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ABSTRACT 

 
The development of the oil and gas industry is accompanied by high risks that increase 

the potential for major accidents. Improving safety through implementing safety measures 

maintains the risk within an acceptable level and helps to prevent the occurrence of 

accidents. Identifying and treating uncertainty is the main challenge in performing risk 

analysis. This uncertainty reflects the lack of information about the accident scenario and 

its potential causes, as well as the absence of a modeling technique used to model 

accident scenarios. In most situations, there are either few or no data available to perform 

risk analysis. Gathering the required data from other relevant sources is one of the 

solutions to overcome this challenge. 

  

In the presented work, the first part of the developed methodology considers Hierarchical 

Bayesian Analysis (HBA) as a robust technique for an event’s frequency estimation using 

data collected from several sources. Results demonstrate the power of HBA in treating 

the uncertainty within the gathered data and providing the appropriate estimation of an 

event’s frequency. The estimated event’s frequency is then integrated into Bowtie (BT) 

analysis, one of the modeling techniques, in order to predict the occurrence of a major 

accident. Due to their limitations, the standard modeling techniques are unable to capture 

the variation of risks as changes take place in the system. Therefore, their results involve 

a degree of uncertainty, considered as model uncertainty. 

 



 iv 

In the second part of the presented study, the developed methodology has been improved 

by integrating HBA and Bayesian Network (BN) into one framework to cope with data and 

model uncertainties simultaneously. HBA handles the uncertainty within the multi-source 

data, while BN is used to model the accident scenario in order to treat model uncertainty. 

Using HBA along with BN provides more accurate estimations and better handling of 

uncertainties.  
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1. Introduction 

 
 
 

1.1 Overview  

 
In spite of the magnificent contribution of the oil and gas industry to our world evolution, 

it is accompanied by high risks that able to cause an enormous destruction of humans, 

the environment, and assets. In the history of the oil and gas industry, there have been 

many fatal accidents, major assets’ loss and enormous environmental pollution with a 

considerable death toll. On 6 July 1988, the Piper Alpha disaster in the North Sea, UK, 

caused 167 deaths, destroying the entire facility and causing an estimated loss of $1.4bn 

USD [1]. The Alexander L. Kielland platform on the Norwegian Continental Shelf capsized 

in March 1980 and killed 123 people [2]. The Ocean Ranger rig disaster occurred in the 

North Atlantic Sea off the coast of Newfoundland, Canada, on 15 February 1982. The rig 

capsized and sank, killing 84 crew members [3]. Recently, the British Petroleum (BP) 

Deepwater Horizon catastrophe on 20 April 2010 killed 11 and injured 17 people in 

addition to being the largest oil spill in history [4]. Safety and risk analysis plays a major 

role in maintaining the risks within acceptable levels and preventing the occurrence of 

major accidents. Expanding the extent of risk analysis by considering dynamic models 

and real-time safety analysis is very important to predict and continuously update the 

likelihood of major accidents in order to prevent them [5]. Uncertainty has an important 

dimension in risk analysis. It may arise due to incomplete information, the inconsistency 

between information sources or because of a model’s structure. The different 
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uncertainties can engender a considerable bias and may lead to improper decision-

making [6]. 

 

1.2 Data uncertainty 

In engineering analysis uncertainty is usually defined as knowledge incompleteness due 

to the deficiency in the knowledge gained, or due to systematic bias [7,8]. Data uncertainty 

is known as the lack of certainty about the correct value of data, which is a challenging 

matter in risk analysis [8]. Data uncertainty in decision and risk analyses might be divided 

into two types: one comes from the variability of the quantity value over time or space, 

which is commonly known as aleatory uncertainty. The other one comes from a basic lack 

of knowledge about the quantity of interest; this type of uncertainty is known as epistemic 

uncertainty [9]. In real world risk analysis problems, the data concerning the interested 

quantities or parameters are usually sparse, because this information is either hard to 

find, obtain or measure, which represents epistemic uncertainty. In such cases, gathering 

a data set for the quantity over various times, spaces or even conditions is usually 

considered a reasonable solution. Nevertheless, this introduces another type of 

uncertainty, which is the variability or the aleatory uncertainty among the aggregated data 

[10]. In practice, the distinction between variability and epistemology is not always clear 

and is often difficult to distinguish. Furthermore, most risk analysis problems must deal 

with both types of uncertainty [11,12]. There is a variety of mathematical tools that can 

accommodate both types of uncertainty at the same time. One such is tool Hierarchical 

Bayesian Analysis (HBA). According to Hayes, et al, “HBA is a Bayesian version of two-

dimensional Monte Carlo analysis in which the moments of variable input distributions are 
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themselves allowed to vary in a parametric manner” [12]. Hierarchical modeling is useful 

when information is available on several different levels of observational units [13]. It is a 

powerful method to address data uncertainty. 

 

1.3 Model uncertainty 

Even if the uncertainty about the quantities or parameters of interest has been addressed 

and treated, there is still another kind of uncertainty related to the model itself. This 

uncertainty concerns the structure of the model and has a considerable effect on the 

results. Overall, uncertainty about the model is harder to detect than the uncertainty about 

a parameter value. In fact, a model is only a simplification of reality, while a real-world 

system includes actions or behaviors that cannot be produced by even the most detailed 

model [6,7]. According to Morgan et al: “Even if a model is a good approximation to a 

particular real-world system and usually gives accurate results, it can never be completely 

exact” [6]. 

 Risk analysis aims to quantify accident scenarios by modeling the contributing events of 

a particular accident using one of the modeling techniques. Event Tree (ET), Fault Tree 

(FT) and Bowtie (BT) analysis are the most popular probabilistic modeling techniques 

used in risk analysis. FT is a graphical deductive model used to identify and determine 

the potential causes of the accident [14]. The primary events (i.e., causes) are linked to 

the top event (i.e., accident) using logical gates. ET is an inductive model used to identify 

the possible outcomes of an initiating event occurrence followed by multiple failures of 

the safety barriers in the system [15]. One of FT’s limitations is the inability to analyze 
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large systems, especially if redundant, common cause failures are presented in the 

system [16]. FTs and ETs are known to have a static structure, so they are not able to 

use real-time data to update the beliefs of primary events and safety barriers [16,17,18]. 

In addition, there is the invalid assumption that considers all events in the FT and ET as 

statistically independent [18]. BT is another modeling technique. It is considered as one 

of the best graphical techniques due to its ability to provide a complete qualitative and 

quantitative representation of the accident scenario, beginning from root causes and 

ending with their consequences [17]. However, BT, in fact, is a combination of FT and 

ET, it suffers from their limitations [5]. These limitations introduce uncertainty in the 

models’ results, which can lead to significantly inappropriate decisions. 

 

1.4 Problem statement 

For many years data scarcity has been a debatable issue in risk analysis. Gathering data 

utilizing a variety of information sources is one of the solutions used to overcome data 

scarcity, but at the same time, it generates a considerable uncertainty associated with 

risk estimation. At first glance, it may seem like averaging data across the sources can 

be a good estimator for the quantity (i.e., parameter) of interest, but that would clearly 

lead to very different, and quite misleading, results. Furthermore, to use these quantities 

in the prediction of a particular accident, they must be incorporated via one of the 

probabilistic modeling techniques (e.g., FT, ET or BT). This would introduce another type 

of uncertainty in the results, known as model uncertainty. In fact, these conventional 

modeling techniques are known to have a static structure and are still unable to handle 

the uncertainty arising from the model due to some limitation such as events’ 
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dependencies and probability updating. Briefly, there is a need for a better understanding 

of the uncertainty associated with risk analysis when dealing with sparse data and to 

identify how it can be modeled to ensure that an appropriate decision can be taken based 

on these results. The following research questions need to be addressed:  

1. How to overcome data scarcity in risk analysis of major accidents?  

2. How to address and treat the uncertainty within this kind of data? 

3. Is it possible to reduce the effects of the conventional techniques’ limitations? 

4. Is there a way to treat data and model uncertainty simultaneously, in order to 

have a total uncertainty management? 

 

1.5 Scope of the study 

The presented study concerns with addressing and treating two types of uncertainty 

associated with risk analysis of major accidents. First, the study focused on data 

uncertainty arising from gathering the data from multi-sources due to sparse or lack of 

information regarding the accident’s contributing events. Then the study turned to address 

another type of uncertainty known as model uncertainty, which occurs due to the 

limitations of the model used to incorporate the contributing events to predict the 

frequency of an accident. In this way, both data and model uncertainty can be addressed. 

The case studies that have been used to demonstrate the application of the proposed 

methodology are selected from historical major accidents in offshore oil and gas facilities. 

In each case, a different probabilistic model is used in order to validate the flexibility of 

this methodology to be applied to various models. Since every undertaking has specific 
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limitations, the probabilistic models (i.e., FT, ET, and BT) that have been constructed to 

illustrate accidents’ scenarios can be more complex, considering all the potential causes 

of the accident. However, this is not the concern of the current research. These models 

include only the main causes, safety barriers, and consequences. In addition, most data 

in the presented study is either adopted from literature or expert opinion data, in order to 

apply the methodology. The main objectives of this work can be expressed as: 

➢ Addressing and treating two types of uncertainty associated with risk analysis of 

major accidents.  

➢ Provide a unique methodology that can be used as a dynamic tool for modeling 

major accidents using sparse data  

 

1.6 Contribution 

In this research, a methodology is developed considering Hierarchical Bayesian Analysis 

(HBA) as a robust technique for event frequency estimation. Here, HBA is used to treat 

source-to-source uncertainty among the aggregated data for each contributing event in 

the accident scenario. HBA provides a precise value for the parameter of interest (e.g. 

failure rate, probability or time to failure). The estimated event’s parameter is reintegrated 

via probabilistic modeling techniques such as Bowtie analysis to estimate the probability 

of a particular major accident. The application of the proposed methodology to risk 

analysis is illustrated using a case study of an offshore major accident and its 

effectiveness over the traditional statistical estimators is demonstrated. The results 

illustrate that the developed methodology assists in making better estimates of the 
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probabilities when dealing with sparse data. The ability to update the primary event and 

safety barrier probabilities as new data become available, further enhances its 

effectiveness. 

Despite that, the first part of this research has shown the effectiveness of HBA in deriving 

the probabilities of an accident’s contributing events when no or few data are available, 

yet incorporating these probabilities via FT, ET or BT to obtain the frequency of a major 

accident may introduce uncertainty due to their static structure. The conventional 

modeling techniques are unable to handle the uncertainty arising from the model. They 

suffer some limitations concerning events’ dependencies and probability updating. These 

limitations can be effectively eliminated by mapping the conventional technique into a 

Bayesian Network (BN), to enable updating of probabilities and represent the 

dependencies of events.  

The present research has developed a framework that combines the use of HBA along 

with BN in order to consider both data uncertainty and model uncertainty in the estimation 

process of a major accident. This work provides a unique methodology that can be used 

as a dynamic tool for modeling major accidents using sparse data.  

 

1.7 Organization of the Thesis 

This thesis is written in manuscript style (paper based). The outline of each chapter is 

explained below:  

Chapter 2 presents the literature review related to this work. The literature review 

essentially discusses the obstacle of data scarcity in risk analysis, how it has been 
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resolved, and how data and model uncertainty associated with risk analysis have been 

treated so far.  

Chapter 3 discusses data uncertainty in the risk analysis of major accidents. This chapter 

presents a developed methodology using Hierarchical Bayesian Analysis (HBA) for 

events’ frequency estimation based on sparse data. It is shown that HBA is able to reduce 

the uncertainty of final results better than a traditional method. This chapter was published 

in the Journal of Process Safety and Environmental Protection. 

Chapter 4 focuses on the limitations of the conventional modeling techniques that 

represent model uncertainty. This chapter introduces a developed framework that 

combines the proposed methodology in chapter 3 with the Bayesian network instead of 

using conventional techniques (i.e., FT, ET, and BT). This framework aims to address 

both data and model uncertainty. This chapter was published in the ASCE-ASME Journal 

of Risk and Uncertainty in Engineering Systems. 

Chapter 5 reports the summary of the thesis and the main conclusions drawn from this 

work. In addition, recommendations for future work are presented. 
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2. Literature Review 

 
 

2.1 Rare events 

Rare events are events that though not often happen, illustrate the most critical 

consequences of uncertainty and random effects [24]. The prediction of such events is a 

challenge, due to their small occurrence frequency [25]. Even the causal factors that lead 

to those events usually have small probabilities and insufficient information. In risk 

analysis, a major accident is the undesirable rare event that directly or indirectly causes 

loss of human life, several serious injuries, serious environmental damage, and loss of 

essential material assets. The release of toxic materials, fire and explosion, and spillage 

of hazardous chemicals are typical examples of major accidents [26,27,28]. Catastrophic 

accidents such as the loss of the Alexander L. Kielland, which capsized in 1980, the Piper 

Alpha fire and explosion in 1988, and the BP Deepwater Horizon disaster in 2010 

demonstrate the dramatic consequences of major accidents in offshore oil and gas 

activities [29]. Therefore, early prediction of potential accidents and associated causes is 

necessary to improve the safety systems and to prevent the future occurrence of such 

accidents. Classical approaches to estimate rare events perform poorly because few data 

are available. However, many attempts in the literature have used different approaches 

in the context of major accidents’ prediction, such as Bayesian theory [30], accident 

precursor data approaches [21,22,31], empirical Bayes [32] and the Gaussian sampling 

process [24]. 



 
 

12 

2.2 Data Uncertainty 

In most industrial applications, only limited information is available to describe a particular 

quantity, either due to expensive testing costs or the incapability of testing, especially in 

harsh environments [1]. Data scarcity is one of the most challenging problems in 

probabilistic risk assessment (PRA); this problem generates one of the uncertainty types 

in the results. This type of uncertainty represents the lack of knowledge about the proper 

value to use for a quantity and is known as epistemic uncertainty [2]. It has been 

addressed by many mathematical methods such as sensitivity analysis [3], interval 

analysis [4] and qualitative modeling [5,6]. However, this uncertainty can also be reduced 

through increased understanding by gathering more relevant data. In real world risk 

analysis, gathering data over different operational conditions, regions, industry sectors or 

different experts is the only solution to overcome data scarcity. Consequently, this 

introduces variability or aleatory uncertainty among the aggregated data [7]. It may 

appear that averaging the aggregated data can be a good estimator for the quantity (i.e., 

parameter), but that would lead to very different and misleading results [8].  

 

In fact, it is very difficult to distinguish between variability and epistemology. In the 

literature, there are many mathematical methods used to simultaneously treat variability 

and epistemology, such as probability bounds analysis [9], Fuzzy sets and arithmetic [10] 

and Hierarchical Bayesian analysis [11,12].  

 

Bayesian approaches are known for their ability to incorporate a wide variety of 

information types such as extrapolated data, experts’ judgments or partially related data 
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[13]. Kaplan [14] has presented a two-stage Bayesian procedure by combining three 

sources of failure data for a certain machine, which was the first effective modeling 

approach developed to address plant to plant variability in order to cope with a paucity of 

data [15]. Also, in [16] a Bayes procedure was applied to combine five different sources 

of data of low probability events, in order to overcome data scarcity.  

 

Indeed, the two-stage Bayesian approach can simply be considered as more general 

hierarchical Bayes [17]. The Hierarchical Bayesian approach (HBA) has been effectively 

used to treat source-to-source uncertainty by developing a multi-stage prior for the 

parameter of interest [16,17,18,19]. Furthermore, in major accident risk analysis, the 

precursor-based risk analysis has been extensively applied for the purpose of bringing 

data scarcity under control. Researchers in [20,21,22,23] applied HBA to implement the 

application of precursor data analysis in the prediction of major accidents. Most of these 

precursor data were collected from different regions, and even the regional data were 

collected during different wells’ activities and types of wells [20]. This makes the 

contributing events of the accident and the relevant safety barriers vary in each situation. 

For instance, the number of offshore blowouts in the Gulf of Mexico discussed in previous 

research [20,22,23] included those blowouts resulting from ship collisions and natural 

hazards such as storms and hurricanes, which means that the collected data do not reflect 

the inherent mechanism of the accident of concern.  
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2.3 Model Uncertainty  

Modeling the accident scenario provides better understanding and clarifies the factors 

that can possibly contribute to the accident as well as the possible factors that may be 

added to the system to improve safety, in order to prevent the accident. According to 

Houston [34], lawyers and insurers have developed one of the classical models based on 

the ‘proximate cause’. One of the weaknesses of this approach is that there is no objective 

standard for identifying the principal cause, and no clear relationships among causes 

[33,34]. 

 

In addition, Kletz [35] has developed a model focused on accident investigation. The 

model identifies the possible actions and sequence of decisions that might lead to an 

accident. Also, it shows the recommendations arising from the investigation against each 

step. Additionally, a model that underlines the broader socio-technical background to 

accidents has been developed by Geyer and Bellamy [33,35,36]. 

 

In risk analysis, Fault Tree (FT), Event Tree (ET) and Bowtie (BT) are considered the 

most popular probabilistic modeling techniques used to identify and analyze accident 

scenarios [33]. They are mostly known as conventional methods. However, because they 

have some limitations, another probabilistic method based on Bayes' rule known as 

Bayesian Network (BN), has become more popular in safety and risk analysis. The 

following subsections briefly discuss the previous methods: 
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2.3.1 Fault Tree 

As described by Clemens [37]: “FT is a graphical model which represents the pathways 

within the system that can lead to an undesirable event, using standard logic symbols to 

represent the pathways connecting the contributing events and conditions. The probability 

of the undesirable event can be evaluated by propagating the probabilities of the 

contributing events through the model”. H.A. Watson originally developed FT in 1962 at 

Bell Laboratories for the US Air Force to be used to evaluate the Minuteman Control 

System [38]. Then it was adopted and extensively applied by the Boeing Company. Later, 

the use of fault trees spread dramatically [39]. 

 

2.3.2 Event Tree 

ET is an inductive model used to identify the possible outcomes of an initiating event 

occurrence followed by multiple failures of the safety barriers in the system [40]. ET is a 

second form of a decision tree for evaluating the multiple decision paths in a given system. 

It was first presented during the WASH-1400 [41] nuclear power plant safety study (circa 

1974). The WASH-1400 team found that the fault tree was not helpful for their analysis, 

due to it being too large, so they needed an alternative method [42].  

 

Even though they have some limitations, FT and ET techniques have been extensively 

used in the field of risk analysis [43]. They are unable to capture the variation of risks as 

changes in the system take place, as they are known to have a static structure [44,45].  
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2.3.3 Bowtie 

Bowtie (BT) is one of the popular tools used in several safety and risk frameworks due to 

its ability to integrate all the root causes, consequences and relative safety barriers of an 

accident scenario in one model [46]. However, BT still suffers the same limitations as do 

FT and ET, as it is constituted by combining fault and event trees. These limitations 

generate a type of uncertainty in the results, which is considered to be model uncertainty. 

Consequently, there is a need to develop more dynamic risk analysis models. 

 

2.3.4 Bayesian Network 

Dynamic risk assessment methods are able to re-evaluate the risk during any stage in 

the operation, by updating initial failure probabilities of events as new information 

becomes available [45]. Bayesian Network (BN) is one of the dynamic tools that have 

been used in reconsidering prior failure probabilities. The new data in the form of 

likelihood functions are used with Bayes’ theorem to update the priors. BNs are used as 

a dynamic tool instead of the conventional static risk analysis models. There were many 

attempts in the literature to map FT into BN [43,47,48,49]. Others [50,51] tried to convert 

ET into BN, and in [46] a BT model was mapped into BN. The efficiency of BN is its ability 

to be used in two ways: i) to represent causation dependency and occurrence to estimate 

accident probability, in addition to the possibility of including evidence at any stage of the 

BN; ii) to explain the most probable causes or causal pathways, given the occurrence of 

an accident or event. 
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However, the attempts to handle both data and model uncertainty were insufficient in the 

literature, particularly in the field of risk analysis in the oil and gas industries. The main 

focus of past works was mainly to cope with model uncertainty, by making the 

conventional modeling techniques more dynamic. Some authors used Bayesian 

inference, in which Bayes' theorem is coupled with a standard fault tree [52], event tree 

[53], and bow-tie analysis [54]. Others mapped the standard techniques into Bayesian 

networks [46,47,50].  

Therefore, integrating HBA and BN into one framework provides better estimations and 

has the potential to deal with data and model uncertainties simultaneously, which is 

attempted in this study. The study presents the developed framework in detail in two 

chapters and each chapter has its own literature review. 
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3. Major Accident Modeling Using Spare Data 
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Abstract: In the field of risk and reliability analysis, the information available to acquire 

probabilities is usually insufficient (i.e. scarce, missing). Utilizing a variety of information 

sources introduces different types of uncertainties associated with risk estimation. This is 

an obstacle in the prediction of major accidents which have significant consequences for 

human life and the environment, in addition to incurring financial losses. In order to get 

reasonable results and to support decision making in a cost effective manner, there is a 

need to aggregate the relevant data from different regions, operational conditions and 

different sectors (e.g. chemical, nuclear or mining). In this paper, a methodology is 

developed considering Hierarchical Bayesian Analysis (HBA) as a robust technique for 

event frequency estimation. Here, HBA is able to treat source-to-source uncertainty 

among the aggregated data for each event and provide a precise value for the parameter 
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of interest (e.g. failure rate, probability or time to failure). The estimated event’s parameter 

is reintegrated via probabilistic modeling techniques such as Bowtie (BT) analysis to 

estimate the probability of major accidents. The application of the proposed methodology 

to risk analysis is illustrated using a case study of an offshore major accident and its 

effectiveness is demonstrated over the traditional statistical estimators. The results 

illustrate that the developed methodology assists in making better estimates of the 

probabilities when dealing with sparse data. The ability to update the primary event and 

safety barrier probabilities as new data become available, further enhances its 

usefulness. 

 

Keywords:  Data scarcity; Hierarchical Bayesian Analysis; Risk analysis; Offshore major 

accidents.  

 

3.1   Introduction 

A major accident is defined as a serious undesirable event that directly or indirectly 

causes several serious injuries, loss of human life, serious environmental damage, and 

loss of essential material assets. The release of toxic materials, fire and explosion, and 

spillage of hazardous chemicals are typical examples of major accidents [1,2,3]. 

Catastrophic accidents such as the Alexander L. Kielland capsized in 1980, the Piper 

Alpha fire and explosion in 1988 and the BP Deepwater Horizon disaster in 2010 

demonstrate the dramatic consequences of major accidents in offshore oil and gas 

activities [4]. Therefore, early prediction of the potential accidents and associated causes 

is necessary to improve the safety systems and to prevent the future occurrence of such 
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accidents. Data scarcity is one of the most challenging problems in probabilistic risk 

assessment (PRA) and this increases the uncertainty associated with analyzing the 

frequency of major accidents. However, in real world industry, the available information 

on the frequency of contributing causes is not sufficient (e.g. limitation of knowledge, 

systematic bias or missing data). Therefore, gathering data from different sources with 

dissimilar characteristics such as different operational conditions, regions, industry 

sectors or different experts (considering experts’ judgment), is one solution that has been 

widely used to overcome the problem of data scarcity. In addition, a robust technique is 

needed for the estimation process to address the uncertainty in the collected data. 

Bayesian approaches are able to incorporate a wide variety of information types such as 

extrapolated data, experts’ judgments or partially related data [5]. To overcome data 

scarcity, a Bayes procedure was applied to combine five different sources of data of low 

probability events [6]. Kaplan [7] presented a two-stage Bayesian procedure by combining 

three sources of failure data for a certain machine, which was an effective modeling 

approach developed to address plant to plant variability in order to cope with a paucity of 

data [8]. In fact, a two-stage Bayesian approach can be considered as more general 

hierarchical Bayes [9]. The Hierarchical Bayesian approach (HBA) has been extensively 

used to address source-to-source uncertainty by developing a multi-stage prior for the 

parameter of interest [8,9,10,11]. To overcome the data scarcity problem, precursor-

based risk analysis has been effectively applied in major accident risk analysis. Previous 

researchers [12,13,14,15] applied HBA to implement the application of precursor data 

analysis. The main challenge was that most of these precursor data were gathered from 

different regions, and even the regional data were collected during different well’s 
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activities and for different types of wells [12]. Thus the contributing events of the accident 

and the relevant safety barriers will be varying in each circumstance, which means the 

collected data does not reflect the inherent mechanism of the accident of concern. For 

instance, the number of offshore blowouts in the Gulf of Mexico, discussed in previous 

research [12,14,15] included those blowouts resulting from ship collisions and natural 

hazards such as storms and hurricanes. As the modeled major accident considers a set 

of its contributing events along with their logical relationships, the probability of an 

accident may be obtained by incorporating those events’ probabilities via different 

accident modeling tools such as Bow-tie analysis. The probabilities of contributing events 

are derived using historical data, which are usually aggregated from sources with different 

locative and operational characteristics. Therefore, the risk analysis is associated with a 

degree of uncertainty, known as source-to-source variability [12,16]. 

 

This paper aims to develop a methodology for dealing with the uncertainty associated 

with the sparse data in accident modeling and risk analysis by applying HBA. Considering 

the objective of the proposed study, section 2 presents a brief description of HBA, 

illustrating it with a simple example. The proposed methodology is discussed in detail in 

section 3, and section 4 presents the application of methodology using a case study from 

previous major accidents in offshore oil and gas facilities. Section 5 is devoted to the 

conclusions of this work. 
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3.2   Hierarchical Bayesian Analysis (HBA)     

HBA is one of the useful techniques in probabilistic risk analysis, especially for cases with 

scarce or no data. For this purpose, HBA is able to incorporate a wide variety of 

information in the estimation process considering source-to-source variability in the 

aggregated dataset [8,12,17]. Developing an appropriate prior distribution is the 

debatable part of any Bayesian method [8,14]. In the past, the two-stage Bayesian and 

empirical Bayes were commonly used in PRA; both are approximations to hierarchical 

Bayes [7,9]. HBA utilizes a multistage prior distribution in the hierarchical model, which is 

very complex to analyze numerically [14]. Recently, the availability of Markov Chain 

Monte Carlo (MCMC) based sampling software makes a fully hierarchical Bayes analysis 

tractable [9,11]. As data scarcity is a very common problem in PRA, there is a need to 

aggregate data from a variety of sources. In the first step of HBA, a likelihood function 

with a parameter of interest ϕ will be specified for the data set (𝑦). An informative prior 

distribution can be developed for this parameter by considering that the parameter ϕ 

follows a generic distribution ϕ~ω0(ϕ|α,β)representing the first stage prior distribution 

with its own parameters α and β, which are known as hyper parameters [8]. The hyper 

parameters are also uncertain and are considered to follow a diffusive or non-informative 

distribution 𝑔0(α, β) which is known as second stage prior or hyper prior distribution.  

 

The data set (𝑦) along with Bayes theorem can be used to update the second stage prior 

distribution in order to have a posterior distribution for α and β, 𝑔1(α, β|y). This posterior 

distribution is used to update the first stage prior distribution ω0(ϕ|α, β) to obtain the 
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posterior predictive distribution  ω1(ϕ|y), which is known as the population variability 

curve (PVC), and can be written as [8,11,15]: 

 

ω1(ϕ|y) =  ∬ ω0(ϕ|α, β) 𝑔1(α, β|y) 𝑑α dβ                                                                                 (3 − 1) 

This distribution represents the source–to-source uncertainty in ϕ and can be used as an 

informative prior distribution when more case-specific data become available [8,11]: 

 

ω1(ϕ|𝑦∗, y) =
ω1(ϕ|y) 𝐿(y∗|ϕ)

∫ ω1(ϕ|y) 𝐿(y∗|ϕ)dϕ
                                                                                            (3 − 2) 

 

ω1(ϕ|𝑦∗, y)  ∝  ω1(ϕ|y)𝐿(y∗|ϕ)                                                                                                     (3 − 3) 

 

Assume that the failure data were collected for a certain device in the system from 10 

different sources. The failure data represented in the number of failures (𝑦𝑖) in a specific 

number of demands (𝑁𝑖) is shown in Table 3.1. The objective is to obtain one value out 

of these 10 sources to represent the failure probability of this device. In such cases, the 

average (i.e., traditional method) is usually used as the best estimator to represent the 

device’s failure probability. In fact, this may lead to significant uncertainty in the final 

results. HBA based on these data is able to provide a distribution of the failure probability. 

The mean of this estimated distribution is the most appropriate value to represent the 

failure probability of this device. 
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Table 3.1. Failure data collected from 10 sources [8]. 

Source Number of 
failures (𝒚𝒊) 

Number of 
trails (𝑵𝒊) 

1 0 140 

2 0 130 

3 0 130 

4 1 130 

5 2 100 

6 3 185 

7 3 175 

8 4 167 

9 5 151 

10 10 150 

 

The number of failures (𝑦𝑖)  can be modeled using binomial likelihood 𝐿(𝑦|𝑝) with 

parameter of interest 𝑝 . The parameter p is unknown and is assumed to follow the 

conjugate prior beta distribution ω0(𝑝|𝑎, 𝑏)  with hyper parameters 𝑎  and 𝑏 , while an 

independent diffusive distribution 𝑔0(𝑎, 𝑏)  is assumed for 𝑎  and 𝑏 . The posterior 

predictive distribution of 𝑝  representing source-to-source uncertainty ω1(𝑝|𝑦), can be 

generated by sampling the hyper parameters (𝑎, 𝑏) from their joint posterior distribution 

𝑔1(𝑎, 𝑏|𝑦). Then sampling the posterior predictive distribution from the first stage prior 

beta distribution is as follows: 

 

𝑦𝑖 ~ 𝑏𝑖𝑛 (𝑝𝑖, 𝑛𝑖)                               likelihood function 

𝑝𝑖~ 𝑏𝑒𝑡𝑎 (𝑎, 𝑏)                                first stage conjugate prior   

𝑎~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)     diffusive hyper prior 

𝑏~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)     diffusive hyper prior 

 

This model is coded in OpenBUGS; a Markov Chain Monte Carlo (MCMC) software tool 

[11,17,18]. A posterior distribution of the probability of failure is obtained as illustrated in 
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Figure 3.1, with the mean value of 0.02085 that represents the precise value for the 

component failure probability with a 95% confidence interval (9.256E-5, 0.08406). 

 

 
Figure 3.1. Predictive posterior distribution for the probability of failure 

 
Assuming that one new data point is available (e.g., 𝑦 = 7 failures on 𝑛 = 125 trials), the 

probability of failure can be updated. This posterior predictive distribution can be 

considered as an informative prior distribution of the parameter of interest 𝑝  (i.e., 

probability of failure). As the informative distribution is beta conjugate prior, the updated 

distribution will be beta distribution with a mean of (𝑎𝑚 + 𝑦)/(𝑎𝑚 + 𝑏𝑚 + 𝑛), where 𝑎𝑚and 

𝑏𝑚are the mean values of the joint posterior distributions of 𝑎, 𝑏. 

 
Table 3.2. Comparing results for the probability of failure 

Sample 
size 

Traditional 
method 

HBA Relative 
difference 

10 data 
points 
 
New 
data 

0.018478 
 
 

0.021889 

0.02085 
 
 

0.02645 

12.8% 
 
 

20.8% 

 
The relative difference is used as a measure to compare the two methods. Results in 

Table 3.2 show that the probability obtained using HBA is 12.8% higher than the one 

obtained by using the average. When a new data point becomes available, the posterior 

 

 

Probability of Failure 
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predictive distribution obtained by HBA is used as informative prior distribution to update 

the probability. The updated probability was 20% higher than the value obtained by re-

averaging the data set. Therefore, if the average is used as an estimator to represent the 

failure probability of this device, this could provide a significant variation in the results.    

 

3.3  Developed Methodology  

Major accidents have a significant impact on humans and the environment in addition to 

incurring financial losses. By integrating the accident’s contributing events’ probabilities 

through one of the probabilistic modeling techniques, the probability of an accident is 

predicted. In the real world, data related to these contributing events are usually scattered 

and must be collected from different types of sources. Additionally, it is sometimes difficult 

or expensive to measure a certain parameter, especially in a harsh environment, so 

aggregating related data from other areas is a good choice in such cases. The developed 

methodology in this paper is a robust technique to treat the uncertainty among these data 

and provide a precise value for the parameter of interest. Figure 3.2 presents the 

developed methodology framework and the main steps of the proposed methodology are 

discussed in the following sections.  

 

Stage 1: Defining accident scenario 

Fault Tree and Event Tree Analysis (FTA and ETA) are conventional failure assessment 

techniques, extensively used in risk analysis. FTA uses a deductive approach and 

logically relates the occurrence of contributing events to the higher level event which is 

the accident [25]. ETA identifies the possible outcomes following an initiating event 
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occurrence and multiple failures of the safety barriers in the system [26]. Bowtie (BT) is a 

graphical model composed of FTA and ETA. BT is effectively used in risk analysis 

[19,20,21], due to its ability to identify all the possible root causes, consequences and 

relative safety barriers of the accident scenario in a single model. According to the 

international standard ISO 31000:2009 and ISO/IEC 31010:2009, identifying the potential 

hazards in a specific scenario is the first step to defining a particular accident scenario 

[27,28].  

 

Stage 2: Data collection 

Failure data for each basic event and safety barrier can be collected from different 

sources such as different regions, operational conditions, and different industries. Also, 

data can be collected considering experts’ judgment, which is very helpful for newly 

designed installations in which no experimental observations are possible [22]. Deriving 

the data considering experts’ judgment is another useful technique to acquire the failure 

probabilities whenever there is no access to such probabilities for a particular failure, 

especially in a harsh environment. 

 

Stage 3: Developing the HBA 

HBA is used to derive the probability for each basic event and safety barrier. Considering 

the type of aggregated data, a likelihood function will be specified for each data set. For 

instance, if the number of failures in a certain period of time is collected, a Poisson 

likelihood function can be adopted to model the data set and the hierarchical model will 

be written as: 
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𝑥𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖, 𝑡𝑖)                     likelihood 

𝜆𝑖~ 𝑔𝑎𝑚𝑚𝑎 (𝛼, 𝛽)                        first stage prior 

𝛼~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)    hyper prior 

𝛽~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)    hyper prior 

 

If the time is observed at which random events occur (i.e., time to failure), an exponential 

likelihood function may be used to model the data set and the hierarchical model will be 

written as: 

 

𝑡𝑖 ~ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆𝑖)                   likelihood 

𝜆𝑖~ 𝑔𝑎𝑚𝑚𝑎 (𝛼, 𝛽)                        first stage prior 

𝛼~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)    hyper prior 

𝛽~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)    hyper prior 

 

HBA provides a posterior distribution for the parameter of interest with mean value and 

confidence intervals. The mean value represents the precise value of the parameter of 

interest. This distribution represents the source-to-source uncertainty in the collected data 

and is used as an informative prior distribution when more case-specific data become 

available. 
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Figure 3.2. Proposed methodology framework 
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Stage 4: Major accident probability estimation and updating  
 
By obtaining the probability of failure or occurrence for each contributory event, these 

probabilities can be reintegrated via the known accident modeling techniques such as BT 

to obtain the final probability of a major accident. When new data related to any event 

become available, the event’s probability can be updated. Where the posterior distribution 

for this event that obtained from HBA is considered as informative prior distribution and it 

is used to update the probability. Once an event’s probability is updated, it is reintegrated 

through the model to obtain a new probability of the accident. This dynamic feature of 

updating improves a modeling technique such as BT, which is known to have a static 

structure.   

 

3.4   Application of the methodology: Case study    

 
The application of the developed methodology is demonstrated using the following 

accident scenario in the offshore oil and gas industry.  

 

Fires and explosions are the most significant causes of harm and damage to equipment 

and may lead to injuries and deaths in the industry, especially in the offshore oil and gas 

sector [23]. The Piper Alpha disaster, which killed 167 workers on 6 July 1988 off the 

coast of Aberdeen, Scotland, was the world's deadliest oil rig accident [24]. As a result of 

a preventive maintenance procedure, condensate gas leaked out and ignited while the 

firewalls that would have resisted fire failed to cope with the ensuing gas explosion. Here 

the BT model is developed for the sake of clarifying the application of the methodology in 
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handling the data scarcity in risk analysis (Figure 3.3). The BT model can be more 

complex, considering all the potential causes of the accident. However, it is not the 

concern of the current study. This model includes only the major causes and 

consequences, which occurred in the condensate gas leak. 

 
 
                                   Figure 3.3. A Bow-tie model for platform fire and explosion 

 
To demonstrate the methodology, 10 data points consider the number of occurrences of 

each basic event in a certain operational time, illustrated in Table 3.3. In addition, the 

number of successes for each safety barrier out of the number of gas leaks Ni is assumed. 
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Table 3.3. The number of occurrences of basic events and safety barriers 
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Based on the type of these data, each event’s data set can be modeled. The number of 

occurrences for each basic event, 𝑥𝑖, was modeled using a Poisson distribution with 

parameter of interest 𝜆. 𝜆 is the occurrence rate, which is unknown and is assumed to 

follow the conjugate prior gamma distribution with hyper parameters 𝛼, 𝛽. An independent 

diffusive distribution is assumed for 𝛼, 𝛽. As a result, a posterior predictive distribution is 

generated for the occurrence rate of each basic event as illustrated in Figure 3.4. 

 

𝑥𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖, 𝑡𝑖) 

𝜆𝑖 ~ 𝑔𝑎𝑚𝑚𝑎 (𝛼, 𝛽) 

𝛼 ~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001) 

𝛽 ~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001) 
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Figure 3.4. Posterior predictive distribution for the occurrence rate of basic events 

 
 

The mean value of the posterior predictive distribution represents the precise value of the 

occurrence rate 𝜆 for the basic event. Table 3.4 presents the resulting occurrence rate for 

each basic event, as well as the 95% confidence interval, which represents the 

uncertainty in that estimated value.  

 

In comparison, a traditional method is used to aggregate the collected data, simply by 

taking the average to obtain the occurrence rate of each basic event. The 95% confidence 

interval is estimated as well. The results summary in Table 3.4 demonstrates the variation 

between the two methods’ estimation. As for the communication failure event, the 

occurrence rate estimated by the average is much lower than the one obtained by HBA, 

while in the ‘primary pump fails’ event the average is much higher than HBA estimates. 
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That is interpreted by the sensitivity of the average to the large or small data points in the 

dataset; therefore, its influence on those values is introducing a bias in the results.  

 
Table 3.4. Basic events’ occurrence rate and the 95% confidence intervals 

           Approach 
              

     Event 

HBA Traditional method 

Occurrence rate  95%Confidence 
interval 

Occurrence rate  95% Confidence 
interval 

Poor blanking 
job 

0.9668 (0.4914, 1.564) 0.930 (0.384, 1.476) 

Communication 
failure 

0.9900 (0.2545, 2.2200) 0.943 (0.444, 1.442) 

Poor inspection 
 

0.7746 (0.2912,1.487) 0.843 (0.344, 1.343) 

Primary pump 
fails 

1.4280 (0.8414, 2.295) 1.733 (1.151, 2.315) 

 
 
On the other hand, the number of successes for each safety barrier 𝑦𝑖 is modeled using 

binomial distribution with unknown parameter 𝑝 that represents the probability of success. 

The parameter 𝑝 is assumed to follow the conjugate prior beta distribution with hyper 

parameters 𝑎 and 𝑏, which are assumed to follow an independent diffusive distribution. 

 

𝑦𝑖 ~ 𝑏𝑖𝑛 (𝑝𝑖, 𝑛𝑖) 

𝑝𝑖~ 𝑏𝑒𝑡𝑎 (𝑎, 𝑏) 

𝑎~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001) 

𝑏~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001) 
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Figure 3.5. Posterior predictive distribution for the probability of success of safety barriers  

 

 
Figure 3.5 represents the posterior predictive distribution generated for the probability of 

success for each safety barrier. The mean values of the posterior predictive distributions, 

which represent the precise values of the safety barriers’ occurrence probability with 95% 

confidence intervals, are shown in Table 3.5. 

  
Table 3.5. Safety barriers’ probability of success and the 95% confidence intervals 

        Approach  
 

       Event    

HBA 
Traditional method 

Probability 95%Confidence 
interval 

Probability 95% Confidence 
interval 

Ignition avoided 
 

0.5916 (0.3302, 0.8351) 0.7273 (0.5424, 0.9122) 

Spill size 
reduction 

0.7027 (0.4791, 0.8937) 0.7258 (0.5114, 0.9402) 

Escalation 
prevention 

0.6781 (0.4345, 0.8753) 0.658 (0.408, 0.907) 

Evacuation 0.8414 (0.6474, 0.9643) 0.8227 (0.6217, 1.0238) 
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At the same time, the probability of success for each safety barrier is obtained using the 

traditional method as well as a 95% confidence interval. Comparing the results in Table 

3.5, a significant bias in the probability values and their confidence intervals that are 

obtained using the traditional approach is observed. Therefore, to rely on those values in 

estimating the frequency of major accidents is a blunder.    

 

Basic events’ and safety barriers’ probabilities from both methods are used in the Bowtie 

analysis to estimate the initial event and consequences probabilities. After new data for 

basic events and safety barriers become available, their probabilities are updated by 

using the informative prior distributions obtained from the previous HBA modeling. The 

probability of occurrence of the initial event and consequences is then re-estimated using 

forward analysis as shown in Table 3.6.  
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Table 3.6. Results comparison for the basic events and initial event occurrence probabilities, safety 

barriers probabilities of success  

 
 

Event 

Probability 
 
 

Relative 
difference % 

Updated 
probability 

 
 

Relative 
difference % 

HBA Avg HBA Avg 

Poor blanking job 0.6197 0.6054 2.36 0.6097 0.6310 -3.37 

Communication 
failure 

0.5281 0.6106 -13.51 0.5051 0.6242 -19.08 

Poor inspection 0.5391 0.5697 -5.37 0.5162 0.5758 -10.35 

Primary pump fails 0.7602 0.8233 -7.66 0.7263 0.8275 -12.22 

Gas leak 0.0707 0.1058 -33.17 0.0582 0.1171 -50.29 

Ignition avoided 0.5916 0.7272 -18.64 0.5887 0.6666 -11.68 

Spill size reduction 0.7027 0.7257 -3.16 0.7100 0.7069 0.43 

Escalation 
prevention 

0.6781 0.6575 3.13 0.7125 0.6444 10.56 

Evacuation 0.8414 0.8227 2.27 0.8531 0.8375 1.86 

Gas dispersion 0.0418 0.0769 -45.64 0.0342 0.0780 -56.15 

Primary explosion 0.0202 0.0209 -3.34 0.0169 0.0275 -38.54 

Extensive fire/ 
structural damage 

0.00582 0.0052 11.92 0.00494 0.0073 -32.32 

Massive explosion 
/fireball/rig total loss 

0.0023 0.0022 4.54 0.0017 0.0034 -50 

Total loss of rig/ 
fatalities 

0.00043 0.00048 -10.41 0.00029 0.00066 -56.06 

 
 
 

The relative difference is used as a comparison between the two approaches. As may be 

observed from the comparative analysis, the relative difference between the two 

approaches increases sharply as the probability gets updated considering new evidence 

(information). This highlights that HBA is an adaptive approach, where data uncertainty 

decreases as new evidence is considered in the probability updating. In limiting 

conditions, when new evidence is close to the mean probability value of the probability, 

the differences between two approaches converge, as may be seen for spill size 
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reduction, ignition avoided, and evacuation events. Therefore, HBA is an adaptive 

approach, considering new evidence and then updating, while the traditional approach is 

simply adding data to the numerator and estimating the new average and new interval. 

As shown in Table 3.6, the positive relative difference indicates that the HBA result is 

higher than the average estimate, whereas the negative sign indicates that the HBA result 

is less than the average. This means that the average values are either underestimating 

or overestimating the probability for the parameter of interest. It is well known that the 

average is very sensitive to outliers in the dataset, and is strongly influenced by data 

points of large values or small values, which is not reflective of the center of data tendency 

and may lead to a significant bias in the results.  

 

3.5  Conclusion  

In risk analysis of major accidents, there are always different uncertainties associated 

with data sought from different regional and global sources. Therefore, it is necessary to 

identify and consider the uncertainty that arises in the collected data. The methodology 

developed in this study considers HBA to address the uncertainty.  It does this by 

modeling the collected data for each event, in order to obtain a posterior predictive 

distribution for the event’s parameter (e.g., probability or failure rate) with the mean and 

confidence interval. In similar situations, the average value is mostly used as the best 

estimator to represent an event’s parameter value. The relative difference is used as 

evidence of the effectiveness of the developed methodology. Events’ probabilities 

obtained by HBA are modeled using BT analysis in order to obtain the probability of a 

major accident in the case study. Results demonstrate that when dealing with sparse 
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data, the new methodology effectively addresses data uncertainty, in addition to its ability 

to update events’ probabilities separately, or together, when new data become available. 

However, BT is considered as one of the conventional modeling techniques. Due to its 

static structure, BT is still unable to handle a degree of uncertainty arising from the model 

because of some limitation such as events’ dependencies. Thus, to further improve this 

work, the use of HBA along with a Bayesian Network is recommended, which would 

generate a powerful tool able to consider both data uncertainty and model uncertainty. 
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4 Rare Event Analysis Considering Data and Model Uncertainty 
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Abstract: In risk analysis of rare events there is a need to adopt data from different 

sources with varying levels of detail (e.g. local, regional, categorical data). Therefore, it is 

very important to identify, understand and incorporate the uncertainty that accompanies 

the data. Hierarchical Bayesian Analysis (HBA) addresses uncertainty among the 

aggregated data for each event through generating an informative prior distribution for 

the event’s parameter of interest. Bayesian Network (BN) approach is used to model 

accident causation. BN enables both inductive and abductive reasoning, which helps to 

better understand and minimize model uncertainty. In this work, the methodology is 

proposed to integrate BN with HBA to model rare events, considering both data and model 

uncertainty. HBA considers data uncertainty, while BN uses an adaptive model to better 
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represent and manage model uncertainty. Application of the proposed methodology is 

demonstrated using three types of offshore accidents. The proposed methodology 

provides a way to develop a dynamic risk analysis approach to rare events. 

 

Keywords: Data uncertainty; Hierarchical Bayesian Analysis; Model uncertainty; 

Bayesian Network; Risk analysis of major accidents.  

4.1 Introduction 

The prediction of rare events with severe consequences is an important task and a very 

complicated mission. Major accidents, which are infrequent events, have a significant 

impact on humans, the environment, and assets. Therefore, to predict and update the 

probability of such accidents and to take actions to prevent them, it is very important to 

widen the risk analysis scope by considering accident scenarios and real-time safety 

analysis [1]. In real world industry, the information is usually insufficient (i.e., scarce, 

missing) to perform such an analysis. Many attempts have been made in the context of 

rare events probability estimation. Very efficient sampling algorithms have been proposed 

to estimate rare event probabilities, such as Importance Sampling or Importance Splitting, 

as well as a joint use of Monte-Carlo simulations and surrogate models [2-5]. In addition, 

gathering data from different sources is one of the solutions that has been effectively used 

to overcome the data scarcity problem, yet a special technique must be used in the 

estimation process to address the uncertainty in the aggregated data. The Hieratical 

Bayesian approach has been effectively used to address source-to-source variability [6-

9]. In addition, precursor-based risk analysis has been used in major accident risk 
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analysis to overcome the data scarcity problem. In [10-13] Hierarchical Bayesian Analysis 

was used to implement the application of precursor data analysis. In these studies, the 

precursor data were collected from different regions. Similarly, the regional data were 

collected during different wells activities and for different wells’ types [10]. Thus, the 

contributing events of the accident and the relevant safety barriers vary in each situation, 

which means that the collected data may not really reflect the inherent mechanism of the 

accident.  

 

As a major accident is decomposed into its contributing events, the probability of an 

accident is usually obtained by incorporating those events’ probability via event tree (ET) 

or fault tree (FT) analysis. These are the most popular probabilistic modeling techniques 

used in risk analysis. The contributing events’ probabilities are derived using historical 

data which are usually aggregated from sources of different locative and operational 

characteristics. This would associate the analysis with a degree of uncertainty known as 

a source to source variability [10,14]. Even though they have some limitations, FT and ET 

techniques have been extensively used in the field of risk analysis [1]. As they are known 

to have a static structure, they are unable to capture the variation of risks as changes in 

the system take place [15,16]. A bowtie (BT) is one of the popular tools used in several 

safety and risk frameworks due to its ability to integrate all the root causes, consequences 

and relative safety barriers of an accident scenario in one model [17]. However, BT suffers 

the same limitations as do FT and ET, as it is a combination of fault and event trees. 

These limitations introduce uncertainty in the results, which can be considered as model 

uncertainty. Consequently, there is a need to develop more dynamic risk analysis models. 
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Dynamic risk assessment methods are able to re-evaluate the risk by updating initial 

failure probabilities of events as new information becomes available, during any stage of 

the operation [16]. BN is one of the ways that has been used in reconsidering prior failure 

probabilities. The new data in the form of likelihood functions are used with Bayes’ 

theorem to update the priors. BNs are used as a dynamic tool instead of the conventional 

static risk analysis models. Studies in Refs. [1] and [18-20] were attempts to map FT into 

BN. Others [21,22] tried to convert ET into BN, and in Ref. [23] a BT model was mapped 

into BN. BN can be used in both ways: i) to represent causation, dependency, and 

occurrence to estimate accident probability, in addition to the possibility of including 

evidence at any stage of the BN; ii) given the occurrence of an accident or event, it 

explains the most probable causes or causal pathways. 

 

This paper aims to provide BN along with HBA in one framework for major accidents 

prediction. This framework considers both data uncertainty and model uncertainty. 

Modeling HBA with BN, HBA considers data uncertainty and BN uses adaptive models to 

address model uncertainty. Section 2 presents a detailed discussion on data uncertainty 

and the application of HBA in treating data uncertainty. Section 3 discusses model 

uncertainty, introducing Bayesian networks and their advantages over traditional 

techniques. Section 4 provides detailed descriptions of the proposed methodology. 

Section 5 demonstrates the application of the methodology using three different case 

studies from previous major accidents in the offshore oil and gas industry (i.e., ship-

iceberg collision, platform grounding and finally, fire and explosion). Section 6 concludes 

the paper.                  
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4.2  Data Uncertainty 

In the field of reliability and safety analysis, the information available is usually insufficient 

to perform the analysis, especially for the prediction of major accidents that involve 

significant consequences. Therefore, in order to get the best possible results and to 

support decision-making, there is a need to aggregate the relevant data from different 

regions, operational conditions and sometimes different sectors (e.g., chemical, nuclear 

or mining). HBA is a robust technique for the estimation process to treat source-to-source 

uncertainty among these data. It can be used to derive the probabilities of events 

contributing to an accident by modeling the aggregated failure /occurrence data for each 

event using a specific distribution with a parameter of interest (i.e., probability or failure 

rate). Then it provides a posterior predictive distribution for this parameter. This posterior 

distribution reflects the uncertainty among the data aggregated from different sources. 

The mean value of this distribution represents the appropriate value for the parameter of 

interest. In addition, this distribution can be used as an informative prior distribution when 

more case-specific data become available in order to update the probability. 

4.2.1 Hierarchical Bayesian Analysis 

HBA is one of the useful techniques in probabilistic risk analysis for cases with scarce 

data. HBA has the ability to incorporate a wide range of information in the estimation 

process, considering source-to-source variability in the aggregated dataset [6,10,24]. The 

debatable part of any Bayesian method is developing an appropriate prior distribution. In 

the past, the two-stage Bayesian and empirical Bayes theorems were commonly used in 

Probabilistic Risk Assessment (PRA) for developing priors. A multistage prior distribution 

is utilized in the hierarchical model, which is very complex to analyze numerically. 
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Recently, the availability of Markov Chain Monte Carlo (MCMC) based sampling software 

makes a fully hierarchical Bayes analysis tractable [7,9]. As data scarcity is a very 

common problem in PRA, in such cases there is a need to aggregate the data sets from 

a variety of sources. In the first step of HBA, a likelihood function with a parameter of 

interest ϕ will be specified for the data set (𝑦). Then an informative prior distribution can 

be developed for this parameter by considering that the parameter ϕ follows a generic 

distribution ϕ~ω0(ϕ|α, β) which represents the first stage prior. The hyper-parameters 

(α, β)  that characterize this prior are also uncertain and are considered to follow a 

diffusive or non-informative distribution 𝑔0(α, β), which is known as a second stage prior 

or hyper prior distribution [6].  

 

The data set (𝑦) along with Bayes theorem can be used to update the second stage prior 

in order to have a posterior distribution for α and β, i.e., 𝑔1(α, β|y). It is calculated using 

the two-dimensional form of Bayes theorem: 

 

𝑔1(α, β|y) =
𝑔0(α, β)  𝐿(𝑦|α, β)

∬ 𝑔0(α, β)  𝐿(𝑦|α, β)𝑑𝛼 𝑑𝛽
                                                                                     (4 − 1) 

 

 

where the likelihood function of α and β, i.e., 𝐿(𝑦|α, β), is achieved by averaging the 

likelihood function of ϕ, i.e., 𝐿(𝑦|ϕ) over all values of ϕ: 

 

𝐿(𝑦|α, β) =  ∫ 𝐿(𝑦|ϕ) ω0(ϕ|α, β)𝑑ϕ                                                                                            (4 − 2) 
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The posterior distribution of the hyper-parameters (α, β), i.e., 𝑔1(α, β|y) will be used to 

update the first stage prior ω0(ϕ|α, β) to obtain the posterior predictive 

distribution ω1(ϕ|y). This distribution is known as the population variability curve (PVC) 

and can be written as [6,9,13]: 

 

ω1(ϕ|y) =  ∬ ω0(ϕ|α, β) 𝑔1(α, β|y) 𝑑α dβ                                                                                  (4 − 3)           

 

This distribution represents the source–to-source uncertainty in ϕ and can be used as an 

informative prior distribution when more case-specific data become available: 

 

ω1(ϕ|𝑦∗, y) =
ω1(ϕ|y) 𝐿(y∗|ϕ)

∫ ω1(ϕ|y) 𝐿(y∗|ϕ)dϕ
                                                                                            (4 − 4) 

   

 

ω1(ϕ|𝑦∗, y)  ∝  ω1(ϕ|y)𝐿(y∗|ϕ)                                                                                                     (4 − 5)  

 

 

4.2.2 Inference algorithms 

In probabilistic risk analysis, an estimate of a component’s failure rate or failure probability 

is required. Such data are not always readily available. Therefore, PRA must use the 

available data and information as efficiently as possible [25]. Bayesian inference uses the 

available data to provide a distribution representing what is known about the element; this 

distribution is called the informative prior [9]. In Bayesian statistics, all the unknown 
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parameters are considered as random variables. For this reason, the prior distribution 

must be defined initially [6]. Specification of the prior distribution is important in Bayesian 

inference since it influences the posterior inference [7]. In the present study, an inference 

using conjugate prior distributions is used. These prior distributions have the useful 

property of resulting in posteriors of the same distributional family. Based on the type of 

the collected data, the distributional family is selected, where a likelihood function and its 

conjugate prior distribution can be specified to represent the data. For example: 

If there is a set of discrete count data, which represents the number of failures 𝑦 in 

exposure time 𝑡, then a Poisson likelihood function can be used to describe the data set 

with a parameter of interest , which represents the failure rate.  

𝐿(𝑦|λ) =
(𝜆𝑡)𝑦𝑒−𝜆𝑡

𝑦!
,          𝑦 = 0,1, ….                                                                                           (4 − 6) 

As a result, a gamma prior distribution for  with parameters (𝛼 𝑎𝑛𝑑 𝛽) is considered. 

Thus, in the Hierarchal Bayesian approach, the first stage prior for  denoted by 

ω0(ϕ|α, β) will be: 

ω0(λ|α, β) =
𝛽𝛼𝜆𝛼−1𝑒−𝛽𝜆

Γ(𝛼)
                                                                                                                (4 − 7) 

 

However, if there is a set of data expresses the number of successes 𝑦 over 𝑛 attempts, 

then a binomial likelihood function can be used to describe the data set with parameter 

of interest 𝑝, which represents the probability of success. 
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𝐿(𝑦|𝑝) = (
𝑛

𝑦
) 𝑝𝑦(1 − 𝑝)𝑛−𝑦,     0 ≤ 𝑦 ≤ 𝑛                                                                                   (4 − 8) 

 

 

As conjugate priors are used, a beta prior distribution for 𝑝 with parameters (𝑎 𝑎𝑛𝑑 𝑏) is 

considered. Thus in the Hierarchal Bayesian analysis, the first stage prior for 𝑝 denoted 

by ω0(ϕ|α, β) will be: 

 

ω0(𝑝|𝑎, 𝑏) =
𝛤(𝑎 + 𝑏)

𝛤(𝑎)𝛤(𝑏)
𝑝𝑎−1(1 − 𝑝)𝑏−1                                                                                       (4 − 9) 

 

Regarding the second stage prior 𝑔0(α, β) , usually diffusive or non-informative prior 

distributions are used in HBA for the hyper-parameters (𝛼, 𝛽)  or (𝑎, 𝑏), as a prior 

distribution that will not influence the posterior distribution must be specified. Such priors 

originated in a continuing quest to find a mathematical representation of complete 

uncertainty, and they are frequently called non-informative or vague prior distributions [9]. 

4.2.3 Illustrative Example for Uncertainty Treatment Using HBA 

 Assume that failure data collected for a certain device in the system are from 10 different 

sources. The failure data are represented as the number of failures (𝑦𝑖) in a specific 

number of demands (𝑁𝑖) as shown in Table 4.1. It is desirable to find one value out of 

these 10 to represent the failure probability of this device. In such cases the, average 

(i.e., traditional method) is usually used as the best estimator to represent the failure 
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probability of this device. In fact, this method may lead to significant variations in the 

results. HBA based on these data is able to provide a distribution for the failure probability. 

The mean of this distribution is the most appropriate value to represent the failure 

probability of this device. 

 

Table 4.1. Failure data collected from 10 sources [6] 

 

Source Number of 
failures (𝒚𝒊) 

Number of 
Trials (𝑵𝒊) 

1 0 140 

2 0 130 

3 0 130 

4 1 130 

5 2 100 

6 3 185 

7 3 175 

8 4 167 

9 5 151 

10 10 150 

 

 
The number of failures ( 𝑦𝑖)  can be modeled using binomial likelihood 𝐿(𝑦|𝑝)  with 

parameter of interest 𝑝 . This parameter is unknown and is assumed to follow beta 

distribution ω0(𝑝|𝑎, 𝑏), with hyper parameters 𝑎, 𝑏, as it is the conjugate prior for the 

binomial likelihood. An independent diffusive distribution 𝑔0(𝑎, 𝑏) is assumed for 𝑎, 𝑏. The 

posterior predictive distribution of 𝑝 , representing source to source uncertainty 

ω1(𝑝|𝑦), can be generated by sampling the hyper parameters 𝑎, 𝑏 from their joint posterior 

distribution 𝑔1(𝑎, 𝑏|𝑦) and then by sampling the posterior predictive distribution from the 

first stage prior beta distribution as follows: 

 

𝑦𝑖 ~ 𝑏𝑖𝑛 (𝑝𝑖, 𝑛𝑖) 

𝑝𝑖~ 𝑏𝑒𝑡𝑎 (𝑎, 𝑏) 
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𝑎~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001) 

𝑏~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001) 

 

This model is coded in OpenBUGS; a Markov Chain Monte Carlo software tool [9,24,25]. 

The OpenBUGS script used to analyze this problem is provided in Table 4.2. A posterior 

distribution for the probability of failure is obtained as shown in Figure 4.1, with a mean 

value that represents the appropriate value for the component failure probability, in 

addition to the 90% or 95% credible intervals. 

 
 

Table 4.2. OpenBUGS script for analyzing the failure probability 

𝐦𝐨𝐝𝐞𝐥 { 
# 𝐟𝐚𝐢𝐥𝐮𝐫𝐞 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 
𝐟𝐨𝐫 (𝐢 𝐢𝐧 𝟏 ∶  𝟏𝟎) { 
                𝐲[𝐢] ~𝐝𝐛𝐢𝐧(𝐩[𝐢], 𝐧[𝐢])  # 𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝 
                𝐩[𝐢] ~ 𝐝𝐛𝐞𝐭𝐚(𝐚, 𝐛)  # 𝐟𝐢𝐫𝐬𝐭 𝐬𝐭𝐚𝐠𝐞 𝐩𝐫𝐢𝐨𝐫 
                } 
𝐩. 𝐚𝐯𝐠 ~ 𝐝𝐛𝐞𝐭𝐚(𝐚, 𝐛)  #𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐯𝐞 𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫 𝐟𝐨𝐫 𝐩 
𝐛~𝐝𝐠𝐚𝐦𝐦𝐚(𝟎. 𝟎𝟎𝟎𝟏, 𝟎. 𝟎𝟎𝟎𝟏)  # 𝐡𝐲𝐩𝐞𝐫𝐩𝐫𝐢𝐨𝐫 
𝐚~𝐝𝐠𝐚𝐦𝐦𝐚(𝟎. 𝟎𝟎𝟎𝟏, 𝟎. 𝟎𝟎𝟎𝟏)  # 𝐡𝐲𝐩𝐞𝐫𝐩𝐫𝐢𝐨𝐫  
} 
𝐃𝐚𝐭𝐚    #𝐨𝐛𝐬𝐞𝐫𝐯𝐞𝐝 𝐝𝐚𝐭𝐚 
𝐥𝐢𝐬𝐭(𝐲 = 𝐜(𝟎, 𝟎, 𝟎, 𝟏, 𝟐, 𝟑, 𝟑, 𝟒, 𝟓, 𝟏𝟎), 
 𝐧 = 𝐜(𝟏𝟒𝟎, 𝟏𝟑𝟎, 𝟏𝟑𝟎, 𝟏𝟑𝟎, 𝟏𝟎𝟎, 𝟏𝟖𝟓, 𝟏𝟕𝟓, 𝟏𝟔𝟕, 𝟏𝟓𝟏, 𝟏𝟓𝟎)    

𝐍 = 𝟏𝟎) 
 

 
 
 

 
Figure 4.1. Predictive posterior distribution for the probability of failure 
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Assuming that a new data point becomes available (e.g., 𝑦 =7 failures on 𝑛= 125 trails), 

the probability of failure can be updated. This posterior predictive distribution can be 

considered as an informative prior distribution for the parameter of interest 𝑝 (probability 

of failure). As the informative distribution is beta conjugate prior, the updated distribution 

will be beta distribution with a mean of (𝑎𝑚 + 𝑦)/(𝑎𝑚 + 𝑏𝑚 + 𝑛), where 𝑎𝑚 and 𝑏𝑚 are the 

mean value of the joint posterior distributions of 𝑎, 𝑏. 

 

 
Table 4.3. Comparison results for the probability of failure 

Sample 
size 

Traditional 
method 

      
HBA 

Relative 
difference  

10 data 
point 
 
New 
data 

0.018478 
 
 

0.021889 

0.02085 
 
 

0.02645 

12.8% 
 
 

20.8% 

 
The relative difference is used as a measure to compare the two methods. The results in 

Table 4.3 show that the probability obtained using HBA is 12.8% higher than the one 

obtained using the average. When a new data point becomes available, the posterior 

predictive distribution obtained by HBA is used as an informative prior distribution to 

update the probability. The updated probability was 20% higher than the value obtained 

by re-averaging the data set. Therefore, if the average is used as an estimator to 

represent the failure probability of this device, it would result in a significant variation in 

the final results.   
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4.3  Model Uncertainty 

In any industrial field, it is imperative to keep the risk within the acceptable level. 

Implementing safety measures, escorted by a broadened risk assessment, is pivotal to 

prevent the occurrence of undesired events. Among several risk assessment 

methodologies such as quantitative risk analysis (QRA), probabilistic safety analysis 

(PSA) and optimal risk analysis (ORA), accident scenario analysis is a common task [17]. 

The fault tree, event tree, and bowtie are the most popular techniques used for accident 

scenario analysis.  

 

FT is a graphical deductive model used to identify and determine the potential causes of 

an undesired event, denoted as the top event [26]. The tree has a converging structure, 

in which the primary events (i.e., causes) are linked to the top event using logical gates. 

AND-gates and OR-gates are the most commonly used gates. FTs are not appropriate to 

analyze large systems, especially if the system presents redundant, common cause 

failures [1]. ET is an inductive model that has a diverging structure. This model identifies 

the possible outcomes of an initiating event occurrence followed by multiple failures of 

the safety barriers in the system [27]. FTs and ETs are known to be static; they are not 

able to use real-time information to update prior beliefs of primary events and safety 

barriers [1,17,18]. In addition, events in the FT and ET are assumed to be statistically 

independent, which is not usually a valid assumption [18]. BT is one of the best graphical 

techniques; it provides a complete qualitative and quantitative representation of the 

accident scenario beginning from root causes and ending with its consequences [17]. 

However, BT cannot be considered as a dynamic perspective because it suffers from the 
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same limitation of the above-mentioned tools, as bowtie is composed of fault and event 

trees [23]. These limitations introduce uncertainty in the models’ results, called model 

uncertainty. 

 

As a result, there is a need to develop dynamic risk analysis models, in order to be able 

to re-evaluate the risk by updating initial failure probabilities of events as new information 

becomes available during system operation [16]. The Bayesian Network (BN) is one of 

the ways that has been used in reconsidering prior failure probabilities, where the new 

data in the form of likelihood functions are used with Bayes’ theorem to update the priors. 

BNs are able to represent causal relationships among a set of random variables 

considering local dependencies [28]. 

 

4.3.1 Bayesian Network 

BN is a probabilistic inference tool that is used in the field of risk analysis and safety 

assessment for reasoning under uncertainty [29]. BN is a graphical technique consisting 

of nodes that characterize variables. These nodes are connected to each other by arcs 

that represent relations among the nodes and the strength of these relations specified by 

the conditional probability tables (CPTs) [1,30], Figure 4.2 presents a typical Bayesian 

network. BN is superior to the conventional techniques due to its ability to model multi-

state variables, common failure causes, and conditional dependencies, in addition to its 

probability updating ability given an evidence occurrence [1,15,17,23].  
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Figure 4.2. Simple example of Bayesian network with four nodes [31] 

  
The quantitative analysis performed by BN is based on the “d-separation” norm [28] and 

the chain rule [1]. Considering the conditional dependencies of variables, BN represents 

the joint probability distribution 𝑃(𝑈) of variables 𝑈 =  {𝐴1, . . . , 𝐴𝑛}, as:  

 

𝑃(𝑈) =  ∏ 𝑃(𝐴𝑖|𝑃𝑎(𝐴𝑖))                                                                                                           (4 − 10)𝑛
𝑖=1                 

 

 

where 𝑃𝑎(𝐴𝑖)  are the parents of variable (𝐴𝑖)  in the network, and 𝑃(𝑈)  reflects the 

properties of the BN [1,28,29]. Probability updating is the superior feature of BN [1]. Given 

new information (denoted as 𝐸), BN is able to update the prior beliefs of variables using 

Bayes’ theorem. The resulting posterior is written as: 

 

𝑃(𝑈|𝐸) =  
P(𝑈, 𝐸)

P(𝐸)
=  

P(𝑈, 𝐸)

∑ 𝑃(𝑈, 𝐸)𝑈
                                                                                                (4 − 11) 

 

Equation (4 –11) can be used for forward or backward analysis. In other words, it can be 

used to predict an unknown variable (inductive manner) or to update a known variable 
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given the occurrence of evidence (abductive manner). In the inductive analysis, the 

probability of an accident given the occurrence or nonoccurrence of a certain primary 

event is calculated, represented by the conditional probability form of 𝑃(𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡|𝑒𝑣𝑒𝑛𝑡), 

while in the abductive analysis, the probability of a certain event is estimated given the 

accident occurrence, using the conditional probability form of 𝑃(𝑒𝑣𝑒𝑛𝑡|𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡) [32]. 

 

4.4   Methodology 

Early prediction is very important to improve safety systems in order to prevent the 

occurrence of rare accidents, which is a challenging task in probabilistic risk analysis due 

to a dearth of information. The probability of an accident can be estimated using one of 

the modeling techniques such as ET or FT. These conventional techniques have some 

limitations, which introduce a degree of uncertainty in their results. The proposed 

methodology considers both data uncertainty and model uncertainty by modeling HBA 

with BN: HBA considers data uncertainty and BN uses adaptive models to handle model 

uncertainty. Figure 4.3 presents the methodology framework. The main methodology 

stages are described in sections 4.4.1 to 4.4.4. 

 

4.4.1 Stage 1: Mapping Fault Tree, Event Tree or Bowtie into BN 

After identifying the hazards, an accident scenario can be defined using one of the 

modeling tools (e.g., Event Tree, Fault Tree or Bowtie). Constructing ETs or FTs is the 

first step in the modeling process of an accident. These techniques are effectively used 

to identify all the possible root causes, consequences and relative safety barriers of an 
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accident scenario. Due to their static structures, they are unable to capture the variation 

of risks as changes in the system take place. In addition, events are assumed to be 

statistically independent, which is not usually a valid assumption and introduces 

uncertainty in the final results. All those limitations can be relaxed to a sufficient level by 

mapping the conventional technique into BN.  

 
The FT can be mapped into BN. The basic events, intermediate events and top event of 

the FT are converted to root nodes, intermediate nodes, and a leaf node, respectively. 

The nodes of BN are connected in the same way as the equivalent events in the FT. 

Numerically, basic event probabilities are assigned as prior probabilities to the 

corresponding root nodes. Conditional probability tables (CPTs) are assigned to each 

intermediate node as well as for the leaf node. CPTs illustrate how nodes are related to 

each other [17,18].  

 

ET can be converted to BN. The initial event and each safety barrier in ET are converted 

to corresponding nodes in BN, and all branches are converted to connecting arcs in BN, 

showing the relationship between nodes. Branching conditions in ET are represented by 

node states in CPT. The consequences are represented with only one node in BN, which 

has the same number of states as the number of consequences in the ET.  The 

probabilities of an initial event and safety barriers are considered as the prior probabilities 

for the corresponding nodes in the BN. Furthermore, CPTs are assigned for each node 

in the BN [21,22]. As the Bowtie is composed of Fault and Event trees, after developing 

the equivalent BNs of the FT and ET, they are connected to each other through the top 

event as a central node. Also, to take into account the effect of the nonoccurrence of the 
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top event on the consequence node, the top event node must be connected to the 

consequence node. Another state must be added to the consequence node states to 

indicate the non-occurrence of the top event [17].  

 

4.4.2 Stage 2: Data Collection 

Failure or event occurrence data for each node will be collected from different sources 

such as different regions, operational conditions, and sometimes different sectors (e.g., 

chemical, nuclear or mining) or from different experts in the case of using experts’ 

judgment. Experts’ judgment can be a very helpful source of data for newly designed 

installations or processes for which no experimental observations are possible [33]. 

   

4.4.3 Stage 3: Hierarchical Bayesian Analysis for Treating Data Uncertainty 

HBA is used to derive the probability for each event’s node. (This step was clearly 

described in the illustrative example in section 4.2.3). Data relevant to each node are 

collected from various sources. Based on the type of the aggregated data, a likelihood 

function is specified for each data set. For instance, if the number of failures is collected 

in a certain period of time, a Poisson likelihood function can be used to model the data 

set. Then the hierarchical model will be written as: 

 

𝑥𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖, 𝑡𝑖)                    likelihood function 

𝜆𝑖 ~ 𝑔𝑎𝑚𝑚𝑎 (𝛼, 𝛽)                      first stage conjugate prior 

𝛼~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)   diffusive hyper prior  

𝛽~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)  diffusive hyper prior 
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If the time at which a random event occurs (i.e., time to failure) is observed, then an 

exponential likelihood function can be used to model the data set and the hierarchical 

model will be written as: 

 

𝑡𝑖 ~ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆𝑖)                   likelihood function  

𝜆 𝑖~ 𝑔𝑎𝑚𝑚𝑎 (𝛼, 𝛽)                      first stage conjugate prior     

𝛼~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)   diffusive hyper prior  

𝛽~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)   diffusive hyper prior   

 

 

HBA provides a posterior distribution for the parameter of interest (i.e. probability or failure 

rate) with mean and credible intervals. The mean value represents the most appropriate 

value for the parameter of interest. This distribution represents the source–to-source 

uncertainty in the parameter and can be used as an informative prior distribution when 

more case-specific data become available. 
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Figure 4.3. Proposed methodology framework 
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4.4.4 Stage 4: Bayesian Network Analysis for Accident Prediction and Updating 

After obtaining all event probabilities, in this stage, BN will be used for two purposes. First, 

the events’ probability will be used as a prior belief to predict the probability of an accident. 

Second, the events’ probability will be updated given the accident occurrence through the 

process of probability propagation or reasoning. In addition, BN has the possibility of 

including new evidence in the system at any stage. Once new data for a certain node 

become available, the node probability can be updated. First, the posterior distribution 

obtained from HBA will be considered as an informative prior probability distribution. This 

informative prior distribution can be used to update the node probability. Once the node 

is updated, BN will update the whole model using the probability reasoning process.     

 

4.5  Application 

The application of the proposed methodology is demonstrated using the following three 

cases of major accidents in the offshore oil and gas industry. 

4.5.1 First case: Ship-iceberg Collision 

Recently, human activities in the Arctic region have increased rapidly due to exploration 

and development of oil and gas there. Ship-iceberg collision is one of the common 

accidents that might increase due to increasing human activities in this harsh environment 

[34]. Therefore, developing shipping safety plans and implementing more risk analysis is 

required for scenarios for which no historical data is available in this harsh area. This 

study attempts to address this issue by applying the proposed methodology described in 

section 4. The following FT in Figure 4.4 represents the possible causes that can lead to 

ship-iceberg collision [35-38]. The causes of ship-iceberg collision as a potential accident 
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in a marine environment are more complex and the FT in Figure 4.4 is developed only to 

illustrate the application of the proposed methodology. 

 
Figure 4.4. Fault tree for ship-iceberg collision 

 

To overcome the limitation of its static structure, FT was mapped to BN as shown in 

Figure 4.5, assuming that the annual number of occurrences on demand for each root 

node was collected from different sources, as shown in Table 4.4. The number of 

demands represents the annual number of times an iceberg is present in the fairway. 
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Figure 4.5. BN for ship-iceberg collision 

 
 

Table 4.4. Basic events failure data from different sources 

 
Sources 

 
Demands 
     Ni [15]  

 
Operator 
failure 

 
Automatic 
system 
failure 

 
Propulsion 
failure 

 
Steering 
failure 

 
Equipment 
failure 

 
Rough 
weather 

1 10 1 0 1 1 1 8 

2 15 2 1 0 2 0 11 

3 23 2 2 2 2 3 20 

4 26 3 2 3 3 2 15 

5 38 5 1 4 4 5 17 

6 31 4 2 2 2 4 30 

7 25 3 0 1 2 1 22 

8 28 4 1 3 1 2 17 

9 37 4 2 4 5 4 30 

10 47 6 3 5 4 5 35 

 

Treating the data given in Table 4.4 with HBA as described in Section 4.3 will provide an 

occurrence probability distribution (i.e., predictive posterior distribution for each node) as 

shown in Figure 4.6. The mean value of this distribution represents the appropriate value 

for the probability of failure/occurrence of the node (column 1 in Table 4.5). After obtaining 
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the probability of occurrence for the root node, it will be used as a prior belief in BN to 

predict the probability of an accident, as shown in Figure 4.7. 

 

 
  

Figure 4.6. Posterior predictive distributions for the basic events 

 

The collision probability obtained from the previous analysis can be used to predict the 

expected number of collisions in the next time interval. For instance, if 50 icebergs are 

expected in the fairway in the next time interval, then the number of expected collisions 

can be estimated using the form 𝑌𝑖 = (𝑁𝑖 × 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦). Considering 𝑁𝑖 = 50, 

12 collisions are expected in the next time interval. In addition, the occurrence probability 

of the root nodes can be updated given the occurrence of an accident. This is known as 

abductive reasoning, which is one of BN’s advantages over FTs. As shown in Table 4.5 

(column 2), the occurrence probability of the root nodes is updated given the probability 
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of having a collision equal to 1. In fact, abductive reasoning is very helpful to identify the 

critical events, which make the most contribution to the accident occurrence. Also, it helps 

to detect the combination of non-critical events (i.e., weak links) that may lead to an 

accident. It is clear from Figure 4.8 that when abductive reasoning was performed, the 

rough weather event contributed the most to the accident occurrence. At the same time, 

the combination of propulsion system failure and steering failure contributes significantly 

to the accident.   

 

  

 
Figure 4.7. BN for ship-iceberg collision 

  
 
Once new data become available, the occurrence probability for a certain node can be 

updated. The posterior probability distribution obtained from HBA will be considered as 

an informative prior distribution for the parameter of interest 𝑃  (i.e., probability of 

occurrence). Assume that a new data point is available (in the form of the number of 
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occurrences 𝑦 on demand 𝑛) for a propulsion system failure event. From the previous 

HBA, as the informative distribution was beta conjugate prior, the updated distribution will 

be beta distribution with a mean of (𝑎𝑚 + 𝑦)/(𝑎𝑚 + 𝑏𝑚 + 𝑛), where 𝑎𝑚 and 𝑏𝑚 are the 

mean value of a, b hyper parameters obtained from their joint posterior distribution 

generated by 𝑂𝑝𝑒𝑛𝐵𝑈𝐺𝑆. The mean value of the updated distribution, which is 0.08722, 

represents the updated probability for a propulsion system failure node. By using this 

updated node in the previous BN, the prior probability for the leaf node is calculated to be 

0.2360. Hence, an abductive reasoning was performed given the accident occurrence, 

yielding the updated nodes probabilities in Table 4.5 (column 4). 

 

 
Figure 4.8. Abductive reasoning for ship-iceberg collision 
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Table 4.5. Comparison of prior and posterior nodes’ probabilities in different modeling steps 

 First modeling Modeling with new data 
for one node 

Modeling with new data 
for all nodes 

 
Node 

 
Prior  

 
Posterior  

 
Prior 
 

 
Posterior  

 
Prior  

 
Posterior  

Operator 
failure 

0.1236 0.1416 0.1236 0.1418 0.1244 0.1422 

Automatic 
system failure 

0.0516 0.0712 0.0516 0.0714 0.0547 0.0740 

Propulsion 
system failure 

0.0897 0.3768 0.0872 0.3695 0.0872 0.3474 

Steering failure 
 

0.0934 0.3925 0.0934 0.3960 0.0920 0.3667 

Equipment 
failure 

0.0965 0.3166 0.0965 0.3192 0.0970 0.3636 

Rough weather 0.7331 0.7981 0.7331 0.7988 0.9284 0.9495 

Collision 
 
0.2380 
 

1.0000 0.2360 1.0000 0.2509 1.0000 

 
 

Considering that there were new data (in the form of the number of occurrences 𝑦 on 

demand 𝑛) available for all the nodes, the occurrence probability for each node could be 

updated. The posterior probability distribution obtained for each node from the HBA is 

considered as an informative prior distribution for the parameter of interest P (i.e., 

probability of occurrence). As this informative distribution was beta conjugate prior, the 

updated distribution will be a beta distribution with a mean of (𝑎𝑚 + 𝑦)/(𝑎𝑚 + 𝑏𝑚 +

𝑛). 𝑎𝑚, 𝑏𝑚 are the mean values of a, b hyper parameters and are obtained from their joint 

posterior distribution. The mean value of the updated distribution for each node 

represents the updated probability, which will be used in BN as a prior probability as 

shown in Table 4.5 (column 5). The prior probability for the leaf node is calculated to be 

0.2509. Additionally, an abductive reasoning was performed given the accident 

occurrence yielding the updated nodes probabilities in column 6. 
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4.5.2 Second case: platform grounding

Moving a rig from one location to another in the sea has many hazards; it is a very risky 

mission. Many factors can make a tow mission dangerous, such as human error, rough 

weather, loss of tow line and tow vessel engine failure. These factors may also lead to a 

total loss of the rig. When a tow mission takes place in rough weather, several 

consequences may ensue. Based on the understood of the historical incidents cases in 

the Refs. [39,40] of grounded platforms, the ET shown in Figure 4.9 is constructed. It 

represents the possible consequences that might occur when there is a tow mission in 

poor weather followed by multi safety barrier failures. A BN is constructed for the accident 

scenario, where the ET is converted to BN as shown in Figure 4.10. 

 

 
 

  
 

 
Figure 4.9. Event tree for grounding during tow mission 

 
Data provided in Table 4.6 are experts’ opinions data. The number of occurrences for the 

initial event and for each safety barrier was modeled hierarchically to obtain the posterior 
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predictive distribution for the probability of occurrence as shown in Figure 4.11. These will 

be used as informative priors once new data become available, in order to update the 

probabilities. The first column in Table 4.7 provides the mean values for those posterior 

distributions which represent the occurrence probabilities. These probabilities will be used 

as a prior belief in BN to predict the consequence probabilities as shown in Figure 4.12. 

 

 
Figure 4.10. BN for platform grounding 

 

 
Table 4.6. Initial event and safety barriers data from different sources 

S
o

u
rc

e
s

 

N
u

m
b

e
r o

f to
w

 

m
is

s
io

n
s

 
N

i 

S
e
v

e
re

 w
e
a
th

e
r 

d
u

rin
g

 to
w

 

 T
o

w
 e

q
u

ip
m

e
n

t 

in
s
p

e
c
tio

n
 

T
o

w
 v

e
s
s

e
ls

 
re

d
u

n
d

a
n

c
y

 

P
la

tfo
rm

 

S
ta

b
ility

 

E
v
a

c
u

a
tio

n
/ 

e
m

e
rg

e
n

c
y
 

re
s
p

o
n

s
e

 

1 5 3 1 0 0 2 

2 8 7 3 3 2 5 

3 6 4 0 1 0 2 

4 4 3 1 1 0 2 

5 9 6 3 2 1 4 

6 3 2 0 0 0 2 

7 8 6 2 3 2 5 

8 7 5 2 2 1 3 

9 5 2 0 0 0 1 

10 4 3 1 0 0 2 
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Figure 4.11. Posterior predictive distributions for the initial event and safety barriers 

 

 
 

Figure 4.12. BN for platform grounding 

 
By performing abductive reasoning, the occurrence probability of the initial event and 

safety barriers is updated as shown in Table 4.7 (column 2). In addition, the critical events 
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are identified as well as the weak links that contribute to the accident occurrence. As 

shown in Figure 4.13, rough weather and platform instability are the main events that 

contribute to accident occurrence.    

 
 

Figure 4.13. Abductive reasoning for platform grounding 

 
 

Table 4.7. Comparison between prior and posterior nodes’ probabilities in different modeling steps 

 First modeling Modeling with new data for all nodes 

 
Prior  

 
Posterior  

 
Prior  

 
Posterior  

Severe weather during 
tow mission 

0.6894 0.7329 0.6955 0.7522 

Tow equipment 
inspection 

0.3045 0.4020 0.2993 0.3403 

Tow vessel redundancy  0.2873 0.3241 0.3133 0.3557 
 

Platform Stability  0.1490 0.1701 0.1603 0.1846 
 

Evacuation and 
emergency response  

0.6771 0.7297 0.6644 0.7222 

Safe 0.2070 0.0000 0.2046 0.0000 
 

Near miss/control loss 
is avoided  

0.1377 0.0000 0.1526 0.0000 

Loss of directional 
control/deck flooding  

0.05381 0.0000 0.05715 0.0000 

Platform 
fluctuate/injuries  

0.1969 0.0000 0.1867 0.0000 

Grounding/ 
capsize/fatalities  

0.0939 1.0000 0.0943 1.0000 
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Once new data become available for any node, the occurrence probability for the node 

can be updated by using the informative prior distribution obtained from HBA. The mean 

value of the updated distribution for each node represents the updated node probability, 

which will be used in BN as a prior probability as shown in Table 4.7 (Column 3). 

Subsequently, an abductive reasoning was performed given the accident occurrence, 

yielding the updated nodes probabilities in column 4. 

 
 

4.5.3 Third case: Fire and explosion 

Fires and explosions are the most significant causes of harm and damage to equipment. 

Especially in the offshore oil and gas sector, such disasters threaten human lives and 

might be very costly as there is a high concentration of equipment in a very close space 

[41]. For instance, the Piper Alpha disaster that killed 167 workers on 6 July 1988 off the 

coast of Aberdeen is deemed the world's deadliest rig accident [42]. As a result of a 

preventive maintenance procedure, condensate gas leaked out and ignited while firewalls 

that would have resisted fire failed to cope with the ensuing gas explosion. The following 

BT in Figure 4.14 illustrates the common root causes and possible accident scenario that 

can lead to such fire and explosion accidents. It has a simple structure to demonstrate 

the application of the proposed methodology. To overcome its limitation, BT is mapped 

into BN as shown in Figure 4.15. 
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Figure 4.14. Bowtie modeling for platform fire and explosion 

 

 
Figure 4.15. BN for platform fire and explosion 

 

To demonstrate the methodology,10 data points for the number of occurrences of each 

root node in a certain operation time are assumed, as shown in Table 4.8. In addition, the 
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number of successes for each safety barrier node out of the number of leaks Ni was 

assumed. 

 
Table 4.8. The number of occurrence of root nodes, safety barriers nodes 
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The number of occurrences for each root node 𝑥𝑖 was modeled using Poisson distribution 

with a parameter of interest 𝜆. The parameter 𝜆 is unknown and is assumed to follow the 

conjugate prior gamma distribution with hyperparameters α, β. An independent diffusive 

distribution is assumed for α, β. As a result, a posterior predictive distribution was 

generated for the occurrence rate for each root node as shown in Figure 4.16.  

 

𝑥𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖, 𝑡𝑖)                      likelihood function 

𝜆 𝑖~ 𝑔𝑎𝑚𝑚𝑎 (𝛼, 𝛽)                        first stage conjugate prior 

𝛼~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)     diffusive hyper prior 

𝛽~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)     diffusive hyper prior 
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Figure 4.16. Posterior predictive distributions for the basic events 

 

The mean value of the posterior predictive distribution represents the most appropriate 

value of the occurrence rate 𝜆 for the root node. Additionally, the number of successes 

for each safety barrier 𝑦𝑖, is modeled using binomial distribution with parameter of interest 

𝑝, where 𝑝 is an unknown parameter and is assumed to follow the conjugate prior beta 

distribution with hyper parameters 𝑎, 𝑏 . Also, an independent diffusive distribution is 

assumed for 𝑎, 𝑏. 

𝑦𝑖 ~ 𝑏𝑖𝑛 (𝑝𝑖, 𝑛𝑖)                                 likelihood function 

𝑝𝑖~ 𝑏𝑒𝑡𝑎 (𝑎, 𝑏)                                  first stage conjugate prior 

𝑎~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)       diffusive hyper prior 

𝑏~ 𝑔𝑎𝑚𝑚𝑎 (0.0001, 0.0001)       diffusive hyper prior 

 

Figure 4.17 represents the posterior predictive distribution generated for each safety 

barrier occurrence probability. The mean value of the posterior predictive distribution 

represents the precise value of the safety barrier occurrence probability. These 
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probabilities will be used as a prior belief in BN to predict the pivotal node and 

consequence probabilities as shown in Figure 4.18. 

 

 
Figure 4.17. Posterior predictive distribution for the safety barriers’ occurrence probabilities 

 
 

 
 

Figure 4.18. BN for platform fire and explosion 



85 
 
 

By performing abductive reasoning, the occurrence probability for all the nodes is updated 

as shown in Table 4.9 (column 2). In addition, it is easy to identify the critical events and 

weak links that contribute to the accident occurrence, as shown in Figure 4.19, which 

helps to develop the preventative safety barriers in the system.    

 

 
 

Figure 4.19. Abductive reasoning for platform fire and explosion 
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Table 4.9. Comparison of prior and posterior nodes’ probabilities in different modeling steps 

 First modeling Modeling with new data for all nodes 

 
Prior  

 
Posterior  

 
Prior  

 
Posterior  

Poor blanking job 
 

0.6197 0.6221 0.6097 0.6116 

Communication failure 
 

0.5281 0.5311 0.5051 0.5076 

Poor inspection 
 

0.5391 0.5420 0.5162 0.5186 

Primary pump fails 
 

0.7602 0.7617 0.7263 0.7276 

Gas leak 0.0707 0.0768 0.0583 0.0631 
 

Ignition avoided 
 

0.5916 0.6203 0.5887 0.6163 

Spill size reduction 
 

0.7027 0.7296 0.7100 0.7356 

Escalation prevention 
  

0.6781 0.7057 0.7125 0.7380 

Evacuation 
 

0.8414 0.8609 0.8531 0.8708 

Gas dispersion  
 

0.0387 0.0000 0.0317 0.0000 

Primary explosion  
 

0.0203 0.0000 0.0170 0.0000 

Extensive fire/ 
structural damage  

0.0089 0.0000 0.0075 0.0000 

Massive explosion 
/fireball/rig total loss  

0.0023 0.0000 0.0017 0.0000 

Total loss of rig/ 
fatalities  

0.00043 1.0000 0.00029 1.0000 

 
 

It is assumed that when new data become available for all the nodes, the occurrence 

probability for each node is updated using the informative prior distribution obtained from 

HBA. The mean value of the updated distribution for each node represents the updated 

node probability which is used in BN as a prior probability as shown in Table 4.9 (column 

3). The abductive reasoning was performed given the accident occurrence yielding the 

updated nodes probabilities in column 4. 
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4.6  Conclusions 

The present work has illustrated that HBA is a powerful tool for handling data uncertainty. 

Whenever there are different values representing the same parameter, HBA is able to 

incorporate all these values and obtain a distribution for that parameter with mean and 

credible intervals. The mean of the obtained distribution represents the most appropriate 

value for that parameter. HBA is presented as a beneficial technique to overcome one of 

the most challenging problems in risk analysis of major accidents, which is data scarcity. 

This work has shown the effectiveness of HBA in deriving the probabilities of an accident’s 

contributing events, for which a dearth of data is available. Incorporating these 

probabilities via FT, ET or BT in order to obtain the frequency of a major accident may 

introduce a bias in the results. These conventional modeling techniques are still unable 

to handle the uncertainty arising from the model due to some limitation such as events’ 

dependencies and probability updating. These limitations can be relaxed, by mapping the 

conventional technique into BN.  

 

With its ability to update probabilities and represent the dependencies of events, BN is 

able to overcome conventional techniques’ limitations and reduce model uncertainty. The 

proposed methodology in this paper used HBA along with BN in order to consider both 

data uncertainty and model uncertainty in the estimation process of a major accident. 

HBA is used to consider data uncertainty and BN is used as an adaptive model to handle 

model uncertainty. The application of the proposed methodology is demonstrated using 

three cases of offshore accidents. In each case, a different conventional technique is used 

in order to demonstrate the flexibility of this methodology to be applied to various models. 



88 
 
 

This work provides a unique methodology that can be used as a dynamic tool for modeling 

major accidents using sparse data.  

 

As a further step, it is suggested that future research could use experts’ judgments as a 

source of data along with the presented methodology. Experts’ judgments can be a very 

helpful source of data for newly designed installations or processes for which no 

experimental observations are possible. It can also be a good source in cases when it is 

difficult or expensive to perform safety measures, especially in a harsh environment. The 

presented methodology is the best tool to deal with this kind of data.   
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5 Summary, Conclusions and Further Work 

 

5.1 Summary 

This study demonstrates the importance of identifying and considering the uncertainty 

that associated with risk analysis of major accidents. There is always a lack of information 

about the accident’s contributing events as they usually have a low frequency, in addition 

to the lack of understanding and modeling of the accident scenarios. Therefore, there are 

different types of uncertainties associated with the prediction analysis of rare events.  

The first part of this study treated data uncertainty; as the information available about the 

causes of the accident is scarce, relevant data can be collected from different regional 

and global sources. Therefore, to treat the uncertainty that arises in the collected data, 

the methodology developed in this part uses Hierarchical Bayesian Analysis (HBA) to 

model the collected data for each event by generating a probability distribution with a 

mean value that represents the precise value for the event’s parameter. Events’ 

probabilities obtained by HBA are modeled through Bowtie (BT) analysis in order to obtain 

the probability of a major accident in the case study. 

In the second part of this thesis, the proposed methodology has been improved by using 

HBA along with a Bayesian Network (BN) in order to consider both data uncertainty and 

model uncertainty in the estimation process of a major accident. HBA is used to consider 

data uncertainty and BN is used as an adaptive model to handle model uncertainty. The 

application of the proposed methodology is demonstrated using three cases of offshore 

accidents. In each case, a different conventional technique is used in order to 
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demonstrate the flexibility of this methodology to be applied to various models. Finally, 

this work provides a unique methodology that can be used as a dynamic tool for modeling 

major accidents using sparse data.  

 

5.2 Conclusion 

The presented work has illustrated that HBA is a powerful tool for handling data 

uncertainty. Whenever there are different values representing the same parameter, HBA 

is able to incorporate all these values and obtain a distribution for that parameter with 

mean and credible intervals. The mean of the obtained distribution represents the most 

appropriate value for that parameter. HBA is presented as a beneficial technique to 

overcome one of the most challenging problems in risk analysis of major accidents, which 

is data scarcity. This work has shown the effectiveness of HBA in deriving the probabilities 

for the accident’s contributing events, for which a few or no data is available. In similar 

situations, the average value is mainly used as the best estimator to represent an event’s 

parameter value. The relative difference is used as evidence of the effectiveness of the 

developed methodology. Results demonstrate that when dealing with sparse data, the 

new methodology effectively addresses data uncertainty, in addition to its ability to update 

events’ probabilities separately or together when new data become available. 

 

Incorporating the resulting probabilities via Fault tree, Event tree or Bowtie in order to 

obtain the frequency of a major accident may introduce another type of bias in the results. 

These conventional modeling techniques are still unable to handle the uncertainty arising 

from the model due to some limitations such as events’ dependencies and probability 
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updating. These limitations have been relaxed, by mapping the conventional technique 

into BN. BN was able to reduce model uncertainty, with its ability to update probabilities 

and represent the dependencies of events. 

The novelty of this work is the integration of HBA along with BN, which generates a 

powerful tool able to consider both data uncertainty and model uncertainty. The main 

results and conclusions of this study can be summarized as follows:  

 

➢ The ability to cope with data scarcity problem, as the present study provides 

the analyst with the ability to use various types of information and incorporate 

them. 

➢ Data uncertainty is handled. The present study demonstrates the effectiveness 

of HBA over the traditional methods in deriving events’ probabilities for which 

scarce data are available. 

➢ This work provides the analyst with the effective feature of HBA, its ability to 

update events’ probabilities separately or together, in the light of new 

information. 

➢ The developed methodology introduced in this study provides a powerful tool 

by using HBA along with BN. This enables the analyst to use the outstanding 

modeling advantages of BN such as probability updating and the consideration 

of conditional dependent failures. 

➢ Integrating HBA with BN handles both data and model uncertainty 

simultaneously. 
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5.3 Further work 

The present work attempts to introduce new concepts in dealing with data and model 

uncertainty in the field of safety and risk analysis in the oil and gas industries. This work 

can be extended as suggested below: 

➢ In this study, a conjugate families distributions (e.g., Poisson-Gamma or Beta-

Binomial), are used for priors and likelihood functions. However, it is suggested 

that non-conjugate probability distributions can be considered in future studies. 

 

➢ The probabilistic models (i.e., FT, ET, and BT) that constructed in this work to 

illustrate accidents’ scenarios, include only the main causes, safety barriers, 

and consequences. These models can be more complex in future studies, 

considering all the potential causes of the accident. 

   

➢ This work can be improved by a further illustration of the sequential 

dependencies between events; for instance, by considering multi-state events 

in the system.  

 

➢ In addition, it is suggested that future study could integrate the developed 

methodology with the experts’ judgments elicitation process. This would be 

beneficial to use in harsh environments, where there are newly designed 

installations and no experimental observations are possible, as it is usually 

difficult or expensive to perform safety measures. The presented methodology 

is a good tool to deal with this kind of multi- source data. 


