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Abstract

In this thesis, we study several problems concerning scmigroup algebras K[S] of a

semigroup S over a field K.

In Chapter 1 and Chapter 2 we give some background on semigroups and

semigroup rings. In Chapter 3, we di5CU$5 the global dimension of semigroup rings

R[SI where R is a ring and 5 is a monoid with a sequence of ideals S = II J I, J

... ::l I" =' ["+I such that each f;/ Ii+! is a non-null Rees matrix semigroup.

In Chapter 4, we investigate when a semigroup algebra has right global dimen­

sion at most I, that is, when is it right hereditary. As an application of the results

in Chapter 3, we describe when K[Sl] is hereditary for a. non-null Rees semigroup

S. For arbitrary semigroups that are nilpotent in the sense of Malcev, we describe

when its semigroup algebra is hereditary Noetherian prime. And for cancellative

semigroups we obtain a description of when its semigroup aIgebra is hereditary

Noetherian.

In Chapter 5, we generali~ the concept of unique factorization monoid and

investigate Noetherian unique factorization semigroup algebras of submonoids of

torsion-free polycyclic.by-finite groups.



In Chapter 6, we investigate when a semigroup algebra K[S] is a polynomial

identity domain wllich is also a unique factorization ring. In order to prove this

result we desCribe first the height one prime ideals of such algebras.
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Introduction

Maximal orders in simple Artillian rings of quotients nave attracted considerable

interest. In particular, it has been shown tnat various algebraic ring constructions

yield examples of Noetherian maximal ordeN or of maximal ordeN satisfying a

polynomial identity. For a field K and a commutative monoid 5 Chouinard proved

that the monoid algebra K[S] is a Krull domain if and only if S is a Krull order in

its group of quotients. Moreover, the class group of K[SI equals the class group of

S. This shows, in particular, that the height one primes of K[Sj determined hy the

minimal primes of S are crucial. Brown described when a group algebra K[G] of a

polycyclic-by-finite group G is a prime Noetherian maximal order. It is always the

case if G is torsion·free. If G is a finitely generated torsion-free abelian-by·finite

group (equivalently, K[G] is a Noetherian PI domain) then all height one primes

are principally generated by a normal element. So, in the terminology of Chatters

and Jordan, K[Gl is a unique factoriution ring.

It remains an unsolved problem to characterize when an arbitrary semigroup

algebra K(S] over a field K is a prime maximal order that is Noetherian or satisfies

a polynomial identity.



lNTROOUC!IOI'I

Apart from the two casc:s mentioned above, an answer to the question has been

obtained only for some special classes of semigroups, su<.:h as Makev nilpotent

semlgroups, or for some special classes of maximal orders, such as principal ideal

rings.

[n this thesis we c;ontinue these investigations. We investigate when a semigroup

algebra is hereditary Noetherian prime or a unique fa<.:torization ring in the sense

of Chatters and Jordan. The former part is basically a question of Okninsk.i,

Problem 37 in [52]. for a. ring to be (right) hereditary one needs the (right) global

dimension to be at most one. Hence, our first contribution to the the subject is to

control the global dimensinn of certain types of matrix semigroups.

We now briefly outline the c;ontent of ca<.:h chapter. Chapters 1 and 2 cover

some notation and background on semigroups and semigroup rings.

[n [451, Kuzrnanovich and Teply determined a lower and upper bound for the

homological dimension of K[S] for the class of finite rnonoids S that have a sequence

of ideals S = II :J {'l:J .. :J I.. :J 1"+1 such that all the Rees factors 1;/1,+1 are

non-null Rees matrix semigroups. In Chapter 3 we sharpen their upper bound. We

also include some examples of semigroups which have a null aces factor. These

examples indicate that in this case the solution is yet rather unclear. Hence the

solution to arbitrary finite semigroups is still open.

As an appLication of the results in Chapter 3 we first determine in Chapter 4

when the (contracted) semigroup algebra Ko[S] of a finite non·null Rees matrix



INTRODUCTION

semigroup 5 is hereditary. Next we characterize when Ko(5] is a hereditary Noe­

therian prime ring when 5 is an arbitrary nilpotent semigroup (in the sense of

Malcev). It turns out that such a ring is a prime principal ideal ring. In the last

part of this chapter we fully describe when a semigroup algebra. of a caocellative

monoid is a Noetherian hereditary ring. Our results rely on the solution of tile

problem for group algebras. Tllese were obtained by Goursaud and Valette for

nilpotent groups and Dicks for arbitrary groups.

[n Cllapler 5 we investigate when a monoid algebra K15] of a caocel~tive

monoid is a Noetberian unique factorization ring. Such monoids S have a group

of fractions, say G. Because of Quinn's result on graded rings, K15] is (right)

Noetherian if and only if 5 satisfies the ascending chain condition on right ideals.

Since K[G] also is a Noetherian unique factorization ring and beciluse these have

only been described for groups G that are polycyclie--by-finite, we restrict to this

situation. In case G is also tor.;ion-free, we show that the problem is closely

related to group algebras K[G] and the monoid 5, and actually the monoid N(5)

consisting of the normalizing elements of S. Hence in the fir.;t part of the chapter

we investigate unique factorization monoids, and more generally Krull monoids.

As in the ring case it turns out that 5 is a unique factorization monoid if and only

if 5 is a Krull order with trivial normalizing class group.

In the final Chapter, we investigate when a monoid algebra. KISj of a cancella­

tive monoid 5 is a domain satisfying a polynomial identity and which is a unique

factorization ring (the Noetherian condition is not assumed). In this case 5 has



a group of fractions that is torsion-free lI.belian-by-finite group G and the group

algebra K{G] is a unique factorization ring. First we show that for such a monoid

S, if P is a prime ideal of K[S] with P n S I- 0 then K[S n PJ is also a prime

ideal. It follows that, if K[SI is a Krull order, then the height one prime ideals

intersecting S are precisely the ideals of the form K[QI with Q a minimal prime

ideal of S. The proof of this result relies on the structure theory of skew linear

semigroups, as developed by Okniliski. This result on prime ideals is the crucial

step for us to investigate when K(Sj i.s a unique factorization ring.



CHAPTER 1

Semigroups

In this chapter, we give some definitions ilUId stnIctu.ra1 descriptions of certain

important classes of semigroups. For more information, the reader is referred. to

{13], [281 ~d [521.

1.1. Some basic Definitions

A semigroup 5 is a multiplicatively dosed set such that the operation is as­

sociative.. A suhsanigroup T of 5 is a non-empty subset which is dosed under

multiplication. A subgroup G of 5 is a subsemigroup which is a group.

1.1.1. An element e of 5 is called a left. identity of S if ea = a for all a E 5.

Similarly one defines right identity and an identity of 5 if it is an element that is

both a. left and a. right identity. A semigroup 5 may have multiple right or left

identities, but if it has a. right identity a.nd a. left identity, they ffill1lt necessarily

coincide and in this case 5 has a unique identity.

A semigroup 5 is called a monoid if S contains an identity element 1. Then u

is a right Itnit of 5 if there is a 11 E 5 such that ut; = 1. Similarly, one defines lr.ft

unit and u is a. unit if it is both a. left and right unit. We write U(5) for the set of

units of S.



1.1.2. An element z of 5 is called left zero if za = z for every a E 5. Similarly

one defines right zero and z is called a zero element if it is both a left; and right

zero element. As for identity elements, a semigroup 5 may have multiple right or

left zeros, but if has a right zero and a left zero, they must necessarily coincide and

in this case 5 has a. unique zero. If S has a zero element, it will usually be denoted

6. A semigroup S with zero element 0 will be ,alled a zeTO or null semigroup if

ab= 0 for all G,bE 5.

1.1.3. Let S be any semigroup, and let 1 be a symbol not representing any

element of $. Extend the given binary operation in 5 to one in 5u {I} by defining

11 = 1 and la = a1 = a for every a E S. Obviously 5 U {I} is a monoid. Let

{

5 if S has an identity element,
51 =

5 U {I} otherwise;

Similarly one can adjoin a zero element 0 to 5, denoted by SO = S U {OJ.

1.1.4. An element e E S wbkh satisfies e = e2 is caHed an idempotent. We

write E(5) for the set of idempotent elements of a semigroup S. The set £(5)

can be partially ordered by e:S f if and only if ef = fe = e. If S contains a zero

element 6, then 8 :5 e for every idempotent e E E. A band is a semIgroup 5 every

element of which is idempotent.

1.1.5. A homomorphism of a scmigroup S into a semigroup T is a mapping

~ : S -+ T which preserves products:



1.1. SOME BASIC DEFINITIONS

,p(:t'y) = ¢(.:r),p(y) for aU x, y € 5.

If '" : 5 -+ T and 1P . T -+ U are homomorpb..isms, then 50 is the composite mapping

..p 0 l/I: 5 -+ U. An isomorphism of semigroups is a bijective homomorphism.

1.1.6. By a left ideal of a sernigroup we mean a non-empty subset f of S

such that 51 f ~ l. SimilarLy one defines a right ideal and f is a two-sided ideal,

or simply ideal, if {is both a left and right ideal of 5. US has a zero element 8,

tben {8} is always an ideal of 5.

If {lo I Q E A} is a fa.m.ily of ideals of a semigroup 5 then Ufo and nlo are

also ideals of 5, the latter provided that it is non-empty. The same is true for the

family of left or right ideals.

If a E S then the right ideal generated by a is denoted by aS I
; dearly aS I =

as U {el}. Similarly, the left ideal genera.ted by a is denoted by S'a. The ideal

generated by a is SlaS' = SaSUSaUaSU {a}.

1.1.7. An equivalence relation p is called a right congruence on a semigroup 5

if apb implies tbat acpbc for every a,b,c E S. A left congruence is defined similarly.

A congruence is an equivalence relation p on S which is both a left and a right

congruence.

Let I be an ideal of a. semigroup S and a,b E $. Deline apb if either a = b

or else both a and b belong to r. We call p the Rees congroence modulo l. The

equivalence classes of S mod p are r itself and everyone element set {a} with



a E 5 \ J. We shall write 51! instead of SIp, acd we call 51! the Rees factor

semigroup of 5 modulo [

1.1.8. For the Rees factors of semigroups, we have analogues of two of the

iSQmorphism theorems for group.,;.

THEOREM L1. (Theorem f.36 in [13]) Let J be an ideal 4nd T 4subsemigroup

of 0. semigroup 5 and JnT :/; 0. Then JnT is an ideal ofT, JuT is a subsemigroup

of 5, and

(JUT)/J." T/(J n T).

THEOREM 1.2. (Theorem f.31 in (13J) Let J be an ideal of a semigroup 5,

4nd let J be the natural homomorphism of 5 upon lhe Rees factor 51J. Then J

induces a one-to-one, inclusion-preserving mapping A -+ J(A) = AIJ of the set of

all ideals A of 5 conlaining J upon the set of all ideals of 51J, and

(S/Jl/(A/J)." S/A.

1.2. Green relations

1.2.1. The Green relations on a semigroup 5 are the equivaLence relations,

which are denoted respectiveLy by L-, 7<., 1/., and.:T. These were introduced by



Creen in 1951 and defined as follows, for o,b E S,

aLb if and oD.1y if S10 = Sib,

anb if and only if aSI =bSI ,

a1lb if and only if oSI = bSI and Sla = Sib,

a.7b if and only if SloSl = SlbS l .

Clearly I:. is an equivalence relation such tbat ol:.b implies that oc£bc for all c e S,

that is, I:. is a right coDgTuence. If ol:.b, we say that 0 and bare f:...equivalent. By

L.. we mean the set of aU elements of S which are I:.-equivalent to 0, that is, the

equivalence class of S mod 1:.; we caJ1 L.. the l:.-cl4$$ containing o.

Similarly 8.., H.. , and J.. denote respectively the 'R.,1£, and j-e/4$$ containing

LEMMA 1.3 (Theorem 2.16 in [13]). For any ?i-e/ass H of a semigroup S the

following are equivalent;

1. abe H for some a,be H;

2. H contains an idempotent;

3. H i$ a subsemigroup of S i

4. H i$ a subgroup of S.

COROLLARY 1.4. The mazimal subgroups of a semigroup S coincide with the

?i-classes of S which contain idempotents. They are pairwise disjoint. Each sub­

group of S is contained in exactly one marimal subgroup of S.



1.3. Regular semigroups and Inverse semigroups

1.3.1. An inveTSe of an element a ia a semigroup 5 is an dement b of 5 suc;b

that

aba = a and bab = bi

the elements a and b are also called mutually inverse. As shown in the next

example, an element can have many iaverses.

EXAMPt.E l.~. kt X and Y be two sets, and define a bino'1l opendion on

S = X x Y as/ollows:

(X\,yd(X1,Y1) = (X"Y1), X1o];1 E X,Y1oY2 E Y.

This semigroup is called the reetangular band on X x Y. Tn sr.t:h a rectangular

band 5, ever-g two dements are mutually inverse.

1.3.2. An element a of a semigroup S is ca.lled regular if. E aSa, that is,

ifaxa = a for some xES. In this case, ax is an idempotent. N"ote we ha~'e the

following equivalent conditions.

LEMMA 1.6 (Lemma U.2.2 in [28]). For an dement a of a semigroup S the

following are equivalent:

1. a is regular;

2. a has an inverse;

3. R.. contain., an idempotent;



1.3. REGULAR SEMIGROUPS AND INVERSE SEMIGROUPS

4. L. contains an idempotent.

In other words, a is regular if and only if aS I = eS I ( Sla =: Sle ) for some

idempotent element e, i.c. the principal right (left) ideal of S generated by a bas

an idempotent generator e.

A semigroup is called regular if all its elements are regular. From the equivalent

definitions of regular elements, we know that S is a. regular semigroup if and only if

every n..-class of S contains an idempotent, if and only if every C-elass of S contaias

an idempotent, if and only if every principal rigbt (left) idea.! of S is generated by

an idempotent.

1.3.3. An inverse semigroup is a semigroup such that every element has a

unique inverse.

THEOREM 1.7 (Proposition l1.2.6 in [28]). Thefol/ovn:ng conditions on a semi­

!J1"Oup S are equi!X1lent;

1. S is an inverse semigroup;

2. every "R.-class of S contains e'Zactly one idempotent and every C·dass of S

contaiTIS exactly one idempotent.

3. S is regular and the idempotents of S commute with each other.



1. SEMICROUPS

1.4. O-Minimal Ideals and O~Simple Sernigroups.

1.4.1. A semigroup S is left simple if it does not properly contain any left

ideal. Similarly we can define a right simple semigroup and a simple semigroup 5

if it does not properly contain a two-sided ideaL

A two-sided (left, right) ideal M of a semigroup 5 is called minimal if it does

not properly contain any two-sided (left, right) ideal of 5. If A is any other ideal of

S of the same type as M, either M 0;;;; A or M n A = 0. I.n particular, two distinct

minimal ideals of the same type a.re disjoint.

Since two two-sided ideals A and 8 of a semigroup 5 always contain the set

product AB, it foUows that there CiU1 be at most one minimal two-sided ideal of S.

If 5 has a minimal two-sided ideal K, then K is called the kemelof S. Since K is

contained in any two-sided ideal of 5, it may be characterized as the intersection

of all the two-sided ideals of S. If the intersection is empty, then S does not have a

kernel. It has been proved by Suschkewsch that any finite sernigroup has a kernel.

1.4.2. According with the theory of minimal ideals in rings, we introduce the

notion of D-minimality. A two-sided (left, right) ideal M of S with zero 0 is called

O-minimol if M f:. 0 and 8 is the only two-sided (left, right) ideal of S properly

contained in M.

If M is a D-minimal two-sided ideal (left, right) ideal of a semigroup S with

zero 9, then M2 is an idea! of the same type as M contained in M, 50 we must

have either M'l = {O} or M'l = M.



1.4. o.-Mll'IlMAL IDEALS AND ~SIMPLE SEMICROUPS.

1.4.3. A semigroup 5 is O-simple if 52 f:. {OJ and {O} is the only proper

two-sided ideal of S. Let 5 be a semigroup with. zero 0 such that {OJ is the only

proper two-sided ideal of 5. Then either 5 is o-simpLe or 5 is the nun semigroup

of order 2. Furthermore, S is G-simple if and only if 5a5 = 5 for every element

a f:. 8 of 5.

Moreover, Clifford proved the fonowing.

THEOREM 1.8 (Theorem 2.29 in [13]). Ld M be a O-minimal ideal of a semi­

group 5 with zero (J. Then either M 2 = (J or M is a O-simple subsemigroup of

s.

Furthermore, by using Theorem 1.2 and Theorem 1.8, we have the fonowing

Coronary.

COROLLARY 1.9. 1. An ideal J of a semigroup is matima! (proper) ideal

of 5 if and only if 5/J has no proper non-zero ideal, hence if and only if

5/J is either O-simple or the null semigroup of order two.

2. If J and J' are ideals of S with J c J', then J is matimal in J' if and only

if J'/ J is a O-minimal ideal of S/J. If this is the case, then J'/ J is either

a a-simple semigroup or a mJI semigroup.

1.4.4. Let S be a semigroup witbout zero, and let SO = S U {(J}. Then

A -t AU {O} is a one-to-one mapping of the set of all two-sided (left, right)

ideals A of S upon tbe set of all non-zero two-sided (left, right) ideals of SO.



L. SE:MICROUPS

This ma.pping preserves inclusion, a.nd, in particular, A is minimal if and only

if A U {9} is o-minimal. Consequently, any theorem concerning o-minimal ideals

implies an evident corollary concerning minimal idee.l~ in a semigroup without

zero. Similarly, any theorem concerning o-simple semigroups implies an evident

corollary concerning simple semigroups. For example, Theorem 1.8 implies that

COROLLARY 1.10. If a semigroup S contains a kernel K, then K is a simpLe

subsemigroup of S.

1.4.5. Let s e S. The principal ideal S'sS' of S generated by s is denoted

by J., while the subset of J. consisting of nOn-generators of J. (as an ideal nf S )

is denoted by I •. Thus I. = 0 if and only if J. is a. minimal ideal of S, and if it

is not the case, then I. is an ideal of S. Each R.ees factor semigroup J./I. , with

s e S. is called a pn'napa/ factor of S. Obviously I. is maximal in J., then we

ha.ve

COROLLARY l.11. Each principal factor of any semigroup S is O-simple, sim­

ple, or null of order two. Only If S has a kernel is there a simple principal factor,

and in this CC1$e the kernel is the only simple prinapa./ factor.

1.4..6. A semigroup S is semisimple if every principal factor of the semigroup

is o-simple or simple. This amounts to excluding null factors. Note any regular

semigroup is semisimple since SlaxaS l = SlaS' for some xeS implies that

(SLaSI)2 contains the element axa which is still a generator of SlaS'.



1.$. COMPLETELY G-SIMPLE SEMIGROUPS

1.4.7. A principal sen'u of a semigroup 5 is a chain

of ideals 5i ( i = 1, .. ,m) of 5, beginning with 5 and ending with 5,,,+1, which

is the empty set if 5 does not contain a zero, otherwise, 5"'+1 = {8}. and there

is no ideal of 5 strictly between 5, and 5i+l(i = 1, .. ,m). By the factors of the

principal series we mean the R.ces factor semigroups 5;/Si.di = I, .. ,m). By

Theorem 1.8, 5;/5 i +l is either O-Simple, simple, or null.

THEOREM 1.12 (Proposition UA.9 in (28)). Let 5 be a semigroup admitting a

principal series,

5 = 51 :> S~ :> ... :> 5", :> 5"'+1'

Then the factors of this series an!' isomorphic in some order to the principal factors

of 5. [n particular, any two principal series of 5 have isomorphic factors.

1.5. Completely O-Simple Semigroups

1.5.1. Let E be the set of idempotenls ofa semigroup 5. Recall that e ~ J if

and only if e = eJ = fe for e, f idempotents. An idempotent J is called primitive

if f 1: 8 and if e ~ f implies that e = 8 or e = f.

By a completely O-simple semigroup we mean a O-simple semigroup that has a

primitive idempotent.
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For example, any finite o-simple semigroup is completely o-simple. It is been

shown by E. H. Moore that some power of every dement of a finite sernigroup

is idempotent, hence any finite D-simple semigroup must contain an idempotent,

that is, E ¥ 0. Furthermore, E ¥ {Ii}, since E = {Ii} implies that every element

of S, and hence 5 itself, is nilpotent, contradicting 51 = S. It is then dear that

the finite partially ordered set E \ {Ii} must contain a minimal element, that is, a

primitive idempotent.

1.5.2. We h...ve the foUOW'ing descriptions of c;ompletely Q-.simple semigroup

which is due to Clifford.

THEOREM 1.13 (Theorem 2.48 in [13]). Let 5 be a O-simple semigroup. Then

5 is completely O-simple if ond only if it contains at least one O-minimalleft ideal

and al feast one O-minimal right idMl of 5. In fad, a compldf';/y O-simple semi­

group is the union of its O-minimal feft (right) ideal&.

1.6. Rces Theorem

The Rees Theorem gives a. complete construction of a.ll completely o-simple

semigroups using groups and sets. To show this result we recall the definition of ...

Rees m...trix semigroup over ... group G.

1.6.1. Let CO be ... group with zero ...djoined, and let I, A be t.....o sets. By ...

Rees I x A matriz over CO we mean a I x A matrix over CO with at most one

nonzero entry. If 9 E e,i E I, and). E A, then (9).), denotes the Rees matrix over



co having 9 in the ith row and Atb. column, its remaining entries being o. For

any i E I and A E A, the expression (0)". will mean tb.e I x A zero ma.trix, which

simply will be denoted by 8.

Further, let P = (p~ih£A.iEI be a generalized A x I matrix over CO, that is,

every P)'i lies in CO. We use P to define a hinary operation on the set of Rees I x A

matrices over CO as follows:

AB=AoPoB,

where 0 means the usual matrix multiplication. If A and Bare Rees I x A matrices

over CO, then so is AB. In fact, if A = (a)i~ and B = (b)j" then we easily find that

(a)a.(b)j" = (ap),]b)i.. (a,b E G;i,j E I,A,p E A).

The set of all Rees I x A matrices over CO is a semigroup with respect to the above

defined operation. We call it the Re~s I x A matriz semigroup over the group with

zero CO w£th sandwich matriz P, and denote it by MO(G; I, A; Pl. The group G is

called the .Jtrvdloln!: group of MO(G; I,Ai P) and P is called the sandlllich matri%..

In fact, G is a maximal subgroup.

Actually, any nODzero element of MO(G; I, A; P) is uDiquely determined by its

nonzero entry, and so it may be deDoted by (g,i,m), where 9 E O,i € I,m E A.

Therefore, MO(G;l,A;P) may be treated as the set of all triples (g,i,m), 9 E

CO,i E I,m € A, with the multiplication given hy

(g,l, m)(h,j,n) = (gPmih,i,n) for g,h E CO,i,j E I,m,n E 1\.

All triples (8e , i, m) are identified with the zero element 8 of MO(G; I, A; Pl.



1.6.2. The sandwich matrix P is said to be regular in case for each i E [

there exist A E A such that P~i ¥ e, and for each A E A there exists i E [ such

that P)'i ¥ e. The importance of Rees matrix semigroups comes from the following

fundamental result which is known as the Rees Theorem.

THEOREM 1.14 (Lemma. 3.1 in [13J). Let $ be a semigrntlp. Then $ i.s com­

pletely O-.simple if and only lj $ is isomorphic to MO(G; [,Ai P), a Ree.s matrix

.semigrotlp for some group G, nonempty sets [ and A, and regular sandurich matrix

P.

1.6.3. For a completely o.simple semigroup $, Theorem 1.7 teUs us that to

be an inverse sernigroup, each row and column of the regular sandwich matrix P

does not contain more than one non-zero element. This remark will be used in

Chapter 6. Moreover, we bave a. nice representation for this type of semigroups.

A Brandt semigroup is a. Rees matrix semigroup B(G; l) "" MO(G; [,Ai P) in

which G is a group, A "" ['" 0 and P is the identity matrix (Pii "" 1 E G, Pij "" 0

COROLLARY 1.15 (Theorem 3.9 in (13]). A completely a.simple semigroup is

an inverse semigroup if and only if it i.s isomorphic to a Brandl semigroup.

1.7. Cancellative semigroups

An element a of a semigroup $ is said to be left (right) cancellable if, for any

x, y e $, ax "" ay ( xa "" ya ) implies x = y. We say that $ is C4ncellative if every
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element of 5 is left and right cancellable. A cancellative semigroup 5 has a. group

G of right fractions if and only if 5 satisfies the right Ore condition, that is, for

every .J,t E 5,

:s5nt5 f:. 0.

Then G is unique, up to isomorphism, and may be identified with 55- I . If S il1so

satisfies the left Ore condition ( defined symmetrically) then G = 55- 1 = 5-15

is called Ihc group of fractions of S. We give two natural classes for wh.ich a

semigroup h.as a group of right fractions.

THEOREM 1.16 (Lemma. 7.L, Proposition 7.12 in [52)). Ld 5 be II cl1ncelfl1-

tive semigroup such thl1t either of the following conditions hold:

1. 5 ht1.J no non-comfludlltive free subsemigroups.

2. S hIlS the f1St:ending chl1in amdition on righl ideals.

Then 5 has a group of right froclions.

1.8. Nilpotent semigroups

Let :r, y be elements of a semigroup S and let lOll W2,'" be elements of the

monoid 51. Consider the sequence of elements defined inductively as follows:

2"0=%", ~=y,

and
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We say that the identity X n '= Yn is satisfied in 5 if In = !In for all x,y E 5,

Wit W1•.. E 51. A semigroup 5 is called (generalized) nilpotent of c1us n if 5

satisfies the identity X.. '= Y" and n is the least positive integer with this property.

Obviously every power nilpotent scmigroup, that is, a semigroup 5 with zero

such that sm '= (} for some integer m ~ 1, satisfies the identity X"" = Y"" and so

it is nilpotent.

1.8.1. Actually for a group G, this definition coincides with the c1as.sical

notion of nilpotency.

THEOREM 1.17 (Theorem 7.2 in [52)). Let n ~ 1. Th~n the following condi·

tions are ~quivalent for (l group G.

1. G is (l nilpotent group of do.s.s n in the df1S$icaJ sense.

2. n is the least positive integer for which the identity X .. = Y.. is satisfied in

G.

Note that a subsemigroup of a nilpotent group is a nilpotent semigroup.

1.8.2. Note that the condition X .. = Y.. is a bit stronger than the one required

by Malcev, who required elements Wi in S only (see [52)). However the definitions

agree on the class of canceLiative semigroups. Indeed. to prove the next result ooe

only needs to use w,. E S.
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THEOREM L18 (Theorem 7.3 in !52]). ut S bc a cancdlativc MalcclJ nilpo­

tcnt scmigroup of da.ss n. Thcn S hu a group of fractions that is nilpotcnt of

daun.

1.8.3. An invenesemigroup S = M'O(G; M,M; l) (with I an Mx M identity

matrix) of matrix type over a nilpotent group G, i.e. an inverse completely O-simple

semigroup, satisfies the idcntity X n +2 = Y"+2' where 11. is thc nilpotency class of

G. Moreover,

PROPOSITION 1.19 (Lemma 2.1 in (311). Ld S ~ a completely O-simplc scmi­

group olJcr a mazimal group G. Thcn 5 is nilpotcnt if and only if G is nilpotcnt

and S is an inlJcrsc scmigroup.
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CHAPTER 2

Semigroup Rings

In this chapter, we give some background on semigroup rings.

2.1. Basic definitions

Semigroup rings bave been exteosively studied. See, for example, Gilmer's

book [231 for commutative semigroup rings, and Okninski's book [521 for the non-

commutative case.

2.1.1. Let R be a ring and S a semigroup. The semigroup n'ng R[S] is the

ring whose elemeots are all formal sums

with each coefficient r. E R and all but finitely many of tbe coefficients equal to

Addition is defined component-wise so that

Multiplication is given by the rule
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which is extended distributively 50 that

This is the natural generalization of group ring. For a = Er.s E R[SJ, the set

{s E 5 Ir.1 O} is called the support of a and is denoted by $upp(a). If R = K is

a field, then K{S) is called a semigroup cr1gebra.

2.1.2. Let T be another semigroup and ¢: 5 ~ T is a semigroup hornomor·

phism. By ¢ we mean the extension of ¢ to the ring homomorphism of R[S] into

RIT] given by the formula t${Ea.s) = Eo.4>(s).

[f S has a zero element 0, we write !lo[SI for the quotient R[SII RO; !lo[S] is

called a contracted semigroup ring. Thus RefS] may be identified with the set of

finite sums Er.$ with r. E R,,, E 5 \ {OJ, subject to the component-wise addition

and multiplication given. by the rule

{""t= a
ifst 10

ifst=O

defined on the basis 5 \ (OJ. [f 5 has no uro element, then by defin.ition Ro[S] =
R(S]. For any a = Er.s E R(S), by $uppo(a) we mean the set {s E S\{O} I r. IO}.

Thus, sUPPo{a) = $upp(a) \ {OJ. The following lemma shows that in the study of

semigroup rings one needs to consider contracted scmigroup rings.
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LEMMA 2.1 (Lemma 4.7, Corollary 4.9 in [52!). ut I be an ideal of a semi­

group S. Then Ro[SIl] ~ Rls]IR[l]. In parlicular, If S has a lero element 6,

then R(S]:!!! Re Ro[SI.

2.1.3. Let [( be a field and S be a semigroup. This section explores the nice

rdatiowhip between the the set of right congruences on S and the set of right

ideals of K[S].

Let p be a. right congruence on 5, that is, p is an equiViLlence relation such that,

for any s,!, xES, we have (sx, tx) E p whenever (s, t) E p. If 4Jp : S -t SIp is the

natura.! mapping onto the set Sip of p-classes in S, thea we denote by /(p) the

right ideal of K[51 generated by the set {s ~ tis, t E 5, (s, t) E pl. Since p is a

right congruence on 5, then /(p) coincides with the right [(-subspace geaerated by

the set {s - t I s,t E S,(s,t) E pl. Moreover, the K-vector space KISlp] is a right

K[5J-module under the oatura.l action defined by 4J,,(s) 0 t = tJl,,(st) for s,t E 5.

With th.is notation, we have the following result.

LEMMA 2.2 (Lemma 4.1, (52]). For any right congruence pan S,,j.. : K[S)-+

KIS/pl is a homomorphism of right /([S]-module.t such that

Ker(~,,) = /(p) = E.€sw.(p)

where w.(P) = {:£~10i.ti E K(S) I m:::: 1':£:':.10'; = O,(.5,s;) E p for alii =
1,2, .. ,m}, and K(S/p)::! K[SlIl(p) as right K(S]-modules. Moreover, the cor-

respondence p -+ /(p) establishes a one-to-one order preserving mappin.g of the set

of right congrtlence" on 5 into the set of right ideals of K{51.



Combining Lemma 2.2 with ib; left-right symmetric analog, we derive the fo1·

lowing consequence.

COROLLARY 2.3. For any congruence p on 5, j, ; K[S] -oj. K[Slp] is a ho­

momorphism of algebras such that ker(j,) = l(p) and K[Slp] =:! K[SlIl(p) as

K.algebru. Consequently, p -+ l(P) is an order-presenn'ng mapping of tAe set of

congruence..! of 5 into tAe set of two-sided iduLJ of K{S]-

rt is clear that the trivial congruence of 5 determines the zero ideal of K[SJ.

The univenal congruence S x S leads to the ideal. I = {oS - t I s,t € S}K ::::

{Eo.s E K(5) I Ea. = OJ. This ideal is usually denoted by ",,(K[5]) and is

called the augmentation ideal of K[S], where the corresponding homomorphism

K[5] -oj. K is called the augmentation map.

From Lemma 2.2 we know that the right ideal l(p) determines a right con­

gruence p = {(.s, t) E 5 )( 5 I .s - t E l(pH. More general, any rizht ideal of

KfSJ determines a right congruence on 5. Let J he a. right ideal of K[SJ, define a.

relation PJ on 5 by PJ = ((s,!) € S)( 5!.s - t E J}.

LEMMA 2.4 (Lemma 4.5, (52)). Let J be 'l right ideal of K(5J. Then,

1. PJ if a right congruence on 5 such tA'lt I(PJ) ~ J.

2. There exist natural right K[Sj-module homomorphi.sm.s, K[5] -+ K{5IpJ] -+

K(SIIJ·
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3. IfJ is a two·sided ideal of K[5], then PJ is a congruence on 5, the mappings

in (2) are homomorphisms of K.algebras, Qnd the semigroup 5/pJ em1H:ds

into the multiplicative semigroup of the algebra K[SI/J.

2.2. Munn algebras

In this section, we describe an important class of semigroup algebras arising

from completely o-simple semigroups.

2.2.1. Let K be a field and let R be any algebra over K. Let [ and A be

indexing sets, and P be a A x [ matrix with entries in R. By R = A1(Rj [, A; P)

one defines the following associative K -algebra. The elements of R are all [ x A

matrices over R with finitely many non-zero entries. Addition is the usual addition

of matrices, and the scalar multiplication by elements of K is component-wise.

Matrices multiply by insertion of the sandwich matrix P, that is, if A and 8 ace

two elements of il, tnen the product A 0 8 in R is defined by

Ao 8= AP8.

The K.atgebra R = M(R; [,A; P) is called the Munn [ x A matm algebra Oller

R with sandwich matrix P. If I [1= m and I A 1= n, then denote this algebra by

Ii. = M(R; m, nj Pl. The crucial example and motivation comes from the following

observation.
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LEMMA 2.5 (Lemma. 5.17, [l3D. The contro.cted oJgebra Ko[SI of Rees matrir

semigroup S =MO(Gj I, Aj P) over a field K if isomorphic with the Munn oJgebro.

M(K{GJ; t, A; Pl.

2.2.2. It is well known when Muon algebras are semisimplc, see for example,

Theorem 5.19 in (13).

THEOREM 2.6. Let K be II field. A Munn oJgebra if. = M(Rj m,nj P) over a

finite dimeruional K .tJgebra R is semifimple if lind only if

1. R issemisimpfe,

2. m = 0. and P if non•.singular (that i.s, P i.s inverlible in the matrir ring

M.(R)).

[f IM.s is the case, then il S! M,,(R).

Recall that a semisimple algebra contains an identity. The following property

states that condition two in the theorem is equivalent with if. having an identity

element.

THEOREM 2.7 (Lemma 5.18 (13)}. Let K be II field. The Munn algebro. il. "'"

M(R; m, nj P) over 11 finite dimensiontJ K -algebro. R contl1in.s lin identity if lind

only if

1. R contains an identity,

2. the sandwich matri:t P is non-singull1r (in particular m "'" 0.).



If this is the case, then the mo.pping A -+ AP is o.n isomorphism of R onto the full

matrU afgdru M,,(R).

Maschke's Theorem describes when the group algebra K[G] of a finite group G

is semisimple Artinian: K[G] is semisimple if and only if the characteristic of K

does not divide the order of G. For the contracted semigroup algebras Ko(S] of a

finite completely o-simple semigroup S = MO(Gi m, n; Pl, we have the following

corollary.

COROLLARY 2.8. ut S = MO(Gim,n; P) be a finite completely a-simple semi­

group and K a field, Thm KIS] is semisimple 11 and only 1/ (i) the choructe,utic

of K does not divide the order of G. (ii) P is non-.singwar (in partiCtlfar m=n)

regarded o..s a matri% ouer KIG].

Zelmanov showed that K(5) is rigbt Artinian implJes that S is a finite semi­

group and the converse bolds if S is a monoid (see also Theorem 14.23 in [52!).

More generally, Munn and Poinzovskii obtained independently the following gen·

eralization of Maschke's Th.eorem.

THEOREM 2.9 (Tbeorem 14. 24, [52/). ut 5 be a semigroup o.nd K a field.

The semigroup afgebru K[S] is semisimple Artinian if and only 115 ho..s a chain of

ideals S = 5n .2 5n _ 1 .2 ... .2 51 such that every 5;/5;_1 and 51 is a completely 0­

simple semigroup with a Rees repre.sentation of the type MO(G;m,m; P) for some
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m ~ 1, and an invertible matri:l: P in M... (K[G]), VJhere G is a finite group of

order not diuisibfe by the characteristic of K.

2.3. Semigroup Algebras and Group Algebras

[n this section, S will be a cancellative semigroup and K a field. [f 5 has a

group of (right) fractions G = 55- I then the group algebra K[G] is a localization

of the semigroup algebra K[S]. Since group algebras have been well studied, this

fact can be exploited in the study of semigroup algebras. Therefore we recall some

properties of localization and group algebras.

2.3.1. We start with the following basic result (see [54], Lemma 10.2.13 or

Lemma 7.13 in [52)).

LEMMA 2.10. Let T be a right Ore subset of a ring R. Then,

1. for every a\> .. ,a.", E n:r- t , there erists t E T such thala;t E R, for cUI

i= 1, .. ,no

2. for every right ide411 of RT-I, we have (I n R)RT- I = l.

Moreover, 11 Z is a right Ore subset of cancelfatiue semigroup 5, then Z is a right

Orr. subset of K[5] and K[SJZ- t = KI5Z- I ].

Hence one has the foHowing observation on the behavior of primeness and

semiprimeness under localizations.
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LEMMA 2.11. Let B be a n'ng that if the localization of its subring A with

respect to a right Ore subset Z. Then,

I. B if pM'me (semiprime) Ulhenet'er A is prime (semiprime, respet;tivdy).

2. If Z is contained in the centre: Z(B) of B or B is n'ght Noethen'an, then the

converse holds,

2.3.2. We now state a result that wiU be crucial for $tudying the relationship

between the properties of K[S] and K[SS-I) (see [52] Lemma 7.15),

LEMMA 2.12. Let G Ix: a group of rightfructions of its subsemigroup S. Then,

1. For any right ideals R l ~ R'l of K(G]. we have R 1 n K[S] ~ R, n K(S].

2. II P 14 a pn'me idea/. of K(Gj and K[Oll P is a Goldie ring (or K(G] is a

right Noetherian ring), then P n K[S] is a prime idea/. of K[S).

Let S be asemigroup with a group G of right fraction. We now solve when K[S]

is prime or semi prime, That these conditions are equivalent with K[G] being prime

or semiprime was shown by Okninslci (Theorem 7,19 in (52]). The equivaleoce of

the other cooditioos is well known (see for example [541, Section 11.2).

THEOREM 2.13. Assume S has a group G of right fructions. Then Iile follow-

ing conditions are: equivalent.

1. K[S] is prime (semiprime).

2. K[G] is prime (semiprime).



3. G has no non-trivialfinite normal su.bgrou.ps (ch(K) =0, orch(K) = p > 0

and G has no finite normal subgroups of order divisible by p).

4. The FC-center .£l(G) (defined in Chapter 5) is torsion-free abelian (ch(K) =
0, or ch(K) =p > 0 and .o.(G) has no p-torsion).

5. Z(K[GJ) is prime (semiprime).



CHAPTER 3

Global Dimensions of Semigroup Rings

In (501 ;and (511, Nico discussed the upper bound for homological dimensions of

sernigroup rings R[S] of a finite regular semigroup 5 over a commutative ring

R. Recently, iD. [451, Kuzmanovich and Teply discovered bounds for homological

dimensions of semigroup rings R(SJ of semigroups S which are monoids with ;a

chiUn of ideals such that eiLCh f;actor semigroup is ;a finite non-null Rees matrix

semigroup: the bounds are in terms of the dimeD.sioD. of the coefficient ring R and

the structure of the semigroup s. In this Ch;apter we continue these investig;atioll5.

Amongst other results we show that the upper bound obtained by Kuzmanovich

and Teply can be sharpened. The results proved in this chapter will appear in

[31].

We now outline the contents of this chapter. We will discuss the global dimen­

sion of semigroup rings R(S] where R is a ring and 5 is a monoid with a sequence

of ideals S = II ::> I~ ::> ••• ::> I .. ::> I ..+l such that 1;/ li+1 is a non-null Rees matrix

semigroup MO(Gi;ffl.;,n;; Pi) (for all 1 :5 i:5 n) and l"+l = {9} or 0.

[n Section 3.1 we recall the definition of global dimension of;a ring. 10 Section

3.2 we recall some results on the global dimensinn of gt'oup algebras. [n Section 3.3,

we show th;at the global dimension of R{S] is bounded by the global dimension of



3. GLOBAL. DIMENSIONS OF SEMIGROUP RINGS

R(G;J and a parameter /.lAS) which somehow depends on t!l.e sandwich matrices Pi

of t!l.e Munn algebras M(RIG;Jim;,1l;; P;). [n Section 3.4, we apply these results

to finite semigroups. We obtain the exact global dimension of K[S] where K is a

field and S is a monoid extension of a finite non-null Rees matrix semigroup (the

latter is not necessary a completely o-simple semigroup). Specific examples ;ue

given in Section 3.5.

The above mentioned results are a step toward handling the global dimension

of a semigmup algebra K(S) of an arbitrary finite semigroup S. The remaining

step is to deal with semigroups which have a principii.! factor that is a null semi­

group. The examples given in Section 3.6 indicate that the solution here is rather

unclear. Indeed we give twO examples (with a null factor), but one has finite global

dimension and tb.e other does not.

3.1. Global Dimensions

3.1.1. Projectiue dimension of a right module M R , written pel. MR., is the

shortest length 1l of a projective resolution

O-t P,,--+···--+ Po-tM-tO

or 00 if no finite length projective resolution exists.

In fact, the following numbers are all equal:

1. sup{pel. M I M any right R-module}i

2. sup{pd M I M any cyclic rigb.t R-module};

The common number is called the right global dimension of R, written rgld R.
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3.1.2. rgld R = a means precisely that R is a semisimple Artinian ring.

rgld R :5 1 means that R is a right hereditary ring. Note a right hereditary ring

means every right ideal is projective or equivalently every submodule of projective

module RR is projective. (for a right hereditary ring, every submodule of a free

module is isomorphic to a direct sum of right ideals).

3.1.3. Similarly one can define left global dimension 19ld R. In general

19ld R:f:. rgld R. However, if R is left and right Noetherian, then 19ld R = rgld R

(see (48] 7.1.11).

3.1.4. We list several properties on the global dimension. for more details,

we refer the reader to [48] and (54].

l. Consider a short exact sequence of right R-modules

O~A-i'B~C~O

If two of the modules A, 8, C have finite projective dimension then so does

the third. Moreover, we have the following three possibilities:

(a) ifpd 8 <pd A, then pd C =pd A+1.

(b) ifpd B =pd A, then pd C '5pd B+ l­

(c) ifpd B >pd A, then;xi C =pd B.

2. rgld R = sup(pd I I I <I~ R} + 1 unless R is semisimple.

3. If t/J is a right denominator set in a ring R then rgld Rt/J-I '5 rgld R where

RtP- 1 is a localization ring of R.

4. If u is an automorphism of R, then rgld R(.:r,u] = rgld R + 1.
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3.2. Global dimensions of group rings

Most of the following results come from [481 and [541.

3.2.1. In this subsection, we consider the global dimension of a group ring

RIGI·

LEMMA 3.1 (Theorem 7.5.6 in (481). ut R be a ring, G be finite group with

I G I a unit in R, and then rgld R[G] = rgld R.

We say that G is a polycyclic-by-finite group if G has a finite subnormal series

(1) =GO<lG l <I .. <lG" = G

with each quotient Gi+i/Gi infinite cyclic or finite.. Particularly, if each quotient is

infinite cyclic, thea .....e call C a poly-infinite cyclic group. The Hirsch number of a

polycycl..ic~by.finite group G, written h(C), is defined to be the number of infinite

cyclic quotients which occur in the above series. It is well known that R[C] is right

Noetherian if R is right Noetherian and G is a. polycyclic-by-finite group. But the

converse is still an open question.

LEMMA 3.2 (Corollary 7.5.6, (48]). Let R be a ring and G be a group. Then

1. rgld R :::; rgld R[G);

2. IfG is poly-infinite cyclic with Hirsch numberh thenrgld R(GI :::; rgld R+h;

3. If R is a Q-algebru and C is polycyclic-by-finite with Hirsch number h then

rgld R[C] :::; rgld R + h.



3.2.2. [t is well known when a group algebra K(G] has zero global dimension,

that is, when it is semisimple Artinian. This is known by Maschke's Theorem.

THEOREM 3.3. Let G be 4 finite group. Then K[OJ is semis£mple if and only

if roarK = 0 or roarK = p and Gis 4 p'-group.

[n the next chapter we will investigate the description of when rgld K[G] =1.

But now we list some properties on when the global dimension is finite (see Chillpter

10 in (54)).

THEOREM 3.4. Let K[G] ~ a group algebra. The following properties hold.

1. If V is the principal right K[G] module, then rgld K[G] = pd V.

2. If H is a subgroup ofG, then rgld K[H]:S rgld K[G].

3. Let H be a nonnal suhgroup of G. If K[H] and K[G/ H] have finite global

dimensions, then so does K[G], and we have rgld K{GI :s rgld K[H] +

rgld K[G/ H].

4. Ifrgld K[G] < 00 and if charK = p, then G is a p'-group. In particular, if

G is finite group, rgld K[G] < (X) implies that K[GI is semisimple.

5. If G = (z; J i E I) is 4 nontriui41 fru group, then the augmentation idetJ

w(K[G]) is a free right K(G)-module with fru generators {z; - 1 liE I}.

Furthermore, rgld K[G} = 1.

6. Let H be 4 subgroup ofG of finite index. Ifrgld. K[H] < 00 and ifG has

no element of order p in case charK = p, then rgld K[G] < 00.
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7. ut G be a polycyclic-hy·finite group. Then rgld K[G] < <X) if and only if

G has no elements of order p in case K has characteristic p. Furthermore,

rgld K[G] = h(G), the Hirsch number ofG.

3.3. Monoid extensions of Rees matrix: semigroups

In this section, we wiU investigate the global dimension of semigroup rings

R[S], where R is a ring with an identity and Sis iI. monoid with a chain of ideaJs

S = 51 :l 52 :l ... :l 5, such that each factor semigroup S;jS,+! is a non-null

Rees matrix semigroup ,\.t°(Giimi,nii Pi). In particular, any finite semisimple

semigroup 5 satisfies the above assumption. In [45j, Kuzmanovich and Teply

showed

THEOREM 3.5 (Theorem 3.7 in (45J). ut R he a ring with identity and S he a

monoid with 11 ch.ain of ideals S = 51 :l 52 ::> ... :l 5, :l 5'+1 such. thl1t each factor

semigroup Si/S,,+! is a finite, non-null Rees matrix semigroup MO(G;; mi,ni; Pi)

and 5,+! = 0 or {OJ. Then the glohl1l dimension of R[S] is finite if and only if

each. R(G,J hll$ finite global dimension. (n thi$ case, rgldR[G;J = rgldR and then

rgldR ~ rgldR[S] $; rgldR + 2L - 2.

3.3.1. We will sharpen the above upper bound. First we note that for a

Rees matrix semigroup MO(G; m, n; P) with non-null multiplication, there is no

(oss of generality in assuming that Pn = 1 (Remark 3.5 in [45]). To see this,

suppose that Pij = 9 for an element 9 E G. Let Q be the m x m permutation
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matrix corresponding to the transposition (1, i). Let Qt be the n x n permutation

matrix corresponding to the transposition (I,j). By definition, Q 0 Q = I ... and

Qt 0 QI = I". Define ¢: MO(G;m,n; P) -+ MO(G;m,n;Ql 0 PoQ) by ¢(A) =
Q 0 A 0 Ql' Note that ¢(A)¢(B) = (Qo A oQd 0 (Ql 0 PoQ) 0 (Q 0 BoQd =
QoAo PoBoQI = ¢(AB). It follows that ¢ is an isomorphism. Clearly the (1, 1)­

entry of the sandwich matrix QI 0 Po Q is g. Hence we may assume that Pli = g.

Now let W be the n)( n diagonal matrix given by W = diag(g-I, 1, .. , i), and

define ¢: MO(G;m,niP) --t MO(G;m,niWo P) by ¢(A) = Ao W-l. It follows

that ¢ is an isomorphism and the sandwich matrix WoP has 1 on its (I, 1)-entry.

So indeed we may a.ssume that Pu = 1.

THEOREM 3.6 (Lemma 3.6 in [45J). uL S be It monoid with an ideal U which

is isomorphic to a non-zero Rees matn'z semigroup MO(G;m,n; Pl. Then the ideal

I = RoW) of A = Ro[S] satisfies the following properties:

1. There exist subsets A, B of U and Itn idempotent e E U such that I =

EB"EA 01 = EBtEB lb. Mo1V)lJeT', I = lei = Ir..elr.., eA = eI and Ae = Ie.

2. For any a E A and b E B, ae =a, eb = b and thus ba =eboe E GU{8},

where 8 denotes the zero element.

3. As a "·ght A-module, {= EB&EA 01 is projective. Simi/ltrly, I = EBkB Ib i5

II left projective A-module.

4. Ie is It left projective A-module. Considered ItS a right R[G]-module, Ie S'"

EB..o aR[O] is free.
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5. Any nonzero element of f can be e~ressed as a $um ofaab where a. E A,b E

B, and a E R[G].

Proof. Without loss of generality, we can assume PII = I. Abusing notation, we

identify G U{O} with {(g, 1, I) 19 E G UfO}}.

I. Let e = (1, I, 1), tha.t is, e has a 1 in (1,1) entry and zero elsewhere. Then

e2 = eo Poe"'" e is an idempotent and thus eA = ef and Ae = Ie (again

o means the ordinary product of matrices). Clearly, leI ~ f. Now we need

to show that I ~ leI. It is sufficient to show tha.t, for an arbitrary element

a E R[G), leI contains a matrix that has a as its (i,j) entry and zero in

its other entries. Indeed, let Ai be the matrix with 1 in the (i, 1) entry and

all other entries 0, and let Cj be the matrix with Cl in the (l,j) entry and

all other entries O. Then AieCj has Cl as its (i,j) entry and zero for all its

other entries. Hence fel = f. Let. A = {(I,i, 1)11 :s i :S n}. Choose Ai

as before, dearly Ail is the i-th row of I, so f = EB".e" A;l. Similarly,

1= EtlS,EB IBj where B = {(I, 1,j)ll :$ j:S m} and Bj is the matrix with

1 in (I,j) entry and all other entries O.

2. This roHows from the proof of 1. For example, A;e = A; 0 Poe = A;.

3. Since Aie = A;, a direct computation shows that left multiplication by A;

yields a (right) A-isomorphism from ef to A;l. SO I =@,t,E"A;l 'i!@",EA.eI

is projective as a. right A-module.
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4. As le = Ae, it is clear that le is a lert projective A-module. Hence, rrom

the above,

le = $A.E" Aile

= $".uAiele

" ffi'." A; R[GJ

Since AiR[OI ::t R(O] as R(O] modules, we obtain that Ie is a rree right

R[O]-module.

5. Similar as in the proor or the first part (replace e by eo E RfOj and Cj by

3.3.2. With notations as in 3.3.1, ror any left A-module M, we define two

modules M" and M"" via the natural exact sequences as in (50]:

o--t AeM --+ M --t M* --t 0,

o--t M"" --t Ae 18IR(C1 eM~ AeM --t O.

Here leM = AeM is a submodule or M, eM is also alert R(G}-module; the map

i in the second sequence is given by fJ 181 m 0--+ fJm.

Then we ha.ve the rollowing lemma genera.lizing that in tbe completely.D-simple

case discussed by Nico in (50].
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LEMMA 3.7. With M· and M·· d~fin~d as abovc, xM· = zM·· = 0 for aU

z E I. Moreovcr, if thc sufxdgcbra I has a lcft idcntitll, thcn M·· = 0 for cvc'1l

lcft Ro(SI-modulc M.

Proof. Because of Lemma 3.6, AeM = AeAM = 1M and thus MO = M /1M.

Hence xM· = 0 is obvious. By Lemma 3.6.(4), any element Ct EM·' can be written

as a = E ..EA a~m., where m. E eM and E.EA am. = 0 in AeM. Now, let x E I.

By Lemma 3.6.(5), write:z; = Ea'a'lI with d E A,II E 8, and 0' E RlGI. For

each term a@m., of 0, if lIa E R[Gj, then a'o'b'a 0 m. = a' 181 o'b'am., and if

1/4 = 0, then 4'0'1/40 m. = O. Hence, always, 4'o'b'a = E.eA 4' <8> 0'1/4m. =
a' 181 a'b'(E.EA am.) = O. Therefore xo: = 0, as desired. The last part of the

statement of the lemma is obvious by using x equal the left identity of I. CI

It follows from the Lemma 3.7 that for any left RoIS}-moduJe M both modules

Mo and Mo. are left Ho[S/II-modules. We also mention the following well known

lerruna on change of rings (see Proposition 7.2.2 in (48]).

LEMMA 3.8. Let R, S bc rings with identitll. If R --+ S is a ring homomor­

phiml, thcn for anllieft S-module M,

3.3.3. Cn order to show the main theorem of this section, we also need the

following lemma.
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LEMMA 3.9. A.,.sum~ S i$ a monoid with an id~al U Ihat is isomorphic 10

a non-nulf &es matrU semigroup MO(Gjm,n; P) and 5 i' U. Let T = SjU.

Cons£der Ho[T] as a f~ft Ho[SJ-modtde, then pdRoISJ(Ho{Tj) :5 I. Furth~rmore,

HofT! is projective if and only if RoW) has a right identity.

Proof. Obviously, we have a. short exact sequence

o~ II,[UJ~ 11,151~ II,[T]~ o.

By Lemma. 3.6, Ro[U] is a. projective Ro[SJ·module and thus pdRofSJ(RoITj) :5 1.

Furthermore, Ro[Tl is projective if and only if the sequence splits, or equi~ently

if RoW] has a. right identity. 0

THEOREM 3.tO. Let S It~ a monoid, U an ideal which is isomorphic to 0. non-

null Rees matrU semigroup MQ(G; m, n; P) and let T = SjU. Then, for o.ny ring

R vtith identity,

Igld (11,[51)'; ma.{lgld (R(G]),lgld (II,[T]) + .(U)),

{

0, if Ro[U] has an identity.

O"(U) = 1, 11 Ro[U1 hu a left or right id~ntity, hut not an id~ntity.

2, if Ro[U1 hu neither a left nor a right identity.

Proof. As before, put A = Ro[S]. Consider the foUowing exact sequences:

O~AeM~M---+M·~O,
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o--+ M"" --+ A~ 0R(G) ~M ~ A~M --+ O.

for any (~ft A~modu1e M. By 3.1.4,

By Lemma 3.6, Ae = Ie is a free right R[GI~modu[e, hence pd,,(Ae 0R\G] eM) :5

pdR[G)(eM). Thus the second in~qua1ity becomes

And by Lemma 3.8 and Lemma 3.9, we have,

pd,(MO) S pd..",CMo) +pd,C!loIT)

S { Igld(RofTj), if Ro[UJ has a right identity.

Igld(Ro(Tj) + 1, otherwise.

If Ro[UJ does not have a left identity, then aga.in by Lemma 3.8 and Lemma 3.9,

pd,CM·O) S pd..,n(MOO) + pd,C!lolTJj

S { 19ld(Ro[Tj), if Ro[Uj has a right identity.

19ld(Ro[TJ) + 1, otherwise.
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Hence

pdA(M) $ max{pdA(AeM),pdA(M")}

$ max{pdR(G)(eM),pdA(M"") + 1,pdA(M"n

,; max{lgld(RIOJ),lgld(RoITJ) + a(U)}.

So the result follows in this case. On the other hand, if Ro[U1 has a. left identity,

then, by Lemma. 3.7, M"" = 0 for any left A-module M. From the second exa.ct

sequence, we then get,

pdA(AeM) = pdA(Ae0R(G) eM)

$pd'R(Cl(eM)

';lgld(RIOJ)

Hence

pdA(M) :s mGz{pd'A(AeM),pdA,(MO)}

,; max{lgld(R[Gj),lgld(Ro[Tj) +a(U)}.

So the result follows. 0

COROLLARY 3.11. Let S = MO(G;m,n; P) with nonzero sandUJich malriz P.

Then SI is II monoid urilh an ideal S which is isomorphic to a non-null Rees matriz

semigrol.Ip. ThlUi

Igld Ro[S'I,; max{lgld (RIOJ),lgld (R) +a(S)}.
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{

0, ;f Ro[S] hM on id,nli'Y·

u(5) = 1, if RoW] has a left or right identity, but not an identity.

2, if Ro[5] has neither a left nor a right identity.

3.3_4. Theorem 3.10 also allOWli us to find the following upper bound for

the left global dimeosion of contracted semigroup algebras Ro[S] of more general

semigro.ups S.

THEOREM 3.12. Let 5 be a monoid with a sequeJ'lce of ideals 5 = I l :J l~ :J

... :J J", :J l.+h where I"'+t = {O} or 0. Let R be a riJ'lg with an iden­

tity. A$S1lme that, for all L :S i :S n, l;/1;+1 is a non-null Rtts malro semi-

group MO(C;;m"n;;P;). Let u be defined as in Theorem 3./0 and let ~i(S) =
u(li/li+-d + .. +t7(1../I..+d, for 1:S j:S n. Lt.t 1-I"'+l(5) = O. Tht.n

Igld Ro[S]:S maz{lgld(R[GiI) +l-'i+l(5): i = l, .. ,n.}.

Proof. Jfn = 1, that S being a monoid imp1iesml = nl = 1. Hence RofS] = R[CI,

a group l"iog. [n this situation the assertion is obvious. We now prove the result by

induction on n.. For n ::: 2 consider the factor semigroup 5/ I",. By Theorem 3.10,

we have

19ld Ro(S] " mo,{lgld (RIGo]),lgld (Ro(S/loll +a(l.».

By the induction hypothesis,

19ld Ro[5/1..! :S max{lgld (R[G j ]) + I1j+l(5/l",) : i = 1,' . ,n. - I}.



19ld Ro[S]::; max{lgld (R(G"J),lgld (R[Gj)) +j.lj+l(S/[n)+

O'"([n):j = 1,' . ,n-l}

::; max{lgld (R[Cjn + j.lj+J(S): j = I, .. ,n}

Obviously Theorem 3.12 is applicable to finite regular semigroups. This case

was also invl!:!itigated by Nico in (50], (51J.

3.4. Applications

3.4.1. First recall the following resu.lt on m x n matrix A over a division ring

D (Corollary 11.2.3 in (14]).

LEMMA 3.13. For a m x n matrU A over a division ring D the foliolUing

conditions are equivalent:

1. A is left regular, that is, X A = 0 implie.! X = O.

2. A has a right inverse, that is, AB = { for some n x m matrU B.

Moreover, when (1) and (!) hold, then m ::; n, IUith equality if and only if (J) and

(!) are equilHJ1ent to their left-right analogue.

3.4.2. As a.n application of Theorem 3.10, we obtain the exact value of the

global dimension of KO(SI] for non~nu.ll Rees matrix semigroups Sand K a. field.
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THEOREM 3.14. &.t S be a non-null Rees matriz semigroup MO(G;n,m;P)

with G a finite group. If K is a field of characteristic not dividing the order of G,

then 19ld (Ko[S'» =<reS) = 19ld (K[S'».

Proof. The assumption implies that 19ld(K[GJ) = O. From Theorem 3.10, we

have 19ld(Ko[S']) :5 1 provided that <r(S):5 1. It is obvious that 19ld(Ko[SIIl =0

if and only if IJI(S') = oo{S) = O. Hence the theorem holds for 00(5):5 1.

Next ilSSume u(S) = 2. We may assume 19ld(Ko[S'» 2:: 1. Hence by 3.1.4,

Igld(KoIS I»= 1 + sup{pd";,(S'I(£) ; I ~ KoIS') is a left ideal}

So to prove the theorem, it is sufficient to find a left ideal of projective dimension 1.

Since K(G] is semisimple, say K[GJ = Mk,(D I ) E9 .. $ Mkr(Dr ) for some division

rings D., we can decompose Ko[Sj naturally as tne sum of M(M,dDi);ni,m.; Pi)

for 1 :5 i :s r. Here P = P,$···E:BPr and entries of Pi belong to M..(Di)

for all 1 :5 i :5 r_ Since Ko[S] does not have a left identity, there exisu io

such that M(Mt'o(DoO)inoO,moOi p... ) 3!! M(D"'ik... noO,kiomoOi Poo ) does not have

a left identity. Here P;;; denotes the ki.m", x kioni. matrix; obtained from P",

by erasing the matrix brackets of all the entries. Hence p;;, dot;!! not have a

left inverse. From Lemma 3.13, we have annr(M(M.... (DoO);n .. ,m... iP"'» I- 0

and tbw annr(Ko[S]) I- O. (By annr( ) we denote the right annihilator.) Let

o I- 0 E annr(Ko[SJ) and let 1= KO[Sllo. Clearly K o[S']5 S!! K as left Ko(S'j

modules. By Lemma 3.9 and the fact that Ko[S] does not have a right identity,

pdKo[S'I(K) = 1. The result follows. That 19ld KO{Sl] = 19ld K[Sl] is obvious. 0
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3.5. Examples

The following examples show that in Theorem 3.14 all possible values for the

global dimensioD. caD. be re.acb.ed. It follows that in Theorem 3.10 the upper bound

obtained can not be sharpened.

EXAMPLE 3.15. ut G = {I} be the trivial group and let S = MO(G;2,2;P)

.nth p ~ (: :). Th~, to' any ft,ld K, by Th~~m t.9, K,[S'] " "mmmpl,

and then rgld KorS I ] = o.

EXAMPLE: 3.16. ut G be the trivial group and let S = MO(G; 1,2; P) with

P = ( : ) . Sa S " a "mplddy lJ.,impl, "mi"".p. ul K b, a ft,ld. B=~,
of Theorem e. 7, KoIS] does not hatle an identity element. HOVJeuer, any nonzero

element of S is a left identity of Ko{S]. Hence, from Theorem 3.1./, rgld KorS I ] =
l.

EXAMPLE; 3.17. ut G be the trivial group and let S = MO(G;I,2;P) with

P ~ ( ~ ). Sa S " nat "mpl,',ly O-,impl, "mi"".p, ~ P " nal a ~..I"

matri~. ut K be a field. Again Ko[S] does not haue an identity element, but it

has (l, I, 2) a.s a left identity. So, again by Theorem 3.1./, rgld KO[SIJ = 1.
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ExAMPLE 3.18 (Example 4.1 [451). ut G = {I} be the Irivi41 group 4nd let

S ~ MO(G;2,2; P) oci'" P ~ (: :)- L<t K b. oft"d. Agoin by Thw~m e.7,

Ko[S] dou not have an idenlity and it is easily verified that it neither contains a

left nor a right identity. 50, again by Theorem 3.1 4, rgld Ko[5 1
] = 2.

3.6. Null factors

if 5 contains A null factor, then it is still unknown when K[5j has finite global

dimension or not. We give two examples, one of finite global dimension (given by

Kuzmanovich and Teply, Example 4.1 in (45J) and one of infinite global dimension.

3.6.1. By a graph, say r, Vie understand a system consisting of a nonempty

set, Vcr), whose elements are called vertices of f, and a set E(f), whose elements

are called edges of r, and an incidence map (i,l): E(f) -+ VCr) x vcr). For any

edge e of r, i(e),t(e) are called initilJi and terminal vertices of e, respectively. By

a. path 13 in f we meal! a sequence of edges at, .. ,a... , written 13 = 01 "0... ,

with 0(ai+d = t(0; l for 1 :5 i :5 m - 1. Define o{'ol = o(ad and t(,O) = t(0",).

Let 8 be the set of all paths in fj we regard each vertex as a path of length 0

with t(Vi) = o(v;) = w, so VCr) ~ B. Tben tbe path algebra Kf of f over the

field K is tbe K-vec:tor space with basis tbe set B, and multiplication defined via

.0 . .., = 11"'( if t(,O> =0("') and,O·.., = 0 otherwise, for 13,.., e B (note V;4i = ai and

aivi+1 = ail. A familiar example is that of the path algebra Kf where r is the



directed graph VI -!4 111 ~ ..~ v... The algebra Kr is isomorphic with the

ring T..(K) of upper triangular n x n matrices over a field K. (see 3.6 in [18])

If K is an algebraically dosed. field tben any finite dimensional K-algebra A

is isomorphic with a quotient Kr/{p) of a path algebra Kr, where (p) is the

two-sided ideal of Kr generated by a set p in r.

Again take r as VI ~ t/;l ..!4 ... ~ v,. and p = {paths of length 2} =
{G;G'+.}' then Kr/{p):::! T..{K)/(radT.. (K))Z, a ring known to have global di­

mension n - 1 (see (19]). In fact A = Kr /(p) is a semigroup algebra. To see

this, let T be the set of all paths in r with a special element I) (zero) adjoined.

Then T becomes a semigroup where the product of paths a and P is defined to the

conjunction of a and P(as before). Let U be all the paths with length greater than

and equal to 2 and I), then U is an ideal of T. Let 5 be the Rees factor semigroup

T/U. Obviously, A ~ Ko[5J.

For the semigroup 5 = {B, VI, •• , V",Gl, .. , a,,_I}, by induction, we can con·

struct the ideal chain &l5 follows:

" ,,_I ,,_I

5 =~ 5v,5 2 ~ 5v,5 2 ~ SVi5 2···2 5v"_15 2 Sa.,,_15.

Denote the above chain by

5251 ::2 ... 2 S",

where S" = 5a.,_ I S and 5; = Uj,:,1 SvjS for allIS i S; n - 1. Note that

5V"_l5"", {v"_t>a,,_z,a,,_,,O} and 5a,,_IS = {8,a"_I}. Obviously, 5;/5;+1 =
{Vi,ai_I,8} ~ MO(1;2, 1; P) with P = (1,1,1) for 2 ~ i S n. And 5" is a null



3. GLOBAL DIMENSIONS OF SEMIOROIJP RINGS

semigroup. Note also SISI = {v",8}, and SdS7. = {v"O} are trivialvoups with

zero adjoined.

Th.is example shows that the global dimension of Ko[S] is finite md S has a

principal ideal chain with a null factor semigroup.

3.6.2. The following example based on the above shows that there exists a

semigroup S with a null factor semigroup but the global dimension of the con-

tracted semigroup algebra Ko[SI is infinite.

Let r be a directed graph as follows:

,!:._a_.-<!.;:-_a,~~_a_,~ . ....~ b
VI V7, t'3 tl4~

with the relations p = {alal, .. ,a"_la"_I,a"_lb,b1}. Then A -= Kr/(p} has

infinite global dimension (see Example l.l and l.2 in [25]). We can also think

of A as a semigroup algebra. If S = {8,tlt, .. ,tI.. , 111> .. ,I1"_hb}, then we have

principal ideal chain as follows:

Denote the above wain by

where S"+l = SbS = {b,O} and S, = Ui.; SvjS for all 1 $ i $: n. Note also that

S;jSi+l = {vi,a;_I}:ilI! MO(I;2,1;P) with P= (l,l,l) for 2 $: i $:n a.renon-null
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semigroups. Obviou.sly 5,,+1 is a null semigroup. And Sa/5, = {v,,8} is a trivial

group with zero adjoined.
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CHAPTER 4

Hereditary Group Rings and Semigroup Rings

[n tb..is chapter we investigate when a semigroup algebra has right global dimension

at most 1, that is, when is it right hereditary. Hence we consider a question posed

by OkniMki in 1521: chara.cterize hereditary semigroup algebras. Recall that if a

ring is left and right Noetherian, then the left and right global dimension are equaL

It follows that such a ring is len hereditary if and only if it is right hereditiU"Y. Such

rings lve simply call hereditary rings.

Hereditary and semihtteditary rings have been the subject of considerable

study. Many interesting examples of these rings arise as group rings or semigroup

rings. Dicks has characterized the hereditary group rings [I7}, earlier, Gounaud

and Valette dassilled hereditary group rings of nilpotent groups (26). Cheng and

Wong [I6J c:hanu::terized the hereditary monoid rings that ilLI"e also domains.

In Section 1 we recall the characterizations of group algebras tl1at are right

hereditary. As said above, for scmigroup algebras a solution is known only in case

K(Sj is a domain. In Section 2, as an application of the results in Chapter 3, we

describe when KO(S'] is hereditary for a finite non-null Rees Matrix semigroup S.

Under the extra assumption that KlS) is Noetherian we are able in Section 6 to

solve the problem in case S is a cancellative monoid. In section 5 we are able to



4. REREDITARY GROUP RINGS AND SEMIGROUP RINGS

describe, for arbitrary nilpotent semigroups 5 (thus not necessarily caacellative),

wben a semigroup algebra is hereditary Noetherian prime.

Recall that a Noetherian commutative domain is hereditary if and only if it

is a Dedekind domain, in particular it is completely integrally dosed, that is, a

maximal order. Also in the non commutative setting there is a dose relationship

with maximal order. For example a hereditary Noetherian prime ring which is P.I.

is equivalent to a Dedelcind prime ring. Hence, in some sense, it is not surprising

that our answer in Section 5 relates our description to a special dass of maximal

orders, in particular to principal ideaJ rings. We therefore recall some background

on maximal orders in Section 3 and in Section 4 we recall some results on group and

semigroup rings that are principal ideal rings. The results proved in this chapter

will appear in (371.

4.1. Hereditary Group Rings

4.1.1. In the case where G is a nilpotent group, Coursaud and Valette [261

(see for example in [52]) snowed tne following result.

LEMMA 4.1. wt G be a nil]Wtent group. Then K[GI is right hereditary If and

only i/ either 0/ the following holds:

1. G is finite-hy-(infinite cyclic), and the order 0/ the tonion subgroup 0/ G is

invertible in K.

2. G is locally finite and countable, and the order of eue'1l element 0/ G is

invertible in K.
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4.1.2. A very deep result on right hereditary group rings for any group G

was described by Dicks. To state this result, we need some preparation. Let us

fix a connected graph X. We may view X as a small category with object set

ob(X) = E(X) U VeX) and Don-identity morphism ic : e -+ i(~), tc : e -+ ~(~)

for ~ E E(X). A functor 9 : X -+ Groops, into the category of groups, is called

a connect~d grapll of groups. for vertices v of X, the 9'(v) wiU be called vertex

groups of 9, and for edges ~ oC X, the 9(~) will he called the edge groups of 9'. The

image of x E 9(e) under homomorphism 9(ie) : 9(~) -+ Q(i(e)) will be denoted

by xi., and a similar notation is used Cor te. Let T be a spanning ~ree for X,

that is, a subgrapn with the same vertex set and witn a minimal edge set so that

the subgraph is stili connected. The fundamental group oC 9 with respect to T is

defined as the group If(9, T) universal with respect to the following properties:

l. Cor each vertex v of X, there is a group homomorpbism 9(v) -+ "'(9, T).

2. for each edge e of X, there is an element q(e) of 11"(0, T) such tnat q(~)-Ixi'q(e)=
x'· for all:r: E 9(e), and if e is an edge of T, then q(e) = L

J. P. Serre snowed that the isomorphism dass of rr(9, T) is independent of choice

of T. For this reason one usually speaks of the fundameo.tal group of 9, without

reference to a spanning tree. for more details, proofs, and applications, the reader

is referred to (17J.

LEMMA 4.2 (Dicks, Theorem 1 in [17) or Theorem 17.4 in [52]). Le~ G be a group.

Then K{Oj is right heredi~ary if and only if
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') G is the fundamental group of 0. connected graph of finite groups with in~

verlible oroer$ in K.

Moreover, if G is finitely genero.ted, then the above i!J equiuo.lent lo any of the

following conditioru:

L G has a free subgroup of finite inde%, and the oroers offinile subgroups of G

are invertible in K.

2. G is the fimdamental group of a finite connected gro.ph of finite groups of

ord~ invertible in K.

4.1.3. It is well known when a. fundamental group G of a connected graph

of finite groups bas no free subgroup of rank 2. By G t ... G2 we denote the free

product of the groups G 1 and G2 • The cyclic group of order two is denoted. hy C,.

LEMMA 4.3 (Dicks, Theorem 2, (17]). A /undamenlo.l group G of a connected

graph of finite groups has no frtt SIlbgroup of rank e if and only if either of tlte

following holds:

1. G is countable locallyfinile.

2. G is finite.by-(infinite cyclic).

3. G is finite-by-(C, ... e2l.

The infinite dihedral group D"" is the group with presentation {s,t [ t 2 =
1,Isl-1 = S-l}. It is well known tha.t C2 • C2 ~ Doc.
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4.1.4. Monoid algebras that are hereditary domains are characterized in the

following result.

LEMMA 4.4 (Chen and Wong, (161). The following conditions are equivalent

for a monoid S.

1. K(S) is a hereditary domain.

2. K(S) is hereditary, and S is torsion ftu and wealdy cancellatil,le.

3. 5 is a free product of a free group and a free monoid.

4. K[SI is a free ideal ring (fir).

Here, torsion free means that, for any a E 5, we have a 0;: 1 whenever a K
0;: 1

for some n ~ 1, and weakly canceUative means that either of the equalities ab =

a,ba = a implies that b = I and that aub = ab for some u E U(S) implies that

u=1.

4.2. Finite Non-null Rees Matrix Sernigroups

Let S be a non-null Rees matrix semigroup MO(Gj n, mj P) with C a finite

group. In Chapter 3, we showed that if K is a field of characteristic not dividing the

order ofC, tncn 19ld(Ko[Sl]) = 00(5). We now describe when KO[Sl] is hereditary.

THOOR.EM 4.5. wt S be a non-null &1:.$ matri2: semigroup MO(C; n, mj P)

with G a finite group. wt K be a field. Then the following are equirxJent:

1. Ko[SII is hereditary.

2. K[GJ is semisimple and Ko[Sj has a left or right identity,
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3. K[GJ is semisimple and there ezists a E Ko[S] that is not a right or not a

left divisor of zero in Kols].

4. K[G] is semisimpfe and ann~(Ko{S])=0 or ann/(Ko[SJ) =O.

Proof. First we show that (1) implies (2). Since K{SI] is heredituy, K[G] :!!

eKo[SI]e is a150 hereditary by Proposition 7.8.9 in (48]. Since G is finite, Theo­

rem 3.4 implies that K[GJ is semisimple. So (2) follows and that (2) implies (I)

follows from Theorem 3.14. That (2) implies (3) and (3) implies (4) are dear. (4)

implies (2) is shown in the last pa~t of the proof of Theorem 3.14 in Chapter 3. 0

Remark: If G is trivial, then the above conditions arc equivalent to rank(P) =

min{m,n}. In general, the above conditions are equivalent to rank(?;) = k;

mio.{mi,n..} for all 1 s: i s: r when K(G] = M.t\(DdEB ··EB M.t~(Dr) and

K[S] = EB~""IM(Di;kini,k.;m;;P;). Here rank(P;) is defined as the dimension

of the column space of P; ( sec [52/).

4.3. Maximal Orders

Recall that a ring Q is iI. quotient ring if every regulu element of Q is a unit.

Given a quotient ring Q. a subring R is called a right orr/er in Q if each q E Q

has the form rs- I for some r, s E R (s regular in R). A left order is defined

analogously; and a left and right order is called an order. For a right order R, we

have the fotlowing results.
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LEMMA 4.6 (Lemma 3.1.6 in [4.8]). Let R be /I right order in /I quotient ring

Q lind let S be subring of Q. Then

1. If the~ are units a, b e Q suc:h that a Rb ~ S, then S is a also a right order

in Q.

2. IfR~ S~Q then S is a right order in Q.

3. If R is a prime right Goldie ring, A is II nonzero ideal of R, and S is a

su6ring of R urith A ~ S ~ It. then S is a prime right Goldie ring, and has

the .same right quotient ring a.s R.

Let R"R2 be two right orders in a fixed quotient ring Q. If there are units

a"a2,b,,~ e Q such that aIR}b, ~ R2 and a2R2~ <; RI> then Rio R2 are called

equilJalent right orders. Further, Let R be a right or left order in a quotient Q,

then R is maximal right or left order if it is maximal within its equivalence class

as a.bove.

Recall that a commutative domain R is completely integrally closed in its quo­

tient field Q if, for a OUId q in Q with a I' 0, art' e R for all 1'1 implies q e R. A

commuta.tive integTa.l domain is a maximal order in its quotient field if and only if

it is completely integn.ily dosed.

4.S.1. Let R be a right or left order in a. quotient ring Q. Then a fractional

n'ght R·ideal is a submodule I of Q~ such tha.t al <; R and bR <; I for some units

a,b e Q. In a similar fashion fractional left R-ideal and fractional (two-sided)

R-ideo.l are defined. Further, if I <; R, then I is called an (integral) R·ideal.
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The n'ght order and feft order of a fractional right (or len) R-ideall a.re defined

respectively to be

0.(1) ~ {qEQ I Iq<;; I},

0,(/) ~ {q E Q I qI <;; II·

THEOREM 4.7 (Proposition 5.1.04 in (43}). If R is a right order in Q then the

following eonditions are eqKiva/ent;

1. R is a maximal right order;

2. O~(£) = 0/(£) = R for all /raclional R -ideals I ..

3. O~(l) = 0/(1) = R for all R -ideals I.

4.3.2. We will use the following notations. Let R be an order in a quotient

ring Q. Por subsets A, B of Q we denote (A :/ B) = {q E Q I qB ~ A} and (A :~

B) = {q E Q I Bq ~ A}. l.n particular for a fractional R-ideal/, (1:/ l) = 0/(1).

A [ractional R-idea.1 I is inverlihfe if there exist a fractional R·idea.l B such that

I B = BI = R. In this case B is usually denoted by I-I. Note that R is a maximal

order if and only if (l :/ I) = (l :~ l) = R for every fractional R-ideal I. Hence, if

R is a maximal order, then (R:/ l) = (R:~ l) for any [ractional R-ideal!. Indeed,

let q E (R:/ I), then ql ~ R. Hence Iql ~ IR ~ I and thus Iq ~ R. Therefore

(R:/ l) = (R:~ l) by the symmetry. We simply denote this rra.ctional R-idea..l by

(R: l) or by I- t • Recall that I is divisoriaf if I = I·, where I- = (R: (R: I)).

The divisorial product I ... J of two divisoriai ideals [ and J is defined as (lJ) •.
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A prime Goldie ring R such that every nonzero ideal is invertible is called an

Asano prime ring or an Asano order. It is equivalent with R being a maximal

order so that every ideal of R is divisorial (Proposition 5.2.6 in [4.8]).

For an hereditary ring, every ideal is projective. Fu.rther, a projective ideal is

divisorial (5.1.7 in [48]), and thus in an hereditary ring every ideal is divisorial.

Rings satisfying the foHowing conditions are called Dedekind prime rings.

LEMMA 4.8. The foflowing conditions on a ring R an: equivalent:

I. R is a hereditary Noethen'an prime ring and is a mazimal order.

2. R is a hereditary Noetherian Asano order.

4.4. Principal Ideal Rings

In this section we recall some results OD semigroup rings that are principal

ideal rings. We first state a result of Passman [55J OD the group ring case K{C]

(as mentioned in [4.2] one can allow the coefficient to be a matrix algebra). Fisher

and Sehgal had dealt with the case that G is a nilpotent group [21].

LEMMA 4.9 (Theorem l.l, [42]). Let G be a group and R '"" M.CK) a matri:r

ring over a field K. The following conditions are e.quilXJlent:

1. R(C] is a left principal ideal ring;

2. R[G] is left Noetherian and the augmentation idealw(R[Gj) is a left principal

ideal,.
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3. if charK = 0, then G is finite or finite.by-infinite cyclic; if charK = p > 0,

then G is (finite rI)·by·cyclic p or G is (finite rI).by-infinite cyclic.

[n (42J Jespers and Wauters obtained the roUowing extension to semigroup

algebras KIS] or cancellative mODoids $,

LEMMA 4.10 (Theorem 2.1 in [42]). Let S be a cancellative monoid and K a

field. The following conditions are equivalent:

1. K[5] is a left principal idtnl ring,-

2. either S is a group sGtisfying the conditions of Lemma .j.9 or S contGins

a finite subgroup H and a non-periodic element x such that xH = Hx and

5 "'" UieN H Xi, if char K = p > 0, then H is a p'. group; moreover the centrnl

idempotents of K(HJ remain c:entrnl in K[$J.

In particular K[5] is a left principal ideal "·n9 if and only if K[5) is a "'ght principol

ideal ring_

For contracted semigroup algebras of arbitrary nilpotent semigroups Jespers

aDd Wauters proved the following,

LEMMA 4.11 (Theorem 1.5 in [42]). Let 5 be a nilpoterd semigroup and K

be a field such that Ko[5] is a prime ring. Then the following conditions are

equivalent:

1. K o[51 is an Asano·order;
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2. Kc[S] is a left principal ideal ring,-

3. S S:! MO{{e};n,n;6.) or S:!! MO«x'li E N};n,n;6.) or S:!! MO({x i liE

Z};n,n;.6.) (6. denotes the identity matrix) lind thv.s Ko(Sj:!! M...(K) or

Ko{SJ g;: M ...(K(XJ) or Ko(SJ::! M.(K[X,X-IJ),

In particular K[SJ is a left principal ideal n'ng ifand only if K[Sj is a right pn'ncipal

ideal ring.

Note that Jespers and Okniliski in (321 describe arbitrary semigroup algebras

that are principaL In particular it is shown that such algebras a.n: P.L Since we

do not need this result we will not go into the details,

4.5. Nilpotent semigroups

[t is ....-eU known that a Noetherian commutative domain i.s hereditary if and

only if it is a Dedekind domain. For the non-eommutative case, this conclusion

is false in general. But when R is a hereditary Noetherian prime (HNP) ring

satisfying a polynomial identity(Pl), then R is obtained from a Ded.ekind prime

ring by a finite iteration process of forming idealizers of generative isomaxima1

right ideals, i.e. R is equivalent to a Ded.ekind prime ring (Theorem 13.7.15, 5.6.12

and 5.6.8, [48]). In this set:.tion, we prove that if S is a. nilpotent semigroup and

K[SI is a HNP, even without the PI condition, then K[S] is a Dedekind prime ring

and thus K(S] is a maximal order,
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4.5.1. Jespers and OkniJiski ha.ve given a. structural description of semigroup

algebras of oilpotent semigroups (tb..is ultimately is based 00 the structure theorem

of OkniJiski on linear semigroups, (531 ). We wil( exploit ooe of their structural

theorems. Recall that a semigroup S is called uniform if it embeds into a completely

o-simple semigroup U such that S intersects non-trivially all 1i-<::Ia.sses of U (

every maximal subgroup G of the least completely o-simple subsemigroup 5 of U

containing S is then genera.ted by S n G). Reca.ll (from Lemma 2.4) that for a

prime ideal P of K[SI, S/pp is a subsemigroup of K[SJI P.

LEMMA 4.12 (Theorem 3.5 in [31]). Ld S be a nilpotent semigroup, K a field

and P a prime idetJl of K[SI such thClt KISI/ P is left Goldie with dauiCl1.1 ring of

quotients M ..(D) and D a division ring. Then the semigrovp 5/pp htU an ideal

chain

S/pp = f. 2 [._1 2···2 II = [ 2 [0,

where 10 = {IJ} 11 S has a zero element and fo = 0 otherwise, and for all j > 0, I j

consists of matrices of rank less than or equol to j + i -1 (i is the rank of elements

in f) ofS/pp ~ M..(D),. in po.rticvlar I is the idetJi of elernent.J ofSfpp of minimal

nonu1'O rani in M..(D):

1. I is uniform in a completely O.simple inverse subsemigroup i of M..(D) with

finitely many idempotent" and S = (S/pp)Ui is a nilpotent subsemigroup

a[M.(D).



2. K{l} ~ K[SJ/P £: K{i} = K{S}, where K{i} denotes the subolgebru 0/

M,,(D) generated by ii moreover M,,(D) is the common classical n·ng 0/

quotients o/these three algebras and K{i} is a left and n·ght localization 0/

K{f} with resp«t to an Ore set.

3. Denote by G a maximal subgroup 0/ i , there erists a prime ideo.l Q of K[G]

such that K[GIIQ is a Goldie n·ng and K{i}:::! M,(K[Gl/Q), where q is the

number 0/ nonzero idempotent" of I; moreover G is the group of quotients

o/InC.

From this Theorem, we ha.ve another lemma. considering prime Goldie rings.

LEMMA 4.13 (Theorem 1.6 in [42]). Let 5 be a nilpo~nt semigroup , K afield

, P = K ·9 i/S has a zero element, otherwise P ={OJ. If Ko[S] = K[SJj P is a

prime left Coldie ring satisfying the asunding chain condition on two sided ideals,

then, with notations as in Lemma -{.le, we have Q = 0, K{i} = Ko[i], G is

poly.infinite cyclic and q :; n.

4.5.2. From this lemma., we can show that aD HNP semigroup algebra. of a

nilpotent semigroup is a maximaL order.

PROPOSITION 4.14. Let S be a nilpotent semigroup. 1/ KoIS] is hereditary

prime left Goldie ring satisfying asunding chllin condition on two-sided ideals,

then C is infinite cyclic or trivial. In the llltter case, S:1! MO({e}jn,nj6). In

particular, Ko[S] is a marimal order.
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Proof. We use the same notation as in Lemma 4.13. Note here that Ko[i] :!!

M,,(K(GJ) is a localization of Ko[1] with respect to an Ore set C. First we show

that Ko[i]:!! M,,(K[G) is also a localization of Ko[SI with respec;t to the Ore set

C. Since elements of C are regular, it is suffices to show that C satisfies the Ore

condition in Ko{S]. Let s E Ko[SI and c E C. Then .sc- l E Ko{i] '=" C-1Ko[l], so

sc- 1 = d-'r for some dEC and r E Ko{l]. Hence ds = rc and thus Cs nKo{S]c #:

0.

Now since Ko[5] is hereditary, so is Ko[i] ~ M,,(K[G]). By Lemma 4.1, G

is either finite-by-(infinite cyclic}, and the order of the torsion subgroup of G is

invertible in K, or G is locally finite and couotable, and the order of every element

of G is invertible in K. From the proof of Lemma 4.13, we know that G is torsion-

free, hence in this case, G is infinite cyclic or trivial. Obviously in the latter case,

Now, we show that Ko[SI is a maximal order when G is infinite cyclic. For this it

is sufficient to show that Ko[S] is a Ded.ekind prime ring. Because of Proposition

5.6.3 in [48]( A hereditary Noetherian prime ring R is Dedekind if and only if

it has no idempotent ideals other than 0 and R), we only have to show that

any idempotent ideal of Ko(S) is trivial. So suppose I is a nontrivial idempotent

ideal of Ko[S]. Then since Ko{i] is Noetherian, I Ko{i] is an idempotent ideal of

Ko[il.(Theorem 1.31 in (11]). This is a contradiction since Ko[i] is a left principal

ideal ring by the result of Lemma 4.9 and the fact that a prime principal ideal ring



does not contains a nontrivial idempotent ideal. Hence Ko[Sj has no nontrivial

idempotent ideal and thus we have done. CJ

4.5.3. Once we know Ko[SI is a maximal order, we have the foUowing struc­

ture theo~m:

THEOREM 4.15 (Theorem 3.4 in [37]). Let S btl a nilpotent semigroup. The

following conditions are equivaltlnt:

1. Ko[S] is HNP.

2. Ko[Sj i! II prime Asano·order.

3. KolSI is a prime left principal ideal ring.

4. S ~ MO({e};n,n.i.o.) orS ~ MO({:ili E N};n,n;.o.) or S::! MO({:i liE

Z}in,n;.o.)) (6. denottls thtl idtlntity ffllltriX) and thus Ko[Sj ~ M,,(K) or

K,[S] '" M.(f([XJ) "K.[SI '" M.(K[X, X-'J).

Proof. Note tha.t beca.u.sc ofTheorcm 4.11, the last three conditions are equivalent.

3 ==> 1 is obvious and it remains to show that l ==> 2. [f Ko[S] is a HNP, then

from Proposition 4.14 it follows that Ko[S] is a Dedekind prime ring ilDd thus a

prime Asano order. D.

Since Ko[S) is a HNP, then from proposition 4.14 it follows that G is trivial or

infinite cyclic. A structural proof of 1 ==> 2 can be done similarly to tha.t in [42).
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4.6. CancelJative semigroups

4.6.1. We first reall a simple but useful lemma on ca.ncellati¥e sernigroups

(Lemma 1.3 in (361). For a completeness' sake, we include the proof.

LEMMA 4.16. Let 5 &e a caneellative semigrov.p. If S satisfies the ascending

chain condition on right ideals, then for any a,b E 5, there exists a positive integer

r such that arb e b51 •

Proof. Let a,b E S. Consider the following ascending chain of right ideals of 5:

Since 5 satisfies the ascending chain condition on right ideals, there etists positive

integer n > i such that

Because, by assumption, 5 is cancellative, it follows that an-'b E b51• 0

4.6.2. Now we prove the following result.

THEOREM 4.17 (Theorem 4.3 in (37]). Let S be a caneelfative nanoid and K

a field 0/ characteristic p (not neussarily nonzero). Then the following on equiu­

alent:

1. The semigroup algebra K[S] is a Noetherian hereditary ring.

2. The semigrov.p 5 sati4fies one of the following conditions:
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(a) S is a finite p'-group.

(b) 5 is a finite p' .by.infinite cydic group_

(c) S contain.! a finite p'-StlOgroup H and a non-periodic element %.such

that S::: U"EN Hzi,;r;H::: Hr, and ellery central idempotent of K[H]

remairu central in K[5].

(d) 5 is a (finite p').by-C2 * C2 group (cho.rP "12).

Proof. If 5 satisfies one of conditions (a) or (6), then the result is obvious. If S

satisfies case (e), then K[5] is a skew polynomial ring K[H][g, u] with rgld K(S] :::

rgld K[H] + I (See Theorem 7.5.3 in (48] or Remark 3.1.4 in Chapter 3). Thus

K[S] is hereditary. If 5 satisfies case (d), then (1) foUows from the result of W.

Dicks (Lemma 4.2 and Lemma 4.3).

Conversely, assume KIS] is hereditary and Noetherian. Then 5 has a group C

of fractions by Theorem 1.16. So K[G] is a localization of K[5] and K[G] is also

hereditary and Noetherian.

Since K(OJ is Noetherian, the group G satisfies the ascending chain condition

on subgroups. So from Lemma 4.2 and Lemma 4.3 we obtain that G is either finite

or finite-by-(infinite cyclic) or finite-by-C2 • C2 (char? "I 2), and moreover, the

orders of finite subgroups of G are invertible in K. In the first case, we get that

K(O} and thu.s K[5i = K[OJ is semisimple Artinian.

Now we discuss the second case, that is, G is finite-by·(infinite cyclic). We will

prove K[S] is a principal left ideal ring. First note that by Lemma 4.9, K{G] is a

principal (left and right) ideal ring.
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Because all finite subgroups of G have invertible order in K, Theorem 2.13

implies that the semigroup algebra K[S] is semi prime (so is K(GD.

Now we claim K[Sj is a. maximal order. Since K[Sj is a semiprime Noetherian

hereditary ring, the semigroup algebra K[SI can be decomposed into a finite direct

sum of hereditary Noetherian prime ri~ (see for example Theorem 5.4.6 in [48]):

K(Sj = $7.1 e,K{S], n =2'. 1,

where each e; is a primitive central idempotent. Hence to prove the claim it is

sufficient to show that each e;K(S] is a Dedekind prime ring, and thus we only

need to show that each e;K[S] has no nontrivial idempotent ideal (Proposition 5.6.3

in (48]). So suppose I is an idempotent ideal of e;K[S]. Since K(G] is a. Noetherian

ring and a localization of K(Sl, it follows that e;KIG] is also a Noetherian ring

and a localization of e,K[Sj. Hence Ie;K(Gj is a two-sided idempotent ideal of

e,K[G]. But the latter is prime principal ideal ring and thus leiK[G] = 0 or

le,K[G] = e;K[G], as required.

Finally, we prove K[SI is a left principal ideal ring. Let H be a finite normal

subgroup of G and 9 e G so that GIH = (gH) is an infinite cyclic group. Then

K[G] = K(H] .. (GIH) = K(H](g,g-'iul, a skew Laurent polynomial ring over

K[H]. Obviously, K[S) ~ K[H](g,g-l,u] and S ~ C = (g, H). Let A = (i E Z :

S n Hg' "l0}. Clearly A is a nontrivial subsemigroup of Z. If A is a group, then

A = mZ for some m =2'.1. Hence S ~ UiezHgim. ~ G. But G = (S,S-I) implies

U'EZ H9'''' =G and thus m = 1.
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Assume now A i5 not a. group. Then, without loss of generaJjty, we may assume

A ~ NU{O}. Since submonoids of N U {OJ are well known (see for example

Theorem 2.4 in (23J ), there exists Ko such that k E A for all k 2:: Ko. Denote

Hk = {h E Hlhgk E S}. Hence Hk i= 0 for all k ~ Ko. Because H is finite, the

automorphism (J' has finite order, say Ct. Let j = Q ·IHI· Ko, then gi E S and thus

1 E Hj • Obviously, Hj ~ H2j ~ ... ~ H"j ~ .... Since H is a finite group, there

exists a. multiple jo of j such that H...;" = Hio for any m:::: 1. So Hio is a subgroup

since it is multiplicatively closed. Clearly also

Hence as H is finite, there exists a multiple v of jo such that

H" = H2" =... = H,." =-

We claim that H. = H. Let h e H ~ G = 55- I . Then h = p-1t for some

p,t E S. So h = p-"(p.-lt). Replacing p by p. we may assume p =h".g"k for some

h"k E Hvk and some positive number k. Hence t = h:k9vk for some h:k E H"k_

As g"k acts trivially on H, we get h = (h"k9"k)-I(h:k9"k) = g-"kh;~h:k9"k =
h;klh:k E N"k Hence there exists a positive integer k such that H = H"k = H".



Since H~+i ¥- 0, there exists Ito E H~+i such that hog~+i E S for 1 :;; i $ tI.

Hence g2-'+; = h;lg-. hog'-+< E 5 (again we use that v is a multiple of Q ·IH]).

Tbus !I E S for all l 2:: 21.1 and H, = H for aU l 2:: 31.1. Consider tbe ideal

I = e'~3vK(Hlg' of K[S]. It follows that HI ~ f and gf ~ I. Since K(S] is a

maximal order we obtain that 9 E S and H ~ S. Therefore, S = UiEN Hgi and

K[S] = $;'N K[H[g;" K[H[[g,u].

We now show that the central idempotents in K[HJ remain central in K[SI.

Write KIHl = At e .. EB A.. , where each Ai is simple Artinian witb unit element,

saye;. It is sufficient to prove that each e; is centntl in K[SI. We do this for i = 1.

Since conjugation by <7" permutes the idempotents et, .. ,e,., we get g-'A 1 =

Amg-' , for some 1 $ m :;; fl. We need to show that m = 1. Suppose the contrary.

Then consider the left ideal L = Al + K[SJg of K[SI. Calculating in K[GI we get

(elg-I)·L = elg-I(A 1 + K[SJg) = elg-'A I+clg-'K[SJg = eIA..g- ' +cIK(S] ~ L

because etA", = 0 and cIK[H] ~ AI' Since K(SI is a ffiaJtimal order, it follows

etg- I E K[SI, a contradiction. Hence condition (c) is satisfied.

Now we discuss the third case, that is, G contains a flnite p'.subgroup H and

GI H :!'< a, b I bab = a-I, b2 = 1 >; whcre p(¥- 2) is the characteristic of the field

K. We can express any element of Gas h%iy or ltzi where h,ir. E H, i,j E Z,

and %. y are pre-images in G of a and b respectively. Because G is the group of

quotients of S, there must exist an element in 5 with form h%'y with h E H,

i E Z. Consider the abelian subgroup N =< % > of G. Because N has finite

index in G and G = 55- I , we get N = (Sn N)(S nN)-I by Lemma 7.5 in (52].
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We now claim that, if Zl E S for some positive integer t, then Z-kl E 5 for some

k ~ 1. Indeed, since K{5J is Noetherian, by Lemma 4.16, for any c,d E 5, there

exists; a positive integer r such that cd E dS t . We apply this to c = Zl and

d = hz'y. Then cd = z'"'hz'y = hziyg for some 9 E S. Hence it is easily seen that

there exists h' E H such that 9 = YZ~'!lh' = z-~lh' and thus Z-kl E 5 for some

positive integer k. Tb.is proves the claim. [t follows that S nN is a subgroup of

N. Hence N = (SnN)(SnN)-1 = SnN. So N <,; 5 and thus 5 = G isa (finite

p'}-by-C2 • C2 group. 0

Note also, by Lemma 4.10 and Theorem 2.13 in (54J, the semigroup alge­

bra K[SJ is a semiprime principal left ideal ring if and only if one of conditions

(a), (b), (c) holds. However, (d) does not give a principal left ideal ring. Indeed, it

is well known (see for example in [2]) that the group algebra of the infinite dihedral

group C2 • C2 is not a maximal order.
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CHAPTER 5

Noetherian Unique Factorization Semigroup Rings

In {12J, Chatters and Jordan defined a unital ring R to be a Noetherian unique

factorization ring (or simply, a Noetherian UrR) if R is a prime left and right

Noetherian ring such that every nOD-zero prime ideal of R contains a non-zero

principal prime ideal. It is shown in I12J that if R is a Noetherian unique futor­

ization ring then R is a maximal order (with trivial normalizing class group). [n

[10J , Chatters, Gilchrist, and Wilson studied arbitrary unique factorization rings

(that is, without the Noetherian restriction) and unique factorization domains (or

simply UFO), that is, R is an integral domain such tbat every non-zero prime ideal

contains a completely prime element.

In (2], [81 and {9], several authors studied the problem of when a group ring is

a unique factorization ring. For G an abelian group and R a ring which satisfies a

polynomial identity, Chatters and Clark [91 sbowed that the group ring R[O] is a

UFR if and only if R is a UFR and G is a torsion free group satisfying the ascending

chain condition on cyclic subgroups. For G a po[ycyclic-by-finite group and R a

Noetherian commutative UFO, Brown (21 showed that R[G) is a Noetherian UFR

if and only if 6+(G) = {I}, G is dihedral free, and every plinth of G is centric.

Chatters and Clark [9] proved that this result still holds for ao.y commuta.tive
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coefficient ring R which is a UFO. In [8] Chatters proved tnat a prime group ring

RIG] which satisfies a polynomial identity is a UFR if and only if R is a UFR

and G is a dibedra1~free group satisfying the ascending chain condition on cyclic

subgroups.

For an abelian torsion free cancelJative monoid S and an integral domain 0,

Gilmer [23] snowed tbat the semigroup ring D[S] is UFO if and only if D is a UFO

and S is a unique factorization monoid wltich satisfies the ascending chain condition

on cyclic submonoids. For semigroup algebras K[S) of arbitrary semigroups over a

field K several related aritb.rnetical structures have been investigated. Jespers and

Oknitiski in [32] obtained a complete description of left and right principa.l ideal

semigroup algebras K[S]. For a submonoid S of a finitely generated torsion free

nilpotent group Jespers and Okninski in [34] showed. that K[S] is a Noetherian

maximal order precisely when S modulo its unit group is a finitely generated

abelian monoid which is a maximal order in its group of quotients. In particular,

S is a normalizing cancellative monoid which is a Krull order in tlte sense of

Wauters in [59}.

Recently, Jespers and Okniriski in [36] investigated submonoids S of polycyc~

lic.by-finite groups. It is desCribed when KISJ is left and right Noetlterian, and in

this c.ase the prime ideals of K(S] are studied. Using these results, we investigate

in this Chapter when Noetherian semigroup algebras of submonoids of torsioG free

polycyclic-by-finite groups are unique factorization rings. The results proved will

appear in [38].
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[n Section 1, we reca.ll the definition and give some background on unique

factorization rings. I.n Section 2 we recaJl the description of group rings that are

unique factorization rings. I.n Section 3, we generalize the concept of an abelian

unique factorization monoid to the non-commutative setting. 10 Section 4 we

recall results for monoids that are Krull orders. In Section 5 we first recall some

important properties of sernigroup algebras of submonoids of a polycydic4by-finite

group, such as the description of when these algebras are Noetherian and the

description of the height one primes. Next we describe when such monoids S are

unique factorization monoids. In Section 6 we investigate when the semigroup

algebra of a submonoid of a torsion-free polycyclic.by~finitegroup is a Noetherian

unique factorization ring. Finally in Section 7 we give some examples.

5.L Unique factorization rings

We first recall the definition of a unique fa.ctorizatioa riag.

5.1.1. Let R be a prime ring. An element r of R is normal if rR = Rz. A

prime element of R is a non-zero normal element p such that pR Is a proper prime

ideal. Such a prime p is said to be completely prime if RjpR is an integral domain.

We say R is a lmique fa.ctorization ring (UFR) if every noo-zero prime ideal of R

contains a prime element, and that R is a unique factorization domain (UFO) if R

is an integral domain and every non-zero prime ideal contains a completely prime

element.
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A ring R is said to be a prime Krull order if R is a prime maxima.! order and

R satisfies ascending chain condition on divisorial ideals contained in R.

[f R is Noetherian, R is Krull order if and only if R is maximal order. Chatters

and Jordan in [121 showed that a. Noetherian UFR is a maximal order (Krull

order).

5.1.2. Furthermore, for a UFR, the following results (ef. [10]) bold:

LEMMA 5.1. Let R be a UFR. Then

I. Every; non-uro ideal of R contains a product of prime elements.

2. &.t :r: be a non-zero element of R. Then there are only finitely-many 1'101'1-

associated prime elements p of R such that z E pRo

3. The prime ideal pR with p a pn·me element of R has height 1.

4. n:"=IP" R =0 where P is a pn·me element of R.

5. C(PR) ~ C(p" R) for el:ery positive integer 1'1, where C(I) denotu the sd of

elements of R which. are regular modulo (.

6. The elements of C(PR) are regular a.s elements of R.

7. Ld z be normal element of R with z E A1R. Then:r:R n p" R = :r:p" R for

every positive integer n.

8. Every non unit nonzero normal dement :r: is a product of prime elements of

R.

9. For every non unit normal element :r:, there are non-associated prime ele-

ments PI' .. ,P.. of R and non-negative integers a(I), .. ,a{n) such that
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ZR=p~(IJ "p~{"JR=p7(IIRn .. np~(")R.

10. Let P be a prime ideal of R which i& minimal over a normal element x, then

height(P) = 1 and P = pR for some prime element p of R.

II. The set of principal idetJU of R is closed under finite intersection and satisfies

the ascending chain condition.

Hence a ring R is a UFR if and only if every nonzero ideal of R contains nonzero

normal element and every non unit nonzero normal element of R is a product of

primes. Thus the notion of UFR is an extension to the non-commutative situation

of that of commutative unique factorization domains.

5.1.3. A ring R i.s conformal if every non-zero ideal of R contaiw a non-zero

normal element of R. Denote by N(R) the set of all nonnal elements in R. Jordan

showed the following result for Noetberian prime rings.

LEMMA 5.2 (Proposition 2.2, [44)). ut R be a prime Noetherian ring. Then

R is UFR if and only if R is conformal and every irreducible element of N(R) is

prime in R.

5.2. Unique factorization group rings

5.2.1. Several autbors studied the problem of when a group ring R[C] is

a unique factorization ring. First we recall the commutative situation given by

Gilmer and Parker (see for exampLe (23]). For G an torsion-free abelian group

and R a commutative integral domain, R[G] is a UFO if and only if R is a UFO
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and G is cyclically Noetherian (Le., G satisfies ascending chain condition on cyclic

subgroups). Actually the latter condition is equivalent to every rank 1 subgroup

ofG is cyclic (Lemma4.2.13 in {43)). Cha.tters and Clark in (9) then extended the

result as follows. For G an abelian group and R a ring which satisfies a polynomial

identity, the group ring R(GI is a UFR if and only if R is a UFR a.nd G is a

cyclica.lly Noetherian torsion free group.

5.2.2. The best known results are due to Brown [2, 31. To state his results

we recall some notions. The F.G. ".bgroup of G, denoted by 6.(G), is the set of

elements ofG which have only a finite number of distinct conjugates. Clearly.6.(O)

contains all proper finite normal subgroups of G. The torsion elements of .6.(0)

form a subgroup, denoted by 6,+(G), and 6.(G)/6.+(G) is tonion-free abelian (see

for example Lemma. 4.1.6 in (54). A subgroup H of G is orbital in G if H has only

a finite number of distinct conjugates by elements of G, or equivalently, No(H)

hM finite index in G (where No{H) is the normalizer of H in 0). We say 0 is

dihedral fra if G has no orbital infinite dihedral subgroups.

A plinth of G is a torsion free abelian orbital subgroup A ofG such that A0zQ

is an irreducible QT-module for every subgroup T of finite index in No(A). The

plinth A is untric if its centralizer CoCA) bas a finite index in G, or equivalently,

A has rank one. Otherwise, A is eccentric.
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LEMMA 5.3 (Theorem D in [2)). ut R be a: Nodheria:n commutative UFO a:nd

G a polycyclic.lJy-finite group. Then RG is a UFR if a:nd only if a+(G) = {I}. G

is dihrdrul jru, and ellery plinth of G i.s centric.

Chatters and Clark [91 proved that this result still holds for any commutative

coefficient ring R which is a UFD. Brown in [2] also showed that

LEMMA 5.4. Let G be a: polycydic-by-finite group. fJ tl.+(G) = I, then the

following statements are equivalent:

1. every non-zero ideal of RiG] contains a:n invertible ideal;

2. every non-zero ideal of R[G] contains a non-zero normol element;

3. every non-zero ideal of R[GI contains a non-zero central element;

4. every plinth of G is centric.

5.2.3. Also in (2, 3]. Brown described when group rings of polycyclic-by-finite

groups are UFD.

LEMMA 5.5 (Theorem E', (3]). Let R 6t; a commut(ltive Noetherian UFO, lind

let G be II polycydic-by-finite group. Then R[G] i.s II UFO if and only if

1. G is torsion free,

2. all plinths ofG lire central,

J. Gjtl.(G) is torsion free.

In fact, by using group theoretic techniques, MacKenzie (47] found a nice rela­

tionship between urn and UFD when describing group rings of poLycyclic-by-finite
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groups. Note that a subgroup H of G is called characteristic in G if .p(H) ~ H for

every automorphism if> of G.

LEMMA 5.6 (Theorem 2.1, [471). ut R be a <:ommutative Nocthman UFD

and G a polycyclic-by-finite group. If R[G] is a UFR then G has a normal (in

fact, characten'stic) su.bgroup H of finite index that R[H) is a UFO.

IfG is a torsioll-free finitely gec.erated nilpotent group, the proof of the previow

Lemma yields the following result.

COROLLARY 5.7. ut R be a commutative Noetherian UFD and G a torsion-

fT'f!e finitely genero.ted nilpotent grou.p. Then R[G] is a UFD.

5_3. Unique Fac::torization Monoids

As will be proven ill the next section, also ill the non-eommutative situation

the notion of the a.rithmetical structure on S will playa crucial role. \Ve therefore

will generalize the definitions of unique factorization monoid from the commutative

setting to non commuta.tive situation. This will be done similar to the ring setting.

First let w fix some definitions. As in ring theory, an element c of a mOlloid S is

said to be normal(invariantin (15]) ifeS = Se. Thesubmonoid of normal elements

is denoted N(S). If N(S) = S then S is c.a.I1ed a normalizing $cmigroup (or an

invariant monoid in (15». A non-invertible element pES is called irreducible (or

an atom) if it cannot be written as the product of two non-invertible elements in
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S. A normal element pES is said to be pn"me if Sp is a prim.e ideal in S, that is,

for any a, bE S, aSb ~ Sp implies a E Sp or b ESp. Given two normal elements

a,b E S, if a = bu for some unit u of U(S), then we say a ud b Me fLSSociated.

Recall that an ideal P of a semigroup S is prime if aSb I; P implies a e P or

b e P. Furthermore, if S \ P is a subsernigroup of S then P is called completely

prime. Denote by Spec(S) tne set of all prime ideals of S and by XI(S) the

set of all minimal prime ideals of S. For any ideal I of S we denote by C(I)

the set of dements of S which are regular (i.e., not zero-divison) modulo I. Set

C(S) = nC(p), wnere the intersection is taken over all P E XI(S).

$.3.1. For completeness' sake we recall the following definition. An abelian

canceltative monoid S is a uniquefaciorization monoid (factorial) if ea.cb principal

ideal of S can be written as a finite product of prime ideals of S. As mentioned

above Gilmer showed that tltey can be described as follows.

LEMMA 5.8 (Theorem 6.8, (23]). Let G be a group, ld {Z"}oe.... be a family of

monoids, each isomorphic to the additive monoid of nonnegatiue integers. Then

monoid G EB~ Zo is factorial. Conuersely, each factoriall1'lonoid S is 14I0mor­

phic to nch a monoid G EB~ Zoo

$.3.2. In 1151 Cohn defines a UP-monoid (unique factorization monoid) as

normalizing canceUative monoid S for which the quotient monoid SIU(S) is free

abelian. This dearly generalizes the previous definition.
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A monoid S is said to satisfy right ACC l if S satisfies the ascending chain

condition on principal right ideals. Similarly, one defines left. ACCI . Of course,

these two notions coincide in a normalizing monoid. Note that a normalizing

monoid 5 satisfying ACC, is atomic, which means every element of 5 is either a

unit or a pr?duct of irreducible elements (atoms) (see for example [15/).

We have the following descriptioos of UF-monoid, cf. Theorem 3.1.1. in [15J

LEMMA 5.9. Ld 5 be a normalizing co.nallative monoid. The following con-

ditioTl$ are eqv.ilJdent:

1. 5 is aUF-monoid,

2. S satisfielJ asanding chain condition on principal ideals (ACel ) and any

two elements have a greatest common divisor,

3. S satisfies ACC, and any two elements have a least common mvltiple,

4. S is atomic and euery atom of S is prime.

5.3.3. More generally, we define a monoid to be a UF-monoid (unique factor­

ization monoid) if every prime ideal of S contains a principal prime ideal P, i.e.,

P = Sn for some norma.l element n of S. Note that (as for the ring case [12]), if

Sis cancellative, then P = Sn is equivalent with P = Sa = bS for some a,b E S.

Indeed, if Sa = bS. then a =bs and b = tao Since Sa is an two sided ideal we get

as = s'a for some s' E S. Hence a = Las = t8'a, and thus ts' = 1. So t E U(S)

and therefore b5 = Sa = Sia = 5b.

LEMMA 5.10 (Lemma 2.1 in [39]). Let 5 be a lJubmonoid of a group. Then,
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(1) C(pS) ~ C{p"S) for euery positiue integer n and prime element p of S.

(2) If p is a prime element of Sand :r E N(S) w,:th :r ¢ pS, then :rS n p.S =
:rp"S, for any positive integer 1l. In particular, for any non-45Sociate prime

elements PI,' . ,P" of S and non-negative integers a(1), ", a(n)

If, fur1hermort, S is a UF-monoid, then the following conditions hold.

(3) Every proper ideal of S contains a product of prime elements.

(4) For any prime element p e 5, n::O"'lp"S = 0.

(5) C(S) n N(S) ~ U(S).

(6) Let :r be a non-invertible element of 5, then there are only finitely ma,n,

non-(1$sociated pn'me elements p of S such that:r e pS.

(7) Every nrm-invertible normal dement of S can be wn'Uen as a produ.ct of

prime element".

Proof. (1) Let c e C(pS) and suppose that c E C(p.tS) for some positive integer

k. We must show that c e C(p.t+lS). Let s e Sand cs e p...IS. Then cs E piS

lUId thus .$ e p!<S. So S = IIP* for some lieS. Also cs = Zp*+1 for some z e S.

Hence cypi = zp*+l, and so cy = zp. But c e C(PS) implies II e pS and hence

oS E pi+IS, as required.

(2) Let 1l be a positive integer. Obviously rS n p"S ;;2 :rp"S. Conversely,

suppose p"a = xb E p"S n xS. Be~use of the assumption :r e C(pS) we get from

(1) that :r E C(p"S). Therefore b E p"S and thus xb e rp"S, as desired.
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(3) For otherwise let I be an ideal of S maximal for the condition that it does

not contain a product of prime elements. Clearly I is a prime ideal. Since by

asswnptioD S is a UF-monoid, I contains a prime element, a contradiction.

(4) Set I = n::".l p"S and suppose I f:: 0. Obviously I = pI. From (3), I

contains a product PI ··P.. E I for some prime elements Pl,' . ,P.. of S. Since

Pl' 'p.. E pS, we get that Pi E p5 for some i. Write Pi = pt for some t E S.

Hence PiS = pS (indeed, for if PiS C; pS, then pt E PiS implies that t = "Pi for

somes e S. Therefore ps = 1, a contradiction). Thus I = pI = p;l for some i.

So Pl .. P. e I = Pil. Beca.u.se S is canceUa.tive and Pi are normal we obtain that

I cOntains a product of n - 1 prime elements. Repeating this argument several

times, we get that I contains an invertible element, a contradiction.

(5) lndeed, if n E C(S) nN(S) then, by (3), there exists :r: € S and prime

clements Pi E 5 such tnat.zn = PI'" p". Since each Pi is normal and n E C(S), it

follows that .z E SPi, for every i. Since Sis cancellative this implies n € U(S).

(6) Let.z be a non-invertible element of 5, then by (3) there are prime elements

Pl,'" ,p. of S such that PIP'l .. p,. E S:r:S. Let P be a prime element of S such

that :r: € pS. Then PlP2' . P.. E pS and therefore Pi € pS for some i. Thus (as in

the proof of (4)) p;S = pS. So there are only finitely~manypossibilities for pS.

(7) Let % be a non-invertible normal element of S. Because of (4), for e.a.ch

prime element P of S there is a positive integer n such that :r: ¢ p"5. By (6) there

only finitely-many non-associated prime elements P of 5 such that.z E p5. From

these two statements it follows that there are prime clements PI, .. ,P.. of 5 such
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that % = PL .. p"y, where y is an element of S such that there is no prime element

P of S with y E p5. Since %,P< are normal, we have y E N(5). Moreover, y E C(5)

and thus y is a unit by (5). Therefore % is a product of prime elements Pl,'" ,P"y·

a

PROPOSITION 5.11 (Proposition 2.2 in (39J). Let S be a submonoid ofa group.

1. 5 is a UF·monoid.

2. Every ideal of S contains a normal element and e'Jery non-invertible normal

element 0/5 can be written 4S a product of prime elements.

3. Every ideal of S contain.s a normal element and every irreducible element

in N(S) is prime in 5 and S satisfies the 4Sunding chain condition on

pn'ncipal ideals generated by a normal element.

Proof. (1) implies (2). This follows from (3) and (7) in Lemma 5.10.

(2) implies (3). It is obvious that every irreducible element of N(S) is prime

in S. To show that 5 satisfies the ucending chain condition on principal ideals

generated by a normal element, it is sufficient to show that there are only finitely

many principal ideals of 5 which cootain % for any non-invertible normal element

% E 5.

Let Y be a normal element of S such that z5 ~ yS. Because of (2) and (7) in

Lemma 5.10, there are noo-associated prime elements Pl, .. ,P",ql, .. ,qm of 5

and non-negative integers 0.(1), .. ,a(n),b(l), .. ,b(m) such that z5 = p~{l)5n
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... np:{nIS "" p7(1) •• p:{IOI S and yS = q~1JSn .. nq~"'Js = q~(I) .. q~"')S. It is

routine to show that for each 1 :5 j :5 m there exists an i, 1 :5 i :5 n, such that

qjS = PiS and that b(j) :5 c(i). Hence (3) roHows.

(3) implies (1). Let P be a pri~ ideal of S. Then P contains a non-invertible

normal element of S, say n. First ",,"e show that n is a product of irreducible

elements of N(S). Note that, by assumption, S satisfies the ascending chain con­

dition on principal ideals generated by a normal element. Hence N(S) satisfies

ACCl and thus each element of N(S) is either a unit or a product of irreducible

elements. ThereFore n is a product of irreducible elements of N(S), and thus by

the assumption, n is a product of prime elements of S. Consequently, P contains

a prime element. 0

Note tbat if S is a normalizing cancellative monoid, then the description of

UF-monoid obtained in Proposition 5.11 corresponds with the oDe obtained by

Cohn in Lemma 5.9.

5.4. Monoid Krull orders

In Chapter 4 \Ire recalled several notions concerning rings that are maximal

orders. Wauters in [59] introduced non-eommutative monoid! that are maximal

orders in a group of quotients. Although ~he definitions axe similar to in the ring

case ....-e state them here for completeness' sake.



A cancellati ve monoid S which has a Left and right group of quotients G is

called an order. A fractional Left S-ideal { is a subset of G such that S { S; { and

Sa S; {S; SfJ for some a,P E G. Similarly one defines fractional right S-ideaL

A (two-sided) fractional S-idea.l. is a subset of G that is both a fractional left and

right S-ideal. If A and B are subsets of G, we put (A :/ B) = {z E G I zB S; A}

and (A:~ B) = {z E G I Ex S; A}. An order Sisa maxima! order if (I :/ l) = S =
(I :. l) for each. fractional S-ideal. it follows in this case that, for any fractional

5-ideal /, (S :/ l) = (S :,.. l). This fractional ideal we simply denote as (S : l).

Note that being a maximal order is equi~ent with the condition that there does

not ex-ist a submonoid S' of G properly containing S and such that as'b S; S for

some a,b E S. A fractional S-ideal { is said to be divisorial if { = (S: (5 : (l).

One says that S is a Krull order if S a. maximal order satisfying the ascending

chain condition 00 divisorial ideals contained in S. The following result can be

found io (59].

LEMMA 5.12. Let S be a marimal order, then the set of diuisorial ide4ls D(S)

is a commutatiue group, where / '" J = (S: (S: (J» and (,J E D(S). Further­

more, if S is a Krull order, then D(S) is a free abdian group.

Let S be a Krull order, then D(S) ~ Zll. for a certain index set A, and this

isomorphism is onler-preserving. Of course, the order relation on Zll. is defined by

(aA)AEf\ :5 (bAhu if and only if aA :5 bA for all ~ E A. Let t/J : D(5) -+ Z,.. be

an order preserVtng isomorphism. Put ei = (6a hef\' and Let P; = t/J-I(e;). Here
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Oi1> = 1 when i = A and 0 otherwise. Thus any element A of D(S) can be written

as A = P~' " ... " p;.( "i E Z). It i5 obvious that Pi is a prime ideal of S.

Indeed, let z, yES such that zSy E Pi. Then ~" SiiS =~~ P; = Pi

where 8 = (S: (5: B)) denotes the divisorial closure of an ideal B. Furthermore

4>(~) = Enjcj and ¢(~) = Emjej with nj> mj 2: O. [n particular, .p(SXS) +

<P(~ = E(nj+ mj)ej ~<P(P,) =ei. Thereforen, ~ tormi ~ t yield that either

ze~~ PiorYE~£;;Pi.

THEOREM 5.13. Ld S be II Krull order. If every ideo1 of S contains a normal

element, then D(S) is generated by the minimo1 prime ideals of S.

Proof. First we claim that every prime ideal P of S contains Pi for $Orne i E A.

Indeed, let n be a non-invertible normal element contained in P. Then Sn ~ P.

Since Sn E D(S), we may write P .2 Sn = PI"'" .. " p;• .2 P~' ... p;. where all

ni :2:: O. Therefore P .2 Pi for $Orne i.

Suppose P is minimal prime ideal. By the above claim, P = Pi for some i.

Convenely, let P be a prime generator of 0(5). [f P is not a minimal prime, then

Q c P for some prime ideal Q of 5. Again, by the claim, Pi ~ Q c P for some

i E A. Therefore tf>(P) < tf>(Pi ) = e;-, a contradiction because ¢(P) > O. a

5.5. Submonoids of polycyclic-by-finite groups

Let S be a submonoid of a polycyclie--by-finite group G. In [361 (Corollary

3.3) it has been described when K[SI is left and right Noetherian. Because of its
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importaDce for our investigations we state tb.is result. The equivalence of the first

two conditions is an immediate consequence of Quinn's result (see for example

[56]). That S is finitely generated in this case follows from Corollary 3.5 in [361.

PR.OPOSITION 5.14. Ld S be a suhmonoid of a polycyclic-hy-finite group. The

following conditio~ are equivalent;

L. 5 satisfies the ascending chain condition on right and {eft ideals,

2. K[S} is left and right Noetherian,

3. S has a group of quotients G = SS-l which cemtains a nonnal subgroup H

of finite indu and a normal suhgrovp F ~ H such that 5 n H is finitely

generated, F ~ V(S) and HI F is abelian.

Moreover, in this C<lSe, Sand N(S) are finitely generated monoids, and every ideal

of S intersects N(S); in particular G = SN(S)-l.

5.5.1. We will characterize UF-submonoids S of polycydic-by·finite groups

that satisfy the ascending chain condition 00 left aDd right ideals. For this we first

need the following fundamental property of Jespers aDd OkniJiski [361. For a field

K, by XHK[S}) we denote the set of height one prime ideals nf K[Sj intersecting

S. The set of all prime ideals is denoted by Spec(K[SJ). The last part of the

statement is the real hard part. This is proved in [36) making use of the structure

theorem of Okn.i.6.ski on linear semigroups. We only include a proof of (2) aDd (3)

which are not stated in [36J.
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PROPOSITION 5.15 ((36), see also Proposition 2.2 in [38]). Let K ~ afield and

S a submonoid of polycydic.IJy·finite group. If S sati$fie.s the 4Su.nding chain con­

dition on left and right ideals, th.en the following properties hold.

1. The set XHK[S]) is finite.

2. Forany P € Spec(S), Ihere uisu lp € Xl{l<[S]) such lhat0 #: IpnS ~ P.

3. ElJf:11I P E Spec(S) contains a minimal prime in S.

Moreover, ifG is torsion free, th.en XHK{Sj) = {K[QII Q E XI(S)} and K[pn

SJ € Spec(K[S]) provided P e Spec(K[SJ) and P n S #- 0.

P~oof. (2) Let P E Spec(S). Because of Proposition 5.14, let n € N(S) n P.

Note K(PJ is an ideal of K[SI such that K[PI nS = P. Let (be an ideal of KISJ

maximal for tbe condition that InS = P. Since P is prime, I E Spec(K[SJ).

By tbe Principal Ideal Theorem there exists Ip E Spec(K[SJ) minimal over K[SnJ

and Ip <;; I. Moreover, Ip has height 0 or I. Since [pnS #: 0 the height has

to be one (see [36, conunents oUter Proposition 4.2]). So lp E XHK(S]) and

IpnS \; InS - P.

(3) Let P E Spec(S), by (2), there exists [p E Xl(K[SJ) such that P 2 fpnS.

U IpnS ¢ Xl(S), then fpnS 2 PI with PI E Spec(S). So as before, we have

PI ;;2 I", nS of- 0 with Ip, E XHK(SJ). Note that Ip #: Ii>( because, otherwise

PI ;;2 Ii>( nS = IpnS ;2 PI, a contradiction. Repeating this argument we get a

descending chain
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Since X~(K(SJ) is finite, this chain must stop after finitely many steps, i.e. there

exists i such that /Po n S e XI(S). 0

5.5.2. We now give a description of when a submonoid of a polycyclic-by­

finite group is aUF-monoid.

THEOREM 5.16 (Theorem 2.3 in [38]). Let 5 be a submonoid ofa polycyefic­

by·finite group G. If S satisfies the ascendl-ng chain condition on right and left

ideah, then the following conditions are equillalent:

1. S is aUF-monoid.

2. Ellery non-inllertible normal element of S can iJe written as a product of

prime elements of S.

3. ElJt.ry iTTl!ducibie element in N(S) is prime in S.

4. Evcry minimal pn'me ideal of S is generated by a prime element.

Proof. Proposition 5.14 and Proposition 5.ll yield that (1) implies (2) and (2)

implies (3).

To prove (3) implies (4), let P be a minimal prime ideal of S. By Proposi­

tion 5.14, P contains a normal element n. Since S satisfies the ascending chain

condition on teft and right idea.ls. so does N(S). Hence every element of N(S)

is a product of irreducible normal elements. Thus, because of condition (3), n is

a product of prime elements of S. Since n belongs to the prime ideal P we get

therefore that P contains a prime element p. Hence (4) follows.
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By Proposition 5.15 every prime ideal of S contains a minimal prime ideal.

Hence, (4) implies (1) is clear. a

5.5.3. ~ in the ring case, we find that aUF-monoid S is a maximal order

provided S satisfies the ascending chain condition on left and right ideals.

PROPOSITION 5.17 (Proposition 2.4 in [38]). Let S be a submonoid of a poly-

cyclic. by - finite group. A.uume S satisfies the aset:nding chain conditioflS on left

and right ideau. If S is a UF.monoid, then S is 4 ma:timal order.

Proof. Let G be the group of quotients of S. Suppose ql ~ I for some q E G \ S

and I an ideal of S. Because S satisfies the ascending chain condition on left and

right ideals, we can choose I maximal with respect to the property that such. q

exist,. Write q = z-IC for z E N(S) and c E S. Because of Theorem 5.16, th.ere

exist prime elements PI> .. , P" of S such that z = PI .. P... Of course we may

assume that z and c have no common factor that is a normal element. In other

words, we may assume c f£ PiS for every i.

Now cI ~ zl ~ PiS. Because PiS is prime and c f£ PiS we get that I ~ PiS.

Thus pill ~ S and hence pill is an ideal of S and it contains I. Since Pi E N(S)

there exist (f E S and z' E N(S) so that (fpi l = pile and z'pi l
"" pi l z. Then
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The maximality of I therefore implies that I = pill. Thus

np:l~nl~1
..",I ..::1

However this contradicts with (2) of Lemma 5.10. Therefore S is a maximal order.

For a Knill order S, the normalizing class group CI(S) is defined by Cl(S) =
D(S)/ peS), where peS) is the set of principal ideals generated by norm&!. elements

of S.

COROLLARY 5.18. Let S he a submonoid of a polycyclic-hy-finite group. As-

Irume S Iratisfies the ascending chain conditions on left and n'ght idtllls. Then S iIr

a UF-monoid if and only if S is a Krull order and the normalizing class group iIr

trivial.

Pl"Oof. Assume S is a UF~monoid. Because S satisfies ascending chain condi­

tion on left and right ideals, Proposition .5.17 yields that S is also Krull order.

Moreover, by Proposition 5.14 every ideal of S contains a normal element. Hence

Theorem 5.13 implies that D(S) is generated by the minimal prime ideaI.J and thus

the normalizing class group is trivial. Conversely, assume that S is a Krull order

with trivial nonnalizing class group. Proposition 5.14 implies that every ideal of

S contains a normal element, and thus Theorem 5.13 implies that D(S) is gener­

ated by minimal prime ideals. Since Cl(S) is trivial, all minimal prime ideals are

principal. Hence Theorem 5.16 yields that S is a UF'4monoid. 0
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5.5.4. We now show that our UF-molloid$ are (as in the ring cue) the inter­

section of (oal UF-monoids. These proofs are sta.ndard, but a.ga.in for complete­

ness' sake they are included.

PROPOSITION 5.19. LeI 5 be a UF-submonoid 0/ a polycydic-by-finite group

G and as.!ume 5 satisfies 4Scending chain condition on left and right ideals. Let

p = pS be a minimal prime ideal 0/ Sand W = {product 0/ such q's I q are

prime elements 0/5 but not associated with pl. Denote by Sw the localized monoid

5W- 1 . Then

1. Sw is a UF-monoid satisfying ascending chain condition on left and right

ideals and X1(Sw) = {Swp}.

2. C(P) is an Ore set in 5, and Ihe localized monoid 5c {PJ equau S(N(S) \

P)-I = 5w .

Proof. (I). As a localization of S, it is clear that T = Sw also satisfies the

ascending chain condition on left and right ideals.

Now we show that p is also a prime element of T. First we show that pT is

an ideal. Let w E W. Then by Lemma 5.10 pw5 = wS 0 p5 = wp5. Note

pT = pwT = pwST = wpST = wpT, and thus w-'pT = pT. So TpT = pT.

For symmetry ~asol1S, Tp = TpT = pT is an ideal of T. Next we show that

pro 5 =p5. Take ptw- I =s E pTn 5, then pi = sw E p5. Since w E C(p5), we

have s E p5. Thus we have proved pT n S 0;;;; pS. The converse is obvious. Now
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we can show that pT is also a prime ideal. Since ideals of T are generated by tbeir

intersection with S, the equality pT n S = pS clearly implies that indeed pT is a

prime ideaL

To show that T is a UF-monoid, let P be a prime ideal of T. Thus S n P is an

ideal of S. Since S is a UF-monoid, there exists an element n E N(S} such that

n E P n Sand n = qt·· ·qlc for prime elements q, of S with 1 :5 i:5 k. If none of

the q, are associated with p, then nEW and thus n is a unit in T and therefore

P = T, a contradiction. Then there exists a q,. such that q;. is associated wi~h

p. Therefore pEP and thus T is a UF-monoid. Actually the previous shows also

that every prime element of T is associa~ed with p. Thus XI(Sw) = {Swp}.

(2) The equality pT n S = pS clearly implies that C(pS) ~ C(PT). Next we

show that any element c of C(pT) is a unit in T. Because T ~ G = SN(S)-l,

there exist yES and n E N(S) such that cyn- l = 1 and thus cy = n. Since S is

a UF-monoid, then n is a product of prime elements q; of 5 wbere L :5 i :5 k. If

none of the q, is a.uoeiated with p, then nEW and thus is a unit in T. Otherwise,

n = uri for some u e W and some i. Since c E C(pT), we obtain tha~ 11 E pT.

Therefore cy'p = upi for some y' E T and thus ell = Up;-l. Continuing this

procedure, we get c is a unit in T.

From the above we know every element of C(pS) is a unit in T. Thus C(pS)

is an Ore set of 5. Indeed, for any c E C(pS) and s E 5, we have cys =" for sorne

11 E T. Write 11 = y'w- I and then cy'J'1O- 1 = J for some Y,J' E 5 and 10 E W.
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Therefore cy's' = sw where y's' E Sand W E C(pS). Moreover, Sw ~ SCI,S)

implies that Sw = Sc(pS)'

(3) Obviously S S;; npEx,{S)SC(Pl' We wilt sbow tha.t npEXl{S)SClP) S;; S.

Note that every P E X1(S) is generated by a. prime element of S since S is

a UF-monoid. Let q E npEXl(S)SC(P). Since npEX'IS)SClP) S;; G = SN(S)-',

we get q = r(PL .. Pn)-l where Pi are prime clements of S. Furthermore, we

write also q = r(PI .. p,,)-L = S;c;l where s; E Sand c; E C(PiS). Because

c,. E C(p"S) and beca.use of (2), ",e know c"... = PI .. p..t for some ... E 5 and

t E C(PnS), However e" E C(p"S) implies that ... = up" for some u E S. Hence

rt = qpl'" p"t = qc,.s = qc..vpn' Note that t e C(pnS), we obtain r E 1",,5.

Therefore q E S(PI'··Pn_I)-I. Repea.ting this process, we gel q E S. Thus

flpEXl(S}SC{P) = S. 0

5.6. Noetherian Unique Factorization Semigroup rings

Now let us turn back to semigroup algebras K[S]. Recall that X'(K[SJ) denotes

the set of heignt one prime idcals of K[5] and XHK[SJ) denotes the set of height

one prime ideals of K[S] intersecting S. The set of all prime ideals is denoted by

Spec(K[SJ). For any ideal I of K{S] we denote by C(l) the set ofe:lement5 of K[5}

which are regular modulo I. Set C(K(SJ) =nC(p), where P ranges over all the

height one prime ideals of K[SJ.

In this section we investigate when a semigroup algebra of a. submonoid of a

torsion-free polycyclic-by-finite group is a Noetherian UFR.
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5.6.1. First we need two prnpositions. For an element 1 = L:~£sk.s e K[S],

we write supp(f) = {s e 810 i: k~ E K}, the support of I.

LEMMA 5.20 (Lemma. 3.1, (381). Let K be a field, 5 he a submonoid 01 (I tor+

non lree polycyclic-by-finite group and suppose 5 satisfies the ascending chain con~

dition on left and right ideals. Then the following conditions hold.

(1) C(pK{SJ) ~ C(p* K(51) for any prime element pES and any positiue inte­

gerk.

(2) If p is a prime dement of 5 and x is a normal elemelll. of 5 urith x f.

pK(S], then xK[5] n p'" K[5] = xp'" K{S] for any posiHue integer m. So,

ifpl' .. ,P.. are non·associate prime elements of 5, then pi' "'p~nf{[S] =

(3) Suppose 5 is a UF-monoid, then each nonzero element f of K[S] elm be

written in the form 1 = hn for some h e K[5] and n E N(5), where

h rt pK{5] for any prime element p of S. Furthermore, n is unique up to

inverses.

Proof. (I). This is a special case of the elementary result tha.t if x is a regular

norma.! element of an arbitrary ring R then C(xR) ~ C(x"R) for every positive

integer k.

Since S is a submonoid of torsion free polycyclic-by-finite group, then every

prime element of S is also a prime element of K[5]. Thus (I) is obvious.
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(2) Suppose xa = p"'b for some a, b E K[S]. Because x is a normal element

and x 'I. pK[S], :z: E C(pK(SJ). Hence by (1), x E C{p-K[SJ). It follows that

a Err K(SI. Hence:z:a E xp'" K[S]. Hence (2) folloW1ll.

(3) Let 0 t:- { E K(S). Because K(S] is right Noetherian there eJCists h E KIS]

so tha.t hK[Sj is maximal with respeo:;t to the condition { = hn, for some n E N(S).

By the maximality condition on hK[S], the element h does not have any prime

element of S as a factor. So the first part of (3) follows.

For the last part, assume hn = h'n', with n,n' E N(S) and h,h' E K{SI.

and h, h' do not belong to any pK(S), with p a prime element in S (that is.

supp{h) g; p5 and supp(h') g; pS). Since S is cance1la.tive, supp(h)n =supp(h')n' ,

and thus 5upp(h)Sn = supp(h')Sn'. Hence, for any prime p E 5, n E pS if and

only if n' E pS. Since n: and n' are products of prime elements in 5 and because

Sis cancellative it follows that n = n'u for some u in the unit group of S. 0

As for commutative semigroup algebras (with nota.tions as in (3» the element

n: E N(S) is called a. homogeneou.s content of { E K(5J. If n is a unit, then we

say that { is homogeneous primitive (h-primitive). It is easily verified that this

definition is left-right symmetric. Note that, if S = iV(S), then n is a greatest

common divisor of the elements in supp(f).

LEMMA 5.21 (Lemma 3.2 in [3S]). Let K be a field and S be a torsion free

submonoid of a polycyclic-by-finite group. Suppose S satisfies the ascending chain

condition on left and right ideals. I{ 5 is a UF·moTloid and h is a homogeneollSly
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primitive element in N(K[S]), then h E C(wK{Sj) for 4ny non-invertible element

wEN(S).

Proof. Let to E (N(S) \ V(S»). Write w = qi' "q~~, with each qi a prime

element in 5 and each I;;,. positive integer. By Lemma 5.20, toK[S] = q:'KIS] n

... n q~. K[S]. Since h ~ q;K[S] and because h is normal, h E C(q,K[S]). Then,

again by Lemma 5.20, h e C(q~ K[S]) and thus h E C(wK[SJ). 0

5.6.2. We also need the following Lemma due to Menal (49, Lemma 2].

LEMMA 5.22. Let R be 0 ring and M a nontriuial monoid $0 thot R{Mj i$ 0

domoin. Let a EM !1Uch thot a = Q{J for .some o,{J E R[M]. If $Upp(o) contoins

a unit then Q is 0 unit.

Proof. Denote by a ..... b if a = ub for some u E U(S). Then ..... is an equivalence

relation. Let

o=o{J=(V+XHYa+Zl+ ··+Z,,).(.)

where U is such that .supp(U) C;;; U(M) and X is such that .supp(X) n V(M) = 0,

Y (l denotes the sum of terms in {J that have a as a right factor, and Z\,'" ,Z"

denote the sum of equiYalent terms in (J that do no t have 4 as a right factor.

Note that by assumption V F O. We want to show tbat n = O. Suppose n > O.

Since R[MI is a domain, fOr any k we have VZIr F 0 and its support can not

contain left multiples of 4. So, there exists u E .supp(U) such that uZIr = r'zj for

some Zir and Zj in Zir and Zj respectively where r' is a non-unit. From this we see
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that for each Zt E Zt there is an index j with Zt = r"Zj for some Zj E Zj and some

non-unit z".

Re-indexing, we obtain:

where t ~ 1 and the z;'s ue nOD-units. But then

implies Xl is a unit, a contradiction. Hence n = 0 and thus {J = Yo.. Therefore 0

is a unit. 0

5.6.3. Let S be a submonoid of a torsion free polycydic·by-finite group O.

We now determine when K[SI is a left and right Noetherian UFR with trivial

central class group (or equivalently, all height onc; prime ideals are generated by

a central element). Actually, we show a more general result. For this ....-e re­

call that Brown in [2, 4J showed that KIGJ is a Noetherian maximal order with

class group isomorphic with the first cohomology group H' (0ICa(6(0»), K" x

6(0») (here Cc(..o.(O» denotes the centraliser of 6(0) in 0). In panicular, if

K[GJ is a UFR, then all height one primes are generated by a central element

if and only if Hl(GICa(tJ..(G», K" x tJ..(G)) = {I}. More generally, Wauters

in [601 showed that if K[G] is a UFR (and K has cha.racterisitc zero) with all
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H 1(GICc (6.(G)),6.(G)) = {l} then every height one prime ideal is generated by

a semi-invariant. Recall that 0 I- r E K{G] is called a semi-invariant if there exists

A. E Hom(G.K") so that grg- l = A.(g)r for each 9 E G (..\ is called the weight of

r). Note that a. semi-invariant element is normal in K[G]. [n (60J. Theorem 5.3,

it is described when H 1(GICG (6.(G)),6.(G)) is triviaL.

Also recall that it still is an open problem when a group algebra K(G] of a

torsion free polycyclic-by-finite group only has trivia.! units, that is, all units in

K[G] are of the form kg with 0 ¥- k E K and g E O. [t is conjectured that this

is always the case. In case G is a right ordered group (for example a poly-infinite

cyclic group) then it is well known and easy to snow that the coDjecture holds.

THEOREM 5.23 (Theorem 3.3 in (381). Let S be a monoid with a torsion free

polycyclic-by-finite group of quotients G. Assume S satisfies the ascending chain

condition on left and n'ght ideals. Suppose that K{S] I'S a (Noetherian) UFR, then

K(G] is a UFR, and if furthermore all units in K{G] are triuial, then S is a UF­

monoid. Conversely, nppose that K(G] is a UFR such that every height one pn'me

ideal of K(G] i.5 generated by a semi-invariant and S is a UP.monoid, then K(S]

is a (Noetherian) UFR.

Proof. Note that since G is torsion free, the group algebra K(G], MId thus also

K[S], is a domain (see for example {56, Theorem 37.51).

Assume that {([5] is a Noetherian UFR. Since K[G] is a. Noetherian localization

of K[5] it is easily shown that K(OJ is a UFR.
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Bea.use of Theorem 5.16, to prove that 5 is a UF-monoid, it is sufficient to

show that if J E N(S) is an irreducible element in N( 5), then s is prime in 5.

Actually we win show that J is prime in K[51. Because of Lemma 5.2, we only Deed

to show that s is irreducible in N(K[SJ). So, assume s = u{i with a,P E N(K[SJ).

Then 1 := (.s-l)u{i E K[GI. SO u and (i are units in K(Gj. Because of the

assumption that units ue trivial in K[G], we get that supp(Q) := {x} and hence

% E 5 n N(K[SJ) = N(5). Similarly supp(P) := {y} a.nd y E N(S); and also

oS = xy. The irreducibility of oS in N(S) therefore gives t hat x or y, and thus Q or

fJ is a unit in KIS} (Lemma 5.22), as required.

For the converse we assume S is aUF-monoid, K(G] is a UFR, and every height

one prime ideal of K[G] is generated by a semi-invariant. We prove K(S] is a UFR.

Take any prime ideal P of K(SI. We need to prove that P contains a principal

prime ideal of [([51. If pnS #: 0 then, by Proposition 5.15, K(pn S) is a prime

ideal of K[Sl. Hence P n S is a prime ideal in S. So boy assumption (2), P n S

contains a prime ideal Sp = pS E XI(S), pES. Because of Proposition 5.15,

K(Spl E Xt(K(S]), as required.

Next assume pnS = 0, or equi'4.1ently, P n N(S) := 0. It follows that

PK[Gjn K(SI:= P and PKIGI = KIGIP is a prime ideal of KIGI. Since KIGI is

a UrR, the prime ideal PK(Gl contains a prime element of K(G]. By assumption,

K(G]: ~ K[(GjP for sorne semi-invariant : (with weight A.) of KfG!. Then g:g-I =

~(g): for any 9 E G and thus K(Glz = zK[G] and X[Slz = zK[S!. Write

z =: h.st- I for a homogeneous primitive element h E K[S'! and s,t e N(S). Then
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we have K[5]h = KI5]zt,s-t = zK[5]t,s-' = zts- I K[5] = hK[5] and thus h E

N(K[5J). Note also that, if x E hK[G]nK[5], then x:z hyf-l with y E K[S]

and I E N(5). So xl = hy. Since h E N(K[SJ), Lemma 5.21 implies that y = IjI

for some !I E K[5) and thus x = hy' E hK[S]. So indeed hK(Gj nK[Sj = hK[5].

Since hK[GJ is a prime ideal and because K[Gj is NoetheriAn localization of K[5],

we get that (see for eJt"a.rnple Lemma 7.15 in (52)) hK[S] = K[S)h is a prime ideal

of K(5) and thus h is prime element of K[S]. Obviously hK[5] ~ P. This proves

that K[5] is a UFR. 0

COROLLARY 5.24 (Corollary 3.4, [381). ut 5 be a monoid satisfying the as­

cending chain ~ndititm on left and n"ght ideals. A.ssume 5 has a taman /T'u

polycydic-by-jinite group 01 quotients. Then, K[51 is a UFR fDiM all height one

prime idet1ls generated by a central !dement il and only il5 is a UF·monoid with

all minimal prime ideals genertlted by a central element and K(G] is a UFR with

all height one prime ideals generated by a central element.

Proof. Because of Theorem 5.23 (and its proof) we only need to show that if K[5]

is a UFR with all height one prime ideals generated by a central element then 5 is

a UF-monoid with all minimal primes generated by a central element. Again, as

in the proof of Theorem 5.23, it is sufficient to show that every irreducible element

oS E N(5) is irreducible in N(K[5J) and central in K(5). Since oS is a normal

element and K15] is a UFR with all height one prime ideals generated by central

element, write oS = p~' ... p~. for some central prime elements Pi of K[5]. Clearly
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K{G] = K[G]" and thus each Pi is a central unit in K[GJ. Obviously, Pi E K[d(G)J.

Since dG is a torsion free abelian group (and thus ordered), each Pi is a trivial

unit. Hence Pi = kix; for some ki E K and Xi E Z(S). Thus s = x~' ... x;· and

each x; E Z(S). The irreducibility of.s in N(S) implies that.s = XI' So indeed, s

is central in KISj and is irreducible in N(K[S]). D.

5.6.4. Let S be a UF·monoid such that every minimal prime is completely

prime, it is easy to show that S = N(S) (a similar argument can be found later in

Theorem 5.27). For the normalizing semigroups, we have a stronger result. First

we need the iollowing lemma (this is Gauss Lemma in case S is abelian).

LEMMA 5.25 (Lemma. 3.5 in (38]). Auume S is a normalizing UP-monoid and

K a field and KISj a domoin. Assvme !hot f,g are h-pnmitifle. Then fg is h-

primitifle.

Proof. The proof is similar to that of the commutative situation (see for

example Theorem 14.4 in [231l. However, for completncss' sake we include a proof.

Since S is a normalizing UF-monoid, SlUeS) = T is a free abelian semigroup. Let

s: be a linear order on T and let 1" denote the natural image of.s E S in T. So we

can consider K(Sj as a ring graded by the ordered monoid T.

Writef = Ei';",l1;s; and 9 = Ei'_ihjlj, where ai,hj E K(U] and Si,lj E S 50 that

il < S2 < ... < S; and I;'" < t2 < ... < C. Since S is a normaJizing U P-rnonoid,

to prove that fg is h-primitive, it suffices to show that each prime dement w E S

does not divide all elements in the support of /g.
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Now, gcd(supp{a;si)} = s, and gcd(supp(bjtj)) = tj. Because, by assumption,

1 is b-primitive, there exi.sts an index i $0 that 5i ¢ 5w and 5J: E Sw for all

1 $ k < i. Similarly, there exists an index j so that tj ¢ 5w and t, E Sw for all

I $ k < j. Now, for the T·gradation on K[5], the $;lj-component of 19 ba.s the

form

Clearly w then divides each such a".s"byt,. On tbe other hand supp(a;5iOjtj) <;;;

U(5)s;tj and 5i, tj ¢ 5w. Thus supp(aiSibjsj) Ck 5w. Since supp(a;siOjtj) <;;;

supp(jg), the result follows. l:J

THEOREM 5.26 (Theorem 3.6 in (38J). Let S be a normalin'ng monoid with

a torsion free polycydic-oy-finite group of quotients G. Assume 5 satisfie3 the

ascending chain condition on left and right ideals. Then K[S] is a (Noetherian)

UFR 11 and only if K[OJ is a UFR and 5 is aUF-monoid.

Proof. The proof follows the line of that of Theorem 5.23. Hence we only prove

those claims in the proof that require. different argument. First assume that

K[51 is a U.F.R.. To show that S is a UF-monoid it is sufficient to show that

each irreducible element p E 5 is prime in 5. Again by Proposition 5.16 it is

sufficient to snow that p is irreducible in K[51. For this, suppose that p = 0./3 with

a,p E K[5J. Hence p = ab for some a E supp(a) and b E supp(P). Because of
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the irreducibility ofp in S we get that a E U(S) or bE U(S). It then foUows from

Lemma 2 in [491 that 0' or P is a unit in K[SI. as de$ireci.

Conversely. assume K(G] is a U.F.R. and S is a UF-monoid. With the same

notation ilS in the proof of Theorem 5.23. let P be a prime ideal of K[S] so that

P n S = 0. Let z = hst- l be a prime element in PK[GJ, with h a homogeneous

primitive element and .s.t E N(S) = S. Then K[Glh =K[Glz =hK[G]. Suppose

now that % E hK[GI n K[SJ. Then z = hyf-i with y E K[Sj and f E N(S). So

zf = hy. Write y = y'c, with c E N(S) and y' an h-primitive element in K(SJ.

Hence %f = hy'e.. By Lemma 3.25, we know hy' is h.primitive. [t thus follows that

c E Sf and so there exists e! E S so that % = hy'e! E hK[S]. Hence ....'C have shown

that hK[GlnKISj = hK[SJ. Similarly K[S]h = K{GlhnK[S]. Consequently,

KjSlh = hK[S] is a prime ideal contained in P. The result therefore follows. 0

5.6.5. Moreover, we can determine when K(SI is a UFD.

THEORE.>.1 5.27 (Theorem 3.7 in [38]). Let S be 0 svbmonoid of 0 torsion free

polycyclic-by-finite group of quolients G. Then, K[S] is a Noetherian UFD If ond

only if the following conditions ore satisfied:

1. K[GI is a UFD,

2. S satufiu the ascending chain condition on right and left ideaLs,

3. S = N(S) is aUF-monoid.

Proof. Assume the three conditions are satisfied. By Theorem 5.26. K[S] is a

Noetherian UFR. Now we need to prove that every height-l prime ideal P or K[S]
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is completely prime. If P n 5 = 0, then K(G]P E XI(K[Gj) and K[SJfP ~

K[GlIK{GjP. So K[5l1P is a domain. On the other hand, if P n 5 =F 0, then

P = K[P] with p = 5n P a minimal prime in 5. It follows that K[SJf P :!' Ko[5fp],

a contracted semigroup algehra. Since, by assumption, 5 \ P is a subsemigroup of

5, we get that K(SII P ~ K[S \ pl. As a sub ring of K{G], the latter is therefore a

domain as well.

Con.versely, assume K(SI is a UFO. As a Noetherian localization. of a UFD,

the group algebra K(G] is a UFO. Clearly condition. (2) is sa.tisfied as K(5) is

Noetherian.

To obtain. condition (3), hy Theorem 5.26, we only need to show S = N(S).

So let.s E S\U(S). Because SN(5)-1 is a group, there exist t E S a.nd It E N(S)

so that stn- I = 1 and thus .It = It. As It is a normal elemen.t in the UFD I<IS],

n = PI "'Pk, a product of prime elements Pi in 1<[5]. Since each. ideal p;I<{S] is

completely prime and because 1<[5] is a domain it follows that s = oc and t = Pd

for some c,d E N(KIS]), o,f3 E KISj, and cd E 5n. Hence It:: o{3'ct!, for some

P' E K(Sj. It follows that a,p E U(K[SJ) ~ N(K(S]). Hence s,t E N(K{5])n5 =
N(S), as required. 0

5.6.6. Let S be a submonoid of a nilpotent group. 10 (35J it is shown. that

K[S] is left Noetherian if and only if K[5] is right Noetherian, in other words, the

ascending chain condition on left ideals of S is equivalent with the ascending chain

condition on right ideals of S.
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COROLLARY 5.28 (Corollary 3.8 in (38]). Let S be a submonoid of a Jor.sion

fru finitely genera~ed nilpo~en~ group of quo~ients G. Assume S satisfies Ilte lLS­

cending chain condition on left ideals. Then the following conditions are equwalent.

1. K[S] is a. UFR.

2. K[S] is a UFD.

3. S = N(S) is a. UF·monoid

Proof. Note tbat G is a poly-infinite cyclic group and tbus all units in K(G]

are trivia.!. Since G is a torsion fx-ee finitely generated nilpotent group, Corol-

lary 5.7 yields that K(GJ is a UFO. So, by Thcox-em 5.27, conditions (2) ud (3)

arc equivalent.

It remains to show that (1) implies (3). Now, if l«S] is a (Noetherian) UFR,

and thus a maximal order, then we know from [341 tbat S = iV(S). From Theo­

rem 5.23 we get tbat S is aUF-monoid. 0

5.1. Examples

5.1.1. Consider submonoids of G = (x,y I y-lxy = X-I). Note G is not a

nilpotent group. [n the following we always use the equivalent group condition

xyx = y. Obviously 6(G) = (x,V' I xy' = y'x) is a torsion free abelian P'OUp.

First K[G] is not a UFO by Lemma 5.5. However, because K(GI is a prime Pl­

algebra, it follows from Lemma 5.3 and Lemma 5.4 that l<[G] is a UFR.

Now let us look at the submonoids of G.
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1. Let 5 L be a 5ubmonoid generated by 1,x,y1. Because ~y1 = !fx, this

submonoid is abelian. Obviously 51 ~ Z\ EEl Z:! is factorial, where Zi is

isomorphic to the additive monoid of nonnegative integers. Hence K[5d is

a UFO.

2, Let 51 be the normalizing submonoid generated by ~,X-I, y. Since U(52 ) =

(:z:,x- I
) and 52 /U(52 ) is free abelian, 52 is a UF-monoid. By Theorem 5.23,

K(5'21 is a Noetherian UFR.

3. Let 53 be the submonoid generated by 1,x,Y. Then the set of normal el­

ements is generated by 1,y2,yxy,yx' y, .. ,y:z:iy, '., Note in this monoid,

!I 53 C yry53 C y~2y53 C ... (yxi+ly ¢ y~iyS3 ). Hence"'e have a strictly

ascending chain on principal ideals of S. Hence K[53 1 is not a Noetherian

UFR. In fact K($I is not even a UFR.

5.7,2. Consider submonoids of G = (xllx2,a I X2X\ = x,x2a,a is central).

Obviously G is a torsion free nilpotent group. So by Corollary 5.7, K[GI is a UFO.

Let us look at the suhmonoids of G.

1. Let 51 be a. submonoid generated by 1,a,xitx2' Then $1 does not satisfy

the ascending ch&in condition on right ideals as x,x25 LC X\:Z:2S\ Ux~x251 C

. C xlx2S1 U .. U %~:Z:2Sl C· '. Thus K{SiI is not a Noetherian UFR.

2. Let S2 be the submonoid generated by Zll X;I, :Z:2,a, Then we have a strictly

ascending ideal chain X;lX\S1 C X;2 X1 S2 C Z;3 X \S2 C' .. Thus K[521 is

not a Noetherian UrR.
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3. Let 53 be the submonoid generated by (I,(I-I,ZI,Z2. Obviowly 5'1 is a

normalizing submonoid. It foUows that K[5'11 is a NoetheriilO UFR (UFO)

since 53 is a UF·monoid and satisfies the ascending chain condition 00 left

and right ideals.



CHAPTER 6

Unique Factorization Semigroup Rings with a Polynomial

Identity

In this chapter we investigate when a scmigroup algebra K[51 of a canceUative

monoid 5 is a PI domain which i5 a unique factorization ring. We do not require

that K[S] is Noetherian. In other ....'ords, our monoids are submonoids of torsion

free abelian.by.finite groups. In order to tackle this problem we have to inves­

tigate prime ideals of K[51. More specifically, we have to prove an analogue of

Proposition 5.15 in the setting of PI semigroup rings. Since a prime PI ring is

embedded in a matrix algebra. we are again in a position to apply the theory of

linear semigroups, and hence we are able to prove such an analogue. This is done

in Section 2 while certain properties on unique factorization rings with a PI are

recalled in SectioD. 1. Then we investigate the unique factorization semigroup rings

with a PI in Section 3. Finally examples are given in Section 4. The results proved

in this chapter wilt appear in 139J.

6.1. PI algebras and unique factorization rings

6.1.1. Let A be a commutative ring. For any integer m Z: 1, we denote by

A(Xl t •• ,x... ) free A-algebra in m free generators Xl, .. ,x.... A A-algebra R is

'"
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said to satisfy a polynomial identity (shortly, R is a PI-algebra) if there exists

an integer n and a nonzero element f = f(x,,·.· ,x.. ) E A(x" .. ,x.. ) sucb that

f(ah .. ,a..) = 0 for every at. .. ,a.. E R and one of tbe monomials of f of

highest (total) degree has coefficient 1. Also R is called a P[.ring if R satisfies a

polynomial identity with A = Z. Commutative rings, nilpotent rings, and matrix

algebras are basic examples of PI-riDgs.

We are interested in prime PI _rings R. (n tbis case, the ....elJ..known Posner

Theorem yields tbat R is an order in its d&SSical ring of quotient Qd(R) and

6.1.2. Group algebras satisfying a polynomial identity have been completely

characterized. The following result is due to Isaacs and Passman if ch(K) = 0,

and to Passman if ch(K) > O. Let G be a group. Then K[G] is a P[-algebra ifand

only if Gis abelian-by-finite or G is a p-abelian-by-finite group if ch(K) = p > o.
A p-abelian group A is a group sucb tbat the commutator subgroup A' is a finite

p-group. If K[GI is a prime PI algebra, then G is a (torsion-free abelian)-by -finite

group. In case of domain, G is torsion free.

Suppose DOW that S is a ca.nceHative semigroup. Because of Theorern 1.16 one

obtains the foUowing result.

LEMMA 6.1 (Theorem 20.1 in (521 ). Let 5 be 4 c4nce{{atil1e scmigroup. If

K[5] is a polynomi41 identity ring, then 5 has a group of fractions G and K(e] is

a PI-algebra satisfying the same multiline4r identities as K(5j.
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6.1.3. In [10, Corollary 4.8], Chatters, Cilchrist, and Wilson sho.....ed that a

UPR with a pr is also a maximal order. Let / be a right ideal of a prime Goldie

ring R which has a classical quotient ring Q. We callI dosed if I = {% E R : %K C;

I for some right ideal K of R with (R :/ K) = R}. Theorem 4.19 in [10J also yields

that if R is a UFR with PI then R satisfies the ascending chain condition for closed

right ideals. Note that if R is a maximal order then divisorial ideals are closed.

To justify this claim, it is sufficient to show that if I = (R; (R; [)) is an integral

divisorial ideal of R then [ = {% E R: r(R : l)l C; l} and {R :1 (R : l)l) = R.

lndeed, for any % E I, %(R : /) ~ R and then x(R : f)l C; l. Conversely, let

x(R: l)I C; / and r E R. Since R is a maximal order, r(R: /) C; Rand thus x e ,.

Since R is a maximal order we also have (R: (R: /)/) =(R: /): (R: I)) =R as

required. Therefore, R is a maximal order that satisfies ascending chain condition

on integral divisorial ideals. that is, R is a Krull order.

Abbasi, Kobayashi, Marubayashi, and Ueda in [I) give a different definition of

UFR: an order R is called a UFR if R is a Krull order so that all its divisorial ideals

are principal, i.e., a Krull order with the trivial normalizing class group. Also in

[1] ( page 195, Remark (2)) they give an example of group algebra KIGj which

is a UFR in their sense but not a UFR in our sense (i.e., as defined by Chatters

and Jordan). The construction of G is given as follows: let H = (x) be an infinite

oyo"o .,0uP, whe" % = (; ~) E S L,(Z), the 2 x 2 ,p~ial liocae group o,e,

z. Assume that the eigenvalues of x are of the form CIl = a + b..jC, fJ = a - b..jC,
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where a.b E Q.2a E Z,c E Z and c is not square ( for example, e = 2 and

f =9 = h = 1). Let A = (y) x (z) be a direct product of infinite cyclic groups (y)

and (z). Define an action of H on A as follows; rr = y~z' and .til: = yfzit.. With

this action, we can construct a semi-direct product G = A 1<I H of A by H. Since

no proper pure subgroup of A is G-orbital, A is a plinth of G. Since A has rank

two, we get that A is eccentric. Brown's result (Lemma 5.3) implies that G is not

a Uf'R in our sense. But by Theorem 4.3 in (II. K(G] is a Uf'R in their sense,

which means every divisorial prime ideal is principal. Also this example tells us

that there exists a height one prime ideal of K{C] that is not divisorial.

6.1.4. However, if R is a PI Krull order then it is well known (see for example

[5J. [61. or (291 ) that the divisorial prime ideals are precisely height one prime

ideals. Hence one gets the following result.

THEOREM 6.2. Let R be a prime PI ring. Then R is a UFR 11 and only 11 R

is a Krull order with the iriuial nonnalizing class group.

In (8, Theorem 2.11 Chatters describes when a prime PI group ring is a liFR.

LEMMA 6.3. Suppose R!G) is a prime PI "·ng. Then RIGI is a UFR if and

only if R is a UFR and G is a dihedral-free group satisfying the ascending chain

condition on cyclic subgroups.



6.2. Prime ideals

Let S be a cancellative monoid. ln this section we investigate prime ideals in

prime semigroup algebras K[S] that satisfy a polynomial identity. By Lemma 6.1,

such a moooid 5 has a group of quotients G :: S-15 :: SS-l aod K[G] is also a

prime ring satisfying a polynomial identity. Hence G is a (torsion-free abeLian)­

by-finite group.

LEMMA 6.4 (Lemma 1.1 in (39]). Ld S be II $t1bmonoid ofa torsion-free abelian­

by-finite group. ~t G be the group of quotienu of S. Then G:: 5Z(S)-I.

Proof. Because of the assumption G is torsion-free abelian-by-lini~e. Hence for

a field K, the group algebra K[G] and thus also the semigroup algebra K(S] is a

prime PI ring. Hence K[S] and KIG] have the same classical ring of quotients Q ::

Qd(K[SJ), and Q is obtained from K[SI by inverting the nonzero elements in the

centre Z(K[SJ) of K(Sj. So, for any element 9 E G, there exists a central element

a E Z(K[S]) such that go E KISJ. Hence we have g(supp(o.» ~ S. Now, for any

hE G, ho.h- ' :: a. Hence h supp(cr) h- 1 :: supp(a) ~ 5. Therefore ghz'h- l E S

for any h E G. z E .supp(o) and positive integer t. Since G is abelian-by-finite.

there exists a power n so that xR E S n .6.(0). Since xR has only finitely many

conjugates in G, say glJ;Rg~L, .. ,g>nxRg;;..I, then z:: (glZg~lt· ·(g>nzg;;..lt E

Z(5). Since gz =g(glZg~lt· . (g>nxg;;;Lt E 5, we obtain that 9 E 5Z(5)-L. 0
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Let now S be a submonoid of a torsion-free abelian·by-finite group and let K

be a field. Of course the scmigroup algebra. K[SJ has a natural S (and SZ(S)-l)

gradation. We now prove that the homogeneous part of a prime ideal in K(SI

is again a. prime ideal. This result is well known for rings graded by torsion-free

abelian groups and, more generally, for rings gtaded by unique product groups

(301. As stated in Proposition 5.14 it is also valid for the semigroup algebra. of a

submonoid of a torsion-free polycyclic-by.finite group which satisfies the ascending

chain condition on right and left ideals.

Since the classical ring of quotients ofa prime P[ algebra. K[S) is a matrix ring

M.,(D) over a skew field 0, lire consider S as a skew linear semigroup. The latter

have been extensively studied by Okniliski. For definitions and needed results on

this topic we refer the reader to 153J.

THEOREM 6.5 (Theorem 1.2 in [39]). Let S be a sltbmonoid of a torsion free

abdian-b,,·finite group and let K be a field. The following properties hold.

1. If P is a prime idelll of K[S] with Pn S '" 0, then K[S n PI is a prime ideal

in K(S].

2. IfQ be II prime of S, then K[QJ is also a prime idml in K[SI.

3. The height one prime ideals of K[S) intersecting 5 are of the form K{QJ

where Q is II minimal prime ideal of S.

Proof. (1) Let P be a prime ideal of K[Sj with P n S '" 0. We will show

K[S]/ K{S n PI is a prime ring, i.e. the contracted semigroup algebra Ko[S/(S n



P)] ;l;! K[Sl/ K(S n P] of the Rees factor monoid S' = S/(S n P) is a prime

ring. Since K(SlI P is a prime PI riog, Qcl(K[SII P) = M.. (D), with D a division

algebra.

Let r/J: S' --lo M ..(D) be the oatural monoid homomorphism and ~ = ¢l{s').

It fonows from the structure theorem of skew linear semigroups «(53]) thai. the

monoid s" has an ideal U contaioed in a completely o-simple subsemigroup (; of

M.. (D) such that U is uniform in V, the completely o-simple dosure of U (see 4_5.1).

Furthermore, the nonzero elements of U are the elements of minimal nonzero rank

of S". Let A be an abelian subgroup of G of finite index in the group of quot ients

of S. Let A- be the natural image of Sn A in~.

Now we claim that V is an inverse semigroup. Since f.J is a completely 0­

simple, we can write V = M(C; [,A; p), where C is a maximal subgroup of V,

P is the sandwich matrix with I A I rows and I I I columns. We only need to

show that each row and column of P does not contain more tban one non-zero

dement. Suppose Pij 'I 0 and Pi" 'I O. Since U is uniform, the Q-canceUati~

parts Vji = Uj ; n U and Uid = Uti n U of V are nonzero. Let 0 'I Uji E Vji and

o oF Ut; E UId, then tl7iU~i oF 0 and u7;,u~ E AU. By the commutativity of A", we

have u;..u~ = ulju;; oF O. Therefore j = k. This shows that each row of P cont ains

exa.ctly one nonzero entry. Similarly, one sbows that ea.c:b column contains exa.ctly

one nonzero entry. So U is an inverse semigroup. Since the K-algebra generated

by U is contained in M .. (D) and M..(D) does not ha.ve an infinite set of orthogonal
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idempotents, it follows that I [ 1=1 A 1= t < 00. if necessary, rearranging the

entries of P, we get U = M(C;t,t; E), where E is the identity matrix.

Let t ~ s' be the inverse image of U under 9. Then

where H runs through the set of intersections of U with the different ll..elasses

of U. Note that each ¢-I(H) U {O} is a semigroup with zero element 0 and thus

[(o[¢-I(H) U {OJ] is a contracted semigroup algebra contained in [{o[S']. The sum

is direct as [(-vector spaces and we thus get a Muon algebra pattern. Since U is

an inverse semigroup we thus get

with each Rtj = KO[¢-I(H) U {8}) for some H. Furthermore,

O(""R,,) ~ {OJ (ro, j " k)

and thus, as R;jRtl is S·homogeneous,

and, in general,



We now show that Ko[/'I is an essential ideal of Ko{S'1 and also that Ko(t] is

a prime ring. [t then follows that Ko[S'1 is prime, i.e., K[S n PJ is a prime ideal

of K[Sj.

To show that Ko[/'I is an essential ideal of Ko[S'j, it is sufficient to show that the

right (respectively left) a.nn.ihilator of KIt'] in K[SI is zero. Suppose Ko[{Jz' = 0

for some z' E Ko[5'). Let ( be the inverse image of t' in S, and z an inverse image

of x' in K[S]. So Ix E K(Sn PI and thus I &Upp(x) ~ (Sn Pl. Since I is an ideal

of S and 1% 5 n P, we have supp(z) £" (Sn Pl. Therefore x' = 0 as required.

Finally we show that Ko[t'] is prime. Now, note that for each 1 :s: i S t there

exists au ll-dass H of (j so that

and tP-'(H) is a subsemigroup of 5. The torsion free assumption on the group of

quotients of S implies that K[S] is a domain (see for example [56, Theorem 37.5J).

Hence each diagonal component £4; is domain. Therefore, to prove that {(orr'] is

prime, it is sufficient to show that RuJR ll i:- {OJ for every nonzero ideal J of

Ko(t']. First we show that JR II -I- {OJ. Suppose the contrary, i.e., JR II = {OJ.

Then for auy (aij) E J, we get (aij)RR lI = {OJ. Heoce

(aij)/'(I')lI = {OJ.

Note that {OJ -I- 1'(I')u ~ s', Now take a, I, III as inverse imagesof(aij) E KoWI

in K(5) and [', I;l in 5, then we get

allu E K[Sn PI.
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So

$1111 ~ 5 n P for any $ E $upp(a).

Sioce flll %5n P, we get $ E 5n P for any s E $upp(a). Tberefore a E K[5n PI

and thus (a;j) = O. This proves that indeed J RII #- {OJ. Similarly, if RllR(a;;) = 0

for (a;;) E JR II ,tben (11;;) = O. Thus RIlJRu f: {O}, as required.

(2) Let Q be a prime ideal of 5. Then there exists an ideal P of KI5j maximal

with respect to the condition P n 5 = Q. Clearly P is a prime ideal of K[S]. By

(1), K[QI:= K[P n 5J is a prime ideal of K[SJ.

(3) Let P be a height one prime ideal of K{SJ with P n 5 f: 0. Then, by (1),

KIP n S] is also a prime ideal. Since P has height one, we get P = K{P n 5].

If P n 5 is not minimal, then there exists a prime ideal PI C P n 5. By (2)

K[Pd C KiP n 51 is a prime ideal, in contradiction with P E X 1(KI5J). Hence

P n 5 is a minimal prime ideal of 5. 0

COROLLARY 6.6 (Corollary 1.3 in (391). Let 5 be a svbmonoid of lorsion free

abelian-by-finite group and let K be 11 field. If KISj is Noetherian or if K(S] is (I

Krull order then every prime ideal of Kl5j which intersects 5 non trivially contains

a height one prime ideal. In parUculllr, the height one prime ideals of K[Sj that

intersect 5 non triuially lin: precisely the ideals of Me fonn KI PI with P a minimal

prime iduJ in S.

Proof. Because of the assumptions and Lemma 6.4 every ideal of 5 contains a

central element of 5, and thus also a central element of KjSI. (f K[S] is Noetherian,
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then Theorem 6.5 and the Principal Ideal Theorem impLy that for every prime ideal

Q of S, the ideal K(QI of K(S] contains a height one prime ideal P with pnS j. 0.

Again by Theorem 6.5, it then foUows that P = K[P n S] with P n 5 a minimal

prime in S. This proves the result in the Noetherian situation. On the other

hand, if K[S] is a Pl Krull order then we know that every prime ideal contains a

divisonal prime ideal and hence contains a height one prime ideal. So again the

result follows from Theorem 6.5. 0

6.3. Unique factorization semigroup rings with PI

In this section, we discuss when semigroup rings of submonoids of torsion-free

abelian-by-finite groups are unique factorization semigroup rings with PI.

6.3.1. For a submonoid 5 of a torsion-free abelian-by-finite group, the de­

scriptions of UF-monoid can be obtained from Lemma 6.4 and Proposition 5.11.

COROLLARY 6.7 (Corollary 2.3 in [39J). Let 5 be a submonoid of a torsion

free aOdian-by-finite group. Then the following conditions are equivalent.

1. 5 i$ a UF·monoid.

2. Every non-invertible normal element of S can be written 11$ a product of

prime element.J.

3. Every irreducible element in N(S) is prime in Sand S satisfies the ascending

chain condition on principal ideals generated by a normal element.
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LEMMA 6.8 (Lemma 2.4 in [39]). Let S be a submonoid of a torsion·free abelian~

by-finite group and let K be a fie/d. If S is a UF·monoid then for any f e K{SI

there uist n e N(S) and it E K(SI so that f = fin (Ind fl 't pK(S) for any prime

element p E N(S).

Proof. Let f E K[SI. If supp{f) ~ Snit for nl E N(SJ, then f = flnt for some

ft e K[S]. The same argument applied to ft yields fl = f2n2 witlt "2 e N(S) so

that supp(ftl ~ Sn1. Repeating this argument we get normal dements R, E N(S)

and Ii E K[S] so that

If for some i the ideal generated by supp{f;) is not contained in any Sn with

n E N(S) \ U(S), then

and fi tI- K(Slp for any prime element p E N(S), as desired. So assume that the

previous does not hold for any i, i.e., for any i the normal clement 11; is not a unit.

Now the ideal of S generated by supp(f) contains a central element .t. So

for any positive integer k. Because of Corolluy 6.7 the dement .t can be written

uniqudy (modulo inverses) as a product of prime elements. But since also each no

is a. product of prime elements this yields a contradiction. 0
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As in the previous chapter, an element II E K(5] that does not belong to any

K(Sjp, with p a prime element of S, is called an homogeneously primitive element

(or simply, an h-primitive element).

6.3.2. For a. submonoid S of a torsion-free abelian-by-finite group we know

from Theorem 6.5 that any prime element pES is also a prime element in K[S].

So we ohtain from Lemma 5.10 the following facl:s.

1. C(pK[SJ) ~ C(P"K(SJ) for any prime element pES and any positive integer

k.

2. [f p is a prime of S and % is a normal element of 5 with % ¢ pK(S], then

%K[S] n pm K{S] = %P'" K[S] for any positive integer m. So, if PI, .. ,P.. are

non-associated prime elements of S, then p\' ... p~~K(S] = P:' K(SJ n ... n

P'.-K[S].

3. If, furthermore,S is UP-monoid and h is a h-primitive element in N(K[Sj),

then h e C(wK[SJ) for any non-invertible w e N(S), where C(wK{5])

denotes the set or regular elements of K[S] modulo wK[S].

Let S be a submonoid of a torsion-free abelian-by-finite group G. We now

determine when K[Sj is a (PI) urR with trivial central diiLSS group, that is a UFR

with all height one prime ideals generated by a central element. We actually prove

a. more general theorem.
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THEOREM 6.9 (Theorem 2.5 in (39)). Let 5 be a submonoid of torsion-free

o.belian-by-/inite group. Let 0 be the group of quotients of 5. Assume that 5

is a UF-monoid. Then K[51 is a UFR implies that K[G] is a UFR. Conversely,

if K[Gj is 0. UFR such that euery height one prime ideal is generated by 0. semi­

inuario.nt, then K(S] is 0. UFR.

Proof. Because of Lemma 6.4, the group algebra K[G] is the 10caJjzation of K{5]

with respect to the central Ore set Z(5). Hence, for any prime ideal Q of KfGJ,

the intersection Qn K[S] is a prime ideal in K[5]. It then easily follows that ({[OJ

is a UFR if K[51 is a UFR.

Conversely, assume K(G] is a UFR. We show that K(S) is a UFR. Let P be a

prime ideal of {{[S]. We hiwe to prove that P contains a principal prime ideal. In

case P n 5 :f:. 0 then, by Theorem 6.5, K[P n 5J is also a prime ideal of K[S]. By

assumption, 5 is a UF-monoid. Hence the prime ideal Pn5 of 5 contains a prime

element p E 5. Again by Theorem 6.5, {{[Sp] is a. prime ideal of {([5] contained

in P.

So we now consider the case that P n S =0, and thus PK[G] = K[GIP is a

prime ideal of K{51 so that Pl\[Oj n K[SI = P. Since KIG] is a UFR, the prime

ideal PKIGI contains a prime element q of K[G]. By assumption, choose q as a

semi-invariant. then gqg-I = A(g)q for any g E G and some A E Hom(G, [(").

Moreover, q!([Sj = K[S]q. Because S is a. UF-monoid, we obtain from Lemma 6.8

that q = hst- I for an homogeneous primitive element h E K[Sj and s, t E N(S).
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Then we have K[Glh = K(Gjqts-1 =qK(G1t,,-1 = qK[G] = hK(Gj and K[S]h =

K[S]qts- ' = qtS-1 K[S] = hK(S]. Now we show that hK(GI nK[S] = hK{SI.

Hence it follows that hK[SI = K(S]h is a prime ideal contained in P, as required.

So let z e hK[Gln [([51, then z = hyn- I witn y E K[S] and n e N(S). So zn =
hy. Since By the earlier remarks, if n 'I. U(S), then h E C(nK[S]). Hence y = y'n

for some y' E K[SI. So z =hy' E hK(SI. So indeed hK[G] nK[SI =hK[SI. 0

If in the above theorem G also is finitely generated, then by Brown's result K(e]

is always a UFR.. [f, furthermore, the first cohomology group H'(e/Ca(l},(G», A(e))

is trivial, then Wauters snowed in 1601 that every height one prime of K[OI is gen~

erated by a semi-in~ria.nt. So, in this case it follows that K(SI is a UFR provided

that S is a UF-monoid. The converse holds if all units in K[GJ are trivial.

COROLLARY 6.10 (Corollary 2.6 in [391). LeI 5 be a submonoid of a torsion­

free abelian-by-finite group and K a field. Let e be /he group of quoUents of Sand

llS.fVme /hat aU units of K[G] are lriuial. If K{SI is a UFR, then the foUou;ing

conditions are satisfied:

1. S is UF-monoid.

2. e satisfies the ascending chain condition on cyclic subgroups.

Proof. From Chatters' result (Lemma 6.3) we know that KlGI is a UFR ifand only

if G satisfies the ascending chain condition on cyclic subgroups. Hence, because of

Theorem 6.9 it is sufficient to prove that if K[51 is a UFR, then 5 is aUF-monoid.
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Now from. Theorem 6.2 we know that K(S) satisfies tlte ascending chain condition

on principal ideals generated by normal elements. Hence S satisfies the ascending

ch.un condition on principal ideals geoerated by normal elements. So, because of

Proposition 5.11 it remains to show that if n is an irreducible element in N{S),

then n is prime in K[S]. Since K[S] is a urR and because of Lemma 5.1, it is

actually sufficient to show that n is irreducible in N(K[SJ). This is proved as

in the last part of tlte proof of Theorem 5.23. Un = ofJ with a,p E N(K[SJ)

then o,fJ ue units in K(C). Therefore I supp(o) 1=1 supp(fJ) 1= I and thus

o,/J E S n N(K[5J) = N(S). The irreducibility of n in N(S) implies that a or P

is a unit in S and thus in K(S). o.

In general it remains an open problem whether the the two conditions listed

in Corollary 6.10 are necessary and sufficient for K[5] to be a UFR. However, we

now state a solution to the problem under the extra assumption that the central

class group is trivia.!.

COROLLARY 6.11 (Corollary 2.7 in (391). Let S be a submonoid 0/ a torsion

fra abelian-by-finite group. Let C be the group quotients of S, Then, K[51 is a

UFR with all height one prime ideals generated by a central element if and only

if S is a UF-monoid with all minimal prime ideals generated by a central element

and K(G] is a UPR with all height one pn'me ideals generated by a central element,

Proof. Because of Theorem 6.9 (and its proof) we only need to show that if K[S]

is a urR with aU height one prime ideals generated by a central element then S is
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a UF-monoid with. all minimal primes generated by a centra! element. Again, as

in the proof of Theorem 6.9, it is sufficient to show tbat every irreducible element

s E N(5) is irreducible in N(K(5J) and central in K[S]. Since.s is a normal

element and K[S] is a UPR with all height one prime ideals geoerated by central

element, write s = P~' .. p~. for some central prime elements Pi of {{[51. ClearLy

K[GJ = KfGls and thus each Pi is a central unit in [([G]. 01:>viously, Pi E K[6(G)].

Since 6G is a torsion free abelian group (and thus ordered), each p; is a trivial

unit. Hence Pi = k,z; for some k; E K and z; E Z(S). Thus .s = Z~" . z~' and

each Z; E Z(5). The irreducibility of.s in N(5) implies that.s = Zl' So indeed. s

is central in K[S} and is irreducible in N(KISj). o.

6.3.3. [n case 5 is a normalizing monoid, that is S = N(5), then ...ie have a

compLete solution to the UF'R probLem.

PROPOSITION 6.12 (Prop~ition 2.8 in [39]). Let 5 be a normall-zing monoid

(i.e. 5 = N(S») with a torsion free abelian-hy-finite group of quotients G. Then

the following conditions are equivalent:

(I) [([5) is a UFR,

(2) K(G] is a UFR and 5 is a UF-manoid,

(3) U(5) satisfies the ascending chain condition on cyclic and SIU(S) is an

abelian UF-monoid.

Proof. That (1) and (2) are equivalent is proved similarly as in the proof of

Theorem 5.26.
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We now prove that (2) and (3) are equivalent. Since S = N(S) we know from

Section 5.3.2 and Propos ition 5.11 that S is a UF·monoid if and only if SIU(S) is

abelian UF-monoid, that is, SIU(S) is a free abelian mOD.oid. Since a free abelian

group satisfies the ascending chain condition on cyclic subgroups, G satisfies the

ascending chain condition on cyclic subgroups if and only if U(S) satisfies the

ascending chain condition on cyclic subgroups. Hence the result follows. 0

The above resul~ relate the unique factorization property of a prime ring R to

its cancellative submonoid N(R)" of nonzero normalizing elements. Also in (44)

Jordan investigated this relationship. It is shown that this relationship is not as

strong as one might hope for. For example, an example is given of a Noetherian

prime ring R so that all nonzero ideals contain a nonzero normal element (that is,

R is confonnal) and N(R)'" is aUF-monoid, Itowever, R is not a UFR.

6.4. Examples

6.4.1. In (24) Gateva-lvanova and Van den Bergh introduced the class of type

I monoids. A spedal subclass is that of the binomial monoids. These are studied

in [33J and are defined as monoids generated by a finite set X = {z," .. ,:r,,}

subject to precisely 0.(0. - 1)/2 quadratic relatioll.5 (one for each n ~ j > i ~ 1)

satisfying the following conditions:

B1. i' < j' and i' < j;
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82. as we vary (i,j), every pair (i',j') occurs exactly once;

83. the overlaps x/cxr£j = (x/cXj)x; =Xk(XjX;) do not give rise to ncw relations

in S.

In (24, 33) it is shown that the sc.migroup algebra K[SI shares several proper-

ties with commutative polynomial algebras. In particular they are Noetherian P[

domains that are a maximal order, and S is UF-monoid. Also G is a finitely gen­

erated torsion-free abelian.by.finite group and thus Theorem 6.9 implies at once

the following result.

COROLLARY 6.13 (Corollary 3.1 in (39J). Let S be a binomial semigroup and

K a field. Let G be the group of quotients ofS. Then K[S] is a unique factorization

ring prouided that HI(G/CaC6(G»,6(G)) = I.

If GjCa(6(G)) is a cyclic group of order n with genera.tor g, then it is well

known that (sec for example (20]) H1(GjCa(6(G»),6(G») =6(G)rlf.6.(G) where

6(G)T consists of all clements a of 6(G) such that a ag • ag1
. ··a'''-' = 1 and

f6(G) consists of all elements of form a-I. a' for any a E .o.(G). With this

description it is then easily verified that the following three examples of binomial

semigroups satisfy the triviality of the mentioned first cohomology group and hence

yidd examples of P[ unique factorisation algebras.

EXAMPLE 6.14. The monoid algebra of each of thefolloW'ing binomial monoids

i$ a PI Noetherian UFR:
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L 51 =< Z .. Z2, X3 > subjtd to Ute relation! X,X2 = Z2ZI, X3Z1 = Z2Z3, and

Z3Z2 = ZIZ3; d(G) =< XhX2'X~ >.

2. 52 =< Z"Z2,Z3,Z~ > subject to the reJation$XIZ2 = %2XI,Z3%' = %2Z3,%~ZI =

6.4.2. FinaUy we show that via semi-direct products one easily can construct

non-Noetherian examples of unique factorization semigroup algebras that are PI.

Indeed, let f{ be a torsion-free abelian group such that K[HJ is a UFR but noo­

Noetherian. Let 'Y be an automorphism of H of finite order and define the monoid

5= H )( ... {z"ln 2:::0},

that is, as a set 5 is the direct product of the group H and an infinite cydic

monoid, and the product is defined as follows:

It follows that 5 is a normalizing monoid with a group of quotients G that is

torsion-free abelian-by-finite. As 51 H is infinite cyclic, it follows that 5 is a UF­

monoid. Since K(Gj is a UFR we again get from Theorem 6.9 that K[SI is UfR.
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