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Abstract

Drilling in challenging conditions require precise control over hydrodynamic param-

eters for safer and efficient operation in oil and gas industries. Automated managed

pressure drilling (MPD) is one of such drilling solution which helps to maintain op-

erational parameters effectively over conventional drilling technique. The main goal

is to maintain bottomhole pressure between reservoir formation pressure and fracture

pressure with kick mitigation ability. Real life MPD system has to confront non-

linearity induced by drilling fluid rheology and flow parameters. To obtain a better

understanding of this operation, a lab scale experimental setup has been developed.

Reynolds number and pressure drop per unit length were considered to obtain hydro-

dynamic similarity. A vertical concentric pipe arrangement has been used to represent

the drill string and annular casing region. A linearized gain switching proportional in-

tegral (PI) controller and a nonlinear model predictive controller (NMPC) have been

developed to automate the control operation in the experimental setup. A linearizer

has been designed to address the choke nonlinearity. Based on the flow and pressure

criteria, a gain switching PI controller has been developed which is able to control

pressure and flow conditions during pipe extension, pump failure and influx atten-

uation cases. On the other hand, a nonlinear Hammerstein-Weiner model has been

developed which assists in bottomhole pressure estimation using pump flow rate and

choke opening. The identified model has been integrated with a NMPC algorithm

to achieve effective control within predefined pressure and flow constraints. Lastly, a

performance comparison has been provided between the linearized gain switching PI

controller and NMPC controller.
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Chapter 1

Introduction

1.1 Motivation

The quest for fossil fuel due to the high demand of energy has driven oil and gas

industries towards ambitious onshore and offshore petroleum explorations. After ex-

tracting oil and gas resources from most of the easiest wells, the petroleum industries

are focusing on drilling in challenging rock formations and environmental conditions.

This leads to the innovation of enhanced technologies and methods for safer drilling

operation. The decade-old practice to rely on human skills and expertise in drilling is

being challenged due to a higher probability of accidents resulting from undesirable

influx or kick from the reservoir to drilling system. Reservoir influx can happen due to

pressure imbalance among bottomhole pressure BHP, reservoir pressure and fracture

pressure. It is desired to have the magnitude of BHP maintained between reservoir

pressure and fracture pressure. Whenever BHP is lower than reservoir pressure, it re-

sults in influx or kick. On the other hand, BHP higher than fracture pressure results

in lost circulation. Failure to maintain pressure may result into devastating accidents

such as the Deepwater Horizon accident in Gulf of Mexico which resulted in loss of 11

lives with release of 4 million barrels of crude oil in the ocean (U.S. Chemical Safety

and Hazard Investigation Board). The aftermath of this accident had a huge detri-

mental impact on the human life and ecological system in the contaminated region.
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While drilling at greater depth, it is also required to add large number of pipes at reg-

ular time interval to extend the drill string length known as pipe extension scenario.

Addressing this issue with traditional technique results in longer non productive time

(NPT) with significant pressure fluctuation which has higher likelihood of developing

a kick in the wellbore. The pressure balance can also be changed if one of the primary

component in the system such as drilling fluid pump fails suddenly. Summing up all

the factors that may affect the pressure management, a managed pressure drilling

(MPD) is put into place to maintain the operation in the allotted pressure window

enhancing safety and productivity. Conventionally, MPD is utilized based on oper-

ator’s skill and experience to avoid kick and regulate BHP manually using control

valve/choke and back pressure pump. Automation in MPD operation can eliminate

the risk of human error in the operation with increased safety and efficiency. The

aim to automate this operation would have been lot easier if the process was lin-

ear. However, in reality, MPD is a nonlinear operation due to dynamic variation

in hydrodynamic properties. This induces challenge in modelling strategy which is

ultimately the foundation of automated MPD control system. Even though most

of the challenging phenomena have been addressed in the surface level equipment

through technological development, there is still a long way to explore the uncertain

hydrodynamic states present in the bottomhole region. In recent times, several con-

trollers have been developed including proportional-integral (PI) controller, internal

model controller (IMC), model predictive controller and non linear model predictive

controller (NMPC) to automate the MPD operation. The compatibility and perfor-

mance of these controllers varies based on the application in MPD operation.

The control system design becomes challenging also due to modelling uncertainties.

Kaasa et al. (2012) presented a simple hydrodynamic model based on the conserva-

tion of mass and momentum considering the drill string and annular casing as two
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separate control volumes. The primary focus of this model is to capture the signifi-

cant dynamics narrowing the parameter selection. However, the number of parameter

requirements increased as the explorations continued to the offshore areas. Landet

et al. (2013) proposed a partial derivative model by discretizing the ordinary differ-

ential equation model along the control volume. Even though this model is pretty

successful in capturing important dynamics such as heave motion, the computational

effort and complexity were significant. Constant bottomhole pressure (CBHP) and

flow control modes are two main modes where the controller has to manipulate the

input variables such as choke opening, pump flow rate to control the target states

such as bottomhole pressure and outlet flow rate. For fast pressure control objective,

PI controller has shown promising results. However, due to modelling uncertainty,

performance of controllers such as NMPC are still under experimentation. In this

thesis, our focus is to demonstrate the performance of PI and NMPC controller in a

lab scale experimental setup which can replicate the hydrodynamic phenomena oc-

curring in a real life MPD system. Also, the implementation challenges of these two

controllers are reviewed.

1.2 Objective

The goal of this research is to design and develop an experimental setup that can

replicate the behavior of a real MPD system primarily focused on controller imple-

mentation. The development of the setup is followed by implementation of a linearized

gain-scheduled PI controller and an NMPC controller. The controllers implemented

should be able to provide constant bottomhole pressure control during normal drilling

and pipe extension operation. The PI controller was implemented using a valve

linearizing technique. On the other end, the NMPC controller was designed and
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implemented based on a nonlinear model named Hammerstein-Weiner model. We

identified the modelling and operational challenges encountered while developing and

implementing the controllers.

1.3 Structure of the thesis

The rest of the thesis is organized as follows: Chapter 2 provides an overview on MPD

variants, essential components and recent developments in MPD operation. The mod-

elling and implementation challenges are also identified and summarized from sim-

ple to complex controllers. Chapter 3 presents the design and development stages

of the MPD setup with a linearized gain scheduled PI controller implementation.

A Hammerstein-Weiner model based NMPC controller performance is demonstrated

and compared with the preceding gain scheduled PI controller in Chapter 4. Chapter

5 provides concluding discussion on the contributions of this thesis with recommen-

dations for further research.
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Chapter 2

Literature Review

In this chapter, a brief overview on the scopes of improvement in MPD technique is

presented. Moreover, a sequential development of different control strategies based

on the application areas are provided.

2.1 Traditional drilling technique

The earliest known oil well drilling dates back to 347 AD where bamboo poles were

used in China to extract hydrocarbon resource from 240 m below the earth surface

(Totten, 2007). The drilling procedure, technology and complexity have changed

significantly over the years. Conventionally, a rotating drill bit is attached to a drill

string which crushes the rock formation and drives it to the reservoir section below the

earth surface. In an ideal scenario, it is desired to have bottomhole pressure marginally

over the reservoir pressure but below fracture pressure pfrac of the rock. As the drill

string progresses it becomes necessary to remove the cuttings and maintain pressure

inside drilling hole. A drilling fluid is pumped into the downhole region through

the drill string pipe and circulated back to the surface through the annular section

removing the formation cuttings. A schematic representation of the overall operation

is shown in Figure 2.1.

Aadnoy et al. (2011) provided a brief overview of pressure management in the drilling

operation. The pressure balance mainly involves bottomhole pressure pbh, reservoir

pressure pres and fracture pressure pfrac. Equation 2.1 represents the hydrostatic
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Figure 2.1: Schematic of a conventional drilling rig

pressure exerted by the drilling fluid depending on the depth and density of the fluid.

Bottomhole pressure depends on the type of drilling fluid, hydrostatic head based on

the true vertical depth, pressure at the pump exit, and the circulation rate of drilling

fluid (i.e. frictional pressure drop). Generally, a pump circulates the drilling fluid at

a particular flow rate qp which exerts a pressure pp on the drilling fluid. When the

drill string reaches the reservoir zone, the reservoir fluid exerts pressure pres at the

bottomhole through porous rock formation. According to Equation 2.2, the resulting

bottomhole pressure is the sum of hydrostatic head ph, pump pressure pp and frictional

pressure drop pf .

Conventional drilling technique utilizes drilling fluid as the primary tool for main-

taining the downhole pressure. Operators vary circulation rate, pump pressure, and

mud properties to attain desired bottomhole pressure. Based on the pressure manage-
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ment, a drilling operation can be broadly classified as underbalanced and overbalanced

drilling. In under balanced drilling (UBD) condition, the bottomhole pressure pbh is

not sufficient to resist the inflow of the reservoir fluid qk. During this operation the

pore pressure is maintained between bottomhole pressure pbh and formation pres-

sure pfrac. The underbalanced condition is developed intentionally using surface level

equipments such as rotating control device (RCD), choke and multiphase separator

(Malloy et al., 2009). It is a production oriented drilling technique where the goal is

to obtain maximum formation fluid without affecting the structural integrity of the

well bore. Moreover, this allows for simultaneous drilling and production. Conversely,

overbalanced condition aims at maintaining down hole pressure above formation pres-

sure. However, in order to maintain well integrity, the bottomhole pressure is never

allowed to exceed above fracture pressure of the rock pfrac. The bottomhole pressure

pbh is maintained marginally above the pore pressure pres to avoid inflow from the

reservoir.

ph = ρgh (2.1)

pbh = ph + pp − pf (2.2)

Occasionally, the pressure window offered by the rock formation and reservoir condi-

tion poses challenges to the operator. With the conventional method of drilling, there

is a higher probability of exceeding the fracture pressure in narrow pressure window

due to a limited range of pressure manipulating capacity of the system (Rehm et al.,

2013). On the other hand, bottomhole pressure maintained below pore pressure leads

to inflow from the reservoir. Drilling has to be stopped in the event of reservoir influx

which leads to unnecessary non-productive time (NPT). Moreover, an uncontrolled

influx situation can create devastating blowout situation. Thus, online pressure regu-
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lation during drilling is a prime need for industries to maintain safety and productivity

in drilling operation. MPD provides an opportunity to drill safely and efficiently.

2.2 Managed pressure drilling (MPD)

Figure 2.2: Comparison between conventional and managed pressure drilling

MPD helps to overcome the limitations of traditional drilling methods by dynamically

adapting and adjusting the drilling condition at a particular instant. The ultimate

goal of MPD is to provide an accurate pressure management within the pressure

window maintaining well integrity. The use of additional components such as choke

and backpressure pump provides more degrees of freedom to MPD system to control

downhole conditions more effectively. In addition to circulation pump pressure and

drilling fluid hydrostatic pressure, the choke and backpressure pump help to obtain

additional backpressure. As explained in Figure 2.2, MPD does not solely rely on
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hydrostatic pressure ph and circulation pressure pp, choke valve and backpressure pb

provide more flexible pressure varying capacity to the system. Thus, bottomhole

pressure is provided by the summation of ph, pp, pf and pb as given in Equation 2.3.

According to international association of drilling contractors (IADC) drilling manual,

some of the variations of MPD operation are presented below.

i. Pressurized mud cap drilling (PMCD)

ii. Dual gradient drilling (DGD)

iii. Constant bottomhole pressure drilling (CBHP)

PMCD is suitable for formation which experiences total loss of circulation. A sacrifi-

cial fluid is pumped through the annular pipe to compensate for the loss of hydrostatic

pressure due to loss of circulation. Typically, the hydrostatic pressure of annular re-

gion is maintained marginally below reservoir pressure with a slight backpressure

offered by surface level containments. Whenever an influx is experienced additional

fluid is pumped through the annular pipe to prevent influx of reservoir fluid. The

requirement of large supply of sacrificial fluid makes PMCD more suitable for offshore

application which has abundant supply of seawater.

DGD operation focuses on stabilizing the well bore pressure profile by using subsea

containments to manipulate mud return. In DGD offshore applications, the drilling

fluid from the annular casing does not travel back to the rig through conventional riser

setup. Additional components such as subsea mud lift pumps, gas injection or use of

lighter mud in the return line imposes a dual gradient pressure on the annular region.

This enables to control bottomhole pressure effectively by exposing the mud return

at seawater hydrostatic pressure gradient. The main objective in CBHP drilling is to

maintain the bottomhole pressure at a constant pressure setpoint defined within the

pressure window. Figure 2.3 shows a typical setup required for an MPD system. In a
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manual MPD operation, an operator controls the choke opening uc and backpressure

pump flow qb to avoid unwanted influx in the system. The effect of changes in pressure

and flow rate is shown in Table 2.1. In an event free drilling, the reduction of choke

opening induces backpressure to the control volume in the upstream choke location.

On the other hand, the increase in circulation flow rate and backpressure pump flow

increase system pressure. Figure 2.2 shows that the additional backpressure by the

surface level containments provide opportunity to manage bottomhole pressure be-

tween the pore pressure and fracture pressure effectively. Controlling choke opening

and pump flow rates manually requires operator’s skill and expertise and in most of

the cases does not deliver desired precision. This opens door for innovation in auto-

mated drilling solution. This thesis mainly focuses on automation of MPD operation

using constant bottomhole pressure drilling approach.

pbh = ph + pp − pf + pb (2.3)

Table 2.1: Flow and pressure interaction in an event free drilling scenario

Component Operation Choke Bottomhole
pressure pressure

(pc) (pbh)
Choke opening (uc) +/- -/+ -/+
Backpressure pump flow (qb) +/- +/- +/-
Circulation rate (qp) +/- +/- +/-
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Figure 2.3: Schematic of a managed pressure drilling rig setup

Figure 2.4: Pipe extension scenario in ideal condition
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2.3 Control objectives in managed pressure drilling

In an automated MPD controller, the main objective is to track the pressure trajec-

tory and to maintain the desired flowrates in the system. Pressure setpoint can either

be set externally or determined dynamically through observer based on available mea-

surements (i.e. choke pressure, flow rate). In addition the controller is expected to

handle several operational and failure scenarios such as, pipe extension, kick rejection

and circulation loss due to pump failure (Rehm et al., 2013). In a drill string extension

scenario as shown in Figure 2.4, firstly the drill string rotation is halted and pump

flow rate is gradually ramped down to zero over a fixed time. Once the circulation

rate is brought down to no flow condition, a new drill pipe is added. During this time,

it is desired to have constant bottomhole pressure in the bottomhole region. Once

the placement is done, the pump flow rate is ramped up to the desired value and the

drill string rotation is resumed.

Figure 2.5 depicts sudden failure of circulation pump which is one of the primary

points of control. In both pipe extension and pump failure cases, it is desired to

maintain the bottomhole pressure within the narrow pressure window by manipulat-

ing the choke valve position and changing the mud density. On the other hand, for

some reason, if reservoir pressure exceeds the bottomhole pressure, reservoir fluid will

flow into the bottomhole. These influx situations commonly known as reservoir kick

must be managed by a controller. During an influx situation, typically the pressure

control is stopped and the flow control is activated. As reservoir fluid enters into the

casing, choke flow will be higher than pump flow. A convenient control strategy is to

gradually close the choke opening until both flow rates are equal. This will raise bot-

tomhole pressure as well and stop reservoir fluid from entering into the bottomhole.

Subsequently pressure setpoint will be revised to a higher value marginally above
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Figure 2.5: Pump failure scenario in ideal condition

the reservoir pressure and controller will return to pressure control mode. This can

happen for several reasons as follows.

i. selection of setpoint based on poorly estimated condition.

ii. poor control of bottomhole pressure.

iii. drill string hits a high pressure pocket in reservoir.

2.3.1 Control relevant models for MPD

Over the years, researchers have developed models of varying complexity for MPD

system. Nygaard and Nævdal (2005) proposed a low order two-phase flow model for

managed pressure drilling applications. The model included the nonlinear behaviour

due to gas-liquid interaction in a two phase flow to calculate bottomhole pressure.

Lastly, the accuracy of the low-order lumped model and a distributed mechanistic
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model was compared. The low order model was developed by dividing the overall

system into two control volumes i.e. drill string and annular region. The mass bal-

ance, pressure balance were used to solve ordinary differential equations (ODE) for

pressure and mass flow rate in the bottomhole and well head region. In order to

include the nonlinear behavior due to two phase flow, gas liquid void fraction and gas

compressibility effect was introduced. On the other hand, the detailed mechanistic

model uses spatially discretized control volume. Even though the mechanistic model

is computationally demanding, the model provides better estimation of bottomhole

pressure comparing the low order model at varying mixture flow rates. However, it

was also observed that, the low order model provides reasonably accurate estima-

tion while drilling continues. Petersen et al. (2008) used partial differential equations

(PDE) to solve conservation of mass, momentum, and energy equations to evaluate

the dynamic states such as pressure, flow rates, and temperature. The distributed

model was developed by discretizing the overall system into small segments. The

PDEs based on continuity equations are solved sequentially from the first segment to

the last segment. Two consecutive segments share a common boundary conditions.

This model can be used in multiphase drilling and DGD operations where the flow

network is complex. The use of conservation equation enables the model to provide

accurate representation of real life scenarios. However, this model is computation-

ally demanding and requires expertise. Chin (2012) presented a simulator that can

evaluate dynamic states during an MPD operation. The model is capable of consid-

ering drill pipe eccentricity, Newtonian and non-Newtonian flow phenomena, steady

and transient flow conditions. The overall system is distributed into small segments

using a curvilinear grid system. Each segment in the grid conforms to the traditional

boundary conditions with respect to adjacent segments. The use of curvilinear grid

simplify the problems associated with complex geometry. The hydrodynamic states
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in each segment is solved using finite difference method. However, the models did not

consider the influx situations. Kaasa et al. (2012) presented a nonlinear ODE based

hydrodynamic model for estimating bottomhole pressures. The main contribution

of this work was to remove the complexity in modelling the pressure estimators and

bring focus to the vital parameters during drilling operations. The model derivation

considered functional relationship of fluid viscosity, equation of state, conservation

of mass, momentum and energy. The modelling strategy considered a homogeneous

and incompressible flow problem. The transient effect on the viscosity was consid-

ered negligible in the momentum balance equation. Based on the available surface

measurements such as pump flow rates, circulation pressures and outlet pressures, the

bottomhole pressure and frictional pressure drops can be estimated by using nonlinear

ODE based observers. The performance of the model was validated using the field

measurements from North sea well and data from Stavanger’s full scale experimental

rig setup. However, the model is limited to single phase flows only. Landet et al.

(2013) developed a hydraulic transmission line model based on annular flow path for

mitigating disturbance induced by heave motion experienced in the offshore drilling

operations. PDEs were developed using the conservation of mass and momentum

equations across differential control volumes. The discretization is done using finite

volume method. The PDEs in distributed control volume solves for pressure and vol-

umetric flow rate for all available spatial coordinates. The model is able to include

the hydrodynamic behavior due to changing annular volume and frictional loss across

drill bit in the bottomhole zone. Experimental data from Ullrigg facility was used

to verify the model performance. To conclude, various modelling approach has been

made to develop an accurate model for MPD applications. The chosen method largely

depends on the demand of required parameters and its associated accuracy.
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2.3.2 Controllers in drilling automation

The shifting industry focus from manual operation to automated well control has

stressed the need for innovation of efficient control strategies. The potential controller

algorithm ranges from simple proportional integral derivative (PID) controllers to

advanced non-linear model predictive controllers (NMPC). The computational effort,

desired level of accuracy and selection of variables is necessary for successful controller

implementation. Below we provide an overview of controllers implemented on MPD

systems.

2.3.2.1 Feedback controllers

Godhavn et al. (2010) demonstrated the use of a simple PID controller whose ultimate

goal is to track choke pressure during the normal drilling operation, pipe extension,

surge and swab operations. An online hydraulic model was used along with instanta-

neous formation pressure determination which measured the pressure states and solves

for an optimal choke opening for downhole pressure management. The controller con-

figurations were obtained from ordinary differential equation based transfer function

model. The tuning parameters vary when sudden flow fluctuations are experienced.

It was proposed that a gain switching PID controller can handle flow variations and

stabilize the operation. The stability and accuracy of the controller can be increased

by removing human effort in handling pipes and improving bottomhole pressure mea-

surement technologies. Zhou et al. (2011) presented a novel switched control scheme

for pressure regulation in the annular casing region with automatic kick attenuation.

The controller operates in two modes i.e. pressure control mode and flow control

mode. The overall control volume is divided into drill string and annular casing con-

trol volume. An observer has been developed using the nonlinear ODE equations to
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estimate the bit flow rate, reservoir pressure and kick flow rate. Pump pressure, choke

pressure, and pump flow rate are directly measured during operation. The measure-

ments are fed into the nonlinear observer which estimates the bit flow rate. When a

kick is experienced, the switching algorithm activates flow control mode which utilizes

the reservoir pressure estimate to choose a new BHP setpoint. Once the kick is re-

jected by tracking the new BHP setpoint, the controller switches back to its previous

pressure control mode with the new pressure setpoint value after a stabilization time

has elapsed. The controller switches to flow control mode whenever the kick estimate

exceeds the assigned threshold value. Godhavn et al. (2011) demonstrated the use of

a simplified nonlinear system of equations to estimate the bottomhole pressure and

developed a feedback linearized choke controller. The controller’s goal is to drive

the choke pressure to desired setpoint value. Achieving accurate frictional pressure

estimation also enables the system to obtain desired bottomhole pressure setpoint.

The controller has been implemented experimentally and provide better performance

over conventional PID controller. Reitsma and Couturier (2012) provided a compre-

hensive overview on the use of choke pressure controller in managed pressure drilling

operation. The review pointed out the need of handling control valve non-linearity

which occurs due to variable flow coefficients at changing flow demands. The develop-

ment of choke based controller is progressing with technological development. These

developments enable integration of simple PI control algorithms to advanced control

algorithms. It is also observed that the nonlinear controller provided promising results

over conventional PID controller in terms of response, robustness, and stability.

Siahaan et al. (2012) proposed an PID controller where the tuning parameters are se-

lected from a set of parameters based on the realtime measurements and cost function.

A high fidelity drilling simulator WeMod was used to demonstrate the effectiveness of

the controller. When a PID controller tuning parameters are fixed to constant values,
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there is a possibility of oscillation in the states when flow demand changes and the

controller tries to compensate the change. Prior to controller application, a set of

candidate parameters were designed. Based on the measured data and evaluation of

cost function, right candidate parameter is chosen to counteract the oscillation effect

and stabilize the operation quickly. However, the computation for selecting the right

setting is challenging without prior knowledge and expertise of the system. Hauge

et al. (2012) used feedback linearization technique to develop a choke controller. The

controller uses an adaptive observer for estimating downhole measurements. The hy-

drodynamic model is a set of nonlinear ODEs based on conservation of mass and

momentum across drill string and annulus control volume. Hauge et al. (2013) pre-

sented a further extension of his previous work where the controller performance was

demonstrated on an experimental system and high fidelity OLGA simulator. The

ultimate goal of this work was to locate the influx initiation point and estimate the

magnitude of the flow. Based on the quantity, a choke opening is set and the kick

is rejected by activating flow control mode in operation. A choice has to be made in

selecting BHP control mode or flow control mode based on the control requirement.

Nandan et al. (2014) proposed a robust gain switching scheme for automating MPD

operation using constant bottomhole pressure control technique. The gain scheduling

is performed based on magnitude of circulation rate and choke opening. The overall

operating region was divided into six operating regions with H∞ loop shaping con-

troller designed for each region. First order transfer function models between choke

pressure and choke opening has been used for designing the feedback controller. The

transfer function model incorporates set of gain and time constant values to operate

at different flow ranges. The controller is able to handle uncertainty offered by the

mud density of the drilling fluid. In normal condition the controller tracks the bot-

tomhole pressure at different mud densities. In event of influx, the reservoir pressure
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is estimated from the nonlinear ODE based observers, and a new pressure setpoint is

revised to mitigate kick in the system. The controller performance was simulated in

normal drilling, pipe connection, pump failure and kick attenuation cases. However

the experimental implementation is yet to be explored.

2.3.2.2 Predictive controller

Nygaard and Nævdal (2006) developed an NMPC controller using a distributed mech-

anistic model. The optimization scheme is based on Levenberg–Marquardt algorithm.

The controller was compared to a low order model based PI controller. The controller

design utilized the dynamics of two phase flow phenomena. The goal of the controller

is to control the choke opening based on the fluctuating flow needs in the drilling

operation. The NMPC controller had better performance over PI controller because

the PI controller configurations need to be changed with the change in operating

parameters. Carlsen et al. (2013) compared different control algorithms which can

be used to automate the sequential control operations in an influx situation. High

fidelity simulators were used to evaluate the controller performances. A PI controller,

an internal model controller (IMC) and a model predictive controller (MPC) were

designed to control the pump flow rate and choke pressure to handle kick situations.

The controller parameters were derived from first order process models. It is observed

that the IMC and MPC controller performances were better compared to the PI con-

troller. The MPC controller showed better performance when the control horizon is

increased. However, the robustness of the controller was compromised with an in-

crease in control horizon.

Breyholtz et al. (2010) presented a multivariable controller approach. An MPC con-

troller was implemented using a high fidelity simulator where flow rates and drill

string velocity were fed as input states and bottomhole pressure and hook position
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were set as output states. The controller model used a single-shooting multi-step

quasi- Newton method based solver. The simulation results were promising in reject-

ing disturbance and regulating BHP. However, drill pipe extension and flow control

cases were not dealt in the study. Møgster et al. (2013) proposed a linear MPC con-

troller in MPD. For using PID controller with a fixed tuning constant, multiple PID

controllers must be integrated for flow and pressure control operation at the same

time. The linear MPC controller uses flow and pressure constraints which eliminate

the need of using multiple conventional PID controller. Pump flow rate qp and choke

opening uc has been considered as manipulated variable. For efficient flow and pres-

sure controller, a linear first order transfer function model is utilized for manipulating

choke opening and pump speed. The controller was tested in high fidelity WeMod

software along with Statoil’s SEPTIC MPC software. However, the potential of this

controller could be explored in mitigating influx and pipe extension scenarios. Eaton

et al. (2015) proposed a combination of three model predictive controllers with ad-

vanced switching algorithm in MPD operation. The study presents the multivariable

control process on a high fidelity simulator where three different MPC models i.e.

high fidelity MPC controller, low order controller and empirical controller are used.

The high fidelity MPC controller is based on a high fidelity SINTEF flow model. The

low order model is based on a set of nonlinear ODEs. Lastly, the empirical controller

is based on the data obtained from the simulation. The combination of these three

controllers provide optimal choke opening and pump flow rate for pressure tracking in

normal drilling and pipe connection cases. Even though this controller is reasonably

successful in handling measurement inaccuracy, it requires significant computational

power and expertise to design and successfully implement the controller. Nandan

and Imtiaz (2017) designed an NMPC control scheme which utilizes the constraint

handling capacity of NMPC and automatically switches from pressure control mode
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to flow control mode in case of reservoir kick. Thus the controller is able to deliver

optimal performance during normal as well as abnormal condition. The control al-

gorithm is based on an output feedback structure. An nonlinear ODE observer has

been utilized to estimate the bit flow rate qbit and kick volume qkick. Whenever the

kick volume qkick goes beyond a threshold value indicated by the difference between

inlet and outlet flow rate, the flow control mode is activated to drive the kick out

of the system. The controller was developed and tested on a simulated ODE model

proposed by Kaasa et al. (2012) which solves for optimal choke opening by optimizing

the constraint values in predefined cost functions. The performance of the controller

was verified simulating in normal drilling, pipe extension and flow control cases. The

controller needs further experimental evaluation before it is ready for field application.

Zhou and Krstic (2016) included the time delay parameter in designing an adaptive

predictive control. Transient behavior is always experienced in a typical drilling op-

eration. For the sake of simplicity time dependent behaviors are generally ignored for

hydrodynamic modelling and controller design. This study presented a comparison

between PI controller and predictive controller with time delay parameter inclusion.

However, the full potential of this model is yet to be explored in real field application.

2.3.3 Experimental implementations of MPD

In order to design MPD operation efficiently, it is important to understand the actual

dynamics and challenges experienced in real field implementation. Researchers have

investigated the dynamic behaviour of MPD systems in setups ranging from lab scale

experiments to full-scale or actual field tests. Santos et al. (2007) demonstrated real

field application of micro flux control (MFC) as a form of MPD technology. The

feasibility of the MFC control approach was evaluated in LSU petroleum engineer-

ing research & technology transfer laboratory (PERTT) through several experiments.
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The facility is equipped with 15000 gallon capacity water circulating system. The

experimental well is 5884 ft deep supported by two triplex pumps and able to cir-

culate water from 250 gpm to 500 gpm. The pressure can be as high as 5000 psi.

The aim of the MFC technique is to drill maintaining marginal overbalance in the

bottomhole pressure and using corrective action as soon as the first kick is detected.

Fredericks et al. (2008) presented the implementation of MPD in a real field ex-

ploratory shallow gas well in Myanmar. The ultimate goal of MPD application was

dynamic control of pressure while drilling, pipe extension cases and flow control sce-

narios. Real-time surface measurements were fed into a system which predicted the

BHP instantaneously. The coriolis flow meter measuring the outlet flow provided an

early indication of the kick situations. In the event of influx, the dynamic annular

pressure control (DAPC) was switched from real time pressure measurement mode

to integrated pressure manager (IPM) mode to preserve the well integrity. Three

different choke openings and a triplex backpressure pump were regulated accordingly

to achieve flow control and constant BHP objectives. The overall technology inte-

gration was followed by proper risk assessment, commissioning and testing from an

operator point of view. Several experiments were performed in the Kvitebjørn well

to determine the feasibility of MPD operation. Syltoy et al. (2008) demonstrated

the integration of continuous circulation system (CCS) and use of Caesium/Potas-

sium (Cs/K) Formate based drilling mud with MPD operation in maintaining the

BHP requirement through automatic choke control. The operations were performed

in Kvitebjørn well where the formation-pressure-while-drilling (FPWD) tool was used

to evaluate the reservoir pressure at every instant. The pressure requirements were

adjusted by marginally placing the pressure setpoints above measured reservoir pres-

sure and the predicted reservoir pressure to be encountered while drilling. However,

successful implementation of these advanced technologies requires proper training of
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the operators and hazard identification of the site to be drilled. Bjorkevoll et al. (2008)

tested an automatic choke controller in Kvitebjørn well where choke regulating deci-

sions were made based on the online and offline hydrodynamic state evaluation. In the

online mode, the properties such as flow rate, pressure, density and temperatures were

checked to solve for an optimal choke opening. On the other hand, the offline mode

dealt with the influx situations and provided assistance in planning for long-term op-

erations involving multiple process sequences. Reitsma (2010) presented a modified

dynamic annular pressure control (DAPC) which can detect influx occurrence with-

out the use of outlet flow measurement. The need for flow meter was eliminated by

accurate pressure prediction and pressure based influx detection algorithm. Based on

the pressure evaluation a decision is made to regulate the choke opening and control

the bottomhole condition. The system was tested in petroleum engineering research

& technology transfer laboratory (PERTT) facility installed at Lousiana state uni-

versity. The test showed, pressure transducer alternatives can be used for reliable

kick detection. Godhavn et al. (2011) presented the experimental implementation of

a feedback linearized choke pressure controller. The Ullrigg test facility in Stavanger,

Norway with a true vertical depth of 1540 m was utilized to show the effectiveness of

the proposed feedback linearized controller and traditional PID controller. The main

pump flow rate can reach as high as 1500 lpm. The choke manifold can be oper-

ated remotely and able to withstand a maximum pressure of 345 bar. The setup has

bottomhole pressure estimation, pipe connection scenario and stepped choke pressure

tracking experiment features. Borgersen (2013) presented influx attenuation methods

in MPD operation using a lab scale test rig installed in University of Stavanger. PVC

pipe was coiled to obtain an overall length of 50 m. Pipes of 40-75 mm diameter has

been used to build up the flow loop. Well control valve and several manual valves

are placed across the overall length to manipulate the pressure at different points of
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interest. The setup is suitable for simulating reservoir kick scenario. First a pump

flow is set to a constant value, after few minutes as the pump flow rates stabilizes,

and the kick is injected. Gain switching PI controller is activated when an influx is

detected and rejected by pressure regulation using the installed flow control valves.

However, measurement noise was encountered which must be taken care of for reliable

measurements. Hauge et al. (2013) proposed an adaptive observer for detecting in-

flux initiation point, magnitude and mitigation strategies. The results were validated

with multiple experimental data sets obtained from the same setup used by Borgersen

(2013). The friction parameters and bulk modulus parameters were tuned using the

experimental data based correlation equation. The experiments showed that the influx

detection relies on the magnitude of kick occurence. The higher the magnitude, easier

it is to detect influx event. However, the experiments were limited to water based

drilling fluid. The use of non-Newtonian fluid can reduce the prediction accuracy of

the dynamic states. Ånestad (2013) presented a lab-scale experimental setup which

can simulate the heave induced disturbance in a managed pressure drilling operation.

The experimental setup was designed based on data from 4000 m deep vertical well.

Copper pipes were coiled together to obtain an overall length of 900 m. Flow and

pressure transducers were installed at different points of interest. The mathematical

model demonstrated the need for handling non-linearity in the choke. The pressure

and velocity information were obtained by solving PDEs describing the system.

2.4 Conclusions

From the previous discussion, it is evident that a lot of progress has been made in

accurate modelling and design of controller in MPD operation. The design and im-

plementation vary based on the control requirement. Even though a controller model
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may be successful in simulation, but it is not guaranteed to comply with the chal-

lenges experienced in the real operation in the field. This is due to the presence of non

ideal behaviour in drilling fluid, or nonlinearity in components such as choke manifold.

Thus, linearization techniques is yet to be explored while working in real field exper-

iments. It is also clear that even after a successful performance in simulation-based

implementation of NMPC controllers, there was no experimental implementation of

the NMPC for MPD system.

In this study, a lab-scale managed pressure drilling setup is presented with the im-

plementation of a gain switching PI controller and an NMPC controller. The main

goal for implementation is to identify the operational challenges and mitigate them

in the experiment. The linearized gain switching PI controller was designed based on

a novel choke control valve linearization technique. On the other hand, the NMPC

controller has been developed based on data-driven nonlinear Hammerstein Weiner

model. The controller performance was demonstrated for normal drilling operation,

pipe extension scenario, pump failure and flow control cases.

25



Chapter 3

Design, Development and Control of an Experimental Managed

Pressure Drilling Setup

Al Amin, Syed Imtiaz, Aziz Rahman & Faisal Khan

Department of Process Engineering,

Memorial University of Newfoundland,

St. John’s, Newfoundland and Labrador, Canada A1B 3X5

Abstract

In this paper, we present the design, development and control of a lab scale managed

pressure drilling (MPD) experimental setup. This scaled-down experimental setup

was built to study the hydrodynamics of MPD operation. A brief overview of the

design and development stages of the experimental setup is provided, followed by

simulation of different operational and abnormal scenarios, and comparison of the

experimental frictional loss with theoretical friction loss models. The experimental

setup is a 16.5 ft tall concentric flow loop where the inner pipe simulates the drill string

and outer pipe represents the annular casing in a drilling operation. Reynolds number

and ‘pressure drop per unit length’ of the experimental setup were matched as close as

possible to a field scale drilling system in order to maintain hydrodynamic similarity.

However, the flow loop is limited to static drill string. There is no axial rotation or

progression in vertical direction. A set of proportional integral (PI) controller with
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linearized valve and gain switching were applied to test a variety of drilling operational

scenarios including drill pipe extensions, pump failure and gas kick attenuation.

3.1 Introduction

The concept of MPD was formally introduced in the late 1960s in the abnormal pres-

sure symposiums at Louisiana state university (Rehm et al., 2013). According to

international association of drilling contractors (IADC), MPD is a condition based

adaptive technique which maintains the downhole pressure conditions in conjugation

to the annular pressure profile by using components such as backpressure control, bot-

tomhole annular pump or mechanical devices. The overall objective of this technique

is to maintain the downhole pressure within an allowable pressure window provided

by pore pressure and fracture pressure.

3.1.1 Experimental studies on MPD

Since the inception of MPD technique, several experimental investigations has been

performed to confirm the reliability of this operation. Technological advancement,

hydrodynamic model development, drilling automation, controller design and drilling

strategy formulation are some of the primary areas of focus during experimental anal-

ysis. Based on the desired area of concentration, experimental setups are designed.

Santos et al. (2007) demonstrated the feasibility of the micro flux control (MFC)

approach which was evaluated in LSU petroleum engineering research & technology

transfer laboratory (PERTT) through several experiments. The experimental well is

5884 ft deep and able to circulate water from 250 gpm to 500 gpm. The maximum

pressure can be as high as 5000 psi. The aim of the MFC technique is to maintain

marginal overbalance in the bottomhole pressure and take corrective action as soon
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as the first kick is detected. Reitsma (2010) presented a modified dynamic annular

pressure control (DAPC) which can detect influx occurrence without the use of outlet

flow measurement. The need for a flow meter was eliminated by accurate pressure

prediction and pressure based influx detection algorithm. The system was tested in

PERTT facility installed at Lousiana state university. The test showed that, pres-

sure transducer alternatives can be used for reliable kick detection. Godhavn et al.

(2011) presented the experimental implementation of a choke pressure controller. The

Ullrigg test facility in Stavanger, Norway with a true vertical depth of 1540 m was

utilized to show the effectiveness of the proposed feedback linearized controller and

traditional PID controller. The main pump flow rate can reach as high as 1500 lpm

with a maximum pressure upto 345 bar. The setup has bottomhole pressure esti-

mation, pipe connection scenario and stepped choke pressure tracking experiment

features. Borgersen (2013) presented influx attenuation methods in MPD operation

using a lab scale test rig installed at the University of Stavanger. PVC pipe was

coiled to obtain an overall length of 50 m. Pipes of 40-75 mm diameter has been

used to build up the flow loop. The setup is suitable for simulating reservoir kick

scenario. First a pump flow is set to a constant value, after few minutes as the pump

flow rates stabilizes, the kick is injected. Gain switching PI controller is activated

when an influx is detected and rejected by pressure regulation using the installed flow

control valves. However, measurement noise was encountered which must be taken

care of for reliable measurements. Hauge et al. (2013) proposed an adaptive observer

for detecting influx initiation point, magnitude and mitigation strategies. The results

were validated with multiple experimental data sets obtained from the setup used

by Borgersen (2013). The experiments showed that the influx detection relies on the

magnitude of kick occurrence. However, the experiments were limited to water-based

drilling fluid. The use of non-Newtonian fluid can reduce the prediction accuracy of
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the dynamic states. Ånestad (2013) presented a lab-scale experimental setup which

can simulate the heave induced disturbance in a managed pressure drilling operation.

The experimental setup was designed based on data from 4000 m deep vertical well.

Copper pipes were coiled together to obtain an overall length of 900 m. Flow and

pressure transducers were installed at different points of interest. The mathematical

model demonstrated the need for handling non-linearity in the choke. The pressure

and velocity information were obtained by solving PDEs describing the system.

3.1.2 Controllers in MPD

The control algorithms ranges from simple PI controller to model based predictive

controllers such as non linear model predictive controller (NMPC). Godhavn et al.

(2010) demonstrated the use of a simple PID controller whose ultimate goal is to

track choke pressure during the normal drilling operation, pipe extension, surge and

swab operations. The controller configurations were obtained from ordinary differ-

ential equation based transfer function model. It is proposed that a gain switching

PID controller can handle flow variations and stabilize the operation. Zhou et al.

(2011) presented a novel switched control scheme for pressure regulation in the an-

nular casing region with automatic kick attenuation. The controller operates in two

modes i.e. pressure control mode and flow control mode. The overall control volume

is divided into drill string and annular casing control volume. An observer has been

developed using the nonlinear ODEs to estimate the bit flow rate, reservoir pressure

and kick flow rate. When a kick is experienced, the switching algorithm activates

flow control mode which utilizes the reservoir pressure estimate to choose a new BHP

setpoint. Once the kick is rejected by tracking the new BHP setpoint, the controller

switches back to its previous pressure control mode with the new pressure setpoint

value after a stabilization time has elapsed. Godhavn et al. (2011) demonstrated the
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use of a simplified nonlinear system of equations to estimate the bottomhole pressure

and developed a feedback linearized choke controller. The controller’s goal is to drive

the choke pressure to desired setpoint value. Achieving accurate frictional pressure

estimation also enables the system to obtain desired bottomhole pressure setpoint.

The controller has been implemented experimentally and provide better performance

over conventional PID controller. Reitsma and Couturier (2012) provided a compre-

hensive overview on the use of choke pressure controller in managed pressure drilling

operation. The review pointed out the need of handling control valve nonlinearity

which occurs due to variable flow coefficients at changing flow demands. It is also

observed that the nonlinear controller provided promising results over conventional

PID controller in terms of response, robustness, and stability.

Siahaan et al. (2012) proposed an PID controller where the tuning parameters are

selected from a set of parameters based on realtime measurements and cost function.

A high fidelity drilling simulator WeMod was used to demonstrate the effectiveness

of the controller. When a PID controller tuning parameters are fixed to constant

values, there is a possibility of oscillation in the states when flow demand changes

and the controller tries to compensate the change. However, the computation for

selecting the right setting is challenging without prior knowledge and expertise of

the system. Hauge et al. (2012) used feedback linearization technique to develop a

choke controller. The controller uses an adaptive observer for estimating downhole

measurements. The hydrodynamic model is a set of nonlinear ODEs based on conser-

vation of mass and momentum across drill string and annulus control volume. Hauge

et al. (2013) presented a further extension of his previous work where the controller

performance was demonstrated on an experimental system and high fidelity OLGA

simulator. The ultimate goal of this work was to locate the influx initiation point

and estimate the magnitude of the flow. Based on the quantity, a choke opening is
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set and the kick is rejected by activating flow control mode in operation. A choice

has to be made in selecting BHP control mode or flow control mode based on the

control requirement. Nandan et al. (2014) proposed a robust gain switching scheme

for automating MPD operation using constant bottomhole pressure control technique.

The gain scheduling is performed based on magnitude of circulation rate and choke

opening. The overall operating region was divided into six operating regions with H∞

loop shaping controller designed for each region. First order transfer function models

between choke pressure and choke opening have been used for designing the feedback

controller. In normal conditions the controller tracks the bottomhole pressure at dif-

ferent mud densities. In the event of influx, the reservoir pressure is estimated from

the nonlinear ODE based observers, and a new pressure setpoint is revised to miti-

gate kick in the system. The controller performance was simulated in normal drilling,

pipe connection, pump failure and kick attenuation cases. However the experimental

implementation is yet to be explored.

Our objective is to design and develop a scaled down lab scale MPD system with

similar hydrodynamic properties of a typical wellbore system. The developed sys-

tem should be capable to replicate different operational scenarios including drill pipe

extension, pressure tapping, drill mud loss and gas kick; and test the performance

of a variety of control algorithms. We demonstrated the design methodology for de-

veloping the experimental setup and discussed the results from different operational

scenarios using the controller.

3.2 Design methodology

In the design, geometric similarity i.e. model should be an exact geometric replica of

the prototype; hydrodynamic similarity i.e. Reynolds number (Re) and pressure drop
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Figure 3.1: Selected pipe diameter design point

per unit length (∆P/L) were considered. The field data were collected from Birkeland

(2009). In the full scale setup, the drill string and annular casing pipe length ranges

from 17000 to 18350 ft. The vertical length in the experimental setup was determined

based on the available headroom in the laboratory and was set to 16.5 ft. In real field

setup, considering water as drilling fluid, the maximum Reynolds number can reach

upto 230000. The pressure drop per unit length can be as high as 0.03 psi/ft with a

maximum flow rate of 1400 lpm. The experimental setup was designed to match with

the real field design parameters as close as possible. The maximum Reynolds number

was considered to reach as high as 200000. The design pressure drop can be between

0.03 and 0.8 psi/ft in the lab scale experimental setup. Figure 3.1 shows that, Reynolds
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Figure 3.2: Pressure drop per unit length for different pipe diameters

number was calculated for drill string pipe and annular casing with nominal diameter

between 0.5 to 5 inches for a pump flow rate upto 200 lpm. The Reynolds number

for annular flow path is based on equivalent diameter Deq = Dai − Ddo. Figure 3.2

shows the pressure drop per unit length for the experimental setup for pipes with

different diameters at 200 lpm pump flow rate. Using the design constraints, the

required pipe diameters were chosen as shown in Table 3.1. In order to comply with

the frictional pressure drop for chosen diameters, pressure drops per unit length has

been calculated. Finally, the design parameters were checked to make sure the values

are feasible to build the flow loop. Several assumptions were made while designing the

experimental setup. In order to minimize complexity in operation, water is chosen

as the primary drilling fluid. However, the setup is designed to deal with viscous
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fluid upto 1.8 specific gravity (S.G.), constraint arising from pump specification. The

designed experimental setup is only suitable to investigate the flow behavior of a static

drill string (i.e. no rotation) at a particular depth. The reservoir fluid is considered

to be air. Pressurized air will be injected to replicate the influx situations. Due to

the smaller height of flow loop there is very small time delay and dynamic response

of outflow due to any change in inflow is quick. As such, the inlet and outlet flow

should be same within experimental error at zero influx condition. Under no influx

condition there is no change in fluid density or viscosity in the system.

Table 3.1: Dimension of designed drill string and annular casing pipe

Length Nominal Pipe Material
diameter Schedule

(in) (in)
Drill pipe 187 1.5 80 Black PVC Plastic
Annular 175 3 80 Clear PVC Plastic

3.3 Experimental setup

The flow diagram and a photograph of the setup are shown in Figures 3.3 and 3.4.

The core of the setup is a 1.5 inch diameter PVC pipe which is installed vertically to

represent the tubular drill string and a 3 inch clear PVC pipe placed concentric to

the inner pipe representing the casing. A 600 l capacity tank is constructed to supply

drilling fluid to the progressive cavity pump. The drilling fluid returns back to the

tank after being pumped through the flow loop completing the closed loop circulation

system. The screw type progressive cavity pump (PCV 101) circulates drilling fluid

with a circulation rate between 20 lpm and 200 lpm. The pump is capable to deliver

drilling fluid with a discharge pressure as high as 145 psi. A variable frequency drive

(VFD) is used to control the pump rpm to obtain the desired flow rate and pressure
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during the experiment. The VFD frequency can be regulated between 5 Hz to 60

Hz. For ensuring safer operation during any blockage condition in the flow path, a

bypass line has been created in the pump outlet region using a pressure safety valve

(PSV 101). If the system pressure exceeds 150 psi due to blockage in the flow loop,

the PSV will open the bypass line to release the excess pressure by redirecting the

flow from pump outlet to drilling fluid container. A non return valve (NRV 201) has

been placed in the drill pipe head near bottomhole region. This divides the overall

control volume into drill pipe control volume and annular control volume. The valve

prevents backflow with minimum opening pressure of 0.5 psi. A plug type pneumatic

actuator (CV 302) is installed in the wellhead region to control the upstream system

pressure. The valve stem travel in the actuator decides the choke opening between

0% and 100%. Both actuators requires a continuous air supply of 35 psi to be able

to manipulate the valve opening corresponding to the current signals obtained from

the control system. The choke opening can be calibrated automatically using the

digital positioner equipped with the valve travel mechanism. An air compressor has

been used to supply air to the pneumatic actuators and the air injection port in the

bottomhole region. The compressor can supply air to simulate the ‘gas kick’ in the

bottomhole region with pressure between 0 to 100 psi and air flow rate as low as 2.7

lps. Manual pressure regulators has been installed to regulate the supply pressure as

desired. An air flow meter (AF 501) has been used in the air supply line to measure

the air flow rate between 0 to 25 cfm with 2% full scale accuracy. A non return

valve installed in the air supply line ensures unidirectional air supply through the air

injection port to emulate the ‘gas kick’. Table 3.2 provides a brief overview of sensors

and actuators used in the experimental setup with its corresponding locations. The

compatibility and sizing of the sensors were determined based on the dimension of the

flow loop, budgetary limitations, and feature requirements. The sensors were wired to
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the data acquisition and control system in the control station. 8 pressure transmitters

and 3 flow meters are placed in the overall flow path as shown in Figure 3.3. The

pressure transmitters provides pressure measurements in current signal ranging from

4-20 mA with an accuracy of 0.1%. The flow meters provides instantaneous flow

measurements in current signals between 4-20 mA which is further converted in the

control system to record data in actual physical units. For safety, it is desired to

operate with a maximum system pressure of 150 psi with a flow rate ranging from 20

lpm to 100 lpm.

Table 3.2: Sensors and Actuators used in the system

Component Equipment Operating Position
range

Flowmeter Rosemount 8711 0 - 200 lpm FM101, FM401
Krohne Optiflux 3000 0 - 200 lpm FM301
Omega FLR 6725D 0 - 25 cfm AF501

Pressure Rosemount 2088 0 - 150 psi PT101, PT302
transmitter WIKA P31 0 - 300 psi PT102, PT201, PT202

PT203, PT204, PT302
Control Baumann 24000CVF 0 - 100% CV302
valve Apollo ball valve 0 - 100% CV101

3.4 Data acquisition and control system

The schematic of MPD data acquisition and control system is shown in Figure 3.5.

The control system is built on MATLAB Simulink and Advantech ADAM 5000 con-

troller platform. ADAM 5000 is a 8 slot distributed data acquisition and control

system which can accommodate analog input or output cards for bidirectional data

transmission. Communication between the MPD plant and MATLAB Simulink was

established using ADAM 5000 TCP/IP, OPC Server, and MATLAB OPC toolbox.

Three input cards and one output card had been used for reading the measurements
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Figure 3.3: Schematic of experimental setup

Figure 3.4: Actual experimental setup
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and writing the control outputs. ADAM 5017 input cards were used as analog input

module which can record data at 10 samples/sec with an accuracy of ±0.1%. The

pressure and flow measurements are recorded through the input module with an effec-

tive data resolution of 16 bit. Sensor calibration was performed using the maximum

and minimum ranges of the measuring component with corresponding current input

signals obtained between 4 to 20 mA. ADAM 5024 output module was selected for

sending the analog output signals with an effective resolution of 12 bit. Two pneu-

matic actuators wired to the output module receive current signal between 4 to 20

mA to drive the choke valve to a desired opening position between 0 to 100%. OPC

server and client pairs were configured in the computer using the Advantech OPC

server software. ADAM 5000 TCP/IP sends and receives data in the computer using

RS-485 communication standard. The OPC server converts the data and forwards it

to MATLAB OPC toolbox for monitoring and control purposes.

Figure 3.5: MPD data acquisition and control system
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3.5 Manual operation of the MPD system

The main objective of these experiments was to verify whether the MPD setup com-

plies with the design specifications and mimics the operational features. The exper-

iments were conducted by varying the pump flow rate and choke opening manually

from the control station. In order to observe the setup’s response to abnormal sce-

nario, ‘gas kick’ case was emulated using the air compressor.

3.5.1 Pressure drop characterization

In the MPD setup the progressive cavity pump circulates the drilling fluid (i.e. water)

at a desired volumetric flow rate qp, pressure at the pump outlet pp depends on the

flow rate and the overall dynamics of the system. The drilling fluid is pumped through

the drill string to the downhole region and circulated back to the surface through the

annular pipe. The non return valve (NRV 201) attached to the drill pipe head ensures

unidirectional flow in the bottomhole region. This helps to separate the drill pipe and

annular control volume. The pressure drop across the check valve is calculated in the

drill string frictional pressure drop (∆pfd) as shown in Equation 3.1. Choke valve

(CV 302) placed on the flow path at the exit of the annular section to manipulate

pressure pc in turn maintains bottomhole pressure pbh. The choke opening imposes a

backpressure to increase the bottomhole pressure.

pbh = pp −∆pfd + ρdght (3.1)

pbh = pc + ∆pfa + ρaght (3.2)

ph = ρght (3.3)
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Steady state bottomhole pressure can be calculated by summation of choke pressure,

annular frictional pressure drop and hydrostatic pressure in the annular section as

shown in Equation 3.1 and 3.2; ∆pfd and ∆pfa are frictional pressure drop in the drill

string and annular control volume; ph is the hydrostatic pressure offered by drilling

mud; qk is the influx flow rate obtained from the interaction between reservoir pressure

pres and bottomhole pressure pbh. Frictional pressure drop can be obtained by Darcy-

Weisbach equation from Moody and Princeton (1944) as shown in Equation 3.4 and

Equation 3.5.

hf = f
L

D

v2

2g (3.4)

∆Poverall = ρghf + ρgk
v2

2g (3.5)

hf is the frictional pressure drop coefficient at velocity v. Length L and Diameter D

is the geometric properties of the flow path. f is the friction factor which depends

on the flow regimes and pipe roughness. For simplicity, Reynolds number above 2100

was considered as turbulent flow. For turbulent flow, the friction factor is obtained by

solving Colebrook equation approximated by Haaland equation from Colebrook and

White (1937) and Massey and Ward-Smith (1998). This equation primarily requires

Reynolds number and pipe roughness for solving the equation. The Reynolds number

can be evaluated using Equation 3.6, and the friction factors are evaluated from

Equation 3.7. For annular section instead of diameter D, an equivalent diameter

Deq = Da − Dd was used. The overall pressure drop due to circulating flow path,

bends and fittings is the summation of major loss and minor loss. For the designed

experimental setup, the sum of minor loss friction coefficient k is considered to be 24
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which includes a 90◦ elbow, 180◦ flow reversal and non-return valve.

Re = ρvD

µ
(3.6)

1√
f

= −2log10

( ε
D

3.7 + 2.51
Re
√
f

)
(3.7)
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Figure 3.6: Pressure drop comparison

Experiments were conducted to observe the pressure drop characteristics of the setup.

The experiments were performed for water flow rate between 20 lpm and 160 lpm,

while the choke opening was varied between 20% - 100%. No influx and influx scenar-

ios were simulated in the setup. The experimental frictional pressure drop was com-

pared with the pressure drop calculated from Darcy Weisbach equation and OLGA

simulation. Figure 3.6 shows the comparison between the theoretical and experimen-

tal pressure drops at different flow rates with an error ranging from 7 to 15%. From

the obtained results it is evident that the flow loop follows the theoretical friction loss

equations. Figure 3.7 shows the calculated bottomhole pressure using Equation 3.1
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Figure 3.7: Bottomhole pressure estimation and comparison with experimental values

and measured bottomhole pressure. The average error between the measured and

calculated bottomhole pressure is less than 2%.

3.5.2 Flow manipulation - No influx scenarios

Next we made some manual steps to the pump flow rate to observe the pressure and

flow response at the pump inlet, bottomhole and near choke region. In this experi-

ment water flowrate was incrementally increased by 20 lpm. The choke opening was

maintained at 100% open. Figure 3.8 shows that the system has very fast dynam-

ics. The majority of the loss were associated with a frictional pressure drop across

non-return valves and control valves. The difference between pp, pbh and pc is due to

frictional loss experienced across the flow path.
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Figure 3.8: Inlet and outlet flow behaviour in the experimental setup

3.5.3 Choke manipulation - Influx scenario

The goal of this set of experiments is to confirm the ability of the setup to manipulate

bottomhole pressure, simulate influx scenarios and demonstrate effectiveness of choke

in mitigating the kick. In this experiment, the flow rate was kept constant at 60

lpm. In order to simulate ‘gas kick’ air was injected into the system at 40 psi after

30th sec from the start of the pump. After 60th sec, the choke opening was reduced

by 5% in every 10 secs to observe the setup’s response in handling ‘gas kick’. The

pressure due to the choke manipulation are shown in Figure 3.9. Initially due to

‘gas kick’ choke flow increased and the deviation between pump flow and choke flow

kept growing. As the choke was gradually closed the choke pressure and bottomhole

pressure started creeping slowly. Finally as the choke opening was down to 60% the

deviation between pump flow and choke flow reduced back to ‘0’ essentially showing

mitigation of ‘gas kick’. During this process the bottomhole pressure raised by 10 psi.

With this scheme it took 100 secs to mitigate the kick. From experimental results, it
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can be concluded that the setup is able to generate influx situation. Moreover, the

choke manipulation controls the abnormal situation typically desired for a managed

pressure drilling setup.
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Figure 3.9: Influx scenario at 60 lpm pump flow rate

3.6 Automatic operation of MPD system

After confirming the experimental setup’s ability to replicate the MPD hydrodynamic

characteristics through multiple series of manual experimental operation, the auto-

matic control methods were applied to observe the controller’s performance in han-

dling normal drilling, pipe extension, pump failure and influx attenuation cases. The

following sections provide a brief discussion on the controller design and the obtained

experimental results.
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3.6.1 Control valve linearization

One of the major challenges in MPD operation is due to the nonlinearity in the system.

The nonlinearity makes it difficult in control using linear controller. Edgar et al. (1999)

demonstrated the need for linearizing the control valve for precise control through PID

algorithm. An industrial wastewater problem was considered where the pH values

had a nonlinear relationship with the reagent delivery. A characteristic equation was

used to transform the nonlinear values to a linear scale which eases the controller

gain calculations. According to Smuts (2011), the control valve assumes a pressure

differential across inlet and outlet. If the obtained measurements do not correspond

to the change of input proportionally then the nonlinearity can be identified. The

nonlinearity relating flow parameters can be addressed by valve transform for the

desired variable. Reitsma and Couturier (2012) reviewed the nonlinearity in choke

based controllers in managed pressure drilling operation. The variation in choke flow

coefficient due to flow rate change induces nonlinearity in the hydrodynamic behavior.

In this experimental study, it was observed that the flow rate is independent of the

choke opening value since we used a positive displacement pump to circulate the

fluid. The choke pressure is nonlinearly related to the choke opening. Based on

the circulation rate, the flow coefficient of the choke control valve varies. Thus, a

nonlinear correlation was developed to transform the nonlinear pressure values to a

linear scale which simplified the controller design. The transformation equation is

developed based on experimental flow and pressure measurements taken by operating

the control valve in the entire operating range. After obtaining a complete set of choke

opening and pressure measurements a correlation is developed between the measured

pressure and valve opening.
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Figure 3.10: Resulting choke pressures at different choke opening and pump flow rate

3.6.2 Valve characterization

Figure 3.10 shows that at 20 lpm pump flow rate, the change in choke pressure is not

significant compared to choke pressure change at 100 lpm circulation rate. At 20 lpm

pump flow rate, choke pressure drops to zero at 50% choke opening. On the other

hand, at 100 lpm and 20% choke opening the choke pressure reaches 175 psi which is

above the maximum allowable pressure in our system. Thus the operating range for

flow rate was chosen between 40 and 100 lpm and the range for choke opening was set

between 25% to 85%. 40, 60, 80 and 100 lpm are chosen as representative flow rate to

cover the entire range of operation. Based on the experimental data a correlation given

by Equation 3.8 has been developed which transform the nonlinear pressure values to

a linear scale. The correlation model can be expressed as a cubic equation as given in

Equation 3.8. p1, p2, p3 and p4 are constants based on circulation rate in the system as
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shown in Table 3.3. These constants were selected from correlation model estimated

in the MATLAB curve fitting toolbox. Figure 3.11 provides a comparison between

obtained linear relationship and the nonlinear pressure values from the measurement.

The intermediate pressure values at flow rates other than 40, 60, 80 and 100 lpm

are calculated using in linear interpolation. Finally, the transformed linear values are

presented as shown in Figure 3.12.

(a) qp = 40 lpm (b) qp = 60 lpm

(c) qp = 80 lpm (d) qp = 100 lpm

Figure 3.11: Nonlinear and linear pressure values at variable choke opening and fixed
flow rate

plinear = p1 ∗ p3
actual + p2 ∗ p2

actual + p3 ∗ pactual + p4 (3.8)
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Figure 3.12: Linearized pressure at different choke opening and flow rate

Table 3.3: Constant values in correlation model

Flow rates(lpm) p1 p2 p3 p4
40 0.0008991 -0.08535 2.926 0.8964
60 0.0004918 -0.0648 3.182 -4.494
80 0.0001094 -0.0327 3.546 -15.67
100 0.0000649 -0.02264 3.1 -20.8

3.6.3 Linearized gain switching PI controller design

After linearization of the choke pressure a set of gain switching PI controllers was

designed to control bottomhole pressure using choke valve. The controller structure

is presented in Figure 3.13. The entire flow range was divided into four sections.

Identified system models for each segment are given in Table 3.4. The corresponding

plant output is shown in Figure 3.14. Proportional gains (kp) and integral gains

(ki) for the PI controllers are calculated based on Ziegler Nichols tuning method.

Switching between these PI controller was done based on flow rates. From Table 3.4

it can be seen that for flow rate between 65 and 105 lpm, the kp gains do not change
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Figure 3.14: Comparison between predicted output and actual measurement

significantly. So, in order to reduce the computational effort, last two segments were

merged and three controllers were implemented.

49



Table 3.4: Linearized plant models and controller gains

Controller Flow range(lpm) Linearized plant models kp ki

1 25 - 45 1.585s2+0.09418s−1.192∗10−5

s2+0.06442s+6.713∗10−5 0.3140 0.11

2 45 - 65 7.162s2+0.0118s−2.569∗10−5

s2+0.01603s+2.008∗10−6 0.0355 0.15

3

65 - 85 6.584s2+0.1191s−9.889∗10−5

s2+0.02415s+4.034∗10−6 0.1854 0.19

85 - 105 7.469s2+0.04909s−3.861∗10−5

s2+0.01105s+1.626∗10−6 0.1914 0.2

3.6.4 Normal drilling operation

The purpose of performing experiments in normal drilling operation mode is to check

the designed controller’s ability in tracking predefined bottomhole pressure setpoint

psetbh . The bottomhole pressure and choke pressure has the same dynamics, only a bias

due to frictional loss in the annular flow path. In Figure 3.15 the bottomhole pressure

setpoint was set to vary in every 35 secs interval ranging from 17 psi to 37 psi for

constant 40 lpm pump flow rate. The controller was able to reach the choke pressure

setpoint values within 25 secs. However, an steady state bias of approximately 4 psi

was observed between pressure setpoint and actual values at high pressure. Through-

out the pressure manipulation the flow rate remains constant as the progressive cavity

pump and the non-return valve in the drill string pipe head maintains preset pump

flow rate. In Figure 3.16 it can be seen that, with increase in pump flow rate the con-

troller performance has improved; time to reach steady state and the offset between

setpoint and actual bottomhole pressure value has decreased. The pressure reached

new setpoint within 15-20 secs. The choke opening showed smoother change com-

pared to choke movements at 40 lpm flow rate. The performance kept improving for
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Figure 3.15: Constant bottomhole pressure at 40 lpm pump flow rate

controllers designed for 80 lpm and 100 lpm as shown in Figure 3.17 and Figure 3.18

respectively. At higher flow rates, the tracking error reduced to 1 psi range. Overall

it was observed that with valve linearization technique, the controller was able to

track pressure setpoint value reasonably well. For all the experiments, the flow rate

remained constant irrespective of choke opening changes. The controller performed

well at higher flow rate than lower flow rate as the increased circulation rate provided

additional support in meeting the pressure tracking requirement which was limited

in low flow operations. Moreover, the choke opening had to be reduced steadily with

increasing pressure demands. All these characteristics are no different than the hy-
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Figure 3.16: Constant bottomhole pressure at 60 lpm pump flow rate

drodynamic properties required for an MPD setup. This shows the setup’s ability to

further simulate different operational scenarios to understand the hydrodynamics of

a MPD system.

3.6.5 Pipe extension scenario

During pipe extension scenario, the pump flow rate is ramped down to no flow con-

dition. After stabilizing the no flow bottomhole pressure condition, the pipe change

sequence is performed. Lastly, the circulation rate is ramped up again once the pipe

change sequence is completed. In the overall process, it is desired to maintain down
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Figure 3.17: Constant bottomhole pressure at 80 lpm pump flow rate

hole pressure to a value marginally above formation pressure to maintain well integrity

and avoid kick initiation. In the real life scenario mud density is increased to offset

the pressure exerted by the pump. At no flow condition pump pressure goes to zero

and the bottomhole pressure is maintained fully by using hydrostatic pressure. In

our setup we currently do not have the ability to increase the fluid density. As such

we had to circulate a minimum flow through the system to maintain the bottomhole

pressure. Because of the large variation in pressure and flow rate, all the controllers of

different operating ranges were active at different point to maintain the optimal per-

formance. Figure 3.19 shows the sequences of the controllers during the entire pipe

extension operation. During this sequence the choke opening were varied between
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Figure 3.18: Constant bottomhole pressure at 100 lpm pump flow rate

25% and 85%. The bottomhole pressure setpoint (psetbh ) was set to 20 psi. Initially the

pump flow rate was maintained at 100 lpm. After 120 secs the flow rate was ramped

down from 100 lpm to 30 lpm over 4 mins. The flow rate was kept constant at 30 lpm

for next 120 secs. Lastly, the flow rate was ramped up to 100 lpm in the next 4 mins.

Figure 3.19 shows that the gain switching controller is able to reach the bottomhole

pressure (psetbh ) setpoint with an offset of 3 psi. It was also observed that at low flow

rate the pressure tracking offset error was higher than the higher flow rate.
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Figure 3.19: Controller performance during pipe extension scenario

3.6.6 Pump failure scenario

Pump failure cases results in a sudden drop in circulation rate to ‘no flow’ or to a very

low flow rate. The controller must be able to maintain its predefined pressure setpoint

by quickly manipulating the choke opening to compensate the pressure drop due to

the sudden drop in flow rate. In this experiment, the pump flow rate was dropped

from 100 lpm to 35 lpm at 70th sec of normal operation. Figure 3.20 shows that,

when the flow rate was changed quickly within 5 secs, the controller switched from

controller 3 to controller 1 instantly to manipulate the choke opening and compensated
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Figure 3.20: Controller performance during pump failure scenario

for the pressure loss. The bottomhole pressure setpoint was predefined at 30 psi. The

controller successfully maintained setpoint pressure with a minor offset of 2 psi. Again

a ‘no flow’ condition could not be simulated since there is no option for changing the

density of the drilling fluid.

3.6.7 Gas kick scenario

A gas kick scenario was simulated in the system to observe the controller’s perfor-

mance in kick mitigation. During normal drilling operation the pump flow rate was

maintained at 60 lpm. To simulate ‘gas kick’ pressurized air is injected at 110th sec,

56



0 50 100 150 200 250

Time [s]

0

20

40

60

80

100

120

140

P
re

ss
ur

e 
[p

si
]

20

40

60

80

100

F
lo

w
 r

at
e 

[l/
m

in
]

Pressure and flow rate
p

c

p
bh

p
bh

 setpoint

q
p

q
c

0 50 100 150 200 250

Time [s]

20

30

40

50

60

70

80

90

C
ho

ke
 o

pe
ni

ng
 [%

]

0

1

2

3

4

C
on

tr
ol

le
r 

1 
=

1
C

on
tr

ol
le

r 
2 

=
2

C
on

tr
ol

le
r 

3 
=

3

Choke opening

u
c

Controller

Excess choke flow due to
influx volume

Setpoint change to reject influx

Figure 3.21: Controller performance during gas kick scenario

the choke flow rate rises sharply whereas the pump flow rate still remains constant

at 60 lpm. Real-time choke flow rates are observed to detect kick situation as shown

in Figure 3.21. This clearly indicates the gas kick which activates the flow control

mode in the controller. The flow control mode is activated whenever the difference

between pump flow rate and choke flow rate exceeds 5 lpm. The controller elevates

the pressure setpoint value by 10 psi and tries to mitigate the kick by balancing pump

flow and choke flow as shown in Figure 3.21. If the kick still persists after 10 secs,

the bottomhole pressure setpoint is raised again by 10 psi. It can be seen that after

two setpoint revisions the controller was able to stabilize the flow rate and attenuated
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kick. Figure 3.21 shows how the gain-scheduled PI controller has driven the choke

opening to attenuate kick. The closing of choke opening increases the bottomhole

pressure. As soon as the kick was detected, the setpoint pressure was increased by

10 psi. When the bottomhole pressure becomes marginally above the kick injection

pressure, the influx stops and the controller returns back to constant pressure tracking

mode setting the existing setpoint value as the new pressure setpoint. It took about

60 secs to mitigate the gas kick.

3.7 Conclusions and future works

The developed experimental setup is capable of replicating the hydraulics of a typical

managed pressure drilling system. The hydrodynamic behaviour of the experimental

setup has been compared with the theoretical correlations. A successful implemen-

tation of linearized gain scheduling PI controller has been presented. The linearized

gain switching PI controller is able to handle both valve nonlinearity and nonlinear-

ity due to flow variation. At higher flow rates the controller performance was better

compared to lower circulation rates. The controller was also tested for various nor-

mal and abnormal operational scenarios. Normal drilling, pipe extension cases were

emulated as normal scenarios. Experimental implementation of pump failure and gas

kick attenuation cases were tested successfully as abnormal scenarios. Future work

will include the setup’s performance to explore predictive controllers such as NMPC

controller.
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Abstract

In this paper, we present the design and implementation of a nonlinear model predic-

tive controller (NMPC) in a lab scale managed pressure drilling (MPD) experimental

setup. The goal of the controller is to maintain constant bottomhole pressure and

mitigate kick during reservoir influx scenario. Water is considered as the drilling fluid

which is circulated between 20 lpm to 100 lpm. The maximum allowable system pres-

sure is 150 psi. Under normal condition, the controller tracks bottomhole pressure

to a predefined setpoint. A Hammerstein Weiner nonlinear model has been used for

pressure prediction, and genetic optimization algorithm for calculating optimal con-

trol input. The optimizer uses cost function and flow constraints to generate a optimal

control input trajectory. The constraint handling capacity of NMPC enables to op-

erate with a limited number of controller configuration parameters. During reservoir

influx the controller switches to flow control mode to balance the pump flow and choke
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flow. After kick mitigation the controller switches back to pressure regulation mode

by revising the setpoint pressure to estimated reservoir pressure. Lastly, a comparison

between linearized gain scheduling PI controller and the NMPC controller has been

provided. The PI controller pressure tracking was oscillatory with steady state bias

of 4-5 psi. The NMPC controller delivered good performance over PI controller dur-

ing normal operation, pump failure, and gas kick cases where flow demand changes

frequently.

4.1 Introduction

Pressure management accounts for almost 40% of the drilling problems which makes

it one of the most important task in oil and gas explorations (Weatherford, 2010). In

drilling operation, drilling is performed in a narrow pressure window offered by frac-

ture pressure pfrac and reservoir pressure pres. For the sake of safety and efficiency

in the drilling operation, bottomhole pressure pbh has to be maintained within the

pressure window. Managed pressure drilling (MPD) assists in achieving this objective

by maintaining a marginal pressure overbalance in drilling operation. The combi-

nation of choke, backpressure pump, circulation pump, and manipulation of drilling

fluid density parameters enables MPD to maintain optimal pressure and avoid an

undesirable situation such as reservoir fluid influx commonly termed as kick. Ab-

normal situation such as kick raises drilling cost with significant non-productive time

(NPT). According to Rehm et al. (2013), MPD can reduce drilling cost as much as

$40 USD per foot of drilling. MPD operations need accurate hydrodynamic model

and technology integration for successful implementation. It can be broadly classified

into manual and automated operation mode. Due to a higher probability of error,

automated MPD is preferred over human skill and expertise in handling drilling prob-
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lem. The innovation in the field of MPD automation ranges from the hydrodynamic

model formulation, controller design and application. The parameters such as drilling

fluid rheology, multiphase flow and frictional losses induce nonlinearity in the system

dynamics which makes modelling and controller design challenging.

In MPD operation controller ranges from simple PID controllers to model based ad-

vanced controllers such as nonlinear model predictive controller (NMPC). Godhavn

et al. (2010) presented an ODE based PI choke pressure controller which controls

system states in normal drilling, pipe extension, surge and swab operations. The con-

troller tuning parameters were derived from a first-order transfer function model. In

order to address flow demand changes, gain scheduling of PI controllers were proposed.

Zhou et al. (2011) presented a novel switched control scheme for pressure regulation

and kick attenuation applied to a two control volume MPD model. Under normal

condition controller operates in pressure control mode and switches to flow control

mode in case of reservoir kick. Reservoir kick was detected based on an observer that

estimates the bit flow rate, reservoir pressure and kick flow rate. In flow control mode

the controller balances the pump flow and choke flow which raises the bottomhole

pressure in the casing. Once the kick is mitigated, the controller switches back to

its previous pressure control mode with the revised pressure setpoint based on esti-

mated reservoir pressure. Godhavn et al. (2011) demonstrated the use of a simplified

nonlinear system of equations to estimate the bottomhole pressure and developed a

feedback linearized choke controller. The controller’s goal is to drive the choke pres-

sure to desired setpoint value. Achieving accurate frictional pressure estimation also

enables the system to obtain desired bottomhole pressure setpoint. The controller has

been implemented experimentally and provide better performance over conventional

PID controller. Siahaan et al. (2012) proposed an PID controller where the tuning

parameters are selected from a set of parameters based on the realtime measurements
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and cost function. A high fidelity drilling simulator WeMod was used to demonstrate

the effectiveness of the controller. When a PID controller tuning parameters are fixed

to constant values, there is a possibility of oscillation in the states when flow demand

changes and the controller tries to compensate the change. Prior to controller ap-

plication, a set of candidate parameters were designed. Based on the measured data

and evaluation of cost function, right candidate parameter is chosen to counteract

the oscillation effect and stabilize the operation quickly. However, the computation

for selecting the right setting is challenging without prior knowledge and expertise

of the system. Reitsma and Couturier (2012) provided a comprehensive overview on

the use of choke pressure controller in managed pressure drilling operation. The re-

view pointed out the need of handling control valve nonlinearity which occurs due to

variable flow coefficients at changing flow demands. The development of choke based

controller is progressing with technological development. The nonlinear controller

provided promising results over conventional PID controller in terms of response, ro-

bustness, and stability. Hauge et al. (2012) used feedback linearization technique to

develop a choke controller. The controller uses an adaptive observer for estimating

downhole measurements. The hydrodynamic model is a set of nonlinear ODEs based

on conservation of mass and momentum across drill string and annulus control vol-

ume. Hauge et al. (2013) presented a further extension of his previous work where

the controller performance was demonstrated on an experimental system and high

fidelity OLGA simulator. The ultimate goal of this work was to locate the influx ini-

tiation point and estimate the magnitude of the flow. Based on the quantity, a choke

opening is set and the kick is rejected by activating flow control mode in operation.

A choice has to be made in selecting BHP control mode or flow control mode based

on the control requirement. Nandan et al. (2014) proposed a robust gain switching

scheme for automating MPD operation using constant bottomhole pressure control
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technique. The gain scheduling is performed based on magnitude of circulation rate

and choke opening. The operating region was divided into six operating regions with

H∞ loop shaping controller designed for each region. First order transfer function

models between choke pressure and choke opening has been used for designing the

feedback controller. The transfer function model incorporates set of gain and time

constant values to operate at different flow ranges. In normal condition the controller

tracks the bottomhole pressure at different mud densities. In event of influx, the

reservoir pressure is estimated from the nonlinear ODE based observers, and a new

pressure setpoint is revised to mitigate kick in the system. The controller performance

was simulated in normal drilling, pipe connection, pump failure and kick attenuation

cases. However the experimental implementation is yet to be explored.

Nygaard and Nævdal (2006) developed an NMPC controller using a distributed mech-

anistic model. The optimization scheme is based on Levenberg–Marquardt algorithm.

The controller was compared to a low order model based PI controller. The controller

design utilized the dynamics of two phase flow phenomena. The goal of the controller

is to control the choke opening based on the fluctuating flow needs in the drilling

operation. The NMPC controller had better performance over PI controller because

the PI controller configurations need to be changed with the change in operating

parameters. Breyholtz et al. (2010) used a single-shooting multi-step quasi Newton

method based solver for developing a multivariable MPC controller. The controller

utilized flow rates and drill string velocity as inputs and bottomhole pressure and hook

position were considered as output states. The simulation results showed successful

disturbance rejection and BHP regulation. Drill pipe extension and flow control cases

were not focused in the study. Carlsen et al. (2013) compared different controller al-

gorithms which can be used to automate the sequential control operations in an influx

situation. High fidelity simulator was used to evaluate the controllers’ performances.
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PI controller was designed to control the choke pressure during influx situation; in-

ternal model controller (IMC) and model predictive controller (MPC) were designed

to control the pump flow rate and choke pressure to handle kick situations. The

controller parameters were derived from first order process models. It was observed

that the multivariable IMC and MPC controller performance was comparatively bet-

ter than the PI controller. The MPC controller showed better performance when the

control horizon was increased. However, the robustness of the controller was compro-

mised with an increase in control horizon. Møgster et al. (2013) proposed a linear

MPC controller in dual gradient drilling (DGD) operation. For using PID controller

with a fixed tuning constant, multiple PID controllers must be integrated for flow and

pressure control operation at the same time. A linear MPC controller is subjected

to multiple flow and pressure constraints which eliminate the need of using multiple

conventional PID controller. For efficient flow and pressure controller, a linear first

order transfer function model is utilized for manipulating choke opening and pump

flow rates for control purposes. However, the potential of this controller could be

explored in influx and pipe extension scenarios. Eaton et al. (2015) combined three

different MPC controller i.e. a high fidelity model based controller, a low order model

controller and an empirical controller to obtain enhanced real-time performance in

MPD operation. The high fidelity model is based on simulator based on SINTEF

flow model. The low order model is based on nonlinear ODE hydrodynamic equation

and the empirical controller relies on the measured data obtained from the simulation.

The combination of these three controller delivered good pressure tracking during nor-

mal operation and pipe connection scenario. Even though this controller is successful

in handling measurement inaccuracy, it requires significant computational power, ex-

pertise to design and successfully implement. Zhou and Krstic (2016) included the

time delay parameter in designing an adaptive predictive control. Transient behavior
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is always experienced in a typical drilling operation. For the sake of simplicity time

dependent behaviors are generally ignored for hydrodynamic modelling and controller

design. This study presented a comparison between PI controller and predictive con-

troller with time delay parameter. However, the full potential of this model is yet to

be explored in real field application. Nandan and Imtiaz (2017) designed an NMPC

control scheme which utilizes the constraint handling capacity of NMPC and auto-

matically switches from pressure control mode to flow control mode in case of reservoir

kick. An nonlinear ODE observer has been utilized to estimate the bit flow rate qbit

and kick volume qkick. Whenever the kick volume qkick goes beyond a threshold value

indicated by the difference between inlet and outlet flow rate, the flow control mode is

activated to drive the kick out of the system. The controller was developed and tested

on a simulated ODE model proposed by Kaasa et al. (2012) which solves for optimal

choke opening by optimizing the constraint values in predefined cost functions. The

performance of the controller was verified simulating in normal drilling, pipe extension

and flow control cases. The controller needs further experimental evaluation before it

is ready for field application.

In this paper, we present an experimental implementation of an NMPC controller.

The NMPC algorithm is based on a Hammerstein Weiner model. The configuration

of the NMPC is similar to that presented in (Nandan and Imtiaz, 2017). The con-

troller uses the constraint handling capability of NMPC. During normal operation

the controller operates as a constant bottomhole pressure controller and switches to

a flow controller in case of a flow influx from the reservoir.
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Figure 4.1: Schematic of the experimental setup

Figure 4.2: Actual experimental setup
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4.2 Experimental setup

The developed experimental setup is a lab scale replica of an actual MPD wellbore

system. The flow diagram and a photograph of the setup are shown in Figure 4.1

and 4.2. The core of the setup is a 1.5 inch diameter PVC pipe which is installed

vertically to represent the tubular drill string pipe and a 3 inch clear PVC pipe placed

concentric to the drill string pipe representing the casing. A 600 l capacity tank is

constructed to supply drilling fluid to the progressive cavity pump. The drilling

fluid returns back to the tank after being pumped through the flow loop maintaining

a closed loop circulation system. The screw type progressive cavity pump (PCV)

circulates drilling fluid with a circulation rate between 20 lpm and 200 lpm. The

pump is capable to deliver drilling fluid with a discharge pressure as high as 145

psi. A variable frequency drive (VFD) is used to control the pump rpm to obtain

the desired flow rate and pressure during the experiment. The VFD frequency can

be regulated between 5 Hz to 60 Hz. A non return valve (NRV 201) separates the

drill string and annular casing control volume by ensuring unidirectional flow in the

bottomhole region. Two pneumatic choke valves has been placed in the pump outlet

and wellhead outlet respectively. For ensuring safer operation during any blockage

condition in the flow path, a bypass line has been created in the pump outlet region

using a pressure safety valve (PSV). If the system pressure exceeds 200 psi due to

blockage in the flow loop, the PSV will open the bypass line to release the excess

pressure by redirecting the flow from pump outlet to drilling fluid container. A plug

type pneumatic actuator is installed in the wellhead region to control the upstream

system pressure. The valve stem travel in the actuator decides the choke opening

between 0% and 100%. Both actuators requires a continuous air supply of 35 psi to

be able to manipulate the valve opening corresponding to the current signals obtained
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from the control system. The choke opening can be calibrated automatically using

the digital positioner equipped with the valve travel mechanism. Apart from the

pneumatic control valves, two isolation valves is installed in the wellhead and loss

circulation region to bypass the flow through an alternative flow path. The isolation

valve can either be opened or closed completely using a physical switch placed in

the control station. An air compressor has been used to supply air to the pneumatic

actuators and the air injection port in the bottomhole region. The compressor can

supply air to simulate the ‘gas kick’ in the bottomhole region with pressure between

0 to 100 psi and air flow rate as low as 2.7 lps. Manual pressure regulators has been

installed to regulate the supply pressure as desired. An air flow meter (i.e. Omega

FLR 6725D) has been used in the air supply line to measure the air flow rate between

0 to 25 cfm with 2% full scale accuracy. A non return valve installed in the air supply

line ensures unidirectional air supply through the air injection port to emulate the

‘gas kick’. 8 pressure transmitters and 3 flow meters are placed in the overall flow path

as shown in Figure 4.1. The pressure transmitters provides pressure measurements

in current signal ranging from 4-20 mA with an accuracy of 0.1%. The flow meters

provides instantaneous flow measurements in current signals between 4-20 mA which

is further converted in the control system to record data in actual physical units. For

safety, it is desired to operate with a maximum system pressure of 150 psi with a flow

rate ranging from 20 lpm to 100 lpm. Water is used as the drilling fluid during the

experiments. The drill string pipe is stationary i.e. rate of penetration (ROP) and

no rotation of drill bit. Air is used as reservoir fluid to simulate the influx situation.

There is no loss of drilling fluid during circulation at zero influx condition.
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4.3 NMPC design

An output feedback NMPC controller was designed and implemented on the experi-

mental setup to achieve various operational objectives of MPD system. The NMPC

utilized nonlinear Hammerstein Weinner (H-W) model similar to that presented by

Al-Duwaish and Naeem (2001) for prediction, and genetic algorithm for calculating

optimal control input. Pump or circulation rate and choke opening are the primary

sources for pressure manipulation in the system. The state vectors are bottomhole

pressure pbh and pump pressure pp. For achieving the control objective choke opening

uc is regulated to apply required backpressure to maintain desired bottomhole pres-

sure pbh. Choke flow rate qc and choke pressure pc are measured variables. Below we

describe the two most important components of NMPC.

4.3.1 System model

Figure 4.3: Hammerstein Weiner model

The structure of Hammerstein-Weiner model is shown in Figure 4.3. Hammerstein-

Weiner model was identified using actual process data collected from system identi-

fication experiments. The collected data is fed into MATLAB system identification

toolbox (Ljung, 2007). The identified H-W model was used as a prediction model in

the NMPC framework. The H-W model constitute of series of static and dynamic

blocks. The input nonlinearity block captures the nonlinearity in inputs (qp,uc) and

transform it to w(t) as shown in Equation 4.1a. The transformed non-measured term

w(t) is passed through a linear function block. The linear function projects the lin-
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ear input to an output x(t) using Equation 4.1b. Finally, the output nonlinearity

block induces the nonlinear dynamics to provide an improved nonlinear estimate of

the output pc(t) as shown in Equation 4.1e, (m,n) are the orders of the numerator

and denominator of the linear functional blocks and α is a nonlinearity index.
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Figure 4.4: Measured pressure and predicted pressure during identification experi-
ment.
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w(t) = f(α, qp, uc) (4.1a)

x(t) = B(q−1)
A(q−1)w(t) (4.1b)

B(q−1) = bo + b1q
−1 + ...+ bmq

−m (4.1c)

A(q−1) = 1 + a1q
−1 + ...+ anq

−n (4.1d)

p̂c(t) = f(α, x(t)) (4.1e)

The experiments were performed by manipulating the choke opening and pump flow

rate with random step type excitations. The pump flow rate was varied between 80

lpm and 25 lpm. The choke opening ranges from 25% to 75%. Figure 4.4 shows

input signals and the comparison between measured and predicted pressure. Linear

model parameters of the identified model are given in Equation 4.2a to 4.2d. A fit

of R = 89.2% between the measured and predicted signal was obtained. The input

nonlinearity parameters were identified as a 2x1 array of nonlinearity estimator objects

in MATLAB. The linear component of Hammerstein-Weiner model are given in as

Equation 4.1a to 4.1e. Consequently, output nonlinearity parameters were configured

using a set of 10 piecewise linear breakpoints. The reservoir kick can be considered as

a disturbance in the system. In addition to the identified model we used the steady

state relation as given in Equation 4.3 for bottomhole pressure prediction.

B1(z) = z−1 − 0.9492z−2 (4.2a)

B2(z) = z−1 − 0.9962z−2 (4.2b)

F1(z) = 1− 0.7033z−1 − 0.6914z−2 + 0.6101z−3 (4.2c)

F2(z) = 1− 0.6064z−1 − 0.5065z−2 + 0.1182z−3 (4.2d)
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p̂bh = p̂c + ρgh (4.3)

4.3.2 Estimation of optimal control output

The control objective is to maintain the bottomhole pressure at the desired setpoint

(r = psetbh ) under various disturbances (e.g. reservoir kick). In this setup, pump flow

rate was not available for manipulation by the controller. Only choke valve opening

(uc) was used as manipulated variable. The cost function (Equation 4.4) minimizes

the error between the target and predicted output over the prediction horizon keeping

the choke valve movements to minimal.

J = min
uc

k+m∑
K=k

γ1(p̂bh(K)− psetbh (K))2 + γ2 ∆uc2 (4.4)

where p̂bh is given by Equation 4.1 and Equation 4.3. γ1 and γ2 are weighing constants.

subject to constraints

pminbh ≤ pbh ≤ pmaxbh ; pminc ≤ pc ≤ pmaxc and uminc ≤ uc ≤ umaxc

The above optimization problem was solved using genetic algorithm (GA). Genetic

algorithm utilizes the Darwinian concept to find an optimal solution from a set of

outputs known as population (Stojanovski and Stankovski, 2012). Al-Duwaish and

Naeem (2001) showed the implementation of NMPC controller using GA optimization

technique. Initially the algorithm uses the Hammerstein-Weiner model to evaluate the

set of possible system outputs i.e. choke pressures using pump flow rate and choke

opening. The choke pressure values are used to estimate the bottomhole pressures as

given in Equation 4.3. The estimated bottomhole pressure constitutes a set of new

population. The genetic algorithm looks for set of possible control inputs from the

population which satisfies the cost function (Equation 4.4) and constraints. During
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this process, the fitness for the set of potential solutions are evaluated. The optimal

solution is determined which provides maximum fitness. Lastly, the control input

trajectory is developed and passed to the controller hardware for control valve input.

One of the major objectives of the controller is to minimize the effect of reservoir kick

into the system. In order to achieve that in addition to the above constraints we also

included the flow constraint given by Equation 4.4 in our minimization problem.

|qc − qp| < ε (4.5)

where ε is a tuneable parameter dependent on the sensor noise and disturbance within

the system in Equation 4.5. This constraint is valid for this system since there is very

small delay (<1 sec) between the pump flow qp and choke flow qc. Under normal

condition the controller’s priority will be to maintain the bottomhole pressure to the

target setpoint and will act more like a constant bottomhole pressure controller. In

case of a reservoir kick the difference between qp and qc will increase and as soon as the

constraint gets active, the controller will give up on the bottomhole pressure target

and put effort to balance the flow. In essence the controller will switch to a ‘flow

control mode’. Once the reservoir kick has been mitigated in order to return to the

‘pressure control mode’ the target bottomhole pressure has to be revised to a higher

setpoint. The pressure setpoint will be little over the updated reservoir pressure,

typically obtained by an observer. In this current experiment we determine the new

pressure setpoint based on known air injection pressure.
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0 psi ≤ pbh ≤ 100 psi (4.6a)

0 psi ≤ pp ≤ 100 psi (4.6b)

25 lpm ≤ qp ≤ 100 lpm (4.6c)

25 lpm ≤ qc ≤ 100 lpm (4.6d)

25% ≤ uc ≤ 75% (4.6e)

Equation 4.6a to 4.6e show the ranges of operation for the NMPC controller. The

prediction horizon of the controller was 3 secs. The controller execution interval was

1 sec. The control system is built on MATLAB Simulink and Advantech ADAM 5000

controller platform. ADAM 5000 is a 8 slot distributed data acquisition and control

system which can accommodate analog input or output cards for bidirectional data

transmission. Communication between the MPD plant and MATLAB Simulink was

established using ADAM 5000 TCP/IP, OPC Server, and MATLAB OPC toolbox.

Three input cards and one output card had been used for reading the measurements

and writing the control outputs. ADAM 5017 input cards were used as analog input

module which can record data at 10 samples/sec with an accuracy of ±0.1%. The

pressure and flow measurements are recorded through the input module with an effec-

tive data resolution of 16 bit. Sensor calibration was performed using the maximum

and minimum ranges of the measuring component with corresponding current input

signals obtained between 4 to 20 mA. ADAM 5024 output module was selected for

sending the analog output signals with an effective resolution of 12 bit. Two pneu-

matic actuators wired to the output module receive current signal between 4 to 20

mA to drive the choke valve to a desired opening position between 0 to 100%. OPC

server and client pairs were configured in the computer using the Advantech OPC
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server software. ADAM 5000 TCP/IP sends and receives data in the computer using

RS-485 communication standard.

4.4 Benchmark gain switching PI controller

To compare the performance of NMPC controller, a linearized gain switching PI

controller has been used. The choke pressure is nonlinearly related to the choke

opening. A novel linearized PI controller with valve linearization technique has been

proposed in Section 3.6.1 and 3.6.2. The linearized pressure can be obtained from

Equation 3.8. The entire flow range for gain switching PI controller was divided into

three sections. The proportional gains kp and integral gains ki for the PI controllers

were calculated based on Ziegler Nichols tuning method (Xue et al., 2007). The

controller configurations are shown in Table 4.1. The switching between the controllers

was done based on pressure and flow values.

Table 4.1: Controller configuration for linearized gain switching PI controller

Controller kp ki Operating flow range (lpm)
1 0.3140 0.11 25-45
2 0.0355 0.15 45-65
3 0.1914 0.2 65-105

4.5 Experimental results

The performance of the NMPC controller was demonstrated for various normal oper-

ational scenarios such as bottomhole pressure setpoint tracking, pipe connection; and

managing abnormal conditions, such as reservoir kick and pump failure. The con-

troller performance has been compared with a linearized gain scheduled PI controller

performance. The following sections provide a brief overview of the experimental
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conditions and the observations.

4.5.1 Tracking of bottomhole pressure
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Figure 4.5: Constant bottomhole pressure at 40 lpm circulation rate

The purpose of these set of experiments is to make a performance comparison between

the NMPC controller and the linearized gain switching PI controller in tracking the

bottomhole pressure setpoint psetbh . During these experiments, the circulation rate was
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fixed to 40 lpm. The pressure setpoint was changed from 27 psi to 47 psi at 23rd sec.

Figure 4.5 shows that initially when the controller setpoint was 27 psi, the NMPC

controller closes the choke opening to achieve required setpoint value within 5 secs of

operation. On the other hand, the gain switching controller tracks the bottomhole

pressure after 15 secs with minor steady state bias. When the setpoint was changed

after 23 secs, the PI controller responded within 5 secs to adjust the choke opening

to reach the new pressure setpoint of 47 psi. Though the PI controller response was

quicker, the NMPC controller reached the new setpoint within first 7 secs compared

to 10 secs for the PI controller. Also, the NMPC response was smooth while PI

response was oscillatory with a steady state bias. The choke opening manipulation

did not have any effect on the circulation rate due to use of progressive cavity pump

and non return valve at the bottomhole. Overall, it can be observed that, the NMPC

controller provides closer and stable tracking performance compared to the linearized

gain switching PI controller.

4.5.2 Pipe extension scenario

In a pipe extension scenario, initially the pump flow rate is gradually ramped down

to no flow condition. At this point, the pipe replacement operation is performed.

Once the replacement is complete, the circulation rate is ramped up back to the

original value. It is desired to maintain constant bottomhole pressure above the

reservoir pressure during this entire sequence to avoid kick initiation and maintain

well integrity. In real life scenario mud density is increased to compensate for the

loss in pump pressure at ‘no flow’ condition. As our setup does not have the ability

increase mud density, a minimum flow has to be maintained to sustain the bottomhole

pressure. In this experiment, the bottom pressure setpoint was fixed to 19 psi for both

controllers. Figure 4.6 shows that, for the NMPC controller the pump flow rate was
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Figure 4.6: NMPC controller - Pipe extension scenario

maintained at 80 lpm for the first 1 min. After 1 min, the pump flow rate was gradually

decreased from 80 lpm to 30 lpm in next 3 mins. At 30 lpm the flow rate was kept

constant for 1 min. During this period the bottomhole pressure dropped 4 psi below

the setpoint when the offset in bottomhole pressure was also eliminated. Figure 4.7

shows the performance of the linearized gain switching controller for pipe extension

sequence. The pump flow rate was gradually ramped down from 80 lpm after 1 min.

In 3 mins the flow rate was brought down from 80 lpm to 30 lpm. After reaching

30 lpm the pump flow rate was kept constant for 1 min. Lastly the flow rate was

ramped up to 80 lpm in next 3 mins. Comparing the PI controller performance with
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Figure 4.7: Linearized gain switching PI controller - Pipe extension scenario

the NMPC controller, the PI controller successfully tracked the bottomhole pressure

within an offset margin of 3 psi. This is due to the modelling inaccuracy of the

Hammerstein Weiner model used for predicting the pressure in bottomhole region for

the setup.

4.5.3 Pump failure scenario

Pump failure condition is experienced due to sudden failure of the circulation rate.

The controllers’ goal is to quickly compensate for the pressure loss and maintain

bottomhole pressure above the collapse pressure to avoid kick situation and maintain
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Figure 4.8: Pump failure scenario

well integrity. Figure 4.8 shows that the pump flow rate was suddenly decreased from

80 lpm to 25 lpm after 25 secs of operation. Again, the bottomhole pressure setpoint

psetbh was set at 22 psi. Both controllers successfully tracked the bottomhole pressure

with a steady state offset margin of 3 psi. The response of the NMPC was quicker

compared to PI. NMPC reached within 3 psi pressure margin within 10 secs while PI

took about 17 secs to reach the same level. In the experimental setup we could not test

the complete loss of circulation since it require increasing the density of circulation

83



fluid. Rather, we simulated partial loss of circulation.

4.5.4 Gas kick scenario
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Figure 4.9: NMPC controller - Influx attenuation scenario

To simulate the reservoir influx, pressurized air at 41 psi was injected in the bot-

tomhole region of the setup. The pump flow rate was kept constant at 60 lpm, and

the bottomhole pressure setpoint was set to 40 psi. The controllers are configured to

maintain kick volume below 5 lpm i.e. ε<5 lpm. Figure 4.9 shows that, the NMPC

controller successfully tracks the 41 psi pressure setpoint till 140 secs of operation
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Figure 4.10: PI controller - Influx attenuation scenario

within a steady state offset of 2 psi. When a gas kick was injected after 140 secs of

operation, the flow constraint specified by ε is violated as the excess flow exceeded

5 lpm. Since flow constraint has more priority over pressure tracking, the NMPC

controller gives up on bottomhole pressure setpoint tracking and starts to reduce the

excess flow by closing the choke valve. It can be observed within 50 secs the NMPC

controller was successful in stopping the influx of gas into the setup, thus mitigating

the gas kick condition. At 225 secs the pressure setpoint was revised to 50 psi i.e. 9 psi

over the injection pressure. As the flow constraint was no longer active the controller
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switched back to pressure tracking mode. To simulate the gas kick scenario using the

linearized gain switching controller, the pump flow rate was maintained at 60 lpm

during normal operation. The controller tracked bottomhole pressure to 39 psi using

the ‘pressure control mode’. Figure 4.10 shows that pressurized air was injected at

110th sec. Due to the gas injection the choke flow rate rises sharply which detects the

kick situation. The controller switches to ‘flow control’ mode and elevates the pres-

sure setpoint value 10 psi to mitigate the kick by balancing the pump flow and choke

flow. It can be seen that after two setpoint revisions the controller was able to balance

the flow rate and attenuated kick. When the pressure becomes marginally above the

kick injection pressure, the influx stops and the controller returns back to constant

pressure tracking mode automatically. It took 60 secs to mitigate the gas kick using

the PI controller. It was observed that the NMPC controller tries to eliminate the

gas kick with minimal setpoint revision compared to the PI controller.

4.6 Conclusions and future works

The NMPC controller was successfully implemented in the experimental setup. The

NMPC controller was able to track bottomhole pressure setpoint using pressure con-

trol mode during normal operation. Moreover, the pressure tracking during flow

demand changes was also observed by performing experiments replicating pipe ex-

tension and pump failure cases. On the other hand, whenever a reservoir kick was

injected to the system, the flow measurements instantly indicated the abnormal situ-

ation. The NMPC activated the flow control mode of the controller to drive the flow

rates to the minimum threshold kick value. The overall control action maintained the

predefined pressure, flow and input constraints by minimizing the cost function. The

Hammerstein-Weiner model helped in handling nonlinearity in the system states and
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provided accurate prediction. However, the modelling mismatch induced a steady

state bias between 2 to 5 psi. The deviation in pressure values was observed more

during pipe extension scenarios where the flow demands were changing over a short

period of time. Comparing the NMPC controller performance with the linearized

gain switching PI controller, the NMPC provided fast pressure tracking over PI con-

troller. The PI controller required multiple setpoint revisions during flow control

operation. There was no significant difference in performance during pump failure

scenario. However, the pressure tracking was oscillatory with steady state bias for

PI controller comparing the NMPC controller. For further improvement, the drilling

fluid of different rheological properties can be tested in the system. Moreover, a mul-

tiphase flow model can be modelled and tested using the experimental facility which

will provide a more realistic representation of the actual managed pressure drilling

operation.
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Chapter 5

Conclusions

5.1 Conclusions

The goal of this thesis was to develop a lab-scale experimental managed pressure

drilling (MPD) setup which can replicate the hydrodynamic behavior of a real MPD

facility. The setup should be able to operate in pipe extension, pump failure to kick

attenuation cases. In order to achieve these objectives, two controllers have been

developed: (i) a linearized gain switching proportional-integral (PI) controller, (ii) a

nonlinear model predictive controller (NMPC).

A lab-scale experimental facility has been built. Reynolds number and pressure drop

per unit length were considered while designing the experimental setup. Based on the

flow requirements, sensors and actuators were placed to get real-time data. A control

station monitors the sensor measurements and sends control signals to the actuators.

The control valve induced nonlinearity in the flow parameters which was addressed by

linearizing the valve output. The plant model for linearized valve outputs was identi-

fied using experimental data. This simplified the controller tuning requirements and

enabled the controller work flawlessly. In order to ensure smooth operation during

flow demand changes, gain switching schemes have been integrated by designing three

different PI controller across the overall operating range. The linearized PI controller

took approximately 30 secs to reach the steady state pressure tracking value. The

controller was successful to achieve constant choke pressure during pipe extension,
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pump failure and kick attenuation scenarios. The pressure tracking was limited to 2-5

psi steady state bias. The PI controller induced minor fluctuations while tracking the

setpoint pressure at low flow rate. It was seen that the PI controller may need multi-

ple setpoint revision to eliminate the kick from the system. Moreover, pipe extension

cases can only be tested during circulation.

The NMPC controller provided superior performance over linearized PI controller. It

takes the measurement from the system to decide a suitable control input based on

the predefined flow constraints. The controller uses a nonlinear Hammerstein-Weiner

model for predicting the states based on the real-time measurements. The constraint

handling capacity of this controller helped in gaining stable control during setpoint

changes. Steady state bias was lower using NMPC controller comparing PI controller.

However, this error could be reduced by addressing 10% modeling mismatch in the

nonlinear system identification for the plant model. The flow constraint was prede-

fined to assist in flow control operation in the event of kick. During kick scenario, the

controller rejected the influx within 10 secs of injection. No significant variation was

observed while experimenting with pump failure scenario. Both controllers were able

to respond to abrupt change in flow rate.

5.2 Future work

For the preliminary assessments, only water has been used as the primary drilling fluid

in the experiments. The use of drilling fluid with different rheological parameter would

help in obtaining in depth understanding of the challenges involved in implementing

the controllers. Besides this, the rotation and rate of penetration parameter can be

integrated to provide an accurate representation of the real drilling facility. Due to

absence of a backpressure pump, the pipe extension scenario cannot be tested at zero
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circulation rate. The future work will include the use of a backpressure pump to

provide efficient controller performance in MPD operation. Moreover, using a time

delay parameter in the prediction model could enhance the controller’s ability to deal

with sudden flow changes.
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