
The Design and Implementation of a Web
Application for Visualizing Chemical Structures
and Information Using Test Driven Development

by
c©Dayo J. Osunrinde

A Thesis submitted to the School of Graduate Studies in partial fulfillment of the
requirements for the degree of

Master of Science

Department of Scientific Computing

Memorial University of Newfoundland
June 2017

St. John’s Newfoundland

Abstract

This research examined the use of Test-Driven Development (TDD) for the creation

of a web application to visualize chemical structures. To date, TDD has mainly

been applied to develop traditional software systems. The study however described

the novel application of TDD to the development of a high-quality scientific web

application using Django, Python 3, Selenium, HTML5, CSS3, JavaScript, JSmol and

the RESTful API. With TDD, automated tests are written first. These tests drive

the design of the software towards an extensible application that easily accommodate

changes and updates. Presented in this thesis is the test driven design, analysis and

implementation of the visualization application as well as the tests and verification

results. The study concluded that the application of TDD to scientific web application

development can lead to a better design, high-quality production code, and easier

integration of changes and new requirements. However, the research made no claim

that TDD is a magic wand that solves all software problems. Rather, the approach

has the prospect of ensuring high-quality web applications as it can be a bit tedious.

ii

Acknowledgements

First and foremost, I wish to express my sincere gratitude to Professor Raymond

Poirier a prominent scholar who would never mind to see budding scholars fly. I

would also like to thank my co-supervisor Professor Jason Pearson at the Univer-

sity of Prince Edward Island. It is a great pleasure to thank Dr Oliver Stueker, an

ACENET consultant and a prominent member of the Retrievium research group for

his continuous support in learning python programming from the scratch and his im-

mense help during my graduate program. I should thank Csongor Matyas, a PhD

candidate of the Theory group for many discussions on software development, pro-

gramming and beyond. I express my sincere appreciation to every member of the

Retrievium group and Theory Lab. Finally, I am grateful to my parents and siblings

for always being there. Thanks to everyone I am very grateful.

iii

Table of Contents

Abstract ii

Acknowledgments iii

List of Figures xi

List of Abbreviations and Symbols xii

1 Introduction 1

1.1 Overview of Project . 1

1.2 Goals of the project . 3

1.3 Thesis Outline . 4

2 Test Driven Development 5

2.1 Introduction . 5

2.2 TDD Definition . 5

2.3 Simple TDD Example . 6

2.4 Test Driven Development Concept . 10

2.5 Suggested TDD Efficacy in Context 14

2.5.1 TDD in Academia . 14

2.5.2 TDD in Industry . 17

iv

2.6 TDD Benefits . 23

2.6.1 Higher Production Code Quality 23

2.6.2 Enhanced Application Quality 24

2.6.3 Enhanced Developer Productivity 25

2.7 The Disadvantages of TDD . 26

2.8 The Controversies . 26

3 Web Application Development 28

3.1 Introduction . 28

3.2 Overview . 28

3.3 Web Programming . 29

3.3.1 Client-Side Programming . 29

3.3.2 Server-Side Programming . 30

3.4 Application Development Environment 30

3.5 Server-Side Tools . 30

3.6 Django Framework . 31

3.6.1 Django Overall Design Philosophies 31

3.6.2 How Django Works . 32

3.7 Python 3.5.1 . 33

3.8 Selenium 3.0 . 34

3.9 Django TestCase . 35

3.10 REST API 3.5.4 . 35

3.10.1 HTTP Methods . 36

3.11 Front-End Tools . 37

3.12 HTML5 . 37

3.13 JavaScript 3.10.2 . 38

3.14 JSmol 3.10.3 . 39

v

3.14.1 Main Features of JSmol . 39

3.14.2 JSmol Initialization . 40

3.14.3 Setting Parameters . 41

3.14.4 CSS 3.10.4 . 42

3.15 Integrated Development Environment 43

3.15.1 PyCharm . 43

3.16 Version Control System . 44

4 Application Specifications 45

4.1 Introduction . 45

4.2 Chemical Markup Language . 45

4.3 CML Visualization Web Application 46

4.4 Primary Requirements . 46

4.5 Use Cases . 49

4.6 Milestones . 50

4.7 Design Visualization . 52

4.8 Secondary Requirements . 53

5 Implementation With TDD 55

5.1 Introduction . 55

5.2 Application Overview and Design . 55

5.3 Project Structure . 57

5.4 Explanation of Application Structure 58

5.5 Setting Up Application Functional Tests 60

5.5.1 Django TestCase . 60

5.5.2 Selenium WebDriver . 61

5.5.3 Opening Page with WebDriver 62

vi

5.6 Locating Elements . 64

5.6.1 Locating by XPATH . 65

5.6.2 StaticLiveServerTestCase . 65

5.6.3 Set Up and Tear Down . 66

5.7 Implementing List View . 68

5.7.1 List View . 73

5.8 Implementing Upload View . 74

5.8.1 Upload View . 76

5.9 Implementing Item View . 77

5.9.1 Item View . 85

5.10 Implementing Search Functionality 99

5.11 Secondary Requirement Implementation 100

5.12 Testing Milestones . 102

5.13 Implementing Database . 103

5.14 Data Extraction . 104

5.15 Implementing Beauty . 109

6 Tests and Verifications 111

6.1 Introduction . 111

6.2 Tests Outline . 111

6.3 Functional Testing . 112

6.3.1 Form Validation . 113

6.3.2 Information Extraction Testing 113

6.3.3 Visualization . 113

6.4 Compatibility Test . 113

6.5 Regression Testing . 114

vii

7 Conclusions 115

7.1 Future Work . 116

Bibliography 116

A Email Permission 124

viii

List of Figures

2.1 Simple TDD Example Project Directory Structure 6

2.2 Simple TDD Process. 10

2.3 Overall TDD Process. Adapted from "Test-Driven Development With

Python" by Harry Percival, p.47. Copyright 2014 by the O’Reilly Media

Inc. Adapted with permission from Harry Percival. 11

2.4 TDD Process with Functional and Unit Tests. Adapted from "Test-

Driven Development With Python" by Harry Percival, p.48. Copyright

2014 by the O’Reilly Media Inc. Adapted with permission from Harry

Percival. 12

4.1 An informal drawing of the application with Single Molecule Item View. 52

4.2 An informal drawing of the application with Multiple Molecule Item

View. 53

5.1 Overall application architecture . 56

5.2 The Project directory structure containing the visualization application. 57

5.3 Template inheritance. 59

5.4 Importing modules and setting variables. 61

5.5 A code fragment that demonstrate the opening of page with the class

TestWebDriver. 63

ix

5.6 Setup and teardown browser . 66

5.7 The setting up of Django admin log in test 67

5.8 The test written for listing view. 69

5.9 The implementation of listing view in views.py. 70

5.10 The URL configuration of our application. 72

5.11 Listing view HTML code fragment. 72

5.12 The display of listing view showing uploaded CML test files and their

corresponding information. 73

5.13 The test written for upload view. 74

5.14 An helper function for upload view. 75

5.15 The implementation of upload view. 75

5.16 Upload view HTML code fragment. 76

5.17 The display of upload view with the browse and upload button. . . . 76

5.18 The test written for Item view. 77

5.19 The implementation of item view. 79

5.20 Item view HTML code fragment. 80

5.21 The visualization of an uploaded molecule in balls and stick model. . 85

5.22 The visualization of an uploaded molecule in wireframe model. 86

5.23 The visualization of an uploaded molecule in spacefill model 87

5.24 The visualization of dipole arrow. 88

5.25 The labeling of partial charges and dipole arrow. 89

5.26 The visualization of Van-der waal surface and dipole arrow. 90

5.27 The visualization of solvent accessible surface. 91

5.28 The visualization of transparent surface. 92

5.29 The mapping of electrostatic potential. 93

5.30 The visualization of multiple molecule item view electrostatic potential. 94

x

5.31 The visualization of multiple molecule item view solvent accessible sur-

face. 95

5.32 The visualization of multiple molecule item view partial charge. . . . 96

5.33 The visualization of multiple molecule item view ball and stick. . . . 97

5.34 The visualization of multiple molecule item view (3 Molecules) ESP. . 98

5.35 The implementation of search functionality. 99

5.36 The test written for the secondary requirement. 100

5.37 The test written to ensure total coverage of milestone. 102

5.38 The test written for the database. 103

5.39 The application database (Models). 104

5.40 The implementation of extraction. 105

5.41 The application CSS style sheet. 110

xi

List of Abbreviations and Symbols

TDD Test Driven Development

CML Chemical Markup Language

HTML Hyper Text Markup Language

XML Xtensible Markup Language

XP Extreme Programming

MVC Model, View, Controller

MVT Model, View, Template

AUD Application Under Development

REST Representational State Transfer

WAF Web Application Framework

API Application Programming Interface

DTL Django Template Language

VCS Version Control System

VDW Van-der-Waal Surface

SAS Solvent Accessible Surface

ESP Electrostatic Potential

xii

Chapter 1

Introduction

1.1 Overview of Project

The evolution of web applications has accelerated and extended into scientific research.

The use of web applications to aid scientific research is getting more substantial over

the years. In recent times, the portability of web application has made it more

preferable to traditional software as computational scientists present their applications

through a web interface. In essence, this implies that users can upload input data to an

application on a web page, and then click on some buttons that has been programmed

to carry out some computations, and display the results as appropriate. In a situation

where there are collaborators spread across different geographical locations, then the

web interface can be deployed to a server and made accessible to all and sundry.

With the advent of the three tier web application framework and high level program-

ming, scientist have been able create programs designed to perform specific tasks,

applicable to their own research in a simple and straightforward manner. This process

of program or software development in academia usually involves different program-

mers over many years, who are mostly students. Over the years, these programs are

1

extended to accommodate new requirements as area of research dictates. However,

the problem with this kind of arrangement is that there is no apparent plan, or stan-

dards guiding the process unlike code written in industry. Since most of this code are

often written by students, programming best practices are mostly ignored. A good

number of project code found in academia are written in this manner. Consequently,

most of these codes are ridden with bugs, defects, and errors. The bad code design

makes it difficult to extend, as reading and maintaining the source code becomes next

to impossible. Hence, the low-quality applications developed in academia. For this

reason, there arises a need for a disciplined programming scheme that could raise the

standard of applications produced in academia.

Over the years, new methodologies have emerged in software development in a bid

to improve development process and products. In 2001, Beck [4] published an article

about a new approach of development called Test-Driven Development (TDD). TDD

is a test-centered methodology where automated tests drive the design of a software.

With TDD, the code is tested before it is written. Till date, TDD has mainly been

applied to the development of traditional software systems, and not to the design

of any scientific web application. This thesis therefore introduces a new test-driven

approach to develop an interactive 3D chemical structure visualization web software

with focus on maintainability and high-quality. The ideas in this thesis is however

applicable to any kind of web application and software as well.

2

1.2 Goals of the project

In this thesis, a TDD approach to the creation of web application using Django [10],

Python 3 [61], HTML5 [52], CSS3 [58], JavaScript [20], JSmol[60], and the RESTful

API [54] is presented. In particular, TDD is examined and applied as the overall

programming scheme to develop a high-quality requirements visualization application

for Chemical Markup Language [33] (CML) data. CML data have the .cml extension,

and are unified with XML-based encoding requirements. These requirements are the

implemented guidelines for the storage and the sharing of content related to chemical

elements, compounds, analytical work done to experiments using certain chemicals,

and scientific or mathematical equations used in chemistry. For instance, the data of

these CML files may include descriptions of certain molecular structures entered by

the authors of those CML files [48].

The TDD approach is as general as possible and can be applied to any web appli-

cation with special focus on quality. Chapter 5 gives a detailed description of the

application’s specifications. Regardless, a summary of the desired features of the

visualization application are as follows:

• The application is expected to be able to upload CML files.

• It should have the ability to extract specified parameters from the uploaded

CML files.

• It should have the ability to store the extracted CML files.

• It should have the ability to visualize molecular structures and other properties

in different models from the stored CML files.

• It should be highly maintainable and of high-quality.

3

• It should be scalable and extensible.

The language of implementation will be Python 3 [61], as it uses a neat and simple

syntax that makes the written programs readable. Also, Python comes with series of

large standard libraries and useful modules that supports many common programming

tasks such as data extraction, connecting to web servers, searching text with regular

expressions, reading and modifying files. The most popular web framework built on

Python called Django will be our web application framework, while the front-end and

the back-end will be built using HTML5, JavaScript, JSmol, CSS3 and Python 3 as

appropriate (see Chapter 4 for more details).

1.3 Thesis Outline

The outline of this thesis is as follows. Chapter 2 examines test-driven development.

It gives detailed description into the process and the supposed benefits in context.

Chapter 3 gives a detailed description of web application development, as well as the

application development environment and the various tools used in the development

of our application. Chapter 4 describes the requirements, project milestones, and

specifications in terms of functionality of the application under development (AUD).

Chapter 5 provides a description of the TDD implementation of our CML visualization

application and results. Chapter 6 gives details about the testing and verification.

Chapter 7 provides details about the conclusion and future work.

4

Chapter 2

Test Driven Development

2.1 Introduction

In this Chapter, a review of context that covers the prior work done regarding TDD

in academia and industry, as well as the advantages, disadvantages in TDD-related

literature is presented.

2.2 TDD Definition

TDD is a fairly new programming method in which testing, coding and refactoring

activities all go in small iterative steps [2, 4]. TDD was initiated by Beck, the origina-

tor of extreme programming (XP) [4]. The fundamental thought behind the creation

of TDD was to achieve fast, clean code that works. Beck described TDD as a novel

approach to software development, where the programmer must first write a test that

fails before writing a single line of production code [4]. TDD originated with the

birth of XP and thus became a key practice of XP [3]. The main goal of TDD is

specification and not validation [37].

5

Otherwise stated, it is one way to think through the given requirements or design

before writing any single line of production code (implying that TDD is both an

important agile requirement and agile design technique). Another view is that TDD

is a programming technique with the overall goal of writing clean code that works as

stated by Ron Jeffries [31].

In essence you follow three simple steps repeatedly [21]:

1. Write a test for the next piece of functionality you want to add.

2. Write the functional code until the test passes.

3. Refactor both new and old code to make it well structured.

2.3 Simple TDD Example

In this trivial example, we want to write a Python [61] function that adds two numbers

and returns the sum as the output. The first step is writing a failing test before writing

any single line of production code. A new project called sample was created, with

two separate directories named Additionapp and test in the root project folder. The

Figure below shows the directory structure in Pycharm [47] development environment.

Figure 2.1: Simple TDD Example Project Directory Structure

6

According to TDD, everything starts with test. So we start by writing a test as seen

in the following lines:

1. import unittest

2. class TddSimpleExample(unittest.TestCase):

3. def test_add_two_integers(self):

4. calc = Calculator()

5. result = calc.add(50,50)

6. self.assertEqual(100, result)

7. if __name__ == ’__main__’:

8. unittest.main()

Here is the break down of each line in the code above.

• In the first line, the unittest Python standard module for unit testing was

imported.

• In the second line, a test class that was made a subclass of unittest module

was created.

• In line three, a function was defined, and assigned to do the calculation.

• In line four and five, a function call was made to the Calculator function. The

return value was assigned to the newly created variable result.

• In line 6, a method that asserts if the expected output is what the function

returns as output was called from the unittest module.

We then run our application by running the test, hoping to get our failing test.

7

$ python3 test_calculator.py

E

==

ERROR: test_calc_add_two_integers (test.test_add_two_integers.TddSimpleExample)

--

Traceback (most recent call last):

File "/Users/user/PycharmProjects/sample/test/test_Calculator.py",

line 6,in test_add_two_integers

calc = Calculator()

NameError: global name ’Calculator’ is not defined

--

Ran 1 test in 0.001s

FAILED (errors=1)

As expected, what the error is simply telling us is that we are trying to import what

we have not created. So in our Calculator.py file, we write the following lines of

code, after which we will have to modify the test by importing the Calculator from

the AdditionApp directory. (See line 2 of the test_Calculator file as shown below):

class Calculator(self):

def add(x, y):

pass

1. import unittest

2. from AdditionApp.Calculator import Calculator

3. class TddSimpleExample (unittest.TestCase):

4. def test_add_two_integers(self):

8

5. calc = Calculator()

6. result = calc.add(2,2)

7. self.assertEqual(4, result)

8. if __name__ == ’__main__’:

10. unittest.main()

Running the test again after the above update, we have the error below.

$ python3 test_Calculator.py

E

==

FAIL: test_calc_add_two_integers (test.test_Calculator.TddSimpleExample)

--

Traceback (most recent call last):

File "/Users/user/PycharmProjects/tdd_in_python/test/test_calculator.py"

line 9, in test_calc_add_two_integers

self.assertEqual(4, result)

AssertionError: 4 != None

--

Ran 1 test in 0.001s

FAILED (failures=1)

Obviously, our method is returning the wrong value, as it doesn’t do anything at the

moment. The next step is then fixing the method and ensuring that our test passes.

9

class Calculator(object):

def add(self, x, y):

return x+y

$ python3 test_Calculator.py

.

--

Ran 1 test in 0.000s

OK

What we have just done is a simple example of a TDD approach. We have started with

a test, written minimum code to get our test to pass one step at a time. Assuming

this was a large project, we may need to refactor as we go along adding functionality

one step at a time.

2.4 Test Driven Development Concept

TDD involves the simple process as shown in Figure 2.2.

Figure 2.2: Simple TDD Process.

10

Similarly, Percival in 2014 [46] suggested a workflow in his book Test-Driven Devel-

opment with Python where he defined the overall TDD process as given in Figure

2.3.

Figure 2.3: Overall TDD Process. Adapted from "Test-Driven Development With
Python" by Harry Percival, p.47. Copyright 2014 by the O’Reilly Media Inc. Adapted
with permission from Harry Percival.

1. Write a test.

2. Run the test and see it fails.

3. Write some minimal code to get the test to pass.

4. Rerun the test and repeat until it passes.

5. Optionally, we might refactor our code, using our tests to make sure we don’t

break anything.

Harry also describes the main aspects of the TDD process in practice as [46]:

• Functional tests

11

• Unit tests

• The unit-test/code cycle

• Refactoring

In this context, where we have both functional test and unit test together, we can

liken functional test to being a high-level view of the cycle, where writing the code

to get the functional tests to pass actually involves using another, smaller TDD cycle

which uses unit tests. This is illustrated in the unit test code cycle in Figure 2.4 [46]:

Figure 2.4: TDD Process with Functional and Unit Tests. Adapted from "Test-Driven
Development With Python" by Harry Percival, p.48. Copyright 2014 by the O’Reilly
Media Inc. Adapted with permission from Harry Percival.

12

In the simplest terms, TDD inclusive of both functional and unit tests means write a

functional test, see it failing, then divide the problem into parts, write a unit test for

each part, write code for each part, see unit tests pass and then your functional test

should pass. The functional tests are the ultimate judge of whether your application

works or not, while the unit tests are a tool to help you along the way [46]. This leads

us to the definition of the core concepts in TDD:

1. Functional Testing

The main objective of functional testing is to test each discrete component of an

application from the point of view of the developer. It seeks to ensure that all

the given specifications are implemented perfectly and they work as expected.

These tests allow us to see how an application works from the perspective of the

user. Moreover, functional tests capture how the user might work with a series

of requirements and how the application should respond to them. During the

development, Selenium [50] was used to test the functionality of our application.

2. Unit Testing

Unit testing allow the testing of a very small piece of code at the application

programming interface (API) level. Running unit tests is quite easy as it does

not require a full production environment to run. With Pycharms [47] it becomes

easier at the click of a button. For our development, we have used Django

TestCase which makes use of the Python unittest module for unit testing.

3. Refactoring

Refactoring is the process of changing a software system in such a way that it

does not alter the external behavior of the code, and yet improves its internal

structure. Refactoring improve the design of a code after it has been written

[22]. It is the last step to completes each of the TDD’s iterative steps. In this

13

context, it utilizes a functional testing to ensure that we have preserved the

behavior of our application while cleaning up bad code.

2.5 Suggested TDD Efficacy in Context

This section describes prior research work done on TDD. More specifically, literature

review that covers experimental, comparative, and empirical TDD-related research

published at conferences, and in journals, is presented. It also covers a brief overview of

the project undertaken, challenges, observations, and the results. These are structured

into two sub-sections as corresponding to work done within academia and industry.

2.5.1 TDD in Academia

The most popular reference to the TDD approach was a study facilitated in 2002 by

Muller and Hagner [40] at the University of Karlsruhe. The purpose of this experiment

was to evaluate [40]:

• The programming efficiency of TDD (how fast a person obtains a solution).

• The reliability of the code (how many failures can be found, measured as a part

of the passed assertions associated with all feasible executable assertions in the

test).

• Program understanding (measured as proper calls of existing methods).

14

The study consisted of 19 students divided into two groups. While 10 of the

students were mandated to use test-first (TFG group), the other group was man-

dated to use the traditional test-last approach and they were called the control

group (CG). On average, the students had 8 years programming experience.

The experiment was divided in two phases [40]:

• Implementation Phase (IP)

In this phase, the students developed their program in readiness for acceptance

test.

• Acceptance-test Phase (AP)

In this phase, students in both groups fixed faults that caused the acceptance

test to fail.

At the end of the first phase (IP), test results show that the reliability of the pro-

grams from the TFG group, were significantly higher than reliability of programs

from the CG group. Conclusively, the following important points were made from the

experiment [40]:

• Five programs from the TFG have over 96% reliability.

• Test-first delivers better reliability on overall.

• Test-first programmers reuse current methods efficiently and swiftly. This is

caused by on-going testing approach and while fixing the fault, developer learns

about existing code.

• If the developer switches from traditional development to a test-first approach

it does not imply that he can find the solution more quickly.

15

Mustafa, in his thesis [44] proposed TDD as a better alternative to an established

software development practice in a large firm that develops embedded software. He

recommended a methodology that integrates TDD into a classical development cycle

without necessitating an outright transition to agile methodology of software develop-

ment. His case study was an embedded software development project. He concluded

within the scope of his project, that TDD is a viable approach.

In 2005, Erdogmus et al. [19] facilitated a controlled experiment for evaluating an

important aspect of TDD. The experiment was conducted with undergraduate stu-

dents divided into two groups. The experiment group practiced TDD, while the

control group applied the conventional development technique which involved writing

test after implementation. Both groups followed an incremental process of adding

new feature one step at a time and performing a regression test simultaneously after

implementing each feature.

The assessment focused on the test-first characteristic of TDD, where programmers

implement a small piece of functionality by writing a unit test before writing the

corresponding production code. On the grounds that test-first is basically a step-by-

step method, they designed the test to fit in an incremental development context.

The final conclusions were [19]:

1. Test-first appears to improve productivity. From the results, it was concluded

that advancing development one test at a time and writing tests before imple-

mentation encourages better decomposition.

2. Test-first improves the mastery of the underlying specifications and minimizes

the purview of the tasks to be performed.

16

3. The small confines of the tests and the fast reversal made possible by continual

regression testing all at once reduced debugging and rework effort.

In summary, the effectiveness of the test-first approach would possibly depend entirely

on its capability to encourage programmers to back up their code with test assets.

Gupta and Jalote [24], evaluated the impact of TDD on various program development

activities like designing, coding, and testing, through a controlled experiment where

they compared it with the conventional way of developing the code. In a single-

factor block design, two groups of students developed two moderately-sized programs

following the two development-styles under study [24]. The results suggested that:

• TDD helps in reducing overall development effort and improving developer’s

productivity.

• The code quality appears to be affected by the actual testing efforts implemented

during a development-style.

2.5.2 TDD in Industry

From the industrial viewpoint, there are several studies that has evaluated the efficacy

of TDD. In a bid to evaluate TDD at IBM in 2003, a software development group at

IBM Retail Store Solutions in North Carolina built a non-trivial software system based

on a stable standard specifications using TDD in comparison with the conventional

test-after method [38]. The main aim of the research was to examine [38]:

1. TDD practice within the context of more robust design.

2. Smoother code integration.

17

From this study they concluded that [38]:

1. TDD reduced defect rate because they observed a dramatic 50% improvement

in the defect rate of the built system.

2. TDD allowed the creation of automated unit test cases that are reusable, ex-

tendable, and that will continue to improve in quality over the lifetime of the

software.

3. TDD practice helped in producing a product that could change more easily and

incorporates late changes.

4. The test suite can also serve as the basis for quality checks, and quality contract

between team members.

5. TDD create a significant suite of reusable and extendable regression test case

asset that continuously improves quality over software lifetime.

In 2003, another empirical and comparative study was facilitated by George and

Williams [23]. The purpose of this research project was to evaluate the following

hypotheses:

1. That TDD practice will yield superior external code quality when compared with

code developed with a more traditional waterfall-like practice. External code

quality will be evaluated based on the number of passed functional (black-box)

test cases.

2. That programmers who practice TDD will develop code faster than program-

mers who develop code with a waterfall-like practice. Programmers speed will

be calculated by the time to complete (in hours) a specified program.

18

To this end, three TDD experiment trials were executed with 24 professional program-

mers who had experience levels with TDD from beginner to expert at three companies

(John Deere, RoleModel Software, and Ericsson). In each of the experimental trials,

the programmers were randomly assigned to one of two groups: TDD or Control.

All programmers used the pair programming practice. Developers were divided in

the group of six pairs developers that used the TDD approach and control group of

six pairs that used conventional test-last approach. Each pair was asked to develop

a bowling game application with given specifications. The control group pairs used

a conventional design-develop-test (similar to waterfall) approach. Participants were

asked to turn in their programs upon completing the activities as outlined. Then,

their projects were assessed quantitatively and qualitatively. A qualitative survey

that centers around the questions listed below was conducted during the research and

the response was analyzed [23]:

• How productive is the practice for programmers?

• How effective is the practice?

• How difficult is the approach to adopt?

The following is a summary of the answers:

• As regards the productivity question, 87.5% of the developers felt that the TDD

approach made them have a better understanding of the requirements. 95.8%

felt that TDD reduces debugging effort, while 78% of the developers thought

that TDD improves overall productivity of the programmer.

• In response to the effectiveness question, 71% thought the approach was notice-

ably effective, 79% felt that TDD promotes simpler design, 92% of the developers

believed that TDD yields higher-quality code.

19

• In response to the difficulty question, 56% of the professional developers thought

that getting into the TDD mindset was difficult. 23% indicated that the absence

of upfront design phase in TDD was an obstruction. 40% of the developers

thought that the approach faces difficulty in adoption.

Finally, six conclusive points were made by the authors [23]:

1. TDD approach seems to yield superior external code quality.

2. TDD development took 16% more time for development.

3. 80% of developers believed that TDD was an effective approach, while 78%

believed that the approach improved programmer’s productivity.

4. TDD facilitates simpler design and lack of up-front design is not a hindrance.

5. For some, transition to the TDD mindset is difficult.

Bhat and Nachiappan [5], evaluated the efficacy of TDD at Microsoft Corporation.

They performed two case studies using TDD in two Microsoft divisions: Windows

and MSN, using a project of the same level of complexity. The main focus in this

project was to:

1. Compare the differences in software quality between the TDD and non-TDD

methodology.

2. Compare the overall development time when using the TDD and non-TDD

methodology.

20

In both cases, they measured the various contexts, products and outcome measures to

compare and evaluate the efficacy of TDD. They observed a significant increase in code

quality (greater than a factor of two) when using TDD, compared to similar projects

developed in a non-TDD manner. The projects also took at least 15% extra upfront

time for writing the tests. Additionally, the unit tests served as auto documentation

for the code. Also, libraries/APIs were used for code maintenance. Final conclusions

in this paper was that TDD produced high code quality.

Wasmus and Gross [56], of the Software engineering research group at the Delfts

University of Technology also evaluated TDD in industry. The following reasons

constituted the purpose of their research:

1. They wanted to see if TDD incorporates requirements changes easily.

2. They wanted to see if TDD leads to superior technical solution in software.

3. They wanted to find out if TDD results in better and cleaner code and motivates

all stakeholders.

They presented a development project carried out in a company to ascertain those

claims. The evaluation was part of an industry-scale application development project

at EPCOS Inc. The application was a forecasting system that was meant as a pilot

study to decide whether TDD could be introduced as a new development paradigm

across software development units at EPCOS. The final conclusions were:

• The biggest advantage of TDD is that a product of high-quality can be developed

by maintaining flexibility.

• TDD produces maintainable high-quality source code.

21

Ambler [1], of IBM extended TDD to database development which he called test-

driven database development. From his garnered experience and in conclusion, he

claimed that test-driven database development is important for several reasons high-

lighted below:

1. First, all of TDD’s benefits extend to test-driven database development. With

test-driven database development, developers can take small, safe steps.

2. He stated further that refactoring let developers maintain high-quality design

throughout the life cycle.

3. Regression testing provides the opportunity to detect defects earlier in the life

cycle because test-driven database development gives an executable system spec-

ification, and motivates developers to keep it up-to-date.

4. With TDD, database development efforts effectively dovetail into the overall

application development effort.

In a follow-up experiment in 2008, Nagappan [45] conducted another study that in-

volved three development teams at Microsoft and one development team at IBM that

have adopted TDD. The results of indicate that:

1. The four products recorded a decrease in pre-release defect density. While IBM

had a 40% decrease, Microsoft had between 60% to 90%. These are relative to

similar projects where TDD practice was not implemented.

2. From a subjective point of view, the teams recorded an increase between the

range of 15–35% in initial development time after the adoption of TDD.

22

2.6 TDD Benefits

The often mentioned advantages from the literature, are higher production code qual-

ity [5, 23, 29, 34, 56], enhanced application quality [1, 5, 18, 23, 27, 38, 40, 56], and

enhanced developer productivity [19, 24, 28]. These will be explicitly discussed in the

following subsections.

2.6.1 Higher Production Code Quality

A good deal of articles, blogs and empirical studies in the literature claimed that

TDD improves code quality. In a bid to ascertain or question this claim, Jansen and

Saiedian [29], conducted three quasi-controlled experiments and one case study in a

Fortune 500 company and another two quasi-controlled experiments with university

students in undergraduate and graduate software engineering courses. The main focus

of these experiments were on internal software quality with respect to design and code

characteristics such as:

• Code complexity.

• Size.

• Coupling and cohesion.

The result indicated that TDD programmers wrote software modules that are smaller,

less complex and more highly tested modules than modules produced by their test-

last counterparts. Similarly, Wasmus et al. [56] (experiment details given in the

preceding session) concluded from their experiment that TDD produced maintainable

high-quality source code.

23

Dogsa and Batic [18], conducted a multi-case study investigating the effectiveness

of TDD within an industrial environment with respect to code quality, productivity

and maintainability. Three comparable medium-sized projects were observed during

their development cycle. While two of the three projects were implemented without

TDD practice, the third introduced TDD into the development process. Their results

indicated that the third project had maintainable higher-quality code in comparison

with the first two.

Crispin [34], in her work shared her experience working on different development

teams that used TDD and vice versa. She said "I can tell you from first-hand experi-

ence that TDD produces code that has orders-of-magnitude fewer unit-level bugs, far

fewer functional bugs, and an exponentially higher probability of meeting stakeholder

expectations when compared to code produced by conventional programming tech-

niques". Crispin also provided evidence from her experience that code written using

TDD is easier to understand.

2.6.2 Enhanced Application Quality

TDD evangelists claim that adherence to this approach can simultaneously improve

both quality and productivity [3, 27]. In the same vein, conclusions from the most

popular TDD effectiveness reference Muller and Hagner [40], as well as result from

Crispin’s [34] experience also attested to this claim. They indicated that TDD leads

to better requirements understanding and this invariably improves the quality of the

software. Similarly, the conclusions of industrial studies [5, 23, 27, 34, 38, 56] have

provided strong evidence that TDD facilitates the production of high-quality code, in

comparison with projects developed using conventional approach.

24

2.6.3 Enhanced Developer Productivity

Advocates of TDD claim that it enhances the overall productivity of a development

team by reducing total project development effort defined as time spent directly on the

project including analysis, design, code, test, fix and review [29]. TDD proponents

also asserted that TDD improves overall developers efficiency as a result of tested

code written from the beginning of the development. This is believed to save time

expended during the regular testing phase [24].

Also in TDD, each unit of functionality according to the user story is written as a

functional test. This takes into account how far and how well the process is going,

hence a source of motivation for the developer [19]. During TDD, logical bugs and

regression bugs are fixed earlier, this reduces the excessive amount of time needed to

fix defects in comparison to the test-last approach. All these in turn could increase

productivity.

Williams et al [38], asserted that TDD reduces the overall amount of time spent

on debugging, rework and bug fixes following post-release failure, with a resulting

increase in overall long-term productivity. Cannam suggested that by adopting TDD,

developers are more likely to gain a diverse thinking on how to develop logic and

algorithms in their code, and subsequently it can give them safety and confidence in

their work [6].

Conclusions from empirical studies reviewed are in support of this claim [19, 24, 28].

Results from these experiments, show that TDD programmers were more productive

than the test-last programmers since the TDD team spent less effort per line-of-code,

and 57% less effort per feature than the test-last team. Also, TDD programmers saved

upfront-design efforts. They were more productive in terms of overall development

25

effort, as there is less rework effort at the testing and fixing stages.

2.7 The Disadvantages of TDD

Some disadvantages of TDD have been identified. Thirumalesh and Nachiappan [5]

from their experiment observed that in some cases, the amount of code required by

TDD nearly doubled. Atul and Pankaj. [24], also observed from their experiment

that TDD could likely decrease code quality. While highlighting some shortcomings

of TDD, George and Williams, Thirumalesh and Nagappan, [5, 23] noted that the

use of TDD could increase the time for the coding phase. George and Williams [23],

also indicated that transitioning to the TDD mindset is difficult, and it might be one

factor that increases the efforts put in the coding phase with the use of TDD.

2.8 The Controversies

In defiance of the proven advantages from various studies, TDD has remained a con-

troversial approach among several developers. In 2014, Hanson [25], the author of

Ruby on Rails and the founder of Basecamp, gave the opening keynote at Railsconf

2014, in which he challenged the value of TDD. Later, he went on to write two posts on

his blog titled "TDD is Dead-Long Live Testing" and "Test-induced design damage".

Citing his experience from TDD, he asserted that faith in TDD can lead to completely

forgetting about system testing. He also stated that driving design from unit tests

is not a good idea, focusing on unit and the unit only does not help in producing a

great system and 100 percent coverage is silly. This generated a heated debate among

developers all over with some for and some against. However in response to Hanson’s

assertion, Bob Martin a renown software engineer said in a blog article titled "Monog-

amous TDD" that “If you aren’t doing TDD, or something as effective as TDD, then

26

you should feel bad.” He further argued that we do TDD for one overriding reason

and several less important reasons [36]. The less important reasons are [36]:

1. We spend much less time debugging.

2. The tests act as an accurate and clear documentation at the modest level of the

system.

3. Writing tests first encourages decoupling which is generally accepted to be ad-

vantageous. These are the debatable supplementary benefits of TDD. However,

there is one benefit that that cannot be debated provided that some conditions

are meet.

4. In the event that you have a test suite that you trust so much that you are

willing to deploy the system in light of those tests passing; and if that test suite

can be executed in seconds, or minutes, then you can swiftly and effortlessly

clean the code without fear of breaking anything.

Fowler [21], hosted a series of recorded hangout conversations between Beck, Hansen

and himself, [4, 21, 25] to explore the use of TDD and its impact on software design.

This was in a bid to understand each person’s point of view from personal experiences

and possibly reach a common ground. Eventually, they all attested to the fact that

TDD has values in some contexts.

27

Chapter 3

Web Application Development

3.1 Introduction

In this Chapter, an overview of web application development, and a detailed descrip-

tion of the tools used for building our visualization application is given.

3.2 Overview

Web development is all about exchange of information between two parties over the

HTTP protocol. In Computer Science two systems communicating using the same

set of rules is known as protocol. A web application is an application that is invoked

with a web browser over the Internet [30]. The procedure and practice of developing

web application is called web application development. Conallen loosely defined a

web application as a web system (web server, network, HTTP, browser) in which user

input (navigation and data input) affects the state of the business [9].

28

Over the years, web application development has evolved technology-wise and craft-

wise through the advent of various web frameworks and advanced tools. At the hub

of every web application’s work-flow is a request and a response. A request is made

through the browser, the server responds to the request by serving the requested page

as appropriate, and the browser displays the served response to the user. Everything

done is within the request-response model.

3.3 Web Programming

Web programming is defined as the writing, markup and coding involved in web

development. It also includes web content, web client and server scripting and network

security. Web programming is different from just programming, since it requires

interdisciplinary knowledge of the application area, client and server scripting, and

database technology [53]. Web programming can be separated into client-side and

server-side programming.

3.3.1 Client-Side Programming

The client-side programming, otherwise known as front-end programming is defined

as the general name for all programs that runs on the client (browser). It includes

a series of languages that the browser understands. In terms of functionality, these

languages are used to make interactive and dynamic web pages, send requests to the

server and retrieve data from it. The predominant languages used are HTML, CSS

and JavaScript.

29

3.3.2 Server-Side Programming

Server-side programming, otherwise known as back-end programming simply describes

the general name for all kinds of programs that run on the server. In terms of func-

tions, server-side programming takes care of processing user input, displaying pages,

structuring web applications, and interacting with files. Examples of languages used

in server-side programming are PHP, Python, ASP.NET, Java and a host of other

everyday programming languages.

3.4 Application Development Environment

An application development environment (ADE) is the hardware, software and/or the

computing resources required for building software applications [53]. ADE include the

basic hardware infrastructure, such as servers, computers and handheld devices, that

will host the application. These are combined with the software engineering resources,

such as a programming language’s Integrated Development Environment (IDE), and

other performance evaluation software utilities.

3.5 Server-Side Tools

The following are the tools used in the project for the back-end or the server side

programming. Tools in these categories range from the web framework, server pro-

gramming language, database, web servers, etc.

• Django framework (1.10)

• Python (Python 3.5.1)

• Selenium (3.0)

30

• Django TestCase (from Python unittest module)

A detailed description of these tools will be given in the following sections.

3.6 Django Framework

Django is a high-level Python web application framework that encourages rapid de-

velopment and clean, pragmatic design. It was built by experienced developers and

it takes care of much of the hassle of web development [10]. Another advantage is

that Django is free and open source. Examples of popular sites built on the Django

framework are Pinterest, Instagram, Bitbucket, mozilla, the onion, Reddit Gifts and

many more.

3.6.1 Django Overall Design Philosophies

Like any substantial design, the developers of Django had some ideas in mind while

building the framework. Fortunately, these fundamental ideas align with the goal of

creating a maintainable application for this project. The fundamental ideas are [10]:

• Loose Coupling

Django framework was built in such a way that every component of the frame-

work is independent from each other. The layers of Django framework does not

know about each other. For example, the template system knows nothing about

web requests, the database layer knows nothing about data display and the view

system does not care which template system a programmer uses. Consequently,

Django framework creates maintainable and flexible web applications.

31

• Less code

The more code the more errors. Django framework ensures that the amount

of code used in building applications is minimized. This in turn accelerate the

development.

• Better explicitly than implicitly

Django was designed in a simple way such that it provides ease of use for de-

velopers. Therefore, it is easier to make customized changes and tuning to the

framework as seem desirable by developers.

• Rapid development

The main reason behind the evolution of framework is to make the tedious

aspects of web development faster. Django allows for incredibly quick web

development.

• Don’t repeat yourself (DRY)

Django follows the DRY principle that eliminates all forms of redundancy. In

Django, each application’s functionality is in one place. This does not only

reduces the amount of code, but also contributes to the simplicity of the entire

application [10].

3.6.2 How Django Works

Django works well for a database-driven website. A database-driven website has the

database as the key instrument, and the data for the pages are mainly gained from

the database. Django supports four database engines: PostgreSQL, SQLite3, MySQL

and Oracle. For the project of this thesis, SQLite3 database was used, because it is

already imported in Ubuntu. Django is designed to encourage loose coupling and strict

separation between discrete pieces of an application. Django was built in such a way

32

that each discrete piece of a Django-powered web application has a single key purpose

and can be changed separately without having an effect on the other pieces. The

Model View Controller (MVC) pattern of software architecture is a way of developing

software which separates three fundamental layers of a software application.

Nevertheless, the developers of Django recounted an idea of MVC as when the “view”

describes the data that gets presented to the user [13]. In Django, the controller is the

framework itself. The controller is described as the machinery that sends a request to

the appropriate view, according to the Django URL configuration. Therefore, Django

is a “MTV” framework that is, “model”, “view”, and “template” [13].

3.7 Python 3.5.1

Python is a popular, general-purpose, and high-level programming language. It was

created by Guido Van Rossum, and first released 1991. The choice of Python for

this project centers around code readability, and a syntax which allows the expression

of concepts in as few lines of code when compared to other languages such as C++

or Java [35, 39]. Furthermore, Python provides design that encourages the writing

of both small and large scale comprehensible programs [32]. Other general notable

features of Python are listed below [61]:

• Python uses a neat and simple syntax that makes the programs you write read-

able.

• Python comes with series of large standard libraries and useful modules that

supports many common programming tasks such as data analysis, data cleans-

ing, connecting to web servers, searching text with regular expressions, reading

and modifying files.

33

• Python has an interactive mode that makes it easy to test short snippets of

code. It also has a bundled development environment called IDLE.

• Python is extendable by adding new modules implemented in a compiled lan-

guage such as C or C++.

• Python can also be embedded into an application to provide a programmable

interface.

• Python supports several platforms, including Mac OS X, Windows, Linux, and

Unix.

• Python is free software in two ways. It doesn’t cost anything to download or

use Python, or to include it in an application. Python is available under an

open-source license [61].

3.8 Selenium 3.0

In this project, we have used Selenium [50] for functionality testing. Selenium is

primarily used for automating web applications in order to test the functionality from

the user’s point of view. The fact that several popular browsers support Selenium as

it is also an important technological component in many browser automation tools,

APIs and frameworks makes it a perfect choice for the project.

The most recent and biggest change in Selenium as of late has been the incorporation

of the WebDriver API. WebDriver is designed in a simpler and more concise pro-

gramming interface along with addressing some constraints in the Selenium-Remote

Control (RC) API [50]. WebDriver is a compact Object Oriented API when com-

pared to Selenium 1.0. It drives the browser much more efficiently and overcomes the

34

constraints of Selenium 1.x which affected our functional test coverage, like the file

upload or download, pop-ups and dialogs barrier. WebDriver overcomes the limitation

of Selenium RC [50].

3.9 Django TestCase

Unit testing in Django uses Python’s unittest module which defines tests using

a class-based approach. It is possible to integrate other Python tools and testing

frameworks though the API. With Django’s test-execution framework and assorted

utilities, we simulate requests, inject test data, examine the application’s output and

for the most part certify that our code is doing what it ought to do [15].

3.10 REST API 3.5.4

REST was first introduced by Roy Fielding in 2000 [54]. It stands for REpresen-

tational State Transfer. REST is a web standards based architecture and uses the

HTTP Protocol for data communication. It revolves around resources where every

component is a resource and a resource is accessed by a common interface using

HTTP standard methods [54]. REST design is made up of two fundamental com-

ponents namely; a REST Server that gives access to resources and the REST client

that access and presents the resources. Every resource is recognized by URIs/ Global

IDs. Examples of different representation REST utilizes in representing resources are

Text, JSON, and XML.

35

3.10.1 HTTP Methods

The following HTTP methods are most commonly used in a REST- based architecture

[54].

• GET − Gives a read only access to a resource.

• PUT − Used to create a new resource.

• DELETE − Used to remove a resource.

• POST − Used to update an existing resource or create a new resource.

• OPTIONS − Used to get the supported operations on a resource.

Percival [46], described REST as an approach to web design that is usually used

to guide the design of web-based APIs. When designing a user-facing site, it is

not possible to stick strictly to the REST rules, but they still provide some useful

inspiration. REST suggests that we have a URL structure that matches our data

structure, in this case lists and list items. Each list can have its own URL [46]:

/lists/<list identifier>/

To view a list, we use a GET request (a normal browser visit to the page). To create

a brand new list, we’ll have a special URL that accepts POST requests:

/lists/new

To add a new item to an existing list, we’ll have a separate URL, to which we can

send POST requests:

/lists/<list identifier>/additem

We implemented the RESTful API in our web application.

36

3.11 Front-End Tools

The following tools were used in the project for the front-end or client-side program-

ming.

• HTML5

• JavaScript was used in the front end for interactive display.

• JSmolScript is a 3D scripting language for molecular visualization.

• CSS3

Each of these tools will be described in the following Sections.

3.12 HTML5

HTML (Hypertext Markup Language) [59] was used for defining the structural design

of the application’s web pages. However, other features of HTML as highlighted in

the documentation are as follows [59]:

• HTML is used in publishing online documents with headings, text, tables, lists,

photos, etc.

• HTML is used in retrieving online information via hypertext links, at the click

of a button.

• HTML is used in designing forms for conducting transactions with remote ser-

vices, for use in searching for information, making reservations, ordering prod-

ucts, etc.

• With HTML, spread-sheets, video clips, sound clips, and other applications can

be directly included in their documents.

37

HTML5 is the most recent version of HTML. HTML5 has been designed to deliver

almost everything needed to be done online without requiring any plug-ins. Moreover,

HTML5 can be used to write web applications that works offline. It handles perfectly

high definition video and delivers high-quality graphics [52].

3.13 JavaScript 3.10.2

According to JavaScript’s documentation [20], JavaScript is a platform independent,

object-oriented scripting language. It is a small and lightweight language that runs in

inside a host environment such as a web browser. It consists of a standard library of

objects, such as Array, Date, and Math, and a core set of language elements such as

operators, control structures, and statements. Core JavaScript can be extended for a

variety of purposes by supplementing it with additional objects. For instance [20]:

• Client-side JavaScript extends the core language by providing objects needed to

control a browser and its Document Object Model (DOM). For instance, client-

side extensions enable the application under development to place elements on

an HTML form and respond to user events such as mouse clicks, form input,

and page navigation.

• Server-side JavaScript extends the core language by providing objects needed

to run JavaScript on a server. For instance, server-side extensions enable an

application to communicate with a database, provide continuity of information

between the various invocations of an application, or perform file manipulations

on a server [20].

38

3.14 JSmol 3.10.3

JSmol (also Jmol) is a JavaScript framework that enables us to create pages that uti-

lize HTML5, which [60] enables JSmol to display interactive 3D molecular structures

in any internet browser that supports HTML5 standards. JSmol is not a distinct

program than Jmol, rather it is Jmol compiled into JavaScript instead of Java (using

the Java2Script software).

Jmol is a Java applet that was used to view cml molecular data in the application’s

web page. It read scripts that are contained in Jmol buttons. These scripts are used

in the rendering of the molecule to illustrate crucial structural properties in different

visualizations. At the center of JSmol is the Jmol JavaScript object, (window.Jmol),

which comprises a set of JavaScript functions and utilities.

3.14.1 Main Features of JSmol

The following are the main features of JSmol as written in the documentation [60]:

• Non-Java Options

Options for Java, HTML5/WebGL, or HTML5-only. Includes a variety of op-

tions, such as initial deferred-applet mode where an initial image is displayed

with a click on the image or link on the page initiating applet/canvas 3D mod-

eling, and image+loading mode in which case the 3D model is loading behind

the scenes while an initial image is displayed.

• JavaScript Objects

Creates a single JavaScript object, Jmol, which includes a set of functions and

internal objects such as Jmol.Applet, Jmol.Image, and Jmol.controls.

39

• JavaScript Prototypes

The object you create using Jmol.getApplet() is a JavaScript object that is a

subclass of Jmol.Applet. When you use Jmol.getApplet(), you get a reference

to a JavaScript object, not the Java applet/canvas itself. The applet or canvas

is wrapped in a set of div elements, allowing a richer diversity of options.

• AJAX

JSmol includes methods to easily access cross-platform resources using AJAX

provided by jQuery.

• Scripting

JSmol provides the same full complement of scripting that Jmol offers. JSmol

accepts script commands immediately, before or during applet/canvas creation

on the page, caching them until Jmol is ready to accept them [60].

3.14.2 JSmol Initialization

JSmol makes good use of the HTML5 features. Consequently, it is well suited for

only modern web browsers. JSmol works with Internet Explorer starting from version

9. Furthermore, it is essential to use a doctype in the header of the HTML page.

Besides, for the sake of full compatibility, charset should be declared as UTF-8 en-

coding for localization i.e language translations of the JSmol pop-up menu. Also, the

HTML document must be saved using UTF-8 encoding. For those reason, the HTML

documents should start as [60]:

<!DOCTYPE HTML>

<html>

<head>

<meta charset="utf-8">

40

The web page should have the following in the head section (pointing to appropriate

paths if not the same folder as the web page as shown here):

<script type="text/javascript" src="JSmol.min.js"></script>

3.14.3 Setting Parameters

According to JSmol documentation, we can make the essential and minimal call to

create a Jmol object using:

Jmol.getApplet("myJmol")

This will create a myJmol global variable in JavaScript that holds the Jmol object and

is likewise the unique ID for that object in all functions and methods described below.

It is pertinent to note that this syntax will work only when the HTML file is located

in the root JSmol folder [60]. Nevertheless, the method for indicating variables is

different. The call to create a Jmol object with specified characteristics is to define

an Info variable, which is an associative array (a set of key+value pairs). This shows

all the desired characteristics of the Jmol object. The Jmol-JSO library will provide a

default Info variable, so we only need to specify those keys with their corresponding

values that we want to customize. As soon as we have defined Info, we can then

create and insert the Jmol object in the page using this [60]:

Jmol.getApplet("myJmol", Info)

Bear in mind that myJmol and Info are user-defined variables and may be given

any name. myJmol becomes the identifier of the particular Jmol object that is being

created. We may decide to have two Jmols on our page and call them jmolA and

jmolB for instance. We may also use the same set of parameter Info, or use two

different sets named InfoA and InfoB for example. In contrast, Jmol must be written

41

from the start as such, because it is the internal name and identification of the unique

Jmol object constructor. For example [60]:

var Info = {

color: "#FFFFFF",

height: 300,

width: 300,

script: "load $caffeine",

use: "HTML5",

j2sPath: "j2s",

jarPath: "java",

jarFile: "JmolAppletSigned0.jar",

isSigned: true,

serverURL: "php/jsmol.php",

disableInitialConsole: true

};

Jmol.getApplet("myJmol", Info);

[60]

3.14.4 CSS 3.10.4

Cascading Style Sheets (CSS) is a language used for describing the presentation of

a document written in a markup language [58]. we have used CSS to specify the

application’s web page colors, layout and fonts for in the application. On a general

note, CSS also allows the modification of the display of such documents to different

types of devices, such as large screens, small screens, or printers. CSS is independent

42

of HTML and can be used with any XML-based markup language. The separation of

HTML from CSS makes it easy to maintain websites, share style sheets throughout

pages, and modify pages to specific environments. This is called the separation of

structure from presentation [58].

3.15 Integrated Development Environment

An Integrated Development Environment (IDE) is described as a software program

that contains a series of tools such as code editor, compiler, debugger and many other

useful tools needed to effectively write, and test, refactor code and generate diagrams

for an application under development. Examples of IDEs are Emacs, Eclipse, Idea,

JBuilder, Visual Studio, Netbeans, etc.

3.15.1 PyCharm

We have used PyCharm mainly because PyCharm is an IDE used in computer pro-

gramming, specifically for the Python language [47]. It is developed by the Czech

company JetBrains. It provides code analysis, a graphical debugger, an integrated

unit tester, integration with VCS, and supports web development with Django. Py-

Charm is platform independent as it works Windows, Mac OS X and Linux versions.

Other advantages of PyCharm IDE are [47]:

• Coding Assistance and Analysis: Comes with code completion, syntax and error

highlighting, linter integration, and quick fixes.

• Project and Code Navigation: Renders specialized project views, file structure

views and quick jumping between files, classes, methods and usages.

43

• Refactoring: including rename, extract method, introduce variable, introduce

constant, pull up, push down and others.

• Support for web frameworks: Django, Web2py and Flask.

• Integrated Python Debugger: Integrated unit testing, with line-by-line coverage,

offers Google App Engine Python development.

• Version Control Integration: unified user interface for Mercurial, Git, Subver-

sion, Perforce and CVS with changelists and merge.

3.16 Version Control System

Version control system (VCS) on the other hand records changes to a file or set of files

over time. In today’s world of programming, choosing a VCS has numerous advantages

ranging from reverting and tracking changes made to a file, and comparing changes

over time. It has proven valuable in collaborations across borders and tracking errors.

We have used git in this project.

44

Chapter 4

Application Specifications

4.1 Introduction

This chapter focuses on the specification of the CML application under development.

It includes the requirements, specifications, use cases, and milestones for the project.

Also, a brief introduction to CML is presented.

4.2 Chemical Markup Language

Chemical Markup Language (CML) is a method to managing chemical information

with the use of tools such as XML and Java [43]. It was the first domain specific

implementation strictly based on Xtensible Markup Language (XML). CML was first

based on a Document Type Definition (DTD) [41], and later on an XML Schema [42].

XML Schema is one of the most powerful and extensively used system for information

management. It has been developed over more than a decade by Murray-Rust, Rzepa

and others [26, 33, 41, 42, 43] and has been tested in many areas, and on a variety of

machines.

45

CML is capable of supporting a wide range of chemical concepts including:

• molecules

• reactions[26]

• spectra and analytical data[33]

• computational chemistry

• chemical crystallography and materials

4.3 CML Visualization Web Application

The CML visualization application is a web-based application predominantly built for

chemistry researchers, professors, students and people of associated interest with the

main functionality of providing 3D interactive visualization of CML molecular data

in different models and their corresponding properties.

4.4 Primary Requirements

The application of TDD to the development of a visualization application is the focal

point of this research. As required, the application is web-based. The users of this ap-

plication will predominantly be chemistry students, professors, researchers, and people

of associated interests from all over the world who in the cause of their research need

to visualize molecular information from CML files containing raw information. With

regards to the primary requirements, the CML visualization application is expected

to have the following functionalities:

46

Upload Functionality

• Ability to upload a large CML tree containing initialization and finalization

module of molecular data.

• Upload already extracted CML files.

Data Extraction

While handling the upload of a large CML tree, the application is expected to:

• Extract hundreds of specific CML files from the uploaded large CML tree.

• Extract specified parameters from the tree such as dipole vectors, task, Basis

Set Information etc.

Storage Functionality

• Store only extracted small CML files from the large CML tree in the database.

• Discard the tree after extraction and storage.

• Create specified fields where extracted parameters are stored.

Database

The application is expected to have a database with specified fields for storage

of the following information from the extracted small CML trees. The specified

fields are:

• Filename(string).

• Small CML molecule (<molecule> element)(string or text or file).

• Task (e.g. geometry optimization, frequency) (string).

• Basis Set Label (string).

47

• Method (string).

• SMILES (string).

• InChI (string).

• Program name.

• Program version.

Visualization Functionality

• Visualize molecular geometry of the stored files in different visualization models:

wireframe, ball and sticks and spacefill.

• Create buttons to trigger the correct Jmol script that shows the different visu-

alizations.

• Visualize surfaces: Van-der-Waals Surface (VDW), Solvent Accessible Surface

(SAS), transparent surface.

• Visualize dipole moment vector.

• Label partial charges: obtain the array with partial charges (one floating point

value per atom) from uploaded files and load the data into JSmol.

• Map Electrostatic Potential (ESP): Once JSmol knows the partial charges, it

can visualize the ESP either directly or mapped on VDW or SAS surfaces.

• Animate vibrations: JSmol can already display the vibrations read from many

file types but not yet the displacement vectors from CML files. Load the vectors

into the models.

48

Search

• Create a search functionality: Since millions of files will be uploaded to the

application, there should be a search functionality.

4.5 Use Cases

From the requirements, a number of use cases of the CML visualization web applica-

tion were determined. A mock up of the different specifications were made and the

specifications were divided into different views based on the required functionality.

These gave birth to the following views:

List view: Here a user can see uploaded, extracted and stored CML files from

the already discarded large CML tree. At the same time, a user can see uploaded

(externally extracted) CML files. The list view will have the following properties:

• Shows list of all entries (CML files) in the database.

• Selecting an entry should open it in single molecule item view.

• Selecting two or more entries should open them in multiple molecule item view.

• Has link to upload page.

Upload view: Here a user should be able to upload a large CML tree and have

all molecules programmatically extracted from the large tree. This view should also

afford a user the opportunity to upload an externally extracted CML molecule as well

for visualization. This view will have:

• Form with file input box.

49

• Upload (submit) button.

Item view: Here a user can visualize the selected molecule from the list view.

This can be divided into either single molecule item view, (a view of one visualized

CML molecule), and an optional multiple molecule item view (visualizing two or three

CML molecules side by side). This view will have:

• JSmol script shows molecule.

• Panel with control buttons.

• Radio buttons: balls and sticks, wireframe, spacefill.

• Show/hide dipole moment vector (toggle button).

• Partial charges as atom labels.

• Different surfaces (Van-der-Waals, Solvent Accessible Surface).

• Mapping Electrostatic Potential (ESP) on surface.

• Animate Vibrations.

With these initial specifications, milestones were determined in order to track project

progress and to ensure that none of the requirements are missed.

4.6 Milestones

A milestone is a significant event in the course of a project that is used to give

visibility of progress in terms of achievement of predefined goals [7]. Failure to meet

a milestone indicates that a project is not proceeding according to plan and usually

triggers corrective action by management. The specifications and the requirements

50

were further divided into milestone goals basically for more clarity and to ensure all

requirements are reached during the course of the development while ensuring steady

progress is made as well.

1. Django webapp with item view showing a single molecule with JSmol (e.g a file

loaded from /static/...).

2. Add basic controls for visualization (balls and sticks, wireframe, spacefill).

3. Ability to upload a small CML file, store it (as string) in the database, add

entry to list view, item view loads molecule structure from database (instead of

/static).

4. Upload large CML file (instead of small) and while handling the uploaded data,

extract the CML molecule (effectively the content of the small CML file) from

the large XML tree. Only store the small CML molecule(s).

5. Also extract CML: task, store alongside the corresponding CML molecule in the

database, and display in list and item view.

6. Extract dipole moment vector (three floats), store in database and use it to

draw arrow in JSmol.

7. Extract net atomic charge (one float per atom), store in database and load this

data as partial charges into JSmol molecule, add ESP surface.

8. Extract more textual data from CML: Method, Basis set label, SMILES, InChI.

9. Add animation for vibrations (only available when task is frequency_calculation).

10. Add visualization for molecular orbitals.

11. Make it look nice (CSS Stylesheet).

51

4.7 Design Visualization

In agile software development, informal design visualizations are often used by devel-

opers to ascertain that all the requirements are being captured. The most common

of these informal drawings and sketches are low fidelity sketches. Furthermore, these

drawings are also used to understand design decision [8, 55]. Understanding is im-

portant when developers try to make sense of a code snippet. It can be beneficial

when training a new developer or when a developer needs to work with a colleague’s

code [8]. Rough sketches and drawings have been found to be invaluable in that situ-

ation to frame and try to understand a problem or some obscure architecture. Since

sketches are also used to develop the UI and to brainstorm about the right archi-

tecture for the project, developers often collaborate to develop those sketches, and

they save these visualizations because it serves as documentation [8, 55]. Informal

drawings capturing the requirements and the design of the AUD in accordance with

the initial specifications were determined, as illustrated by Figure 4.1 and 4.2.

Figure 4.1: An informal drawing of the application with Single Molecule Item View.

52

Figure 4.2: An informal drawing of the application with Multiple Molecule Item View.

4.8 Secondary Requirements

These additions are basically modifications to the design and additional implemen-

tation of the RESTful API for both the single molecule item view and the multiple

molecule item view. The following are the secondary requirements:

List view:

• Forward http://server:port/ to http://server:port/list.

• Make table look nicer. For example, table borders with thin grey horizontal

dividers.

• Instead of storing the file-path (directory + filename), just store the filename.

53

• Make it more appealing with CSS3.

Item view:

Single molecule item view (see Figure 4.1)

• Implement RESTful interface for single molecule item view.

• Have single molecule item view under //server:port/view. For example, http://server:port/view/6

loads molecule with ID 6.

• Add control for transparency of surfaces.

Multiple molecule item view (see Figure 4.2)

• Implement RESTful API for multiple molecule item view. For example http://server:port/multiview/2+6+10

compares (database Ids) 2, 6 and 10.

• Have multiple molecule item view under http://server:port/multiview.

• Add sync control.

• Add control for transparency of surfaces.

54

Chapter 5

Implementation With TDD

5.1 Introduction

Having described the requirements in the previous chapter, this chapter discusses

the implementation of our CML visualization application with the TDD approach.

We give details into the technical information about the system, the structure of the

system, and the interaction among the various tools used in building the application.

5.2 Application Overview and Design

The application was developed using Django WAF and it consists of several Python

files that provide the required functionality. At the center of the design lies TDD which

offers a lot of advantages in the literature. TDD starts with gathering requirements

which are transformed into user stories. Those user stories are then translated into

automated functional tests. The automated functional tests will drive the unit tests,

which eventually becomes the production code.

55

The project began by setting up the environment and which ultimately starts with

an automated functional test. The system was implemented incrementally according

to TDD practice with one functionality implemented each step at a time. At every

step we wrote a failing test, which leads us to code each unit of functionality as we

refactor along the line. At first we had a working skeletal prototype, and later on we

improved and continued to build on that until we had the final working version. In

line with Django’s architecture, we arrived at Figure 5.1 as the overall architecture of

the CML visualization application with detailed explanation in Section 5.4.

Figure 5.1: Overall application architecture

56

5.3 Project Structure

The application contains different directories with each of them serving collective and

individual roles towards the overall functioning of our application as shown in Figure

5.2.

Figure 5.2: The Project directory structure containing the visualization application.

57

5.4 Explanation of Application Structure

The project directory contains different directories with various files that make up the

whole application. A short overview is explained below:

• cmlvizapp: This is called the outer root directory. It is the container for the

project and we could give it any name. This folder houses the entire application

including the JSmol applet,and example files folder which contains the CML

files.

• molecules: This directory contains the project settings like the init.py file,

settings.py, urls.py and wsgi.py. An explanation of each of the aforemen-

tioned files was given in Section 2.6.

• viewer: This is the application directory. It was created using the convention

Python3 manage.py startapp viewer as demonstrated in the sample applica-

tion example. It contains the fixtures, static, templates, and templatetags.

Fixtures are used to provide initial data to an application in Django. A fixture

is a collection of data that Django knows how to import into a database.[11]

Static contains the CSS file for the application and all other static assets used by

the application. For example, JSmol and the CSS style sheet used to beautify

the application.

• templates : This has two directories, namely public and the viewer directory.

The public directory contains the base.html file, while the viewer directory

contains listing.html (list view html code), upload.html (upload view html

code), and view.html (item view html code). We implemented template inheri-

tance here in order to avoid code duplication in our templates. These templates

are rendered through the view. The base.html in the public directory inherits

58

the three templates from the viewer directory as seen in Figure 5.3.

Figure 5.3: Template inheritance.

• views.py : Contains all the callable view functions of the applications. The

view serve the correct templates when requested by the client through the

browser. For example, running the command python3 manage.py runserver

triggers our development server at the http://127.0.0.1:8000/list. Starting

up the server automatically sends an HTTP request for the list view through

our browser. The URL takes the request and match it to the appropriate view

using URL resolver, and Django loads the appropriate view. Having served the

list view, we can then select one or two entries (molecules) and click on the view

button at the bottom of the list view page which calls view.html and responds

with either the part of the code that displays a single molecule item view or a

multi molecule item view as appropriate.

• templatetags: Consists of the filter functions. Cmlparse.py is a Python func-

tion that was written basically for the data extraction functionality, and to

convert CML files to fixtures for providing initial data to Django. Models.py

contains data registered and stored in the database.

• tests.py : This file has about 600 lines of code for our automated test framework

with different classes. In TDD, the test drives the production code of the AUD.

59

• urls.py : Contains the overall URL configurations as mapped to the views of

the application.

5.5 Setting Up Application Functional Tests

The first step in TDD is writing functional tests that keep failing, getting those tests

to pass, and running them iteratively as we build our application with the user story

(requirements). So we get started from the test.py. We start by importing some

modules. We discuss here only the most important modules used in writing the

automated test cases for the application.

5.5.1 Django TestCase

This is the most popular class used for writing tests in Django. It inherits from

TransactionTestCase (and by extension SimpleTestCase). SimpleTestCase is suit-

able for an application that does not use a database [15].

The Django TestCase class [15]:

• Wraps the tests within two nested atomic() blocks: one for the entire class and

one for each test. As a result, TransactionTestCase is well suited for testing

specific database transaction behaviour.

• Verifies postponed database constraints at the termination of each test[15].

Therefore as part of the important package for testing we called Django TestCase in

line 13 of Figure 5.4.

from django.test import TestCase

60

5.5.2 Selenium WebDriver

Selenium WebDriver is an automation tool for activities in a browser [50]. A detailed

explanation of the Selenium package has been given in Section 3.8. Line 16 to 18

in Figure 5.4, import all the Selenium modules necessary to run our test. At this

juncture, it is pertinent to explain that according to TDD practice, test methods are

named to clearly specify what they do. Also, the docstring (Python documentation

strings) should give clear details as to what the test does.

Figure 5.4: Importing modules and setting variables.

61

Having imported the necessary modules and WebDriver, we then set up the paths and

assigned them to a variable as illustrated in figure 5.4. The next step is testing the

URL. We start with the URL because it is an important component of the application

that the users come in contact with. Python is an object oriented programming

language which means that there is a construct called a class that enables structuring

software in a particular way. With classes, we add consistency to our framework so

that they can be used in a cleaner way [51].

5.5.3 Opening Page with WebDriver

We get started with Selenium by sub-classing WebDriver to create our own test

case, TestWebDriver, and our functions (see Figure 5.5 continuation).The function

"open" gets the URL so we could test it. Then we wrote the the last function

wait_for_page_load that waits for the page to load. All the functions were named in

such a way that they are self explanatory and can serve as documentation according

to TDD practice.

62

Figure 5.5: A code fragment that demonstrate the opening of page with the class
TestWebDriver.

Later, we used Xpath to locate element in Figure 5.5 (continuation). Elements in a

web page context are simply discreet components of an HTML document or web page.

Element types could range from: heading, table, images. A detailed explanation as

to how XPath works is given in Section 5.6.

63

Figure 5.5 (cont.) : Continuation of Figure 5.5.

5.6 Locating Elements

There are various strategies to locate elements in a page. Selenium provides the

following methods for this purpose [17]:

• find_element_by_id

• find_element_by_name

• find_element_by_link_text

• find_element_by_tag_name

64

• find_element_by_class_name

• find_element_by_css_selector

• find_elements_by_partial_link_text

• find_elements_by_xpath

5.6.1 Locating by XPATH

XPath is a powerful language used for locating nodes in an XML document, [17] and

it was used extensively in the AUD. With Selenium, we can take advantage of XPath

to locate elements in web applications as HTML can be an implementation of XML

(XHTML). XPath capabilities extends far beyond just finding elements, as it can also

be used to locate third checkbox on a page. One of the core strength of XPath is when

a user does not have a suitable id or name attribute for the element to be located,

XPath can still be used to locate the element either absolutely or relatively to an

element that does have an id or name attribute. XPath locators can also be used to

specify elements via attributes other than id and name [17].

5.6.2 StaticLiveServerTestCase

In accordance to Django’s documentation [14], when running tests that use real HTTP

requests as a substitute for the built-in testing client LiveServerTestCase, the static

assets need to be served along with the rest of the content. This is done, so that the

test environment looks exactly like the actual one as precisely as possible. However,

LiveServerTestCase has very basal static file-serving capability. It’s not aware of

the finders attribute of the staticfiles application and presumes that the static

content has already been collected under STATICROOT.

65

As a result, staticfiles ships its own staticfiles StaticLiveServerTestCase,

a subclass of the built-in one that has the capacity to serve all the assets during

execution of these tests in a very similar way to what we get at development time

with DEBUG = True, i.e. without having to collect them using collectstatic first

[14]. This is the reason why we needed to import StaticLiveServerTestCase on

line 14 in Figure 5.4. With StaticLiveServerTestCase, we have imported a slightly

advanced development server, therefore we need to create a function with our selenium

automation tool that will open and close the browser.

5.6.3 Set Up and Tear Down

In Figure 5.6, we are subclassing StaticLiveServerTestCase to create our own

test case SeleniumTestCase, setting up the web driver in setUp() which loads the

browser, and closing the browser after the tests are run with teardown(). The

setUp() function is a method from the TestCase superclass that runs before each

test method.

Figure 5.6: Setup and teardown browser

66

In Figure 5.7 below, we created a Django admin sign-in test class that inherits from

the base class. This class has two functions, namely: setUp(), and skip_test_login.

The setUp was customized for authorization, while the skip_test_login tests the

homepage by locating specified element in the page. Then we set Django admin log-in

test before we move into implementing the requirements one after the other. Having

laid the foundation, we can start our functional test with Selenium as we implement

the test cases first and then code the features in the views.py and other dependent

files as appropriate.

Figure 5.7: The setting up of Django admin log in test

67

After everything is set, we then start implementing the functionality one step at a

time in the TDD manner. We start with implementation of the list view as given in

Section 5.7.

5.7 Implementing List View

The convention for implementation of each of the specified views follows the same

pattern according to the TDD principles as explained in Chapter 2. First we write

a failing test in the tests.py file, then write the minimum code to get the test to

pass, update the views.py as well as the urls.py ensuring it maps to the right view

function, and extend the test cases as we code each of the specifications. We update

the corresponding HTML files to be served by views.py from the template and we

refactor as we go.

To get the list view implemented, we started by writing a class and delegating appro-

priate instructions to the function on Line 157 of Figure 5.8. Python functions are a

convenient way to divide code into useful blocks, allowing us to order our code, make

it more readable, reuse it and save some time [57]. The test case in Figure 5.8 tested

and verified the items related to the list view as specified. It is pertinent to note that

during the writing of each of the test cases, some debugging was done.

68

Figure 5.8: The test written for listing view.

The code for the listing view in Figure 5.9 and 5.9 (cont.) below was written and

updated simultaneously as driven by the test in Figure 5.8. We defined three functions

that cater to the display of molecules either in single molecule item view or multiple

molecule item view in accordance with the specification.

69

Figure 5.9: The implementation of listing view in views.py.

70

Figure 5.9 (cont.) : The continuation of Figure 5.9.

71

At the center of the implementation is the application urls.py file in Figure 5.10.

The file uses regular expressions to map in-coming HTTP requests to the appropriate

view.

Figure 5.10: The URL configuration of our application.

The view uses the templates to respond by supplying the appropriate HTML response

as seen in Figure 5.11 below:

Figure 5.11: Listing view HTML code fragment.

72

5.7.1 List View

Running our application gives us the list view in accordance with the specifications.

It also has an upload link and a navigation button to item view as shown in Figure

5.12.

Figure 5.12: The display of listing view showing uploaded CML test files and their
corresponding information.

73

5.8 Implementing Upload View

We implemented the upload view with Django’s documentation on file uploads. Django

handles a file upload by placing it in request.FILES [16]. We created a form that

has a post method and a multiple attribute was specified in the upload.html file

that resides in the template. The reason for having a multiple attribute is because

we want the application to have the ability to upload multiple files in-line with the

specification. The upload function in views.py handles the form and receives the

file data in request.FILES. This was implemented by writing the test first before

implementation. While Figures 5.13 and 5.14 show the test, Figures 5.15 and 5.16

show the implementation and the served HTML code respectively.

Figure 5.13: The test written for upload view.

74

Figure 5.14: An helper function for upload view.

Figure 5.15: The implementation of upload view.

75

Figure 5.16: Upload view HTML code fragment.

5.8.1 Upload View

Running our application and clicking on browse button takes us to the upload view

where a user can upload CML files (as shown in Figure 5.17).

Figure 5.17: The display of upload view with the browse and upload button.

76

5.9 Implementing Item View

The item view is one of the key components of all the views as it holds the key to

the visualization functionality of the application. As usual it started with writing a

failing test which leads us to the iterative implementation as seen in Figure 5.18 and

Figure 5.18 continuation.

Figure 5.18: The test written for Item view.

77

Figure 5.18 (cont.) : Continuation of figure 5.18.

The view should have the ability to display a single molecule item view and a multiple

molecule item view depending on the number of CML file(s) selected for viewing from

the list view in accordance to the specification. This was implemented in Figure 5.19

as shown below:

78

Figure 5.19: The implementation of item view.

The view function make use of a helper function called load to ensure the specifica-

tions were meet. The description of what the load function does is provided on Lines

90–98 in Figure 5.19.

79

The most interesting aspect of the implementation is the rendered view.html. It

has a variety of languages ranging from HTML5, Django template language (explained

in section 2.8), JavaScript and JSmol all working together in the single file as seen in

Figure 5.20.

Figure 5.20: Item view HTML code fragment.

80

We have given detailed information about JSmol in Section 3.13. Therefore, we are

just going to briefly describe how they all work together here. We initialize JSmol and

set the options for the info object in Figure 5.20 . Then we wrote the JSmol script to

execute from the data attribute. After which we created the applet and initialize it

with JSmol scripting.

Figure 5.20 (cont.) : Continuation of item view HTML code fragment.

81

Finally, we created a div class for the controls and arranged each of them in another

individual div class as seen in Figure 5.20 continuation.

Figure 5.20 (cont.) : Continuation of item view HTML code fragment.

82

Figure 5.20 (cont.) : Continuation of item view HTML code fragment.

83

Figure 5.20 (cont.) : Continuation of item view HTML code fragment.

84

5.9.1 Item View

Single View

Running our application, selecting an uploaded CML file(s) (molecule) from the list

view, and clicking on the view button at the buttom of the list view page takes us

to the single or multiple molecule item view where a user can visualize the CML file

(molecule) in different visualization models as seen in the Figures 5.21-5.34.

Figure 5.21: The visualization of an uploaded molecule in balls and stick model.

85

Figure 5.22: The visualization of an uploaded molecule in wireframe model.

86

Figure 5.23: The visualization of an uploaded molecule in spacefill model

87

Figure 5.24: The visualization of dipole arrow.

88

Figure 5.25: The labeling of partial charges and dipole arrow.

89

Figure 5.26: The visualization of Van-der waal surface and dipole arrow.

90

Figure 5.27: The visualization of solvent accessible surface.

91

Figure 5.28: The visualization of transparent surface.

92

Figure 5.29: The mapping of electrostatic potential.

93

Multiple View

As part of the requirements, selecting multiple CML files from the list view, and

clicking on the view button at the buttom of the list view page takes us to the

multiple molecule item view where a user can visualize and compare two or three

molecules in different visualization models as seen in Figures 31-34.

Figure 5.30: The visualization of multiple molecule item view electrostatic potential.

94

Figure 5.31: The visualization of multiple molecule item view solvent accessible sur-
face.

95

Figure 5.32: The visualization of multiple molecule item view partial charge.

96

Figure 5.33: The visualization of multiple molecule item view ball and stick.

97

Figure 5.34: The visualization of multiple molecule item view (3 Molecules) ESP.

98

5.10 Implementing Search Functionality

We implemented a search functionality for the list view. Search can be implemented

separately, but we made it part of the list view since it has a strong association with

it. Figure 5.35 shows the test case for the search functionality. The implementation

code is part of the list view implementation code.

Figure 5.35: The implementation of search functionality.

99

5.11 Secondary Requirement Implementation

As described in Section 4.7, they are basically modifications to the design and ad-

dition of some new requirements (see Section 4.7). The secondary requirement in-

cludes proper arrangement of the control buttons, addition of sync toggle for multiple

molecule item view and the implementation of RESTful API for the application as

seen in the docstring of figure 5.36.

Figure 5.36: The test written for the secondary requirement.

100

Figure 5.36 (cont.) : Continuation of figure 5.36.

101

5.12 Testing Milestones

In order to ensure that we have covered all milestones in Section 4.5, we wrote a test

case as seen in Figure 5.37.

Figure 5.37: The test written to ensure total coverage of milestone.

102

5.13 Implementing Database

We implemented and tested our model which Django documentation describes as the

single, definitive source of information about one’s data as shown in figure 5.38 [12].

To create our model, we created a class that sub-classed django.db.models.Model.

The specified fields of the model (database) in Section 4.3 are name, data, source,

index, etc. as shown in Figure 5.39.

Figure 5.38: The test written for the database.

103

Figure 5.39: The application database (Models).

5.14 Data Extraction

Data extraction was implemented with lxml. The lxml XML toolkit is a Pythonic

binding for the C libraries libxml2 and libxslt. It integrates the swiftness and XML

capabilities of libxml2 and libxslt with the simplicity of Python API [49].

It is usually compatible but superior to the well-known ElementTree functionality-

wise [49]. With lxml and other useful libraries, we wrote a code responsible for the

conversion of CML files to fixture. The fixture are then used to provide test data to

Django [11] as shown in the figure 5.40.

104

Figure 5.40: The implementation of extraction.

105

Figure 5.40 (cont.) : Continuation of figure 5.40.

106

Figure 5.40 (cont.) : Continuation of figure 5.40.

107

Figure 5.40 (cont.) : Continuation of figure 5.40.

108

Figure 5.40 (cont.) : Continuation of figure 5.40.

5.15 Implementing Beauty

One of the requirements is to make the application visually appealing. This was done

through the use of CSS3. A detailed explanation of what CSS does has been given in

the Subsection 3.13.4. Django saves and serves static files and images through the use

of the built-in static application. From the CSS file, we gave each of the pages specific

colours. Also we used CSS to style the table and the appearance of the visualized

molecule in both single molecule item view, multiple molecule item view. Figure 5.41

shows the CSS code used in styling our application.

109

Figure 5.41: The application CSS style sheet.

110

Chapter 6

Tests and Verifications

6.1 Introduction

This chapter covers the various tests that were performed on the application, with

the main focus on the functionality of the application.

6.2 Tests Outline

The main objective of this section is to make sure that the application meets all

the defined specifications in Chapter 4. It seeks to resolve programming errors, de-

fects, bugs, compatibility issues, and ensure adequate requirement coverage. We have

defined our test outline and limited the scope to the under-listed below:

• Functional Testing.

• Compatibility Testing.

• Regression Testing.

111

6.3 Functional Testing

This test deals with all the required functionality of our web application. It seeks to

ensure that the visualization application is tested and conforms with all the specifica-

tions. With Selenium, we were able to verify all the functionality through the written

automated test cases, as a core component of TDD. Moreover, to further ensure ab-

solute correctness, we conducted a series of manual tests as well. We verified all the

functionality listed in Chapter 4 including the ones listed below:

• All outgoing links from pages were tested and verified.

• All buttons that trigger the model information (ball and sticks, ESP, transpar-

ent, VDW, SAS) works perfectly.

• Proper positioning of JSmol applet was verified.

• Extracted molecule information displayed on visualization was verified for cor-

rectness.

• Navigations were tested and verified.

• The views were tested (list, upload, item (single and multiple molecule).

• Search box in list view work perfectly.

• Visualizations were tested and verified.

Each of the links goes to the right view, and all the buttons (radio and check-boxes)

worked as expected by loading different models of the molecules. The extracted

information displayed correctly.

112

6.3.1 Form Validation

As an important component of the functionality, we validated the forms. A web form

allows one to enter enters data to be sent to a server for processing. We verified that

each of the forms have the correct inputs. We tested and validated the HTML, CSS

and JSmol codes for possible syntax errors.

6.3.2 Information Extraction Testing

A key component of the application is information extraction while handling uploading

of large CML trees. This was tested and verified manually. The extracted information

was displayed for each of the entries loaded and opened in either the single molecule

item view or multiple molecule item view.

6.3.3 Visualization

As seen in the figures in Chapter 5, our application can visualize entries from the

database in different models with their corresponding extracted stored parameters

from the uploaded CML trees stored in the database.

6.4 Compatibility Test

This is a very important evaluation aspect of web applications. It involves testing

browser compatibility as well as operating system compatibility. We tested the appli-

cation on Windows, Mac OS and Ubuntu. We observed all the functionality, as well

as how contents are rendered. The application was found to be compatible with Fire-

fox, Internet explorer, Safari and Chrome. Furthermore, the application ran perfectly

under Windows 10, Mac OS, and Ubuntu.

113

6.5 Regression Testing

Because of the newly added requirement including RESTful API implementation, we

performed regression testing to ensure that our application still behaves according to

specification. We did this by re-testing (i.e re-running all the test cases) in order to

ensure that no error or defect has been introduced as a result of the changes in the

requirements and the newly added secondary requirements during development. We

also accessed stored entries directly from the database with their ID number from the

URL and it worked perfectly.

114

Chapter 7

Conclusions

A test-centered software development approach has been examined for use in the de-

velopment of a scientific web application for visualizing chemical structures based on

the requirements in Chapter 4. TDD employs the use of automated tests to drive

the design of a software with promises to produce high-quality applications with

clean, maintainable code, easier documentation and easier integration of changing

requirements. The web application was created using TDD with Django, Python3,

JavaScript, HTML5, CSS3, JSmol, Selenium, and the RESTful API. Then, the sce-

narios were defined for testing and the application was tested according to them. The

results were presented, and we verified that the implemented functionalities work.

TDD as a design protocol has no doubt set a strong foundation for adding additional

functionality and integrating new or changing requirements in a simple manner. Going

by the results of this project, TDD no doubt enhances application quality due to

its test-centered nature. This is because every piece of functionality is written as

a test and this gives no room for regression or logic bugs at the barest minimum.

Furthermore, it incites to write simpler and testable code in smaller, easier-to-test

chunks which invariably leads to better design. Simpler and more testable code in

115

most cases is faster and facilitates maintainability as it becomes easier to understand

by other developers. TDD also makes code reusable, as it has been used in both testing

and production environments. TDD ensures that all the required functionality are

met.

However, we make no claim that TDD is a magic wand that solves all software prob-

lems. Rather, the approach has the prospect of ensuring high-quality applications if

applied with all sense of discipline, as it can be a bit tedious especially in the begin-

ning. The results of this research should be adopted in the software industry as it

has added to the body of knowledge in this research area. More specifically, it could

be extended to building high-quality requirement web applications in the academic

circle and industry and thus raise the standards of developed applications.

7.1 Future Work

The future work would be to enhance the developed application to have a Graphical

User Interface. Also, a more robust web server could be integrated as well as a better

database. More visualization controls could be added as well. These improvements

are valuable for the future versions of the application.

116

Bibliography

[1] Scott Ambler. Test-driven development of relational databases. IEEE Software,

24(3):37–43, 2007.

[2] Dave Astels. Test driven development: A practical guide. Prentice Hall Profes-

sional Technical Reference, 2003.

[3] Kent Beck. Extreme programming explained: embrace change. Addison-Wesley

Professional, 2000.

[4] Kent Beck. Test-driven development: by example. Addison-Wesley Professional,

2003.

[5] Thirumalesh Bhat and Nachiappan Nagappan. Evaluating the efficacy of

test-driven development: industrial case studies. In Proceedings of the 2006

ACM/IEEE international symposium on Empirical software engineering, pages

356–363. ACM, 2006.

[6] Chris Cannam. Test driven development, 2011. URL http://soundsoftware.

ac.uk/unit-testing-why-bother/. Accessed: 2017-01-11.

[7] Chambers.com. Milestone definition, 2017. URL http://www.chambers.com.

au/glossary/milestone.php. Accessed: 2017-02-20.

[8] Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew Ko. Let’s go to the

117

http://soundsoftware.ac.uk/unit-testing-why-bother/
http://soundsoftware.ac.uk/unit-testing-why-bother/
http://www.chambers.com.au/glossary/milestone.php
http://www.chambers.com.au/glossary/milestone.php

whiteboard: how and why software developers use drawings. In Proceedings of

the SIGCHI conference on Human factors in computing systems, pages 557–566.

ACM, 2007.

[9] Jim Conallen. Modeling web application architectures with UML. Communica-

tion. ACM, 42(10):63–70, 1999.

[10] Django. Design philosophies, 2015. URL https://docs.djangoproject.com/

en/1.10/misc/design-philosophies/. Accessed: 2017-02-20.

[11] Django. How to provide initial data to Django using fixtures, 2017. URL https:

//docs.djangoproject.com/en/1.10/howto/initial-data/. Accessed: 2016-

10-30.

[12] Django. Documentation on models, 2017. URL https://docs.djangoproject.

com/en/1.10/topics/db/models/. Accessed: 2017-01-11.

[13] Django. Django Model View Template (MVT) documentation, 2017. URL

https://docs.djangoproject.com/en/dev/faq/general. Accessed: 2017-02-

25.

[14] Django. Documentation on the Staticfiles app, 2017. URL https://docs.

djangoproject.com/en/1.10/ref/contrib/staticfiles/. Accessed: 2017-

01-10.

[15] Django. Testing in Django, 2017. URL https://docs.djangoproject.com/en/

1.10/topics/testing/. Accessed: 2017-02-10.

[16] Django. Django documentation on file upload, 2017. URL https://docs.

djangoproject.com/en/1.10/topics/http/file-uploads/. Accessed: 2017-

01-13.

[17] Selenium-Python Binding Documentation. Selenium Python binding, 2017. URL

118

https://docs.djangoproject.com/en/1.10/misc/design-philosophies/
https://docs.djangoproject.com/en/1.10/misc/design-philosophies/
https://docs.djangoproject.com/en/1.10/howto/initial-data/
https://docs.djangoproject.com/en/1.10/howto/initial-data/
https://docs.djangoproject.com/en/1.10/topics/db/models/
https://docs.djangoproject.com/en/1.10/topics/db/models/
https://docs.djangoproject.com/en/dev/faq/general
https://docs.djangoproject.com/en/1.10/ref/contrib/staticfiles/
https://docs.djangoproject.com/en/1.10/ref/contrib/staticfiles/
https://docs.djangoproject.com/en/1.10/topics/testing/
https://docs.djangoproject.com/en/1.10/topics/testing/
https://docs.djangoproject.com/en/1.10/topics/http/file-uploads/
https://docs.djangoproject.com/en/1.10/topics/http/file-uploads/

http://selenium-python.readthedocs.io/locating-elements.html. Ac-

cessed: 2016-09-25.

[18] Tomaž Dogša and David Batič. The effectiveness of test-driven development: An

industrial case study. Software Quality Journal, 19(4):643–661, 2011.

[19] Hakan Erdogmus, Maurizio Morisio, and Marco Torchiano. On the effective-

ness of the test-first approach to programming. IEEE Transactions on software

Engineering, 31(3):226–237, 2005.

[20] Mozilla Foundation. Javascript, 2017. URL https://developer.mozilla.org/

en-US/docs/Web/JavaScript. Accessed: 2017-04-01.

[21] Martin Fowler. Test driven development, 2005. URL http://martinfowler.

com/bliki/TestDrivenDevelopment.html.

[22] Martin Fowler. Refactoring: improving the design of existing code. Pearson

Education India, 2009.

[23] Boby George and Laurie Williams. An initial investigation of test driven de-

velopment in industry. In Proceedings of the 2003 ACM symposium on Applied

computing, pages 1135–1139. ACM, 2003.

[24] Atul Gupta and Pankaj Jalote. An experimental evaluation of the effectiveness

and efficiency of the test driven development. In First International Symposium

on Empirical Software Engineering and Measurement (ESEM 2007), pages 285–

294. IEEE, 2007.

[25] David Hansen. TDD is dead long live testing!, 2014. URL http://david.

heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html. Ac-

cessed: 2017-01-11.

[26] Gemma Holliday, Peter Murray-Rust, and Henry Rzepa. Chemical markup,

119

http://selenium-python.readthedocs.io/locating-elements.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html

XML, and the world wide web. 6. CMLReact, an XML vocabulary for chem-

ical reactions. Journal of chemical information and modeling, 46(1):145–157,

2006.

[27] David Janzen and Hossein Saiedian. Test-driven development: Concepts, taxon-

omy, and future direction. Computer, 38(9):43–50, 2005.

[28] David Janzen and Hossein Saiedian. On the influence of test-driven develop-

ment on software design. In 19th Conference on Software Engineering Education

Training (CSEET’06), pages 141–148, 2006.

[29] David Janzen and Hossein Saiedian. Does test-driven development really improve

software design quality? IEEE Software, 25(2):77–84, 2008.

[30] Mehdi Jazayeri. Some trends in web application development. In 2007 Future of

Software Engineering, pages 199–213. IEEE Computer Society, 2007.

[31] Ron Jeffries, Ann Anderson, and Chet Hendrickson. Extreme programming in-

stalled. Addison-Wesley Professional, 2001.

[32] Dave Kuhlman. A Python Book: Beginning Python, Advanced Python, and

Python Exercises. Dave Kuhlman, 2009.

[33] Stefan Kuhn, Tobias Helmus, Robert Lancashire, Peter Murray-Rust, Henry

Rzepa, Christoph Steinbeck, and Egon Willighagen. Chemical markup, XML,

and the world wide web. 7. CMLSpect, an XML vocabulary for spectral data.

Journal of chemical information and modeling, 47(6):2015–2034, 2007.

[34] Crispin Lisa. Driving software quality: How test-driven development impacts

software quality. IEEE Software, 23(6):30–37, 2006.

[35] Sept Mark. Rapid GUI programming with Python and Qt. Learner’s Guide to

PyQt Programming, 2, 2009.

120

[36] Bob Martin. Monogamous TDD: Uncle Bob’s response to David Hansen

TDD is dead, 2014. URL http:\david.heinemeierhansson.com/2014/

tdd-is-dead-long-live-testing.html. Accessed: 2017-01-11.

[37] Robert Martin. Agile software development: principles, patterns, and practices.

Prentice Hall PTR, 2003.

[38] Michael Maximilien and Laurie Williams. Assessing test-driven development at

IBM. In Software Engineering, 2003. Proceedings. 25th International Conference

on, volume 10, pages 564–569. IEEE, 2003.

[39] Steve McConnell. Code complete. Pearson Education, 2004.

[40] Matthias Muller and Oliver Hagner. Experiment about test-first programming.

IEEE Proceedings-Software, 149(5):131–136, 2002.

[41] Peter Murray-Rust and Henry Rzepa. Chemical markup, XML, and the world-

wide web. 1. basic principles. Journal of Chemical Information and Computer

Sciences, 39(6):928–942, 1999.

[42] Peter Murray-Rust and Henry S Rzepa. Chemical markup, XML, and the world

wide web. 4. CML schema. Journal of chemical information and computer sci-

ences, 43(3):757–772, 2003.

[43] Peter Murray-Rust and Henry S Rzepa. CML: Evolution and design. Journal of

cheminformatics, 3(1):44, 2011.

[44] Ispir Mustafa. Test Driven Development of Embedded Systems. PhD thesis,

Middle East Technical University, 2004.

[45] Nachiappan Nagappan, Michael Maximilien, Thirumalesh Bhat, and Laurie

Williams. Realizing quality improvement through test driven development: re-

121

http:\david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http:\david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html

sults and experiences of four industrial teams. Empirical Software Engineering,

13:289–302, 2008.

[46] Harry Percival. Test-driven development with Python. " O’Reilly Media, Inc.",

2014.

[47] Pycharm. Pycharm IDE, 2017. URL http://research.omicsgroup.org/

index.php/PyCharm. Accessed: 2017-03-30.

[48] ReviverSoft. .CML File Extension, 2017. URL https://www.reviversoft.com/

file-extensions/cml. Accessed: 2017-06-19.

[49] Stephan Richter. lxml-XML and HTML with Python, 2017. URL http://lxml.

de/. Accessed: 2017-05-11.

[50] SeleniumHQ. Selenium WebDriver documentation, 2017. URL http://www.

seleniumhq.org/projects/webdriver/. Accessed: 2017-02-25.

[51] Zed A Shaw. Learn python the hard way, 2010.

[52] Technopedia. What is HTML5?, 2017. URL www.techopedia.com/definition/

1892/hypertext-markup-language-html. Accessed: 2017-02-25.

[53] Technopedia. Web programming definition, 2017. URL www.techopedia.com/

definition/23898/web-programming. Accessed: 2017-02-23.

[54] Tutorialspoint.com. RESTful web services introduction, 2017. URL https:

//www.tutorialspoint.com/restful/restful_introduction.htm. Accessed:

2017-01-30.

[55] Jagoda Walny, Jonathan Haber, Marian Dörk, Jonathan Sillito, and Sheelagh

Carpendale. Follow that sketch: Lifecycles of diagrams and sketches in soft-

ware development. In Visualizing Software for Understanding and Analysis (VIS-

SOFT), 2011 6th IEEE International Workshop on, pages 1–8. IEEE, 2011.

122

http://research.omicsgroup.org/index.php/PyCharm
http://research.omicsgroup.org/index.php/PyCharm
https://www.reviversoft.com/file-extensions/cml
https://www.reviversoft.com/file-extensions/cml
http://lxml.de/
http://lxml.de/
http://www.seleniumhq.org/projects/webdriver/
http://www.seleniumhq.org/projects/webdriver/
www.techopedia.com/definition/1892/hypertext-markup-language-html
www.techopedia.com/definition/1892/hypertext-markup-language-html
www.techopedia.com/definition/23898/web-programming
www.techopedia.com/definition/23898/web-programming
https://www.tutorialspoint.com/restful/restful_introduction.htm
https://www.tutorialspoint.com/restful/restful_introduction.htm

[56] Hans Wasmus, Hans-Gerhard Gross, Cesar Gonzales-Perez, and Maciaszek

leszek. Evaluation of test-driven development. In 2nd Working Conference on

Evaluation of Novel Approaches to Software Engineering, volume 30, pages 103–

110. Insticc Press, 2007.

[57] Learn Python website. Python functions. URL http://www.learnpython.org/.

[58] W3 Website. Cascading Style Sheets (CSS), 2017. URL https://www.w3.org/

standards/webdesign/htmlcss. Accessed: 2017-03-02.

[59] W3 Website. Hypertext Markup Language (HTML), 2017. URL https://www.

w3.org/standards/webdesign/htmlcss. Accessed: 2017-02-25.

[60] Wiki. JSmol documentation, 2017. URL http://wiki.jmol.org/index.php/

Jmol_JavaScript_Object#JSmol. Accessed: 2017-02-25.

[61] Wiki. Python documentation, 2017. URL https://wiki.python.org/moin/

BeginnersGuide/Overview. Accessed: 2017-02-25.

123

http://www.learnpython.org/
https://www.w3.org/standards/webdesign/htmlcss
https://www.w3.org/standards/webdesign/htmlcss
https://www.w3.org/standards/webdesign/htmlcss
https://www.w3.org/standards/webdesign/htmlcss
http://wiki.jmol.org/index.php/Jmol_JavaScript_Object#JSmol
http://wiki.jmol.org/index.php/Jmol_JavaScript_Object#JSmol
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview

Appendix A

Email Permission∗

∗This appendix provides the permission email for Overall TDD Process and TDD with functional
and unit test(Figure 2.3 and Figure 2.4)

124

	Abstract
	Acknowledgments
	List of Figures
	List of Abbreviations and Symbols
	Introduction
	Overview of Project
	Goals of the project
	Thesis Outline

	Test Driven Development
	Introduction
	TDD Definition
	Simple TDD Example
	Test Driven Development Concept
	Suggested TDD Efficacy in Context
	TDD in Academia
	TDD in Industry

	TDD Benefits
	Higher Production Code Quality
	Enhanced Application Quality
	Enhanced Developer Productivity

	The Disadvantages of TDD
	The Controversies

	 Web Application Development
	Introduction
	Overview
	Web Programming
	Client-Side Programming
	Server-Side Programming

	Application Development Environment
	Server-Side Tools
	Django Framework
	Django Overall Design Philosophies
	How Django Works

	Python 3.5.1
	Selenium 3.0
	Django TestCase
	REST API 3.5.4
	HTTP Methods

	Front-End Tools
	HTML5
	JavaScript 3.10.2
	JSmol 3.10.3
	Main Features of JSmol
	JSmol Initialization
	Setting Parameters
	CSS 3.10.4

	Integrated Development Environment
	PyCharm

	Version Control System

	Application Specifications
	Introduction
	Chemical Markup Language
	CML Visualization Web Application
	Primary Requirements
	Use Cases
	Milestones
	Design Visualization
	Secondary Requirements

	Implementation With TDD
	Introduction
	Application Overview and Design
	Project Structure
	Explanation of Application Structure
	Setting Up Application Functional Tests
	Django TestCase
	Selenium WebDriver
	Opening Page with WebDriver

	Locating Elements
	Locating by XPATH
	StaticLiveServerTestCase
	Set Up and Tear Down

	Implementing List View
	List View

	Implementing Upload View
	Upload View

	Implementing Item View
	Item View

	Implementing Search Functionality
	Secondary Requirement Implementation
	Testing Milestones
	Implementing Database
	Data Extraction
	Implementing Beauty

	Tests and Verifications
	Introduction
	Tests Outline
	Functional Testing
	Form Validation
	Information Extraction Testing
	Visualization

	Compatibility Test
	Regression Testing

	Conclusions
	Future Work

	Bibliography
	Email Permission

