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Abstract 

Although hydrostatic pressure is one of the most prominent abiotic drivers of faunal 

bathymetric ranges, it is one of the least understood. As climate change drives warmer 

temperatures, it is hypothesized that benthic communities may undergo vertical shifts 

from shallow to deeper depths. Expanding our understanding of the impact of pressure on 

marine organisms is therefore important. Here, I first synthesized and analyzed >130 

studies reporting survival of >260 shallow and deep-sea taxa after exposure to non-native 

pressure. Many deep-sea species survived and bred under low or atmospheric pressure 

(slightly below sea surface depth), especially those from higher latitudes, and tolerance in 

adults was influenced by phylum. Next, I used high-pressure chambers to test the 

response of several subtidal echinoderms to various pressure levels, durations and pH 

conditions. Responses to acute pressure shifts suggest that deep-sea species are relatively 

tolerant to depressurization, but shallow-water species are less likely to maintain critical 

behaviours if moved to pressures beyond their current bathymetric ranges. 

	  



	 ii	

Acknowledgements 

I would like to thank my adviser Annie Mercier for her invaluable support and 

encouragement during this career step. She truly has contributed significantly to the 

foundation and development of my scientific career and I appreciate her unconditional 

patience as a mentor. Special acknowledgements go to Jean-François Hamel, for his 

continuous encouragement and collaboration. 

There are many other people I would like to extend my gratitude whom have 

enhanced the quality of my research and overall graduate experience. This work would 

not be possible without CDRF and the accommodating management of Stephen Hills and 

the immensely helpful technical support of Gordon Nash. I thank my committee 

members, Suzanne Dufour and Bill Driedzic, for their constructive contributions towards 

my research and to Field Services (Department of Ocean Sciences, Memorial University) 

for specimen collections. I am thankful for the experience of participating on a deep-sea 

trawl facilitated by the Department of Fisheries and Oceans Canada and the Canadian 

Coast Guard. My research was funded by grants awarded to Annie Mercier by NSERC 

and CFI. Funding from the School of Graduate Studies, the Faculty of Science and the 

Department of Ocean Science allowed me the opportunity to present at the following 

conferences: CSEE, IMCC and ASLO. Furthermore I would like to thank the whole 

Mercier Lab: Emy Montgomery, Camilla Parzanini, Matt Osse, Bruno Gianasi, Jiamin 

Sun and Leah Robertson.  

I sincerely appreciate the professional support and friendship of Emy 

Montgomery and Camilla Parzanini. Also I would like to thank Jacquelyn Saturno for her 

encouragement, sacrifices and commitment. Lastly, I want to express my gratitude to 



	 iii	

Melissa, Dustin, Veronica, Carlo, Chloe and Lucciano Ammendolia for always being 

there to celebrate my accomplishments and for not disowning me during downs of this 

educational expedition; they are my inspiration for pushing the bar at each stage in my 

career. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
	
	



	 iv	

Table of Contents 
 

Abstract	 i	
Acknowledgements	 ii	
Table	of	Contents	 iv	
List	of	Tables	 vii	
List	of	Figures	 viii	
Co-Authorship	Statement	 xi	
Chapter	1:	General	Introduction	 1	
1.1	Pressure	in	the	marine	environment	 2	
1.2	Colonization	of	high-pressure	environments	 4	
1.3	Methodological	considerations	in	the	study	of	pressure	exposure	 5	
1.4	Interactions	of	pressure	in	an	acidifying	ocean	 7	
1.5	Research	gaps	 8	
1.6	Focal	organisms	 10	
1.7	Goals	of	the	research	and	chapter	structure	 11	
1.8	References	 13	
Chapter	2:	Vertical	migrations	in	the	ocean	and	the	deep	source-sink	hypotheses:	
insights	from	pressure	tolerance	investigations	 20	
2.1	Abstract	 21	
2.2	Background	and	Introduction	 22	
2.3	Methods	 32	
2.3.1	Data	collection	and	treatment	 32	
2.3.2	Statistical	analysis	 34	

2.4	Results	 36	
2.4.1	Adults	 36	

2.4.1.1 Survival time of deep-sea adults at atmospheric pressure	 36	
2.4.1.2 Pressure tolerance experiments	 40	

2.4.2	Larvae	 43	
2.4.2.1 Survival time of deep-sea larvae at atmospheric pressure	 43	
2.4.2.2 Pressure tolerance experiments	 46	

2.5	Discussion	 49	
2.5.1	Pressure	tolerance	of	adults	 50	
2.5.2	Pressure	tolerance	of	early	life	stages	 56	
2.5.3	General	conclusions	 59	

2.6	Acknowledgements	 60	
2.7	References	 61	



	 v	

2.8	Tables	 75	
2.9	Figures	 81	
Chapter	3:	Life	under	pressure:	an	experimental	study	of	behavioural	responses	to	
hydrostatic	pressure	and	other	stressors	in	echinoderms	 87	
3.1	Abstract	 88	
3.2	Introduction	 89	
3.3	Methods	 95	
3.3.1	Collection	and	maintenance	 95	
3.3.2	Equipment	and	experimental	conditions	 96	
3.3.3	Response	to	pressure	 97	
3.3.4	Combined	response	to	pressure	and	pH	 100	
3.3.5	Response	metrics	 101	

3.3.5.1 Body metrics and weight variations in all species	 101	
3.3.5.2 Righting times in S. droebachiensis and L. polaris	 101	
3.3.5.3 Ingestion index in S. droebachiensis	 102	
3.3.5.4 Ingestion index in L. polaris	 103	
3.3.5.5 Final feeding position in L. polaris	 104	
3.3.5.6 Post-trial and post-recovery in L. polaris	 105	
3.3.5.7 Health indices in C. frondosa	 105	

3.3.6	Statistical	analysis	 107	
3.4	Results	 108	
3.4.1	Response	to	pressure	 108	

3.4.1.1 Strongylocentrotus droebachiensis	 108	
3.4.1.2 Leptasterias polaris	 109	
3.4.1.3 Cucumaria frondosa	 111	

3.4.2	Combined	response	to	pressure	and	pH	 114	
3.4.2.1 Strongylocentrotus droebachiensis	 114	
3.4.2.2 Leptasterias polaris	 115	
3.4.2.3 Cucumaria frondosa	 116	

3.5	Discussion	 117	
3.5.1	Response	to	pressure	 117	
3.5.2	Combined	response	to	pressure	and	pH	 123	

3.6	Acknowledgements	 127	
3.7	References	 128	
3.8	Tables	 136	
3.9	Figures	 143	
Chapter	4:	General	Conclusions	 153	
4.1	Thesis	summary	 154	
4.2	Future	directions	 157	
4.3	References	 160	
Appendices	 163	



	 vi	

Appendix	A:	Datasets	 164	
Appendix	B:	Supplementary	experiment	for	S.	droebachiensis	 285	
Appendix	C:	Statistical	results	 287	
  



	 vii	

 
List of Tables  

Table 2-1: List of variables collected from the literature with their definitions and the 
scales/categories that were compared. ............................................................................... 75 
 
Table 2-2: Summary of variables used in FAMD analyses and results from each test. .... 78 
 
Table 3-1 Bathymetric ranges (m) of focal species (rounded to the nearest hundred; e.g. 
0.1 = 0 MPa = atmospheric pressure) with corresponding pressure tested. Note that for all 
three focal species the maximum depth of occurrence is based on only one record that 
met the search criteria described in the methods. The references used came from studies 
that conducted multi-species surveys by reputable institutions. ..................................... 136 
 
Table 3-2: Summary of experiments, including trial conditions and response variables 
measured. ......................................................................................................................... 137 
 
Table 3-3: Summary of results from 24-h, 72-h and 216-h experiments under ambient pH 
conditions, showing whether they are consistent with tolerance or acclimation to pressure 
by three different species. Combinations that were not tested are indicated with NT. ... 138 
 
Table 3-4: Summary of results from 24-h exposure to atmospheric and medium pressure 
(within natural depth range) under either acidified or ambient pH conditions, showing 
whether they are consistent with tolerance to pressure alone, acidification alone, and 
pressure-acidification combination. ................................................................................ 139 
 
Table 3-5: Survival rates (%; post-trial and post-recovery) associated with the 24-h, 72-h 
and 216-h pressure exposure trials under all pH conditions. Variable that were not tested 
are indicated with NT. ..................................................................................................... 140 
 
Table 3-6: Proportion of sea stars L. polaris found in the various feeding positions after 
exposure to three pressure levels under either ambient or low pH. Pressure did not affect 
the final feeding positions of L. polaris after 24-h (H=2.47, df=2, p=0.291). In two-way 
comparisons, there was no significant effect of pressure (F1, 44 =1.02, p=0.751) or pH on 
the final positions (F1, 44 = 0.28, p=0.598), and no interaction between the factors (F1, 44   
=2.54, p=0.118). .............................................................................................................. 141 
 
Table 3-7: Activity of L. polaris within the pressure vessel over a 216-h period at either 
atmospheric or high pressure (0 and 22 MPa; simultaneous trials). Scores included: 
feeding (arms wrapped around mussel, stomach everted on the prey), near mussels (no 
evident foraging or attempted opening of mussels), active (not visible from camera view 
because individuals were climbing on the sides of the pressure vessel), paralyzed 
(individual had not changed position for >8 hours). Proportion (%) of individuals 
displaying a given activity is shown in brackets. ............................................................ 142 
 
  



	viii	

List of Figures  

Figure 2-1: Survival time in the laboratory at atmospheric pressure for adult individuals 
(mean ± SE, n = 4-82) from chemosynthetic environments with regards to (A) phylum 
(Ar=Arthropoda; Ch=Chordata; Cn=Cnidaria; Ec=Echinodermata; Mo=Mollusca; 
Po=Porifera) and (B) geographic location (see Table 2-1 for outline of abbreviations). .. 81 
 
Figure 2-2: Minimum survival time in the laboratory at atmospheric pressure for adult 
individuals (mean ± SE, n = 3-35) from non-chemosynthetic environments with regards 
to (A) phylum (An=Annelida; Ar=Arthropoda; Ch=Chordata; Cn=Cnidaria; 
Ec=Echinodermata; Mo=Mollusca; Po=Porifera), (B) geographic location (see Table 2-1 
for outline of abbreviations) and (C) depth range. ............................................................ 82 
 
Figure 2-3: Survival (%) of adult individuals (mean ± SE, n =3-59) from chemosynthetic 
environments tested under experimental pressure conditions with regards to (A) phylum 
(An=Annelida; Ar=Arthropoda; Mo=Mollusca), and (B) depth range. ............................ 83 
 
Figure 2-4:  Survival (%) for adult individuals (mean ± SE, n =3-105) from non-
chemosynthetic environments tested under experimental pressure conditions with regards 
to (A) phylum (Ar=Arthropoda; Cn=Cnidaria; Ec=Echinodermata; Fo= Foraminifera; 
Mo=Mollusca; Po=Porifera), (B) geographic location (Table 1 for outline of 
abbreviations) and (C) depth range. .................................................................................. 84 
 
Figure 2-5:  Survival (%) of larvae (mean ± SE, n = 4-15) from chemosynthetic 
environments with regards to (A) phylum (An=Annelida; Ar=Arthropoda; 
Mo=Mollusca), (B) geographic location (see Table 2-1 for outline of abbreviations), and 
(C) depth range. ................................................................................................................. 85 
 
Figure 2-6: Survival (%) of larvae (mean ± SE, n = 7-111) from non-chemosynthetic 
environments with regards to (A) phylum (An=Annelida; Ar=Arthropoda; Cn=Cnidaria; 
Ec=Echinodermata; Mo=Mollusca), (B) geographic location (see Table 2-1 for outline of 
abbreviations), and (C) depth range. ................................................................................. 86 
 
Figure 3-1 (previous page): Response of S. droebachiensis to pressure. (A) Feeding index 
(mean ± SE, n = 12-24) during 24-h exposure to pressures within and beyond its natural 
bathymetric distribution. (B) Time to right to 90° (mean ± SE, n = 12-24) immediately 
after the 24-h trial. (C) Time to right to 180° (mean ± SE, n = 12-24) immediately after 
the 24-h trial. (D) Comparison of time to right to 90° (mean ± SE, n = 6) pre-trial, post-
trial or post-recovery following 72-h exposure.  (E) Comparison of time to right to 180° 
(mean ± SE, n = 6) pre-trial, post-trial or post-recovery following 72-h exposure. Means 
with different letters are significantly different (ANOVA on ranks, p > 0.05). Lower case 
letters (a, b, c) correspond to results within treatments and capital letters (A, B) to results 
between time treatments. See Tables C1-C3 (Appendix C) for full statistical results. ... 144 
 
Figure 3-2: Post-trial condition of individuals immediately after pressure exposure for 72 
and 216 h. (A) S. droebachiensis; individual on the left was exposed to 0 MPa and had 



	 ix	

healthy spines (hs); individual on the right was exposed to 25 MPa and had weak spines 
(ws); both individuals were tested in different pressure vessels.  (B) L. polaris; after 
exposure to 0 MPa for 72 h, individuals were climbing and had healthy arms (ha) 
indicative of good health. (C) L. polaris; after exposure to 25 MPa for 72 h individuals all 
had convoluted arms (ca) and everted stomachs (es). (D) L. polaris after exposure to 22 
MPa for 216 h individuals all had convoluted arms (ca) and everted stomachs (es) from 
stress. (E) C. frondosa; after exposure to 25 MPa this individual was found dead and 
eviscerated upon removal from the IPOCAMP; gonads (go) and intestines (in) are visible. 
Scale bars represent 4 cm. ............................................................................................... 145 
 
Figure 3-3: Feeding indices and righting of L. polaris post-trial and post-recovery 
following a 24-h exposure to pressures within and beyond its natural bathymetric 
distribution. (A) Feeding indices (mean ± SE, n = 12-24). (B) Time (mean ± SE, n = 12-
24) required to right itself to 180°. (C) Time (mean ± SE, n = 6) required to right itself to 
180° pre-trial, post-trial or post-recovery following 72-h exposure to pressure. Means 
with different letters are significantly different (ANOVA on ranks, p > 0.05). Lower case 
letters (a, b) correspond to results within treatments and capital letters (A, B) to results 
between time treatments. See Tables C1-C3 for full statistical results. .......................... 146 
 
Figure 3-4: Time to feed, cloacal movement rate, time to escape response and time to 
anchor in C. frondosa measured either pre-trial, post-trial or post-recovery following 24-h 
exposure to pressures within and beyond its natural distribution (mean ± SE, n = 6). (A) 
Time to initiate feeding. (B) Cloacal movements. (C) Time to initiate escape from 
predator. (D) Time to anchor firmly to substrate. Means with different letters are 
significantly different (ANOVA on ranks, p > 0.05). Lower case letters (a, b) correspond 
to results within treatments and capital letters (A, B) to results between time treatments. 
See Tables C1-C3 for full statistical results. ................................................................... 147 
 
Figure 3-5: Time to feed, cloacal movement rate, time to escape response and time to 
anchor in C. frondosa measured either pre-trial, post-trial or post-recovery following 72-h 
exposure to pressures within and beyond its natural distribution (mean ± SE, n = 6). (A) 
Time to initiate feeding. (B) Cloacal movements. (C) Time to initiate escape from 
predator. (D) Time to anchor firmly to substrate. Means with different letters are 
significantly different (ANOVA on ranks, p > 0.05). Lower case letters (a, b) correspond 
to results within treatments and capital letters (A, B) to results between time treatments. 
See Tables C1-C3 for full statistical results. ................................................................... 148 
 
Figure 3-6: Feeding and righting of S. droebachiensis following 24-h exposure to 
ambient or low-pH conditions under pressures within and beyond its natural bathymetric 
distribution. (A) Feeding indices (mean ± SE, n = 12-24). (B) Time (mean ± SE, n = 12-
24) required to right itself to 180°. Means with different letters are significantly different 
(ANOVA on ranks, p > 0.05). Lower case letters (a, b) correspond to results within 
treatments and capital letters (A, B) to results between time treatments. See Tables C1-C3 
for full statistical results. ................................................................................................. 149 
 



	 x	

Figure 3-7: Feeding and righting in L. polaris following 24-h exposure to ambient and 
acidified conditions under pressures within its natural bathymetric distribution. (A) 
Feeding indices (mean ± SE, n = 12-24). Times to right: (B) post-trial to 90° (C) post-
trial to 180°, (D) post-recovery to 180°. Means with different letters are significantly 
different (ANOVA on ranks, p > 0.05). Lower case letters (a, b) correspond to results 
within treatments and capital letters (A, B) to results between time treatments. See Tables 
C1-C3 for full statistical results. ...................................................................................... 150 
 
Figure 3-8: Cloacal movement and time to anchor (mean ± SE, n = 6) in C. frondosa 
measured pre-trial, post-trial and post-recovery following 24-h exposure to ambient and 
acidified conditions under pressures within its natural distribution. Cloacal movements 
(A) pre-trial, (B) post-trial, and (C) post-recovery. Time to anchor (D) pre-trial, (E) post-
trial and (F) post-recovery. Means with different letters are significantly different 
(ANOVA on ranks, p > 0.05). Lower case letters (a, b) correspond to results within 
treatments and capital letters (A, B) to results between time treatments. See Tables C1-C3 
for full statistical results. ................................................................................................. 151 
 
Figure 3-9: Time to initiate feeding and predator escape response (mean ± SE, n = 6) in 
C. frondosa following 24-h exposure to ambient and acidified conditions under pressures 
within its’ natural distribution. (A) Time to feed. (B) Time to escape. Means with 
different letters are significantly different (ANOVA on ranks, p > 0.05). Lower case 
letters (a, b) correspond to results within treatments and capital letters (A, B) to results 
between time treatments. See Tables C1-C3 for full statistical results. .......................... 152 
 

  



	 xi	

Co-Authorship Statement 

The research described herein, including data collection and analysis, and all written 

work, was performed by Justine Ammendolia under the supervision and guidance of 

Annie Mercier, with technical and intellectual input from Jean-Francois Hamel.  The 

authorship of journal contributions arising from the thesis chapters will therefore be: 

 

Chapter 2 and Chapter 3: J. Ammendolia, J-F. Hamel, A. Mercier. 
  



	 1	

CHAPTER 1  

General Introduction 
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1.1 Pressure in the marine environment 

Hydrostatic pressure is one of the most prominent abiotic parameters of the marine 

environment. Unlike other oceanographic factors that present complex spatio-temporal 

patterns, a linear relationship exists between pressure and depth, which is continuous 

throughout the ocean from the surface waters to the abyssal plains (Pradillon and Gaill 

2007; Young and Tyler 1993). Hydrostatic pressure primarily affects biological 

organisms by imposing forces of compression that result in 0.1 MPa for every 10 m into 

the water column (Macdonald 1997; Pradillon et al. 2004). The combination of 

temperature and pressure gradients is considered the primary factor responsible for 

limiting the bathymetric distribution of marine species (Pradillion 2011). As pressure 

tolerance varies interspecifically, the upper and lower limits of species’ distributions may 

range from dozens to thousands of meters (Tyler and Young 1998). An antagonistic 

relationship exists between the two variables, whereby low temperatures and high 

pressure elicit negative physiological effects on biological processes (Brown and Thatje 

2014; Morris et al. 2015). Animals occupying different depth ranges can be summarily 

separated into the following classifications: shallow-water species found above 200 m, 

eurybathic species spreading from shallow waters to below 200 m, and deep-sea species 

restricted to depths below 200 m (Rodríguez et al. 2007; Thurber et al. 2014; Webb et al. 

2010). 

Although it is tempting to infer pressure tolerances of species based on their natural 

bathymetric distribution, it is difficult to do so given the diversity of ontogenetic 

development modes in marine animals (Gage and Tyler 1999). Notably, various phyla of 

marine invertebrates (e.g. Echinodermata, Arthropoda, Mollusca) have complex 
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pelagobenthic life cycles, giving rise to life stages that can occupy a wide range of depths  

(Gage and Tyler 1999). For instance, species from the phylum Echinodermata can cross a 

wide spectrum of pressures as free swimming early life stages and be found inside a more 

narrow range of pressure as sessile or sedentary benthic adults (Byrne et al. 2009). It has 

been postulated through laboratory studies that pressure tolerance is both species-specific 

and age-dependent (Mestre et al. 2009; Oliphant et al. 2011; Tyler and Young 1998). 

Because pressure and temperature interact to affect the survival of marine animals, 

they are responsible for imposing a physiological bottleneck on the vertical distribution 

of animals (see review by Brown and Thatje 2014). The unique relationship between 

these two key environmental factors has been well examined on a number of different 

phyla (e.g. Aquino-Souza et al. 2008; Brown and Thatje 2011; Macdonald and Teal 1975; 

Mestre et al. 2009; Oliphant et al. 2011; Thatje et al. 2010; Tyler and Dixon 2000). 

However, few studies have focused on testing the effects of hydrostatic pressure, a 

necessity to further our understanding how animals are affected in physiological, 

genomic and behavioral processes.  

The most common reaction elicited in species exposed to high hydrostatic pressure 

is a reduction of the volume of internal compartments (Balny et al. 2002; Pradillion 

2011). Pressure is capable of modifying the equilibrium and rate constants of enzymatic 

reactions depending on volume changes, which can critically affect the activity of 

enzymes and efficiency of ligand binding (Balny et al. 2002; Somero 1992). High 

pressure also affects the properties of the lipid bilayers by modifying the reaction rates of 

membrane-associated processes like active transport, membrane fluidity and synaptic 

transmission (Macdonald 1984). Enzymatic efficiency is also modulated through amino-
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acid sequences that can limit metabolic rates (Siebenaller and Somero 1978). Animals 

respond to changes in pressure by maintaining homeostasis through involuntary changes 

on genetic, molecular, and biochemical scales (Molina-García 2002; Pradillion 2011; 

Pradillon et al. 2004). Some of the best-studied mechanisms are changes in the genomic 

expression of heat shock proteins (HSP) (Barros et al. 2015; Cottin et al. 2012; Morris et 

al. 2015). High-pressure exposure of shallow-water animals induces cellular stress and 

protein degradation, which causes an upregulation of heat-shock proteins (HSP) (Cottin 

et al. 2008; Feder and Hofmann 1999; Morris et al. 2015). Such molecular markers 

typically indicate the degree of non-lethal stress associated with thermal thresholds but 

also demonstrate poor physiological state (Morris et al. 2015; Ravaux et al. 2003; 2009). 

Physiological effects of high pressure can include but are not limited to low rates of 

aerobic metabolism (Cottin et al. 2008; Oliphant et al. 2011; Thatje and Robinson 2011) 

and behaviour quantified by convulsions and spasms (Macdonald and Gilchrist 1978; 

Thatje and Robinson 2011). Overall, despite these findings, our understanding of how 

pressure affects biological processes within and across multiple taxa remains incomplete.   

1.2 Colonization of high-pressure environments 

By furthering our understanding of how marine organisms cope with pressure we can 

answer one of the most critical questions in deep-sea evolutionary ecology: does the deep 

sea act as a sink or source of oceanic biodiversity (Gage and Tyler 1999; Miglietta et al. 

2011)? Since the 1970s two competing hypotheses have been proposed to explain this 

phenomenon. The submergence hypothesis commonly postulated in pressure studies 

states that shallow-water animals migrated downwards into the deep sea in an isothermal 

ocean that was featured in either past geological events and/or during modern times at 
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high latitudes (Aquino-Souza 2006; Tyler and Young 1998; Tyler and Dixon 2000; 

Villalobos et al. 2006). As shallow-water animals were able to adapt to high pressures, 

the migrating taxa radiated to bathyal and abyssal depths (Jablonski 2005; Kiel et al. 

2012; Kussakin 1973). By contrast, the high-latitude emergence hypothesis states the 

opposite: that animals from deep depths migrated and populated shallow depths at high 

latitudes in the northern and southern hemispheres (Hessler and Thistle 1975; Wägele 

1989; Wilson 1999). Thus, in order for us to comprehend the evolution/adaptation of 

shallow-water and deep-sea fauna in terms of their sensitivity to pressure, it is important 

to understand how biological structures and processes differ between these two groups 

(Somero 1992).   

1.3 Methodological considerations in the study of pressure exposure  

Our knowledge regarding the effects of hydrostatic pressure on marine 

invertebrates remains rudimentary due to the logistical complications in performing 

pressure experiments in the laboratory (Shillito et al. 2001). Overall, there is limited 

availability of high-pressure aquaria that can maintain flow-through conditions for in 

vitro experiments (Shillito et al. 2014; 2015). The difficulty in acquiring multiples of 

such pressure systems often imposes limitations on the ability of scientists to replicate 

experiments (Brooke and Young 2009). 

The study of the biological effects of pressure was initially revolutionized by the 

development of pressure systems used by Childress (Childress 1971; 1976). These 

experiments contributed a significant portion of knowledge to the field, but systems were 

logistically constrained to small volumes of static water that could only maintain live 

animals over the span of a few hours (Childress 1976; George and Marum 1974; Wilcock 
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et al. 1978). As a result, studies often tested acute physiological and behavioural 

responses of animals that were either small or in the early stages of ontogenetic 

development (Childress 1971; Childress et al. 1984; Mickel and Childress 1982a; 

Schlieper 1968). The study of larvae also remained a focus since adult body sizes and 

more developed metabolisms required larger vessels capable of maintain flow-through 

conditions (Brooke and Young 2009; Shillito et al. 2015). These studies were also 

constrained by the fact that investigators had no control over the rate of pressurization 

and depressurization being tested (Brown and Thatje 2011). The innovation of the 

PICCEL (Pressurized Incubators for the Culture of Cells, Embryos and Larvae) addressed 

the issue by allowing the control of the application of pressure, providing oxygenated 

water throughout the experiment and offering the possibility to observe experimental 

animals at the microscopic level while under pressure (Pradillon et al. 2004). However 

the small volume design (50-100 ml) remained only suitable for embryos and small 

organisms. It is important to note that different working groups have independently 

developed several models of pressure systems that have variations in structure and 

function (e.g. Jannasch et al. 1996; Koyama et al. 2005a; Mestre et al. 2009; Miyake et al. 

2007; Quetin and Childress 1980).  

The experimental study of hydrostatic pressure was greatly enhanced with the 

development of a large-volume pressure system called IPOCAMP (Incubateur Pressurisé 

pour l’Observation et la Culture d’Animaux Marins Profonds) (Shillito et al. 2001). This 

system enables scientists to hold larger quantities of water (~19 L) at pressure under a 

continuous flow-through mode, as described in Shillito et al. (2014). Through a built-in 

temperature control, the system enables the study of thermo- and barotolerance of fairly 
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large live animals (Ravaux et al. 2009). It has initially been used to hold and test a 

number of species from deep-sea chemosynthetic habitats (Shillito et al. 2001). 

Significant to the field, the IPOCAMP allows scientists to maintain animals under 

pressurized conditions for longer periods, from hours to weeks (Shillito et al. 2014). 

Another key aspect of the system is its visualization capacity, which allows users to 

observe and/or record what is occurring inside the pressurized chamber (Shillito et al. 

2006). This is critical, as changes in hydrostatic pressure may induce modifications in 

morphology and behaviour (Begg et al. 1982).  

1.4 Interactions of pressure in an acidifying ocean 

The anthropogenic generation of large quantities of carbon dioxide (CO2) is 

driving the acidification of oceanic waters (Byrne et al. 2009; Gooding et al. 2009). The 

burning of fossil fuels results in the increase of partial pressure of atmospheric CO2 

(ρCO2), which is absorbed by the global ocean. Once it dissolves in water, CO2 

undergoes a series of reactions. Carbonic acid is formed and then dissociates to produce 

hydrogen ions, bicarbonate ions and carbonate, all of which are maintained in 

equilibrium. As there is an increase in the concentration of hydrogen ions in seawater the 

pH subsequently decreases resulting in ocean acidification (OA) (Caldeira and Wickett 

2003). Oceanic absorption of atmospheric carbon is predicted to increase from the 

present levels of 300-380 ppm to 450-1000 ppm in 2100 (Pachauri et al. 2014). 

Despite the relevance of pH as an abiotic factor in the modern marine 

environment, little to no research has been done on the biological effects of ocean 

acidification at various pressures (depths). In one of the rare investigations, Barry et al. 

(2004) injected CO2 into deep-sea environments in situ at 3600 m depth to determine the 
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effects on infaunal communities. In proximity to the injection sites, organisms such as 

flagellates, amoebae, and nematodes experienced high mortalities due to high CO2 

concentrations. However, it remains unclear whether deep-sea organisms are more 

sensitive to fluctuations in pH by way of their inherent piezophily (adaptation to high 

pressure) and whether pressure and increased pH can be considered additive stressors on 

marine life. This question is pertinent since the effects of ocean acidification are expected 

to occur at all depths of the marine environment and might limit the ability for shallow-

water animals to colonize deeper colder regions as they migrate under the threat of ocean 

warming (Guinotte et al. 2006; Ramirez-Llodra et al. 2011). To date no laboratory studies 

have been conducted that examine combined responses to increased pressure and 

seawater acidity. 

1.5 Research gaps 

Although hydrostatic pressure is a key parameter of marine environments, our 

knowledge of its role on the behaviour and ecology of adult organisms remains 

rudimentary (Brown and Thatje 2014; Pradillion 2011; Pradillon and Gaill 2007). The 

majority of previous studies that have tested the effects of pressure have been restricted 

by temporal and logistical challenges, preventing the maintenance of animals for more 

than a few hours (e.g. Aquino-Souza et al. 2008; Mestre et al. 2009; Oliphant et al. 2011; 

Villalobos et al. 2006). Even though these experiments provide useful information to help 

further our understanding of acute tolerances, they do not elucidate responses over longer 

periods of one to several days. Moreover, most of the few studies on pressure to date 

have examined the effects of short-term exposure to pressure conditions on the 

development and survival of embryos and larvae, without consideration for the adult 
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stages (Tyler and Young 1998; Villalobos et al. 2006). Although the relationship between 

temperature and pressure has been relatively well studied (e.g. Aquino-Souza et al. 2008; 

Brown and Thatje 2011; Oliphant et al. 2011; Thatje et al. 2010; Tyler and Dixon 2000), 

the interactions of pressure and factors like pH have been virtually unexplored.  

There is an inevitable setback with the experimental design of pressure studies, 

namely the pressure differential between holding and experimental conditions. As it is 

not logistically feasible to maintain animals at their native pressure, most animals from 

pressure experiments are maintained and acclimated to ambient surface pressure prior to 

experimental studies. Although Shillito et al., (2006) tested shrimp from hydrothermal 

vents within minutes post collection, quickly bringing the animals back to the equivalent 

of 1000-m depth after resurfacing, this in itself would cause a high degree of stress to the 

animals. Other approaches have included gradually pressurizing animals to experimental 

depths in a series of small intervals in order to reduce stress. For instance, New et al., 

(2014) used an acclimation pressure interval of 1 MPa every 5 min on animals that had 

been living at atmospheric pressure. Overall, the sensitivities of animals at the whole-

organism level to the depressurization/repressurization process are not fully understood 

(Dixon et al. 2002). 

In addition to the inherent shortcomings that exist in the experimental 

methodology of testing responses to pressure, to date no review has been done to 

specifically compare pressure tolerances (survival rate/percent and survival time) of 

shallow-water and deep-sea animals. The putative role of important factors like life stage, 

phylum, collection depth and habitat type have not yet been synthetized or analyzed.  
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1.6 Focal organisms 

The experimental segment of the present thesis revolves around members of the 

phylum Echinodermata. Echinoderms are well suited to experimental studies because of 

their complex life histories and broad distribution across both the shallow-water and 

deep-sea oceanic environments. Animals are relatively accessible for collections and can 

be maintained in laboratory conditions for long periods of time. While several species of 

echinoderms have been the subject of previous studies on pressure tolerance, few 

investigations have studied the responses of adults. The following shallow-water adult 

echinoderms were selected based on their broad distribution in temperate, cold and polar 

subtidal environments as well as their overall importance to the coastal ecosystems of 

eastern Canada: green sea urchin (Strongylocentrotus droebachiensis), polar sea star 

(Leptasterias polaris) and orange-footed sea cucumber (Cucumaria frondosa). These 

three species are respectively omnivorous, carnivorous and herbivorous (phytoplankton 

feeder) and exhibit two larval feeding strategies (planktotrophy for the first two, 

lecithotrophy for the third). All the species selected have distinct behaviours that could be 

tested in pressurized lab conditions, and they play important ecological roles. As a 

ubiquitous keystone species, S. drobachiensis exerts intensive grazing pressure on kelp 

beds, resulting in cascading effects on the population dynamics of other species (Mann 

and Breen 1972). Similarly, L. polaris was chosen because it exemplifies highly 

successful benthic predators. Its diet primarily consists of molluscs, including scallops, 

whelks and mussels. High abundance of this species occurs in proximity to subtidal 

mussel beds where there is strong inter- and intra- specific competition (Gaymer et al. 

2001). Lastly, subtidal populations of the slow-growing C. frondosa comprise a 
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substantial proportion of the biomass on hard-bottom marine ecosystems of eastern 

Canada (Hamel and Mercier 1998) and have considerable economic value (Mercier and 

Hamel 2008a; So et al. 2010; So et al. 2011). 

1.7 Goals of the research and chapter structure 

This investigation aimed to further our knowledge of how hydrostatic pressure, a 

poorly studied yet crucial abiotic parameter, affects the biology and overall survival of 

both shallow-water and deep-sea marine invertebrates. As there are many knowledge 

gaps in the literature of biological interactions with pressure, both within and across 

phyla, this study aimed to examine the effects of hydrostatic pressure at both levels. One 

of the major objectives was to use the IPOCAMP high-pressure systems to simulate a 

range of high-pressure conditions that would be critical in establishing survival 

thresholds of several species of Echinodermata ubiquitous to the North Atlantic 

ecosystem. This thesis is composed of four chapters. 

In Chapter 2, data were collated and synthesized the findings from 134 studies to 

analyze how pressure tolerance (survival percent and time) varied between larvae and 

adults from shallow-water and deep-sea environments. The pressure tolerance of species 

was examined by testing the relationship between tolerance and individuals’: (i) depth 

stratum of collection, (ii) geographic location of origin, and (iii) phylum. Findings were 

used to help better understand the bathymetric movement of animals. Specifically the 

following theories were tested: submergence (shallow to deep) hypothesis, high-latitude 

emergence (deep to shallow) hypothesis and an alternate hypothesis (dubbed the 

parsimony hypothesis), which would explain colonization as a bi-directional movement 

of species between the shallow-water and deep-sea environments. 
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In Chapter 3, experiments were conducted with two IPOCAMP systems to test 

three focal echinoderm species under three pressure regimes that represent depths 

representative of their natural bathymetric distributions and one extreme value beyond 

their natural range of occurrence. The three echinoderm species selected represent the 

main extant classes, Echinoidea, Asteroidea, and Holothuroidea. The duration of the trials 

were adjusted to test both acute (24 h) and slightly longer (72 h to 9 d) exposures to 

pressure, as well as the effects of combined stressors (acidity and pressure) over short-

term trials (24 h). 

In Chapter 4, the general conclusions from this investigation were summarized and 

the ecological significance of hydrostatic pressure tolerance among marine invertebrates 

in a changing ocean was discussed. This study expanded on the potential implications of 

expected vertical migrations for marine communities at different depths. Lastly, future 

directions for research in the study of hydrostatic pressure in the marine environment 

were discussed.  
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CHAPTER 2 

Vertical migrations in the ocean and the deep source-sink hypotheses: 

insights from pressure tolerance investigations 
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2.1 Abstract 

It has been postulated that, throughout geological times, faunal migrations between the 

shallow-water and deep-sea environments have resulted in the broad colonisation of 

oceanic depths we see today. Attempts have been made to explain the current bathymetric 

ranges of animals by the submergence (shallow to deep) hypothesis and the high-latitude 

emergence (deep to shallow) hypothesis, but there has so far been no clear consensus. 

Here, we explore empirical support for both hypotheses, in addition to a newly proposed 

parsimony hypothesis, which would explain colonization as a bi-directional movement of 

species between the shallow-water and deep-sea environments. We collated and analyzed 

data from 134 studies reporting the pressure tolerance of adults and embryos/larvae of 

261 species obtained from different regions and depths. Subsets of the main database 

were used to test whether the ability to tolerate a change in pressure is influenced by (i) 

depth stratum of origin, (ii) geographic location of origin, and (iii) phylum. This review 

revealed stronger empirical support for the general tolerance of deep-water taxa to 

atmospheric pressure than for tolerance of shallow-water taxa to increases in pressure 

(both following sudden shifts). Overall, species from bathyal depths survived longer 

under atmospheric pressure than those from abyssal depths. Deep-sea species also 

survived better than shallow-water species to pressurization trials. If tolerance to non-

native pressures is taken as a predictor of potential for vertical migration, empirical and 

experimental data currently lend more support to the parsimony and/or the emergence 

hypotheses. Species collected at depth from tropical locations were less tolerant to a 

pressure change than those from northern latitudes, emphasizing the confounding impact 

of thermotolerance. Lastly, phylum was a more significant driver of pressure tolerance 
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for adults than for larvae, although this might be a result of the generally shorter study 

duration for the latter. Taken together, these findings provide a valuable overview of the 

current state of knowledge and offer a framework for further investigation of vertical 

movements of marine species across depths, which will be particularly useful in 

predicting ecosystem shifts in the face of climate change. 

2.2 Background and Introduction 

The most fundamental division of the world ocean involves the distinction 

between shallow-water and deep-sea environments (Webb et al. 2010). The transition is 

typically considered to occur at ~200 m, the average depth of the continental shelf break 

(Ramirez-Llodra et al. 2011; Thistle 2003). While oceanic depths have always exerted 

great fascination, they were initially believed to be barren. Edward Forbes was the first to 

propose that little to no life existed below 600 m, and is thus considered to be the father 

of the azoic theory (Forbes 1844). Even following more exploration in the 1960s, the 

deep sea remained depicted as a so-called harsh environment exhibiting greater stability 

and lesser biodiversity than its shallow-water counterpart (Sanders 1968). However, this 

oversimplified view is now being challenged by a growing number of publications based 

on species from both chemosynthetic and non-chemosynthetic environments (e.g. Shillito 

et al. 2015; Miyake et al. 2007; Kádár et al. 2006a; 2008a; Mercier and Hamel 2008b; 

2009; Mercier et al. 2011a; 2013). Paradigms regarding the low biodiversity of the deep 

sea were revised when for the first time hundreds of benthic macro-faunal species were 

recovered from trawls (Gage and Tyler 1999; Hessler and Sanders 1967) and exceptional 

ecosystems such as hydrothermal vents were discovered (Corliss and Ballard 1977). Over 

the last few decades, hot spots of productivity have been highlighted in the deep sea, 
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including vents, seamounts, and coral and sponge gardens, which rival some of the most 

diversified environments on the planet. In fact, recent extrapolations suggest that deep-

sea habitats could host over 10 million species (Ramirez-Llodra et al. 2011), i.e. more 

than the total number of species currently known to populate Earth (Mora et al. 2011).  

The realization that the deep sea likely fosters high levels of biodiversity, and the 

fact that depths >200 m cover more than 60% of the globe, gave rise to theories on 

whether species of the deep sea evolved within this environment or following the 

migration of species from the shallows (Gage and Tyler 1999; Locket 1977). The 

majority of studies focusing on the concept of deep-sea and shallow-water colonization 

developed over the 1970s (Hessler et al. 1979; Hessler and Thistle 1975; Kussakin 1973; 

Menzies et al. 1973), although some theories were postulated a few decades earlier (Dahl 

1954; Wolff 1960). While deep-sea research has intensified over the past 30 years, the 

role of the deep ocean as a sink or source of biodiversity remains obscure (Gage and 

Tyler 1999; Miglietta et al. 2011). Answering this question is complicated by ongoing 

disputes over the importance that certain abyssal and bathyal depths played as sinks or 

sources at different geological times (Bik et al. 2010; Rex et al. 2005).  

The submergence (shallow to deep) hypothesis postulates that higher-level taxa 

from shallow waters migrated downwards during various geological periods to radiate 

biodiversity at bathyal and abyssal depths (Jablonski 2005; Kussakin 1973). This 

migration is suggested to have occurred multiple times throughout geological history, 

especially during the late Mesozoic and early Cenozoic periods, when the water column 

was isothermal across low latitudes (Jablonski et al. 1983; Menzies et al. 1973; Wilson 

1999). Extinct deep-sea fauna identified in fossil records from these periods have been 
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linked to current shallow-water animals whose ancestors would have colonized these 

areas (Cottin et al. 2012; Kussakin 1973). The small temperature difference between 

these shallow and deep depths greatly reduced the physiological barrier that prevented 

animals from expanding their typical bathymetric range (Gage and Tyler 1999; Raupach 

et al. 2009). In fact it is argued that the colonization of the deep sea by shallow-water 

animals is continuously ongoing in permanently isothermal areas, like Antarctica and 

regions of deep-water formation (Oliphant et al. 2011; Tyler and Young 1998; Wolff 

1960). It is postulated that during this downwards migration shallow-water species 

evolved to adapt to high-pressure conditions, thus undergoing speciation (Clarke et al. 

1992). Some animals are thought to have adapted so well that they migrated to more 

specialized habitats like hydrothermal vents and cold seeps (Kiel and Little 2006). 

Support for this downward migration cites the close phylogenetic and taxonomic 

relationships that exist between shallow and deep-sea species (Distel et al. 2000; Tokuda 

et al. 2006). It is speculated that prior to the invasions from the shallows, the deep sea had 

substantially less fauna than presently (Kussakin 1973). One of the predictions from this 

hypothesis is that shallow-water animals would need to demonstrate physiological and 

developmental plasticity in order to successfully invade the deep sea and thrive under 

extreme conditions, which include: high hydrostatic pressure, low temperatures, complete 

darkness and minimal nutrients from primary production (Hessler and Wilson 1983; 

Pradillon et al. 2004). If adaptation to these conditions proves too difficult for invading 

species, the surviving species will specialize, thus resulting in taxonomic isolation from 

shallow relatives (Hessler and Wilson 1983). 
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The opposing hypothesis states that modern deep-sea invertebrates evolved from 

ancestors that occupied the same bathymetric environment (Hessler and Thistle 1975). 

Known as the high-latitude emergence hypothesis, it is theorized that, at high latitudes in 

the northern and southern hemispheres, animals from deep depths migrated and populated 

shallow depths (Hessler et al. 1979; Hessler and Thistle 1975; Wägele 1989; Wilson 

1999). The fact that the level of biodiversity currently present in the deep sea could 

hardly be a product of small colonisations from shallow waters is proposed to support the 

emergence hypothesis (Birstein 1963; Hessler and Sanders 1967; Hessler and Thistle 

1975). In addition, many deep-sea families have the vast majority of their species 

diversity restricted to deep bathymetric ranges, with no primitive or less evolved shallow-

water representatives, questioning the possibility that these lineages migrated from 

shallower waters (Hessler and Wilson 1983; Raupach et al. 2009). It has been proposed 

that some deep-sea isopod lineages have evolved in situ within the deep sea based on the 

occurrence of morphologically primitive shallow-water taxa that lack eyes and are related 

to considerably more evolved deep-sea relatives. Overall, the evolutionary history of 

bathyal and abyssal species and their connection to shallow-water relatives is difficult to 

ascertain because retrieving live deep-sea animals for phylogenetic analysis is a challenge 

and many taxa lack clear fossil records (Raupach et al. 2009).  

 An alternative to the two previously described theories might be described as a 

parsimony hypothesis, based on previously proposed bi-directional movement of species 

between the shallow-water and deep-sea environments (Carney 2005). One of the few 

case studies in support of this hypothesis involves Antarctic microfossils of Foraminifera 

from shallow and deep-sea populations that have been discovered to derive from both 
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depths, showing an active exchange of fauna (Hayward 2001; Lipps and Hickman 1982). 

Similarly, a combination of early-derived and late-branching lineages found in deep-sea 

populations of nematodes evokes dynamic exchanges between fauna from different 

depths (Bik et al. 2010). Overall, the parsimony hypothesis has not formally been 

discussed in the literature in spite of gathering evidence, which might warrant looking 

into an intermediate source depth coinciding with peak biodiversity. 

Of equal relevance is the temporal scale over which these various types of 

migrations might occur (e.g. individual lifetime, multiple generations, evolutionary time 

scales). However, because of experimental limitations, this aspect remains difficult to 

predict or infer from findings. The initial work preoccupied with the shallow-deep or 

deep-shallow migration theories mainly approached this discussion from an ecological 

and fossil record perspective, focusing on evidence that described the natural (past or 

present) bathymetric distributions of various phyla (Hessler et al. 1979; Hessler and 

Wilson 1983; Kussakin 1973; Menzies et al. 1973; Thistle and Hessler 1976). Gradually, 

laboratory-based studies were conducted, which examined the tolerance of extant animal 

taxa to hydrostatic pressures within and beyond their natural distributions (see review by 

Brown and Thatje 2014). Responses were measured from various angles, including: 

physiology (Childress 1976; Childress and Thuesen 1993; Ravaux et al. 2009; 2013) 

behaviour (New et al. 2014; Shillito et al. 2006; Thatje et al. 2010; Wilcock et al. 1978) 

development (Tyler and Dixon 2000; Villalobos et al. 2006; Young and Tyler 1993) and 

genomics (Barros et al. 2015; Dixon et al. 2002; Morris et al. 2015; New et al. 2014).  

The bathymetric distribution of species in the ocean is primarily controlled by the 

presence of temperature and hydrostatic pressure gradients (Cottin et al. 2012; Menzies et 
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al. 1973). The interactions between both factors (i.e. high hydrostatic pressure and low 

temperature) have antagonistic effects on the survival of most shallow-water organisms 

(Mestre et al. 2009). Thus, depending on physiological thresholds to these factors, the 

habitat range of organisms is defined by an upper and lower vertical limit (Kiel et al. 

2012; Mestre et al. 2009; Wilson et al. 2007). Depth ranges that bridge the shallow-water 

and deep-sea ranges are considered eurybathic (Rodríguez et al. 2007). The selective 

pressures exerted by abiotic factors on survival supports the hypothesis that there is a 

biodiversity bottleneck that exists with increasing depths, notably extreme depths greater 

than 2000-3000 m (Carney 2005). While the tolerance of marine organisms to changes in 

temperature is a widely studied field, the impact of hydrostatic pressure is comparatively 

understudied, thus creating a bias in our understanding of bathymetric adaptations 

(Macdonald 1997).  

Unlike temperature, hydrostatic pressure exhibits a linear gradient from the 

surface to the bottom of the ocean (Pradillon and Gaill 2007; Tyler and Young 1998). 

The compression forces of pressure result in an increase of 1 MPa (~10 bar or ~10 atm) 

for every 100 m in the water column (Macdonald 1997; Pradillon et al. 2004). Exposure 

to high hydrostatic pressure affects physiological and biochemical processes that are 

reflected at the level of the whole organism, causing the loss of motor function and even 

mortality (Macdonald and Teal 1975; Morris et al. 2015). The neural and muscular 

dysfunctions associated with exposure to pressure in invertebrate metazoans are 

symptoms typical of high-pressure neurological syndrome (HPNS) observed in 

vertebrates (Jain 1994; Morris et al. 2015). Even if the effects of HPNS are sub-lethal or 

cause temporary paralysis, it is inferred that this would jeopardize basic ecological 
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behaviours like foraging and escaping from predators, which are essential to survival 

(Munro et al. 2015; Oliphant et al. 2011). However, the full range of chemo-

physiological effects from hydrostatic pressure is incompletely understood across 

different phyla of marine organisms (Pradillon and Gaill 2007). It is worth noting that 

fewer studies have focused on the pressure tolerance of deep-sea species from non-

chemosynthetic environments as opposed to those from hydrothermal vents and cold 

seeps (Dixon et al. 2002; Gaill et al. 1997; Lee 2003; Marsh et al. 2001; Martinez et al. 

2001; Pradillon et al. 2001; Pruski and Dixon 2003; Ravaux et al. 2009; 2013; Shillito et 

al. 2001; 2004; 2006; Smith et al. 2013; Tyler and Dixon 2000). While chemosynthetic 

environments are characterized by extreme temperatures (Shillito et al. 2001), high 

sulphide concentrations (Ravaux et al. 2003) and fluctuating ranges of abiotic conditions 

(Ravaux et al. 2009), high pressure is typical of both types of environments (Ravaux et al. 

2009).  

Studies have shown that the effects of pressure vary not only across taxa but also 

intraspecifically throughout ontogeny (Aquino-Souza 2006; Tyler and Dixon 2000; 

Villalobos et al. 2006; Yoshiki et al. 2006; 2008; 2011). Both Mollusca and 

Echinodermata larvae are capable of surviving and developing under pressures that 

typically exceed the natural distribution of their adult stages (e.g. Aquino-Souza et al. 

2008; Brown and Thatje 2014; Mestre et al. 2009; Smith and Thatje 2012; Tyler and 

Young 1998; Tyler and Dixon 2000; Villalobos et al. 2006; Young et al. 1997). Although 

such studies suggest that the high tolerances of larvae provide sufficient evidence for the 

deep-sea colonization hypothesis, few studies have investigated the effects on adults 

(Young et al. 1993) or even on settlement processes and juveniles. In fact, high-pressure 
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tolerance is greatest at the early embryonic stages during cleavage but subsequently 

decreases with further development (Pradillon and Gaill 2007; Tyler and Dixon 2000). 

For instance, juveniles of various echinoderm species have been found to settle at 

pressures exceeding the bathymetric distribution of adults but they expressed delayed 

development, which resulted in high levels of mortality (Gage and Tyler 1981a; 1981b; 

Sumida et al. 2000). 

Despite the gaps in knowledge and some of the shortcomings of the shallow to 

deep-sea migration hypothesis, few empirical studies have expanded on the alternative 

possibility that deep-sea taxa could migrate upwards (emergence hypothesis) or in both 

directions (parsimony hypothesis) from either shallow to deep environments or even to 

either environment from a pelagic region (500-1000 m). This is largely due to the fact 

that deep-sea organisms are expensive to collect and logistically difficult to maintain 

alive in laboratory conditions (Shillito et al. 2001; 2015). Despite a shortage of 

supporting evidence, it has been claimed that animals collected from depths below 1500 

m are incapable of surviving at atmospheric pressure for long-term periods (Dixon et al. 

2004; Pruski and Dixon 2003). 

Structurally, marine invertebrates lack internal gas spaces that will cause damage 

from gas expansion upon depressurization. Therefore, adult animals that are retrieved can 

be used for laboratory investigations if there is no cell or tissue damage (Dixon et al. 

2004). A number of studies have shown that animals collected between 200 and 2500 m 

can thrive for several years, reproduce and grow at atmospheric pressure, under true-to-

native temperature regimes (Hamel et al. 2010; Mercier and Hamel 2008b; Sun et al. 

2010). Other species collected from depths of ~2000 m have also been observed to 
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survive at atmospheric pressure in laboratory conditions (Smith et al. 2013). Even the 

hydrothermal shrimp, Mirocaris fortunata collected from specialized habitats (vent 

communities) have been maintained at atmospheric pressure for over a year (Shillito et al. 

2015). Maintenance of deep-sea animals at atmospheric pressure is not limited to adults, 

as many studies have been able to rear deep-sea larvae at atmospheric pressure as well. 

For example, Epifanio et al., (1999) reared megalopa larvae of Bythograea thermydron 

collected from 2600 m to undergo metamorphosis. It has also been found that some 

embryos of A. pompejana from 2500 m depths were capable of developing at 0.1 MPa 

(Pradillon et al. 2005). Although there have been some reported abnormalities with the 

development of deep-sea species at atmospheric pressure, a variety of deep-sea cnidarians 

and echinoderms have been developed from spontaneous egg release until successful 

settlement and early juvenile growth (Mercier et al. 2011a; 2014), even to the next 

reproductive generation (Mercier et al. 2014). The ability for some animals to adapt and 

survive could presumably give rise to new populations (Marsh et al. 2001; Pradillon et al. 

2005; Young and Tyler 1993). Thus, tolerances for lower pressures suggest that larvae of 

deep-sea taxa are capable of penetrating upper bathymetric ranges where adults can thrive 

as well.  

Overall, there is accumulating evidence that deep-sea animals are physiologically 

equipped to expand their range upwards, which can be seen to balance similar evidence 

provided in support of shallow-water species tolerating high pressures for short periods. 

The objective of the present review is therefore to examine and critically assess the full 

scope of evidence in favour of both hypotheses to tease out major findings and identify a 

way forward. As 80% of the marine biosphere lies below depths of 500 m, it is critical to 
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understand adaptations to hyperbaric conditions in order to determine evolutionary 

patterns (Jaenicke 1983; Jannasch and Taylor 1984; Somero 1992). Climate change is 

warming ocean surface temperatures and predicted to drive the vertical migrations of 

benthic organisms (Morris et al. 2015). The movements of marine species across depths 

could potentially alter existing ecosystems, emphasizing the importance of furthering our 

understanding of the colonization theories in the face of predicted climatic shifts. While 

hydrostatic pressure is another strong driver of bathymetric distributions, its effects on 

marine benthic invertebrates remain poorly understood. 

The aim of our study is to present an unbiased perspective of the deep-sea and 

shallow-water migration hypotheses based on empirical evidence of pressure tolerance. 

Specifically, we will (1) review published data on the responses of both shallow and 

deep-sea animals, at various life stages, to pressures within and beyond their bathymetric 

range; (2) include previously unpublished data; (3) identify key trends of relevance to 

colonization theories; and (4) critically discuss how the evidence may be interpreted (i.e. 

whether tolerance to certain pressure variations relates to ancestral provenance or future 

invasion). Three main hypotheses will be examined: whether animals from shallow-water 

and deep-sea environments have elicit variability in survival responses based on the (i) 

depth of collection and (ii) geographic location of origin, and lastly, (iii) whether phylum 

drives the ability to tolerate pressure.	
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2.3 Methods 

2.3.1 Data collection and treatment 

Efforts were made to collect the largest possible dataset on the response of 

shallow-water and deep-sea marine invertebrates exposed to pressures within and beyond 

their natural bathymetric range. Empirical data from 134 studies were collected for 261 

species, which included the following phyla: Annelida, Arthropoda, Brachiopoda, 

Chaetognatha, Chordata, Cnidaria, Echinodermata, Foraminifera, Heterokontophyta, 

Mollusca, Porifera, Sipuncula and Vestimentifera (Table A1 in Appendix A). The 

categorical and numerical variables compiled from the studies are listed and defined in 

Table 2-1. As definitions of oceanic zones vary in the literature, the present study 

followed the basic strata outlined in Gage and Tyler (1999): 20-200 m (subtidal or 

shallow); >200-2000 m (bathyal) and >2000-6000 m (abyssal). These depth ranges also 

parallel the shelf, slope and abyssal zones defined by Woolley et al. (2016). 

Analysis considered each experiment (even if reported in the same study) as an 

individual data point (record) as long as different pressures, durations and/or life stages 

were used. Due to differences in developmental modes across the species studied, only 

the general universal life stages were considered (larva, adult). Species-specific life stage 

categories (e.g. nauplii) were omitted. In addition to the data collected from published 

papers, new empirical data were added from long-term laboratory observations for 

several species (see data in Table A1). Only whole animals collected from the wild were 

considered in the statistical analysis and cell cultures from animals collected at depths or 

animals reared in laboratory for multiple generations were omitted (no habitat type was 

assigned to either case). If studies recorded that animals were captured at both shallow 
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(<200 m) and deep (≥200 m) depths, and the specimens were tested together without 

distinguishing the results from the different collection depths, the data were omitted. In 

cases where the collection depth range was <100 m, the greatest depth was selected since 

the differential in pressure was under 1 MPa. Animals that were collected down a 

continuous gradient of overlapping shallow and deep depths extending more than 50 m 

were not considered (e.g. samples from plankton tows) but if animals were collected from 

a range that extended into only two habitat types that was less than 15 m, the deeper of 

the depth was selected for the analysis.  

Studies selected for analysis were limited to records that tested pressure tolerance 

to a single known pressure value. Thus, experiments that set their test pressure at once 

(absolute method) were all included. Studies that used a step-wise protocol (increment 

method) were also selected if the process took less than 25% of the total experimental 

period. Incremental methods that continuously subjected animals to multiple pressures to 

demonstrate the overall ability for animals to adapt could not be included since it was not 

possible to determine any clear pressure-response link. 

When studies used different combinations of temperature and pressure, the results 

of the optimal temperature for survival were selected for tabulation (Table A1) and 

corresponding analysis. The optimal temperature was selected based on explicit 

identification by the investigators or, if this was not stated, the temperature resulting in 

the highest survival rate. Experiments that tested pressure tolerance under incremental 

thermal conditions that were not explicitly defined to be within the thermal tolerance of 

the species were excluded as this treatment could have imposed thermal stress and 

reduced the ability for animals to cope with pressure. Survival proportions of individuals 
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(%) were ranked into the following categories for analyses: 1 (0-9%), 2 (10-19%), 3 (20-

29%), 4 (30-39%), 5 (40-49%), 6 (50-59%), 7 (60-69%), 8 (70-79%), 9 (80-89%) and 10 

(90-100%). 

In instances where studies stated that individuals (adults or larvae) survived for a 

time within the laboratory under atmospheric pressure (prior, during or post 

experimentation) the maximum time of survival was recorded and used in analysis. If 

investigators reported a range (i.e. the minimum and maximum time) these values were 

presented in the table. Studies were not generally conducted in an ecotoxicological 

context (i.e. with formal measure of LC50 values); therefore, survival times were used as 

they were often provided. It is important to note that this measure is only an estimation of 

how long the species can survive (at non-native pressure). Studies that did not provide 

exact maintenance duration were omitted. For instances in which early stages of larvae 

were reported to develop to or surpass the juvenile stages under atmospheric pressure, 

post-metamorphic data were omitted. For the analyses survival times were separated into 

the following categories: 1 (<10 d), 2 (10-60 d), 3 (61-730 d) and 4 (>730 d). 

Data were separately analyzed for animals that were collected from their natural 

habitat and those that were born and reared at atmospheric pressure. As the animals 

reared at atmospheric pressure were the first generation of animals collected from depth, 

they were ascribed their parental life history. As chemosynthetic habitats generate their 

own thermal gradients, no climate zone data were determined for these records.   

2.3.2 Statistical analysis 

Factor analysis of mixed data (FAMD) was used to examine the strength of 

associations between experimental variables and the ranked response variables, i.e. 
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survival time or percent survival (Lê et al. 2008). In order to assess the influence of deep-

sea chemosynthetic habitats (e.g. hydrothermal vents and cold seeps) on response 

variables, records involving animals from chemosynthetic habitats were first grouped 

with others and analyzed separately from animals from non-chemosynthetic 

environments. The depth variable (deep or shallow) could not be assessed in any analyses 

that examined individuals from chemosynthetic environments, as these regions were 

restricted to the deep-sea. As FAMD analyses require a minimum of three data points for 

any variable, in some cases depth range (i.e. abyssal, bathyal, subtidal, etc.) could not be 

tested as data was only sourced from the deep-sea and there was a bias for animals 

collected from bathyal depths as opposed to abyssal depths. As the survival time 

measured the length of time that individuals from the deep-sea survived at atmospheric 

pressure, experimental duration and pressure were not relevant to this response variable.  

The survival time of adults at atmospheric pressure was assessed with phylum and 

geographic location for groups from chemosynthetic (n=44, Table A2) and non-

chemosynthetic environments (n=105, Table A3). FAMD was also used to detect 

associations between phylum, geographic location and depth range for groups from non-

chemosynthetic environments (n=108, Table A4). The next tests examined the 

associations for the survival percent of chemosynthetic groups based on: phylum, 

pressure and experimental duration (n=72, Table A5) and phylum, geographic location 

and depth range (n=72, Table A6). The next two tests repeated the groups of factors 

mentioned above with the addition of the depth variable (i.e. deep or shallow origin) for 

the survival percent of non-chemosynthetic groups (n=170, Table A7; n=170, Table A8). 

Larvae from chemosynthetic environments were tested for associations with phylum, 
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pressure and experimental duration (n=22, Table A9) and phylum, geographic location 

and depth range (n=22, Table A10). The final two tests repeated the groups of factors 

mentioned above with the addition of the depth variable (i.e. deep or shallow origin) for 

the survival percent of non-chemosynthetic groups (n=163, Table A11; n=163, Table 

A12). Survival time of larvae could not be tested due to lack of data; variables and results 

from FAMD analyses are summarized in Table 2-2. 

Pearson correlations were conducted to test the relationships between numerical 

measurements (pressure and experimental duration) and response variables (percent 

survival) in Table A13-A16. Significance levels were considered at p<0.05. All analyses 

were carried out using Sigma Plot version 11.0 (Systat Software, USA) and RStudio 

2017, version 2.11.1.  

2.4 Results  

2.4.1 Adults 

2.4.1.1 Survival time of deep-sea adults at atmospheric pressure 
	
2.4.1.1a General observations 

Despite the extensive logistical limitations with regards to collecting deep-sea 

species and holding them under atmospheric pressure, a considerable number of studies 

maintained a collectively high diversity of species in the laboratory. In nearly all cases, 

individuals collected from the deep sea were depressurized quickly (within minutes to 

hours) before being transferred to holding facilities on a ship and then in the laboratory. 

While some researchers have clearly specialized in the maintenance and study of a taxon 
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from a given location, other laboratories have held and tested several taxa under similar 

conditions. 

Generally, species collected from chemosynthetic environments were obtained 

from consistent locations and similar depths due to their restricted distributions. For 

instance, vent mussels, Bathymodiolus azoricus were only collected from the North-East 

Atlantic (NE Atl) at Menez Gwen and Rainbow from depths of 840, 850 and 2300 m. 

Individuals survived anywhere from 10 d to one full year (e.g. Barros et al. 2015; 

Bettencourt et al. 2008; 2010; Colaço et al. 2011; Dixon et al. 2004; Kadar et al. 2008a; 

Martins et al. 2014; Pruski and Dixon 2003). Likewise, Bathymodiolus childressi from 

the Gulf of Mexico (GOM) survived under atmospheric pressure conditions for periods 

ranging from 15 to 365 d (Arellano and Young 2009). Furthermore, 5 species of 

Arthropoda from chemosynthetic environments were sampled from the North-West 

Pacific (NW Pac) off the coast of Japan and maintained for over a year under 

atmospheric pressure (Hamasaki et al. 2010; Miyake et al. 2007). There are 

comparatively few examples of chemosynthetic Annelida successfully maintained under 

atmospheric pressure; e.g. hydrothermal vent tubeworms (Lamellibrachia luymesi) were 

collected and held between 1-15 months in laboratory conditions (Dattagupta et al. 2006). 

It was noted that most individuals survived despite physical damage to the roots sustained 

during the collection process.  

Parallel investigations focused on non-chemosynthetic environments in the North-

West Atlantic (NW Atl) have collected and successfully held 22 different deep-sea 

species of Cnidaria that were maintained for over 2 years under atmospheric pressure 

(present study; Mercier and Hamel, 2009; Baillon et al., 2013; Sun et al., 2009, 2010, 
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2011; Hamel et al., 2010; Mercier et al., 2011a, 2017). Other deep-sea phyla from this 

area that have shown similar ability to survive at low pressure include: 18 species of 

Echinodermata, 12 species of Arthropoda, 6 species of Mollusca, and 2 species of 

Porifera (Table A1). Successful holding also included Polychaeta; i.e. Neopolynoe 

acanellae collected from depths of 466-1406 m (Hamel et al. 2015) and Ophryotrocha 

sp. that was maintained for several generations (Verkaik et al. 2016b). Many other 

individuals were not only observed to survive at non-native pressure but also grew and 

reproduced. For instance, the scleractinian coral Flabellum alabastrum exhibited growth 

between 1 and 5 mm year-1 over two years (Hamel et al. 2010). Details on other species 

that successfully reproduced under low-pressure conditions are provided below (section 

2.4.2.2), including a delicate species of pycnogonid (Nymphon hirtipes), which was 

collected from depths of 1350-1450 m off eastern Canada (Mercier et al. 2015). Reports 

from many other regions reveal that a diversity of deep-sea taxa from non-

chemosynthetic environments were confirmed to survive at atmospheric pressure for days 

to months, and beyond (Table A1). Notably, several Arthropoda and Echinodermata (13 

and 14 species, respectively) were collected from the tropical West Pacific (Trop W Pac) 

and maintained in the laboratory for 120 d by Wilson et al. (2013). It is possible that the 

species could have survived longer than 120 d but the experiments were simply 

concluded. Among other examples, hagfishes (Chordata) collected from depths of 1200 

m survived for a year in laboratory conditions (Drazen, pers. comm.), amphipods 

(Arthropoda) collected from the NE Atl at depths of 1528-1765 m survived for 60 d 

(Brown and Thatje 2011), and two coral species (Cnidaria) collected from the 
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Mediterranean (Med) at depths of 214 and 218 m were held at atmospheric pressure for 

517 d to study their growth (Orejas et al. 2008).  

2.4.1.1b Analysis of survival time in deep-sea adults 

In general, FAMD results for taxa collected from chemosynthetic environments 

showed that Arthropoda survived longer (mean = 310.7 d) than Mollusca (175.1 d; 

p<0.001) under laboratory conditions. Furthermore, individuals from vents/seeps in the 

NW Pac survived longer (390 d) than those from the NE Atl and GOM (216 d and 134 d, 

respectively). Figure 2-1 shows the overall average survival times recorded (not just the 

data selected for the FAMD analyses), based on phyla and geographic locations.   

FAMD analyses on taxa from non-chemosynthetic environments revealed that 

Echinodermata and Arthropoda collected from the Trop W Pac survived for shorter 

durations (116.6 d and 120 d, respectively) than the average of other non-chemosynthetic 

species (518.9 d; p<0.001). Furthermore, adults from the Med and North-East Pacific 

(NE Pac) survived for shorter durations (mean = 347 d and 375 d, respectively) under 

atmospheric pressure conditions in the laboratory than individuals collected from the 

other geographic locations studied (518.9 d; p<0.001). Lastly, Cnidaria from the NW Atl 

survived longer (730 d) than the average (518.9 d; p<0.001). In FAMD analyses where 

the depth range of adults from non-chemosynthetic regions was considered, no 

associations between bathyal or abyssal depth ranges and the other factors were 

evidenced. Average minimum survival times are presented in Figure 2-2, with regards to 

phyla, geographic locations and depth ranges. 
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2.4.1.2 Pressure tolerance experiments  

2.4.1.2a General observations 

Experimental studies that expose live animals to various pressure levels are 

relatively novel and still plagued by technical constraints. Unlike the holding of deep-sea 

species at atmospheric pressure, which can offer good conditions apart from the pressure 

change, the pressurization of live organisms is invariably subjected to potential biases 

(e.g. small volumes, static conditions). For this reason, and because flow-through 

pressure vessels are rare, experiments involving pressure are still of short durations. 

Experiments were conducted in a variety of different pressure vessels (e.g. IPOCAMP 

and customized hydraulic pump pressure systems) and also in regular aquaria, which 

were in some cases designed to chemically mimic hydrothermal vent environments.  

Many species from chemosynthetic environments were brought to the surface and 

then tested under high pressures mimicking their depth of collection (e.g. Boutet et al. 

2009; Childress et al. 1984; 1991; Cottin et al. 2008; 2010a; Durand et al. 2010; Dixon et 

al. 2002; Gaill et al. 1997; Mickel and Childress 1982b; Kadar et al. 2008a; Ravaux et al. 

2003; 2013; Shillito et al. 2001; 2004; 2006; 2015). Despite the stress experienced from 

collection and re-pressurization, survival was generally high for >70% of these studies 

(Table A1) (e.g. Boutet et al. 2009; Childress et al. 1984; 1991; Company et al. 2004; 

Cottin et al. 2008; 2010a; Dixon et al. 2002; Durand et al. 2010; Kadar et al. 2008a; 

Mickel and Childress 1982c; Ravaux et al. 2003; 2013; Shillito et al. 2001). Similarly, 

when individuals were formally tested at lower pressure conditions (atmospheric) 

survival remained high for either the control experiments that were run in parallel with 

pressure treatments (Dixon et al. 2002; Martinez et al. 2001; Shillito et al. 2006; Watsuji 

et al. 2014) or experiments that simply maintained individuals under atmospheric 
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pressure conditions (Bettencourt et al. 2008; Colaço et al. 2011; Company et al. 2004; 

Kadar et al. 2008a; Martins et al. 2014; Miyake et al. 2007). For instance, deep-sea 

Mollusca maintained under atmospheric pressure had 100% survival following 

experimental durations ranging from 12 h to a year (Bettencourt et al. 2008; Colaço et al. 

2011; Company et al. 2004; Martinez et al. 2001; Kádár et al. 2005; 2006; 2008a). 

Survival in Arthropoda was not as high, but still generally >50% (only one experiment 

resulted in 0% survival; Table A1). Furthermore, the hydrothermal vent shrimp Mirocaris 

fortunata collected from 850 m was maintained for 9 d at atmospheric pressure and had a 

70% survival rate (Shillito et al. 2006).  

Other studies examined the survival of shallow-water individuals from non-

chemosynthetic environments under experimental pressures, yielding variable results. In 

the findings of Chapter 3, shallow-water species of Echinodermata (Strongylocentrotus 

droebachiensis and Cucumaria frondosa) collected from the NW Atl had a more limited 

ability to survive exposure longer than shorter exposures (72 h vs. 24 h) to pressure 

beyond their natural bathymetric range (2-3 times the deepest depth of natural 

occurrence). Similarly, after 9 d of pressure exposure, there was 100% mortality of the 

polar sea stars (Leptasterias polaris), demonstrating a lack of tolerance to high pressure 

over extended experimental durations (9 d vs 24/72 h). The same was noted for a species 

of shallow-water Mollusca, Mytilus edulis (Ammendolia et al., in preparation; Chapter 3). 

Nevertheless, all else being equal, the analysis of experimental results obtained so far can 

provide some interesting insight (see below).  
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2.4.1.2b Analysis of percent survival in shallow-water and deep-sea adults exposed to 

experimental pressure 

According to FAMD analyses of results from experiments conducted on taxa 

collected from chemosynthetic environments, percent survival of deep-sea Arthropoda 

tested for longer durations (3782 h or 157 d) under experimental pressures survived less 

(mean = 70.3%) than the average (79.9%; p<0.001). Similarly, Arthropoda specifically 

from the NE Atl collected at bathyal depths survived less (62.6%) than the average 

(79.9%; p<0.001). By contrast, Mollusca from the NE Atl collected from bathyal depths 

and Annelida from the NE Pac survived better (84.3% and 96.7%, respectively) than the 

average (79.9%; p<0.001). Overall, there was no correlation between percent survival 

and experimental pressure level (R=0.11, p=0.371) but there was a significant negative 

correlation between survival and trial duration (R=-0.54, p<0.001). Average percent 

survival with respect to phyla and depth ranges is presented in Figure 2-3. 

FAMD analyses of experimental data involving individuals from non-

chemosynthetic environments revealed that deep-sea Cnidaria tested for long durations 

(17009 h or 709 d) at low/atmospheric pressure (0.1 MPa) survived more (mean = 80.5%) 

than the average (76.1%; p<0.001). In other FAMD analyses, shallow-water Arthropoda 

from the Trop E Pac collected from subtidal depths survived less (32.1%) than the 

average (76.1%; p<0.001). It was also found that deep-sea Cnidaria from the NW Atl 

collected from bathyal depths survived better (78.3%; p<0.001). Overall, there was a 

significant negative correlation between percent survival and pressure level (R=-0.17, 

p=0.025) but no correlation with experimental duration (R=0.07, p=0.378). Figure 2-4 

shows the average percent survival within phyla, geographic locations and depth ranges. 
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2.4.2 Larvae 

2.4.2.1 Survival time of deep-sea larvae at atmospheric pressure 

The literature includes many reports of adult deep-sea species having spawned 

under atmospheric pressure and the subsequent larvae having successfully developed 

(Table A1). Similar to data on adults, data on larvae from both chemosynthetic and non-

chemosynthetic environments exist. 

Information on the development of larvae obtained following the spawning of 

adults collected from chemosynthetic environments is largely inconsistent. Deep-sea 

adult ascidians (Chordata) collected in the NW Pacific released larvae under atmospheric 

pressure conditions that developed into juveniles and survived a maximum of 7 months 

(Havenhand et al. 2006). Similarly, many deep-sea species sampled from the Nikko 

Seamount vents of the NW Pacific successfully spawned, including the vent crab 

(Austinograea yunhana), tonguefish (Symphurus sp.) and vent shrimp (Opaepele spp.) 

(Miyake et al. 2007). Vent shrimp did not continue development post hatching (Miyake 

et al. 2007). Despite the fact that vent crab larvae also experienced early mortality, it was 

speculated that they could potential survive to megalope or juvenile stages under non-

native pressure because mortality was unrelated to pressure issues, according to 

investigators (Miyake et al. 2007). Similar issues were reported in the deep-sea 

bythograeid crabs: larvae that were obtained in the laboratory successfully 

metamorphosed into megalopal stages, but individuals died without molting into 

juveniles after 104 d (Hamasaki et al. 2010). It was suggested that chemical cues from the 

natural environment were required for moulting and that pressure was not a limiting 

factor (Hamasaki et al. 2010). Wantanabe et al. (2004) offered similar conclusions when 
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deep-sea adult barnacles (Neoverruca) from the NW Pacific spawned larvae under 

atmospheric pressure, and none successfully metamorphosed/settled before dying after 

183 days.  

 One of the limitations of assessing larval survival in the literature was that 

investigators did not always monitor development. For instance, adult deep-sea vent 

shrimp (Mirocaris fortunata) from the NE Alt were collected from 1700 m and 

maintained at either native or atmospheric pressures (Shillito et al. 2015). Some 

individuals developed gonads to a gravid state but larval development was not examined. 

Similarly, despite the fact that adult vent mussels (Bathymodiolus azoricus) and cold-seep 

mussels (Bathymodiolus childressi), collected from different geographic regions and 

maintained for one full year, spawned, the larvae were not monitored (Arellano and 

Young 2009; Colaço et al. 2006). Overall, it is apparent that most studies focused mainly 

on testing the ability for adults to spawn and did not examine the fate of the offspring 

(Colaço et al. 2006; Shillito et al. 2015). 

It is worth noting that some investigators obtained larvae directly from 

chemosynthetic environments and encountered similar issues as those mentioned above. 

Arellano et al. (2014) collected eggs of the gastropod Bathynerita naticoidea and veligers 

of Bathymodiolus childressi from the GOM. Although individuals successfully hatched 

and developed under atmospheric pressure, the maximum length of survival at this 

pressure was not assessed. Similarly, Epifanio et al. (1999) collected megalopa larvae and 

early juveniles of hydrothermal vent crab (Bythograea thermydron) from 2500 m. 

Despite the trauma of collection and transfer to atmospheric pressure, a portion of the 

megalopae metamorphosed and survived until their 3rd stage of development, while 
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juveniles survived longer. Some of the individuals were maintained under atmospheric 

pressure for a period of 201 days. Juvenile demonstrated normal mobility and feeding 

under atmospheric pressure and their mortality was attributed to molting rather than 

barotolerance.  

There have been even more cases of larvae from non-chemosynthetic 

environments obtained and raised until settlement under laboratory conditions. In a 

diversity of deep-sea taxa collected from the NW Atlantic, larvae and resulting juveniles 

survived for long-term periods (years) at atmospheric pressure, including those of the sea 

anemones Allantactis parasitica (Mercier and Hamel 2009) and Urticina sp. (Mercier et 

al. 2011b), the whelk Buccinum scalariforme (Montgomery et al., in press), the sea star 

Henricia lisa (Mercier and Hamel 2008b) and several corals including Flabellum 

angulare (Hamel et al. 2010), Drifa glomerata (Sun et al. 2010) and Drifa sp. (Sun et al. 

2009). Notably, deep-sea Annelida (Ophryotrocha sp.) collected at 1500 m reproduced at 

atmospheric pressure after being maintained for a year; juvenile stages had survival rates 

of 80%, and some survived to adult stages and successfully reproduce themselves, 

yielding a total of three generations (Mercier et al. 2014; Verkaik et al. 2016b). Another 

example is offered by Nymphon hirtipes (Arthropoda: Pycnogonida) collected at similar 

deep-sea depths, whose larvae were successfully reared in the laboratory over a period of 

390 d until juvenile stages dispersed (Mercier et al. 2015). As mentioned earlier for 

chemosynthetic species, many studies did not evaluate the development of larvae from 

non-chemosynthetic environments, mainly because such investigations require 

appropriate holding facilities and continuous monitoring over months to years. For 

instance, offspring of deep-sea Cnidaria including Drifa sp., Drifa glomerata, Flabellum 
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angulare and Urticina sp. had high survival rates (>70%) to the planula stage (Mercier et 

al. 2011a; Mercier et al. 2011b; Mercier et al. 2011c; Sun et al. 2009; Sun et al. 2010) but 

the full potential of these individuals and their ability to survive to later stages was not 

evaluated due to logistical constraints (Mercier et al. 2014; Sun et al. 2010). 	

2.4.2.2 Pressure tolerance experiments  

2.4.2.2a General observations 

Overall, there were very few studies and experiments that had collected larvae 

from chemosynthetic environments and managed to experimentally test their survival 

(n=22 data points; 8 studies). This can be attributed to the logistical difficulties in 

collecting species from deep-sea vent or seep communities (Cottin et al. 2008; Pradillon 

et al. 2001; Pradillon et al. 2005; Ravaux et al. 2009). Generally, larvae of deep-sea vent 

species of Mollusca (that were spawned from adults collected from the GOM) survived 

well (>58%) when exposed to atmospheric pressure (Arellano and Young 2011; Arellano 

et al. 2014). The Arthropoda species Neoverruca sp. survived the best in experiments that 

exposed larvae to lower pressures than to native pressure conditions (Watanabe et al. 

2014). Survival ranged from 97-100% over the course of 14-17 d, which were the longest 

set of experiments conducted within this dataset. 

Larvae that were spawned from adults originating from non-chemosynthetic 

environments generally survived well under various experimental conditions. For 

instance, species of shallow-water Echinodermata collected from the NE Atl and 

Antarctica had high survival rates (mostly >80%) when exposed to pressures that are 

characteristic of depths greater than their natural occurrence (Aquino-Souza et al. 2008; 

Tyler and Young 1998; Tyler and Dixon 2000; Villalobos et al. 2006). Such experiments 
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lasted 24-48 h, which can be considered long experimental durations since larvae develop 

relatively fast. By contrast, other experiments focused on acute shock and tested 

individuals for as little as 7.2 min (~0.12 h) (Ding et al. 2007). The experimental 

durations were sometimes limited because of the technologies available. For instance, 

George and Marum (1974) tested larvae of Arthropoda (12 species), Cnidaria (1 species) 

and Mollusca (1 species) from either the Cari or NW Atl under experimental pressures 

for 1 h (6.1-65.5 MPa). Generally, most individuals had 100% mortality, although it 

should be noted that pressurization lacked acclimation periods and occurred rapidly <1 

min.  

Generally, there were trends of low survival among shallow-water larvae when 

exposed to increasing pressures that were beyond the scope of their natural bathymetric 

range. This was apparent in species of Mollusca, for instance, Crepidula fornicata and 

Nucella lapillus collected from the NE Atl and NW Atl, which survived less than the 

average when exposed to higher pressures (Mestre et al. 2009; Pechenik et al. 1984). This 

trend was also seen in other phyla, including shallow-water Annelida larvae collected 

from the NE Atl that had low pressure tolerances for high experimental pressures, i.e. 

19.3% survival under 30.4 MPa (Vevers et al. 2010).  

2.4.2.2b Analysis of percent survival in shallow-water and deep-sea larvae exposed to 

experimental pressure 

FAMD analyses of data on larvae obtained from chemosynthetic 

adults/environments revealed that Annelida tested for short durations (73.1 h) under high 

pressures (11.5 MPa) survived less (mean = 56.9%) than the average (73.1%; p<0.001). 

By contrast, Arthropoda tested under low pressures (6.5 MPa) survived more (84.6%) 
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than the average (73.1%; p<0.001). The results of another FAMD analysis showed that 

larvae of Annelida from the NE Pac originating from abyssal depths survived less 

(56.9%) than the average (73.1%; p<0.001). There was no correlation between percent 

survival and pressure level (R=-0.27, p=0.226) or experimental duration (R=0.01, 

p=0.996). Average percent survival of larvae obtained from species grouped by phyla, 

geographic locations and depth ranges is presented in Figure 2-5. 

In general, FAMD analyses conducted on data involving larvae from non-

chemosynthetic environments showed that deep-sea Cnidaria tested for long durations 

(14335 h or 597 d) under lower pressures (mean = 5.8 MPa) survived better (73.6%) than 

the average (69.7%; p<0.001). Another FAMD analysis revealed that larvae of 

Echinodermata from the NE Atl and of Arthropoda from the NW Pac, both from subtidal 

depths, survived better (94.7% and 63.1%, respectively) than the average (69.7%; 

p<0.001). By contrast, larvae of shallow-water Echinodermata from the Trop W Pac 

collected from subtidal depths survived less (15.4%) than the average (69.7%; p<0.001). 

Also, larvae of deep-sea Arthropoda from the NW Pac and Caribbean collected from 

bathyal depths survived less (63.7% and 10%, respectively) than the average (69.7%; 

p<0.001). Lastly, shallow-water larval Annelida from the intertidal zone survived less 

(63.1%) than the average (69.7%; p<0.001). There was a significant negative correlation 

between percent larval survival and pressure level (R=-0.64, p=<0.00001) but not 

experimental duration (R=0.11, p=0.153). Average percent survival of larvae belonging 

to various phyla and obtained from species collected in different geographic locations and 

depth ranges is presented in Fig. 2-6. 
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2.5 Discussion  

How species colonized the ocean and how vertical migrations will continue to 

operate in the face of climate change are crucial questions for ecologists and evolutionary 

scientists. By analyzing a large set of observational and experimental results related to the 

pressure tolerance of a diversity of marine taxa, the present study attempted to draw the 

first broad (but likely not comprehensive) picture of the evidence available from 

empirical data. Findings show that adults and progeny of many deep-sea species can 

withstand quick depressurization and survive fairly well (thriving, feeding, spawning, 

developing, growing) at atmospheric pressure when environmental conditions are 

minimally suitable (e.g. Arellano and Young 2009; 2014; Colaço et al. 2006; Epifanio et 

al. 1999; Mercier and Hamel 2008b; 2009; Mercier et al. 2011a; Miyake et al. 2007). 

Most of the successful examples are from higher attitudes; however, the confounding 

effect of thermotolerance (Pradillon et al. 2001; 2005; Shillito et al. 2006) currently 

prevents any reliable assessment of the pressure tolerance of taxa collected at depth from 

lower latitudes, since live animals incur a temperature shock during transport to the 

surface (Menzies and Wilson 1961; Quetin and Childress 1980; Wilson et al. 2013). On 

the other hand, shallow-water species, with the possible exception of eurybathic taxa, are 

not known to survive marked increases in pressure beyond a few hours, although this 

could be a result of our still limited capacity to maintain optimal environmental 

conditions at experimental pressure. A final limitation involves marked differences 

between trial conditions when testing pressure tolerance in larvae and adults (i.e. smaller 

sample sizes and shorter experimental durations for larvae); therefore results have to be 

explored and discussed separately, and ontogenetic comparisons remain tentative at best. 
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Overall, when the measure of pressure tolerance is interpreted as a predictor of 

recent/ongoing vertical migration, the available data are more strongly supportive of the 

parsimony or emergence hypotheses, with bathyal taxa exhibiting the most plastic 

tolerance to pressure variations.  

2.5.1 Pressure tolerance of adults  

The hypothesis that depth stratum of collection would drive pressure tolerance 

was supported. A number of investigating teams have successfully maintained deep-sea 

animals at atmospheric pressure for several years in tanks that either mimicked the 

conditions of chemosynthetic environments (e.g. Colaço et al. 2006; 2011; Miyake et al. 

2007; 2012; Shillito et al. 2015) or were supplied with ambient seawater (e.g. Baillon et 

al. 2014; Hamel et al. 2010; Mercier and Hamel 2009; Mercier et al. 2013; 2014). In 

these studies, deep-water animals exhibited key behaviours such as feeding, growth, 

spawning and development, indicating that they adapted successfully to atmospheric 

pressure. Further evidence of the resilience of deep-water taxa comes from a field study 

that transplanted deep-sea Antarctic acorn barnacles (Bathylasma corolliforme) from 400 

to 25 m; individuals survived at transplanted depths for >2 years (Dayton et al. 1982). 

Survival in this experiment was not affected by pressure but rather by substrate 

availability, thus supporting the ability for deep-sea species to adapt to shallow water 

under otherwise suitable conditions. It should be noted that evidence of deep-sea species 

surviving atypical pressures (i.e. atmospheric pressure) often lasted months to years 

(Mercier et al. 2011a; Miyake et al. 2007; Weinberg 1990). By contrast, evidence of 

shallow-water bivalves (Mytilus galloprovincialis) surviving pressure treatments was no 

longer than 69 d for individuals maintained in sea cages at depth (Galgani et al. 2005) or 
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28 d in pressurized aquaria for shrimps (Cottin et al. 2012). Differences between the 

experimental pressure exposure durations used for testing shallow-water and deep-sea 

pressure tolerances were inherent limiting factors within the available literature. 

Interestingly, deep-sea animals also exhibited high survival levels under pressure 

experiments (i.e. re-pressurization). The percent survival of adults after experimental 

exposure to non-native pressure was overall higher for deep-sea (80%) than shallow-

water taxa (68%). 

Despite the early assumption that deep-sea animals from depths >1500 m could 

not survive atmospheric pressure (Dixon et al. 2004; Pruski and Dixon 2003) the 

evidence summarized here includes several examples of deep-sea animals collected 

>2000 m surviving very well at atmospheric pressure. Nevertheless, the length of post-

collection survival of deep-sea adults at atmospheric pressure was generally longer for 

taxa collected from bathyal (>200-2000 m) than abyssal depths (>2000-6000 m). This 

trend was evidenced for both chemosynthetic and non-chemosynthetic species. 

Exceptions include deep-sea corals of the genus Flabellum collected in both zones from 

the NW Atlantic, which survived equally well (present study; Hamel et al. 2010; Mercier 

et al. 2011a), suggesting that the threshold (if present) may lie deeper in boreal climates. 

On the other hand, it cannot be excluded that the numerous cases of abyssal species 

showing shorter survival at atmospheric pressure results from damage incurred during 

collection rather than to any real physiological barrier. For instance, depressurisation of 

animals collected from deep-sea vent communities at 2530 m occurred inside ~90 

minutes (Pradillon et al. 2004). When animals undergo acute barotrauma, severe damage 

to nervous tissue on both a transcriptional and cellular level can occur, as suggested by 
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Morris et al. (2013) potentially leading to serious injuries or death. Supporting this 

conclusion, Seo et al. (2013) demonstrated that gradual acclimation to new pressures 

under laboratory conditions increased the chances of survival for the crustacean Artemia 

franciscana. Due to the lack of control over depressurising conditions during field 

collections, abyssal species could survive even more than what has been documented up 

to now, therefore, their potential to survive under atmospheric pressure must not be 

entirely ruled out. 

In addition to depth of collection, geographic location of origin also revealed a 

marked dichotomy between lower and higher latitudes. Individuals collected from 

tropical locations generally did not survive as long or in equal proportions to those from 

northern locations. For instance, both shallow-water and deep-sea species collected in the 

tropical Eastern Pacific survived less than all those from higher latitudes under 

experimental conditions or at atmospheric pressure, respectively. Furthermore, in 

pressurization trials, Arthropoda and Echinodermata collected from the shallow 

Mediterranean Sea (Young et al. 1997) survived less than the average from other 

locations, including temperate habitats, when exposed to various pressures. As 

thermoclines in northern areas occur at ~500 m and stratification generally dissipates 

over several months, between late fall and spring, animals collected during those periods 

would not experience as severe a temperature shock as those collected in tropical waters 

where a more permanent stratification occurs in the first 100 m (Tyler and Young 1998). 

Ravaux et al. (2003) reported that using insulated collection boxes on ROVs markedly 

increased the survival of deep-sea species collected at abyssal depths.  



	 53	

Recently, Brown and Thatje (2015) showed that fundamental ecological niches 

(FENs) or bathymetric habitats of marine animals are controlled by abiotic factors (i.e. 

temperature, pressure, oxygen concentration). The spatial extent of FENs depends on 

their geographic location; generally, FENs in tropical regions are geographically and 

bathymetrically constricted because of the drastic changes in the thermoclines (see 

above), whereas the inverse exists for northern regions (Brown and Thatje 2015; Tyler 

and Young 1998). Therefore, the success of bathymetric migrations within tropical 

regions may also (or primarily) be limited by thermotolerance preventing species from 

surviving vertical movement. This reasoning applies both ways. For instance, low 

temperatures can cause physiological stress that increases the mitochondrial oxygen 

demand in the shallow-water spider crab (Maja squinado) and high pressure can 

complicate processes (i.e. ventilation and circulation) that would maintain aerobic 

homeostasis (Brown and Thatje 2015; Frederich and Portner 2000). Inversely, 

hydrothermal vent shrimp (Microcaris fortunata) originally from depths of 1700 m were 

maintained for months at atmospheric pressure and were found to be attracted to heating 

elements within the aquaria; although this could be due to the animals exhibiting 

behaviour also displayed in their native hydrothermal vents (Matabos et al. 2015). 

However, long survival durations and attraction to high temperatures may indicate 

potential for species to exploit more shallow environments. 

Overall, movement in tropical areas might be restricted by thermal physiological 

bottlenecks that impose species-specific thresholds. The present synthesis does not 

support previous claims that shallow-water individuals from certain tropical regions 

would be capable of surviving pressures required for deep-sea migration (Tyler and 
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Young 1998; Tyler et al. 2000a; Villalobos et al. 2006; Young et al. 1997; 1996). 

Although investigators have built an impressive understanding of how survival and 

growth are affected by various pressure conditions, few studies have focused on how 

vertical movement of animals may be affected by biogeography. 

Due to limitations in the available literature, we could not analyze the pressure 

tolerance on a species-specific level, but our assumption that phylum plays a role in 

pressure tolerance was supported for the various taxa surveyed. The analyses did not 

explicitly identify a phylum that was either more resilient or more vulnerable to shifts in 

pressure. This is in part due to the complexity of the dataset and the number of studies 

conducted by different investigative teams. This synthesis must therefore be approached 

with caution as taxa were not tested uniformly among studies, and investigators used 

different protocols in regards to collection methods and experimental pressure 

acclimation.  

This being acknowledged, deep-sea molluscs from both chemosynthetic and non-

chemosynthetic environments often stood out in the analyses; they were found to survive 

longer at atmospheric pressure than other phyla. However, these conclusions are based on 

multiple experiments conducted on a limited number of species. Notably, numerous 

studies have been conducted by the Horta Laboratory in the Azores on the life history, 

development and physiology of hydrothermal vent mussels (Bathymodiolus azoricus) 

collected from the Mid-Atlantic Ridge at ~850 m depth (Barros et al. 2015; Colaço et al. 

2006; 2011; Bettencourt et al. 2008; 2010; Company et al. 2004; Company and Sardà 

1998; Martins et al. 2014; Kádár et al. 2006; 2008b). Experimental pressure tolerance of 

this species was shown to be high, since investigators were able to maintain it for >12 
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months under laboratory conditions at atmospheric pressure. The ability to adapt to low-

pressure conditions by deep-sea mussels may reside in their lack of internal gas 

compartments, and B. azoricus presumably undergoes minimal physical damage from 

changes in pressure. When considering the total number of deep-water species assessed, 

rather than the number of experiments in which a given species was used, the phylum 

Echinodermata stands out for its ability to withstand non-native pressure conditions. 

The ability of a taxon to survive pressure shifts could potentially relate to body 

types and body-plan complexity. In terms of percent survival data under experimental 

pressure treatments, Foraminifera, Porifera and Annelida did better relative to 

invertebrate Chordata, possibly because of the latter’s phylogenetic position. Maintaining 

physiological homeostasis when faced with acute pressure stresses could potentially be 

more difficult in certain animal body designs. By contrast, the simple structure of deep-

sea Porifera may have allowed 100% survival of demosponge colonies at atmospheric 

pressure for ~2 years (Robertson et al. submitted). Therefore, it is unlikely that vertical 

migrations would involve mass movements of all taxa, but rather would be restricted to 

those few that are more barotolerant under relatively isothermal conditions. In order to 

determine the most likely candidates for vertical migrations, further investigations will be 

required to test the barotolerance of multiple taxa on physiological, developmental and 

genomic levels. To establish more definite conclusions regarding the link between body 

design complexity and barotolerance, future studies should examine the responses of 

multiple species from various phyla under standardized conditions.  
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2.5.2 Pressure tolerance of early life stages 

Inherent to deep-sea research, one of the setbacks with the assessment of pressure 

tolerance in early life stages is that they generally develop at atmospheric pressure from 

parents collected at depth. Only a few investigators have successfully collected early life 

stages (eggs or veligers) directly from great depths in the field (Arellano et al. 2014; 

Epifanio et al. 1999). Therefore testing the importance of depth of origin on their pressure 

tolerance can be complicated by collection logistics in the majority of the studies 

conducted. Moreover, embryos and larvae are transient stages, and most trials involving 

them are of shorter duration (<24 h) than studies of adult individuals discussed above. In 

this context, survival rates of larvae whose parents were collected from shallow and deep 

depths was not significantly different in the dataset examined here, indicating that 

survival of early life stages is not affected by the provenance of their parents. It should be 

emphasized, however, that apart from relying on brief trials, studies did not always test 

the tolerance of the corresponding adult stages (e.g. Aquino-Souza et al. 2008; Childress 

and Thuesen 1993; Ding et al. 2007; Mestre et al. 2009; Munro et al. 2015; Pechenik et 

al. 1984; Smith et al. 2013; Smith and Thatje 2012; Smith et al. 2015; Tyler and Young 

1998; Tyler and Dixon 2000; Vevers et al. 2010; Villalobos et al. 2006). Although the 

high-latitude emergence (deep to shallow) hypothesis has been supported chiefly on the 

basis of echinoderm larvae surviving short-term pressure exposure (e.g. Tyler and Young 

1998; Tyler and Dixon 2000; Villalobos et al. 2006), the present synthesis found no 

evidence that shallow-water larvae can survive long-term maintenance under various 

pressure conditions. Furthermore, while some shallow-water larvae have been shown to 

survive pressures representative of depths atypical of their natural bathymetric ranges, 
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successful metamorphosis/settlement has not been documented, and Brown and Thatje 

(2014) noted that adults of these species were not found at such depths in nature.  

One interesting aspect to highlight from the dataset is that, inversely, many 

investigators were able to successfully maintain cultures of larvae at atmospheric 

pressure after obtaining them from adults collected in the deep sea. A number of them 

have even been able to rear such larvae until settlement into juveniles (e.g. Mercier and 

Hamel 2008b; 2011b; Miyake et al. 2007; 2012; Sun et al. 2009). At least one species 

underwent multiple generations (Baillon et al. 2014). It was even reported that the adult 

tonguefish (Chordata) released larvae that had formed eyes and actively fed at 7 days old 

(Miyake et al. 2007). This is an intriguing finding as deep-sea fish do not typically 

survive under atmospheric pressure conditions (Pradillon et al. 2005). Furthermore, adult 

sea stars, sea anemones and octocorals collected from as deep as 2500 m produced larvae 

that were reared to settlement and even sexual maturity at atmospheric pressure (e.g. 

Mercier and Hamel 2008b; 2009; Mercier et al. 2011a; Sun et al. 2010).  

As mentioned above, most studies do not directly sample larvae from the deep 

sea; rather adults are collected which may undergo physical damage that can impact their 

reproductive capacity. Pradillion et al. (2005) stated that most animals “were dead or 

moribund upon reaching the surface” from 2500 m depths. Even though larvae are often 

dissected from collected adults, in most studies the extent of the trauma that gametes or 

brooded larvae experience from the ascent has yet to be determined. Ultimately, 

collection methods may negatively affect the health/fitness of animals, including rapid 

depressurization from the native habitat or use of sampling technology that may inflict 

physical damage (see above).  
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Similar to the findings reported earlier for adults, geographic location (of parental 

collection) had an effect on survival of the larvae. Both percent survival and the survival 

time at atmospheric pressure were higher and longer, respectively, for collections made in 

colder geographic locations. In contrast, phylum did not influence the pressure tolerance 

of larvae in the dataset examined, although data remain too limited to make any strong 

inferences. Another limitation of the available dataset was that survival time of larvae 

could not be fully analyzed due to low and biased sample sizes (i.e. there was only 

enough data for Arthropoda).  

Overall research on deep-sea larvae is still in its early stages and the holding 

conditions might also not provide all the necessary abiotic conditions for optimal 

embryonic and larval development. Many investigative teams have argued that the ability 

for deep-sea larvae to survive under laboratory conditions can be negatively affected by 

environmental conditions other than pressure. Such factors may include poor water 

conditions, i.e. ammonium levels that induced abnormalities in the eggs (Colaço et al. 

2006), and the absence of natural chemical cues required for development or settlement 

of deep-sea larvae (Hamasaki et al. 2010; Watanabe et al. 2004). Another issue that was 

found with evaluating the ability of larvae (spawned from deep-sea adults) to tolerate 

atmospheric pressure is that early life stages can succumb to natural threats, such as 

cannibalism or disease. Cannibalism was reported in the vent crab (Austinograea 

yunhana) whereby no eggs maintained at the Enoshima Aquarium survived (Miyake et 

al. 2007). Similarly, many deep-sea ascidians larvae developed until juvenile stages and 

demonstrated adequate feeding; however, they lived only for 7 months because of a 

ciliate disease (Havenhand et al. 2006). Ultimately these findings suggest that the full 
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potential of deep-sea larvae to develop under low-pressure conditions has not been 

explored due to basic husbandry constraints.  

2.5.3 General conclusions  

Overall, this review of the pressure tolerance literature has helped synthesize a 

large body of observational and experimental results related to a broad range of phyla. 

Based on the tolerance of taxa collected from intermediate (bathyal) depths to both 

atmospheric pressure and pressurization, the parsimony hypothesis suggesting a bi-

directional movement of species was the most strongly supported hypothesis. The high-

latitude emergence (deep to shallow) hypothesis also received support from the analyses 

and numerous reports of long-term holding of deep-sea animals (adults and larvae) under 

atmospheric pressure conditions. Finally, evidence for the submergence (shallow to deep) 

hypothesis from empirical data on barotolerance is weak, i.e. restricted to fewer and 

comparatively short studies. In summary, we found that (i) depth stratum of collection 

had an effect on the survival of adults but not larvae (with the caveats highlighted), (ii) 

geographic location of origin impacted pressure tolerances of all ontogenetic stages, 

whereby individuals from tropical areas where less tolerant to pressure changes than 

those from northern latitudes (presumably due to the synergistic effect of 

thermotolerance), and finally (iii) phylum had an effect on pressure tolerance of adults in 

that more derived taxa appeared to be more sensitive to pressure shifts. Additional 

research will be required to assess which precise morphological, physiological and/or 

molecular aspects might drive barotolerance in the various taxa. Importantly, the 

parsimony hypothesis was shown to be worthy of further investigation.	
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2.8 Tables 

Table 2-1: List of variables collected from the literature with their definitions and the 
scales/categories that were compared. 

Variable Definition Scale or Categories  
Collection depth Actual depth or range of 

depths from which 
specimens were collected.  

0 – 4420 m 

Depth stratum Categories used for 
comparing general 
bathymetric origin.  

Deep (≥200 m), shallow 
(<200 m) 

 
Depth range 

 
Categories used to refine 
the bathymetric analyses. 

 
Intertidal (0 – 5 m), subtidal 
(>5 – 200 m), bathyal (>200 
– 2000), abyssal (>2000 – 
6000). 

Climate zone (of origin) Climate where shallow-
water collections occurred. 
From a combination of 
geographic region and 
temperature data as per the 
methods described in 
Mercier et al. (2013).  

Polar, temperate-cold, 
temperate, temperate-warm, 
tropical 

Geographic region (of 
origin) 

Regions where collections 
occurred and their 
acronyms. 

Antartica (Antartica), 
Norwest Atlantic Ocean 
(NW Atl), Northeast 
Atlantic Ocean (NE Atl), 
Northeast Pacific Ocean 
(NE Pac), Northwest Pacific 
Ocean (NW Pac), 
Mediterranean Sea (Med), 
Tropical East Pacific Ocean 
(Trop E Pac), Tropical West 
Pacific Ocean (Trop W 
Pac), Indian Ocean (Ind 
Trop) Caribbean (Cari), 
Gulf of Mexico (GOM) 
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Habitat type (of origin) Descriptor beyond depth 
that might refer to unique or 
endemic communities. 

Chemosynthetic habitat, 
non-chemosynthetic 
habitats (which include: 
reef, seamount, salt marsh, 
canyons, mud volcano), lab 
culture  

 
Initial life-history stage 

 
The initial life stage tested 
from collection through 
experimental period. 

 
Larva, juvenile, adult 

 
Pressure 

 
Pressure (MPa) that animals 
were exposed to during 
experiments.   

 
0.1 – 50 MPa 

 
Method-pressure 

 
Protocol used to reach the 
experimental pressure level. 

 
Incremental (stepwise), 
absolute (absolute) 

 
Temperature 

 
Temperature (°C) that 
animals were exposed to 
during experiments. 

 
2 – 60°C 

 
Method-temperature 

 
Protocol used to reach the 
experimental temperature 
level. 

 
Incremental (stepwise), 
absolute (absolute) 

 
Experimental duration 

 
Length of time (h) that 
individuals were exposed to 
experimental condition.  

 
0 – 26280 h 

 
Survival time 

 
Length of time (hours, days, 
months, years) that deep-sea 
species survived while kept 
at atmospheric pressure. 

 
0.5 – 1097 d 

 
Survival 

 
Percent surviving 
individuals (%) at the end 
of the experiment, relative 
to the initial number of 
individuals exposed to the 
condition.  

 
0 – 100% 

 
Maximum stage 

 
Latest stage of development 
(larvae) immediately after 
exposure to pressure.   

 
Species dependent (refer to 
Table A1) 
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Maximum stage of 
development 

Percent (%) reaching the 
maximum stage (larvae) 
among the experimental 
group exposed to condition. 

0.07 – 100% 

Maximum age reached Maximum length of time 
(d) survived (larvae) to the 
experimental condition as 
the latest developed stage. 

0.1 – 199 d 
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Table 2-2: Summary of variables used in FAMD analyses and results from each test. 

Response 
variable 

Life 
stage 

Environment Deep 
Shallow 

Pressure 
and 
duration 
(Yes/No)a 

Phylumb Geographic 
locationb 

Depth 
range 

Results 
Average of 
response 
variable  

Significant group(s) 
(p<0.001) 

Survival 
time (d) 

Adult Chemosynthetic Deep No Ar 
Mo 

NW Pac   
NE Atl 
GOM 

Bathyal 235.1 d  Arthropoda survived for  
310.7 d  

 
Survival 
time (d) 

 
Adult 

 
Non-
chemosynthetic 

 
Deep 

 
No 
 

 
Ar 
Ch 
Cn 
Ec 
Mo 
Po 
 

 
NE Pac  
NE Atl 
NW Atl 
GOM 
Med 
Trop W Pac 

 
Bathyal 

 
512.7 d 

 
Arthropoda and 
Cnidaria from the Med 
survived for 7 d and  
517 d, respectively 
 

 
512.7 d 

 
Arthropoda from the NE 
Atl and GOM survived 
for 60 d and 639 d, 
respectively 

 
512.7 d 

 
Arthropoda and 
Echinodermata from the 
Trop W Pac survived for 
116.6 d and 120 d, 
respectively 

 
512.7 d 

 
Arthropoda, Chordata, 
Cnidaria and 
Echinodermata from the 
NE Pac survived for 114 
d, 730 d, 496 d and 300 
d, respectively 

 
512.7 d 

 
Cnidaria from the NW 
Atl survived for 730 d 

 
Deep 

 
No 
 

 
Ar 
Ch 
Cn 
Ec 
Mo 
Po 
 

 
NE Pac  
NE Atl 
NW Atl 
GOM 
Med 
Trop W Pac 

 
Bathyal 
Abyssal 

 
530.3 d 
 

 
Arthropoda and 
Cnidaria from the Med 
survived for 730 d and 
730 d, respectively 
 

 
530.3 d 
 

 
Arthropoda from the NE 
Atl and GOM survived 
for 639 d and 218.5 d, 
respectively 

 
530.3 d 
 

 
Arthropoda and 
Echinodermata from the 
Trop W Pac survived for 
291.5 d and 512.1 d, 
respectively 

 
530.3 d 
 

 
Arthropoda, Chordata, 
Cnidaria and 
Echinodermata from the 
NE Pac survived for  
730 d, 730 d, 730 d and 
120 d, respectively 

 
530.3 d 
 

 
Cnidaria from the NW 
Atl survived for 730 d 

 
Survival 
(%) 

 
Adult 

 
Chemosynthetic  

 
Deep 

 
Yes 

 
An 
Ar 

 
 

  
Pressure 
12.5 MPa 

 
Arthropoda tested under 
experimental pressures 
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Mo Duration 
2093.3 h, 
Survival 
79.9% 

for longer durations, 
3781.8 h, survived 
70.3% 
 

 
Survival 
(%) 

 
Adult 

 
Chemosynthetic  

 
Deep 

 
No 
 

 
An 
Ar 
Mo 
 

 
NE Pac  
NW Pac  
NE Atl 
Trop E Pac 

 
Abyssal 
Bathyal 
 

 
79.9% 
 

 
Arthropoda from the NE 
Atl collected at bathyal 
depths survived 62.3%  

 
79.9% 
 

 
Mollusca from the NE 
Atl collected from 
bathyal depths survived 
65.7%  

 
79.9% 
 

 
Annelida from the NE 
Pac survived 84.3%  

 
Survival 
(%) 

 
Adult 

 
Non-
chemosynthetic  

 
Deep 
Shallow 

 
Yes 

 
Ar 
Cn 
Ec 
Fo 
Mo 
Po 

   
76.1% 
 

 
Cnidaria collected from 
the deep-sea survived 
80.5% 

 
Survival 
(%) 
 
 
 
 
 
 

 
Adult 

 
Non-
chemosynthetic  

 
Deep 
Shallow 

 
No 

 
Ar 
Cn 
Ec 
Fo 
Mo 
Po 

 
NE Atl 
Trop E Pac 
Trop Ind 
NW Atl 
NE Pac 
Med 
NW Atl 

 
Subtidal 
Bathyal 
Abyssal 

 
76.1% 

 
Arthropoda from the 
Trop E Pac collected 
from shallow depths 
(subtidal) survived 
32.1% 

 
76.1% 

 
Cnidaria from the NW 
Atl collected from deep 
depths (bathyal) 
survived 78.3%  

  
Survival 
(%) 

 
Larvae 

 
Chemosynthetic  

 
Deep 

 
Yes 
 

 
An 
Ar 
Mo 

   
Pressure  
6.9 MPa 
Duration 
215.5 h  
73.1% 

 
Annelida tested under 
high pressures, 11.5 
MPa and short durations 
73.1 h survived 56.9%  

 
Pressure  
6.9 MPa  
73.1% 

 
Arthropoda tested under 
low pressures, 6.5 MPa, 
survived 84.6% 

  
Survival 
(%) 

 
Larvae 

 
Chemosynthetic  

 
Deep 

 
No 
 

 
An 
Ar 
Mo 

 
NE Pac 
NE Atl 
NW Pac 
GOM 

 
Bathyal 
Abyssal 

 
73.1% 

 
Annelida from the NE 
Pac collected from 
abyssal depths survived 
56.9% 

 
Survival 
(%) 

 
Larvae 

 
Non-
chemosynthetic 

 
Shallow 
Deep 

 
Yes 
 

 
An 
Ar 
Cn 
Ec 
Mo 

 
  

 
 

 
Pressure 
14.1 MPa 
duration 
1581.7 h 
69.7% 

 
Cnidaria collected from 
deep depths tested under 
low pressures, 5.8 MPa, 
and long durations, 
14334.7 h survived 
73.6% 

 
Survival 
(%) 

 
Larvae 

 
Non-
chemosynthetic 

 
Shallow 
Deep 

 
No 

 
An 
Ar 
Cn 
Ec 
Mo 

 
NE Pac 
NW Pac 
NE Atl 
NW Atl  
GOM 
Trop W Pac 
Cari 
Antarctica 
 

 
Intertida
l 
Subtidal 
Bathyal 

 
69.7% 

 
Echinodermata from the 
NE Atl collected from 
shallow depths 
(subtidal) survived 
94.7%  
 
Echinodermata from the 
Trop W Pac collected 
from shallow depths 
(subtidal) survived 
15.4% 
 
Arthropoda from the 



	 80	

NW Pac collected from 
shallow depths 
(subtidal) survived 
89.8% 
 
Annelida from the 
shallow depths 
(intertidal) survived 
63.1% 
 
Arthropoda from deep 
depths (bathyal) 
collected from the NW 
Pac and Cari survived 
63.7% and 10%, 
respectively 

a Pressure refers the experimental pressures applied to individuals during experiments and duration refers to 
the length of time individuals were tested under experimental pressures.  
b Geographic locations where individuals were collected. 
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2.9 Figures  

	
	
Figure 2-1: Survival time in the laboratory at atmospheric pressure for adult individuals 

(mean ± SE, n = 4-82) from chemosynthetic environments with regards to (A) phylum 

(Ar=Arthropoda; Ch=Chordata; Cn=Cnidaria; Ec=Echinodermata; Mo=Mollusca; 

Po=Porifera) and (B) geographic location (see Table 2-1 for outline of abbreviations). 
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Figure 2-2: Minimum survival time in the laboratory at atmospheric pressure for adult 

individuals (mean ± SE, n = 3-35) from non-chemosynthetic environments with regards 

to (A) phylum (An=Annelida; Ar=Arthropoda; Ch=Chordata; Cn=Cnidaria; 

Ec=Echinodermata; Mo=Mollusca; Po=Porifera), (B) geographic location (see Table 2-1 

for outline of abbreviations) and (C) depth range. 
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Figure 2-3: Survival (%) of adult individuals (mean ± SE, n =3-59) from chemosynthetic 

environments tested under experimental pressure conditions with regards to (A) phylum 

(An=Annelida; Ar=Arthropoda; Mo=Mollusca), and (B) depth range. 
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Figure 2-4:  Survival (%) for adult individuals (mean ± SE, n =3-105) from non-

chemosynthetic environments tested under experimental pressure conditions with regards 

to (A) phylum (Ar=Arthropoda; Cn=Cnidaria; Ec=Echinodermata; Fo= Foraminifera; 

Mo=Mollusca; Po=Porifera), (B) geographic location (Table 1 for outline of 

abbreviations) and (C) depth range. 
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Figure 2-5:  Survival (%) of larvae (mean ± SE, n = 4-15) from chemosynthetic 

environments with regards to (A) phylum (An=Annelida; Ar=Arthropoda; 

Mo=Mollusca), (B) geographic location (see Table 2-1 for outline of abbreviations), and 

(C) depth range. 
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Figure 2-6: Survival (%) of larvae (mean ± SE, n = 7-111) from non-chemosynthetic 

environments with regards to (A) phylum (An=Annelida; Ar=Arthropoda; Cn=Cnidaria; 

Ec=Echinodermata; Mo=Mollusca), (B) geographic location (see Table 2-1 for outline of 

abbreviations), and (C) depth range.  
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CHAPTER 3 

	
Life under pressure: an experimental study of behavioural responses to 

hydrostatic pressure and other stressors in echinoderms 
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3.1 Abstract 

Although hydrostatic pressure is a key parameter in the definition of marine 

environments, our knowledge of its role on the physiology, behaviour and ecology of 

marine benthic organisms remains rudimentary. In an effort to develop a mechanistic 

understanding of depth distributions and vertical migrations, responses to pressure were 

tested in adults of echinoderms commonly occurring at shallow and upper bathyal depths 

in the North Atlantic, i.e. the sea urchin Stronglyocentrotus droebachiensis, the sea star 

Leptasterias polaris and the sea cucumber Cucumaria frondosa. Each species was 

exposed to pressures within and beyond its currently known bathymetric distribution, 

under ambient and low pH conditions (consistent with predicted ocean acidification), and 

for different durations (24 h, 72 h). Sea stars were additionally tested for up to 9 d. 

Measured responses included survival rates, feeding metrics, mobility levels, predator-

prey interactions and post-trial recovery. Results showed that exposure to pressure 

atypical of their natural bathymetric distributions negatively affected the motor functions 

(time needed to anchor or right) of all species, irrespective of exposure duration. In trials 

≤72 h under ambient pH, survival was reduced after exposure to the highest pressures, 

with sea urchins exhibiting the highest mortality. Feeding during or after pressure 

exposure was reduced in sea urchins and sea cucumbers, but was relatively unchanged in 

sea stars. Overall, species did not show any clear signs of adaptation to high pressure 

following longer periods of exposure. Sea cucumbers had reduced survival after 72-h 

exposure trials, and none of the sea stars survived high-pressure exposure for 9 d. In pH-

pressure combination trials ≤72 h, sea urchins and sea stars typically fed less when 

exposed to low pH at atmospheric and high pressure levels, whereas the feeding response 
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in sea cucumbers was negatively impacted by pressure more than by pH. In terms of 

motor function, low pH appeared to counteract the negative effect of pressure on righting 

in sea stars and sea urchins, while it consistently worked to delay anchoring in sea 

cucumbers, irrespective of pressure. Taken together, findings provide insight into the 

constraints applied by hydrostatic pressure typical of depths within and beyond their 

current ranges (and by ocean acidification) on the life-sustaining behaviours of 

echinoderms. The potential of long-lived echinoderms to survive downward migration to 

greater depths is apparently species-specific, suggesting that there may be winners and 

losers in the face of near-future climate-driven migration patterns.  

3.2 Introduction 

Hydrostatic pressure is a fundamental mediator of biological processes 

(Macdonald 1997). It plays a critical role in defining oceanic environments as it forms a 

continuous linear gradient from the surface to the abyss (Pradillon and Gaill 2007). 

Specifically, pressure in the ocean increases by 0.1 MPa (1 MPa=10 bar~10 atm) for 

every 10 m of depth (Somero 1992). Since 95% of the oceans’ volume lies at depths 

greater than 200 m, pressure is a prominent abiotic factor that the vast majority of marine 

life must cope with (Miyake et al. 2012; Pradillon and Gaill 2007). 

The oceanic depth of 200 m generally marks the continental shelf break, 

establishing an arbitrary subdivision between shallow-water and deep-sea environments 

(Hessler 1974; Thistle 2003). In addition to greater pressure, factors that define the deep 

sea include: minimal nutrients from primary production, low temperature, darkness and 

relatively stable water chemistry (Carney 2005; Childress 1995; Pradillon et al. 2004). 

Although the bathymetric range of species is driven by a complex array of biotic and 
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abiotic variables, the suggested primary variables responsible for controlling distribution 

are pressure and temperature (Brown and Thatje 2014; Carney 2005). Tolerance to these 

factors is highly species-specific, thus the range of bathymetric distributions that different 

species occupy may vary from dozens to hundreds of meters (Tyler and Young 1998). 

Pressure is a critical abiotic parameter that has substantial effects on reaction rates, 

whereby it can either accelerate or reduce the speed of a reaction depending on whether 

reactant or product has the largest volume (Siebenaller and Somero 1989; Somero 1992; 

Swezey and Somero 1985). Although a considerable number of studies have examined 

the effects of combined thermal-pressure levels, our overall understanding of the 

biological effects of pressure remains rudimentary (Tyler et al. 2000b; New et al. 2014; 

Aquino-Souza et al. 2008; Tyler and Young 1998; Ravaux et al. 2003; 2009).  

There is increasing incentive to study both the ecological and physiological 

pressure thresholds of marine species in light of impending climate changes. While the 

combination of anthropogenic and climatic factors are expected to impact both shallow-

water and deep-sea environments, coastal ecosystems are anticipated to suffer the greatest 

changes, especially close to the poles (Brierley and Kingsford 2009; Harley et al. 2006; 

Hoegh-Guldberg and Bruno 2010). Among other ecological impacts, relatively rapid 

shifts in physico-chemical conditions (e.g. temperature, pH, UV radiation) over decadal 

scales are expected to drive the migration of marine species poleward and downward 

towards colder and/or more stable refuges (Doney et al. 2012; Graham et al. 2007; Harley 

et al. 2006; Perry et al. 2005). In this context, it becomes important to develop our 

understanding of the potential interaction between climate-related stress, such as ocean 

acidification, and pressure tolerance. To date few studies have looked at the synergistic 
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effects of pH and pressure within a controlled laboratory setting despite its obvious 

implications for ecosystem dynamics (Barry et al. 2004; Verkaik et al. 2016b). 

Complex interactions between pressure and other abiotic factors are already 

modulating bathymetric distributions (Macdonald 1997), highlighting the need to tease 

out the exact pressure thresholds of marine species through laboratory studies. In general, 

the study of pressure is logistically challenged by the rarity of high-pressure vessels 

capable of maintaining large volumes of water under flow-through conditions and the 

difficulty in obtaining and testing deep-sea taxa under laboratory conditions (Miyake et 

al. 2007; Shillito et al. 2001; 2015). Rather than compromise sample sizes and to 

circumvent potential internal damage from collections, many investigators have in lieu 

used shallow-water species with close phylogenetic relationships to deep-sea species in 

an effort to infer effects on those of deep-sea relatives (Distel et al. 2000; Oliphant et al. 

2011; Tokuda et al. 2006). This strategy has generated knowledge of how shallow-water 

taxa cope with pressure in a bid to identify underlying mechanisms of piezophily 

(barophily) in marine species (Oliphant et al. 2011; Robinson et al. 2009).  

Fundamentally, high pressure affects the biochemical and physiological activities 

of biological systems by directly altering their volume (Somero 1992), thus limiting the 

speed of the reaction responsible for converting reactants to products (i.e. generation of 

enzymes and lipid membranes). Inversely, low pressure accelerates the rate of the 

reaction (Hochachka and Somero 1984; Somero 1992). Shallow-water species can reduce 

their membrane fluidity, whereas deep-species maintain fluidity by modifying the 

homeoviscous structure (Somero 1992). Thus, the inability to maintain reaction rate 
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equilibrium can manifest as impairment in neural and muscular functionality in 

metazoans (Macdonald 1984).  

A number of laboratory studies have been conducted on how shallow-water 

species cope with pressure that exceeds their natural bathymetric distributions (see 

Chapter 2 and review by Brown and Thatje 2014). Studies have shown that the response 

of species to pressure exposure occurs on an extensive physiological level. High pressure 

exposure experiments on crustaceans have induced mechanistic challenges such as: 

dramatic decreases in heart rate from cardiac stress (Robinson et al. 2009); depression in 

metabolic rate as a result of poor membrane functionality (Thatje et al. 2010); and higher 

oxygen consumption relative to atmospheric rates, indicative of internal stress (Thatje 

and Robinson 2011). Such problems can trigger the high-pressure neurological syndrome 

(HPNS), which was originally described in vertebrates (Bowser-Riley 1984) and later 

observed in invertebrates exposed to pressure conditions beyond their natural bathymetric 

range (Somero 1992). HPNS causes chronic stress symptoms like paralysis, spasms and 

uncoordinated movements (Morris et al. 2015; Oliphant et al. 2011; Wilcock et al. 1978). 

Overall, pressure negatively impacts the neurological and muscular pathways of many 

organisms (Morris et al. 2015). Exposure to pressures exceeding the natural range of 

invertebrates has been found to elicit complications that hinder inhibitory or excitatory 

motor activity (Wilcock et al. 1978). In the early stages of exposure to such pressures, 

motor activity undergoes a stage of hyper-excitability (spasms, convulsions and twitches) 

but is immediately followed by a reduction in coordination of movements and mobility 

(Macdonald and Gilchrist 1978; Macdonald 1997; Wilcock et al. 1978). The term 

“pressure-paralysis” has been used to describe the point at which convulsive thresholds 
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are met and there is a subsequent absence of motor activity (Macdonald and Gilchrist 

1978). Therefore, examining the behavioural responses of species is an effective means 

of determining their ability to maintain internal homeostasis (Thatje et al. 2010). The 

efficiency of critical behaviours such as feeding were also compromised under such 

conditions in the shallow-water spider crab Maja brachydactyla, inferred by 

unsustainable long-term survival (Thatje and Robinson 2011). Other investigations have 

reported that stressful pressure conditions induce a “loss of equilibrium” in which 

individuals are reduced to a moribund state, notably in species of shrimp and crabs 

(Morris et al. 2015; Oliphant et al. 2011; Shillito et al. 2004; 2006). Although survival 

has been noted for individuals during 24-h exposures to various pressures, whether they 

are capable of surviving in an ecological context, i.e. by maintaining the ability to escape 

predators or forage to exploit food sources, has not been fully explored.  

The phylum Echinodermata has commonly been used in pressure studies because 

its members are ubiquitous in marine benthic ecosystems across depths, exhibit a 

diversity of complex life histories, and many of them act as keystone species (Gage and 

Tyler 1999; Aquino-Souza et al. 2008; Villalobos et al. 2006; Young and Tyler 1993; 

Young et al. 1996; 1997). Many echinoderms are also suspected to be extremely long-

lived (Ebert and Southon 2003), and therefore susceptible to experience decadal-scale 

changes in ocean conditions resulting from anthropogenic and climate-related stressors. 

Tyler and colleagues have done an impressive amount of work on early stages of 

shallow-water echinoderms across a wide latitudinal gradient, generally supporting the 

ability of echinoderm larvae to survive pressures that are beyond the natural bathymetric 

range of adults (Young and Tyler 1993; Young et al. 1996; 1997; Aquino-Souza et al. 
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2008; Villalobos et al. 2006; Tyler and Young 1998). It has been suggested that larvae 

could successfully invade deeper waters and establish populations within one generation 

(Tyler and Young 1998; Tyler and Dixon 2000). However, most of the current 

knowledge about the interactions of marine invertebrates with pressure is limited to pre-

metamorphic life stages (before settlement). Why adults of these species have not been 

found at such depths in nature remains unclear (Morris et al. 2015). Until recently, 

studies were limited to testing adults under static water volumes for short periods of time 

(<24 h), which were not representative of natural ecological conditions (Company and 

Sardà 1998; Mickel and Childress 1982a; Mickel and Childress 1982b). The study of 

larvae was favoured since adult body sizes and more developed metabolisms required 

larger vessels capable of maintain flow-through conditions (Brooke and Young 2009; 

Shillito et al. 2015).  

The present study aims to address knowledge gaps in our understanding of how 

marine organisms cope with pressure by examining the tolerance of adult echinoderms to 

hydrostatic pressure using a suite of indicators over short and long periods, and by 

studying their responses to combined stressors. The interactions of pressure with abiotic 

stressors typical of climate change other than temperature have rarely been examined; to 

date it is not known whether shifting pH levels will be exacerbated by the effects of 

pressure on species (Pradillon and Gaill 2007). Given that climate-driven changes (rising 

seawater temperatures and ocean acidification) may drive vertical migrations, it is 

important to assess the ability of species to colonize and thrive in increasingly deeper 

waters. Focal species were selected based on their broad distribution in temperate, cold 

and polar subtidal environments: the sea urchin Strongylocentrotus droebachiensis, the 
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sea star Leptasterias polaris and the sea cucumber Cucumaria frondosa. These species 

also exemplify three of the main echinoderm classes (Echinoidea, Asteroidea, 

Holothuroidea, respectively), three feeding modes (omnivory, carnivory, herbivory, 

respectively) and very different body forms that contribute to different modes of 

locomotion (test/exoskeleton, rigid calcareous body, weakly calcareous soft body, 

respectively).  

The study specifically tested the hypotheses that if shallow-water species are 

limited in their spatial distribution by pressure, behaviour will vary upon exposure to 

different pressures (depths). Secondly, if species can adapt relatively quickly (within a 

generation) to increased pressure, responses measured after long exposure (72 to 216 h) 

will be weaker than those measured after acute 24-h exposure. Lastly, if pressure and pH 

interact to impose selective pressures on echinoderms, treatments with high levels of 

these stressors will have more deleterious effects on the measured responses. 

3.3 Methods 

3.3.1 Collection and maintenance  

Adult specimens of the green sea urchin S. droebachiensis (40-102 g; 33.1-66.6 

mm test diameter), the polar sea star L. polaris (23-114 g; 6.0-11.2 mm major axis), the 

northern sea cucumber C. frondosa (1-3 g, immersed weight; 81-171 mm) and the purple 

sunstar Solaster endeca were collected via scuba diving at depths of 10-15 m between 

May 2013 and November 2014 off the coast of Newfoundland, eastern Canada 

(47.0833°N, 52.9500°W). All species were transferred to laboratory holding facilities and 

maintained in tanks (20-2000 L) under a flow-through system of unfiltered seawater (150 

L h-1). Individuals were kept close to large windows with naturally fluctuating light 
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(maximum of 25-40 lx). A chilling unit (Universal Marine Industries, 5 hp) kept water 

suitably cold during the summer-fall months from July to October (<10°C). A light-

temperature HOBO Pendant (UA-002-64) water temperature recorded fluctuations 

throughout the day. At least 1-3 weeks prior to experiments, individuals were transferred 

to holding tanks held constant at 4-6°C. Starvation was implemented during this period to 

decrease metabolic variability among individuals of a given species and among the three 

species tested (New et al. 2014). Only healthy individuals without obvious damage to 

tissues, spines or arms were selected for the experiments.  

3.3.2 Equipment and experimental conditions 

Two flow-through stainless steel incubators of 19 L (IPOCAMPTM, Autoclave, 

France) that can be pressurized to a maximum of 30 MPa (or 300 bar), equivalent to 

~3000 m depth, were used (Shillito et al. 2001). They were maintained under flow though 

at 20 L h-1 for the duration of each trial. Temperature was controlled and measured by 

probes (Huber CC 240, Offenburg, Germany) situated at the inlet and outlet of the 

IPOCAMP (±1°C). Sophisticated hyperbaric vessels such as the IPOCAMP are rare 

commodities (only 8 such units exist in the world, two of which were used here). They 

are also more challenging to use than regular tanks. Therefore, the duration of the trials 

and replication designs outlined below had to be adjusted within the boundaries of 

several technical constraints.  

Prior to each trial, the IPOCAMP was run for at least 2 hours to allow for the 

desired temperature to be reached before inserting the individuals in the vessel (Oliphant 

et al. 2011). Fiber optic light guides (KL 1500 LCD, Schott, USA) were placed in two of 

the view-ports to uniformly illuminate the interior (~100 lux), as confirmed from 
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verification with an endoscope (Fort Dourban, France) placed in the third view-port. 

When required, visual observations were recorded with a microscope camera (AxioCam 

ERc 5S, Zeiss, Germany) fitted to the endoscope.  

Rather than mimicking the deep-sea environment, the experiments were designed 

to test the effect of pressure alone (or in combination with pH) while keeping the other 

parameters as close to natural conditions as possible. Temperature was adjusted to match 

holding conditions during acclimation (6°C), which are representative of natural subtidal 

(and deep-sea) oceanic temperatures at the initial time of experimentation (DFO 2009). A 

12:12 photoperiod was selected to allow for equal levels of diurnal/nocturnal activity. A 

multi-probe system (556 MPS, YSI Environmental, USA) was used to measure 

environmental parameters in the vessels immediately before and after each trial run. 

These include dissolved oxygen (DO; mg/L), salinity (psu) total conductivity (g/%; 

m/s/cm), inorganic carbon (DIC), pH, oxidation-reduction potential (ORP) and 

temperature (°C). Total alkalinity (TA) was measured periodically with a test kit (Orion 

700010, Thermo Fisher Scientific, USA).   

3.3.3 Response to pressure 

Based on known bathymetric ranges for each species, pressures levels were 

separated into: atmospheric pressure (sea surface), medium pressure (middle of known 

bathymetric distribution) and high pressure (twice the known maximum depth of 

occurrence; Table 3-1). All pressures selected were rounded to the nearest integer (0.1 

MPa=0 MPa). Bathymetric ranges of occurrence within North Atlantic Canadian waters 

were determined from records accessed on the World Register of Marine Species 

(WoRMS Editorial Board 2014). Searches for maximum and minimum depth 
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distributions only considered records of >3 samples collected and identified post 1980, or 

posterior to any major taxonomic revision (Brodie et al. 2013; Smithsonian Institution 

1974). A transition period was allowed by manually setting the experimental pressure 

following increments of 2 MPa every 6 min; the same method was used to depressurize 

the vessels. This rate was selected in an effort to reduce stress to individuals as drastic 

changes in pressure over short intervals (commonly used in previously published studies 

of a similar nature: New et al. 2014; Yoshiki et al. 2008) have been found to cause DNA 

damage in hydrothermal vent worms, Paralvinella grasslei (Dixon et al. 2002). 

Responses of the three focal species were first tested in the context of 24-h 

exposure to the three pressure levels (Table 3-1). Based on biomass constraints, each 24-

h trial with S. droebachiensis and L. polaris consisted of 6 individuals (run twice with a 

total of n=12 per treatment, all different individuals), whereas each 24-h trial testing C. 

frondosa consisted of 3 individuals (run twice with a total of n=6 per treatment). Due to 

pressurization-depressurization time (see below), 24-h trials could not be conducted 

every day, but only every other day. Duplicate runs were thus carried out either 

simultaneously or within 48 h, once in each of the two IPOCAMP vessels, to minimize 

any tank effects. In order to confirm the absence of any temporal variation, control 

treatments were repeated whenever a full set of experiments (for a species and a factor) 

could not be completed within 8 days (for technical reasons). Inside the vessel, S. 

droebachiensis and L. polaris were individually housed in perforated meshed clear 

containers (760 ml; 100-µm nylon mesh), which were stacked vertically at random. 

Individuals of C. frondosa were uncontained and placed on 3 separate levels of the holder 

designed for the IPOCAMP (Ravaux et al. 2003). 
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Following 24-h experiments, longer experiments were conducted to test exposure 

to atmospheric and high-pressure levels on S. droebachiensis, L. polaris and C. frondosa 

for a continuous period of 72 h (3 days). All three species were tested together as they do 

not pose predatory threats to each other and can be found in abundance in the same 

locations in eastern Newfoundland. Each of the two IPOCAMP vessels contained two 

individuals of each species on different levels of the holder (for vessel design, refer to 

Ravaux et al. 2003). Control and experimental conditions were tested simultaneously 

using the two vessels: one at atmospheric pressure (0 MPa) and the other at high pressure 

(24 MPa; i.e. the average of the high pressures tested in the 24-h experiments). The trials 

were replicated three times, for a total of 6 individuals of each species per treatment. 

Placement of the species on the levels was mirrored in the control and experimental 

vessels, and was flipped across the runs to account for putative vertical variability in 

conditions (water flow in the vessels).  

A longer-term behavioural and feeding experiment was conducted on L. polaris, 

during which individuals were maintained under continuous pressure for a period of 216 

h (9 days). The IPOCAMP was run in flow-through mode so that there was a constant 

supply of fresh seawater in the header tank. The protocols for experimental pressurization 

followed those outlined for 24-h trials. The 216-h experimental period tested the control 

(atmospheric pressure) and the species-specific high pressure in order to determine 

if/how individuals are able to acclimate to pressures atypical of their distributions (Table 

3-2). In each vessel, feeding was quantified from individuals (n=4) that were randomly 

selected and placed within separate containers stacked in the IPOCAMP. Another group 

of individuals (n=3) were placed on a flat platform situated directly on top of the stacked 
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containers (for vessel design, refer to Ravaux et al., 2003). These individuals were not 

contained in order to monitor behaviour throughout the experiment using the endoscope 

camera setup described earlier.  

Response metrics (dependent variables) were measured, including various 

morphometrics, indices and behaviours, at different times for the various pressure levels 

and durations tested (Table 3-2; Section 3.3.5). Pre-trial responses were tested at least 2 

hours before the start of the trials, post-trial monitoring was done immediately after 

removal from the IPOCAMP, while post-recovery responses were measured 7 days post 

trial. 

3.3.4 Combined response to pressure and pH 

Acidification experiments modified the pH of seawater by injecting CO2 from a 

gas cylinder and solenoid (Milwaukee, MA957, USA) into the IPOCAMP supply tank. 

The ambient pH level of incoming seawater was measured and either left unchanged 

(ambient pH) or reduced by 0.4 units (low pH; ~7.55 ± 0.05), following projected oceanic 

pH decrease by 2100 from the IPCC (2007). This level was constantly regulated in the 

supply tank with a pH controller (270002, Aquatic Life, USA). The cumulative effects of 

pressure (atmospheric, high) and pH (ambient, low) were tested in a two-by-two factorial 

design. This series of trials was conducted on the same three species. The experimental 

design followed the design described above for pressure experiments, and the same 

response metrics were used as dependent variables (see below).  
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3.3.5 Response metrics 

3.3.5.1 Body metrics and weight variations in all species 

The sizes of all individuals were measured before the trials to ensure they were 

within a similar range across experimental and control treatments. Wet (blotted) weights 

were recorded for S. droebachiensis and L. polaris, and immersed weights for C. 

frondosa (as sea cucumbers retain proportionally much more water). Test diameter was 

used for S. droebachiensis, major radius (length from the central disc to the tip of the 

longest arm) for L. polaris and contracted length (mouth-anus) for C. frondosa. Lastly, 

the extracellular coelomic pH was assessed only for S. droebachiensis after certain 

treatments; this experiment is described in Appendix B.  

The initial and final wet weights of S. droebachiensis and L. polaris were also 

used to determine the net weight loss/gain associated with experimental conditions, if 

any. A change in weight is considered a stress indicator that measures variations in fluid 

volume (Ferguson 1992). Wet weights before and after each trial were averaged to obtain 

mean wet weight used to calculate the feeding indices for these species. Since they were 

not required for any feeding indices, the final weights of C. frondosa were not obtained to 

avoid delaying measurement of post-trial dependent variables (due to slightly more 

complex method required for weighing immersed individuals).  

3.3.5.2 Righting times in S. droebachiensis and L. polaris 

Righting times were tested at atmospheric pressure in sea urchins and sea stars to 

assess the condition of the individuals post-trial, since this response is indicative of health 

(Taylor et al. 2014). Immediately after removal from the vessels, individuals were placed 

in separate 20-L tanks (34.3 X 39.4 X 20.3 cm) with seawater maintained at ~6-8°C with 
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ice packs. There was no water flow in the tanks to avoid disturbance. After a 10-minute 

acclimation period to the new environment, individuals were tested for their righting 

response by flipping them 180º onto their aboral surface. The following were recorded: 

time to 90° righting and time to 180º righting, equivalent to full recovery to original 

upright position. For L. polaris the 180° orientation of central disk to the bottom was 

considered when all arms were lying flat on the bottom (without any contortions). 

Experiments were ended after 2 hours; if the response was incomplete the time was 

considered to be 120 minutes. The proportion of individuals that did not complete the 

righting motion within 2 h was also noted. 

For 216-h exposure the possible post-trial effects of containment on individuals 

from the experimental design were taken into account, and the righting responses of the 

two groups (contained and free-moving within the vessel) were tested for significant 

differences. As there was no significance between the two groups at either pressure for 

righting immediately after exposure or after a 7-day recovery period, the data were 

pooled for analysis (n=7). 

To account for the possible effect of post-trial experimental seawater pH 

following pressure exposures conducted at low pH, the individuals from each vessel were 

divided into two groups of six. One group was tested in ambient seawater and the other in 

acidified seawater. As there was no significant effect of post-trial pH condition on the 

righting times tested, data were pooled together for analysis (n=12). 

3.3.5.3 Ingestion index in S. droebachiensis  

At the onset of a trial, each individual was placed directly on piece of kelp 

Laminaria digitalis, a typical food source for this species (Meidel and Scheibling 1999). 
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The kelp fragment had been thoroughly blotted and cut to obtain an initial wet weight of 

10 g. At the end of the trial, residual food was removed, blotted and weighed again. The 

ingestion index was calculated as the weight of food consumed (mg) on the average 

weight of the individual (g) per day (24 h). Preliminary control experiments had been 

conducted to determine whether kelp weight was affected by experimental conditions. 

Exposure to high pressure for 24 h had no significant effect on initial versus final kelp 

weights. 

3.3.5.4 Ingestion index in L. polaris 

In 24-h experiments a single mussel Mytilus edulis (4-5 cm) was offered to each 

sea star (Rochette et al. 1994). As the study objective was to examine consumption 

without foraging effort, the mussels were opened and the tissue attached to the abductor 

muscles offered on one shell. All loose fragments were removed so only one intact piece 

of flesh was present (initial mussel tissue 1.28-10.39 g). Mussels were thoroughly blotted 

to obtain initial weight. Following the completion of the experiments, the residual food 

was removed blotted and weighed to determine the amount of food ingested. The 

ingestion index was calculated as the weight of food consumed (mg) on the average 

weight of the individual (g) per day (24 h). 

A series of preliminary experiments had determined that the weight of mussel 

flesh was affected by exposure to pressure. Therefore, a standard error was determined 

from exposure of mussel tissues to different pressures, under both ambient and acidified 

conditions. In total, 12 pre-weighed mussel halves were placed inside a vessel filled with 

ambient seawater at atmospheric, medium and high pressure for 24 h. The same was done 

with acidified water at atmospheric and medium pressure. The difference between the 
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initial and final weights of the tissues was determined; this value was divided by the 

initial weight to find the proportion of error. These percent inherent variations in mussel 

weight under different conditions were used to correct feeding indices following the 

experimental treatments.  

For 216-h exposure, feeding was measured according to the techniques outlined 

for 24-h trials, except two mussels were provided and the quantity always exceeded that 

of the shorter trials. Contained individuals were each provided 2 mussels with the 

combined initial tissue weight ranging from 11.7-19.2 g. Feeding was observed in vivo 

using an endoscope to monitor behaviour throughout the experiment. The 3 uncontained 

individuals were offered a total of 4 live (shelled) mussels so that qualitative observations 

could be made about foraging behaviour. The initial weight of mussel tissue could not be 

accurately determined under these circumstances; so the combined total weight (shells 

and tissue) ranged from 190.4-223.5 g. Observations were made twice every 24 h (10:00, 

16:00) over the trial period starting from the initial time of pressurization. They consisted 

of recordings of 30 sec video feed at intervals of 30 sec for 10 min (for a total of 5 min 

twice daily in each treatment). The videos were long enough to determine the movements 

and activity of the individuals and whether they were feeding on the mussels.	

3.3.5.5 Final feeding position in L. polaris 

Upon depressurization and removal from the vessel after the 24-h (ambient and 

acidified pH) and 72-h trials, each container was immediately observed to determine the 

position of the individuals relative to the food item and whether active feeding could be 

scored. These observations were only possible for L. polaris because of their conspicuous 

feeding mechanism of everting their stomach (unlike the much less obvious grazing of S. 
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droebachiensis). In total, 4 different positions were noted to describe feeding: (1) 

Stomach everted and arms wrapped around the mussel shell. (2) No everted stomach and 

arms wrapped around the mussel shell. (3) Stomach everted and arms not wrapped 

around the mussel shell. (4) No everted stomach and arms not wrapped around the mussel 

shell. 

3.3.5.6 Post-trial and post-recovery in L. polaris 

All sea stars were tested to determine experimental recovery. After experiments, 

all sea stars from the different treatments were maintained in 20-L tanks under the 

previously described holding conditions. Exactly 168 h (7 days) post-trial, they were 

placed in separate tanks and their righting response was re-evaluated following the 

methods described previously. Post-trial righting recovery periods have been found to be 

a useful means of assessing physiological health in the sea star Asterias rubens 

(Appelhans et al. 2014).  

3.3.5.7 Health indices in C. frondosa 
	

The following health indices for C. frondosa were adapted from previous studies 

(Gianasi et al. 2015; Verkaik et al. 2016a): feeding (i.e. when all ten oral tentacles are 

fully extended to capture food and one tentacle is introduced into the mouth), cloacal 

openings (i.e. cloacal respiration, the number of times the cloaca opens and closes in a 

given time interval as water enters/exits the respiratory tree), escape response (i.e. 

initiation of reactions such as contraction, elongation and swelling in the presence of a 

predator) and anchorage (i.e. time to firm attachment of podia to a substrate as 

determined when individual cannot be dislodged with gentle poking). Cloacal opening 
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and anchorage were assessed pre-trial to determine baseline health status of individuals 

with minimum disturbance. All health indices were measured post-trial. 

Pre-trial anchorage time was measured while the individuals were held 

individually in 9-L tanks matching conditions in the experimental vessels. Individuals 

were first introduced to the center of the tank and the time for anchorage was determined 

to the nearest 2 min. Individuals that were not capable of anchoring after 30 minutes 

before the trial were replaced. In post-trial measurements, individuals that had not 

anchored after this delay were scored as 30 minutes (after exposure to 0 MPa anchorage 

took 1.43 min). Once all of the individuals were successfully anchored, or following the 

maximum delay mentioned above, cloacal opening was measured for a period of 5 min. 

This measure is a proxy of respiration rate as it indicates the rate of water exchange in the 

respiratory tree (Doyle and McNiell 1964; Gianasi et al. 2015). 

The two previous indices were measured both pre-trial and post-trial, whereas the 

following indices were only measured post trial. The water flow to the tanks was 

interrupted briefly to measure the feeding index, in order to maintain high food 

concentrations (Gianasi et al. 2015). The food consisted of 3 ml of a commercial algal 

feed (Phytofeast-Feast® Live) comprised of six phytoplankton species (Pavlova sp., 

Isochrysis sp., Thalassiosira weissflogii, Tetraselmis sp., Nannochloropsis sp., and 

Synechococcus sp.) with cell sizes ranging from 1 to 15 µm in diameter. The food 

mixture was added to each tank in a uniform fashion to ensure equal mixing. Time 

required for each individual to open its tentacles and begin feeding was recorded. 

Individuals that had not started feeding after 60 min were scored as 60 min (after 

exposure to 0 MPa, feeding response took <6 min). 
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Following the feeding experiment, individuals were transferred to a tank with 

recirculating fresh seawater before testing the predator response. The known predator of 

the C. frondosa, the sea star Solaster endeca, was placed directly on the sea cucumber 

(So et al. 2010). Time needed to initiate the escape response and its various stages, i.e. 

swelling, elongation and contraction, was monitored for a total of 15 minutes (Gianasi et 

al. 2015).    

3.3.6 Statistical analysis 

The comparison of means was carried out using Student’s t-tests, one-way or two-

way analyses of variance (ANOVAs). When statistically significant differences occurred, 

post-hoc multiple comparisons tests were conducted using the Holm-Sidak method. 

Where equal variance was violated, ANOVA on ranks were used, followed by Dunn’s 

post-hoc tests as appropriate. Where interactions were found between pH and pressure, 

independent tests were carried out on possible combinations using either t-tests or Mann-

Whitney U tests, as appropriate. If the results for righting to 90° and to 180° were not 

statistically significant, only the results for 180° were graphically presented (while all 

results were reported in 3.4.1 and 3.4.2). Significance levels were considered at p<0.05 

and all analyses were carried out using Sigma Plot version 11.0 (Systat Software, USA). 

Full results are summarized in Appendix C (Tables C1-C3). 
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3.4 Results  

3.4.1 Response to pressure 

3.4.1.1 Strongylocentrotus droebachiensis 

The 24-h experimental exposure to pressure had deleterious effects on behaviours 

in S. droebachiensis during and after exposure (Table 3-3; 3-4). Feeding significantly 

decreased as pressure treatments increased (H=26.56, df=2, p<0.001) whereby feeding 

indices were lower at high than at either atmospheric or medium pressure (p<0.05). 

Feeding did not vary significantly between the latter (p>0.05), which are within the 

known depth range of the species (Figure 3-1A). Post-trial righting was significantly 

impacted (90°: H=6.26, df=2, p=0.044; 180°: H=7.80, df=2, p=0.020). Specifically 

righting times to 90° were significantly longer as pressure increased (atmospheric < 

medium < high pressure; p<0.05; Figure 3-1B), and righting times to 180° were 

significantly longer for the high-pressure treatment than the two other treatments (p<0.05; 

Figure 3-1C). While all individuals survived 24-h exposure to atmospheric and medium 

pressures, only 50% of them survived high-pressure beyond the known bathymetric 

distribution (Table 3-5). Following exposure to high-pressure, spines were brittle and 

easily broke upon light handling. However, pressure did not significantly affect body 

weight; the difference in mean weight after exposure to high, medium and atmospheric 

pressures were -0.33 g, -0.22 g and -0.02 g, respectively (H=10.89, df=2, p=0.004).  

The results of the longer 72-h exposure essentially followed those of the 24-h 

trial. Because there was a significant interaction between pressure levels and time (pre-

trial, post-trial, post-recovery) on time to right to 90° (F2, 35 =4.71, p=0.017; Figure 3-1D), 

independent analyses were conducted at each level of each factor. Righting post-trial took 
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significantly longer after exposure to high than to atmospheric pressure (t=-3.86, df=10 

p=0.003; Figure 3-2A); after high-pressure exposure post-trial righting was longer than 

the pre-trial (t=5.72, df=10, p=<0.001) and post-recovery values (t=2.42, df=10, 

p=0.036). Individuals were slower to right post-recovery relative to pre-trial, showing an 

inability to recover from high pressure (U=2.00, df=10, p=0.009). A similar interaction 

between time and pressure was also found for time to right to 180° (F2, 35 =4.71, p=0.017; 

Figure 3-1E). After exposure to high pressure, the same trends as righting to 90° persisted 

except the difference between post-trial and post-recovery values fell short of significant 

by a narrow margin (t=2.21, df=10, p=0.052), indicating weak if not absent recovery after 

a week.  

The results of a two-way ANOVA on the effect of pressure levels (atmospheric, 

high) and trial duration (24, 72 h) on the post-trial time to right to 180° showed slower 

responses after exposure to high than atmospheric pressure (F1, 47 =8.40, p=0.006); but 

exposure duration had no effect (F1, 47 =3.36, p=0.074). Survival was still lower following 

exposure to high pressure (83%) than atmospheric pressure (100%) but non-significantly 

so.  

3.4.1.2 Leptasterias polaris 

The 24-h exposure to pressure had a significant effect on weight of sea stars 

(H=10.89, df=2, p=0.004; Table 3-3; 3-4), whereby weight loss was greater at high 

pressure than either atmospheric or medium pressure (p<0.05); but not between the latter 

(p>0.05). Mean difference in weights following pressure exposures were -3.97 g, -1.09 g 

and -0.24 g, respectively. By contrast, feeding was not significantly affected by pressure 

over 24 h (F2,45 =0.40, p=0.669; Figure 3-3A.). Generally, individuals under pressure did 
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not assume feeding positions, but they were not in obvious feeding positions under 

atmospheric pressure either (Table 3-6). The 24-h exposure to pressure significantly 

affected the righting times to 180° (H=22.98, df=2, p=<0.001), which were slower after 

high than medium or atmospheric pressure exposures (p<0.05), but responses did not 

vary between the latter (p>0.05; Figure 3-3B). Post-trial survival of L. polaris for 24-h 

high pressure treatments was 92% and among those exposed, 17% were unable to right 

and displayed uncoordinated tube feet movements. Survival after a week was 83% for the 

high-pressure treatment and 100% for the others (Table 3-5). Among the survivors, post-

recovery righting time to 180° was not significantly different across pressure treatments 

(H=1.09, df=2, p=0.579; Figure 3-3B), and individuals exposed to 22 MPa took less time 

to right post-recovery than post-trial (H=31.91, df=1, p=<0.001), indicative of improved 

condition after a week.  

There was 100% survival of individuals exposed to high and atmospheric pressure 

for 72 h, both immediately after exposure and post-recovery (Table 3-5). However, the 

motor functions were negatively impacted. There was a significant interaction between 

the effects of time and pressure on righting times to 180° (F2, 35 =5.73, p=0.008; Figure 3-

3C), which led to independent analyses within each factor. Based on the latter, it took 

longer to right after exposure to high than atmospheric pressure post-trial (t=-6.20, df=10 

p=<0.001) but no difference between pressure levels occurred for either pre-trial (t=-0.39, 

df=10, p=0.70) or post-recovery values (t=0.71, df=10, p=0.493; Figure 3-2B-C). There 

was no effect of high pressure on the time of righting to 180° by post-recovery 

individuals (U=6.00, df=10, p=0.065). In two-way ANOVAs examining pressure levels 

(atmospheric, high) and exposure duration (24, 72 h), post-trial righting times to 180° 
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were affected by pressure (F1, 47 =6.26, p=0.016) but not time (F1, 47 =1.69, p=0.201). 

Individuals took longer to right after exposure to high pressure than atmospheric pressure 

for both 240h and 72-h experiments (p<0.05). 

Feeding was not significantly affected by pressure during the 216-h exposure (F1, 

43=2.63, p=0.113; Table 3-7). All individuals displayed some level of activity over the 

first 3 days but, by day 6, all of them were on the bottom, scattered among the mussels, 

and no further movement was detected for the remainder of the experiment (Figure 3-

2D). Post-trial, the arms and central disks of both the free-moving and contained 

individuals from the high-pressure treatments were softened to the point of fragmentation 

upon handling. In several instances, arms were completely detached. None of the 

individuals exposed to high pressure for 216 h were able to successfully right (to either 

90° or 180°). There was 100% survival for individuals exposed to atmospheric pressure 

but only 57% survival for those exposed to high pressure. Following 7-d recovery, 

survival was still 100% in individuals exposed to atmospheric pressure and 86% of them 

were able to right, whereas individuals that had been exposed to high pressure exhibited 

100% mortality.  

3.4.1.3 Cucumaria frondosa 

All individuals survived the 24-h trials and recovery period, irrespective of 

pressure level, but post-trial feeding response was significantly affected by pressure level 

(H=9.96, df=2, p=0.007; Figure 3-4A; Table 3-3; 3-4). Specifically, feeding was delayed 

after exposure to medium compared to atmospheric pressure as it was when comparing 

high and atmospheric pressure (p<0.05); there was no difference between medium and 

high pressure (p>0.05). Following the 72-h trials, there also was 100% immediate 
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survival, but post-recovery survival was down to 83% for individuals exposed to high 

pressure (Table 3-5; Figure 3-2E). Pressure level did not have any significant effect on 

the feeding response after 72-h exposure (p>0.05; Figure 3-5A). When examining the 

combined effect of trial duration (24, 72 h) and pressure level (atmospheric, high) on 

feeding response, there was no effect of the former (F1, 23 =1.91, p=0.182) but significant 

influence of the latter (F1, 23 =9.97, p=0.005). After 24-h exposure, the feeding response 

was faster for individuals exposed to atmospheric than high pressure (p<0.05), but there 

was no difference after 72-h exposure (p>0.05). Since there was no difference in feeding 

between either of the tested times, there is no direct evidence for acclimation to pressure. 

The frequency of cloacal movement (cloacal respiration) following 24-h trials was 

also significantly affected by pressure level (F2, 53= 7.15, p= 0.002; Figure 3-4B) and time 

(pre-trial, post-trial, post-recovery) (F2, 53= 15.03, p<0.001), with a significant interaction 

between these factors (F2, 53= 7.05, p= <0.001). Cloacal movement post-trial was higher 

after exposure to atmospheric than high pressure (t=8.17, d=10, p=<0.001) and for 

individuals exposed to medium than high pressure (U=5.50, d=10, p=0.041) but not 

between atmospheric and medium pressure (U=13.00, d=10, p=0.466). Time relative to 

high-pressure exposure had a significant effect on cloacal movement; there was 

significantly less movement at post-trial than at both pre-trial (t=8.97, df=10, p=0.017) 

and post-recovery (t=6.82, df=10, p=0.025); but not between pre-trial and post-trial 

(t=2.15, df=10, p=0.05). Findings from the 72-h trials were similar to those from 24-h 

trials. Cloacal movement was influenced by pressure (F1, 35 =4.60, p=0.040) and time (F2, 

35 =6.08, p=0.006), but with an interaction between the two (F2, 35 =4.21, p=0.025; Figure 

3-5B). Independent analyses showed that cloacal movement was more frequent after 
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exposure to low than to high pressure but only post-trial (t=5.41, df=10 p=<0.001); 

values did not differ between pre-trial pressure levels (t=-1.57, df=10, p=0.147) or post-

recovery (U=13.00, df=10, p=0.485), indicating a dissipation of high pressure impacts on 

cloacal respiration after a week. For high-pressure trials, there was more frequent cloacal 

movement pre-trial than post-trial (t=-7.94, df=10, p=<0.001) or post-recovery (U=2.00, 

df=10, p=0.009); but no difference between post-trial and post-recovery (U=12.00 df=10, 

p=0.394; Figure 3-5B), indicating a persistence of the effects of high pressure after a 

week. A two-way ANOVA showed that pressure level had a significant effect on cloacal 

movement (F1, 24 =79.32, p<0.001) but trial duration did not (24 vs. 72 h; F1, 24 =3.70, 

p=0.069). Cloacal movement was less frequent for individuals exposed to high than 

atmospheric pressure after both 24 h and 72 h (p<0.05).  

Pressure did not have any significant effect on the predator-escape response 

following the 24-h (F2, 17=2.89, p=0.087; Figure 3-4C) or 72-h (t=-0.571, df=10, p=0.580; 

Figure 3-5C) trials. A two-way ANOVA confirmed that trial duration (24, 72 h) and 

pressure (atmospheric, high) did not have any effect on the time to escape predators (F1, 

23=0.003, p=0.952; F1, 23=3.150, p=0.091).  

By contrast, after 24-h exposure, pressure had a significant effect on the time 

needed to anchor to the substrate (F2, 23=3.94, p=0.027) but there was no effect of time 

(pre-trial, post-trial, post-recovery) (F2, 23=2.54, p=0.090; Figure 3-4D). Anchoring times 

were only slower following exposure to high vs. atmospheric pressure (p<0.05). 

Following the 72-h exposure, anchorage time was influenced by pressure (F1, 35 =4.55, 

p=0.041) but not time (F2, 35 =1.96, p=0.159); there was no interaction between the two 

(F2, 35 =1.64, p=0.210; Figure 3-5D). Individuals took longer to anchor following 
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exposure to high than atmospheric pressure, but immediately post-trial only (p<0.05). A 

two-way ANOVA showed that anchor time was significantly affected by pressure 

(atmospheric, high) (F1, 23=8.40, p=0.009) but not trial duration (24, 72 h) (F1, 23=0.065, 

p=0.801). Individuals were slower to attach to the substrate after exposure to high than 

atmospheric pressure in both durations (p<0.05). Generally, individuals took longer to 

anchor, both post-trial and post-recovery, following the 72-h than 24-h exposure to high 

pressure, suggesting an inability to acclimate.  

3.4.2 Combined response to pressure and pH 

3.4.2.1 Strongylocentrotus droebachiensis 

There was no effect of pressure or pH on the weight of individuals; mean 

difference in weights following exposure to low pH conditions under atmospheric and 

medium pressure were -0.28 g and 0.26 g, respectively (for ambient pH weight 

differences see 3.4.1.1; Table 3-4). No post-trial mortality was observed. Both pH and 

pressure interactively affected feeding (F1,56 = 4.25, p=0.044); independent analyses 

showed that feeding was greater during exposure to atmospheric than medium pressure 

under low pH (t=2.19, df=22, p=0.039) but did not differ between pressure levels under 

ambient pH (t=-1.03, df=34, p=0.312). Moreover, feeding was higher under ambient than 

acidified conditions at medium pressure (t=-3.18, df=22, p=0.004), whereas there was no 

effect of pH at atmospheric pressure (U=219.0, df=34, p=0.933; Figure 3-6A). 

Similarly, time to right to 180° post-trial was consistently faster under low than 

under ambient pH (F1, 56=1.09, p=0.301). Righting was non-significantly faster after 

exposure to atmospheric than medium pressure, irrespective of pH level (F1, 56 =1.52, 
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p=0.223), which was consistent with the significant trend detected previously (Figure 3-

6B).  

3.4.2.2 Leptasterias polaris 

There was no significant effect of pressure on L. polaris weight between pressure 

levels under ambient pH conditions (p>0.05; for mean difference in weight see 3.4.1.2; 

Table 3-4), but under low pH conditions greater weight loss occurred for individuals 

exposed to medium than atmospheric pressure (-2.16 g and 0.69 g, respectively; p<0.05). 

All individuals survived the trials but feeding during exposure was significantly 

influenced by both pressure (F1, 56=5.09, p=0.028) and pH (F1, 56=9.36, p=0.003), with no 

interaction between the two (F1, 56=1.33, p=0.254). Feeding was higher at medium than 

atmospheric pressure under acidified conditions (p<0.05). More feeding occurred under 

ambient than acidified conditions at atmospheric pressure (p<0.05; Figure 3-7A). Unlike 

under ambient pH conditions, a generally higher proportion of individuals had their arms 

wrapped around the mussel with everted stomach after exposure to high than to 

atmospheric pressure (Table 3-7). 

Exposure to pressure that was typical of the species depth range showed that there 

was no effect of pressure (F1, 56 = 2.20, p=0.143) or pH levels on the time to right to 180° 

immediately post-trial (F1, 56 =0.50, p=0.482; Figure 3-7B). In post-recovery 7 d later, the 

ability to right to 90° was not influenced by pressure treatments (F1, 56 =1.97, p=0.166) 

but was effected by pH levels (F1, 56 =1.36, p=0.007). Specifically, post-recovery time to 

right to 90° was faster in individuals exposed to low-pH than ambient-pH conditions 

(p>0.05) under medium pressure, but was not significantly affected by pH at atmospheric 
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pressure (p>0.05; Figure 3-7C). The post-recovery time to right to 180° was not 

influenced by pressure (F1, 56 =1.36, p=0.248) or pH (F1, 56 =2.67, p=0.108; Figure 3-7D). 

3.4.2.3 Cucumaria frondosa 

Cloacal movement after the trial was not affected by pressure (F1, 23=3.62, 

p=0.072) or pH level (F1, 23=0.003, p=0.952), and there was no significant interaction 

between the factors (F1, 23=0.04, p=0.856; Table 3-4). By contrast, the combination of 

trial duration and pH showed that former had a significant effect on cloacal movement 

(F2, 66 = 3.54, p= 0.035) but not the latter (F1, 66 = 1.73, p= 0.193); and there was no 

interaction between these factors (F2, 66 = 0.363, p= 0.697). Specifically, cloacal 

movement was more frequent pre-trial than post-recovery (p<0.05) but was not different 

between other conditions (p>0.05; Figure 3-8A-C).  

Anchorage time post-trial was not affected by pressure (F1, 23=0.32, p=0.576) but 

was influenced by pH (F1, 23=5.33, p=0.032), with no significant interaction between the 

two factors (F1, 23=1.92, p=0.181). Specifically, time to anchor at atmospheric pressure 

was faster under ambient than low pH (p<0.05), but there was no effect of pH at medium 

pressure (p>0.05). The time to anchor was affected by both trial duration (F2, 63=3.55, 

p=0.035) and pH level (F1, 63=6.67, p=0.012) but there was significant interaction 

between the factors (F2, 63=5.09, p=0.009; Figure 3-8.D-F). In independent tests, under 

acidified pH conditions post-trial times to anchor were longer than pre-trial times (F2, 

21=4.50, p=0.047) and post-recovery times (F2, 21=5.91, p=0.025); there was no difference 

between pre-trial and post-recovery times (F2, 21=0.11, p=0.748). The time to anchor was 

not different among time points under ambient pH conditions (H=4.24, df=2, p=0.120). 

There was no difference between anchor times for exposure to acidified vs. ambient pH 
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conditions for either pre-trial (H=2.77, df=1, p=0.096) or post-recovery (H=3.56, df=1, 

p=0.551), but exposure to acidified pH resulted in longer post-trial anchor times than in 

ambient pH (H=4.02, df=1, p=0.045). 

A significant interaction between the effects of pressure and pH on post-trial 

feeding activity in C. frondosa was found (F1, 23 = 7.28, p=0.014; Figure 3-9A). Feeding 

occurred significantly faster after exposure to atmospheric than to medium pressure under 

ambient pH (t=-5.72, df=10, p=<0.001) but not under low pH (U=17.0, df=10, p=0.937). 

The onset of feeding was not significantly affected by pH treatment at medium (t=-2.11, 

df=10, p=0.061) or atmospheric pressure (U=10.0, df=10, p=0.240). 

Finally, the predator escape response was significantly affected by pressure (F1, 23 

=4.75, p=0.041; Figure 3-8B) but not pH (F1, 23 =1.03, p=0.322), and there was no 

interaction (F2, 17=2.89, p=0.087). Specifically, C. frondosa escaped faster after exposure 

to atmospheric than medium pressure under ambient pH (p<0.05) but there was no 

difference between responses in the two pressures treatments under low pH conditions 

(p>0.05). 

3.5 Discussion 

3.5.1 Response to pressure   

The results of the present study support the main hypothesis that behaviour in 

adult echinoderms is more strongly impacted by exposure to pressures beyond than 

within their natural bathymetric ranges. The highest hydrostatic pressure generally 

reduced the ability of the focal species to feed, move, right and/or anchor, which could 

have impacts on their health, survival and reproduction. In addition, for trials ≤72 h, 

mortalities were only elicited by exposure to the highest pressure. There was no 
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consistent weakening of the negative responses after longer exposures to support the 

hypothesis of rapid acclimation in the three species under study. Instead, all of them 

exhibited variable responses to longer exposures (i.e. 24 h vs 72/216 h). Generally, 

survival was lower post-recovery than immediately post-trial, suggesting that non-lethal 

physiological damage sometimes led to post-traumatic complications. The lowest 

survival among the tested species for trial duration ≤72 h was with the sea urchin S. 

droebachiensis, suggesting calcification or morphological drivers of the contrasting 

species-specific pressure tolerances. Overall, the results imply that the focal species 

would not likely be able to sustain short-term displacements (hours to days) across depths 

(~500 m), especially not beyond their current bathymetric current range of occurrence.  

Because the echinoderm species studied here occupy continental slopes that are 

characterized by vertical drops and high abundances of predators, the likelihood of 

toppling down cliff walls during storm events or to escape predators exists. This type of 

behaviour has recently been observed in laboratory studies, where individuals of C. 

frondosa actively moved off elevated platforms and fell to the bottom of a large 

mesocosm (J. Sun per. comm., 2016). Similarly, it has been shown that black turban 

snails (Tegula funebralis) can “tumble” down a “steep slope” after encountering a 

predator (Feder 1963; 1972). Based on the present study, abrupt relocation to deep 

habitats beyond their current range would not allow adult echinoderms to readily resume 

feeding. For instance, feeding activity in S. droebachiensis and feeding response in C. 

frondosa were slower and less defined during or following exposure to the highest 

pressure, respectively. Similarly, Thatje and Robinson (2011) found that, when the 
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shallow-water crab Maja brachydactyla was exposed to pressure atypical of its depth 

distribution, it did not feed. 

On the other hand, limited vertical movement appears to have minimal effects on 

feeding. During pressure exposure that was characteristic of mid-depth distributions, S. 

droebachiensis and L. polaris consumed more food than at atmospheric pressure. 

Pressure has been shown to induce metabolic demands and cause temporary increase in 

basal activity of many marine species (Schlieper 1968), thus, a benign increase in 

pressure may create a demand for nutrients to cope with the stress or fulfill metabolic 

demands under the new conditions. Similarly, when exposed to slightly increased 

pressures within natural distributions (<6 MPa) M. brachydactyla showed increased 

feeding (Thatje and Robinson 2011) and the shallow-water shrimp Palaemonetes varians 

displayed increased respiration rates (Oliphant et al. 2011).  

Unlike feeding, it was evident that post-trial motor functions of individuals with 

more rigid bodies was severely compromised with increasing pressure, regardless of 

exposure duration. After exposure to high pressure, individuals lacked coordination and 

their tube feet appeared more fragile (readily breaking off in S. droebachiensis and L. 

polaris). Since S. droebachiensis has a calcareous skeleton (test) it was limited in its 

ability to deform and adapt to the forces of compression and thus may be susceptible to 

physical damage, as evidenced by the easy breaking of spines after exposure to high 

pressure. Similarly, L. polaris was not able to successfully attach to the substrate after 

high-pressure trials and its attempts to right were impeded by uncoordinated arm 

movements. These responses may be the result of internal damage caused by pressure, in 

line with the finding that chondrocyte-like cell lines exposed to elevated pressures of 10-
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50 MPa for short periods of time (<24 h) displayed damage to cell cytoskeletons and 

dissociation of protein structures (Balny et al. 1997; Swezey and Somero 1985; 

Takahashi et al. 1998). These cellular and molecular changes have been observed in adult 

crustaceans manifesting convulsions, spasms and/or paralysis (e.g. Cottin et al. 2012; 

Macdonald and Gilchrist 1978; Oliphant et al. 2011; Wilcock et al. 1978). The atypical 

behaviours recorded in the present study are consistent with evidence that links spasms 

from high-pressure exposure to HPNS in other invertebrate phyla (e.g. Macdonald 1972; 

Oliphant et al. 2011; Thatje and Robinson 2011).  

The effects of prolonged exposure to elevated pressure confirmed that, similar to 

the 24-h trials, the more calcified (hard-bodied) echinoderms were unable to acclimate to 

pressurized conditions over longer time period. In the case of motor responses in S. 

droebachiensis, individuals took three times longer to right to 180° after 72-h trials then 

after 24-h trials, emphasizing the building effects of pressure exposure. Sea urchins 

exposed to high pressure retracted their podia, which reportedly increases the internal 

pressure of the coelomic space through shifts in the hydrovascular system (Ellers and 

Telford 1992). The reduced coelomic pressure may negatively affect the ability for sea 

urchins to deploy podia or cause severe podia damage resulting in immobility (Ellers and 

Telford 1992). Although coelomic pressure was not evaluated in the present study, it is 

likely that urchins under high pressure experienced the effects described above as the 

podia were noted to weaken and lack coordination post trial. Given that S. droebachiensis 

was not able to maintain motor functions, it is unlikely that it would survive at this 

pressure for longer periods of time. Impaired mobility in a natural setting would disrupt 

foraging and predator evasion, resulting in low survival. In sea stars (L. polaris), 
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increased exposure time to high pressure did not necessarily intensify the negative effects 

of pressure on the time to right even though righting took longer after high-pressure than 

atmospheric treatments. It is possible that longer exposure to pressure could result in 

temporary tolerance to these conditions but not complete adaptation, as revealed by the 

216-h experiments (see below). Our results therefore indicate that adult sea stars exhibit 

complex responses to pressure. In larvae, tolerance (measured as survival) was found to 

be inversely related to exposure duration in Asterias rubens and Marthasterias glacialis 

exposed to 20 MPa (~2000 m) (Villalobos et al. 2006).  

Interestingly, feeding, motor functions and other health proxies were not 

permanently disrupted by exposure to high pressure in most of the species and treatments. 

Although L. polaris was more sluggish after exposure to high pressure relative to 

atmospheric pressure for the two exposure durations, righting times were back to pre-trial 

values after the weeklong post-trial recovery at atmospheric pressure. By contrast, after 

72-h pressure exposure, S. droebachiensis was the most severely compromised; its post-

recovery righting times improved from post-trial times but these were still longer than the 

pre-trial times. Evidently post-recovery times for the motor tests of L. polaris showed 

that individuals can recover from the deleterious effects of high pressure but this was not 

as clear for S. droebachiensis. In Asteroidea muscle cells receive sensory information 

about whole-body movement because of internal pressure changes in the coelomic cavity. 

Environmental hydrostatic pressure can distort such messages and inhibit activity 

(Gardiner and Rieger 1980). Thus, sea stars may have regained function of their muscle 

cells and their mobility under atmospheric pressure. In the third species, C. frondosa, not 

all health proxies were as severely impacted as in the other two, although anchorage and 
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cloacal respiration were both negatively affected by high pressure, irrespective of the 

exposure duration. 

While the sea star L. polaris might acclimate to high pressure exposures to some 

degree, based on results of the 72-h exposure and on post-recovery trials, the result of the 

216-h exposures to high pressure revealed that individuals were unable to right 

immediately post trial, and that many individuals displayed softened tissues and peeling 

epidermis. Furthermore, all sea stars were moribund/dead a week after this long-term 

trial. Internal damage was presumably extensive given that L. polaris lacks any defined 

skeleton (rather possessing hundreds of minute calcareous ossicles), so its ability to 

maintain internal rigidity/stability is minimal (Cavey and Märkel 1994; LeClair 1993). 

This experiment could not be replicated in a suitable time frame due to technical 

difficulties with the IPOCAMP system; however, these preliminary findings warrant 

further investigation as they contrast with the findings of the 72-h experiment.  

 Contrary to the low tolerance for high-pressure over prolonged exposure seen in 

the other species, C. frondosa exhibited variable responses across behaviours, most of 

which did not fully support the acclimation hypothesis. C. frondosa took less time to 

initiate feeding and escape from predators after the 72-h than 24-h exposure, indicative of 

acclimation to pressure. On the other hand, elevated pressure severely decreased cloacal 

movement regardless of exposure duration, yet the potential for recovery differed based 

on duration of exposure. All individuals exposed for 24 h had returned to basal cloacal 

respiration levels after a week of recovery, whereas those exposed for 72 h still had 

slower rates of cloacal opening post recovery. Typically, cloacal respiration increases 

with stress in C. frondosa (Gianasi et al. 2015) so the reduction of water circulation may 
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indicate internal damage to the respiratory tree, where oxygenation occurs (Doyle and 

McNiell 1964; Gianasi et al. 2015) or a weakening of the cloacal muscles. Internal 

pressure increases with body wall contractions, required for movement, and external 

pressure from the environment; if the pressure reaches the maximum threshold then the 

opening of the cloaca can result in the rupture of the cloacal wall (VandenSpiegel and 

Jangoux 1987). Similarly, time to anchor post-trial was significantly longer than pre-trial 

and post-recovery following the high-pressure exposure for 72 h but not 24 h. Post-

recovery anchoring delays were still relatively longer than pre-trial values, demonstrating 

an intensification of the effects of pressure on tube feet activity over longer exposures. 

3.5.2 Combined response to pressure and pH  

Our findings show that the behavioural responses to pressure exposure within the 

natural bathymetric ranges under the ocean acidification scenario varied both within and 

among species, not fully supporting the hypothesis that the interaction between pressure 

and pH would systematically result in more deleterious responses. Some health proxies 

(feeding and anchoring) were negatively affected by low pH and high pressure but other 

responses such as righting, predator escape and cloacal respiration showed no evident 

additive effects following exposure to both factors. No mortality was observed either 

post-trial or post-recovery following any of these acute experiments. The combination of 

acidity and pressure did not have any different effect on the survival of individuals than 

pressure alone, although prolonged exposure was not investigated in this segment. 

Nevertheless, our study managed to show that pressure and acidity do interact to some 

degree to impose stressful conditions.  
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In the case of feeding, it was evident that most species were negatively affected 

by the interaction of pH and pressure. This finding provides novel insight for the 

potential effects of ocean acidification and adds to the existing literature on the 

interactive effects of factors related to climate change such as ocean acidification and 

warming (Byrne and Przeslawski 2013; Kroeker et al. 2013). When kept under low pH 

for >10 days at atmospheric pressure, S. droebachiensis was previously found to 

consume significantly less food than under ambient pH conditions (Siikavuopio et al. 

2007; Stumpp et al. 2011). Here, there was no significant impact of pH alone over the 

first 24 h at atmospheric pressure. However, in the medium pressure treatment, low pH 

decreased feeding significantly. Given that the pressure used was within the reported 

natural tolerance of S. droebachiensis (~600 m), decreasing pH due to ocean acidification 

might have even greater impacts on sea urchin populations at the extreme of their 

bathymetric range. Contrary to S. droebachiensis, feeding in L. polaris seemed to be 

impacted directly by pH without any additive effect of pressure. In fact the lowest 

feeding indices were obtained under acidified conditions at atmospheric pressure, 

whereas the food ingested at medium pressure (~500 m) under low pH was only 

marginally less than at ambient pH. Low pH has been shown to reduce the functionality 

of digestive enzymes of sea stars, thus limiting the rate of consumption (Appelhans et al. 

2012). The combination of pressure and pH could have enhanced metabolic demands in 

L. polaris, explaining the slightly higher feeding rates relative to atmospheric pressure. 

Similarly, the shrimp Palaemonetes varians increased food consumption under high 

pressure and high temperature conditions (Cottin et al. 2012).  
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The mobility of the more calcified species in this study (S. droebachiensis and L. 

polaris) were not explicitly reduced by exposure to acidity. Righting in S. droebachiensis 

generally took longer under acidified conditions relative to ambient pH (for both pressure 

treatments) but there was no significant effects on movement. The absence of any clear 

motor response to acidity might be related to the fact that pH had no effect on the internal 

physiology or coelomic pH levels. Similarly, in L. polaris, righting was neither affected 

by acidity nor pressure. At medium pressure, individuals exposed to low pH even righted 

faster than those exposed to ambient pH. An increase in metabolic activity due to stress 

from the combination of abiotic factors could be responsible for the accelerated motor 

response. Stumpp et al. (2011) have shown that acidification can result in re-allocation of 

energy for certain activities in adult echinoderms. Generally, individuals of L. polaris that 

had been exposed to low pH conditions still took longer to right in post-recovery tests, 

although the only significant difference among pH treatments occurred for righting to 90° 

after exposure to medium pressure, and not for complete righting to 180°.  

Feeding times in C. frondosa were slightly delayed (non-significantly) after 

exposure to medium pressure relative to atmospheric pressure under low pH conditions. 

The most sluggish response occurred after the ambient pH and high-pressure treatment. 

This indicates that the stress of pressure seems to be a greater effector of slower feeding 

than low pH; or that sea cucumbers recuperate more quickly (~instantaneously) from the 

latter. For the escape response, delays were more uniform across the treatments. Only the 

ambient pH and high-pressure combination yielded more sluggish responses to the 

predator. This supports that sea cucumbers are more readily impacted by pressure than by 

pH and that, somehow, low pH counteracts the negative effects of high pressure. It 
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should be noted however that this experiment was relatively short (24 h) compared to 

most ocean acidification studies, and that the effects of ocean acidification on C. 

frondosa seem to be acting over longer scales, e.g. seasonally on gametogenesis (Verkaik 

et al. 2016a). Incidentally, unlike locomotion, time to anchor was mainly affected by pH 

rather than pressure. Following exposure to low pH at both pressures (atmospheric and 

medium) time to anchor took three times longer than under ambient pH. In the sea 

cucumber Stichopus moebii, the combination of elevated pressure (50 MPa) and low pH 

(6.8-7.0) inhibited volume changes during ATP reactions that are associated with low 

mobility, whereas higher pH (8.0) was found to activate reaction rates (Guthe 1969). It is 

possible that low pH reduced tube feet activity required for successful anchorage, which 

is among the basic descriptors of health in C. frondosa (Gianasi et al. 2015). In post-

recovery trials, time to anchor had reverted back to pre-trial values, suggesting a non-

permanent effect. Interestingly, those individuals subjected to low pH conditions and 

medium pressure were slimy in texture due to mucus production. Echinoderms are known 

to secrete mucus as a means of defense and protection evoking a stress response 

(Lawrence 1987; Nance 1981). Different levels of pressure or pH did not affect the 

cloacal movement and there was also no variation between pre-trial, post-trial and post-

recovery values. Generally the behaviours of C. frondosa were more readily affected by 

pressure than acidity, but the variability of the responses warrants further investigation.  

Overall our findings reveal that pressure and acidity have a complex effect on the 

behavioural responses of echinoderms. Because echinoderms can be long-lived, in the 

order of decades and even centuries (Ebert and Southon 2003), it can be predicted that 

they will experience significant climate-driven changes within their lifetime. 
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Furthermore, as shallow-water areas around the continental shelf are experiencing more 

rapid changes (increasing temperature and acidity) vertical movements of subtidal 

communities to more stable deeper-water regions can be expected (Brown and Thatje 

2014). Therefore it is important to assess the ability of shallow-water species to colonize 

and thrive in deeper waters characterized by high pressure. Given the growing threat of 

ocean acidification, it would be advisable (but not necessarily easily achievable) for 

future investigations to test combined exposure for longer durations to determine whether 

the trends intensify over time.      
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3.8 Tables  

Table 3-1 Bathymetric ranges (m) of focal species (rounded to the nearest hundred; e.g. 
0.1 = 0 MPa = atmospheric pressure) with corresponding pressure tested. Note that for all 
three focal species the maximum depth of occurrence is based on only one record that 
met the search criteria described in the methods. The references used came from studies 
that conducted multi-species surveys by reputable institutions. 

Species Known depth range (m) Pressure tested (MPa) 
 
Strongylocentrotus droebachiensis 

 
0-1200 

 
Atmospheric (0) 
Medium (6) 
High (24) 

 
Leptasterias polaris 
 

 
0-1100 

 
Atmospheric (0) 
Medium (5) 
High (22) 

 
Cucumaria frondosa 

 
0-1300 

 
Atmospheric (0)  
Medium (6.5) 
High (26) 
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Table 3-2: Summary of experiments, including trial conditions and response variables 
measured. 

Trial 
duration 
(h) 

Species Pressure 
condition (MPa) 

pH a Response variables  Time of response measurementb 

24 Strongylocentrotus 
droebachiensis  

Atmospheric (0) 
Medium (6) 
High (24) 

Ambient 
Low 

Feeding indices 
Righting movement  
Weight  

During/Post-trial 
Post-trial  
Post-trial 
Pre-trial, Post-trial  
Post-trial 

72  Atmospheric (0) 
High (25) 

Ambient 
 

Righting movement   
Survival (%) 

Pre-trial, Post-trial, Post-recovery 
Post-recovery 

24 Leptasterias polaris Atmospheric (0) 
Medium (5) 
High (22) 

 
 

Ambient 
Low 
 

Feeding indices 
Righting movement  
Survival (%) 
Behaviour  
Weight  

During/Post-trial 
Pre-trial, Post-trial, Post-recovery 
Post-recovery 
During, Post-trial 
Pre-trial, Post-trial 

72  Atmospheric (0) 
High  (25) 

Ambient 
 

Righting movement   
Survival (%) 

Pre-trial, Post-trial, Post-recovery 
Post-recovery 

216  Atmospheric (0) 
High (22) 

Ambient 
 

Feeding indices 
Righting movement  
Survival (%) 
Behavioural 
observations  
Weight  

During/Post-recovery 
Pre-trial, Post-trial, Post-recovery 
Post-recovery 
During, Post-trial 
Pre-trial 

24 Cucumaria frondosa 
 

Atmospheric (0) 
Medium (6.5) 
High (26) 

 

Ambient 
Low 
 

Anchorage time 
Cloacal openings   
Predator escape 
response  
Time to feed 
Survival (%) 
Weight  

Pre-trial, Post-trial, Post-recovery 
Pre-trial, Post-trial, Post-recovery 
Post-trial 
Post-trial 
Post-recovery 
Pre-trial 

72  Atmospheric (0) 
High (25) 

Ambient 
 

Anchorage time  
Predator-escape  
Cloacal openings 
Survival (%) 

Pre-trial, Post-trial, Post-recovery 
Post-trial 
Pre-trial, Post-trial, Post-recovery 
Post-recovery 

a Low pH experiments tested at medium and atmospheric pressures. 
b Time of measurement: Pre-trial (activity prior to pressure exposure), During (while being exposed to 
pressure), Post-trial (immediately after pressure exposure), Post-recovery (7-d after pressure exposure). 
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Table 3-3: Summary of results from 24-h, 72-h and 216-h experiments under ambient pH 
conditions, showing whether they are consistent with tolerance or acclimation to pressure 
by three different species. Combinations that were not tested are indicated with NT. 

Species / metrics Tolerancea  Acclimationb  
Within natural 
depth range 24 h 

Beyond natural 
depth range 24 h 

Beyond natural depth 
range 

72 h 216 h 

S. droebachiensis 
• Feeding 
• Righting to 90° 
• Righting to 180° 
• Recovery righting to 90° 
• Recovery righting to 180° 
• Weight 
• Coelomic fluid 

  
Yes No NT  
No No No 
Yes No No 
Yes NT Yes 
Yes NT No 
Yes Yes No 
Yes Yes NT 

 
L. polaris 
• Feeding 
• Righting to 90° 
• Righting to 180° 
• Recovery righting to 90° 
• Recovery righting to 180° 
• Weight 

  
 
Yes 

 
Yes 

 
NT 

 
NT 

Yes No No No 
Yes No No No 
Yes Yes Yes No 
Yes Yes Yes No 
No Yes No NT 

 
C. frondosa 
• Time to feed 
• Escape 
• Post-trial time to anchor 
• Post-trial cloacal respiration  
• Recovery time to anchor 
• Recovery cloacal respiration 

    
 
No 

 
No  

 
Yes 

Yes Yes Yes 
Yes No Yes 
Yes No No 
Yes Yes Yes 
Yes Yes Yes 

a Exposure to pressure treatments for 24 h under ambient pH conditions; individuals were considered 
tolerant if responses were not significantly different between experimental treatment and control 
treatment at atmospheric pressure.  
b Exposure for 72 or 216 h under ambient pH conditions; individuals were considered to acclimate if 
responses were not significantly different from those obtained previously after 24 h. 
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Table 3-4: Summary of results from 24-h exposure to atmospheric and medium pressure 
(within natural depth range) under either acidified or ambient pH conditions, showing 
whether they are consistent with tolerance to pressure alone, acidification alone, and 
pressure-acidification combination. 

Species / metrics Tolerancea  

Atmospheric pressure Medium pressure 
Ambient pH Acidified pH Ambient pH Acidified pH 

S. droebachiensis 
• Feeding 
• Righting to 90° 
• Righting to 180° 
• Weight 
• Coelomic fluid 

 
Yes Yes Yes No 
Yes Yes Yes Yes 
Yes Yes Yes Yes 
Yes Yes Yes Yes 
Yes Yes Yes Yes 

 
L. polaris 
• Feeding 
• Righting to 90° 
• Righting to 180° 
• Recovery righting to 90° 
• Recovery righting to 180° 
• Weight 

 
 
Yes 

 
No 

 
Yes 

 
Yes 

Yes Yes Yes Yes 
Yes Yes Yes Yes 
Yes Yes Yes Yes 
Yes Yes Yes Yes 
Yes Yes No Yes 

 
C. frondosa 
• Time to feed 
• Escape 
• Post-trial time to anchor 
• Post-trial cloacal respiration  
• Recovery time to anchor 
• Recovery cloacal respiration 

 
 
Yes 

 
Yes 

 
Yes 

 
Yes 

Yes Yes No Yes 
Yes No Yes Yes 
Yes Yes Yes Yes 
Yes Yes Yes Yes 
Yes Yes Yes Yes 

a Exposure to pressure treatments for 24 h under ambient or acidified pH conditions; individuals were 
considered tolerant if the responses were not significantly different between experimental treatment and 
control treatment at atmospheric pressure under ambient pH.  
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Table 3-5: Survival rates (%; post-trial and post-recovery) associated with the 24-h, 72-h 
and 216-h pressure exposure trials under all pH conditions. Variable that were not tested 
are indicated with NT. 

Trial 
duration (h) 

Species Pressure 
condition (MPa)  

pH Post-trial 
survival (%)a 

Post-recovery 
survival (%)b 

24 Strongylocentrotus 
droebachiensis 

Atmospheric (0) 
Medium (6) 
High (24) 
 

Ambient 100 
100 
50 

NT 
NT 
NT 

72 Atmospheric (0) 
High (25) 
 

100 
100 

100 
83.3 

24 Leptasterias 
polaris 

Atmospheric (0) 
Medium (5) 
High (22) 
 

Ambient 100 
100 
92 

100 
100 
83.3 

72 Atmospheric (0) 
High (25) 

100 
100 
 

100 
100 

216 100 
51.7 
 

86 
0 

24 Cucumaria 
frondosa 

Atmospheric (0) 
Medium (6.5) 
High (26) 
 

Ambient 100 
100 
100 

100 
100 
100 

72 Atmospheric (0) 
High (25) 
 

100 
100 

100 
83.3 

24 Strongylocentrotus 
droebachiensis 

Atmospheric (0) 
Medium (6) 
 
 
Atmospheric (0) 
Medium (5) 
 
 
Atmospheric (0) 
Medium (6.5) 

Acidified 100 
100 
 
 

NT 
NT 

Leptasterias 
polaris 

100 
100 
 

100 
100 

 
Cucumaria 
frondosa 

 
100 
100 
 

 
100 
100 

a Survival was measured post-trial (immediately after removal from experimental vessel).  
b Survival was measured post-recovery (7 days after removal from experimental vessel). 
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Table 3-6: Proportion of sea stars L. polaris found in the various feeding positions after 
exposure to three pressure levels under either ambient or low pH. Pressure did not affect 
the final feeding positions of L. polaris after 24-h (H=2.47, df=2, p=0.291). In two-way 
comparisons, there was no significant effect of pressure (F1, 44 =1.02, p=0.751) or pH on 
the final positions (F1, 44 = 0.28, p=0.598), and no interaction between the factors (F1, 
44   =2.54, p=0.118). 

 
Pressure a 

 
pH 

Proportion of individuals (%) 
Arms 
around 
mussel; 
stomach 
everted 

Arms around 
mussel; no 
stomach 
everted 

Arms not 
around 
mussel; 
stomach 
everted 

Arms not 
around mussel; 
no stomach 
everted 

Atmospheric 
Medium  
High 

Ambient 58.3 0 16.7 25.0 
 41.7 8.3 0 

33.3 
50.0 

 8.3 25.0 33.3 
Medium  
High 

Acidified  41.7 0 25.0 8.3 
 66.7 0 25.0 33.3 

a See Table 3-1 for exact pressure values. 
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Table 3-7: Activity of L. polaris within the pressure vessel over a 216-h period at either 
atmospheric or high pressure (0 and 22 MPa; simultaneous trials). Scores included: 
feeding (arms wrapped around mussel, stomach everted on the prey), near mussels (no 
evident foraging or attempted opening of mussels), active (not visible from camera view 
because individuals were climbing on the sides of the pressure vessel), paralyzed 
(individual had not changed position for >8 hours). Proportion (%) of individuals 
displaying a given activity is shown in brackets. 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

		
	  

Day Activity under atmospheric pressure  Activity under high pressure  

1 Active (100) Active (66.7) 

Near mussel (33.3) 
 
2 

 
Active (66.7) 
Near mussel (33.3) 

 
Active (33.3) 
Near mussel (66.7) 

 
3 

 
Active (66.7) 
Near mussel (33.3) 

 
Active (66.7) 
Near mussel (33.3) 

 
4 

 
Active (100) 

 
Active (66.7) 
Paralyzed (33.3) 

 
5 

 
Active (100) 

 
Near mussel (66.7) 
Paralyzed (33.3) 

 
6 

 
Active (100) 

 
Paralyzed (100) 

 
7 

 
Active (33.3) 
Near mussel (66.7) 

 
Paralyzed (100) 

 
8 

 
Active (33.3) 
Near mussel (66.7) 

 
Paralyzed (100) 

 
9 

 
Active (66.7) 
Near mussel (33.3) 

 
Paralyzed (100) 
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3.9 Figures 
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Figure 3-1 (previous page): Response of S. droebachiensis to pressure. (A) Feeding index 

(mean ± SE, n = 12-24) during 24-h exposure to pressures within and beyond its natural 

bathymetric distribution. (B) Time to right to 90° (mean ± SE, n = 12-24) immediately 

after the 24-h trial. (C) Time to right to 180° (mean ± SE, n = 12-24) immediately after 

the 24-h trial. (D) Comparison of time to right to 90° (mean ± SE, n=6) pre-trial, post-

trial or post-recovery following 72-h exposure.  (E) Comparison of time to right to 180° 

(mean ± SE, n=6) pre-trial, post-trial or post-recovery following 72-h exposure. Means 

with different letters are significantly different (ANOVA on ranks, p > 0.05). Lower case 

letters (a, b, c) correspond to results within treatments and capital letters (A, B) to results 

between time treatments. See Tables C1-C3 (Appendix C) for full statistical results.  
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Figure 3-2: Post-trial condition of individuals immediately after pressure exposure for 72 

and 216 h. (A) S. droebachiensis; individual on the left was exposed to 0 MPa and had 

healthy spines (hs); individual on the right was exposed to 25 MPa and had weak spines 

(ws); both individuals were tested in different pressure vessels.  (B) L. polaris; after 

exposure to 0 MPa for 72 h, individuals were climbing and had healthy arms (ha) 

indicative of good health. (C) L. polaris; after exposure to 25 MPa for 72 h individuals all 

had convoluted arms (ca) and everted stomachs (es). (D) L. polaris after exposure to 22 

MPa for 216 h individuals all had convoluted arms (ca) and everted stomachs (es) from 

stress. (E) C. frondosa; after exposure to 25 MPa this individual was found dead and 

eviscerated upon removal from the IPOCAMP; gonads (go) and intestines (in) are visible. 

Scale bars represent 4 cm. 
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Figure 3-3: Feeding indices and righting of L. polaris post-trial and post-recovery 

following a 24-h exposure to pressures within and beyond its natural bathymetric 

distribution. (A) Feeding indices (mean ± SE, n = 12-24). (B) Time (mean ± SE, n = 12-

24) required to right itself to 180°. (C) Time (mean ± SE, n=6) required to right itself to 

180° pre-trial, post-trial or post-recovery following 72-h exposure to pressure. Means 

with different letters are significantly different (ANOVA on ranks, p > 0.05). Lower case 

letters (a, b) correspond to results within treatments and capital letters (A, B) to results 

between time treatments. See Tables C1-C3 for full statistical results. 
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Figure 3-4: Time to feed, cloacal movement rate, time to escape response and time to 

anchor in C. frondosa measured either pre-trial, post-trial or post-recovery following 24-h 

exposure to pressures within and beyond its natural distribution (mean ± SE, n = 6). (A) 

Time to initiate feeding. (B) Cloacal movements. (C) Time to initiate escape from 

predator. (D) Time to anchor firmly to substrate. Means with different letters are 

significantly different (ANOVA on ranks, p > 0.05). Lower case letters (a, b) correspond 

to results within treatments and capital letters (A, B) to results between time treatments. 

See Tables C1-C3 for full statistical results. 
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Figure 3-5: Time to feed, cloacal movement rate, time to escape response and time to 

anchor in C. frondosa measured either pre-trial, post-trial or post-recovery following 72-h 

exposure to pressures within and beyond its natural distribution (mean ± SE, n = 6). (A) 

Time to initiate feeding. (B) Cloacal movements. (C) Time to initiate escape from 

predator. (D) Time to anchor firmly to substrate. Means with different letters are 

significantly different (ANOVA on ranks, p > 0.05). Lower case letters (a, b) correspond 

to results within treatments and capital letters (A, B) to results between time treatments. 

See Tables C1-C3 for full statistical results. 
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Figure 3-6: Feeding and righting of S. droebachiensis following 24-h exposure to 

ambient or low-pH conditions under pressures within and beyond its natural bathymetric 

distribution. (A) Feeding indices (mean ± SE, n = 12-24). (B) Time (mean ± SE, n = 12-

24) required to right itself to 180°. Means with different letters are significantly different 

(ANOVA on ranks, p > 0.05). Lower case letters (a, b) correspond to results within 

treatments and capital letters (A, B) to results between time treatments. See Tables C1-C3 

for full statistical results. 
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Figure 3-7: Feeding and righting in L. polaris following 24-h exposure to ambient and 

acidified conditions under pressures within its natural bathymetric distribution. (A) 

Feeding indices (mean ± SE, n = 12-24). Times to right: (B) post-trial to 90° (C) post-

trial to 180°, (D) post-recovery to 180°. Means with different letters are significantly 

different (ANOVA on ranks, p > 0.05). Lower case letters (a, b) correspond to results 

within treatments and capital letters (A, B) to results between time treatments. See Tables 

C1-C3 for full statistical results. 
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Figure 3-8: Cloacal movement and time to anchor (mean ± SE, n = 6) in C. frondosa 

measured pre-trial, post-trial and post-recovery following 24-h exposure to ambient and 

acidified conditions under pressures within its natural distribution. Cloacal movements 

(A) pre-trial, (B) post-trial, and (C) post-recovery. Time to anchor (D) pre-trial, (E) post-

trial and (F) post-recovery. Means with different letters are significantly different 

(ANOVA on ranks, p > 0.05). Lower case letters (a, b) correspond to results within 

treatments and capital letters (A, B) to results between time treatments. See Tables C1-C3 

for full statistical results. 
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Figure 3-9: Time to initiate feeding and predator escape response (mean ± SE, n = 6) in 

C. frondosa following 24-h exposure to ambient and acidified conditions under pressures 

within its’ natural distribution. (A) Time to feed. (B) Time to escape. Means with 

different letters are significantly different (ANOVA on ranks, p > 0.05). Lower case 

letters (a, b) correspond to results within treatments and capital letters (A, B) to results 

between time treatments. See Tables C1-C3 for full statistical results. 

	 	



153	

Chapter 4: General Conclusions 
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4.1 Thesis summary    

This thesis explored the effects of hydrostatic pressure, a critical parameter in the 

marine environment, and contributed to expand the current knowledge base by: (1) 

synthesizing and analyzing a large body of observational and experimental results on 

pressure tolerance (from 1961 to present date) to better understand how shallow-water 

and deep-sea species from different geographic locations cope with shifts in pressure 

conditions; and (2) examining the behavioural responses of three focal species of 

shallow-water echinoderms, including sea urchins (Stronglyocentrotus droebachiensis), 

sea stars (Leptasterias polaris) and sea cucumbers (Cucumaria frondosa), to various 

pressure and pH conditions. 

In Chapter 2, data from some 134 studies were collated and synthesized to 

analyze how pressure tolerance differed between various taxa (>260 species) at different 

life stages (larvae and adults). Datasets were analyzed to determine if pressure tolerance 

was influenced by: (i) depth stratum of collection, (ii) geographic location of origin, and 

(iii) phylum. In terms of vertical migration, the results supported the relatively novel 

parsimony hypothesis, which suggests that species’ pressure tolerance enables a bi-

directional movement of animals from shallow waters to the deep sea, as well as the 

inverse. Also species from mid-depths could potentially migrate both ways (to greater 

and to shallower depths). Interestingly, the findings of the review also showed that deep-

sea species generally survived better than shallow-water species when exposed to various 

non-native pressures. In addition, pressure tolerances were more limited for species 

originating from tropical locations relative to those from northern latitudes, likely due to 

confounding effects of thermal stress during ascent from cold depths to warmer surface 
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waters during collection. Lastly, phylum was a more significant driver of pressure 

tolerance for adults than for larvae (with the caveat of temporally constrained data on the 

latter). 

In Chapter 3, the experimental results showed that shallow-water echinoderms 

from the Northwest Atlantic were generally not able to adapt to pressures that were 

atypical of their natural distribution, irrespective of exposure duration (24-216 h). With 

respect to motor functions, the time required to anchor or right in all three species 

increased after exposure to the highest pressures (beyond their known depth ranges). 

Similarly, during and after 24-h exposures to high-pressure, sea urchins reduced the 

amount of food they consumed at pressure, and sea cucumbers initiated a feeding 

response more slowly. By contrast, sea stars ate roughly the same amount of food under 

high-pressure than at atmospheric pressure. However, the follow-up experiment, testing 

whether sea stars could still feed under high-pressure conditions for a prolonged period of 

216 h (9 days), yielded 100% mortality. Furthermore, complex interactions were found to 

exist between low pH and hydrostatic pressure (within the depth distributions of the focal 

species), as behavioural responses were essentially species-specific. For instance, sea 

urchins and sea stars fed less when low pH was combined to increased pressure, whereas 

sea cucumbers exhibited a faster feeding response after exposure to pressure and were 

seemingly not affected by pH. Lastly, motor activity was negatively impacted in sea stars 

and sea urchins under elevated pressures, while sea cucumbers were chiefly affected by 

pH.  

Overall, the results of these two chapters exemplify that pressure is a complex 

abiotic parameter that has species-dependent effects at both the behavioural and 
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ecological scales. The review of the pressure literature has revealed that various traits 

related to the provenance of experimental species influence their pressure tolerance; these 

include geographic and bathymetric variables. Brown and Thatje (2014; 2015) had 

previously reviewed the pressure literature with an aim to assess the relationship between 

pressure and temperature and to model depth distributions with regards to future abiotic 

shifts associated with climate change. By contrast, the present study focused on evidence 

gathered from pressure tolerance and was able to highlight trends that merit further 

investigation. One significantly novel contribution of this review chapter was in 

demonstrating and highlighting that a fair number of deep-sea taxa have high 

barotolerance and are capable of surviving (and even reproducing) at atmospheric 

pressure. This includes the survival of freshly collected adults (e.g. Colaço et al. 2006; 

Kádár et al. 2006; Mercier and Hamel 2008; 2009; Miyake et al. 2007; 2012; Sun et al. 

2009; 2010) as well as the ability of larvae obtained from parents collected in the deep 

sea to survive and sometimes to settle at atmospheric pressure (e.g. Epifanio et al. 1999; 

Hamasaki et al. 2010; Mercier and Hamel 2009; Mercier et al. 2011b). Taking this 

empirical evidence into account, the synthesis suggests that a shallow to deep sea 

invasion is unlikely, but that the parsimony hypothesis, and to some the degree the 

submergence hypothesis, have merit. Interestingly, the conclusion takes into 

consideration the results of the many studies that supported the deep-sea invasion (e.g. 

Aquino-Souza et al. 2008; Tyler and Young 1998; Tyler et al. 2000b; Villalobos et al. 

2006; Young et al. 1997; Young and Tyler 1993; Young et al. 1996).  

 In addition to the synthesis of the literature, the experiments conducted in this 

study have also highlighted the generally limited ability of shallow-water echinoderms 
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belonging to three classes to cope with increases in pressure, particularly those that are 

atypical of their natural distributions for more than 24 hours.  

4.2 Future directions 

It is important to acknowledge that the relatively recent development of flow-

through high-pressure chambers over the past few decades, combined with their high cost 

and rarity, make investigations of pressure tolerance essentially inaccessible to most 

investigators. Hence, the study of the response of marine organisms to hydrostatic 

pressure is still in its early stages. It is also essential for researchers to recognize the 

inherent limitations of simulating pressure in the laboratory and collecting animals from 

habitats defined by extreme pressure. There is a clear need for standardizing investigative 

methods, including gradual acclimation of experimental species to pressure without 

stressing them out (i.e. avoiding sudden pressurization). Similarly, there is also room for 

improving collection methods for deep-sea animals to minimize trauma from rapid 

depressurization.  

As the field is developing, it is evident that certain species or taxa have been 

tested more frequently than others. Therefore, general assumptions about the universal 

ability for shallow-water or deep-sea animals to adapt to pressures atypical of their 

natural bathymetric distribution, based on the performance of a single species in a study, 

should not be encouraged (Oliphant et al. 2011). The present study strove to avoid such 

assumptions, which is why most of the contemporary literature was considered in order to 

ensure that trends regarding pressure tolerance were consistently observed across 

multiple studies. In addition to evaluating pressure tolerance in terms of survival length 

and survival proportion, future studies might also consider evaluating more complex 
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behaviours that are species-specific and may constitute good indicators of long-term 

survival. Previous studies have claimed that because early developmental stages of 

marine invertebrates could survive for a few hours under pressure, these species had the 

potential to disperse across depths and were potentially capable of colonizing deeper 

habitats; this despite the fact that settlement was not recorded and basic behaviours like 

feeding and mobility of adults were not evaluated (e.g. Macdonald 1997; Tyler and 

Young 1998; Young et al. 1997; Young et al. 1996). The present study showed that 

feeding and motor functions in adults exposed to non-native pressures (as proxies of an 

ability to survive and be successful at increased depths) were significantly impacted, 

albeit over short-term scales that were nevertheless comparable to or longer than those 

previously used for larval stages. It cannot be excluded, but remains difficult to prove, 

that slow incremental pressurization (over days or months) might produce different 

results. Because certain facilities, such as the Océanopolis aquarium in France, now have 

the capacity to keep tanks at pressure over long periods, slow-adaptation experiments 

may become possible in the not too distant future (Shillito et al. 2015). 

Ideally, studies should integrate a multi-disciplinary approach when assessing 

pressure tolerance to gain a more holistic picture. For instance, Ravaux et al. (2009) were 

successful in evaluating the effects of pressure by examining survival, genome changes 

and behaviour in the shallow-water caridean shrimp Palamonetes varians. Future 

investigations should also aim to gather a more complete ontogenetic picture, whereby 

investigators test multiple life stages of the same species (i.e. early larval and later 

juvenile or adult stages). It is also recommended that future research maintain detailed 
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records of the ability for species at all stages to survive under experimental pressure 

conditions for longer periods of time to ground-truth barotolerance.  

With the growing threat exerted by climate change, it is critical for future pressure 

studies to evaluate more combinations of pressure, temperature and acidification levels. It 

is crucial for us to gain a better understanding of how metazoans living at various depths 

will cope under new temperature and pH regimes. As climate change starts to drive 

increasingly serious modifications of oceanic conditions, there is an urgency to better 

understand whether certain species or phyla are capable of migrating vertically and 

perhaps even access new habitats beyond their current bathymetric range. Identifying 

potential bathymetric migrators could provide vital information on how marine 

ecosystems will change in the future. 
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Appendix A: Datasets 

Table A1. Shallow-water and deep-sea marine invertebrate species examined for tolerances to various hydrostatic pressures. Pressure 
was either experimentally applied using absolute (A) or incremental stepwise (I) methods, or corresponds to maintance in naturally 
fluctuating temperatures (F). The collection depths, ontogenic stage of animals and the experimental duration for exposure to pressure 
treatements was recorded. The effects of pressure were evaluated by examining the rate of survival (%) under experimental conditions 
and development (the maximum stage reaced with the percentage of individuals reaching that stage and total amount of time). The 
minimum adult survival time was recorded to denote how long deep-sea animals survive at ambient pressure (within and beyond the 
experimental time). The depth range was classified as Intertidal, Subtidal, Bathyal and Abyssal. Habitat types were also recorded. The 
geographic regions were classified as Antartica, Norwest Atlantic Ocean (NW Atl), Northeast Atlantic Ocean (NE Atl), Northeast 
Pacific Ocean (NE Pac), Northwest Pacific Ocean (NW Pac), Mediterranean Sea (Med), Tropical Indian Ocean (Trop Ind) Tropical 
East Pacific Ocean (Trop E Pac), Tropical West Pacific Ocean (Trop W Pac), Caribbean (Cari) and Gulf of Mexico (GOM). The 
corresponding climate zones used were: Polar, Temperate-cold, Temperate, Temperate-warm and Tropical.   

 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Annelida 
Shallow-water species 

Poeobius meseres 0 NE Pac  Intertidal   Larvae  0.1 (A) 5 (A) 8-13   Childress and 
Thuesen, 
1993 

Pomatoceros 
lamarcki 

0-5 NE Atl Temperate-
warm 

Intertidal   Larvae 
(Trochophore) 

0.1 (A) 15 (A) 
 

48 68.8 Trochophore; 
68.8; (2) 

Vevers et al., 
2010  

         10.1 (A) 
 

  69.1 Trochophore; 
69.1; (2) 

 

        20.3 (A) 
 

  41.4 Trochophore; 
41.4; (2) 

 

        30.4 (A) 
 

  19.3 Trochophore; 
19.3; (2) 

 

        0.1 (A)  6 
 

100   

        10.1 (A)   80 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Deep-sea species 
Alvinella 
pompejana 

2500 NE Pac  Abyssal Hydrothermal 
vent 

 Adult 0.1 (A) 4 (A) 4 0  Pradillon et 
al., 2005  

       Larvae  
(Oocytes and 
spermatozoa) 

 2 (A) 72 
 

100 Uncleaved; 100; 
(3) 

 

         10 (A)  83 16-cell stage 
and more; 11; 
(3) 

 

         14 (A) 63 95 16-cell stage 
and more; 77; 
(2.6) 

 

         20 (A) 48 0 Degrading 
embryos; 100; 
(2) 

 

         27 (A) 24  Degrading 
embryos; 100; 
(1) 

 

        26 (A) 2 (A) 576 
 

 Uncleaved; 100; 
(24) 

 

         10 (A) 72 100 16-cell stage 
and more; 55; 
(3) 

 

         20 (A) 48 0 Degrading 
embryos; 100; 
(2) 

 

Alvinella 
pompejana 

2500 NE Pac  Abyssal Hydrothermal 
vent 

 Adult 25 (A) 4 (A) 0 100  Ravaux et al., 
2013  

         4-20 (I) 
 

3 68.4   

         4-20-42 (I) 
 

5 91.6   

         4-20-42-55 
(I) 
 

7 0   

Alvinella 
pompejana 

2500 NE Pac  Abyssal Hydrothermal 
vent 

 Larvae 
(Embryo) 

0.1 (A) 2 (A) 72 
 

100 Uncleaved; 100; 
(3) 

Pradillon et 
al., 2001  

         10 (A) 
 

 90 Cleaved; 90; (3)  
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

         14 (A) 
 

 80 Cleaved; 95; (3)  

         20 (A) 
 

 0 Uncleaved; 72; 
(3) 

 

        25.3 (A) 2 (A) 
 

48 100 Uncleaved; 100; 
(2) 

 

         10 (A)   
 

Cleaved; 50; (2)  

         20 (A)  0 
 

Uncleaved; 100; 
(2) 

 

Alvinella 
pompejana 

2600 NE Pac  Abyssal Hydrothermal 
vent 

 Adult 26 (A) 15 (A) 20 36  Shillito et al., 
2004  

Hesiolyra bergi 2600 NE Pac  Abyssal Hydrothermal 
vent 

 Adult 26 (A) 15 (A) 
 

6 100  Shillito et al., 
2001  

          18  
 

  

         15-50 (I)  0 
 

  

         15-39 (I)  20 
 

  

          48 100 
 

  

Lamellibrachia 
luymesi 

700 GOM  Bathyal Hydrocarbon 
seep 

15 Juvenile 0.1 (A) 6 (A) 600   Pflugfelder et 
al., 2009  

Neopolynoe 
acanellae 

466-1405 NW Atl  Bathyal  60-730 Adult 0.1 (A) 1-8 (F)  100  Hamel et al., 
2015  

Ophryotrocha sp. 500-1500 NW Atl  Bathyal  60-730 Adult 0.1 (A) 1-4 (F)  50 Juveniles; 80; to 
adult size (F1, 
F2, F3 
generations) 

Mercier et al., 
2014  

Paralvinella 
grasslei 

2600 NE Pac  Abyssal Hydrothermal 
vent 

 Adult 26 (A) 15 (A) 6   Cottin et al., 
2008  

          
 

9 100   

         15-31.7 (I) 
 

6 83   

         15 (A) 
 

8.5 70   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

         15-32.3 (I) 
 

    

         15 (A) 
 

8 84   

         15-31.4 (I) 
 

    

         15 (A) 
 

12 100   

Paralvinella 
grasslei 

2600 NE Pac  Abyssal Hydrothermal 
vent 

0.75 Adult 0.1 (A) 15 (A) 6 100  Dixon et al., 
2002  

          18 
 

   

        26.3 (A) 
 

 6    

          18 
 

   

Paralvinella 
palmiformis 

1800 NW Pac  Bathyal Hydrothermal 
vent 

 Adult 
 

17.9 (A) 10-60-10 (I) 10 0  Lee, 2003  

Paralvinella 
palmiformis 

1800 NW Pac  Bathyal Hydrothermal 
vent 

7 Adult 
 

0.1 (A) - 
 

10 0  Lee, pers. 
comm. 

Paralvinella 
sulfincola 

1800 NW Pac  Bathyal Hydrothermal 
vent 

 Adult 
 

17.9 (A) 10-60-10 (I) 10 0  Lee, 2003  

Paralvinella 
sulfincola 

1800 NW Pac  Bathyal Hydrothermal 
vent 

7 Adult 
 

0.1 (A) - 
 

10 0  Lee, pers. 
comm. 

Paralvinella 
pandorae irlandei 

2585 NW Pac  Abyssal Hydrothermal 
vent 

 Adult 26 (A) 10 (A) 43 100  Boutet et al., 
2009  

         20 (A) 
 

    

Poeobius meseres 1000 NE Pac  Bathyal   Larvae 10.1 (A) 5 (A) 8-13   Childress and 
Thuesen, 
1993  

Riftia pachyptila 2500 NE Pac  Abyssal Hydrothermal 
vent 

 Larvae 24.1 (A) 2 (A) 80 72*  Brooke and 
Young, 2009  

         5 (A) 
 

 52*   

         10 (A) 
 

 0*   

        17.2 (A) 2 (A) 
 

 36*   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

         5 (A) 
 

 0*   

         10 (A) 
 

    

        10.3 (A) 2 (A) 
 

    

         5 (A) 
 

    

         10 (A) 
 

    

        3.6 (A) 2 (A) 
 

    

         5 (A) 
 

    

         10 (A) 
 

    

Riftia pachyptila 2500 NE Pac  Abyssal Hydrothermal 
vent 

 Larvae 
(Oocytes 
spermatozoa) 

0.1 (A) 2 (A) 2.5  Fertilization; 
90; (0.1) 

Marsh et al., 
2001  

      34  25.3 (A)  816 
 

   

Riftia pachyptila 2500 NE Pac  Abyssal Hydrothermal 
vent 

0.5 
 

Juvenile 
 

0.1 (A) 8 (A) 1   Pflugfelder et 
al., 2009  

          6 
 

   

        20.3 (A)  1 
 

   

          6 
 

   

Riftia pachyptila 2600 NE Pac  Abyssal Hydrothermal 
vent 

 Adult 0.1 (A) 8 (A) 3 0**  Childress et 
al., 1984  

      45  27.4 (A) 
 

 1080 100**   

        10 (A) 
 

     

Riftia pachyptila 2600 NE Pac  Abyssal Hydrothermal 
vent 

5 Adult 23.1 (A) 8 (A) 72 100  Gaill et al., 
1997  

          120 
 

50   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Riftia pachyptila 2600 NE Pac  Abyssal   Adult 12.2 (A) 8 (A) 24 100  Childress et 
al., 1991  

          72 
 

   

          120 
 

   

Arthopoda 
Shallow-water species 

Artemia 
franciscana 

0    Lab culture  Larvae 
(Embryo) 

0.1 (A) 25 (A) 3 80*****  Daiki et al., 
2009  

       Larvae 
(Anhydrobioti
c embryo) 

1200 (A)  0.33 86*****   

       Larvae 
(Hydrated 
embryo) 

   0*****   

Artemia 
franciscana 

0    Lab culture  Larvae  
(First-stage 
nauplii) 

0.1-60 (I) 24 (A) 3.33 100**** 
 

 Seo et al., 
2013  

         4 (A)     

         24 (A)     

         4 (A)     

        20 (A) 8 (A) 1.7 91.6****   

        40 (A)  2.45 66****   

        60 (A)  3.17 0****   

Artemia 
franciscana 

0    Lab culture  Larvae  
(First-stage 
nauplii) 

0.1-60 (I) 24 (A) 3.33 100**** 
 

 Seo et al., 
2013  
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

         4 (A)     

         24 (A)     

         4 (A)     

        20 (A) 8 (A) 1.7 91.6****   

        40 (A)  2.45 66****   

        60 (A)  3.17 0****   

Balanus amphitrite 0    Lab culture  Larvae 
(Cyprid) 

0.1 (A) 25 (A) 48 100  Kon-ya and 
Miki, 1994  

        5 (A)      

        10 (A)      

        20 (A)      

        40 (A)   0   

Calanus 
finmarchius 

0 NW Atl Temperate-
cold 

Intertidal   Larvae 55.1 (A) 10 (A) 1 0  George and 
Marum, 1974  

Calanus sinicus 0-199 NW Pac Temperate Intertidal, 
Subtidal, 
Bathyal 

 24 Larvae 
(Unhatched 
egg) 

0.1 (A) 15 (A) 24 77*****
** 

 Yoshiki et al., 
2006  

        1 (A)   60*****
** 

  

        5.1 (A)    39*****
** 

  

        10.1 (A)   17*****
** 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Calanus sinicus 0-199 NW Pac Temperate Intertidal, 
Subtidal, 
Bathyal 

 24 Larvae  
(1 cell stage) 

10.1 (A) 
 

14 (A) 24 81*****
*** 

 Yoshiki et al., 
2008  

       Larvae  
(2 cell stage) 

   95*****
*** 

  

       Larvae  
(4 cell stage) 

   99*****
*** 

  

       Larvae  
(8 cell stage) 

   95*****
*** 

  

       Larvae  
(16 cell stage) 

   93*****
*** 

  

       Larvae 
(Blastula) 

   78*****
*** 

  

       Larvae  
(Limb-bud) 

   100****
**** 

  

       Larvae  
(1 cell stage) 

10.1 (I)   91*****
*** 

  

       Larvae  
(2 cell stage) 

   90*****
*** 

  

       Larvae  
(4 cell stage) 

   88*****
*** 

  

       Larvae  
(8 cell stage) 

   100****
**** 

  

       Larvae  
(16 cell stage) 

   95*****
*** 

  

       Larvae 
(Blastula) 

   89*****
*** 

  

       Larvae  
(Limb-bud) 

   90*****
*** 

  

Crangon crangon 0-10 NE Atl Temperate Intertidal, 
Subtidal 

  Adult 23.3 (A) 25 (A) 1 50 
****** 

 Schlieper, 
1972  

Crangon crangon 0-10 NE Atl Temperate Intertidal, 
Subtidal 

  Adult 0.1 (A) 8 (A) 8 100  Wilcock et 
al., 1978  

        1 (A) 
 

     

        3 (A)      
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        4.1 (A)      

        5.1 (A)      

        6.1 (A)      

        10.1 (A)   0 
 

  

        12.2 (A)      

Lithodes maja 60 NE Atl Temperate-
cold 

Subtidal   Larvae  
(Zoea I) 

0.1 (A) 6 (A) 4 100  Munro et al., 
2015  
 
 

        5 (A)      

        10 (A) 
 

     

        15 (A)      

        20 (A)      

        25 (A)      

        30 (A)      

       Larvae 
(Megalopa) 

0.1 (A)      

        5 (A)      

        10 (A) 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        15 (A)      

        20 (A)      

        25 (A)      

        30 (A)      

       Larvae  
(Crab I Stage) 

0.1 (A)      

        5 (A)      

        10 (A)      

Maja brachydactyla 4-12 NE Atl  Intertidal, 
Subtidal 

Salt marsh  Juvenile 0.1-5.1-
10.1-15.2 
(I) 

20 (A) 3.75 100  Robinson et 
al., 2009  

        0.1 (A)      

Maja brachydactyla 4-12 NE Atl Temperate Intertidal, 
Subtidal 

Salt marsh  Adult 0.1 (A) 20 (A) 
 

90 100  Thatje and 
Robinson, 
2011  

        10.1 (A)      

        15.2 (A)      

Meganyctiphanes 
norvegica 

0 NW Atl Temperate-
cold 

Intertidal   Larvae 41.4 (A) 10 (A) 1 0  George and 
Marum, 1974  

Pachygrapsus 
crassipes 

0-15 Trop E Pac Tropical  Intertidal, 
Subtidal 

  Adult 
 

4.7 (A) 2 (A) 0.27 100  Menzies and 
Wilson, 1961  

        5.4 (A)  0.32    
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        6 (A)  0.3    

        7.5 (A)  0.4 80   

        7.7 (A)  0.42 100   

        8.6 (A)  0.53    

        9 (A)  0.45 60   

        9.2 (A)  0.53 0   

        10.5 (A)  0.58    

        10.7 (A)  0.62    

        12.3 (A)  0.68    

        13.8 (A)  0.77    

        14.8 (A)  0.83    

        15.2 (A)  0.88    

        16.7 (A)  0.97    

        18.3 (A)  1.05    

        19.9 (A)  1.13    
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        21.5 (A)  1.25    

        10.4 (A)  4.43 33   

        22.3 (A)  5.78 0   

        35 (A)  5.95    

Pagurus cuanensis 0-10 NE Atl Temperate Intertidal, 
Subtidal 

Salt marsh  Adult 2 (A) 5 (A) 1 100  Thatje et al., 
2010  

         10 (A)     

         15 (A)     

         20 (A)     

        5.1 (A) 5 (A)     

         10 (A)     

         15 (A)     

         20 (A)     

        10.1 (A) 
 

5 (A)     

         10 (A)     

         15 (A)     
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

         20 (A)     

        0.1-10.1-
0.1 (I) 

5 (A) 2.5 
 

   

         10 (A)     

         15 (A)     

         20 (A) 
 

    

Palaemonetes 
varians 

0-10 NE Atl Temperate Intertidal, 
Subtidal 

Salt marsh  Adult 
 

0.1 (A) 
 

10-28 (I) 10 100  Cottin et al., 
2010  

        
 

 10 (A) 7    

Palaemonetes 
varians 

0-10 NE Atl Temperate Intertidal, 
Subtidal 

Salt marsh 28 Adult 0.1 (A) 10 (A) 6 100  Cottin et al., 
2012  

        5 (A)      

        10 (A)      

        15 (A)      

        0.1 (A) 5 (A) 168    

        10 (A)      

        0.1 (A) 10 (A)     

        10 (A)      
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        0.1 (A) 27 (A)  87   

        10 (A)   63   

         10 (A) 672 70   

Palaemonetes 
varians 

0-10 NE Atl Temperate Intertidal, 
Subtidal  

Salt marsh  Juvenile  0.1 (A) 5 (A) 2 100  Morris et al., 
2015  
 

         10 (A)     

         15 (A)     

         20 (A)     

        5 (A) 5 (A)     

         10 (A)     

         15 (A)     

         20 (A)     

        10 (A) 5 (A)     

         10 (A)     

         15 (A)     

         20 (A)     
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Palaemonetes 
varians 

0-10 NE Atl Temperate Intertidal, 
Subtidal 

Salt marsh  Adult 
 

0.1-30 (I) 5 (A) 5 100***  Oliphant et 
al., 2011  

         10 (A)     

         20 (A)  73.3***   

         30 (A)  56.7***   

        0.1 (A) 5 (A) 1.5 -   

         10 (A) 1    

         20 (A) 0.75    

         30 (A) 0.5    

        5 (A) 5 (A) 1.5    

         10 (A) 1    

         20 (A) 0.75    

         30 (A) 0.5    

        10 (A) 5 (A) 1.5    

         10 (A) 1    

         20 (A) 0.75    
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

         30 (A) 0.5    

        15 (A) 5 (A) 1.5    

         10 (A) 1    

         20 (A) 0.75    

         30 (A) 0.5    

        20 (A) 5 (A) 1.5    

         10 (A) 1    

         20 (A) 0.75    

         30 (A) 0.5    

        25 (A) 5 (A) 1.5    

         10 (A) 1    

         20 (A) 0.75    

         30 (A) 0.5    

        30 (A) 5 (A) 1.5    

         10 (A) 1    
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

         20 (A) 0.75    

         30 (A) 0.5    

Palaemonetes 
varians 

0-10 NE Atl Temperate Intertidal, 
Subtidal 

  Adult 
 

0.1 (A) 
 

4 (A) 1.3 100  Smith et al., 
2013  

         8 (A) 
 

1    

         16 (A) 
 

0.83    

         21 (A) 0.67 
 

   

         25 (A) 0.5 
 

   

Parathemisto sp. 0 NW Atl Temperate-
cold 

Intertidal   Larvae 65.5 (A) 10 (A) 1 0  George and 
Marum, 1974  

Pontella sp.        34.5 (A) 
 

     

Sapphirina 
ovatolanceolata 

       41.4 (A)   40   

Vibilia sp.        38.6 (A) 
 

  0   

Parathemisto sp.        65.5 (A) 
 

     

        6.1 (A)   100 
 

  

Deep-sea species 
Acanthephyra 
eximia 

200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998  

Abyssorchomene 
abyssorum 

4050 Trop Ind  Abyssal    Adult 0.1 (A) 1.8 (A) 0 0  Treude et al., 
2002  

 
 

4420             

Abyssorchomene 
distincta 

     21     100   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Agononida incerta 300 Trop W Pac  Bathyal  31 Adult 0.1 (A) 11 (A) 744   Konishi and 
Saito, 2000  

       Larvae       

Alvinocaris sp. 1157 NW Pac  Bathyal  63 Adult 11.5-0.1 
(I) 

4.5 (A) 
 

1512 100  Koyama et 
al., 2005b  

      30  0.1 (A)  720    

      74 Larvae   1200 80   

          1776 0   

Amphipod sp. 1 
(unknown species) 

1100 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present Study 

Amphipod sp. 2 
(unknown species) 

1100 NW Atl  Bathyal  60-730 Adult 0.1 (A) 1-8 (F)  100  Present study 

Amphipod spp. 5900 NE Pac  Abyssal   Adult 60.1-0.1-
60.1 (I) 

2 (A) 2.9 100  Yayanos, 
1981  

Austinograea 
yunohana 

450 NW Pac  Bathyal Hydrothermal 
vent 

365 Adult 0.1 (A) 10 (A) 8760 81.1  Miyake et al., 
2007  

         4 (A)  28.6   

         12 (A)  0 Unhatched 100  

         18.5 (A)  100 Hatched 100  

Aristeus antennatus 200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998  

Ashinkailepas 
seepiophilia 

1300 NW Pac  Bathyal Hydrothermal 
vent 

 Adult 0.1 (A) 4 (A)  100  Miyake et al., 
2007  

Barnacles 
(unknown species) 

1400 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present Study 



182	

 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Bythograea 
thermydron 

2500 NE Pac  Abyssal Hydrothermal 
vent 

0.04 Adult 28-62-28 
(I) 

5 (A) 160 0  Airiess and 
Childress, 
1994  

      1   10 (A)     

      2  28-62-28 
(I) 

20 (A)  100   

Bythograea 
thermydron 

2500 Trop E Pac  Abyssal Hydrothermal 
vent 

5 Adult 0.1 (A) 2 (A) 120 0  Mickel and 
Childress, 
1982a  

         7 (A) 
 

    

         10 (A) 
 

    

         12 (A) 
 

    

      21  12.2 (A) 2 (A) 
 

504 100   

      548  24.1 (A) 5 (A) 
 

13152    

Bythograea 
thermydron 

2500 Trop E Pac  Abyssal Hydrothermal 
vent 

0.5 Adult 0.1 (A) 2 (A) 3-12 100  Mickel and 
Childress, 
1982b  

         8 (A)     

         12 (A)     

        13.8 (A) 2 (A)     

         8 (A)     

        27.6 (A) 2 (A)     

         8 (A)     
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

         12 (A)     

         18 (A)     

         25 (A)     

Bythograea 
thermydron 

2500 NE Pac  Abyssal Hydrothermal 
vent 

3.8 Adult 0.1 (A) 13 (A) 15 91  Martinez et 
al. 2001  

          24 65   

Bythograea 
thermydron 

2500 NE Pac  Abyssal Hydrothermal 
vent 

2 Adult 25 (A) 8 (A) 48   Toullec et al., 
2007  

        0.1 (A)      

          27    

          15    

          3    

          0    

Bythograea 
thermydron 

2500-2600 NE Pac  Abyssal Hydrothermal 
vent 

201 Larvae 
(Megalopae) 

0.1 (A)  4824 0 Stage 4 
Juvenile; 1.4; 
(33) 

Epifanio et 
al., 1999  

      200 Juvenile   4800  Third Moult; 
0.07; (199) 

 

Cancer 
macropthalmus 

500 Trop W Pac   Reef 30-120 Adult 0.1 (A) 5 (A) 720, 2880   Wilson et al., 
2013  

Chaceon affinis 820-950 NE Atl  Bathyal  12 Adult 0.1 (A) 10 (A) 288   Mestre et al., 
2015  
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

         10-35 (I) 5 0   

        10 (A)  7    

Chaceon 
quinquedens 

860 GOM  Bathyal  730 Adult 0.1 (A) 6 (A) 17520 100  Biesiot and 
Perry, 1995  

      270 
 

Larvae   6480 -   

 1043     730 
 

Adult   17520 100   

      270 
 

Larvae   6480 -   

Chorocaris chacei 1700 NE Atl  Bathyal Hydrothermal 
vent 

1 Adult 17 (A) 10 (A) 24 100****
***** 

 Shillito et al., 
2006  

Candacia ethiopica 800-1000 Cari  Bathyal   Larvae 27.5 (A)  1 0  George and 
Marum, 1974  

Chionoecetes 
fenneri 

300-700 GOM  Bathyal  547.5 Adult 0.1 (A) 5 (A) 13140 95  Henry et al., 
1990  

Chionoecetes 
tanneri 

950-1050 NE Pac  Bathyal Canyon 21 Adult 0.1 (A) 3.5 (A) 504 100  Pane and 
Barry, 2007  

Chionoecetes 
quinquedens 

300-700 GOM  Bathyal  180 Adult 0.1 (A) 5 (A) 4320 95  Henry et al., 
1990  

Chirostylidae 500 Trop W Pac  Bathyal Reef 30-120 Adult 0.1 (A) 5 (A) 720, 2880   Wilson et al., 
2013  

Colossendeis sp.  1350-1450 NE Atl  Bathyal  60-730 Adult 0.1 (A) 1-8 (F)  50  Present Study 

Eurythenes grillus 4000-4325 NE Atl  Abyssal   Adult 0.1 (A) 5 (A) 6 0  Macdonald 
and Gilchrist, 
1980  

Eurythenes gryllus 3950 Trop Ind  Abyssal  9 Adult 0.1 (A) 1.8 (A) 0 100  Treude et al., 
2002  

      6        
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

           0   

Euphausia sp. 800-1000 Cari  Bathyal   Larvae 41.4 (A)  1 0  George and 
Marum, 1974  

Gandalfus 
yunohana 

445 NW Pac  Bathyal Hydrothermal 
vent 

66 Adult 0.1 (A)  1584   Hamasaki et 
al., 2010  

      134   15 (A) 3216    

      60 Larvae  
(Zoea I) 

 17.9 (A) 300  Zoea I; 100; 
(12.5) 

 

         21.3 (A) 376.8  Zoea II; 10; 
(15.7) 

 

         24.2 (A) 816  Zoea V; 3.3; 
(34) 

 

         21 (A) 804  Zoea III; 6.7; 
(33.5) 

 

         24 (A) 1440  Zoea VI 
Metaphorsized; 
3.3; (60) 

 

         27 (A) 1152  Zoea VI 
Metaphorsized 
10 (48) 

 

         30 (A) 948  Zoea VI 
Metaphorsized 
3.3 (39.5) 

 

Geryon longipes 200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998  

Gnathophausia 
gracilis 

200 Trop E Pac  Bathyal  9.2 Adult 0.1-10.4 
(I) 

4.5 (A) 220 100 
 

 Quetin and 
Childress, 
1980  

Gnathophausia 
ingens 

     10.4  0.1-7.8-
0.1 (I) 

5.5 (A) 250    

      24  7.8 (A)  576 60   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Gnathophausia 
ingens 

400-900 NE Pac  Bathyal  45 Adult 0.1 (A) 5.5 (A) 1080 100  Mickel and 
Childress, 
1982c  

          4-6    

        7.6 (A)      

        15.2 (A)      

        22.8 (A)      

        33.4 (A)      

      30  7.8 (A)  720    

        0.1 (A)  4-6    

        7.6 (A)      

        15.2 (A)      

        22.8 (A)   66.7   

        33.4 (A)   50   

Gnathophausia 
ingens 

400-900 NE Pac  Bathyal  183 Adult 0.1 (A)  18300 100  Childress, 
personal 
observation 

Gnathophausia 
ingens 

200 Trop E Pac  Bathyal  365 Adult 0.1 (A) 6.5 (A) 8760   Childress, 
1971  
 

Goneplax 
rhomboides 

200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998  
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Gooseneck barnacle  1200 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present Study 

Hermit crab sp. 1 
(unknown species) 

950     60-730    1440, 17520    

Heterocarpus 
ensifer 

500 Trop W Pac  Bathyal Reef 30-120 Adult 0.1 (A) 5 (A) 720, 2880   Wilson et al., 
2013  

Heterocarpus 
laevigatus 

500             

Homeryon asper 1000             

Homola barbata 200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998  

Isopoda sp. 
 

1150 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present Study 

Liocarcinus 
depurator 

200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998  

Lithodes longispina 1000 Trop W Pac  Bathyal Reef 30-120 Adult 0.1 (A) 5 (A) 720, 2880   Wilson et al., 
2013  

Lycaea sp. 800-1000 Cari  Bathyal   Larvae 41.4 (A)  1 0  George and 
Marum, 1974  

Macropipus 
tuberculatus 

200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998  

Mirocaris fortunata 1700 NE Atl  Bathyal Hydrothermal 
vent 

 Larvae (First 
zoeal stage) 

0.1 (A) 10 (A) 20 100  Tyler and 
Dixon, 2000  

        15.2 (A)      

        25.3 (A)      

        30.4 (A)   0   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        0.1 (A) 20 (A)     

        15.2 (A)   100   

        25.3 (A)      

        30.4 (A)   33.3   

Mirocaris fortunata 1700 NE Atl  Bathyal Hydrothermal 
vent 

343 Adult 0.1 (A) 7 (A) 1920 
 

37  Shillito et al., 
2015  

Mirocaris fortunata 1700 NE Atl  Bathyal Hydrothermal 
vent 

91 Adult 0.1 (A) 24 (A) 2184 100  Matabos et 
al., 2015  

        18  (A) 10-25 (A)     

Mirocaris fortunate 1617 NE Atl  Bathyal Hydrothermal 
vent 

450 Adult 0.1 (A) 8 (A) 10800   Smith et al., 
2013  

        0.1 (A) 4 (A) 
 

1.33 100   

         8 (A) 1    

         16 (A) 0.83    

         21 (A) 0.67 
 

   

         25 (A) 0.5 
 

   

         10-25 (A) 5.5 
 

   

Mirocaris fortunata 850 NE Atl  Bathyal Hydrothermal 
vent 

9 Adult 0.1 (A) 21 (A) 216 70*****
**** 

 Shillito et al., 
2006  

 
 

        16 (A)     

         10 (A) 
 

    

         25 (A) 
 

144 80*****
**** 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

 1700        10 (A) 
 

1 100****
***** 

  

        17 (A) 
 

 7    

        0.1 (A) 
X 

 24 86*****
**** 

  

        17 (A) 
 

 20.75 65*****
**** 

  

 2300   Abyssal    0.1 (A) 
 

 36 50*****
**** 

  

Monodaeus couchi 200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100****
****** 

 Company and 
Sarda, 1998  

Munida intermedia 200-1250             
Munida sp. 1 250 Trop W Pac  Bathyal Reef 30-120 Adult 0.1 (A) 5 (A) 720, 2880   Wilson et al., 

2013  
 

Munida sp. 2 
 

500             

Munida sp. 3 
 

1000             

Munida striola 300 Trop W Pac  Bathyal  31 Adult 0.1 (A) 11 (A) 744   Konishi and 
Saito, 2000  

Munida striola      - Larvae 
 

  -    

Munida tenuimana 200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998   

Neocalanus 
cristatus 

1000-1500 NW Pac  Bathyal   Larvae 0.1 (A) 4 (A) 24 51  Yoshiki et al., 
2011  

        1 (A)   37   

        5.1 (A)   69   

        10 (A)   49   

Neocalanus 
flemingeri 

1000-1500 NW Pac  Bathyal   Larvae 0.1 (A)  24 50   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        1 (A)   37   

        5.1 (A)   69   

        10 (A)   49   

Neocalanus 
plumchrus 

1000-1500 NW Pac  Bathyal   Larvae 0.1 (A) 2 (A) 
 

24 79   

        1 (A)   79   

        5.1 (A)   65   

        10 (A)   78   

Neoverruca sp 1300 NW Pac  Bathyal Hydrothermal 
vents 

  0.1 (A) 4 (A)  100  Miyake et al., 
2007   
 

Neoverruca sp. 1340 NW Pac  Bathyal Hydrothermal 
vents 

183 Larvae  
(N1) 

0.1 (A) 4 (A) 72 100  Watanabe et 
al., 2004    

       Larvae  
(N2) 

  384 100   

       Larvae  
(N3) 

  336    

       Larvae  
(N4) 

  384 97   

       Larvae  
(N5) 

  648    

       Larvae  
(N6) 

  2040 56   

Nephrops 
norvegicus 

200-1250 NW Pac  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Nymphon hirtipes  700-1450 NW Atl  Bathyal  >730 Adult 0.1 (A) 5-8 (F)  100 Juvenile; 100; 
390 

Mercier et al., 
2015  

Opaepele spp. 1400 NW Pac  Bathyal Hydrothermal 
vent 

365 Adult 0.1 (A) 12 (A) 365 100  Miyake et al., 
2007   

 1500 
 

            

      365 Larvae  0.1 (A) 25 (A) 140 81*****
**** 

  

       Adult 8.5 (A) 10-40 (I) 20 0******
*** 

  

      1097  0.1 (A) 
 

7 (A) 1920 27   

      731     6   

Paguridae 250 Trop W Pac  Bathyal Reef 30-120 Adult 0.1 (A) 10 (A) 720, 2880   Wilson et al., 
2013   

Palinurus 
mauritanicus 

200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998   

Paralicella aff. 
alberti 

4050 Trop Ind  Abyssal   Adult 0.1 (A) 1.8 (A) 0 0  Treude et al., 
2002   

Paralicella 
caperesca 
 

1908   Bathyal Seamount 26    624 
 

100   

Paralicella 
caparesca 

4000-4325 NE Atl  Abyssal   Adult 0.1 (A) 5 (A) 6 0  Macdonald 
and Gilchrist, 
1980  

Paralicella spp. 4050 Trop Ind  Abyssal   Adult 0.1 (A) 1.8 (A) 0 0  Treude et al., 
2002  

Paralicella spp. 4420             

Paramola japonica 250 Trop W Pac  Bathyal Reef 30-120 Adult 0.1 (A) 10 (A) 720, 2880   Wilson et al., 
2013  
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Parapenaeus 
longirostris 

200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998   

Plesionika 
acanthonotus 

             

Plesionika edwardsi              

Plesionka giglolii              

Plesionka 
heterocarpus 

             

Plesionka martia              

Plesionika sp. 500 Trop W Pac  Bathyal Reef 30-120 Adult 0.1 (A) 5 (A) 720, 2880   Wilson et al., 
2013  

Polycheles typhlops 200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998   

Polycheles typhlops 652-658 Med  Bathyal  7 Adult 0.1 (A)  168 0  Guerao and 
Abello, 1996   

      5 Larvae   120    

Pontophilus 
norvegicus 

200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998   

Pontella scicurifer 800-1000 Cari  Bathyal   Larvae 27.5 (A)  1 0  George and 
Marum, 1974  

Processa 
canaliculata 

200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998   

Rimicaris exoculata 2300 NE Atl  Abyssal Hydrothermal 
vent 

0.4 Adult 23 (A) 10 (A) 10 92  Cottin et al., 
2010  

         10-30 (I)  88   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Rimicaris exoculata 2300 NE Atl  Abyssal Hydrothermal 
vent 

 Adult 23 (A) 15 (A) 4   Ravaux et al., 
2003  

          24 100   

      2    48    

         15-45 (I) 8 0   

          24 100   

Rimicaris exoculata 2320 NE Atl  Abyssal Hydrothermal 
vent 

 Adult 23 (A) 15 (A) 4   Ponsard et al., 
2013  

          10    

          6    

          1 
 

   

Rimicaris exoculata 3650 NE Atl  Abyssal Hydrothermal 
vent 

3 Adult 30 (A)  8 100  Durand et al., 
2010  

          22    

          72    

Scyllarus aurora 250 Trop W Pac  Bathyal Reef 30-120 Adult 0.1 (A) 10 (A) 720, 2880   Wilson et al., 
2013   

Segonzacia 
mesatlantica 

1700 NE Atl  Bathyal Hydrothermal 
vent 

30 Adult 0.1 (A) 7 (A) 720 
 

5.3  Shillito et al., 
2015  

           37.5   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Segonzacia 
mesatlantica 

1700 NE Atl  Bathyal Hydrothermal 
vent 

30 Adult 0.1 (A) 24 (A) 2184 0  Matabos et 
al., 2015  

      1095  18  (A) 10-25 (A) 26280    

Shinkaia crosnieri 1001 NW Pac  Bathyal Hydrothermal 
vent 

0.05 Adult 0.1 (A) 5 (A) 1.17 100  Watsuji et al., 
2014  

        12 (A)      

Shrimp sp. 1 
(unknown species) 

650-950 NW Atl  Bathyal  60-730 Adult 0.1 (A) 1-8 (F)  82  Present Study 

Shrimp sp. 2 
(unknown species) 

500-700 NW Atl  Bathyal  60-730 Adult 0.1 (A) 1-8 (F)  50  Present Study 

Shrimp sp. 3 
(unknown species) 

950-1250 NW Atl  Bathyal  60-730 Adult 0.1 (A) 1-8 (F)  50  Present Study 

Shrimp sp. 4 
(unknown species) 

800-1400 NW Atl  Bathyal  60-730 Adult 0.1 (A) 1-8 (F)  50  Present Study 

Solenorcera 
membranacea 

200-1250 Med  Bathyal  1.5 Adult 0.1 (A) 
 

13 (A) 12-36 100  Company and 
Sarda, 1998   

Shinkaia crosnieri 1400 NW Pac  Bathyal Hydrothermal 
vent 

365 Adult 0.1 (A) 4 (A) 365 100  Miyake et al., 
2007  

 1500 
 

            

 1400      Larvae 
 

      

 1500 
 

            

Stephonyx 
biscayensis 

1528, 1765 NE Atl  Bathyal Canyon 60 Adult 0.1 (A) 1 (A) 0.17 100  Brown and 
Thatje, 2011  

        5 (A)      

        10 (A)      
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        15 (A)      

        20 (A)      

        25 (A)      

        30 (A)      

        0.1 (A) 3 (A)     

        5 (A)      

        10 (A)      

        15 (A)      

        20 (A)      

        25 (A)      

        30 (A)      

        0.1 (A) 5.5 (A)     

        5 (A)      

        10 (A)      

        15 (A)      
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        20 (A)      

        25 (A)      

        30 (A)      

        0.1 (A) 10 (A)     

        5 (A)      

        10 (A)      

        15 (A)    
 

  

        20 (A)    
 

  

        25 (A)    
 

 
 

 

        30 (A)    
 

  

Stereomastis 
sculpta 

1000 Trop W Pac  Bathyal Reef 72 Adult 0.1 (A)  1728   Drazen, pers. 
comm. 

Undinula vulgaris 800-1000 Cari  Bathyal   Larvae 20.7 (A)  1 50  George and 
Marum, 1974  

Shallow-water and deep-sea species 
Gaussia princeps 0-1000 NE Pac Temperate Intertidal, 

Subtidal, 
Bathyal 

  Adult 0.1-18.3-
0.1 (I) 

10 (A) 0.67 100  Childress et 
al., 1976  

         7 (A) 
 

    

         3.5 (A) 
 

    

Neocalanus 
cristatus 

0-1300 NW Pac Temperate-
cold 

Intertidal, 
Subtidal, 
Bathyal 

 115 Adult 0.1 (A) 2 (A) 2760 100  Saito and 
Tsuda, 2000  
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

       Larvae (Egg) 
 

  - -   

         4 (A) 
 

105.6 81 CI (53)  

         6 (A) 
 

  CI (42)  

Neocalanus 
plumchrus    

0-1300 NW Pac Temperate-
cold 

Intertidal, 
Subtidal, 
Bathyal 

 6-35 Adult 0.1 (A) 2 (A)   CI (35)  

      60 Larvae  
(Egg) 

  100    

         4 (A) 105.6 89 NIII (60) 
 

 

Neocalanus 
yemingeri 

0-1300 NW Pac Temperate-
cold 

Intertidal, 
Subtidal, 
Bathyal 

 6-35 Adult  2 (A)     

      60 Larvae  
(Egg) 

  100.8 93 
 

  

         4 (A) 
 

    

Brachiopoda 
Deep-sea species 

Terebratulina sp. 1200-1300 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present Study 
 

Chaetognatha 
Shallow-water and deep-sea species 

Eukrohnia fowleri 0-1000 NE Pac Temperate Intertidal, 
Subtidal, 
Bathyal 

 0.54 Larvae 0.1 (A) 5 (A) 8-13   Childress and 
Thuesen, 
1993  

Eukrohnia fowleri        10.1 (A)      

Pseudosagitta 
maxima 

       0.1 (A)      

Pseudosagitta 
maxima 

       10.1 (A)      
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Solidosagitta 
zetesios 

       0.1 (A)      

Solidosagitta 
zetesios 

       10.1 (A)      

Chordata 
Shallow-water species 

Salpa fusiformis 0 NW Atl Temperate-
cold 

Intertidal   Larvae 48.3 (A) 10 (A) 1 0  George and 
Marum, 1974  

Urophycis sp.        27.6 (A)      

Deep-sea species 
Conger myriaster 1162    Lab culture 5 Adult 0.1 (A) 25 (A) 0.33 

 
100  Koyama et 

al., 2005a  
        20 (A)      

        40 (A)      

        70 (A)   95   

        80 (A)   70   

        100 (A)   55   

        130 (A)   0   

Eptatretus deani 1200 Trop W Pac  Bathyal Reef 365 Adult 0.1 (A)  8760   Drazen, pers. 
comm. 

Eptatretus stouti 
 

             

Megalodicopia 
hians 

280-329 NE Pac  Bathyal Canyon 220 Adult 0.1 (A) 4.4 (A) 5280 0  Havenhand et 
al., 2006  

      180    4320 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

      750    18000 
 

   

      210 Larvae   5040    

Simenchelys 
parasiticus 

1162    Lab culture 5 Adult 0.1 (A)  120 100  Koyama et 
al., 2005a  

        40 (A) 15 (A) 0.33 
 

   

        100 (A)      

        150 (A)      

        200 (A)   0   

Symphurus sp. 450 NW Pac  Bathyal Hydrothermal 
vent 

1 Larvae 0.1 (A) 26 (A) 7 100 Hatched; 100; 
(1) 

Miyake et al., 
2007  

      3   20 (A)   Hatched; 100; 
(3) 

 

      14   12 (A)   Hatched; 100; 
(14) 

 

Symphurus sp. 450 NW Pac  Bathyal Hydrothermal 
vent 

365 Adult 0.1 (A) 4 (A) 8760   Miyake, pers. 
comm. 

Cnidaria 
Shallow-water species 

Aegina citrea 
 

0 NE Pac Temperate-
cold 

Intertidal  0.54 Larvae 0.1 (A) 5 (A) 8-13 
 

  Childress and 
Thuesen, 
1993  
 

Crossota 
rufobrunnea 
 

             

Pelagia cyanella  
 

0 Cari Tropical Intertidal   Larvae 
 

62 (A) 10 (A) 1 25  George and 
Marum, 1974  
 



200	

 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Porites astreoides 1-4 Cari Tropical Intertidal   Larvae 
(Planulae) 
 

0.1-0.5-
0.1 (I) 

26 (A) 1.09 100  Stake and 
Sammarco, 
2003  

Deep-water species 
Aegina citrea 
 

1000 NE Pac  Bathyal  0.54 Larvae 
 
  

10.1 (A) 
 

5 (A) 8-13 
 

  Childress and 
Thuesen, 
1993  
 

Actinostola callosa 650-1350 NW Atl  Bathyal  60-730 Adult 0.1 (A) 1-8 (F)  40  Present Study 

Acanella arbuscula 700-1450   Bathyal  >730 Adult 0.1 (A) 1-8 (F)    Present study 

Allantactis 
parasitica 

725-1100 NW Atl  Bathyal  >730 Adult 0.1 (A) -1-8 (F) 
 

 50 Juvenile; 5; 630 
d 

Mercier and 
Hamel 2009  

Anthomastus ritteri  
 

300 
 

NE Pac  Bathyal Canyon 496 
 

Adult  0.1 (A) 6 (A) 11904 
 

  Cordes et al., 
2001  
 

  
 

    310    7440    

 450     496 
 

Larvae   11904 
 

   

      310    7440 
 

   

Anthoptilum 
grandiflorum 

650-1450 NW Atl  Bathyal  60-730 Adult 0.1 (A) 1-8 (F) 
 

 
 

100  Present Study 
 

Bolecera tuediae 750-1350 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  40   
Present study 

Crossota 
rufobrunnea 
 

1000 NE Pac  Bathyal  0.54 Larvae 
 
  

10.1 (A) 
 

5 (A) 8-13 
 

  Childress and 
Thuesen, 
1993  
 

Desmophyllum 
dianthus 

2100 NW Atl  Abyssal  60-730 Adult 0.1 (A) 1-8 (F)  100  Present Study 

Drifa sp. 360-1260 
 

NW Atl  Bathyal  >730 Adult 0.1 (A) 0-8 (F)  60 Planula larvae; 
100; unknown 

Sun et al., 
2009  

Duva florida 535-2500 NW Atl  Bathyal, 
Abssyal 

 >730 Adult 0.1 (A) 1-3 (F)  100 Juvenile; 100; 
100 

Sun et al., 
2011  
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Duva fructicosa 
(Gersemia) 
  

100-300 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-3 (F)  100 Juvenile; 100; 
60 

Sun et al., 
2011 

Drifa glomerata 350-1240 NW Atl  Bathyal  >730 Adult 0.1 (A) 0-9 (F)  70 Planula; 70; 
unknown 

Sun et al., 
2010  

Flabellum 
alabastrum 

600-1200 NW Atl  Bathyal  >730 Adult 0.1 (A) -1.5-8 (F)  95 
(growth 
of adults 
recorded 
for about 
900 d) 

 Hamel et al., 
2010  

 2500   Abyssal  >730 Adult 0.1 (A) -1.5-8 (F)     
 

Flabellum angulare 925-1430 NW Atl  Bathyal  >730 Adult 0.1 (A) 0-10 (F)  90 Planula; 90;  
unknown 

Mercier et al., 
2011  

Hormatia digitata 500-1100 NW Atl  Bathyal  >730 Adult 
 

0.1 (A)   100  Present Study 

Hormatia nodosa 500-950 NW Atl  Bathyal  60-730 Adult 
 

0.1 (A)   100  Present Study 

Keratoisis ornata 750-1500 NW Atl  Bathyal  1100 Adults 0.1 (A)   
 

40  Present Study 

Lophelia pertusa  
 

218 
 

Med   Bathyal 
 

 517 
 

Adult 0.1 (A) 12 (A) 12408 100  Orejas et al., 
2008  

Madrepora oculata 
 

214             

Paragorgia arborea 750-1250 NW Atl  Bathyal 
 

 60-730 Adult 0.1 (A)   100  Present Study 

Pennatula grandis 466-1405 NW Atl  Bathyal 
 

 60-730 Adult 0.1 (A)   
 

60  Hamel et al., 
2010  

Primnoa 
resedaeformis  

800-1400 NW Atl  Bathyal 
 

 60-730 Adult 0.1 (A)   
 

50  Present Study 

Stephanauge nexilis 700-1350 NW Atl  Bathyal 
 

 >730 
 

Adult 0.1 (A)   100  Present Study 

Umbellula sp. 1110-1505 
 

NW Atl  Bathyal 
 

 60-730 Adult 0.1 (A)   
 

80  Present Study 

Urticina sp. 1100-1400 NW Atl  Bathyal 
 

 >730 Adult 0.1 (A) -1-8 (F)  80 Juvenile; 80; 
960 

Mercier et al., 
2017 

Echinodermata 
Shallow-water species 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Apostichopus 
japonicus  
 

0-10 Trop W Pac Temperate 
warm 

Subtidal   Larvae  
(Early zygote) 
 

45 (A) 21 (A) 0.12 21  Ding et al., 
2007  
 

        50 (A)   7   

        55 (A)   6   

        60 (A)   1   

        65 (A)   0   

       Larvae  
(Late zygote) 
 

45 (A)   42   

        50 (A)   35   

        55 (A)   22   

        60 (A)   20   

        65 (A)   0   

Asterias rubens  
 

16 
 

NE Atl Temperate-
warm 

Subtidal   Larvae 
(Zygote) 
 

0.1 (A) 
 

15 (A) 48  Late Blastula; 
88; (2)  
 

Villalobos et 
al., 2006  

        5.1 (A) 
 

   Uncleaved; 15; 
(2) 
 

 

        10.1 (A) 
 

   Uncleaved; 20; 
(2) 
 

 

        15.2 (A)    Uncleaved; 23; 
(2) 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        20.3 (A) 
 

   Abnormal; 100; 
(2) 
 

 

       Larvae (Early 
bipinnaria)  
 

0.1 (A) 
 

  100   

        5.1 (A) 
 

  100   

        10.1 (A) 
 

  99   

        15.2 (A)   97   

        20.3 (A) 
 

  93   

       Larvae (Late 
bipinnaria)  
 

0.1 (A) 
 

  95  
 

  

        5.1 (A) 
 

  96   

        10.1 (A) 
 

  95   

        15.2 (A)   93   

        20.3 (A) 
 

  91   

Cucumaria 
frondosa 
 

10-15 NW Atl Temperate-
cold 

Subtidal   Adult 0.1 (A) 6 (A) 24 100  Ammendolia 
et al. in 
preparation 

 
 
 

       6.5 (A)      

 
 

       26 (A)      
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        0.1 (A)  72     

 
 

       25 (A)   83.3   

Echinus esculentus 
 

10-15 NE Atl Temperate-
cold 

Subtidal   Larvae 
(Embryo) 
 

0.1 (A) 7.5 (A) 24  Blastula; 62 ;(1) 
 

Young and 
Tyler, 1998  
 

        5.1 (A)    Blastula; 91; (1)  
 

 

        10.1 (A)    Blastula; 55; (1)  
 

 

        15.2 (A)    Abnormal; 100; 
(1) 
 

 

        20.3 (A)    Abnormal; 100; 
(1) 
 

 

 16       0.1 (A) 7 (A)   Blastula; 78; (1) 
 

 
 

        5.1 (A)    Blastula; 84; (1) 
 

 

        10.1 (A)    Blastula; 82; 
(1);  
 

 

        15.2 (A)    Blastula; 24; (1)  
 

 

        26.3 (A)    Abnormal; 100; 
(1) 
 

 

        0.1 (A) 11 (A)   Blastula; 81; (1)  
 

 

        5.1 (A)    Blastula; 92; (1) 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        10.1 (A)    Blastula; 90; (1) 
 

 

        15.2 (A)    Blastula; 67; (1) 
 

 

Leptasterias polaris 
 

10-15 NW Atl Temperate-
cold 

Subtidal   Adult 0 (A) 6(A) 24 100  
 

Ammendolia 
et al. in 
preparation 

 
 

       5 (A)      

 
 

       22 (A)   83.3   

 
 

       0 (A)  72 100   

 
 

       25 (A)      

 
 

       0 (A)  216 28.5   

 
 

       22 (A)   0   

Marthasterias 
glacialis  

10-15 NE Atl Temperate-
cold 

Subtidal   Larvae 
(Zygote) 
 

0.1 (A) 
 

   Early Gastrula; 
99; (2) 
 

Villalobos et 
al., 2006  

        5.1 (A) 
 

   Early Gastrula; 
97; (2) 
 

 

        10.1 (A) 
 

   Early Gastrula; 
3; (2)  
 

 

        15.2 (A)    Early Gastrula; 
31; (2) 
 

 

        20.3 (A) 
 

   Early Gastrula; 
2; (2) 

 

       Larvae 
(Bipinnaria)  
 

0.1 (A) 
 

  100   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        5.1 (A) 
 

  100   

        10.1 (A) 
 

  99   

        15.2 (A)   98   

        20.3 (A) 
 

  98   

Psammechinus 
miliaris 
 

0-10 NE Atl Temperate-
warm 

Subtidal   Larvae 
(Embryo) 
 

0.1 (A) 
 

5 (A) 12  2-cell stage; 6; 
(0.5)  
 

Aquino-
Souza et al., 
2008  
 

        5.1 (A) 
 

   Uncleaved; 89; 
(0.5)  
 

 

        10.1 (A) 
 

   Uncleaved; 100; 
(0.1) 
 

 

        15.2 (A)    Uncleaved; 70; 
(12) 
 

 

        20.3 (A) 
 

   Uncleaved; 47; 
(0.5)  
 

 

       Larvae 
(Gastrulae) 
 

0.1 (A) 
 

 24 69   

        5.1 (A) 
 

  93   

        10.1 (A) 
 

  98   

        15.2 (A)   96   

        20.3 (A) 
 

  100   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

       Larvae  
(Early Prism) 
 

0.1 (A) 
 

  96   

        5.1 (A) 
 

  89   

        10.1 (A) 
 

  90   

       Larvae (Late 
Prism) 
 

15.2 (A)   90   

        20.3 (A) 
 

  92   

Sterechinus 
neumayeri 
 

0-10 Antarctica Polar Subtidal  2 Larvae 
(Blastulae) 
 

0.1 (A) 2.5 (A) 48  Blastula; 92; (2)  
 

Tyler et al., 
2000  
 

        5.1 (A)    Blastula; 89; (2)  
 

 

        10.1 (A)    Blastula; 91; (2)  
 

 

        15.2 (A)    Blastula 83 ;(2);  
 

 

        20.3 (A)    Abnormal; 100; 
(2) 
 

 

       Larvae 
(Blastulae) 
 

0.1 (A)  24 95   

        5.1 (A)   90   

        10.1 (A)   96   

        15.2 (A)   88   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        20.3 (A)   92   

        25.3 (A)   91   

       Larvae  
(Prism) 
 

0.1 (A)   83   

        5.1 (A)   85   

        10.1 (A)   89   

        15.2 (A)   80   

        20.3 (A)   86   

        25.3 (A)   18   

       Larvae  
(4-arm plutei) 
 

0.1 (A)   78   

        5.1 (A)   70   

        10.1 (A)   49   

        15.2 (A)   13   

        20.3 (A)   7   

 
 

       25.3 (A)   4   

Strongylocentrotus 
droebachiensis 
 

10-15 NW Atl Temperate-
cold 

Subtidal   Adult 0.1 (A) 6 (A) 24 100  Ammendolia 
et al. in 
preparation 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

 
 

       6 (A)   100   

 
 

       24 (A)   50   

 
 

       0.1 (A)  72 100   

 
 

       25 (A)   83.3   

Deep-sea species 
Acanthocidaris 
hastigera  
 

250 Trop W Pac 
 

 Bathyal Reef 30-120 Adult 0.1 (A) 
 

10 (A) 
 

720-2880   Wilson et al., 
2013  
 

Aspidodiadima 
hawaiiensis  
 

500             

Aspidodiadima sp.  
 

250             

Ceramaster 
granularis 

650-1450 NW Atl  Bathyal  >730 Adult 0.1 (A)   100  Present Study 

Crinoid sp. 970-1100 NW Atl  Bathyal  
 

60-730 Adult 0.1 (A)   80  Present Study 

Ctenodiscus 
crispatus 

300-750 NW Atl  Bathyal  >730 Adult 0.1 (A)   5  Present Study 

Echinus affinis 
 

2000 
 

Antarctica    Bathyal   Larvae 
 

5.1 (A) 
 

6 (A) 12  Uncleaved; 100; 
(0.5) 
 

Young and 
Tyler, 1993  
 

        10.1 (A) 
 

   Uncleaved; 97; 
(0.5) 
 

 

        15.2 (A)    Uncleaved; 45; 
(0.5) 
 

 

        20.3 (A) 
 

   8 cell stage; 65; 
(0.5) 
 

 

       Larvae  
(Oocyte and 
spermatozoa) 

15.2 (A)  -  Uncleaved; 100 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

       Larvae  
(oocytes, 
spermatozoa) 

20.3 (A) 
 

 -  Uncleaved; 100 
 

 

Gorgonocephalus 
sp. 

800-1250 NW Atl  Bathyal  >730 Adult 0.1 (A)   50  Present Study 

Henricia lisa 600-1300 NW Atl  Bathyal  >730 Adult 0.1 (A) -1-8 (F)  95 Juvenile; 100; 
510 

Mercier and 
Hamel, 2008  

Henricia 
pauperrima  
 

500 Trop W Pac 
 

 Bathyal Reef 30-120 Adult 0.1 (A) 
 

10 (A) 
 

720, 2880    Wilson et al., 
2013  

Henricia robusta  
 

1000 
 

            

Hippasteria 
phrygiana 

450-1450 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  80 Gastrula; 85; 32 Present Study 

Histocidaris 
variabilis  
 

500 Trop W Pac 
 

 Bathyal Reef 30-120 Adult 0.1 (A) 
 

10 (A) 
 

720, 2880   Wilson et al., 
2013  

Hydroid colony  750-1350 NW Atl  Bathyal  >730 Adult 0.1 (A)   100  Present Study 
Leptycaster arcticus 950-1450     60-730 

 
Adult 0.1 (A)   25  Present Study 

Mediaster bairdi 700-1450     >730 Adult 0.1 (A)   35  Present Study 

Mediaster ornatus  
 

500 Trop W Pac 
 

 Bathyal Reef 30-120 Adult 0.1 (A) 
 

10 (A) 
 

720, 2880   Wilson et al., 
2013  

Mesothuria lactea 1100-1375 NW Atl  Bathyal  >730 Adult 0.1 (A)   40  Present Study 

Mesothuria sp.  
 

500 Trop W Pac 
 

 Bathyal Reef 30-120 Adult 0.1 (A) 
 

10 (A) 
 

720, 2880   Wilson et al., 
2013  

Micropyga sp. 
white  
 

250             

Micropyga 
tuberculata  
 

             

Ophiura sarsi 550-1500 NW Atl  Bathyal  >730 Adult 0.1 (A)   5  Present Study 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Phormosoma 
placenta 
 

730-802 
 

Cari  Bathyal  4 Adult 
 

0.1 (A) 9 (A) 96   Young and 
Cameron, 
1987  
 

Poraniomaorpha 
borealis 

900-1450 NW Atl  Bathyal  >730 Adult 0.1 (A)   100  Present Study 

Poraniomaorpha 
hispida 

950-1450 NW Atl  Bathyal  >730 Adult 0.1 (A)   100  Present Study 

Pteraster 
abyssorum 

1050 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100 Juvenile; 2; 60 Present Study 

Rathbunaster 
californicus  
 

380-650 
 

NE Pac  Bathyal Canyon 300 Adult 0.1 (A)  7200   Lauerman, 
1998  

Solaster sp. 1250-1300 NW Atl  Bathyal  >730 Adult 0.1 (A)  17520 80  Present Study 

Stereocidaris 
hawaiiensis  
 

500 Trop W Pac 
 

 Bathyal Reef 30-120 Adult 0.1 (A) 
 

10 (A) 
 

720-2880   Wilson et al., 
2013  

Stylocidaris 
calacantha  
 

250             

Strongylocentrotus 
pallidus 

350-1250 NW Atl  Bathyal  >730 Adult 0.1 (A)   100  Present Study 

Stylocidans lineata  
 

480-520 
 

Cari  Bathyal Reef 183 
 

Adult  15 (A) 4392   Young et al., 
1993  
 

Stylocidaris rufa  
 

250 Trop W Pac 
 

 Bathyal Reef 30-120 Adult 0.1 (A) 
 

10 (A) 
 

720, 2880   Wilson et al., 
2013  

Tamaria 
scleroderma  
 

250   Bathyal          

Tremaster mirabilis 700-1350 NW Atl  Bathyal  >730 Adult 0.1 (A)   100  Present Study 

Zoreaster fulgens  900-1250 NW Atl  Bathyal  >730 Adult 0.1 (A)   30  Present Study 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Euglenozoa 
Deep-sea species 

Neobodo designis 
 

    Lab culture 360 
 

 50 (A) 
 
 

2 (A) 
 
 

360 10  Morgan-
Smith et al., 
2013  
 

Foraminifera 
Deep-sea species 

Ammodiscus 
anguillae  
 

220 
 

   Lab culture 56 Adult 0.1 (A) 12 (A) 1344   Bornmalm et 
al., 1997  
 
 

Cibicidoides 
pachyderma  
 

             

Cibicides 
wuellerstorfi  
 

1280 NW Atl  Bathyal Mud volcano 120 Adult 12.7 (A) 0 (A) 2880   Wollenburg 
et al., 2015  
 

Epistominella 
exigua 
 

4300 
 

NE Atl  Abyssal  36 Adult 
 

45.6 (A) 2 (A) 864 100  Turley et al., 
1993  
 

Epistominella 
exigua 
 

 
 

        120 100   

Epistominella 
exigua 
 

4549 
 

         100   

Gyroidinoides 
orbicularis 
 

4300 
 

        864 100   

Gyroidinoides 
orbicularis 
 

 
 

        120 100   

Laticarinina 
pauperata 
 

775 NE Atl  Bathyal  645 
 

Adult 
 

0.1 (A) 5 (A) 15480 
 

33  Weinberg et 
al., 1990  
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Tinogullmia 
riemann 
 

4549 
 

NE Atl  Abyssal  36 Adult 45.6 (A) 2 (A) 120 100  Turley et al., 
1993  
 

Tinogullmia sp 
 

 
 

  
 

   
 

  
 

  
 

100  
 

 

Unidentified 
juvenile miliolid 
 

4300 
 

 
 

 Abyssal   Juvenile  
 

  
 

100  
 

 

Heterokontophyta 
Deep-sea species 

Cafeteria 
roenbergensis  
 

    Lab culture 8 Adult 50 (A) 2 (A) 192 1.6  Morgan-
Smith et al., 
2013  
 

Mollusca 
Shallow-water species 

Buccinum undatum  
 

0 NE Atl Polar Intertidal   Larvae 
(Veliger) 
 

0.1 (A) 3 (A) 4   Smith and 
Thatje, 2012  
 

        10.1 (A) 
 

     

        20.3 (A) 
 

     

        30.4 (A) 
 

     

        40.5 (A) 
 

     

        0.1(A) 
 

6 (A)     

        10.1 (A) 
 

     

        20.3 (A) 
 

     

        30.4 (A) 
 

     

        40.5 (A) 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

 0 NE Atl Polar Intertidal   Juvenile 
(Hatching) 
 

0.1 (A) 3 (A)     

        10.1 (A) 
 

     

        20.3 (A) 
 

     

        30.4 (A) 
 

     

 0 NE Atl Polar Intertidal    20.3 (A) 
 

6 (A)     

        30.4 (A) 
 

     

        40.5 (A) 
 

     

 5-10 NE Atl Temperate-
cold 

Subtidal    0.1 (A)      

        10.1 (A) 
 

     

        20.3 (A) 
 

     

        30.4 (A) 
 

     

        40.5 (A) 
 

     

        0.1 (A) 
 

10 (A)     

        10.1 (A) 
 

     

        20.3 (A) 
 

     

        30.4 (A) 
 

     

        40.5 (A) 
 

     

        0.1 (A) 
 

14 (A)     

        10.1 (A) 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        20.3 (A) 
 

     

        30.4 (A) 
 

     

        40.5 (A) 
 

     

        0.1 (A) 
 

18 (A)     

        10.1 (A) 
 

     

        20.3 (A) 
 

     

        30.4 (A) 
 

     

        40.5 (A) 
 

     

 5-10 NE Atl Temperate-
cold 

Subtidal    0.1 (A) 6 (A)     

        10.1 (A) 
 

     

 5-10 NE Atl Temperate-
cold 

Subtidal    0.1 (A) 6 (A)     

        10.1 (A) 
 

     

        20.3 (A) 
 

     

        30.4 (A) 
 

     

        40.5 (A) 
 

     

        0.1(A) 
 

10 (A)     

        10.1 (A) 
 

     

        20.3 (A) 
 

     

        30.4 (A) 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        40.5 (A) 
 

     

        0.1 (A) 
 

14 (A)     

        10.1 (A) 
 

     

        20.3 (A) 
 

     

        30.4 (A) 
 

     

        40.5 (A) 
 

     

        0.1 (A) 
 

18 (A)     

        10.1 (A) 
 

     

        20.3 (A) 
 

     

        30.4 (A) 
 

     

        40.5 (A) 
 

     

Buccinum undatum  10 NE Atl   Intertidal    Larvae (Egg) 0.1 (A) 10 (A) 480   Pediveliger; 
56.7; (20) 

Smith et al., 
2015  

        10.1 (A) 
  432  Pediveliger; 

11.7; (18)  

         20.3 (A) 
 6 (A) 432  Pediveliger; 5; 

(18)  

               30.4 (A) 
   336   Pediveliger; 

11.7; (18)   

Crepidula fornicata 0-10 NE Atl Temperate Subtidal   Larvae  
(Early veliger)  
 

0.1 (A) 10 (A) 24 100  Mestre et al., 
2013  

        5 (A) 
 

  100   

        10 (A) 
 

  99   

        15 (A) 
 

  94   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        20 (A)   90 
 

  

        25 (A)   20 
 

  

        30 (A)   25 
 

  

        35 (A)   26 
 

  

        40 (A)   25  
 

 

       Larvae  
(Late veliger)  
 

0.1 (A)   100 
 

  

        5 (A)   100   

        10 (A)   100 
 

  

        15 (A)   100 
 

  

        20 (A)   100 
 

  

     
 

   25 (A)   75 
 

  

        30 (A)   70 
 

  

        35 (A)   55 
 

  

        40 (A)   52 
 

  

Limacina sp.  
 

0 NW Atl Temperate-
cold 

Intertidal   Larvae 34.5 (A) 10 (A) 1 0  George and 
Marum, 1974  
 

Mytilus edulis 
 

10-15 NW Atl Temperate-
cold 

Subtidal   Adult 0.1 (A) 6 (A)  100  Ammendolia 
et al. in 
preparation  

 
 

       22 (A)   0   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Mytilus edulis 
 

0-10 NE Atl Temperate-
warm 

Subtidal   Larvae  
(Oocytes and 
spermatozoa) 

0.1 (A) 10 (A) 4  Fertilized; 46; 
(0.17) 
 

Mestre et al., 
2009  
 

        10.1 (A)    Fertilized; 82; 
(0.17) 
 

 

        20.3 (A)    Fertilized; 73; 
(0.17) 
 

 

        30.4  (A)    Fertilized; 78; 
(0.17) 
 

 

        40.5 (A)    Fertilized; 76; 
(0.17) 
 

 

        50.7 (A)    Fertilized; 52; 
(0.17) 
 

 

        0.1 (A)  24  Early blastula; 
77; (1)  
 

 

        10.1 (A)    Early blastula; 
9; (1)  
 

 

        20.3 (A)    Multi-cell; 13; 
(1) 
 

 

        30.4  (A)    Two-cell; 2; (1) 
 

 

       Larvae 
(Zygote) 
 

0.1 (A) 5 (A) 50  Multi-cell; 63; 
(2.1) 
 

 

        10.1 (A)    Multi-cell; 64; 
(2.1) 
 

 

        20.3 (A)    Fertilized; 44; 
(2.1) 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        30.4  (A)    Fertilized; 76; 
(2.1) 
 

 

        0.1 (A) 10 (A)   Early 
trochophore; 6; 
(2.1) 
 

 

        10.1 (A)    Gastrula; 59; 
(2.1)  
 

 

        20.3 (A)    Grastula; 1; 
(2.1) 
 

 

        30.4  (A)    Fertilized; 66; 
(2.1)  
 

 

Mytilus edulis 
diegensis 
 

0-15 NE Pac Temperate Subtidal   Adult 
 

10.4 (A)  4.4 100  Menzies and 
Wilson, 1961  
 

        15.9 (A)  5 100 
 

  

        22.3 (A)  5.8 100 
 

  

        35 (A)  8 0 
 

  

Mytilus 
galloprovincialis  

0-10 Med Temperate Subtidal  69 Adult 
 

0.1 (A) 10 (A) 144 100  Galgani et al., 
2005  

        20.4 (A)   100 
 

  

        30.8 (A)   78.3 
 

  

        46.5 (A)  144 0 
 

  

        0.1 (A)  1656 86.6 
 

  

        4 (A)   79.4 
 

  

        24 (A)   67.9 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

        43 (A)   67.2 
 

  

        58 (A)   80.6 
 

  

        13 (A)   61.1 
 

  

        15.5 (A)   38 
 

  

Nucella lapillus 
 

0 NW Atl Temperate Intertidal   Larvae 
(Excapsulated 
embryo) 
 

0.1 (A) 12 (A) 12 7******
**** 

 Pechenik et 
al., 1984  
 

        0.13 (A)   13*****
***** 

  

       Larvae  
(Inact egg 
capsules) 

0.1 (A)   0******
**** 

  

        0.13 (A) 
 

     

Deep-sea species 
Bathymodiolus 
azoricus  
 

840 NE Atl  Bathyal Hydrothermal 
vent 

21 Adult 
 

0.1 (A) 7.8 (A) 504   Dixon et al., 
2004 
 

Bathymodiolus 
azoricus  
 

840 
 

NE Atl  Bathyal Hydrothermal 
vent 

322 
 

Adult 
 

0.1 (A) 8 (A) 7728   Colaco et al., 
2011  
 

      365 
 

   8766 100   

Bathymodiolus 
azoricus  
 

840 
 

NE Atl  Bathyal Hydrothermal 
vent 

365 Adult 
 

0.1 (A) 8 (A) 24 100  Martins et al., 
2014  
 

Bathymodiolus 
azoricus  
 

840 
 

NE Atl  Bathyal Hydrothermal 
vent 

248 
 

Adult 
 

0.1 (A) 7 (A) 5952   Pruski et al., 
2003  

Bathymodiolus 
azoricus  
 

840 
 

NE Atl  Bathyal Hydrothermal 
vent 

240 Adult 
 

0.1 (A) 4 (A) 5760 
 

100  Pruski et al., 
2003 (Dando 
P., pers. 
comm.) 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Bathymodiolus 
azoricus  
 

850 
 

NE Atl  Bathyal Hydrothermal 
vent 

189 Adult 
 

0.1 (A) 7.5 (A) 0 100 
 

 Barros et al., 
2015  
 

          12 100 
 

  

          24 100 
 

  

          36 100 
 

  

          48 100 
 

  

          168 100 
 

  

          504 100 
 

  

Bathymodiolus 
azoricus  
 

850 
 

NE Atl  Bathyal Hydrothermal 
vent 

180 
 

Adult 
 

0.1 (A) 9.5 (A) 4320 
 

100  Bettencourt et 
al., 2008   
 

Bathymodiolus 
azoricus  
 

850 
 

NE Atl  Bathyal Hydrothermal 
vent 

97 
 

Adult 
 

2-4-6-8-
17 
(I) 

9 (A) 168 100  Bettencourt et 
al., 2010  
 

        0.1 (A)  2328    

Bathymodiolus 
azoricus  
 

850 
 

NE Atl  Bathyal Hydrothermal 
vent 

2 Adult 
 

0.1 (A) 9 (A) 48 100  Company et 
al., 2004  
 

Bathymodiolus 
azoricus  
 

850 
 

NE Atl  Bathyal Hydrothermal 
vent 

45 Adult 
 

0.1 (A) 8.5 (A) 1080 100 
 

 Kadar et al., 
2005  
 

Bathymodiolus 
azoricus  
 

850 NE Atl  Bathyal Hydrothermal 
vent 

365 Adult 
 

0.1 (A)  8760 
 

50 
 

 Kadar et al., 
2006   
 

Bathymodiolus 
azoricus  
 

860 
 

NE Atl  Bathyal Hydrothermal 
vent 

8 
 

Adult 
 

8.5 (A) 9 (A) 24 100  Serafilm et 
al., 2006  
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

          48    

          144    

Bathymodiolus 
azoricus  
 

1700 NE Atl  Bathyal Hydrothermal 
vent 

10 Adult 
 

0.1 (A) 6 (A) 240   Dixon et al., 
2004   
 

Bathymodiolus 
azoricus  
 

1700 NE Atl  Bathyal Hydrothermal 
vent 

 Adult 
 

0.1 (A) 9.5 (A) 12 100 
 

 Kadar et al., 
2008  
 
 

        2 (A)   100 
 

  

      120 
 

Adult 
 

0.1 (A) 7 (A) 2880 
 

100 
 

  

        8.5 (A)  240 100 
 

  

        17.5 (A)   100 
 

  

        23 (A)   100 
 

  

Bathymodiolus 
azoricus  
 

1700 NE Atl  
 

Bathyal Hydrothermal 
vent 

10 Adult 
 

0.1 (A) 7 (A) 240   Pruski et al., 
2003   

      240   4 (A) 72 0   

 
 

 
 

 
 

 
 

  240  
 

 
 

  0   

 
 

 
 

 
 

 
 

  - 
 

 
 

 
 

7 (A) 0 0   

Bathymodiolus 
childressi  
 

650 GOM  Bathyal Cold Seep 150 Adult 0.1 (A) 7.5  (A) 3600 100  Arellano and 
Young, 2009  
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

      183    4392 100   

      15 
 

   360    

      75 
 

   1800    

      60 
 

   1440    

      90 
 

   2160    

      14 
 

Larvae   336    

      365   - 8760   Fisher, pers. 
comm. 
Arellano and 
Young, 2009 

Bathymodiolus 
childressi  
 

750 GOM 
 

 Bathyal Cold Seep 3 Adult 
 

0.1 (A) 8 (A) 6 100  Berger and 
Young, 2006  
 

         12 (A) 
 

    

         16 (A) 
 

    

         20 (A) 
 

    

Bathynerita 
childressi 

540-650 GOM  Bathyal Cold Seep  Adult  7 (A)    Arellano et 
al., 2011  

       Larvae  7 (A) 24 64   

         15 (A)  37   

         20 (A)  30   

         25 (A)  17   
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

       Larvae 
(Blastulae) 

 7 (A)  58   

       Larvae 
(Trochophore) 

      

Bathynerita 
naticoide  
 

650 GOM  Bathyal Cold Seep  Adult 0.1 (A) 7 (A)    Arellano et 
al., 2014  
 

       Larvae  
 

 15 (A) 72 100   

         25 (A)  100   

         29 (A)  100   

         32 (A)  84   

     
 

    35 (A)  0   

Bathymodiolus 
thermophilus  
 

2400 Trop E Pac  
 

Abyssal Hydrothermal 
vent 

 Adult 
 

12.4 (A) 6 (A) 24 12.5  Page et al., 
1991  

Bathymodiolus 
thermophilus  
 

2585 NE Pac  Abyssal Hydrothermal 
vent 

 Adult 
 

26 (A) 
 

10 (A) 43 100  Boutet et al., 
2009  

 
 

        20 (A) 43 100   

Bivalve sp. 700-1350 NW Atl   Bathyal  >730 Adult 
 

0.1 (A) 1-8 (F)  50  Present Study 

Buccinum sp. 550-950 NW Atl   Bathyal  >730  0.1 (A) 1-8 (F)  100 
 

  

Buccinum 
scalariforme 

700-1450 NW Atl  Bathyal  >730 Adult 
 

0.1 (A) 5-6 (F)  90 Juvenile; 5 
(natural 
canibalism); 
900 

Montgomery 
et al., in press 

Buccinum cyaneum 650 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present study 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Neptunea despecta 700-1450 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present study 

Neptunea lyrata 700-1450 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present study 

Neptunea 
decemcostata 

700-1450 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present study 

Aporrhais 
occidentalis 

700-1450 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present study 

Colus pubescens 700-1450 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present study 

Colus stimpsoni 700-1450 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Present study 

Depressigyra 
globulus 
 

1800 NW Pac  Bathyal Hydrothermal 
vent 

 Adult 
 

17.93 (A) 10-60-10 (I) 
 

10   Lee, 2003  

Depressigyra 
globulus 
 

1800 NW Pac  
 

Bathyal Hydrothermal 
vent 

14 
 

Adult 0.1 (A) 4 (A) 336   Lee, pers. 
comm. 
 

Frigidoalvania 
brychia 
 

775 NE Atl  Bathyal Hydrothermal 
vent 

772 Adult 
 
 

0.1 (A) 5 (A) 18528 
 

50  Weinberg et 
al., 1990  
 

Ifremeria nautilei 
 

1700-2900 Trop W Pac  Bathyal, 
Abyssal 

Hydrothermal 
vent 

 Larvae  
 

0.1 (A) 23 (A) 360 
 

100 Shelled veliger; 
100; (15) 
 

Reynolds et 
al., 2010  

         4 (A)  
 

0   

Lepetodrilus 
fucensis  
 

1800 NW Pac  Bathyal Hydrothermal 
vent 

 Adult 
 

17.93 (A) 10-60-10 (I) 
 

10   Lee, 2003  
 

Lepetodrilus 
fucensis  
 

1800 NW Pac  Bathyal Hydrothermal 
vent 

14 
 

Adult 
 

0.1 (A) 4 (A) 336   Lee personal 
commications  
 

Nucula granulosa 
 

775 NE Atl  Bathyal  772 Adult 
 
 

0.1 (A) 5 (A) 18528 
 

45.9  Weinberg et 
al., 1990  
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Nucula subovata 
 

             

Thyasira ferruginea  
 

   
 

          

Thyasira minutus 
 

             

Thyasira obsoleta 
 

             

Thyasira minutus 
 

             

Tritonia sp. 1 975 NW Atl  Bathyal  60-730 Adult 
 
 

0.1 (A) 
 

1-8 (F)  100  Present Study 

Tritonia sp. 2 850 NW Atl  Bathyal  60-730 Adult 
 
 

0.1 (A) 
 

1-8 (F)  100  Present Study 

Porifera 
Deep-sea species 

Polymastia sp. 1 
 

1000 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Robertson et 
al. 
(submitted) 

Polymastia sp. 2 
 

1000 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Robertson et 
al. 
(submitted) 

Radiella 
hemisphaerica 
	

1000 NW Atl  Bathyal  >730 Adult 0.1 (A) 1-8 (F)  100  Robertson et 
al. 
(submitted) 

Sipuncula 
Deep-sea species 

Phascolosoma 
turnerae  
 

520 Cari  Bathyal   Adult 0.1 (A) 14 (A) 17520 
 

  Rice et al., 
2012  
 

       Larvae   1440 
 

   

Vestimentifera 
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 Species Collection 
depth (m) 

Geographic 
region 

Climate 
zone 

Depth range Habitat type Minimum 
survival 
time (d) 

Initial life 
history stage 
tested 

Pressure 
(MPa) 
and 
methods 
 

Temperature 
(°C) and 
methods 
 

Experimental 
duration (h) 

Survival 
rate (%) 

Max stage 
reached; % 
individuals 
reaching that 
stage; max age 
reached (d) 

Reference 

Deep-sea species 
Escarpia sp. 
 

600 GOM  Bathyal Cold seep 21 Larvae 
 

0.1 (A) 9 (A) 504 100  Young et al., 
1996  
 

        5 (A)   100   

        10 (A)   100   

Lamellibrachia sp.  
 

600 GOM  Bathyal Cold seep 21 Larvae 
 

0.1 (A) 9 (A) 504 100   

        5 (A)   100   

	
Footnotes	
 
Citation  Definition of survival 
Brooke and Young, 2009 *% Normal development 
Childress et al., 1984 **The maximum holding time for an individual specimen was 45 days 
Oliphant et al., 2011 ***Survival recorded 3 days after termination of experiment 
Seo et al., 2013 ****Survival was recorded 30 minutes after decompression experiment 
Daiki et al., 2009 *****Survival was recorded 24 hours after exposure 
Schlieper, 1972 ******Survival was recorded immediately after exposure to pressure 
Yoshiki et al., 2006 *******Hatching success (%) 
Yoshiki et al., 2008 ********Hatching success (%) 
Shillito et al., 2006 *********Survival was recored once 50% of tank mortalities occurred 
Pechenik et al., 1984 **********Survival was recorded 3 days after decompression 
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Table A2. Data used in FAMD to assess the association between phylum, geographic 
location and survival time (rank and duration) for adults from chemosynthetic environments. 

Phylum Geographic regions Survival time rank Survival time (d) 
Arthopoda NW Pac 3 365 

Arthopoda NW Pac 3 66 

Arthopoda NW Pac 3 134 

Arthopoda NE Atl 1 9 

Arthopoda NE Atl 1 6 

Arthopoda NE Atl 4 1097 

Arthopoda NE Atl 4 731 

Arthopoda NE Atl 3 343 

Arthopoda NE Atl 3 91 

Arthopoda NE Atl 3 450 

Arthopoda NE Atl 1 9 

Arthopoda NE Atl 1 9 

Arthopoda NE Atl 1 9 

Arthopoda NW Pac 4 1095 

Arthopoda NW Pac 3 365 

Arthopoda NW Pac 3 365 

Arthopoda NE Atl 2 30 

Arthopoda NW Pac 3 365 

Arthopoda NW Pac 3 365 

Mollusca NE Atl 2 21 

Mollusca NE Atl 3 365 

Mollusca NE Atl 3 365 

Mollusca NE Atl 3 248 

Mollusca NE Atl 3 240 

Mollusca NE Atl 2 10 

Mollusca NE Atl 3 189 

Mollusca NE Atl 3 189 

Mollusca NE Atl 3 189 

Mollusca NE Atl 3 189 

Mollusca NE Atl 3 189 

Mollusca NE Atl 3 189 

Mollusca NE Atl 3 180 

Mollusca NE Atl 3 97 

Mollusca NE Atl 3 365 

Mollusca NE Atl 3 120 

Mollusca NE Atl 3 120 

Mollusca GOM 3 150 

Mollusca GOM 3 183 

Mollusca GOM 2 15 

Mollusca GOM 3 75 
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Phylum Geographic regions Survival time rank Survival time (d) 
Mollusca GOM 2 60 

Mollusca GOM 3 90 

Mollusca GOM 3 365 
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Table A3.  Data used in FAMD to assess the association between phylum, geographic 
location and survival time (rank and duration) for adults from non-chemosynthetic 
environments. 

Phylum Geographic location Survival time rank Survival time (d) 
Arthopoda NW Atl 4 730 

Arthopoda NW Atl 4 730 

Arthopoda NW Atl 4 730 

Arthopoda Trop W Pac 3 120 

Arthopoda GOM 4 730 

Arthopoda GOM 4 730 

Arthopoda GOM 3 548 

Arthopoda GOM 3 548 

Arthopoda Trop W Pac 3 120 

Arthopoda NW Atl 4 730 

Arthopoda NE Pac 2 45 

Arthopoda NE Pac 3 183 

Arthopoda NW Atl 4 730 

Arthopoda NW Atl 4 730 

Arthopoda Trop W Pac 3 120 

Arthopoda Trop W Pac 3 120 

Arthopoda Trop W Pac 3 120 

Arthopoda NW Atl 4 730 

Arthopoda Trop W Pac 3 120 

Arthopoda Trop W Pac 3 120 

Arthopoda Trop W Pac 3 120 

Arthopoda Trop W Pac 3 120 

Arthopoda NW Atl 4 730 

Arthopoda Trop W Pac 3 120 

Arthopoda Trop W Pac 3 120 

Arthopoda Trop W Pac 3 120 

Arthopoda Med 1 7 

Arthopoda Trop W Pac 3 120 

Arthopoda NW Atl 4 730 

Arthopoda NW Atl 4 730 

Arthopoda NW Atl 4 730 

Arthopoda NW Atl 4 730 

Arthopoda NE Atl 3 60 

Arthopoda NE Atl 3 60 

Arthopoda Trop W Pac 3 72 

Chordata Trop W Pac 3 365 

Chordata Trop W Pac 3 365 

Chordata NE Pac 4 730 

Cnidaria NW Atl 4 730 
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Phylum Geographic location Survival time rank Survival time (d) 
Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NE Pac 3 496 

Cnidaria NE Pac 3 496 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria Med  3 517 

Cnidaria Med  3 517 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Cnidaria NW Atl 4 730 

Echinodermata Trop W Pac 3 120 

Echinodermata Trop W Pac 3 120 

Echinodermata Trop W Pac 3 120 

Echinodermata NW Atl 4 730 

Echinodermata NW Atl 4 730 

Echinodermata NW Atl 4 730 

Echinodermata NW Atl 4 730 

Echinodermata NW Atl 4 730 

Echinodermata Trop W Pac 3 120 

Echinodermata Trop W Pac 3 120 

Echinodermata NW Atl 4 730 

Echinodermata Trop W Pac 3 120 

Echinodermata NW Atl 4 730 

Echinodermata NW Atl 4 730 

Echinodermata NW Atl 4 730 

Echinodermata Trop W Pac 3 120 

Echinodermata NW Atl 4 730 

Echinodermata Trop W Pac 3 120 

Echinodermata Trop W Pac 3 120 
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Phylum Geographic location Survival time rank Survival time (d) 
Echinodermata Trop W Pac 3 120 

Echinodermata NW Atl 4 730 

Echinodermata NW Atl 4 730 

Echinodermata NW Atl 4 730 

Echinodermata NW Atl 4 730 

Echinodermata NE Pac 3 300 

Echinodermata NW Atl 4 730 

Echinodermata Trop W Pac 3 120 

Echinodermata Trop W Pac 3 120 

Echinodermata NW Atl 4 730 

Echinodermata Trop W Pac 3 120 

Echinodermata Trop W Pac 3 120 

Echinodermata NW Atl 4 730 

Echinodermata NW Atl 4 730 

Mollusca NW Atl 4 730 

Mollusca NW Atl 4 730 

Mollusca NW Atl 4 730 

Mollusca NE Atl 4 772 

Mollusca NW Atl 4 730 

Mollusca NW Atl 4 730 

Porifera NW Atl 4 730 

Porifera NW Atl 4 730 

Porifera NW Atl 4 730 

Porifera NW Atl 4 730 
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Table A4. Data used in FAMD to assess the association between phylum, geographic 
location, depth range and survival time (rank and duration) for adults from non-
chemosynthetic environments. 

Phylum Geographic regions Depth range Survival time rank Survival time (d) 
Arthopoda NW Atl Bathyal 4 730 

Arthopoda NW Atl Bathyal 4 730 

Arthopoda NW Atl Bathyal 4 730 

Arthopoda Trop W Pac Bathyal 3 120 

Arthopoda GOM Bathyal 4 730 

Arthopoda GOM Bathyal 4 730 

Arthopoda GOM Bathyal 3 548 

Arthopoda GOM Bathyal 3 548 

Arthopoda Trop W Pac Bathyal 3 120 

Arthopoda NW Atl Bathyal 4 730 

Arthopoda NE Pac Bathyal 2 730 

Arthopoda NE Pac Bathyal 3 730 

Arthopoda NW Atl Bathyal 4 120 

Arthopoda NW Atl Bathyal 4 120 

Arthopoda Trop W Pac Bathyal 3 120 

Arthopoda Trop W Pac Bathyal 3 730 

Arthopoda Trop W Pac Bathyal 3 120 

Arthopoda NW Atl Bathyal 4 120 

Arthopoda Trop W Pac Bathyal 3 120 

Arthopoda Trop W Pac Bathyal 3 120 

Arthopoda Trop W Pac Bathyal 3 730 

Arthopoda Trop W Pac Bathyal 3 120 

Arthopoda NW Atl Bathyal 4 120 

Arthopoda Trop W Pac Bathyal 3 120 

Arthopoda Trop W Pac Bathyal 3 7 

Arthopoda Trop W Pac Bathyal 3 120 

Arthopoda Med Bathyal 1 730 

Arthopoda Trop W Pac Bathyal 3 730 

Arthopoda NW Atl Bathyal 4 730 

Arthopoda NW Atl Bathyal 4 730 

Arthopoda NW Atl Bathyal 4 60 

Arthopoda NW Atl Bathyal 4 60 

Arthopoda NE Atl Bathyal 3 72 

Arthopoda NE Atl Bathyal 3 365 

Arthopoda Trop W Pac Bathyal 3 365 

Chordata Trop W Pac Bathyal 3 730 

Chordata Trop W Pac Bathyal 3 730 

Chordata NE Pac Bathyal 4 730 

Cnidaria NW Atl Bathyal 4 730 
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Phylum Geographic regions Depth range Survival time rank Survival time (d) 
Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Bathyal 4 496 

Cnidaria NW Atl Bathyal 4 496 

Cnidaria NE Pac Bathyal 3 730 

Cnidaria NE Pac Bathyal 3 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Abyssal 4 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Abyssal 4 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Abyssal 4 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Bathyal 4 517 

Cnidaria NW Atl Bathyal 4 517 

Cnidaria Med  Bathyal 3 730 

Cnidaria Med  Bathyal 3 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Bathyal 4 730 

Cnidaria NW Atl Bathyal 4 120 

Cnidaria NW Atl Bathyal 4 120 

Echinodermata Trop W Pac Bathyal 3 120 

Echinodermata Trop W Pac Bathyal 3 730 

Echinodermata Trop W Pac Bathyal 3 730 

Echinodermata NW Atl Bathyal 4 730 

Echinodermata NW Atl Bathyal 4 730 

Echinodermata NW Atl Bathyal 4 730 

Echinodermata NW Atl Bathyal 4 120 

Echinodermata NW Atl Bathyal 4 120 

Echinodermata Trop W Pac Bathyal 3 730 

Echinodermata Trop W Pac Bathyal 3 120 

Echinodermata NW Atl Bathyal 4 730 

Echinodermata Trop W Pac Bathyal 3 730 

Echinodermata NW Atl Bathyal 4 730 

Echinodermata NW Atl Bathyal 4 120 

Echinodermata NW Atl Bathyal 4 730 

Echinodermata Trop W Pac Bathyal 3 120 
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Phylum Geographic regions Depth range Survival time rank Survival time (d) 
Echinodermata NW Atl Bathyal 4 120 

Echinodermata Trop W Pac Bathyal 3 120 

Echinodermata Trop W Pac Bathyal 3 730 

Echinodermata Trop W Pac Bathyal 3 730 

Echinodermata NW Atl Bathyal 4 730 

Echinodermata NW Atl Bathyal 4 730 

Echinodermata NW Atl Bathyal 4 300 

Echinodermata NW Atl Bathyal 4 730 

Echinodermata NE Pac Bathyal 3 120 

Echinodermata NW Atl Bathyal 4 120 

Echinodermata Trop W Pac Bathyal 3 730 

Echinodermata Trop W Pac Bathyal 3 120 

Echinodermata NW Atl Bathyal 4 120 

Echinodermata Trop W Pac Bathyal 3 730 

Echinodermata Trop W Pac Bathyal 3 730 

Echinodermata NW Atl Bathyal 4 730 

Echinodermata NW Atl Bathyal 4 730 

Mollusca NW Atl Bathyal 4 730 

Mollusca NW Atl Bathyal 4 772 

Mollusca NW Atl Bathyal 4 730 

Mollusca NE Atl Bathyal 4 730 

Mollusca NW Atl Bathyal 4 730 

Mollusca NW Atl Bathyal 4 730 

Porifera NW Atl Bathyal 4 730 

Porifera NW Atl Bathyal 4 730 

Porifera NW Atl Bathyal 4 730 

Porifera NW Atl Bathyal 4 730 
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Table A5. Data used in FAMD to assess the association between phylum, pressure, 
experimental duration and percent survival (rank and percent) for adults from chemosynthetic 
environments. 

Phylum Pressure (MPa)  Experimental duration (h) Survival rank Survival (%) 
Annelida 0.1 4 1 0 
Annelida 25 0 10 100 
Annelida 26 20 4 36 
Annelida 26 6 10 100 
Annelida 26 18 10 100 
Annelida 26 48 10 100 
Annelida 26 9 10 100 
Annelida 26 8.5 8 70 
Annelida 26 8 9 84 
Annelida 26 12 10 100 
Annelida 0.1 6 10 100 
Annelida 0.1 18 10 100 
Annelida 26.3 6 10 100 
Annelida 26.3 18 10 100 
Annelida 26 43 10 100 
Annelida 0.1 3 1 0 
Annelida 27.4 1080 10 100 
Annelida 10 1080 10 100 
Annelida 23.1 72 10 100 
Annelida 23.1 120 6 50 
Annelida 12.2 24 10 100 
Annelida 12.2 72 10 100 
Annelida 12.2 120 10 100 

Arthopoda 0.1 8760 9 81.1 

Arthopoda 0.1 120 1 0 

Arthopoda 12.2 504 10 100 

Arthopoda 24.1 13152 10 100 

Arthopoda 0.1 15 10 91 

Arthopoda 0.1 24 7 65 

Arthopoda 0.1 24 10 100 

Arthopoda 0.1 216 8 70 

Arthopoda 0.1 144 9 80 

Arthopoda 18 26328 1 2.6 
Arthopoda 18 17544 1 2.4 
Arthopoda 18 8232 4 32.6 
Arthopoda 0.1 216 8 70 

Arthopoda 0.1 216 8 70 

Arthopoda 0.1 216 8 70 

Arthopoda 0.1 144 9 80 
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Phylum Pressure (MPa)  Experimental duration (h) Survival rank Survival (%) 
Arthopoda 0.1 1 10 100 

Arthopoda 17 7 10 100 

Arthopoda 0.1 24 9 86 

Arthopoda 17 20.75 7 65 

Arthopoda 0.1 36 6 50 

Arthopoda 23 10 10 92 

Arthopoda 23 24 10 100 

Arthopoda 23 48 10 100 

Arthopoda 30 8 10 100 

Arthopoda 30 22 10 100 

Arthopoda 30 72 10 100 

Arthopoda 18 17568 1 0 

Arthopoda 18 18264 1 5.3 

Arthopoda 18 9054 4 37.5 

Arthopoda 0.1 1.17 10 100 

Arthopoda 12 1.17 10 100 

Mollusca 0.1 8766 10 100 
Mollusca 0.1 24 10 100 
Mollusca 0.1 4320 10 100 

Mollusca 0.1 48 10 100 

Mollusca 0.1 1080 10 100 

Mollusca 0.1 8760 6 50 

Mollusca 8.5 24 10 100 

Mollusca 8.5 48 10 100 

Mollusca 8.5 144 10 100 

Mollusca 0.1 12 10 100 

Mollusca 2 12 10 100 

Mollusca 0.1 2880 10 100 

Mollusca 8.5 240 10 100 

Mollusca 17.5 240 10 100 

Mollusca 23 240 10 100 

Mollusca 12.4 24 2 12.5 

Mollusca 26 43 10 100 
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Table A6. Data used in FAMD to assess the association between phylum, geographic 
location, depth range and percent survival (rank and percent) for adults from chemosynthetic 
environments. 

Phylum Geographic region Depth range Survival time rank Survival time (d) 
Annelida NE Pac Abyssal 1 0 
Annelida NE Pac Abyssal 10 100 
Annelida NE Pac Abyssal 4 36 
Annelida NE Pac Abyssal 10 100 
Annelida NE Pac Abyssal 10 100 
Annelida NE Pac Abyssal 10 100 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  8 70 
Annelida NE Pac Abyssal  9 84 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  1 0 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  6 50 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  10 100 
Annelida NE Pac Abyssal  10 100 

Arthopoda NW Pac Bathyal 9 81.1 

Arthopoda Trop E Pac Abyssal 1 0 

Arthopoda Trop E Pac Abyssal 10 100 

Arthopoda Trop E Pac Abyssal 10 100 

Arthopoda NE Pac Abyssal 10 91 

Arthopoda NE Pac Abyssal 7 65 

Arthopoda NE Atl Bathyal 10 100 

Arthopoda NE Atl Bathyal 8 70 

Arthopoda NE Atl Bathyal 9 80 

Arthopoda NE Atl Bathyal 1 2.6 
Arthopoda NE Atl Bathyal 1 2.4 
Arthopoda NE Atl Bathyal 4 32.6 
Arthopoda NE Atl Bathyal 8 70 

Arthopoda NE Atl Bathyal 8 70 

Arthopoda NE Atl Bathyal 8 70 

Arthopoda NE Atl Bathyal 9 80 
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Phylum Geographic region Depth range Survival time rank Survival time (d) 
Arthopoda NE Atl Bathyal 10 100 

Arthopoda NE Atl Bathyal 10 100 

Arthopoda NE Atl Bathyal 9 86 

Arthopoda NE Atl Bathyal 7 65 

Arthopoda NE Atl Abyssal 6 50 

Arthopoda NE Atl Abyssal 10 92 

Arthopoda NE Atl Abyssal 10 100 

Arthopoda NE Atl Abyssal 10 100 

Arthopoda NE Atl Abyssal 10 100 

Arthopoda NE Atl Abyssal 10 100 

Arthopoda NE Atl Abyssal 10 100 

Arthopoda NE Atl Bathyal 1 0 

Arthopoda NE Atl Bathyal 1 5.3 

Arthopoda NE Atl Bathyal 4 37.5 

Arthopoda NW Pac  Bathyal 10 100 

Arthopoda NW Pac  Bathyal 10 100 

Mollusca NE Atl Bathyal 10 100 
Mollusca NE Atl Bathyal 10 100 
Mollusca NE Atl Bathyal 10 100 

Mollusca NE Atl Bathyal 10 100 

Mollusca NE Atl Bathyal 10 100 

Mollusca NE Atl Bathyal 6 50 

Mollusca NE Atl Bathyal 10 100 

Mollusca NE Atl Bathyal 10 100 

Mollusca NE Atl Bathyal 10 100 

Mollusca NE Atl Bathyal 10 100 

Mollusca NE Atl Bathyal 10 100 

Mollusca NE Atl Bathyal 10 100 

Mollusca NE Atl Bathyal 10 100 

Mollusca NE Atl Bathyal 10 100 

Mollusca NE Atl Bathyal 10 100 

Mollusca Trop E Pac Abyssal 2 12.5 

Mollusca NE Pac Abyssal 10 100 
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Table A7. Data used in FAMD to assess the association between phylum, depth, pressure, 
experimental duration and percent survival (rank and percent) for adults from non-
chemosynthetic environments. 

Phylum Deep or Shallow Pressure (MPa)  Experimental duration (h) Survival rank Survival (%) 
Arthopoda Shallow 23.3 1 6 50 

Arthopoda Shallow 0.1 8 10 100 

Arthopoda Shallow 1 8 10 100 

Arthopoda Shallow 3 8 10 100 

Arthopoda Shallow 4.1 8 10 100 

Arthopoda Shallow 5.1 8 10 100 

Arthopoda Shallow 6.1 8 10 100 

Arthopoda Shallow 10.1 8 1 0 

Arthopoda Shallow 12.2 8 1 0 

Arthopoda Shallow 0.1 24 10 100 

Arthopoda Shallow 10.1 24 10 100 

Arthopoda Shallow 15.2 24 10 100 

Arthopoda Shallow 4.7 0.27 10 100 

Arthopoda Shallow 5.4 0.32 10 100 

Arthopoda Shallow 6 0.3 10 100 

Arthopoda Shallow 7.5 0.4 9 80 

Arthopoda Shallow 7.7 0.42 10 100 

Arthopoda Shallow 8.6 0.53 10 100 

Arthopoda Shallow 9 0.45 7 60 

Arthopoda Shallow 9.2 0.53 1 0 

Arthopoda Shallow 10.5 0.58 1 0 

Arthopoda Shallow 10.7 0.62 1 0 

Arthopoda Shallow 12.3 0.68 1 0 

Arthopoda Shallow 13.8 0.77 1 0 

Arthopoda Shallow 14.8 0.83 1 0 

Arthopoda Shallow 15.2 0.88 1 0 

Arthopoda Shallow 16.7 0.97 1 0 

Arthopoda Shallow 18.3 1.05 1 0 

Arthopoda Shallow 19.9 1.13 1 0 

Arthopoda Shallow 21.5 1.25 1 0 

Arthopoda Shallow 10.4 4.43 4 33 

Arthopoda Shallow 22.3 5.78 1 0 

Arthopoda Shallow 35 5.95 1 0 

Arthopoda Shallow 2 1 10 100 

Arthopoda Shallow 5.1 1 10 100 

Arthopoda Shallow 10.1 1 10 100 

Arthopoda Shallow 0.1 7 10 100 

Arthopoda Shallow 0.1 6 10 100 

Arthopoda Shallow 5 6 10 100 
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Phylum Deep or Shallow Pressure (MPa)  Experimental duration (h) Survival rank Survival (%) 
Arthopoda Shallow 10 6 10 100 

Arthopoda Shallow 15 6 10 100 

Arthopoda Shallow 0.1 168 10 100 

Arthopoda Shallow 10 168 10 100 

Arthopoda Shallow 0.1 672 8 70 

Arthopoda Deep 0.1 504 10 100 

Arthopoda Deep 0.1 17520 10 100 

Arthopoda Deep 0.1 17520 10 100 

Arthopoda Deep 0.1 504 10 100 

Arthopoda Deep 0.1 6 1 0 

Arthopoda Deep 0.1 216 10 100 

Arthopoda Deep 0.1 144 10 100 

Arthopoda Deep 7.8 576 7 60 

Arthopoda Deep 0.1 117 10 100 

Arthopoda Deep 0.1 10 10 100 

Arthopoda Deep 0.1 1080 10 100 

Arthopoda Deep 0.1 720 10 100 

Arthopoda Deep 7.6 720 10 100 

Arthopoda Deep 0.1 18300 10 100 

Arthopoda Deep 0.1 17520 10 100 

Arthopoda Deep 0.1 17520 10 100 

Arthopoda Deep 0.1 17520 10 100 

Arthopoda Deep 0.1 624 10 100 

Arthopoda Deep 0.1 6 1 0 

Arthopoda Deep 0.1 168 1 0 

Arthopoda Deep 0.1 17520 10 100 

Arthopoda Deep 0.1 17520 10 100 

Arthopoda Deep 0.1 17520 10 100 

Arthopoda Deep 0.1 17520 10 100 

Arthopoda Deep 0.1 0.17 10 100 

Arthopoda Deep 5 0.17 10 100 

Arthopoda Deep 10 0.17 10 100 

Arthopoda Deep 15 0.17 10 100 

Arthopoda Deep 20 0.17 10 100 

Arthopoda Deep 25 0.17 10 100 

Arthopoda Deep 30 0.17 10 100 

Arthopoda Deep 0.1 0.17 10 100 

Arthopoda Deep 5 0.17 10 100 

Arthopoda Deep 10 0.17 10 100 

Arthopoda Deep 15 0.17 10 100 

Arthopoda Deep 20 0.17 10 100 

Arthopoda Deep 25 0.17 10 100 
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Phylum Deep or Shallow Pressure (MPa)  Experimental duration (h) Survival rank Survival (%) 
Arthopoda Deep 30 0.17 10 100 

Cnidaria Deep 0.1 17520 5 40 

Cnidaria Deep 0.1 17520 6 50 

Cnidaria Deep 0.1 17520 10 100 

Cnidaria Deep 0.1 17520 10 100 

Cnidaria Deep 0.1 17520 5 40 

Cnidaria Deep 0.1 17520 7 60 

Cnidaria Deep 0.1 17520 8 70 

Cnidaria Deep 0.1 17520 10 95 

Cnidaria Deep 0.1 17520 10 95 

Cnidaria Deep 0.1 17520 9 90 

Cnidaria Deep 0.1 17520 10 100 

Cnidaria Deep 0.1 17520 10 100 

Cnidaria Deep 0.1 12408 10 100 

Cnidaria Deep 0.1 12408 10 100 

Cnidaria Deep 0.1 17520 10 100 

Cnidaria Deep 0.1 17520 7 60 

Cnidaria Deep 0.1 17520 6 50 

Cnidaria Deep 0.1 17520 10 100 

Cnidaria Deep 0.1 17520 9 80 

Cnidaria Deep 0.1 17520 9 80 

Echinodermata Deep 0.1 17520 10 100 

Echinodermata Deep 0.1 17520 9 80 

Echinodermata Deep 0.1 17520 1 5 

Echinodermata Shallow 0.1 24 10 100 

Echinodermata Shallow 6.5 24 10 100 

Echinodermata Shallow 26 24 10 100 

Echinodermata Shallow 0.1 72 10 100 

Echinodermata Shallow 25 72 9 83.3 

Echinodermata Deep 0.1 17520 6 50 

Echinodermata Deep 0.1 17520 10 95 

Echinodermata Deep 0.1 17520 9 80 

Echinodermata Deep 0.1 17520 10 100 

Echinodermata Shallow 0.1 24 10 100 

Echinodermata Shallow 5 24 10 100 

Echinodermata Shallow 22 24 9 83.3 

Echinodermata Shallow 0.1 72 10 100 

Echinodermata Shallow 25 72 10 100 

Echinodermata Shallow 0.1 216 3 28.5 

Echinodermata Shallow 22 216 1 0 

Echinodermata Deep 0.1 17520 3 25 

Echinodermata Deep 0.1 17520 4 35 
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Phylum Deep or Shallow Pressure (MPa)  Experimental duration (h) Survival rank Survival (%) 
Echinodermata Deep 0.1 17520 1 0 

Echinodermata Deep 0.1 17520 1 5 

Echinodermata Deep 0.1 17520 10 100 

Echinodermata Deep 0.1 17520 10 100 

Echinodermata Deep 0.1 17520 10 100 

Echinodermata Deep 0.1 17520 9 80 

Echinodermata Shallow 0.1 24 10 100 

Echinodermata Shallow 6 24 10 100 

Echinodermata Shallow 26 24 6 50 

Echinodermata Shallow 0.1 72 10 100 

Echinodermata Shallow 25 72 9 83.3 

Echinodermata Deep 0.1 17520 10 100 

Echinodermata Deep 0.1 17520 10 100 

Echinodermata Deep 0.1 17520 1 5 

Foraminifera Deep 45.6 864 10 100 
Foraminifera Deep 45.6 864 10 100 
Foraminifera Deep 45.6 864 10 100 
Foraminifera Deep 0.1 15480 4 33 
Foraminifera Deep 45.6 120 10 100 
Foraminifera Deep 45.6 864 10 100 

Mollusca Shallow 0.1 216 10 100 

Mollusca Shallow 22 216 1 0 

Mollusca Shallow 10.4 4.4 10 100 

Mollusca Shallow 15.9 5 10 100 

Mollusca Shallow 22.3 5.8 10 100 

Mollusca Shallow 35 8 1 0 

Mollusca Shallow 0.1 144 10 100 

Mollusca Shallow 20.4 144 10 100 

Mollusca Shallow 30.8 144 8 78.3 

Mollusca Shallow 46.5 144 1 0 

Mollusca Shallow 0.1 1656 9 86.6 

Mollusca Shallow 4 1656 8 79.4 

Mollusca Shallow 24 1656 7 67.9 

Mollusca Shallow 43 1656 7 67.2 

Mollusca Shallow 58 1656 9 80.6 

Mollusca Shallow 13 1656 7 61.1 

Mollusca Shallow 15.5 1656 4 38 

Mollusca Deep 0.1 17520 6 50 

Mollusca Deep 0.1 17520 10 100 

Mollusca Deep 0.1 17520 10 90 

Mollusca Deep 0.1 18528 6 50 

Mollusca Deep 0.1 17520 10 100 
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Phylum Deep or Shallow Pressure (MPa)  Experimental duration (h) Survival rank Survival (%) 
Mollusca Deep 0.1 17520 10 100 

Porifera Deep 0.1 17520 10 100 

Porifera Deep 0.1 17520 10 100 

Porifera Deep 0.1 17520 10 100 

Porifera Deep 0.1 17520 10 100 

 

  



245	

Table A8. Data used in FAMD to assess the association between phylum, depth, geographic 
location, depth range and percent survival (rank and percent) for adults from non-
chemosynthetic environments. 

Phylum Deep or Shallow Geographic regions Depth range Survival rank Survival (%) 
Arthopoda Shallow NE Atl Subtidal 6 50 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 1 0 

Arthopoda Shallow NE Atl Subtidal 1 0 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow Trop E Pac Subtidal 10 100 

Arthopoda Shallow Trop E Pac Subtidal 10 100 

Arthopoda Shallow Trop E Pac Subtidal 10 100 

Arthopoda Shallow Trop E Pac Subtidal 9 80 

Arthopoda Shallow Trop E Pac Subtidal 10 100 

Arthopoda Shallow Trop E Pac Subtidal 10 100 

Arthopoda Shallow Trop E Pac Subtidal 7 60 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 4 33 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow Trop E Pac Subtidal 1 0 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 
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Phylum Deep or Shallow Geographic regions Depth range Survival rank Survival (%) 
Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 8 70 

Arthopoda Deep Trop Ind Abyssal 10 100 

Arthopoda Deep NW Atl Bathyal 10 100 

Arthopoda Deep NW Atl Bathyal 10 100 

Arthopoda Deep NE Pac Bathyal 10 100 

Arthopoda Deep NE Atl Abyssal 1 0 

Arthopoda Deep Trop Ind Abyssal 10 100 

Arthopoda Deep Trop Ind Abyssal 10 100 

Arthopoda Deep Trop E Pac Bathyal 7 60 

Arthopoda Deep Trop E Pac Bathyal 10 100 

Arthopoda Deep Trop E Pac Bathyal 10 100 

Arthopoda Deep NE Pac Bathyal 10 100 

Arthopoda Deep NE Pac Bathyal 10 100 

Arthopoda Deep NE Pac Bathyal 10 100 

Arthopoda Deep NE Pac Bathyal 10 100 

Arthopoda Deep NW Atl Bathyal 10 100 

Arthopoda Deep NW Atl Bathyal 10 100 

Arthopoda Deep NW Atl Bathyal 10 100 

Arthopoda Deep Trop Ind Bathyal 10 100 

Arthopoda Deep NE Atl Abyssal 1 0 

Arthopoda Deep Med Bathyal 1 0 

Arthopoda Deep NW Atl Bathyal 10 100 

Arthopoda Deep NW Atl Bathyal 10 100 

Arthopoda Deep NW Atl Bathyal 10 100 

Arthopoda Deep NW Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 

Arthopoda Deep NE Atl Bathyal 10 100 
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Phylum Deep or Shallow Geographic regions Depth range Survival rank Survival (%) 
Arthopoda Deep NE Atl Bathyal 10 100 

Cnidaria Deep NW Atl Bathyal 5 40 

Cnidaria Deep NW Atl Bathyal 6 50 

Cnidaria Deep NW Atl Bathyal 10 100 

Cnidaria Deep NW Atl Bathyal 10 100 

Cnidaria Deep NW Atl Bathyal 5 40 

Cnidaria Deep NW Atl Bathyal 7 60 

Cnidaria Deep NW Atl Bathyal 8 70 

Cnidaria Deep NW Atl Bathyal 10 95 

Cnidaria Deep NW Atl Abyssal 10 95 

Cnidaria Deep NW Atl Bathyal 9 90 

Cnidaria Deep NW Atl Bathyal 10 100 

Cnidaria Deep NW Atl Bathyal 10 100 

Cnidaria Deep Med  Bathyal 10 100 

Cnidaria Deep Med  Bathyal 10 100 

Cnidaria Deep NW Atl Bathyal 10 100 

Cnidaria Deep NW Atl Bathyal 7 60 

Cnidaria Deep NW Atl Bathyal 6 50 

Cnidaria Deep NW Atl Bathyal 10 100 

Cnidaria Deep NW Atl Bathyal 9 80 

Cnidaria Deep NW Atl Bathyal 9 80 

Echinodermata Deep NW Atl Bathyal 10 100 

Echinodermata Deep NW Atl Bathyal 9 80 

Echinodermata Deep NW Atl Bathyal 1 5 

Echinodermata Shallow NW Atl Subtidal 10 100 

Echinodermata Shallow NW Atl Subtidal 10 100 

Echinodermata Shallow NW Atl Subtidal 10 100 

Echinodermata Shallow NW Atl Subtidal 10 100 

Echinodermata Shallow NW Atl Subtidal 9 83.3 

Echinodermata Deep NW Atl Bathyal 6 50 

Echinodermata Deep NW Atl Bathyal 10 95 

Echinodermata Deep NW Atl Bathyal 9 80 

Echinodermata Deep NW Atl Bathyal 10 100 

Echinodermata Shallow NW Atl Subtidal 10 100 

Echinodermata Shallow NW Atl Subtidal 10 100 

Echinodermata Shallow NW Atl Subtidal 9 83.3 

Echinodermata Shallow NW Atl Subtidal 10 100 

Echinodermata Shallow NW Atl Subtidal 10 100 

Echinodermata Shallow NW Atl Subtidal 3 28.5 

Echinodermata Shallow NW Atl Subtidal 1 0 

Echinodermata Deep NW Atl Bathyal 3 25 

Echinodermata Deep NW Atl Bathyal 4 35 
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Phylum Deep or Shallow Geographic regions Depth range Survival rank Survival (%) 
Echinodermata Deep NW Atl Bathyal 1 0 

Echinodermata Deep NW Atl Bathyal 1 5 

Echinodermata Deep NW Atl Bathyal 10 100 

Echinodermata Deep NW Atl Bathyal 10 100 

Echinodermata Deep NW Atl Bathyal 10 100 

Echinodermata Deep NW Atl Bathyal 9 80 

Echinodermata Shallow NW Atl Subtidal 10 100 

Echinodermata Shallow NW Atl Subtidal 10 100 

Echinodermata Shallow NW Atl Subtidal 6 50 

Echinodermata Shallow NW Atl Subtidal 10 100 

Echinodermata Shallow NW Atl Subtidal 9 83.3 

Echinodermata Deep NW Atl Bathyal 10 100 

Echinodermata Deep NW Atl Bathyal 10 100 

Echinodermata Deep NW Atl Bathyal 1 5 

Foraminifera Deep NE Atl Abyssal 10 100 
Foraminifera Deep NE Atl Abyssal 10 100 
Foraminifera Deep NE Atl Abyssal 10 100 
Foraminifera Deep NE Atl Bathyal 4 33 
Foraminifera Deep NE Atl Abyssal 10 100 
Foraminifera Deep NE Atl Abyssal 10 100 

Mollusca Shallow NW Atl Subtidal 10 100 

Mollusca Shallow NW Atl Subtidal 1 0 

Mollusca Shallow NE Pac Subtidal 10 100 

Mollusca Shallow NE Pac Subtidal 10 100 

Mollusca Shallow NE Pac Subtidal 10 100 

Mollusca Shallow NE Pac Subtidal 1 0 

Mollusca Shallow Med Subtidal 10 100 

Mollusca Shallow Med Subtidal 10 100 

Mollusca Shallow Med Subtidal 8 78.3 

Mollusca Shallow Med Subtidal 0 0 

Mollusca Shallow Med Subtidal 9 86.6 

Mollusca Shallow Med Subtidal 8 79.4 

Mollusca Shallow Med Subtidal 7 67.9 

Mollusca Shallow Med Subtidal 7 67.2 

Mollusca Shallow Med Subtidal 9 80.6 

Mollusca Shallow Med Subtidal 7 61.1 

Mollusca Shallow Med Subtidal 4 38 

Mollusca Deep NW Atl Bathyal 6 50 

Mollusca Deep NW Atl Bathyal 10 100 

Mollusca Deep NW Atl Bathyal 10 90 

Mollusca Deep NE Atl Bathyal 6 50 

Mollusca Deep NW Atl Bathyal 10 100 
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Phylum Deep or Shallow Geographic regions Depth range Survival rank Survival (%) 
Mollusca Deep NW Atl Bathyal 10 100 

Porifera Deep NW Atl Bathyal 10 100 

Porifera Deep NW Atl Bathyal 10 100 

Porifera Deep NW Atl Bathyal 10 100 

Porifera Deep NW Atl Bathyal 10 100 
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Table A9. Data used in FAMD to assess the association between phylum, pressure, 
experimental duration and percent survival (rank and percent) for larvae from chemosynthetic 
environments. 

Phylum Pressure (MPa)  Experimental duration (h) Survival rank Survival (%) 
Annelida 0.1 72 10 100 

Annelida 0.1 72 10 90 

Annelida 25.3 48 10 100 

Annelida 24.1 80 8 72 

Annelida 17.2 80 4 36 

Annelida 10.3 80 1 0 

Annelida 3.6 80 1 0 

Arthopoda 0.1 20 10 100 

Arthopoda 15.2 20 10 100 

Arthopoda 25.3 20 10 100 

Arthopoda 30.4 20 1 0 

Arthopoda 0.1 72 10 100 

Arthopoda 0.1 384 10 100 

Arthopoda 0.1 336 10 100 

Arthopoda 0.1 384 10 97 

Arthopoda 0.1 648 10 97 

Arthopoda 0.1 2040 6 56 

Arthopoda 0.1 140 9 81 

Mollusca 0.1 24 7 64 

Mollusca 0.1 24 6 58 

Mollusca 0.1 24 6 58 

Mollusca 0.1 72 10 100 
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Table A10. Data used in FAMD to assess the association between phylum, depth, geographic 
location, depth range and percent survival (rank and percent) for larvae from chemosynthetic 
environments. 

Phylum Geographic regions Depth range Survival rank Survival (%) 
Annelida NE Pac Abyssal 10 100 

Annelida NE Pac Abyssal 10 90 

Annelida NE Pac Abyssal 10 100 

Annelida NE Pac Abyssal 8 72 

Annelida NE Pac Abyssal 4 36 

Annelida NE Pac Abyssal 1 0 

Annelida NE Pac Abyssal 1 0 

Arthopoda NE Atl Bathyal 10 100 

Arthopoda NE Atl Bathyal 10 100 

Arthopoda NE Atl Bathyal 10 100 

Arthopoda NE Atl Bathyal 1 0 

Arthopoda NW Pac Bathyal 10 100 

Arthopoda NW Pac Bathyal 10 100 

Arthopoda NW Pac Bathyal 10 100 

Arthopoda NW Pac Bathyal 10 97 

Arthopoda NW Pac Bathyal 10 97 

Arthopoda NW Pac Bathyal 6 56 

Arthopoda NW Pac Bathyal 9 81 

Mollusca GOM Bathyal 7 64 

Mollusca GOM Bathyal 6 58 

Mollusca GOM Bathyal 6 58 

Mollusca GOM Bathyal 10 100 
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Table A11. Data used in FAMD to assess the association between phylum, pressure, 
experimental duration and percent survival (rank and percent) for larvae from non-
chemosynthetic environments. 

Phylum 
Deep or 
Shallow 

Pressure 
(MPa)  Experimental duration (h) Survival rank Survival (%) 

Annelida Shallow 0.1 48 7 68.8 

Annelida Shallow 10.1 48 8 69.1 

Annelida Shallow 20.3 48 2 41.4 

Annelida Shallow 30.4 48 2 19.3 

Annelida Shallow 0.1 6 10 100 

Annelida Shallow 10.1 6 9 80 

Annelida Deep 0.1 8760 6 50 

Arthopoda Deep 0.1 720 9 80 

Arthopoda Shallow 0.1 4 10 100 

Arthopoda Shallow 5 4 10 100 

Arthopoda Shallow 10 4 10 100 

Arthopoda Shallow 15 4 10 100 

Arthopoda Shallow 20 4 10 100 

Arthopoda Shallow 25 4 10 100 

Arthopoda Shallow 10 4 10 100 

Arthopoda Shallow 55.1 1 1 0 

Arthopoda Shallow 0.1 24 8 77 

Arthopoda Shallow 1 24 7 60 

Arthopoda Shallow 5.1 24 4 39 

Arthopoda Shallow 10.1 24 2 17 

Arthopoda Shallow 10.1 24 9 81 

Arthopoda Shallow 10.1 24 10 95 

Arthopoda Shallow 10.1 24 10 99 

Arthopoda Shallow 10.1 24 10 95 

Arthopoda Shallow 10.1 24 10 93 

Arthopoda Shallow 10.1 24 8 78 

Arthopoda Shallow 10.1 24 10 100 

Arthopoda Shallow 10.1 24 10 91 

Arthopoda Shallow 10.1 24 10 90 

Arthopoda Shallow 10.1 24 9 88 

Arthopoda Shallow 10.1 24 10 100 

Arthopoda Shallow 10.1 24 10 95 

Arthopoda Shallow 10.1 24 9 89 

Arthopoda Shallow 10.1 24 10 90 

Arthopoda Shallow 0.1 24 10 100 

Arthopoda Shallow 0.1 24 10 100 

Arthopoda Shallow 0.1 24 10 100 

Arthopoda Shallow 0.1 24 10 100 
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Phylum 
Deep or 
Shallow 

Pressure 
(MPa)  Experimental duration (h) Survival rank Survival (%) 

Arthopoda Shallow 0.1 24 10 98 

Arthopoda Shallow 0.1 24 10 100 

Arthopoda Shallow 0.1 24 10 98 

Arthopoda Shallow 0.1 24 10 100 

Arthopoda Shallow 0.1 24 10 100 

Arthopoda Shallow 0.1 24 10 100 

Arthopoda Shallow 0.1 24 10 100 

Arthopoda Shallow 0.1 24 10 100 

Arthopoda Shallow 0.1 24 10 99 

Arthopoda Shallow 0.1 24 10 100 

Arthopoda Deep 27.5 1 1 0 

Arthopoda Deep 41.4 1 1 0 

Arthopoda Shallow 41.4 1 1 0 

Arthopoda Deep 0.1 24 6 51 

Arthopoda Deep 1 24 4 37 

Arthopoda Deep 5.1 24 7 69 

Arthopoda Deep 10 24 5 49 

Arthopoda Deep 0.1 24 6 50 

Arthopoda Deep 1 24 4 37 

Arthopoda Deep 5.1 24 7 69 

Arthopoda Deep 10 24 5 49 

Arthopoda Deep 0.1 24 8 79 

Arthopoda Deep 1 24 8 79 

Arthopoda Deep 5.1 24 7 65 

Arthopoda Deep 10 24 8 78 

Arthopoda Deep 0.1 17520 10 100 

Arthopoda Deep 41.4 1 1 0 

Arthopoda Shallow 65.5 1 1 0 

Arthopoda Shallow 6.1 1 10 100 

Arthopoda Deep 27.5 1 1 0 

Arthopoda Shallow 34.5 1 1 0 

Arthopoda Shallow 41.4 1 5 40 

Arthopoda Deep 20.7 1 6 50 

Arthopoda Shallow 38.6 1 1 0 

Cnidaria Deep 0.1 17520 5 40 

Cnidaria Deep 0.1 17520 6 50 

Cnidaria Deep 0.1 17520 7 60 

Cnidaria Deep 0.1 17520 10 100 

Cnidaria Deep 0.1 17520 10 100 

Cnidaria Deep 0.1 17520 8 70 

Cnidaria Deep 0.1 17520 10 95 
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Phylum 
Deep or 
Shallow 

Pressure 
(MPa)  Experimental duration (h) Survival rank Survival (%) 

Cnidaria Deep 0.1 17520 10 90 

Cnidaria Shallow 62 1 3 25 

Cnidaria Shallow 0.5 1.09 10 100 

Cnidaria Deep 0.1 17520 9 80 

Echinodermata Shallow 45 0.12 3 21 

Echinodermata Shallow 50 0.12 1 7 

Echinodermata Shallow 55 0.12 1 6 

Echinodermata Shallow 60 0.12 1 1 

Echinodermata Shallow 65 0.12 1 0 

Echinodermata Shallow 45 0.12 5 42 

Echinodermata Shallow 50 0.12 4 35 

Echinodermata Shallow 55 0.12 3 22 

Echinodermata Shallow 60 0.12 3 20 

Echinodermata Shallow 65 0.12 1 0 

Echinodermata Shallow 0.1 48 10 100 

Echinodermata Shallow 5.1 48 10 100 

Echinodermata Shallow 10.1 48 10 99 

Echinodermata Shallow 15.2 48 10 97 

Echinodermata Shallow 20.3 48 10 93 

Echinodermata Shallow 0.1 48 10 95 

Echinodermata Shallow 5.1 48 10 96 

Echinodermata Shallow 10.1 48 10 95 

Echinodermata Shallow 15.2 48 10 93 

Echinodermata Shallow 20.3 48 10 91 

Echinodermata Deep 0.1 17520 10 95 

Echinodermata Deep 0.1 17520 10 95 

Echinodermata Shallow 0.1 24 10 100 

Echinodermata Shallow 5.1 24 10 100 

Echinodermata Shallow 10.1 24 10 99 

Echinodermata Shallow 15.2 24 10 98 

Echinodermata Shallow 20.3 24 10 98 

Echinodermata Shallow 0.1 24 7 69 

Echinodermata Shallow 5.1 24 10 93 

Echinodermata Shallow 10.1 24 10 98 

Echinodermata Shallow 15.2 24 10 96 

Echinodermata Shallow 20.3 24 10 100 

Echinodermata Shallow 0.1 24 10 96 

Echinodermata Shallow 5.1 24 9 89 

Echinodermata Shallow 10.1 24 10 90 

Echinodermata Shallow 15.2 24 10 90 

Echinodermata Shallow 20.3 24 10 92 
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Phylum 
Deep or 
Shallow 

Pressure 
(MPa)  Experimental duration (h) Survival rank Survival (%) 

Echinodermata Deep 0.1 17520 10 100 

Echinodermata Shallow 0.1 24 10 95 

Echinodermata Shallow 5.1 24 10 90 

Echinodermata Shallow 10.1 24 10 96 

Echinodermata Shallow 15.2 24 9 88 

Echinodermata Shallow 20.3 24 10 92 

Echinodermata Shallow 25.3 24 10 91 

Echinodermata Shallow 0.1 24 9 83 

Echinodermata Shallow 5.1 24 9 85 

Echinodermata Shallow 10.1 24 9 89 

Echinodermata Shallow 15.2 24 9 80 

Echinodermata Shallow 20.3 24 9 86 

Echinodermata Shallow 25.3 24 2 18 

Echinodermata Shallow 0.1 24 8 78 

Echinodermata Shallow 5.1 24 8 70 

Echinodermata Shallow 10.1 24 5 49 

Echinodermata Shallow 15.2 24 2 13 

Echinodermata Shallow 20.3 24 1 7 

Echinodermata Shallow 25.3 24 1 4 

Mollusca Deep 0.1 17520 10 90 

Mollusca Shallow 0.1 24 10 100 

Mollusca Shallow 5 24 10 100 

Mollusca Shallow 10 24 10 99 

Mollusca Shallow 15 24 10 94 

Mollusca Shallow 20 24 10 90 

Mollusca Shallow 25 24 3 20 

Mollusca Shallow 30 24 3 25 

Mollusca Shallow 35 24 3 26 

Mollusca Shallow 40 24 3 25 

Mollusca Shallow 0.1 24 10 100 

Mollusca Shallow 5 24 10 100 

Mollusca Shallow 10 24 10 100 

Mollusca Shallow 15 24 10 100 

Mollusca Shallow 20 24 10 100 

Mollusca Shallow 25 24 8 75 

Mollusca Shallow 30 24 8 70 

Mollusca Shallow 35 24 6 55 

Mollusca Shallow 40 24 6 52 

Mollusca Shallow 0.1 12 1 7 

Mollusca Shallow 0.13 12 2 13 

Mollusca Shallow 0.1 12 1 0 
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Phylum 
Deep or 
Shallow 

Pressure 
(MPa)  Experimental duration (h) Survival rank Survival (%) 

Mollusca Shallow 0.13 12 1 0 

Mollusca Shallow 34.5 1 1 0 
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Table A12. Data used in FAMD to assess the association between phylum, depth, geographic 
location, depth range and percent survival (rank and percent) for larvae from chemosynthetic 
environments. 

Phylum Deep or Shallow Geographic regions Depth range Survival rank Survival (%) 
Annelida Shallow NE Atl Intertidal 7 68.8 

Annelida Shallow NE Atl Intertidal 8 69.1 

Annelida Shallow NE Atl Intertidal 2 41.4 

Annelida Shallow NE Atl Intertidal 2 19.3 

Annelida Shallow NE Atl Intertidal 10 100 

Annelida Shallow NE Atl Intertidal 9 80 

Annelida Deep NW Atl Bathyal 6 50 

Arthopoda Deep NW Pac Bathyal 9 80 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NE Atl Subtidal 10 100 

Arthopoda Shallow NW Atl Intertidal 1 0 

Arthopoda Shallow NW Pac Subtidal 8 77 

Arthopoda Shallow NW Pac Subtidal 7 60 

Arthopoda Shallow NW Pac Subtidal 4 39 

Arthopoda Shallow NW Pac Subtidal 2 17 

Arthopoda Shallow NW Pac Subtidal 9 81 

Arthopoda Shallow NW Pac Subtidal 10 95 

Arthopoda Shallow NW Pac Subtidal 10 99 

Arthopoda Shallow NW Pac Subtidal 10 95 

Arthopoda Shallow NW Pac Subtidal 10 93 

Arthopoda Shallow NW Pac Subtidal 8 78 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 91 

Arthopoda Shallow NW Pac Subtidal 10 90 

Arthopoda Shallow NW Pac Subtidal 9 88 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 95 

Arthopoda Shallow NW Pac Subtidal 9 89 

Arthopoda Shallow NW Pac Subtidal 10 90 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 98 
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Phylum Deep or Shallow Geographic regions Depth range Survival rank Survival (%) 
Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 98 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Shallow NW Pac Subtidal 10 99 

Arthopoda Shallow NW Pac Subtidal 10 100 

Arthopoda Deep Cari Bathyal 1 0 

Arthopoda Deep Cari Bathyal 1 0 

Arthopoda Shallow NW Atl Intertidal 1 0 

Arthopoda Deep NW Pac Bathyal 6 51 

Arthopoda Deep NW Pac Bathyal 4 37 

Arthopoda Deep NW Pac Bathyal 7 69 

Arthopoda Deep NW Pac Bathyal 5 49 

Arthopoda Deep NW Pac Bathyal 6 50 

Arthopoda Deep NW Pac Bathyal 4 37 

Arthopoda Deep NW Pac Bathyal 7 69 

Arthopoda Deep NW Pac Bathyal 5 49 

Arthopoda Deep NW Pac Bathyal 8 79 

Arthopoda Deep NW Pac Bathyal 8 79 

Arthopoda Deep NW Pac Bathyal 7 65 

Arthopoda Deep NW Pac Bathyal 8 78 

Arthopoda Deep NW Pac Bathyal 10 100 

Arthopoda Deep Cari Bathyal 1 0 

Arthopoda Shallow NW Atl Intertidal 1 0 

Arthopoda Shallow NW Atl Intertidal 10 100 

Arthopoda Deep Cari Bathyal 1 0 

Arthopoda Shallow NW Atl Intertidal 1 0 

Arthopoda Shallow NW Atl Intertidal 5 40 

Arthopoda Deep Cari Bathyal 6 50 

Arthopoda Shallow NW Atl Intertidal 1 0 

Cnidaria Deep NW Atl Bathyal 5 40 

Cnidaria Deep NW Atl Bathyal 6 50 

Cnidaria Deep NW Atl Bathyal 7 60 

Cnidaria Deep NW Atl Bathyal 10 100 

Cnidaria Deep NW Atl Bathyal 10 100 

Cnidaria Deep NW Atl Bathyal 8 70 

Cnidaria Deep NW Atl Bathyal 10 95 

Cnidaria Deep NW Atl Bathyal 10 90 

Cnidaria Shallow Cari Intertidal 3 25 
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Phylum Deep or Shallow Geographic regions Depth range Survival rank Survival (%) 
Cnidaria Shallow Cari Intertidal 10 100 

Cnidaria Deep NW Atl Bathyal 9 80 

Echinodermata Shallow Trop W Pac Subtidal 3 21 

Echinodermata Shallow Trop W Pac Subtidal 1 7 

Echinodermata Shallow Trop W Pac Subtidal 1 6 

Echinodermata Shallow Trop W Pac Subtidal 1 1 

Echinodermata Shallow Trop W Pac Subtidal 1 0 

Echinodermata Shallow Trop W Pac Subtidal 5 42 

Echinodermata Shallow Trop W Pac Subtidal 4 35 

Echinodermata Shallow Trop W Pac Subtidal 3 22 

Echinodermata Shallow Trop W Pac Subtidal 3 20 

Echinodermata Shallow Trop W Pac Subtidal 1 0 

Echinodermata Shallow NE Atl  Subtidal 10 100 

Echinodermata Shallow NE Atl  Subtidal 10 100 

Echinodermata Shallow NE Atl  Subtidal 10 99 

Echinodermata Shallow NE Atl  Subtidal 10 97 

Echinodermata Shallow NE Atl  Subtidal 10 93 

Echinodermata Shallow NE Atl  Subtidal 10 95 

Echinodermata Shallow NE Atl  Subtidal 10 96 

Echinodermata Shallow NE Atl  Subtidal 10 95 

Echinodermata Shallow NE Atl  Subtidal 10 93 

Echinodermata Shallow NE Atl  Subtidal 10 91 

Echinodermata Deep NW Atl Bathyal 10 95 

Echinodermata Deep NW Atl Bathyal 10 95 

Echinodermata Shallow NE Atl  Subtidal 10 100 

Echinodermata Shallow NE Atl  Subtidal 10 100 

Echinodermata Shallow NE Atl  Subtidal 10 99 

Echinodermata Shallow NE Atl  Subtidal 10 98 

Echinodermata Shallow NE Atl  Subtidal 10 98 

Echinodermata Shallow NE Atl  Subtidal 7 69 

Echinodermata Shallow NE Atl  Subtidal 10 93 

Echinodermata Shallow NE Atl  Subtidal 10 98 

Echinodermata Shallow NE Atl  Subtidal 10 96 

Echinodermata Shallow NE Atl  Subtidal 10 100 

Echinodermata Shallow NE Atl  Subtidal 10 96 

Echinodermata Shallow NE Atl  Subtidal 9 89 

Echinodermata Shallow NE Atl  Subtidal 10 90 

Echinodermata Shallow NE Atl  Subtidal 10 90 

Echinodermata Shallow NE Atl  Subtidal 10 92 

Echinodermata Deep NW Atl Bathyal 10 100 

Echinodermata Shallow Antarctica Subtidal 10 95 

Echinodermata Shallow Antarctica Subtidal 10 90 
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Phylum Deep or Shallow Geographic regions Depth range Survival rank Survival (%) 
Echinodermata Shallow Antarctica Subtidal 10 96 

Echinodermata Shallow Antarctica Subtidal 9 88 

Echinodermata Shallow Antarctica Subtidal 10 92 

Echinodermata Shallow Antarctica Subtidal 10 91 

Echinodermata Shallow Antarctica Subtidal 9 83 

Echinodermata Shallow Antarctica Subtidal 9 85 

Echinodermata Shallow Antarctica Subtidal 9 89 

Echinodermata Shallow Antarctica Subtidal 9 80 

Echinodermata Shallow Antarctica Subtidal 9 86 

Echinodermata Shallow Antarctica Subtidal 2 18 

Echinodermata Shallow Antarctica Subtidal 8 78 

Echinodermata Shallow Antarctica Subtidal 8 70 

Echinodermata Shallow Antarctica Subtidal 5 49 

Echinodermata Shallow Antarctica Subtidal 2 13 

Echinodermata Shallow Antarctica Subtidal 1 7 

Echinodermata Shallow Antarctica Subtidal 1 4 

Mollusca Deep NW Atl Bathyal 10 90 

Mollusca Shallow NE Atl Subtidal 10 100 

Mollusca Shallow NE Atl Subtidal 10 100 

Mollusca Shallow NE Atl Subtidal 10 99 

Mollusca Shallow NE Atl Subtidal 10 94 

Mollusca Shallow NE Atl Subtidal 10 90 

Mollusca Shallow NE Atl Subtidal 3 20 

Mollusca Shallow NE Atl Subtidal 3 25 

Mollusca Shallow NE Atl Subtidal 3 26 

Mollusca Shallow NE Atl Subtidal 3 25 

Mollusca Shallow NE Atl Subtidal 10 100 

Mollusca Shallow NE Atl Subtidal 10 100 

Mollusca Shallow NE Atl Subtidal 10 100 

Mollusca Shallow NE Atl Subtidal 10 100 

Mollusca Shallow NE Atl Subtidal 10 100 

Mollusca Shallow NE Atl Subtidal 8 75 

Mollusca Shallow NE Atl Subtidal 8 70 

Mollusca Shallow NE Atl Subtidal 6 55 

Mollusca Shallow NE Atl Subtidal 6 52 

Mollusca Shallow NW Atl Intertidal 1 7 

Mollusca Shallow NW Atl Intertidal 2 13 

Mollusca Shallow NW Atl Intertidal 1 0 

Mollusca Shallow NW Atl Intertidal 1 0 

Mollusca Shallow NW Atl Subtidal 1 0 
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Table A13. Pearson correlation data that were used to test the relationship between 
percent survival with pressure and experimental duration, respectively, for 
chemosynthetic adults. 

Pressure (MPa)  Experimental duration (h) Survival (%) 
0.1 4 0 

25 0 100 

26 20 36 

26 6 100 

26 18 100 

26 48 100 

26 9 100 

26 8.5 70 

26 8 84 

26 12 100 

0.1 6 100 

0.1 18 100 

26.3 6 100 

26.3 18 100 

26 43 100 

0.1 3 0 

27.4 1080 100 

10 1080 100 

23.1 72 100 

23.1 120 50 

12.2 24 100 

12.2 72 100 

12.2 120 100 

0.1 8760 81.1 

0.1 120 0 

12.2 504 100 

24.1 13152 100 

0.1 15 91 

0.1 24 65 

0.1 24 100 

0.1 216 70 

0.1 144 80 

18 26328 2.6 
18 17544 2.4 
18 8232 32.6 
0.1 216 70 

0.1 216 70 

0.1 216 70 
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Pressure (MPa)  Experimental duration (h) Survival (%) 
0.1 144 80 

0.1 1 100 

17 7 100 

0.1 24 86 

17 20.75 65 

0.1 36 50 

23 10 92 

23 24 100 

23 48 100 

30 8 100 

30 22 100 

30 72 100 

18 17568 0 

18 18264 5.3 

18 9054 37.5 

0.1 1.17 100 

12 1.17 100 

0.1 8766 100 

0.1 24 100 

0.1 4320 100 

0.1 48 100 

0.1 1080 100 

0.1 8760 50 

8.5 24 100 

8.5 48 100 

8.5 144 100 

0.1 12 100 

2 12 100 

0.1 2880 100 

8.5 240 100 

17.5 240 100 

23 240 100 

12.4 24 12.5 

26 43 100 
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Table A14. Pearson correlation data that were used to test the relationship between 
percent survival with pressure and experimental duration, respectively, for 
chemosynthetic adults. 

Pressure (MPa)  Experimental duration (h) Survival (%) 
23.3 1 50 

0.1 8 100 

1 8 100 

3 8 100 

4.1 8 100 

5.1 8 100 

6.1 8 100 

10.1 8 0 

12.2 8 0 

0.1 24 100 

10.1 24 100 

15.2 24 100 

4.7 0.27 100 

5.4 0.32 100 

6 0.3 100 

7.5 0.4 80 

7.7 0.42 100 

8.6 0.53 100 

9 0.45 60 

9.2 0.53 0 

10.5 0.58 0 

10.7 0.62 0 

12.3 0.68 0 

13.8 0.77 0 

14.8 0.83 0 

15.2 0.88 0 

16.7 0.97 0 

18.3 1.05 0 

19.9 1.13 0 

21.5 1.25 0 

10.4 4.43 33 

22.3 5.78 0 

35 5.95 0 

2 1 100 

5.1 1 100 

10.1 1 100 

0.1 7 100 

0.1 6 100 
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Pressure (MPa)  Experimental duration (h) Survival (%) 
5 6 100 

10 6 100 

15 6 100 

0.1 168 100 

10 168 100 

0.1 672 70 

0.1 504 100 

0.1 17520 100 

0.1 17520 100 

0.1 504 100 

0.1 6 0 

0.1 216 100 

0.1 144 100 

7.8 576 60 

0.1 117 100 

0.1 10 100 

0.1 1080 100 

0.1 720 100 

7.6 720 100 

0.1 18300 100 

0.1 17520 100 

0.1 17520 100 

0.1 17520 100 

0.1 624 100 

0.1 6 0 

0.1 168 0 
0.1 17520 100 

0.1 17520 100 

0.1 17520 100 

0.1 17520 100 

0.1 0.17 100 

5 0.17 100 

10 0.17 100 

15 0.17 100 

20 0.17 100 

25 0.17 100 

30 0.17 100 

0.1 0.17 100 

5 0.17 100 

10 0.17 100 

15 0.17 100 

20 0.17 100 
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Pressure (MPa)  Experimental duration (h) Survival (%) 
25 0.17 100 

30 0.17 100 

0.1 17520 40 

0.1 17520 50 

0.1 17520 100 

0.1 17520 100 

0.1 17520 40 
0.1 17520 60 

0.1 17520 70 

0.1 17520 95 

0.1 17520 95 

0.1 17520 90 

0.1 17520 100 

0.1 17520 100 

0.1 12408 100 

0.1 12408 100 

0.1 17520 100 

0.1 17520 60 

0.1 17520 50 

0.1 17520 100 

0.1 17520 80 

0.1 17520 80 

0.1 17520 100 

0.1 17520 80 

0.1 17520 5 

0.1 24 100 

6.5 24 100 

26 24 100 

0.1 72 100 

25 72 83.3 

0.1 17520 50 

0.1 17520 95 

0.1 17520 80 

0.1 17520 100 

0.1 24 100 

5 24 100 

22 24 83.3 

0.1 72 100 

25 72 100 

0.1 216 28.5 

22 216 0 

0.1 17520 25 
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Pressure (MPa)  Experimental duration (h) Survival (%) 
0.1 17520 35 

0.1 17520 0 

0.1 17520 5 

0.1 17520 100 
0.1 17520 100 
0.1 17520 100 

0.1 17520 80 

0.1 24 100 

6 24 100 

26 24 50 

0.1 72 100 

25 72 83.3 

0.1 17520 100 

0.1 17520 100 
0.1 17520 5 

45.6 864 100 

45.6 864 100 

45.6 864 100 
0.1 15480 33 

45.6 120 100 

45.6 864 100 

0.1 216 100 

22 216 0 

10.4 4.4 100 

15.9 5 100 

22.3 5.8 100 

35 8 0 

0.1 144 100 

20.4 144 100 

30.8 144 78.3 

46.5 144 0 

0.1 1656 86.6 

4 1656 79.4 

24 1656 67.9 

43 1656 67.2 

58 1656 80.6 

13 1656 61.1 

15.5 1656 38 

0.1 17520 50 

0.1 17520 100 

0.1 17520 90 

0.1 18528 50 
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Pressure (MPa)  Experimental duration (h) Survival (%) 
0.1 17520 100 

0.1 17520 100 

0.1 17520 100 

0.1 17520 100 

0.1 17520 100 

0.1 17520 100 
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Table A15. Pearson correlation data that were used to test the relationship between 
percent survival with pressure and experimental duration, respectively, for 
chemosynthetic larvae. 

Pressure (MPa)  Experimental duration (h) Survival (%) 
0.1 72 100 

0.1 72 90 

25.3 48 100 

24.1 80 72 

17.2 80 36 

10.3 80 0 

3.6 80 0 

0.1 20 100 

15.2 20 100 

25.3 20 100 

30.4 20 0 

0.1 72 100 

0.1 384 100 

0.1 336 100 

0.1 384 97 

0.1 648 97 

0.1 2040 56 

0.1 140 81 

0.1 24 64 

0.1 24 58 

0.1 24 58 

0.1 72 100 

	 	 	 	 

  



269	

Table A16. Pearson correlation data that were used to test the relationship between 
percent survival with pressure and experimental duration, respectively, for non-
chemosynthetic larvae. 

Pressure (MPa)  Experimental duration (h) Survival (%) 
0.1 48 68.8 

10.1 48 69.1 

20.3 48 41.4 

30.4 48 19.3 

0.1 6 100 

10.1 6 80 

0.1 8760 50 

0.1 720 80 

0.1 4 100 

5 4 100 

10 4 100 

15 4 100 

20 4 100 

25 4 100 

10 4 100 

55.1 1 0 

0.1 24 77 

1 24 60 

5.1 24 39 

10.1 24 17 

10.1 24 81 

10.1 24 95 

10.1 24 99 

10.1 24 95 

10.1 24 93 

10.1 24 78 

10.1 24 100 

10.1 24 91 

10.1 24 90 

10.1 24 88 

10.1 24 100 

10.1 24 95 

10.1 24 89 

10.1 24 90 

0.1 24 100 

0.1 24 100 

0.1 24 100 

0.1 24 100 
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0.1 24 98 

0.1 24 100 

0.1 24 98 

0.1 24 100 

0.1 24 100 

0.1 24 100 

0.1 24 100 

0.1 24 100 

0.1 24 99 

0.1 24 100 

27.5 1 0 

41.4 1 0 

41.4 1 0 

0.1 24 51 

1 24 37 

5.1 24 69 

10 24 49 

0.1 24 50 

1 24 37 

5.1 24 69 

10 24 49 

0.1 24 79 

1 24 79 

5.1 24 65 

10 24 78 

0.1 17520 100 

41.4 1 0 

65.5 1 0 

6.1 1 100 

27.5 1 0 

34.5 1 0 

41.4 1 40 

20.7 1 50 

38.6 1 0 

0.1 17520 40 

0.1 17520 50 

0.1 17520 60 

0.1 17520 100 

0.1 17520 100 

0.1 17520 70 

0.1 17520 95 

0.1 17520 90 

62 1 25 
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0.5 1.09 100 
0.1 17520 80 
45 0.12 21 

50 0.12 7 

55 0.12 6 

60 0.12 1 

65 0.12 0 

45 0.12 42 

50 0.12 35 

55 0.12 22 

60 0.12 20 

65 0.12 0 

0.1 48 100 

5.1 48 100 

10.1 48 99 

15.2 48 97 

20.3 48 93 
0.1 48 95 

5.1 48 96 

10.1 48 95 

15.2 48 93 

20.3 48 91 

0.1 17520 95 

0.1 17520 95 
0.1 24 100 
5.1 24 100 
10.1 24 99 
15.2 24 98 
20.3 24 98 
0.1 24 69 
5.1 24 93 
10.1 24 98 

15.2 24 96 

20.3 24 100 

0.1 24 96 

5.1 24 89 

10.1 24 90 

15.2 24 90 
20.3 24 92 

0.1 17520 100 

0.1 24 95 
5.1 24 90 
10.1 24 96 
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15.2 24 88 
20.3 24 92 

25.3 24 91 
0.1 24 83 
5.1 24 85 
10.1 24 89 
15.2 24 80 
20.3 24 86 

25.3 24 18 
0.1 24 78 
5.1 24 70 
10.1 24 49 
15.2 24 13 
20.3 24 7 

25.3 24 4 
0.1 17520 90 
0.1 24 100 

5 24 100 

10 24 99 

15 24 94 

20 24 90 

25 24 20 

30 24 25 

35 24 26 

40 24 25 

0.1 24 100 

5 24 100 

10 24 100 

15 24 100 

20 24 100 

25 24 75 

30 24 70 

35 24 55 

40 24 52 

0.1 12 7 

0.13 12 13 

0.1 12 0 

0.13 12 0 

34.5 1 0 
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Appendix B: Supplementary experiment for Strongylocentrotus droebachiensis 

 
 
Extracellular coelomic pH in Strongylocentrotus droebachiensis 
 
Methods 

A syringe was used to extract 2.0 ml of perivisceral coelomic fluid from the sea 

urchins after the combined pH/pressure trials (~150 min after removal from the vessel). 

Immediately after extraction, the pH of the fluid was measured with an AccumetR pH 

probe (Fisher Scientific, USA). The pH experiment was only done for S. droebachiensis 

since previous studies had shown that perivisceral fluid of different urchin species was 

sensitive to acidified conditions (Kurihara et al. 2013; Spicer et al. 2011). Although great 

care was taken to prevent unnecessary internal damage the invasive sampling may still 

have affected the health status of the individuals. Thus, to avoid any bias, S. 

droebachiensis was not monitored for post-recovery health responses after the 

pH/pressure trials.  

Results 

Pressure did not affect the pH of the coelomic fluid in S. droebachiensis under 

ambient pH conditions and under different pressures (F2, 45 =1.97, p=0.151). Under 

ambient pH conditions the coelomic pH of animals following exposure to atmospheric 

and medium pressure was 7.58 and 7.4 units, respectively. While under low pH 

conditions the coelomic pH of animals following exposure to atmospheric and medium 

pressure was 7.51 and 7.57 units, respectively. A significant interaction between the 

effects of pH and pressure on the pH of the coelomic fluid was detected (F1, 56 =4.81, 

p=0.032), although independent tests failed to identify pairwise differences. The pH of 

the coelomic fluid was not significantly affected by pressure (F1, 56 =0.10, p=0.749) or by 
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the pH of seawater (F1, 56 =0.10, p=0.758). There was also a significant interaction 

between pH and pressure on the pH of the coelomic fluid (F1, 56 =4.81, p=0.032), although 

independent tests failed to identify pairwise differences. The pH of the coelomic fluid 

was not significantly affected by pressure (F1, 56 =0.10, p=0.749) or by the pH of seawater 

(F1, 56 =0.10, p=0.758).		 

 



287	

Appendix C: Statistical results 

Table C1. Complete statistical results for Strongylocentrotus droebachiensis health responses 

for the following experimental conditions: ambient pH/24 h, ambient pH/0-4 h (dissolved 

oxygen experiments), ambient pH/72 h and acidified pH/24 h. Asterisks indicate significance 

(p<0.05). 

Time (h) pH Experiment Pressure (atm, med, 
high)a 

Time relative to trial 
(pre, post and 
recovery)b 

Results 

24 Ambient 
 

Feeding Indices AtmxMedxHigh Post 
 

H=26.56, df=2, p<0.001 

Atm×Med Atm<Med 
Atm×High Atm>High* 
Med×High Med>High* 

Weight AtmxMedxHigh H=0.848, df=2, p=0.655 
pH coelomic fluid AtmxMedxHigh F2,45 =1.97, p=0.151 
Righting to 90° 
 

AtmxMedxHigh H=6.26, df=2, p=0.044 
Atm×Med Atm<Med* 
Atm×High Atm<High* 
Med×High Med<High* 

Righting to 180° 
 

AtmxMedxHigh H=7.80, df=2, p=0.020 
Atm×Med Atm<Med 
Atm×High Atm<High 
Med×High Med<High* 

72 Righting to 90° AtmxHigh PrexPostxRecovery Interaction between pressure and 
time* 
F2, 35 =4.71, p=0.017 

Post Atm<High* 
t=-3.86, df=10 p=0.003 

Pre Atm=High 
t=0.20, df=10, p=0.848 

Recovery Atm=High 
U=7.00, df=10, p=0.093 

Atm PrexPost Pre<Post* 
U=5.00, df=10, p=0.041 

PostxRecovery Post=Recovery 
t=1.82, df=10, p=0.099 

PrexRecovery Pre=Recovery 
t=0.70, df=10, p=0.500 

High PrexPost Pre<Recovery* 
U=2.00, df=10, p=0.009 

PostxPre Pre<Post* 
t=5.72, df=10, p=<0.001 

PostxRecovery Post>Recovery* 
t=2.42, df=10, p=0.036 

Righting to 180° AtmxHigh PrexPostxRecovery Interaction between pressure and 
time* 
F2, 35 =4.71, p=0.017 

Post Atm<High* 
t=-3.75, df=10 p=0.04 

Recovery Atm<High* 
U=4.00, df=10, p=0.026 

Pre Atm=High 
t=-0.162, df=10, p=0.875 

Atm PrexPost Pre<Post* 
t=-2.45, df=10, p=0.034 

PrexRecovery Pre=Recovery 
t=0.01, df=10, p=0.094 

PostxRecovery 
 

Post=Recovery 
t=-2.10, df=10, p=0.062 

High PrexPost Pre<Post* 
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a Pressure atm (atmospheric), med (medium) and high refer to 0, 6 and 24 MPa, respectively 
b Time of measurement: Pre (activity prior to pressure exposure <2 h), During (while being exposed to pressure) Post (immediately after 
pressure exposure), Recovery (7-d after pressure exposure) 
c Dissolved oxygen experiments tested 0, 2 and 4 h of pressure duration  

	
 

  

t=-5.31, df=10, p=<0.001 
PrexRecovery Pre<Recovery* 

U=3.00, df=10, p=0.015 
PostxRecovery 
 

Post=recovery 
t=2.21, df=10, p=0.052 

0, 2, 4c Dissolved oxygen 0, 5, 10, 25 MPa 
 

0x2x4 h No interaction between pressure 
and time 
F6, 24 =0.10, p=0.975 

 Effect of pressure level 
F3, 24 =1.46, p=0.249 

 0x2x4 h Effect of time level 
F2, 24 =8.41, p=0.002 
0>4 h* 
0=4 h 
2=4 h 

24 Ambient 
×Acidified 

Feeding Indices 
 
 

AtmxMed 
 

Post 
 

Interaction between pH and 
pressure level*  
F1, 56 = 4.25, p=0.044 

Acidified Atm>Med* 
t=2.19, df=22, p=0.039 

Ambient Atm=Med 
t=-1.03, df=34, p=0.312 

Ambient 
×Acidified 

Med Ambient>Acidified* 
t=-3.18, df=22, p=0.004 

Atm Ambient=Acidified 
U=219.0, df=34, p=0.933 

Ambient 
×Acidified 

   Weight 
 

Atm×Med 
 

Atm=Med 
F2, 56 =1.06, p=0.353 
Ambient=Acidified 
F1, 56 =0.02, p=0.880 

Ambient 
×Acidified 

Righting to 90° Interaction between pH and 
pressure level* 
F1, 59 = 0.29, p=0.592 
No effect of pressure 
F1, 59= 1.69, p=0.199 

Acidified Atm<Med 
Ambient Atm<Med 
Ambient 
×Acidified 

No effect of pH 
F1, 59 = 1.04, p=0.312 

Atm Ambient>Acidified 
Med Ambient>Acidified 

Ambient 
×Acidified 

pH of the coelomic 
fluid 

Atm×Med Interaction between pH and 
pressure level* 
F1, 56 =4.81, p=0.032 
pH level 
F1, 56 =0.10, p=0.758 
Pressure level 
F1, 56 =0.10, p=0.749 
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Table C2. Complete statistical results for Leptasterias polaris health responses for the 

following experimental conditions: ambient pH/24 h, ambient pH/72 h, ambient pH/216 

and acidified pH/24 h. Asterisks indicate significance (p<0.05). 

 

Time (h) pH Experiment Pressure (atm, med, 
high)a 

Time relative to trial 
(pre, post and 
recovery)b 

Results 

24 Ambient Feeding Indices AtmxMedxHigh Post 
 

F2, 45 =0.40, p=0.669 
Feeding positions  H=2.47, df=2, p=0.291 
Weight  H=10.89, df=2, p=0.004* 

Atm×Med Atm<High* 
Atm×High Med<High* 
Med×High Med=High 

Righting to 90° AtmxMedxHigh H=10.28, df=2, p=0.006* 
Atm×Med Atm<High* 
Atm×High Med<High* 
Med×High Atm=Med 

Righting to 180° AtmxMedxHigh H=22.98, df=2, p=<0.001* 
Atm×Med Atm<High* 
Atm×High Med<High* 
Med×High Atm=Med 

Righting to 90° AtmxMedxHigh Recovery H=1.49, df=2, p=0.476 
Atm×Med Atm<Med 
Atm×High Atm<High 
Med×High Med<High 
 AfterxRecovery After<Recovery* 

H=16.63, df=1, p=<0.001* 
Righting to 180° AtmxMedxHigh Recovery H=1.09, df=2, p=0.579 

Atm×Med Atm<Med 
Atm×High Atm<High 
Med×High Med>High 
 AfterxRecovery After<Recovery* 

H=31.91, df=1, p=<0.001* 
72 Righting to 90° AtmxHigh PrexPostxRecovery Interaction between time and 

pressure* F2, 35 =4.71, p=0.017 
Post Atm<High* 

t=-3.86, df=10 p=0.003 
Pre Atm=High 

t=0.20, df=10, p=0.848 
Recovery Atm=High 

U=7.00, df=10, p=0.093 
Atm PrexPost Pre<Post* 

U=5.00, df=10, p=0.041 
PostxRecovery Atm=High 

t=1.82, df=10, p=0.099 
PrexRecovery Atm=High 

t=0.70, df=10, p=0.500 
High PrexPost Atm<High* 

t=5.72, df=10, p=<0.001 
PrexRecovery Pre<Recovery* 

U=2.00, df=10, p=0.009 
PostxRecovery Pre<Recovery* 

t=2.42, df=10, p=0.036 
Righting to 180° AtmxHigh PrexPostxRecovery Interaction between pressure 

and time*  
F2, 35 =4.71, p=0.017 

Post Atm<High* 
t=-3.75, df=10 p=0.04 

Pre Atm=High 
t=-0.162, df=10, p=0.875 
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a Pressure atm (atmospheric), med (medium) and high refer to 0, 6 and 24 MPa, respectively 
b Time of measurement: Pre (activity prior to pressure exposure <2 h), During (while being exposed to pressure) Post (immediately after 
pressure exposure), Recovery (7-d after pressure exposure) 
c 216 h experimental pressure duration experiment was replicated once so results were tested with 24 h  

 
  

Recovery Atm<High* 
U=4.00, df=10, p=0.026 

Atm PrexPost Pre<Post* 
t=-2.45, df=10, p=0.034 

PostxRecovery Post=Recovery 
t=-2.10, df=10, p=0.062 

PrexRecovery Pre=Post 
t=0.01, df=10, p=0.094 

High PrexPost Pre<Post* 
t=-5.31, df=10, p=<0.001 

 PrexRecovery Pre=Recovery 
U=3.00, df=10, p=0.015 

 PostxRecovery Post=Recovery 
t=2.21, df=10, p=0.052 

216x24c Feeding AtmxHigh Post No interaction between pressure 
and time 
F1, 43=1.564, p=0.218 
Effect of time* 
F1, 43=9.45, p=0.004 

Atm 24<216* 
High 24=216 
AtmxHigh Effect of pressure 

F1, 43=2.63, p=0.113 
24 Ambient 

×Acidified 
Feeding Indices Atm×Med 

 
Post 
 

No interaction between pressure 
and pH 
F1, 56=1.33, p=0.254 
Effect of pressure* 
F1, 56=5.09, p=0.028 

Ambient Atm=Med 
Acidified  Atm<Med* 
Ambient 
×Acidified 
 

Effect of pH* 
F1, 56=9.36, p=0.003 

Atm Ambient>Acidified* 
High Ambient=Acidified 

Feeding Positions Atm×Med 
 

No interaction between pressure 
and pH 
F1, 44 =2.54, p=0.118 
No effect of pressure 
F1, 44 =1.02, p=0.751 
No effect of pH 
F1, 44 =0.28, p=0.598 

Righting to 90° No effect of pressure 
F1, 56 = 2.20, p=0.143 
No effect of pH 
F1, 56 =0.50, p=0.482 

Righting to 180° No effect of pressure 
F1, 56 =0.36, p=0.553 
No effect of pH  
F1, 56 =0.07, p=0.789 

Righting to 90° AtmxHigh Recovery 
 

No effect of pressure 
F1, 56 =1.97, p=0.166 
Effect of pH* 
F1, 56 =1.36, p=0.007 

High Acidified<Ambient* 
Atm   Acidified=Ambient 

Righting to 180° AtmxHigh No effect of pressure  
F1, 56 =1.36, p=0.248 
No effect of pH 
F1, 56 =2.67, p=0.108 
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Table C3. Complete statistical results for Cucumaria frondosa health responses for the 

following experimental conditions: ambient pH/24 h, ambient pH/72 h and acidified 

pH/24 h. Asterisks indicate significance (p<0.05). 

Time (h) pH Experiment Pressure (atm, med, 
high)a 

Time relative to trial 
(pre, post and recovery)b 

Results 

24 Ambient  
 

Feeding response AtmxMedxHigh Post H=9.96, df=2, p=0.007 
Atm×Med Atm<Med* 
MedxHigh Med=High 
Atm×High Atm<High* 

72 MedxHigh U=12.00, df=2, p=0.394 
24 Cloacal movement 

 
AtmxMedxHigh H=8.96, df=2, p=0.011 
Atm×High Atm>High* 
Atm×Med Atm=Med 
MedxHigh Atm=High 
AtmxMedxHigh 
 

Recovery F2, 17= 1.56, p= 0.238 
PostxRecovery Interaction between pressure 

and time* 
F2, 35 = 8.85, p= <0.001 

 Effect of pressure* 
F3, 35 = 11.72, p=<0.001 

AtmxHigh Post Atm>High* 
MedxHigh Med>High* 
AtmxMed Atm=Med 
AtmxHigh Recovery  Atm=High 
MedxHigh Med=High 
AtmxMed Atm=Med 
AtmxMedxHigh PostxRecovery 

 
Effect of time* 
F1, 35 = 9.33, p= 0.005 

Atm Final=Recovery 
Med  Final=Recovery 
High Final<Recovery 
AtmxMedxHigh PrexPostxRecovery H=10.71, df=2, p=0.005 

PrexPost Pre<Post* 
PrexRecovery Pre=Recovery 
PostxRecovery Post=Recovery 

72 
 

MedxHigh 
 

PrexPostxRecovery 
 

Interaction between pressure 
and time* 
F2, 35 =4.21, p=0.025 
Effect of pressure* 
F1, 35 =4.60, p=0.040 

Pre Atm=High  
U=13.00, df=10, p=0.485 

Post Atm>High* 
t=5.41, df=10 p=<0.001 

Recovery Atm=High  
t=-1.57, df=10, p=0.147 

PrexPostxRecovery Effect of time* 
F2, 35 =6.08, p=0.006 

Atm PrexPost Pre=Post 
U=13.00, df=10, p=0.466 

PrexRecovery Pre=Recovery 
t=13.00, df=10, p=0.485 

PostxRecovery Post=Recovery 
U=10.00, df=10, p=0.240 

High PrexPost Pre>Post*  
t=-7.94, df=10, p=<0.001 

PrexRecovery Pre>Recovery*  
U=2.00, df=10, p=0.009 

PostxRecovery Post=Recovery  
U=12.00 df=10, p=0.394 

24 Predator-escape 
response 

AtmxMedxHigh Post 
 

F2, 17=2.89, p=0.087 
AtmxMed Atm=Med 
AtmxHigh Atm=High 
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MedxHigh Med=High 
72 MedxHigh Atm=High 

t=-0.571, df=10, p=0.580 
24 Anchorage time AtmxMedxHigh Post 

 
H=8.06, df=2, p=0.018 

AtmxHigh Atm<High* 
AtmxMed Atm=Med 
MedxHigh Med=High 
AtmxMedxHigh Recovery H=1.99, df=2, p=0.370 

PrexPostxRecovery No effect of pressure 
F2, 35 = 2.66, p=0.087 
No effect of time 
F1, 35 = 0.07, p= 0.795 

72 AtmxHigh 
 

PrexPostxRecovery 
	

No interactions between 
pressure and time 
F2, 35 =1.64, p=0.210 

 No effect of time  
F2, 35 =1.96, p=0.159 

 
 
Pre 
Post 
Recovery 

Effect of pressure 
F1, 35 =4.55, p=0.041 
Atm<High* 
Atm=High 
Atm=High 

24 
 

Ambientx 
Acidified 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ambient  
 
Acidified  
 
 
 
 
 
 
 
Ambient 

Cloacal movement AtmxMed Post No interaction between 
pressure and pH 
F1, 23=0.04, p=0.856 
No effect of pressure 
F1, 23=3.62, p=0.072 
No effect of pH 
F1, 23=0.003, p=0.952 

PrexPostxRecovery No interaction between time 
and pH 
F2, 66 = 0.36, p= 0.697 
Effect of time  
F2, 66 = 3.54, p= 0.035 
Effect of pH 
F2, 66 = 1.73, p= 0.193 

PrexPost Pre=Post  
t=1.99, df=2, p=0.014  

PrexRecovery  Pre>Recovery*  
t=1.99, df=2, p=0.051 

PostxRecovery Post=Recovery  
t=0.54, df=2, p=0.537 

PrexPostxRecovery No effect of pH  
F1, 66 = 1.73, p= 0.193 

Anchorage time AtmxMed Post No interaction between 
pressure and pH F1, 23=1.92, 
p=0.181 
No effect of pressure 
F1, 23=0.32, p=0.576 
Effect of pH*  
F1, 23=5.33, p=0.032 

Atm Ambient<Acidified* 
Med Ambient=Acidified 
 
 
 

PrexPostxRecovery  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pre 

Interaction between pH and 
time* 
F2, 63=5.09, p=0.009 

 Effect of pH* 
F1, 63=6.67, p=0.012 
Pre=Post=Recovery 
H=4.24, df=2, p=0.120 
Pre<Post* 
F2, 21=4.50, p=0.047 
Post>Recovery* 
F2, 21=5.91, p=0.025 
Pre=Recovery 
F2, 21=0.11, p=0.748 
H=4.24, df=2, p=0.120 

 Effect of time* 
F2, 63=3.55, p=0.035 
Ambient=Acidified 



293	

	
a Pressure atm (atmospheric), med (medium), high refer to 0, 6 and 24 MPa, respectively 
b Time of measurement: Pre (activity prior to pressure exposure <2 h), During (while being exposed to pressure) Post (immediately after 
pressure exposure), Recovery (7-d after pressure exposure) 

 
 

xAcidified  
Post 
 
Recovery 

H=2.77, df=1, p=0.096 
Ambient>Acidified* 
H=4.02, df=1, p=0.045 
Ambient=Acidified 
H=3.56, df=1, p=0.551 

Ambient 
xAcidified 

Feeding   Post Interaction between pressure 
and pH* 
F1, 23 = 7.28, p=0.014 

Ambient AtmxMed 
 

Atm<Med * 
t=-5.72, df=10, p=<0.001 

Acidified Atm=Med 
U=17.0, df=10, p=0.937 

Ambient 
xAcidified 
 

Med Ambient=Acidified 
t=-2.11, df=10, p=0.061 

Atm Ambient=Acidified 
U=10.0, df=10, p=0.240 

Predator escape 
response 

AtmxMed No interaction between 
pressure and pH 
F2, 17=2.89, p=0.087 
Effect of pressure* 
F1, 23 =4.75, p=0.041 

Ambient 0<6.5* 
Acidified 0=6.5 
Ambient 
xAcidified 

No effect of pH 
F1, 23 =1.03, p=0.322 


