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ABSTRACT 

Environmental design making modeling is a vital part in environmental decision 

making process to help to conclude which decisions should be made and how to find 

alternatives for each decision. However, the complicated circumstances, massive data, 

uncertainties and multiple criteria standards make the decision-making process 

sophisticated and hard to realize.  

This research focused on developing new environmental modelling methods by 

dynamic coupling of agent based modelling (ABM) and a multi-agent system (MAS) with 

PSO optimization algorithm and other kinds of traditional environmental simulation 

models for supporting environmental engineering decision making.  

Firstly, a novel multi-agent hybrid particle swarm optimization (MAHPSO) approach 

was developed for a wastewater treatment plant network design. A hybrid particle swarm 

optimization module was proposed to account for both continuous and binary variables, 

and then integrated with the concept of multi-agent to enhance solution convergence and 

stability. The feasibility and effectiveness of method was tested and demonstrated by a case 

based on the wastewater treatment plants network of the city of St. John’s, Canada. The 

results were compared with those of the traditional GA approach and the HPSO method. 

The proposed MAHPSO approach was approved to be capable of significantly enhancing 

solution convergence without sacraficing the computation time/efficiency, and of 

providing optimal results with high accuracy and repeatability. The approach could be used 
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as an effective evolutionary algorithm for complex system optimization and planning 

problems in environmental and other fields. 

Secondly, a simulation-based multi-agent particle swarm optimization (SA-PSO) 

approach was developed for supporting dynamic decision making in offshore oil spill 

responses. The ABM as an emerging simulation method was introduced into oil spill 

responses in the first time to simulate the response actions with consideration of dynamic 

interactions among individual devices and/or response centre. A PSO method was further 

adopted to optimize the allocation of response devices/vessels among spill sites and 

warehouses with minimal total cost and time. Through a hypothetical oil spill case, the 

proposed SA-PSO approach showed strong capability and efficiency in reducing response 

time and optimizing responses. The results indicated that the proposed SA-PSO approach 

could efficently decrease the total response time, and dynamically optimize the allocation 

of response equipment. It had the strong potential to be applied to decision making 

problems in environmental and other fields. 

This research developed two new modeling methods for supporting WWTP network 

designs and oil spill responses, respectively. The results of two case studies demonstrated 

the value of the integration of emerging artificial intelligence approaches with traditional 

environmental simulation models for facilitating environmental engineering and 

management.  
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Nowadays, computer models have been extensively developed and used by 

environmental researchers. Decision supporting systems (DSS), which have been 

around since the 1950/60s, are sophisticated (Bulling, 2014) and, to some extent, 

intelligent systems that support people in their decision making by providing integrated 

simulation, optimization and info-analysis functions (Schmolke et al., 2010; Stillman 

et al., 2016). Intelligent agents are intelligent software or computer system that contain 

essential properties such as learning, social ability, reactivity and pro-activeness and 

perform a series of complex tasks autonomously (Kumar et al., 2016). Due to the 

fundamental requirement for DSS to achieve the objectives autonomously, interactively, 

and dynamically, an intelligent agent could be a potential aspect to realize this. Agent 

based modeling (ABM) is formed from agents that interact within an environment. 

Agents could be not only individual computer programs, but also, more generally, 

unique portions of a program indicating social actors, such as, the individuals, 

organizations, or bodies (Gilbert,2008). Agents are autonomous, goal-oriented and pro-

active. Decision making models with agents have a wide application range from 

classical utility maximization in the presence of complete and static information to 

complex dynamic planning problems particularly in the areas of business and 

management (Bulling,2014). Under general terms, an agent does not work individually, 

1.1 Background 



3 

  

interaction is also a vital characteristic for an agent. It interacts with environmental 

conditions and other agents situated in the same environment. Multi-agent systems 

(MAS) are systems comprised of multiple, self-interested agents (Timm et al., 2006). 

Multi-agent decision making (MADM) with the consideration of multiple agents in a 

decision making system has a key characteristic that the actions and decisions of agents 

are autonomous but interactive, and the goals of agents are possibly different, even 

contradictory (Yu et al., 2012). Outcomes and behaviors from MADM, reflected by 

complex interactions, could be unpredictable and unforeseen, but may be relatively 

close to the results from real-world experiments. The process of good decisions is not 

easy and requires agents to act strategically and follow given rules (Chennaoui et al., 

2014). The behaviors of agents are based on their specific strategies. A strategy is a 

methodology which the agent implements to achieve its goals while following the basic 

rules (Ilieva, G., 2011). Agents need to take self-control mechanisms, inter-judgement 

conditions of communication, cooperation and competition into consideration. The 

number of required skills is vast and so is the number of tools and techniques relevant 

to MADM (Yuan et al., 2015). The flowchart, integrated with Bulling (2014)’s study, 

indicates a general overview for agent-based and multi-agent decision making (Fig. 1.1). 

Due to the strengths of agent based modeling and multi-agent systems on decision 

making systems, they have a vast potential to be applied to environmental problems, 
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although such applications are rarely reported (Wong, et al., 2012; Lim, et al., 2013; 

Chao, et al., 2015) 



5 

  

 

 

Figure 1.1 Overview of aspects relevant to agent based and multi-agent based decision making (Bulling, N., 2014). 
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The accelerating pace of industrialization, urbanization and population growth, 

which our planet has faced over the last one hundred years, has considerably increased 

environmental pollution and habitat destruction, and negatively affected water, air and 

soil quality. The pollution and contaminated sites threaten human health, animal and 

plant life on land and in the ocean. Further, it would cause a variety of unforeseen 

negative impacts, risks and liabilities to the environment and society (Depellegrin et al., 

2013). Wastewater disposition and offshore oil spill contamination response are two of 

the most intractable environmental problems. They also present two different but 

representative types of environmental decision making. This research chose them as 

case studies for methods testing and demonstration. The following provides discussions 

on these two types of environmental decision making, and the associated challenges as 

well as the opportunities for application of agent based DSS methods. 

In Canada, a high proportion of about 90% population is served by a wastewater 

collection and treatment system. The range of treatment level is from no treatment to 

very sophisticated and thorough treatment (Environment Canada, 2012). A mature and 

efficient wastewater treatment system could reduce the environmental and health 

impacts (Luciano et al., 2012). These impacts can include negative effects on fish and 

wildlife populations, oxygen depletion, beach closures and other restrictions on 

recreational water use, restrictions on fish and shellfish harvesting and consumption 

and restriction on drinking water (Spellman, 2009; Rivas et al., 2011). Therefore, 
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decision support for treatment network planning and treatment technique selection has 

been an effective approach to wastewater management and environmental protection. 

The previous wastewater treatment decision making studies mainly focused on the 

following three aspects: (1) Process simulation and cost analysis: Simulate the main 

processes of a wastewater treatment plant and integrate a standardized cost estimation, 

in order to analyze and optimize the treating cost under multiple scenarios. Further, 

design and control optimization could be included in some cases (Gillot et al., 1999; 

Moles et al., 2001; Zhang, B., 2015). (2) Process analysis and efficiency in optimization: 

Most researchers applied diverse optimization approaches with experiments. The fitting 

function was usually under specified cost constraints. For example, response surface 

methodology (RSM) is a common method used for this kind of problems (Kaksonen et 

al., 2003; Körbahti, 2006; Wang et al., 2007). (3) Treatment system optimization: The 

objective functions usually consider capital and operational costs during a certain 

period of concern. The aim is to optimize the entire treatment/reuse system and its 

performance. The formulated constraints could include the water quality indicators 

(such as COD/BOD, TN, and TP) as the standards (Feng et al., 2004; Ponce-Ortega et 

al., 2009).  

In general, most of previous studies focused on individual treatment unit or system. 

The integrated consideration of the entire wastewater treatment network in a city or 

even among cities would have great values in efficiency improvement and cost 
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reduction from municipalities and regions. However, limited efforts have been reported 

in the literature. It is worth of asking: Is it possible to develop an effective and efficient 

network planning associated with multiple wastewater treatment plants using different 

selections of treatment techniques to achieve both environmental and economic goals 

for a long-term operation? This triggered the presented research by developing a new 

agent based optimization method for WWTP planning and design. 

Offshore oil spill accidents are commonly considered as one of the most harmful 

environmental disasters in terms of severe biological and socioeconomic consequences. 

Major accidental oil spills can cause catastrophic impact on oceans and shorelines 

around the world, constituting a major challenge for operational management, strategic 

contingency planning, and response decision making (Wirtz et al., 2006). For instance, 

the Exxon Valdes oil spill in 1989 cost 2,259 billion U.S. dollars for clean-up operations 

(Exxon Valdes oil spill trustee council, 2001). The spill caused serious damage and 

threatened the ecological system including commercial and recreational fishing, 

tourism and other enterprises linked with natural resources (Gill et al., 2012). The 

Arabian Gulf has a long history of oil spill since 1967, especially, the 1991 Al-Ahmadi 

oil spill releasing 0.5-1.0 million tonnes of oil (Danish, 2010). The Prestige oil spill in 

2003 on the Galician coasts affected 1,000 km of vulnerable coast and 745 beaches with 

70 million U.S. dollars in economic losses from direct income and $108 million U.S. 

dollars in clean-up operations (Garza-Gil et al., 2006; Sanctuary et al., 2006). The BP 
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oil spill in 2010 were the most ecologically damaging release of oil in North American 

history. An estimated 171 million gallons of oil had leaked into the highly productive 

and biodiverse Gulf of Mexico (Dickey et al., 2012; Gill et al., 2012). Contingency 

management thus aims to simply keep the drifting oil away from sensible coastal areas 

(Liu et al, 2005; Fingas, 2011). Due to the complex features of the marine and coastal, 

dynamic meteorological and oceanic conditions system, and different ecological and 

economic values of coastal areas under risk, decision making during a oil spill response 

has been reported as a critical but challenging task. Even if not in the response process 

itself, at least in the aftermath and during the political evaluation of the response 

strategy, in which various interested groups such as primate and public organizations, 

NGOs, scientific institutions and local communities are involved. How to time-

effectively and collectively consider interest from diverse stakeholder, capacity of 

response systems, and complex conditions of environment into spill response decision 

making has been promptly reloaded as critical and necessary but challenging. 

Most of the previous offshore oil spill decision making studies mainly focused on 

the following three aspects: (1) Risk-based decision making approach: Add risk 

assessment algorithms into the decision-making models, in order to minimize risks 

from spilled oil to ecosystem services. Most studies used static models or statistical 

models to analyze data from previous spill accidents or hypothetic scenarios as a case 

study with risk assessment algorithms to examine model responses (Carriger, et al., 
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2011; Psarros, et al., 2011). But these types of models could not fully reflect the 

consequences from the accidents, and hard to realize the real-time decision making and 

modify the scenarios with given uncertainties constantly. ABM, as a dynamic model, 

could analyze the model scenarios timely, and consider the risk impacts from the 

complicated and interacted marine ecosystem. (2) Simulation-based decision making 

approach: mainly focus on applying process simulation with response fate and transport 

modeling to optimize the scenarios by minimizing the response time and total cost This 

type of models Simulate the trajectory of oil spills based on historical data; developing 

what-if scenario models with uncertainty to improve the pre-accident planning; review 

and simulate the models with experimental equations to shed light on the political, 

technical, and financial issues that have influenced the decision-making process and are 

likely to influence new approach application, mainly on chemical dispersant. (Etkin, 

D.S., 1998; Li et al., (2012, 2014); Boufadel, et al., 2014; Leschien, et al., 2014). Two 

main challenges indicated that firstly, models hard to coupling simulation models with 

optimizing decision making models dynamically. Secondly, current models showed the 

weakness on the realization of complicated high-interacted simulation situations. Agent 

based modeling coupling with PSO optimization can, to some extent, solve the 

problems. 

Furthermore, few studies on offshore oil spill emergency response considered the 

role of dynamic decision making system and the response on a harsh environment, such 
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as North Atlantic Ocean, Canada. It would be valuable to develop a dynamic decision 

making system to deal with the cleanup response for the offshore oil spill accidents on 

harsh marine environments, and generate a novel approach by coupling simulation 

model and optimization algorithms for making an information-exchanging decision 

making system. 

To help address the above challenges, this research aimed to develop novel agent 

based simulation and optimization approaches for environmental planning and decision 

making. The developed approaches will be applied for two typical environmental 

problems, wastewater treatment plants network design and offshore oil spill response 

decision making. The major research tasks are as follows: 

(1) To develop a new hybrid particle swarm optimization version (HPSO) method to 

deal with non-linear problems with both continuous and discrete variables; to 

integrate HPSO with MAS into a new multi-agent based hybrid particle swarm 

optimization (MAHPSO) approach to enhance the solution convergence and 

stability; and to exam the practicability and efficiency of the proposed approach 

through wastewater treatment network planning case study simplified in 

Newfoundland and Labrador from the real system in the city of St. John’s, and 

comparison with genetic algorithm (GA) and HPSO method; 

1.2 Objectives 
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(2) To develop a new simulation-based multi-agent particle swarm optimization (SA-

PSO) approach to facilitate the simulation and optimization coupling 

environmental decision making; and to apply the proposed approach for a 

hypothetical offshore oil spill case in North Atlantic Ocean to test its feasibility 

and capability along with a competition with the traditional short distance selection 

(SDS) method, which was operated by choosing nearest spills closed to skimmer-

ships.  

This thesis consists of five chapters. Chapter 1 outlines the general research 

background and scopes, research objectives and thesis structure. Chapter 2 provides the 

literature reviews of the relevant topics including (1) current development and 

application of agent based approaches, (2) relevant applied environmental optimization 

methods and applications of wastewater treatment system design and network planning, 

(3) decision making methods and applications for offshore oil spill emergency 

responses. Chapter 3 presents the development of MAHPSO approach. Chapter 4 

describes the SA-PSO approach and supporting a case study on dynamic decision 

making for offshore oil spill responses. Finally, Chapter 5 draws conclusions of this 

research with recommendations for future work. The structure of the thesis is illustrated 

in Figure 1.2. 

1.3 Structure of the Thesis 
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Figure 1.2 Roadmap of the research 
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CHAPTER 2: LITERATURE REVIEW 
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Intelligence implies a certain degree of autonomy, which in turn, requires that ability 

to make independent decisions. Truly, intelligent agents could be an effective means to 

make such decisions. An agent is an entity that functions continuously and autonomously 

in an environment in which other processes take place and other agents exist. In most 

dynamic domains, a designer cannot possibly foresee all situations that an agent might 

encounter, and therefore, the agent needs the ability to learn from and adapt to new 

environments. This is especially valid for multi-agent systems, where complexity increases 

with the number of agents acting in the environment (Kudenko et al, 2003).  

From a practical modeling standpoint, a traditional intelligent agent would possess the 

following general characteristics (Fig 2.1) (Jeusfeld, 2003; Macal et al., 2008; Springer, 

2016): 

- Self-identification: An agent is an identifiable, discrete, or modular, 

individual with a set of characteristics and rules governing its behaviors and decision-

making capability. Agents are self-contained. The discreteness requirement implies 

that an agent has a boundary and one can easily determine whether something is part 

of an agent or not, or is a shared environment characteristic. 

- Autonomy: An agent is autonomous and self-directed. Agents operate 

without direct intervention from the user, and have some sort of control over their 

2.1 Agent Based Approach 

2.1.1 What is an agent? 
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actions. An agent can function independently in its environment and in its interactions 

with other agents for the limited range of situations that are of interest. 

- Reactivity: Agents perceive their environment and respond to changes, 

which is also called learning behavior. An agent can learn and adapt its behaviors 

based on experience. It can get information from the environment or other agents, so 

that it can use this kind of information to update its situation. 

- Pro-activeness: agents not only react in response to the environment, but also 

exhibit goal-directed behaviors. An agent, which is goal-directed, has goals to achieve 

with respect to its behaviors. This allows an agent to compare the outcome of its 

behavior to the goals that it is trying to achieve.  

- “Social” ability: An agent is social, interacting with other agents. It is located 

in an external environment in which the agent can interact with other agents. Agents 

have protocols for interaction with other agents, and can recognize and distinguish the 

traits of other agents. 

In environmental planning and decision making problems, high level of 

interactions and complicated decision-making rules are usually required. Interactions 

between individuals often cause nonlinear effects in a tremendous population level. 

Agent-based modelling is the only way that allows for the explicit modelling of social 

interaction and the social networks that result from it (Klabunde & Willekens, 2016). 

In agent-based modelling, the focus is on individual agents, their decision processes, 

their interactions with other agents, and the effects of that interaction on decision 

processes. Differences between individuals can be illustrated easily because agent-

based models can act as microsimulation models at their core. 
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This represents a huge opportunity for environmental modelling, as networks shape of 

the environmental planning and decision. Information on optimization candidates, 

simulation particles, response decision making center is transmitted through these 

networks. As shown in Figure 2.1, agents can have different attributes, behavioural rules, 

decision making rules, and can react and reflect with the environment with their specific 

characteristics. Then agents can acquire and store useful information to help update their 

behaviors and decision makings. Thus, an environmental planning and decision making 

model with nonlinear decision making and complicated simulation situations can be 

realized through a series of basic simple rules and autonomic agents. 

 

 

Figure 2.1 Basic characteristics and behaviors of agents (Macal et al., 2008) 
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Based on the objective need, agents would undertake very different tasks, and exhibit 

various behaviors. Due to previous research, a great number of agent types have been 

indicated as follows (Fig 2.2), for example, the mobile agent, autonomous agent goal-based 

agent, reactive agent, and some other types. Each agent could have more than one property, 

and have multiple tasks in the system. 
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Figure 2.2 The types of agents 
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Two main categories for intelligent agents can be indicated as agent based modelling 

(ABM) and multi-agent system (MAS), based on different application targets. ABM is 

where agents individually assess its situation in the environment and make decisions on 

the basis of a set of rules. It is mainly used on non-computing related scientific domains 

including biology, ecology and social science (Niazi et al, 2011). Comparatively, MAS is 

a system modeled as a collection of agents. It reflects and analyzes the relationships 

between agents. MAS is a computerized system composed of multiple interacting 

intelligent agents within an environment. The current research on MAS mainly focuses on 

the aspects of online trading, disaster response, and modelling social structure (Schurr, et 

al., 2005; Rogers et al., 2007; Genc et al., 2013). Until now, rare studies on ABM and MAS 

have been applied to the environmental decision making problems. 

An agent-based model (ABM) is a diverse research area concerned with the building 

of intelligent software based on the concept of “agent” (Niazi et al., 2011). It is one of a 

class of computational models for simulating the actions and interactions of autonomous 

agents (both individual and collective entities such as organizations or groups) with a view 

to assessing their effects on the system. As shown in Fig 2.3, each agent has individual 

behaviors, social interaction, and learning capacity from others and environment. An agent 

could be a representation of an interacting social component of a large system used to 

explore emergent global behavior in a simulation (Gilbert et al., 2005; Niazi et al., 2011). 

2.1.2 Two main agent based approaches 
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Agent based models are also called individual-based models (IBMs) particularly in ecology 

fields (Grimm et al, 2005; Cohen et al, 2014). The applications of ABMs or IBMs for 

research and management are growing rapidly in a number of fields. Based on the literature 

review, ABMs are used on not only non-computing related scientific fields including 

biology, ecology, and social science (Niazi et al, 2011), but also dynamic-computing 

related academic domains for economy, business, and even earth science and 

environmental science (Gazda, 2012; Baptista et al, 2014; Blanchart et al, 2009; Banitz et 

al, 2015). Even though there is considerable overlap, agent based modelling is related to, 

but still different from, the concept of multi-agent systems (MASs) or multi-agent 

simulation (Fig. 2.4) in that, the goal of ABM is to look for explanatory insight into the 

collective behavior of agents obeying simple rules, typically in natural systems. But MAS 

is more focusing on solving specific practical or engineering problems (Niazi, 2011). The 

terminology of ABM is used more often in the sciences group behaviors simulation (Niazi, 

2011), MAS research may point at an appropriate approach in engineering including online 

trading, disaster response, and modelling social structures (Rogers et al., 2007; Schurr et 

al., 2005; Sun et al., 2004). The general characteristics of several general ABM model 

platforms that can be used for solving environmental problems shown in Table 2.1. With 

the development of software. Nowadays, most of the platforms can deal with ABM and 

MAS, respectively. 
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Figure 2.3 An abstract model scheme for agent based modeling approach 

 (Bandini et al., 2009) 

 

Intelligent agents can be used as autonomous, flexible problem-solving entities which 

operate in a specific environment. Agents meeting in the environment may interact and 

cooperate, and thus form a multi-agent system (MAS). MAS is defined as consisting of 

heterogeneous agents that are generally self-motivated and act to fulfill internal goals, but 

may also share tasks with others. No global or centralized control mechanism exists in the 

system (Kirn, S. et al., 2006). Agents must reason to coordinate their actions, plans, and 

knowledge. Agents, in the systems, can cope with situations in a way involving inconsistent 

knowledge about the environment (i.e., world, other agents), partial domain representation, 
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and changing, overlapping plans resulting from the need to interact with other agents (Krin. 

et al., 2006). 

A multi-agent system (MAS) is a computerized system composed of multiple 

interacting intelligent agents within an environment. Multi-agent systems can be used for 

problems that are difficult or impossible for an individual agent or a monolithic system to 

solve. Some examples are shown in Fig 2.4. Which reflect intelligence in MAS may include 

some methodic, functional, procedural approach, algorithmic search or reinforcement 

learning. Based on Zhao et al. (2005), the agents in a multi-agent system have the following 

characteristics: 

a. Agents live and act in a given bounded environment. 

b. Agents are able to impact its local environment, and to interact with other 

agents in its local environment. 

c. Agents are at least partially independent, self-aware, sociable, and 

autonomous. 

d. Agents attempt to achieve particular goals or perform particular tasks. 

e. Agents are able to respond in a timely manner to changes that occur in them 

according to their learning ability. 
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Figure 2.4 Examples of the model schemes for multi-agent system 

(Source: http://jacamo.sourceforge.net/?page_id=40, Garcia et al., 2002) 
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The implementation of an operational behavior with MAS requires the interaction 

between agents. Krin et al. (2006) identifies that the presence of agents should be capable 

to act and /or communicate, the constructions can serve as a meeting point for agents, and 

dynamic elements allow for local and temporary relationships between agents. Two basic 

types of communication are shown as follows (Krin et al., 2006): 

- Blackboard Communication: It is the most general approach for 

communication, which is interaction via the environment where an action of an agent 

causes an effect which is perceivable and interpretable by other agents (Fig. 2.5). By 

exchanging information, agents in environmental planning and decision making issues 

update their behaviors by learning from other agents in order to better fit the 

requirements decision making rules and meet the limitation from the living 

environment. 

 

 

Figure 2.5 The blackboard architecture 

- Message Passing: Communication based on varying access rights influenced 

by the information provider for accessing information within the system is called 
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directed communication. Directed communication in MAS is performed by message 

passing, where a message is sent from one agent to another, and the environment is 

used only as a means of transportation (Fig 2.6) 

 

 

Figure 2.6 Message passing 

 

In such large-scale MAS systems, it is necessary to develop institutionalized 

coordination through reusable structures, providing for flexible system behavior. Four 

basic types of structure inferred by Krin et al. (2006) are indicated as follows: Star 

(centralized), ring (decentralized), chain (hierarchy), and network (democratic) (Fig. 2.7). 

The structures in MAS are characterized by three aspects: capacity, duration, and decision-

making (Krin et al., 2006). 

a) Capacity: Enable to provide a solution of the same problem sets at a large 

scale or in a shorter period; 

b) Duration: Structures should persist over the complete life time of MAS. 

According the goals, the duration could be short to mid to long term, static or dynamic.  

c) Decision-making: The scope ranges from decision makers appointed at 

design time to democratic selection algorithms during run-time. The main criteria of 
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decision-making is for choosing an appropriate level of decision making capabilities 

as well as capability management depends on the balance of flexibility and 

coordination efficiency.  

 

 

 

Figure 2.7 Interaction structure of multi-agent system 

 

During recent years, as the use of agent based models for research in different fields 

is growing, the number of available modelling software platforms increases. Numerous 

ABM platforms, along with a set of software implementing frameworks and simulation 

2.1.3 Agent based simulation software tools 
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tools, are developed (Railsback et al., 2006). However, due to the characteristics of high 

interactions, large transported information and huge variable population, environmental 

ABM models need some specific ABM software platform in order to enhance modelling 

computing speed and behaviors. But each software has its own scope of applications. 

Therefore, first thing is to find the pros and cons of current ABM software platform, and 

choose one proper software to use. Based on the manual descriptions and previous studies, 

only a few tools have the potential to be applied in the decision making for environmental 

problems. Table 2.1 shows the general characteristics of several powerful ABM platforms 

The first ABM software is called Swarm (http://www.swarm.org). Swarm is a 

collection of open-source libraries, that were originally developed at the Santa Fe’ Institute 

in New Mexico. The code is written in Objective-C, but now also available for simulations 

in Java. The architecture of Swarm enables the implementation of models in a large variety 

of research fields. Perrone (2005) discussed general principles of the agent based platforms 

of StarLogo (the precursor to NetLogo), Repast, Ascape, and Swarm. Swarm was 

seemingly evaluated as the most powerful one, but also mentioned as the most difficult to 

learn. Swarm stopped updating the program from around 2010, and started the update again 

recently in 2016.  

Repast (http://repast.sourceforge.net) was started as a Java implementation of Swarm, 

but nowadays, it has diverged significantly from Swarm to become an independent 

platform for agent. It was originally developed at the University of Chicago and is now 

especially used for research in social science. Repast has numerous good tutorials and a 

mailing list which helps individuals start easily. However, the background knowledge of 
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Java is required. There are two main software components including Repast Simphony 

2.3.1 and Repast for High Performance Computing 2.1, both released in 2015. First 

component is a richly interactive and easy to learn Java-based modeling system that is 

designed for use on workstations and small computing clusters. The other one is a lean and 

expert-focused C++-based modeling system that is designed for use on large computing 

clusters and supercomputers. The environment also includes flowcharts, graphing tools, 

and automated connections to external tools. 

MASON (http://cs.gmu.edu/~eclab/projects/mason/), is developed as a relatively new 

Java platform, mainly for MASs, which is a discrete-event multi-agent simulation library 

core focusing on high execution speed. This library was developed by the George Mason 

University’s (GMU) evolutionary computation laboratory and the GMU center for social 

complexity. MASON is designed to be the foundation for large custom-purpose Java 

simulation obtaining with an optional suite of visualization tools in 2D and 3D. In addition 

to Java and Objective-C software, the Logo family of platforms has followed quite a 

different evolution. MASON and Repast has a faster execution speed, especially dealing 

with complex models (Railsback et al., 2006). 

NetLogo (http://ccl.northwestern.edu/netlogo/) is a multi-agent programmable 

modeling environment. The primary purpose of NetLogo was used to provide a high-level 

platform that allows even elementary school students to build and learn from simple ABMs. 

NetLogo has been used by tens of thousands of students, teachers and researchers 

worldwide. And it also powered HubNet participatory simulations, which can link the 

program with personal terminal device (i.e., a networked computer or Texas Instruments 
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graphing calculator) to realize the simulations in the class and let students take part in 

enacting the behavior of a system. However, NetLogo, now, contains many sophisticated 

capabilities (behaviors, agent lists, links, graphical interfaces, etc.). Moreover, the new 

version obtains both 2D and 3D platforms and is available for multi-scenario runs with the 

function of BehaviorSpace. NetLogo has become a relatively mature ABM and MAS 

software platform with specific primitives developed from StarlogoT. Besides, NetLogo 

includes multiple types of extensions, in order to meet the requirements of costumers to 

accomplish their goals. Unlike the previously mentioned tools, NetLogo models are not 

object-oriented, but programmed procedurally. Railsback et al. (2006) reviewed the 

feasibility and execution speed of MASON, NetLogo, Repast, and Swarm. NetLogo was 

indicated to be the most professional platform in its appearance and documentation. And it 

could have the widest application scope compared with other platforms. Although its 

execution speed for complex models is relatively weak, the authors declare that it is not a 

significant limitation for most applications. Netlogo could be the easiest-to-use software 

platform of all. Bergen-Hill et al. (2007) gave a suggestion of the choice of a toolkit during 

the different stages: to use a simple programming software, like NetLogo, which allowed 

fast development for prototyping models; and later used a system capable of distributed 

batch-runs, such as Repast. 

Except these four ABM platforms, there are still have a number of ABM platforms, 

including, ADK, AnyLogic, AOR Simulationused, iGen, JADE, SeSAm, etc., that can be 

used for other research purposes, such as large scale distributed applications, discrete 

events, human performance modeling, embeddable cognitive agents, graph theory, etc.  
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Table 2.1 General characteristics of several powerful ABM platforms 

Platform Primary Domain 
Programming 

Language 
GIS 3D User Support 

Swarm 
General purpose 

agent based 

Java; 

Objective-C 
- - 

Wiki; tutorials; examples; 

documentation; FAQ; selected 

publications; mailing lists 

MASON 

General purpose; 

social complexity, 

physical modeling, 

abstract modeling, 

AI/machine learning 

Java Yes Yes 

Mailing list; 

documentation; Tutorials; third 

party extensions; reference 

papers; API 

Repast Social sciences 

Java (RepastS, RepastJ); 

Python (RepastPy); Visual 

Basic, .Net, C++, J#, C# 

(Repast.net) 

Yes Yes 

Documentation; mailing 

list; defect list; reference 

papers; external tools; tutorials; 

FAQ; examples 

NetLogo 

Social and natural 

sciences; Teaching and 

training purpose models 

NetLogo Yes Yes 

Documentation; FAQ; 

selected references; tutorials; 

third party extensions; defect 

list; mailing lists 
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Due to the short period of development, ABMs and MASs software platforms still 

contain obstacles for the purposes of researchers. Based on previous studies and the 

author’s experience, the problems mainly result in three aspects.  

- First, the difficulty of model compatibility, and the lack of specific 

mathematic algorithms (i.e. optimization toolbox and calculus calculation programs);  

- Second, an absence of training in software skills in the education of 

researchers in many fields that use ABMs and the short of essential computer and 

programming skills needed for developing ABMs (Railsback et al., 2006);  

- Third, the limitation of software functions and un-optimized memory usage 

cannot satisfy the demands for a portion of research purposes.  

The shortcomings limit the application of agent based models, but the software 

version updates and extension developments provided by developing organizations could 

partly relieve the defects. 

In my master study, I developed my own optimization programs for two studies. In 

my first study, I developed the program by Matlab in order to satisfy the requirement of 

the coupling of complicated functions, constraints and developed PSO version. Because 

the new version of MAHPSO was developed by myself and no current program can be 

applied. For the second study, based on the specific advantages of NetLogo, which were 

fast calculation speed for general complex models, easy to learn, powerful model 

compiling capacity, and good expandability, the second study program was developed with 
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Netlogo in Starlogo language. The whole program was developed by myself including the 

simulation and optimization sections. 

In recent year, agent, as a novel dynamic modeling and decision making approach, 

has been applied in all fields. In the environmental field, Balbi et al. (2013) represented a 

spatial agent based model for assessing strategies of adaptation to climate and tourism 

demand changes demonstrated in a winter tourism socio-ecosystem of Auronzo di Cadore. 

Multiple future scenarios including snow cover, temperature, tourist conditions, and 

market competitions are considered. Villamor et al. (2014) developed an agent based model 

for the social-ecological system of rubber agroforests builds on LUDAS framework. The 

proposed model demonstrated to reduce carbon emission effectively, and test to improve 

net returns of local rubber agroforest farmers. Further, Biodiversity performance measures 

can be designed to make payments for agro-biodiversity schemes conditional. Tang et al. 

(2015) proposed a multi-agent based model for carbon emissions trading (CET) in China 

with multiple CET simulated designs to find an appropriate policy, the impacts of CET on 

the economy and environment were analyzed. The results confirmed the effectiveness of 

the proposed model and gave helpful insights into CET design. 

In most model-based research fields, mathematical optimization is the selection of a 

best element (with regard to some criterion) from some sets of available alternatives. In the 

2.1.4 Application in environmental field 

2.2 Environmental Optimization Methods 
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majority of cases, an optimization problem consists of maximizing or minimizing an 

objective function by systematically choosing input values from within a defined set and 

computing the value of the function. The generalization of optimization theory and 

techniques to other formulations comprise a large area of applied mathematics. More 

generally, optimization includes finding "best available" values of some objective 

functions given a followed domain (or input). A variety of different types of objective 

functions and different types of domains would be included in the optimization problem. 

With the function of constraints, the objective functions would adjust their available 

domain range within iterations or updates. 

In my studies of decision making and planning systems, optimization methods acted 

as a vital section to increase the efficiency and decrease the budget and operation costs for 

the target system. Due to the advantages of fast computation speed, high compatibility with 

agent based modeling, and high capacity of variants, particle swarm optimization (PSO) 

was chosen as the main optimization algorithm for two studies in the later chapters. In 

addition, genetic algorithm (GA) was a traditional meta-heuristic approach, which has been 

developed widely in computer science and operations research. According to the strengths 

of high efficiency and high stability, GA was used to test the efficiency of the developed 

MAHPSO approach in section 3. The foundational knowledge of these two optimization 

algorithms are shown in the following aspects. 

2.2.1 Particle swarm optimization 
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Particle swarm optimization is a computational method to optimize a complicated 

problem by iteratively trying to improve a candidate solution, which is also called particles, 

and moving the particles around the multi-dimensional searching space according to simple 

mathematical formula over the particle’s position and velocity (Parsopoulos et al, 2010; 

Olsson, 2011). The PSO is a stochastic, population-based computer algorithm modeled on 

swarm intelligence. Swarm intelligence is based on social-psychological principles and 

provides insights into social behavior, as well as contributing to engineering applications 

(Olsson, 2011; Lin et al, 2015). Each particle’s movement is influenced by its current 

position, its local known position and is also affected by global best known position, which 

are updated as better positions are found with the interaction of other particles (Fig. 2.8) 

(Eberhart et al, 1995; Kennedy et al, 1997; Zhao et al, 2005). In PSO, each particle 

represents a potential optimal candidate. They work together in order to enhance the 

capacity to reach the optimal result through interactions. 
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Figure 2.8 The basic flowchart of update process for PSO (Wang et al., 2010) 

 

PSO was originally developed by Eberhart and Kennedy in 1995, and was first 

intended for simulating social behaviour. It mimics the movement of birds in a flock 

sharing information with each other (Acan et al., 2005), and the way they interact with each 

other is defined by topology. PSO is a meta-heuristic as it makes few or no assumptions 

about the problem being optimized and can search very large spaces of candidate solution. 

The basic update algorithms and the detailed optimized process steps are shown as follows. 

However, the traditional PSO algorithm still has its own disadvantages, which indicates 

that it is easy to fall into local optimum in high-dimensional space and has a low 

convergence rate in the iterative process (Aote et al, 2013; Li et al., 2014). In order to 

conquer this limitation, a set of PSO variations has been developed. Numerous variants 

based on a basic PSO algorithm are possible.  



37 

  

In the traditional PSO, each particle represents a solution to the problem and travels 

the search space looking for the global minimum or maximum. Particles update their 

positions by flying around in a multi-dimensional search space until a relatively stable 

position has been selected or the stop criteria has been satisfied (Shumugalatha et al., 2008). 

To environmental planning and decision making problems, the traditional PSO cannot 

solve the problem with mixed variables (continuous and discrete) and cannot have a good 

accuracy for high non-linear optimization problems. To address the shortcomings, first, I 

developed a hybrid PSO to fix the problem with mixed variables. Second, adding MAS in 

updating step to increase the converge and accuracy of the proposed optimization method. 

Each particle allocates in a multi-dimensional space according to the number of variables 

or requirements, and a particle owns two characteristics: coordinates (position) and its 

corresponding flight speed (velocity). Each particle’s position represents a candidate for 

optimal solution in available value ranges. At the initial process, the positions and 

velocities of particles are valued randomly. During each iteration, the previous local best 

position of a particle is recorded and indicated as pBest, and the global best particle position 

among all the particles in the group is denoted as gBest. Each particle updates its velocity 

and location based on the interaction with its own experience, local best position and global 

best position. The acceleration of movement towards the best location of individual and 

the group is weighted randomly. Therefore, the particle travels to the new position 

depending on its new velocity. The updating equations for particle velocity and position 

are shown in Eq. 2.1 and Eq. 2.2 as follows: 

𝑣𝑖𝑑 = 𝑤 ∙ 𝑣𝑖𝑑 + 𝑐1 ∙ 𝑟1 ∙ (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 ∙ 𝑟2 ∙ (𝑝𝑔𝑑 − 𝑥𝑖𝑑)             (2.1) 
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𝑥′𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑                                                (2.2) 

where, 𝑣𝑖𝑑 is particle velocity, 𝑥𝑖𝑑 is particle position, 𝑖 is the index of a particle, 𝑑 

is the 𝑑-th dimension of a particle, 𝑤  is the inertia weight factor, 𝑐1 and 𝑐2 are two 

acceleration constants called cognitive factor and social factor, respectively. 𝑟1 and 𝑟2 are 

uniform random values in the range of [0, 1], 𝑝𝑖𝑑 is particle pBest, 𝑝𝑔𝑑 is group gBest. 

For the sake of solving binary and discrete variable problems, Kennedy et al. 

developed a binary particle swarm optimization approach to fill this gap in 1997. For binary 

particle swarm optimization (BPSO) version, trajectories travel with the judgement by 

probability distribution that a position will take on a zero or one value (Kennedy et al., 

1997; Hossein et al., 2008). In a BPSO search space, a particle moves to nearer and farther 

corners of the hypercube by flipping various numbers of bits. Velocity is converted into 

the range of [0, 1] by probability distribution, so that a particle can move in a state space 

restricted to 0 and 1 in each dimension. Kennedy et al. (1997) indicated to consider a 

sigmoid function transformation in Eq. 2.3, the position will be updated according to Eq. 

2.4. 

Sigmoid(𝑣𝑖𝑑) =
1

1+𝑒−𝑣𝑖𝑑
                                (2.3) 

if rand() < S(𝑣𝑖𝑑(t + 1)), then x𝑖𝑑(t + 1) = 1                    

           else x𝑖𝑑(t + 1) = 0                (2.4) 

2.2.2 Binary particle swarm optimization 
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where Sigmoid(𝑣𝑖𝑑) is a sigmoid probability distribution transformation and rand () 

is a uniform random value between 0 and 1. 

However, on the basis of previous research, BPSO still has several disadvantages:  

First, asymmetry distribution in the sigmoid function (Eq. 2.3, Fig. 2.9) leads the 

probability up to 1 in positive direction, but down to 0 in negative position. The original 

sigmoid function neglects the importance of changes in the negative direction.  

Second, the position updating equation (Eq. 2.4) modifies particle position without 

considering particle’s previous statement. The results would fall into a local optimum 

without the leading force of previous statement.  

Therefore, a developed BPSO is necessary to improve the efficacy. 
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Figure 2.9 The distribution plots of sigmoid function 

 

PSO and BPSO have been a powerful and high-developed capacity evolutionary 

optimization technique, and been used in a number of research fields, including: social 

behavior, computer, electricity, geology, energy, etc. (Eberhart et al., 1995; Kennedy et al., 

1997; Zhao et al., 2005). But few studies have been done on environmental problems, and 

it has a high potential for such complicated problems. In my study, PSO was used as the 

foundation for optimization tool, to be specific, the original PSO algorithm has been 

developed with multi-agent system theory in order to enhance solution capacity and 

efficiency and integrate with decision making supporting system. Moreover, original PSO 

was combined with binary PSO into a hybrid PSO version with the capacity to deal with 

the complicated non-linear wastewater treatment plants (WWTPs) planning problems with 

multiple types of variables, including continuous variables for sludge and wastewater 

amount control, and binary and discrete variables for site and treatment techniques 

selection. In addition, PSO was used as the optimization procedure to couple with agent 

based simulation modeling and multi-agent system, in order to generate a simulation-based 

multi-agent particle swarm optimization decision making system in section 4. The detailed 

results shown in the following chapter indicates that the developed PSO versions provide 

a great performance for environmental problems.  

2.2.3 Genetic algorithm 
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In computer science and model based operations research, genetic algorithm (GA) is 

a meta-heuristic inspired by the process of natural selection that belongs to the upper class 

of evolutionary algorithms (EA). GA is commonly used to generate high-quality solutions 

to optimization and search problems by relying on bio-inspired operators such as mutation, 

crossover and selection (Mitchell, 1996). It has been widely used as a powerful 

optimization tool in the environmental field such as in water distribution network design , 

(Zheng et al., 2011; Mora-Melia et al., 2013). The major steps are generation of population, 

finding the fitness function, and application of genetic operator and evaluation of 

population as shown in Fig 2.10 (Johar et al., 2016). 

 

Figure 2.10 General scheme of evolutionary process (Johar et al., 2016) 
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In a genetic algorithm, a population of candidate solutions (called individuals, 

creatures, or phenotypes) to an optimization problem is evolved toward better solutions. 

Each candidate solution has a set of properties (its chromosomes or genotype) which can 

be mutated and altered; traditionally, solutions are represented in binary as strings of 0 and 

1, but other encodings are also possible (Whitley, 1994). A typical genetic algorithm needs 

two basic rules:  

a) A genetic representation of the solution domain (constraints).  

b) A fitness function to evaluate the solution domain (objective function). 

So as to find the optimal solutions, three main genetic operators, reproduction 

(Selection), crossover, and mutation, are needed. 

a) Reproduction (selection): It is a process, in which an individual is 

copied, considering their fitness function values to make more copies of a better 

string in a population (Sivaraj et al., 2011; Johar et al., 2016). 

b) Crossover: After reproduction, the string of the mating pool is required 

for crossover. A crossover is the procedure that combines two strings to hope 

generating a better string (Sivaraj et al., 2011; Johar et al., 2016).  

c) Mutation: Add new strings and information within a random way to the 

genetic search process and prevent an irrecoverable loss of potentially useful 

information which reproduction and crossover can cause (Sivaraj et al., 2011; 

Johar et al., 2016). 
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Even though GA is a popular optimization for solving most operation problems, 

limitations still exist, when compared with alternative optimization algorithms.  

First, GA is often limited to segment for complex problems with repeated fitness 

function evaluation. It will be difficult to find the optimal solution to complex high-

dimensional, multimodal problems with complex fitness functions.  

Second, GA cannot scale well with a great number of elements, which need to mutate 

within a huge space size. The protection for good represented solutions from further 

destructive mutations is a problem (Sivaraj et al., 2011).  

Third, in a number of problems, GA may have a tendency to converge toward local 

optima or even arbitrary points rather than the global optimum of the problem (Rudolph, 

1994). Which means the model cannot make out how to sacrifice good short-term solution 

to obtain a better long-term solution.  

Due to the limitations, traditional GA can be used to examine the efficiency of 

innovative developed optimization approach and has the potential to be altered with GA 

variants for specific problems. 

The planning of regional wastewater treatment systems is a traditional and classic type 

of optimization problems. Generally, this kind of planning optimization problems could be 

summarized into several aspects: to define the characteristics of the treatment and transport 

system in a region or water basin, which assures compliance with given pollution control 

2.2.4 Application for Wastewater Treatment Systems and Network Planning 
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criteria and with minimum economic cost, and/or with appropriate technical skills and price 

policy, etc. (Melo et al, 1994; Zeng et al., 2007). In addition, Tyteca et al. (1977), Gakan et 

al. (1998) and Melo et al. (2007) indicated that researchers may try to satisfy other goals, 

which render the problem multi-objective: 

- To minimize the environmental impact. 

- To maximize system reliability. 

- To maximize system flexibility under uncertain conditions. 

- To assure equity among users of the system. 

- To maximize benefits from reuse of treated effluent. 

- To minimize the concentration of contaminants of concern. 

- To optimize the selection of secondary wastewater treatment system 

techniques followed by cost-efficiency or treatment efficacy. 

The optimized outcomes of the problems should include the identification of a system 

composed by several treatment plants, each one treating effluents from one or more 

polluting plants, as well as the layout of the necessary transport systems. Due to the 

negative environmental impacts of excess sludge production or unsettled sludge (Wei et al., 

2003; Alvarez, et al., 2002), current wastewater treatment systems optimization should 

carefully consider the treatment and transportation of sludge and marketing distribution of 

sludge production.  

Based on the views of Tang et al. (1987), Zhao et al. (2005) and Melo et al. (2007) 

and the author’s opinion, the major difficulties for the optimization of regional wastewater 

treatment systems are shown as follows: 
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- Nearly all objectives are difficult to quantify and even to define accurately. 

- The number of potential solutions grows exponentially with problem size, creating 

the need to use computerized optimization techniques; 

- The assumptions and simplifications of real-world conditions influence the 

reasonableness and practice of optimal results and decision making plans; 

- Cost functions are robustly non-linear and concave, seriously limiting the 

application of most common optimization methods.  

- Most wastewater treatment system planning models are hard to be verified.  

- Current models are difficult to realize the coupling of dynamic treatment process 

simulation model and system optimization models. Uncertainties could be 

obtained, but still have some defects. 

Moreover, the practical applications of optimization models have several additional 

problems.  

First, such a model should be compatible with existing institutional water resources 

management procedures (Melo et al, 1994), in the other words, the developed models 

should have practical significance to the real-world treatment systems development.  

Second, environmental engineering projects are usually designed by engineers and 

politicians not familiar, and indeed suspicious, of mathematical models. Which is the 

reason why such models are seldom used in common practice (Melo et al, 1994).  

Third, the real-world circumstance is too complicated to be simulated. Therefore, 

assumptions and simplifications are necessary and vital to be used into models. However, 

that also increases the risks of the application in sensitive and fragile scenarios. 
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A series of studies have been done on the wastewater network optimization issues. 

Galan and Grossmann (1998) developed a model to optimize the design of a distributed 

wastewater network, which embodied apparatus in multicomponent streams in order to 

decrease the concentrations of some contaminants. Huang et al. (1999) developed an 

optimal water usage and treatment network (WUTN) to be used in any chemical plant in 

order to use less fresh water consumption and/or the reduction of wastewater treatment 

capacity. Yang and Huang (2000) illustrated a wastewater reuse network (WWRN) for 

minimizing wastewater. Yang et al. (2000) developed a mathematical approach for solving 

optimization problems by a nonlinear programming method, in order to frame a wastewater 

reuse network (WWRN) considering water streams with multiple pollutants. Chang et al. 

(2001) indicated a genetic algorithm-based neural network (GA-NN) for the optimization 

of intelligent controller design of wastewater treatment plants. Saif et al. (2008) described 

a nonconvex mixed-integer nonlinear mathematical modelling program (MINLP) with an 

efficient branch-and-bound algorithm for the global optimization of the reverse osmosis 

(RO) design network of water and wastewater streams including pumps, turbines, and RO 

stages. Brand and Ostfeld (2011) applied a genetic algorithm (GA) model to optimize 

regional wastewater systems design, where transmission gravitational and pumping sewer 

pipelines, decentralized treatment plants, and final reused ways of reclaimed wastewater 

were considered in the mathematical modelling. Ahmetović and Grossmann (2011) 

developed a global optimization for integrated process water networks considering 

multiple sources of water, water-using processes, wastewater treatment, and pre-treatment 

operations by using mixed integer nonlinear programing (MINLP). 
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Major oil spills attract the attention of both the public and the media. In the past years, 

the attention generated a global awareness of the risks of oil spills and the damage they can 

do to the environment (Fingas, 2011). Oil is a necessity in our industrial society and a major 

element of our lifestyle. Even though innovative energy has been a breakthrough to the 

environmental impacts brought from traditional energy sources, most of the energy used in 

transportation runs on oil and petroleum products. Offshore oil spills can lead to 

significantly negative impacts on socio-economy and constitute a direct hazard to the 

marine environment and human health. The response to an oil spill usually consists of a 

series of dynamic, time-sensitive, multifaceted and complex processes subject to various 

constraints and challenges (Li, 2014). An offshore oil spill, where oil is released into the 

ocean or coastal waters, is the release of a liquid petroleum hydrocarbon into the 

environment, especially into marine areas. Due to human activity, a series of pollution 

endanger the safety of the environment. Oil spills may be due to releases of crude oil from 

tankers, offshore platforms, drilling rigs and wells, as well as spills of refined petroleum 

products (such as gasoline, diesel) and their by-products, heavier fuels used by large ships 

such as bunker fuel, or the spill of any oily refuse or waste oil (Fingas, 2011). Oil spills 

can have disastrous consequences for society; economically, environmentally, and socially. 

As a result, oil spill accidents have initiated intense media attention and political uproar, 

and brought a political struggle concerning government response to oil spills for what 

actions can best prevent them from happening (Fingas, 2011 and 2013; Li, 2014; Broekema, 

2016). 

2.2.5 Application for Offshore Oil Spill Response Decision Making 
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Offshore oil spill cleanup response is the study and practice of reducing the number 

of oil or hazardous substances that release into the environment and limiting the amount 

released during those incidents. Generally, the techniques shown in Fig 2.11 are the 

traditional and major methods for offshore oil spill cleanup processes. Different types of 

techniques would be used based on environmental conditions, available resources, and cost 

considerations. In particular scenarios, several methods may combine and work together to 

achieve the target.  

 

 

Figure 2.11 The schematic of offshore oil spill cleanup methods (Fingas, 2011 & 

2013; Li, P, 2014) 

 

The brief background is shown as follows: 

 Manual Recovery: Manual recovery method, the basic way for costal oil 

cleanup, mainly uses cleanup tools to physically remove oil stained on shorelines, 
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including oil and debris removal, and cleaning and scrubbing. (Street, 2011a; Fingas, 

2013; Henry, 2014).  

 Skimmers: Skimmers are mechanical devices designed to remove oil from 

the water surface without causing changes in its physical or chemical properties and 

transfer it to the storage tanks onboard the vessel (Fingas, 2011). They are usually used 

together with the booms. (Muizis, 2013). The effectiveness of a skimmer is rated 

according to the amount of oil that it recovers as well as the amount of water picked 

up with the oil (Fingas, 2013; Li, 2014). The performance of most skimmers operates 

best, when the oil slick is relatively thick and most perform not efficiently on thin 

slicks (Fingas, 2013).  

 Booms: Booms are mechanical barriers that protect natural resources from 

spreading of crude oil. They serve in water areas mainly as a technology to contain the 

oil spill to facilitate further cleaning steps (ITOPF, 2013; Henry, 2014).  

 Sorbents: Sorbents are materials that soak up oil from the water. Sorbents 

play an important role to clean up the final traces of oil spills on water or land, make 

a backup to other containment means, act as a primary recovery way for very small 

spills; and work as a passive technique of cleanup (Fingas, 2013). 

 In-situ Burning: In-situ burning, or ISB is a typical oil spill cleanup 

technique that involves controlled burning of the oil at or near the spill site (Street, 

2011; Fingas, 2013). When conducted properly, in-situ burning could significantly 
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reduce the amount of oil on the water and minimize the adverse effect of the oil on the 

environment (Faksness et al., 2012; Fingas, 2011; Li, 2014; Van Gelderen et al., 2015). 

 Dispersant: Dispersant is used to label chemical spill treating agents that 

promote the formation of small droplets of oil that “disperse” throughout the top layer 

of the water column (Fingas, 2011). The main aim of dispersants application is to break 

down the oil slicks into small droplets, which submerge into the depth and become 

rapidly diluted (Muizis, 2013; ITOPF, 2014). 

 Bioremediation: Bioremediation is an oil spill treatment option that will 

enhance the efficacy of the natural biodegradation process of the ocean (Walther, 

2014). It is the process that uses decomposers and green plants, or their enzymes, to 

improve the condition of contaminated environment due to hydrocarbons (Atlas et al, 

2011).  

In recent decades, many researchers have studied the transport and fate of oil spills 

based on the trajectory method and mass balance approach (Huang, 1983; Delvigne, 1994; 

Fingas, 2011 and 2013). But more than that, prompt response to oil spills has been 

recognized as a critical issue based on the results from those simulation models. 

Developing an effective and efficient tool for oil spill emergency decision supporting 

system (DSS) has already grown to be an urgent and necessary target for current research. 

Liu et al. (2005) employed three different negotiation protocols, one shot, ultimatum and 

alternating offer, with a multi-agent system theory for cooperation and competition, to 

examine the impact of choosing different protocols on the outcome about oil spill response 

decision-making. Wirtz et al. (2006) addressed an oil-spill DSS model approach integrated 
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with economy, ecology and uncertainty by the contingency simulation system OSCAR 

with wind and current forecasts, environmental GIS data and multi-criteria analysis 

techniques. The DSS is able to rank different response actions to a chemical or oil spill. 

And the proposed approach was tested with the Prestige accident off the coast of Spain in 

2002. Li et al. (2012) developed a multiple-stage simulation based mixed integer nonlinear 

programming (MSINP) approach to provide sound decisions for skimming spilled oil in a 

fast, dynamic and cost-efficient manner, which is especially helpful to harsh environments. 

Aderson et al. (2014) introduced a multi-criteria method (TODIM-FSE) for solving 

classification problems. The model is envisaged as embedded within SISNOLEO (a 

Portuguese acronym for An Information System for Oil Spill Planning), aiming at helping 

potential users to decide upon suitable contingency plans for oil spill situations.  

Except offshore oil spill simulation, optimization is also desired to provide decision 

supporting under changing environmental conditions. You and Leyffer (2011) proposed 

the mixed-integer dynamic optimization (MIDO) model to simultaneously predict the time 

trajectories of the oil volume and slick area, the response cleanup schedule and coastal 

protection plan, by taking into account the time-dependent oil physiochemical properties, 

spilled amount, hydrodynamics, weather conditions, facility availability, performance 

degradation, cleanup operational window, and regulatory constraints. Zhong and You 

(2011) developed a bi-criterion, multi-period mixed-integer linear programming (MILP) 

model to simultaneously predict the optimal time trajectories of oil volume and slick area, 

transportation profile, response resource utilization levels, cleanup schedule, and coastal 

protection plan. The epsilon-constraint method was used as the optimization method and a 
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Pareto optimal curve was produced to reveal how the optimal total cost and response 

operations change under different specifications of responsiveness. Jin et al. (2015) 

developed a whole set of operation scheduling scheme of marine oil spill emergency 

vessels following the characteristics of marine oil spill emergency disposal environment 

and the requirements for emergency vessel scheduling by integrating the ENC, GPS, AIS, 

wireless network and oil spill monitoring technologies, in order to improve the capacity of 

marine oil spill disposal.  

In addition, dynamic simulation has been considered from previous studies, harsh 

oceanic circumstances tend to make emergency response to oil spills even more 

challenging by changing the fate and properties of oil dramatically within a short period, 

which will inevitably hinder and affect the efficiencies of recovery and cleanup processes 

(Brandvik et al, 2006; Bjerkemo, 2011; Li et al, 2014). Till now, few studies have been 

carried out specifically focusing on the solutions of this issue.  

In this chapter, section 2.1 reviewed the basic background of agent, agent based 

modeling and multi-agent systems, and discussed the characteristics and advantages of 

agent based approach on environmental problems. ABM and MAS, two main agent-based 

approaches, had similarities, but can work as different aspects in the sophisticated problems. 

Section 2.1.3 specifically reviewed the applications of traditional agent based simulation 

software tools, and compared the advantages and disadvantages of them. And selected 

proper software, NetLogo, as the platform for the studies. 

2.3 Summary 
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Section 2.2 reviewed on the topics of environmental optimization methods, in which 

three important algorithms, particle swarm optimization, binary particle swarm 

optimization, and genetic algorithm, were illustrated. PSO and BPSO were applied as the 

fundamental algorithms on the studies in section 3 and 4. GA acted as the tool for 

examining the efficiency of the novel multi-agent hybrid particle swarm optimization in 

section 3. 

Section 2.3 and 2.3 gave a review on optimization models for regional wastewater 

treatment systems and network planning, and decision making models for offshore oil spill 

emergency problems. Section 2.3 introduced the background of WWTPs planning research, 

current studying processes, brief reviews on publications in the past few decades, and 

existing research gaps in this field. Section 2.4 indicated the background of offshore oil 

spills, a brief introduction to traditional offshore oil spill cleanup procedures, and reviews 

on offshore oil spill models related with decision making mentioned from the studies in the 

recent years. To date, no developed PSO version can solve the mixed-type sophisticated 

problem, and few studies integrate such a developed PSO version with MAS for improving 

convergence. In addition, little research on dynamic decision-making system models 

combined simulation and optimization for offshore oil spill accident response. And few 

studies integrated an agent based approach for solving environmental problems and 

developing simulation and optimization algorithms.  
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CHAPTER 3: A NOVEL MULTI-AGENT BASED HYBRID 

PARTICLE SWARM OPTIMIZATION (MAHPSO) APPROACH 

FOR WASTEWATER TREATMENT PLANTS NETWORK DESIGN 

1  

                                                     
1 The chapter was extracted from the following journal paper under preparation: A novel multi-agent based hybrid 

particle swarm optimization (MAHPSO) approach for wastewater treatment plants network design. 
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Owing to the rapid development of civilization and population growth, the annual 

amount of municipal wastewater disposal becomes higher with the increase of population. 

Municipal wastewater usually contains grit, debris, suspended solids, disease-causing 

pathogens, decaying organic waste, nutrients and many other chemicals (Agidi et al., 2013). 

It needs to be properly treated to reduce the concentrations of various pollutants and to 

meet environmental regulations and standards prior to discharge (Gao et al., 2012; Margot 

et al., 2013). To alleviate the pollution burden of natural water bodies, wastewater 

treatment plants (WWTPs) are widely used to process domestic and industrial waste 

streams (Friedler et al., 2006; Pai et al., 2011). However, not all wastewater can be properly 

treated due to the lack of infrastructure and poor facility development. Around 70% of 

wastewater on average is treated in high-income countries, 38% in upper-middle-income 

countries as follows, 28% in lower-middle-income countries, and low-income countries 

can only treat 8% wastewater (Sato et al., 2013). Design optimization therefore has been 

recognized as an important tool for improving the efficiency and reducing the associated 

costs of WWTPs from a long-term perspective. However, according to the literature 

reviews in section 2, most of the previous studies have not taken the planning of WWTP 

network across large city clusters containing multiple cities into account. The rapid 

urbanization has led to the formation of large city clusters where their infrastructure, such 

as WWTPs, are often planned and developed through collaborations between local 

governments and key stakeholders as a network instead of individually. Solving such 

network problems, PSO is a good method as the optimization approach.  

3.1 Introduction 



56 

  

With the advantages of rapid convergence speed, easy implementation, short 

computation time, fewer parameters to be adjusted and easy development, PSO and its 

variations have become a kind of popular optimization methods for solving such network 

nonlinear problems (Zhao et al., 2005; Shumugalatha et al., 2008; Wang et al., 2014). In 

addition, for network problems with integer or binary variables, binary PSO (BPSO) is a 

good method for that (Kennedy et al., 1997; Hossein et al., 2008). However, few researches 

and PSO variations can solve the optimization problems including continuous and binary 

variables simultaneously, but which is a common and important type of network problems 

for wastewater treatment plants designs. Moreover, for nonlinear optimization problems, 

PSO and BPSO may be trapped by a local optimum. In response to such technical gaps, 

this paper presented a novel multi-agent hybrid particle swarm optimization (MAHPSO) 

approach. The hybrid particle swarm optimization module (HPSO) was developed to 

account for both continuous and binary variables, while the concept of multi-agent system 

(MAS) was adopted to enhance solution convergence. A real-world case study in regard to 

the planning of a WWTP and sludge processing network was carried out to examine the 

efficacy of the proposed approach. 

Most of the WWTPs network design problems contains multiple types of variables 

and hard to get an outstanding optimal result. In order to deal with these problems, the 

proposed method should be capable to handle multiple types of variables and have the high-

stability and good convergence. In the novel MAHPSO algorithms, the original PSO and 

3.2 Methodology 
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BPSO, as the fundamental algorithms, have been updated into hybrid PSO (HPSO) through 

coupling together to realize the calculation with continuous and discrete variables 

simultaneously. On the basis of HPSO, MAS was integrated in the system with the purpose 

of improving the capacity of convergence and prevent the optima from being trapped by a 

local optimum. The details for the developed method are indicated in the following aspects:  

In the previous studies, few considered mixed-variables nonlinear problems. For 

solving mixed-variable optimization problems, different evaluation processes are needed 

for continuous and binary variables. In order to deal with these problems automatically and 

successfully, PSO and BPSO are necessary to be integrated into one hybrid PSO approach. 

The background and basic knowledge about PSO and BPSO have been illustrated in the 

previous chapter. Here to skip this part and only indicate the achievements for the 

development of the algorithms. In this study, a developed hybrid particle swarm 

optimization (HPSO) was made.  

For PSO updating equations for particle velocity and position, the original equations 

were used as shown in Eq. 3.1 and Eq. 3.2.  

𝑣𝑖𝑑 = 𝑤 ∙ 𝑣𝑖𝑑 + 𝑐1 ∙ 𝑟1 ∙ (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 ∙ 𝑟2 ∙ (𝑝𝑔𝑑 − 𝑥𝑖𝑑)       (3.1) 

𝑥′
𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑        (3.2) 

According to literature review, 𝑐1  and 𝑐2  generally equal to 2, 𝑟1  and 𝑟2  are 

uniform random values in the range of [0, 1], 𝑝𝑖𝑑 is particle pBest, 𝑝𝑔𝑑 is group gBest. 

3.2.1 Hybrid particle swarm optimization 
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The selection of inertia weight factor 𝑤 can improve the convergence in non-linear 

problems by controlling the balance between self-adjustment and interactions. In order to 

increase the model accuracy when particles move close to the optimum, adaptive linear 

decreasing weight is developed according to the following equation (Eq.3.3). As shown in 

Fig 3.1, with the increase the iteration, particles will move closed to the optimum. On the 

basis of the reduction of the effect of self-control, particles will have more efforts from 

other particles. Thus, particles have more opportunities to find a better optimum rather than 

trapped by local optimum. 

𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =
𝑤𝑖𝑛𝑖−𝑤𝑒𝑛𝑑

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
∙ (𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑤𝑒𝑛𝑑    (3.3) 

where, 𝑤𝑖𝑛𝑖 and 𝑤𝑒𝑛𝑑 are the upper and lower boundaries of inertia weight, equals 

to 0.9 and 0.4 during the run, respectively, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum number of iteration, 

and 𝑖𝑡𝑒𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current number of iteration. 

 

Figure 3.1 Adaptive linear decreasing weight for PSO 
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For the section on BPSO update equations, according to previous researches, they still 

have several disadvantages indicated in section 2. Based on previous studies, a modified 

BPSO probability function and position updating equation, developed by Hossein et al. 

(2008), were applied, in order to overcome the disadvantages of the original BPSO, and 

made the distribution symmetrical for velocities in both positive and negative directions. It 

integrated particle’s previous statements into updating criteria. Further, the tests in his 

paper showed a much better performance with the developed equation rather than the 

traditional one. The new BPSO equations and the modified sigmoid distribution are shown 

as follows: 

𝑆′(𝑣𝑖𝑑) = 2×|𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑖𝑑) − 0.5|                  (3.4) 

if rand() < 𝑆′(𝑣𝑖𝑑(𝑡 + 1)), 𝑡ℎ𝑒𝑛 𝑥𝑖𝑑(𝑡 + 1) = 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒(𝑥𝑖𝑑(𝑡)) 

     else 𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡)                (3.5) 

where  𝑆′(𝑣𝑖𝑑) represents the modified sigmoid probability distribution and 

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒(𝑥𝑖𝑑(𝑡)) shows that the value changes from 0 to 1 or vice versa. 
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Figure 3.2 The distribution plots of modified sigmoid function 

 

By the combination of PSO and BPSO velocity and position update equations, the 

hybrid PSO could achieve the advantages of methods to figure out mixed variables. During 

the evaluation process of, particles should calculate the updated velocity by Eq. 3.1 with 

Eq. 3.3 as adaptive nonlinear decreasing weight. After the aforementioned steps, variables 

should check whether the variables themselves are continuous, if yes, then Eq. 3.2 is 

defined to update position; Else, Eq. 3.4 and 3.5 would be applied for position update. 

Afterwards, variables are integrated to calculate fitting values by objective functions. 

In accordance with the advantages indicated in the previous chapter. MAS approach 

can be used to compute and optimize complicated problems. Agents in MAS do not only 

act autonomous and independent, but also cooperate or compete to achieve their own 

3.2.2 Multi-agent based particle swarm optimization 
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individual goals as well as sharing information with others. The strategy of cooperation 

and competition fits the goal of basic theory of PSO and BPSO. In this paper, MAS was 

treated as a part of optimized approach to develop a new optimal algorithm with better 

performance. As shown before, PSO methods still have the limitation of convergence. 

Hence, due to the addition of MAS, the interaction ability of the new PSO approach has 

been enhanced. This can help reinforce the ability of convergence for avoiding dropping 

into a local optimal.  

In this study, on the basis of HPSO, MAS were integrated to generate the proposed 

MAHPSO approach for dealing with WWTPs network design problems. An agent was not 

only a candidate of MAS, but also a particle for HPSO method. To confirm the location of 

agents, a lattice-like environment shown in Fig. 3.3 was constructed as the global 

environment. Each agent (or particle) was settled in the environment with their own 

coordinates. In order to obtain optimal solution quickly, each agent competed and 

cooperated with their neighbours for sharing information purpose in every iteration. In 

addition, agents can evolve high-quality optimal solution with previous experience by self-

learning.  
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Figure 3.3 The structure of the global environment 

 

The proposed MAHPSO can realize the optimization approach with the following 

steps: 

1)  Definition and goal of agent: In MAHPSO, an agent represented a candidate 

solution to the optimization problem, and it also treated as a particle for HPSO. Each agent 

obtained a fitness value to the problem. For WWTPs network design problems, agents in 

the system contained the total cost for the design. The purpose of agents was to minimize 

the total cost and satisfy the requirements of boundaries and constraints, such as, 

wastewater treatment volume, sludge recycle demand, the capacity of WWTP, etc. Each 

agent possessed all control variables to be optimized, each agent’s position and velocity 

involved all variable values and all variations of variable values at every iteration. 
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2) Definition of the global environment: In MAHPSO, a lattice-like environment 

was constructed. In the global environment, each agent was settled as a particle on a lattice-

like point in Fig. 3.3. Each circle represented an agent composed with two properties: 

particle current velocity and position statement. The size of the lattice-like environment 

was Xsize ×  Ysize, where Xsize and Ysize were integer. The number of lattice also 

indicated the swarm population which was the total number of particles in HPSO. 

3) Definition of the local environment: As an agent can sense its local environment 

in MAS, the interaction can be applied for the improvement of the proposed method. In 

this paper, it was defined that agent A located at (i, j) was denoted as 𝐴𝑖,𝑗 , where 𝑖 =

1,2, … , 𝑋𝑠𝑖𝑧𝑒; 𝑗 = 1,2, … , 𝑌𝑠𝑖𝑧𝑒, thus, four neighbours of 𝐴𝑖𝑗 from its four direction 𝑁𝑖,𝑗, 

were defined as follows: 

𝑁𝑖,𝑗 = {𝐴𝑖𝐿,𝑗 , 𝐴𝑖𝑅,𝑗, 𝐴𝑖,𝑗𝐿 , 𝐴𝑖,𝑗𝑅}                  (3.6) 

where, 

 

𝑖𝐿 = {
𝑖 − 1    𝑖 ≠ 1
𝑋𝑠𝑖𝑧𝑒    𝑖 = 1

         𝑗𝐿 = {
𝑖 − 1     𝑗 ≠ 1
𝑌𝑠𝑖𝑧𝑒    𝑗 = 1

 

𝑖𝑅 = {
𝑖 + 1        𝑖 ≠ 𝑋𝑠𝑖𝑧𝑒

1           𝑖 = 𝑋𝑠𝑖𝑧𝑒
        𝑗𝑅 = {

𝑗 + 1     𝑖 ≠ 𝑌𝑠𝑖𝑧𝑒
1         𝑖 = 𝑌𝑠𝑖𝑧𝑒

 

In this way, the interactive communication of an agent from the local and global 

environment can be illustrated in Fig. 3.4.  
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Figure 3.4 The interactive communication of an agent 

 

4) Definition of agent behavior rules: In order to quickly and accurately achieve the 

purpose of agents, each agent possessed several behavior rules. First, in the aforementioned 

illustration, an agent (i.e. agent A) represented a candidate solution, which had a fitness 

values calculated by the optimization problem fitness functions. For WWTPs network 

design problems, the fitting values were generally considered about the minimal total cost 

of the whole system composed with capital, and operation and maintenance (O&M) cost. 

The fitness function can be indicated as follows: 

𝑓(𝐴) = 𝐹_𝑚𝑖𝑛 (𝐶𝑜𝑠𝑡)                          (3.7) 
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In MAHPSO, the difference from traditional PSO variations was that the competition 

and cooperation with neighbors in the local environment were concerned, in order to share 

useful information and combine the basic evolution mechanism of HPSO. Hence, the 

proposed MAHPSO can accelerate the convergence speed and avoid the appearance of 

local optimization scenarios. The detail of competition and cooperation strategy was shown 

as follows: 

Supposed that the minimal fitness value among an agent α and its neighbors were 

represented as 𝑁𝑏𝑒𝑠𝑡𝛼 , and the variables for 𝑓 (𝑁𝑏𝑒𝑠𝑡𝛼) = 𝑓(𝑁1
𝛼 , 𝑁2

𝛼, … , 𝑁𝑛
𝛼)  were 

located in the solution space. If agent 𝛼 satisfied the following criteria: 

𝑓(𝛼) ≤ 𝑓 (𝑁𝑏𝑒𝑠𝑡𝛼)                             (3.8) 

Then, agent 𝛼 can be treated as a winner, thus, its position remained unchanged. 

Otherwise, it was a loser, and agent 𝛼 would be replaced by a new agent with modified 

position statement. From Eq. 3.9 and Eq. 3.10, sort of heuristic crossover in evolutionary 

algorithms were used to ensure the new agent blends with the benefits of the loser agent 

and neighbor best solution. 

If the variables were continuous: 

𝛼𝑘
′ = 𝑁𝑏𝑒𝑠𝑡𝑘

𝛼 + 𝑟𝑎𝑛𝑑(0,1)×(𝑁𝑏𝑒𝑠𝑡𝑘
𝛼 − 𝛼𝑘)            (3.9) 

If the variables were binary:  

𝐹 = 1 + 𝑁𝑏𝑒𝑠𝑡𝑘
𝛼 − 𝑟𝑎𝑛𝑑(0,1)×(𝛼𝑘 + 1)                            (3.10) 

𝐼𝑓 𝐹 ≤  
1+2∗𝑁𝑏𝑒𝑠𝑡𝑘

𝛼−𝛼𝑘

2
, 𝑡ℎ𝑒𝑛 𝛼𝑘

′ = 𝛼𝑘; 
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𝑒𝑙𝑠𝑒 𝛼𝑘
′ = 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 (𝛼𝑘)              

where rand (0,1) represents a uniform random number in the interval of (0,1). Besides, 

all variable should ensure the movement in the solution space. Thus, if  𝛼𝑘
′ < 𝑥𝑘,𝑚𝑖𝑛 , 

then  𝛼𝑘
′ = 𝑥𝑘,𝑚𝑖𝑛 ; and if   𝛼𝑘

′ > 𝑥𝑘,𝑚𝑎𝑥 , then  𝛼𝑘
′ = 𝑥𝑘,𝑚𝑎𝑥 . In the algorithm,  𝑥𝑚𝑖𝑛 =

(𝑥1,𝑚𝑖𝑛, … , 𝑥𝑘,𝑚𝑖𝑛, … , 𝑥𝑛,𝑚𝑖𝑛)  and  𝑥𝑚𝑎𝑥 = (𝑥1,𝑚𝑎𝑥, … , 𝑥𝑘,𝑚𝑎𝑥, … , 𝑥𝑛,𝑚𝑎𝑥)  indicates the 

lower and upper boundaries of variables respectively. 

In MAHPSO, many different optimization approaches were applied for the realization 

of purposes. The proposed method absorbed the advantages of MAS and HPSO to solve 

the mixed-variable WWTP network design problems with speedy and accurate 

convergence. Fig 3.5 illustrated the framework of the proposed MAHPSO approach. To be 

specific, the procedure of the overall method was illustrated in the following steps: 

Step 1: Define the problem and system composed with objective function decision 

variables, input parameters, constraints, boundaries, and total iteration number. 

Step 2: Generate a lattice-like environment, initialize each agent position statement 

randomly, set initial velocity equals to zero and make sure that all variables satisfy the 

requirement of constraints and boundaries. If α𝑘 < 𝑥𝑘,𝑚𝑖𝑛, then α𝑘 = 𝑥𝑘,𝑚𝑖𝑛; and if  α𝑘 >

𝑥𝑘,𝑚𝑎𝑥, then α𝑘 = 𝑥𝑘,𝑚𝑎𝑥. 

Step 3: Evaluate the fitness values of each agent using objective functions. And find 

out the local best value pBest and global best value gBest. 
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Step 4: Update velocity and particle position. Specifically, the velocity is developed 

by Eq. 3.1, continuous and binary variables will be evolved with PSO and BPSO position 

update formula (Eq. 3.2, Eq. 3.4 and 3.5) respectively. Then, ensure that the updated 

position satisfies the requirement of boundaries and constraints.  

Step 5: Evaluate the fitness values of each agent using objective functions. And check 

if the new optimal solution meets the stop criteria. If yes, then stop; otherwise, then 

continue.  

Step 6: Perform the neighbours for each agent, generate neighbor best solution Nbest 

for each local environment. 

Step 7: Execute the competition and cooperation strategy and further adjust the 

position statement in search space on each agent according to Eq. 3.9 and Eq. 3.10 for 

continuous and binary variables respectively. And ensure that the new agents from loser 

agents satisfy the requirement of boundaries and constraints.  

Step 8: Update the iteration counter t = t + 1, and go to step 3. 
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Figure 3.5 The framework of the multi-agent hybrid particle swarm optimization 

(MAHPSO) approach  
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For the sake of solving the decision planning problems of wastewater treatment plants 

networking through multiple cities. The developed methodology was applied to optimize 

the design of a WWTP network in the metropolitan area of St John’s, Newfoundland, 

Canada (Fig. 3.6). Although the case study was hypothetical, it closely reflected a real 

scenario based on published data sources. In this study, each of the seven cities planned to 

construct a WWTP for water quality improvement, whereas only one sludge process center 

(SPC) was allowed to be built in one of the seven cities (Fig. 3.7). Aside from the clarifiers, 

the most distinguishable attribute of a WWTP was usually the secondary treatment option 

where biological contents of the sewage can be degraded. How to choose the most 

appropriate secondary treatment technique has therefore been regarded as a crucial factor 

to the successful design and implementation of WWTPs (Garrido-Baserba et al., 2012). 

Therefore, in the current study, three types of secondary WWTP, namely sequencing batch 

reactor (SBR), oxidation ditch (OD), and membrane bioreactor (MBR) were available to 

be chosen. The daily inflows of wastewater were set according to the populations and the 

wastewater generation rates in each city. Wastewater quality in terms of total solids (TS) 

and biological oxygen demand (BOD) were predefined. The capital and O&M costs of 

each type of WWTP were determined by the piecewise functions shown in Table 3.1 (U.S. 

EPA, 1983; DeCarolis et al., 2007). The planning horizon was 20 years. A 3.2% annual 

interest rate and a 2% annual equipment loss rate were considered in O&M for long-term 

3.3 Case Study 

3.3.1 Case description 
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cost prediction. Treated effluent could be reused for numerous purposes and the benefits 

were associated with the secondary treatment options. Sludge was set to be generated from 

each type of WWTP with predefined rates. After dewatering with pre-set weight reduction 

rates, sludge could be transported to a SPC or the existing landfill in the city of St. John’s 

where the transportation cost was proportional to distance (Table 3.2). The capital and 

O&M costs of the SPC were predefined. Sludge transported to the SPC was composted and 

sold back at pre-set prices to meet each city’s annual demand of 500 tonnes in total, 

whereas the excessive sludge at the SPC was redirected to the landfill. All the parameter 

values listed in Table 3.3 were provided by references (U.S. EPA, 1999a, 1999b, 1999c; 

Government of Newfoundland and Labrador, 2005a, 2005b; CCME, 2008a, 2008b, 2009) 

to solve the problem. 
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Figure 3.6 The map of metropolitan area of St John’s, Newfoundland, Canada 
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Figure 3.7 Wastewater treatment stream flow network 
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Table 3.1 Capital and O&M costs piecewise distributions 

Cost ($) FR 

(𝒎𝟑/𝒅𝒂𝒚) 

SBR Oxidation Ditch MBR 

Ci ≤ 2 ∙ 103 1.38×𝐹𝑅

+ 348000 

1.77×𝐹𝑅

+ 592000 

1.97×𝐹𝑅

+ 1210000 

> 2 ∙ 103 0.99×𝐹𝑅

+ 1128000 

0.82×𝐹𝑅

+ 2492000 

0.58×𝐹𝑅

+ 3990000 

Oi ≤ 2 ∙ 103 0.20×𝐹𝑅

+ 20000 

0.22×𝐹𝑅

+ 12000 

0.056×𝐹𝑅

+ 87600 

> 2 ∙ 103 0.054×𝐹𝑅

+ 312000 

0.064×𝐹𝑅

+ 324000 

0.058×𝐹𝑅

+ 83600 

(U.S. EPA, 1999a, 1999b, 1999c)
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Table 3.2 Distance (D) among all cities and the landfill 

j Distance (km) St. 

John’s 

Torbay Mount 

Pearl 

Portugal-St. 

Philips 

Paradise Conception Bay 

South 

Bay 

Bulls 

Landfill 

1 St. John’s 0 12.2 10.7 12.1 14.1 25.9 35.3 6.1 

2 Torbay 12.2 0 23.9 19.7 21.7 34.2 50.5 9.1 

3 Mount Pearl 10.7 23.9 0 12.4 5.4 15.7 25.3 20.4 

4 Portugal Cove-St. 

Philip’s 12.1 19.7 12.4 0 10.2 21.9 40.7 16.3 

5 Paradise 14.1 21.7 5.4 10.2 0 11.3 33.8 18.9 

6 Conception Bay 

South 25.9 34.2 15.7 21.9 11.3 0 38.8 29 

7 Bay Bulls 35.3 50.5 25.3 40.7 33.8 38.8 0 47.4 
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Table 3.3 The most likely values of the parameters 

Parameter Description Category Value Unit 

Si 
Sludge generation 

rate 

S1: SBR 0.6 kg/(kg ∙ TS) 

S2: Oxidation ditch 0.65 kg/(kg ∙  TS) 

S3: MBR 0.5 
kg/(kg

∙  BOD) 

RWi 
Reclaimed water 

reusing benefit 

RW1: SBR 0.0004 

$/L 
RW2: Oxidation 

ditch 
0.0002 

RW3: MBR 0.0001 

Pj Population 

P 1: St. John’s 
102,50

0 

- 

P 2: Torbay 7,397 

P 3: Mount Pearl 24,284 

P4: Portugal Cove-

St. Philip’s 
1,500 

P5: Paradise 19,500 

P6: Conception Bay 

South 
19,265 

P7: Bay Bulls 1,283 

WG 
Wastewater 

generation rate 
- 265 

L/(day

∙ capita) 

RRP 

Reclaimed 

wastewater reuse 

percentage 

- 15 % 

𝑻𝑺𝑺𝑩𝑹

/𝑻𝑺𝑶𝒙𝒊𝒅𝒂𝒕𝒊𝒐𝒏 𝒅𝒊𝒕𝒄𝒉 
Total solid - 250 mg/L 
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Note: the costs have been updated with the ENR construction cost index (ENR = 5916) 

𝑩𝑶𝑫𝑴𝑩𝑹 
Biological  oxygen 

demand 
- 220 mg/L 

SPCC 
Sludge processing 

centre capital cost 
- 2.5 $/(kg ∙ day) 

SPCO 

Sludge processing 

centre operating 

cost 

- 0.0005 $/kg 

CP Compost price - 1 $/kg 

CDj Compost demand 

CD1: St. John’s 300 

ton/year 

CD2: Torbay 100 

CD3: Mount Pearl 320 

CD4: Portugal Cove 

St. Philip’s 
25 

CD5: Paradise 200 

CD6: Conception 

Bay South 
20 

CD7: Bay Bulls 35 

SWR 
Sludge weight 

reduction rate 
- 40 % 

T Transportation cost - 0.5 $/(ton ∙ km) 
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The objective function was to minimize the total cost (Eq. 3.11) by considering 

the capital and O&M costs of the WWTPs (Eq. 3.12) and the SPC (Eq. 3.13), 

transportation cost of sending sludge from cities directly to the SPC and the landfill (Eq. 

3.14), transportation cost of compost from the SPC to the cities (Eq. 3.15), 

transportation cost of excessive sludge from the SPC to the landfill (Eq. 3.16), treated 

wastewater reusing benefits (Eq. 3.17), and compost sales benefits (Eq. 3.18) over a 20-

year span. 

Min 𝑓 = ∑ 𝑓1(𝑡) + 𝑓2(𝑡) + 𝑓3(𝑡) + 𝑓4(𝑡) + 𝑓5(𝑡) − 𝑓6(𝑡) − 𝑓7(𝑡)𝑇
1   (3.11) 

𝑓1(𝑡) = ∑ ∑  𝐹𝑅𝑗 ∙ 𝑥𝑖𝑗 ∙ (𝐶𝑖(𝐹𝑅) + 𝑂𝑖(𝐹𝑅)  ∙ 𝐴𝑅(𝑡))3
𝑖=1

7
𝑗=1          (3.12) 

𝑓2(𝑡) = ∑ 𝐶𝐷𝑗 ∙ 1000 ∙ (𝑆𝑃𝐶𝐶 ∙ 365 + 𝑆𝑃𝐶𝑂(𝑡) ∙ 𝐴𝑅(𝑡))7
𝑗=1          (3.13) 

𝑓3(𝑡) =  ∑ [|𝑦𝑗 − 1| ∙ 𝑧𝑗 ∙ (∑ |𝑦𝑗 − 𝑦𝑘|7
𝑘=1 ∙ 𝐷𝑗𝑘) + (∑ 𝑊𝐺 ∙ 𝑃𝑗 ∙ 𝑥𝑖𝑗 ∙ 𝑆𝑖 ∙3

𝑖=1
7
𝑗=1

(𝑇𝑆 or 𝐵𝑂𝐷) ∙ 𝑆𝑊𝑅 ∙ 365 ∙ 10−9 − 𝑧𝑗) ∙ 𝐷𝑗] ∙ 𝑇 ∙ 𝐴𝑅(𝑡)              (3.14) 

𝑓4(𝑡) =  ∑ |𝑦𝑗 − 1| ∙ (∑ |𝑦𝑗 − 𝑦𝑘|7
𝑘=1 ∙ 𝐷𝑗𝑘) ∙ 𝐶𝐷𝑗

7
𝑗=1 ∙ 𝑇 ∙ 𝐴𝑅(𝑡)     (3.15) 

𝑓5 =  (∑ 𝑧𝑗
7
𝑗=1 − ∑ 𝐶𝐷𝑗

7
𝑗=1 ) ∙ (∑ 𝑦𝑗 ∙ 𝐷𝑗

7
𝑗=1 ) ∙ 𝑇 ∙ 𝐴𝑅(𝑡)           (3.16) 

𝑓6 =  ∑ 𝑊𝐺 ∙ 𝑃𝑗 ∙ 𝑅𝑅𝑃 ∙ (∑ 𝑅𝑊𝑖 ∙ 𝑥𝑖𝑗
3
𝑖=1 ) ∙ 365 ∙ 𝐴𝑅(𝑡)7

𝑗=1         (3.17) 

𝑓7 =  ∑ 𝐶𝐷𝑗 ∙ 1000 ∙ 𝐶𝑃 ∙ 𝐴𝑅(𝑡)7
𝑗=1                         (3.18) 

𝐹𝑅𝑗 = 𝑊𝐺 ∙ 𝑃𝑗                                         (3.19) 

3.3.2 Objective functions 
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𝐴𝑅(𝑡) = (1 + 𝐼𝑅)𝑡 ∙ (1 + 𝐸𝐿)𝑡         (3.20) 

where xij were the binary decision variables indicating whether to build a type i 

WWTP in city j; yj were the binary decision variables indicating whether to build the 

SPC in city j; zj were the sludge transported from city j to the SPC (tonnes/year); 

𝐹𝑅𝑗 indicated the daily flowrate in each city; t was the time index (year); T was the total 

time span which is 20 years; AR(t) was the annual increase rate of O&M cost; IR (3.2%) 

and EL (2%) were the annual interest and annual equipment loss rates, respectively; Djk 

stood for the distance between city j and city k (km); and Dj was the distance between 

city j and the landfill (km). The distance between the SPC and the city where the SPC 

located was assumed to be 0. The weight of sludge used for composting equaled to the 

weight of compost product. The capital and O&M costs of each type of WWTP 

generally were assumed to be dependent on daily inflow rate (Table 3.1). In this case, 

the costs were assumed to be piecewise distributions based on the recommendations 

from U.S. EPA (1983) and DeCarolis et al. (2007). 

The constraints (Eq. 3.21 and Eq. 3.22) were used to restrict the selection of 

WWTP and SPC quantities in each city. Only one type of WWTP can be chosen for 

each city and only one SPC was needed to be built for sludge processing among 7 cities. 

The SPC should be fully loaded at 1000 tonnes per year (Eq. 3.23), and the sludge 

3.3.3 Constraints 



79 

  

amount transferred from each city into the SPC should not be higher than their sludge 

generation amount (Eq. 3.24). 

∑ 𝑥𝑖𝑗
3
𝑖=1 = 1              (3.21) 

∀𝑗: 

∑ 𝑦𝑗
7
𝑗=1 = 1            (3.22) 

∑ 𝑧𝑗
7
𝑗=1 ≥ 1000           (3.23) 

𝑥𝑖𝑗 , 𝑦𝑗 ∈ 𝑏𝑖𝑛𝑎𝑟𝑦   

 0 ≤ 𝑧𝑗 ≤ min
𝑖

𝑊𝐺 ∙ 𝑃𝑗 ∙ 𝑥𝑖𝑗 ∙ 𝑆𝑖 ∙ (𝑇𝑆 or 𝐵𝑂𝐷) ∙ 𝑆𝑊𝑅 ∙ 365 ∙ 10−9   (3.24) 

The proposed MAHPSO approach was implemented to find the optimal solution. 

The model was written in Matlab 2014b® and operated on an intel i7 4770K computer 

with 8 G RAM. For the MAHPSO test, 200 runs were carried out with 50 iterations 

with each run. The number of particles was chosen to be 256. 

To understand which parameters in this case study contributed the most to the 

optimization results, sensitivity analysis was conducted by adjusting all the parameters 

in Table 3.5 and evaluating their impacts on the 20-year overall cost. Based on the 

3.3.4 MAHPSO settings 

3.3.5 Sensitivity analysis 
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assumption of independent interrelationship, each parameter was individually adjusted 

by ±5%, ±15%, and ±30% while keeping others at their initial values (adjustment of 

each parameter was made to all land covers at one time). 

In addition, the HPSO and a traditional GA (Liang et al., 2014 and 2015) 

approaches were also implemented for comparison in terms of the total cost and total 

running time. The optimal results from 200 runs were summarized to find the best, 

worst, average optimal total cost ($), and average execution time for one run (sec). For 

these two comparison tests, the conditions including generation number, iteration 

number and particle number were set as the same as the MAHPSO test.  

Table 3.4 presented the optimization results obtained from the proposed MAHPSO 

approach. The total cost over the 20-year planning horizon was minimized to 

$ 5.074×108. Five cities were assigned MBR, while two were assigned SBR and OD, 

respectively, due to the sludge demand and treatment cost concerned. MBR was the 

best choice for the cities with a large population and large daily flow rate, such as St. 

John’s and Mount Pearl. However, the cities only had less than 2,000 people, the cost 

of SBR and OD were much lower for cities with small daily wastewater generation 

3.3.6 Comparison with GA and HPSO 

3.4 Results and Discussion 

3.4.1 Optimization results 



81 

  

rates, such as Portugal Cove-St. Philip’s and Bay Bulls (Table 3.4). In addition, over 

the planning horizon, sludge transported into the sludge processing center was mainly 

from St John’s (286.15 tonne/yr), Mount pearl (317.47 tonne/yr) and Bay Bulls (333.33 

tonne/yr). After composting treatment at the SPC, 372.37 tonnes of excessive compost 

had to be transported to landfill, due to the balance among the benefits, the 

transportation cost and demands of cities. Moreover, St John’s and Mount Pearl were 

two cities with the highest sludge amount and both closed to the SPC, and the sludge 

from Bay Bulls can save half of the cost rather than tranfering to the landfill. The SPC 

was set up at Mount Pearl, compared with the contribution of the other cost, sludge 

transported to SPC was only a small amount in annual sludge generated from 7 cities, 

and Mount Pearl was the central city among 7 cities, and nearby St John’s, excess 

sludge could be easy sent to the landfill site in St John’s. This planning can reduce the 

transportation cost for SPC to the whole system.  

The results indicated that, in MAHPSO, the nonlinear wastewater treatment 

network planning problems can be solved with a satisfied optimal result. The most 

significant contribution of the MAHPSO approach lied in that it represents a new 

effective attempt to deal with multiple types of variables including continuous ones and 

binary ones. Moreover, the real-world data based application was a new study by 

combining WWTP type selection, SPC location selection, and resource recycle and 

reuse processes into an integrated framework, which could provide a cost-effective 

decision making supporting for water resources stewardship in Newfoundland. With 
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the above-motioned strengths, the complicated wastewater treatment plant network 

planning problems associated with multiple variable types could be effectively reflected 

through the developed MAHPSO approach.  

Table 3.4 Optimal results for WWTP network case study 

City 
WWTP 

type 

Annual sludge transported to the SPC 

(tonne/year) 

St John’s M 286.15 

Torbay M 118.43 

Mount Pearl M 317.47 

Portugal Cove-St. 

Philip’s 
S 24.32 

Paradise M 266.67 

Conception Bay 

South 
M 26 

Bay Bulls O 333.33 

SPC Location Mount Pearl 

Total cost (108$/20 yrs) 5.074 

(S: SBR, O: Oxidation ditch, M: MBR) 
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Figure 3.8 The framework of MAHPSO planning scenario 

 

3.4.2 Sensitivity analysis results 
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To evaluate the significance of each parameter, a sensitivity analysis was 

performed to rank input parameters based on their influence on the optimization results 

(Table 3.5). According to the assumption of independent interrelationship, each 

parameter was individually varied by ±15, ±30, and ±50% while keeping others 

constant, and evaluated its significance based on the variation of the total cost. As 

shown in Table 3.5, the results indicated that sludge processing centre operating cost, 

total compost demand, wastewater generation rate, O&M costs of MBR and population 

were determined as the most five significant parameters. Sludge processing centre 

operational cost was most influential parameter with the variation of total cost changed 

from -45.16% to +43.74% within the analysis range from the -50% level to +50% level. 

Due to the vital effort of SPC and the large demand of sludge product to reduce the 

impact of sludge and increase the recycling capacity, SPC operational cost controlled 

the effect of both the variation of flow rate and sludge produced from 7 areas. The SPC 

operational cost was based on the daily amount of sludge transported from 7 cities. A 

high amount the sludge could lead a high overall cost. Total compost demand from 7 

cities was the second most sensitive parameter, which varied the total cost with a -42.74% 

to +41.64% range by the analysis range from the -50% to +50% level. This indicated 

that the total compost demand had a balance between transportation cost and sludge 

benefit. Even though compost, as a product, had a good benefit for soil improvement 

and agriculture purposes, a large amount of sludge might not bring a better benefit to 

the city. The wastewater generation rate was the third most influential one as the 
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variation of total cost changed from -12.77% to +10.94% by varying wastewater 

generation from the -50% level to the +50% level. Because the amount of wastewater 

was a key element for the whole study, specifically, it was a main factor to the capital 

and operating costs of a WWTP, it also affected the benefit for reused water and 

transportation costs. The O&M cost of MBR technology was the fourth significant 

parameter with a -10.41% to +6.7% through the range of sensitivity analysis, because 

the MBR was the highest rate technique chosen in MAHPSO planning scenarios (5/7), 

due to the benefit of low capital and operational costs of MBR for large population 

cities compared with other two techniques. Thus, the high demands of MBR led to a 

high O&M cost during 20 years as discussed in the case, which drove it to be a 

significant parameter in the system. The fifth most sensitive parameters were 

population in each city. The variation of total cost changed from -12.98% to +10.25% 

by varying these two parameters from the -50% level to the +50% level. Because a low 

population meant a low daily wastewater generation flow and vice versa. Thus, the 

choices for wastewater treatment technologies would be much different, which would 

lead to a various total cost for capital and O&M. Therefore, population is also a vital 

parameter in the system. 
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Table 3.5 Sensitivity analysis of optimization case parameters 

One factor a time (OFAT) 50%↓ 30%↓ 15%↓  15%↑ 30%↑ 50%↑ 

Parameter Unit Variation of total cost (%) 

𝑪𝟏 

$/(L

∙ day) 

-1.49 -1.33 -0.63 -0.20 -1.23 -1.23 

𝑪𝟐 -1.30 -1.57 -0.69 -0.15 -1.55 -1.55 

𝑪𝟑 -5.07 -3.61 -1.65 0.35 2.34 2.34 

𝑶𝟏 -6.16 -1.66 -0.35 -1.32 -1.12 -1.12 

𝑶𝟐 -4.40 -1.27 -0.99 -1.25 -0.23 -0.23 

𝑶𝟑 -10.41 -7.74 -4.45 2.03 4.56 4.56 

𝑺𝟏 

kg/(kg

∙  TS) 

-0.40 -1.44 -0.18 -0.62 -1.39 -1.39 

𝑺𝟐 -1.24 -1.53 -1.09 0.41 -0.98 -0.98 

𝑺𝟑 -1.23 -0.01 -1.01 -1.06 -0.05 -0.05 

𝑹𝑾𝟏 

$/L 

-0.69 -1.43 -0.15 -0.76 -0.22 -0.22 

𝑹𝑾𝟐 -0.18 -1.45 -1.36 -1.41 -1.38 -1.38 

𝑹𝑾𝟑 -0.69 -0.31 -1.30 -0.72 -1.63 -1.63 

WG 
L/(day

∙ capita) 
-12.77 -7.79 -3.61 2.03 6.08 6.08 

RRP % -0.05 -0.85 -1.03 -0.95 -1.60 -1.60 

P  -12.98 -7.20 -3.94 2.31 5.77 5.77 

𝑻𝑺𝑺𝑩𝑹 

mg/L 

-0.81 -0.24 -0.63 -1.49 -1.30 -1.30 

𝑻𝑺𝑶𝒙𝒊𝒅𝒂𝒕𝒊𝒐𝒏 𝒅𝒊𝒕𝒄𝒉 -1.08 -1.25 -1.40 0.15 -0.94 -0.94 

𝑩𝑶𝑫𝑴𝑩𝑹 -1.36 -0.42 -1.07 -1.30 -1.29 -1.29 

SPCC 
$/(kg

∙ day) 
-45.16 -27.48 -14.65 11.82 26.25 26.25 

SPCO 
$/kg 

-0.75 -0.33 -0.96 -0.18 -0.73 -0.73 

CP 0.15 0.28 -0.76 -1.95 -1.04 -1.04 
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𝑪𝑫𝒋 ton/year -42.74 -26.54 -12.93 11.61 24.48 24.48 

SWR % -0.61 -1.20 -1.07 -0.74 -0.89 -0.89 

T 
$/(ton

∙ km) 
-0.60 -0.60 -0.16 -1.01 -1.30 -1.30 

 

The best and worst 20 year-span scenarios found by MAHPSO and other two 

comparison methods were indicated in Table 3.6 and Fig 3.8-3.12. For MAHPSO, 

optimization results indicated that the overall cost was minimized to $5.0740×108 in 

38.04 sec per run. For comparison purposes, the result obtained from the GA was 

$6.3610×108 in 19.43 sec, while the hybrid PSO without multi-agent system acquired 

$5.0856 ×108 in 16.04 sec for the best result. It was illustrated the proposed MAHPSO 

approach can significantly enhance solution convergence as compared to GA and 

HPSO. Moreover, MAHPSO showed good consistency and stability by keeping the 

difference between the best and worst scenarios within a 0.5% range, while GA had the 

worst consistency among all three methods. As shown in Fig 3.9-3.11, even though 

there are still some outliers out of 200 runs, more than 75% optimum can narrow down 

and reach the best optimum in the algorithm. HPSO only had about 2% results that can 

obtain the best result of $5.0856 ×108, most of the optimum indicated in a scattered 

zone from $5.1000 ×108 to 5.3500 ×108, and the results varied in a ± 3% from the 

avarage value. The results from HPSO illustrated that, it has the potential to work as a 

3.4.3 Comparison with GA and HPSO 
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quick calculation method for planning or predition to obtain a preliminary result, but 

for further improving the accuracy, MAHPSO could be the follow-up algorithm. GA, 

even as a traditional optimization approach, obtained the worst result among all 

approaches. Even though the results from GA were stable, and can reach the best 

optimum each time, the optimum values were much higher than the other two methods 

to the value of $6.3610×108. As shown in Table 3.6, MAHPSO had to sacrifice the 

computation speed in order to ensure more optimal solution as compared to GA and 

HPSO. Thus, the optimization results showed that MAHPSO outperformed HPSO and 

GA, and could be competent for the practice of WWTP network decision making 

problems with mixed variables. With the application of MAS to enhance the 

communication among particles, MAHPSO can reach the optimum faster than HPSO 

and provent pBest and gBest results from trapping by a local optimum. The cooperation 

and compitition with neighbors particles can enlarge the adjustment range of particles 

when they were close to local optimums. Besides, although MAHPSO takes the longest 

calculation time for each run, MAHPSO could have the best performance to convenge 

into the best optimial results by setting the stop cretira to the number of times reaching 

the optimal solution Therefore, MAHPSO could obtain a better convergency 

proformance than the original HPSO. 
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Table 3.6 Comparison of optimal total cost for different Methods (Min f) 

 Optimal total cost (E+08$) Average execution 

time (sec/run) 
Best Worst Average 

GA 6.3610 6.3610 6.3610 19.43 

HPSO 5.0856 5.3298 5.2138 16.04 

MAHPSO 5.0740 5.1032 5.0817 38.04 

 

 

Figure 3.9 The distribution of optimum from MAHPSO for 200 runs 
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Figure 3.10 The distribution of optimum from HPSO for 200 runs 

 

Figure 3.11 The distribution of optimum from GA for 200 runs 
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Figure 3.12 The frameworks for HPSO (Left), MAHPSO (Mid) and GA (Right) 
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A MAHPSO method has been developed for WWTP network decision making 

problems with mixed variables. The proposed method had the characteristics of multi-agent 

system, which had the environment of the agent lattice and the behaviors of agent, such 

that competition and cooperation could be operated in each iteration process, and further 

adjusted its position in the search space according to HPSO for continuous and binary 

variables, respectively. Thus, each agent could diffuse and share its useful knowledge to 

the global environment quickly, and all agents could learn and evolve after a process of 

interaction. Owing to the three distinct operators, the MAHPSO method was capable to 

find high quality solutions with an outstanding convergence property in a minimum 

iteration count. The performance of the proposed method demonstrated through the 

optimization of a real-world WWTP network design case in St. John’s area in Canada. 

Optimization resulted indicated that the overall cost was minimized to $5.0740×108. 

Sensitivity analysis showed that sludge processing centre operating cost, total compost 

demand, wastewater generation rate, O&M costs of MBR and population were the five 

most important parameters for the study. For comparison purposes, the best results 

obtained was $6.1279×108 from a traditional GA and $6.3610×108  from HPSO. It was 

illustrated the proposed MAHPSO approach, as compared to traditional GA and HPSO, 

3.5 Summary 
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can significantly enhance solution convergence without sacraficing the running speed. The 

proposed MAHPSO approach can be used as an inexpensive and effective evolutionary 

algorithm for other complex environmental optimization problems.  
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CHAPTER 4: A SIMULATION-BASED MULTI-AGENT PARTICLE 

SWARM OPTIMIZATION (SA-PSO) APPROACH FOR 

SUPPORTING DYNAMIC DECISION MAKING IN OFFSHORE OIL 

SPILL RESPONSES2 

  

                                                     
2 The chapter was extracted from the following journal paper under preparation:  
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With the increasing contamination of water bodies in oceans by oil spills, offshore oil 

pollution has received particular attention over past years by researchers and governmental 

officials. The minimization of the economic and environmental impacts of oil spills in 

oceanic circumstances is a major concern worldwide (Azevedo, et al., 2014). Offshore oil 

spill is defined as an accidental release or discharge of petroleum hydrocarbons due to 

human operations or natural disasters (Li, et al., 2014). According to ITOPF (2008) report, 

85% of the spills are smaller than 7 tons. Fingas (2011) indicated that worldwide oil 

spillage rates have decreased dramatically since the 1960s and 1970s, from about 635,000 

tons annually to about 300,000 tons per year from all sources. However, large spills still 

frequently occur every year and have major environmental and economic negative impacts 

to the world. In recent decades, two of the most remarkable disasters are the Exxon Valdez 

Oil Spill in 1989 and the BP Deepwater Horizon Oil Spill in 2010. A great number of 

studies around their outcomes, including simulation modeling, decision making planning, 

economic analysis, and cleanup technology development, etc., have been published in the 

past few years. Due to spills having led to both tremendous economic losses and durable 

social-environmental impacts. For which, the inefficient decision support system tools 

coupling with simulation models and optimization approach during the emergency 

4.1 Introduction 
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response were one of the vital issues that needed to be conquered. (Anchorage, 1992; Esler 

et al., 2010; Perring et al, 2011; Scocolofsky et al., 2011; Sylves et al., 2012; Boufadel et 

al., 2016). 

In recent decades, according to the literature reviews of offshore oil spill models 

indicated in section 2, many researchers have done research about developing an effective 

and efficient tool for oil spill emergency decision supporting system (DSS) and adding 

optimization approaches into the system to provide decision supporting under changing 

environmental conditions. Further, several studies have attempted to realize dynamic 

simulation in the models. However, harsh oceanic circumstances tend to make emergency 

response to oil spills even more challenging by changing the fate and properties of oil 

dramatically within a short period of time, which will inevitably hinder and affect the 

efficiencies of recovery and cleanup processes (Brandvik et al, 2006; Bjerkemo, 2011; Li 

et al, 2014). Till now, few studies have been carried out specifically focusing on the 

solutions of this issue. Therefore, a real-time dynamically simulated and optimized 

decision supporting system taking into account the restrictions of devices and the 

enhancement of response efficiency is urgently desired. 

To fill this gap, this study aimed at developing a simulation-based multi-agent particle 

swarm optimization approach for supporting dynamic decision making in offshore oil spill 
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responses. In the developed system, agent based modeling (ABM), a dynamic, high-

freedom, and interactive simulation approach, was hereby proposed to render a certain 

degree of autonomous characteristics to the system, achieve a better simulation of the 

process and make it accessible to cooperate with optimization processes. Particle swarm 

optimization (PSO), an effective optimization algorithm, was used as the means to optimize 

the result from simulation to desire a better decision making result. Multi-agent system 

(MAS) finally composed the whole frame for the system in order to make the system can 

work smoothly and successful, to control and transmit the result from ABM and PSO 

aspects. The outcomes of the study were expected to facilitate a more effective and efficient 

tool for emergency oil spill response under highly dynamic conditions.  

The SA-PSO approach considered the ABM for simulation, PSO for optimization and 

MAS for integration of the system to realize the information transportation and dynamic 

decision making. Specifically, agent based modelling was responsible for the dynamic 

simulation process including the behaviors of oil cleanup and recovery response and oil 

spill weathering simulation. Oil spill trajectory will be considered in future studies. PSO 

4.2 Methodology 

4.2.1 Agent based modeling for oil spill simulation 
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provided feedback and adjusted the current decisions by comparing the scenarios’ 

allocation plans and clean-up efficiency. 

4.2.1.1 Offshore oil spill cleanup and recovery response simulation 

In offshore oil spill cleanup response, the net oil recovery rate of skimmer mainly 

depends on slick thickness (ST). The function (Eq. 4.1) between 𝑂𝑅𝑅𝑠𝑘 and ST is defined 

as follows: 

𝑂𝑅𝑅𝑠𝑘 =  𝛼 × 𝑆𝑇2 +  𝛽 ×𝑆𝑇      (4.1) 

where 𝑂𝑅𝑅𝑠𝑘 is defined as the amount of recovered oil per hour (𝑚3/ℎ𝑟), 𝛼 and 𝛽 

are empirical coefficients obtained from experimental tests (Li et al, 2014). Accordingly, 

the objective function of the offshore oil spill recovery response by skimmers (Eq. 4.2) can 

be voiced as follows: 

𝑉𝑠𝑘 = ∑ ∑ 𝑓𝑂𝑅𝑅𝑠𝑘,𝑖,𝑡(𝑆𝑇𝑘,𝑡)
𝑖
𝑖=1

𝑡
𝑡=1       (4.2) 

where 𝑉𝑠𝑘 is the total recovered oil amount by all skimmers during the response time 

period (𝑚3), t is the response time period (hr), i is the index number of skimmers, k is the 

number of spills, 𝑓𝑂𝑅𝑅𝑠𝑘,𝑖,𝑡
 represents the net oil recovery rate of skimmer i at time t, and 

𝑆𝑇𝑘,𝑡 shows the slick thickness of spill k at time t.  
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The slick thickness (4.3) can be calculated by the equation shown as follows: 

𝑆𝑇𝑘,𝑡 =
𝑉0,𝑘−∑ 𝑉𝑙𝑜𝑠𝑠,𝑘,𝑡

𝑡−1
𝑡=1

𝐴𝑡
       (4.3) 

where 𝑉0,𝑘 is the initial volume of spill k, A is the area of spill k, and 𝑉𝑙𝑜𝑠𝑠,𝑘,𝑡 is the 

oil loss at time t through oil response and natural weathering processes.  

As ST is dynamically related with the spilled oil volume, and skimmers may move 

among several spills in order to improve the efficacy of recovery rate or shorten the 

response time. Therefore, the problem becomes dynamic and non-linear, and cannot be 

easily solved.  

4.2.1.2 Offshore oil spill weathering simulation 

In real-world practices, oil recovery is significantly affected by the weathering 

processes, such as spreading and drift, evaporation, natural dispersion, emulsification, 

biodegradation, etc. (Fingas, 2011 and 2013). In most of spill cases, the recovery and 

cleanup processes are required to be done within a short period. Evaporation, dispersion, 

and emulsification could play vital roles in oil weathering. Therefore, these processes will 

also be taken into account in the ABM simulation section. 

According to Fingas (2011), the empirical equation of evaporation for oil (Eq. 4.4) is 

as follows: 
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𝐹𝐸 =
𝑐+𝑑×(𝑇−273.15)×𝐿𝑛(𝑡)

100
        (4.4) 

Where, c and d are empirical parameters for specific oil, FE is the evaporation rate 

(𝑚3 ℎ𝑜𝑢𝑟⁄ ∙ 𝑚3𝑜𝑓 𝑜𝑖𝑙), T is temperature (K), and t is time (minute). 

Moreover, the equation for the dispersion process (Eq. 4.5) developed by Mackay et 

al. (1980) is indicated as follows: 

𝐹𝐷 =
0.11×(𝑈+1)2

1+50×𝜇0.5×𝑆𝑇×𝑠𝑡
       (4.5) 

Where FD is the dispersion rate (𝑚3/(𝑠 ∙ 𝑚3 𝑜𝑓 𝑜𝑖𝑙)), 𝜇 is the dynamic viscosity of 

the oil (cP), and 𝑆𝑡 is the interface tension between oil and water (dyne/m). 

Furthermore, the equation for the emulsification proposed by Rasmussen (1985) is 

shown as follows: 

𝑑𝐹𝑒𝑚𝑢𝑙

𝑑𝑡
= 𝑅1 − 𝑅2       (4.6) 

𝑅1 =
𝐾1

𝜇0
×(1 + 𝑈)2×(𝐹𝑒𝑚𝑢𝑙

𝑓𝑖𝑛𝑎𝑙 − 𝐹𝑒𝑚𝑢𝑙)     (4.7) 

𝑅2 =
𝐾2

𝐴𝑠𝑝ℎ×𝑊𝑎𝑥×𝜇0
𝐹𝑒𝑚𝑢𝑙       (4.8) 

Where 𝐹𝑒𝑚𝑢𝑙 is the fractional water content; 𝐹𝑒𝑚𝑢𝑙
𝑓𝑖𝑛𝑎𝑙

 is the maximum water volume 

that can be incorporated in the emulsion, U is the wind velocity, 𝐾1 and 𝐾2 are empirical 
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dimentsionless constants; Asph and Wax are percentages of asphaltenes and waxes 

contents and 𝜇0 is the initial dynamic viscosity of the oil.  

Kirstein et al. (1988) published a relatively simple empirical dependence in the form 

of the equation to illustrate the relationship between viscosity and water content (Eq. 4.9).  

𝜇 = 𝜇0×exp (
2.5×𝐹𝑒𝑚𝑢𝑙

1−𝑘×𝐹𝑒𝑚𝑢𝑙
)      (4.9) 

Where 𝜇  is the resulting viscosity, 𝜇0  is the starting oil viscosity, and k is the 

Mooney constant which is 0.62-0.65, and 𝐹𝑒𝑚𝑢𝑙 is the fractional water content. 

When considering the simulation of the oil cleanup response efficiency, along with 

the weathering processes, the objective function for the skimmer cleanup response (Eq. 

4.10) can be formulated as follows: 

Max V = ∑ ∑ 𝑓𝑂𝑅𝑅𝑠𝑘,𝑖,𝑡(𝑆𝑇𝑘,𝑡)
𝑖
𝑖=1

𝑡
𝑡=1      (4.10) 

s.t. 

𝑂𝑅𝑅𝑛𝑖𝑠,𝑡 = 𝑓𝑂𝑅𝑅𝑛𝑖,𝑡
(

𝑉0−∑ (𝑉𝑡+𝐹𝑉𝑡+𝐷𝑉𝑡)𝑡−1
𝑡=1

𝐴
)       (4.11) 

𝐹𝐷𝑡 = 𝑓𝐹𝐷(𝑆𝑇𝑡−1) = 𝑓𝐹𝐷(
𝑉0−∑ (𝑉𝑡+𝐹𝑉𝑡+𝐷𝑉𝑡)𝑡−1

𝑡=1

𝐴
)     (4.12) 

𝐹𝑉𝑡 = 𝐹𝐸𝑡−1×(𝑉0 − ∑ (𝑉𝑡 + 𝐹𝑉𝑡 + 𝐷𝑉𝑡)𝑡−1
𝑡=1 )     (4.13) 

𝐷𝑉𝑡 = 𝐹𝐷𝑡−1×(𝑉0 − ∑ (𝑉𝑡 + 𝐹𝑉𝑡 + 𝐷𝑉𝑡)𝑡−1
𝑡=1 )     (4.14) 
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Where FV is the evaporated oil (m3) and DV is the dispersed oil (m3). 

PSO is a stochastic population heuristic optimization approach first developed by 

Eberhart and Kennedy (1995) for continuous non-linear function optimization. PSO is 

currently applied in various scheduling problems because of its simplicity and efficiency. 

However, PSO is a new application as an optimization tool for solving offshore oil spill 

accidents decision supporting problems with devices allocations. In the proposed SA-PSO 

system, PSO played the role as the tool to receive the outputs from ABM section, after 

optimized the device locations and checked with the stop criteria, outputs from PSO would 

be decided to send back to ABM for the next iteration or as the final decision for the 

problem.  

Each particle i is evolved by exploiting positional information from the selected global 

leader and its own personal best to update its velocity and position values, as indicated in 

Eq.4.15 and 4.16. The detailed background of PSO has been illustrated in section 2.2.1 

𝑣𝑖(𝑡 + 1) = 𝑤 ∙ 𝑣𝑖(𝑡) + 𝑐1 ∙ 𝑟1 ∙ (𝑥𝑝𝑏𝑒𝑠𝑡𝑖
− 𝑥𝑖(𝑡)) + 𝑐2 ∙ 𝑟2 ∙ (𝑥𝑔𝑏𝑒𝑠𝑡𝑖

− 𝑥𝑖(𝑡)) 

 (4.15) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)     (4.16) 

4.2.2 Particle swarm optimization algorithm 
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Where i is the iteration number, w is the inert weight, 𝑐1 and 𝑐2 are two learning 

factors from the personal and global best particles respectively, 𝑟1 and 𝑟2 are two random 

numbers generated uniformly in the range [0, 1]. 

In multi-agent systems (MAS), agents’ knowledge includes information (e.g. user 

model, heuristics, financial data, etc.) and object classes for retrieving or processing it (e.g. 

preference-elicitation methods, negotiation strategies, time-series analyzers, etc.) (Winoto, 

2003). One key element of MAS is the information sharing, which is important in 

application oriented domain. The structure of MAS would be varied based on research 

areas and topics (Rodrigues, 2011). In the proposed SA-PSO system, the system mode used 

was shown in Fig. 4.1. MAS could contain more than one layer so that each layer can have 

a different function. In the proposed structure, 3 layers, PSO optimization layer (POL), 

social interaction layer (SIL), and agent behavior layer (ABL), worked collectively. First, 

the PSO optimization player played as the optimization environment for particle swarm 

optimization algorithm. Each black point was a PSO agent, which was a candidate solution 

containing all the information and functions from the other two layers. SIL and ABL were 

used for simulation processes. The social interaction layer reflected the interaction 

characteristics between different agents. In SA-PSO model, skimmers had interactions with 

4.2.3 An integrated multi-agent system and a SA-PSO framework 
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other skimmers’ behaviors and oil spill characteristics. When a skimmer shipped to a spill, 

the skimmer would collect oil on the spill, it would affect the evaporated, dispersed oil rate, 

density, viscosity and water content for spills. Moreover, when more than one skimmer 

moved on a spill, they would have a competition behavior for oil collection. For the last 

layer, the environment or agent behavior layer provided a platform for all agents to 

continuously update their behaviors followed by their specific rules. For example, oil spills 

followed weathering processes including evaporation, dispersion, and emulsification. 

Further, skimmers obeyed the rules for oil collection and movement. With the contribution 

of MAS, ABM simulation and PSO optimization can work as a dynamic system with the 

complicated inner and external interactions. Moreover, the data from different sections 

could transmit and reflect smoothly and successfully.  
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Figure 4.1 The multi-agent system (MAS) structure of the simulation-based multi-

agent particle swarm optimization (SA-PSO) approach 
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By the cooperation of ABM, MAS, and PSO, the simulation-based multi-agent 

particle swarm optimization system could be treated as a novel developed system that have 

the potential to be used for decision supporting system (DSS) of offshore oil spill accidents. 

The framework of the SA-PSO approach is shown in Fig. 4.2 The approach can utilize the 

global objective as the goal for agents and dynamically adjust the planning setting 

according to the results from simulation and optimization sections in each iteration. The 

modelling operational platform supporting the proposed system is call NetLogo®. It is a 

popular multi-agent programmable modelling environment, which is developed by Uri 

Wilensky in 1999, and has been utilized as an efficient tool for ABM and MAS modeling 

by a great number of researchers (Dickerson, 2014; Banitz, et al., 2015; Arayhi et al, 2016). 

Therefore, NetLogo® is used as the foundation platform for the SA-PSO model. 
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Figure 4.2 Framework of the simulation-based multi-agent particle swarm 

optimization (SA-PSO) approach 

A hypothetic case study was considered to test the efficiency of SA-PSO method. The 

case indicated an offshore oil spill accident of Arabian Light crude oil in the North Atlantic 

area with a total amount of 5,000 m3. With the effects of advection and spreading, the 

4.3 Case Study 

4.3.1 Case description 
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spilled oil was split into 10 slicks within a 50 km by 50 km area. Table 4.1 illustrated the 

oil volumes and coordinates of these oil slicks.  

Table 4.1 Oil volume and site coordinates of oil slicks 

Slick Oil Volume (m3) 
Coordinate 

X(km) Y(km) 

1 619.69 40.03 47.35 

2 532.44 35.97 43.74 

3 332.03 32.03 40.88 

4 802.76 17.92 35.01 

5 879.86 25.33 27.42 

6 913.84 26.49 32.38 

7 319.37 42.61 20.84 

8 232.82 43.25 15.72 

9 186.12 39.80 8.46 

10 181.07 37.44 5.03 

 

 Three different ship-mounted skimmers, which were installed on three ships (ship A, 

B, and C), were the only available nearby cleanup tools that can be applied in this area to 

collect the spilled oil at this scenario. Three ships were berthed at three different ship docks 

and a specific transportation time period was needed for allocation. The detailed location 

relationships of response ships and oil slicks were indicated in Figure 4.3 and Table 4.2. 
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Table 4.2 The location information about three ship docks 

Ship X(km) Y(km) 

A 15 0 

B 0 15 

C 80 0 

 

 

Figure 4.3 Location relationships of response ships and oil slicks 

 

4.3.2 Oil weathering process simulation 
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The oil weathering processes included evaporation, emulsification, natural dispersion, 

dissolution, sedimentation, etc.(Fingas, 2011). The major weathering processes, 

evaporation, natural dispersion and emulsification, were discussed in this hypothetic case 

for oil weathering processes. Table 4.3 illustrated the inputs for the oil spill weathering 

processes. 

Table 4.3 Arabian Light crude oil characteristics for the weathering processes 

Parameter Value Unit Parameter Value Unit 

Temperature (T) 278.15 K Wind speed (U) 10 m/s 

Vapor pressure (𝑃𝑠𝑎𝑡) 10.4 Pa 
Water content 

(Femul) 
0.1 % 

Oil density (𝜌𝑠𝑎𝑡) 0.8781 g/L Gas constant (R) 8.314 
m3·Pa·k-1·mol-

1 

Oil viscosity (𝜇) 31 cP 
Interface tension 

(𝑆𝑡) 
1680 dyne/m 

Emulsion formation viscosity (0% Evaporation) 23000 cP 

*The parameter values are from data in 0℃. 

Based on Fingas (2011), the empirical equation for predicting evaporation for Terra 

Nova crude oil (Eq. 4.17) was shown as follows: 

(%)𝐸𝑣 = (2.4 + 0.045(T − 273.15)) ln(t)     (4.17) 
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where, (%)𝐸𝑣 was percentage evaporated oil, T was temperature in degrees Celsius, 

and t was the time in minute. 

According to Mackay et al. (1980), the simulation equation for natural dispersion 

process (Eq. 4.18) was shown as follows: 

(%)𝐷𝑖𝑠 =
0.11×(𝑈+1)2

1+50×𝜇0.5×𝑆𝑇×𝑆𝑡
        (4.18) 

where, (%)𝐷𝑖𝑠 was percentage dispersed oil, 𝑈 was wind speed in m/s, 𝜇 was the 

dynamic oil viscosity in unit of cP, 𝑆𝑇 was oil slick thickness in mm, and 𝑆𝑡, was interface 

tension between oil and water in unit of dyne/m. 

Based on Mackay et al. (1980), Rasmussen (1985), and Azevedo et al. (2014) studies, 

the data was achieved for 𝐾1 = 3.0×10−9 𝑘𝑔/𝑚3, and 𝐾2 = 3.5×10−7 𝑘𝑔/𝑚 ∙ 𝑠2 with 

a maximum water content of 𝐹𝑒𝑚𝑢𝑙
𝑓𝑖𝑛𝑎𝑙

 closed to 90%. In addition, Fingas et al. (2004) 

indicated that the asphaltenes and waxes contents of Terra Nova crude oil were 4% and 

7%, respectively. 

In the oil weathering simulation part, some parameters values were considered as 

constant, which include, temperature, wind speed, oil density, and interface tension. 

Besides, no wind directions were considered in this hypothetic case, due to the beforehand 
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processes of advection and spreading. No oil movement processes were taken into account 

during the oil dynamic simulation. Emulsification did not affect the spill volumes. 

Three ships with three types of ship-mounted skimmers were applied as the recovery 

technology for oil spills. The empirical equation for the net oil recovery rate of skimmers 

was illustrated as follows (Li et al., 2012, 2014): 

O𝑅𝑅 = 𝑎×𝑆𝑇2 + 𝑏×𝑆𝑇      (4.19) 

where, O𝑅𝑅  was the net oil recovery rate in unit of 𝑚3 ∙ 𝑜𝑖𝑙 ℎ𝑟⁄ , a and b were 

empirical coefficients obtained from experimental tests, and ST was oil slick thickness in 

mm. 

The detailed information about empirical coefficients used for three skimmers were 

shown in Table 4.4. As slick thickness was the key element leading to the oil recovery 

efficiency of skimmers, Figure 4.4 indicated the relationships between slick thickened and 

different skimmers. 

 

4.3.3 Oil recovery simulation 
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Table 4.4 Model coefficients for net oil recovery rate of three ship-mounted 

skimmers 

Types of skimmers 
Empirical coefficients 

a b 

SK1 (Ship A) 0.01437 0.01602 

SK2 (Ship B) -0.00791 0.84975 

SK3 (Ship C) -0.01591 1.54975 

 

 

Figure 4.4 The relationships between slick thickness and net oil recovery rates of 

ship-mounted skimmers 

 

0

10

20

30

40

0 10 20 30 40 50N
e
t 

o
il

 r
e
c
o
v
e
r
y

 r
a
te

 (
m

3
/h

r
)

Slick thickness (mm)

Ship A

Ship B

Ship C



114 

  

Due to the inconvenient conditions in the harsh environment, no other skimmers and 

vessels were ready for the emergency response. The objective of the response in the case 

was to achieve the decision making plan for 90% of oil recovery, including natural 

attenuation and man-made cleanup processes, within a minimum response time. According 

to the previous information and the algorithms of SA-PSO, a global optimization function 

can be generated as follows: 

𝑴𝒊𝒏 𝑻 

s.t. 

∑ 𝑇𝑉𝑡
𝑇
𝑡=1 ≥ 90%×𝑡𝑜𝑡𝑎𝑙 𝑜𝑖𝑙 𝑣𝑜𝑙𝑢𝑚𝑒          (4.20) 

𝑇𝑉𝑡 = 𝑓𝑡(𝑆ℎ𝑖𝑝𝑖 , 𝑆𝑇𝑖𝑘)              (4.21) 

∀𝑡 = 1, ⋯ , 𝑇; 𝑖 = 𝑎, 𝑏, 𝑐; 𝑘 = 1, ⋯ ,7 

Where T was the time scale of operation (hour); t was the indicator of stage; 𝑇𝑉𝑡 was 

the total recovered oil in each stage (𝑚3); and 𝑇𝑉𝑡 = 𝑓𝑡(𝑆ℎ𝑖𝑝𝑖 , 𝑆𝑇𝑖𝑘) was the simulation 

objective function at time tick t; 𝑆𝑇𝑖𝑘 was the slick thickness of each slick k at stage t 

(mm).  

4.3.4 PSO settings and SAPSO computing environment 
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In the optimization section, PSO was implemented to find the optimal solution. The 

model was written in NetLogo®
 and operated on an intel i7 4770K computer with RAM. 

For PSO settings, the particle size was 256, 200 repeating runs were carried out with 50 

iterations per time tick. 

The shortest distance selection approach (SDS) method was applied into the case 

study in order to compare and examine the efficiency of SA-PSO approach. By comparison, 

SA-PSO approach was testing if the developed approach can show a better robustness and 

efficiency than others. 

SDS was the common and simple approach used in offshore oil spill emergency 

response. The approach indicated a process which allowed skimmer-ships to choose the 

closest oil slicks near them to be the target for oil recovery, after ships met the requirement 

for cleanup on those slicks, then chose the second closest oil slicks near them to continue 

to work. The only judgement criteria was the distance between two spills. No interaction 

between multiple skips and cleanup efficacy was considered in this approach, but it was 

the simplest and quickest-responding method. Therefore, SDS was used to examine the 

developed SAPSO efficacy.  

4.3.5 Comparison with other approaches 
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The modeling results indicated that with consideration of oil weathering processes, 

the operation time for achieving an oil recovery rate of 90% was 83 hours based on the 

optimal vessel routes determined by the SAPSO modeling. 

The weather agent based simulation model section in SAPSO reflected the dynamic 

relationship of oil volumes of spills and time. As the above illustration, three vital 

weathering processes possessed in the model, which were evaporation, dispersion, and 

emulsification. The evaporation of the specific oil type was affected by time with a constant 

temperature. The dispersion process was under the influence of wind speed, viscosity and 

interface tension between oil and water. In this case, wind speed and interface tension were 

assumed as constants. And viscosity was dynamically impacted by an emulsification 

procedure. Further, the emulsification led to the variation of water volume with time and 

then influenced the value of viscosity simultaneously. However, the impacts from the 

change of water content on oil volume was neglect.  

Table 4.5 showed the decision-making results of SAPSO and SDS approaches under 

the weathering processes. SAPSO plan can reduce the time by 11 hours compared to the 

4.4 Results and Discussion 

4.4.1 Decision making with weathering process simulation 
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SDS one, which can increase 11.7% recovery speed in the spill incident. In SAPSO, ship 

C was the one that had the highest amount of recovered oil, which was about 400 m3 higher 

than the amount of ship C in SDS scenario. As the skimmer mounted on ship C had the 

highest collective efficiency (Fig 4.4), the SAPSO decision tried to lead ship C to keep 

having a high efficacy during the entire procedure. Fig 4.5 and Fig 4.6 indicated the amount 

of oil recovered by each ship at each stage by two approaches. The curves of SAPSO were 

much smoother than the ones of SDS, according to the main effect of slick thickness to 

recovery rate. The SAPSO plan can optimize the recovery rate related to the change of 

slick thickness of each spill, in order to save the operation time. While the SDS always 

cleaned up one spill before moving to the other, which would hinder the cleanup efficiency 

with the decrease of oil volume and the effect of weathering. Fig 4.7 and Fig 4.8 illustrated 

the variations of oil volumes by each spill in the SAPSO and SDS scenarios with 

weathering process during the entire procedure. The SAPSO decision intended to keep a 

balance of oil volume level for all spills by optimizing the time cost of movement and 

cleanup efficiency. However, the SDS scenario ignored the large spills, such as spill 1 and 

2. Fig 4.9 and Fig 4.10 indicated the transport and fate of spilled oil of both methods during 

the operational period. It can be seen that evaporation led to a vital force at the early stage, 

and dispersed oil had a little effect to the weathering process compared with evaporation. 
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Table 4.5 Decision making results of SAPSO and SDS approaches 

 SAPSO SDS 

Operation time (hr) 83 94 

Recovered oil (Ship A) (m3) 680.80 1045 

Recovered oil (Ship B) (m3) 880.33 899 

Recovered oil (Ship C) (m3) 1706.12 1310 

Total recovered oil (%) 65.35 65.11 

Evaporated oil (%) 26.14 26.36 

Dispersed oil (%) 0.6025 0.64 

Remain oil (%) 7.91 7.89 
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Figure 4.5 Cumulated oil recovery by each ship in SAPSO scenario with oil 

weathering process 
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Figure 4.6 Cumulated oil recovery by each ship in SDS scenario with oil 

weathering process 

 

 

Figure 4.7. Oil volumes by each spill in SAPSO scenario with weathering process 
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Figure 4.8 Oil volumes by each spill in SDS scenario with weathering process 
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Figure 4.9 Transport and fate of spilled oil during the operational period in SAPSO 

scenario 

 

 

Figure 4.10 Transport and fate of spilled oil during the operational period in SDS 

scenario 

 

The models without weathering processes were also considered as a scenario to 

examine the efficiency of the proposed approach. As shown in the Table 4.6, the decisions 
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4.4.2 Decision making without weathering process simulation 
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effort on all 10 spill together, tried to move back and forth on nearby spills to keep a high 

collective efficiency with a high slick thickness and decrease the total environmental 

impact systematically. As shown in Fig 4.11, from the SDS scenario, the oil spill volume 

remained if no skimmers worked on that spill. When ships operated, the volume decreased 

sharply. However, compared with SAPSO results, some spills with large amount of oil 

were not treated in time. For example, spill 1, 2 and 6 were not treated in first 30 hours. 

These large spills could cause a poor marine impact. Furthermore, the collective amounts 

of ships were close in two approaches. Ship A and C had almost the same curve shown in 

Fig 4.13 and 4.14. Even though the operation times in the non-weathering scenarios were 

close, in the weathering ones, the SAPSO had a significant advantage compared to the 

other. In addition, the operation time of weathering cases were much larger than non-

weathering ones, which indicated that weathering processes can complicate the situation. 

For example, the evaporation process can decrease the oil volume rapidly in the early stage, 

which would decrease the slick thickness. Thus, the difficulty of skimmer collection would 

increase. Therefore, the complicated weathering processes and uncertainties in the 

circumstances can improve the contribution of SAPSO on offshore oil spill accident 

decision making system. 

Table 4.6 Decision making results of SAPSO and SDS approaches 
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 SAPSO SDS 

Operation time (hr) 48 51 

Recovered oil (Ship A) (m3) 1762.85 1773.03 

Recovered oil (Ship B) (m3) 1090.20 1058.34 

Recovered oil (Ship C) (m3) 1810.20 1823.34 

Total recovered oil (m3) 4663.25 4654.71 

Remain oil (%) 6.735 6.906 

 

 

Figure 4.11. Oil volumes by each spill in SDS scenario without weathering process 
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Figure 4.12 Oil volumes by each spill in SAPSO scenario without weathering 

process 
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Figure 4.13 Cumulated oil recovery by each ship in SDS scenario without oil 

weathering process 
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Figure 4.14 Cumulated oil recovery by each ship in SAPSO scenario without oil 

weathering process 

The improvement of offshore oil spill response efficiency to minimize economic and 

environmental impacts has become a major need worldwide. This study proposed a new 

simulation-based multi-agent particle swarm optimization (SA-PSO) approach to facilitate 

a dynamic decision making at both levels simultaneously for response device allocation 

and control during offshore oil spill events considered. The proposed method was tested 

by a hypothetical case study with Arabian Light crude oil in the North Atlantic Ocean. 

Weathering processes including evaporation, dispersion, and emulsification were 

considered in the simulation, along with booming and skimming operations in the harsh 

environment. The results demonstrated that the proposed approach can timely and 

effectively provide an optimal decision for the allocation of devices and control of 

operations in a dynamic condition. 

Even though the case study was applied in supporting the oil recovery process, the 

developed SAPSO has the potential to dynamically and systematically support multiple 

cleanup techniques concerning in-situ burning, skimmers, sorbents, surfactant and 

4.5 Summary 
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biodegradation. The complex problem and high-level intent of interactions could enlarge 

the advantages of SAPSO. 

In future studies, hydrodynamic simulation of oil spill trajectory and more 

complicated weathering processes will be considered to further explore the application 

range of SAPSO. In addition the consideration of uncertainties and risk assessment will be 

concerned in the decision supporting objectives. Testing of the developed method through 

real-world application is considered with the collaboration with local government and 

companies. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 
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In this research, the proposed MAHPSO approach, was approved by the integration of 

MAS theory with the interation among particles to be able to significantly enhance solution 

convergence without sacraficing the computation time/efficiency, and to provide optimal 

results with high accuracy and repeatability. From the real-world wastewater treatment 

plant network planning case in Newfoundland and Labrador, Canada. The results were 

compared with those of the traditional GA approach and the HPSO method. Optimization 

resulted indicated that the overall cost was minimized to $5.0740×108. For comparison 

purposes, the best results obtained was $6.1279×108 from a traditional GA and 

$6.3610×108  from HPSO. The results demonstrate the excellent performance of 

MAHPSO. The proposed approach could be used as an effective evolutionary algorithm 

for complex system optimization and planning problems in environmental and other fields. 

Secondly, the proposed SAPSO approach could efficently decrease the total response 

time, and dynamically optimize the allocation of response equipment. In the hypothetic 

North Atlantic oil spill case study, the developed SAPSO approach was significantly 

improved from the traditional SDS method by saving about 11% time window (11 hours). 

With the analysis of weathering processes, the decision making became more complicated, 

5.1 Conclusions 
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and SAPSO showed an outstanding performance than SDS. The results indicated it had the 

strong potential to be applied to decision making problems in environmental and other 

fields. 

(1) In this study, a high-efficiency multi-agent based hybrid particle swarm 

optimization system was developed for dealing with complicated and distinct 

environmental issues. In order to solve the special problem of diversiform variables in 

environmental decision making models. HPSO approach was developed for the first 

time by integration of traditional particle swarm optimization and binary particle swarm 

optimization for dealing with non-linear problems with multiple types of variables 

(both continuous and discrete variables) to realize the performance of sophisticated 

environmental conditions; And then by introducing multi-agent system (MAS) concept, 

a multi-agent based hybrid particle swarm optimization (MAHPSO) approach was 

proposed in the first time to enhance the solution convergence by the consideration of 

individual and autonomous artificial intelligence theory. Furthermore, the research 

contributed to the advancement on the binary update equations in multi-agent criteria 

section. Moreover, through the examination by a wastewater treatment network 

5.2 Research Achievements  
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planning case study, and the comparison with the genetic algorithm (GA) and HPSO 

methods, the efficiency and feasibility were demonstrated. Besides, an optimized plan 

was valuable for future WWTPs network development in the city of St. John’s, Canada. 

The WWTP network planning case showed the practicability of the MAHPSO system, 

and it could be used for not only other types of environmental decision making issues, 

but most optimization problems in other fields. 

(2) This study developed a new simulation-based multi-agent particle swarm 

optimization (SA-PSO) system to facilitate the decision making at both simulation and 

optimization levels simultaneously. Agent based modeling is the first time to be applied 

in the offshore oil spill accident problems, and it is the first time that agent based 

simulation model coupled with a PSO optimization algorithm and integrated multi-

agent system as the decision-making criteria to realize the dynamic process decision 

making. The proposed method was examined with a hypothetical case in the North 

Atlantic region showing the model efficiency and capability. The showed the 

practicability of the SA-PSO system to be applied for offshore oil spill accident 

responses, but it also provides a high-compatible and effective system for all types of 

simulation-based decision making problems.  
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Based on the research, two conference abstracts have been produced and six journal 

papers are-under review or preparation as follows: 

a) Journal paper: 

1) Ye, X., Chen, B., Jing, L., and Zhang, B. A novel multi-agent based 

hybrid particle swarm optimization (MAHPSO) approach for wastewater 

treatment plants network design. (Under preparation). My duty is developing the 

proposed MAHPSO system, building the case study model, analyzing results and 

writing the whole paper. 

2) Li, Z., Chen, B., Wu, H., and Ye, X. (2016). A hybrid stochastic – design 

of experiment aided parameterization method for modeling aquifer NAPL 

contaminations. Environmental Modelling and Software. (Under review). My 

duty is doing the experiments, and analyzing parts of result data. 

3) Li, Z., Chen, B., Wu, H., Zhang, H., Ye, X., and Zhang, K. (2016). A 

parameterization study for modeling biosurfactant enhanced aquifer remediation 

processes based on flow cell experiments. ASCE's Journal of Environmental 

Engineering. (Under review). My duty is doing the experiments, and analyzing 

parts of result data. 
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4) Jing, L., Chen, B., Ye, X., and Zhang, B. Wastewater treatment plant 

network design using a multi-scale two-stage mixed integer stochastic (MSTMIS) 

model. Environmental Engineering Science, in press. My duty is building the case 

study model and writing the introduction and sensitivity analysis parts of the final 

paper. 

 

b) Conference abstract: 

1) Ye, X., Chen, B., Jing, L., and Li P. (2016). A simulation-based multi-

agent particle swarm optimization approach for supporting dynamic decision 

making in offshore oil spill response. Abstract submission for 39th AMOP 

Technical Seminar on Environmental Contamination and Response, June 7 to 9, 

2016. My duty is developing the whole SA-PSO system and presenting at AMOP. 

2) Ye, X., Jing, L., Chen, B., and Zhang, B. (2016). Optimal design of 

municipal wastewater treatment plant networks under uncertainty. Abstract 

submission for The National Water and Wastewater Conference, November 13-

16, 2016. My duty is developing the proposed method and making the poster for 

the conference. 
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(1) The adoption of agent based approaches is recently emerging in 

environmental fields. This research proved the high potential of such methods in 

enhancing optimization and decision making. In future studies, ABM and MAS could 

be further integated into more traditional environmental simulation and optimization 

methods and tested by real world casesin order to test the capability and improve 

modeling performance. For example, the MAHPSO could be further used to replace 

current training processes of ANN (artificial nerual network) and ANFIS (adaptive 

network based fuzzy inference system). ANN and ANFIS need optimization method 

in its training step. To most ANN and ANFIS versions, GA is used as the tool. Based 

on the result in first study, MAHPSO has the high potential to enhance the current 

modeling performance. Moreover, MAHPSO can be further examimed with more 

sophicated cases such as considering multi-objective functions. In the HPSO, other 

optimization methods and concepts such as Markov decision process could be 

introduced and examined along with the MAHPSO. 

(2) The cases used in this research were either simplified or hypothetical or semi-

hypothetical. More real case studies are expected to test the applicability of developed 

5.3 Recommendations for Future Work 
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methods and understand their advantages and limitations for futher improvement to 

improve the authenticity and reliability for the developed methods. 

(3) Agent based simulation has the potential for the simulation of complicated 

environmental processes, such as interior wastewater treatment processes, which has 

high interactions among different treatment stages and technologies, these could be 

considered in further research. 
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