processing delays, the fu-
ture CSI needs to be predicted accurately. Especially, when the channel varies rapidly,
an outdated channel estimation will lead to severe performance degradation, and thus
result in the failure of using those adaptive transmission techniques. To this end, ap-
plying CS into sparse channel estimation approach at the receiver side, which can track
time-varying channels, and developing a reliable and efficient sparse channel prediction
scheme, which can predict future CSI based on current channel estimates, are both

desired.

1.3 Thesis Contributions

The main contributions of this thesis are summarized as follows:

e 1- An overview of UWA channel modeling is provided in chronological order,

which consists of three representative models. In addition, a survey of the state-



of-the-art of different UWA channel simulation software has been conducted. In
order to obtain UWA channel realizations, a recently-proposed channel simulator,
which incorporates acoustic signal propagation laws and random environmental

effects, is employed with a collection of real experimental data.

2- An improved reconstruction algorithm for CS-based time-invariant sparse chan-
nel estimation in UWA-OFDM systems is proposed, and its theoretical perfor-
mance analysis is performed. Without requiring a priori knowledge of the spar-
sity, the proposed algorithm adjusts the step size adaptively to approach the true
sparsity, thereby improving the estimation accuracy. Simulation results are shown
to demonstrate a better trade-off of the proposed algorithm between the mean
squared error (MSE)/ bit error rate (BER) performance and complexity when
compared with the conventional LS estimation method and other published MP-
based algorithms. The theoretical analysis is provided to show the reconstruction

performance of the proposed algorithm.

3- Comparative performance analyses of the existing CS-based signal reconstruc-
tion methods and the state-of-the-art of different pilot placement schemes, in

terms of estimation accuracy and computational complexity, are presented.

4- A novel efficient scheme for near-optimal pilot placement is developed to meet
the requirement of the measurement matrix for a satisfactory reconstruction. Sim-
ulation results show that the proposed pilot allocation scheme with the proposed
reconstruction algorithm provides the best MSE and BER performance among all
the other considered pilot schemes and reconstruction algorithms. It should be
noted that the proposed reconstruction algorithm and the pilot placement scheme
are not restricted to underwater acoustic communication systems, but they can

also be applied to sparse channel estimation in other communication systems



10

(cellular, WiFi, etc.).

e 5- An adaptive sparse channel prediction is developed which does not require
any statistical a priori knowledge of channel and noise. The proposed channel
prediction can operate in both normal and decision feedback modes. The normal
mode indicates that prediction is made solely based on the current estimated
channel, while the decision feedback mode means that prediction is obtained
using both the estimated channel and the detected symbols. Numerical results
show that the decision feedback prediction scheme, along with the proposed CS-
based channel estimation algorithm, offers a good error performance without a

significant increase in computational complexity.

1.4 Thesis Organization

In this thesis, based on the preliminary discussion in the previous sections, we iden-
tify the challenges and motivations related to CS-based sparse channel estimation and
channel prediction for UWA communications. The algorithms and results presented
in Chapter 3-6 have been disseminated in peer-reviewed publications. Following the
introduction, which is presented in this chapter, the organization of this thesis is as

follows:

e Background knowledge on CS theory and the literature review are provided in

Chapter 2.

e An overview of UWA channel modeling and a survey of several representative
simulation software packages are presented in Chapter 3. This was published

in proceedings of International Wireless Communications and Mobile Computing

Conference (IWCMC) [50].
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e Chapter 4 proposes a new reconstruction algorithm for sparse time-invariant chan-
nel estimation. A comparative analysis with the existing reconstruction algo-
rithms and simulation results show the improved performance of the proposed
algorithm. This research was published in proceedings of IEEE on Wireless Com-

munications and Networking Conference (WCNC) [26].

e Chapter 5 addresses the pilot placement problem described in the previous section.
Specifically, a novel pilot placement scheme is proposed for a near-optimum sparse
signal reconstruction. The material included in Chapters 5 and 6 was published

in the IEEE Transactions on Wireless Communications [30].

e Chapter 6 deals with the CS-based time-varying sparse channel estimation and
channel prediction. Particularly, an adaptive sparse channel prediction scheme is
developed and evaluated along with the previously proposed channel estimation

algorithm. This work is under review for publication.

e Chapter 7 consists of concluding remarks and potential future research directions

based on the results of the thesis.



Chapter 2

Background

This chapter provides an overview on the fundamental CS theory, which emerged mainly
in the works [3,40-42,51,52], and presents its key mathematical underpinnings. Fur-
thermore, the existing research papers in the related fields of channel estimation, pilot
placement for CS-based sparse channel estimation, and channel prediction for UWA

communications are reviewed.

2.1 CS Fundamentals

CS is a novel paradigm for efficiently acquiring and reconstructing a signal which is
sparse in a pre-defined transform domain. The underlying principle of CS lies in finding
the conditions under which the sparsity of a signal can be exploited to recover the signal
from far fewer samples. Two basic conditions for a possible recovery are known as the
existence of a sparse signal representation and incoherence between the sensing and
the transforming process which achieves the sparse representation. In this section, four

fundamental components in CS will be investigated.

12
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2.1.1 The Sensing Problem

Consider a real-valued, one-dimensional, discrete signal x € R" which can be rep-
resented by an N x 1 vector. CS directly acquires a low-dimensional measurement
y € RM (M < N) by computing M inner products between x and a collection of

sensing vectors {¢,}2;*, as shown below:

y= (x4, (2.1)

Let each row of the sensing matrix ® be the sensing vector ¢, . Then, the matrix form

of (2.1) is written as below

y = ®x. (2.2)

Equation (2.2) describes a general sensing process. For example, if the sensing bases are
Dirac delta functions, then y is a vector of sampled values of x. For some applications,
such as neutron scattering imaging process, magnetic resonance imaging (MRI), etc.,
the sensing process may be very expensive or time-constrained. This new sensing
paradigm can be efficient and useful. Admittedly, one needs to solve (2.2) which is
an underdetermined system, and thus, raises important questions. Is it possible to
accurately reconstruct x from fewer measurements y? How would a sensing matrix be

designed in order to capture almost all information about x?

2.1.2 Signal Sparse Representation

Many natural signals are sparse or compressible in the sense that they have concise

representations when expressed in certain bases. Mathematically speaking, the signal x
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of length N can be expanded in an orthonormal basis W = [¢y, - - - ¥ _,] as follows:

N-1

x=Y o9, =¥a, (2.3)

J=0

where a is the N x 1 coefficients vector and 1, is a N x 1 vector. x and a are
equivalent representations of the target signal in the time or space domain and the ¥
domain, respectively. The signal x is K-sparse if only K coefficients (K < N) in «c are
non-zero and the remaining N — K are zero. Moreover, the signal x is compressible if
o contains a few significant entries and many insignificant entries. As is well-known,
most lossy compression techniques such as JEPG, MEPG, or MP3 rely on such sparse
structures in the coefficients on a certain transform domain of the signal. Considering
the observation noise n, which is zero mean and complex Gaussian distributed with
variance o, and substituting x in (2.2) with (2.3), the signal acquisition is written as
below:

y=®¥a+n=Aa+n, (2.4)

where A is referred to as a measurement matriz. Fig. 2.1 shows the compressive sensing
process for an example noiseless case. Here, the signal « is sparse with K = 4. There
are four columns in A corresponding to the non-zero entries in «, thus y is a linear
combination of these four columns*. The novelty in CS is that with the knowledge of
the sparse structure of «, finding an estimator &, whose estimation error is proportional

to o becomes possible [41,42].

2.1.3 Measurement Matrices

Another premise which enables CS to accurately recover the target signal is the inco-

herence between ® and ¥. We can define the coherence between the sensing basis ®

4In Fig. 2.1, different colors are randomly chosen for different elements in the vectors and matrix.
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Figure 2.1: Compressive acquisition with a measurement matrix A.

and the representation basis ¥ as follows:
n(e,¥) = NH%Z}X |<¢1¢]>|2 (2.5)

CS is applicable with small 5 (low coherence) which requires that ¢, can not sparsely
represent t; and vice versa. An intuitive explanation of this can be revealed through a
counterexample. If we construct ® in coherence with W, for example, extracting the first
M columns of % as the rows in ®, then from (2.4) & = [yo,y1,"** ,¥yMm_1,0,- -+ ,0]T.
Obviously, this is probably a wrong estimation as we assume the first M elements of
a are significant. However, the positions of K significant entries are unknown and are
different for different signals. Hence the probability to find the A that corresponds the
positions of K significant entries is 1/ (%) ® is expected to be extremely incoherent
with W.

Additionally, the linear measurements should preserve the stable energy of the target
signal. One key property used in demonstrating the reliability of a CS reconstruc-

tion process is referred to as restricted isometry property(RIP) [42], which is defined

as follows:
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Definition 1. RIP: Define £, norm of the vector x as (||x||), = XN, |2i|P, and ||x[|2 =
|Ix|| for simplicity. A matrix A € RM*¥ gatisfies the RIP of order K < M, and Ay is
a submatrix of A consisting of the columns associated with the index set I. The RIP
constant dx € (0,1), if for I € (0, N) such that |I| < K and for all & € R it holds
that

(1= 0x) | e P<[l Arex [*< (1 + k) [ e ||* -

For a K-sparse signal a, 0y is defined as:

S = inf(8: (1—0) || a <] Arex |’< (1 +6) || e |

VI < K),

where inf represents the infimum of the set  which satisfies the inequality above, and
0 represents the set of RIP parameters o of order K.

Assuming that the estimated & has the least distance to the measurements, which
means ||y — Aé&||* is minimum, and based on the fact that the estimation error, i.e.,

a — & is at most 2K-sparse, the estimation error is bounded by

2No?

—_ A&l <
E{lla - &P} < 15—

From above equation, it can be easily seen do < 1 is required for a possible exact
recovery. As dx < dg.1, it is commonly believed that A satisfies the RIP if dx is
not too close to 1. In other words, A which satisfies the 2K-RIP is able to approxi-
mately preserve the distance between any pair of K-sparse vector; this has fundamental
implications concerning robustness to noise [3].

The RIP property can be used to theoretically evaluate the reliability of a certain
measurement matrix. Unfortunately, the RIP evaluation for a particular matrix is a

hard problem with non-deterministic polynomial (NP) complexity. Instead, a widely-
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used framework for measurement matrix evaluation is the mutual incoherence property
(MIP) introduced in [51], which requires the mutual coherence of the measurement
matrix to be smaller than a threshold®. An underlying principle in MIP is previously
discussed in 2.1.2. It should be noted that the MIP condition is stronger than the
RIP, meaning that, while a matrix that satisfies the MIP will also satisfy the RIP, the
reverse may not be true. Surprisingly, most random matrices, such as matrices with
Gaussian or Bernoulli entries or randomly selected rows of a discrete Fourier transform
(DFT) matrix, have been proven to obey RIP with high probability with a sufficient
number of measurements. Reference [40] shows in detail that for a measurement matrix
which are composed of random rows in an N x N DFT matrix, if M > CsK log N, any
K-sparse signal can be reconstructed with a probability of at least 1 — O(N~?), where

Cj is approximately linear with §.

2.1.4 Sparse Signal Reconstruction

Previously, we considered conditions under which the ill-posed problem in (2.4) be-
comes a well-posed one in which there exists an accurate, and sometimes exact, estimate
of &. The goal of reconstruction algorithms is to solve (2.4) normally by minimizing
ly, L1, or £y over the solution space. The conventional way to solve inverse problems is
to find the vector with the least energy, i.e., the ¢, minimization. It is well-known that
the closed-form solution of the £, minimization is & = AT(AAT)"'y. However, the
solution of the ¢y minimization can hardly be sparse, yielding an inaccurate estimate.
In fact, {op minimization aims to find the sparsest solution in the feasible solution set,

and can recover the sparse signal exactly with high probability using only (K +1) inde-

SFor the acquisition process expressed in (2.4), the mutual coherence of the measurement matrix
which measures the maximum correlation between any two columns has been widely used for analyzing
the CS recovery performance. Particularly, [52] has shown that it is sufficient to exactly recover a K-

sparse signal from the noiseless measurements if the mutual coherence is smaller than 2}(%1
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pendent and identical distributed (i.i.d.) Gaussian measurements [53,54]. We consider

the noiseless situation for simplicity. The ¢, optimization can be written as follows:

& =argmin || « ||o, s.t.y = Aa. (2.6)

However, (2.6) is an NP-hard problem and computationally infeasible. Therefore, alter-
natives have been proposed to solve the problem: linear programming (LP) and dynamic
programming (DP) [42]. Basis pursuit (BP), as a representative of LP algorithms, is

used to solve the optimization problem formulated below:

& =argmin | a |1, s.t.y = Aa.. (2.7)

Equation (2.7) is a convex optimization problem. It should be noted that under a
particular condition the LP-type algorithms produce the same result of £y minimization
algorithms. The condition considers the minimum number of measurements M to
perfectly reconstruct K-sparse non-zero coefficients with high probability given a certain
measurement matrix. Solving (2.7) is computationally expensive (O(N?)) and is not
suitable for real-time applications. Other convex ¢;-norm relaxation algorithms have
been previously reported with modified cost functions and constrain conditions [55—
60]. Recently, the principles of message passing and belief propagation have also been
applied to sparse signal reconstruction [61,62]. More details about these algorithms are
presented in the next section.

Another type of approach, based on DP, aims to heuristically identify the K signif-
icant coefficients and solve the resulting constrained least-square problem at the cost
of requiring slightly more measurements. The DP-based algorithms are favoured over
those LP-based ones because the DP-based algorithms can be easily implemented and

have low computationally complexity. The representative algorithms of this type are
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greedy algorithms,® like orthogonal matching pursuit (OMP) [52]. The underlying idea
of these algorithms is to find the strongest component in the measurement signal, re-
move it from the signal and search for the next strongest component which is in the
residual signal. This procedure is repeated until the residual signal contains the insignifi-
cant information. Recently, variants of OMP like order recursive least square matching
pursuit (ORLSMP) [43], compressed sampling matching pursuit (CoSaMP) [63] and
sparsity adaptive matching pursuit (SaMP) [64]7 have been reported. This thesis fo-
cuses on MP-based algorithms due to their popularity in real applications, and presents

a review of these sparse recovery algorithms in the next section.

2.2 Literature Review

In this section, previous work related to the thesis from the aspects of channel estima-
tion, signal reconstruction algorithms, pilot placement schemes, and channel prediction

is reviewed.

2.2.1 Channel Estimation for UWA Communication

The last two decades have witnessed many fast-growing advances in the research
development of UWA communication analog and digital, non-coherent and coherent
systems. However, the technology evolution remains challenging due to the unique
acoustic propagation properties and environment in water and an increasing number
of intelligent systems deployed in UWA applications. The complex medium charac-
teristics such as the long multipath delay spread, the significant Doppler effects, and

the time-varying channel property present challenges in designing high data rate UWA

6Greedy algorithms are a special case of DP algorithm under certain circumstances.

"The name SAMP was originally used by the authors who proposed the algorithm in [64]; we employ
the abbreviation SaMP instead of SAMP in order not to be confused with the AMP (approximated
message passing) algorithm.



20

communication systems [9,12,13,65]. In coherent digital wireless systems, after pass-
ing through a channel, the effect of the channel on the transmitted signal must be
estimated in order to recover the transmitted information [31]. Therefore, obtaining
accurate estimate of CSI is integral and critical to the receiver design.

Extensive research efforts have been made toward developing reliable channel estima-
tion techniques in UWA communication systems. Channel estimation for single-carrier
UWA communication systems is carried out to obtain CSI in the time or frequency
domain [20,66,67]. Specifically, a small training block is attached at the front of a data
package for initial estimation and the CSI is re-estimated using a portion of the detected
data and the received data for the next data package. In [66], the time-invariant chan-
nel impulse responses were estimated by eigenvalue decomposition algorithm. Later, a
frequency-domain channel estimation was employed in [67] to cope with the frequency-
domain equalization scheme. However, the above methods did not exploit the inherent
sparse features of the UWA channels. Sparse estimation was also investigated for the
single-carrier UWA systems [68-71]. The common strategy is using approximation
schemes to solve the non-linear optimization problem which minimizes the MMSE as a
function of the gain and delay location of the significant taps. In [68], an adaptive de-
lay filter was used to estimate the delay values, and then the corresponding gains were
sequentially calculated. Afterwards, a sparse DFE was proposed in [69], where the full-
size equalizer coeflicients (for the feedforward and feedback filters) were determined
from an adaptive channel estimation firstly, then only the coefficients corresponding to
the significant taps (the gains of the tap is greater than a pre-defined threshold) were
kept. Similarly in [71], locations of the dominant taps were detected through blended
least square algorithm®, and then low-order filters were used to compute those tap gains.

It is noted that numerous work including conceptual system analysis, simulation-

8The name "blended least square" is adopted as the algorithm blends the LS estimation with the
correlation and thresholding based estimation methods [71].
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based studies [24, 72|, and experiment-based investigations [9, 73, 74| suggested that
OFDM is an appealing choice for high-rate transmission over UWA channels. Channel
estimation techniques for OFDM based systems can be grouped into two main cate-
gories: blind and data-aided or otherwise referred to as pilot/training-based [75]. The
former approach exploits the statistics of the received signals and requires higher com-
putational complexity of receivers [76]. In the latter approach, channel estimation can
be achieved by inserting pilot signals in the time or/and frequency domain. Two widely
used methods for obtaining the estimated channel are LS [37,77] and MMSE [37,78,79].
Generally, the MMSE estimators provide better performance, in terms of MSE, than
the LS estimators at the cost of higher complexity, provided that the MMSE receivers
have knowledge of the second-order channel statistics [80].

Considering the inherent sparsity in the impulse response of the UWA channels due
to the large number of delay taps and the small number of significant paths, sparse
channel estimation can offer a better estimation performance than the conventional
LS and MMSE methods [3,23,27,29, 35,38,39]. As an emerging theory, CS has been
successfully applied in reconstructing a sparse channel from fewer pilot symbols [3,26,28,
30,35,47,81]. Basically, CS allows accurate reconstruction of the signal which is sparse
on a certain basis, from a small number of random linear projections/measurements
[42]. To ensure an accurate or even exact reconstruction of the target signal, a proper
reconstruction algorithm and a properly designed measurement matrix are essential,

and are reviewed in the following sections.

2.2.2 Existing Signal Reconstruction Algorithms

Existing algorithms to recover a target sparse signal are generally grouped in two cat-
egories: LP and DP. On one hand, the BP method in LP achieves a good MSE perfor-

mance; however, its high computational complexity makes it less attractive to real large-
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scale applications. Several variations of BP (e.g., two step iterative shrinkage/thresh-
olding (TwIST) [57], separable approximation (SpaRSA) [58], and YALL1 [59,60]) were
reported to solve unconstrained f>-¢; optimization problems where the minimizing cost
function is a weighted sum of a least-squares term with ¢;-norm regularization to yield
sparse solutions with a comparable computational complexity to the DP-type algo-
rithms. Recently, the approximate message passing (AMP) algorithm [61] and its
variants, e.g., generalized AMP [82] and expectation maximization (EM)-Bernoulli-
Gaussian (BG)-AMP [83], were reported to achieve the reconstruction performance’
almost identical to the LP-type methods, while requiring less computational efforts [61].
However, the performances of these algorithms were evaluated only for certain statis-
tics of the target signal, elements of measurement matrix, and noise. For example, the
performance of EM-BG-AMP relies on the BG distribution of the target signal.

On the other hand, algorithms based on DP have been widely adopted due to the
ease of implementation and low computational complexity. The OMP algorithm [52]
is the most popular algorithm in DP [28,29]. An OMP variant, namely ORLSMP,
was introduced to estimate sparse UWA time-varying channels in [43]. Meanwhile,
another OMP variant, referred to as CoSaMP was proposed in [63], with the MSE
performance close to that of the BP algorithm. However, CoSaMP requires knowledge
of the channel sparsity level, which is often not available in practical applications.
Although OMP can be further improved to work in the cases where the sparsity level
is not known [84], the MIP [51], which ensures the exact recovery in the bounded noise
cases, cannot be easily satisfied in practice [84]. Subsequently, the SaMP algorithm was
proposed to address this issue [64]. While CoSaMP requires the level of sparsity as
a priori information to determine the number of iterations of the algorithms, SaMP

uses a stage-based approach to estimate the sparsity level. In particular, the estimated

9The considered performance metric was the phase transition curve; for details, the reader is
referred to [61].
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sparsity level is accumulated with a fixed preset step size stage by stage. The results
in [64] showed that SaMP can outperform the original OMP algorithm and its variants.
However, the MSE performance and complexity of SaMP are affected by the choice of
the step size. More recently, a stage-wise algorithm which uses different step sizes for
different stages has been proposed in [85]. However, it is not a truly adaptive algorithm,
as the change of step sizes depends on a specific relationship between the number of
measurements and the sparsity level. In this thesis, we propose a novel CS-based
reconstruction algorithm based on the SaMP algorithm, referred to as the adaptive
step size SaMP (AS-SaMP), which can adaptively adjust the step size to achieve fast
convergence and has demonstrated a better MSE and BER performance over the other

considered algorithms [26, 30].

2.2.3 Pilot Placement Schemes for CS-based Channel Estima-

tion in OFDM Systems

For CS-based channel estimation in OFDM systems, different pilot placement choices
result in different CS measurements, and the result directly affects the performance
of the channel estimation algorithms. With regard to the problem of pilot placement,
equally spaced pilots are in general optimal for conventional channel estimation meth-
ods, which are, however, not true for CS-based methods [86]. As mentioned, the RIP
is adopted to guarantee reliable and efficient reconstruction of sparse (or compressible)
signals from fewer measurements obtained via a measurement matrix which satisfies
the RIP. However, to find the matrix which satisfies the RIP is an NP-hard prob-
lem [42]. Instead of the RIP, most pilot designs aim to find the optimal pilot pattern
which satisfies the MIP in order to make the evaluation process much easier. Although
an exhaustive search of all possible combinations of the pilot indices would guarantee

the optimal pilot pattern, the computational complexity increases exponentially as the
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search space expands. For instance, if 16 out of 256 subcarriers are used as pilots,
there are (21566) ~ 10%° different pilot patterns in the search space. Thus, the computa-
tional complexity is prohibitively high. In most of the existing studies related to CS,
randomly and deterministically placed pilot tones have been reported [86-93]. In [87],
a deterministic pilot pattern for a specific reconstruction method, named the Dantzig
selector, was proposed, and this is particularly suitable for measurements corrupted
by stochastic noise. Alternatively, reference [89] reported a procedure based on the
discrete stochastic approximation to perform an offline search of the near-optimal pilot
pattern. Moreover, randomly-placed pilot clusters were used in [88] to estimate the
time-varying UWA channels. However, there is a lack of theoretical guarantee of the
successful reconstruction, and implementing the random pilot pattern is more challeng-
ing in practical applications.

Furthermore, provided a partial DFT measurement matrix, it is known that if the
pilot indices set is a cyclic difference set (CDS), the mutual coherence of the measure-
ment matrix is minimized [90,92]. However, it is not guaranteed that a CDS will exist
for every pilot size. In this thesis, we investigate the problem of pilot placement based
on CDS. When CDS does not exist, we propose a near-optimal pilot pattern selection
scheme which relies on the concatenated CDS with an iterative tail search (C-CDS with
TS) [30]. Because the proposed design is deterministic, it is generally more computa-
tionally efficient than any other search-based methods. An improvement in the MSE
and BER performance has been demonstrated in this thesis, using the proposed pilot
placement scheme, when compared to the randomly scattered pilots, and other pilot

placement schemes in the literature.
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2.2.4 Channel Prediction in UWA Communications

Inherent changes in the propagation medium and intended motion between the trans-
mitter and receiver result in fast time-varying UWA channels which exhibit both dis-
persion in the delay and Doppler domains. Therefore the UWA channels are often char-
acterized as doubly spread channels [94,95]. For the doubly spread channel estimation,
one approach is to directly track channel variation from symbol to symbol using adap-
tive filters [94]. Alternatively, a linear time-varying channel can be represented by its
first-order approximation, i.e., the DDSF [43,46], which accommodates time variations
of the CIR within a short block of data. Experimental evidence and physical arguments
showed that UWA channels tend to be sparse in both the delay and Doppler domains,
and can be estimated using the CS-based algorithms [35,43,47,94,96-98]. Estimation of
sparse DDSF coefficients has been investigated for both BP-based algorithms [94,96,97]
and MP-based algorithms [43,47,98]. In this thesis, we focus specifically on assessing
the performance of the aforementioned MP-based algorithms for the DDSF estimation.

A potential disadvantage of channel estimation is that the estimated CSI may become
quickly outdated for the channels that correspond to rough sea conditions. This can
cause significant performance degradation as the channel variation due to the severe
Doppler effects results in different channels from time to time. Additionally, many
applications of promising techniques (e.g., adaptive modulation) requires the up-to-date
CSI, and an outdated CSI may lead to failure of the techniques [99]. To achieve the up-
to-date CSI, the channel has to be reliably predicted. Although many researchers have
addressed the problem in terrestrial RF wireless communication systems, the prediction
of time-varying channels in UWA communication systems has not been addressed until
the recent years. The approaches generally fall into two groups, i.e., model-dependent
and model-independent. Model-dependent methods assume certain knowledge about

the channel and its variation (e.g., statistic property and dynamic equation), and thus
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can achieve an improved prediction accuracy if a properly defined model structure is
assumed [100-105]. In [101], channel evolution was modelled as autoregressive progress,
and the related parameters were tracked by an extended Kalman filter (EKF). Similarly,
in [100], the channel dynamics were explicitly described using a state-space model which
consists of clusters of moving point scatters, and an EKF was employed to track its
dynamic model parameters. It is noted that both of the above approaches were based
on the assumption of uncorrelated tap coefficients and independent transitions. Later,
the work in [104] considered the correlated multipath arrivals and used recursive least
square (RLS)-based algorithm with a postfilter, which takes advantage of the channel
correlation, to improve the tracking capability of the channel.

The above methods suffer performance degradation when the channel evolution mis-
matches the assumed model. In contrast, model-independent methods (referred to as
adaptive prediction hereafter) do not rely on a priori knowledge of the channel dynam-
ics [94,95,106,107], and thus are useful for various practical applications. Generally
speaking, an adaptive predictor can adjust itself with a goal of tracking the channel
variations. Two classical adaptation algorithms, namely least mean square (LMS) and
RLS have been extensively used in channel prediction [99, 106-111]. It is well-known
that LMS is less complex, while RLS has advantages of a lower MSE and a faster
convergence [112]. However, the existing predictors do not exploit the sparse features
of DDSF which requires a much lower prediction complexity. The computational sav-
ings are from two perspectives: 1) the number of significant elements in DDSF to be
predicted is relatively small; 2) prediction is only performed once for a block of data,
and not for every data symbol, thanks to the advantage of DDSF representation. Fur-

thermore, a decision-directed channel prediction/estimation'® can improve the MSE

0Tn [113], a decision-directed maximum a posteriori probability channel prediction was proposed.
However, as clarified in its text, the term "estimation" is used to broadly refer to the procedure from
which the CSI is obtained via either prediction or estimation.
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performance with the aid of the detected symbols [107,113]. Following these observa-
tions, this thesis proposes a decision-directed sparse adaptive predictor for time-varying
UWA channels. To work with the CS-based sparse channel estimation, the predictor can
operate in delay-Doppler domain, and by exploiting the sparse DDSF coefficients, the
RLS adaption algorithm can be employed without worrying about the computational

complexity.

2.3 Conclusion

The framework, concept and results of the thesis relate to several areas, including
sparse channel estimation, reconstruction algorithms, pilot placement, and adaptive
prediction, with focus on UWA communications. After reviewing the current advances
in these relevant aspects, the work in this thesis aims to develop sparse channel estima-
tion and prediction algorithms, for a resource-limited receiver. These should provide
accurate CSI without significantly increasing the computational complexity for both

time-invariant and time-varying UWA systems.



Chapter 3

Underwater Acoustic Channel

Modeling

Acoustic propagation is under continued exploration for commercial and scientific ap-
plications. However, unlike terrestrial RF communication channels, where a number
of models for probability and power spectral density of the fading process are widely
accepted and standardized, there is no commonly agreed characterization of acoustic
communication channels. Therefore, experimental measurements are often used to ac-
cess the statistical properties of the channel in specific deployment sites. It is beyond
the scope of this thesis to characterize random changes of the UWA channel responses
in general. Nevertheless, considering that relatively little attention has been given to an
overview of the development of UWA channel modeling, we provide a survey of UWA
channel modeling which consists of three stages in chronological order, as well as differ-
ent state-of-the-art UWA channel simulation software. Furthermore, simulated channel
responses are obtained based on a recently-proposed model, referred to as the statistical
acoustic channel model (SACM) in [114], using a collection of real environmental data,

and the statistical characterizations are also investigated. Finally, combining the UWA

28
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channel sparsity property with the channel modeling is discussed.

3.1 Characteristics of Acoustic Propagation

Under Water

The UWA channel is considered as one of the most challenging communication chan-
nels because the difficulties introduced by characterizations of the terrestrial radio chan-
nel, e.g., attenuation, multipath, Doppler effect, and noise, are exacerbated in UWA
communications. This is due to the low speed of the sound signal in water (1500 m/s)
when compared to the speed of the RF signal (3 x 10® m/s). In this section, we re-
view several basic UWA channel properties with regards to acoustic attenuation, noise,

multipath, and temporal variability.

3.1.1 Attenuation and Noise

A characteristic feature of acoustic channels is that the path loss depends on the

signal frequency. This path loss can be calculated using [115]

AG, ) = ()FCa(R) 0, (31)

s
where [ is the transmission distance taken from the referential distance [,., k is the
spreading factor which is normally between 1 and 2, and C,(f) is the absorption coef-

ficient which can be determined using the Thorp’s empirical formula [115],

2 2
YR
1+ f2 " 4100 + f2

Cu(f) =0.11 +2.75 x 107* f2 4 0.003, (3.2)

in which f is the signal frequency in kHz. Then, the transfer function for a time-

invariant multipath UWA channel [114] is
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where N, is the number of multipaths, I'), = ~7,*6, is the cumulative reflection
coefficient over ng and n, times of surface and bottom reflections, and 6, is the pth
path’s grazing angle. Specifically, the surface reflection coefficients 73 = —1 under ideal

conditions [12,114] and the bottom reflection coefficients can be modelled by [115]

PpsinOp—p (%)Q—COSQ 0p

cosf, < =
S sin9p+p\/(%)2—6052 0, b (3.4)

1 otherwise

where ¢ is the speed of sound in water, p is the density of water, ¢, is the speed of
sound on the ocean floor, and p, is the density of the ground at the bottom of the
ocean. Acoustic noise observed in the ocean arises from numerous sources, e.g., marine
life, shipping traffic, underwater explosions, etc. Generally, it is grouped into two
categories: ambient and site-dependent noise. While ambient noise is omnipresent in
the background of deep ocean, site-dependent noise exists in specific area. Most ambient
noise spectra can be described using Gaussian distribution [115], on the contrary, site-
dependent noise often contains significant non-Gaussian components [12]. As a result,
noise, together with frequency-dependent transmission loss, limit the communication

range, bandwidth and signal-to-noise ratio (SNR) at the receiver side [13].

3.1.2 Multipath

Multipath propagation in water is the result of combination of two effects: sound
reflection and refraction. Reflection occurs at the surface, bottom, or any objects
between transmitter and receiver, while refraction occurs as a consequence of variation

in sound speed from one location to another'!, which is mostly seen in deep water

1 As sound speed is a function depth (described in a so-called sound speed profile), ray bending,
which indicates the rays of sound always bend towards the region of lower propagation speed, is the
main cause of multipath propagation in deep water [115].
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Figure 3.1: Multipath propagation in shallow water environment.

channels. According to Snell’s law, a ray of sound bends toward the region where the
signal propagates at a lower speed [115]. The modeling of multipath propagation is
commonly based on ray-tracing theory. When a sound signal is transmitted, a beam
of rays travels to the receiver through different paths leading to the multiple arrivals
of the signal in different time intervals at the receiver side. The impulse response of
a UWA channel is affected by the signal’s refraction and reflection properties which
determine the number of the strong paths, the strengths and delays of the multipath.
Fig. 3.1 shows a shallow water multipath propagation and its corresponding impulse
response. Strictly speaking, there are an infinite number of echoes, however, many of
them experience multiple reflections and can be neglected, leaving only a few strong
paths. Typical multipath delay for UWA channel is on the order of 10 ms which is
much larger than for terrestrial radio channels. This motivates multicarrier transmission

schemes that can cope with multipath fading [12].
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3.1.3 Temporal Variability

Two sources of UWA channel’s temporal variability are the inherent random changes
in the propagation medium and the relative motion between transmitter and receiver,
as shown in Fig. 3.2. On the one hand, inherent changes may occur over a long period
of time (e.g., seasonal temperature variation), which do not affect the instantaneous
level of a signal, or over a short period of time which results in fast time-varying
communication channels. Unlike the case of a terrestrial radio channel, there are many
sources of short-term temporal variability, e.g., surface waves, air bubbles, and fish
shoals [116], and that is why there is no standard UWA channel model [12]. Among
these sources, surface waves induce signal scattering and the Doppler spread due to the
random displacements of the reflection points, and thus lead to significant changes on
impulse response [12,116].

On the other hand, the relative motion between transmitter and receiver adds to the
channel’s variability through the Doppler effect which is more severe in UWA channels
due to the low speed of sound. Besides, underwater instruments are subject to drifting
with waves, currents, tides, resulting in Doppler spread with the magnitude almost
as large as the Doppler spread induced by some intentional motions. Motions that
influence the Doppler effect can be generally categorized into three types: surface waves,
drifting, and intentional motions [114]. It is noteworthy that the Doppler spreads may

be time-varying which brings more challenges to UWA channel modeling.

3.2 UWA Channel Modeling

Due to the high cost of system deployment and testing in underwater environments,
there is an increasing need for an accurate acoustic channel modeling. In this section,

the development of UWA channel modeling is reviewed to gain a better understanding
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Figure 3.2: Time-variability in UWA channels.

on strengths and limitations of the existing models. Specifically, a survey of three pop-
ular channel simulators, which are referred to as BELLHOP [1,117], the time variable
acoustic propagation model (TV-APM) [118], and a recently-proposed SACM [114] are

presented.

3.2.1 The Development of UWA Channel Modeling

As mentioned, the UWA propagation is characterized by frequency-dependent attenu-
ation, time-varying multipath, and low-speed of sound. In the late 1980s, during which
there was a lack of accurate knowledge of UWA channels, UWA channels were modeled
as time-invariant systems within a certain period of time. Based on this assumption,
various receiving techniques, e.g., matched filter, that were used in conventional digital
communication systems were applied in early UWA communication systems [17, 67].
However, the time-invariant model is incapable of tracking channel time variations and
thus, is impractical in the case of highly dynamic environment. To accommodate the
Doppler effect, many researchers, in the late 1990s, started modeling UWA channels
with the path-uniform Doppler, that is assuming that the same Doppler speed is applied
to all paths. Therefore, the common Doppler scaling factor can be compensated by re-

sampling and frequency shifting at the receiver side [119]. However, the UWA channels
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are inherently wideband due to the sufficiently large ratio of the emitted signal band-
width to the carrier frequency. Consequently, with the development of OFDM-UWA
systems, large Doppler spread destroys the orthogonality of the subcarriers and induces
intercarrier interference (ICI). Many methods were proposed to address this problem by
taking consideration of non-uniform Doppler in channel modeling. In [9], non-uniform
Doppler shifts were considered for a path-based channel model. The Doppler spread
was treated to have two components, i.e., the path-uniform Doppler spread which can
be compensated through resampling, and the residual Doppler, which can vary for dif-
ferent paths. Recently, advanced modeling approaches have been under investigation
for better performance. For example, a higher-order polynomial approximation was
employed to describe the amplitude and delay variations for different paths at the cost
of increased complexity [120].

In addition to the different approaches in the aforementioned UWA channel models,
each model can be applied to specific scenarios. Time-invariant channel model is usu-
ally sufficient for communication in calm water with less relative movement between
the transmitter and the receiver, and the coherence time is remarkably larger than the
symbol duration. Whereas, the model with a path-uniform Doppler suits the scenario
for calm water with a strongly reflected multipath structure occurring when the trans-
mitter and receiver are far apart so that incidence angles of acoustic rays are large. For
the model which considers non-uniform Doppler shifts, reliable UWA communications
can be achieved in rough water environment with multipath if the Doppler can be ef-
fectively compensated at the receiver. Throughout the development of UWA channel
modeling, continuous efforts are made to achieve a trade-off between the model accu-
racy and computational complexity. Among many simulation tools, three representative

software are presented in the following subsections.
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Table 3.1: Input environmental data for BELLHOP! in [1]

Data Type Description

Collected through conductivity-temperature-depth sensors (CTD)

measurements over 1999-2001

Top boundary Assumed vacuum

Bottom boundary Acoustic-Elastic half space with the range-dependent bathymetry

Collected through the use of sonar scans which can be found from some oceanic data sou-
rce managed by research organizations, e.g., the National Geophysical Data Center (NGDC)

Sound speed profile

Bathymetry

‘Water depth 99.59 m
Transmitter depth 78.96 m
Receiver depth 49.37 m

Distance between the transmitter and receiver 3.9 km

! Partial of the input data are collected off the coast of Newfoundland (46 29.5N 48 29.4W).

3.2.2 BELLHOP Ray Tracing

BELLHOP is a well-known ray tracing program for computing acoustic pressure
fields in ocean environment, given a sound speed profile or variable absorbing bound-
aries [117]. It can produce a variety of outputs such as transmission loss, eigenrays,
arrivals and received time-series. In [1], BELLHOP runs on a collection of regional
environmental data to output multipath arrivals. These arrivals are then used to calcu-
late the channel impulse responses and transfer functions. The set of data collected to
input to BELLHOP includes location-specified temperature and salinity profile of the
ocean column, a description of the surface and bottom properties, e.g., the bathymetry
data, as well as the noise signature affected by wind, ship activity, or biological activ-
ity. Table 3.1 describes the reported environmental data as the input to the BELLHOP
program, and by using the actual environmental data, a model is provided which shows
the same trend with the empirical Thorp’s spreading loss approximation, when an ideal
ocean condition is considered. However, the model does not take into account random

channel time variation.
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3.2.3 The Time Variable Acoustic Propagation Model (TV-
APM)

The simulator in [118] generates time variable simulated acoustic channel responses
between moving sources and receivers. The main feature of the simulated model is to
take into account the Doppler effect induced by the relative motion between transmitter
and receiver as well as the effects of that motion propagating through the acoustic
channel. Essentially, it loads the configuration data and iteratively calls the BELLHOP
program to simulate dynamic signal propagation. Each call relies on the corresponding
geometry of the transmitter-receiver. After each iteration, it checks the incoherence
between the channels in the current and previous iterations. If the incoherence is above
a given threshold, a new set of calculations is performed. Iterations will terminate if
the incoherence between the new and the old set of calculations is below the threshold
or if the maximum number of iterations is exceeded. However, the complexity can be
high when Doppler spreads are affected not necessarily by a constant relative motion
between the transmitter and receiver. That is to say the Doppler spread caused by
environmental variations, e.g., surface waves, drifting, may result in a larger number
of iterations. Recently, there has been a growing need for developing statistical UWA

channel models for computationally efficiency [114].

3.2.4 A Statistical Modeling of a Class of UWA Channels

The recently-proposed model in [114] offers a statistical characterization that incorpo-
rates acoustic propagation as well as the effects of random local displacement. Firstly,
random displacements which are treated on two scales: large-scale and small-scale, as
shown in Fig. 3.3. For the large-scale random displacement, it usually spans on the

order of many wavelengths, while for the small-scale case, the displacement is usually
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on one or a few wavelengths. Since the nominal channel geometry can be considered as
a time-invariant system expressed in (3.3), it can be determined using ray tracing, given
a specified sound speed profile and typical signal frequency. However, the changes in
the surface height or seabed terrain result in the deviation of the path length from the
nominal ones, as [, = l_p + Ay, where the deviation of the pth path A; is random, and
l_p is the length of the nominal path. Thus, approximations of the path gain and delay
are calculated to capture the large-scale uncertainty based on the assumption that A;
is exponentially distributed. Moreover, small-scale scattering is considered to be a ma-
jor contributor to signal random fluctuations. To model scattering in a UWA channel,
each multiplath is split into a number of micropaths associated with the intrapath gain
hp; and the intrapath delay 7,;, where ¢ is the micropath index of the pth path. More
specifically, 7,; = 7, + A, , is treated as random to account for random displacement of
scattering points. Specially, the model assumes that A, , follows zero-mean Gaussian

distribution with variance aip and a small-scale coefficient is defined as

1 oAl
W) = 5= e Tam B (3.5)
P g

where h, is the pth multipath gain. In general, 7,(f) is complex Gaussian with mean
Y, (f) and variance 20,2(f), provided the variances of the real and imaginary of 7, (f) are
both ¢,?(f). Additionally, motion-induced Doppler shifts are addressed in the proposed
channel model. Given v, is the path associated relative velocity and c is the speed of
sound, the Doppler scaling a,, = v,/c is influenced by three types of motion, i.e., surface
wave, drifting, and intentional transmitter /receiver motion. Thus, the overall transfer

function can be expressed as

H(f,t) = Ho(f) S hyyp(f)er?m ol (3.6)
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Figure 3.3: Two types of random phenomena.

where Hy(f) is the reference path transfer function. The SACM addresses the larger-
scale channel gain, multipath, surface scattering, and motion-induce Doppler based on
the assumption of the Gaussian-distributed intrapath delays of the scattered paths. It
can be considered as a starting point for statistical UWA channel modeling, and can be
extended to incorporate more complex physical properties such as spatial correlations,
surface curvature, and effects of breaking waves. A comparison of the three channel
simulators is shown in Table 3.2.

Table 3.2: Summary of the three UWA channel simulators

Models BELLHOP TV-APM SACM
Ray tracing program for Generates time variable A statistical characterization that
. L. computing acoustic pressure simulated acoustic channel incorporates acoustic propagation
Description . . .
field in ocean environment,  responses between moving as well as the effects of random
given environmental data Tx and Rx local displacement
. Takes into account . -
Pros Widely accepted Computational efficient
. the Doppler effect
. . Characterize the shallow-water channels,
Does not consider Low computational . .
Cons . . recently published and has not been widely
random variations efficiency ’

accepted
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3.3 Simulated UWA Channel

In this section, the simulated CIR and correlation functions of the fading coefficients,
using collected environmental data described in Table 3.1, are presented. BELLHOP
was used to obtain the large-scale gain of the acoustic channel with the specific system
geometry and sound speed profile. For each small-scale realization, the small-scale
coeflicients 7,(f) were generated as described in (3.5). To allow for motion-induced
Doppler, the term associated with Doppler scaling factor is included and assumed to

112 The carrier frequency and bandwidth are

be constant over a short time interva
13 and 10 kHz, respectively. Ba,, which is set to 0.1 Hz, is the 3 dB width of the
power spectrum density of A, (¢) [114]. The signal is transmitted for 3 minutes.
Fig. 3.4 shows the simulated CIR which have a sparse structure formed by multipath
arrivals that are resolved in delay. Given that there is no intentional motion between the
transmitter and receiver, it can be observed that the multipath delay varies in time even
if there is no intentional transmitter-receiver motion. This is due to the unintentional
motion-induced Doppler effects, i.e., drifting or surface wave induced Doppler shifting.
Moreover, it is noteworthy that the direct path py may reach the receiver after the
indirect path, e.g., the bottom reflected path p,, which travels at higher speed. This
results in a non-minimum phase channel response [13].

Next, the channel’s small-scale analysis can be made through assessing correlation

functions in both the frequency and time domains, which are defined as follows,

Oy (g, A = Ep(f+A0) = 3,(f + A)(f) =3 (F)]F Ar=0 -

Elp(fit + A0 = (DIl (f 1) = 3(HNIF - Ap=0
The Gaussian distributed delays A. () obeys the first-order autoregressive process

(AR-1). Fig. 3.5 and Fig. 3.6 illustrate the frequency and time correlation for the de-

2Focusing on small-scale phenomenon, it is reasonable to assume the constant velocity for any
motion within a short time period (e.g., several ms)
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Figure 3.4: Time evolution of the magnitude baseband impulse response.

ployed system frequency and several values of the standard deviation o, respectively.
It is noted that the large intrapath delay variance o, represents the large deviation of
the micropath from the nominal path, and thus leads to lower coherence of small-scale
coefficients in frequency and time. Therefore, utilizing these correlation properties leads

to a computationally efficient channel model simulation.

3.4 UWA Channel Sparsity

A good channel model represents a precise description of the physical properties of

the channel, and thus may involve many coefficients. This will cause the problem
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Figure 3.5: Small-scale frequency correlation function for several values of the standard
deviation oa,. A is set to zero, while Ay is varied.

of high computational complexity which requires excessively sophisticated receiving
techniques. To achieve a trade-off between the accuracy and the complexity of a model,
one can combine the channel sparsity with the modeling task. The aforementioned time-
invariant channel model and uniform Doppler channel model can utilize the sparsity
over delay domain. The uniform Doppler channel model assumes the constant speed
for all paths, therefore a specific Doppler for different frequencies needs to be estimated
and compensated. Although higher complexity is involved in the receiver, the system
performance is improved. As more coefficients are involved in non-uniform Doppler

channel model, it is more beneficial to exploit the existing channel sparsity. Given
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Figure 3.6: Small-scale time correlation function for several values of the standard
deviation oa,, Ay is set to zero, while A, is varied.

that only significant paths need to be considered while the remaining paths can be
neglected due to overly low energy, the sparsity can be utilized on path level over
the delay and Doppler domain. An example of the sparse representation of a UWA
channel in Delay and Doppler domains is shown in Fig. 3.7. Each square represents a
resolution bin associated with a channel coefficient, and the dots represent the multiple
paths contributing to each channel coefficient. A channel is considered to be sparse
when the number of significant paths is much smaller than the total number of grids.
In the following chapters, we propose a novel sparse signal reconstruction algorithm

and applied it in both CS-based time-invariant and time-varying (with non-uniform



43

g O ® &O
: o®| %
o
o
@
o9
@
.D
Delay >

Figure 3.7: Sparse representation of a UWA channel in Doppler and delay domains.

Doppler) channel estimation.

3.5 Conclusion

In this chapter, acoustic propagation in water is briefly described. Based on the prop-
erties which are studied, an overview of various ray-theory-based UWA channel models
is provided, in chronological order, along with a survey of the three representative
channel simulation software. Through the comparison, one can expect to gain a better
understanding on the pros and cons of each modeling method and its applicable scope.
Furthermore, the simulated channel impulse response based on a recently-reported sta-
tistical model using a collection of the real environment data is shown. The reported

statistical model takes into account physical propagation and random channel varia-
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tions on large and small scales, and describes the scattering-induced intrapath delays
using Gaussian distribution. The correlation properties in time and frequency are inves-
tigated for different values of the intrapath delay variance. Through observation of the
simulated channel, it is worth noting that the sparsity can be incorporated to channel
modeling and estimation to achieve a trade-off between the system error performance

and complexity.



Chapter 4

CS-Based Time-Invariant Channel

Estimation for OFDM System

Recently, studies have suggested that many multipath channels, besides the UWA
channels, tend to exhibit a sparse structure in the sense that the majority of CIR taps
end up being either zero or negligible [35]. A few examples include: a) in the North
American HDTV broadcasting standard, there are only a few significant dominant
echoes over a typical delay spread [121]; b) channels of broadband wireless systems
in hilly environment also exhibit a sparse CIR [122]. Unlike the traditional channel
estimation methods, methods which exploit the sparsity of the wireless channels, often
reduce the required number of pilots and lead to a higher spectral and energy efficiency.

This chapter presents a novel greedy algorithm for CS-based time-invariant sparse
channel estimation in OFDM systems, which is referred to as the AS-SaMP. Compared
with other state-of-the-art MP-type algorithms, the proposed algorithm possesses the
feature of not requiring a priori knowledge of the sparsity level, and moreover, adjusts
the step size adaptively to approach the true sparsity level. This makes it a promising

candidate for many practical applications where the sparsity level of a signal is not

45
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available. Additionally, theoretical performance analysis and a symbolic computational
complexity of the proposed algorithm are provided. Numerical simulation results show
that a good performance is attained by the AS-SaMP algorithm without increasing the

complexity significantly when compared with the other considered recovery algorithms.

4.1 System Model

We consider an N-subcarrier OFDM system in which P subcarriers are used as pilots.
The symbols transmitted on the kth subcarrier, X(k), 0 < k < N — 1, are assumed
to be independent and identically distributed random variables drawn from a phase-
shift keying (PSK) or quadrature amplitude modulation (QAM) signal constellation.

Assume that the discrete multipath channel has the impulse response

Np—1

h(n) = 2_% mp(1)0(n — (1)), (4.1)

where N, is the number of paths, and 7,(n) and 7,(n) are the amplitude gain and
the delay associated with the pth path, respectively. Although 7,(n) and 7,(n) are
time-varying, the condition 7n,(n) ~ n, can be true in one OFDM symbol period [29].
Moreover, by considering a relative stationary transmitter and receiver, the assumption
7,(n) ~ 7, can be made [123]. Then the vector of received signal after the DFT is
expressed as

Y = XH+ W = XDh+ W, (4.2)

where X is an N x N diagonal matrix with the elements X (k), 0 < k < N — 1, on the
main diagonal, Y = [Y(0),Y(1),....Y(N —1)]T, H= [H(0), H(1), ..., H(N — 1)]*, and
W = [W(0),W(1),..., W(N — 1)]” are the frequency response vectors of the received

symbol, channel and additive white Gaussian noise (AWGN), respectively, and h =
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[1(0), (1), ...,h(L — 1)]", with L as the number of taps. The (m,n) element of D is
given by D]y, = \/—%e_j%m"/N, where 0 < m < N—1land 0 < n < L —1. After

extracting the pilot subcarriers, there is
Y, =X,Dph+ W, = Ah+ W,, (4.3)

where Y, = SY, X,, = SXS”, D, = SD, W, = SW, and S is a P x N matrix for
selected pilot subcarriers. In addition, A = X,D,, is a P x L matrix, referred to as the
measurement matrix according to Section 2.1.2.

The goal of CS-based channel estimation is to estimate h from the received pilot Y,
given the measurement matrix A. In (4.3), from which h needs to be estimated, the
jth index of h corresponds to the jth path delay 7(j), and the corresponding value
represents the gain of that path. The actual delay of the channel may not coincide
with the assumed delay points; this is known as the off-grid problem [124]'3. Clearly,
finer-grained delay points lead to a better approximation of the continuous delay, thus
improving the estimation quality [28]. In this chapter, we use a sampling rate of NAf,

where Af is the subcarrier spacing, and assume that 7, is multiple integer of the

sampling time, as it is commonly used in the literature [3,9, 28].

131t is worth noting that the off-grid problem is common to all CS-based algorithms.
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4.2 The AS-SaMP Algorithm with Application to

Sparse Channel Estimation

4.2.1 Comparison of Reconstruction Algorithms in the Liter-

ature

This section focuses on the reconstruction algorithms of the MP family, that iden-

t!4 of the target signal iteratively. At each iteration, one or more

tify the support se
columns of the measurement matrix that are most correlated with the current residual
are selected (this is referred to as the maximum correlation test), and the residual is
updated by projecting the measurements onto the linear space spanned by the selected
columns. The reconstruction algorithms considered here are the OMP, CoSaMP, and
SaMP. Fig. 4.1 depicts the corresponding flow charts, where C!, F?, r’, and K denote
the candidate support set, the final support set, the residual vector in the ith iteration,
and the sparsity level of the target signal, respectively. As seen from Fig. 4.1, in the
OMP algorithm, F? is expanded by adding coordinates successively and it uses only
one maximum correlation test to add one coordinate to F*.

Meanwhile, the CoSaMP algorithm refines a fixed-size F' by selecting coordinates
from a set of candidates C'. It uses a preliminary correlation test and a final corre-
lation test, which are simply referred to as preliminary test and final test, to add one
or more coordinates to F*. The final test removes the wrong coordinates added in the
preliminary test, which is referred to as backtracking, and therefore improves the accu-
racy of the estimation [63]. However, since most natural signals are compressible rather
than strictly sparse, the sparsity level K for these signals could not be well-defined. It

is shown that the reconstruction accuracy can be significantly degraded as we either

“For a vector B = [B1, Ba. ..., Br] € RE, the support set is defined as {i|3; # 0} [52].
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Figure 4.1: Flow charts of the OMP, CoSaMP, and SaMP algorithms.

underestimate or overestimate K [64]. Unlike the CoSaMP algorithm, SaMP does not
require a priori knowledge of K. It adopts a stage-wise approach to identify F¢ through
the backtracking strategy. The size of F? stays the same among iterations in each stage;
however, when it moves to the next stage, the size of F' is increased by a fixed step size
s to search for more coordinates of the recovered signal which correspond to the least

residual. This process continues until the residual of the recovered signal falls below a

predetermined threshold.
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Although SaMP guarantees exact recovery after a finite number of iterations (see proof
in [64]), it leaves an open question about the choice of the step size s to achieve the
trade-off between accuracy of estimation and complexity. This motivates us to address
the problem of adaptively adjusting the step size between consecutive stages. Recently,
a variable step size algorithm has been proposed in [85]. However, the increment of the
step size is based on a particular relationship between the number of the measurements

1,'> which is not always valid in our application as the sparsity level

and the sparsity leve
of the channel can vary in time. Therefore, we propose a novel AS-SaMP algorithm
which can adaptively adjust the step size to approach the true sparsity level in the next

section.

4.2.2 The AS-SaMP Algorithm

Since a smaller step size s in the SaMP algorithm leads to a better estimation accuracy
while the complexity increases, and a larger s degrades the accuracy of the estimation
while the complexity decreases, an adaptively adjusted s may lead to a better trade-off
between the accuracy of estimation and the complexity of the algorithm. Specifically,
an adaptively adjusted s means that the change of s depends on how far the current
reconstruction state, e.g., current reconstructed signal energy or its estimated sparsity
level, is from the state of the true signal. Because the sparse elements with large values
are reconstructed in the initial stages of the algorithm, the energy difference of the
reconstructed signal between consecutive stages is reduced at a declining rate as the
number of stages increases. In other words, the energy of the reconstructed signal
tends to be stable when the estimated sparsity level is close to the true sparsity level

K. Following this property, the AS-SaMP algorithm begins with a larger step size (the

15 According to [85], the step size is changed based on a practical rule i.e., if ones want to recover
the signal, the sample number should be four times the signal sparsity level.
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Algorithm 1 AS-SaMP

Input: Received signal at pilot subcarriers Y, measurement matrix A, tolerance e,

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

threshold I', initial step size sy;
: Initialize h = [0,0...,0], hyg = [0,0...,0]7, Feemp = [0,0...,0]7, indices set B® = (),
candidate support set C° = ), residual r° = Y, size of final support set Lp = s =
sy, final support set FO = (), iteration index ¢ = 1
while (|[r*"!]| > €) do

Calculate signal SP = |AHr"1|

Select indices set B? in A corresponding to the Lr largest elements in SP {Pre-
liminary test}

Merge chosen indices and final support set from previous iteration into candidate
support set C* = B! U Fi~!

Refine candidate set to final set F* by selecting indices corresponding to the L
largest elements of AL, Y, | {Final test}

Solve least-square problem h(F?) = ALY,

Calculate current residual riepy = Yp — AFiALti

if (||rtempll < €) then

i — pi-1
Break

else if (||remp| > [|r*!]|) then
if (| h(FY) || — || ho ||< T) then

s=15/2], Lp = Ly + s, hyg = h(F), r' ="' i =i+ 1 {Fine tuning}
else
Ly = Lp+s, hyg=h(F%), r' =ri"! i =i+ 1 {Fast approaching}
end if
else
Frl=F v =remy, i =i+ 1
end if

21: end while

22: return fl

Output: Estimation of baseband channel impulse response h.
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initial step size is denoted as s;) to expedite the convergence. Then, the step size is
adaptively decreased to provide fine tuning in later stages, as the change rate of the
reconstructed signal’s energy decreases. Consequently, an additional threshold I is used
to specify the beginning of the fine tuning.

The pseudocode for the AS-SaMP algorithm is shown as Algorithm 1. The algorithm
is stage-wise with a variable size of F? in different stages. During each stage, it adopts
two correlation tests iteratively, i.e., candidate and final tests, to search for a certain
number of coordinates corresponding to the largest correlation values between the signal
residual and the columns of the measurement matrix. Then, the algorithm moves to
the next stage until the recovered signal with the least residual is found. As opposed
to SaMP, the proposed algorithm incorporates two threshold values into the halting
criterion: tolerance € and I'. Therefore, AS-SaMP halts when the residual’s norm is
smaller than €, in which € is set to be the noise energy. Meanwhile, s is decreased
when the energy difference of the reconstructed signal falls below I', whose value is
chosen based on empirical observations. Starting with a sufficiently large initial step
size (s; < K), the proposed algorithm quickly approaches the target signal. However,
when the difference in the energy of the reconstructed signals becomes smaller than the
preset ', the step size is reduced (by a factor of two) to avoid overestimation of the
K-sparse target signal. This overestimation can significantly degrade the accuracy of
the algorithm [64]. For practical applications, the values of I and € need to be selected,;
some details are presented as follows.

The threshold T': In the AS-SaMP algorithm, the step size is reduced when the energy
of the reconstructed signal changes by an amount less than I'. Clearly, I' < ||h|| in order
to provide fine tuning. The larger I is, the earlier a fine tuning starts and thus requires
a larger number of iterations. On the other hand, a smaller I" leads to fewer iterations.

However, a higher estimation quality can be achieved with an earlier initiation of fine
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tuning.

The tolerance €: As in the SaMP algorithm, AS-SaMP halts when the norm of the
residual channel falls below a preset threshold e. According to [64], ¢ = 0 when the
measurements are noiseless, while € can be chosen as the norm of the noise vector when
the measurements are noisy.

In the next section, a theoretical guarantee of exact recovery of AS-SaMP, in both

noiseless and noisy cases, is provided with the corresponding proofs shown in Appendix A.

4.3 Theoretical Performance Analysis of AS-SaMP

The recovery performance of the proposed AS-SaMP algorithm is based on the the-
oretical performance of SaMP and subspace pursuit (SP) [125]; therefore, the proofs
which follow the format in [64,125] are developed for two cases: exact recovery from

noiseless measurements and approximate recovery from noisy measurements.

4.3.1 Reconstruction Performance for Noiseless Measurements

Before stating Theorem 1 for the exact recovery of the AS-SaMP algorithm, we need

two results summarized in the lemmas below.

Lemma 1. Given an arbitrary K-sparse signal h and the corresponding measurement
Y, = Ah. Let the total number of stages decided by AS-SaMP be J and s;,7 €
{1,2,..., J} be the step size of the ith stage. If A satisfies the RIP with parameter
I3, < 0.06 [41], where K, = 22]:1 s; is the estimated sparsity level, the last stage of
AS-SaMP is equivalent to SaMP algorithm with estimated sparsity level K, except
with possibly different contents in the final support set and the observation residual

vector.
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Lemma 2. AS-SaMP guarantees the convergence of the recovery process. The upper-

bounded number of iterations that AS-SaMP involves is

| Aomin| —1 —1 —1
~log + bt )4, 44
T gt T et T ToglCn, ) Y
where lyi, is the non-zero element with the minimum magnitude and C, = %W,

i =1,2,...,J, 03k, is the RIP parameter in the ith stage, and K; is the size of final

support set in the ¢th stage.

Proof of Lemma 1 and Lemma 2 are deferred to Appendix A.1. Next, the upper-
bounded number of iterations for AS-SaMP is compared with that for SaMP in the

Corollary below.

Corollary 1. Provided that A satisfies the RIP with parameter ds3x, ,q g0 < 0.06

and d3p < 0.06, where Ky 5 squp and K, _gq.p are the estimated sparsity

s—SaMP

level for AS-SaMP and SaMP, respectively, the upper-bounded number of iterations for
AS-SaMP is smaller than that for SaMP.

The proof of the Corollary 1 is postponed to Appendix A.2. Now based on the
lemmas above, a sufficient condition for exact reconstruction is drawn in the following

theorem.

Theorem 1. (Ezact recovery from noiseless measurements): Let Ky as_samp = S1d,
where s; = s; is the initial step size and J is the total number of stages of the AS-SaMP

algorithm. If the sensing matrix A satisfies the RIP with the parameter 035 <

s—AS—SaMP

0.06, the AS-SaMP algorithm is guaranteed to exactly recover h from Y, via a finite

number of iterations.

Proof. Based on Lemma 1 and Lemma 2, when the RIP condition is satisfied, because

the last stage is equivalent to SaMP with estimated sparsity level K,_ 45_sq1p, the AS-
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SaMP algorithm guarantees exact recovery of the target signal after this stage, and it

takes finite number of iterations to reach K _s5_samp- [ |

Remark 1. From the Lemma 1, a sufficient condition which is required for A to guar-
antee an exact recovery is dx, < 0.06, where K; = 22]:1 s; and s; is the step size in the
ith stage. As s; > s9 > --- > s, we have K; < s;J. Therefore, a more restrictive re-
quirement of the RIP parameter of A will be 935, ; < 0.06 which is 03, ¢ g, < 0.06.
The sufficient condition for SaMP is more restrictive than SP algorithm as the esti-
mated sparsity level K, s,up = s[K/s| where s is the fixed step size in SaMP, is
always at least as large as the true sparsity level K [64]. Similarly, to compare the
restrictiveness of the condition of the AS-SaMP, the values of Ky sonp, Ks s sarir
and K needs to be compared. As [K/J]| < s; < %, so K < s;J < s[K/s] and
thus K < K, as-samp < Ks_sanp-

Furthermore, because of monotonicity of d3x, d3x < O3 as a result,

s—AS—SaMP s—SaMP?

if 03k < 0.06, 93k < 0.06 holds, which means that the requirement of A

s—SaMP s—AS—SaMP

for AS-SaMP is less restrictive than that for SaMP. Moreover, as A is a P x N partial

DFT matrix in our application, and indices of the P pilots are randomly chosen, A

satisfies the RIP with an overwhelming probability provided that

P

K<C—
= Cl(logN)ﬁ’

(4.5)

where C; depends only on the RIP parameter (by overwhelming probability, it means
that the probability is at least 1 — N _C%) [40] and K is the sparsity level of the target
CIR. In fact, (4.5) expresses the minimum number of pilots (P > K(loc—glN)G) required
such that a random subset of A with average cardinality 3K,_s_sanp satisfies the RIP

with high probability. Specifically, for P > 8K, the recovery rate is above 90% [40].
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4.3.2 Reconstruction Performance for Noisy Measurements

The second part of theoretical performance analysis is to investigate the approximate
recovery from inaccurate measurements of the AS-SaMP algorithm. Two types of in-
accurate measurements are considered: one is subject to noise perturbation and the
other one is subject to approximately sparse signal whose non-significant elements are

comparatively small (but not zero) and noise.

Theorem 2. (Approximate recovery from noisy measurements): Consider h € RY as a
K-sparse signal, Y, = Ah+ W, € R” as the noisy measurement vectors and W, as
a noise vector generated from a Gaussian distribution with zero mean and variance o2.
If the measurement matrix A satisfies the RIP with parameter dsx, 4 ¢,ppr < 0.03,

the signal approximation h satisfies:

1+ 53Ks—AS—SaMP

Ih—h| < | Wy |

53Ks—AS—SaJWP(1 - 53Ks—AS—SaMP> (4 6)
_ 1+ 53Ks—AS—Sa]\4P o
53Ks—AS—SaMP<1 - 53Ks—AS—SaMP>

Corollary 2. (Approzimate recovery from signal and noise perturbations): Consider
h € RV as a compressible K-sparse signal. Let hx represent the K most significant
entries. The signal h is compressibly sparse if h — hg # 0. With the same assump-
tion of Theorem 2, if A satisfies the RIP with parameter dsx, ,4 ¢, < 0.03, the

reconstruction distortion of the AS-SaMP algorithm is written as below:

A 1496 1446
H h—-h ”S + 06K, as_sanip ><U—|—\/ + 06K, _as_samp H h—hy H1> (47)

56Ks—AS—Sa1\1P<1 - 561(5_,45_5&]\413 K

The proofs of the Theorem 2 and Corollary 2 are similar to the corresponding
theorem and corollary in [125] as the AS-SaMP is equivalent to SaMP with the estimated

sparsity Ks_as_sanp at the last stage except for the different contents of candidate and
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final support set which does not affect stability of AS-SaMP under both signal and noise

perturbations.

4.4 Computational Complexity of the Existing Al-
gorithms in the Literature

In this section, the computational complexity of the existing algorithms in the liter-
ature and the AS-SaMP algorithm is compared in terms of the number of operations,
which equals the product of the number of operations per iteration and the number of
iterations. Generally, each algorithm performs six major steps during each iteration'®:
forming signal proxy, identifying the largest indices, merging the set of indices, approx-
imating the signal on the merged set of indices by least-squares, pruning to obtain next
approximation, and updating the residual which is the part of the signal that has not
been approximated [52,63]. Assume that each step involves the standard technique!”;
the dimension of the measurement matrix is P x I and the sparsity level is K. Accord-
ing to [63], the operation counts per iteration for the corresponding steps are O(LP),
O(L), O(K), O(K*P),0(K), and O(K P), where O(-) represents the big-O notation.'®
Among the steps of each algorithm, the LS estimation dominates the contribution to
the complexity unless L is much larger than K?2. In addition, the complexity of the

algorithms also depends on the number of iterations. Since the number of stages of

16The OMP algorithm involves five major steps during each iteration: forming signal proxy, iden-
tifying the largest indices, merging the set of indices, approximating the signal on the merged set of
indices by least-squares, and updating the residual [84].

ITFast implementation exists for each step of all the algorithms, e.g., in the LS estimation step,
iterative methods such as Richardson’s iteration [63] or Cholesky decompositions [126] can be used for
efficiency. However, we adopt the standard technique in each step for all the algorithms.

18As a tight bound and a lower bound (represented by € and ©-notations, repectively) of each step
in the algorithm may vary from one iteration to another, and the overall complexity is dominated by
the step which has the largest complexity, the big-O notation can be used to show a valid upper bound
of the algorithm’s complexity.
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SaMP is upper bounded by [K/s]| [64], and during each stage a portion of coordinates
in the true support set are identified and refined via up to K iterations, an upper bound
of the number of iterations is [ K/s| K. On the other hand, due to the fast convergence
of the AS-SaMP algorithm, fewer stages are required to provide the same quality of
estimates, and as the computational complexity of each step is the same, the AS-SaMP
algorithm is less complex when compared with the SaMP algorithm. Hence, an upper
bound of the number of iterations of AS-SaMP is also [K/s|K. Note that the upper
bounds obtained for SaMP and AS-SaMP are quite loose, as the number of iterations
which varies from a stage to another is likely to be equal to or smaller than s(< K) for
most of the stages. Thus, we present an improved upper-bounded number of iterations
for the AS-SaMP algorithm in Table 4.1 (see Lemma 2 in Section 4.3.1 for the proof)
and we show that the upper-bounded number of iterations is smaller than that for the
SaMP algorithm in Corollary 1, Section 4.3.1. Moreover, according to [84], the num-
ber of iterations which the OMP algorithm involves is upper bounded by the number of

the element in the target signal with the amplitudes larger than T 2 where b is

2K—-1)p
the upper bound of the /5 norm of the observation noise and g is the mutual coherence
of the measurement matrix (see the definition in Eq. (5.1), Section 5.1). For CoSaMP,
the number of iterations is upper bounded by log(||h||/e;) in which €; is a precision

parameter of the reconstructed signal [63]. A summary of the number of iterations of

the considered algorithms is provided in Table 4.1.

4.5 Simulation Results

In this section, simulation results are presented to illustrate the performance of the
proposed algorithm for sparse channel estimation in OFDM communication systems.

In order to evaluate the performance, MSE is adopted as the metric to quantize the
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Table 4.1: The number of iterations

Methods
OMPT card(h) with |hwin| > —ox—;
CoSaMP log(|Ihl|/€1)
i _ |Pmin| -1
SaMP < [—J log( Thi )10g(CKs—SaJWP) + J|PL
- 3 — |Amin | -1
AS-SaMP*+ < [—J log( Th )IOg(CKs—AS—SaJ\/IP) + J]PL

T Amin is the non-zero element with the minimum magnitude in h.

 h is the target signal and J is the total number of stages. CK. somp
and Ok, ,¢ sump are RIP-related parameters for SaMP and AS-
SaMP, respectively (see Section 4.3.1 for a detailed explanation).

channel estimation error. One definition of MSE is

MSE = E[z_:l |H(m) — H(m)|". (4.8)

4.5.1 Simulation Setup

A block diagram of the simulation setup is shown in Fig. 4.2. We consider UWA
channel estimation for a coded OFDM transmission'® with N = 1024 subcarriers and
bandwidth of B = 9.8 kHz, leading to a subcarrier spacing of Af = 9.5 Hz. The CP
duration equals 26 ms, which corresponds to the length of CP Ngp = 256. Unless
otherwise mentioned, the number of pilots is P = 256. The data symbols are drawn in-
dependently from a 16-QAM constellation and are coded using a (1024, 512) binary low-
density parity-check (LDPC) code. We consider the channel model described in (4.1)
with N, = 15 multipaths, in which the inter-arrival times are exponentially distributed
with a mean of 1 ms, i.e., E[rj;1—7;] = 1 ms, j € {0,1,..., N,—1}. The amplitudes are
Rayleigh distributed with the average power decreasing exponentially with the delay,

and the difference between the amplitudes at the beginning and the end of the CP is

9The proposed algorithm can also be applied to channel estimation in other communication sys-
tems, provided a sparse channel representation.
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Figure 4.2: Simulation setup.

20 dB. These parameters are assumed to be constant within an OFDM symbol.

In Chapter 4 and 5, the aforementioned OMP-like methods as well as an AMP-like
method, namely EM-BG-AMP [83] are considered. The parameters for the considered
OMP-like reconstruction algorithms are given in Table 4.2. For EM-BG-AMP, the
maximum number of EM? iterations is 200 and the convergence tolerance for EM is
107 [83]. For SaMP and AS-SaMP, since there is a trade-off between the initial step
size s and the reconstruction speed, three choices of the s value (s < N,) are used,
which correspond to a small, medium and large step size. Also, the effect of various
choices of T" (0.01, 0.1, 1 and 10) on the MSE and CPU running time performance

of AS-SaMP is evaluated in [26]; the results showed that when I' > 1, the MSE of

20In EM-BG-AMP, the a priori distributions of the target signal and noise are unknown and learned
through the EM algorithm [83].
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Name MaxIter! Sparsity level K  Step size s  Tolerance ¢ Threshold I’ Ratio u
OMP 20 not required not required  norm(Noise)® not required not required
CoSaMP 20 15 not required  norm(Noise) not required not required
SaMP not required not required 1,6,8 norm(Noise)  not required not required
VSStAMP  not required not required initially 1, 6, 8 norm(Noise) not required < i
AS-SaMP  not required not required initially 1, 6, 8 norm(Noise) 1 not required

¥ Maximum iterations.
§ norm(V)=,/> [V|2.

the AS-SaMP algorithm starts to saturate. Therefore, the threshold I' is set to 1.
Moreover, among the compared algorithms, only CoSaMP requires the sparsity level
as a priori information, and the same stopping criterion is used for fairness, i.e., all
algorithms stop when the signal residual falls below e. The MSE and BER are used
to measure the channel estimation accuracy and the system performance, respectively.
The CPU running time?! is used to provide a rough estimation of the channel estimation
computational complexity. Simulations are performed in MATLAB R2014a using a 2.8
GHz Intel Core i7 CPU with 8 GB of memory storage, and we use 10* Monte-Carlo

trials to average the results. Performance of the proposed reconstruction algorithm is

shown next.

4.5.2 Performance of the AS-SaMP Algorithm

First, we compare the AS-SaMP algorithm with two classic recovery algorithms,
namely LS and OMP using different numbers of randomly distributed pilots. Fig.
4.3 shows the MSE of these algorithms versus SNR. As the number of pilots increases,
MSE decreases for all algorithms. It is worth noting that OMP has, in general, a better
MSE performance than LS for the same number of pilots. Similarly, AS-SaMP achieves

a better MSE performance than the OMP algorithm. For example, at SNR = 15 dB

21The running time is used instead of the number of iterations for comparison, as the complexity
in each iteration varies for different algorithms. However, it is worth noting that different hardware
configurations may result in different running time measurements.
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and P = 64, the MSE for LS, OMP and AS-SaMP algorithms are 9 x 1072, 1.2 x 1072
and 3.5 x 1073, respectively. In other words, for the same level of MSE performance,
the AS-SaMP algorithm uses fewer pilots than the other two algorithms.

Next, Figs. 4.4, 4.5 and 4.6 plot the MSE, BER and the CPU running time for all
the algorithms, respectively. To get an idea of the potential MSE gain achieved by
exploiting the sparsity into channel estimation, we compare the MSE performance of
the considered algorithms with the MSE lower bound of an ideal channel estimator with

known indices of the non-zero entries of h for the OMP-like algorithms??. According

~—_
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Figure 4.3: MSE performance of the LS, OMP and AS-SaMP algorithms with various
number of pilots.

22The ideal channel estimation is formed through h = A1/ Yp, where A is the submatrix obtained

by extracting N, columns of A corresponding to the known indices set T. Thus, the lower bound of
2 _2
the MSE for the matching pursuit algorithms is ﬁgﬁ [35], where o2 is the noise power and

trace(x) is defined to be the sum of the elements on the main diagonal of x.
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Figure 4.4: MSE performance of the LS, OMP, CoSaMP, SaMP, VSStAMP, AS-SaMP
and EM-BG-AMP algorithms. The lower bound for known indices of the non-zero
entries of h is also included.
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Figure 4.5: BER performance of the LS, OMP, CoSaMP, SaMP, VSStAMP, AS-SaMP,
and EM-BG-AMP algorithms.
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Figure 4.6: CPU running time of the OMP, CoSaMP, SaMP, AS-SaMP, and EM-BG-

AMP algorithms.
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to results in Figs. 4.4 and 4.5, the CS-based channel estimators give better MSE and
BER performance than the conventional LS estimator. In other words, the channel
estimators based on the VSStAMP, SaMP and AS-SaMP algorithms outperform those
based on the OMP and CoSaMP algorithms in the sense that the former algorithms offer
the same performance even if fewer pilots were used. It can also be seen that, although
EM-BG-AMP slightly outperforms the other algorithms for lower SNRs (SNR < 8 dB),
the proposed algorithm outperforms the other algorithms for higher SNRs (SNR > 8
dB). Moreover, given the same sparsity level, the MSE of AS-SaMP is closer to the
aforementioned lower bound than that of the other algorithms at higher SNRs. As
shown in Fig. 4.6, the CPU running time of EM-BG-AMP is significantly larger than
those of the other algorithms due to the iterative statistical parameters learning process
via EM, and at lower SNRs, EM-BG-AMP requires a larger number of iterations for EM.
Furthermore, it is noted that the complexity of the CoSaMP algorithm is higher than
that of other algorithms; this can be explained through Table 4.3 in which the running
time of each step per iteration for CoSaMP is higher than that for other algorithms.
This can be further explained as the size of the support set for CoSaMP is larger
(2K) than the support set size for the other algorithms. Additionally, the complexity
of the AS-SaMP algorithm is higher than that of the SaMP; this is because the step
size is reduced during the fine tuning stages given the same initial step size in AS-
SaMP. Moreover, from Table 4.3, it is noteworthy that the LS approximation step
dominates the contribution to the total running time per iteration among the steps of
all algorithms.

Figs. 4.7 and 4.8 depict the MSE performance and computational complexity of the
AS-SaMP and SaMP algorithms with different step sizes, respectively. As can be seen,
for a medium or large initial step size (s = s; = 6 or s = s; = 8), AS-SaMP outperforms

SaMP with a small increase in complexity, while for s = s; = 1, the same performance
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Figure 4.7: MSE performance of the SaMP and AS-SaMP algorithms with different
step sizes.
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Table 4.3: CPU running time (sec) of each step per iteration for CS-based algorithms,
SNR = 10 dB and P = 256.

Step OMP CoSaMP SaMP (s =6) AS-SaMP (s;=6)
Form proxy 421 x107° 828 x 107° 5.11 x 107 5.06 x 107°
Identification 7.23x107% 2.36 x 1075 1.80 x 107° 1.84 x 107°
Support merger 1.14 x 1075 1.80 x 107° 7.80 x 107 8.03 x 107
LS approximation 3.32 x 107* 4.4 x 1073 7.9 x 107* 8.46 x 107*
Pruning NA* 9.15 x 1075 7.99 x 107 1.53 x 107
Residual update 1.56 x 1075 4.80 x 107° 3.58 x 107 5.50 x 107°

* NA: not applicable.

Table 4.4: CPU running time (sec) for AS-SaMP with various I' at SNR = 15 dB and
the initial step size s = 6.

'=001 I'=01 I'=1 I'=10
0.008 0.01 0.062  0.079

is achieved using a slightly larger CPU running time for AS-SaMP. This can be easily
explained, as when s = s; = 1, AS-SaMP becomes equivalent to SaMP except an
additional criterion for changing stages. Note that SaMP and AS-SaMP require s < N,
and s; < N, respectively, to avoid overestimation. In general, the AS-SaMP algorithm
is more accurate without significantly increasing the complexity of the estimation.
Finally, the impact of the threshold I' on the MSE and CPU running time is inves-
tigated for the proposed algorithm. Fig. 4.9 and Table 4.4 show the MSE and CPU
running time for various I' values for the initial step size, s = 6, respectively. As seen,
a larger I' leads to a smaller MSE and a relatively high complexity; on the other hand,
a smaller I' leads to a larger MSE and a relatively low complexity. This is consistent
with the discussion in Section 4.2.2. Moreover, it is noted that the MSE curves of
AS-SaMP with I' = 1 and I' = 10 overlaps. This can be explained as when I' > 1,
fine tuning starts when the algorithm moves from the first stage to the second, and the

performance starts to saturate.
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4.6 Conclusion

In this chapter, an adaptive step size SaMP algorithm, namely AS-SaMP, is proposed
and analyzed for application to sparse channel estimation in OFDM systems. As the
name suggests, it features an adaptively adjusted step size without requiring a priori
information of the estimated channel sparsity. Simulation results demonstrate that the
proposed algorithm provides an improved MSE and BER performance when compared
with the conventional LS and other CS-based reconstruction algorithms, without signif-
icantly increasing the computational complexity. Therefore, it can be concluded that
the AS-SaMP algorithm offers a better trade-off between performance and complex-
ity. In the subsequent chapter, it is demonstrated that the proposed algorithm can be

adopted in sparse time-varying channel estimation.



Chapter 5

Near-Optimal Pilot Placement
Scheme in OFDM Systems

In this chapter, the pilot placement scheme based on the MIP for sparse channel es-
timation in OFDM systems is investigated. Although a brute-force search guarantees
the optimal pilot placement, it is prohibitive to examine all possibilities due to high
computational complexity. It is known that by minimizing the mutual coherence of the
measurement matrix when the signal is sparse on the unitary DF'T matrix, the optimal
set of pilot locations is a CDS. Based on this, an efficient near-optimal pilot placement
scheme is proposed in cases where CDS does not exist. Simulation results demonstrate
the effectiveness of the proposed schemes, and moreover, show that the previously pro-
posed AS-SaMP estimation algorithm, with the new pilot placement scheme, achieves a
better trade-off between the performance—in terms of MSE and BER—and complexity,
when compared to the other aforementioned estimation algorithms. More importantly,
the proposed estimation algorithm and the pilot placement scheme can also be ap-
plied to channel estimation in other communication systems, provided a sparse channel

estimation and a DFT-based measurement matrix.
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5.1 Problem Statement

According to the CS theory, an accurate recovery of a sparse signal relies on the RIP
of the measurement matrix. However, the RIP evaluation for a particular matrix is
an NP-hard problem [42]. An alternative property which evaluates if a measurement
matrix can preserve well the information of the sparse signal in the measurements is
the mutual coherence of the measurement matrix [40-42]. According to Eq. (4.3), the
measurement matrix is the product of the transmitted pilots and the DFT submatrix
and is determined by both the symbols on the pilot subcarriers and the set of pilot loca-
tion indices, which is also referred to as the pilot placement /arrangement. This chapter
focuses on the pilot placement by assuming that the same symbol is transmitted on all
the pilot subcarriers. As mentioned before, a common property to theoretically evaluate
the reliability of a certain measurement matrix is the MIP. The mutual coherence of a
P x L measurement matrix A is defined as the maximum absolute correlation between
any two normalized columns, which is

| <a;-a; > |

A)= max —————. >
wA) 1<ij<L,i#ji |laq| - ||a;]| .

Given equal-power pilots, and substituting A with X,D,, (5.1) becomes

| <dp; - dp; > |
Idp, ]l - [1dp, ]l

p(A) = max |X(p)”

I<ij<L,i#j

(5.2)

where ¢ = 1,2, ...P and dp, denotes the ith column of Dy, with the jth element given
by \/—%e‘ﬂ”pf/]v, j = 1,2,...,P. We aim to find the set of pilot location indices
Q = {p1,p2, ..., pp} which minimizes p(A). Although the optimal pilot pattern can be
obtained through exhaustive searching over all possible patterns, it is computationally

prohibitive to form the search space for a large number of subcarriers and pilots. Sev-
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eral methods have been suggested to search the suitable solutions iteratively [86,90-92];
however, the complexity of these methods is potentially high because the search space
grows rapidly (even exponentially) as the numbers of subcarriers and pilots increase.
In [93], the authors identify a collection of matrices formed by deterministic selection
of rows of Fourier matrices which satisfy RIP. In particular, the selected indices of the
rows correspond to the integer outputs of certain polynomial functions [93]. Here, a
novel pilot placement scheme is proposed, which aims to provide a near-optimal solu-
tion without suffering from the fast-growing complexity. Next, an analysis of optimal

pilot pattern based on CDS is presented.

5.2 Analysis of Optimal Pilot Pattern Based on CDS

Assume that the measurement matrix A is composed by P rows of D where the (m, n)
element of D is given by [D],,, = \/Lﬁe_ﬂ“m"/N O0<m<N-land0<n<L-1),
and the indices set of the selected rows is £2. All the pilot symbols are equal-powered to
be Ep = |X(p.)]?, c=1,2,...P. According to [90-92], if Q is a CDS with parameters,
then the mutual coherence of the resulted measurement matrix, p(A), is minimized.

Specifically, recall the definition of a CDS [127],

Definition 2. Cyclic Difference Set (CDS): Let E be a finite additive Abelian
group of order N. The P-element subset Q is called a (N, P, ) CDS in E if the list of
difference (q(i)—q(j)) modulo N, 4,5 = 1,2,...P, and i # j, represents each nonidentity

elements in E exactly A\ times.

For example, the (7,3,1) CDS is Q = {1,2,4}, which satisfies that any integer be-
tween 1 and 6 will occur and repeat exactly once in the set {q(i) — ¢(j) (modulo
Nl <i#j<3}

It should be noted that we have refined the analysis presented in [90] and [91], so that it
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is applicable in the general case. Asin (5.2), | < dp,;-dp; > | only depends on A; = i—j

and || dp, ||=|| dp, |= 1, designing the optimal pilot pattern can be formulated as:
Q,, = arg m&n \Jmax Ep| <dp, - dp;a, > |
P (5.3)
— 3 Pr-Ag
arg min 1g2}2§_1EP| > WP,

r=1

where w = eI ¥ . To maximize | 2.7, wPr?¢| is equivalent to maximize | 37 wpPrdi|? =

zf,j:l wPm B . 25:1 w™PrAiand Ep is a constant, therefore (5.3) can be re-written as:

P P
Q. =argmin max @ Pm—Pn) A 5.4
ot = AB G 1gAigL71mz::1nz::1 (54)

It is worth noting that 37 | >°F  ®==P)Ai in above equation is a complex number

generally. Thus, to make it applicable in the general case, a revision is made as follows:

Re [Cd ‘pm —Pn IAL]

{~
4
NE
M~

Q,,; =argmin max
P sy 1<A<L—1

3
I
3
3
Il
S
Il

(5.5)

=argmin max
2 1<A<L-1

P P 27T
+ Z Z cos(ﬁ|pm — palA).

=1 n=

{~
3

m

n

m#n

In above equation, the mutual coherence of the resulting matrix depends not only on
the space between two columns but also on the space between two pilots. Define a set
G = {(pm — pn) modulo N|1 < m,n < P,m # n} which contains N different numbers
g =1,2,...N — 1 and each number repeats A\, times. Equation (5.5) can be re-written

as:

. = 2
Qopy = arg min  max Ep(\F/’_/—i- g;l Ag cos(NgAi)).

(5.6)

m=n

m#n
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The problem in above equation is equivalent to the problem of finding the optimal pilot
patter which minimizes the maximum value of ZN "Agcos(3gA;),1 < A; < L —1.
To show that the patterns based on CDS are optimal, Ay = Ay = ... = Ay_1 needs to

be satisfied. Because

Y1 (Zg5 Ag cos(5FgAy))

e Z Ag cos( o) 2 T , (5.7)
equality happens when \; = Ay = ... = Ay_| = Iﬁ:f , and thus, the minimum value of
the mutual coherence is

—pykt cos A;
ﬂ(A)min:EP\lP‘l' N 1 = 1( L 1 ( g ))a
B N (5.8)
PN — P?
— Epy | ———
VN1

5.3 Proposed Pilot Placement Scheme Based on the

Concatenated CDS

Previously, we have shown that for an N-subcarrier OFDM system using P subcarriers

as pilots, the pilot pattern according to the CDS (N, P, £==L) is optimal. However,

N—1
CDS exists only for some specific N and P. In this section, a pilot placement scheme
based on the concatenated CDS is proposed for the cases where there is no CDS.
According to Definition 2, for an existing (N, P,\) CDS of order P, assuming that
G is the set of cyclic differences of any two elements of the CDS, every non-identity
element in the set G of order N has exactly the same number of repetitions, A [127].
In other words, if we denote the number of repetitions of the different elements of G

as Ag = {Nglg = 1,2,...N — 1}, then A\ = Ay = ..Ay_; = A which also means that

the variance of Ag is zero. Moreover, it is noticed that a pilot pattern with a smaller
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variance of Ag is likely to give a smaller mutual coherence of the resulting measurement
matrix, and thus, more accurate estimates. Consider an OFDM system with N = 1024,
in which P = 256 identical pilot symbols are randomly scattered, and the number of
taps of the sparse CIR is L = 256. To show that as the variance of Ag increases, it is
likely that so does the mutual coherence of A and the MSE of estimates, the Spearman’s
rank correlation® is adopted to measure the strength of a monotonic relationship (i.e.,
values of elements in a vector either increase or decrease with every increase in an

associated vector) between paired vectors [128], and is defined as below.

Definition 3. The Spearman’s rank correlation: For two vectors of size V, A =
[A(1),A(2),...,A(V)] and B = [B(1), B(2),..., B(V)], the Spearsman’s correlation is

calculated from )
>y (a; — a)(b; — b)
VI (a; — a2 S (0 — b)?

where a; and b; are the positions in the ascending order (ranks) of A(i) and B(7),

rs(A,B) =

respectively. @ and b are the means of a; and b;, i = 1,2, ..., V.

Table 5.1 shows the Spearman’s rank correlation between any pair of the following
four vectors: the variance of Ag, the mutual coherence p(A), and the MSE for both
the OMP and AS-SaMP algorithms, obtained based on 10* pilot patterns; 10> OFDM
symbols and 10 dB SNR were considered. From Table 5.1, it can be seen that a smaller
variance of Ag tend to correspond smaller p(A) and the average MSEs of OMP and
AS-SaMP.

It is noted that by concatenating a CDS the variance of the number of repetitions
tends to be small. A concatenated CDS is shown in the following example. For the

(7,3,1) CDS, a concatenated CDS is obtained through {1,2,4, (1x741), (1x7+2), (1x

23The Spearman’s rank correlation can take values from 1 to —1, with 1(—1) indicating that two
vectors can be described using a monotonic increase (decrease) function, and 0 meaning that there is
no tendency for one vector to either increase (decrease) when the other increases [128].
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Algorithm 2 Pilot Placement Based on Concatenated CDS with an Iterative Tail
Search

Input: An existing (v, u,a) CDS C for concatenation, the number of total subcarriers

10:

11:
12:

N, the number of pilot subcarriers P, the partial DET matrix D of which the (m,n)
element is \/Lﬁe_ﬂ”m"/]v, where 0 <m < N—1,0<n < L—1, and L is the number
of taps of the CIR;

Initialize Q0 = 0, Qyernp = 0

for i from 1 to [%] do
QL= [ UIC+ (- 1) x o]}

end for

P.=P—ux L%J,Q:Qc

for j from 1 to P, do
Qiermp = 0
Form all P. — j + 1 possible subsets of size j by adding an element to €2¢:
Q={QempUke{P,+1,P +2,.... N}\Qsernp }
Form the matrix A by selecting rows of D for each j-element sets generated from
the previous step, and the indices set of the selected rows is €2
For all (P, —j+1) of A matrices generated from the previous step, calculate the
corresponding mutual coherence, and choose the set with the minimum mutual
coherence

end for

return (2

Output: The pilot indices set €2

T4+4),(2x7+1),2x7+2),(2x7T4+4),....,(ixT+1),(i x7+2),(: x T+4), ...}, where

i € Z* and 7 > 1. From these observations, we propose a pilot placement scheme based

on the concatenated CDS for pairs of (P, N) where CDS does not exist. First, a CDS

needs to be chosen for concatenation according to the ratio of the number of pilots to

the number of subcarriers, i.e., P/N. Specifically, the existing CDS with the parameters

(v,u,a), in which u/v is the closest to P/N, is selected. For instance, to select indices

for 256 pilots from 1024 positions, the (133,33,8) CDS is used. After concatenating
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Table 5.1: Spearman’s rank correlations

var(Ag)? p(A)  The average MSE of OMP  The average MSE of AS-SaMP

var(Ag) 1 0.7475 0.7467 0.7527

1(A) 07475 1 0.7481 0.7534
The average MSE of OMP 0.7467 0.7481 1 —
The average MSE of AS-SaMP  0.7527  0.7534 — 1

§ The variance of Ag is Zi\:ll()\g)z — (g5 23;11 Ag)2.

the selected CDS, an iterative procedure is adopted to find the rest of pilot positions
which minimize the mutual coherence of the resulting measurement matrix. We refer
to this as to the iterative tail search; the pseudocode for the proposed scheme is shown
as Algorithm 2. It is worth noting that the size of the search space is greatly reduced
after concatenation, and hence, the proposed method converges significantly faster when

compared to the iterative methods in [90-93].

5.4 Simulation Results

In this section, we adopt the same simulation set-up which can be found in Section 4.5.
Here, five pilot placement schemes, i.e., random, the procedure in [90], the stochastic
sequential search (SSS) in [92], the RIP-based scheme in [93], and our proposed scheme,
are considered. Two polynomials are used to generate the pilot indices sets for the RIP-
based scheme, i.e., fi(n) = 10n+n? and fy(n) = 10n+n?+n? [93]. Equal power pilots
are assumed for all scenarios. With the random scheme, the pilots are selected randomly
among all subcarriers and 10? trials are generated for averaging the results. With the
proposed placement scheme, the pilots are arranged based on the concatenated CDS
with an iterative tail search, referred to as C-CDS with TS. Because the selection of the
existing CDS depends on the ratio P/N, the (273,17,1) and (133,33,8) CDS are chosen

for the cases of P = 64 and P = 256, respectively.
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5.4.1 MSE Performance of the AS-SaMP for Different Pilot

Placement Schemes

Fig. 5.1 shows the MSE performance of the OMP and AS-SaMP algorithms with the
random and the proposed pilot placement scheme, given P = 64. For the randomly
placed pilots, error bars are used to indicate the standard deviations of the MSE; this
was calculated based on 10* indices sets. It can be seen that the proposed method
provides a superior channel estimation performance when compared to the random
placements, as a reduced mutual coherence p is obtained. For instance, at SNR = 10

dB, the average MSEs of the random scheme for OMP and AS-SaMP are approximately

Random, OMP, iz = 0.31
1073 | —e— C-CDS with TS, OMP, i = 0.27 E

Random, AS-SaMP, i = 0.31
—e— C-CDS with TS, AS-SaMP, i = 0.27

10.4 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

SNR (dB)

Figure 5.1: MSE performance of the OMP and AS-SaMP algorithms with random and
the proposed pilot placement, for P = 64. Solid lines are used for OMP and dashed
lines for AS-SaMP.
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Figure 5.2: MSE performance of the AS-SaMP algorithm for different pilot placements,
for P = 256.

4x 1072 and 1 x 1072 , respectively, while the MSEs of the proposed scheme for OMP
and AS-SaMP are approximately 3 x 1072 and 8 x 1073, respectively. It should be noted
that for each SNR, the MSE with the proposed method is smaller than the mean of the
MSE minus the standard deviation with the randomly placed pilots. More specifically,
it equals approximately the mean minus twice the standard deviation; as such, the
proposed method provides a better MSE performance than most of the random pilot
arrangements. Also, AS-SaMP achieves a better MSE performance when compared
with OMP for both pilot placement schemes.

Fig. 5.2 shows the MSE of the AS-SaMP algorithm for the five previously men-

tioned pilot placement schemes for P = 256. Among them, the proposed C-CDS with
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TS has the best performance. Moreover, since the C-CDS pilot arrangement is deter-
ministic, and the iterative search is only conducted for the tail, the searching space
is significantly reduced. Therefore, the number of iterations of the proposed method,
which is proportional to its computational complexity, is significantly lower than that
of the procedure in [90]. An example is provided as follows. When N = 1024 and
P = 256, the procedure in [90] requires (2N — P + 1)P/2 = 229, 504 iterations, and
the SSS in [92] requires M1 x M2 x P = 128,000 iterations, where M1 and M2 are
the number of the outer and inner loop, respectively. For the proposed scheme, if a
(133,33,8) CDS is used for concatenation, there are 1024 — 133 x |12 | = 93 subcarriers

133

at the tail. To search the rest of 25 (256 — 33 x |+221]) pilot indices which minimize ,

(2 x93 —25+1) x 25/2 = 2025 iterations are required.

5.4.2 BER Performance of the AS-SaMP for Different Pilot

Placement Schemes

Finally, the BER performance of the overall OFDM system is assessed for different
pilot placement schemes, with results shown in Figs. 5.3 and 5.4. In Fig. 5.3, the
AS-SaMP algorithm is considered for the five pilot placement schemes. Clearly, AS-
SaMP with the proposed C-CDS with TS is slightly better than the other pilot schemes.
Fig. 5.4 compares the BER performance of the OMP, CoSaMP, SaMP and AS-SaMP
algorithms with the random and proposed pilot arrangements. In general, AS-SaMP
with the proposed pilot allocation scheme provides the best BER performance among

all the estimation algorithms with the considered pilot placement schemes.
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Figure 5.3: BER performance of the AS-SaMP algorithm for different pilot placements,
for P = 256



84

CoSaMP

Ss[] o Random
07F ¢ C-CDS with TS
106 E
10_7 I I I I
0 2 4 6 8 10 12

SNR(dB)

Figure 5.4: BER performance of the OMP, CoSaMP, SaMP, and AS-SaMP algorithms
for random and the proposed pilot placement, for P = 256. Solid lines are used for
OMP, dot lines for CoSaMP, dashed-dot lines for SaMP, and dashed lines for AS-SaMP.
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5.5 Conclusion

This chapter presents an analysis of MIP-based optimal pilot placement for sparse
channel estimation in OFDM systems. Moreover, a near-optimal pilot placement scheme
is proposed, which is based on the concatenated CDS with an iterative tail search (C-
CDS with TS). Because the search space of the proposed method is significantly reduced,
its complexity is much lower than the iterative procedures in the literature. We have
shown the AS-SaMP algorithm with the new pilot placement scheme provides a better
MSE performance for the channel estimate, as well as the system BER when compared
with existing schemes in the literature, without significantly increasing the computation

complexity.



Chapter 6

CS-Based Sparse Estimation and
Prediction for Time-Varying

Underwater Acoustic Channels

The estimation and prediction of time-varying sparse acoustic communication chan-
nels are investigated in this chapter. First, given sufficiently large transmission band-
width, the channel impulse response of the time-varying UWA channel can have sparse
structures, formed by multipath arrivals which can be resolved in the delay and Doppler
domains [43,46,129]. Such representation is referred to as DDSF [130], and is consid-
ered a first-order approximation to the fast time-varying channels in which each channel
component is associated with a Doppler shift that is assumed constant within a specific
period of time [129]. The aforementioned sparse channel estimation techniques based
on MP algorithms can be used to efficiently identify the dominant components in the
channel’s DDSF representation.

Next, we consider several channel estimation-based equalizers in the literature to in-

vestigate the impact of channel estimation on overall system performance. In particular,

86
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the residual prediction error decision feedback equalizer (RPE-DFE) in [15], which im-
proves the robustness of the traditional DFE with respect to channel estimation errors,
is presented.

Furthermore, an adaptive channel prediction scheme which does not require any sta-
tistical a prior knowledge of channels and noise is proposed to provide future CSI. The
proposed scheme operates on the channel’s DDSF, and can reduce the computational
complexity when compared with the channel prediction in time domain. To further
improve the prediction accuracy, past detected symbols are fed back to assist the pro-
posed predictor with an up-to-date channel estimate. The performance of the proposed
channel estimation and prediction approaches are demonstrated through numerous sim-
ulation results. Note that the notations used in this chapter are independent with those

used in Chapters 4 and 5 for the time-invariant channels.

6.1 Sparse Estimation of the Channel Delay-Doppler

Spreading Function

6.1.1 Problem Statement

Considering the sampled complex baseband representation for all signals and CIRs,

the received signal is sampled at the symbol rate, and can be expressed as

y(n) = 3 hk,n)a(n — k+ 1) + w(n),
k=0 (6.1)

=h"(n)x(n) +w(n),

where the transmitted symbol z(n), whose elements are assumed to be independent and

identically distributed random variables drawn from a linear digital signal constellation.
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w(n) is the AWGN, and w(n) ~ N(0, 62), where o2 is the variance of the noise. x(n)
is the column vector at time n with its kth element corresponding to x(n — k + 1),
0 <k < K-—1, and K is the number of sampled delay taps. The acoustic channel
is modelled as a discrete time-varying system having a K-by-1 impulse response h(n).
The kth element of h(n) is given by h(k,n) which represents the response of the system
at time n to a unit impulse input at time (n — k). It is known that the linear time-
varying channel can be described through its DDSF, which is defined as the Fourier
transform of its impulse response with respect to time domain [46]. Let u(l, k) denote
the sampled DDSF, where 0 < [ < L — 1, and L is the number of sample Doppler

points. Thus, h(k,n) can be written as

L
h(k,n) = u(l, k)el>mnat, (6.2)
I

|
—

Il
o

where v, = Vi, + [Av is the [th sampled Doppler frequency, v, is the minimum
Doppler frequency, Av and At are the sampling intervals in Doppler and time domains,
respectively. Substituting i (k,n) in (6.1) with (6.2) yields

K—1L—

y(n) = > 3wl k)™ Ay (n — k4 1) 4+ w(n). (6.3)

k=0 I=

[y

Assuming that u(l, k) remains constant over a received symbol block of which the length

is M, the input-output relationship can be written as
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where
y(n) = [y(n) y(n +1) ... y(n + M — D],
w(n) = [wn) wn +1) ... w(n + M — 1)]",
u = [u(0,0) u(0,1) ... w(0, K — 1) ... u(L — 1, K — 1)]".
®(n) =
x(n)ej%rulnAt . I(Tl K+ 1)6‘727TV1(W'_K7+1)A1" . JJ(TZ K+ 1)€j27'ruL,1(n—K+1)Af, ]
T(T? + l)eij/] (n+1)At . 7’(77 K4+ 2)€j27TV1(’IL7K+2)Af, . ’I’(?’I K4+ 2)€j27rub_1(an+2)At
:r(n + M- 1)6_7'211'1/1(n+1\[—1)At . {L‘('I’L ~ K+ A[)e]?m/l(n—K-H\I)At . r(n ~ K+ ]\/[)6]'27I'VL71<71—K+]\1)A15

Let N, represent the number of dominant components in u,?* and N,, denote the length
of u. Clearly, we have N, = K x L. ®(n) is referred to as the measurement matrix
in the CS theory. In essence, (6.4) represents the received symbols as the weighted
sum of delayed and Doppler shifted transmitted sequences; the goal is to estimate u,
given y(n) and ®(n). In particular, N, < M < N, and thus, the previously mentioned
CS-based algorithms can be used to estimate the significant entries in u. Then, the

CIR can be calculated using the estimated u according to (6.2).

6.1.2 Key Parameter Selection

The set of parameters that need to be specified for channel estimation includes the
block length M, the Delay and Doppler range, and the number of Delay and Doppler
samples, K and L, respectively. Several factors should be considered in selecting M.
First, the assumption considered in (6.4) requires u to remain approximately constant

over M received symbols. The validity of this assumption depends on both the value

24n the CS theory, N, is referred to as the sparsity level of the target signal [42].
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of M and the fluctuation rate of u.?> Estimation using an excessively long block data
would introduce significant errors due to the Doppler effect [43]. For example, given a
tap with a Doppler shift v = 6.25 Hz and the sampling frequency f; = 5000 Hz, the
phase of the tap will change by 7 during a time period of 1000 samples. Second, from
the perspective of compressed sensing, a large M (> N,) will lead to a measurement
matrix ®(n) with better orthogonality among its columns. This property is desired in
order to obtain a satisfactory estimation accuracy [42,43]. Therefore, the value of M,
which leads to a tradeoff between the accuracy of the estimation and the validity of the
aforementioned assumption, needs to be determined.

Furthermore, to calculate the number of Doppler samples L, the Doppler shift range
and the Doppler sample interval need to be chosen. The Doppler shift range is deter-
mined in order to cover the most significant part of Doppler, and the Doppler sample
interval, Av, is decided such that the columns in the resulting ®(n) possess near-
orthogonality, i.e., the correlation between any two normalized columns is sufficiently
low.?6 Similarly, the number of Delay samples (also known as the channel length), K,

should be chosen to cover the maximum delay spread of a multipath channel.

6.1.3 Computational Complexity of the Considered Estima-

tion Algorithms

Another important performance metric is the complexity of the channel estimation al-
gorithms. Here, several existing MP-based algorithms , i.e., OMP, CoSaMP, ORLSMP,
SaMP, and the proposed AS-SaMP algorithms [30] are considered. In Chapter 4, a

25The channel fluctuation rate can be reflected from channel coherence time, which highly depends
on the propagation environment and transmitted signal frequencies. Typical channel coherence time
spans from hundreds of miliseconds to tens of minutes; this requires a receiver to be capable predicting
the future CSI since an estimation of CSI based on the training symbols may be outdated when channel
varies rapidly.

Z6A lower bound of Av, ie. Av > 1.4/("f—M), is derived in [43] to guarantee that the correlation

between any two normalized columns in ®(n) is below 1/+/2.
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complexity analysis of OMP, CoSaMP, SaMP and AS-SaMP was provided; thus, this
section only focuses on the computational complexity of the ORLSMP algorithm, and
its comparison with that of the other algorithms.

On the one hand, for CoSaMP, SaMP and AS-SaMP, computation mainly consists
of six steps in each iteration?”, i.e., forming the signal proxy, identifying the largest
indices, merging the set of indices, approximating the signal on the merged set of
indices by least squares, pruning to obtain the next approximation, and updating the
residual. It is assumed that each step involves a standard technique, and the dimension
of the measurement matrix is M by N,, and N, is the sparsity level of the vector to be
estimated. The operation counts per iteration for the corresponding steps are O(M N,,),
O(Ny), O(N,), O(N;M), O(N,) and O(N,M). Among the steps, the amount of the
computations involved in each iteration is mainly dominated by the first and the fourth
steps, which is O(M N, 4+ N7 M) (see the analysis in Section 4.4).

On the other hand, for the ORLSMP algorithm, the LS criterion is adopted to select
a new column onto which the projection of the residual vector together with all the pre-
viously selected columns is maximum. This is different from the previously mentioned
MP-based algorithms in the sense that the new columns are selected to maximize the
rank-one projection of the residual vector. Therefore, the operation count per itera-
tion for the ORLSMP algorithm is in the order of O(M N} + N,M N} + N,N,), given
N, > M > N, (see Appendix B for a description of the ORLSMP algorithm and a
list of operation count of each step). Therefore, the amount of computations involved
per iteration in the ORLSMP algorithm is increased over that in the other MP-based

algorithms.

27 As mentioned in Section 4.4, there are five steps per iteration in the OMP algorithm.
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6.2 Channel Estimation Based Equalization

As a vital component of receiver in practical communication systems, a previously
reported equalizer in [15] which takes channel estimation errors into consideration, is

presented in this section for the completeness.

6.2.1 System Model

Two common equalization techniques are considered, i.e., linear equalizer (LE) and
DFE, as shown in Fig. 6.1. Each consists of a forward finite impulse response (FIR)
filter and, in the case of DFE, a feedback FIR filter which filters and feeds back the
detected symbols Z(n). The filter coefficients of the LE are denoted as hy;,, and the
feedforward and feedback filter coefficients in the DFE are denoted as hyy and hy,
respectively. Here we focus on training-based channel estimation methods, with par-
titioned transmitted symbols as shown in Fig. 6.2. For the LE, after passing through

the filter, the soft decision estimate of the transmitted signal can be represented as

r(n) = hy,y'(n), (6.5)

T
where y'(n) = | y(n — Li+1) - yln—1) y(n) is a vector of received symbols at

time n, and Ly is the length of the filter coefficients hy,.
In the case of the DFE,

r(n) = hi,y'(n) + hj,Xp(n), (6.6)
T
where Xs(n) = | #(n—L,) --- &(n—1) | isthe detected symbol vector, and L; and

Ly, are the lengths of hy; and hy, respectively. According to (6.1), y'(n) is expressed as



h(n—L;+1,K—1) --- h(n—L;+1,0) 0 0
y'(n) =
0 0 hin,K —1) --- h(n,0)
HT (n)

w(n—Ly+1)

w(n —1)

w(n)
—_—
w'(n)

z(n—Ly— K+2)

z(n—1)

x/(n)
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(6.7)

where the subscripts of h(n, k) and H” (n) were dropped as (6.7) applies to both linear

and DFE. H”(n) is the channel matrix with the ith row composed by a properly

positioned h”(n — Ly +1i) along with padded zeros. Representing H” (n) by its columns
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Figure 6.1: Block diagrams of linear (top) and decision feedback equalizers (bottom).
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Figure 6.2: The transmitted symbols are partitioned into frames, each containing N
transmitted symbols and consisting of multiple blocks of a length M. The first block
is used as training symbols for the purpose of channel estimation.

yields

H (1) = | cpony e e (63)

where each column c; specifies the contribution from the corresponding transmitted
data x(n — ). Moreover, these columns can be partitioned into three parts [15],

i.e., Co, Crp =

cL, - € ] and ¢, which includes all the remaining columns. In
the same manner, the transmitted data vector x’(n) can be partitioned into three
parts: the desired data symbol z(n), the past transmitted symbol vector xs(n) =

z(n—Ly), -, x(n—1) ], and the remaining data x,(n). Finally, (6.7) can be
rewritten as

y'(n) = coz(n) + cppxp(n) + ¢,x.(n) + w'(n). (6.9)

Effective
observation noise

The first term in (6.9) represents the received signal corresponding to the desired data
symbol, the second term expresses the received portion contributed by the data spanned
by the feedback filter, and the last two terms represent the combined signal due to the
other data symbols with the noise vector, which is also referred to as the effective
observation noise [15]. It is assumed that the data symbols form a zero-mean sequence

with variance one, and is uncorrelated with the noise sequence w'(n). Given perfect
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estimate of the noise statistics, the channel estimation based equalizers are expressed as

hlin — PN
(6.10)
hyf = ————— hp=2¢hhyy,

where Q = Ry, +¢&,.¢ is the effective noise correlation matrix with Ry, as the covariance
matrix of the noise which is independent of the CIR [15]. The filter coefficients in
(6.10) are calcuated to minimize the MSE of the soft decision error which is defined as

E[|es(n)]?], where the soft decision error is denoted as e5(n) = r(n) — xz(n) [15].

6.2.2 Residual Prediction Error based Decision Feedback Equal-
ization

It is worth noting that both the channel estimates and errors in the estimates have
an impact on €4(n). The performance degradation of the equalizers due to the channel
estimation errors results in the need for an equalizer which takes account of channel
estimation errors. A DFE based on RPE has been proposed in [15] to alleviate this

problem, where the RPE is defined as
e(n) = ¥'(n) — AT ()x'(n) = [H(n) - AT ()X (n) + w'(n).  (6.11)

Therefore, the RPE can be directly calculated from an output of the equalizer, and can
be used to estimate the effective noise correlation matrix Re(n). A running average

(with a length of L.) of the correlation matrix of the RPE can be calculated as

Re(n)= > A'™e(m)e(m)”, (6.12)
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with a forgetting factor denoted as A.. Then, Q is updated by replacing Ry, with
Re(n), and the resulting Q is used to calculate the filter weights in (6.10). The equalizer
using this method is referred to as RPE-DFE [15]. Although the use of RPE does not
completely eliminate the sensitivity to the channel estimation errors, it significantly

improves the robustness of the equalizer with respect to channel estimation errors.

6.3 Adaptive Sparse Channel Prediction in Delay
and Doppler Domain

In fast-varying channels, an outdated channel estimation may cause errors in equal-
ization and thus degrade the system performance. In practice, adaptive prediction has
the advantage of not requiring a priori knowledge of the channel and noise statistics.
Hence, this section proposes an adaptive channel predictor based on the exponential
weighted recursive least square algorithm (EWRLS) [15,131], which operates on the

channel’s sparse DDSF.

6.3.1 Problem Statement

As previously assumed, the DDSF of the channel remains unchanged within a block
of received symbols (of length M). Prediction of the channel’s DDSF differs from
the existing prediction of the channel’s CIR (e.g., [15,107,108,110,111]) in the sense
that it is only conducted for each block rather than every data sample. Therefore, this
significantly reduces the complexity of the proposed predictor in comparison with that of
the existing CIR predictors. Correspondingly, b and j are used to represent the index of
data block and element in channel’s DDSF, respectively. The structure of the proposed
DDSF channel predictor is shown in Fig. 6.3. Here, b and j are used to represent the

index of the data block and the element in the channel’s DDSF, respectively. The input
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Figure 6.3: The proposed DDSF channel prediction using the EWRLS algorithm.

of the predictor is the current and past estimated channel coefficients in the delay and
Doppler domain, i.e., @(b, j) and G(b—d,j) = [a(b—d, j), -+ ,4(b—d— P +1,5)]|", for
j=0,1,...., N, — 1 and b = by, ..., Ny, where by > d is the index of the starting block
and NV is the number of data blocks. Here, P and d represent the prediction order and
the number of data blocks the channel is predicted ahead (also referred to as prediction
horizon [107]), respectively. As the value of d depends on the latency introduced by
the receiver processing, e.g., channel estimation, equalization, and detection, it is clear
that the prediction accuracy worsens for the prediction obtained with a large value of

d [107].

6.3.2 EWRLS Adaptive Predictor

Let us denote D(b,5) = [do(b,7),d1(b,5), - ,dp_1(b,7)]" as the prediction coeffi-
cients. We may further reduce the complexity of the predictor by only considering the

significant elements in G(b, j), however, this may cause severe prediction errors due to
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the position migration of the significant elements. As such, we consider all elements
in G(b, 7) and use the EWRLS algorithm to find the D(b, ) which minimizes the cost

function

J4b, ) = 3 A D[a(q, 5) — Zd (b, ))a(q —d —p, )],
e (6.13)
= > A a(q, j) = Db, )" alg — d, ),

where by > d is the index of the starting block, and X is the forgetting factor, which
is usually determined by A = 1 — 1/P [131]. Let us define the error signal e?(b,j) =
a(b, j) =g dp(b, j)a(b—d—p, j). Hereinafter, the superscirpts of J%(b, j) and e?(b, j)

are droped for simplicity, and the adaptive filter weights D(b, j) are updated through

where z* denotes the complex conjugate of . K(b, ) is referred to as the RLS gain

vector [131], and can be calculated from

KD = S P - L)a0.))"

(6.15)

where P (b, j) is the inverse correlation matrix of the input signal and can be recursively
updated by

> =

Finally, the prediction can be calculated from

a(b+d,j) = D(b,))"(b,5), b=1by,... Ny, j=0,..KL—1. (6.17)
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Algorithm 3 EWRLS Filter Weight Update Algorithm
Input: G(b — d,5), a(b,j), forgetting factor A\, prediction order P, and ¢, which is

generally a large positive constant?®;
1: Initialize D(0, j) = [1,0,...0]", P(0) =4 -1
forb=101,2 .. Ny—1,j =01, .. KL — 1

2: e(b, j) = (b, j) = D(b—1,5)"a(b — d. j);

. P(b—1,5)0(b,j .
3: K(b,j) = ,\+ﬁH(g,j)Pfl))—(l,jJ))ﬁ(b,j)7
4: D(b,7) =D(b—1,7) + K(b—d, j)e*(b, 5);
5: P(b,j) = LI —K(b,5)a" (b, )P - 1,5);
6: (b +d,5) = D(b, )b, )

Output: Prediction of the DDSF coefficient of channel @(b+ d, 7).

A description of the EWRLS filter weight updating algorithm is provided in Algorithm 3.

The EWRLS algorithm uses the forgetting factor A € (0,1) to obtain only a finite
memory of input data (also known as the prediction order, P) for tracking time varia-
tions of the channel. \ imposes a larger weight to more recent input, and therefore, if
the value of A\ is large, the algorithm has a relatively long memory length which leads
to a decreased prediction error. However, this results in a prohibitively high compu-
tational complexity. On the contrary, with a smaller value of A, the algorithm has a

lower complexity, but the prediction error is increased.

Z8Since P(b, j) is proportional to the covariance matrix of D(b, j), and the knowledge of D(b, 5) for
the initial block is very vague. A high value should be assigned to ¢ which leads to a high covariance
matrix of D(b, j). The recommended value for § is § > 100 - 03, where 0% is the variance of DDSF
vector 1(b, j) [131]. Given a large number of data blocks, the initial values assigned are not important,

since they are forgotten due to the exponential forgetting factor \.
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6.3.3 Computational Complexity of the Adaptive Predictor in

Delay-Doppler Domain

The computational complexity per iteration of the Algorithm 3 in terms of the
number of operations for each step is given in Table 6.1. The overall complexity per
iteration of the proposed predictor is O(P?). For the DDSF prediction, there are N,
blocks, and for each block, NNV, elements are involved; this yields an overall complexity
of O(N,N,P?). For the time domain CIR prediction, the number of iterations is M Nj,.
Thus, the resulting complexity is O(M N, K P?). As seen, the overall complexity of the

proposed DDSF predictor is O(%) times lower than that of the CIR predictor.

Table 6.1: Computational complexity per iteration for Algorithm 3

Step The number of operations
2 P
3 P?+2P
4 P
5 2P?
6 P
Overall complexity per iteration O(P?)

6.3.4 Decision Feedback Adaptive Channel Predictor

A drawback of the reported predictor is that the input channel estimation becomes
outdated quickly for a long frame (when the time duration of a frame is much larger than
the channel’s coherence time); this can decrease the prediction accuracy and degrade the
system performance significantly. Thus, a predictor based on the decision feedback can
improve performance over the one based solely on the outdated estimation [106,107,113].
In this section, a receiver structure is proposed, which combines a sparse DDSF channel
estimation with a decision feedback adaptive DDSF prediction scheme as illustrated

in Fig. 6.4. In Fig. 6.4, y(n), r(n), and #4(n) represent the received symbol, the
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Figure 6.4: Block diagram of the receiver using the decision feedback adaptive channel
predictor and sparse channel estimation.

equalized symbol, and the detected data at time n, respectively; y* = [y((b — 1)M +
1) y((b—1)M +2) ... y(bM)]" represents the received symbol vector for the bth block;
Re=[2((b-1)M—-K+2) ... 2((b—1)M +1) ... 2(bM)]* represents the corresponding
detected and re-encoded symbol vector; @(b, j) denotes the jth elements in the estimated
DDSF for the bth block.

The receiver procedures are illustrated in two modes, i.e., normal and decision feed-
back. In the normal mode, an up-to-date CSI based on the training block can be
directly obtained using the CS-based estimation algorithms, and be used to predict the
channel’s DDSF for future block. In the decision-feedback mode, the detected bits are
re-encoded and input to the channel estimator for an up-to-date CSI. The corrected
channel information is processed by the proposed prediction scheme, as shown in Fig.
6.3. In contrast to the channel predictors in [106, 107, 113], the proposed predictor
operates in the delay and Doppler domain, and only needs to be performed once per
block; therefore, it requires a remarkably low complexity. Moreover, it should be noted
that the accuracy of the predictor in decision feedback mode depends on the number of

correctly detected bits; this means that error propagation occurs due to the incorrect
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detection. Although the error propagation can be neglected when the signal-to-noise
ratio (SNR) is above a certain threshold [107],% a theoretical analysis of its impact on

the prediction accuracy is beyond the scope of this thesis.

6.4 Simulation Results

6.4.1 Simulation Setup

Numerical simulations are conducted to illustrate the performance of the proposed
sparse channel estimation and prediction scheme. First, the proposed sparse channel
estimation is evaluated in the training scenario, where the perfect knowledge of the
transmitted sequence is known. Then, the proposed sparse channel prediction and
overall system performance are assessed with a periodic training block shown in Fig.
6.2. It is assumed that the data symbols are modulated using BPSK and are coded

using a 1/2 rate binary LDPC code.

6.4.1.1 Experiment Description

The time-varying channels are obtained based on a recently published acoustic chan-
nel simulator [114](a detailed description of the channel simulator can be found in
Section 3.2.4). The first experiment, called the Surface Processes and Acoustic Com-
munications Experiment (SPACE) was conducted near the coast of Martha’s Vineyard
in Massachusetts, in the fall of 2008. The carrier frequency was 13 kHz and the trans-
mission rate was 6.5 kilobits per second (kbps). The signal was transmitted for three
minutes every two hours. The active three-minute interval of each two-hour period is
referred to as one epoch. The experiment lasted for 15 days. The water depth was 10

m, and the transmitter and receiver were fixed at 4 m and 2 m above the sea-floor,

29The SNR is defined as 10log;y(c2/02) with o2 the variance of the transmitted signal.



103

respectively. Receivers were located southeast of the transmitter at distances of 1000
m.

The second experiment, Mobile Acoustic Communications Experiment (MACE), was
conducted in the Atlantic Ocean about 100 miles south of Martha’s Vineyard in the
summer of 2010. The receiver buoy was suspended at the depth of 40 m and the
transmitter was towed at the depth of 50 — 60 m. During the experiment, the receiver
arrays were stationary, while the source array was towed slowly away from the receivers
and then towed back, at a speed around 1 m/s. The water depth was approximately
100 m and the distance is set to 500 m. The carrier frequency was 13 kHz and the
signals were transmitted continuously at 5 kbps.

The third experiment, known as the Kauai Acomms MURI (KAM), was conducted in
July 2011 off the coast of Kauai Island, Hawaii. This system operating frequency was
between 8.5 kHz and 17.5 kHz. The transmitter and receiver were deployed approxi-
mately mid-way in 100 m water, and were 3 km apart. The signals were modulated
onto a carrier of 13 kHz and transmitted at the rate of 6.5 kbps during 9 minute epochs
every two hours.

Finally, the fourth experiment, called the Pacific Storm (PS) experiment, was con-
ducted on the submerged portion of San Andreas Fault off the coast of Northern Cal-
ifornia in September 2010. During this experiment, 3-second-long data packets were
repeatedly transmitted every 5 seconds from an AUV to a surface ship. The signals
occupied 4 kHz of bandwidth around a center frequency of 10 kHz. The AUV was
moving at about 3 m above the bottom, at a depth of approximately 130 m. The
transmission distance varied from 200 m to 1 km. In this experiment, the signals were
automatically processed by the acoustic modems mounted on the two ends of the link.
The received signal strength was recorded once a second. All experiments assume a

sinusoidally moving surface and transmitter/receiver drifting. It should be noted that
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the relative speed of the AUV in the PS’10 experiment is estimated to be 3 m/s based
on the observation from large-scale analysis of the channel, i.e., gain versus distance
in [114]. The parameter settings in the numerical simulation, displayed in Table 6.2,
are chosen according to the settings used in the SPACE’08, MACE’10, KAM’11 and

PS’10 experiments in order to approximate the practical channel measurements.

6.4.1.2 Simulated Channels

First, UWA channel ensembles are obtained using the previsouly proposed SACM
simulator [114] with parameter settings in Table 6.2. The nominal geometry maps of
the various experiments are plotted in Fig. 6.5. For MACE’10 and PS’10, where there
is a relative motion between a specific pair of transmitter and receiver, we assume
that the distance between them is initially set to 500 and 200 meters, respectively.
Fig. 6.6 shows the ensembles of the simulated channel response using the SPACE’08,
MACE’10, KAM’11, and PS’10 experiment settings over a duration of 1 min. Local
maxima over the delay axis are visible in the figures, indicating channel taps over
which the impulse responses are relatively strong. In all cases, slow varying mean of
each path and path spreading, which is a consequence of both micropath dispersion and
bandwidth limitation (if the geometry of two paths has similar lengths and the delay
resolution of the system is limited due to finite bandwidth, two paths may merge as
their arriving times will be too close to be distinguished), are evident. Fig. 6.7 shows
the averaged gains versus time for various experiments. A faster variation is noticed in
MACE’10 and PS’10 due to the relative motion between the transmitter and receiver.
Particularly, in the PS’10 experiment, the transmission range was constantly changing

over a longer observation period, resulting in more pronounced gain variations.
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Table 6.2: Simulation parameters in four experiments

Parameters Value

System Parameters

Training symbol length M 200, 400, 600, or 800

Frame length N 3200 or 4800

|

|
Total number of blocks NV, ‘ 12000
Experiment | MACE'10 | SPACE'08 | KAM'11 | PS’10
Transmission symbol rate [symbol per second] ‘ 5000 ‘ 6500 ‘ 6500 ‘ 4000
Carrier frequency [kHz] | 13 | 13 | 13 | 10
Bandwidth [kHz] | 5 | 9 | 9 | 4
Doppler frequency resolution [Hz] ‘ 6.7
Maximum Doppler shift [Hz] | 30
The number of sampled delay points ‘ 168
The number of sampled Doppler points ‘ 9

Deterministic Channel Geometry

Experiment | MACE'10 | SPACE08 | KAM'11 [ PS'10
The depth of water [m] | 100 | 10 | 103 | 130
Transmitter height [m] | 45 | 4 | 58 | 3
Receiver height [m] | 55 | 2 | 59 | 127
Distance between Tx and Rx [km] | 054 | 1 | 3 | 0.2-1
Relative velocity between Tx and Rx [m/s] | 1 | 0 | 0 | 3
Spreading factor ‘ 1.5

|

Speed of sound in bottom [km/s] 1.3(>1.5 for hard bottom, <1.5 for soft bottom)

Large-Scale Parameters

Experiment ‘ MACE’10 ‘ SPACE’08 ‘ KAM’11 ‘ PS’10
Coherence time T, of the large-scale variation [s] ‘ 15 ‘ 60 ‘ 60 ‘ 5
Standard deviation of surface height variation ‘ 1.5 ‘ 1 ‘ 1.5 ‘ 1.5
Standard deviation of transmitter height variation ‘ 0.5 ‘ 1 ‘ 1 ‘ 0.1
Standard deviation of receiver height variation ‘ 1 ‘ 0.5 ‘ 1 ‘ 1.5
Standard deviation of TX and RX distance variation ‘ 1 ‘ 0.5 ‘ 1.5 ‘ 0.5
Amplitude of the displacement caused by surface wave A,, [m] ‘ 0.05
Frequency of the displacement caused by surface wave f, [Hz| ‘ 0.01

Small-Scale Parameters
Variance of S-S surface variation o2 ‘ 1.125
Variance of S-S bottom variation o7 ‘ 0.5625
Experiment | MACE'10 | SPACE'08 | KAM'11 | PS'10
3-dB width of the p.s.d. of intra-path delays (assumed constant for all paths) B, | 2.5 x 1073 ‘ 5x 1074 ‘ 5x 1074 ‘ 6x 1073
Number of intra-path (assumed constant for all multipath) ‘ 20
Mean of intra-path amplitudes (assumed constant for all multipath) ‘ 0.025
Variance of intra-path amplitudes (assumed constant for all multipath) ‘ 1076
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PS’10. The blue line indicates water surface.
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Figure 6.7: Instantaneous gain (averaged over small-scale realizations) versus time: (a)
SPACE’08; (b) MACE'10; (¢) KAM’11; and (d) PS’10.

6.4.2 Performance of the DDSF Estimation

The performance of LS and the five MP-based algorithms, i.e., OMP [52], CoSaMP
[63], SaMP [64], ORLSMP [43] and the proposed AS-SaMP [30], are compared in terms

of MSE?*® and CPU running time. The initial step size in SaMP and AS-SaMP is set to

OMSE = B[, Ygey lu(l. k) — a(l, k).
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5, and the sparsity level required in CoSaMP is set to 20. Simulations are performed in
MATLAB R2015b using a 2.67 GHz Intel Core i7 CPU with 12 GB of memory storage,
and 10? MonteCarlo trials are used to average the results which correspond to 4.8 x 10°
data symbols.

Fig. 6.8 shows the performance of the considered estimation algorithms for various
M, and the results are obtained for the MACE’10 channel. In Fig. 6.8 (a), it is clear
that the MSE of the CS-based algorithms outperforms the traditional LS algorithm,
and AS-SaMP achieves the best MSE performance among all considered algorithms. It
should be noted that the MSE of CoSaMP is the worst among the considered CS-based
algorithms; this is due to the overestimation which is caused by an inaccurate input
of the sparsity level as a priori information to the CoSaMP algorithm. Moreover, a
better MSE can be achieved by increasing the length of the training symbols for all
algorithms. As shown in Fig. 6.8 (b), increasing M results in increased running time
for all algorithms. In general, the AS-SaMP algorithm requires longer running time to
obtain the estimation at higher SNRs (SNR > 14 dB). This is because an increased
number of iterations is involved as SNR increases. However, when compared with SaMP
and ORLSMP, it takes equal or less amount of time, with a better quality of estimation
for SNR < 10 dB. Furthermore, a higher running time is required for ORLSMP when
SNR < 14 dB, given that a similar number of iterations is involved in all considered
algorithms. This is because the amount of operation counts per iteration in ORLSMP is
higher than that in the other algorithms. In summary, the AS-SaMP algorithm achieves
better MSE without using significantly large amount of CPU running time in general.

Fig. 6.9 shows the MSE and running time of the considered algorithms with channels
from the other three experiments for M = 400 and M = 800. From Fig. 6.9 (a) and
(c), the MSE of all algorithms for the KAM’11 and SPACE’08 channel are lower than

those for channels of the PS'10 and MACE’10 experiment. This is because there is
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Figure 6.9: Performance of the considered algorithms for various channels (a) MSE
with M = 800; (b) CPU running time with M = 800; (¢) MSE with M = 400; (d)
CPU running time with M = 400. Solid lines are used for SPACE’08, Dashed lines are

for KAM’11, and Dot lines are for PS’10.
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no intentional transmitter/receiver motion causing channels to vary slower during a
training block period. Meanwhile, the MSE of all algorithms for the PS’10 channel is
the worst among all considered channels, since estimation of the fast-varying channel
based on a long training block would introduce significant error due to the violation
of the underlying assumption, i.e., u does not change significantly over the M training
symbols [43]. In addition, the MP-based estimation methods outperform the traditional
LS estimation algorithm, and AS-SaMP outperforms the other considered methods, for
a given M. The MSE of CoSaMP is the highest among all the MP-based algorithms
due to overestimation. Meanwhile, in Fig. 6.9 (b) and (d), the running time of all
algorithms for the KAM’11 channel is higher than that for the channels of the other
experiments. This is due to a larger number of multipath which requires more iterations
in the considered algorithms. Moreover, the running times of the AS-SaMP and SaMP
algorithms are relatively higher than those of the other algorithms for higher SNRs
(SNR >12 dB). In contrast, the ORLSMP algorithm takes the longest time for lower
SNRs (SNR <12 dB) due to the highest amount of operation counts per iteration, given
that a similar number of iterations are involved in all considered algorithms.
Furthermore, it is worth noting that M = 400 is considered to be a better choice since
considerable savings in running time can be achieved without a significant increase in
MSE, especially when the SNR is high. For example, when SNR = 16 dB, the MSE of
AS-SaMP for SPACE’08, KAM'11 and PS’10 channels with M = 400 are 4.2 x 1077,
8 x 107% and 1.9 x 10~*, respectively, while the CPU running times are 1.2’ s, 1.8 s and
0.23 s, respectively. However, with the same SNR and channels, the MSEs of AS-SaMP
using M = 800 are 8 x 1075, 4.2 x 107% and 1.4 x 10~%, respectively, while the running
times are 6.5 s, 8.4 s, and 4.7 s, respectively. Although the MSEs for SPACE’08,
KAM’11, and PS’10 channels increase by 4.25, 0.9 and 0.36 times with M = 400, the

CPU running times decrease by 4.41, 3.67, and 19.43 times, respectively.
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6.4.3 MSE Performance of the DDSF Prediction without De-

cision Feedback

This section shows the MSE performance of the proposed DDSF predictor without
using the detected symbols for the most fast-varying channel, i.e., PS’10. The proposed
method uses the EWRLS algorithm for predicting the DDSF of the time-varying chan-
nel. It is known that RLS algorithm has a superior tracking ability but its application
is limited when complexity is a primary concern. In contrast, the computational com-
plexity of the predictor is considerably reduced as the prediction of channel’s DDSF is
only needed once every M symbols. Unless otherwise mentioned, the prediction horizon
d = 1, and the forgetting factor®® X\ = 0.99, which corresponds to a prediction order

PP =100. The following two schemes are considered,

e Scheme 1: the channel estimation is carried out based on a block of training
symbols (with length M), and the estimated channel is used to equalize the rest
of the symbols in a data frame (with length N). In other words, no channel

prediction method is employed;

e Scheme 2: the channel estimation is carried out based on a block of training sym-
bol and the proposed DDSF prediction is used for equalizing the rest of symbols

in a data frame.

Fig. 6.10 shows the MSE performance comparison for the above mentioned two sce-
narios with various CS-based estimation algorithms. A block of training symbols with
a length of 400 is employed for channel estimation; this accounts for 8.3% of a data
frame whose length N is 4800. It can be clearly seen that the MSE performance is

significantly improved for the considered algorithms when the channel prediction is em-

31Recall that the prediction order can be determined from the forgetting factor through P =
1/(1 — A) [131], during which channel is assumed to be constant.
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Figure 6.10: MSE performance for two schemes with various channel estimation algo-
rithms, M = 400 and N = 4800.

ployed (Scheme 2). Moreover, among all the considered channel estimation algorithms,
the AS-SaMP algorithm gives the best MSE performance in both scenarios.

Next, the impact of M and N on the prediction MSE performance is investigated.
Fig. 6.11 shows the MSE results with different M values (200 and 400) for N = 4800.
It is observed that a better MSE can be achieved by increasing M because of a better
quality of the channel estimate. However, the overhead is doubled by increasing M
from 200 to 400 for a fixed N. Similarly, given a particular M, e.g.., M = 400, the
MSE performance of the proposed channel predictor is compared for different values of
N, ie., N = 3200 and 4800, as shown in Fig. 6.12. A significant MSE deterioration is

observed for all considered estimation algorithms as the less accurate channel prediction
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is obtained when N increases, and the channel is more likely to vary within a longer
time period. In the following simulation, M and N were chosen as 400 and 4800,
respectively, unless indicated otherwise.

Furthermore, the impact of the parameter A on the performance of the channel pre-
diction is investigated. On the one hand, a large A leads to a relatively long memory
length and thus decreases the prediction error. However, a large \ also causes high com-
putational complexity. On the other hand, a small A corresponds to a short memory
length, at a cost of increased prediction errors. Fig. 6.13 shows a MSE comparison of
channel prediction with A = 0.99 and 0.95 which correspond to a prediction order P =
100 and 20, respectively. Clearly, the MSE of the channel prediction is significantly

better with A = 0.99, when compared with that of the predictor with A\ = 0.95. How-



118

100E T T T T T T T T

[—1LS : —3

103 || —*— CoSaMP o »
- —— OMP g ‘
| | —+— ORLSMP
I SaMP

' | —e— AS-SaMP

10-4 1 1 1 1
0 2 4 6 8 10 12 14 16 18

SNR(dB)
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ever, as expected, the complexity per iteration in the EWRLS algorithm is increased

with a larger A\, given that the same number of iterations is involved.

6.4.4 MSE Performance of the DDSF Prediction with Decision

Feedback

This section evaluates MSE of the proposed predictor using the previously detected
symbols. The performance is shown for the relatively fast-varying PS’10 channels unless

mentioned otherwise. For comparison, the following two cases are considered.

e (Case 1: this case assumes that all feedback signals were correctly detected to

exclude effects resulting from error propagation;
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e (lase 2: this case indicates that feedback signals may contain incorrectly detected

symbols, i.e., error propagation can occur which degrades the prediction MSE.

Fig. 6.14 shows the MSE of the channel predictors without and with using decision
feedback. One can observe that the prediction accuracy is remarkably improved for both
Case 1 and Case 2, when the past detected data were used at the expense of increased
computational complexity due to additional channel estimation and re-coding for each
block. For instance, considering the AS-SaMP algorithm and Case 1, the prediction
MSE with decision feedback decreases by almost 50% at SNR = 6 dB, when compared to
that without decision feedback. Moreover, the MSE of the decision feedback predictor

for the aforementioned two cases is compared. As expected, the MSE for Case 2 is
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higher than that for Case 1 due to the error propagation of the feedback symbols. It
can be seen the impact of error propagation reduces as the SNR increases, and the
prediction MSE for Case 2 is almost the same as that for Case I when SNR > 16 dB.
It is also worth noting that the MSE curves of the decision feedback predictor for Case
1 closely approach to those of the channel estimation based on the training sequence??
as the SNR increases. In other words, the performance of the proposed prediction yields

accurate up-to-date CSI for higher SNRs even without training symbols.

Fig. 6.15 illustrates the prediction MSE for different prediction horizons, i.e., d, for

32The MSE performance of the training-based channel estimation for PS’10 channels, with M = 400
and N = 4800, is plotted in Fig. 6.9 (c).
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Figure 6.16: Uncoded BER performance for various equalization techniques.

the case Case 2. As can be seen, the quality of the channel prediction decreases as
d increases. It should be noted that the value of d for an accurate channel prediction
depends on how fast the channel can vary. A reliable channel prediction can be achieved
even for a large d when then channel varies slowly in time, while the performance of
the predictor can be substantially deteriorated even for a significant small d when the

channel varies rapidly in time.

6.4.5 System Performance of the Proposed Techniques

Finally, the BER performance of the overall system is evaluated for the various esti-
mation, equalization and prediction methods. An LDPC codes with rate 1/2 was used,

and each encoded block size is 400. Fig. 6.16 shows the uncoded BER versus SNR
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Figure 6.17: BER performance of various receivers.

obtained for various equalization techniques for the PS’10 channels. An effective noise
correlation matrix was estimated using Eq. (6.12) and a good result was obtained with
Ae = 0.99. It is clear that the receiver using RPE-DFE gives the best performance,
e.g., more than 8 dB SNR improvement can be observed in comparison with traditional
DFE at a BER = 0.06. This is because the RPE-DFE takes into account the statis-
tics of channel estimation errors and noise. However, in marked contrast to the other
equalizers, the receiver using LE fails for all the considered estimation algorithms.
Fig. 6.17 shows the BER performance for the receivers which adopt Scheme 1 and
Scheme 2, respectively.®® For comparison, the performance of a receiver with perfect

CSI is also shown. Several observations are made from the figure. First, the BERs

338cheme 1 and Scheme 2 were defined in Section 6.4.3
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of the receivers using both schemes are significantly decreased for the coded system.
Additionally, the BER performance of the receiver which employs channel prediction
Scheme 2 is improved from the one without using channel prediction for all the con-
sidered channel estimation algorithms, and such improvements are observed for a wide
range of SNRs (SNR > 6 dB). Second, there is at least a 5-dB SNR penalty between
the curves for Scheme 2 and for the receiver with the perfect CSI at a given BER,
e.g.,1073; this indicates that the performance can be further improved with a more
accurate channel prediction.

Next the BER performance for systems with channels in the four experiments are
shown in Fig. 6.18, where the SPACE’08 and KAM’11 channels are considered as slow-
varying channels, while the MACE’10 and PS’10 channels are relatively fast-varying.
As seen, the BER results confirm that a better system performance is achieved for
the slow-varying channel because of a better quality of the channel estimation and
prediction, and the AS-SaMP algorithm outperforms the other considered estimation
algorithms for both slow-varying and fast-varying channels. Such improvements are
more pronounced at higher SNRs.

Finally, the BER performance of the overall system with the proposed decision feed-
back channel predictor is evaluated. In Fig. 6.19, at least a 2-dB SNR gain can be
observed in the BER curves (for all the considered algorithms) with the decision feed-
back predictor, when compared with the predictors without using decision feedback.
The enhancement is noticeable even at lower SNRs (SNR < 6 dB), and is more promi-
nent at larger SNRs. In addition, the performance with the proposed predictor for
Case 2 is degraded at lower SNRs due to the decision errors. However, the impact of
these errors on the performance strongly depends on the specific receiving techniques
e.g., channel coding, channel estimation and equalization that are used, and there ex-

ists an SNR threshold above which the effect of error propagation can be neglected.
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A theoretical analysis on such an SNR threshold is beyond the scope of this thesis.
Furthermore, the BER performance for the proposed predictor with different values of
d is compared in Fig. 6.20. The results confirm that a better system performance can
be achieved by decreasing the value of d, since a better prediction quality can be ob-
tained for a small d. To summarize, the receiver using the proposed channel estimation
and prediction scheme achieves a satisfying system performance with a reasonably low

computational complexity.
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6.5 Conclusion

This chapter presented a CS-based sparse channel estimation for time-varying UWA
communication systems. The DDSF representation is adopted to accommodate the
time variability and inherent sparsity of the UWA channels, and the dominant paths on
the delay-Doppler plane were identified using various CS-based estimation algorithms.
Additionally, channel estimation based equalization techniques were also studied. The
robustness of the traditional DFE with respect to channel estimation error was signifi-
cantly improved by taking into account the effective noise correlation matrix. Moreover,
a delay-Doppler domain adaptive channel prediction method was proposed to provide

future CSI. The main advantages of the proposed method are its low computational
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complexity and the obviation of a priori knowledge of the channel and noise statistics.
To further increase the prediction accuracy, the proposed channel predictor can operate
in decision feedback mode, and a receive structure which combines the sparse channel
estimation with the proposed predictor is presented. Numerical results showed that the
proposed prediction schemes, with the AS-SaMP estimation algorithm, demonstrate a
good system performance over the simulated channels obtained using the parameters

obtained from the results of experiments reported in the literature.



Chapter 7

Summary and Future Work

7.1 Summary

In this thesis, sparse channel estimation and prediction algorithms were developed
for UWA communication systems. The application of an emerging theory, namely CS,
to time-invariant and time-varying sparse channel estimation was studied. Specifically,

the contributions of this thesis are summarized as follows:

e A CS-based adaptive step size SaMP algorithm (AS-SaMP) was proposed for
sparse channel estimation in UWA-OFDM systems. The AS-SaMP algorithm
features an adaptive step size adjustment strategy and possesses the advantage
of not requiring a priori knowledge of the sparsity of the channel. In addition, a
comparative analysis of the existing MP-type reconstruction algorithms was pre-
sented, along with a theoretical performance analysis of the proposed algorithm.
Both the theoretical analysis and simulation results confirm that the AS-SaMP
algorithm can greatly improve the estimation accuracy without introducing sig-

nificant additional complexity.

e In order to ensure a satisfactory estimation, a near-optimal pilot placement scheme

128
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was proposed, which is based on the concatenated cyclic difference set with an it-
erative tail search (C-CDS with TS). Because the searching space of the proposed
method is significantly reduced, its complexity is much lower than the iterative
procedures in the literature. Simulation results showed that the AS-SaMP algo-
rithm with the new pilot placement scheme provides a better MSE performance
for the channel estimate, as well as the system BER, without significantly in-
creasing the computational complexity, and thus offers a better trade-off between

complexity and performance.

The DDSF of an UWA time-varying channel, which often has a sparse struc-
ture, was adopted and the proposed AS-SaMP algorithm was used to estimate
the dominant components in channel’s DDSF. It is crucial to obtain accurate
future channel estimates based on the fact that an outdated channel estimation
can significantly degrade the system performance, and hence, an adaptive channel
prediction scheme, which has the advantage of not requiring a priori knowledge of
the channel and noise statistics, was developed. The proposed predictor employs
the EWRLS adaptive algorithm and operates on the estimated DDSF, and there-

fore has a reduced complexity when compared with the existing CIR predictors.

An adaptive DDSF predictor which uses the previously detected symbols was
developed in order to increase the prediction accuracy. It was shown, through
simulation results, that a satisfying performance of the proposed predictor and
overall system — in terms of MSE, BER and computational complexity — was

achieved using the simulated channels obtained based on experimental settings.

The proposed techngiues are not limited to time-invariant UWA communication
systems, but they can also be applied to time-varying channel estimation in other

communication systems — as long as there exist a sparse representation of the
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channel, e.g., channels in HDTV broadcasting standard and broadband wireless

systems in hilly environment.

7.2 Future Work

The current research in the thesis opens up several interesting fronts for future study:

e Modelling dynamics in UWA channel.

The statistical acoustic channel model in [114] provides a mathematically rigor-
ous analytical model that takes into account certain physical aspects of acoustic
propagation. Meanwhile, an efficient simulation model in which the dynamic
behaviour of the small-scale coefficients relies on an autoregressive Gaussian dis-
placement of scattering points. A natural continuation would be to investigate the
dynamic properties of the small-scale coefficients from the physics point-of-view

and develop explicit dynamic equation in the UWA channel model.

e Extension of proposed algorithms to channels corresponding to different environ-

ments.

This thesis was mainly centred on shallow-water acoustic communications with
short transmission range. This means that the considered channels have only
nominal and boundary reflected arrivals. However, for channels in various water
conditions, e.g., deep sound channel, it will be interesting to investigate how the
algorithms developed in this thesis would perform. Additionally, it would be
of interest to study the changes needed to be made to increase the algorithm

applicability to hybrid environmental conditions.

e Theoretical analysis on impact of the error propagation in the proposed decision

feedback based DDSF predictor.
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As mentioned in Chapter 6, errors in the previously detected symbols result in
system performance degradation. As the simulation results in Chapter 6 show,
there exists an SNR threshold above which error propagation effects can be ne-
glected. However, such an SNR threshold relies heavily on the specific modulation
and coding scheme, which leaves an open topic for developing an analysis of the
error probability as a function of the modulation and coding scheme, under the
presence of propagation errors. Such an analysis is important to determine the

performance limitations of a receiver which incorporates the proposed predictor.

Extension towards sparse multiple-input multiple-output (MIMO) channels.

The work in this thesis focused on exploiting sparsity of single-input single-output
(SISO) channels. Since MIMO-OFDM is an appealing solution for high data rate
transmissions over UWA channels, it is important to extend the proposed schemes

for channel estimation and prediction in MIMO-OFDM systems.
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Appendix A

Theoretical Performance of
AS-SaMP: Proof of Lemma 1, 2 and

Corollary 1

A.1 Proof of Lemma 1 and 2

Let us recall the Lemma 1 and 2 from Section 4.3.

Lemma 1. Given an arbitrary K-sparse signal h and the corresponding measurement
Y, = Ah. Let the total number of stages decided by AS-SaMP be J and s;,7 €
{1,2,..., J} be the step size of the ith stage. If A satisfies the RIP with parameter
83k, < 0.06 [41], where K; = 3>/, s; is the estimated sparsity level, the last stage of
AS-SaMP is equivalent to SaMP algorithm with estimated sparsity level K, except

possibly different contents in the final support set and the observation residual vector.

Proof. During the last stage of AS-SaMP, the final support set has size K;. Given
the same size of the final support set, both algorithms use the same preliminary and

final correlation test, which returns the K'; indices corresponding to the largest absolute
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values of |ATCJ- Y,|, j denotes the iteration index. The only differences are in the content

of the final support set and the observation residual vector. [ ]

Lemma 2. AS-SaMP guarantees the convergence of the recovery process. The upper-

bounded number of iterations that AS-SaMP involves is

|hmin|>< -1 + —1 N —_1
[ h|| " log(Ck,) log(Ck,) —  log(Ck,)

— log( )+ J, (A.1)

2035, (1+63K, )

where Ay, is the non-zero element with the minimum magnitude and C, = TRt

1 =1,2,...,J, 03k, is the RIP parameter in the ith stage, and K; is the size of final

support set in the ¢th stage.

Proof. Lemma 2.1 is introduced which serves as a foundation for the proof of Lemma

2.

Lemma 2.1. The energy difference between the signal captured by the final support
set from the current iteration and the final support set from the previous iteration,
ie., || by |2 — || hps—: |2, decreases as the number of iterations increases before the

estimated sparsity level reaches the true sparsity level.

Proof of Lemma 2.1 is postponed to Appendix A.3. Similar to SaMP, AS-SaMP
takes a finite number of iterations to approach the sparse estimation. If the algorithm
falls into an infinite loop of a certain stage, the final support set will repeat and this is in
contradiction to the fact that the energy difference decreases monotonically. Intuitively,
AS-SaMP reaches the final estimation with the same estimated sparsity level faster
than SaMP because the most significant entries are reconstructed by selecting a larger
number of coordinates into the support set during the initial stages. Let the number of
iterations required in the 7th stage using the AS-SaMP algorithm be ni, i = 1,2, ..., J.

According to Theorem 6 in [125], for each iteration in a particular stage both SaMP and
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AS-SaMP contain two correlation maximization tests and the property below holds.

hmin
—log( ]| )

- log(OK1>

hmin
—log( ]| )

- = log(C’K2)

_ ‘hmin‘
it log ()

n —
J= log(C’KJ)

it

+ 1,

it

+1, ..., (A.2)

+ 1

Let the total number of iterations required be n'* then

. . . 4
ntotol = it 4 nlf 4 0¥,

<-lo (|hmi“|)( B S Y A
=R og(Cry) T og(Cr)
|
A.2 Proof of Corollary 1
Corollary 1. Provided that A satisfies the RIP with parameter 03k, o g.0p < 0.06

and d3x < 0.06, where Ky 45 sqump and K, _gq.p are the estimated sparsity

s—SaMP

level for AS-SaMP and SaMP, respectively, the upper-bounded number of iterations for
AS-SaMP is smaller than that for SaMP.

Proof. Since both the SaMP and AS-SaMP algorithms use the preliminary and final
tests, the upper-bounded number of iterations in Lemma 2 can also be applied to the
SaMP algorithm. Consider the same target signal for both algorithms and according

to Lemma 2 we have

|h'min| _]- —]_
4+ )+ ]
o Goeeny T Tog(eny))

ntotal S o 10g<

As 0 < 53[{1 < (53[(2... < 53[(J < 006, then 0 < log(_C’lKl) < log(_ClKQ) < ... < m. Thus
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we have
—1 n —1 I -1 < —J
log(CIﬁ) log(CKz) log(CKJ) N log(C’K‘])7

and therefore

— 7 log ()

ntotal <
o —log(C’KJ)

+J.

With the same target signal and the total number of stages, the upper bound only de-

pends on C,. According to Remark 1 in Section 4.3.1, 0 < 35 < 03K, gump <

s—AS—SaMP

—1 1
0.06, and therefore, Cx, o c.np < Ck,_g.0p- Clearly, 0 < T (cPa— < TAcPa—T
and [Prmin| [Prmin|
—Jlog( ||r1nll|]|(l ) < —Jlog( ||r1nll|r|l ) ny
- log(CKs—AS—Sa]wP) - log(CKs—SaMP)
[ |
For example, given 03k, , 4 g, p = 0.01 which leads to log(Ck, s gupp) = —5-59

and the total number of stages is 5. Suppose log(J'ﬁmTﬁ‘l) = —7, the upper bound of the

number of iterations that the AS-SaMP algorithm involves is 11. On the other hand,

with the same h and J, suppose 3k = 0.05, the upper bound of the number of

s—SaM P

iterations for the SaMP algorithm is 16.

A.3 Proof of Lemma 2.1

The proof is derived from Theorem 2 in [125] because both the preliminary and final

test are correlation maximization tests.

Proof. Provided that the sensing matrix A satisfies the RIP with parameter d3x, < 0.06.

| e [|* < CR, || e |7,
F T (A.4)
< Ck, | hger [P= [ bt |7,
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where ﬁfg is the reconstructed signal not captured by F7 after the jth iteration. (A.4)
is based on 0 < Ok, < Ck, < ... < Uk, < 1, and therefore ¢ = C’%J < 1. Thus, the
following derivation holds,

I I =¢ [ b [*< 0 <[ hge |7,

(A.5)
0<[[hg [ = [ bg [P<C [ B |P,

where h = heo. As || he [?= h||> — || he: ||? and || hge [>=] h || — || he= |2, (A.5)

can be written as:

0< (IR~ he ) = (IR [ = [ hee ) < C [ 72

(A.6)
0 <[l hg [~ || he: [P< C[[ R
Similarly, we have
0 <[ hps [* = || Bage [I* < ¢ | B |P%,
0 <[l hps |* = || Bps [ < ¢ [ B[P, (A7)
0 <[l b || — [ Bpes [P <017
As1>(>¢%> (> (* -, the energy difference between two consecutive iterations

converges to a small positive value which is related to the RIP parameter. [ ]



Appendix B

Order-Recursive LS-MP Algorithm

The Order-Recursive LS-MP algorithm [43] is described in Algorithm 4, and its op-

eration counts per iteration is summarized in Table B.1.

Table B.1: Computational complexity per iteration for ORLSMP

Step The number of operations

N
MN?
Ny N
Np
NMN?
NN,
Overall complexity per iteration O(NMN; + NN, + MN})

—_
Soowo orw
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Algorithm 4 Order-Recursive LS-MP Algorithm

Input: M x 1 received signal y, M x N measurement matrix ® with each column

vector ¢(j) and j =0,1,..., N — 1, Tolerance T

Output: N x 1 Estimation channel’s DDSF u with N, significant elements;

1:

2:
3:
4:

9:
10:
11:

Initialize residual r° =y, Iteration index ¢ = 2,

b(5) = (1) "x°, 6°(F) = llp (DI,

1 _ 6]
S = arg maX]':() ,,,,, N—1 305

Indices set I' = s', Candidate support set C* = [p(s')],
Pl=lp(sh)]I7%, ul = PO(j),

bl(5) = b1 () — (i) ep(sh)ut,

Ql =1— ClplclH

5'() = 9(7) QU (j) for j =0,... N —1,j ¢ I

ul = ol

while (||r']]; > T) do

Sy = arg man:() N—l,j%If—l

.....

[bE=1) () 2
501 (j)

I {151, C = (O (s

P () (s
-1 =
1
Pt 0
Pt — 4 (8 (s I (T
0" 0
up = (61 (s1)) b (1)
-l
u= + Ity
0

0°(j) — p(j)"Cru for j=0,1,.,N ~1,j ¢ I
. . NH tpt—1)2
5(j) = 67 (j) — LeDIGEE
end while




