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Abstract

In this thesis we use Skolem sequences, hooked Skolem sequences, and periodic
odd sequences to find graceful labellings of trees.

Using a particular Skolem sequence of order n we will produce a graceful la-
belling of a certain tree on 2n vertices. Additionally, the following two theorems
will be established.

A Skolem sequence of order 7 = 0,1 (mod 4) implies the existence of i
graceful tree on 2n vertices which has a perfect matching or a matching
on 2n — 2 vertices

© A hooked Skolem sequence of order n = 2,3 (mod 4) implies the existence
of a graceful tree on 2n + 1 vertices which has a matching on either 2n or
2n — 2 vertices.

The periodic odd sequence will be used to show a particular class of trees to
be graceful. Given a tree T, consider one of its longest paths Pr, which is not
necessarily unique. We define T to be m-distant if no vertices of T are a distance
greater than m away from Pr. We will show that all 3-distant graphs with the
following properties are graceful.

(1) They have perfect matchings.

(2) They can be constructed by the attachment of paths of length two to the
vertices of a 1-distant tree (caterpillar), by identifying an end vertex of
each path with a vertex of the 1-distant tree.

Consequently, all 2-distant trees (lobsters) having perfect matchings are graceful.
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Introduction

The Ringel and Kotzig conjectures

‘Two of the most important conjectures in the study of graph labellings are the
conjectures of Ringel [14] and Kotzig [9].

CoNJECTURE 0.1 (Ringel). The complete graph on 2n +1 vertices, Kansi, can
be decomposed into 2n + 1 copies of @ given tree with n edges.

COMIECTURE 0.2 (Kotzig/Ringel-Kotzig). The complete graph on 2n +1 ver-
tices, Kins1, can be cyclically decomposed into 2n + 1 copies of @ given tree withn
edges.

ture. One of these was the
DEFINITION 0.1. A labelling of a graph G is a mapping f : Vo — Z.
DEFINITION 0.2. A p-labelling of a graph G is an m]echue mapping f : Vo —
(o 12|Eg|} such that the associated mapping g : Eg — {1,... ,2|Egl} de-
fined by g({u,)) € {(1(w) — ), (2l +1) - f(w) ~ f(0)]} is mﬁchv‘ and the
set of edge values is (1,... ,Z|g,}, where z; =1 or z, = 2|Eg| +
A plabelling of P; is given in Figure 0.1.

3 13

In 1967, Rosa [15] defined several graph labellings to address Kotzig's Conjec-
plabelling.

3 s 0
Ga @S s
FIGURE 0.1. A p-labelling.

In the same work, Rosa proved the following theorem which shows that Kotzig's
Conjecture holds if and only if all trees have p-labellings

THEOREM 0.3 (Rosa). The complete graph on 2n + 1 vertices, Kzns1, can be
cyclically decomposed into 2n + 1 copies of a given graph with n edges if and only
if there exists o p-labelling of that graph.

Another graph labelling defined by Rosa was the §-labelling.

DEFINITION 0.4. A S-labelling of a graph G is an injective mapping f : Vo —
|Ecl} such that the associated mapping g : Eg —+ {1,.--- , | E|} defined
1v}) = |f(u) - f(v)] is bijective.

The B-labelling has since been termed a graceful labelling by Golomb [7], where
a graph which exhibits a graceful labelling is said to be graceful. A graceful labelling
of Ky is given in Figure 0.2.

From their definitions, one can see that a graceful labelling of a graph is also
a plabelling. Using this fact, Rosa then addressed the Kotzig Conjecture from




FIGURE 0.2. A graceful labelling of K.

the viewpoint of graceful labellings, stating that if a given tree with n edges has a
labelling, then K2as1 can be cyclically decomposed into 2n + 1 copies of

that tree. This statement prompts the question “Are all trees graceful?”.
In the same work, Rosa then provided techniques for gracefully labelling paths
and caterpillars, where a caterpillar is 2 tree containing a path from which all the

a O-distant tree, and a caterpillar as a I-distant tree). Figures 0.3 and 0.4 give
graceful labellings of a path and a caterpillar, respectively.

[ 4 2 3

FIGURE 0.3. A graceful labelling of a path of length five.

FIGURE 0.4. A graceful labelling of a caterpillar.

The gracefulness of lobsters

Since the statement of Kotzig’s Conjecture over 40 papers have been written
on the gracefulness of trees. In 1979, Bermond [2] conjectured that all lobsters are
graceful, where a lobster is a tree containing a path from which all the vertices of
the graph are a distance at most two (we will later refer to a lobster as a 2-distant
tree). An example of  lobster is given in Figure 0.5.

AV

FIGURE 0.5. A lobster.



THE GRACEFULNESS OF LOBSTERS s

Most advancements towards verifying Bermond’s conjecture consider oaly very
special cases. Ng [12] gives that all lobsters of the forms shown in Figure 0.6 are
graceful. In [5], Chen, Lu and Yeh define two families of lobsters, firecrackers and
banana trees, as given below (before we define firecrackers and banana tress, we
will need the definition of a g-star). In the same work, they show each of these
types of lobsters to be graceful, as well as those shown in Figure 0.7. Examples of
firecrackers and banana trees can be found in Figures 0.9 and 0.10.

Kia, Kun, Kia, Kia, Kin, Kin, Ky By Kin, Koy Kimy Kiay Bin
-] [N
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Kin, Kiay Kin, Kin,  Kimy, Kiay Kimg B, Kim, Kim, Kimy, Kimy Fims,
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FIGURE 0.6. The graceful lobsters found by Ng [12].

y o u 1, Ty A

V.V V

HiiE

SO G I N
- E R S Y
@
u 1 Iy W [

MO mmp Ay Ay Wy My &y Ry My R A, R, W, Ay
(b)
T et 1 Mgt

©

FIGURE 0.7. The graceful lobsters found by Chen, Lu, and Yeh [5].



s INTRODUCTION

DEFINITION 0.5. A g-star on lg+ 1 vertices is the graph formed by adjoining I
paths of length q— 1, each by a leaf, to a single vertes. This single vertez is knoum
as the central vertex of the g-star.

An example of a 1-star and a 2-star are given in Figure 0.8.

SRS

FIGURE 0.8. A l-star and a 2-star.

DEFINITION 0.6. A firecrucker is a tree consisting of a series of I-stars adjoined
by their central vertices to the vertices of a path, such that each vertez of the path
is adjoined to ezactly one 1-star.

FIGURE 0.9. A firecracker.

DEFINITION 0.7. A banana tree is a tree consisting of a series of I-stars, each
of which is adjoined by a leaf to a single vertez, such that the i** I-star has i — 1
edges.

FIGURE 0.10. A banana tree.

Before the publication of (5], Bhat-Nayak and Deshmukh (3] introduced a
slightly different definition of banana trees which did not include the condition
that the i** star have i — 1 edges. They show the following three types of these
banana trees to be graceful. Note that each banana tree can be described by the
adjoined stars.

o Kig, Kia,... Kie-r, (@ + 1)Kie, Kiesn, . Kin, wherea 20,

© 2K13,2K1 2, 2Ky em1, (@ + 2K, 2K 041, 2K n, Where 0 S @ <
t, and

® 3K1,,3K1,... ,3K1,n-
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As the gracefulness of banana trees has been resolved with respect to the defisition
by Chen, Lu, and Yeh, future research on banana trees will use the definition of
Bhat-Nayak and Deshmukh. Amqonynphhbdlmpby(}aﬂnn[!]m
that new results on the gracefulness of banana trees will soon appear.
attributable to Murugan, Arumugam and Vilfred.

“Graphting”

A 1973 result by Stanton and Zarnke (18] uses graceful trees to create larger
graceful trees using a technique called “graphting”. Before we consider this process
we require the definition of a balanced tree.

DEFINITION 0.8. A tree T is balanced if there ezists a subtree S for which the
subgraph on Vr with edge set Er \ Es is either

(1) [Vs| copies of some tree (Type 1), ot

(2) |Vs| -1 copies of some tree unioned with K; (Type 2).

‘The definition of a balanced tree can also be viewed as follows. Consider two
trees T; and T3, where T; and T; may be isomorphic. ATypelb‘hnﬂdm
is obtained by attaching copies of T3, by identifying a fixed vertex of Ty, with
every vertex of 7;. A Type 2 balanced tree is obtained by attaching copies of T3,
by identifying a fixed vertex of Ty, with all but one vertex of 7;. Examples of
balanced trees are given in Figure 0.11.

@T\ m

(a) Type 1 (®) Type 2
FIGURE 0.11. Balanced trees.

The process of “graphting” gives that if T, and T are graceful, then any bal-
anced tree created from them is also graceful. Assuming T; and T to be graceful,
let the number of vertices in 7) and T; be n7, and nr,, respectively. As well, let the
number of copies of T to be “graphted” to T be A, where A = 7, or A =ng, - 1.
The “grapht” of T to Ty can be made graceful by doing the following.

(1) Relabel the vertices of Ty by multiplying their labels by nr,. If A=nr,,
then a constant ¢, 0 < ¢ < nr,, can be added to these new labels. If
X=nr, - 1 then no constant can be added. Our example will use A =
nz, — 1, and we will call the newly labelled graph T;". This is illustrated
in Figures 0.12 and 0.13.



FIGURE 0.13. The relabelling of T; where ¢ =0.

3] Novrdabdnhcmp.dnmmkﬂamm Fix a vertex v of
T;. We label the i** copy of T3, denoted T,, 0 A—1, such that
vertices of even distance from v will have value a +i(nr; ), and vertices of
odd distance will have value a + (A — 1 —i)(nz,), where a was the original
value of the vertex in the graceful labelling of T;. This is illustrated in
Figure 0.14.

o 4
5 6 7 1 2 3

FIGURE 0.14. The relabelling of T> where A =np, - 1.

(3) Then attach the copies of T to T, by identifying the vertex labelled a in
T,' with the vertex labelled a in the copy of T; in which it exists. This is
illustrated in Figure 0.15.

5 6 7 1 2 3

FIGURE 0.15. The graceful “grapht” 0(1‘, to T using Stanton
and Zarnke's technique, where A = nr, —
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Skolem sequences

Given that the value of an edge in a graceful labelling is determined by the
absolute value of the difference of the labels of its end vertices, it becomes evident
that we can use pre-existing mathematical structures based on differences to create
graceful labellings. One such mathematical structure is a Skolem sequence, which
was defined by Skolem [17] in 1957 to generate Steiner triple systems.

DEFINITION 0.9. A Skolem sequence of ordern is a sequence (30,81, - - - 1 92a-1),
which has the following properties.

(1) Its entries are taken from the set {1,... ,n}.
(2) vk € {1,2 ,7.} lhm are ezactly two subscripts i(k) and j(k), for

which 8¢
(3) vke (1,2, n), Ix(k)—i(k)l =k

As an example, consider (6,1,1,2,8,2,6,7,3,4,5,3,8,4,7,5) which is a Skolem
sequence of order 8. It is common to view a Skolem sequence of order n as a
partition of the set {0, 1 +2n 1} into pairs of the form {i(k), j(k)},1 <k<n
such that j(k) - i(k) = k. For example, the above Skolem sequence gives the pairs
(0,6}, 1,2}, (3.5}, {4,12), {7, 14}, {8, 11}, {9,13}, and {10,15}.

the same paper in which he defined Skolem sequences, Skolem established the
necessary and sufficient conditions for their existence. For more details on Skolem
sequences and their properties see Shalaby [16].

‘THEOREM 0.10. There ezists a Skolem sequence of order n if and only ifn =

0,1 (mod 4).

PROOF. (Necessity) Assume there exists a Skolem sequence of order n. Let
the pairs determined by this sequence be {i(k), j(k)},1 < k < n as described above
and consider the sums

4= 3l ~itk] = 3 p= I
&

and

B=30i00 +itk] = 3 p= Z=NEN o)),
= =

A+B= 22;(1:)_
=

=3 it =2

0,1 (mod 4),

=

since ) j(k) is an integer.
=
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(Sufficiency) The sufficiency of n = 0,1 (mod 4) is proven by constructions of
Skolem’s. Consider the following pairs for a Skolem sequence of order 4k, k > 2.
{dk+r-18-r-1}, 0<r<2%-1

{rak—r -3}, O<r<k-2
(k+r+13k-r-2}, 0<r<k-3
{2k—1,4k -2}

{2k, 6k -1}

{k-1,k}

When k = 1 consider the sequence (1,1,4,2,3,2,4,3).
As well, consider the following pairs for a Skolem sequence of order 4k + 1,
k22
{4k +r+1,8—r+1}, 0<r<2%-1

{rak-r -1}, O<r<k-1
{k+r+2,3k-r-1}, 0<r<k-3
{2k, 6k +1}
{2k + 1,4k}
{k,k+1}
When k = 1 consider the sequence (1,1,5,2,4,2,3,5,4,3) o

Previous work by Abrham [1] has shown relations between certain 2-regular
graphs and certain Skolem sequences. Consider a graceful 2-regular graphon n = 4t
vertices, which contains only cycles of even length. Abrham’s construction gives a
Skolem sequence (s1,5, .. , 8an+2) Of order n + 1 which has the property that if
1<k <nandif s =8 =k then either i + k <n+1ori > n+2. Conversely,

lem sequences of order 4¢ + 1 exhibiting this property can be used to construct
graceful labellings of 2-regular graphs on n = 4¢ vertices which contain oaly cycles
of even length.

As well, consider a graceful 2-regular graph on n = 4t — 1 vertices containing
exactly one cycle of odd length, where this odd cycle contains the edge of value
2+ Abrham'’s construction gives a Skolem sequence (51,3, - - , $1n41) Of Order
41 which has the following properties.

() B1<!<nl# @3 and if s = 500 = I then either i+ <n+ 1 or

i>n+

@ lh;::_.‘,:“_,,:ﬁ,‘-‘llbui5n+lmdi+h,*-’4\2n+2.
Conversely, Skolem sequences of order 4t exhibiting these properties can be used to
construct graceful labellings of 2-regular graphs on n = 4t — 1 vertices containing
exactly one cycle of odd leagth, where this cycle includes the edge baving value

Abrham’s application of certain Skolem sequences to the graceful labelling of
2-regular graphs raises the question of how an arbitrary Skolem sequence can be
used to create a graceful graph. In this thesis we will generate a graceful tree using
an arbitrary Skolem sequence. As well, we will use a particular Skolem sequence
construction to create two families of graceful trees.

Contents of chapters

Chapter one describes an algorithm for creating graceful trees from Skolem and
hooked Skolem sequences. To do this one must first consider a bijection between the



CONTENTS OF CHAPTERS u

positions of the sequence and the vertices of a graph, where the position i maps to
the vertex labelled i. Given this, a Skolem sequence of order n will then provide n
disjoint edges which comprise the edge values 1,2, .. ,n. To create a graceful tree,
one need only add additional edges, with appropriate values, while being careful not
wm-uqdu m:u:gpmnimu@mhm-e-mm Addmn-nlly

‘matchings.
sequence and the vertices of a graph. Given this, a periodic odd sequence of order
n will then provide n disjoint edges which comprise the odd edge values from 1 to
2n 1. As with Skolem sequences, one can use these edges to create a graceful tree,
however the task is made a little simpler as the edge values to be placed are smaller
and are all even. Using this we prove that all lobsters with perfect matchings to be
graceful as a corollary to slightly larger theorem involving big lobsters, a term to
be defined in Chapter two.

Chapter three summarizes the major results of the thesis and suggests directions
for future research.






CHAPTER 1

Graceful Trees From Skolem and Hooked Skolem
Sequences

1. Graceful trees from Skolem sequences
Gwmasuemmeedwdun, S =(s0,51,--- .m—:). we will consider a
here

first viewed by Skolem as a partition P of Z,s into n subsets of size 2, such that
for {a:,b5:} € P,

).

O tlee- =11,
&

As one considers the Skolem pairs {0;,b:}, 1 < i < , it is evident that these
represent edges having values 1,2,... ,n, where the edge of value i is incident with
the vertices labelled a; and b;. These edges constitute a perfect matching of a graph
on the vertices 0, 1,... ,2n ~ 1. To create graceful trees we will use these edges and
add edges of value n +1,n +2,... ,2n — 1 without creating cycles. Before we show
how to do this we require some new definitions and notations which will be useful
for our technique of edge addition.
DEFINITION 1.1. Consider a Skolem sequence of ordern, S = (so, 81, ... ,$1m-1)-
« The core of the sequence Cs is the central 2 positions. Namely n — 1 and
n

. ém-wwi,mwmihmmwuhq—i.
* Given a vertez labelled i ¢ Cs, the mazimal connection of i will be the
addition of the edge {0,i} if i > n, or {i,2n — 1} otherwise. Nmu/-r
eachi € {0,1,...,2n~1} the mazimal connection of i achieves the
edge value as the mazimal connection of 1.

« Given a position i, its primary follower fo(i) =j : 5 = 8;,i #7. In
general, the primary followers of i are elements of the form f,*) (i) where
506 = K"
 Given a position i, its secondary follower f,(i) =j :s; = 87,5 #1. The

secondary followers of i are of the same form as s “primary follovers
where fp is replaced by f,.

We begin by proving the following lemmata.

LEMMA 1.2. Both f, and f, are permutations of {0,1,

20— 1}.

PROOF. Wevnﬂshovlhn[,umchlwmnuuon where the proof for J, is
analogous and will be left to the reader. Assume that it is not such a permutation
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and thereby there exists i,i' € {0,1,... ,2n — 1} for which f,(i) = f;(i"). Hence

o
LemMa 13. f,=f,~%.
PROOF. Leti € {0,1,...,2n — 1}. Now
(@) = fo() 185 = 575 #1
=lig= 1
=ligp=sy=sigi#l
=1:1=]
=i
As well,
L) = fuG) sy =0T #i
=1-..=:—.1¢‘i
-ls- =s,l#T#1
=l:l=i
=i
giving the desired result. o

Now consider the following definition.
DEFINITION 1.4. Let O, (i) be the secondary orbit of i defined by f,. That is
0.6) = (i £) 42 ... £6) = £6).-
As well, let
o= (TP - Fa=£70).

We “trace” O,(i) by sequentially mazimally connecting f, (i), /."(.). sy FolE)s
and finally i. Similarly, let Oy(i) be the primary orbit of i defined by fy.

Given this definition, we will establish a series of lemmata mnldy involving f,
and O,, where analogous observations can be made regarding fp an:

LEMMA 15. For each i € {0,1,...,2n = 1}, £,0™ (i) = £, ().




1. GRACEFUL TREES FROM SKOLEM SEQUENCES 1

PROOF. We will prove this using induction on m, where the result is trivial for
m = 0. Additionally, f,(i) = j : 8 = ;i #J, giving that
T-, tap =T A
=T Ai#]

proving the result for m = 1.

Assume that for [ <m, m > 1, the result holds. Now

5@ = f6"06)
= £,(£s™ V@) [by the induction bypothesis]
T R) [by the argument for m=1]
=£"™@)
as desired. a

Lemma 1.5 gives that for any i € {0,1,...,2n — 1}, the maximal connection
of the elements of Oj(i) achieves the same edge values as the maximal consection
of the elements of 0,(3).

LEMMA 16. For eachi € {0,1,...,2n - 1},i ¢ 0,(3).

PROOF. We wish to prove that £,(™(i) # 1 for all m > 0, which we will show
by induction on m. Whenm =0,i=i=>i=2n-1-i=>i¢ Z, whiiisa
contradiction. As well, when m = 1, f,(i) = {=> j =1:8; = 87,j # I, which is
also a contradiction. Now, assume that the result holds for p < m, for anym> 2,
but that it does not hold for m. That is there exists an i for which f,™(i) =1.
Thereby

LODL6) = £706)
= f(£™ ) by Lemma 1.3]
=50
=70 [by Lemma 1.5]
contradicting the induction hypothesis, so the desired result follows. o
Lemma 17. Foranyi,j € {0,1,...,2n—1},j = ™) &= i = £,").

PROOF. We will prove this by induction on m, where the case m = 0 is trivial.
Assume that for [ < m, m > 1, the result holds. Now

i= 1@ = fG) = £V by Lemma 1.3]
= i=£,""(F,)) [by the induction hypothesis]
= i= L") [by Lemma 15]
=i=£"G)
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as desired. a
Lemma 1.8. For eachi € (0,1,...,2n ~1},0,() = 0,(3).
PROOF. Consider the following.
1 €0,() &= j = £, () [for some m > 0]
= i=£,™() by Lemma 1.7]
=70,
= je0,m
giving the desired result. a
mngqmd!.emmalﬁndkmmumhnf.mm(u
1} into disjoint complementary orbits.

THEOREM 1.9. The ezistence o/as'kal:m sequence of order n implies the ez-
istence of a graceful tree on 2n vertices which ezhibits a perfect matching or a
matching on 2n — 2 vertices.

PROOF. (Alpm.hmm) Consider a Skolem sequence, S = (so,51,... ,92n—1):
and let the i position corresponds to the vertex labelled i, For all pairs {6, s}
where b — a; = i. nld!heedg(a.b.) This gives a perfect matching on the
vertices labelled 0, 2n — 1. This is pictured in Figure 1.1.

We now add edges of value n +1,...,2n — 1, without creating any cycles, by
performing the following procedures.

(1) Trace O, (n) until one of the following occurs.
(\Pmum s reached, in which case do Dot connect it as it is in the

(&) Pnsillml)or?n-l is reached. Assume without loss of generality
that it is 0. Maximally connect 0, then trace 0,(0) = 0,(2n — 1)
until position n—1 is reached. Do not maximally connect it as it is in
the core. Note that by Lemma 1.5 these maximal connections achieve
the same edge values as the maximal connections of the elements of
04 (n) and that stopping at n—1 in Op(0) = 0,(2n - 1) is equivalent
to stopping at n in O,(n). As well, note that the vertices adjacent to
0 and 2n - 1 in the perfect matching are not maximally connected.

This step is shown in Figure 1.2.

Given this step we now term O, (n) and O, () to be “traced”. If there
are additional untraced secondary orbits proceed as follows.
(2) Choose a position i, for which O, (i) is untraced. Note that i is not in the

core. Trace O,(3).
I£ 0 € O, (i), then Step 1(b) did not occur and vice-versa. Given this,

we remove the edge of value | adjacent to 2 — 1 = 0 which occurred in
the perfect matching. The deletion of this edge excludes two vertices from
the perfect matching. Note that if l =n ~1orl = n, then i is in the
core, which is a contradiction, so { < n.— 1. This edge length must now be
added back in as {n,n+1}, which can easily be seen not to be a multiple
edgl As well, note that the vertex adjacent to 0 in the perfect matching
is not maximally connected.
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I£0 ¢ O, (3) but rather 2n.—1 € O, (i), do the same as above, switching
0 with 2n - 1.
(3) If there are any remaining untraced secondary orbits repeat Step 2.

Steps 2 and 3 are shown in Figure 1.3.
To show that the constructed graph is a graceful tree it remains to verify three
things.
(1) 0.and 2n — 1 are maximally connected.
m follnws From the fact that whenever 0,(0) is traced the algorithm
connects either 0 or 2n — 1.
(2) No cga have been created.

Consider an edge in the perfect matching. The endpoints exist in
complementary orbits, so the tracing of secondary orbits guarantees that,
the only p iolation would be with the edy 0 and 2n-1.
We must consider two cases.

(a) 04(0) contains a core element. Without loss of generality let it
be n. Step 1(b) will be used, so neither of the vertices adjacent to 0
and 2n — 1 in the perfect matching are maximally connected and no
cycles have been created.

(b) 0,(0) does not contain a core element. Given this, Step 2 of the
algorithm will occur. Consequently the vertex adjacent to 0 in the
perfect matching is not maximally connected and the edge incident
with 2n — 1 is deleted (or vice-versa). Additionally, there will be no
interference from the edge that is added back into the graph, as it
is adjacent to the edge containing n in the perfect matching which
remained isolated. Hence no cycles are created.

(3) For each i € {1,2,... ,n — 2} exactly one of i and 7 is maximally connected.

When O,(i) is traced we also consider O,(3) to be traced. This, in
combination with Lemma 1.8, Lemma 1.5, and the exclusive tracing of
secondary orbits (or the equivalent, in the case of Step 1(b)) ensure the
desired property.

Recall that the edges {a;,b;} determine a perfect matching on the vertices
---,2n. The algorithmic addition of edges removes at most one edge from this
perfect matching giving either a perfect matching or a matching on 2r — 2 vertices.
=]

1.1. Examples of graceful trees constructed from Skolem sequences.
Consider the Skolem sequence, (1,1,8,5,2,6,2,7,5,4,8,6,3,4,7,3), which we will
use to create a graceful tree. The edges determined by this Skolem sequence are
(o 1} (2 10}, (3.8}, {4,6}, {5,11}, {7,14}, {9,13}, and {12,15}, as shown in

Figure 1
In ms Skolem sequence

fp(4) =9 @) =12 /r(u) =0
fp(8) =4 59 =
) =5  fE)=11  f,(10=13 Iy(“)

=7  fH(N=1 H(1)=10  f(15) = 3,

£ =14
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s
s .

I'S)
0123456789 10111213115
FIGURE 1.1. The perfect matching obtained from the Skolem sequence.

giving the primary orbits
0,(0) = 0,(14) = 0,(8) = 0;(12) = (0148 12)
0,(1) = 0,(15) = 0,(3) = O,(7) = (11537)
05(2) = 05(5) = O5(4) = 05(9) = (2549)
0,(6) = 0,(11) = 0,(10) = 0,(13) = (6 1110 13).

HO=12  f4)=5 L& =14 f(02)=8
L)=T7  f(5)=2 fi9)=4  f(13)=10
£@2)=9  L46)=13 f10)=11 f(14)=0
L@)=15  f(1)=3 LA =6 £(8)=1,
giving the primary orbits
0,(0) = 0,(12) = 0,(8) = 0,(14) = (0128 14)
0,(1) = 0,(7) = 0,(3) = 0,(15) = (173 15)
0,(2) = 0,(9) = 0,(4) = 0,(5) = (2945)
0,(6) =0,(13) = 0,(10) = 0,(11) = (6 1310 11).

In Step 1, tracing 0,(8) = (0 14 8 12) from 8 will add the edge {14,0},
then invoke Step 1(b). This adds the edge {0,15}, then traces O,(0) =o,(Y5) =
(115 3 7). This adds the edge {3,15}, then stops as 7 = § is reached. is
shown in Figure 1.2.

FIGURE 1.2. Step 1 of the algorithm. Note that Step 1(b) has been invoked.

Given this we now consider 0,(8) = (0 12 8 14), and 0,(8) = 0,(7) =
(17 3 15) to be traced. Step 2 can now be invoked as 0,(2) = (2 9 4 5) has
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not been Tracing 0, (2) = 0,(13) = (6 13 10 11) from 13 adds the edges
{10,0}, {11,0}, 6,15}, and {13,0}, as shown in Figure 13. We now consider
0,(2) = (2943), and 0,(2) = 0,(13) = (6 13 10 11) to be traced. As there are
1o untraced secondary orbits remaining, we are done. The resulting graceful tree
is shown in Figure 1.3.

FIGURE 1.3. Steps 2 and 3 of the algorithm. Note that Step 1(b)
has been invoked and O,(0) contains a core element.

In the case where there is a perfect matching, the tree obtained is always a
2-star, having central vertex 0, with the following graphs attached.
« A Py, by identifying one of its vertices with 0.
o A 2-star, by identifying its central vertex with 2n — 1, which is adjacent
t00.
‘The number of vertices in each 2-star is dependent on the Skolem sequence chosen.
However if the number of vertices in the 2-stars having central vertices O and 2n-1
are 2+ 1 and 2q + 1 respectively, then p+ ¢ =n — 1. As well i d(i) is the degree
of vertex 1, then d(0) = p+ 1 and d(2n — 1) = q +2, giving d(0) + d(2n ~ 1) =
p+q+3=n+2.
Consider the Skolem sequence, (3,6,7,3,1,1,8,6,5,7,2,4,2,5,8, 4), which we
The i is Skolem

ill use to create a graceful tree. by this sequence
are {0.3}, {1,7}, {2,9), {4,5}, {6,14}, {8,13}, {10,12}, and {11,15}, as shown in
Figure 1.4.

e1 23 6 7 8 9 10111213 1415

FIGURE 1.4. The perfect matching obtained from the Skolem sequence.
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In this Skolem sequence
HO=12 f@=10 fE=2 HID=5
H=8 fE =11 £O)=13 f(13=7
L@=6  LE)=1 f10=3 f09=9
HR =15 fN=14 f[O)=0  f15)=4
giving the primary orbits
0,(0) = 0,(12) = 0p(5) = Op(11) = (0125 11)
0,(1) = 05(8) = 05(2) = 0,(6) = (18 26)
0,(3) = 0,(15) = 05(4) = 05(10) = (3154 10)
0,(7) = 0,(14) = 0,(8) = 0,(13) = (T 149 13).

LO=11 f@)=15 f@)=1 AO12)=0
L) =6 f(s)=12 f9)=14
f)=8 f®)=2 f(10)=4
L@3)=10 fM=13 f(11)=5 £,(15) =3,
giving the primary orbits
0,(0) = 0,(11) = 0,(5) = 0,(12) = (0115 12)
04(1) = 0,(6) = 0,(2) = 0,(8) = (16 28)
0,(3) = 0,(10) = 0,(4) = 0,(15) = (310 4 15)
04(7) = 0,(13) = 0,(9) = 0,(14) = (7139 14).
In Step 1, tracing 0,(8) = (16 2 8) from 8 will add the edges {1,15}, {6, 15},
and {2, 15}, then invoke Step 1(a). This is shown in Figure 1.5.

FIGURE 1.5. Step 1 of the algorithm. Note that Step 1(a) has been invoked.

Given this we now consider O,(8) = (16 28), and 0,(8) = 0,(7) = (713 9 14)
to be traced. Step 2 can now be invoked as O,(3) = (3 10 4 15) has not been
traced. Tracing 0,(3) = 0,(12) = (0 11 5 12) from 12 adds the edges {0, 15},
{11,0}, {5,15}, and {12,0}, however since 0 € O,(12), we must remove the
{11,15) from the original perfect matching and add the edge {8,12). We now
consider 0,(3) = (3 10 4 15), and 0,(3) = 0,(12) = (0 11 5 2) to be traced.
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FIGURE 1.6. Obzmmga graceful tree with a perfect matching on
2n - 2 vertices.

As there are no untraced secondary orbits remaining, we are done. The resulting
graceful tree is shown in Figure 1.
In the case where there is a matdung on only 2n -2 vertices consider the vertex

v € {0,2n - 1} from which the edge in the perfect matching is deleted. Again, let
this edge have value | < n — 1. Additionally let T be the other vertex. The tree
obtained is always a 2-star, having central vertex v, with the following attached.

« A 2-star, by identifying its central vertex with 7, which is adjacent to v.
A Py, by identifying one of its vertices with 7.

* A P,, by identifying one of its vertices with n+1# 2n-1.
The number of vertices in each 2-star is dependent on the Skolem sequence chosen.
However if the number of vertices in the 2-stars having central vertices v and 7 are
2p+1and 2+ 1, then p+g =n—2. As well d(v) = pand d(v/) = ¢ +3, giving
d(0) +d(2n - 1) =d(v) +d(v') =p+ (g +3) =n+1.

2. Graceful trees from hooked Skolem sequences
DEFINITION 1.10. A hooked Skolem sequence of order n is a sequence

(50,81,-+- 1201, 32n),
which has the following properties.
(1) Its entries are taken from the set {0,1,... ,n}.

(2) Vk € {1,2,...,n}, there are ezactly two subscripts i(k) and 5 (k) for uhich

k.
n}, li(k) - j(k)| = k.
(4) s2n-1 = 0. This zero is referred to as a “hook”.

c
<2
e
n
IS

As an example of a hooked Skolem sequence consider (6,1,1,4,5,3, 6, 4,3,5,2,0, 2)
which is of order 6. The notion of a hooked Skolem sequence was developed by
O'Keefe (13] who found the necessary and sufficient conditions for the existence of
a hooked Skolem sequence of order n to be n = 2,3 (mod 4). For more detail on
hooked Skolem sequences and their properties see Shalaby [16].

As with Skolem sequences, the partition determined by a hooked Skolem se-
quence gives a matching on 2n of the 2n + 1 vertices, leaving the vertex labelled
2n — 1 isolated. To create graceful trees from these hooked Skolem sequences we



2 1. GRACEFUL TREES FROM SKOLEM AND HOOKED SKOLEM SEQUENCES
will use these edges then add edges of values n +1,n.+2, ... ,2n - 1,2n while not
creating cycles.

The creation of graceful trees from hooked Skolem sequences is

DEFINITION 1.11. Consider a hooked Skolem sequence S = (80,51, - - - 1 2a—1, S2n),
which is of order n.

« The core of the sequence Cs is the central position, namely n.

« Given a vertez labelled i its complement  is the vertez labelled 2n — i.

« Given a verter labelled i ¢ Cs, the mazimal connection of i will be the
adﬁtwnallhedge(ﬂl)v|>n, or {i,2n} otherwise. Note that for
each i € {0,1,...,2n}, the mazimal connection of i achieves the same
edge value ot the mazimel conection of i.

« Given a position i for which ..;eo its primary follower fy(i) = j : 57 =
si,i #7. If =0, then f,(i) =1. In general, the primary followers of i
are elements of the form f,(*)(i) where £,*)G) = fy(f,*~"(i)).

o Given a position i for which s; # 0, its secondary follower f,(i) = j : 35 =
53,5 #1. If 5;=0, then £, (i) =1. The secondary followers of i are of the
same form as its primary followers where f, is replaced by f,.

Similar observations regarding f, and f, as those made for Skolem sequences
will be made for hooked Skolem sequences. We will leave most of them unproven
as the only additional verification required involves the case when either s; = 0 or
=0

Lemwa 1.12. The functions f, and f, are permutations of {0,1,...,2n}).

Lemma L13. f, =1,

-2}, () '@)-

Lemma 1.14 gives that for any i € {0,1,... ,2n}, the maximal connection of
the elements of O, |)a¢mm¢umadgevﬂusxmmwnnemonof
the elements of O, (7).

Now consider the following definition.

LemMa 1.14. For eachi€ {0,1,

DEFINITION 1.15. The secondary orbit and primary orbit which contain the
hook position are called the hooked secondary orbit and hooked primary orbit re-
spectively. We will denote them by H, and Hy.

LEMMA 1.16. For any i,j € {0,1,...,2n},j = £,(™(0) &= i = £,(™ (7).

LEMMA 1.17. For each i € {0,1,...,2n},0,(i) = 0,3).

LEMMA 1.18. For eachi € {0,1,...,2n}, T € O,(i) <= i € O,(n).
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PROOF. (=)
i€0,(n) e 3k:i=f,%(n)
= f," [by Lemma 1.13]
= ;™) =n by Lemma 1.14]
Py ACTH)
«=1€0,(n)
=1e0.().

(=>) Consider any secondary orbit for which 3i : € 0,(i). If j € O, (i), then
by Lemma 1.17, 7 € O,(f). That is to say there is only one such orbit of odd leagth,
namely the orbit for which 3k : E = k, which is O, (n).

Now consider a secondary orbit O,(i) for which i € 0,(i) but 0, (i) # O,(n).
i=£990) <= £96) = £.°0) [by Lemma 113]

= £96) = £,() [by Lemma 1.14]
= £,06) =n,
which is a contradiction. Thereby
= £,540() &= £,9G) = £,"+V() by Lemma 1.13]
= 7,090) = £, [by Lemma 1.14]
= 06 =1
That is 1 € 0,(i). Yet O,(n) is an orbit of odd length, giving n = f,(**+V(n) =
(17&(’3.(11). This gives n € O, (i), which is a contradiction. Hence i € O, (i) = ié

An immediate consequence of Lemma 1.18 is that O,(n) = H, as 2n —1=Te
04(1). As well, lmll!mdl.gmmal"nvethul.plm&nﬂs(o,l. 2n}
into disjoint orbits, with ion of 0,(n) =0.(i) =

O, =

-ru:mu:uns The existence of a hooked Skolem sequence of order n implies
the ezistence of a graceful tree on 2n+1 vertices which ezhibits @ matching on either
2n or 2n — 2 vertices.

PROOF. (Algorithmic) Consider a hooked Skolem sequence S = (so.
and lex the i position correspond to the vertex labelled i. For all pairs {a;,
i, add the edge {a;,b}. Thugveslpu&umnchin‘eﬂlhe
,2n — 2,2n}. This is pictured in Figure
iges ofvaluen+1,... ,2n without cul'.ingany cycles by per-
forming the following procedures.
(1) Trace O, (n) until one of the following occurs.
(a) Pomlnn 1is reached, in which case connect it. Note that position
~ 1 remains isolated.
() Pnsmwnl)of?n—lurﬁdud Assume without loss of
that it is 0. Maximally connect 0, then trace O,(0) = Op(2n) until
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position 2n — 1 is reached. Maximally connect it, as position 1 has
nmmbmmmmanymmcmd. Note that by Lemma 1.5 these
maximal connections achieve the same edge values as the maximal
connections of the elements of O, (n) and that stopping at 2n — 1 in
0,(0) = 0,(2n) is equivalent to stopping at 1 in O,(n). As well,
note that the vertices adjacent to 0 and 2n in the perfect matching
are not maximally connected.
This step is shown in Figure 18.
Given this step we now term 0,(n) = O, () to be “traced”. If there
are additional untraced secondary orbits proceed as follows.
(2) Choose a posiion i, for which O, (i) is untraced. Note that i is not in the
core. Trace O, (3]
KOED,(!),MSupI(b)dxdnotoec\nlndmm(;“mlhu
we remove the edge of value [ adjacent to 2n = 0 which occurred in the
perfect matching. The deletion of this edge excludes two vertices from
the perfect matching. Note that if | = n, thea i is in the core, which is a
0l < n. This edge value must now be added back in as
{2n—1,2n —1~1}, which cannot be a multiple edge as 2n — 1 is isolated.
As well, note that the vertex adjacent to 0 in the perfect matching is not

maximally connected.
vuo.(‘)bu:nmuzneo.o do the same as above, switching 0
with 2n. In this we consider both O,(i) and O,(7) to have been

traced.
(3) If there are any remaining untraced secondary orbits repeat Step 2.
Steps 2 and 3 are shown in Figure 1.9.

To show that the constructed graph is a graceful tree it remains to verify three
things. The first two follow from analogous reasoning to that used for Skolem
sequences.

(1) 0 and 2n — 1 are maximally connected.
(2) No cycles have been created.
(3) Foreachi=1,2,...,n—1, exactly one of i and { is maximally connected.

We must consider two cases.
(2) i ¢ Ou(n). When O,(i) is traced we also consider O, (f) to be traced.
This fact, in combination with Lemma 1.17, Lemma 1.14, and the
exclusive tracing of secondary orbits (or the equivalent, in the case
of Step 1(b), ensure the desired
i€ Ouln). Let ! be the smallest natural number for which . ()
mdmkbethemﬂ]utmunlnumbqbt-m:=f,(‘(n).
If1=0 (mod 2), then by the argument in Lemma 1.14 n is between
iand in O,(n). Also, since O,(n) is of odd length we have that
k=1 (mod 2) and, by the argument in Lemma 1.14, 1 is between 1
and i in O,(n). That is O,(n) s of the form

(1 0, TR

But O.(n) is traced from n until 1 is reached. This fact, in combi-
nation with Lemma 1.17, Lemma 1.14, and the exclusive tracing of
umndarv orbits (o the equivalent, in the case of step 1(b)), ensure
the desired property.

E
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[1=1 (mod 2), then O,(n) is of the form
Codeeminalln),

and the same argument ensures that the desired property holds.
Mmmm{q,A)Wammmm(u 1,...,.20—
2,2n - 1}. The algorithmic ad d@mummeﬂgﬁmﬁn
mm-hmgpm:mmmmhuh 2 vertices. o
2.1. Examples of graceful trees from hooked Skolem sequences. Con-
mdumghoohdshu’ansequm(ﬁlllSJGlS.S?O?}.vbu:hwevill!
to create a graceful tree. The edges determined by this hooked Skolem sequence
are {0,6}, {1,2), (3,7}, (4,9}, (5.8}, and {10, 12}, as shown in Figure 1.7.

. . s

) 2

'3 o
01234567809 001

FIGURE 1.7. The matching obtained from the hooked Skolem sequence.

For this hooked Skolem sequence
5(0)=6 H@)=5  f(6)=12 59 =
K=  f@)=3 fNH=9 f(10)=
H@=11  f,85)=4 f£@=7 fa1)=1
£02)=2,
giving the primary orbits (0 6 12 2 11 1 10), (3 5 4), and (7 9 8). The hooked
prim::y.(:lﬁl H,,is (0612211110).

LO)=10 f@)=4 £6)=0 £9)=
A)=11 f@)=5 [MN=8 f(10)=1
L2)=12 LE)=3 LE)=9 fO1=2
£(02)=6,
giving the secondary orbits (0 101 11 2 12 6), (34 5), and (78 9). The hooked
secondary orbit H,,is (0101 112126).

In Step 1, tracing H, = 0,(6) = (0 10 1 11 2 12 6) from 6 will invoke Step 1(b).
We then add the edge (0,12}, then trace O,(0) = 0,(12) = (06122 11 1 10) fom
12. This adds the edges {2,12}, and {11,0}, then stops as 11 has been reached.
This is shown in Figure 1.8.

Given this we now consider H, = 0,(6) = 0,(8) = (010111 2 12 6) to be
traced. Step 2 can now be invoked as O,(3) = (3 4 5) has not been traced. Tracing
0.4(3) = 0,(9) = (789) from 9 adds the edges {7,0}, {8,0}, and {9, 0}, as shown
in Figure 1.9. We now consider 0,(3) = (3 4 5) and 0,(3) = 0,(9) = (789) to
be traced. As there are no remaining untraced secondary orbits, we are done. The
resulting graceful tree is shown in Figure 1.9.
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FIGURE 1.9. Steps 2 and 3 of the algorithm. Note that Step 1(b)
has been invoked and O,(0) contains a core element.

In the case where there is a matching on 2n vertices the tree obtained is always
2 2-star, having central vertex 0, with the following graphs attached.

« Two paths of length one, by identifying one vertex of each with 0.
« A 2-star, by identifying its central vertex with 2n, which is adjacent to 0.

The number of vertices in each 2-star is dependent on the hooked Skolem sequence
chosen. However if the number of vertices in the 2-stars having central vertices 0 and
2n are 2p+1 and 2g+1 respectively, then p+g = n—1. As well, if d(i) is the degree of
vertex i, then d(0) = p+2and d(2n) = ¢+2, giving d(0) +d(2n) = p+g+4 =n+3.

Consider the hooked Skolem sequence (2,5,2,6,1,1,5,3,4,6,3,0,4), which we
will use o create 3 graceful tree. The edges determined by this hooked Skolem
sequence are {0,2), {1,6}, (3.9) {4,5), {7,10}, and {8,12}, as shown in Figure
110.
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.
012 3456789 011

FIGURE 1.10. The matching obtained from the hooked Skolem sequence.

For this hooked Skolem sequence
5O)=10 £E)=3 fE)=1 f9=
HM)=6  fl)=7T fDO=2 f[00)=35
5@)=12 fG)=8 f@=0 f1)=1
H012)=

giving the primary orbits (0 10 58), (1 6 11), (2124 7), (3), and (9). The hooked
primary orbit Hy, is (16 11).
As well,

LO)=8  f(3)=3 LE)=1  f(9)=9

A =11  fi@)=12 LM=4 £00)=0

L@)=7 fG)=10 fL@)=5 L=
£(2)=

giving the secondary orbits (0 8 5 10), (1 116), (27 412), (3), and (9). The hooked
su:mduyorhlﬂ..ll(lll 6).

1, tracing H, = O,(6) = (1 11 6) from 6 will reach 1 and then invoke
Stzpl(n) “This adds the edge {1, 12}, which is shown ia Figure 1.11.

FIGURE 1.11. Step 1 of the algorithm. Note that Step 1(a) has
been invoked.

Given this we now consider H, = 0,(6) = 0,(8) = (1 11 6) to be traced.
Step 2 can now be invoked as O,(2) = (2 7 4 12) has ot been traced. Tracing
0,(2) = 0,(10) = (08 5 10) from 10 adds the edges {0,12), (8,0}, and {5, n).
however since 0 € O,(2) we must delete the edge (8,12} and then add the ed
{11,7} as shown in Figure 1.12.
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FIGURE 1.12. Step 2 of the algorithm.

We now consider 0,(2) = (27 4 12) and O,(2) = 0,(10) = (0 8 5 10) to
be traced. As O,(3) = (3) has not yet been traced so Step 3 can be invoked.
Tracing 0,(3) = 0,(9) = (9) will add the edge {9,0}, at which point we consider
0,(3) = (3) and 0,(3) = O,(9) = (9) traced. As there are no remaining

secondary orbits, we are done. The resulting graceful tree is shown in Figure 1.13.

o u_7 3
9
10
¢ 1
2 /e
¥ %

FIGURE 1.13. Obtaining a graceful tree with a perfect matching
on 2n — 2 vertices

In the case where there is a matching on only 2n —2 vertices consider the vertex
v € {0,2n) from which the edge in the perfect matching is deleted. Again, let this
edge have value [ < n. The tree obtained is always a 2-star, having central vertex
v, with the following attached.
* A 2-star, by identifying its central vertex with ¥, which is adjacent to v.
* A Py, by identifying one of its vertices with 7.
* A Py, by identifying one of its vertices with 2n ~ 1~ 1.
‘The number of vertices in each 2-star is dependent on the Skolem sequence chosen.
However if the number of vertices in the 2-stars having central vertices v and T are
2p+1and 2q+1, then p+q=n- 1. As well, d(v) = p and d(v') = g + 3, giving
d(0) + d(2n) = d(v) +d(v) =p+(g+3) =n+2.
It should be noted that a graceful tree on 2n vertices, n = 0,1 (mod 4), does
not necessarily give yield to a Skolem sequence of order n as the perfect matching
may not contain the edges of value (1,...,n}. Moreover, there may be no perfect
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matching at all. The same can be said for graceful trees on 2n + 1 vertices with
regards to hooked Skolem sequences.

3. Specific constructions of graceful trees from Skolem sequences

We will now construct graceful trees from Skolem sequences. Recall that the
necessary and suffcient condition for the existence of a Skolem sequence of order n
is that . =0,1 (mod 4).

3.1. Skolem sequences of order 4k,k > 3. Consider the following con-
struction of Skolem pairs as edges of a tree on 8k vertices.

Edge Values

2.8k— 1] 1
2,6k+r-1] 1<r<k-1]2r+ T<r<k-1
-r~13k+r-2] 1<r<k-3|2k+2r—1 1<r<k-3

% —

% —

% —
+r—1}] 1<r<k-1]2r T<r<k-1

)] oK
Tk+r—23] 1<r<k-1]2k+or 1<r<k-1

{2E=T1,66-1) ik

These 4k edges are disjoint having values 1,2,... ,4k. To create a graceful tree
we must now add in the edges of values 4k +1,... ,8k - 1 while being careful not
to create cycles. The additional edges given below will create an infinite class of

Edge Values
8k —1
8k—2
T1<r<k-1|6k+r—1 _1<r< k-1
1<r<k—1|7k+r-2 _1<r<k-1
2k+7-18k—1) 1<r<k-1|6k—r T<r<k-1
k+r-2,8k—1} 1<r<k-3|ok—r+l __1<r< k-3
—3,5k = 2} 4k + 1
2% 4,6k — 2] ak+2
2k ~4,6k -1} 4k +3

For k > 5 these additional edges generate a graceful labelling of the 2-star on
4k — 3 vertices onto which are attached four additional graphs. This 2-star has
central vertex 8k — 1 and edges

{8k—1,2%k+r},{2%k+r-1,2%k-r—1},1<r<k-1
{8k-1,3k+r—2),(3k+r—2,k—-r—1}1<r<k-3
{8k ~1,0},{0,4k - 3}
{8k—1,1},{1,4k - 4}.
‘The attached graphs are as follows.
A Py, by identifying one of its vertices with the central vertex 8k —1. This
edge is {8k - 2,8k — 1}.
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® A 2-star on 4k — 3 vertices, by identifying its central vertex with 0. Its
edges are

{06k +7~1},{6k+r~16k-r—-2}1Sr<k-1
0.7k +r =2}, {Tk+r-2,5k—r -2}, 1<r Sk-1

o A Py, by identifying its central vertex with 2k - 4. Its edges are

{2k ~ 4,6k — 2}, {6k - 2,4k - 2}
{2k - 4,6k -1}, {6k — 1,2k - 1).

* A Py, by identifying an end vertex with k — 3. Its edges are
{k-3,5k - 2}, {5k -2,k - 1}.

An example of this construction is provided in Figure 1.14. For 3 < k < 5 this
construction also generates graceful trees, however the P; and the P; do not attach
in the above described positions.

FIGURE 1.14. The graceful tree obtained from the described con-
struction for order 4k, where k = 6.
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3.2. Skolem sequences of order 4k + 1,k > 4. Consider the following
ion of Skolem pairs as edges of a tree on 8k + 2 vertices.

Edges Edge Values

[{8k,8k+1}

6k-r-26k+r—1} 1<r<k-3 + 1<r<k-3

5.7k —3)

5k — 1,7k = 2} =
T<r<k-3|2k+2r—1 1<r<k-3

F-r-1,3k+7-2]

4k — 4} =

4k - 3 =

152 =

E—2.8k—1] T

2%-r—12%+r-1) 1<r<k-1 I<r<k-1
Sk—r—2,7k+r—2) 1<r<k-1|2k+2r T<r<k-1
2k—1,6k—1]

6k — 2,8k —

These 4k +1 edges are disjoint having values 1,2, ..., 4k+1. To construct a graceful
tree we must now add in the edges of values 4k +2,... ,8k + 1 while being careful
not to create cycles. The additional edges given below will create an infinite class
of graceful trees.

Edges Edge Values

, 8k + 8k+1

18k + 23

8k — =1

, 8k — 8E-2

Tk +1 — r<k—1|Tk+r— r<k—
0,6k +r+ r<k-3[6k+r+ r<k—
PE+r-L8k+1] T<k—1|6k-r+ T<k—
3k +r—2,8k+1} r<k— -r+ r<k—
ﬁ—«t- T

2k — 4,6K)

*z&—qv.h-l)

E-4.3k-2]

For k > 6 these additional edges generate a graceful labelling of the 2-star on
4k — 3 vertices onto which are attached four additional graphs. This 2-star bas

central vertex 8k + 1 and edges given by
{8k+1,2%k+r—1},{2k+7~1,2k
{8k+1,3k+r -2}, (3k+r—-2,k—
{8k +1,1},{1,4k — 4}
{8k +1,0},{0,4k - 3}.
The attached graphs are as follows.
« A Py, by identifying one of its vertices with the central vertex 8k + 1. This
edge will be (8k,8k + 1}.
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® A 2-star on 4k — 3 vertices, by identifying its central vertex with 0. Its
edges are
{0,6k+r+1},{6k+r+16k—r—-2},1<r<k-
{0,7k+r -2}, {Tk+r-25k—r—2},1<r < k-
{0.8k -1}, {8k~ 1,4k -2}
{0.8k -2}, {8k - 2,6k - 2}.
A 2-star on 7 vertices, by identifying its central vertex with 2k — 4. Its
edges are
{2k - 4,6k -1}, {6k — 1,2k~ 1}
{2k - 4,6k}, {6k,6k — 3}
{2k — 4,6k + 1}, {6k + 1,6k —4).
« A P,, by identifying an end vertex with k — 4. Its edges are
{k-4,5k -2}, {5k —2,k—1}.
An example of this construction is provided in Figure 1.15. For 4 < k < 6 this con-
struction also generates graceful trees, however the P, and the 2-star on 7 vertices
do not attach in the above described positions.

FIGURE 1.15. The graceful tree obtained from Skolem'’s construc-
tion of order 4k + 1 where k = 6.

Using particular constructions of Skolem sequences we have generated two new
classes of graceful trees. It should be noted that we can now apply the result of
Stanton and Zarnke to make graceful balanced trees from them.

Each of these trees has a perfect matching which is evident from the partition of
Zyn into 2-subsets obtained from the Skolem sequence. Additionally, the structure
of each tree is similar to that of a lobster, differing only by the added 2-stars and
paths. From these sequences additional graceful trees should be obtainable, however
the main objective of this work is not to find each of these but merely to illustrate
the use of Skolem sequences in obtaining graceful trees.



CHAPTER 2
Graceful Trees From Periodic Odd Sequences

1. Using periodic odd sequences to create graceful trees

We have previously seen the utility of Skolem sequences in finding graceful
Iabellings of trees, where a Skolem sequence of order n provides edges of value
1,2,...,n. However, the addition of edges of value n + 1,...,2n — 1 without
creating cycles presents less options than if it were required to add edges of lesser
value. For instance, an edge of value 2n + 1 can only be added between 0 and
2n+1, yet an edge of value 2 can be added between 0 and 2, 1 and 3, ... , or 2n-3
and 2n ~ L. In particular, there are at most 2n — i possible choices for the addition
of a length i. Consequently, difference sequences which contain larger differences
than those provided by Skolem sequences may prove to be more useful in creating
graceful trees.

DEFINITION 2.1. The periodic odd sequence of order n, (po,p1,- - - vPh—I).
the sequence of length 2n for which p; = pyn_1—; = 2n—2i~1foralli: 0 < i <n-1.

Using the bijection between sequence positions and vertices that was described
in Chapter one, the periodic odd sequence of order n thereby provides edges of odd
value between 1 and 2n — 1. To create a graceful tree now requires the addition
of edges of even value 5o as to not create cycles. As compared with Skolem se-
quence, this not only provides more choices for the addition of edges, but a sense
of uniformity as the edges to be added are all of even value. To add an even edge
requires connecting two vertices of the same parity, both of which are adjacent to
vertices of the opposite parity in the perfect matching resulting from the periodic
0dd sequence. Before we begin to explore the utility of periodic odd sequences in
creating graceful trees, we will need the following definitions of a big lobster and
an m-distant tree.

DEFINITION 2.2. A big lobster is a tree which contains a path from which all
vertices are a distance at most three. We will later refer to o big lobster as a
3-distant tree.

This definition can be found in a paper by Ling [10]. From this definition we
can see that all caterpillars and lobsters are big lobsters, however neither converse
is true. An example of a big lobster which is neither a caterpillar nor a lobster is
given in Figure 2.1.

DEFINITION 2.3. Given a tree T, let Pr be one of its longest paths, not nec-
essarily unique. If all of its vertices are a distance at most m from Pr, then T is
m-distant.

An initial observation is that all m-distant trees are also m'-distant trees for
m' > m. As well, one can see that paths are 0-distant, caterpillars are 1-distant,

EY
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Al

FIGURE 2.1. A big lobster.

lobsters are 2-distant, big lobsters are 3-distant, and vice-versa. The introduction
of the definition of m-distant should eliminate the existing clutter of terminology.
An example of a 4-distant tree is given in Figure 2.2.

{rlp

FIGURE 2.2. A 4-distant tree.

2. Gracefulness of certain 3-distant trees

Using a periodic odd sequence of order n, Pya—1, the path on 2n vertices, can
be created by the addition of the edges {i,2n — 2 i},0 < i < n -2, as shown in
in Figure 2.3. Additionally, it should be noted that the addition of the edge {7, k}

1, which connects the edges {j,2n — 1 - j} and {k,2n — 1 -k} in the
ing, achieves the same edge value and connects the same edges as the

a perfect matching. This labelling of a 1-distant tree is illustrated in Figure 2.3.
Given that (-distant and 1-distant trees can be gracefully labelled using periodic
odd sequences, one wonders whether or not 2-distant trees can be gracefully labelled

'THEOREM 24. All 3-distant graphs with the following properties are graceful.

(1) They have perfect matchings.

(2) They can be constructed by the attachment of paths of length two o the
vertices of a 1-distant tree (caterpillar), by identifying an end vertez of
each path with a vertez of the 1-distant tree.

It should be noted that we can now apply the result of Stanton and Zarnke
to make graceful balanced trees from these graceful 3-distant trees. An example
of a 3-distant tree which has a perfect matching but does not satisfy the second
property is given in Figure 2.4.

PROOF. Consider a 3-distant tree T on n = 2m vertices with the properties
required by Theorem 2.4. Let Cr be a maximal subcaterpillar to which the P’s
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FIGURE 2.3. A labelling of 0-distant and 1-distant trees using the
periodic odd sequence.

quui( An example of a 3-distant tree which is not of the
required by Theorem 2.4. Note that this is the minimal such
uuwujnpcﬁnmndmg_

are attached. Given that T had a perfect matching, so does Cr as an induced
subgraph. We will denote the edge sets that constitute these perfect matchings by
Mr and Mc, respectively.

Let P, be a maximal path in Cr and let .1 be an edge containing a pendant

&ome;,,bem..“,z.,u, Note that T consists exclusively of the 3 edges of the
form 5 and the § - I edges that connect them. As an example ee Figure 25.

Let S(eij) = j—1+ zl(k) and label the vertices of e;; as S(ei;) and
7= 1= S(ei). We first note that
&) Sleqa) =0.
As well,

= it
@ Sleisn) = Sless) =G+1) =1+ (k) - [;' -1+ z[(k)] =1
= =



Y 2. GRACEFUL TREES FROM PERIODIC ODD SEQUENCES

)
N+
. £ o

FIGURE 2.5. The edges of the perfect matching in an admissible
3-distant tree as described by Theorem 2.4.

and

i int
() Slewra) = Sleas) =1-1+ 3 f(k) = [r(-‘) -1+ ):/(k)] =1

= =
Given that there are § such S(e;,;), we have S(e;;) < 3 -1and n— 1~ S(ei ;) >
3. This, in combination with (1), (2), and (3) gives that the vertex labels are
unique and use all the values 0,...,n — 1. Additionally, the edge e;,, has value
[n =1 - S(e;,3)] - S(eis) = n—1-25(e;;) so the edges e; ; of My are distinct and

use all values ranging from 1 to n — 1.

It only remains to orient the labels of the edges of My such that the § — 1
edges in Er \ Mr are uniquely assigned even edge values. We must consider two
cases.

© Edges between e, ; and e;j+1. Place S(e;;) € e adjacent ton—1 —
Sl(eij+1) € €ijer Of n = 1= S(e;;) € e;; adjacent to S(eij+1) € eij41-
In either case the edge value generated is

@ n=2-25(e;).
© Edges between e; /(¢ and eis1.- Place Sleqs19) € eiyqp adjacent to n —
1-S(ei11) €eigrporn—1- s(z..,m) € €.y adjacent to S(eiv11) €
13- In ei the edge value generated is
®) n=2=28(ei0)-
Consequently, we need only orient the labels of e;; (or €i4+1,1) according to
label of €1 (0r €;,y(q) from which it is at distance 1. From (4) and (5).uzedgs
between e, ; and e; j+1, in combination with the edges between q,,m and €411,
uniquely obtain the even edge values from 0 to n — 2. Thereby T is graceful. O

An immediate consequence of Theorem 2.4 is the following corollary which
makes significant progress toward resolving Bermond's conjecture that all lobsters
are graceful.

COROLLARY 2.5. All 2-distant trees (lobsters) which have perfect matchings are
graceful.

It should be noted that particular cases of Corollary 2.5 can be obtained by
using the Stanton and Zarnke “graphting” technique in [18]. More specifically, a
2-distant tree with a perfect matching which is formed from a 1-distant tree, by
ldgnnfylngn end vertex of a P; with each vertex of the 1-distant tree, is graceful.
This gives the following corollary.
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FIGURE 2.6. The graceful labelhngnlln admissible 3-distant tree
as described by Theorem 2.4.

COROLLARY 2.6 (Stanton, Zarnke). The eristence of a graceful 1-distant tree
(caterpillar), implies the ezistence of a graceful labelling of ¢ 2-distant tree (lobster).

An example of a 2-distant tree which can be obtained from Corollary 26 is
pictured in Figure 2.7. Koh, Rogers, and Tan extend the results of Stanton and
Zarnke in [8], allowing more flexibility in the choice of graphs which can be “graph-
ted" to the 1-distant tree. Consequently, additional cases of Corollary 2.5 can be
resolved, however a thorough examination of (8], as well as other literature on this
topic, indicate that Corollary 2.5 has not been obtained in its entirety.

\Y_ LY
It I'l

(@) A graceful 2-distant (b) A graceful 2-distast tree with a
tree with a perfect match- perfect which caanot be ob-
ing which can be obtained tained by from Corollary

FIGURE 2.7.






CHAPTER 3
Conclusions and Future Research

This thesis makes progress towards resolving the Kotzig Conjecture that K41
can be cyclically decomposed into 2n + 1 copies of any given tree with n edges.

In Chapter one algorithms are established which use Skolem sequences and
hooked Skolem sequences to create graceful trees. The results established in these
contexts are given below.

‘THEOREM 3.1. The ezistence of a Skolem sequence of order n implies the exis-
tence of a graceful tree on 2n vertices which has a perfect matching or a matching
on 2n — 2 vertices.

THEOREM 3.2. mmoluAmbalShob-mnlwdernqhu
Ihetxl:lznza[l;v!c:l\lbunh+l vertices which has a matching on
2n or 2n — 2 vertices.

Additionally, in Chapter one graceful labellings for two classes of trees are
derived from Skolem sequences. If the order of the sequence is n = 4k, where
k > 5, the graph, which is on 2n vertices, will be composed of a 2-star to which
are attached another 2-star, as well as a Py, a P, and a Py. If n = 4k + 1, where
k > 6, it is composed of a 2-star to which are attached two additional 2-stars, as
well asa Py, and a Pp.

In Chapter two the periodic odd sequence is used to show the following theorem
and :nmlllry The corollary makes sigrificant progress toward verifying Bermond's
conjecture that all 2-distant trees (lobsters) are graceful.

THEOREM 3.3. All S-distant graphs with the following properties are graceful.

(1) They have perfect matchings.

@ nqummnmmma/mqlmm two to the
vertices of a 1-distant tree (caterpillar), by identifying an end vertez of
each path with a vertez of the 1-distant tree.

COROLLARY 3.4. All 2-distant trees (lobsters) which have perfect matchings are
graceful.

Future research on topics presented in this thesis could include the following.

« Exploring the utility of the algorithms found in the proofs of Theorems
3.1and 3.2 towards the general case of extended Langford sequences with
multiple defects. Initial observation indicates that the algorithm should be
changed to accommodate a core whose size is dependent on the starting.
defect, additional defects, and the number of hooks. With additional
hooks one would also need to consider more hooked orbits each of which
must contain exactly two hooks.

« Verifying Bermond's conjecture that all lobsters are graceful.
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« Using periodic odd sequences to establish graceful labellings of m-distant
trees for m > 3.
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d(3), 19, 26, see slso degree
O-distant tree, 4, 34

graceful graph, 3, see also graceful labelling.
graceful labelling, 3, 16, 22, 23, 29, 32, 33,
3%

Cs, 22, see also core (hooked Skolem)

Ip, 22, see also primary follower (hooked

I.,zz, see also secondary follower (hooked
kolem)

labelling, 3
B-labelling, 3, see also graceful labeling
p-labelling, 3
Langford sequences, 39

lobster, 4, see also 2-distant tree

matching, 16, 23
perfect, sce also perfect matching
maximal connection (hooked Shllm).

maximal coanection (Skolem), 1

0y, 14, see also primary orbit
Oy, 14, see also secondary orbit
orbit

hooked primary, 22, see also hooked pri-
‘mary orbit

hooked secondary. 22, see also hooked sec-
ondary orbit

primary follower (Skolem), 13
primary orbit, 14

Ringel Conjecture, 3, 3-4
Ringel-Kotzig Conjecture, 3, 3—4

secondary follower (hooked Skolem), 22
follower (Skolem), 13

secondary orbit, 14



secondary follower of a vertex in 3, 13, see
also secondary follower (Skolem)
g-star, 6, 18, 21, 26, 28

tracing, 14
tree, 13, 16, 23, 29, 32, 33
valuation, see aiso labelling
vertex

degree, see also degree
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