
Osmotic pressure-adaptive responses in the eye tissues of rainbow
smelt (Osmerus mordax)

Robert L. Gendron,1 Elizabeth Armstrong,1 Hélène Paradis,1 Lacey Haines,2 Mariève Desjardins,3
Connie E. Short,3 Kathy A. Clow,3 William R. Driedzic3

1Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, A1B 3V6, Canada; 2School of
Optometry, University of Waterloo, Waterloo, ON, Canada; 3Ocean Sciences Centre, Memorial University of Newfoundland, St.
John’s, NL, Canada

Purpose: The rainbow smelt (Osmerus mordax), is a teleost fish, which avoids freezing by becoming virtually isosmotic
with seawater. The effects that such massive changes in osmolarity have on both its visual system and its highly evolved
and specialized circulation are not known. New knowledge about the osmotic adaptation of the rainbow smelt eye is highly
relevant to the adaptation and survival of this species and to its ability to feed as a visual predator in the face of
environmental pressures. Moreover, the molecular physiologic response of the smelt to osmotic stress might provide
valuable insights into understanding and managing mammalian pathological hyperosmolarity conditions, such as diabetes.
We undertook the present study to provide an initial assessment of gene expression in ocular vasculature during osmotic
adaptation in rainbow smelt.
Methods: Immunohistochemistry with species cross reactive antibodies was used to assess blood vessel protein expression
in paraffin sections. Western blotting was used to further verify antibody specificity for orthologs of mammalian blood
vessel proteins in rainbow smelt. Thermal hysteresis and the analysis of glycerol concentrations in vitreous fluid were
used to assess the physiologic adaptive properties of cold stressed eyes.
Results: Glycerol levels and osmotic pressure were significantly increased in the vitreal fluid of smelt maintained at
<0.5 °C versus those maintained at 8–10 °C. Compared to the 8–10 °C adapted specimens, the rete mirabile blood vessels
and connecting regions of the endothelial linings of the choroidal vessels of the <0.5 °C adapted specimens showed a
higher expression level of Tubedown (Tbdn) protein, a marker of the endothelial transcellular permeability pathway.
Expression of the zonula occludens protein ZO-1, a marker of the endothelial paracellular permeability pathway showed
a reciprocal expression pattern and was downregulated in rete mirabile blood vessels and connecting regions in the
endothelial linings of choroidal vessels in <0.5 °C adapted specimens. Smelt orthologs of the mammalian Tbdn and zoluna
occludens protein 1 (ZO-1) proteins were also detected by western blotting using anti-mammalian antibodies raised against
the same epitopes as those used for immunohistochemistry.
Conclusions: This work provides the first evidence that molecules known to play a role in ocular vascular homeostasis
are expressed and may be differentially regulated during anti-freezing cold adaptation in smelt eyes. We propose a
hypothesis that in a state of cold-induced hyperosmolarity, changes in ZO-1 expression are associated with the passage
of small solutes from the plasma space to ocular fluid, while changes in Tbdn expression regulate the passage of proteins
between the ocular fluid and plasma space. This work also provides fundamental insight into the mechanisms underlying
the adaptation of the blood-retinal barrier to metabolically relevant compounds such as glycerol.

In the absence of protective mechanisms, the body fluids
of a teleost fish should, based on osmotic pressure alone,
freeze at about −0.65 °C. The rainbow smelt, a species
common to the North Atlantic, avoids freezing in winter
temperatures as low as the freezing point of seawater
(−1.8 °C), through both non-colligative and colligative means.
This species, in common with many other low temperature-
adapted marine fish, produces a cysteine-rich, type II anti-
freeze protein, albeit at low levels [1], but is unusual among
fish in that it also accumulates glycerol, urea, and
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trimethylamine oxide in the plasma and other tissues (muscle,
heart, liver, spleen, kidney, gill, intestine, and brain), such that
osmotic pressure increases from about 325 up to 1,000
mOsmols [2–4]. In effect, the fish approaches an isosmotic
state with seawater. To maintain glycerol levels, smelt feed
upon crustaceans and other invertebrates at low temperatures,
implying that their visual system remains functional.

The fish eye is dependent upon a highly evolved and
specialized circulation [5–7]. In teleost fish, retinal tissues are
supported by vascular structures-the fenestrated choroidal
vasculature (also called the choriocapillaris) and the non-
fenestrated inner retinal vasculature-which are largely similar
to those occurring in mammalian retinas [8]. However, unlike
mammals, teleosts also have a rete mirabile, a vascular organ
that is positioned just posterior to and upstream of the
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choroidal vasculature. The rete mirabile concentrates oxygen
for delivery to the neural retinal tissues via the choroidal and
retinal vasculatures [5,6].

In mammals, much of the retina exists behind a blood-
retinal barrier and several proteins appear to be particularly
important in the trafficking of solutes and proteins from the
plasma space, across the vascular membranes, and into the
retinal layers of the eye. Tubedown (Tbdn) and zoluna
occludens protein 1 (ZO-1) are two such proteins, which are,
respectively, associated with the transcellular and paracellular
permeability pathways of the blood vessels. Our laboratory
initially characterized and has described the importance of
expression of the N-terminal acetyltransferase subunit Tbdn
(also now known as Naa15) in choroid-retinal blood vessels
to maintain homeostasis of the mammalian retina [9–12].
Knockdown of Tbdn in animal models and the suppression of
Tbdn expression in human retinal disease specimens are
associated with the loss of retinal integrity [13]. Tbdn is
evolutionarily conserved, associates with the actin binding
protein Cortactin, and is involved in the regulation of retinal
endothelial cell transcellular permeability to Albumin [14].
ZO-1 is a membrane-associated guanylate kinase homolog,
which interacts with both Cortactin and F-actin, and which is
essential to the assembly of tight junctions [15,16]. Two
unique motifs in ZO-1 regulate the tight junction-specific
localization and organization of transmembrane proteins that
are necessary for the formation of the paracellular barrier
[15]. One of these motifs corresponds to the F-actin binding
domain of ZO-1 [16]. The mechanism of ZO-1 expression in
a teleost has recently been described [17].

Smelt, unlike other fish species, display dramatic changes
in plasma osmolarity. Massive changes in osmolarity present
in the sub-zero marine environment might affect the ability of
smelt to see, swim, and function since the eye interfaces
directly with seawater. However, such physiologic adaptation
to freezing does not seem to disturb efficient vision, since
smelt rely on visual identification in the pursuit of prey,
regardless of the water temperature [18]. Nothing is known
about gene expression in the retinal vasculature of smelt or
about how molecular expression patterns might change in
smelt retina during physiologic adaptation to cold and osmotic
stress. Although several studies address the impact of low
temperatures on a fish lens [19,20], we know of only one
investigation related to the freeze resistance of ocular fluids.
Turner et al. [21] concluded that several Antarctic fish, living
at −1.9 °C, depress the freezing point of ocular fluids using
supercooling. In these species, the osmotic pressure of both
the aqueous and vitreous humors was lower than in serum, and
was only about half that of seawater. Moreover, only trace
amounts of glycopeptide antifreeze were observed in ocular
fluids despite the high levels present in serum. New
knowledge about the ability of the smelt retina to adapt to
temperature and osmotic stress is highly relevant to the
adaptation and survival of this species in the face of

environmental pressures such as climate change. Moreover,
this species may serve as a unique and valuable model system
for studying retinal responses to changing osmotic
environments. In this study, we assess whether such changes
are associated with freeze resistance in the vitreous humor
given the intimate connection between the plasma and ocular
fluids via the rete mirabile, and the elevated levels of small
metabolites in the plasma during winter. Although the
choriocapillaris appears to be histologically similar in both
smelt and mammals, we hypothesized that functional
differences might exist in smelt due to the presence of the rete
mirabile and specialized mechanisms associated with the
maintenance of the visual system under freezing conditions.

METHODS
Rainbow smelt (Osmerus mordax) were captured by seine
netting at Mount Arlington Heights, Placentia Bay,
Newfoundland, Canada, from late October to mid-November
in the years 2007, 2008, and 2009. The smelt were transported
to the Ocean Sciences Centre at the Memorial University of
Newfoundland. The fish were maintained in seawater, on a
natural photoperiod with fluorescent lights set on an outdoor
photocell, and were fed chopped herring twice a week to
satiation. Upon arrival at the laboratory, the smelt were
randomly sorted into tanks that received either seawater
heated to 8–10 °C (which is similar to the average ocean
temperature at the time of capture [22]) for the duration of the
experiments, or water that tracked ambient temperature and
that decreased to less than 0.5 °C in February and March. The
time lapse from collection of the fish to experimentation was
between five and six months. All fish appeared to be in healthy
condition and well fed. As such, there was no reason to believe
that the fish were unduly stressed. Fish held at 8–10 °C are
hereafter referred to as “warm fish,” while the fish held in
ambient water are referred to as “cold fish.” A typical
temperature profile is presented in Lewis et al. [22]. The fish
were sampled in March 2007 to determine the glycerol level
in the vitreous humor, and were sampled again in February
and March 2009 and 2010, respectively, to determine plasma
glycerol levels, as well as the glycerol level, osmotic pressure,
and thermal hysteresis in the vitreous humor. Fish from the
2007, 2009, and 2010 samplings were used in
immunohistochemical analyses and western blot analyses of
the ocular tissue. The care, dispatching, and use of animals in
this study followed the guidelines set forward by the Canadian
Council on Animal Care and were approved by the
Institutional Animal Care Committee of Memorial
University.

Blood was collected in heparanized syringes via caudal
puncture, was centrifuged for 5 min at 5,000× g, and the
plasma was removed and stored at −80 °C. The fish were
sacrified by a firm blow to the head, followed by severing of
the spinal cord with a scalpel. The eyes were gently removed
using a curette made from a sharpened spatula and fine
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surgical scissors. Vitreous fluid was removed from some eyes
using a plastic micropipette tip inserted gently through the
optic disc. Glycerol concentrations were determined using a
diagnostic kit (33740A; Sigma-Aldrich, Oakville, ON,
Canada) and following the manufacturer’s instructions.
Thermal hysteresis caused by the non-colligative antifreeze
activity was measured as the difference between melting and
freezing points using a Clifton Nanolitre Osmometer (Clifton
Technical Physics, Hartford, NY). Antifreeze proteins
decrease the freeze point of a solution but do not influence the
melt point. This difference calculated in osmotic pressure is
referred to as thermal hysteresis. Thermal hysteresis was
calculated as (freeze point °C- melt point °C) times (1.86 °C/
1000 mOsmols) based on the fundamental physical property
that the freezing temperature of a solution with an osmotic
pressure of 1000 mOsmols is −1.86 °C [1].

Eyes that were not used for vitreous fluid collection were
snap frozen or paraffin embedded for tissue and protein
expression analyses by histology, western blot, and
immunohistochemistry. For histology specimens, paraffin
sections were prepared, registered, and stored in serial or
adjacent order. Every twentieth paraffin section was stained
with hematoxylin and eosin (H&E) to map retinal structures
such as the rete mirabile and its junction with the
choriocapillaris.

For western blots of smelt retinal tissues, pieces of smelt
retinas were carefully dissected from snap frozen smelt eyes
using a scalpel blade in the frozen chamber of a cryostat.
Retinal tissues were homogenized in a lysis buffer (50 mM
Tris-HCl pH 7.6, 150 mM NaCl, and 1% Triton X-100)
supplemented with protease inhibitors (1 mM
phenylmethylsulfonyl fluoride, 0.3 U/ml aprotinin, and
10 μg/ul leupeptin) and phosphatase inhibitors (1 mM sodium
orthovanadate, 25 mM sodium fluoride, and 10 mM β-
glycerophosphate). Lysates were clarified by centrifugation
and proteins were quantified. Western blots for Tbdn and
ZO-1 were performed by standard procedures using a
LumiGLO reserve chemiluminescence substrate kit (Mandel
Scientific, Guelph, Ontario, Canada). Tbdn western blots
were performed using affinity purified anti-Tbdn antibody
C10–20 raised in rabbit, against Tbdn C10–20 peptide
corresponding to the amino acid sequence EAWTKYPRGL
of mouse Tbdn [14]. For blocking peptide experiments,
western blots were performed in the presence of 200 μM of
Tbdn C10–20 blocking peptide EAWTKYPRGL or 200 μM
of a control peptide corresponding to another region of mouse
Tbdn protein (amino acid 755 to 766). For the ZO-1 western
blot analysis, mouse monoclonal anti-human ZO-1 1A12
(Zymed, Carlsbad, CA) was used. Tbdn and ZO-1 western
blots were stripped and re-probed with an anti-α-Tubulin
mouse monoclonal antibody (Sigma, St. Louis, MO) to verify
protein integrity and loading equivalency.

Tbdn expression was also analyzed by
immunohistochemistry using the previously described OE5

mouse monoclonal anti-Tbdn antibody raised against the
same peptide as the anti-Tbdn C10–20 antibody,
corresponding to the amino acid sequence EAWTKYPRGL
of mouse Tbdn [23]. For immunostaining, sections from
paraffin embedded tissues were deparaffinized, post-fixed in
4% paraformaldehyde, and incubated overnight with a
primary antibody or a negative control isotype match IgG2a
antibody (DakoCytomation, Glostrup, DK) in 3% fat-free
powdered skimmed milk in TBS with 0.05% Tween-20
(TBST). Sections were developed using the appropriate
alkaline phosphatase conjugated secondary antibodies (anti-
mouse IgG or anti-mouse IgG2a) and a Vector Red substrate
kit (Vector Laboratories, Burlingame, CA). Sections were
then air dried and mounted in Permount (Fisher Scientific,
Pittsburgh, PA).

For ZO-1 immunohistochemistry, antigen retrieval was
performed by incubating the sections with trypsin (1 mg/ml,
0.1% w/v in 150 mM Tris, pH 7.6, 3.3 mM calcium chloride;
Immunon, Pittsburgh, PA) for 10 min at 37 °C, followed by
washing for 5 min in TBS. Blocking was performed with a
2% ECL Advanced Block (GE Healthcare, Baie d’Urfe, QC,
Canada) in TBS for 1 h to block nonspecific binding sites.
After blocking, the sections were incubated with the primary
antibody, mouse monoclonal anti-ZO-1 1A12 (Zymed), at
1:100 dilution at room temperature overnight. The sections
were then washed with TBS three times for 5 min each,
followed by incubation with anti-mouse IgG (H+L) alkaline
phosphatase (AP) conjugate (Promega, Madison, WI) for 1 h.

Figure 1. Glycerol levels in the plasma and vitreous fluid of smelt at
warm (8–10 °C) and cold (<0.5 °C) temperatures. The values are
presented as mean±SEM, with n=5 in all groups. * indicates a
statistically significant difference.
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The AP activity was detected using an AP substrate kit as
described above.

Immunohistochemical reactions were quantified by
measuring staining intensities as previously described [14].
Briefly, sections were viewed and photographed using a Leica
(Bannockburn, IL) DMIRE2 microscope system equipped
with a QImaging (Surrey, BC, Canada) RETIGA Exi camera
and with Improvision (Coventry, UK) Openlab (Version 5)
software. The intensity of Tbdn and ZO-1 staining in blood

Figure 2. Osmotic pressure in vitreous fluid in cold versus warm fish.
A: Osmotic pressure in vitreous fluid in smelt at warm (8–10 °C) and
cold (<0.5 °C) temperatures. B: Thermal hysteresis in vitreous fluid
in smelt at warm (8–10 °C) and cold (<0.5 °C) temperatures. The
values are presented as mean±SEM with n=3 for the warm group and
n=5 for the cold group. * indicates a statistically significant
difference.

vessels was measured by determining the intensity of the color
red using the HIS Colorspy tool from Openlab software. Tbdn
and ZO-1 levels in the rete mirabile, choroidal blood vessels,
and other areas of the eye were expressed as the average
staining levels of at least three separate specimens. Relative
intensities were expressed as the average staining levels±the
standard error of the mean (SEM).

Values were expressed as the mean percentage of the
control±SEM. Quantitative analyses were compared using the
two-tailed Student's t test. The data were considered to be
statistically significant if the p-value was less than or equal to
0.05.

RESULTS AND DISCUSSION
The level of glycerol in the vitreous fluid was significantly
higher in fish living in cold versus warm temperatures. For
fish sampled in January 2008, the glycerol level in vitreous
fluid was 153±21 (n=6) mM in cold fish and 4.36±4.16 mM
(n=5; four values under 0.34 mM and one value of 21 mM) in
warm fish. This is the first report of the accumulation of
glycerol in the vitreous fluid of freeze-resistant smelt. This
phenomenon was confirmed in fish sampled in later years,
where the glycerol level was 136 and 9.2 mM, in cold and
warm fish, respectively (Figure 1). This experiment also
reports the level of glycerol in cold and warm fish plasma as
being 142 and 10.1 mM, respectively, revealing that there is
an equilibration of glycerol between the plasma and vitreous
fluid.

The osmotic pressure in vitreous fluid was significantly
higher in cold versus warm fish—being twofold higher at cold
versus warm temperatures (Figure 2A). The freezing point of
the vitreous humor (calculated from the osmotic pressure) was
−1.20±0.9 °C and −0.62±0.03 °C for cold and warm smelt,
respectively. The freeze point depression was sufficient to
prevent freezing in ambient water temperatures during winter.
The difference in osmotic pressure of about 300 mOsmols
could not be fully accounted for by glycerol accumulation,
which was only about 125 mM higher in cold compared to
warm fish. This implies that other osmolytes accumulate in
the vitreous fluid as well as glycerol. These results indicate
that, like the rest of a fish's body, a hyperosmotic physiologic
adaptation—partly involving glycerol accumulation—
protects the rainbow smelt eye from freezing in subzero water
temperatures.

The level of thermal hysteresis was similar and very low
in the vitreous fluid of both cold and warm smelt (Figure 2B).
The contribution of any freeze resistance in vitreous fluid due
to the presence of antifreeze proteins was likely less than
0.1 °C. Although not measured in this study, the level of
thermal hysteresis in plasma at sampling dates has been
reported to be between 0.25 °C and 0.5 °C [3,22]. This implies
that there is a barrier to the movement of the antifreeze protein
from the plasma space into the vitreous fluid. This conclusion
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is similar to findings from Antarctic fish, where the measured
level of glycopeptide antifreeze is much higher in serum than
in aqueous humor [21].

Studies have yet to assess if hyperosmotic adaptation,
which offers smelt protection from freezing, affects cellular
permeability pathways that could impact molecular traffic in
the eye. We sought to explore this by applying knowledge
gained on retinal endothelial permeability pathways in
mammalian systems to the smelt. A low power
photomicrograph of the key elements in the smelt eye is
presented in Figure 3. The smelt eye is similar to those
reported in other teleost species [5,6] and includes the
presence of a rete mirabile, the circulation of which is
continuous with that of the choriocapillaris.

A teleost ortholog of the mouse Tbdn gene, the protein
product of which represents a marker of the endothelial
transcellular permeability pathway, exists [National Center
for Biotechnology Information resources: Expressed
sequence tags (EST): GE781036.1, EG915740.1,
DY704791.1, DY734706.1, CX355128.1, and CX066490.1].
In addition, the mouse Tbdn peptide epitope (C10–20) against
which we raised a Tbdn specific monoclonal antibody reagent
(OE5) displays approximately 90% homology with salmonid
and osmerus mordax expressed sequence tags (EST:

CX355128.1, CX066490.1, EL547336 and EL536341.1).
Moreover, our anti-Tbdn monoclonal antibody (OE5) stained
retinal choriocapillaris and rete mirabile blood vessels in
smelt eyes, and these have similar anatomic structures to those
in which we observed Tbdn immunostaining in mammals
[9–12] (Figure 4). To further confirm the specificity of mouse
Tbdn peptide epitope C10–20 and the OE5 monoclonal
antibody for a putative smelt Tbdn protein, western blot
analyses on smelt retinal tissues were performed. Since our
Tbdn monoclonal antibody OE5 is not useful for western
blotting applications, our affinity purified rabbit anti-Tbdn
antibody C10–20, which is raised against the same epitope as
our OE5 antibody, was used. A western blot analysis of smelt
retinal tissue using the anti-Tbdn antibody C10–20 revealed
a major band of ~103 kDa (Figure 5). Moreover, the reactivity
of the C10–20 Tbdn antibody with the 103 kDa protein present
in smelt retinal tissues was competed away by the presence of
the competing peptide Tbdn C10–20 as compared to a control
peptide (Figure 5). Similar results were obtained with primate
retinal endothelial cell line protein extracts (Figure 5). This
data strongly suggests that smelt harbor a Tbdn ortholog. The
slight difference in molecular weight between the smelt
(103 kDa) and primate (100 kDa) Tbdn proteins might reflect
their evolutionary divergence. Additional studies are required

Figure 3. A transverse section of a whole
smelt eye showing the cornea (c), lens
(l), neural retina (nr), and rete mirabile
(rm). The arrows indicate the junction
between the rete mirabile and the
choriocapillaris. Hematoxylin and
Eosin, 50×. The composite image was
created using tiling of multiple frames
to capture the entire globe at a high
resolution. The scale bar in the lower
right corner of the figure represents 400
μm.
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to clarify these differences. However, this is the first report of
a putative smelt ortholog for the mammalian Tbdn protein.

We found evidence in National Center for Biotechnology
Information resources for a legitimate mature transcript of the
teleost ZO-1 gene in two teleost species, oncorhynchus
mykiss and osmersu mordax. These teleost ZO-1 homologous
expressed sequences are represented in BX303254.3 and
EL549507.1, respectively. The epitope harbored within the
predictable protein product, against which commercially
available anti-ZO-1 antibody reagents were raised, displays a
range of 50%–80% identity between smelt and mammalian
sequences. We found that the 1A12 mouse anti-human ZO-1
antibody (Zymed), which is also reactive against mouse and
dog ZO-1, stained several ocular structures that were
consistent with the previously described immunolocalization
of ZO-1 protein in mammalian eyes [24]. These structures
include the outer limiting membrane of the neural retina, the
corneal endothelium, and iris blood vessels (not shown). In
addition, western blot analyses using the anti-ZO-1 antibody
1A12 revealed a doublet in smelt retinal tissues co-migrating
with the mammalian ZO-1 protein doublet present in a primate
retinal endothelial cell line RF/6A [14] (Figure 4). In addition,
we found that the mouse anti-ZO-1 antibody also stains the

endothelial linings of the rete mirabile and the blood vessels
with which the rete merges with the choriocapillaris at its
junction (as indicated in Figure 3). These results suggest that
the bands with which antibody reagents raised against mouse
Tbdn and human ZO-1 react in western blots of smelt retinal
tissue are smelt orthologs of the corresponding mammalian
counterparts. Since the Tbdn and ZO-1 epitopes can also be
detected by immunohistochemistry in similar specific
anatomic structures in both mammals and smelt eyes, our
results suggest that the antibody reagents we tested are useful
for detecting smelt Tbdn and ZO-1 proteins in smelt retinal
tissues. These reagents were thus used to examine the pattern
of expression of these two markers of endothelial permeability
in warm- and cold-adapted specimens.

Compared to three individual warm-adapted specimens,
the endothelial linings of the choroidal and rete mirabile blood
vessels of three individual cold-adapted specimens showed a
higher expression level of Tbdn in these regions (Figure 4).
Interestingly, expression of the zonula occludens protein
ZO-1 showed an expression pattern reciprocal to that
displayed by Tbdn. ZO-1 was downregulated in the
endothelial linings of the choroidal and rete mirabile blood
vessels of three individual cold-adapted specimens compared

Figure 4. Tbdn and ZO-1 proteins show
reciprocal regulation in cold-adapted
smelt rete and choroidal blood vessels.
Compared to warm fish maintained at 8–
10 °C (A: warm specimen/Tbdn stain;
C: warm specimen/ZO-1 stain), the
endothelial linings of the choroidal (c)
and rete (r) blood vessels of cold fish
maintained at 0.5 °C show a higher
expression level of Tbdn protein, but a
lower level of ZO-1 protein in these
regions (B: cold specimen/Tbdn stain;
D: cold specimen/ZO-1 stain). The
arrows indicate choroidal and rete blood
vessel endothelia. E: Sections were also
incubated with a control IgG and
showed no staining of the blood vessels.
Positive staining for Tbdn (OE5) and
ZO-1 appears as bright red staining. The
dark brown or black color in all panels
is intrinsic due to pigmentation from the
pigments cells of the choroidal
vasculature and/or retinal tissue. The
immunohistochemical results shown
here are representative of three smelt in
each of the warm and cold groups and
are quantitated in Figure 6. The scale bar
in the lower right corner of the figure
indicates 100 μm.
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to three individual warm-adapted specimens (Figure 4).
Expression levels of Tbdn and ZO-1 in neural retina and
cornea, respectively, were not significantly different between
warm and cold-adapted specimens (see quantitation in Figure
6). This data serves as an internal positive control and supports
the validity of the temperature-related changes in Tbdn and
ZO-1 in the choroid-rete tissues. While it was possible to
detect low levels of what we believed to be smelt orthologs of
mammalian Tbdn and ZO-1 proteins in smelt whole retinal
tissue lysates (Figure 5), it was not possible to dissect out
sufficient amounts of tissue from the choroid-rete junction to
accurately perform comparisons of Tbdn and ZO-1 protein
expression in temperature-adapted fish by western blot.
However, western blot detection of the putative smelt
homologs using antibodies raised against the same mouse
epitopes supports validation of the immunohistochemical
results.

The hyperosmotic physiologic adaptation involving
glycerol, which protects the smelt eye from freezing in
subzero water, suggests that a molecular mechanism exists in
the vasculature of a smelt eye to manage the delivery (and
perhaps the consequences) of glycerol and other osmolytes to
the vitreous humor. Since Tbdn is associated with a
transcellular endothelial permeability pathway, while ZO-1 is
associated with a paracellular endotheial permeability
pathway, the reciprocal expression pattern of these proteins
suggests that cold adaptation in smelt eyes might involve the
adaptation of two different permeability pathways in the blood
vessels of the rete mirabile and choriocapillaris, which
manages the movement of antifreeze materials into the eye.
The rete mirabile and the choriocapillaris are essential to the
delivery of oxygen and nutrients to the retina of teleosts [5,
6]. In the mammal, the choriocapillaris is fenestrated, but the

roles of the endothelial transcellular permeability and
paracellular permeability pathways in choroidal vascular
homeostasis are not well understood. Regardless of the state
of fenestration of these vasculatures, our results might suggest
that the permeability of the rete-choriocapillaris vasculatures
is challenged by hyperosmotic stress and adapts accordingly
through adjustments of the two major endothelial
permeability pathways.

The mechanisms underlying these changes and the
functions affected remain unexplored. However, since Tbdn
seems to help limit the transcellular passage of Albumin in
normal mammalian retina [14], one might hypothesize that the
upregulation of Tbdn protein expression in cold stressed smelt
might involve a signaling pathway that regulates the passage
of antifreeze proteins into the retina, which, like extravascular
Albumin leakage in mammalian retinopathy, could be
detrimental to the retinal tissues. Likewise, since ZO-1 protein
is a zonula occludens molecule, the downregulation of ZO-1
protein expression in cold stressed smelt might allow small
antifreeze molecules—such as glycerol—through
paracellular passages to provide readily available plasma-
based antifreeze to the retina and vitreous.

This work presents the first evidence that molecules
known to play a role in ocular vascular homeostasis may be
differentially regulated during hyperosmotic anti-freezing
cold adaptation in smelt eyes. These results provide
fundamental insight into the physiologic adaptation to
internally generated osmotic change in smelt. Local
intraocular microenvironmental osmotic stress due to
hyperglycemia of diabetes in mammals leads to advanced
glycation end products which correlate with microvascular
retinal lesions [25,26]. The nature of how retinal pathology is
avoided in the adaptation of the smelt eye to osmotic stress

Figure 5. Western blot analyses of smelt
orthologs of mammalian Tbdn and
ZO-1 proteins. A: A Tbdn western blot
analysis showing a major band of
approximately 103 kDa in smelt and
100 kDa in primate cells reacting with
affinity purified rabbit anti-mouse Tbdn
C10–20 antibody, which are completely
competed out by the addition of the
C10–20 Tbdn peptide, but not by a
control peptide, as indicated. The
bottom panel shows Tubulin as a protein
loading and integrity control. B: A ZO-1
western blot analysis showing a doublet
in primate and smelt cells reacting with
the anti-ZO-1 antibody, as indicated.
The bottom panel shows Tubulin as a
protein loading and integrity control.
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could provide valuable new insights that may be useful for
understanding the pathobiology of diabetic vasculopathy in
mammals. Recent work indicates that changes in the transport
of glycerol across the blood-retinal barrier have direct
relevance to diabetic retinopathy [27]. Therefore, this work
might further our fundamental understanding of the
mechanisms underlying adaptation of the blood-retinal barrier
to metabolically relevant compounds such as glycerol.

Figure 6. Quantitation of staining by a mouse anti-Tbdn antibody
(A) and by a mouse anti-ZO-1 antibody (B) on smelt eye tissues.
Compared to fish maintained at 8–10 °C (warm), there was a
significant increase (p<0.001; n=15 color intensity measurements
per group) in Tbdn staining of rete-choroidal blood vessels in the
cold-adapted smelt (maintained at 0.5 °C [cold]), as shown in panel
A. There was no significant difference in the staining of Tbdn in the
neural retina. Compared to fish maintained at 8–10 °C (warm), there
was a significant decrease (p<0.001; n=15 color intensity
measurements per group) in ZO-1 staining of rete- choroidal blood
vessels in the cold-adapted smelt (maintained at 0.5 °C [cold]), as
shown in panel B. There was no significant difference in the staining
of ZO-1 in the cornea.
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