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Abstract 

The pelagic propagules of benthic marine animals often exhibit behavioural responses to 

biotic and abiotic cues. These behaviours have implications for understanding the 

ecological trade-offs among complex developmental strategies in the marine 

environment, and have practical implications for population management and 

aquaculture. But the lack of life stage-specific data leaves critical questions unanswered, 

including: (1) Why are pelagic propagules so diverse in size, colour, and development 

mode; and (2) do certain combinations of traits yield propagules that are better adapted to 

survive in the plankton and under certain environments? My PhD research explores these 

questions by examining the variation in echinoderm propagule morphology, locomotion 

and behaviour during ontogeny, and in response to abiotic cues. Firstly, I examined how 

egg colour patterns of lecithotrophic echinoderms correlated with behavioural, 

morphological, geographic and phylogenetic variables. Overall, I found that eggs that 

developed externally (pelagic and externally-brooded eggs) had bright colours, compared 

to the typically pale colour intensity of internally-brooded eggs. Additionally, my analysis 

suggested geographic location as a potential driver of the evolution of colour diversity 

through the selection of better-adapted pigments in response to ecological pressure. I then 

undertook a critical assessment of swimming capacity and sensory ability in propagules 

from four co-occurring North Atlantic echinoderms with two different types of pelagic 

development: the sea stars Asterias rubens (planktotrophic) and Crossaster papposus 

(lecithottrophic), the sea urchin Strongylocentrotus droebachiensis (planktotrophic), and 



iii 

 

the sea cucumber Cucumaria frondosa (lecithotrophic) at two different temperatures. 

Propagule swimming speed increased with ontogeny in two of the four species (the sea 

stars A. rubens and C. papposus) but did not uniformly increase with temperature. 

Contrary to initial assumptions, some lecithotrophic propagules emerged as the fastest 

swimmers (e.g., 1.2 mm s-1 in the brachiolaria of C. papposus). Lastly, in a study of 

phototaxis involving the same focal species, variation in swimming speed and trajectory 

were detected when propagules were exposed to three different light colours. Taken 

together, the data generated by my PhD work provide a framework to assess the adaptive 

value of pelagic propagules to benthic animals, to examine the trade-offs of complex life-

history strategies, and to enhance modeling of larval dispersal in the marine environment. 
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Chapter 1. General Introduction 

1.1. Life-History Strategies  

The diversity and origins of animal life histories have fascinated biologists for 

centuries. Aptly described as a schedule of reproduction and survival (Brommer 2000), 

life-history traits and strategies are directly linked to the growth, fitness and ecological 

roles of animals (Kalinka and Tomancak 2012, Marshall and Morgan 2011, McEdward 

2000). Most animal taxa have a so-called biphasic life history, including marine (Bishop 

and Brandhorst 2003, Pechenik 1999) and terrestrial invertebrates (Rieger 1994) and 

amphibians (Rieger 1994, Voss and Smith 2005). Following a period of embryonic 

development, an intermediate form is produced (the larva), which is morphologically and 

often physically isolated from the adult form. The larva continues to develop before 

undergoing a reorganization or metamorphosis to produce the juvenile, which will 

ultimately grow into a new adult. It is important to note that many species that utilize 

these strategies (especially benthic marine invertebrates) undergo a continuum of 

intermediate larval stages before reaching the final adult phase. Therefore, the term 

complex life history might be more accurate than biphasic to encompass the diversity of 

larval stages and pivotal time points in the ontogeny of marine invertebrates. 

The development of diverse propagule forms and complex life-history strategies 

are thought to explain the wide variety of niches and ecological roles filled by animals in 

the marine environments (Kalinka and Tomancak 2012, McEdward 2000). I will use the 

term ‘propagule’ throughout the thesis as a convention to encompass both the embryos 
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and larvae of a species. Propagule forms range from simple, spheroid, shapes (e.g., 

planula larva; Fig. 1.1A) to elaborate structures with appendages and skeletal structures 

(e.g., pluteus larva; Fig. 1.1D). The predominance of marine invertebrate species that 

develop through a larval stage suggests that this strategy has been immensely successful 

for colonizing and surviving in oceanic habitats (Pechenik 1999, Poulin et al. 2001, 

Riginos et al. 2011). The evolution and maintenance of sensory abilities in invertebrate 

propagules is likely a major contributor to this success. Marine species that are sessile or 

sedentary as adults (demersal/benthic) are thought to experience stronger selective 

pressures to disperse their offspring than floating/swimming (pelagic) species (Poulin et 

al. 2001). Thus, most benthic invertebrates utilize a benthopelagic complex life cycle 

(Mileikovsky 1971, Pechenik 1999, Poulin et al. 2001), whereby free-swimming embryos 

and larvae develop in the water column and return to the benthos following 

metamorphosis. During the pelagic period, larvae can disperse widely to colonize new 

habitats and facilitate gene flow (Hart and Marko 2010, Marshall and Morgan 2011, 

Pechenik 1999). The selective pressures experienced by extant adults and larvae utilizing 

benthopelagic strategies have direct implications for understanding the evolution of 

marine animals and their continuing interactions with changing ocean environments. 

1.2. Origins of Marine Propagules 

The diversity of life-history variation present among marine invertebrate phyla is 

staggering. The fact that completely opposite life histories can be found even among 

closely related species generates many critical questions including: 1. Why are marine 
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larvae so diverse in form across similar environments? 2. How did such diversity emerge? 

The origin of biphasic life cycles in marine invertebrates is thought to overlap with the 

origin of the early animals (Degnan and Degnan 2006, Sly et al. 2003). However, there is 

extensive and rigorous debate about the morphology and reproductive characteristics of 

the earliest ancestor(s), and whether biphasic life cycles emerged at the evolution of 

bilateral body plans or of all animals (Degnan and Degnan 2006, Marlow et al. 2014, 

Nielsen 2013, Raff 2008).  

Planktotrophic larvae (feeding on external food sources) are generally accepted to 

be the ancestral condition in animals (Nielsen 1998, 2009, Strathmann 1993). Early larvae 

may not have had a dedicated gut, but rather, absorbed nutrients from particles captured 

by cilia (Nielsen 1998). Nutrient absorption is still seen among modern larvae, although 

the maintenance of such an ability may supplement energy reserves rather than be a 

mandatory process (Jaeckle and Manahan 1989, Manahan 1990, Manahan and Crisp 

1982). One hypothesis suggests that feeding in larvae developed as a secondary 

consequence of dispersal (Degnan and Degnan 2006). During the pelagic period, 

propagules are initially exposed to benthic predators such as filter feeders and sea 

anemones, and to floating/swimming predators such as jellies, zooplankton, shrimps and 

fishes later in their development (Johnson and Shanks 2003, Mercier et al. 2013a, 

Pennington et al. 1986). The pelagic period can be reduced by consuming nutrients to 

accelerate maturation (Miller 1993). Planktotrophy could therefore have evolved to 

mitigate the risks of longer exposure to predators.  
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Among modern phyla, lecithotrophic larval development (relying on maternal 

provision) is common among cold-water and deep-sea species (Marshall et al. 2012), and 

in seasonal environments with fluctuating phytoplankton blooms (Marshall and Burgess 

2015). Species with non-feeding larvae generally produce large, yolky, eggs and exhibit 

lower fecundities than species with feeding larvae (Strathmann 1993). With maternal 

reserves, non-feeding larvae are often predicted to spend less time developing in the water 

column than planktotrophs (shorter pelagic propagule duration [PPD]; Strathmann 1977). 

Other putative benefits of lecithotrophy include reduced predation by benthic predators, 

and little risk associated with seasonally patchy food availability in the plankton. Initially, 

the shift to lecithotrophy was thought to incur a steep cost to maternal energetics, 

fecundity and dispersal abilities (noted by Pechenik 1999); but recent evidence has 

challenged the notion that non-feeding larvae have shorther PPDs than planktotrophs 

(Mercier et al. 2013b), and demonstrated that the survival of juveniles is enhanced in 

species with maternal investment via transgenerational effects (Krug et al. 2012). 

However, given that planktotrophs and lecithotrophs can successfully coexist in similar 

environments, and that not all species have shifted to an intermediate state of feeding 

between these two modes, lecithotrophy likely is not adaptive for all marine invertebrate 

species. In fact, hybrid nutritional modes exist between planktotrophy and lecithotrophy 

whereby propagules are provisioned with maternal lipid but can feed facultatively (e.g., 

Allen et al. 2006, Emlet 1986, McEdward 1997, Miller 1993, Miner et al. 2005). 

Propagule nutritional modes may therefore be described as a continuum rather than a 
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dichotomy of feeding vs. non-feeding (see Chapter 2 for further discussion of invertebrate 

life histories).  

1.3. Importance of Marine Propagules: Ecology, Aquaculture, Conservation 

In the plankton, small propagules can drift with the currents to reach new habitats 

for colonization, thereby minimizing inbreeding and preventing competition for limited 

resources (Table 1.1; Cowen and Sponaugle 2009, Paulay and Meyer 2006, Scheltema 

1986). Pelagic larvae are thought to be able to escape benthic predators during their 

pelagic duration (Pechenik 1999, Pennington et al. 1986). For benthic adults with limited 

or no dispersal capabilities, such a strategy could greatly enhance fitness if the cost to 

produce such larvae was low. Larvae in most phyla are also equipped with sensory 

structures that enable them to explore and assess their immediate environment (e.g., 

sensory cilia, gravireceptors, eyes, and olfactory cells; Hadfield 2011, Nordstrom et al. 

2003, Tamburri et al. 1996). Thus, larvae can, to some degree, select an optimum habitat 

for future juvenile and/or adult survival based on a hierarchy of chemical and biological 

cues. It is currently unclear whether sensory abilities developed secondarily to 

locomotory modifications such as ciliation. Given that many sensory structures across 

diverse animal phyla utilize cilia coupled to sensory cells, it can be difficult to disentangle 

the origins of locomotory and sensory function in larvae. However, there are also clear 

disadvantages to having a dispersive larval stage (Table 1.1). Pelagic larvae are often 

exposed to chaotic and ever changing environmental conditions in the plankton. Their 

small size constrains locomotion significantly and, thus, they may end up far away from a 
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suitable habitat due to currents or mixing patterns they cannot escape (Paulay and Meyer 

2006, Scheltema 1986). Pelagic larvae also face exposure to bacterial and viral agents in 

addition to pelagic predators (Pechenik 1999), whereas parental protection 

(brooding/encapsulation) removes these threats (e.g. Buccinum scalariforme, see 

Appendix 1). Thus, the diversity of modifications to the general benthopelagic life history 

likely emerged to mitigate a suite of risks (Rieger 1994).  

Understanding the modifications and adaptations of different propagule types is 

not only important from an ecological perspective, but also has implications for 

aquaculture and marine conservation. The reliable and efficient culture of fish and 

invertebrate species is economically important and has the potential to solve issues of 

world hunger (Frankic and Hershner 2003, Neori et al. 2004, Tacon 1997). Although it 

comes with drawbacks of its own, aquaculture can reduce destructive fishing practices, 

especially in the case of benthic species, such as scallops and ground fishes that are 

captured using trawl nets. One of the challenges facing aquaculture development is the 

successful reproduction and maintenance of animals in captive settings. Therefore, 

understanding the environmental preferences and reproductive biology of species is 

critical for the success and cost-effectiveness of the operations. Studies examining the 

adaptations and behaviours of marine larvae can provide valuable insights towards 

optimizing the transition from larvae to juvenile in aquaculture settings.  

Species with benthopelagic life histories also require special attention in the 

context of marine conservation since propagule dispersal can be affected by numerous 

natural and anthropogenic phenomena. Identification of dispersal patterns and nursery 
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sites is therefore critical to the choice of marine protected areas (MPAs). Anthropogenic 

pressures, combined with ocean warming and associated climate-change scenarios, will 

likely have major impacts on the ability of propagules to survive and disperse (Byrne and 

Przeslawski 2013, Przeslawski et al. 2015). Hence, continued research on life histories 

and the biology of propagules will facilitate effective policy development in the years to 

come. 

1.4. Current State of Knowledge in the Larval Ecology of Benthic Invertebrates 

While the study of marine larval biology and ecology dates back more than a 

hundred years and has yielded seminal papers of major significance over the past 30 years 

(Eckman 1996, Jablonski and Lutz 1983, Marshall and Morgan 2011, Mercier et al. 

2013b, Monro and Marshall 2015, Pechenik 1999, Poulin et al. 2001, Young 1990), 

knowledge of the fundamental role and significance of propagules in benthic animals is 

far from complete. Firstly, species of economic importance have been prioritized. For 

example, scallops (Lagos et al. 2016, Liu et al. 2016, Loor et al. 2016) and lobsters (Day 

et al. 2016, Small et al. 2016, Wakabayashi and Phillips 2016) dominated in a 2016 

literature search of marine invertebrates. However, there is a relative shortage of studies 

focused on simpler, basal clades such as sponges and non-coral and cold-water 

cnidarians. Evidence is emerging to suggest homology of form, gene expression and 

sensory capabilities among marine larvae (Hadfield and Koehl 2004, Lacalli et al. 1990, 

Marlow et al. 2014, Pechenik 1999). Hence, modern primitive phyla can provide a useful 

window into the lives of early animals. There is also a shortage of studies on ciliated 
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propagules relative to propagules that swim using appendages (e.g. crustacean larvae) or 

via muscular contractions (e.g. late annelid larvae). This may be because ciliated 

propagules are typically weaker swimmers, often assumed to be passive particles, 

compared to appendage-bearing larvae, and because they are also harder to manipulate. 

Finally, there are a limited number of studies on lecithotrophic (non-feeding) species 

within phyla where multiple types of life histories have evolved (e.g., Mollusca, 

Annelida, Echinodermata). This is particularly surprising in phyla like Echinodermata, 

which are believed to be dominated by lecithotrophic species (~68% extant species; 

Uthicke et al. 2009). Comparing the fundamental differences between planktotrophs and 

lecithotrophs is important for understanding ecological and evolutionary processes, but 

also for optimizing aquaculture programs and conservation initiatives.  

1.5. Echinodermata: A Focal Phylum for Comparative Study 

The phylum Echinodermata (Fig. 1.2) is extensively studied (from community 

ecology to biomedical research), but provides an excellent example of the shortcomings 

that currently exist in larval ecological research. There are several key reasons why 

taxonomic and life-history based biases have emerged. Feeding larvae (such as those of 

the sea urchin genus Strongylocentrotus) are relatively easy to culture and can be 

stimulated to develop over a short period by manipulating culture temperature. In 

addition, most commercial echinoderms are planktotrophs (e.g., Strongylocentrotus and 

Holothuria spp.). This economic incentive has driven research of larval behaviour from 

an aquaculture and biogeographical perspective. Because lecithotrophic species have very 
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different life-history traits relative to planktotrophs, including lower fecundity, and since 

they may be less abundant in heavily studied environments (e.g. coral reefs), they tend to 

be misrepresented or overlooked. Such a lopsided approach to larval ecology is 

potentially problematic when predictions of larval dispersal for an area are required for 

the delimitation of ecological reserves and for optimizing aquaculture practices in 

commercial lecithotrophic echinoderms (e.g. the emerging Cucumaria frondosa industry 

in Newfoundland, Canada).  

The Echinodermata are also an important group from an ecological and 

evolutionary point of view. There are representatives in nearly all marine habitats and 

echinoderm species with vastly different life-history strategies often co-exist in the same 

area. Echinoderms play critical roles in the marine environment as keystone species (e.g. 

Pisaster ochraceus; Paine 1969) and as preferred prey items (e.g. Strongylocentrotus 

spp.; Kvitek et al. 1998). In addition, echinoderms belong to the super phylum 

Deuterostomia (Grobben 1908), and share developmental features with organisms 

belonging to more complex phyla such as Chordata. Yet echinoderms still maintain many 

features seen in simpler organisms such as ellipsoid, mono-ciliated propagules. 

Echinoderm propagules display incredible variation in morphology and colour, even 

within genera, providing great opportunities to explore the environmental drivers of 

propagule phenotypes (see Chapter 3).  

The co-existence of echinoderm species with different life histories can be seen 

prominently in temperate and cold-water environments. In the North Atlantic, four 

common species exist in similar habitats despite filling different ecological roles 



10 

 

(predators, prey) and possessing two different developmental modes (planktotrophy, 

lecithotrophy): the sea stars Asterias rubens and Crossaster papposus, the sea urchin 

Strongylocentrotus droebachiensis and the sea cucumber Cucumaria frondosa (Fig. 1.3). 

These features make these four species an ideal focus for comparative studies of 

propagule adaptions, locomotion and behaviours. 

Asterias rubens (the common sea star; synonymous with A. vulgaris; Fig. 1.3A; 

Mah and Hansson 2011) is a widespread sea star species that colonizes temperate and 

subarctic regions on both sides of the Atlantic. The typical depth range for this species is 

from near surface to 200 m. Individuals generally reach 10-30 cm in diameter and range 

in colour from orange to purple or brown. Asterias rubens feeds actively on benthic 

molluscs such as mussels and snails, and more rarely on other echinoderms. It 

predominantly colonizes rocky habitats where it can often be found on boulders and 

vertical cliffs. This species is planktotrophic with a late spring spawning season (Table 

1.2). Fecundity for a large female can be ~2.5 million oocytes (Fish and Fish 2011). The 

oocytes are small (0.1 mm) and cream in colour. 

Strongylocentrotus droebachiensis (the green sea urchin; Fig. 1.3B; Kroh and 

Hansson 2012) is a ubiquitous member of circumpolar communities ranging in North 

America from the Artic to New Jersey, and from Alaska to Puget Sound. Depth range for 

this species is most commonly from intertidal to 200 m. Individuals of this species grow 

up to 15 cm in diameter. Urchin populations in the North Atlantic can destroy the habitat 

of other species through massive consumption of seaweeds, creating ‘urchin barrens’ 

(Gagnon et al. 2004). This species is also planktotrophic with a late spring spawning 
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season (Table 1.2). Fecundity is ~175,000 oocytes per female (Dupont et al. 2013). The 

oocytes are small (0.15 mm) and yellowish. There is a small but growing fishery 

associated with this species in both Pacific and Atlantic Canada.  

Crossaster papposus (the common sun star; Fig. 1.3C; Mah and Hansson 2016) is 

an active predator of other echinoderms (e.g., sea cucumbers, sea urchins). It can be 

found in circumpolar regions of the North Atlantic and North Pacific. Individuals of this 

species can grow up to 34 cm in diameter. Habitat preferences include rocky and sandy 

bottoms. Crossaster papposus is rarely found intertidally and is more sensitive to 

temperature fluctuations than A. rubens. Depth range for this species is just below the 

surface to 300 m. Crossaster papposus is lecithotrophic with an early spring spawning 

season (Table 1.2). Fecundity is unknown, but likely in the order of thousands to tens of 

thousands of oocytes per female, values typical for lecithotrophic echinoderms 

(McClintock and Pearse 1986). The oocytes produced by the species are large (0.65 mm) 

and red.  

Cucumaria frondosa (the orange-footed sea cucumber; Fig. 1.3D; Paulay and 

Hansson 2013) is the most common sea cucumber in the North Atlantic. It also occurs in 

the North Pacific and in the Arctic. The usual depth range for this species is 30-300 m. 

Individuals can reach up to 50 cm in length. They can often be found in rocky areas 

between boulders, extending their feeding tentacles out to capture plankton and 

suspended organic particles. Cucumaria frondosa is a lecithotrophic species with a 

spawning season in early spring (Table 1.2). Fecundity of C. frondosa is up to ~12,000 

oocytes per mature female (Hamel and Mercier 1996). The oocytes produced by this 
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species are large (0.9 mm) and orange-red. A fishery for C. frondosa has recently 

emerged in Atlantic Canada, and there is a huge market for all sea cucumber products in 

Asia, making sustainable management of stocks of global concern (Anderson et al. 2011, 

Purcell et al. 2013).  

1.6. Main Objectives and Thesis Structure 

The overarching questions and goals covered by my PhD thesis can be 

summarized into four main points:  

Objective 1: To examine the extent and ecological significance of egg colour diversity 

among lecithotrophic echinoderm propagules. 

Objective 2: To quantify and compare the swimming capacity of planktotrophic and 

lecithotrophic echinoderm propagules under various conditions. 

Objective 3: To quantify and compare the photosensitivity of planktotrophic and 

lecithotrophic propagules. 

Objective 4: To review current knowledge of sensory capabilities in ciliated propagules, 

and to tease out relationships between life histories and behavioural and 

locomotory patterns in major marine phyla. 

In Chapter 2, I present relevant definitions, outline the significance of propagule 

ecology from egg to juvenile, and discuss the applications of my thesis work. The 

following section (Chapter 3) presents a meta-analysis of the adaptive value of egg 

pigmentation in lecithotrophic echinoderms. Next, I measure the swimming capacity of 

two types of echinoderm propagules under ambient environmental conditions (Chapter 4) 
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and the corresponding sensory behaviour of the same species in response to varied light 

colour and intensity (Chapter 5). Finally, I present a critical assessment of propagule 

sensory behaviour in the context of swimming capacity and larval nutritional mode in the 

major marine phyla (Chapter 6). A final section (Chapter 7) summarizes the main 

findings of this thesis. 

Chapter 3 was published in the January 2017 issue of Advances in Marine Biology 

and Chapter 4 was published in Marine Biology in March 2017. Chapter 5 is currently 

being prepared for journal submission. Chapters 2 and 6 will be combined and prepared 

for submission as a review/synthesis paper. Another recently published paper of relevance 

to this thesis is provided in Appendix 1.  
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1.8. Tables and Figures 

 

 

 

 

 

 

Table 1.1. Weighing the risks of pelagic propagules. 

  

Advantages Disadvantages 

Dispersal to colonize new habitats 

Pelagic life prevents benthic predation 

Dispersal protects adult resources 

No parental care required 

Dispersal prevents inbreeding 

Access to locations for juvenile survival 

Dispersal too far away from ideal habitat 

Pelagic life enables pelagic predation 

Risky in low population densities 

Greater exposure to environmental change 

Risk exposure to disease or biological agents 

Small body size can impede locomotion 
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Table 1.2. Summary of biological traits associate with focal echinoderm species. 

  

Species 
Propagule 
Type 

Spawning 
Season 

Testable 
Stages 

Fecundity 

(×103 
female-1) 

Egg 
diameter 

(mm) 

S. droebachiensis 

Planktotrophic 
Late 
spring 

6 

175  

(Dupont et 
al. 2013) 

0.15 

A. rubens 4 

2500 

(Fish and 
Fish 2011) 

0.10 

C. frondosa 

Lecithotrophic Spring 4 

12 

(Hamel and 
Mercier 
1996) 

0.90 

C. papposus Unknown 0.65 



22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Examples of marine larvae. A) Planula larva (sea anemone, Urticina felina). 

B) Brachiolaria (sea star, Crossaster papposus). C) Late bipinnaria (sea star, Asterias 

rubens). D) Pluteus (sea urchin, Strongylocentrotus droebachiensis). 
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Figure 1.2. Currently accepted phylogeny of Echinodermata (based on Reich et al. 2015). 
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Figure 1.3. Adults of the focal echinoderm species. A) Asterias rubens. B) 

Strongylocentrotus droebachiensis. C) Crossaster papposus. D) Cucumaria frondosa.  
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Chapter 2. Propagule Ecology from Egg to Juvenile 

2.1. Classification of Marine Propagules 

Marine animals with complex life histories have evolved a diversity of forms, life 

styles and reproductive modes. Organizing the similarities and differences among 

propagules corresponding to different life-history strategies is therefore critical for 

scientific study and comparison. To this effect, the classification of marine propagules has 

undergone several revisions over the last few decades, each with their own take on what 

features need to be included in each category (e.g., early definitions - Thorson 1949; 

swimming capabilities - Jablonski and Lutz 1983; development type - McEdward and 

Janies 1993; ecologically-based categories - Poulin et al. 2001). However, the consensus 

among authors is that marine propagules can be broken into categories based on key life-

history strategies such as nutritional mode or development location. For this review, I will 

utilize the categories proposed by Poulin et al. 2001 with the addition of metamorphosis 

type (see below).  

Five main categories can be used to characterize marine propagules: (1) 

development type, (2) development location, (3) nutritional mode, (4) protection level, 

and (5) metamorphosis type (summarized in Table 2.1). Development type is determined 

by the presence of larval stages. Direct developing species progress from an embryo to a 

juvenile with no intermediate (larval) life stage (Poulin et al. 2001). In contrast, indirect 

development involves one or more intermediate larval forms between embryonic and 
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juvenile forms (Poulin et al. 2001). Species with egg capsules (protected) are often 

wrongly called direct developers (Ilano et al. 2004, Martel and Chia 1991) because 

juveniles emerge fully formed from the capsules. However, this overlooks the fact that 

many of them exhibit intra-capsular larval forms (see Appendix 1 for an example of intra-

capsular development). Though direct developers can exhibit differences in development 

location and other features, any additional categories presented here will pertain only to 

indirect developers including: development location, nutritional mode, protection level 

and metamorphosis type. Propagule location during development, distinguishes pelagic 

propagules that develop away from the benthos and benthic propagules that develop close 

to, or on the benthos (either on the substrate or other organisms). Some species with 

encapsulated or brooded development first develop close to the benthos before being 

released as swimming larvae in the pelagic environment, highlighting the need for a 

mixed category. This is the case for many gastropods (Pechenik 1979).  

Nutritional mode is probably the most common method of distinguishing among 

different types of propagules. Like development location, it is a continuum of nutritional 

types, from exclusively maternal to exclusively external sources (Poulin et al. 2001, 

Strathmann 1978, 2007). Propagules that utilize external sources of nutrition (e.g. food 

capture) are classified as planktotrophic, whereas propagules that utilize maternally-

deposited energy reserves (yolk) and do not feed externally are classified as 

lecithotrophic (Poulin et al. 2001, Strathmann 1978). Some propagules can 

opportunistically feed, while also relying on maternal energy reserves; this intermediate 

condition is called facultative planktotrophy and has been identified in mollusc and 
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echinoderm species (Allen et al. 2006, Miller 1993, Miner et al. 2005). Planktotrophic 

propagules tend to be smaller than their lecithotrophic counterparts, which are more-

yolky and often highly buoyant (Christiansen and Fenchel 1979, McEdward 1986, Moran 

and McAlister 2009).  

Protection level during development ranges from protected [housed within 

protective capsules (for an example see Appendix 1: Buccinum scalariforme) or brooded 

on/inside the adult body] to free living (unprotected development), with some species 

termed mixed as their propagules undergo both protected and free-living periods. For 

instance, planula larvae of the sea anemone Urticina felina are protected in the adult body 

for the first part of development before being released to develop as free-living 

propagules (Mercier et al. 2011). Several polychaetes (e.g., Heteromastus filiformis) and 

gastropods (e.g., Aeolidiella glauca) also have a period of pre-hatch protected 

development (in gelatinous egg masses or capsules) before emerging in the plankton as 

larvae (Pechenik 1979). For species with complex life-history patterns, the use of ‘mixed’ 

and continuum-based categories for comparative studies are required to ensure that all 

life-history aspects can be included and understood (Caswell 1981, Pechenik 1979). 

Metamorphosis is the transition between an intermediate larval form and the 

juvenile form (Burke 1983, Degnan and Degnan 2010). This process can be broken into 

two types: simple, in which the larval body becomes the juvenile body (commonly seen in 

basal organisms) or complex, in which the larval body is destroyed, consumed or 

manipulated in some way to generate the juvenile (commonly seen in more derived 

organisms).  
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Taken together, these five categories can be used to thoroughly describe and sort 

marine species to examine ecological and evolutionary patterns and trends. Examining the 

presence of sensory behaviour among different larval types can provide further 

information on how propagules have evolved to meet the needs of their environments and 

the trade-offs associated with different life histories. Since life-history strategies are a 

foundation of other biological processes, standardizing how I define propagules will be 

important for this review and other similar synthetic papers in the future. The purpose of 

this review is to determine the current state of knowledge of larval sensory abilities, 

behaviour and the intersection of these features with nutritional modes.  

2.2. Importance of Cilia 

Examples of ciliated propagules can be found in nearly all marine phyla. These 

propagules utilize bands or clusters of cilia for propulsion, which can be modified to play 

sensory functions. These cilia can also be used for feeding by planktotrophic propagules 

(e.g., pluteus and brachiolaria larvae of echinoderms, veliger larvae of molluscs). 

Although ciliated propagules are considered weak swimmers, relative to those that utilize 

appendages for propulsion (e.g. crustacean nauplii; Emlet 1994), slight modifications of 

their swimming speed (even two-fold increases) in response to environmental cues can 

affect behavioural processes like settlement (Abelson and Denny 1997, Pizarro and 

Thomason 2008). 

There are compelling morphological similarities among ciliated larvae associated 

with different taxa and life-history strategies. Many species have at least one larval form 
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that is (1) ellipsoid, and (2) possesses a cluster of relatively long cilia in the apical region. 

In many groups, the emergence of this “apical tuft” along the developmental timeline is 

concurrent with the emergence of sensory behaviour (Byrne et al. 2007, Hadfield et al. 

2000, Marlow et al. 2014). There has been debate as to the homology of this sensory 

apical tuft, with some authors suggesting it is convergent among invertebrate taxa (Dunn 

et al. 2007) and others demonstrating homology across a large evolutionary range of taxa 

(Marlow et al. 2014). Regardless of the evolutionary relatedness, the functional 

importance of apical cilia is clear to sensory behaviour in marine propagules (Byrne et al. 

2007, Hadfield et al. 2000, Marlow et al. 2014).  

2.3. Sensory Behaviour  

Sensory processes can be broken into three chronological components: (1) 

detection, (2) translation and (3) response (Briffa and Greenaway 2011). Firstly, the 

individuals must possess specialized cellular machinery for the detection of stimuli. These 

features can include: sensory cells, specialized ion channels, receptor proteins, signal 

transduction molecules and signal transduction pathways (Jacobs et al. 2007, Jékely 

2011). Though it might be assumed that complex assemblages of these specialized cells 

are coupled to the evolution of a true epidermis, adult sponges are still able to undergo 

coordinated contraction behaviour, even though they have a rudimentary epidermis with 

no discrete nervous elements to transmit the signal (Adams et al. 2010, Elliott and Leys 

2010). Following detection, individuals must “assess” the signal and translate the 

information into a response. Such translation might involve chemical or electrical 
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signaling, depending on the complexity of the organism (Briffa and Greenaway 2011). 

Finally, there is a response (or no response) based on the detection and assessment of the 

original cue. Responses can be simple changes in morphology and body positioning or 

more complex patterns of locomotion and taxis.  

Understanding how each of these steps function is important. Relative to 

vertebrates and terrestrial invertebrates, sensory structures in marine invertebrate 

propagules remain understudied (noted by Hadfield 2011, Pawlik 1992, Svane and 

Dolmer 1995, Tran and Hadfield 2013). Most studies on larval behaviour to date have 

only focused on the response phase of larvae to cues, rather than on the signal-detection 

or signal-translation steps (Pawlik 1992). Behaviour types (e.g. bold vs. shy) have been 

described in the adults of three cnidarian and one echinoderm species (Gherardi et al. 

2012, Pruitt et al. 2012), but they have not been reported among early life stages.  

2.4. Types and Mechanisms of Sensory Detection 

Several main types of stimuli are perceivable by marine propagules including: 

photic, chemical (both from biotic and abiotic sources), thermal and positional (gravity) 

cues. Other stimuli could include water flow, presence of physical objects and magnetic 

fields, though much less focus has been placed on these. Sensory stimuli can act alone, 

but also can provide a hierarchy of signals along depth, horizontal and temporal gradients. 

For the purpose of this review, I will be focusing on sensory detection in ciliated 

propagules only, as these forms have been described as more basal (Nielsen 2008) or 

more passive (Emlet 1994) than propagules with appendages and are relatively 
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underrepresented in the literature. A baseline understanding of sensory detection 

mechanisms will be beneficial for future studies of these organisms but also in more 

complex systems (Arendt et al. 2009, Jacobs et al. 2007). For example, the sensory cell 

types and organization patterns seen in larval sea stars are thought to have provided a 

blueprint for evolution of complex larval forms in higher taxa (Lacalli et al. 1990). A 

summary of sensory detection mechanisms can be found in Table 2 for five major phyla 

with ciliated propagules: Porifera, Cnidaria, Annelida, Mollusca and Echinodermata.  

2.4.1. Photosensitivity 

Photosensitivity likely drove vertical migration, navigation and reproductive 

processes in early animals (Arendt et al. 2009). As light was crucial for animals evolving 

in the photic zone, photosensitive cellular structures are found in even the most basal of 

modern marine animals (Arendt et al. 2009, Nilsson 2009). Light-sensitive photoreceptor 

cells (PRC) and shading pigment cells (SPC) are the most basic components of 

photosensitivity in animals (Arendt et al. 2009). In simple systems, these sensory cell 

clusters are coupled to locomotory ciliated cells (LCC), that are responsible for 

directional swimming in response to signaling from the light sensitive cells nearby 

(Arendt et al. 2009). Opsin or opsin-like proteins are presumed to be some of the earliest 

light-sensitive pigments used by animal photoreceptors (Arendt et al. 2009, Raible et al. 

2006). They can be found in the genome of many marine taxa ranging from cnidarians to 

echinoderms, and this suggests that a form of opsin may have been present in an early 
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animal ancestor, although taxa-specific forms of opsin have since emerged (Arendt et al. 

2009, Raible et al. 2006).  

Simple sensory cell clusters including PRC-SPC-LCC cells have been detected in 

demosponge larvae, which represent some of the simplest and most short-lived larval 

forms in the marine environment; despite their simplicity, they still exhibit predictable 

phototactic behaviours and morphological changes (Leys and Degnan 2001, Maldonado 

2006, Maldonado et al. 2003). To build more complex photosystems, PRC clusters can be 

duplicated and compressed into discrete organs that are innervated by motor neurons or 

other such nervous elements (Arendt et al. 2009). An example of this duplication can be 

seen in the proto-eyes found in box jellyfish larvae (Nordstrom et al. 2003) without 

nervous system support. In comparison, so called “eyespots” innervated by larval nervous 

systems can be found in groups with more complex larval forms such as Annelida 

(Arendt et al. 2002), Mollusca (Chia and Koss 1983, Nielsen 2004) and Echinodermata 

(presumed by expression of opsin; Raible et al. 2006). Calcified larvae, like those present 

in Echinodermata, may also have precursors to more complex, adult structures, such as 

the ossicle-based micro-lenses in ophiuroids (Aizenberg et al. 2001). However, it remains 

unclear whether differences in photosensitivity exist among propagules with different 

life-history strategies such as planktotrophs versus lecithotrophs.  

2.4.2. Chemosensitivity 

Site-specific settlement has been well-established across diverse biphasic marine 

phyla ranging from sponges to echinoderms (Hadfield 1986, 2011, Pawlik 1992, 
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Tamburri et al. 1996, Webster et al. 2013). Certain types of chemical compounds released 

from bacteria (e.g. ligands), encrusting coralline algae, or conspecifics (e.g. amino acids, 

pheromones) can act as attractants or repellants to settling larvae (for a review see 

Hadfield 2011, Pawlik 1992). Detection of certain ions (e.g. cesium and potassium) is 

also thought to promote metamorphosis in some species, perhaps through depolarization 

from disrupted Na+/K+ ATPases (Hadfield et al. 2000, Leitz 1997). Propagules have also 

shown sensitivity to changes in ocean salinity (Metaxas and Young 1998) and pH, though 

it is difficult to disentangle whether behavioural responses to these stimuli are due to 

osmotic / physiological changes rather than detection via sensory machinery. 

The cellular mechanisms behind the detection of chemical cues are less well-

known. Specialized cellular receptors, transmembrane proteins and ion channels have all 

been proposed; though they can be difficult to detect because the pharmacological assays 

for many of these systems were designed for vertebrates, not invertebrates (Hadfield 

2011, Holm et al. 1998). Chemical detection has also been proposed as a function of the 

apical cilia tufts seen in many ellipse-shaped larvae (see below for a description). Long 

cilia in this apical region in some annelid larvae make frequent contact with the substrate 

during settlement, which may facilitate olfactory sampling of benthic conditions 

(Hadfield 2011). Boundary-layer effects close to the substrate may enhance such sensory 

perception at small scales (Weissburg 2000). Bleaching of ciliated cells in the apical 

region also affects settlement and metamorphosis in mollusc larvae, reinforcing the 

hypothesis that this region could be important for detection and response to external 

chemical cues (Hadfield et al. 2000).  
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2.4.3. Gravisensitivity 

Propagules can control their position in the water column through morphological 

features such as asymmetric density distribution and physical structures designed to 

interact with low Reynold’s number conditions (Butman et al. 1988, Latz and Forward 

1977, McCarthy et al. 2002, McDonald 2004, Mogami et al. 1988). To actively detect 

orientation, statocysts (small, hard structures within a fluid-filled space, Bender and Frye 

2009) can be used. The statocyst settles at the lowest point in the fluid cavity when the 

organism changes position (Bender and Frye 2009). Such gravireceptors are present in 

nearly all adult metazoans and many larvae (Bender and Frye 2009).  

The best described larval statocysts are found in mollusc veligers and pediveligers 

(O'Brien and Degnan 2003). They are similar in structure to those found in adults but are 

modified for the larval body form. Statocysts have also been reported in larval annelids 

(Smith 1989) but have not yet been detected in the larvae of echinoderms, cnidarians or 

poriferans, despite observations of sensitivity to orientation and depth in these groups 

(Brooke and Young 2005, Leys and Degnan 2001, Mogami et al. 1988). However, 

passive morphological mechanisms are not enough to explain the vertical distribution 

patterns and body orientation of larval echinoderms (Mogami et al. 1988). Adult 

echinoderms have statocysts and predictable righting behaviours when they are turned 

upside down (Ehlers 1997, Lawrence and Cowell 1996). Therefore, it is likely that 

echinoderm propagules possess such structures as well. Adult cnidarians possess 

relatively sophisticated statocysts but these have not yet been found in their larvae 

(Brooke and Young 2005). In contrast, orientation relative to gravity may be driven by 
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passive mechanisms in poriferan larvae since adults have no such structure and larvae 

have clear density-asymmetry in the vertical plane (Leys and Degnan 2001).  

2.5. Measuring Behavioural Responses 

The measurement of sensory behaviour depends on the type of stimulus and the 

type of information investigators are interested in. Two common ways to assess 

propagule behaviour are: (1) directional movement in response to stimulus (taxis; 

Kingsford et al. 2002) and (2) activity level (degree of response to stimulus; Marshall et 

al. 2003). Taxis can reveal information about preferred conditions, which has ecological 

implications for propagule location in the water column and settlement. Knowledge of 

preferred conditions can also be economically beneficial in aquaculture settings to 

optimize development time, cost-effectiveness and animal health (Butler IV et al. 2011, 

Gisbert and Williot 1997). Patterns of taxis in response to light (phototaxis), salinity 

(chemotaxis) and temperature (thermotaxis) have been well defined in some taxa, but few 

studies directly compare tactic behaviour among species with different life histories.  

Activity level on one hand is useful for determining the magnitude of response to 

external cues. Measurements may include beating rate of appendages/cilia (Chan et al. 

2013, Willows et al. 1997) and swimming speed (Chan et al. 2013, Emlet 1994, Hidu and 

Haskin 1978). Since sensory cells in ciliated propagules are often coupled to ciliated 

cells, locomotory output becomes a useful proxy for sensory response. To this effect, 

swimming speeds are relatively easy to quantify and are a useful starting point for intra- 

and inter-specific comparisons. However, the bulk of swimming capacity studies to date 
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have been conducted in phyla with mixed development modes (e.g. Mollusca, Annelida, 

Echinodermata) and have mainly been focused on propagules with planktotrophic 

development. Previously reported speed values for ciliated propagules range between 0.1-

30.0 mm s-1 in Porifera (Maldonado 2006), Cnidaria (Harii et al. 2002, Mileikovsky 

1973), Mollusca (Chia et al. 1984) and Echinodermata (Podolsky and Emlet 1993). 

Though swimming speeds are a useful metric to assess behavioural responses, 

swimming trajectories (patterns) may be more informative and ecologically relevant. 

Swimming trajectories can be quantified via particle-tracking techniques for video 

recording (Chan 2012, Denoël et al. 2013, Faimali et al. 2006; see Chapter 4) or through 

more sophisticated methods such as particle image velocimetry, a technique that uses a 

“sheet” of laser light to precisely track flow patterns around moving objects (Koehl and 

Reidenbach 2007, Koehl and Hadfield 2010). Propagules tend to display predictable 

swimming patterns that can be modified in several ways (e.g. helical swimming in 

ciliated propagules; Cragg 1980, Jékely et al. 2008, McHenry 2001). The loop diameter 

and distance between the loops can be changed by helically-swimming larvae in response 

to environmental stimuli like light, salinity, and temperature (Pizarro and Thomason 

2008). A study of settlement in coral planulae found that swimming trajectories were a 

better predictor of displacement than swimming speeds (Pizarro and Thomason 2008). 

Helical paths are thought to enable phototactic behaviour in propagules without complex 

light sensing machinery since rotations expose all sides of the body to directional 

stimulus (Jékely et al. 2008). Taken together, swimming trajectories may be more 

ecologically relevant than swimming speed, since modifying trajectory complexity can 
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alter displacement over time without the organism having to change speed (Pizarro and 

Thomason 2008). 

2.6. Practical Applications of Sensory Behavioural Responses 

2.6.1. Dispersal models 

Marine propagules have commonly been considered passive particles at the mercy 

of ocean currents. The scale at which propagules are viewed and modelled, and the degree 

of focus placed on biological components, are inconsistent across the literature (Metaxas 

and Saunders 2009). In large-scale studies (over km), morphological and behavioural 

variables have sometimes been excluded in the past for the sake of model simplicity. 

However recent studies have shown that even at these large geographic scales, small-

scale larval behaviours (over cm) have the greatest effect for ciliated, weakly swimming 

larvae (<1 cm s-1), especially close to the benthos where benthic boundary layer effects 

are prominent (Robins et al. 2013, Wildish 2009). Propagules swimming with speeds in 

the range of 0.2–5 mm s-1 are predicted to swim autonomously in the viscous sublayer of 

the benthic boundary layer (Wildish 2009). In this region, even small modifications (e.g., 

a twofold increase) in swimming speed can significantly influence interactions with the 

benthos and settlement processes (Abelson and Denny 1997, Gross et al. 1992).  

While the importance of propagule behaviour has been recognized with respect to 

displacement and settlement (Morgan 2014, Pringle et al. 2014, Robins et al. 2013), 40% 

of dispersal models from 2013 to present exclude behavioural parameters such as taxis or 

swimming patterns (Fig. 2.1, Appendix 2). Vertical migration behaviours were excluded 
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in 65% of studies; 75% did not use species-specific speed data, and 80% did not utilize 

settlement specificity (where applicable; Fig. 2.1). This may represent a disconnect 

between researchers interested in the ecological aspects of dispersal and those focused 

mainly on the oceanographic controls of dispersal. Efforts to incorporate propagule 

behaviour are also hindered by a shortage of empirical data, and by an incomplete 

understanding of ontogenetic changes in locomotory abilities (Robins et al. 2013) and of 

the fundamental differences among propagules with different life histories. Models are 

only as good as their parameters, and thus, working to merge ecological and 

oceanographic interests will only improve model resolution. This will be useful, 

especially close to the benthos, which is a focal region of interest for predictions of 

recruitment (Metaxas and Saunders 2009, Robins et al. 2013). 

2.6.2. Ecotoxicology 

Survival has been used as a reliable measure of exposure to environmental toxins. 

It is relatively easy to quantify and can be measured in a dose-dependent manner. 

However, the information provided by survival rates is limited at intermediate 

concentrations since it does not explain why some individuals survive while others do not 

(Hartmann et al. 2016, Parker 2016). Recently, measures of sensory responses 

(swimming speed and patterns) have effectively been used as an indication of stress 

following exposure to environmental toxins in amphibians (Bridges 1997, Chen et al. 

2009), fishes(Chen et al. 2014, Floyd et al. 2008) and the larvae of corals (Reichelt-

Brushett and Harrison 2000), mussels (Beiras and His 1995) and echinoderms (Morgana 
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et al. 2016). These studies indicate that the combined use of sensory behaviours and 

survival can provide a more holistic view of responses to unfavourable conditions. 

Embryos and larvae can be considered the most sensitive and susceptible life stages in the 

marine environment, as they often lack protective and regulatory mechanisms that exist in 

adults (Pechenik 1999, Strathmann 1993). Therefore, changes in propagule swimming 

behaviours during exposure to unfavourable conditions could be informative as to why 

certain individuals or populations are more resistant to toxicants than others. Since 

propagule behaviour is critical for dispersal and settlement patterns, disruption of these 

predictable patterns could have significant consequences not just in the lifetime of the 

organisms, but for future populations as well. 

2.6.3. Climate change  

Survival and morphological changes are often measured in response to climate 

change scenarios in the laboratory. Specific to marine environments, this can include 

modifications of temperature (Pörtner 2001), salinity (Richmond and Woodin 1996) and 

pH (Kurihara 2008), either independently or in combination. Calcifying propagules are 

often used for this type of research as carbonate deposition/dissolution is predicted to be 

affected by a changing ocean chemistry. Fewer studies have been performed on 

lecithotrophic and soft-bodied larval stages. One study on the lecithotrophic larvae of the 

sea star Crossaster papposus found that larvae were relatively resilient to the effects of 

reduced seawater pH when morphological and survival data were collected (Dupont et al. 

2010). However, swimming patterns and other behavioural responses could have been 
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different than under ambient conditions. Another study on the sea cucumber Cucumaria 

frondosa found that low pH conditions compromised oogenesis and egg quality (Verkaik 

et al. 2016). The use of long-term exposure studies during egg production will be critical 

to understanding how lecithotrophic species may be impacted by a changing ocean, as 

larval energy supplies and survival in these species are driven by maternal investment.  

Predictable and quantifiable behavioural responses provide a reliable baseline 

with which to compare responses under different climate change scenarios. Propagule 

interaction with altered seawater chemistry and temperature may affect normal processes 

like phototaxis and predator avoidance. Reduced salinity was shown to reverse the 

photopositivity of developing brachyuran crab larvae (Latz and Forward 1977), and 

reduced pH has been shown to decrease the sensitivity of larval fish to predatory olfactory 

cues. This makes them more susceptible to being captured during development (Dixson et 

al. 2010). The intersection of morphological and physiological stress associated with our 

changing oceans with shifts in behavioural patterns could have serious implications for 

recruitment and the long-term population ecology of benthic marine organisms, as 

reductions in fecundity or changes in other life-history traits can have long reaching 

concequences. To tackle this dilemma, studies that assess how “status quo” responses 

might be affected by changing conditions will need to be cross-referenced with the 

physiological (e.g. ion regulation, reduced ability to calcify) and biomechanical (e.g. 

ocean viscosity change, weaker shells) stress experienced by organisms. Testing the full 

spectrum of propagule types will also be important as morphological and buoyancy 
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differences among them may provide clues as to which species may be the most resilient 

to changing oceanic conditions. 
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Table 2.1. Classification of marine propagules 

  

Development 
Type 

Development 
Location 

Nutritional 
Mode 

Protection 
Level 

Metamorphosis 
Type 

Direct     

Indirect 

Pelagic Planktotrophic Free-living  

Simple 

 

Complex 

 

Mixed 
Facultative 
planktotrophic 

Mixed 

Benthic Lecithotrophic Protected 
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Table 2.2. Summary of sensory detection machinery and sensory responses to external 

environmental cues in five phyla of marine invertebrates as described in the text 

 
1 Cellular mechanism includes: specialized cellular structures and/or signal transduction 
pathways. ‘Yes’ indicates studies have confirmed the mechanism used, ‘No’ indicates 
studies have confirmed no detection structures are present for that specific cue. ‘Likely’ 
indicates cellular mechanisms likely present because structures can be found in adults and 
the larval behavioural responses exist 
2 Behavioural responses include changes in movement, direction and body orientation in 
response to sensory cues 
3 Orientation is probably controlled by passive morphological features such as 
asymmetric density  

Phylum Porifera Cnidaria Annelida Mollusca Echinodermata 

Light 

Cellular 
mechanism1 

Yes Yes Yes Yes Likely3 

Behavioural 
response2 

Yes Yes Yes Yes Yes 

Chemical 

Cellular 
mechanism 

Likely Yes Yes Yes Yes 

Behavioural 
response 

Yes Yes Yes Yes Yes 

Positional 

Cellular 
mechanism 

No Likely Yes Yes Likely 

Behavioural 
response 

Yes Yes Yes Yes Yes 
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Figure 2.1. Survey of dispersal papers utilizing biophysical models from 2013-2015. Bars 

indicate percent of papers that included behaviour in their biophysical models ±SD (N = 

9-11 papers per year). ‘General behaviour’ included any type of behaviour that is actively 

controlled by the propagule during development such as: ‘vertical migration’, ‘swimming 

speed’ and ‘settlement patterns’. 
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Chapter 3. Patterns and Drivers of Egg Pigment Intensity and Colour 

Diversity in the Ocean: A Meta-Analysis of Phylum Echinodermata 

A version of this chapter has been published in Vol 76 of the journal Advances in Marine 

Biology, in January 2017 (and it is featured on the cover). 

3.1. Abstract 

Egg pigmentation is proposed to serve numerous ecological, physiological and adaptive 

functions in egg-laying animals. Despite the predominance and taxonomic diversity of 

egg-laying animals, syntheses of the putative functions and drivers of egg pigmentation 

are relatively narrow in scope, centering almost exclusively on birds. Non-vertebrate and 

aquatic species are essentially overlooked, yet many of them produce maternally-

provisioned eggs in strikingly varied colours, from pale yellow to bright red or green. 

Here we explore how these colour patterns correlate with behavioural, morphological, 

geographic and phylogenetic variables in extant classes of Echinodermata, a phylum that 

has close phylogenetic ties with chordates and representatives in nearly all marine 

environments. Results of multivariate analyses show that intensely pigmented eggs are 

characteristic of pelagic or external development whereas, pale eggs are commonly 

brooded internally. Of the five egg colours catalogued, orange and yellow are the most 

common. Yellow eggs are a primitive character, associated with all types of development 

(predominant in internal brooders), whereas green eggs are always pelagic, occur in the 

most derived orders of each class and are restricted to the Indo-Pacific. Orange eggs are 
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geographically ubiquitous and may represent a “universal” egg pigment that functions 

well under a diversity of environmental conditions. Finally, green occurs chiefly in class 

Holothuroidea and Ophiuroidea, orange in Asteroidea, yellow in Echinoidea and brown in 

Holothuroidea. By examining an unprecedented combination of egg colours/intensities 

and reproductive strategies, this phylum-wide study sheds new light on the role and 

drivers of egg pigmentation, drawing parallels with theories developed from the study of 

more derived vertebrate taxa. The primary use of pigments (of any colour) to protect 

externally developing eggs from oxidative damage and predation is supported by the 

comparatively pale colour of equally large, internally-brooded eggs. Secondarily, 

geographic location drives the evolution of egg colour diversity, presumably through the 

selection of better-adapted, more-costly pigments in response to ecological pressure.  
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3.2. Introduction 

The most primitive and widely used reproductive strategy in the animal kingdom 

involves the laying of eggs (Blackburn 1999). It is exhibited by an overwhelming 

majority of taxa, including members of Arthropoda (insects, spiders, crustaceans), 

Mollusca (bivalves, gastropods), Annelida (segmented worms), Platyhelminthes (flat 

worms), Cnidaria (corals, sea anemones), Echinodermata (sea stars, sea urchins) and 

Chordata (birds, reptiles, fishes) [for a review see Blackburn 1999]. Egg-laying can 

follow internal fertilization (i.e. oviparity) with or without the synthesis of a protective 

shell (e.g. birds); or it may involve the release of unfertilized eggs (i.e. oocytes) that are 

fertilized externally (i.e. ovuliparity; Blackburn 1999, Lodé 2012, Ostrovsky et al. 2015, 

Wourms 1994), as seen in frogs, fishes, arthropods, and most aquatic invertebrates. A 

small number of terrestrial and aquatic animals incubate fertilized eggs for a period 

before release (i.e. ovo-viviparity; Blackburn 1999, Lodé 2012, Wourms 1994). Parental 

investment in progeny via these various reproductive strategies, leads to a broad range of 

egg phenotypes (Blount 2004, McEdward and Morgan 2001, Monaghan et al. 1998, 

Sargent et al. 1987). Such differences in developmental nutrition are critical from an 

evolutionary point of view (Ostrovsky et al. 2015). While egg-laying modes are 

particularly diverse and taxonomically widespread in the ocean, where they first evolved, 

our understanding of egg phenotypes in marine animals lags behind that of terrestrial 

animals, especially with respect to the distribution and purpose of egg colour. 

Interspecific variation in egg colour is particularly widely studied in avian ecology, where 

trade-offs may involve crypsis, mimicry, UV protection, structural integrity, and sexual 
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selection (Cassey et al. 2012, Hanley et al. 2015, Kilner 2006, Maurer et al. 2014, 

Svensson and Wong 2011). While the marine realm offers equally striking examples of 

brightly coloured eggs, the reason for this has been comparatively understudied, despite 

the fact it may offer valuable insights into evolutionary patterns.  

Cnidarians, molluscs, annelids, teleost fishes, and echinoderms are among the 

most notable marine taxa to possess large oocytes/eggs ranging in colour from neon pink 

to dark green (e.g. Cheesman et al. 1967, Hamel and Mercier 1996, Lindquist and Hay 

1996, McEuen 1988). Lecithotrophic (maternally provisioned, non-feeding, yolky) 

propagules are particularly colourful and often retain their colour, opacity and intensity 

until settlement (Wray 1996). In contrast, planktotrophic (feeding) propagules tend to be 

smaller and either transparent or faintly coloured (generally, coloured eggs in this group 

develop into transparent embryos and larvae). The relatively large size and bright colour 

of lecithotrophic oocytes could increase the risk of predation by visual predators in the 

pelagic environment due to enhanced visibility relative to planktotrophic propagules 

(Iyengar and Harvell 2001, Vaughn and Allen 2010). Despite these potential 

consequences, species with pelagic lecithotrophic development are common and 

ecologically important in temperate and polar waters, where they often co-occur with 

planktotrophs (Marshall et al. 2012, Monro and Marshall 2015, Pearse and Bosch 1994). 

Parental provisioning among lecithotrophs has been well studied from the perspective of 

energetics and nutrition, whereas other features such as egg pigmentation remain poorly 

understood. The early origin of pigments and maternal provisioning in the animal tree of 

life, and the link between bright eggs colours and lecithotrophy in many clades (e.g. 



 

 

58

Hamel and Mercier 1996, Lindquist and Hay 1996, McEuen 1988, Ostrovsky et al. 2015), 

suggest as yet unresolved evolutionary patterns that warrant further investigation.  

Pigments are known to play a variety of roles in biological systems, including 

plants (Alkema and Seager 1982), fishes (Losey et al. 1999), and bacteria (Soliev et al. 

2011); for a review see Svensson and Wong 2011. Carotenoids are one of the most 

widespread and diverse pigment classes (Cheesman et al. 1967, Svensson and Wong 

2011); they are fundamental for internal functions such as physiology, electron transport, 

cell signalling, and enzymatic activity (Pereira et al. 2014, Svensson and Wong 2011). 

But they also provide colouration for camouflage, sexual signals, and warning signals in 

animals ranging from simple invertebrates to higher vertebrates (Grether et al. 2001, 

Olson and Owens 1998, Stoehr 2006, Svensson and Wong 2011). Animals obtain 

carotenoids and other pigments from their diet (Grether et al. 2001, Svensson and Wong 

2011) and modify them subsequently to generate new colours through the addition of 

proteins (e.g. carotenoid-protein complexes) or the overlay of multiple pigment classes, 

such as the stacking of carotenoids and melanin in the feathers of birds (Grether et al. 

2001, McGraw et al. 2004). Yet in many species, these changes in pigmentation are 

extremely costly and reserved only for the most critical of processes, e.g. red pigments 

used for external body ornamentation and sexual selection in many species (Grether et al. 

2001, Olson and Owens 1998). 

In oocytes/eggs, pigmentation is a product of maternal investment that imparts 

external colouration, to prevent oxidation (from UV damage) and regulates cellular 

functions, and is associated with toxicity to predators in various taxa (McGraw et al. 
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2005, Nicola and Monroy-Oddo 1952, Winters et al. 2014). Diet composition has been 

shown to affect both lipid deposition and egg yolk colour in vertebrates (e.g. chickens, 

Gallus gallus; Ferrante et al. 2011). Egg and offspring colour can be directly influenced 

by maternal investment in locusts, relative to specific environmental variables (Tanaka 

and Maeno 2006). Brightly coloured eggs are an indicator of good maternal and offspring 

health in salmonid fishes (Craik 1985), and influence male mate choice in gobiids 

(Amundsen and Forsgren 2001). The yellow, red, and green eggs of lecithotrophic 

echinoderms exhibit toxicity and unpalatability in some Antarctic, North Atlantic, and 

North Pacific species (Iyengar and Harvell 2001, Mercier et al. 2013a, Sewell and 

Levitan 1992). These conspicuous colours have been proposed to act as aposematic 

(warning) colouration for visual predators like shrimps and fishes (Iyengar and Harvell 

2001).  

While the physiological and biochemical roles of major pigments have been well 

studied in most animal taxa (Svensson and Wong 2011), the ecological significance of 

egg colour diversity remains relatively unexplored, especially in aquatic systems and 

among non-vertebrate taxa. Echinodermata are well suited to phylum-wide comparisons 

of egg colour for several reasons. Representatives of this phylum thrive in nearly all 

marine habitats, and across broad latitudinal and bathymetric ranges. Furthermore, 

echinoderms are deuterostomes (a developmental feature shared with vertebrates) and 

many species produce maternally provisioned (yolky) eggs that may be free living 

(pelagic or benthic) or internally/externally brooded. They also display a staggering 

assortment of egg colours, including yellow, red, orange, green, and black. Despite the 
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large body of literature dedicated to reproductive strategies in echinoderms, to our 

knowledge the prevalence or purpose of colour diversity and intensity among their 

propagules is not explored beyond proposed relationships with lipid deposition and 

aposematic colouration (Iyengar and Harvell 2001). 

Brooding and broadcast-spawning echinoderms exist in similar habitats but 

possess dramatically different life-history characteristics. This raises critical questions 

including: (1) Why are lecithotrophic propagules so brightly pigmented; and (2) is egg 

pigmentation in the ocean randomly distributed across phylogenies, life histories and 

regions? While the provenance and potential role of pigmentation has been examined in 

various marine species, no study has analyzed interspecific patterns to explain the 

exceptional diversity of their egg colours. The present study explores these questions by 

reviewing egg colour (including both pigment intensity and pigment colour) among 

lecithotrophic echinoderms and conducting a suite of multivariate analyses to test 

possible relationships with key biotic and abiotic variables; these include development 

site (parental care), egg size, egg buoyancy, adult size, phylogeny, and geographic 

location.  

3.3. Study of Egg Metrics, and Biotic and Abiotic Factors 

3.3.1. Dataset collection 

A comprehensive dataset of egg colours in lecithotrophic echinoderms from all 

over the world was gathered from the primary literature, with complementary data 

obtained from Google Image Searches and academic blogs (Figure 3.1, Appendix 3A, N = 
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126 records). Because egg colour in marine taxa is not currently considered to have clear 

biological or ecological value, this variable is not reported consistently. Searches were 

therefore conducted in a hierarchical fashion, starting with broad scale ecological papers 

down to reports of egg colour in developmental and species-specific papers. Keywords 

used included egg, oocyte, colour, pigment, spawning, and the names of known 

lecithotrophic species. Though comprehensive, this dataset may not include all anecdotal 

accounts of egg colour within larger studies. Egg diameter in the full dataset ranged from 

150-3400 m and adult body size from 1-60 cm in length (or diameter in the case of 

radially symmetrical animals). Geographic location and phylogeny were obtained from 

the World Registry of Marine Species (WoRMS, last access November 2015, 

http://www.marinespecies.org) and the Ocean Biogeographic Information System (OBIS, 

last access November 2015 http://iobis.org/). As ranges of occurrence can be very broad 

and/or not well defined for most species, the geographic analysis centered on ocean 

basins instead of more precise coordinates or latitudes.  

3.3.2. Standardization of variables for colour assessment 

Locally accessible echinoderm species from the North Atlantic were examined to 

ground truth egg colour metrics in the dataset. Coastal species included the sea stars 

Solaster endeca (8-10 cm radius), Henricia sanguinolenta (2-5 cm) and Crossaster 

papposus (5-10 cm), and the sea cucumbers Cucumaria frondosa (10-15 cm contracted 

length) and Psolus fabricii (10-15 cm). They were collected by SCUBA between 10-20 m 

depth in southeast Newfoundland (eastern Canada). Deep-sea species included the sea 
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stars Henricia lisa (2-5 cm radius) and Hippasteria phrygiana (8-15 cm); they were 

collected aboard the CCGS Teleost along the continental slope (northeast Newfoundland) 

between 700-1450 m depth. All species and individuals were housed in 375-L tanks 

provided with flow-through seawater at temperatures ranging from 0-5 °C (see Mercier 

and Hamel 2010 for a description). Images of eggs and embryos from natural spawning 

were taken with an Olympus TG-2 digital camera for in-depth colour analysis (see 

methods below). 

Where possible, egg colours listed in publications were verified with images 

provided in supplemental documents or through Google Image Search. Egg colours of 

local North Atlantic species were confirmed from natural spawning events in the 

laboratory. To minimize ambiguity and inaccurate descriptions in the literature, egg 

colours obtained from the primary literature were grouped into six main families (red, 

orange, brown, yellow, green, and grey; Table 3.1), and colour intensities were grouped 

into 3 categories (pale, standard, and bright; Table 3.1). Corresponding quantitative 

definitions were devised, based on an analysis of egg colour images captured during the 

present study, using Adobe Photoshop. Colour families were attributed a range of red 

ratios on the red, green, blue (RGB) additive primaries scale, whereas percent saturation 

was used to quantify colour intensity from pale to intense (Table 3.1). The defined ranges 

should be broad enough to account for any device-specific colour variations. Figure 3.2 

outlines the distributions of colour families and intensities in the primary dataset.  
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3.3.3. Subset generation and data analysis 

To tease out the drivers of egg colour intensity and diversity, subsets of the main 

dataset were examined. To be included in a subset, records had to be complete for all 

factors of interest and each factor combination had to be represented by a minimum of 3 

records. Factor analysis of mixed data (FAMD) and hierarchical clustering of principal 

components (HCPC) were conducted using the FactoMineR package for R Statistical 

Software (Lê et al. 2008). FAMD analysis is similar to multivariate principle component 

analysis (PCA), but unlike PCA, FAMD combines both qualitative and quantitative 

variables. This makes FAMD ideal for meta-analyses of mixed variable data (Ch et al. 

2010, Panneton et al. 2013).  

We first tested all species in the dataset with complete records to determine 

general groupings based on all variables: egg colour family, egg colour intensity, egg 

size, development mode, ocean basin, adult size, and taxonomic class (N = 78, Appendix 

3B). To tease out more detailed associations, we tested the hypothesis that egg colour was 

not randomly distributed among geographic locations, using the same subset as above 

without phylogeny as a factor (egg colour family, egg colour intensity, egg size, 

development mode, ocean basin, and adult size; N = 78, Appendix 3B). Thereafter, we 

tested whether egg buoyancy correlated with egg colour and development mode, 

independent of geographic location (N = 56, Appendix 3C). We also tested whether 

certain egg colours were phylogenetically linked in the four main extant classes, 

Echinoidea (sea urchins), Asteroidea (sea stars), Holothuroidea (sea cucumbers), and 

Ophiuroidea (brittle stars), independent of geographic location and development mode (N 
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= 103, Appendix 3D). HCPC trees were cut at the relative highest change in inertia, or 

statistical difference between the number of available groupings (Lê et al. 2008). Clusters 

were analysed using the proportion of individuals in each cluster that possessed a non-

random grouping of qualitative variables and/or a non-random mean difference from the 

global population among tested quantitative variables; see Lê et al. 2008 for details. All 

statistical analyses were conducted at α= 0.05. 

3.4. Drivers of Egg Pigmentation Intensity and Diversity 

Five egg colours were catalogued in the whole dataset (Figures 3.2-3.4) with 

orange and yellow being the most common (comprising 25% and 20% of species, 

respectively), followed by roughly equal occurrences of red (17%), brown (16%), and 

green (16%). Only 6% of species had grey or black eggs.  

3.4.1. Overall patterns of egg colour relative to development site 

Egg colour was not randomly distributed in the main dataset (summarized in 

Appendix 3E). Three main clusters emerged, corresponding to the three egg development 

sites tested here: pelagic, externally-brooded, and internally-brooded (Figure 3.5, HCPC 

clusters P < 0.001). Species with green eggs of average intensity were associated with 

pelagic development (P < 0.001). Orange egg colour was associated with externally-

brooded development and pelagic development, and was characterized by bright intensity 

(P < 0.001). In contrast, internally brooding species tended to have yellow and brown 

eggs of pale intensity (P < 0.001). The following sections detail the results of the 
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multivariate analyses that further tease out the main patterns and drivers of egg 

pigmentation in lecithotrophic echinoderms.  

3.4.2. Ocean basin, development mode, egg and adult size 

Species with red eggs generally exhibit pelagic development (Fig. 3.6, HCPC P < 

0.001) but showed no trend in geographic distribution or adult body size. Orange egg 

colour clustered with both pelagic and external-brooding development site (P <0.001). 

Pelagic orange eggs were of average diameter and produced by species with average-

sized adults whereas externally-brooded orange eggs were typically larger than average 

(P = 0.005). Orange eggs were also common in species with ubiquitous geographic 

distributions, independent of development mode (P < 0.001). In contrast, green eggs were 

only present in the Pacific and Indian oceans (P < 0.001); they were typically small in 

diameter (P = 0.009), pelagic (P <0.001). 

Brown and yellow egg colour was closely linked to pale pigment intensity (P < 

0.001); they were most common in internally brooding species (P <0.001) and in the 

Atlantic Ocean. Brown and yellow eggs were average in size but were typically produced 

by species with smaller than average adults (P = 0.004). Grey egg colour could not be 

tested formally as it is relatively rare among lecithotrophic echinoderms.  

3.4.3. Buoyancy  

There was a significant relationship among egg buoyancy, egg colour, and egg 

development site (Figure 3.7, HCPC P < 0.001, summarized in Appendix 3G). Positive 

buoyancy was linked with pelagic development (HCPC P = 0.016) and red/orange egg 
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colour families (P < 0.001). Negative buoyancy was associated with externally brooded 

eggs (P < 0.001) and with orange egg colour (P < 0.001). Orange egg colour was present 

in both buoyancy clusters consistent with the presence of two subsets of orange eggs 

identified above with different development sites (pelagic and externally brooded). Green 

and yellow egg colours did not cluster with either positive or negative buoyancy.  

3.4.4. Taxonomic class 

Overall, the full spectrum of egg colours (red, orange, yellow, brown, green, grey) 

was found in four of the five extant classes of echinoderms (Figure 3.8). The fifth class 

(Crinoidea) had only three representatives, and thus, could not be comprehensively 

analyzed. Clear patterns emerged from this phylogenetic analysis. Red and yellow egg 

colours appear early in the phylogeny, whereas the ability to produce green pigments 

appears among the most derived orders of Asteroidea, Echinoidea, Holothuroidea, and 

Ophiuroidea. The increase in available egg colour pigments with increasing distance from 

ancestral orders is also conserved within Holothuroidea, Echinoidea, and Ophiuroidea.  

In addition, egg colour families were not randomly distributed across classes when 

analyzed independently of development mode and geographic location (Figure 3.9, HCPC 

P < 0.001, summarized in Appendix 3H). Green eggs were most common in 

Holothuroidea and Ophiuroidea (P < 0.001), orange eggs in Asteroidea (P < 0.001), 

brown eggs in Holothuroidea (P < 0.001) and yellow eggs in Echinoidea (P < 0.001).  
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3.5. Discussion 

The pelago-benthic life cycles that exist in the aquatic realm offer a unique 

framework for the study of egg phenotype evolution, one that has no parallel in terrestrial 

systems where the mainly studied group, class Aves (birds), relies exclusively on external 

brooding. The study of Echinodermata is particularly valuable in this context, given the 

full spectrum of reproductive strategies displayed by members of this phylum and their 

evolutionary closeness to higher taxa (Cameron et al. 2000, Strathmann 2007). The 

present work showed that egg pigment intensities and colours are not distributed 

randomly across development types (e.g. pelagic, externally brooded, internally brooded), 

geographic locations, and phylogenies in lecithotrophic echinoderms. In interspecific 

comparisons, egg colour also appears to be intrinsically linked with egg size and adult 

size, depicting contrasting life-history strategies. These findings have major implications 

for our understanding of the selective pressures and constraints that may act on egg 

phenotypes across evolutionary and geological time. They could also find a practical use 

in developing identification keys for planktonic eggs in the ocean (Appendix 3I). 

3.5.1. Development site explains pigment intensity but not colour diversity  

Species with external fertilization and pelagic development must overcome 

different challenges than those faced by brooding species, including exposure of eggs to 

sunlight and other environmental pressures (Burgess et al. 2013, Gillespie and 

McClintock 2007). Whether free-spawned or brooded, lecithotrophic eggs/embryos 

obtain lipid reserves from maternal sources, and thus, do not require external nutrition 
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during development (Falkner et al. 2013, Prowse et al. 2008). These storage lipids (i.e. 

wax esters in echinoderm larvae) are susceptible to oxidative stress from oxygen free 

radicals, metabolites, and UV radiation (Blount 2004, Falkner et al. 2006, Villinski et al. 

2002). Echinoderm adults and embryos have been previously shown to be sensitive to UV 

radiation, indicating that antioxidant pigments that can offset UV damages could play a 

role in this taxoniomic group (Häder et al. 2007). Pelagic lecithotrophic embryos and 

larvae are commonly buoyant (in ~75% of species analyzed here) and spend a portion of 

their development at or close to the ocean surface. Hence, floating propagules near the 

ocean surface presumably require more antioxidants, which could explain why nearly all 

pelagic, non-feeding propagules in the dataset possess intense pigments. This pigment is 

potentially a form of carotenoid, a pigment class found to have antioxidant function in 

other animals (Blount 2004, Vershinin 1999). Externally-brooded propagules also 

possessed intense pigmentation (~65% of species), probably because they are still 

exposed to some level of UV radiation and environmental fluctuation in shallow benthic 

environments. Apart from antioxidant activity, the brighter pigmentation of externally 

brooded propagules may also afford cryptic colouration (matching the adult body colour) 

to minimize predation during their development. This pattern is well illustrated in sea 

stars Trophodiscus sp. and among brooding cidaroid urchins, which brood larvae of a 

colour that matches that of the mother (Mah 2009). In contrast, internally-brooded 

propagules had pale brown or cream egg colours (~90% of species in dataset). This is not 

surprising given that internally brooded propagules are commonly not released until the 

feeding juvenile stage is reached, so their exposure to UV rays and free radicals is 
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minimal during early development. Once they begin to disperse, these juveniles could 

employ behavioural strategies to avoid exposure to light until the adult pigments start to 

develop. Taken together, the lack of intense egg pigments among internal brooders 

strongly suggests that bright pigments provide an adaptive value for pelagic or external 

development.  

This dichotomy between benthic/brooded and pelagic development can be 

exemplified within echinoderm species that possess multiple types of eggs and larvae. 

The deep-sea asteroid Henricia lisa broods a few eggs under its body and free-spawns the 

remainder. The eggs and larvae produced for brooding are pale in colour relative to the 

propagules produced for pelagic development in H. lisa (Mercier and Hamel 2008a) (see 

insert Table 3.2). This colour difference suggests that maternal provisioning of pigments 

can vary across propagules of the same clutch. Evidence of deliberate alteration of larval 

energy reserves depending on reproductive strategy is relatively rare in echinoderms, but 

is common among annelids (Knott and McHugh 2012) and opisthobranchs (Krug 2009) 

with mixed modes of development (poecilogony). By increasing the concentration or type 

of pigments present in their free-spawned progeny, Henricia females could be enhancing 

offspring survival if such pigments are critical for lipid protection in the pelagic 

environment. The ability to deposit certain pigments may also be genetically controlled as 

seen in polychaete worms, where colour intensity variation is the result of selective 

pigment uptake from food (Sella and Marzoná 1983).  

In addition to differences in pigment intensity, pelagic and brooded/benthic 

propagules also varied in buoyancy in the present study. Eggs that developed pelagically 
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could be positively, neutrally, or negatively buoyant, whereas brooded eggs were always 

negatively buoyant. This is not surprising, as it would be difficult, particularly for the 

external brooders, to keep floating eggs on or under the parent’s body. In species with 

mixed types of development (like Henricia spp.), differing egg buoyancies could allow 

females to sort propagules at spawning. Positive egg buoyancy in echinoderms has 

historically been associated with lipid deposition by the mother (Emlet 1994). But the 

very large eggs seen in external brooders are not positively buoyant, despite major 

maternal yolk deposition (Emlet 1994). Such variation in buoyancy may be facilitated 

though manipulation of lipid to protein ratios. Some sea stars (e.g. Meridiastra spp.) with 

similar egg volumes produce eggs with different buoyancies by altering the total amount 

of lipid present while leaving the protein levels unchanged (Prowse et al. 2008). Thus, 

there may be an increased cost associated with production of positively buoyant eggs that 

explains egg size differences in species with pelagic versus brooded eggs. Overall, inter- 

and intraspecific variation in the intensity of egg pigmentation and egg buoyancy is 

clearly linked to development site in lecithotrophic echinoderms. However, these factors 

do not explain the broad variation in colouration seen among echinoderm eggs, 

suggesting that additional variables drove the evolution of egg pigment diversity in the 

ocean.  
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3.5.2. Why green? - The link between ocean basin and phylogenetic patterns of egg 

colour 

Part of this puzzle is solved when geographic location is considered. The present 

study showed that echinoderm egg colours are non-randomly distributed among ocean 

basins. Green-coloured eggs, in particular, are exclusively associated with the Indo-

Pacific, independent of latitude and clime (from temperate cold to tropical; see Mercier et 

al. 2013b for clime definitions). Presumably, species in the Pacific and Indian oceans 

must have been exposed to unique abiotic and/or biotic features that acted to select green 

egg pigments. This hypothesis is supported by evidence that green eggs may be 

convergent among four of the five extant echinoderm classes (the fifth being 

understudied). Green egg pigments are also restricted to the most derived orders of each 

class, inferring a more recent emergence relative to other pigments. This suggests that 

green pigments could require more time to emerge, consistent with the older age of the 

Pacific ocean basin (Larson and Chase 1972). The phylogenetic and spatial distribution of 

green eggs raises two main questions. Why did green evolve last in a limited number of 

species (what functional or ecological advantages did they gain)? What unique factor(s) 

in the Indo-Pacific basin drove this evolution? 

The nature of phytoplankton communities might be at play since they occupy the 

base of the food web and animals mainly obtain pigments from vegetal and microbial 

sources through their diet. For instance, the relative proportions of green/brown 

photopigments like fucoxanthin and the distribution of diatom species that harbour them 

(Wright and Jeffrey 1987) differ across ocean basins, hemispheres, and geological times 
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(Cermeño and Falkowski 2009, Hasle 1976). A different functional source of pigment 

could thus contribute to the presence of green eggs in Indo-Pacific echinoderms. 

However, green eggs are clearly not a passive outcome of dietary pigment availability 

since (1) other egg colours occur in the Indo-Pacific and (2) species with red/orange eggs 

may co-occur and share a similar diet with green-egg producing species. Case in point, 

the sea star Solaster endeca produces red eggs in both the North Pacific and North 

Atlantic oceans, whereas species in this genus that are confined to the Pacific (S. dawsoni 

and S. stimpsoni) produce bright green eggs, even though all three species occupy similar 

habitats and commonly feed on the same echinoderm prey (Lambert 2000, Van 

Veldhuizen and Oakes 1981). 

The recent evolution of green egg pigments and their predominance in the Indo-

Pacific might have been driven by a physiological or functional superiority to red and 

yellow pigments. Blue-green eggs are common among passerine birds, even though they 

are potentially conspicuous to predators while in the nest (Hanley et al. 2008, Maurer et 

al. 2011); the more brightly coloured eggs are suggested to reflect maternal health and are 

involved in communication between parents (Hanley et al. 2008, Navarro et al. 2011). 

Increased UV protection offered by blue-green pigments is hypothesized to explain the 

choice of this eggshell colour (Cassey et al. 2012, Hanley et al. 2008, Maurer et al. 2011). 

If green pigments also provide enhanced UV protection to pelagic lecithotrophic eggs, 

over time there may be a similar shift in the colour spectrum of echinoderm eggs towards 

the blue-green region. In our dataset, species producing green-pigmented eggs are 

commonly distributed in the intertidal and shallow-water coastal regions of the Pacific 
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(e.g. Cucumaria miniata, Cucumaria piperata and Meridiastra calcar) while subtidal and 

deep-water species maintain red, yellow, and brown egg colours. The intertidal 

environment is presumably associated with increased exposure to solar radiation and 

predators, and this may require more efficient antioxidants but also more potent chemical 

deterrents. While the greater toxicity of green pigments has not been tested, green eggs 

were shown to be unpalatable (Sewell and Levitan 1992). Overall, while the green 

superiority hypothesis is attractive, it is still difficult to reconcile with the apparent 

absence of green eggs in the Atlantic basin, unless it reflects the lack of intertidally 

spawning lecithotrophs in this region (pers. obs.). Green eggs have only been reported in 

one lecithotrophic Atlantic species, the brittle star Ophioderma brevispina. This species 

can be found from the outer reefs of Central America to the temperate waters of 

Massachusetts, USA. However, O. brevispina was not listed as green-egged in our dataset 

because colour listings for this species are ambiguous, including “lemon yellow”, “dark 

green”, and “brown” that may vary among clutches and locations (Grave 1916, Hendler 

and Tyler 1986). If such a range in egg colours is indeed present, and not an artefact of 

inaccurate reporting, O. brevispina could represent the first parallel evolution of green 

egg pigments in an Atlantic species. 

3.5.3. Why red and yellow? - A North Atlantic study of crypsis 

Egg colours in lecithotrophic echinoderms from the North Atlantic typically range 

from light yellow/brown to red. Interestingly, red/orange oocytes from this region appear 

to match the background when viewed under blue light (Fig. 3.10); i.e. the dominant 
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wavelength below ~5 m in the North Atlantic. As many visual predators are highly 

sensitive to blue-coloured objects, the absence of blue pigments might provide crypsis 

against predation for red and yellow eggs while at depth in the water column (Johnsen 

2005, Umbers 2013). The fact that red colouration is primarily associated with crypsis in 

the deep sea among diverse species is likely not a coincidence (Johnsen 2005). In the 

North Atlantic, there are several deep-sea species with brightly pigmented eggs including 

the sea star Hippasteria phrygiana (red-orange), the sea anemones Hormatia spp. (red), 

Allantactis parasitica (red) and Urticina sp. (orange), and the deep-sea coral Drifa spp. 

(pink) [Mercier and Hamel 2008b, Sun et al. 2010, Sun et al. 2009]. Relative colour 

matching in the deep sea is reportedly enough for crypsis against visual invertebrate and 

vertebrate predators (Johnsen 2005). Background matching may also explain the 

predominance of red and orange eggs among echinoderm species that release buoyant 

eggs in North Atlantic waters.  

Similar to many biological systems, red in echinoderms eggs has historically been 

attributed to aposematic colouration, i.e. to signal unpalatability or chemical defenses 

(Iyengar and Harvell 2001, McClintock and Baker 1997). While some North Atlantic 

species with red-coloured eggs are known to deter predators with chemically-defended 

larvae (Mercier et al. 2013a), there are several key problems associated with the 

aposematic colouration hypothesis that suggest it may not be the only explanation for the 

ubiquity of red/orange egg pigments. Firstly, chemical defense is not restricted to red or 

brightly coloured eggs/larvae. Case in point, Acanthaster planci is a tropical sea star with 

transparent, planktotrophic larvae that are chemically defended against fish predation 
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(Lucas et al. 1979). Secondly, in the North Atlantic, red-coloured eggs appeared to be 

nearly invisible under simulated subsurface conditions in the present study (Fig. 3.10). 

Thus, aposematic colouration may only be useful against certain types of visual predators. 

This hypothesis is further confounded when predation rates by non-visual benthic 

suspension feeders are considered, since the unpalatable compounds in red/orange 

coloured eggs also deter these types of predators (Mercier et al. 2013a). Although this 

mismatch raises the critical question of why unpalatable eggs would need to be visually 

undetectable, the specific colours that evolved among lecithotrophic echinoderm eggs are 

clearly region-specific and non-random. Therefore, it is possible that the use of pigments 

in eggs first evolved to preserve essential lipids from oxidation, and that region-specific 

benefits were later actively selected for, leading to prioritization of certain pigment types 

(and ultimately colours) over others. 

3.5.4. Egg colours in the ocean and beyond 

The fact that egg colours in echinoderms are not randomly distributed relative to 

development site (position in the water column) and geographic location (ocean basin) 

echoes findings reported in other taxa; although, the scope of the present study is 

unparalleled (phylum-wide and worldwide). Mollusc eggs that are laid in shallow waters 

can be bright red, orange, or green. While this intriguing diversity was deemed worthy of 

further study nearly 50 years ago (Cheesman et al. 1967), apparently the question was not 

pursued. The range of pigments reported in mollusc eggs exposed to solar radiation is 

strikingly similar to the colour palette seen here among pelagic lecithotrophic eggs in 



 

 

76

echinoderms. The presence of these specific colours in the marine environment supports 

the hypothesis that the use of certain pigments may be convergent among marine animals 

facing strong selective pressures to protect exposed eggs.  

The association between egg colour and life history in the phylum Echinodermata 

is also surprisingly similar to that reported in more derived taxa such as birds (Aves, 

Chordata), but with a key difference. Eggs like those seen in Echinodermata consist of 

yolk surrounded by a thin membrane. Maternal investment, is therefore, consolidated into 

these yolk packages, inherently constraining physiological and defensive functions of 

pigments. The evolution of external shells in terrestrial animals like birds resulted in a 

two-part protection system that may be independently manipulated relative to maternal 

condition, sexual selection, and environmental conditions (Cassey et al. 2012, Maurer et 

al. 2011, Maurer et al. 2014). Like oocytes of basal echinoderms, the yolk of bird eggs is 

coloured yellow from maternal deposition of antioxidants such as carotenoids. In birds, it 

is the shell that saw an evolution of colour diversity, from pure white to blue-green, 

through the use of other pigments such as biliverdin (Navarro et al. 2011). White 

characterizes the eggshells of ancestral birds and of species that brood in cavities (i.e. not 

exposed to intense UV radiations), illustrating their weaker need for protective pigments 

(Kilner 2006, Lack 1958, Maldowie 1886). This parallels the predominance of weakly 

pigmented (pale) eggs among internally brooding echinoderms in the present study. As 

for extant egg colour diversity, whether broad geographic or phylogenetic trends echoing 

the ones evidenced here also occur in birds is still not fully understood. This is because 

the literature typically focuses on the nesting ecology of discrete species/populations and 
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syntheses are uncommon. In one of the rare class-wide reviews, Kilner 2006 hypothesized 

that the diversity of eggshell colour and patterning in birds was largely driven by a co-

evolutionary arms race around brood parasitism (i.e. to make eggs more or less 

conspicuous, depending on the perspective). 

3.6. Future Directions 

Taken together with results reported previously in more derived taxa, the findings 

of the present study suggest that increasing complexity in egg colour patterns may 

represent an evolutionary trend in reproductive traits that emerged as animals shifted from 

a predominantly r-selected type of egg production (planktotrophy), involving millions or 

thousands of eggs, to a K-type model, where fewer offspring are produced 

(lecithotrophy). A quantitative assessment of egg colour patterns that further transcends 

the major boundaries in animal evolution would be a valuable step forward in deciphering 

the origins and adaptive value of egg colour in aquatic and terrestrial systems. For 

instance, primitive animals like sea anemones and corals (phylum Cnidaria) also produce 

brilliantly coloured, non-feeding larvae but the ecological value of their pigments has not 

yet been explicitly explored. Key hypotheses to test across systems and taxa include: (1) 

egg pigmentation increases and diversifies as fecundity decreases, (2) pigment intensity is 

a function of exposure to UV and/or other sources of lipid oxidation, (3) selection of 

certain pigments over others is a function of ecological or energetic benefits, and (4) 

pigment intensity and colour can be directly manipulated by the level of maternal 

investment. Such findings would be invaluable to our understanding of how parental 
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investment can be tailored to fit the needs of the offspring of egg-laying taxa. If nothing 

else, future studies on reproductive biology and ecological trade-offs should pay closer 

attention to egg colour measurements and definitions, as egg pigments clearly are more 

than aesthetic. 

3.7. Summary and Conclusions 

While egg-laying is widespread in the animal kingdom and marine species with 

maternally-provisioned development produce some of the most strikingly coloured eggs, 

knowledge on the roles and putative drivers of egg pigmentation largely focuses on a 

small number of brooding avian taxa. Analyses and syntheses over broad taxonomic and 

geographic scales are wanting. The present phylum-wide study of Echinodermata 

exhibiting diverse life histories reveals that the colour, buoyancy, egg size, adult size and 

development site of eggs are generally linked within reproductive and life-history 

strategies. Yellow emerges as the primitive egg colour and is still the most common in 

internal brooders, while green eggs occur only in the most derived orders of each class 

and are restricted to the Indo-Pacific basin. The more intense pigmentation of pelagic and 

externally-brooded eggs compared to internally-brooded eggs of similar size strongly 

supports the hypothesis that pigmentation is actively selected for to protect propagules 

against UV radiation and, possibly, visual predators. Egg colours diversified from the 

ancestral yellow in response to local environmental and/or ecological pressures, through a 

selection for better-adapted yet more costly pigments (red/orange and green), yielding 

defined geographic and phylogenetic colour patterns. Further quantitative assessments of 
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egg colours and pigment types over broad scales could be used to determine whether and 

how fecundity and external pressures can mediate the nature and amount of maternal 

investment into egg pigmentation. The selective advantages of red and green pigments 

also need to be explored.  
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3.10. Tables 

 
 

Table 3.1. Colour groupings and intensity categories with their corresponding qualitative 

descriptors in the literature. Each colour family is defined by a range of red content, based 

on the percent ratio of red to total red and green (R/R+G) on the RGB scale. Intensity is 

defined as percent colour saturation.  

  

Colour 
Group 

Qualitative 
Descriptors 

R / (R+G) 
(%) 

Colour 
Intensity 

Qualitative 
Descriptors 

Saturation 
(%) 

Red 

Red 

Pink 

Purple 

100-75 Pale 

Pale 

Dull 

Light 

<50 

Orange Orange 74-55 Standard 
No modifier 
listed 

50-70 

Brown 
Brown 

Cream 
74-40 Bright 

Bright 

Intense 

Dark 

>70 

Yellow Yellow 54-40 -- -- -- 

Green Green 0-39 -- -- -- 

Grey 

Grey 

White 

Black 

-- -- -- -- 
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Table 3.2. Within-species colour variation is a function of life history and buoyancy 

[positive = (+), negative = (-)] in two species of sea star. The insert photo shows the 

brachiolaria larvae of the sea star Henricia lisa. These larvae were spawned during the 

same event; the pale grey one (A) was brooded and the bright yellow one (B) broadcasted 

in the water column. Scale bar represents 1 mm. 

  

Species Development Site Egg Colour 
 

Henricia lisa 
Brooded (-) Pale Grey (A) 

 

Pelagic Bright Yellow (B) 

Echinaster echinophorus 
Pelagic (-) Orange 

Pelagic (+) Black 

B 

A 
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3.11. Figures 

 

 

 

Figure 3.1. Distribution of echinoderm classes and development sites (brooded/benthic 

vs. pelagic) in the dataset (Appendix A). Frequency indicates number of species (total N = 

126 records). 
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Figure 3.2. Percent distribution of egg colour family and intensity in the full dataset 

(Appendix A) sorted by development site: pelagic, externally brooded, and internally 

brooded. Shades of egg colour families (red, orange, brown, yellow, green, grey) are 

represented as closely as possible in the upper panels. Colour intensities from dark to pale 

are shown on a grey scale in the lower panels. Sample size is provided in the center of 

each pie. (total N = 126 records).  
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Figure 3.3. Egg colour and size diversity in lecithotrophic echinoderms. a) Crossaster 

papposus (freshly spawned egg). b) Cucumaria frondosa (freshly spawned egg). c) 

Henricia lisa (freshly spawned egg collected from under mother). d) Pteraster abyssorum 

(from live 60-celled embryo of size/colour consistent with egg). e) Cucumaria miniata 

(composite image from several photos, scaled to size). Percent values represent percent 

red ratio [R/(R+G) ratio; see Table 1 for method]. Scale bar represents 500 m. Note that 

egg sizes shown here do not illustrate the general relationship between egg colour and egg 

size in the full dataset. 
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Figure 3.4. Global distribution of egg colour families in lecithotrophic echinoderms. 

Numbers indicate percent (%) of species with eggs of each colour (red, orange, brown, 

yellow, green, grey) found in the corresponding ocean basin. Distribution data obtained 

from OBIS. Species with cosmopolitan distributions are included in all relevant ocean 

basins. Size of pies reflects relative number of records (Appendix A, N = 126). 
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Figure 3.5. Relationship among egg colour, development mode, phylogeny, and ocean 

basin in lecithotrophic echinoderms. Dimension 1 = FAMD component with greatest 

variance. Dimension 2 = FAMD component with 2nd greatest variance. Symbol shape 

indicates developmental mode: circle = pelagic, large square = externally brooded, small 

square = internally brooded (N = 87, Appendix E). 
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Figure 3.6. Relationship among egg colour, development mode, and ocean basin in 

lecithotrophic echinoderms. Dimension 1 = FAMD component with greatest variance. 

Dimension 2 = FAMD component with 2nd greatest variance. Colour of each ellipse 

reflects predominate egg colour family/ies (orange, yellow, green, brown). Symbol shape 

indicates developmental mode: circle = pelagic, large square = externally brooded, small 

square = internally brooded, triangle = no associated developmental mode. Test indicates 

associated ocean basin (global = distribution in Atlantic and Pacific, including Indo-

Pacific, Ocean basins; N = 87, Appendix F). 
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Figure 3.7. Relationship between egg colour, development mode and egg buoyancy in 

lecithotrophic echinoderms. Dimension 1 = FAMD component with greatest variance. 

Dimension 2 = FAMD component with 2nd greatest variance. Colour of each ellipse 

reflects predominate egg colour family/ies (red, orange). Symbol shape indicates 

buoyancy: - = negative buoyancy, + = positive buoyancy, and triangle = no clustered 

buoyancy (N = 56, Appendix G). 
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Figure 3.8. Phylogenetic distribution of dominant egg colour families (red, orange, 

brown, yellow, green, grey) among lecithotrophic echinoderms (N = 126 records). 

Colours are ordered by first appearance from bottom (more primitive) to top (more 

derived). Phylogeny modified from previously published accounts (Kerr and Kim, 

 2001; Kroh and Smith 2010; Mah and Blake 2012; O’Hara et al. 2014). 
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Figure 3.9. Relationship between egg colour and taxonomic class in lecithotrophic 

echinoderms, independent of development mode. Dimension 1 = FAMD component with 

greatest variance. Dimension 2 = FAMD component with 2nd greatest variance. Colour 

of each ellipse reflects predominate egg colour family/ies (orange, brown, yellow, green). 

Symbol shape indicates class, circle = Ophiuroidea, square = Holothuroidea, diamond = 

Echinoidea, triangle = Asteroidea, cross = no associated phylogenetic class (N = 103, 

Appendix H). 
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Figure 3.10. Lecithotrophic echinoderm eggs viewed under various light 

colours/wavelengths at 300 lux: white (left panels), red (middle panels), and blue (right 

panels). Results shown for the sea stars A) Henricia sanguinolenta (egg size 1.5 mm), B) 

Henricia lisa (1.5 mm), C) Crossaster papposus (0.9 mm) and D) Solaster endeca (0.9 

mm); and the sea cucumbers E) Cucumaria frondosa (0.65 mm) and F) Psolus fabricii 

(0.6 mm). Eggs were floating on the water surface at the time of imaging. Circles on the 

photos highlight the location of some of the eggs. Images not to scale. Methods: Freshly 

collected eggs were exposed successively to white light (present at surface, λ = 440-650), 

red light (present at surface to 5 m, λ = 650 nm), and blue light (present at surface to 150 

m, λ = 440 nm) using a Fuloon 12V 5050 RGB light emitting diode (LED) lamp. While 

wavelength varied, light intensity was standardized to near-surface values (~300 lux) 

typical of spring conditions when most spawning and larval development occurs. Images 

under each light condition were taken using an Olympus TG-2 digital camera for 

subsequent RBG measurements in Adobe Photoshop software. Unedited images (for a 

minimum of 50 eggs per species) were compared from each light condition and each 

tested species to assess the visibility of eggs. Data were compiled using eggs from at least 

two spawning events (involving >2 males and females) for species with pelagic 

development, and from a minimum of 2 clutches for brooding species. 
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Chapter 4. Ontogenetic Shifts in Swimming Capacity of Echinoderm 

Propagules: A Comparison of Planktotrophic and Lecithotrophic 

Species 

A version of this chapter was published in the journal Marine Biology in March 2017 

(Vol. 164, page 43) 

4.1. Abstract 

While developmental strategies can modulate the dispersal and recruitment of marine 

benthic species, the significance and drivers of propagule motility throughout ontogeny 

remain incompletely understood. Species with lecithotrophic (non-feeding) development 

are rarely studied, despite their predominance in some taxa, including echinoderms. 

Quantification of the swimming capacity (i.e. speed and trajectory) of early life-history 

stages and its variability with environmental factors is required to improve the ability to 

predict population connectivity and assess trade-offs associated with complex life 

histories. In general, lecithotrophic larvae of echinoderms are ascribed weak swimming 

abilities relative to planktotrophic larvae, although explicit measures are scarce. Here, we 

explored selected metrics of swimming capacity in four co-occurring species of North 

Atlantic echinoderms displaying different types of pelagic development: planktotrophs 

represented by the sea star Asterias rubens and the sea urchin Strongylocentrotus 

droebachiensis, and lecithotrophs represented by the sea star Crossaster papposus and the 

sea cucumber Cucumaria frondosa. Swimming was characterized in still water based on 
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the horizontal speed and path straightness of early life-history stages, from late blastula 

(hatched embryo) to late-stage larva. we tested the hypotheses that swimming capacity of 

propagules increases with progression through developmental stages and with increasing 

seawater temperature. Swimming speed increased with ontogeny in two of the four 

species (A. rubens and C. papposus) and with temperature in all species, although the 

effects of temperature were not uniform across life stages. The fastest swimming speeds 

across all species and temperatures were recorded in lecithotrophic propagules (i.e. max 

speed 1.2 mm s-1 in the brachiolaria of C. papposus), whereas propagules of species with 

planktotrophic development displayed faster relative speeds (body lengths s-1). Relative 

speeds increased with temperature in all tested species except C. papposus. Swimming 

paths typically increased in straightness from early to later developmental stages, and also 

became straighter with increased temperature in most species, except in C. papposus 

where they became more circular and complex. In general, planktotrophic and 

lecithotrophic propagules had similar swimming capacities when tested at the same level 

of increased temperature, though several stage-specific differences were detected; 

propagules of species with planktotrophic development had greater relative speeds at the 

gastrula stage and greater path-corrected speeds at the larval stage. Swimming paths and 

swimming speeds were similar between propagules of species with planktotrophic 

development and lecithotrophic development, suggesting that phylogenetically-

conserved, ontogenetic patterns of swimming capacity (seen here between two sea stars) 

may supersede the contribution of larval nutritional mode.   
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4.2. Introduction 

Marine animals have evolved diverse developmental strategies that not only shape 

their reproductive success but also determine their settlement, recruitment and dispersal 

potential (Pechenik 1999, Thorson 1949). Complex, biphasic life histories, with sessile or 

sedentary adults and pelagic propagules (embryos and larvae), are common among 

benthic species (Pechenik 1999, Strathmann 1993). Pelagic larvae can be broadly 

characterized based on their nutritional requirements during development as either 

planktotrophic/feeding or lecithotrophic/non-feeding (Poulin et al. 2001). Propagules of 

species with planktotrophic development are typically smaller and neutrally or negatively 

buoyant, whereas pelagic lecithotrophic propagules are usually larger and positively 

buoyant (Chia et al. 1984, Emlet 1994).  

Though size varies greatly due to development mode (e.g. propagule diameter 

varying by as much as fifteen-fold), all species with a planktonic stage share non-feeding 

embryonic stages that have the ability to swim using cilia or muscular contraction (Emlet 

1983, Moore 2003, Staver and Strathmann 2002). Overall, species with ciliated 

propagules are classified as “weakly swimming” (e.g. echinoderms, molluscs; <1-10 mm 

s-1) relative to those that rely on appendages and muscles for propulsion (e.g. polychaetes, 

crustaceans; >5-30 mm s-1; Grunbaum and Strathmann 2003, Strathmann and Grünbaum 

2006). While the swimming speeds of ciliated propagules are generally lower than 

currents, even small modifications (e.g. twofold increase in speed) can influence small-

scale interactions with the benthos that may modulate the capture of food, encounters 
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with predators, settlement and ultimately, recruitmen t(Abelson and Denny 1997, Gross et 

al. 1992, North et al. 2008).  

Propagule locomotion is primarily controlled by morphology and the mechanics 

of propulsion (Clay and Grunbaum 2010). Therefore, changes in morphology and 

behaviour that occur throughout ontogeny are expected to influence the swimming 

abilities of propagules. There is compelling evidence that even the most basal taxa 

(Porifera, Cnidaria) are sensitive to abiotic and biotic cues (Leys et al. 2002, Pawlik 1992, 

Tamburri et al. 1996). Yet, several authors have noted a scarcity of stage-specific studies 

of swimming capacity, particularly in response to environmental conditions (Metaxas 

2001, Metaxas and Saunders 2009, Morgan 2014). Comparative studies involving more 

than one species are also extremely rare.  

Many studies that examine the motility of marine ciliated propagules have focused 

on one or two species to assess the combined influence of flow and swimming on vertical 

positioning of larvae in the water column for the purpose of estimating transport over 

medium to large spatial scales (m to km; Metaxas 2001, Metaxas and Saunders 2009, Roy 

et al. 2012b, Sameoto et al. 2010). Studies of propagule swimming mechanisms in 

species with planktotrophic development have been conducted mainly in Mollusca (e.g. 

Arshavsky et al. 1993, Childress and Dudley 2004) and Echinodermata (e.g. Emlet 1983, 

Strathmann and Grunbaum 2006). Small-scale studies of horizontal swimming (that 

include horizontal components) are prevalent in some phyla (e.g. Porifera, Maldonado 

2006; Annelida, Butman et al. 1988) but relatively limited in others (e.g. Mollusca, Chan 

et al. 2013; Echinodermata, Chan 2012, McDonald 2004, Mogami et al. 1988). In phyla 
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with different nutritional modes, studies that quantify the motility of lecithotrophic 

propagules are also scarce (Emlet 1994, Kelman and Emlet 1999, McEuen and Chia 

1991). This is especially true in Echinodermata where lecithotrophy is predominant 

(estimated as 68% of all species, Uthicke et al. 2009). Addressing this will be of 

particular importance in temperate and cold-water ecosystems where species with 

lecithotrophic propagules developing in the plankton are equally abundant to species with 

planktotrophic propagules (Marshall et al. 2012). 

Pelagic lecithotrophic echinoderm propagules have been ascribed weak swimming 

capacities, based on the assumption that their large size and positive buoyancy can 

impede swimming (Emlet 1994). The absence of feeding could exert a strong influence 

on swimming behaviour in lecithotrophic propagules, which are not constrained by 

dependence on external sources of nutrition and generally experience less predation; 

either through morphological incompatibility (Mercier et al. 2013a) or through predator 

rejection (Iyengar and Harvell 2001). The few studies dedicated to locomotion in ciliated 

propagules of lecithotrophic echinoderms have documented swimming in a sea star 

(Pteraster tesselatus, 1.0-1.7 mm s-1; Kelman and Emlet 1999), a sea cucumber (Psolus 

chitonoides, 1.4 mm s-1; McEuen and Chia 1991), a brittle star (Ophioderma brevispinum, 

0.3 mm s-1; Webb 1989) and discussed the general constraints of cilia band placement to 

swimming potential (Emlet 1994). Positively buoyant propagules may swim with or 

against the buoyant force (Emlet 1994), which makes assessment of “vertical” swimming 

capacities complicated in lecithotrophs. However, the combination of buoyancy and 

swimming in P. tesselatus and P. chitonoides was shown to generate vertical movement 



 

 

105

that was faster than reported in planktotrophic echinoderms (Kelman and Emlet 1999, 

McEuen and Chia 1991). 

In an effort to provide explicit comparisons between developmental strategies and 

generate novel empirical data of potential use in dispersal and connectivity models, we 

explored the swimming capacity of embryos and larvae in four common and co-occurring 

species of North Atlantic echinoderms; planktotrophs represented by the sea star Asterias 

rubens and the sea urchin Strongylocentrotus droebachiensis, and lecithotrophs by the sea 

star Crossaster papposus and the sea cucumber Cucumaria frondosa. An initial study was 

conducted to gather species-specific data and test the hypothesis that swimming capacity 

increases with ontogenetic development at the scale of the propagule. We hypothesized 

that swimming speed would increase chronologically from early to late developmental 

stages due to changes in propagule size, shape and competency. Because temperature is 

known to influence the swimming of ciliated propagules through physiology and the 

viscosity changes of water (Chan et al. 2011, Kashenko 2007, Podolsky and Emlet 1993), 

we also tested the hypothesis that stage-wise swimming capacity would be positively 

correlated with temperature. Finally, we tested the assumption that planktotrophs exhibit 

greater swimming capacity than lecithotrophs under similar conditions (Chia et al. 1984, 

Emlet 1994). Differences in morphology among these propagule types is likely to affect 

swimming.  
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4.3. Materials and Methods 

4.3.1. Animal collections, maintenance and spawning 

Adults of Asterias rubens (5-10 cm radius), Crossaster papposus (5-10 cm 

radius), Strongylocentrotus droebachiensis (5-8 cm test diameter), and Cucumaria 

frondosa (15-20 cm contracted body length) were collected by SCUBA between 10-20 m 

depth in southeast Newfoundland (eastern Canada). Specimens of all species were housed 

in 375-L tanks provided with flow-through seawater (approx. 60 L h-1) at ambient 

temperatures ranging from 0-5 °C, salinities ranging from 34-36 psu, light intensities 

ranging daily from 5-450 lux (mean = 300 lux), and natural photoperiod (see Mercier and 

Hamel 2010 for details). 

This study was undertaken in the spring 2014 and 2015, during the natural 

spawning periods of the focal species (Mercier and Hamel 2010). Cultures of C. papposus 

and C. frondosa were started following natural spawning events in February and March, 

by gently skimming the positively buoyant fertilized oocytes from the surface of the 

tanks. Cultures of A. rubens and S. droebachiensis were started in May. Though 

experimental trials were conducted at different times for each species, utmost care was 

taken to ensure continuity of experimental protocols across life stages and species. 

Gonads of female A. rubens were surgically collected from mature individuals and were 

treated with a solution of 0.1 M 1-Methyladenine to promote final oocyte maturation 

(Dorée et al. 1976). Spawning was initiated in S. droebachiensis by injecting 1-2 mL of 

0.5M KCl into the coelomic cavity (Meidel and Yund 2001). A minimum of three males 
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and five females were used to generate cultures with sufficient genetic diversity. 

Fertilization of mature oocytes was performed using a dilution of  approximately 10,000 

spermatozoa mL-1 as per Byrne et al. 2010 in both A. rubens and S. droebachiensis as this 

was an optimal concentration to promote 80-90% fertilization success and reduce the 

potential for polyspermy.  

Embryos and larvae (generally referred to as propagules) were cultured under 

conditions chosen to reflect the ambient temperature experienced in nature during the 

spawning season and early development, and standard culture conditions for the 

planktotrophs(Meidel et al. 1999, Meidel and Yund 2001). Standard rearing techniques 

were used for each species (Meidel et al. 1999 for A. rubens and S. droebachiensis, and 

Hamel and Mercier 1996 for C. frondosa and C. papposus). Propagules of C. papposus, 

and C. frondosa were raised in 1.5 L vessels at 1-3°C (matching the ambient conditions 

during natural spawning) and approximately 0.1 L h-1 flow-through conditions. 

Propagules of A. rubens were obtained a little later in the spring when the ocean 

temperature was higher; the cultures were performed at 10°C (static conditions) to match 

standard culture conditions. Once the larvae began to feed, (pluteus stage S. 

droebachiensis, late bipinnaria stage A. rubens), cultures were fed with a commercial mix 

of live algae (Phytofeast Live, Reef Nutrition) at a density of 1000 cells mL-1 

(concentration per Meidel et al. 1999). Planktotrophs consistently spent proportionally 

less time in the embryonic phase (11% in A. rubens; 13% in S. droebachiensis) than the 

lecithotrophs (57% in C. frondosa, 53% in C. papposus) relative to total development 

time (from egg to final larval stage). All trials were performed on propagules obtained 
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inside the same breeding season. In the case of multiple spawning events in the same 

season (only relevant for C. frondosa), cohorts were tested separately. However, there 

were no statistical differences among tested locomotory and morphological parameters so 

they were pooled for subsequent analyses.  

4.3.2. Experimental protocols 

Developmental stages were tested when ~80% of individuals in culture had 

reached that stage (Gemmill 1914, 1920, Hamel and Mercier 1996, Meidel et al. 1999). 

Focal stages included the late blastula and gastrula of all species, early brachiolaria in 

Asterias rubens, four-armed pluteus in Strongylocentrotus droebachiensis, brachiolaria in 

Crossaster papposus, and early pentactula in Cucumaria frondosa. Early time points in 

the most advanced larval stages (e.g. early brachiolaria, four-armed pluteus) were 

favoured over pre-competent forms to minimize the potential influence of settlement 

appendages on swimming that may occur during transition between the pelagic and 

benthic phases (near settlement). To this effect, early pentactulae of C. frondosa were 

tested prior to the emergence of the primary podia, as this results in a shift from 

swimming to crawling. Though S. drobachiensis passes through later-stage pluteii forms 

before undergoing metamorphosis, four-armed pluteii were chosen here as this is the 

stage commonly used by investigators working on other aspects of larval swimming in 

this species (e.g. under turbulent flows, Roy et al. 2012b). 

Swimming capacity metrics were measured at temperatures representative of 

ambient culture conditions, 1-3℃ for C. papposus and C. frondosa and 10℃ for A. 
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rubens and S. droebachiensis, as well as an elevated temperature of 15℃. Selected 

temperatures were within the natural range of each species (A. rubens 5-20°C, 

Saranchova and Flyachinskya 2001, Villalobos et al. 2006; S. droebachiensis 0-24°C, 

Pearce et al. 2005, Roller and Stickle 1994; C. frondosa 0-15°C, Hamel and Mercier 

1996; C. papposus 0-15°C, Reitzel et al. 2004). Experimental temperature values were 

confirmed prior to each trial using a glass thermometer and infrared gun (n = 3 

measurements per trial).  

A light intensity of 300 lux was selected, as this represented the mean ambient 

light level experienced by the propagules in culture vessels and represents mid-range light 

intensity measured in the surface waters of coastal Newfoundland during spring and 

summer (10 lux-1100 lux, Puvanendran and Brown 1998). A Fuloon 12V 5050 RGB light 

emitting diode (LED) lamp was used for all experimental trials, set directly over the 

experimental vessel to avoid a light gradient that could promote phototaxis in the 

horizontal plane. During the short duration of the trial, all propagules appeared to stay in 

the upper half of the experimental vessel. Background shade (white or black) did not 

affect swimming speed at any developmental stage (as determined during preliminary 

experiments) so white backgrounds were used to enhance propagule visibility during 

monitoring.  

At the commencement of each trial, propagules were gently transferred into small 

glass dishes (6-10 cm diameter, 2 cm high) and allowed to swim undisturbed for 5 min. 

This time frame was sufficient for propagules to recover from the transfer procedure and 

return to normal swimming behaviour as per preliminary experiments. To determine an 
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appropriate acclimation length, we examined swimming propagules from 0 to 5 min after 

being transferred to experimental dishes. Most propagules swam immediately after being 

placed in the dish and seemed to be resilient to gentle manipulations. Five minutes was 

sufficient for all propagules to resume swimming as normal (trajectory and speed) after 

the transfer and is a comparable time frame to other studies of marine larvae that found a 

period of <5min more than sufficient for propagules to recover from transfer protocols 

(Forward and Costlow 1974). In fact, many studies begin tracking behaviour immediately 

after transfer (e.g., Maldonado et al. 2003, Metaxas and Young 1998, Pennington and 

Emlet 1986). Following the acclimation period, video recordings were taken for 5 min 

(30 fps, Olympus TG-1 Camera) and the resulting footage was later analysed with the 

software ImageJ (see method below). Three replicate trials were performed for each stage 

in each species, and this resulted in a total of 15-30 individual propagules per stage per 

species. The effect of replicate was statistically tested (see below) to ensure differences 

among life stages were not obscured by temporal replication.  

As a control, recordings were also taken of unhatched propagules (early 

developing embryos) to correct for any passive surface drift that may occur from 

convection currents. Unhatched propagules (still inside the fertilization envelope) are 

useful in this capacity because they are comparable to newly hatched blastulae in size and 

buoyancy, but they are not motile (devoid of cilia). Therefore, it can be assumed that any 

displacement of non-motile embryos is purely due to background water movements in the 

horizontal plane. These mean drift currents were very small (0.001-0.01 mm s-1) and were 

negligible (<5%) at all stages except the blastula of A. rubens, in which passive 
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displacement could represent up to 15% of the total horizontal displacement. 

Nevertheless, natural drift speeds obtained from unhatched propagules were subtracted 

from mean speeds to account for passive movement in all treatments. 

4.3.3. Particle tracking and swimming capacity metrics  

The MOSAIC particle tracking algorithm in ImageJ [http://mosaic.mpi-

cbg.de/?q=downloads/imageJ] was used to analyze swimming at each tested life-stage 

(Chenouard et al. 2014). The 2D horizontal paths of swimming propagules were exported 

as x-y coordinates and converted into displacement data over one second intervals for the 

duration of the trials. We acknowledge that measuring only the horizontal component of 

swimming in propagules of species with planktotrophic development can be an 

underestimation of their true swimming capacity. However, lecithotrophic propagules 

exhibit limited vertical movement, and therefore, only the horizontal plane can be 

considered to make meaningful conclusions about nutritional mode differences. 

Propagules were excluded from the analysis if they collided with each other, or with the 

edge of the dish.  

Four metrics were used to quantify swimming capacity. (1) Mean absolute speed 

(mm s-1) was calculated as the average of distance travelled per one-second interval over 

the length of the trial. Absolute speed is the most commonly reported metric of swimming 

in the literature and provides a standard for comparisons. (2) Mean relative speed was 

calculated as the mean number of body lengths travelled per second (BL s-1), where body 

length was the longest axis in asymmetrical propagules measured from images (Epp and 
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Lewis 1984). Standardizing speed by size to generate relative speed is useful for making 

comparisons among propagules of different sizes and shapes, such as the ones in the 

present study. (3) Net to gross displacement ratio (NGDR, an index of path shape) was 

calculated as the average ratio between net (displacement) and total distance travelled 

over 20 s intervals for the duration of the trial. NGDR is a measure of path complexity 

where values close to 1 indicate a  relatively straight path and values near 0 indicate a 

complex path (Metaxas 2001). NGDR values typically plateaued before the end of 

swimming trials. (4) Path-corrected speed (PCS, mm s-1) was calculated to incorporate the 

influence of swimming speed and path on propagule movement, allowing for holistic 

comparisons among stages and species. PCS was obtained by multiplying swimming 

speed by NGDR as a proxy for mean displacement per unit of time.  

4.3.4. Statistical analysis 

For each species, a nested analysis of variance (ANOVA) was used to test the 

effect of life stage and replicate trial number on all propagule swimming metrics under 

ambient conditions: mean absolute speed, mean relative speed, net to gross displacement 

ratio and path corrected speed, within species. For this analysis, replicate was nested 

within stage. Two-way ANOVA was used to test the combined effect of increased 

temperature and stage on the four metrics of propagule swimming capacity for each 

species. The same test was used for interspecific comparisons of swimming metrics and 

stages at 15℃. Tukey post-hoc tests were conducted on statistically significant ANOVA 
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models. All statistical analyses were conducted and assumptions verified using SigmaPlot 

statistical software at  = 0.05.  

4.4. Results 

4.4.1. Swimming capacity throughout ontogeny under ambient conditions  

4.4.1.1. Swimming speed 

Among propagules of species with planktotrophic development, absolute 

swimming speed increased significantly from one developmental stage to the next in A. 

rubens (F2,38 = 34.4, p < 0.01; Fig. 4.1A), whereas it plateaued at the gastrula stage in S. 

droebachiensis (F2,56 = 10.1, p < 0.01; Fig. 4.1B). On average, the brachiolaria of A. 

rubens exhibited the fastest absolute swimming speed (0.48 mm s-1), representing a 

tenfold increase compared to the blastula (0.04 mm s-1), whereas values were more 

constant (0.19-0.34 mm s-1) among life stages of S. droebachiensis.  

Among lecithotrophic propagules, mean absolute swimming speed increased 

significantly with ontogeny in C. papposus (F2,43 = 33.3, p < 0.01; Fig. 4.1C) but not in C. 

frondosa (F2,43 = 1.9, p = 0.17; Fig. 4.1D). On average, the fastest swimming stage in C. 

papposus was the late larval stage (brachiolaria), with an absolute swimming speed of 

0.78 mm s-1. In contrast, the fastest stage of C. frondosa was the gastrula; with an 

absolute swimming speed of 0.21 mm s-1.  

When accounting for body length, relative swimming speed increased with 

ontogeny in A. rubens from 0.25 to 1.50 BL s-1 (F2,38 = 21.8, p < 0.01; Fig. 4.1E) but 

decreased in S. droebachiensis from the blastula/gastrula (1.20 BL s-1) to the pluteus stage 
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(0.30 BL s-1; F2,56 = 39.3, p < 0.01; Fig. 4.1F). Relative swimming speed in C. papposus 

increased significantly from 0.20 to 0.70 BL s-1 (F2,43 = 15.5, p < 0.001; Fig. 4.1G) but 

remained stable at 0.20-0.30 BL s-1 in C. frondosa (F2,43 = 3.0, p = 0.064; Fig. 4.1H). 

4.4.1.2. Swimming trajectories 

Among planktotrophs, net to gross displacement ratio (NGDR) increased 

significantly with ontogeny in A. rubens (from 0.57 to 0.81, Fig. 4.1I; F2,38 = 5.1, p = 

0.015) and in S. droebachiensis (from 0.28 to 0.63, Fig. 4.1J; F2,56 = 4.1, p = 0.028). Paths 

became visibly straighter in both species with sequential life stages (Fig. 4.2A, B). 

Similar increases in NGDR with ontogeny were detected in the lecithotrophs C. frondosa 

(0.52-0.75, Fig. 4.1L; F2,43 = 3.4, p = 0.049) and C. papposus (0.44-0.82, Fig. 4.1K; F2,43 

= 8.9, p <0.001). The swimming paths also straightened in the late life stages of both 

species, although the pattern was more evident in C. papposus (Fig. 4.2C, D).  

4.4.1.3. Path-corrected speed (PCS) 

When both speed and path straightness (NGDR) were combined quantitatively, 

PCS exhibited uniform ontogenetic trends among planktotrophs; it plateaued after an 

increase from blastula to gastrula in A. rubens (from 0.02 to 0.39 mm s-1, Fig. 4.1M) and 

S. droebachiensis (from 0.05 to 0.19 mm s-1; Fig. 4.1N). In contrast, PCS followed 

different ontogenetic trends among lecithotrophs. In C. papposus, PCS increased 

ontogentically from the blastula to the brachiolaria (0.07 to 0.64 mm s-1; Fig. 4.1O). In 

contrast, PCS did not change with ontogeny in C. frondosa (0.09-0.11 mm s-1, Fig. 4.1P).  
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PCS cam be used over a 1-hour period to estimate effective displacement 

(horizontal). This provides a general method of comparison under standard conditions. 

The highest effective displacement among tested propagules was 2.3 m h-1, in the 

brachiolaria of C. papposus. The next highest values were 1.4 and 0.7 m h-1, in the 

brachiolaria of A. rubens and the gastrula of S. droebachiensis, respectively. 

Displacement was consistent among life stages of C. frondosa with values around 0.3 m 

h-1.  

4.4.2. Temperature effects on propagule swimming capacity 

A within-stage analysis in the planktotrophs showed that propagules of A. rubens 

and S. droebachiensis responded slightly differently to increased water temperature. In A. 

rubens, only relative swimming speed increased significantly when propagules were 

tested at 15℃ (p = 0.014). In contrast, absolute swimming speed (Fig. 4.3A; p < 0.01), 

relative swimming speed (Fig. 4.3C; p = 0.026) and path corrected speed (Fig. 4.3G; p = 

0.032) were higher for S. droebachiensis propagules exposed to 15℃. No differences in 

the NGDR index of straightness were detected for either species (Fig. 4.3E).  

At the within-stage level in lecithotrophs, not all tested propagules of C. papposus 

and C. frondosa responded the same to the increase in water temperature. While absolute 

speed, relative speed and PCS of C. frondosa propagules (Fig. 4.3B, D, H) increased 

significantly (p < 0.01) at 15℃, the NGDR index of straightness (Fig. 4.3F; p < 0.01) and 

PCS (Fig. 4.3H; p = 0.011) of C. papposus decreased significantly. 
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Overall, in interspecific comparisons across developmental modes, planktotrophs 

and lecithotrophs had similar absolute swimming speeds at 15℃ (F3,6 = 0.007 p = 0.93). 

The fastest recorded speeds, across all species and temperatures, remained for the 

brachiolaria stage of C. papposus (1.2 mm s-1). Gastrulae of planktotrophic species 

exhibited faster relative speeds than gastrulae of lecithotrophic species (1.65 BL s-1 faster, 

F2,6 = 56.73, p<0.001), but no other differences in relative speeds were detected. 

Planktotrophs also tended to have higher path corrected speeds at the larval stage (0.07 

mm s-1 faster, F2,6 = 5.43, p = 0.033; with the exception of brachiolaria of C. papposus). 

No differences in NGDR were detected among the development modes at any stage (F3,6 

= 2.28, p = 0.13).  

4.5. Discussion  

The active swimming behaviours of pelagic propagules are believed to serve 

various roles, i.e. prevent larvae from sinking, facilitate access to micro-environments, 

gas exchange and enhance settlement near the benthos (Clay and Grünbaum 2011). 

Speeds in the range of 0.1-30.0 mm s-1 have previously been reported for ciliated 

propagules from basal taxa such as Porifera (Maldonado 2006) and Cnidaria (Harii et al. 

2002, Mileikovsky 1973), as well as more derived taxa such as Bryozoa (Wendt 2000), 

Mollusca (Chia et al. 1984) and Echinodermata (Chia et al. 1984, Podolsky and Emlet 

1993). Direct comparisons of swimming speed values across studies are complicated by 

inherent differences in life stage and nutritional mode of focal propagules, experimental 

scale/conditions and direction of displacement (e.g. vertical swimming rates can be 
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influenced by gravity, buoyancy and flow). Results for echinoderms to date have chiefly 

been obtained for late-stage ciliated larvae of species with planktotrophic development, 

either in still-water vertical columns (Metaxas 2001, Metaxas and Saunders 2009), under 

various flow regimes (Roy et al. 2012b) or combining data from both horizontal and 

vertical planes (Rebolledo and Emlet 2015). Planktotrophic propagules have been in 

focus partly because they are easy to culture under laboratory conditions (Wray et al. 

2004), they are commonly used in aquaculture (Liu et al. 2016, Loor et al. 2016, Mos et 

al. 2011) and their cilia serve both as feeding and locomotory structures (Strathmann 

1971, Strathmann and Grunbaum 2006). Previous reports of swimming speeds in the 

bipinnaria of Asterias rubens, and pluteii of Strongylocentrotus droebachiensis and 

Dendraster excentricus are similar to swimming speed values measured in the present 

study at comparable stages (i.e. 0.1-0.5 mm s-1; Civelek et al. 2013, McDonald 2012, Roy 

et al. 2012b). Increases in swimming speed with increasing water temperature were also 

reported, i.e. 0.2 to 0.5 mm s-1 in S. droebachiensis (Daigle and Metaxas 2012).  

The present multi-species study of swimming capacity showed that the absolute 

swimming speeds of planktotrophs and lecithotrophs were surprisingly similar when 

tested under ambient conditions (respective culture temperatures), and at 15°C. The 

similarities at respective ambient conditions are of particular interest, given that the 

lecithotrophs were cultured and tested at a colder temperature, but often swam as fast as 

the planktotrophs which were raised and tested at a higher temperature. This suggests that 

lecithotrophic propagules might swim faster than planktotrophic propagules if they were 

all raised at a similar temperature (i.e. either 3 or 10°C). Such studies would be invaluable 
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for interspecific comparisons. However, the logistics of raising and testing multiple 

species under identical ambient conditions are likely why few multi-species studies exist. 

Despite similarities in absolute speeds and trajectories, some planktotrophic 

propagules displayed faster relative swimming speeds (body lengths s-1) than their 

lecithotrophic counterparts. This trend was notable at the gastrula stage, which is more 

fusiform in lecithotrophs than in the planktotrophs. While this shape may have evolved to 

reduce projected area and drag of lecithotrophic gastrulae, similar to the faster swimming 

speeds seen among cyprid versus nauplius larvae in crustaceans (Walker 2004), it 

apparently does not completely offset the effects of large size. The higher relative speeds 

of A. rubens and S. droebachiensis gastrulae could relate to increased risk of predation, 

previously documented in embryonic stages of planktotrophs (Mercier et al. 2013a). 

Though faster swimming larvae may encounter more predators (Gerritsen and Strickler 

1977), the combination of complex paths and fast swimming speeds may allow gastrulae 

to escape after an encounter with predators as not all predators may be able to track a 

chaotically swimming propagule. Increased water temperature could also help the 

gastrulae of planktotrophic species escape from predators more effectively than other life 

stages, as the proportional increase in relative swimming speed from ambient to 15°C was 

the highest. However, predation rates may also vary with water temperature, as viscosity 

will decrease as temperature increases.  

Relative speeds and other metrics of swimming capacity were similar among the 

focal species at early embryonic stages (late blastula), despite marked differences in 

propagule length (0.2-0.3 mm vs. 0.6-0.8 mm) and rearing temperature. Relative speeds 
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were higher among late-stage larvae of A. rubens and early stages of S. droebachiensis, 

but the brachiolaria of C. papposus displayed on average faster absolute speeds than all 

other tested life stages and species under both ambient and 15℃ conditions. This was in 

stark opposition to our initial hypothesis that the propagules of planktotrophic species 

would swim faster than those species with lecithotrophic propagules in the horizontal 

plane. Over the past 20 years, other assumptions about lecithotrophic propagules have 

been revisited; they were recognized to disperse as far (Young et al. 1997) and spend as 

long in the pelagic region as planktotrophs (Mercier et al. 2013b), and have greater 

control over settlement site selection (Marshall and Keough 2003). Models have also 

revealed that positively buoyant propagules, such as most lecithotrophic larvae, can 

disperse further from adult habitats than neutrally buoyant or passive particles (Koehl 

2005).  

Even though absolute and relative swimming speeds varied, changes in swimming 

trajectories with progression through ontogeny were conserved across all four species. 

Propagules transitioned from circular swimming patterns in embryonic stages to 

expansive rectilinear paths that covered more ground per unit of time in more advanced 

larval stages. Overall, lecithotrophic propagules tended to swim with more complex paths 

than planktotrophs (on average they have lower NGDR values). This may provide an 

advantage by allowing these propagules to encounter less predators relative to 

planktotrophs, but without the cost of not finding as much food; a challenge faced 

primarily by planktotrophs (Visser and Kiørboe 2006). Generally, propagule paths 

displayed both clockwise and counter clockwise loops throughout the trials, which 
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reflects the variability reported in ciliated propagules of echinoderms (Chia et al. 1984). 

A capacity to change the direction of rotation while swimming emerged in sea star larvae, 

i.e. the brachiolaria of A. rubens and C. papposus. Such an ability was previously 

described as a backflip, representing body flexion rather than changes in cilia beating 

direction or speed (Strathmann 1971).  

Effective horizontal displacement values (based on path-corrected speed) in the 

order of 0.5-2.5 m h-1 were recorded here, which may seem limited relative to locally 

strong mixing and currents. However, the fact that active propulsion has been maintained 

by pelagic propagules indicates that it serves a purpose. Dispersive abilities in 

planktotrophs are at least partially controlled by their position in the water column during 

development (Roy et al. 2012b, Sameoto et al. 2010). In contrast, most pelagic 

lecithotrophic propagules remain in the upper meters of the water column during much of 

their development, as a consequence of their positive buoyancy (Emlet 1994). The 

similarity of swimming trajectories in the horizontal plane among tested planktotrophs 

and lecithotrophs could be evidence of phylogenetically-conserved patterns of locomotion 

that supersede nutritional mode differences. Complex paths that cover both horizontal and 

vertical planes (as seen in planktotrophs) could expose propagules to different currents 

and flow environments as greater pelagic surface area is covered between path end points 

than relatively straighter paths (Chan 2012). In contrast, rectilinear (straight) trajectories 

in both horizontal (seen here) and vertical planes could promote rapid access to areas of 

different flow regimes at small scales (cm – m), especially near the benthos (Walters et 

al. 1999).  
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The path corrected speeds were the highest for the brachiolaria larvae of A. rubens 

and C. papposus, a life stage designed for substrate selection and settlement (Barker 

1977, Byrne and Barker 1991). Furthermore, the increasingly rectilinear swimming 

trajectories exhibited by the larval stages of most species studied here could correspond to 

the onset of an exploration phase documented in several competent and pre-competent 

larvae of echinoderms (Barker 1977, Byrne and Barker 1991, Hamel and Mercier 1996). 

The importance of swimming trajectories to understanding swimming behaviour in the 

water column and near the benthos close to settlement has also been confirmed in 

lecithotrophic coral larvae (Pizarro and Thomason 2008). Together, these findings 

suggest that speed alone may not be a reliable predictor of swimming capacity in benthic 

invertebrate propagules, and that swimming trajectories need to also be considered.  

While some recent studies have opted to parameterize propagules as passive 

particles for model simplification (e.g. Fenberg et al. 2015, Myksvoll et al. 2014, Salama 

et al. 2013, Wood et al. 2014), the value of stage-specific and species-specific capacities 

and behaviours is increasingly being emphasized (Morgan 2014, Pringle et al. 2014, 

Robins et al. 2013). Interspecific comparisons of propagule behaviour, like those 

undertaken here, represent a growing trend to examine multiple stages and species on the 

same playing field. However, efforts are still challenged by the difficulty of modeling 

dispersal < 2 m above the sea floor, by incomplete understanding of ontogenetic changes 

in locomotory abilities, fundamental buoyancy/shape differences between species with 

planktotrophic or lecithotrophic propagules (Metaxas and Saunders 2009, Robins et al. 

2013), and by the relative scarcity of data on lecithotrophic propagules. These gaps in 
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methodology and knowledge have limited the development of biophysical dispersal 

models with universal applicability.  

Propagule dispersal has two components: passive dispersal as a result of large 

scale oceanographic processes (e.g. currents, fronts, mixing) and active dispersal as a 

result of swimming behaviours (e.g. movement changes, taxis). We acknowledge that the 

swimming data generated here is unlikely to inform large-scale dispersal phenomena of 

these species. However, active swimming by propagules may impact the outcome of 

dispersal predictions at smaller scales. Interestingly, relatively subtle speed changes (e.g. 

a doubling) were shown to alter dispersal predictions (on scales of m – km) more strongly 

in weakly swimming ciliated propagules than other larval types (e.g. Morgan 2014, 

Robins et al. 2013). To this effect, horizontal swimming speeds of propagules may 

interact with currents and facilitate predictions of vertical as well as the horizontal 

displacement of propagules. Swimming speed data collected here are similar to those 

previously reported for echinoderm propagules, and therefore, may be useful to modellers 

as a starting point; after accounting for fundamental composition and buoyancy 

differences between planktotrophic and lecithotrophic propagules. Navigation of pelagic 

ciliated propagules over various spatial scales is currently incomplete (Kingsford et al. 

2002, Scheltema 1986), warranting further investigation of the drivers and mechanisms of 

shifts in their swimming trajectories.  

Propagule swimming and behavioural patterns may be driven primarily by 

location (pelagic development) since the need to detect and avoid unfavourable 

environments is a ubiquitous selective pressure, independent of nutritional mode and 
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morphology. The degree of propagule sensitivity to abiotic factors (salinity, light, and 

temperature) and biotic cues in the water column has been well studied in planktotrophs 

such as A. rubens and S. droebachiensis (Civelek et al. 2013, Metaxas 2001, Roy et al. 

2012a). However, similar studies have not yet been conducted with lecithotrophic 

echinoderm propagules, although numerous studies exist for other lecithotrophic 

propagules in Porifera and Cnidaria (Collin et al. 2010, Holst and Jarms 2006, Jacobs et 

al. 2007). The use of small-scale studies (including detailed examinations of swimming 

mechanisms and sensory responses) in concert with large-scale population-based studies 

could help improve our understanding of the persistence of benthic marine animals with 

diverse types of pelagic development.  
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Figure 4.1. Swimming capacity of echinoderm propagules under ambient conditions. (A, 

E, I, M) A. rubens at 10℃; (B, F, J, N) S. droebachiensis at10℃; (C, G, K, O) C. 

papposus at1-3℃; (D, H, L, P) C. frondosa at1-3℃. Black bars (left panels) represent 

planktotrophic species and white bars (right panels) represent lecithotrophic species. 

Values reported are means ± SD, n = 10-15 individuals per stage. Letters over the bars 

indicate statistically significant differences.  
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Figure 4.2. Swimming paths of echinoderm propagules under ambient conditions. A) A. 

rubens at 10℃; B) S. droebachiensis at10℃; C) C. papposus at1-3℃; D) C. frondosa 

at1-3℃. Paths represent typical swimming trajectories of propagules over 300s and are 

scaled relative to size of the circle (arena).  
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Figure 4.3. Mean swimming capacity (± SE) of echinoderm propagules under ambient 

conditions (black lines) and warm conditions (red lines). Trial temperatures (in ℃) are 

indicated to the right of each line. Left panels show planktotrophic species (A, C, E, G) 

and right panels show lecithotrophic species (B, D, F, H). Lines indicate mean values for 

each life stage (n = 5-15 individuals per stage). 1 = blastula, 2 = gastrula, 3 = a more-

advanced larval stage that is species-specific (see Figure 4.1) 
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Chapter 5. Ontogenetic Variation in Photosensitivity of Developing 

Echinoderm Propagules 

This chapter is being prepared for submission to a scientific journal. 

5.1. Abstract 

Swimming behaviours and sensory abilities of early pelagic stages play a 

prominent role in the life history and ecology of sessile/sedentary benthic species, with 

implications for settlement, recruitment and dispersal. Light is a particularly important 

driver of navigational behaviour in the ocean, as a signal of key habitat characteristics 

(e.g., depth, shelter). Work to date on phototaxis has largely focused on planktotrophic 

larvae that feed during development, and much less on the larger lecithotrophic larvae 

that rely on maternal provisions (yolk). It remains unclear how responses to light might 

differ among ciliated propagules of different sizes and nutritional modes. The present 

study explored if/how phototactic responses are modulated by ontogeny (from embryo to 

larva), nutritional mode and light colour in ciliated propagules using four co-occurring 

species of echinoderms: the sea stars Asterias rubens (planktotroph) and Crossaster 

papposus (lecithotroph), the sea urchin Strongylocentrotus droebachiensis (planktotroph) 

and the sea cucumber Cucumaria frondosa (lecithotroph). Two types of behavioural 

responses to stimuli (white, red, and blue light) were examined, 1) taxis when the light 

stimulus was placed at one end of the chamber (net movement towards or away from the 

light stimulus) and 2) activity level, using a suite of swimming metrics, under uniform 
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illumination. All four species consistently displayed some level of photosensitivity to 

white light. While responses varied interspecifically, there was a general transition from 

predominately positive to predominately negative phototaxis with ontogeny. When the 

stimulus was red or blue light, planktotrophs modified their phototactic responses in a 

species- and stage-specific manner, while lecithotrophs displayed heterogeneous taxis 

responses without a clear net direction. Swimming speeds displayed stage and species-

specific variation under constant red or blue light, but swimming trajectories were 

consistently straighter under red light, resulting in greater displacement. Taken together, 

the results indicate that propagules of different species respond to light stimuli in 

distinctive stage-wise manners. Interestingly, ontogenetic patterns appear to be largely 

conserved in lecithotrophs and to differ more markedly among species and light colours 

in planktotrophs, though additional species will need to be examined to confirm these 

patterns. Further investigations of species-specific responses to light might help clarify its 

roles, in combination with factors such as buoyancy and gravity, in the ecology of 

propagules of benthic invertebrates.  
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5.2. Introduction 

Light patterns undergo marked vertical changes in the ocean, in that light intensity 

is reduced (Dickey et al. 2011) and longer wavelengths (700-650 nm, red) are rapidly 

filtered out (McFarland 1986) with increasing depth. The combination of these two 

features produces a multi-faceted gradient that organisms can detect and respond to 

(Nilsson 2009). As such, light is an important driver of behaviour and vertical distribution 

in marine animals (Jékely 2009, Jékely et al. 2008, Taylor 1984, Thorson 1964). For 

benthic species with a complex pelagobenthic life history (whereby intermediate larval 

forms develop in the water column before returning to the benthos), the naturally-

occurring light gradient in the ocean can act as a navigational cue to help propagules 

detect where they are in the water column and to direct larvae towards settlement sites for 

the completion of metamorphosis and recruitment (Thorson 1964). Knowledge of sensory 

behaviour from an ontogenic perspective, can therefore, shape our understanding of 

small-scale and large-scale species distributions (Anil et al. 2010). 

Studies on swimming behaviour of marine propagules in response to light cues 

have been conducted in all major phyla, chiefly at the larval stage. Marine larvae are 

diverse in form (e.g., ciliated or bearing swimming appendages) and nutritional mode 

(planktotrophic, relying on external nutrients during development vs. lecithotrophic, yolk-

sustained), but share the ability to respond to light during development (Jékely 2009, 

Jékely et al. 2008, Thorson 1964). Basal phyla, such as Porifera (lecithotrophic) and 

Cnidaria (mainly lecithotrophic), have simple ciliated ellipsoid larvae that alter their 

swimming patterns in response to light of variable intensity and colour (e.g. Porifera, 
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Collin et al. 2010, Leys et al. 2002, Leys and Degnan 2001; Cnidaria, Holst and Jarms 

2006, Mundy and Babcock 1998, Svane and Dolmer 1995). In sponge larvae, the apical 

cilia flex in the presence of light, generally resulting in photonegative swimming 

behaviour (Collin et al. 2010). Planula larvae of cnidarians display more variable 

responses, showing either photonegative or photopositive behaviour depending on light 

colour and other environmental factors (Mundy and Babcock 1998). In addition, the 

swimming behaviours and eventual settlement patterns of planulae have also been shown 

to be affected by light cues in several species (Pizarro and Thomason 2008, Svane and 

Dolmer 1995, Tran and Hadfield 2013).  

In more derived phyla, studies of phototactic responses have so far centered on 

planktotrophic larvae, and often excluded the obligatory non-feeding early embryonic 

stages. Ciliated planktotrophic larvae of Mollusca (Barile et al. 1994, Miller and Hadfield 

1986), Annelida (Butman et al. 1988, McCarthy et al. 2002, Young and Chia 1982b), 

Bryozoa (Wendt 2000) and Echinodermata (Pennington and Emlet 1986) display species-

specific patterns of phototaxis that often vary from intermediate to pre-competent larval 

stages. Patterns of phototaxis are particularly well described among larvae of Arthropoda 

that posses swimming appendages (Latz and Forward 1977, Shirley and Shirley 1988).  

Phototactic behaviours in all types of planktotrophic propagules are often presumed to be 

related to feeding habits and positioning in the water column (e.g., vertical position of 

barnacle larvae, Verruca floridana and Paralepas pedunculate, is controlled by light 

intensity and ontogeny; Bingham and Young 1993). Photosensitivity may also assist the 

settlement phase and ensure recruitment into the adult population (Jékely 2009). 
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Knowledge of propagule photosensitivity in lecithotrophic species belonging to 

derived phyla is quite limited, with the exception of phototaxis among tadpole larvae 

(phylum Urochordata; McHenry and Strother 2003, Svane and Dolmer 1995, Svane and 

Young 1989, Vazquez and Young 1998). Overall, phototactic behaviours in phyla with 

representatives that may develop through either ciliated lecithotrophic or planktotrophic 

larvae (e.g., Echinodermata) require further attention. Key questions include: Do pelagic 

lecithotrophic propagules in mixed-mode phyla possess the same degree of sensory 

ability as planktotrophic propagules and, if so, does it vary with ontogeny?  

The present study explores the responses of four species of echinoderms (across 

three taxonomic classes) to light of various colours throughout early ontogeny, from 

newly-hatched embryo to late larva. Echinoderms provide a useful framework for studies 

of phototaxis, as photosensitive cells have been identified in the planktotrophic larvae of 

one of the five extant classes, and such larvae display taxis in response to light. However, 

studies of phototaxis in echinoderms have focused primarily on shallow-water adults 

(e.g., ophiuroids, Hendler 1984; asteroids, Yoshida and Ohtsuki 1968, Yoshida et al. 

1984; Echinoids, Adams 2001, Domenici et al. 2003, Yoshida et al. 1984), although 

phototaxis in the deep sea has also been reported in one species of echinoid (Salazar 

1970). Assessments of phototaxis in echinoderm larvae are less common, and historically 

have overlapped with studies of vertical migration patterns (Fox 1925, Haney 1988, 

Pennington and Emlet 1986, Roy et al. 2012) or settlement preferences in late-stage 

planktotrophic larvae (Metaxas et al. 2008, Mladenov and Chia 1983). Beyond some 

anecdotal records (e.g. McEuen and Chia 1991), no dedicated studies of phototaxis or 
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sensory behaviour exist for any lecithotrophic echinoderm larvae. In addition, previous 

studies of phototaxis have traditionally focused on a single species, whereas comparative 

studies of species with different development patterns and phylogenies are scarce.  

The hypotheses underlying the present study were that: (1) all echinoderm 

propagules would exhibit behavioural responses to light (of varied colour); (2) that these 

responses would shift with early ontogeny, independently of nutritional mode; but that (3) 

planktotrophic larvae would be generally more sensitive to light cues, since they are 

reported to utilize light cues to facilitate feeding and daily vertical movements in the 

water column (Pennington and Emlet 1986). Phototactic responses to light of different 

colour/wavelength (white, red, blue) were characterized based on two aspects of 

swimming behaviour: (i) taxis (net movement towards/away from a light stimulus) and 

(ii) swimming metrics under constant light intensity (increase/decrease in speed, 

more/less straight paths). The focus was on how propagules were swimming under 

different light colours, as speed alone may not be a robust measure of behaviour in 

weakly swimming ciliated propagules (See Chapter 4 and Hansen et al. 2010, 

Montgomery et al. 2017).  

5.3. Materials and Methods 

5.3.1. Animal collections and maintenance 

Asterias rubens (5-10 cm radius), Crossaster papposus (5-10 cm radius), 

Strongylocentrotus droebachiensis (5-8 cm test diameter), and Cucumaria frondosa (15-

20 cm contracted body length) were collected by SCUBA between 10-20 m depth along 
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the Avalon Peninsula in Southeastern Newfoundland (eastern Canada; 46.640416 N, -

52.686534 W). Specimens were housed in 375-L tanks provided with running seawater 

(~60 L h-1) at ambient temperatures ranging from 0-5 °C, and a natural photoperiod where 

light intensities ranged daily from 5-450 lux (mean = 300 lux; Mercier and Hamel 2010, 

Montgomery et al. 2017 and Chapter 4).  

5.3.2. Spawning induction and culture maintenance 

This study was undertaken in the spring of 2014 and 2015, during the natural 

spawning periods of the focal species (Mercier and Hamel 2010). Gonads of A. rubens 

were surgically collected from mature females and were treated with a solution of 0.1 M 

1-Methyladenine to promote final oocyte maturation (Dorée et al. 1976). Spawning was 

initiated in S. droebachiensis by injecting 1-2 mL of 0.5 mol L-1 KCl into the coelomic 

cavity (Meidel and Yund 2001). Fertilization of mature oocytes was performed using a 

dilution (~ 10,000 spermatozoa mL-1; Byrne et al. 2010) in both A. rubens and S. 

droebachiensis as this was the optimal concentration to promote 80-90% fertilization 

success, and reduce the potential for polyspermy. Gametes from a minimum of five 

females and three males were used to generate cultures. Fertilized oocytes of C. papposus 

and C. frondosa were collected following natural spawning events involving multiple 

males and females, by gently skimming them from the surface of the tanks (as they are 

positively buoyant).  

Propagules were cultured in natural seawater, at the ambient temperature 

experienced in nature during the spawning season and early development. Standard 
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rearing techniques were used for each species (A. rubens and S. droebachiensis, Meidel et 

al. 1999; C. frondosa and C. papposus, Hamel and Mercier 1996; see Montgomery et al. 

2017 and Chapter 4). Lecithotrophic propagules of C. papposus, and C. frondosa were 

raised at 1-3 °C (1.5-L vessels, approx. 0.1 L hr -1 flow-through conditions) matching the 

ambient conditions during natural spawning. Propagules of A. rubens were obtained a 

little later in the spring when the ocean temperature was higher; these cultures were 

maintained at 10°C (static conditions). Once feeding larval stages were reached (pluteus 

S. droebachiensis, late bipinnaria A. rubens), cultures were fed with a commercial mix of 

algae (Phytofeast Live, Reef Nutrition, at a density of 1000 cells mL-1; see Chapter 4 and 

Meidel et al. 1999, Montgomery et al. 2017). All trials were performed on propagules 

obtained inside the same breeding season. In the case of multiple spawning events in the 

same season (only relevant for C. frondosa), cohorts were tested separately. However, 

there were no statistical differences among tested parameters so they were pooled for 

subsequent analyses. 

5.3.3. Experimental protocols 

Developmental stages were tested when 80% of individuals in culture had reached 

that stage (Gemmill 1914, 1920, Hamel and Mercier 1996, Meidel et al. 1999). Sensory 

responses were tested in the late blastula and gastrula of all species. Species-specific 

larval forms were also tested, including the bipinnaria and brachiolaria stages for Asterias 

rubens, the prism and pluteus stages for Strongylocentrotus droebachiensis, the early 

brachiolaria and late brachiolaria stages of Crossaster papposus, and the vitellaria and 
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early pentactula stages of Cucumaria frondosa. Early pentactula of C. frondosa were 

tested before primary podia emerged (Hamel and Mercier 1996) because after this time 

point, locomotion shifts from swimming with cilia to crawling with appendages. Trials 

were performed under their respective ambient culture conditions (described earlier).  

Propagules were tested under white (λ = 440-650), red (λ = 650) and blue (λ = 

440) light colours at fixed intensity (300 lux, i.e., with illumination from above) or with 

the light source placed at the side of the dish (light intensity varying from approximately 

300 lux to 5 lux across the dish; see below). Light colours were chosen as a proxy for 

near surface (white, red) and several meters below surface (blue) conditions given the 

rapid loss of long wavelengths in North Atlantic waters in the first few meters (Figure 

5.1). For fixed light intensity trials, 300 lux was selected, as this represented the mean 

ambient light level experienced by the propagules in the culture vessels. In the fixed light 

trials, the lamp was mounted 10 cm above the experimental dish. To measure / asses 

phototaxis, the lamp was mounted 5 cm above the surface of the dish on one side. The 

distance from one side of the dish to the other was far enough to reduce the light intensity 

to close to zero (5 lux). A Fuloon 12V 5050 RGB light emitting diode (LED) lamp was 

used for all experimental trials. Background colour (white or black) did not affect 

responses at any developmental stage (as determined during preliminary experiments) so 

black backgrounds were used to enhance the effectiveness of light gradients.  

We chose to examine phototaxis at the level of the propagules in the horizontal 

plane to minimize the potential confounding effects of nutritional mode differences 

(buoyancy) and gravity. At the onset of each individual trial, propagules were gently 
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pipetted into small glass dishes (6-10 cm diameter, 2 cm high) and allowed to swim 

undisturbed for 5 min with no directional light source. This time frame was sufficient for 

propagules to return to normal swimming behaviour (preliminary experiments; Chapter 4, 

Montgomery et al. 2017). Stable temperatures were maintained during trials using an ice 

bath. Following the acclimation period, experimental light conditions were established. 

Video recordings were taken (using an Olympus TG-1 camera) for 5 min and the 

resulting footage was later analysed with the software ImageJ (see method below). Three 

replicate trials were performed for each stage in each species, for a total of 10-30 

propagules per stage per species. As a control for passive drift, recordings were also taken 

of unhatched propagules (eggs/embryos still inside the fertilization envelope) under each 

set of experimental light conditions (Montgomery et al. 2017 and Chapter 4). Unhatched 

propagules are comparable to newly hatched blastulae in size and buoyancy, but have no 

cilia, and thus, do not exhibit any autonomous/active behaviour.  

5.3.4. Particle tracking 

The MOSAIC particle tracking algorithm in ImageJ [http://mosaic.mpi-

cbg.de/?q=downloads/imageJ] was used to analyze swimming responses and 

directionality at each tested life stage (See Chapter 4 and Chenouard et al. 2014, 

Montgomery et al. 2017). The 2D horizontal paths of swimming propagules were 

exported as x-y coordinates and converted into displacement data over one second 

intervals for the duration of the trials. Propagules were excluded from the analysis if they 

collided with each other, or with the edge of the dish. For all treatments, natural drift 
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obtained from unhatched propagules were subtracted from mean speeds to account for 

passive movement in the horizontal plane. Initial and final coordinates of propagules were 

used for subsequent taxis analyses. 

5.3.5 Sensory response metrics 

Sensory responses were broken into two main categories: (1) taxis (directionality) 

and (2) activity level (magnitude of response). Propagule taxis was determined in trials 

where the light source was placed to one side of the dish; it was scored based on 

propagule direction of movement as photopositive (moving towards light stimulus), 

photonegative (moving away from light stimulus), or neutral (net displacement towards or 

away from the light source of less than five body lengths). The term heterogeneous taxis 

was used to describe trials where a mixture of photopositive, photonegative and neutral 

responses were observed with no clear majority (i.e., larvae were swimming randomly). 

Beginning and end values of x y coordinates were defined relative to the light source for 

taxis calculations and subsequent statistical analyses (see below).  

Activity level was defined as mean absolute swimming speed (mm s-1) calculated 

as the  average of instantaneous speeds obtained from the distance travelled in each one-

second interval (see Montgomery et al. 2017 and Chapter 4). Activity level was 

quantified in trials of uniform light intensity to assess the degree of propagule response to 

the three tested light colours. Net-to-gross displacement ratio (NGDR) was also 

determined in conjunction with mean absolute swimming speed to quantify swimming 

patterns independent of direction. NGDR was calculated (see Montgomery et al. 2017 
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and Chapter 4) as the ratio of propagule displacement to total distance travelled. Values 

closer to 1 indicate relatively straight paths whereas values closer to 0 reflect relatively 

circular paths. Here, NGDR was refined to be a running average of the ratio of net 

displacement to total distance travelled over 30 second intervals.  

5.3.6. Statistical analysis 

Chi-square tests were used to test phototaxis and directionality relative to 

randomly swimming propagules. N-1 corrected Chi-square tests (Campbell 2007) were 

performed when expected values were < 5. All directionality statistics were first 

conducted independently of light colour to assess the impact of light intensity separately 

from wavelength. 

For each species, a nested analysis of variance (ANOVA) was used to test the 

effect of life stage and replicate trial number on activity level metrics under fixed light 

intensity conditions. Further, one-way and two-way ANOVAs were used to test the effect 

of life stage and nutritional mode on activity level (swimming speed, NGDR) and taxis 

under white, red, and blue light, within species. Statistical analyses were conducted using 

Sigma Plot and R statistical software at  = 0.05. See appendices 4A-D for detailed 

statistical outputs.  
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5.4. Results 

5.4.1. Phototaxis throughout early ontogeny 

Table 5.1 shows the net response to the three light stimuli, based on statistical 

significance, for each stage-species combination, whereas Figure 5.2 provides a detailed 

overview of intra-stage variability in phototactic responses measured in the different 

propagules of each species.  

Under white light, there was a general progression from heterogeneous or net 

positive phototaxis at early stages to net negative phototaxis at intermediate stages, and a 

uniform absence of net phototaxis in late larvae, in the four echinoderm-species tested. 

However, differences appeared to emerge among nutritional modes and interspecifically, 

as there was variation among individual propagules within each stage (Table 5.1, Fig. 

5.2). General ontogenetic patterns in the planktotrophs, A. rubens and S. droebachiensis, 

were similar in terms of net phototactic response except at the gastrula stage: the blastulae 

exhibited heterogeneous phototaxis; the gastrulae became photopositive (Fig. 5.2A) and 

photonegative (Fig. 5.2E), respectively; the early larval stages (bipinnaria of A. rubens, 

prism S. droebachiensis) were chiefly photonegative, and the later larval stages 

(brachiolaria and pluteus, respectively) exhibited no net pattern of phototaxis (Fig. 5.2A, 

E). Propagules of the lecithotrophic species, C. papposus and C. frondosa, responded 

differently than the planktotrophs and differed at the blastula stage; photopositive in C. 

papposus and heterogeneous taxis in C. frondosa. These species demonstrated uniform 

responses afterward, including heterogeneous phototaxis in gastrulae, net photonegativity 
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in early larval stages (early brachiolaria of C. papposus, vitellaria of C. frondosa) and no 

clear net-phototaxis pattern in the final larval stages (late brachiolaria and pentactula, 

respectively) under white light (Fig. 5.2H, K).  

Under red light, phototactic responses generally differed from those measured 

under white light, and effects varied among life stages (Table 5.1, Fig. 5.2). Furthermore, 

these changes were not uniform between the two planktotrophic species. In A. rubens, the 

net responses of embryos (blastula and gastrula) paralleled those obtained in white light, 

whereas larval stages displayed a different mixture of photopositive and photonegative 

behaviour. At the bipinnaria stage, A. rubens did not display net phototaxis but was 

photonegative at the brachiolaria stage (Fig. 5.2B). In S. droebachiensis, the opposite 

occurred, i.e., net behavioural changes induced by red light colour occurred at the 

embryonic stage, where the blastulae were heterogenous and the gastrulae had no clear 

response pattern (while prisms were photonegative and pluteii displayed heterogeneous 

phototaxis patterns; Fig. 5.2F). Among the lecithotrophs, C. papposus and C. frondosa, 

the red-light stimulus had no uniform effect, in that nearly all stages of both species 

displayed heterogeneous phototaxis (Fig. 5.2I, L). In general, C. papposus (Fig. 5.2I) 

tended to be more photonegative than C. frondosa (Fig. 5.2L) under red light. Moreover, 

the gastrulae of C. frondosa became largely unresponsive (displaying limited directional 

displacement away or towards the light stimulus; Fig. 5.2L).  

Trials under blue light elicited a relatively uniform ontogenetic pattern in the net 

responses of planktotrophic species (A. rubens, S. droebachiensis), that differed from 

those measured in either white or red light (Fig. 5.2C, G). Blastulae of both species 
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showed net photonegative responses, while all later stages displayed heterogeneous 

phototaxis patterns. The net responses of lecithotrophic propagules to blue light also 

differed from those to white light and red light (Fig. 5.2J, M). In general, C. frondosa 

(Fig. 5.2M) were more photonegative than C. papposus (Fig. 5.2J), though within-stage 

variation was common. Most stages showed heterogeneous phototactic behaviours, 

whereas the late embryos and late larvae of C. papposus displayed a clear absence of 

movement relative to the light stimulus (Fig. 5.2J). The early brachiolaria of C. papposus 

and early pentactula of C. frondosa showed a tendency to be photopositive towards blue 

wavelength, although this was only significant in C. papposus (Fig. 5.2J, M; Table 5.1).  

5.4.2. Activity level during phototactic responses  

Activity level during phototactic responses (movement either away or toward the 

light stimulus) was first examined independently of light colour (Fig. 5.3). The response 

to a light stimulus generally had no effect on swimming speed, when all stages of all 

species were considered together, except at the bipinnaria stage of A. rubens and the 

gastrula stage of S. droebachiensis, which displayed greater speeds (0.66 ± 0.04 and 0.39 

± 0.02 mm s-1, respectively) when moving towards the stimulus, during a photopositive 

response, than away from it, during a photonegative response (Fig. 5.3; p = 0.025 and 

0.028, respectively). On the other hand, swimming trajectories (paths) generally varied 

across phototactic responses. Paths tended to be straighter in propagules swimming away 

or towards light (NGDR > 0.5, overall mean of 0.67; Fig. 5.4), relative to propagules that 

did not exhibit any net phototaxis (NGDR < 0.5, overall mean of 0.41; Fig. 5.4). This 
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trend was significant among several species-stage combinations, including the blastula 

and bipinnaria of A. rubens, the blastula and early and late brachiolaria of C. papposus, 

and the vitellaria of C. frondosa.  

5.4.3. Activity level under uniform light levels 

Activity levels during phototaxis varied across the three tested light colours. To 

account for differences in light intensity when the light source was placed at one side of 

the dish, propagules were further tested under uniform light levels to tease out the effect 

of light colour itself. 

The propagules under study demonstrated various activity levels in the presence 

of white, red, and blue light of uniform intensity, based on swimming speeds and NGDR 

values. Propagules of A. rubens increased swimming speed with ontogeny under all light 

colours, whereas propagules of S. droebachiensis did not (Fig. 5.5). The fastest absolute 

speeds at the blastula stage were measured under blue light in A. rubens and S. 

droebachiensis, but the swimming capacity of the former species was only about one-

third of the later (0.10 ± 0.01 vs.0.33 ± 0.05 mm s-1, respectively; Fig. 5.5A, B).  

Differences in swimming capacity between A. rubens and S. droebachiensis also occurred 

at the intermediate gastrula stage, where A. rubens gastrulae swam faster under white than 

red or blue light (0.36 ± 0.04 vs 0.11 ± 0.01 and 0.05 ± 0.01 mm s-1) but S. 

droebachiensis showed no swimming speed differences among tested light colours. In 

contrast, the early-larval stages (bipinnaria and prism, respectively) and late-larval stages 
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(brachiolaria and pluteus) of these species demonstrated similar swimming patterns 

(within stage); the fastest speeds were detected under red light (Fig. 5.5A, B).  

Like planktotrophs, lecithotrophs (C. papposus and C. frondosa) exhibited 

contrasting ontogenetic patterns; propagules of C. papposus increased swimming speed 

with ontogeny, but propagules of C. frondosa did not (Fig. 5.5). Other aspects of their 

responses also differed. In C. papposus, blastulae swam slower under red light (0.095 ± 

0.01 mm s-1, p = 0.007) than either white (0.15 ± 0.01 mm s-1) or blue light (0.14 ± 0.02 

mm s-1), whereas gastrulae swam faster under white light (0.46 ± 0.06 mm s-1, p< 0.001) 

than either red or blue light (0.14 ± 0.05 and 0.32 ± 0.05 mm s-1, respectively; Fig. 5.5C). 

Late brachiolaria stages of C. papposus exhibited different swimming speeds under all 

tested light colours; swimming the slowest under blue light (0.25 ± 0.06 mm s-1, p<0.001) 

and the fastest under white light (0.78 ± 0.07 mm s-1; Fig. 5.5C). All tested life stages of 

C. frondosa swam at similar speeds across the light colours (within stage; Fig. 5.5C, D).  

NGDR values were frequently, but not always, lower (by an average of 20-50%) 

for propagules swimming under blue light than white or red light, indicating more circular 

swimming paths (overall mean of 0.49 vs. 0.64; Fig. 5.6). This trend was determined to 

be statistically significant in all stages of A. rubens (Fig. 5.6A), in the gastrula stage of C. 

papposus (Fig. 5.6C) and in the gastrula, vitellaria, and pentactula stages of C. frondosa 

(Fig. 5.6D). In contrast, paths were of similar straightness under red and blue light in the 

blastula stage of S. droebachiensis (Fig. 5.6B), and the blastula, early brachiolaria, and 

late brachiolaria of C. papposus (Fig. 5.6C).   



155 

 

5.5. Discussion 

The propagules of all four species of echinoderms tested here showed clear 

responses to light (though not at all stages), based on their swimming speed and path 

under constant light of various colour, and on their net displacement relative to light. 

Comparisons across species and nutritional modes revealed both similarities and 

differences. (1) The overall phototactic responses to white light changed with ontogeny, 

from heterogeneous or positive phototaxis in early embryos, to net negative phototaxis in 

early larval stages, to heterogeneous responses in all late larvae. (2) Exposure to red and 

blue light elicited net phototactic behaviours in many propagules of planktotrophic 

species, with noted shifts in ontogenetic patterns relative to white light. In support of our 

initial hypotheses, a few life stages of lecithotrophic species were less responsive to red 

and blue light, relative to their planktotrophic counterparts, and displayed heterogeneous 

responses rather than clear net responses. (3) Within-stage phototactic responses to light 

(relative proportions of phototaxis direction) were variable under all light colours, and not 

consistent among tested species, even when net phototactic directions were the same. (4) 

Swimming speeds under uniform light varied across ontogeny and species. However, 

swimming paths tended to be straighter (NGDR values closer to 1) under uniform red 

light relative to uniform blue light in all species.  

Photonegativity under white light has been reported in the larvae of other 

echinoderms; specifically, the planktotrophic pluteus of Dendraster excentricus 

(Pennington and Emlet 1986) and the lecithotrophic late-pentactula of Psolus chitonoides 

(Young and Chia 1982a). Both studies examined phototactic responses of early and late 
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larval stages in small-scale laboratory conditions, similar to the present study. However, 

D. excentricus was tested in a column, with a vertical light gradient. There are additional 

challenges associated with interpreting phototaxis results in vertical settings, because 

echinoderm propagules are highly sensitive to gravity, and display clear geotactic patterns 

in the absence of directional light from early embryonic stages to competent larvae 

(Mogami et al. 1988). In fact, the patterns observed by Pennington and Emlet (1986) 

were not replicable in the horizontal plane, indicating that more studies may be required 

to tease apart the influence of geotactic and phototactic stimuli, potentially by using top 

versus bottom lighting. A similar confounding relationship between gravity and light 

behavioural responses was also noted in studies of crustaceans (Latz and Forward 1977, 

Shirley and Shirley 1988) and annelids (McCarthy et al. 2002), which suggests that a 

hierarchy of cues may drive propagule navigational patterns in the water column (Jékely 

2009, Jékely et al. 2008).  

Patterns of phototaxis in the present study changed slightly when propagules were 

tested under red and blue light. In planktotrophs (A. rubens and S. droebachiensis) the 

clearest shift was detected after exposure to blue light, whereby early embryos became 

strongly photonegative. As for propagules of lecithotrophs (C. frondosa and C. 

papposus), they displayed either heterogeneous phototactic responses (random 

movements), were photopositive (in the case of early brachioaria of C. papposus) or did 

not have directional movement under red and blue light stimuli. Given the loss of red 

wavelengths in the first few meters of the ocean (McFarland 1986), surface behaviours 

might be expected to be more driven by the presence of red light (as part of white light) 
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and benthic behaviours to be driven by blue light (below certain depths, where red 

wavelengths have been filtered out). The phototactic patterns seen here under red light are 

consistent with studies of coral planulae (also lecithotrophic), which showed a reduction 

in phototaxis under red light compared to white light (Mundy and Babcock 1998). Certain 

species of larval reef fish also experience changes in their ability to detect red 

wavelengths as a result of a transition from surface to deeper waters with ontogeny 

(Shand 1993). Since lecithotrophic propagules are buoyant and do not need to locate food 

in surface waters, as planktotrophs do (Pechenik 1999), they may rely less on surface-

related light cues. Alternatively, the absence of directional movement relative to a light 

cue might be interpreted to mean something else; e.g. that propagules have found suitable 

conditions (and do not need to move), that propagules are not sensitive to light, that 

another cue may be taking precedence, or that another behavioural parameter such as 

speed or path shape is being manipulated in response to the stimulus (Ettinger-Epstein et 

al. 2008, Pizarro and Thomason 2008).  

The direction and speed of swimming have previously been used to holistically 

describe directional behavioural responses to stimuli such as light, salinity and 

temperature gradients (Civelek et al. 2013, Michalec et al. 2010, Pizarro and Thomason 

2008, Richmond and Woodin 1996). Few differences in absolute swimming speeds were 

detected here amongst the different taxis directions, but swimming paths were generally 

straighter for clear photopositive and photonegative responses (relative to heterogeneous 

responses). Although speeds were generally similar amongst positive and negative 

responses to light, the combination of swimming speed and straighter paths increased the 



158 

 

dispersal potential of propagules that were swimming away and towards the stimulus. 

Taken together, these results support the hypothesis that speed alone is not an ideal 

measure of larval behaviour (See Chapter 4 and Montgomery et al. 2017, Pizarro and 

Thomason 2008). Other features of activity level are important, and need to be considered 

such as trajectory, width of helical path and feeding behaviours (in species with 

planktotrophic development, Hansen et al. 2010). To this end, one study found that coral 

settlement was more directly affected by swimming trajectory than changes in swimming 

speed (Pizarro and Thomason 2008). Differences in path straightness were also detected 

among the tested light colours when propagules swam under uniform light intensities. 

Even though speeds under blue light tended to be similar to the other tested light colours, 

paths were often more circular under uniform blue light. This variability in trajectory may 

facilitate different behaviours based on the external light environment, such as feeding or 

navigation.  

Modifications of swimming direction and activity level in response to external 

stimuli are known to be related to settlement success in benthic marine invertebrates 

(Pizarro and Thomason 2008) and thus, may be particularly important close to the 

benthos. When pelagic propagules are first released, they need to escape the benthos 

quickly due to mortality risks associated with benthic predators and/or the lack of food in 

the case of planktotrophic species (Johnson and Shanks 2003, Mercier et al. 2013a, 

Pennington et al. 1986, Vaughn and Allen 2010). Early swimming probably evolved to 

facilitate this transition, especially in feeding propagules that are neutral or negatively 

buoyant (Staver and Strathmann 2002). At embryonic and early larval stages, positive 
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phototaxis may guide weakly swimming embryos towards the surface and away from the 

benthos, perhaps directing planktotrophic species towards the chlorophyll maximum layer 

where food would be present. In contrast, lecithotrophic propagules that depend on 

maternal lipids for energy typically float toward the surface soon after spawning (Prowse 

et al. 2009). This positive buoyancy, combined with the net attraction to light at early 

developmental stages seen here, and their natural swimming abilities (See Chapter 4 and 

Montgomery et al. 2017), likely drives early lecithotrophic propagules to remain close to 

the surface where water temperatures warm up in the spring (i.e., measured though the 

Atlantic Zone Monitoring Program at Station 27). Exposure to warmer conditions may act 

to speed the development of lecithotrophic and planktotrophic species that tend to be 

naturally slow developers under cold temperatures (Hamel and Mercier 1996, Hoegh-

Guldberg and Pearse 1995, So et al. 2011). Maintaining a position in the upper regions of 

the ocean during development may also enhance the dispersal potential of propagules due 

to higher levels of turbulence and currents (Butler IV et al. 2011, Cowen and Sponaugle 

2009, Mercier et al. 2013b, Robins et al. 2013). Following surface development, a shift to 

photonegativity could facilitate migration to the benthos for settlement, a requirement for 

all benthopelagic species regardless of nutritional mode (Hadfield 1986, Mundy and 

Babcock 1998, Pechenik 1999, Sulkin 1975, Svane and Dolmer 1995, Thorson 1964, 

Vazquez and Young 1998, Wendt 2000). This shift to photonegativity at early larval 

stages is relatively common (Thorson 1964); it has previously been reported in bryozoans 

(Ryland 1960), mussels (Bayne 1964), lobsters (Botero and Atema 1982) and barnacles 

(Lang et al. 1979), suggesting that conservation of this behavioural pattern may be 
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adaptive for marine larvae (Svane and Dolmer 1995). In planktotrophic species, the 

emergence of these patterns might also overlap with geotaxis, fasciliating daily vertical 

migrations to surface waters in the dark for food capture (Barile et al. 1994, Pennington 

and Emlet 1986).  

At advanced larval stages, we observed a consistent lack of net phototaxis under 

white light in all four species. An ontogenetic shift away from clear phototactic patterns 

as larvae approach competency has been generally noted (Young 1999) and specifically 

documented in competent larvae of corals (e.g., Montastraea annularis and M. faveolata; 

Pizarro and Thomason 2008), bryozoans (e.g., Bugula neretina; Lynch 1947) and crabs 

(e.g., Panopeus herbstii and Leptodius floridanus Sulkin 1975). This heterogeneity is 

likely temporary, and may in fact be a consequence of the cellular reorganization that 

occurs before and during metamorphosis (Young 1999), or the result of asynchronous 

development that is common among echinoderms, where internal structures may be 

more/less advanced than external features used for identification (Cameron and 

Fankboner 1989, Hamel and Mercier 1996, Parks et al. 1989). The fully-developed 

pentactula of C. frondosa (a more advanced pre-competent stage than tested here, that 

possesses primary podia for crawling) display clear photonegative responses, similar to 

the behaviour of early juveniles of this species (Pers. Obs. 2015, 2017; B. Gianasi, E. 

Montgomery). However, the early pentactula tested here (devoid of primary podia) did 

not exhibit a net phototactic swimming direction. This was similar to the results of Young 

and Chia (1982a), who reported neutral phototaxis in the late vitellaria/ early pentactula 
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of Psolsus chitonoides, but clear negative phototaxis in the mature, crawling pentactula 

and post-settled juvenile.  

Taken together, these data suggest that propagule behaviours and preferences are 

time-sensitive and complex, consistent with pivotal stages in morphogenesis that occur 

from hatching to settlement. While the developmental patterns of some taxa do not easily 

permit comparisons of embryos and larvae (e.g., some molluscs and bryozoans have a 

protected embryonic phase and pelagic larvae), incorporation of embryonic stages into 

behavioural studies of larvae, where possible, will only enhance phylogenetically-relevant 

comparisons of ontogenetic patterns.  
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5.8. Tables and Figures 

Table 5.1. Net phototactic response of focal echinoderm propagules under light gradients of the three light colours tested. 

Type Planktotrophs Lecithotrophs 

Species A. rubens S. droebachiensis C. papposus C. frondosa 

Stage  
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White1  x + – x x – – x + x – x x x – x 

Red1 x + x – x x – x x x x x x 0 x x 

Blue1 – x x x – x x x x 0 + 0 x x x x 

P-values 
White  0.86 0.002 0.031 0.66 0.31 0.039 0.030 0.53 0.020 0.17 0.044 0.60 0.26 0.17 0.075 0.82 
Red 0.14 0.039 0.27 0.015 0.035 0.20 0.030 0.69 0.14 0.87 0.69 0.72 0.27 0.045 0.23 0.67 
Blue 0.015 0.06 0.30 0.58 0.044 0.20 0.72 0.17 0.90 0.030 0.004 0.007 0.37 0.61 0.27 0.38 

1 x = heterogeneous taxis (propagules exhibited a mix of displacement patterns, towards or away from stimulus); + = positive 
taxis (net displacement of most propagules towards stimulus), – = negative taxis (net displacement of most propagules away 
from stimulus), 0 = no taxis relative to stimulus (most propagules maintained their initial position). 
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Figure 5.1. Typical vertical profile of theoretical lecithotrophic (top panel) and 

planktotrophic (bottom panel) species with pelagic larvae. Buoyancy is indicated for each 

life stages; positive (floating), neutral (neither floating nor sinking) or negative (sinking). 

Competency is defined as the period during which larvae are capable of undergoing 

settlement / metamorphosis. Searching behaviour refers to the swimming patterns 

exhibited by many larvae close to the benthos as they identify suitable settlement sites. 

Planktotrophic larvae also undergo daily vertical movements as they follow their 

phytoplankton prey. The width of the triangles indicates the relative amount of total light 

intensity and light colour present with increasing depth in coastal waters (typical of the 

NW Atlantic).  
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Figure 5.2. Phototactic response of echinoderm propagules when exposed to a point 

source of white, red or blue light. A-C) A. rubens E-G) S. droebachiensis H-J) C. 

papposus K-M) C. frondosa. Life stages are as follow: (1) blastula; (2) gastrula; (3) early 

larva (bipinnaria in A. rubens, prism in S. droebachiensis, early-brachiolaria in C. 

papposus, vitellaria in C. frondosa), and (4) pre-competent larva (brachiolaria in A. 

rubens, pluteus in S. droebachiensis, late-brachiolaria in C. papposus, early-pentactula in 

C. frondosa). Net phototaxis at each life stage is summarized in Table 5.1. Photopositive 

= net displacement of propagules towards stimulus; photonegative = net displacement of 

propagules away from stimulus; no phototaxis = no taxis relative to stimulus (propagules 

maintained their initial position).  
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Figure 5.3. Absolute swimming speed in mm s-1 of echinoderm propagules exhibiting 

either positive, negative or neutral phototaxis, independent of light colour (Mean  SE, n 

= 8-20). A) Asterias rubens. B) Strongylocentrotus droebachiensis. C) Crossaster 

papposus. D) Cucumaria frondosa. Lower-case letters indicate statistical groupings 

within each life stage.   
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Figure 5.4. Net-to-gross displacement ratio (NGDR) (Mean ± SE, n = 2-20) of 

echinoderm propagules swimming towards (photopositive) or away from the light 

stimulus (photonegative), or showing no directionality (neutral), independent of light 

colour. A) Asterias rubens. B) Strongylocentrotus droebachiensis. C) Crossaster 

papposus. D) Cucumaria frondosa. Lower-case letters indicate statistical groupings 

within in each life stage.  = though the category appears statistically different, too few 

individuals were in this category to detect any differences in an ANOVA (n=2).  
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Figure 5.5. Absolute swimming speed (in mm s-1) of echinoderm propagules exposed to a 

constant level of white, red and blue light from above (Mean  SE, n = 8-20). A) Asterias 

rubens. B) Strongylocentrotus droebachiensis. C) Crossaster papposus. D) Cucumaria 

frondosa. Lower-case letters indicate statistical groupings within in each life stage. 
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Figure 5.6. Net-to-gross displacement ratio (NGDR) of echinoderm propagules exposed 

to a constant level of white, red and blue light from above (Mean  SE, n = 8-20). A) 

Asterias rubens. B) Strongylocentrotus droebachiensis. C) Crossaster papposus. D) 

Cucumaria frondosa. Lower case letters indicate statistical groupings within each life 

stage. 



177 

 

Chapter 6. Critical Assessment of Swimming Capacity, Sensory 

Ability and Nutritional Mode in Marine Propagules 

A manuscript comprised of a version of this chapter combined with Chapter 2 is being 

prepared for submission to a scientific journal.  

6.1. Is Propagule Nutritional Type a Good Predictor of Swimming Capacity?  

In Chapter 4, I showed similar swimming capacity among planktotrophic and 

lecithotrophic echinoderm propagules under ambient conditions. In Chapter 5, I showed 

that changes in activity level (through a combination of swimming speed and trajectory) 

in response to different light colours were present in both planktotrophic and 

lecithotrophic echinoderm propagules. A logical follow-up is to assess whether these 

patterns are conserved across other marine invertebrate taxa with ciliated propagules. 

Several excellent reviews already discuss swimming among planktotrophic propagules 

(Chia et al. 1984, Koehl and Reidenbach 2007), no study has ever explicitly tested or 

examined the differences between planktotrophic and lecithotrophic propagules across 

multiple phyla.  

6.2. Dataset Collection and Statistical Analyses 

To test the hypothesis that ciliated planktotrophic and lecithotrophic propagules 

swim similarly, relative to body length, I gathered swimming speed data of pelagic 

ciliated propagules across five major marine phyla (Porifera, Cnidaria, Annelida, 

Mollusca, Echinodermata; n = 67 complete records). Phylum Porifera (sponges) and 



178 

 

Cnidaria (corals and sea anemones) are predominantly lecithotrophic while Annelida, 

Mollusca and Echinodermata have a mixture of planktotrophic and lecithotrophic species. 

Records were collected from the scientific literature, including journal papers, theses and 

reports. Metrics collected included: nutritional mode, phylogeny, propagule diameter and 

mean swimming speed. Two-way ANOVA and Factorial Analysis of Mixed Data 

(FAMD) were used to test the relationship among all collected metrics. Statistical 

analyses were performed in Sigma Plot and R statistical software.  

6.2.1. Phylum, not nutritional mode, has a greater effect on swimming speed 

On average, planktotrophic propagules (diameter = 271  31 m) were smaller 

than lecithotrophic propagules (512  57 m) across the dataset, though differences in 

egg size were not conserved within all tested taxa. However, no significant differences 

existed in absolute swimming speeds between planktotrophic and lecithotrophic 

propagules (ANOVA p = 0.87; Table 6.2). Interestingly, there were phylum-based 

differences that emerged in the two-way ANOVA that warranted further analyses (p < 

0.001; Table 6.2). Two clusters were obtained from the FAMD model. Planktotrophic 

echinoderm propagules were smaller on average (FAMD p = 0.037, Table 6.3) and swam 

slower than the average (FAMD p = 0.025). In complete contrast, poriferan propagules 

(lecithotrophic) were larger on average (FAMD p = 0.015) and swam faster than other 

propagules (FAMD p <0.001).  

Taken together, results show that ciliated planktotrophic and lecithotrophic 

propagules generally swim at comparable speeds when all phyla are considered together. 
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This provides evidence that challenges previous assumptions to the effect that the large 

size and high lipid content of lecithotrophic propagules constrain their locomotory 

abilities(Emlet 1994). The phylum-based differences in swimming speed seen between 

echinoderms are poriferans suggest that, in fact, the opposite may be true; that some 

lecithotrophs may swim faster than average planktotrophs. There is a marked size 

difference between planktotrophic echinoderm and poriferan propagules. The larger size 

of poriferan propagules may yield an advantage as increased surface area could result in 

increased numbers of cilia and potentially increased propulsion. It is also worth noting 

that planktotrophic echinoderm propagules use a completely different morphological 

strategy; they often possess calcified elements and appendages that affect their density 

and interaction with fluid, in contrast to the simple prolate spheroid shape of poriferan 

propagules. Finally, the pelagic propagule duration (PPD) of sponges is typically much 

shorter than that of echinoderm propagules (1-7 days vs. 1-2 months). Swimming is an 

energetically costly process. Species with a long PPD need to conserve enough energy to 

undergo metamorphosis, so it is logical that they might not have the same capacity for 

other energetically expensive processes such as swimming. Testing the relationship 

between PPD and swimming speed in other taxa could yield interesting results, but 

unfortunately more PPD data are first needed, especially for lecithotrophs.  

6.2.2. Speed scales with size in planktotrophs, but not in lecithotrophs 

Absolute swimming speed decreased with increasing propagule length among 

planktotrophic propagules in the dataset (Fig. 6.2). In contrast, there was no relationship 



180 

 

between propagule length and absolute swimming speed among lecithotrophic propagules 

(Fig. 6.2).  

Taken together, this suggests that planktotrophic propagules may be more 

constrained by size than lecithotrophic propagules. A previous study of planktotrophic 

species found a decrease in vertical swimming speed with increasing propagule length 

(McDonald and Grunbaum 2010). While large larval size may increase the quality and 

survival of the juvenile (Emlet and Hoegh-Guldberg 1997, Phillips 2002), there may be a 

trade-off between swimming ability and size for planktotrophic propagules. Swimming is 

an energetic demand. Larger propagules may need more energy to swim at comparable 

speeds relative to smaller individuals. Since food is a limiting factor for the growth and 

development of planktotrophic propagules, larger propagules may not have enough 

resources to compete. In contrast, swimming speeds may be affected by something other 

than size in lecithotrophic propagules, which do not require external nutrition to complete 

metamorphosis. Cilia length, organization and body shape (Emlet 1994) are a few 

mechanical reasons why certain lecithotrophic propagules swim faster than others. The 

level of sensory and behavioural complexity among propagules may also result in 

different swimming speeds under different environmental conditions. To this effect, 

phylogenetic constraints on propagule form and behaviour may influence swimming more 

strongly than nutritional mode differences among species. Therefore, patterns among 

diverse taxa ideally need to be examined under uniform conditions to prevent bias.  
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6.3. Sensory Ability and Swimming Ability Co-Occur in Marine Propagules with 

Different Development Modes 

Several reviews of sensory abilities and responses (particularly in regards to 

settlement cue detection and the interaction with biofilm) exist in the literature (Hadfield 

2011, Kingsford et al. 2002). Kingsford et al. 2002 reported a trend showing increasing 

swimming speed proportional to increasing sensory structures / abilities in phyla ranging 

from Porifera to Chordata. However, the study did not consider morphological or 

developmental differences among propagules, or ontogeny. In general, discussion of 

sensory abilities among lecithotrophic propagules is limited for phyla that have evolved 

multiple modes of development (e.g. Mollusca, Annelida, Echinodermata).  

In Chapter 5, I showed that planktotrophic echinoderm propagules displayed 

clearer net-phototactic patterns more readily than lecithotrophic echinoderm propagules 

under coloured light. This was not totally surprising given evidence that nervous elements 

in echinoderm larvae are closely associated with feeding cilia bands, and the loss of these 

bands in lecithotrophic propagules has resulted in a reduction in nervous complexity as 

larvae (Byrne et al. 2001, Lacalli et al. 1990). Certain types of propagules may also be 

more/less sensitive to specific wavelengths of light at different time points in their 

development. Since lecithotrophic propagules do not feed, their sensitivity to 

environmental cues could be different than planktotrophs, though more thourough study 

is warrented before any definitive conclusions can be made.  
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6.4. Why Have Sensory and Locomotory Functions Been Maintained? 

Clearly, lecithotrophs have retained locomotory and sensory capabilities for a 

reason. These features would presumably not be maintained if propagules were entirely 

passive with no drivers to retain control over their navigation at any point in their early 

life. The ability to detect and respond to cues may supersede any trade-offs associated 

with variations in life-history strategies in ciliated marine propagules. Such strategies 

(e.g. nutritional mode, parental protection) could have evolved to tackle other risks 

associated with the biphasic life style and baseline sensory abilities and response patterns 

would exist because they are fundamental for propagule survival, settlement and eventual 

recruitment back into adult populations. Developing pelagic propagules have three 

separate tasks to accomplish: 1) escape from the benthos, 2) survive in the water column 

and 3) settle back on the benthos. The greatest variation in sensory behaviours and 

capabilities might be expected to exist while propagules are in the water column, since 

some species require external nutrition to complete metamorphosis.  

Studies that examine behaviour from a comparative and ontogenetic perspective 

will be critical to assess the advantages and disadvantages of different propagule 

adaptions. In Chapter 5, there was a general progression from undetermined taxis or 

photopositivity at early life stages to photonegativity at early larval stages. The timing of 

ontogenetic shifts in phototaxis are likely species-specific, and may help support life-

history diversity and variable pelagic duration. Strong phototactic responses may be 

adaptive in planktotrophs (due to their need to migrate to the surface for food), and this 

could explain why light sensitivity emerged in the earliest marine animals.  
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6.5. Considerations and Future Directions 

Phyla with multiple development modes (e.g. Annelida, Mollusca, 

Echinodermata) and species with alternating development modes (i.e. poecilogonous 

species; Krug 2009) are extremely valuable for comparative studies, but are relatively 

under-exploited in behavioural work. The marine gastropod Alderia modesta is a good 

example of a poecilogonous species with alternating modes of development; switching 

between pelagic planktotrophy and pelagic lecithotrophy. Larvae of both nutritional 

modes were shown to swim with complex paths early in their ontogeny that became 

straighter as larvae grew (Krug et al. 2012). This pattern was similar to the trends in 

NDGR seen among echinoderm propagules in Chapter 4. However, lecithotrophic larvae 

of A. modesta swam downward four times faster than their planktotrophic counterparts 

and explored the substrate significantly more. Such behavioural differences could have 

ramifications for settlement and eventual recruitment success. Future studies using 

poecilogonous species could provide insight into the trade-offs of maternal investment 

and offspring success.   
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6.7. Tables and Figures 

 

 

 

Table 6.1. Mean diameter and swimming speed summarized across the two nutritional 

modes and five phyla featured in the dataset.  

 

  

Factor 
Mean diameter 
(mm  SE) 

Mean swimming 
speed (mm s-1  SE) 

Nutritional mode 
Planktotrophic (P) 271  31 1.3  0.4 

Lecithotrophic (L) 512  57 10.6  2.8 

Phylum 

Porifera 596  85 30.1  4.3 

Cnidaria 352  99 5.7  4.1 

Annelida 
(L) 300  15 0.7  0.3 

(P) 328  74 1.6  1.0 

Mollusca 
(L) 170  53 1.8  0.7 

(P) 162  38 3.1  0.9 

Echinodermata 
(L) 750  22 0.6  0.5 

(P) 279  34 0.4  0.2 
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Table 6.2. Summary of results from an ANOVA testing the effect of phylum and 

nutritional mode on swimming speed in ciliated propagules (n = 67)  

 

 
Factor df F-stat P-value 

Phylum 4 45.2 <0.001 

Nutritional mode 1 0.03 0.86 

Phylum × Nutritional mode 2 0.07 0.93 
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Table 6.3. Summary of results from an FAMD testing the relationship among phylum, 

propagule size, propagule swimming speed, and nutritional mode in the dataset 

  Hierarchical Clusters P-value 

1 

Echinodermata <0.001 

Planktotrophic <0.001 

Size < Mean 0.025 

Speed < Mean 0.037 

2 

Porifera <0.001 

Lecithotrophic <0.001 

Size > Mean <0.001 

Speed > Mean 0.015 
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Figure 6.1. Swimming speed versus propagule length in lecithotrophic and 

planktotrophic invertebrate propagules of various phyla (Porifera, Cnidaria, Mollusca, 

Annelida, Echinodermata). Points represent mean values for individual species. Black 

circles indicate planktotrophic species and white circles indicate lecithotrophic species. n 

= 66 total. Planktotrophs: y =-0.39x – 0.48; Lecithotrophs: y = 0.0097x + 0.37.  
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Chapter 7. Conclusions and Future Directions 

7.1. Main Findings and Contributions to the Field 

7.1.1. Propagule phenotypes  

Maternal investment controls the size, shape, pigment level and buoyancy of eggs 

through nutrient deposition (Prowse et al. 2008). For lecithotrophic species that rely only 

on this source of maternal nutrition (i.e. on yolk) for development, the quality of maternal 

supply is critical (Falkner et al. 2006, Prowse et al. 2008). Lecithotrophic propagules are 

typically larger and yolky, relative to other types of propagules (planktotrophic, 

facultative planktotrophic; Pechenik 1999, Strathmann 2007). Individuals with high levels 

of lipids (such as those found in lecithotrophic propagules) are susceptible to UV damage 

(Blount 2004) and require antioxidant protection such as pigments. In contrast, 

planktotrophic eggs are generally pale or translucent; while some have colour upon their 

initial release (e.g. Ophiocoma spp. from Panama and Australasia have red-coloured eggs; 

Maria Byrne pers. com. 2016), the colour is lost as development begins. Overall, despite 

the functional importance of pigments and the colour diversity present in the 

lecithotrophic eggs of some taxa (e.g. Mollusca, Echinodermata), the ecological relevance 

of egg colour variation in the marine environment remains surprisingly unexplored.  

Through my PhD work, I found a strong link between colour intensity (brightness) 

and development location (brooded vs. pelagic) among lecithotrophic echinoderms. 

Colour shade (red vs. green) seemed to relate to geographic location. Most of the work in 
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the field of egg colour to date has been conducted in terrestrial animals, and chiefly in 

birds.  

7.1.2. Swimming capacity 

Marine propagules have traditionally been considered passive particles with little 

to no control over their dispersal destiny (noted byMetaxas and Saunders 2009). However 

studies (at both large and small scales) have demonstrated that minute (sometimes as little 

as two-fold) changes in speed can have a significant impact on dispersal and settlement 

processes (Abelson and Denny 1997, Pizarro and Thomason 2008). Since most 

propagules are predicted to move autonomously at slower speeds than most ocean 

currents, variability in propagule swimming presumably has the greatest impact close to 

the benthos in the viscous sublayer of the boundary layer (mm above the benthos; Gross 

et al. 1992, Wildish 2009). Yet, intriguingly, early life stages and positively buoyant 

propagules confined to the pelagic environment have maintained swimming abilities.  

Most studies to date have focused on planktotrophic propagules since they are 

easy to maintain in the laboratory (Wray et al. 2004), are common globally and swim 

vertically as well as horizontally (McDonald 2012, Mileikovsky 1973, Pennington and 

Emlet 1986). Due to their large size and positive buoyancy, lecithotrophic propagules 

were thought to be weaker swimmers than planktotrophs (Emlet 1994). This constraint 

could have consequences for phyla that have a predominance of lecithotrophic species 

(e.g. ~68% of species in Echinodermata, Uthicke et al. 2009). However, I showed here 

that the absolute swimming speeds and consequent autonomous dispersal potential of 
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North Atlantic planktotrophic and lecithotrophic propagules was surprisingly similar. 

Differences only emerged when swimming speeds were calculated relative to body size. 

The planktotrophic propagules tended to travel further relative to their body length when 

compared to lecithotrophic propagules. This was the first study to date that compared in 

detail the swimming speed and swimming trajectories of co-occurring echinoderm 

propagules displaying different life-history strategies.  

7.1.3. Sensory behaviour 

Sensory behaviour evolved early in the animal tree of life (Jacobs et al. 2007). 

Pelagic larvae of the most basal marine phyla (Porifera, Cnidaria) have predictable and 

repeatable behavioural patterns in response to external stimuli (Leys et al. 2002, Mundy 

and Babcock 1998). Sensory responses can include: taxis relative to directional stimuli, 

and changes in activity level. Taxis can indicate preferred conditions and therefore is not 

only informative for ecological studies but also for optimizing aquaculture practices. 

Shifts in activity level such as variation in locomotory output and patterns can be reliably 

quantified and used as a proxy for the degree of organism’s response when exposed to a 

cue.  

It appears especially advantageous for pelagic propagules to be able to detect and 

respond to their external environment since specialized sensory cells and behaviours have 

been maintained from basal marine phyla like Porifera to more derived phyla such as 

Echinodermata and Chordata. This is particularly true for “universal” stimuli such as 

light, which undergoes natural depth-dependent gradients in the photic zone, and drives 
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cyclic processes in both adults and propagules. Previous studies of photosensitivity in 

phyla displaying multiple development modes (e.g. Mollusca, Annelida, Echinodermata) 

have been centered on planktotrophic species (for examples, see Barile et al. 1994, Jékely 

et al. 2008, McCarthy et al. 2002). To address this gap, I tested the sensitivity of co-

occurring echinoderm planktotrophic and lecithotrophic propagules to light. The 

lecithotrophic propagules generally displayed less net-tactic behaviour in response to light 

but still changed their locomotory output (speed and trajectory) in response to variable 

light colour. This was not totally surprising as lecithotrophic propagules in this group may 

have reduced nervous system development associated with their loss of feeding 

capabilities relative to other types of propagules (e.g. planktotrophs). However, the 

maintenance of some photosensitivity and swimming abilities in lecithotrophic 

propagules suggests that they are fundamental for survival during pelagic development.  

7.2. General Conclusions and Future Research 

7.2.1. Marine propagule morphology reflects development mode, geographic location 

and phylogeny 

Patterns of echinoderm egg colour intensity and diversity seen in Chapter 3 were 

detected among species with developmental and geographic differences. In the case of 

development mode differences, variation in egg colour intensity showed a clear 

relationship with development location and the degree of parental care. Pigments are 

expensive for mothers to produce, and if there is no need for UV protection, camouflage 

or signaling, a reduction in pigment deposition in eggs is a logical consequence (such as 
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in internally-brooded eggs). These patterns also likely apply to eggs that develop in 

capsules in other phyla, such as the pale cream eggs of the gastropod Buccinum 

scalariforme (Appendix 1). However, the driver(s) of egg colour variation was much less 

clear. Strong biogeographical patterns exist, but these cannot yet be explained by any 

clear environmental, genetic or physiological features. 

Basic knowledge of pigments exists for adult echinoderms, but little work has 

been done to identify the corresponding pigments in echinoderm eggs, or in other phyla 

that also possess egg-colour variation (e.g., Mollusca, Annelida, Cnidaria). Functional 

tests of pigment efficiency have also not been conducted, making it difficult to assess the 

adaptive value of certain pigments over others. Clusters of closely related species with 

very different colour pigments and geographic distributions provide an excellent 

framework to begin to fill some of these gaps. The sea cucumber genus Cucumaria could 

be a good place to start; it has representatives in both the Atlantic (e.g. C. frondosa, red 

eggs) and Pacific (e.g. C. frondosa japonica, C. miniata, green eggs) that exhibit similar 

adult shapes and propagule sizes. Pigment types could be compared among propagules 

and adults of this genus while limiting the potential confounding factor of phylogenetic 

diversity. A thorough study of variation in egg colour within species would also be of 

interest.  
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7.2.2. Swimming capacity and patterns are more closely dependent on phylogenetic and 

ontogenetic traits than on larval nutritional mode 

Marine propagules possess incredible morphological diversity, which is 

particularly prominent among different nutritional modes; planktotrophic propagules are 

small and more or less transparent whereas lecithotrophic propagules are larger and 

yolky. On the one hand, planktotrophic and lecithotrophic echinoderm propagules swam 

more similar than previously thought. On the other hand, phylogenetic and ontogenic 

differences significantly modulated swimming capacity. Relative to strong local mixing 

and currents, the swimming speeds reported here for all propagules would be almost 

negligible, raising several critical questions including: why have swimming abilities been 

maintained in marine propagules and are they only effective under low-flow conditions, 

such as in the benthic boundary layer or extremely protected coastal areas? If so, why 

would buoyant propagules and early stages (embryos) that dwell near the surface retain 

any swimming capacities?  

There is often a disconnect between what is observed in the laboratory versus 

what can be tested in field. Even for well-studied species such as oysters, mussels and sea 

urchins, science is only beginning to develop the tools and understanding necessary to 

bridge the gap between small and large scale data. Processes such as dispersal, 

connectivity, settlement and recruitment are expected to be directly affected by changing 

ocean temperature and chemistry (Byrne and Przeslawski 2013). To improve predictions 

and models, the study of life histories in the ocean cannot be restricted to only one scale. 

Therefore, studies at the scale of the propagule and at the scale of oceans will be equally 
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critical. Since even the most basic understanding of lecithotrophic propagules in the 

context of changing oceans is limited, special attention will be required to include 

representatives with this type of development in future studies. 

7.2.3. Sensory behaviour is prevalent among marine propagules but infrequently studied 

All planktotrophic and lecithotrophic echinoderm propagules tested here showed 

some degree of sensitivity to light intensity and colour. Swimming behaviours were also 

affected by increased water temperature. The ability to detect and respond to sensory 

stimuli such as light, chemicals, gravity, temperature and pressure is a feature of early 

marine animals, and may still be fundamental to the dispersion and settlement of modern 

marine propagules.  

Despite the importance of sensory behaviour to critical biological processes in the 

marine environment, work to date has focused primarily on planktotrophic species. 

Lecithotrophic species warrant further investigation, especially in taxonomic groups 

containing both planktotrophic and lecithotrophic representatives. Sensory behaviour data 

generated from such studies can be utilized for several key applications in the fields of 

aquaculture, ecotoxicology and climate change (see Chapter 2). While survival data can 

be used as an indication of the severity of exposure to a toxicant or environmental change, 

the information provided is limited since it reflects only one time-point. Alternatively, an 

organism’s behaviour may be adversely affected by exposure that can result in reduced 

fitness or death over the long term. Baseline data of swimming behaviours under ambient 

conditions (like those generated here) are therefore critical for facilitating comparisons 
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under other sets of conditions including predicted climate change scenarios. The 

integrated response(s) of propagules to a hierarchy of stimuli also needs to be further 

explored as different combinations of cues are likely involved in guiding propagules 

throughout the development process from egg to juvenile.  

7.3. Limitations and Recommendations 

Lecithotrophic propagules are as important as planktotrophic propagules, 

especially in phyla like Echinodermata where they comprise the majority of extant 

species (~68%, Uthicke et al. 2009). I have shown here that preconceptions regarding the 

locomotory constraints of lecithotrophic propagules need to be re-evaluated since they 

appear to swim just as fast as planktotrophs. Future studies should explore these patterns 

in other regions and other taxa with mixed development modes such as Mollusca and 

Annelida.  

The many phyla with mixed development modes (planktotrophy and 

lecithotrophy) and species that produce multiple propagule types (poecilogony) represent 

an untapped resource for comparative studies in the field of larval ecology (Knott and 

McHugh 2012). Poecilogonous species are particularly interesting, since questions of 

behaviour and development can be directly attributed to nutritional mode differences 

among different propagule types, rather than to phylogenetic differences. Comparative 

work on propagule behaviour has already begun in two poecilogonous species: the 

annelid Capitella sp. (Butman et al. 1988) and the sea slug Alderia willowi (Krug et al. 

2012). However, there is no echinoderm equivalent with poecilogony that has been 



197 

 

examined in such a context. The deep-water sea star Henricia lisa produces both pelagic 

lecithotrophic propagules and externally brooded propagules (Mercier and Hamel 2008). 

These two types of propagules have two different colours (cream and dark yellow), but 

still develop similarly (Mercier and Hamel 2008). It would be interesting to compare 

locomotory capacity and behaviour between these two types of propagules, since the 

brooded propagules can swim freely when removed from underneath the body of the 

mother, just like their pelagic counterparts (pers. obs. 2014). Future studies of this type 

could also be used to compare species from different habitats (deep sea versus shallows), 

and test whether local environmental conditions (e.g. light and pressure) affect the 

swimming capacity and behaviour of developing propagules differently. The snail genus 

Buccinum could also be useful for comparisons of deep versus shallow, as congeneric 

species can be found at a wide range of depths with similar modes of reproduction (see 

Appendix 1 for a description of a deep-sea representative).  

With the possible exception of corals, there is a shortage of lecithotrophic 

representatives in the larval ecology literature (especially marked for echinoderms), 

which could be due to several reasons. Firstly, lecithotrophic propagules are more 

difficult to maintain in the laboratory under standard culturing protocols, which involve 

raising propagules in closed, or semi-closed seawater systems under set incubation 

temperatures. Due to the large (and often buoyant) nature of lecithotrophic propagules, 

culture densities need to be lower than for their planktotrophic counterparts, and the risks 

of propagules getting stuck to culture walls or to each other during development are much 

higher among lecithotrophs (pers. obs. 2014). Lecithotrophy is also common in temperate 
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and polar regions (Marshall et al. 2012), which means that adults and propagules grow 

very slowly relative to tropical species. The long generation times in cold-water species 

make long-term studies a challenge, and are a limitation to reproductive studies in the 

context of changing oceans. Work involving the intersection of maternal effects, 

propagule behaviour and changing ocean chemistry in cold-water species is critical for 

the future, but is logistically complex relative to tropical species. Finally, there are fewer 

commercial lecithotrophs so less attention has been paid to them overall. Taken together, 

these limitations suggest that although studies on lecithotrophic species are important, 

more work needs to be done to improve the way researchers work with them and consider 

their value in the global ocean community. 
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Appendices 

Appendix 1 The deep sea neogastropod Buccinum scalariforme: 

Reproduction, development, and growth 

A version of this manuscript was published in the journal Deep-Sea Research Part 1 in 

January 2017 (Vol. 119, page 24). 

A.1.1. Abstract 

Specimens of the neogastropod Buccinum scalariforme (60-70 mm shell height) 

collected between 700 and 1450 m depth along the continental slope of eastern Canada 

were kept for 4 years in mesocosm settings. Their mating, spawning and development 

were assessed, thereby generating the first complete life cycle account of a deep-sea 

gastropod. Egg laying occurred in March and September, with a total of 9 egg masses laid 

in 2013 and 2015, coinciding with periods of maximum deposition of particulate organic 

matter (phytodetritus). Oviposition lasted 2-3 days and the female protected the egg mass 

for ~3 more days until it had hardened. Typically, egg masses contained 50-75 egg 

capsules, each measuring 5-8 mm in diameter. A capsule contained between 100-150 

spherical eggs (300-500 µm) of which ≤ 50 developed into embryos. Potential fecundity 

calculated from the entire egg mass at spawning was between 1500-2250 propagules; it 

drastically decreased over ~4-5 months of development to an effective fecundity of 30-50 

juveniles emerging from the mass (0-2 juveniles per capsule). Development went through 

early embryonic stages in ~15 days and reached the trocophore in 15-21 days, followed 

by intracapsular veliger larva (480 µm) and intracapsular pediveliger (~1000 µm) after 
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~90 days. Completion of development relied on oophagy and adelphophagy. The 

juveniles hatched at a shell height of 1-2 mm and consumed the capsule membrane. Over 

2.5 years, they reached a maximum size of ~8-10 mm shell height at an average of 9.8 µm 

day-1. Estimations indicate that B. scalariforme could require between 20 and 50 years to 

reach maximum adult size. Large gastropods like B. scalariforme are among the most 

abundant motile benthic invertebrates of the bathyal zone of eastern Canada. Knowledge 

of their reproductive biology constitutes a first step in assessing their vulnerability and 

resilience to ever growing anthropogenic pressures, including fisheries, and oil/gas 

exploration and exploitation.  



204 

 

A.1.2. Introduction 

The superfamily Buccinoidea is the most geographically widespread and 

ecologically diverse clade within the Neogastropoda (Harasewych and Kantor, 2004). 

These predatory and scavenging molluscs have radiated since the Early Cretaceous to 

occupy a breadth of benthic marine habitats, from tropical to polar regions and from 

intertidal to hadal depths (Clarke, 1962; Tracey et al., 1993). In the shallow coastal waters 

of eastern Canada, neogastropods form the vast majority of the large, active mollusc 

species, including members of the genera Colus, Neptunea, Beringius, Plicifusus, 

Volutopsius, and Buccinum (Brunel et al., 1998). Neogastropods remain the most 

abundant large mollusc species collected on sandy and muddy substrates in deep waters, 

especially in bathyal regions between 500-1500 m depth (MacDonald et al., 2010; Rowe 

et al., 1982). Despite the abundance of neogastropods in several regions of the deep sea, 

key features of their biology and reproductive strategies remain poorly studied.  

It has been suggested that breeding occurs year-round in the abyssal gastropod 

Benthonella tenella in the Northwest Atlantic (Rex et al., 1979). Similar reproductive 

patterns were suspected to characterize the neogastropod Colus jeffreysianus and the 

trochid Calliotropis ottoi from the Northeast Atlantic. Gametogenesis appears to be a 

continuous process with oocytes in all stages found in the ovaries year round (Colman 

and Tyler, 1988a; Colman et al., 1986a). Olabarria and Ramirez-Llodra (2004) indicated 

that the shallow-water gastropods Amphissa acutecostata and Gymnobela subaraneosa 

from the Northeast Atlantic exhibited a quasi-continuous production of oocytes, 

suggesting release of a small number of oocytes all year long. Colman et al. (1986b) 
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studied the larval shell morphology of several species of deep-sea neogastropods from the 

Northeast Atlantic to distinguish feeding and non-feeding development. Similar studies 

were conducted by Bouchet and Waren (1979) on bathyal and abyssal gastropods. 

Gustafson et al. (1991) analyzed the contents of gastropod capsules collected from 

hydrothermal vent fields and Gustafson and Lutz (1994) reviewed the life-history traits of 

molluscs from chemosynthetic environments. The review by Gage and Tyler (1991) 

indicated that planktotrophic development in gastropod snails became more prevalent 

with depth, from 25% of species at depths <1 km to 50% at depths >4 km. However, data 

on developmental patterns that would help understand the ecology, evolution, and 

distribution of deep-water gastropods were said to be scarce (Bouchet and Warén, 1994); 

a statement that still stands today. 

Unlike the limited number of publications dedicated to deep-sea gastropods, 

literature on the reproductive biology of shallow-water gastropods, and Buccinidae in 

particular, has been gathering since the early 1900s (e.g. Gendron, 1992; Ilano et al., 

2004; Kideys et al., 1993; Lamy, 1928; Martel et al., 1986a; 1986b; Portmann, 1925, 

1930; Smith and Thatje, 2013). Neogastropods undergo a period of intracapsular 

development, after which propagules either hatch as free-swimming larvae or as crawling 

juveniles (Fretter and Graham, 1994; Miloslavich and Dufresne, 1994; Pechenik, 1979; 

Rivest, 1983). Forms of intracapsular food sources include nurse eggs (Gallardo and 

Garrido, 1987; Smith and Thatje, 2013) to be consumed by one or more larvae 

(Penchasziadeh, 1976; Smith and Thatje, 2013), yolk-filled oocytes (generally larger than 

800 µm) (Borzone, 1995) and/or provision of nutrients in the intracapsular fluid 
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(Miloslavich, 1996; Moran, 1999; Ojeda and Chaparro, 2004). Oogenesis, copulation and 

egg laying were documented by Staiger (1951) and Martel et al. (1986a) in B. undatum 

and by Ito (1978) in B. kinukatsugi and B. miyauchii. Miloslavich and Dufresne (1994) 

described the development of B. cyaneum from eastern Canada, whereas Ilano et al. 

(2003) examined the reproductive cycle, and size at sexual maturity of Buccinum 

isaotakii. Finally, Ilano et al. (2004) described copulation, development and fecundity in 

B. isaotakii from Japan.  

Buccinum scalariforme Moller 1842 is currently recognized to occur from subtidal 

to bathyal depths in west Greenland, Iceland, the Arctic, eastern and western Canada, as 

well as Maine and Alaska (USA) (Gofas, 2004). To our knowledge, nothing is known 

about its biology. The present study explored the reproductive habits, including egg 

laying, development and growth, of B. scalariforme collected at bathyal depths off 

eastern Canada, from slope habitats that are under growing pressures from the fishing and 

petroleum industries.  

A.1.3. Material and Methods 

A.1.3.1. Collection and maintenance  

A variety of marine invertebrates were collected as by-catch during multispecies 

research surveys conducted by Fisheries and Oceans Canada (DFO) on the CCGS Teleost 

in Fall 2011 and 2013 off Newfoundland, eastern Canada (48o52'N: 45o51'W) between 

700 and 1450 m depth. Collection of deep-sea species in the fall and early winter ensures 

that bottom temperature in the bathyal zone roughly matches surface temperature (~1-6 

°C). Surveys followed a stratified random sampling design with a Campellen 1800 trawl 
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towed for 15 minutes on ~1.4 km of seafloor (gear opened and closed at depth). The 

density of Buccinum scalariforme was estimated from the trawls in which they were 

present (n=37) and for three depth ranges: 700-900 m, >900-1100 and >1100 m. All 

individuals collected were counted and measured. Some specimens were kept alive (n=12 

in 2011 and n=37 in 2013) aboard the ship in 2000 L tanks supplied with running 

seawater pumped from the ocean, equivalent to ~75 water changes per day. Individuals 

from all depths adapted well to captive conditions.  

The live gastropods (60-80 mm maximum shell height measured along the central 

axis) were held at the Ocean Sciences Centre (Memorial University) in flow-through 

tanks (350-800 L) for continuous monitoring. A minimum of 10 individuals were 

maintained together in each tank. All tanks were darkened and supplied with running 

unfiltered seawater at a rate ~50 L h-1. They were filled with a thick layer of soft sediment 

(12-15 cm), boulders (~10 cm in diameter) and a few pebbles (<2 cm diameter). An in-

line chilling unit (Universal Marine Industries, 5 hp) was used to keep the running 

seawater suitably cold during warmer months, from July to October (<7oC). Overall, the 

laboratory conditions were set to mimic those found in the native habitat of B. 

scalariforme as closely as possible. The mesocosms in which B. scalarifome were kept 

also hosted numerous species collected simultaneously, i.e. the sea anemones Hormatia 

spp., Urticina sp. and Bolecera sp., the solitary cup coral Flabellum alabastrum, several 

sea stars (Henricia lisa, Ceramaster granularis, Hippasteria phrygiana, Leptychaster, 

Poroniomorpha spp.), basket stars, gastropods (Stephanasterias albula, Boreotrophon 
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clathratus, Neptunea spp., Colus spp, Apporhais sp., Beringius spp. and other Buccinum) 

as well as polychaetes and small bivalves.  

The temperature in the tanks was recorded with a temperature-light logger HOBO 

Pendant (UA-002-64), and was consistent with seasonal fluctuations in this area of the 

Canadian coast at depths down to 600–800 m (0-5℃; DFO, 2009). The annual primary 

productivity (data from DFO Station 27) and load of suspended matter (monthly rate of 

detrital matter deposition) was obtained from concurrent and previous studies conducted 

in the same laboratory (Hamel et al., 2010; Mercier et al., 2011), and was consistent with 

observations during the study.  

A.1.3.2 Behaviour and development  

Monitoring of gastropods (behaviour and social interactions) occurred at regular 

intervals, generally 2 or 3 times a week (sometimes more often when more activities were 

noted). Individuals were scored either as pairing, mating, laying eggs or guarding their 

egg masses. Survival rates of adults over the whole study were noted.  

The duration of egg laying, the time spent close to the egg mass after laying, the 

number and types of interactions with congeners and other species present in the tanks 

were also described. The size of the spawning individuals and of their egg masses, as well 

as the number of capsules per mass were recorded. I use the term egg mass here to 

describe the entire cluster of egg capsules (individual pouches filled with developing 

propagules) held together by a proteinaceous membrane. Predatory events on egg masses 

were scored when a predator remained static over the mass, and/or when its proboscis 

was inserted in the mass (gastropods) and/or its stomach was everted (sea stars). Predators 
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where thereafter moved to a distant part of the mesocosm (1-2 m away), to preserve the 

egg mass. Recurrent attempts at predation (by the same individual) were also recorded.  

Measurements of whole egg masses were done underwater (they were never 

removed from the holding tank). Groups of 5 capsules from each monitored egg mass 

were sampled at regular intervals, opened and examined under a microscope to take 

photos and measurements. For each of these capsules, the total number and development 

stage of all propagules were recorded and their Feret diameter or length (n=2-20 ind. per 

life stage) noted. The proportion of nurse cells and non-developing embryos was also 

established. The potential fecundity, i.e. the number of propagules at the onset of the 

development, was established from 3 capsules per mass, and the effective fecundity, i.e. 

the number of juveniles emerging from the egg mass, was documented from 3 egg 

masses.  

Photographs and measurements were taken under a Nikon SMZ1500 

stereomicroscope attached to a Nikon DXM1200F digital camera using the imaging 

software Simple PCI (v. 6.0), and with a Leica M205A stereomicroscope using the Leica 

Application Suite X (LASX) software.  

A.1.3.3. Feeding 

The diet of adults (60-80 mm shell height) and juveniles (free living; 1-8 mm shell 

height) was established by offering various potential prey on an opportunistic basis (when 

available in the laboratory and from periodic deep-sea samplings). Assessments of prey 

acceptance, with minimal disturbance, were made every two days. Positive feeding was 

scored if the proboscis was inserted into the prey or a prey fragment was being brought to 
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the mouth or if the food item disappeared (presumably eaten by the gastropods). Small 

pieces of mussel (Mytilus edulis) tissue and urchin gonads were used as food. 

A.1.3.4. Growth 

Size measurements were collected from the juveniles over 30 months, based on 

maximum shell height along the vertical axis, and used to estimate time necessary to 

reach adult size, which was determined to be 60-80 mm shell height, based on specimens 

collected for this study (n = 27). As growth to the adult size could not be monitored, 

estimates of the age at full size were made using curve fitting over data obtained for the 

first 2.5 years, as per Hirst and Forster (2013).  

A.1.4. Results and Discussion 

The reproductive biology and life cycle of the deep-sea neogastropod Buccinum 

scalariforme closely followed the general patterns described in shallow-water congeners. 

Feeding habits, egg laying and development stages were generally conserved. The main 

differences included lower effective fecundity per capsule and per egg mass and a much 

slower growth rate under laboratory conditions than in other Buccinum species. 

Moreover, findings gathered here provide the first evidence of seasonal reproduction in a 

deep-sea gastropod.  

Buccinum scalariforme occurred in trawls conducted over soft bottoms (muddy 

and/or sandy, sometimes mixed with scattered boulders) between 700 and 1450 m depth 

along the continental slope off Northeast Newfoundland (eastern Canada). The species 

had already been reported from eastern Canada (Brunel et al., 1998), and is commonly 

collected at bathyal depths during DFO surveys (unpublished data). Density estimates of 
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B. scalariforme were maximal between 900-1100 m (0.12 ± 0.09 individuals m-2, n=16 

trawls). Only 3 individuals were collected >1100 m (n=7 trawls), whereas between 0.04 

and 0.09 individuals m-2 were recorded from 700-900 m (n=25 trawls). However, these 

densities likely represent an underestimation, as the gear and mesh used were not 

designed to collect benthic invertebrates. In the mesocosms, B. scalariforme typically 

occurred on the surface of the muddy substrate and sometimes buried almost completely 

in it, with only the siphon visible. Some specimens were recorded on hard substrata 

(including the vertical walls of the tanks), especially during the egg-laying season (see 

below). These field and laboratory observations suggest that B. scalariforme requires 

mixed substrata of mud/sand and scattered hard surfaces (e.g. boulders) to complete its 

life cycle.  

Food items, including mussel tissues, urchin gonads and dead shrimps were 

readily accepted by adults of B. scalariforme in the mesocosms. Gut content analysis was 

performed by cracking the shell to remove the intact soft body; the stomach was located 

and slit open with a scalpel. The contents were flushed with a jet of ethanol using a 

pipette and analyzed under the microscope. Examination of stomach contents indicated 

that adults also ingest particulate organic matter (POM) as well as polychaete worms 

(probably burried in the substrate). Juveniles (1-8 mm shell height) were observed to feed 

on both mussel and urchin tissues. These findings suggest that B. scalariforme is a 

detritivore and opportunistic scavenger, similar to other buccinid species reported by 

Smith and Thatje (2013).  
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Copulation was never directly observed during the monitoring periods and egg 

laying occurred up to a year post collection, indicating that either copulation was not 

noticed or sperm storage occurred from copulation at depth before collection. Delay 

between copulation and egg laying in neogastropods is known to be between 2 and 4 

months in Nucella lamellosa (Stickle, 1975) and 1 month in B. isaotakii (Ilano et al., 

2004), suggesting that it is common for sperm to be stored for several months in 

gastropods. Individuals of B. scalariforme always laid egg masses on vertical surfaces 

and did so individually (Fig 1a), not displaying the gregarious egg-laying behaviour 

reported in shallow-water species like B. undatum (Smith and Thatje, 2013). Three 

different females were confirmed to have laid 3 of the 7 egg masses released between 

March 2014 and March 2015 (see below for egg-laying timing). The remaining egg 

masses could have been released by the same, or different females (not confirmed). In B. 

scalariforme, each egg-laying bout lasted 2-3 days, after which the female guarded the 

mass for another ~3 more days before leaving it, which is shorter than the 9-11 days 

mentioned by Smith and Thatje (2013) for the shallow-water B. undatum. Egg masses of 

B. scalariforme ranged from 40-60 mm wide and 20-30 mm thick and were mostly 

spherical in shape. The freshly laid capsules were soft, and it took 2-3 days for the mass 

to harden. At first capsules contents looked whitish with space between propagules (Fig 

1b) compared to older masses in which content appeared yellow and visibly packed (Fig 

1c). Older capsules (several weeks old; with embryos in the trocophore stage) contained 

well-defined nurse cells of various shapes that created a compact mass appearance (Fig 

2). The number of egg capsules per egg mass varied between 50-75, slightly less than the 
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100 capsules of B. cyaneum (Miloslavich and Dufresne, 1994) and 80-150 capsules of B. 

undatum (Smith and Thatje, 2013). Each capsule measured 5-8 mm in diameter and were 

plano-convex in shape with the flat side toward the substrate (Figure 1a). Each individual 

capsule overlapped 2 or 3 previously laid capsules. Overall, the egg capsules contained 

between 100-150 entities (including nurse eggs), again less than reports of 300-1000 for 

B. cyaneum from eastern Canada (Miloslavich and Dufresne, 1994) and of ~1000 for B. 

undatum (Fretter and Graham, 1984; Smith and Thatje, 2013; Valentinsson, 2002). Here, 

between 0 and 2 fully developed B. scalariforme juveniles emerged from each capsule, 

and total effective fecundity per mass/female was 30-50 juveniles. The relative effective 

fecundity of B. scalariforme was lower than the 10 crawling juveniles per capsule 

reported in the shallow-water B. cyaneum by Miloslavich and Dufresne (1994), but 

similar to the number observed in the deep-sea Colus jeffreysianus collected at 2200 m, 

whereby only one juvenile emerged per capsule (Colman and Tyler, 1988b). Overall, 

between 0.6 and 2% of the eggs developed into juveniles in B. scalariforme, which is 

similar to other buccinids for which the percentage of developing eggs varies from 0.2 to 

2% (Ilano et al., 2004; Martel et al., 1986a; Miloslavich and Dufresne, 1994; Portmann, 

1925; Smith and Thatje, 2013; Valentinsson, 2002). Low effective fecundity might be 

common in deep-sea neogastropods, due to limited food resources. 

Notably, completion of development in B. scalariforme was determined to partly 

rely on adelphophagy (consumption of sibling embryos). Juveniles near hatching were 

seen to consume siblings in the same capsule and, sometimes, hatched juveniles fed on 

other capsules and their unhatched juveniles (i.e. fecundity of some capsules was 
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therefore zero). Moreover, empty broken shells found in several of the capsules examined 

were interpreted as further evidence of adelphophagy, which may be common in this 

species. Adelphophagy was also suggested to occur in B. undatum by Fretter and Graham 

(1984), although this conclusion was debated (Smith and Thatje, 2013), despite being 

common in other gastropods such as Crucibilum quiriquinae (Veliz et al., 2001), 

Crepidula coquimbensis (Brante et al., 2009) and Trophon geversianus (Cumplido et al., 

2011).  

Two predators, a sea star and a gastropod, were attracted by the newly laid egg 

masses of B. scalariforme in the mesocosms. On two occasions, predation on the egg 

masses was confirmed by removing the sea star Stephanasterias albula to reveal its 

everted stomach (Fig 1d). This species was repetitively seen to attempt consumption of 

egg masses when they were still soft, despite the presence of the guarding mother, after 

which time no more predation attempts were recorded. Females of B. scalariforme were 

seen to use their foot in an attempt to repel sea star predators and to cover newly-laid egg 

masses completely. This suggests that the female remains close to the egg mass during 

the most vulnerable developmental period. On the other hand, the neogastropod 

Boreotrophon clathratus was observed to prey on the egg masses (proboscis introduced in 

capsules) over the whole development period (Fig 1e). When confirmed, the predation 

was interrupted to preserve the egg mass. In general, capsules found along the margin of 

the mass contained approximately 50% fewer eggs compared to capsules in the middle of 

the mass, and they also had a rougher surface texture. As described in B. cyaneum 
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(Miloslavich and Dufresne, 1994), the less fecund capsules might be used as a defence 

mechanism against predation by opportunistic species.  

Some years ago, Scheltema (1994) stipulated that there was no evidence for any 

periodicity in reproduction related to seasonal fluctuations in productivity or other 

parameters among deep-sea molluscs. However, in the present study, B. scalariforme laid 

egg capsules twice a year (spring and fall) apparently following a seasonal pattern. More 

precisely, three egg masses were laid in March 2014, two in September 2014 and another 

two in March 2015. Egg laying has been reported in fall and early winter in the shallow-

water B. cyaneum from eastern Canada (Miloslavich and Dufresne, 1994), as well as in B. 

undatum from the Irish Sea (Kideys et al., 1993), whereas mating reportedly occurs in 

spring in B. undatum from the Northwest Atlantic (Himmelman and Hamel, 1993). The 

deep-sea neogastropod Colus jeffreysianus from 2200 m in the Northeast Atlantic was 

suggested to exhibit a continuous gametogenesis and no post-spawning individuals were 

ever found (Colman et al., 1986a). Similar partial evidence was gathered for the deep-sea 

gastropods Calliotropis ottoi (Colman and Tyler, 1988a), Benthonella tenella (Rex et al., 

1979), and Amphissa acutecostata and Gymnobela subaraneosa (both from the Northeast 

Atlantic) (Olabarria and Ramirez-Llodra, 2004).  

The fact that egg laying in B. scalariforme occurred twice a year points to a factor 

that varies on a biannual basis. In the spring and fall periods when B. scalariforme laid 

their eggs, the temperature was 1°C and 6.5 °C, respectively, suggesting that this factor is 

not the proximate spawning cue. Similarly, various temperatures were noted during egg-

laying in B. undatum; Martel et al. (1986a) mentioned 2-3°C in the Northwest Atlantic 
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and Hancock (1967) and Kideys et al. (1993) mentioned 9°C in the Northeast Atlantic. 

The seasonal input of deposited organic matter, in the form of down-fluxes of 

phytoplankton and zooplankton blooms from the surface layers, might provide a cue for 

oogenesis in B. scalariforme. The amount of deposited material in the tanks increased 

drastically following the spring and fall blooms of surface primary production, from <1 

mm month-1 m in most months to 5.5 mm month-1 and 4 mm month-1 in spring and fall, 

respectively. The diet of adult B. scalariforme included deposited particulate matter and 

infaunal invertebrates mixed with the layer of fresh sediment (e.g. polychaete worms). 

This seasonal deposition could thus provide energy to fuel the final stages of oogenesis 

(vitellogenesis) and might explain why spawning was confined to these two periods. 

Deposited matter was suspected to enhance gametogenesis and be used as spawning cue 

in other-deep sea species from the same region (Mercier et al., 2011; Sun et al., 2011). 

Fecundity metrics measured in B. scalariforme were low compared to other buccinids 

(shallow-water species), supporting the idea that reproductive output is spread over two 

breeding seasons, instead of one major annual spawning. Although it could not be 

confirmed, each spawning bout might only have involved partial gamete release.  

The greyish oocytes of B. scalariforme were ~300 µm in diameter (Table 1; Fig 

3a) with a surface showing a mosaic of yolky spheres (Fig 3a insert). Cleavage was 

holoblastic, spiral and unequal (Fig 3b), creating large yolky macromeres at the vegetal 

pole and numerous small micromeres at the animal pole (Fig 3b). Embryos were seen at 

different stages of development up to day 21 post laying (Fig 3d, e, f). Very few 

trocophores were detected inside different capsules in the interval between days 15 and 
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21 (Fig 3g). As the number of egg masses was limited, the precise number of days over 

which propagules remain in the trocophore stage was thus not established with any 

precision; it may be because this stage is of short duration, as reported by Smith and 

Thatje (2013). The trocophore developed into a veliger after about 45 days. Nurse cells 

were clearly visible inside the digestive tract of late veligers (Fig 3h, i; 4a, b). After 90 

days, intracapsular pediveligers were the dominant stage and also displayed nurse cells in 

their digestive tracts (Fig 4c, d). Nurse cells seem to be ingested whole at the veliger 

stage, as their shape could be seen through the transparent body wall (Fig 3h, i; 4a), as 

mentioned by Smith and Thatje (2013) in B. undatum and by Rivest (1983) in Searlesia 

dira. However, in B. scalariforme the nurse cells became less recognizable, except by the 

color of the digestive tract, in more advanced stages including pediveliger (Fig 4c, d) 

suggesting their more rapid digestion and/or damage during ingestion. Hatching occurred 

after ~4-5 months (Fig 4e, f, g), a delay similar to the 3-5 months reported in the shallow 

cold-water neogastropod B. undatum studied in the Irish Sea (Kideys et al., 1993; Smith 

and Thatje, 2013), but shorter than the 9 months reported in B. cyaneum from eastern 

Canada and the 6-7 months documented in B. isaotakii from Japan (Ilano et al., 2004) 

suggesting that deep-sea species do not always require more time than shallow-water 

species for development. The hatching process in B. scalariforme took up to 10 days for a 

single egg mass, illustrating possible asynchrony in development among propagules or 

egg capsules, as observed in B. undatum (Smith and Thatje, 2013). Hatching juveniles 

had transparent yellowish shells, distinct head, foot, tentacles and eyes, as well as an 

operculum, and they measured 1.5 mm shell height (Fig 4e, f). Hatching was described to 
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occur through radular scraping of the capsule in B. undatum (Smith and Thatje, 2013), 

which might be similar in B. scalariforme, but could not be confirmed. After hatching, the 

juveniles consumed the capsule from which they emerged.  

The average growth rate of B. scalariforme was around 9.8 µm d-1 from the eggs 

to the largest juveniles recorded (~9 mm), which is slow compared to neogastropods from 

tropical shallow waters, like Babylonia areolata at ~100 µm day-1 (Chaitanawisuti and 

Kritsanapuntu, 1997) and Babylonia formosae habei at ~49 µm day-1 (Chen et al, 2005). 

Heude-Berthelin et al. (2011) mentioned that growth parameters may differ as a function 

of water temperature or food availability, which could be enough to explain the slower 

growth recorded in a deep-sea species like B. scalariforme. Juveniles of B. scalariforme 

emerged from the egg mass with two whorls (after ~120 days of development) and 

developed a third whorl after 180 days (Fig 4h). They finally developed a fourth whorl 

when they reached 6-9 mm shell height after 2.5 years (Fig 5a, b, c). Adult individuals 

had seven whorls and measured between 60-80 mm shell height. Based on data for the 

first 2.5 years of growth, between 20 and 50 years would be required to reach the 

maximum shell height, using fits of linear, power and quadratic curves (Table 2, Fig 6). It 

cannot be ruled out that growth would significantly increase in the fourth or subsequent 

years or that laboratory conditions constrained growth rates in some way, although deep-

sea species are notoriously slow growing (e.g. Hamel et al., 2010, Mercier et al., 2015). 

Values found here are slower than reported for shallow-water B. undatum (held at 

temperatures between 10-15°C) that may reach up to 33 mm shell length in 14 months 

under laboratory conditions (Nasution and Roberts, 2005). The colder water temperature 
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at which B. scalariforme was kept in the present study (consistent with its native habitat) 

may explain, at least in part, its slower growth rate relative to shallow-water gastropods.  

Long-term monitoring of B. scalariforme in mesocosm settings showed that it still 

reproduced successfully after a change of habitat, i.e. from native deep-sea conditions to 

laboratory conditions (atmospheric pressure). While predation pressure on freshly laid 

egg masses seemed to be high, this particular threat is likely lower in its unconstrained 

native habitat. Relatively low fecundity and slow growth in B. scalariforme may increase 

vulnerability to anthropogenic pressures and climate-induced fluctuations that are 

anticipated to affect deep-sea ecosystems in the near future. However, the present study 

testifies to the general adaptability of gastropods with encapsulated development, which 

have been very successful at colonizing a diversity of terrestrial, freshwater and marine 

habitats.  
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A.1.6. Tables and Figures 

Table 1. Development of Buccinum scalariforme at a temperature of 5-6°C and a salinity 

of 35 psu (n=3-20 individuals per life stage). Values in italics are unconfirmed. 

Life Stage 
Diameter / Shell Length 
Mean (SD) (m) 

Age  
(days) 

Corresponding 
Image 

Egg 320 (73) 1 Fig. 3a 
Embryos 418 (82) 2-21 Fig. 3b, d-f 
Trocophore 345 (10) 15-21 Fig. 3g 
Veliger 481 (66) 21-45 Fig. 3h, i 
Late Veliger 587 (59) ~45a Fig. 4a 
Pediveliger 1073 (31) ~90 Fig. 4c, d 
Hatched Juveniles 1420 (184) ~120 Fig. 4e, f 
1-year Juveniles 3240 (733) ~365 - 
2.5-year Juveniles 9000 (879) ~915 Fig. 5a-c 

a From the late veliger onward, sampling intervals were too long to estimate the duration 

of a stage.  
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Table 2. Estimated age at adult size in Buccinum scalariforme based on different maximum sizes and curve fitting models. 

Maximum 
size (mm) 

 Age determined by curve models (days)  Age determined by curve models (years) 
 Linear Power Quadratic  Linear Power Quadratic 

60  6287.36 15583.91 6506.88  17.2 42.7 17.8 
70  7338.86 18181.23 7597.42  20.1 49.8 20.8 
80  8390.36 20778.55 8687.96  23.0 56.9 23.8 
Mean   7338.86 18181.23 7597.42  20.1 49.8 20.8 
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Fig 1. Spawning behaviour in B. scalariforme (A) Adult depositing egg mass. (B) Newly-

laid egg mass with visible propagules in the capsule. (C) 2-week old egg mass with 

propagules accumulating at the bottom of the capsule still guarded by the female. (D) 

Deep-water sea star Stephanasterias albula with everted stomach over the capsules. (E) 

The neogastropod Boreotrophon clathratus feeding on egg mass. Scale bar represents 3 

cm in A, 250 m in B-C, 2 cm in D, 1 cm in E.  
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Fig 2. Diversity of nurse cell shapes found in egg-mass capsules of B. scalariforme 

concurrent with embryonic and early larval stages (trocophores). Scale bar represents 150 

m.  
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Fig 3. Early development of B. scalariforme (for kinetic see Table 1). (A) Fertilized egg, 

insert shows lipid droplets on the egg surface. (B) Early embryos (C) showing the 

micromeres. (D-F) Late embryos. (G) Trocophore. (H-I) Veliger. Labels ap represent the 

animal pole, mm represent the micromeres, nc represent the nurse cells. Scale bar 

represents 85 m in A-B, 30 m in C, 95 m in D, 100 m in E-G, 110 m in H-I.  



232 

 

 



233 

 

Fig 4. Late development of B. scalariforme (for kinetic see Table 1). (A-B) Late veliger 

filled with nurse cells. (C-D) Pediveliger with early shell clearly visible. (E-G) Newly-

hatched juvenile with 2 whorls. (H) Free-living juvenile with 3 whorls. Labels e 

represents the eyes, ft the foot, s the siphon, op the operculum, te the tentacles and nc the 

nurse cells. Scale bar represents 250 m in A, 350 m in B-D, 500 m in E-F, 600 m in 

G, 850 m in H.  
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Fig 5. Juvenile of B. scalariforme at 2.5 years of age measuring around 8 mm shell height 

and having 4 whorls. Adults colour and features of the shell are visible; brown / red 

colouration patterns, inter-whorl ridges are well formed, sensory organs (eyes and 

tentacles) are well formed. (A) Ventral view and (B) dorsal view. (C) Close-up of the 
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eye-stalks, siphon and operculum. Labels e represent the eyes, te the tentacles, ft the foot, 

op the operculum, s the siphon. Scale bar represents 30 mm in A-B, 10 mm in C.  
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Fig 6. Growth of B. scalariforme from fertilization until 2.5-year-old juvenile, with curve 

fits showing (A) linear, (B) power and (C) quadratic equations. Size (mm) corresponds to 

maximum shell height (n=3-20 measurements per life stage). 
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Appendix 2 Dispersal Model Dataset for Chapter 2 

Dispersal model papers 2013-2015 obtained from Web of Science. The presence or absence of biological variables (behaviour, 

vertical migration, swimming, settlement preference) used in hypothetical or species-specific models are indicated.  

Year Author(s) Animals Behaviour Vertical migration Swimming 
Settlement 
preference 

2013 Salama et al. sea lice No No No No 

2013 Neo et al. giant clams Yes No No No 

2013 Simons et al. none No No No No 

2013 Robins et al. none Yes No Yes Yes 

2013 Paris et al. corals Yes Yes No No 

2013 Kough et al. spiny lobster Yes Yes No No 

2013 Coscia et al. cockles Yes Yes No No 

2013 Paris et al. none Yes Yes Yes No 

2013 Bidegain et al. clams Yes Yes Yes Yes 

2014 Wood et al. corals No No No No 
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2014 Myksvoll et al. cod No No No No 

2014 Hoyer et al. bivalve No No No No 

2014 Soria et al. none No No No No 

2014 Staaterman & Paris fish Yes No Yes No 

2014 Crandall et al. blue sea star Yes No Yes No 

2014 Burgess et al. none Yes No No Yes 

2014 Cuif et al. reef fish Yes No No Yes 

2014 Wolankski & Kingsford coral reef fish Yes No Yes Yes 

2014 Adams et al. none Yes Yes No No 

2014 Puckett et al. oyster Yes Yes No No 

2015 Fenberg et al. many No No No No 

2015 Nickols et al. none No No No No 

2015 Wright et al. many No No No No 

2015 Qian et al. coral No No No No 

2015 Pfaff et al. mix No No No No 

2015 Teske et al. gastropod No No No No 
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 2015 Laurel et al. fish Yes No No Yes 

2015 Barbut et al. fish Yes Yes No No 

2015 Phelps et al. fish Yes Yes No No 

2015 Hilario et al. many Yes Yes Yes No 
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Appendix 3 Dataset and Subset Tables for Chapter 3 

Appendix 3A. Full dataset of lecithotrophic echinoderms used in Chapter 3 

Full dataset of lecithotrophic echinoderms used in the study (N = 126). Data were collated for taxonomic grouping, embryonic 

development site, egg size, egg colour, egg colour intensity, egg buoyancy, adult size and geographic distribution (ocean 

basin). 

Class1 Order2 Species 
Dev 
Site3 

Egg 
Size 
(m) 

Egg 
Colour 

Egg 
Colour  
Intensity4 

Egg  
Buoyancy5 

Adult 
Size 
(cm)6 

Ocean Basin7 Sources 

As For Anasterias antarctica EB 1810 yellow bright ? 40 Ant (Gil et al. 2011) 

As For Diplasterias brandti EB 2870 brown pale ? 110 Ant Image Search 

As For Diplasterias brucei EB 3400 orange pale - 250 Ant 
(McClintock and 
Baker 1997a, Pearse 
et al. 1991) 

As For 
Leptasterias 
(Hexasterias) 
alaskensis 

EB ? orange bright ? 160 Pac Image Search 

As For 
Leptasterias 
(Hexasterias) 
hexactis 

EB 800 orange bright - 50 Pac Image Search 

As For 
Leptasterias 
(Hexasterias) polaris 

EB 850 orange pale - 300 Pac / Atl 
(Hamel and Mercier 
1995) 
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As For 
Leptasterias aequalis 
(hexactis) 

EB 900 yellow pale ? 60 Pac 
(Bingham et al. 
2004) 

As For 
Leptasterias 
groenlandica 

EB 900 brown pale ? 60 Pac / Atl NMNM Collections 

As For Leptasterias tenera EB ? brown pale ? 160 Atl 
(Hendler and Franz 
1982) 

As For 
Smilasterias 
multipara 

IB 1000 red regular - 40 Pac 
(Komatsu et al. 
2006) 

As Pax 
Astropecten 
gisselbrechti 

P 350 yellow pale - 80 Pac 
(Komatsu and 
Nojima 1985) 

As Pax 
Astropecten 
latespinosus 

P 300 brown pale - 80 Pac 
(Komatsu 1975, 
Nojima 1982) 

As Pax Ctenopleura fisheri P 465 brown pale 0 100 Pac (Komatsu 1982) 

As Pax Psilaster charcoti P 750 red regular ? 300 Ant 
(McClintock and 
Baker 1997a) 

As Pax Trophodiscus sp. EB ? orange regular ? ? Pac Image Search 

As Pax Trophodiscus sp. EB ? red bright ? ? Pac Image Search 

As Pax Trophodiscus sp. EB ? yellow pale ? ? Pac Image Search 
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As Spi 
Echinaster (Othilia) 
echinophorus 

P 1150 grey bright + 70 Atl (Atwood 1973) 

As Spi 
Echinaster (Othilia) 
echinophorus 

P 800 orange regular - 700 Atl (Atwood 1973) 

As Spi 
Echinaster 
brasiliensis 

P 1000 brown bright ? 80 Atl 
(Nobre and Campos 
2004) 

As Spi 
Echinaster 
graminicola 

P 850 orange regular ? 80 Atl 
(Campbell and 
Turner 1984) 

As Spi Echinaster luzonicus P 1000 red regular + 150 Pac 
Charonia Webpage - 
Cached, gbri.org, 
accessed July 2015 

As Spi Henricia lisa EB 1100 grey pale - 100 Atl 
(Mercier and Hamel 
2008) 

As Spi Henricia lisa P 1100 yellow regular - 100 Atl 
(Mercier and Hamel 
2008) 

As Spi 
Henricia 
sanguinolenta 

EB 1000 orange bright - 150 Pac / Atl 
(Mercier and Hamel 
2008) 

As Val Aquilonastra burtoni P 500 green pale - 30 Ind 
(Achituv and Sher 
1991, James 1972) 

As Val Asterina gibbosa EB 400 yellow bright - 60 Atl 
Image Search, 
(Haesaerts et al. 
2006) 

As Val Asterina phylactica EB 550 orange regular - 15 Atl 
Image Search, 
(Strathmann et al. 
1984) 
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As Val Crossaster papposus P 550 red bright + 300 Pac / Atl (Gemmill 1920) 

As Val Cryptasterina hystera IB 440 green regular + 12 Pac 
(Byrne 2005, 
Dartnall et al. 2003) 

As Val 
Cryptasterina 
pacifica 

P 400 orange regular + 20 Pac 
(Dartnall et al. 
2003) 

As Val 
Cryptasterina 
pentagona 

P 413 orange regular + 24 Pac (Byrne 2006) 

As Val Fromia elegans P 2000 red regular + 120 Ind / Pac 
Charonia Webpage 
– Cached, accessed 
July 2015 

As Val Fromia monilis P 1000 red bright + 100 Ind 
Image Search, 
(Emlet 1994) 

As Val 
Hippasteria 
phrygiana 

P 450 orange bright + 400 Pac / Atl (Baillon et al. 2011) 

As Val Iconaster longimanus P 1000 orange regular + 200 Ind / Pac (Lane and Hu 1994) 

As Val Mediaster aequalis P 1000 orange bright + 200 Pac 
(Birkeland et al. 
1971) 

As Val 
Meridiastra calcar 
(Patiriella) 

P 415 green regular - 60 Pac 
(Byrne and 
Anderson 1994) 

As Val 
Meridiastra gunnii 
(Patiriella) 

P 430 green regular + 40 Pac 
(Byrne and 
Anderson 1994) 
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As Val Meridiastra occidens P 400 green regular + 30 Pac (Byrne 2006) 

As Val Meridiastra oriens P 400 green regular - 20 Pac (Byrne 2006) 

As Val 
Nardoa 
novaecaledoniae 

P 1000 orange regular + 110 Pac 
Charonia Webpage 
– Cached, accessed 
July 2015 

As Val Nardoa tuberculata P 1000 orange regular + 280 Pac 
Charonia Webpage 
– Cached, accessed 
July 2015 

As Val Ophidiaster granifer P 600 orange regular + 100 Pac 
(Yamaguchi and 
Lucas 1984) 

As Val Ophidiaster granifer P 600 orange regular - 100 Pac 
(Yamaguchi and 
Lucas 1984) 

As Val 
Parvulastra exigua 
(Patiriella) 

EB 390 orange regular - 15 Ind / Pac 
(Byrne and 
Anderson 1994) 

As Val 
Parvulastra vivipara 
(Patiriella) 

IB 150 orange regular ? 30 Ant (Prestedge 1998) 

As Val Perknaster fuscus P 1200 red regular ? 300 Ant 
(McClintock and 
Baker 1997a, 
McClintock and 
Baker 1997b) 

As Val Solaster endeca P 800 orange bright + 300 Pac / Atl (Gemmill 1912) 

As Val Solaster stimpsoni P 1000 green pale + 400 Pac (Strathmann 1987) 
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As Val Tosia neossia EB 700 orange regular ? 60 Ant 
Image Search, 
(Naughton and 
O'Hara 2009) 

As Vel Pteraster abyssorum IB ? yellow regular ? 80 Atl  

As Vel Pteraster militaris IB 1400 yellow regular ? 120 Pac / Atl 
(McClary and 
Mladenov 1990) 

As Vel Pteraster tesselatus P 1200 red bright + 150 Pac 
(McEdward and 
Coulter 1987) 

Cr Art 
Antedon 
mediterranea 

EB 200 yellow regular ? ? Atl 
(Barbaglio et al. 
2012) 

Cr Cor Dorometra sesokonis EB 200 yellow bright ? 30 Pac (Obuchi et al. 2010) 

Cr Iso Metacrinus rotundus P 350 yellow regular + 600 Pac (Nakano et al. 2005) 

Ec Cam 
Heliocidaris 
erythrogramma 

P 400 orange regular + 140 Ind / Ant 
(Williams and 
Anderson 1975, 
Wray 1996) 

Ec Cam 
Holopneustes 
purpurescens 

P 580 brown regular + 80 Pac (Morris 1995) 

Ec Cam Sterechinus sp. EB ? brown bright ? ? Ant Image Search 

Ec Cas Cassidulus mitis  370 yellow regular 0 25 Atl 
(Contins and 
Ventura 2011) 
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Ec Cid Cidaroidea EB ? red regular ? ? Ant Image Search 

Ec Cid 
Phyllacanthus 
imperialis 

P 510 yellow regular + 80 Ind / Pac (Olson et al. 1993) 

Ec Cid 
Phyllacanthus 
parvispinus 

P 700 grey pale + 100 Pac (Parks et al. 1989) 

Ec Cly Peronella japonica P 300 red pale - 60 Pac 
(Okazaki and Dan 
1954) 

Ec Ech Asthenosoma ijimai P 1200 orange regular + 130 Pac 
(Amemiya and 
Tsuchiya 1979) 

Ec Ech 
Phormosoma 
placenta 

P 1100 yellow regular + 120 Atl 
(Young and 
Cameron 1987) 

Ec Spa Abatus cavernosus EB 1400 yellow regular ? 40 Ant 
(Gil et al. 2009, 
Poulin and Feral 
1996) 

Ec Spa Abatus cordatus EB 1300 orange bright - 30 Ant 
(Magniez 1983, 
Schatt and Féral 
1996) 

Ec Spa Brisaster latifrons P 350 green regular ? 60 Pac (Strathmann 1979) 

Ho Apo Leptosynapta clarki IB 250 brown pale - 50 Pac 
(McEuen 1988, 
Sewell and Chia 
1994) 

Ho Den 
Athyonidium 
chilensis 

P 360 brown pale ? 150 Ant 
(Guisado et al. 
2012) 
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Ho Den 
Cucumaria fallax 
(pallida) 

P 500 brown pale + 120 Pac / Atl 
(Emlet 1994, 
McEuen 1988) 

Ho Den Cucumaria frondosa P 750 orange bright + 200 Atl 
(Hamel and Mercier 
1996) 

Ho Den 
Cucumaria frondosa 
japonica 

P 500 green regular + 300 Pac 
(Tyurin and 
Drozdov 2002) 

Ho Den Cucumaria lubrica EB 900 red regular - 50 Pac (Engstrom 1982) 

Ho Den Cucumaria miniata P 520 green bright + 250 Pac (McEuen 1988) 

Ho Den Cucumaria piperata P 530 green regular + 120 Pac (McEuen 1988) 

Ho Den 
Cucumaria 
pseudocurata 

EB 1000 grey bright - 30 Pac 
(McEuen 1988, 
Rutherford 1973) 

Ho Den Cucumariid sp. IB 800 brown pale ? 10 Pac (O’Loughlin 1991) 

Ho Den 
Echinopsolus 
charcoti 

IB 1800 yellow pale ? 60 Pac (O’Loughlin 2000) 

Ho Den 
Eupentacta 
chronhjelmi 
(quinquesemita) 

P 300 green regular - 60 Pac 
(Catalan and 
Yamamoto 1994) 

Ho Den 
Eupentacta 
fraudatrix 

P 340 green regular - 100 Pac (Kashenko 2000) 
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Ho Den 
Eupentacta 
quinquesemita 

P 400 green regular 0 100 Pac (McEuen 1988) 

Ho Den Neocnus sp. IB 600 yellow regular ? 4 Pac (O’Loughlin 1991) 

Ho Den 
Pentamera 
populifera 

P 370 green regular 0 30 Pac (McEuen 1988) 

Ho Den 
Pseudocnus 
(Pentactella) 
laevigata 

EB 1500 brown regular ? 30 Ant (O’Loughlin 2000) 

Ho Den 
Pseudocnus 
echinatus 

P 400 green regular - ? Ind 
(Emlet 1994, 
Ohshima 1921) 

Ho Den Pseudocnus lubricus EB 1050 yellow regular - 50 Pac 
(McEuen 1988, 
Rutherford 1973) 

Ho Den Psolidiella nigra EB 600 yellow pale ? 40 Pac (O’Loughlin 2000) 

Ho Den Psolidium bidiscum P 300 yellow regular ? 30 Pac (Lambert 1997) 

Ho Den Psolidium bullatum P 330 yellow bright 0 25 Pac 
(McEuen 1988, 
McEuen and Chia 
1991) 

Ho Den Psolus chitinoides P 625 red bright + 75 Pac 
(McEuen 1988, 
McEuen and Chia 
1991) 

Ho Den Psolus fabricii P 500 orange bright + 200 Pac / Atl (Hamel et al. 1993) 
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Ho Den Psolus phantapus P 450 red regular + 265 Atl (Baillon et al. 2011) 

Ho Den 
Squamocnus 
aureoruber 

IB ? brown pale ? 10 Pac Image Search 

Ho Den 
Stereoderma 
kirchsbergii 

P ? green regular - ? Pac (Ohshima 1921) 

Ho Den Trachythyone nina IB 1800 brown pale ? 14 Atl (Mercier et al. 2010) 

Ho Ela Penilidia desbarresi IB 150 brown pale ? 20 Atl (Gebruk et al. 2013) 

Ho Mol Molpadia intermedia P 270 red pale - 400 Pac 
(McEuen and Chia 
1985) 

Op Oph Amphioplus abditus P 150 grey bright - 50 Atl (Hendler 1977) 

Op Oph Amphiura carchara IB 450 yellow pale ? 80 Pac 
(Clark 1911, 
Hendler and Tran 
2001) 

Op Oph Amphiura squamata IB 880 red pale ? 5 Atl (Byrne 1991) 

Op Oph Clarkcoma pulchra P 290 yellow pale - 120 Pac (Falkner et al. 2015) 

Op Oph Ophiarthrum elegans P 380 green regular + 13 Pac (Falkner et al. 2006) 
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Op Oph Ophiarthrum pictum P 420 green regular ? 30 Pac 
(Hendler and Meyer 
1982), Pers. Com. 
Maria Byrne 

Op Oph 
Ophioderma 
brevispina* 

P 350 brown regular + 40 Atl 
(Hendler and 
Littman 1986, 
Hendler and Tyler 
1986) 

Op Oph 
Ophioderma 
brevispina* 

P 350 green regular + 40 Atl 
(Hendler and 
Littman 1986, 
Hendler and Tyler 
1986) 

Op Oph 
Ophioderma 
brevispina* 

P 350 yellow regular + 40 Atl (Grave 1916) 

Op Oph 
Ophioderma 
rubicunda 

P ? red regular ? 20 Atl 
(Hagman and Vize 
2003, Hendler and 
Littman 1986) 

Op Oph Ophiolepis elegans P 250 yellow regular ? 50 Atl (Stancyk 1973) 

Op Oph 
Ophiomastix 
annulosa 

P 430 green regular ? 150 Pac 
Pers. Com. Maria 
Byrne 

Op Oph 
Ophiomastix 
caryophyllata 

P 200 green regular ? 10 Pac 
Pers. Com. Maria 
Byrne 

Op Oph Ophiomastix elegans P 200 green regular ? 10 Pac 
Pers. Com. Maria 
Byrne 

Op Oph Ophiomastix janualis P 200 green regular ? 120 Pac 
Pers. Com. Maria 
Byrne 

Op Oph 
Ophiomastix 
marshallensis 

P 220 green regular ? ? Pac 
Pers. Com. Maria 
Byrne 
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Op Oph Ophiomastix mixta P 335 green regular ? 600 Pac 
Pers. Com. Maria 
Byrne 

Op Oph Ophiomastix venosa P 500 green regular + 20 Ind/Pac 
(Fourgon et al. 
2005) 

Op Oph Ophionereis olivacea IB 480 orange regular - 10 Atl (Byrne 1991) 

Op Oph Ophionereis schayeri P 240 brown pale - 150 Pac 
(Selvakumaraswamy 
and Byrne 2000) 

Op Oph Ophiopeza spinosa IB 300 yellow regular ? 70 Pac (Byrne et al. 2008) 

Op Oph 
Ophioplocus 
japonicus 

P 300 red regular ? 140 Pac 
(Clark 1911, 
Komatsu and 
Shosaku 1993) 

Op Oph Ophiothrix oerstedii P 400 brown pale - 100 Atl (Mladenov 1979) 

Op Oph Opiolepis paucispina IB 480 red pale - 20 Atl (Byrne 1989) 

Op Oph Sigsbeia conifera IB 800 red pale - 10 Atl (Byrne 1991) 

Op Phyr 
Gorgonocephalus 
caryi 

EB 220 orange pale ? 140 Pac (Patent 1970) 

1 As = Asteroidea, Cr = Crinoidea, Ec = Echinoidea, Ho = Holothuroidea, Op = Ophiuroidea 
2 Apo = Apodida, Cam = Camerodonta, Cid = Cidaroidea, Cly = Clypeasteroida, Den = Dendrochirotida. Ech = 
Echinothuroida, For = Forcipulatida, Iso = Isocrinida, Mol = Molpadida, Oph = Ophiurida, Pax = Paxillosida, Spa = 
Spatangoida, Spi = Spinulosida, Val = Valvatida, Vel = Velatida  
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3 P = pelagic lecithotrophic, EB = externally brooded, IB = internally brooded 
4 Refer to Table 1 for definitions of egg colour intensity 
5 Egg buoyancy reported in the literature was categorized based on a previous comprehensive review of echinoderm larvae 
(Emlet 1994). (-) = Negative buoyancy, (+) = Positive buoyancy, (0) = Neutral buoyancy, (?) = No data 
6 Adult body size is diameter for Asteroidea, Ophiuroidea and Echinoidea, and length in Holothuroidea and Crinoidea 
7 Ant = Antarctic, Atl = Atlantic, Ind = Indian, Pac = Pacific 
* Egg colour in Ophioderma brevispina is ambiguous due to conflicting records, it was considered brown for the purpose of 
analysis as this was the most common shade reported. 
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Appendix 3B. Subset of lecithotrophic echinoderms (all variables) 

Subset of lecithotrophic echinoderms used to test the hypothesis that egg colour is not randomly distributed among dataset 

variables (N = 87). Data are shown for embryonic development site, egg size, egg colour, egg colour intensity, adult size, class 

and geographic distribution (ocean basin). 

Class1 Species Development Site2 Egg Size Egg Colour Egg Intensity3 Adult Size4 Ocean Basin5 

e Abatus cavernosus external 1400 yellow regular 40 Ant 

e Abatus cordatus external 1300 orange bright 30 Ant 

e Amphiura carchara internal 450 yellow pale 80 Pac 

o Amphiura squamata internal 880 red pale 5 Atl 

a Anasterias antarctica external 1810 yellow bright 40 Ant 

a Asterina gibbosa external 400 yellow bright 60 Atl 

h Asthenosoma ijimai planktonic 1200 orange regular 130 Pac 

a Astropecten gisselbrechti planktonic 350 yellow pale 80 Pac 

a Astropecten latespinosus planktonic 300 brown pale 80 Pac 

h Athyonidium chilensis planktonic 360 brown pale 150 Ant 

e Cassidulus mitis planktonic 367 yellow regular 25 Atl 

o Clarkcoma pulchra planktonic 290 yellow pale 120 Pac 

a Cryptasterina hystera internal 440 yellow regular 24 Pac 
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a Cryptasterina pacifica planktonic 400 orange regular 20 Pac 

a Cryptasterina pentagona planktonic 413 orange regular 24 Pac 

a Ctenopleura fisheri planktonic 465 brown pale 100 Pac 

h Cucumaria frondosa japonica planktonic 500 green regular 300 Pac 

h Cucumaria miniata planktonic 520 green bright 250 Pac 

h Cucumaria piperata planktonic 530 green regular 120 Pac 

h Cucumariid sp. internal 800 brown pale 10 Pac 

a Diplasterias brandti external 2870 brown pale 110 Ant 

a Diplasterias brucei external 3400 orange pale 250 Ant 

a Echinaster brasiliensis planktonic 1000 brown bright 80 Atl 

a Echinaster graminicola planktonic 850 orange regular 80 Pac 

a Echinaster luzonicus planktonic 1000 red regular 150 Pac 

h Echinopsolus charcoti internal 1800 yellow pale 60 Ant 

h Eupentacta chronhjelmi planktonic 300 green regular 60 Pac 

h Eupentacta fraudatrix planktonic 340 green regular 100 Pac 

h Eupentacta quinquesemita planktonic 400 green regular 100 Pac 

o Gorgonocephalus eucnemis external 220 orange pale 140 Atl 

a Henricia lisa planktonic 1100 yellow regular 100 Atl 

a Henricia sanguinolenta external 1000 orange bright 150 Pac / Atl 
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e Holopneustes purpurescens planktonic 580 brown regular 80 Pac 

a Iconaster longimanus planktonic 1000 orange regular 200 Ind / Pac 

a Leptasterias aequalis external 900 yellow pale 60 Pac 

a Leptasterias hexactis external 800 orange bright 50 Pac 

a Leptasterias polaris external 850 orange pale 300 Pac / Atl 

h Leptosynapta clarki internal 250 brown pale 50 Pac 

a Mediaster aequalis planktonic 1000 orange bright 200 Pac 

a Meridiastra calcar (Patiriella) planktonic 415 green regular 60 Pac 

a Meridiastra gunnii (Patiriella) planktonic 430 green regular 40 Pac 

a Meridiastra occidens planktonic 400 green regular 30 Pac 

a Meridiastra oriens planktonic 400 green regular 20 Pac 

h Molpadia intermedia planktonic 270 red pale 400 Pac 

a Nardoa novaecaledoniae planktonic 1000 orange regular 110 Pac 

a Nardoa tuberculata planktonic 1000 orange regular 280 Pac 

h Neocnus sp. internal 600 yellow regular 5 Pac 

a Neosmilaster georgianus internal 2170 brown pale 70 Atl 

o Ophiarthrum elegans planktonic 384 green regular 13 Pac 

o Ophiarthrum pictum planktonic 419 green regular 30 Pac 

a Ophidiaster granifer planktonic 600 orange regular 100 Pac 
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a Ophidiaster granifer planktonic 600 orange regular 100 Pac 

o Ophioderma brevispina planktonic 350 brown regular 40 Atl 

o Ophioderma wahlbergii internal 250 yellow regular 30 Atl 

o Ophiolepis elegans planktonic 250 yellow regular 50 Atl 

o Ophiolepis paucispina internal 480 red pale 20 Atl 

o Ophiomastix annulosa planktonic 430 green regular 150 Pac 

o Ophiomastix caryophyllata planktonic 200 green regular 10 Pac 

o Ophiomastix elegans planktonic 200 green regular 10 Pac 

o Ophiomastix janualis planktonic 200 green regular 120 Pac 

o Ophiomastix mixta planktonic 335 green regular 600 Pac 

o Ophiomastix venosa planktonic 500 green regular 20 Ind / Pac 

o Ophionereis olivacea internal 400 orange regular 3 Atl 

o Ophionereis olivacea internal 480 orange regular 10 Atl 

o Ophionereis schayeri planktonic 240 brown pale 150 Pac 

o Ophiopeza spinosa internal 300 yellow regular 70 Pac 

o Ophiothrix oerstedii planktonic 400 brown pale 100 Atl 

a Parvulastra exigua (Patiriella) external 390 orange regular 15 Ind / Pac 

h Penilidia desbarresi internal 150 brown pale 20 Atl 

h Pentamera populifera planktonic 370 green regular 30 Pac 
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a Perknaster fuscus planktonic 1200 red regular 300 Ant 

e Phormosoma placenta planktonic 1100 yellow regular 120 Atl 

e Poriocidaris purpurata planktonic 1500 brown pale 30 Atl 

h Pseudocnus laevigata external 1500 brown regular 30 Ant 

h Pseudocnus lubrica external 1050 yellow regular 50 Pac 

a Psilaster charcoti planktonic 750 red regular 300 Ant 

h Psolidiella nigra external 600 yellow pale 40 Pac 

h Psolidium bidiscum planktonic 300 yellow regular 30 Pac 

h Psolidium bullatum planktonic 330 yellow bright 25 Pac 

h Psolus chitinoides planktonic 625 red bright 75 Pac 

h Psolus fabricii planktonic 500 orange bright 200 Pac / Atl 

a Pteraster tesselatus planktonic 1200 red bright 150 Pac 

o Sigsbeia conifera internal 800 red pale 10 Atl 

a Solaster endeca planktonic 800 orange bright 300 Pac / Atl 

a Solaster stimpsoni planktonic 1000 green pale 400 Pac 

a Tosia neossia external 700 orange regular 60 Ant 

h Trachythyone nina internal 1800 brown pale 14 Atl 
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1 a = Asteroidea, e = Echinoidea, c = Crinoidea, h = Holothuroidea and o = Ophiuroidea 

2 Planktonic = pelagic lecithotrophic, External = externally brooded, Internal = internally brooded 

3 Refer to Table 1 for definitions of egg colour intensity 

4 Adult body size is diameter for Asteroidea, Ophiuroidea and Echinoidea, and length in Holothuroidea and Crinoidea 

5 Ant = Antarctic, Atl = Atlantic, Ind = Indian, Pac = Pacific 
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Appendix 3C. Subset of lecithotrophic echinoderms (buoyancy focus) 

Subset of lecithotrophic echinoderms used to test whether egg buoyancy correlates with egg colour and development mode, 

independently of geographic location (N = 56). Data are shown for embryonic development site, egg size, egg colour, egg 

buoyancy, and adult size. 

Species Development Site1 Egg Size Egg Colour Buoyancy2 Adult Size3 

Abatus cordatus external 1300 orange - 30 

Aquilonastra burtoni planktonic 500 green - 30 

Asterina phylactica external 550 orange - 15 

Asthenosoma ijimai planktonic 1200 orange + 130 

Astropecten latespinosus planktonic 300 brown - 80 

Clarkcoma pulchra planktonic 290 yellow - 120 

Crossaster papposus planktonic 550 red + 300 

Cryptasterina hystera internal 440 yellow + 24 

Cryptasterina pacifica planktonic 400 orange + 20 

Cryptasterina pentagona planktonic 413 orange + 24 

Cucumaria frondosa planktonic 750 orange + 200 

Cucumaria frondosa japonica planktonic 500 green + 300 

Cucumaria miniata planktonic 520 green + 250 
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Cucumaria piperata planktonic 530 green + 120 

Diplasterias brucei external 3400 orange - 250 

Echinaster echinophorus planktonic 800 orange - 700 

Echinaster luzonicus planktonic 1000 red + 150 

Eupentacta chronhjelmi planktonic 300 green - 60 

Eupentacta fraudatrix planktonic 340 green - 100 

Fromia elegans planktonic 2000 red + 120 

Fromia ghardaqana planktonic 1000 red + 100 

Heliocidaris erythrogramma planktonic 400 orange + 140 

Henricia sanguinolenta external 1000 orange - 150 

Hippasteria phrygiana planktonic 450 orange + 400 

Holopneustes purpurescens planktonic 580 brown + 80 

Iconaster longimanus planktonic 1000 orange + 200 

Leptasterias hexactis external 800 orange - 50 

Leptasterias polaris external 850 orange - 300 

Mediaster aequalis planktonic 1000 orange + 200 

Meridiastra calcar (Patiriella) planktonic 415 green - 60 

Meridiastra gunnii (Patiriella) planktonic 430 green + 40 

Meridiastra occidens planktonic 400 green + 30 
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Meridiastra oriens planktonic 400 green - 20 

Metacrinus rotundus planktonic 350 yellow + 600 

Nardoa novaecaledoniae planktonic 1000 orange + 110 

Nardoa tuberculata planktonic 1000 orange + 280 

Ophiarthrum elegans planktonic 384 green + 13 

Ophidiaster granifer planktonic 600 orange - 100 

Ophidiaster granifer planktonic 600 orange + 100 

Ophioderma brevispina planktonic 350 green + 40 

Ophiolepis paucispina internal 480 red - 20 

Ophiomastix venosa planktonic 500 green + 20 

Ophionereis olivacea internal 480 orange - 10 

Ophionereis schayeri planktonic 240 brown - 150 

Ophiothrix oerstedii planktonic 400 brown - 100 

Parvulastra exigua (Patiriella) external 390 orange - 15 

Phormosoma placenta planktonic 1100 yellow + 120 

Phyllacanthus imperialis planktonic 510 yellow + 80 

Pseudocnus echinatus planktonic 400 green - 40 

Psolus chitinoides planktonic 625 red + 75 

Psolus fabricii planktonic 500 orange + 200 
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Psolus phantapus planktonic 450 red + 265 

Pteraster tesselatus planktonic 1200 red + 150 

Sigsbeia conifera internal 800 red - 10 

Solaster endeca planktonic 800 orange + 300 

Solaster stimpsoni planktonic 1000 green + 400 

1 Planktonic = pelagic lecithotrophic, External = externally brooded, Internal = internally brooded 

2 Egg buoyancy reported in the literature was categorized based on a previous comprehensive review of echinoderm larvae 

(Emlet 1994). (-) = Negative buoyancy, (+) = Positive buoyancy, (0) = Neutral buoyancy, (?) = No data 

3 Adult body size is diameter for Asteroidea, Ophiuroidea and Echinoidea, and length in Holothuroidea and Crinoidea 
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Appendix 3D. Subset of lecithotrophic echinoderms (phylogeny focus) 

Subset of lecithotrophic echinoderms used to test whether certain egg colours are phylogenetically linked in the four main 

extant classes (N = 103). Data are shown for taxonomic class, egg size, egg colour, and adult size. 

Class Species Egg Size Egg Colour Adult Size1 

Echinoidea Abatus cavernosus 1400 yellow 40 

Echinoidea Abatus cordatus 1300 orange 30 

Ophiuroidea Amphiura carchara 450 yellow 80 

Ophiuroidea Amphiura squamata 880 red 5 

Asteroidea Anasterias antarctica 1810 yellow 40 

Asteroidea Aquilonastra burtoni 500 green 30 

Asteroidea Asterina gibbosa 400 yellow 60 

Asteroidea Asterina phylactica 550 orange 15 

Echinoidea Asthenosoma ijimai 1200 orange 130 

Asteroidea Astropecten gisselbrechti 350 yellow 80 

Asteroidea Astropecten latespinosus 300 brown 80 

Holothuroidea Athyonidium chilensis 360 brown 150 

Echinoidea Cassidulus mitis 367 yellow 25 

Ophiuroidea Clarkcoma pulchra 290 yellow 120 
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Asteroidea Crossaster papposus 550 red 300 

Asteroidea Cryptasterina hystera 440 green 12 

Asteroidea Cryptasterina hystera 440 yellow 24 

Asteroidea Cryptasterina pacifica 400 orange 20 

Asteroidea Cryptasterina pentagona 413 orange 24 

Asteroidea Ctenopleura fisheri 465 brown 100 

Holothuroidea Cucumaria fallax (pallida) 500 brown 120 

Holothuroidea Cucumaria frondosa 750 orange 200 

Holothuroidea Cucumaria frondosa japonica 500 green 300 

Holothuroidea Cucumaria lubrica 900 red 50 

Holothuroidea Cucumaria miniata 520 green 250 

Holothuroidea Cucumaria piperata 530 green 120 

Asteroidea Diplasterias brandti 2870 brown 110 

Asteroidea Diplasterias brucei 3400 orange 250 

Asteroidea Echinaster brasiliensis 1000 brown 80 

Asteroidea Echinaster echinophorus 800 orange 700 

Asteroidea Echinaster graminicola 850 orange 80 

Asteroidea Echinaster luzonicus 1000 red 150 

Holothuroidea Echinopsolus charcoti 1800 yellow 60 
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Holothuroidea Eupentacta chronhjelmi 300 green 60 

Holothuroidea Eupentacta fraudatrix 340 green 100 

Holothuroidea Eupentacta quinquesemita 400 green 100 

Asteroidea Fromia elegans 2000 red 120 

Asteroidea Fromia ghardaqana 1000 red 100 

Ophiuroidea Gorgonocephalus eucnemis 220 orange 140 

Echinoidea Heliocidaris erythrogramma 400 orange 140 

Asteroidea Henricia lisa 1100 yellow 100 

Asteroidea Henricia sanguinolenta 1000 orange 150 

Asteroidea Hippasteria phrygiana 450 orange 400 

Echinoidea Holopneustes purpurescens 580 brown 80 

Asteroidea Iconaster longimanus 1000 orange 200 

Asteroidea Leptasterias aequalis 900 yellow 60 

Asteroidea Leptasterias groeanlandica 900 brown 60 

Asteroidea Leptasterias hexactis 800 orange 50 

Asteroidea Leptasterias polaris 850 orange 300 

Holothuroidea Leptosynapta clarki 250 brown 50 

Asteroidea Mediaster aequalis 1000 orange 200 

Asteroidea Meridiastra calcar (Patiriella) 415 green 60 
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Asteroidea Meridiastra gunnii (Patiriella) 430 green 40 

Asteroidea Meridiastra occidens 400 green 30 

Asteroidea Meridiastra oriens 400 green 20 

Holothuroidea Molpadia intermedia 270 red 400 

Asteroidea Nardoa novaecaledoniae 1000 orange 110 

Asteroidea Nardoa tuberculata 1000 orange 280 

Asteroidea Neosmilaster georgianus 2170 brown 70 

Ophiuroidea Ophiarthrum elegans 384 green 13 

Ophiuroidea Ophiarthrum pictum 419 green 30 

Asteroidea Ophidiaster granifer 600 orange 100 

Asteroidea Ophidiaster granifer 600 orange 100 

Ophiuroidea Ophioderma brevispina 350 brown 40 

Ophiuroidea Ophioderma wahlbergii 250 yellow 30 

Ophiuroidea Ophiolepis elegans 250 yellow 50 

Ophiuroidea Ophiolepis paucispina 480 red 20 

Ophiuroidea Ophiomastix annulosa 430 green 150 

Ophiuroidea Ophiomastix caryophyllata 200 green 10 

Ophiuroidea Ophiomastix elegans 200 green 10 

Ophiuroidea Ophiomastix janualis 200 green 120 
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Ophiuroidea Ophiomastix mixta 335 green 600 

Ophiuroidea Ophiomastix venosa 500 green 20 

Ophiuroidea Ophionereis olivacea 400 orange 3 

Ophiuroidea Ophionereis olivacea 480 orange 10 

Ophiuroidea Ophionereis schayeri 240 brown 150 

Ophiuroidea Ophiopeza spinosa 300 yellow 70 

Ophiuroidea Ophiothrix oerstedii 400 brown 100 

Asteroidea Parvulastra exigua (Patiriella) 390 orange 15 

Asteroidea Parvulastra vivipara (Patiriella) 150 orange 30 

Holothuroidea Penilidia desbarresi 150 brown 20 

Holothuroidea Pentamera populifera 370 green 30 

Asteroidea Perknaster fuscus 1200 red 300 

Echinoidea Phormosoma placenta 1100 yellow 120 

Echinoidea Phyllacanthus imperialis 510 yellow 80 

Holothuroidea Pseudocnus echinatus 400 green 40 

Holothuroidea Pseudocnus laevigata 1500 brown 30 

Holothuroidea Pseudocnus lubrica 1050 yellow 50 

Asteroidea Psilaster charcoti 750 red 300 

Holothuroidea Psolidiella nigra 600 yellow 40 
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Holothuroidea Psolidium bidiscum 300 yellow 30 

Holothuroidea Psolidium bullatum 330 yellow 25 

Holothuroidea Psolus chitinoides 625 red 75 

Asteroidea Psolus fabricii 500 orange 200 

Holothuroidea Psolus phantapus 450 red 265 

Asteroidea Pteraster militaris 1400 yellow 120 

Asteroidea Pteraster tesselatus 1200 red 150 

Ophiuroidea Sigsbeia conifera 800 red 10 

Asteroidea Smilasterias multipara 1000 red 40 

Asteroidea Solaster endeca 800 orange 300 

Asteroidea Solaster stimpsoni 1000 green 400 

Asteroidea Tosia neossia 700 orange 60 

Holothuroidea Trachythyone nina 1800 brown 14 

1 Adult body size is diameter for Asteroidea, Ophiuroidea and Echinoidea, and length in Holothuroidea and Crinoidea 
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Appendix 3E. Subset of lecithotrophic echinoderms (FAMD all factors) 

Clusters from FAMD analysis in Fig. 3.5 - Testing all factors 

Cluster Factor  P-Value 

I 

Egg Colour Green <0.001 

Egg Intensity Standard <0.001 

Egg Size < Mean = 0.025 

Adult Size > Mean = 0.017 

Phylogeny   

Ocean Basin Pacific <0.001 

Dev Site Planktonic <0.001 

II 

Egg Colour Yellow = 0.002 

 Brown <0.001 

Egg Intensity Pale <0.001 

Egg Size   

Adult Size < Mean = 0.003 

Phylogeny Ophiuroidea = 0.02 

Ocean Basin Atlantic <0.001 

Dev Site Internal <0.001 
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III 

Egg Colour Orange <0.001 

Egg Intensity Bright <0.001 

Egg Size > Mean <0.001 

Adult Size   

Phylogeny Asteroidea = 0.003 

Ocean Basin Global <0.001 

 Antarctic <0.001 

Dev Site External <0.001 
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Appendix 3F. Subset of lecithotrophic echinoderms (FAMD geographic location) 

Clusters from FAMD analysis in Fig. 3.6 - Testing geographic location. 

Cluster Factor  P-Value 

I 

Egg Colour Green <0.001 

Egg Intensity Standard <0.001 

Egg Size < Mean = 0.009 

Adult Size   

Ocean Basin Pacific <0.001 

Dev Site Planktonic <0.001 

II 

Egg Colour Yellow = 0.001 

 Brown <0.001 

Egg Intensity Pale <0.001 

Egg Size   

Adult Size < Mean = 0.004 

Ocean Basin Atlantic <0.001 

Dev Site Internal <0.001 

III 
Egg Colour Orange <0.001 

Egg Intensity Bright <0.001 
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Egg Size   

Adult Size > Mean = 0.02 

Ocean Basin Global <0.001 

Dev Site   

IV 

Egg Colour   

Egg Intensity   

Egg Size > Mean <0.001 

Adult Size   

Ocean Basin Antarctic <0.001 

Dev Site External <0.001 
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Appendix 3G. Subset of lecithotrophic echinoderms (FAMD buoyancy) 

Clusters from FAMD analysis in Fig. 3.7 - Testing egg buoyancy. 

Cluster Factor  P-Value 

I 

Egg Colour Orange = 0.0011 

Development Site External <0.001 

Buoyancy Negative <0.001 

Egg Size > Mean = 0.005 

Adult Size   

II 

Egg Colour Red <0.001 

 Orange <0.001 

Development Site Planktonic = 0.016 

Buoyancy Positive = 0.023 

Egg Size   

Adult Size   
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Appendix 3H. Subset of lecithotrophic echinoderms (FAMD phylogeny) 

Clusters from FAMD analysis in Fig. 3.9 - Testing phylogenetic class, independently of development mode. 

Cluster Factor  P-Value 

I 

Egg Colour Green <0.001 

Class Ophiuroidea <0.001 

Egg Size < Mean <0.001 

Adult Size   

II 

Egg Colour Green <0.001 

Class Holothuroidea <0.001 

Egg Size   

Adult Size   

III 

Egg Colour Brown <0.001 

Class Holothuroidea = 0.036 

Egg Size   

Adult Size   

IV 

Egg Colour Yellow <0.001 

Class Echinoidea <0.001 

Egg Size   
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Adult Size   

VI 

Egg Colour Orange <0.001 

Class Asteroidea <0.001 

Egg Size > Mean = 0.002 

Adult Size   
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Appendix 3I. General key to lecithotrophic echinoderm eggs / early embryos. 

 

1a. Propagules are greenish and yolky__________________ Planktonic (Pacific / Indian) 

1b. Propagules are reddish / yellowish and yolky________________________________2 

2a. Propagules are positively buoyant________________________________ Planktonic 

2b. Propagules are neutral or negatively buoyant _______________________________ 3 

3a. Large adult size (> 10 cm) and / or small egg size (< 1 mm)____________ Planktonic 

3b. Small adult size (< 10 cm) and /or large egg size (> 1 mm)_____________________4 

4a. Propagules are brightly coloured or match adult colour __________ External Brooder 

4b. Propagules are pale in colour _______________________________ Internal Brooder 
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Appendix 4 Summary Tables of Statistical Results for Chapter 5 

Appendix 4A. ANOVA summary table 

Summary table of ANOVA testing whether ontogenetic stage, light colour (white, red, 

blue) and phototaxis (positive, negative, neutral) affected mean absolute swimming speed 

among focal echinoderm propagules 

Species Factor df  F Stat P value 

A. rubens 

Ontogeny 3 115.7 <0.001 
Colour 2 15.5 <0.001 
Taxis 2 0.08 0.78 
O x C 6 18.1 <0.001 
O x T 6 0.03 0.99 
C x T 4 0.07 0.93 
O x C x T 6 0.06 0.99 
Ontogeny1 3 104.7 <0.001 
Colour 2 15.2 <0.001 

S. droebachiensis 

Ontogeny 3 15.0 <0.001 
Colour 2 7.2 0.008 
Taxis 2 0.01 0.93 
O x C 6 4.1 <0.001 
O x T 6 0.4 0.74 
C x T 4 0.8 0.47 
O x C x T 6 1.5 0.20 
Ontogeny 3 11.4 <0.001 
Colour 2 4.6 0.03 

C. papposus 

Ontogeny 3 37.7 <0.001 
Colour 2 10.3 <0.001 
Taxis 2 0.2 0.67 
O x C 6 6.4 <0.001 
O x T 6 0.3 0.84 
C x T 4 0.2 0.83 
O x C x T 6 1.5 0.20 
Ontogeny 3 22.5 <0.001 
Colour 2 9.1 <0.001 

C. frondosa 

Ontogeny 3 3.7 0.028 
Colour 2 5.8 0.001 
Taxis 2 1.6 0.21 
O x C 6 0.8 0.58 
O x T 6 1.7 0.19 
C x T 4 0.4 0.72 
O x C x T 6 0.6 0.71 

1 In the case of significant interaction terms, each factor was analyzed independently  
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Appendix 4B. ANOVA summary table 

Summary table of ANOVA testing whether phototaxis direction affected trajectory 

straightness among echinoderm propagules under different light gradients (white, red, blue) 

Species Factor df  F Stat P value 

A. rubens 

Ontogeny 3 10.4 <0.001 
Colour 2 12.1 <0.001 
Taxis 2 4.8 0.031 
O x C 6 1.7 0.09 
O x T 6 2.0 0.11 
C x T 4 0.2 0.83 
All 6 0.8 0.56 

S. droebachiensis 

Ontogeny 3 1.7 0.18 
Colour 2 1.0 0.39 
Taxis 2 32.0 <0.001 
O x C 6 0.5 0.79 
O x T 6 0.7 0.58 
C x T 4 1.2 0.30 
All 6 1.1 0.4 

C. papposus 

Ontogeny 3 2.8 0.045 
Colour 2 5.7 0.005 
Taxis 2 34.2 <0.001 
O x C 6 6.4 <0.001 
O x T 6 3.1 0.031 
C x T 4 6.5 0.002 
All 6 1.2 0.33 
Ontogeny1 3 2.6 0.047 
Colour 2 4.5 0.01 
Taxis 2 28.3 <0.001 

C. frondosa 

Ontogeny 3 1.6 0.20 
Colour 2 7.5 <0.001 
Taxis 2 0.8 0.37 
O x C 6 0.2 0.95 
O x T 6 0.9 0.47 
C x T 4 0.5 0.61 
All 6 1.9 0.08 

1 In the case of significant interaction terms, each factor was analyzed independently 
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Appendix 4C. ANOVA summary table 

Summary table of ANOVA testing the effect of light colour (uniform intensity) on mean 

absolute swimming speed of echinoderm propagules 

Species Factor df  F Stat P value 

A. rubens 

Ontogeny 3 125.7 <0.001 
Colour 2 16.8 <0.001 
O x C 6 19.6 <0.001 
Ontogeny1 3 63.7 <0.001 
Colour 2 3.74 0.026 

S. droebachiensis 

Ontogeny 3 6.0 <0.001 
Colour 2 4.0 0.020 
O x C 6 4.8 <0.001 
Ontogeny 3 4.9 0.003 
Colour 2 3.2 0.043 

C. papposus 

Ontogeny 3 44.6 <0.001 
Colour 2 19.2 <0.001 
O x C 6 6.0 <0.001 
Ontogeny 3 28.3 <0.001 
Colour 2 8.0 <0.001 

C. frondosa 
Ontogeny 3 6.5 <0.001 
Colour 2 4.3 <0.001 
O x C 6 1.1 0.38 

1 In the case of significant interaction terms, each factor was analyzed independently 
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Appendix 4D. ANOVA summary table 

Summary table of ANOVA testing the effect of light colour (uniform intensity) on mean 

path straightness of echinoderm propagules  

Species Factor df  F Stat P value 

A. rubens 
Ontogeny 3 6.3 <0.001 
Colour 2 21.5 <0.001 
O x C 6 1.9 0.08 

S. droebachiensis 
Ontogeny 3 2.2 0.10 
Colour 2 0.77 0.47 

C. papposus 

Ontogeny 3 3.1 0.032 
Colour 2 4.1 0.021 
O x C 6 3.2 0.006 
Ontogeny 3 2.8 0.046 
Colour 2 3.9 0.028 

C. frondosa 
Ontogeny 3 1.4 0.25 
Colour 2 18.3 <0.001 
O x C 6 0.5 0.84 

1 In the case of significant interaction terms, each factor was analyzed independently 
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Appendix 5 Dataset for Chapter 6 

Summary table of swimming speeds across two nutritional modes and five representative marine phyla 

Phylum Class Species Nutrition 
Life 
stage  

Size 
(m) 

Speed 
(mm/s) 

Annelida Polychaeta Polydora ciliata P Stage3 920 0.4 

Annelida Polychaeta Scoloplos armiger L Meta 400 0.5 

Annelida Polychaeta Heteromastus filiformis P Tro 100 0.5 

Annelida Polychaeta Polydora ciliata P Stage1 220 0.5 

Annelida Polychaeta Polydora ciliata P Stage2 560 0.5 

Annelida Polychaeta Heteromastus filiformis P Meta 340 0.6 

Annelida Polychaeta Pholoe minuta P Meta 360 0.8 

Annelida Polychaeta Scoloplos armiger L Tro 200 0.8 

Annelida Polychaeta Nereis virens P Meta 230 0.8 

Annelida Polychaeta Harmothoe imbricata P Tro 200 1.1 

Annelida Polychaeta Anaitides mucosa P Tro  1.2 



292 

 

Annelida Polychaeta Eteome longa P Tro  1.2 

Annelida Polychaeta Nephtys ciliata P Meta  1.3 

Annelida Polychaeta Eulalia viridis P Tro 350 1.5 

Annelida Polychaeta Pectinaria koreni P Tro  1.7 

Annelida Polychaeta Anaitides maculata P Tro  1.8 

Annelida Polychaeta Nephtys ciliata P Tro  2.5 

Annelida Polychaeta Pectinaria koreni P Meta  2.5 

Annelida Polychaeta Capitella capitata P L.Tro 200 3.1 

Annelida Polychaeta Chone infundibulariformis P Tro  3.3 

Annelida Polychaeta Capitella capitata P Tro 130 5.2 

Bryozoa  Membranipora sp. L   1.9 

Bryozoa  Bugula sp. L   8 

Cnidaria Hydrozoa Thecaphora sp. L Plan 600 0.42 

Cnidaria Anthozoa Lophelia pertusa L Plan 150 0.5 

Cnidaria Anthozoa Oculina varicosa L Plan 160 0.5 
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Cnidaria Hydrozoa Aurelia aurita L Plan  0.5 

Cnidaria Anthozoa Montastraea faveolata L Plan 500 1.1 

Cnidaria Hydrozoa Aurelia aurita L Plan  1.5 

Cnidaria Anthozoa Corallium rubrum L Plan  1.5 

Cnidaria Anthozoa Oculina varicosa L Plan 160 3 

Cnidaria Anthozoa Agaricia tenuifolia L Plan  3.6 

Cnidaria Anthozoa Porites astreoides L Plan 760 4.3 

Cnidaria  Fungia actiniformis L Plan  5 

Cnidaria  Caryophyllia smithi L Plan 140 30 

Echinodermata Asteroidea Asterias rubens P Blas 140 0.04 

Echinodermata Echinoidea Hemicentrotus pulcherrimus P Plut 250 0.14 

Echinodermata Asteroidea Crossaster papposus L Blas 600 0.15 

Echinodermata Asteroidea Asterias rubens P Blas 140 0.04 

Echinodermata Echinoidea Hemicentrotus pulcherrimus P Plut 250 0.14 

Echinodermata Asteroidea Crossaster papposus L Blas 600 0.15 
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Echinodermata Holothuroidea Cucumaria frondosa L Pen 700 0.15 

Echinodermata Holothuroidea Cucumaria frondosa L Blas 600 0.18 

Echinodermata Echinoidea Strongylocentrotus droebachiensis P Bra 200 0.19 

Echinodermata Ophiuroidea Amphiura filiformis P Plut2 275 0.2 

Echinodermata Echinoidea Strongylocentrotus purpuratus P Plut4 200 0.2 

Echinodermata Echinoidea Hemicentrotus pulcherrimus P Gas 100 0.2 

Echinodermata Holothuroidea Cucumaria frondosa L Gas 650 0.21 

Echinodermata Echinoidea Paracentrotus lividus P Plut 500 0.23 

Echinodermata Ophiuroidea Amphiura filiformis P Plut1 200 0.25 

Echinodermata Echinoidea Strongylocentrotus purpuratus P Plut6 450 0.26 

Echinodermata Echinoidea Paracentrotus lividus P Blas 120 0.27 

Echinodermata Ophiuroidea Ophioderma brevispinum L Vit 400 0.3 

Echinodermata Echinoidea Strongylocentrotus droebachiensis P Plut 800 0.3 

Echinodermata Echinoidea Strongylocentrotus droebachiensis P Gas 250 0.35 

Echinodermata Asteroidea Asterias rubens P Gas 200 0.38 
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Echinodermata Asteroidea Crossaster papposus L Gas 800 0.46 

Echinodermata Asteroidea Asterias rubens P Bra 350 0.48 

Echinodermata Echinoidea Arbacia punctulata P Plut4 130 0.75 

Echinodermata Asteroidea Crossaster papposus L Bra 1100 0.78 

Echinodermata Echinoidea Arbacia punctulata P Plut6 176 0.95 

Echinodermata Echinoidea Dendraster excentricus P Plut 400 1 

 


