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Abstract

A hierarchical nine node p-version curved shellfinit.e element is developed incorpo­

rating symbolic computations. The element has five nodal degrees of freedom, three

translations and two rotations. The displacement approximation functions which are

hierarchical in nature are derived from the Lagrangian functions. The hierarchical

finite elements hS\"e a distinct advantage of saving computational effort in compari­

son ~'ith h-version elements. HQ\l,-ever, as the order of the displacement polynomial

increases, the number of gaussian points required for integration have to be increased

to obtain eJement matrices. This increases the computational effort required for el­

ement generation. The nature of hierarchical Cannulation offers certain avenues for

the usage of symbolic computations which substantially reduces the computational

effort involved in the element generation. A number of locations where the usage of

symbolic computations offers significant reduction in computational effort are iden­

tified and are incorporated.. The problems associated with the development of finite

element codes can be successfully addressed. by the usage of Object Oriented Program­

ming(OOP) techniques. A Finite element program for the shell element is developed

using this aop technique. The performance of the present element is demonstrated

using various numerical examples.
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Chapter 1

INTRODUCTION

1.1 Finite Element Method

The finite element method is a computational technique for obtaining approximate

numerical solution. It is used for solving physical systems subjected to external influ­

ences. The application of this method is widely used in the areas of solid mechanics,

heat transfer, fluid mechanics, acoustics and electromagnetism. The steps involved

in the finite elemem method are the discretization of the domain, evaluation of

element properties, assembly of element properties to obtain system properties and

the effective solution of the resulting system of equations. These steps are the same

for all types of problems.

The discretization process di.....ides the domain into small units, each represented

by an element. The discretization is suitably carried out to improye the accuracy and

convergence of the solution. The density of the elements at a location in the domain

depends upon the geometry and the external load distribution. A sub-domain where

there is a complex geometry and sharp edges or stress raisers, needs a finer mesh



i.e higher element density. The discretization should be optimal. It should not lead

to too many elements, which increases computational effort. Once the elements are

created, element matrices are calculated and then assembled. The resulting s)'stem

of equations is solved to obtain the solution.

It is very important in FEA to determine the accuracy of the analysis. This is

done through convergence studies. There are two ways in which the coo\'ergence

studies are carried out. The common method is subdivision of the original mesh to

a finer mesh, which increases the number of elements and decreases the size of the

element. This method is called h·refinement or h-extension. The letter h refers to the

size of the element and hence the name h-refinement. The h-refinement is generally

carried out at places where there is a higher stress gradient, especially at areas of

stress concentrations and stress singularities. Another approach is to increase the

order of the approximation polynomial for the unknown displacement field variables

in the element. This is called p-refinement or p--extension. The letter 11 refers to the

order of polynomial used for the approximation. The p-refinement can be done for the

whole domain or selectively for few elements where there is a higher stress gradient.

1.2 P-Version FEM

P-version refinement can be done in two ways. One way is using the elements that use

regular interpolation functions of higher order and the other way is using the elements

that use hierarchical interpolation functions or shape functions. The hierarchical



shape functions have a property that the lower order approximation functions forms

the subset of higher order functions and hence only the element matrices required for

the additional degrees of freedom need to be evaluated and assembled, thus reducing

the computational effort to a large extent. The higher order elements with non­

hierarchical shape functions do not have the above said property. This necessitates

the element matrices to be evaluated, assembled and solved afresh. In this work

hierarchical approximation functions are used and p-version refers to hierarchical

finite elements only.

The hierarchical elements have many advantages over the h-version. The p-version

elements have better convergence and the mesh design is less critical because there is

always a possibility to increase the element order without altering the mesh divisions.

In the case of the h-version, mesh modification by division is necessary to achieve the

required convergence. In the p-version, the size of the input file is smaller because

there are fewer elements. These advantages contribute to the reduction in computa­

tional effort and time. Moreover, lower order element matrices need not be evaluated

again as they are a subset of the higher order element matrices. The resulting ma­

trices are better conditioned and hence they converge faster when iterative solvers

are used for solving. The higher order matrices appear as the perturbation of lower

order matrices and this property has a further advantage of providing an immediate

estimate of the error by comparing successive solutions.



1.3 Plate and Shell Analysis

Plates and curved structural elements in the form of general shells are common in

engineering practice. They can be found in roof structures, pressure vessels, nuclear

reactors and space crafts. Hence, a significant effort has been directed to the develop­

ment of a suitable finite element procedure for the analysis of general shell structures.

Over the years, hundreds of elements have been developed. Tne development of the

hierarchical CODCept has generated a great deal of interest and many research papers

have been published. Its advantages over the h-version elements are well documented.

Currently, a lot of research work is being carried out in the development of accurate

and computationally efficient p-version shell elements.

A number of plate elements are available in the literature which do not use the

concept of hierarchical analysis. These elements employ h-version analysis for con­

vergence studies which demands more computational effort. Moreover many of these

elements suffer from a problem called "Shear locking", These elements become too

stiff and produce displacements far less than the actual value when the the thickness

is small. This problem is overcome chiefly by modifying the transverse shear strain

field, which is cumbersome and involves additional computational effort.



1.4 Symbolic Computation

The development of symbolic manipulation packages like MAPLE, MACSYMA, MATH­

EMATICA etc have helped to reduce much of the manual tedium involved in the

symbolic manipulation of lengthy expressions. Symbolic packages have the ability to

carry out various mathematical operations including integration and differentiation

symbolically This approach can be used for computing the finite element matrices,

for implementation in a finite element code.

Few elements which use the hybrid/mixed formulations are suitable for carrying

out the direct integration of the element stiffness matrix. Because of the complexities

and manual tedium involved, this was not done in the past. The development of

symbolic tools have helped in the direct integration of the element matrices. This cir·

cumvents the time consuming gaussian integration process. Moreover symbolic com·

putations reduce the number of redundant calculations involved and simplify many

calculations. These qualities of symbolic computation decreases the computational

effort enormously.

In situations where symbolic integration cannot be done, due to the nature of

the functions to be integrated, numerical integrations are carried out. In such cases,

the stiffness coefficients are expressed symbolically which are functions of the nodal

coordinates. These stiffness expressions are integrated at the gaussian points to get

the stiffness matrix. In using symbolic computations, care should be taken that



there are no redundant calculations or expression growth which will increase the

computational effort rather than decreasing it.

1.5 Object Oriented Programming (OOP)

The object oriented approach is the latest trend in programming practice. The fi­

nite element program developed using conventional programming practices has many

inherent disad"antages. These programs, once written, are very difficult to modify

later. A small modification may require the whole program to be revised. This poten­

tially introduces even more bugs. They also lack; ease of maintenance, verification,

portability and reliability. The development of large scale FE code poses many more

challenges which cannot be met by conventional programming methods. The OOp

has various powerful concepts like data encapsulation, inheritance, polymorphism

and dynamic memory allocations, which successfully address various problems in the

development of FE code.

In traditional programming languages like FORTRAN, data and subroutines are

separate entities and are connected only by passing the data to a subroutine when

it is called. In the case of object oriented programming languages, like C++, the

data and the procedures or subroutines are intrinsically linked. The fundamentals of

object oriented programming are explained in the next chapter.



1.6 Objective of the thesis

The objective of this work is to,

1. Develop a hierarchical shell element incorporating symbolic computations.

2. Show the advantages of symbolic computation in the development of the finite

element code.

3. Show the merits of developing finite element code using object oriented pro-

gramming.

To achieve these objectives, the major requirement is the development of a fi­

nite element program for the developed shell element. The MUNSET program is

developed incorporating the symbolic computations using the object oriented pro­

gramming concept. A number of numerical problems are solved to show the accuracy

and superiority of the element.

1.7 Layout of the thesis

The first chapter gives an introduction to the various concepts and terminologies

relevant to the current work. Chapter two gives a detailed review of the literature

and defines the scope of the study. Chapter three gives the formulation pan of

the p-version shell element. The derivation of various equations and matrices using

symbolic computations are discussed in chapter four. It also includes an account

about the computational effectiveness in incorporating symbolic computations. The



computer implementation of the formulation using the obje(;t oriented approach are

discussed in chapter five. Chapter six present the numerical results obtained from

the analysis of test problems. Conclusion and re(;ommendatioIlS are given in chapter



Chapter 2

BACKGROUND AND SCOPE OF
WORK

2.1 Literature Review

Finite element analysis is widely applied in many fields of engineering. Almost all

finite element problems include the following steps. 1. Data input 2. Calculation of

element stiffne5.'> matrix and load vectors. 3. Assembly of global stiffness and load

matrices. 4. Application of boundary conditions 5. Solution of equations. 6. Post

processing tbe solutions and results output.

These fundamentals are very well explained in the textbooks by many authors

like Zienkiwicz [2], Bathe [3] etc. The following se<:tions give a detailed account of

literature relevant to the current work.

2.1.1 Plate and shell elements

The wide spread use of shell structures have created a need for systematic method of

analysis which can account for arbitrary geometric {onn, boundary conditions as well



as arbitrary loading. The classical method of solving differential equations for a par­

ticular problem is impossible for such cases. The finite element method was first used

for shell analysis in 1960 [4]. The basic concept of the finite element method is the

idealization of the continuum as an assemblage of discrete structural elements. Over

the years, hundreds of plate and shell elements have been developed [5]. They can be

put into three categories depending upon the mathematical principles employed.

1. Flat or facet elements

In this kind of formulation, the shell surface is approximated by an assembly of flat

elements [6, 21. The behavior of the shell is modelled by superposition of bending and

stretching behavior. With the use of flat elements, a large number of elements must

invariably be used and hence is disadvantageous in terms of computational effort and

accuracy. Thus there is a need for elements which can take up curved shape.

2. Curved Shell elements based on Classical shell theories

These elements are usually based on thin shell theories. The application of these

elements are limited by their corresponding theories. The elements need data such

as higher order derivatives of shell surface geometry in addition to the usual nodal

coordinates and thickness of the shell.

10



3. Degenerated Solid elements

This type of element is derived from 3-D continuum theory by using the assumption

that normals to the middle surface remain normal after deformation. The strain

energy related to the stresses perpendicular to the middle surface is ignored. The

usage of degenerated solid shell elements have become more popular than any other

methods mainly because they are not based on any particular shell theory limit.ing

their scope. Hence their application is more versatile. The solution obtained from

degenerated solid shell elements are more accurate and closer to the solution obtained

using the 3-D continuum approach. Moreover the degenerated solid shell elements

are based on an isoparametric technique for mapping curved shell elements. Hence

they are more accurate than facet elements. The data needed are only the nodal

coordinates and the thickness of the shell.

A general formulation for the curved, arbitrary shape of thick shell finite element

was first presented by S.Ahmad et al.[7]. Previous attempts to develop curved shell

elements were limited to shallow shell situations in which only shear deformation

was neglected. The authors used the isoparametric transformation concept for the

development of curved shell elements. They used the well known assumption that

even for thick shells, the Dormals to the midsurface remain practically straight after

deformation. The accuracy of the element is excellent but here the convergence to

the exact solution is constrained by the fact that plane section remain plane during

11



deformation. In this model, the pure bending deformation modes are accompanied by

some shear stress which does not exist in conventional thin shell or plate theory. Hence

large elements experiencing pure bending tend to be more stiff. This phenomenon is

also called shear locking. A significant effort has been directed in the development

of elements free from shear locking. This can be achieved by any of the following

methods.

a. Reduced integration with spurious mode control

b. Assumed Strain field which defines the transverse strain field consistently

c. Hybrid/mixed formulations with special stress modes

d. Moment redistribution mechanism approach

Although the degenerated solid shell elements have many advantages, they have a

few undesirable features. The major undesirable feature is the locking phenomenon

Another problem in the degenerated shell element is the discretization of complicated

surfaces. The preparation of input data by hand is time consuming, error prone and

impractical. These problems are overcome by using automatic mesh generation and

adaptive analysis procedures [8J.

Adaptive refinement is becoming a common feature in most commercial finite

element codes. It should be noted that the triangular meshes are often the preferred

choice for most automatic mesh generators [91. They are simple in modelling irregular

shapes along with other types of finite elements. These elements suffer from shear

12



locking effect and hence a lot of work is being carried out in the improvement of

triangular elements.

Shear locking can be eliminated using independent approximations in including the

bending and shear effects. Bathe and Dvorkin [10] developed a 4-node quadrilateral

element using this technique. This element is based on Reissuer-Mindlin theory and

uses mixed interpolation. They used an independent set of shape functions for the

covariant componen~ of transverse shear Strains. The element performed better in

both thick and thin shell applications. This element is popularly known as MTTC4

(Mixed interpolation tensorial components). They further developed a 8-11ode element

using the same approach [11}.

Saleeb and Chang [12} developed an efficient quadrilateral element for plate bend-

iug based on Hellinger/Reissner mixed variational approach, where displacements,

bending stress and shear stress parameters are assumed independently. However they

reported inherent problems in the selection of stress fields.

A shear locking free 3-node isoparametric element for thin and thick plates is de­

veloped by Kabir [13] using Reissner/Mindlin theory. He introduces a correction term

to balance the mismatch between the transverse shear strain field and the derivative

of displacement. Tn this way he countered the locking problem

13



The locking phenomenon in plate and shell elements is mainly due to the lack of

consistency in defining the transverse shear strain field. This inconsistency in shear

field produces spurious constraints that lead to spurious energies which stiffen the

element and also cause violent oscillations of stresses. G.Prathap and Somashekar

[14J devised a method to define the strain field consistently. They also found out that

the jacobian transformation to the global coordinate alters the defined strain field

and hence introduced the concept of edge consistency. The tangential strains along

the edges between neighboring elements are also matched to have a shear locking free

element. This is done by defining pseudo shear strain in the local coordinate system

and then transforming to the global coordinates using the jacobian transformation at

the nodes.

2.1.2 P-version FEM

The concept of p-version finite element analysis is relatively new. A large number

of papers have been published on this subject and its merits over h-version are well

proved. One of the first works on p-version FEM is by Peano [15J. New hierarchies

of CO and Cl interpolations over triangles are presented. The main characteristics

of this family of the finite element is that the shape functions corresponding to an

interpolation of order p, constitute the subset of higher order interpolation functions

greater than p. Hence the stiffness matrix of the element of order p, forms the subset

of stiffness matrices of higher orders greater than p. This development gives rise to

14



new families of finite elements which are computationally efficient.

The elemental arrays of higher polynomial order can be efficiently computed us­

ing hierarchical elements with precomputed arrays. These precomputed arrays are

computed once and stored in a permanent file which can be used in all subsequent

applications of the program. Rossow and Kutz [16] sho....'ed that the use of hierar­

chical elements with precomputed arrays are competitive in terms of computational

efficiency compared to conventional finite element method.

The advantages of the hierarchical approach are presented by Zienkiwicz, Gago

and Kelley [17]. They show the hierarchical nature of the stiffness matrices. The

condition of the stiffness matrix increases because of the appearance of hierarchical

variables as a perturbation on the original solution. This ensures a faster rate of

iteration convergence. The perturbation nature of the hierarchical form has a further

merit of providing an immediate measure of the error in the solution, by analyzing

the displacement solutions of successive orders.

A proper mesh design increases the performance of p-refinement to the best per­

formance attainable by the finite element method. Szabo [181 gives the guidelines

for prior mesh design for the P-version FEM. Babuska, Griebel and Pitkaranta [191

discuss the optimal selection of shape functions for p-type finite elements. They also

discuss the efficacy of the conjugate gradient and multilevel iteration methods for

solving the linear system.

15



The hierarchical linear equation sets can be efficiently solved by using a proper

solution strategy. Morris, Tsuji and Cornevali [20] developed an algorithm which

has the ability to choose dynamically between iterative and direct solvers. It can

also adjust the preconditioning in iterative solvers dynamically. The combination of

direct and iterative solvers gives an efficient solution path, combining the advantages

of both the solvers.

Woo and Basu [21] presented a new hierarchic p-version cylindrical shell element

for the analysis of singular cylindrical shells. They used the Legendre polynomial

shape functions for the approximation of the displacement field. A blend mapping

function is used for the transformation from the standard to the real domain. A blend

mapping function exactly maps the curved. boundaries using the exact geometric

parameters. The Legendre polynomials are able to oscillate with increased frequency

near the end points and thus are better suited to approximating singular behavior.

The stiffness matrix based on this element is well conditioned even at higher p-Ievels

and hence gives faster convergence. This p-version cylindrical shell element is very

efficient in terms of accuracy and computational efficiency compared. to h-version

cylindrical elements.

Szabo and Sahrmann{22] presented. a 4-node 2-D element and an 8-node 3-D solid

element for the analysis of shells. The work done by Surana and Sorem [231 is of

special interest here. They developed a hierarchical three dimensional curved shell

16



element based on the p-version concept. The geometry of the element is described

by the coordinates of the nodes in its middle surface and nodal vectors describing its

top and bottom surfaces. The element displacement function can be of any arbitrary

and different polynomial order. The approximation functions and their corresponding

hierarchical variables are obtained by first constructing the approximation function

and nodal variable for each of the three directions {,,., ( and then taking the tensor

product. Here both the displacement functions and nodal variables are hierarchical

and hence so are the element matrices. The formulation is effective for both thin and

thick plates. The usage of hierarchical variables in the thickness direction increases

the number of degrees of freedom greatly which increases the computational burden.

2.1.3 Symbolic computations

The development of symbolic computational packages like MAPLE, MACSYMA,

MATHEMATICA etc have helped to reduce much of the computational task involved

in developing new methods for finite element analysis. These symbolic packages have

the ability to do various operations such as integration and differentiation. This

ability can be used for deriving some closed form expressions for stiffness matrix and

load vectors which reduces the computational effort substantially.

The numerical integration for hybrid/mixed element requires more computational

effort than the displacement based element. The nature of the hybrid/mixed for­

mulations is such that the analytical integration of the stiffness matrix can be done.

17



Chang, Tan and Zheng [241 developed a symbolic manipulation procedure leading to

the analytical integration of the stiffness matrix of a hybrid/mixed elements. The de.­

velopment of analytical integration of the stiffness matrix has made the hybrid/mixed

formulation computationally competitive and superior to the displacement based ele­

ment. Moreover the analytical integration gives more accurate results than numerical

integration

Rangarajan, Knight and Aminpour [25] applied the symbolic computational ap­

proach for an assumed stress hybrid shell element with drilling degrees of freedom.

The drilling degrees of freedom are rotation about the Z axis. The inplane displace.­

ment field approximations include contributions from the drilling degrees of freedom.

They showed that the use of symbolic computation is twice as fast as the numerical

version of the same element

Kornkoff and Fenves [26], using symbolic computations, retained the nodal c0­

ordinates and operated in a symbolic form throughout the computation. A!; the

coordinates are not numerical values, they may represent any set of actual coordi­

nates. The stiffness matrix produced is expressed as a template in terms of these

variables. It can be readily evaluated for a set of actual nodal coordinates during

execution.

The use of computerized algebraic manipulation in the development of element

stiffness matrix is advantageous. It greatly reduces the manual tedium and increases

18



the reliability of resulting expressions. Noor and Anderson [271 used symbolic ma­

nipulation in the development of algebraic expressions for the stiffness coefficients of

non~linear finite elements. They also used the symbolic program MACSYMA for the

generation FORTRAN source code for numerical evaluation of stiffness coefficients

and checking for the correctness of FORTR.J\N statements. The expressions obtained

are quite concise. Intermediate variables and symmetry of element matrices are used

for expression simplifications. The incorporation of symbolic computations increase

the accuracy, reliability and computational efficiency.

2.1.4 Object Oriented Programming (OOP)

Finite element programs are always error prone. They face bottleneck problems like

maintenance, verification, portability, re-usability and extension. Some techniques

have been used to solve a few of these problems by using programming languages

like FORTRAN, which is traditionally used in FE programming. Later programming

languages like PASCAL and C became famous because of their new capabilities like

modularization, declaration of data types, pointers and dynamic memory allocation.

In recent years the development of the OOP concept has given a new approach by

which many of the above mentioned bottleneck problems can be solved.

The fundamentals of object oriented programming are explained below.

Objects: An object is an entity composed of data and procedures. OOP encapsu­

lates specific kind of data with some specific procedures to operate on the data. This
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kind of arrangement imposes certain behaviors on an object. When an object receives

a message, it interprets the message and carry out some specific operations with one

of its procedures. The procedures operate on the data of the object, so the internal

detail of how it functions are hidden from the program that uses the object. This

also means that the internal operation of an object can be changed without altering

the rest of the program. Since the data are hidden in the objects, which cannot be

viewed by the rest of the program, the data is safe from accidental change.

ClMses: A class is an abstract data type definition. Objects are also called in~

stances of a class. Similar objects are members of a class. The class has a list of

instance variables and attached procedures. When an object is created, storage is

allocated to its data described in the class. The created object maintain a link to its

class so that it can access the attached procedures. Messages directed to an object

are transferred to the class w!lere the operations are performed using objects data as

input.

Method,,; The methods are attached to a class and they operate on the data of an

object of a particular class. When a particular message is given, a class searches and

finds the corresponding method After locating the method, the class executes the

operation using the object's data as input.

Inheritance: Classes can be derived from another class called parent class. The

derived classes inherit both data and procedures from its parent class. In addition
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to the inherited data and procedures, the derived classes can have its own data and

procedures not visible to the parent class. This helps to customize the object to

suite an application. Common featun'!s can be declared in a general class from which

specific classes arc generated. When an object receives a message, it first searches its

class for the corresponding procedure, if no procedure is found, then it continues its

search in its ancestor's classes.

Dynamic Memory Allocation (DMA): This feature is very useful in consening

memory. It enables the creation and deletion of data at any point in the program.

In FEA, large matrices are used, which reduces the available memory and reduces

the speed of computation. With DMA the objects are created dynamically and are

deleted whenever they are not required funher.

Polymorphism: This is the ability of a single message to activate different methods

when addressed to different objects. For example, the method ,,*~ could be redefined

in a class which can carry out matrix multiplication.

Encapsulation: This is the ability to hide data inside an object. A message is sent

to the object to access its data, which will activate one of its methods to operate on

its own data. This kind of hiding of data by the object is called encapsulation. For

example, the stiffness matrix klocal of an element object can be accessed only by the

procedures of the element class.
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The application of these concepts in FE programming proves advantageous. A lot

of research is being carried out in the successful implementation OOP concepts in FE

programming. Ford, Poschi and Steimer [28] analyzed the problem associated with

conventional FE programming and the potential solutions offered by object oriented

programming. They have laid the theoretical foundation for the implementation of

object oriented concept.

Besson and Foerch [29) discuss the large scale design of object oriented finite

element code. A basic library is proposed to handle the mathematical operations,

repetitive input file and string manipulations. The classes reduce the independence

in the code project and facilitate expandability. A large scale project based on OOP

concept takes less CPU time than procedural programming. This is mainly due to

the faster vector access. This aspect is very important because most of the CPU time

is spent in solving the system of equations.

The object oriented programs are concise and require less time. S.P.Scholz [30)

deYeloped a finite element program for a Timoshenko beam using the object oriented

programming language C++. He used classes such as matrix and vector which can

perform mathematic operations by symbolic notation. Th.is is achieved by the oper­

ator overloading feature and polymorphic methods. The data encapsulation lead to

easier verification and maintenance of the program. The class concept and and the

inheritance improved the data management and modularization.
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Jeremic and Sture [31] presented a novel programming tool, nDarray which is

designed using OOP concepts and implemented in C++, It allows building new data

types such as tensors of any order. The development of tensorial objects of any order

is very useful in implementing complicated tensoriaJ formulae associated with the

numerical solution of various elastic and elastoplastic problems in solid mechanics.

The development of new FE formulations is a time consuming task. Eyhermendy

and Zimmermann [32, 33] proposed an object oriented approach for a symbolic en·

vironment to derive matrix forms from a strong form of an initial boundary value

problem.

2.2 Scope of the Study

A displacement based hierarchical p-version plate and shell element is developed in­

corporating symbolic computations. The element has five nodal degree> of freedom,

three translations in the global cartesian directions and two rotations in the local axes.

The geometry of the element is modelled by serendipity approximation functions us­

ing the nodal coordinates and the nodal vector perpendicular to the midplane. The

displacement approximation functions are hierarchical in nature and derived from

the Lagrangian family. The degrees of freedom (dof) other than the corner nodes

are hierarchical in nature. The dof at the corner nodes are the displacements tI, v, W

in the global X, Y, Z axes and the rotations in local axes. The element matrices are

evaluated by using both full integration (p+ 1) and reduced integration(p) techniques.
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The element matrices are evaluated using numerical integration. As the order of

the approximating polynomial function increases, the number of gaussian points have

to be increased to obtain the element matrices. This increases the computational

effort required for element generation. It is found that the usage of symbolic compu­

tations reduces the computational effort significantly. A number of locations where

the usage of symbolic computations offers computational advantages are identified

and incorporated. A finite element program for the formulated shell element is de­

veLoped in C++ using the OOP concept. The OOP allov;s development of FE codes

with good maintenance, verification, reusability and extension features.

Standard example problems from references are chosen for gauging the perfor­

mance of the element. A square isotropic plate is analyzed under different boundary

and loading conditions. The plate is also analyzed by varying the thickness of the

plate. Results are compared with the analytical solutions. A cylindrical barrel vault

under self weight is analyzed. This is a test example for shells in which the bending

action is severe. The performance of the shell element is also evaluated in the stan­

dard test problem of a hemispherical shell with a hole. A thin cylindrical shell which

is loaded by two centrally located and diametrically opposed concentrated forces is

analyzed. The results of these tests are compared with the reference values from the

literature. The effectiveness of the element is demonstrated.
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Chapter 3

FINITE ELEMENT
FORMULATION

3.1 Shell Element

In this study, the displacement finite element approach is used. Figure 3.1 shows

the generic curved shell element in the local (, f/ and ( coordinate system. In this

formulation, it is assumed that the normal to the middle surface remains practically

straight after deformation. This assumption permits the shear deformation which is

very important in the thick shell situation. The strain energy corresponding to the

stresses perpendicular to the middle surface is ignored for simplification. The element

has 9 nodes and each node has 5 degrees of freedom. The degrees of freedom consist

of displacements in the X,Y,Z directions and rotations of nodal vector V3 about two

orthogonal directions normal to it.
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Figure 3.1: Generic nine node curved shell element
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3.2 Geometric definition of the element

The nodes are located at the middle surface. The external surfaces of the element

are curved and the sections across the thickness are straight. Hence, two curvilinear

coordinates {, f/ in the middle plane and a linear coordinate ( in the thickness direction

are defined for the approximation of the geometry. These local coordinates {, 1}, ( vary

between -1 and 1. The top and bottom coordinates define the shape of the element.

The relationship between the cartesian coordinates and the curvilinear coordinates

for any point in the element is given by:

where,

""~{;:} -{;;}
Z, fop Zi ~tlcrn

(3.21

N({, 1]) is a serendipity approximation shape function. The subscripts lop, bottom

and mid indicates top, bottom and mid plane respectively. the subscript i refers to

the node. The midplane coordinates are evaluated by averaging the top and bottom

coordinates.

3.3 Displacement function

The displacement throughout the element is uniquely defined by three displacements

in the global X, Y, Z directions and rotations of the nodal vector V3i about two or·
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thogonal directions perpendicular to it. The displacement function is given by:

where n refers to the number of nodes in the element including the hierarchical nodes.

It should be noted that the above displacement function also includes the hierarchical

nodal variables. These hierarchical nodal variables and shape function are separately

discussed in section 3.6.

The vectors Vb and V:2; are uniquely defined as:

J X V3i

Vii = Ii x V3il

3.4 Stresses and Strains

The strains are calculated in a local coordinate system, where the z' axis is normal

to the mid surface with the two other orthogonal axes x' andy' tangent to it. The

strain components are given by:

,"'

" ""<, ~

{,o} ~ 'Yz'y' ~+~ (3.4)

'Yr:' ~+~

1"11':' W+~
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The nonnal strain component in the z' direction is neglected according to the shell

assumptions. The stresses are given by the constitutive law.

{"'I ~ { :';, } ~ ID'IW} - «.})
Tr'z'

TV"

where {fo} is the initial strain.

The constitutive matrix [D'] for an isotopic material is:

[D']=1~/l2 0

(3.5)

(3.6)

~
The factor k is included to improve the shear displacement approximation and it

is taken as 1.2 which is the ratio of relevant strain energies.

3.5 Element Matrices Evaluation

The derivatives of the displacement with respect to the global X, Y, Z coordinates are

given by the relation,

[ ~: ~: ::] = [Jj-l [~:~ ~~ :~]
'!.l,z v,. W,: U" v" w,(
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where [lJ is the Jacobian matrix given by:

(3.8)

Here a comma(,) follo'o\'"ed by a subscript indicates the partial differentiation with

respect to the subscript. The same notation is followed here onwards. These deriva-

tives of the displacement are transformed to the local displacement directions x', y', z'

for the evaluation of strains. The directions of the local axes are established by the

following method.

A vector normal to the shell surface is found by the cross product of two vectors

tangential to the surface and it is given by:

v, ~ { ~~ } x { ~,: }

The other two directions are uniquely defined as:

(3.9)

The x', y', z' directions are obtained by reducing the above vectors to unit magni-

tude.

(3.10)
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The local derivatives of the displacement are given by:

(3.11)

Substitution of these components in equation 3.4 gives the strain components.

(3.12)

Where the ma.trix [81 is called the strain matrix. The displacement matrix {J}

is partitioned into sub-matrices containing the nodal variables corresponding to the

particular node i. The value of n depends upon the number of nodes in the element

including the hierarchical nodes.

The element stiffness matrix and load vector is evaluated by the following defini-

tions.

IK'J ~ in IBi' [DJlBJ dn

{F'} ~ !,.IN]'U,ldr+ in[N]'J!.}dn

(3.13)

(3.14)

The integration process is done in the local coordinate system. Changing the

limits to local coordinates system gives,

[K'J ~ [',[',[', [B]"IDJlBJ IJ("ry,()[d{dry'" (3.15)

Gauss quadrature rule is used to numerically integrate the element stiffness matrix
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Gaussian integration using NG x NO x NG points is given by:

NG NO NG

[K'] ~ l: l:DB(" "" (.)]TIDI!B(" "" (,)] IJ("",, (,)1 w'w'w, (3.16)
k=lj=l;=l

Where Wi,Wj and Wk are the gaussian weights corresponding to 'i,i and k1h gauss

points. Two point integration is used along the ( direction as ( is a linear coordinate,

The order of integration along the { and '1 directions depends upon the hierarchical

order chosen along the respective directions.

Once the stiffness and load matrices for all the elements are evaluated, they are

assembled to form the global stiffness matrix and load matrix.

IKGI~DK'I

The superscripts G and e indicates the global and elemental nature of the matrices,

The assembled system of equations are given by:

IKG](8) ~{F") (3.17)

The above equation is solved to get the global vector of nodal displacements {a}

The stresses evaluated by equation 3.5 are in the local coordinate system. Since

the stresses in the local coordinate system are not easily visualized, it is conveniently

transformed to the global system using the following expression.

[ ~: ;: ~::] = [B] [::v T:; ~~:,] [B]T (3.18)
T.,z T~. U. Tr'z' TV" 0
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3.6 P-Version Finite Element Formulation

This section presents the hierarchical shape functions used in the displacement ap­

proximations and their derivations [23J. Figure 3.2 shov.'s the t"wo dimensional La­

grange family element. Let P~ and p., are the polynomial order of approximation along

~ and TJ directions respectively. The number of nodes depend upon the polynomial

order. The approximation shape functions for this element is obtained by evaluating

Lagrange interpolation function separately for C 1] directions and then finding their

tensor product. Since the number of nodes in the element depends upon the order,

any increase in order along one side causes the change in nodal configuration and

requires a new node to be created. A hierarchical formulation from a 2D lagrange

element offsets this disadvantage.

Figure 3.3 shows the one dimensional Lagrange family parabolic, cubic etc. con­

figuration and tbe respective nodal degrees of freedom in ~ and T/ directions The

approximation function for the one dimensional configuration in ~ can be written as

(3.19)

Where n{ = p{ + I is the number of nodes in ~ direction. Nm is the one dimensional

lagrange interpolating function given in appendix A.I
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Figure 3.2: Two dimensional Lagrange element
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Figure 3.3: Higher order Lagrange nodal configuration and its equivalent three node
hierarchical configuration
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For a parabolic case, substitution of the shape functions and nodal variables in

the above equation and rearranging gives:

(3.20)

Differentiating the above with respect to~, then evaluating these derivatives at

~ = 0 and substituting back in equation 3.19 gives:

The same procedure for Lagragian cubic configuration yields:

From above, it is seen that equation 3.21 is subset of equation 3.22. In general,

for a Lagrange configuration with p~ + 1 equally spaced nodes, the equivalent three

node configuration in the ~ direction is given by:

(3.23)

The above equation can be concisely written as:

"U{(~) = NilU{1 + NI1U{(ptH) +fz NiJ'tlU~,{" (3.24)

where,
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and

a~{ 1 ~m~seven
( l£mls odd

Similarly the equivalent 3 node configuration in the T/ direction is:

"U'7(I'/) = N~P'll + N;IU'l{p,,+!) + f2 J\i~U'l,""

where,

and

b= {I jIm is even
1] ifmisodd

(3.25)

(3.26)

Hierarchical variables along the ( direction are not considered as we use a linear

coordinate in ( direction.

From the equations 3.24,3.26 , the approximation functions for the 9 node curved

shell element can be evaluated by tensor product of the hierarchical one dimensional

approximation functions in the { and 1] directions. Similarly the nodal variables are

evaluated by the tensor product of the hierarchical one dimensional variables in { and

1'/ directions. The approximation functions and the corresponding nodal variables are

concisely given below. The field variable U is replaced by <1>. The node number is

indicated by m
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Corner nodes(node.s 1,2,3 and 4):

Approximation functions

.~

Hierarchical variables

(3.27)

whereN{':; are

Nl,., "" NlIN~l; Nl,., = N!lN~I; N!,., "" N!lN:1; and Nt,., "" Nl,N:,; for nodes 1,2,3

and 4 respectively.

Mid8ide nodes( nodes 5 and 7):

Approximation functions Hierarchical variables

(3.28)

where i "" 2,3, . . ,p{

For node 5 the approximation function is N;5 "" Nl1N;,;; and for node 7,

Nl",,_N!IN~;

Midside nodes{node.s 6 and 8):

Approximation functions

Nj

Hierarchical variables

(3.29)

where j "" 2,3, ··,P,.,

For node 6 the approximation function is NJ "" N!,N;j; and for node 8,

N:""Nl/"~j;
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Center node(node 9):

Approximation functions

wherei = 2,3, .. ,p{

where j = 2,3, .. ,Pr!

Hierarchical variables

(3.30)

The shape function for the node 9 is Nlj = Nl;N'/u;

The displacement u, v, w at any point in the element is given by:

(3.31)

The hierarchical shape functions [N] and the nodal variables {J} for different p-

levels are easily obtained from the equations 3.27 to 3.30. The equation 3.31 is the

basis for the evaluation of stiffness matrix and load vectors
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Chapter 4

SYMBOLIC COMPUTATION

4.1 Incorporation of Symbolic Computations

The use of symbolic computations improve the computational efficiency of a FE anal-

.'Isis by decreasing the number of operations required for the evaluation of a particular

matrix or parameter. A number of computations where the involvement of symbolic

computations proves advantageous are located. The following sections explain the

involvement of symbolic computations in the evaluation of different matrices and

parameters.

4.2 Evaluation of Jacobian

The components of the jacobian matrix in equation 3.8 are,

Jll =~ J12=~ Ju = ~

121 = ~ J2:l=~ JZ3 =~

J31 =~ J32 =~ J:l3= ~
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The substitution of equation 3.1 in the above equation gives the components of the

jacobian matrix. These substitution and further simplification was carried out using

MAPLE. The jacobian components are symbolically given below

Jh = Oil + a;Z~ + 0.;31] + (l;4( + (l;5rr + a;6~1]( + 0.;7~( + (l;g1]2( + a/91]( + a;,o~1]

lZi = bn + biZ~ + bi31] + bi4( + bi5e + bi6~1]( + bi7~( + b;81]( + bi9~1] + bilO~Z(

J3i = C;, + c.'2~ + C;a1] + Ci4e + C;51]2 + C;6~1] + C;7e1] + C;g1]2~
(4.1)

where aim, bin and C;" are constants for an element whose value depends upon

the geometrical coordinates of the nodes. The jacobian components evaluated using

MAPLE are given in appendix C. The range of the subscripts i, m, n, 0 are,

i=I,2,3 m= 1,2, .. ,10 n= 1,2, .. ,10

ando=I,2, .. ,8

The number of constants in equation 4.1 for the evaluation of the jacobian matrix

is 84. The examination of the constants reveals that many constants are equal to each

other. It is found that only 45 independent constants exist. It should also be noted

that there exists a similarity within these constants. The constant al,m, a2,m and a3,m

are similar in their expressions for same value of m. In the same way the constants

bi •n and C;,c are also similar within them. This similarity helps in easier evaluation of

the constants
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Figure 4.1: Symmetrical location of gaussian points

Figure 4.1 shows the symmetrical location of the gaussian points for a particular

plane (k. Let ({i, 17j, (t) be a point where jacobian has to be evaluated. Since the

gaussian points are symmetric, it is advantageous to evaluate at all the symmetric

points at once. The symmetric points for a particular value of {, '7 and ( are:

The jacobian components are functions of (, '7 and ( as evident from equation 4.1

and it can be written as,

J({,l/,() = f(~, '7, ()
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On evaluation of the function 4.2 at points (t and -(t gives the following pair of

equations for the jacobian, which are now functions of ( and TJ.

J({.~,(~) = w1((,TJ)
J({,Q,_(~) = iIl2 ({,TJ)

(4.3)

The above pair of equation are evaluated at the points Tlj and -TJj, which gives

the following set of equations which are now functions of ~ only.

J({,'1j,{~)

J({,-TJi,'~)

J({,'l>,-(")

J{{,_~;,_(~)

Y'()
Y'()
Y'()
Y'()

(4.4)

Further evaluation of the functions given in equation 4.4 at the points s; and -s;

gives the jacobian at all the symmetrical points.

J({"'1j,,~)

J(-{Mj,'"l
J({;,->!.J,(.l

J(_{;,_Qj,(.)

J({;,'1j,-'.l
J(_{,,'1j,_(.)

J({;,-~j,-o;.)

J(_{',_'1j,_'~)

Where, i,j = 1. . . ,NGp and k=l

NGp=Number of positive gaussian points.

(4.5)

The functions <pm are just summation of constants. Many constant.s in the function

<pm are equal for different m. It should be noted that the equation 4,5 can be used to

calculate anotber set of 8 symmetrical points by just changing the value Si to s;+!. i.e,

symmetrY(~i+l> 1]j, (t)· Thus jacobian can be evaluated at a total of 8 x NGp points.
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4.3 Shape function derivatives

The derivatives of shape functions are required for the evaLuation of the strain matrix

[BJ. The derivatives of shape functions with respect to the local coordinates ~, T/ and

( are independent of the geometry of the element (global coordinates x, y, z). These

derivatives are constants for all the elements in the domain. Hence, it is advantageous

in terms of computational effort to calculate these derivatives at all possible gaussian

points at once. The evaluation can be done similar to the way in which the jacobian

is evaluated. The implementation is explained in chapter 5.

4.4 Inverse of Jacobian

The evaluation of derivatives with respect to global coordinates require the evaluation

of the inverse of the jacobian as seen in equation 3.7. The inversion of the matrix IJI

gives,

(4.6)

where,

[

J"J", - J",J"

ILl = J23 J31 - J21 J33

J..11 J32 - J22hl

J"J" - J"J" ]

J I3 J21 - JU J23

JnJn - J12 J21

(4.7)
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4.5 Shape function derivatives with respect to global
coordinates

The derivatives are calculated using the following relation.

Substituting equation 4.6 in equation 4.9 gives,

{~}~d;~j~{~; }
The above equation can be symbolically written as:

Where 1 = 1,2,3 and j = 1,2,3

(4.9)

(4.10)

(4.11)

4.6 Evaluation of the vectors of local cartesian axes

The vectors normal to the surface is given by equation 3.9. The simplification of the

expression for the vectors yield,

The direction cosines of the local axis is given by,

[6] = IV" V" V,j
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4.7 Evaluation of the Strain matrix [BI

The evaluation of matrix [Bl requires the transformation of the global derivatives of

the displacement u, v and w to the local derivatives of the local orthogonal displace--

meats.

The global derivatives of the displacements are calculated by the differentiation

of equation 3.3.

Where j = 1,2,3 and ,j indicates differentiation with respect to x,y,z coor-

dinates. The substitution of the above equation in equation 3.11 gives the local

derivatives of the orthogonal displacements and further substitution of these deriva-

tives in the strain equation 3.4 gives the matrix [BI. The components of matrix [BJ

are symbolically found out using MAPLE.

Bl/;: = C\V1j

B2k =C2V2;

E3k = C2V\j +C\'Vzj
B 4k = OJ V3j + C3VI;
B~k = C2V3; + C3V2j

OJ = (VllNi,z + Vl2 Ni ,v + VI3 Ni .=)
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k ::ooS(i-l)+j

where i ::00 1,2, .. , n , n- Number of degrees of freedom.

j=I,2,3

Equation 4.16 evaluates only the components of matrix [E] corresponding to the

displacements u, v and w. The components corresponding to the rotation are evalu-

ated using the fo!lowing set of equations.

Ba ::00 A j bl (-I)i
B2t::ooA2~(-I)'

E3t ::oo (A 2bl + Al~)(-I)i

E4t ::oo (Alb:! +A3bl )(-1)i
Est ::00 (A 2b:! + A3b-.l)(-1)'

where,

k=(i-l)S+3+j

i= 1,2, ... ,n j=I,2

n- Number of degrees of freedom.
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4.8 Stiffness matrix computation

Equation 3.16 gives the expression for the evaluation of the stiffness matrix using

gaussian integration method. Two point integration is chosen along the thickness

direction and p or p + 1 integration is chosen along the { and 1] directions. The

symbolic multiplication of the matrices [B]T[D][B] using MAPLE gives the following

expression.

[BflDJlB]"

where,

AIElj + A2B2i + B3i Ds3B(3,j) + B4iD44B4j +

BrnD5I5B5j (4.18)

Where i, j varies up to the number of degrees of freedom.

The substitution of equation 4.18 in equation 3.16 gives the expression for the

evaluation of the stiffness matrix using gaussian integration method.

4.9 Evaluation of Body force

The expression for the evaluation of the load vector due to body force is given by,

(419)
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The shape function matrix is partitioned into suhmatrices corresponding to each node

given by
[NI~[···[N;I ..J

[

NO 0 N/lit;vu\; -N/lit;V2J!;]
[N;] = O· N; 0 N/lit;vd. -Na;t;v221;

o 0 N; Na;t;v13!; -Na;t;vd;

it.l ~ [;:]

(4.20)

Where 11,12 and h are the body forces acting along x,y,z directions respectively.

Here 1'111; refers to the value of VII calculated at node i.

The integration in equation 4.19 is done by the gaussian integration method.

,vG NGNG

iF.}' ~ I: I: I:IN((;,"j,(.)IU.jd"[J((,,ry;,(,)w;Wjw, (4.21)
i;o:lJ"'l;"'l

where NG is the number of gaussian points used for integration along a a particular

direction Cry or (. W;,Wj and Wi; are the gaussian weights. Symbolic e\'a!uation of

the expression [F] = [NjT{fb} gives

(4.22)

where,

i=I,2, .. ,n j=I,2,3 k=(i-l)5+j

(4.23)

where,

i = 1,2" '" n j = 1,2 k = (i - 1)5 + 3 + j
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and n is the total number of degrees of freedom.

The substitution of equations 4.22 and 4.23 in equation 4.21 give the expression

for the evaluation of the load vector due to the body force.

4.10 Stress Strain calculation

The strain components in an element is given by equation 3.12. The stresses are

calculated from the constitutive equation,

[q'I~[D']{<'} (4.24)

The evaluation of the above expression gives,

(7", = D'ntr + D;2iy
<:Til = D~2tr + Dnill
<:T"'1I=D;3/%'lI' (4.25)
(7%':, = D'441''''.,

01/:' = D'SSlll:'

The stresses calculated above are in the local coordinate system x', y', z'. These

stresses are transformed to the global system x,y,z using the equation 3.18 This

transformation was evaluated symbolically and is given by,

(4.26)

4.11 Comments on Computational Effort

The incorporation of symbolic computations in the evaluation of element matrices

reduces the computational effort significantly in different stages of the FE program.
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1. Simplified expressions for the jacobian components are obtained with the min­

imum number of constants. Using these simplified expressions, the jacobian is

evaluated at all the symmetrical gaussian points, which substantially reduces

the computational effort.

2. Similar to the jacobian, simplified expressions are obtained for the strain matrix,

stiffness matrix, vectors, body force components and shape function derivatives,

which reduces the amount of computation involved.

3. All the symmetrical gaussian points have the same weight. This property is

used to evaluate and sum the stiffness matrices of symmetrical points prior to

multiplying by the weight.

4. Significant reduction in computational effort is achieved by computing the local

shape function derivatives at all possible gaussian points and storing them in

permanent arrays.

5. Intermediate variables are set up during the evaluation of many element prop­

erties, which reduces redundant computations.

6. The material property matrix ID] has many zeros. The matrix multiplication in

the evaluation stiffness matrix( equation 3.16) will involve unnecessa.ry multipli­

cation of zeros which, is avoided using a simplified stiffness expression( equation

4.18 )
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Chapter 5

COMPUTER
IMPLEMENTATION

5.1 Finite Element Program

A p-version program MUNSET is developed for the analysis of plates and shells. The

program is written in C++ incorporating object oriented programming features. The

program is developed;

1. to demonstrate the successful incorporation of symbolic computations,

2. to verify the accuracy of the hierarchic shell element developed and

3. to prove the advantages of using object oriented programming along with sym-

balie computations.

The capabilities of the program include automatic mesh division and automatic

order increment for selected elements. The major segments of the program are: ele-

ment matrices evaluation, global assembly, solver and adaptive mesh division. Figure

5.1 shows the flow chart of the MUNSET program.
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The following subsections explain the various aspects of the program.

5.1.1 Input

The input to the program consists of material properties, geometrical coordinates

of the nodes, nodal and edge connectivity of the elements, order of the elements,

boundary constraints, choice of integration( p or p + 1) and the loads applied.

5.1.2 Evaluation of element matrices

The evaluation of element matrices includes the evaluation of Jacobian, stiffness ma­

trix and load vector due to body force. Figure 5.2 shows tile ftow chart for the

computation of the element matrices.

First the element constants and vectors given in symbolic equations 4.1 and 4.14

are calculated. These constants do not vary for a particular element irrespective of tbe

the hierarchical order chosen for the element. Using these constants and equations,

the jacobian components are calculated at all the 8 x NG, symmetrical points for a

particular gaussian point in the 1/ direction. The symmetrical points and the functions

for jacobian components are well discussed in chapter: 4. Then the stiffness matrix

and load matrix are calculated for all these 8 x NG, points using the equations

4.18 and 4.21 and the jacobian evaluated previously. Using the above method of

evaluation for the jacobian, stiffness and load matrices, considerable computational

effort is reduced.
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5.1.3 Precomputed shape function derivatives

The shape function derivatives discussed in section 4.3 are constants for all the ele-.

ments in the domain and hence need not be calculated at the same gaussian points

repeatedly for different elements. These shape function derh''llth-es are calculated once

for all the gaussian points for different orders and stored in permanent arrays during

the initial stages of the analysis. In this way a considerable reduction computational

effort is achieved in the evaluation of shape function derivatives.

5.1.4 Mesh division algorithm

For convergence study, the refinement of mesh coupled with hierarchical analysis is

required. The division of an element gives four new elements and the destruction

of the old element. The division of an element is carried out at its second order.

Figure 5.3 shows the division of an element. The division causes the creation of 16

new nodes, 12 new edges and the destruction of the 4 edges of the original element.

The technique automatically identify edges of the neighboring elements and a\'Oids

the duplication of edge divisions.

5.2 Analysis Procedure

Analysis of a particular problem is started with a mesh of second order which gives

reasonably good solutions. The order of the mesh is increased step by step to see the

convergence of displacements and stresses. If convergence is not achieved at higher
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orders, the mesh is refined or divided and the analysis is carried out as before until

the solutions converge.

5.3 Solution method

The solution is generally carried out either by direct or iterative methods. The direct

methods such as gaussian elimination require the assembly of the elemental stiffness

matrices, whereas the iterative solvers do not require it. The global stiffness matrix

requires too much memory for a large system of equations. This limits the application

of a. direct solver. Even though direct solvers give exact solutions of the equation,

it is limited in application for larger systems. This is due to higher solution time

and the requirement of larger memOl)'. The iterative solvers are more suitable for

larger system of equations. They are faster and take lesser memory compared to

direct solvers. Moreover, the iterative solvers can be much faster if the initial guess

solution is good. In the hierarchical convergence studies, the higher orders appear as

perturbation of lower order solution which makes iterative solvers preferred option.

In this work, the direct solution is carried out first by assembling the stiffness

matrices in the skyline format and solving using the gaussian elimination technique.

The iterative solver is used in the subsequent stages using the solution obtained at the

previous stage as a guess solution. Iterative solution is carried out using the conjugate

gradient method, which does not require initial assembly of stiffness matrices and thus

saves time and memory. Direct solvers are used at lower orders and smaller meshes.
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5.4 Object Oriented Program

The finite element program is developed using C++ , which supports object oriented

programming. The basics of OOP are explained in chapter 2. A careful examination

of the FE procedure reveals that the data and functions caD be grouped into different

classes given in appendix B.

Node:

The data and procedures related to the node are grouped under the node class.

It has the data and procedures which aTe common to any node irrespective of which

kind of element the node belongs to. A more specific class She/Lnode is derived from

the the Node class which has its own data and procedures. This inheritance property

3yoicls needless repetition of the functions and data.

Element:

All the data and functions common to an element are grouped under the Ele­

ment class. A more specific class ShelLelement is derived from element class for

shell analysis. Each object of the element class refers to an element in the mesh.

The number of element objects created is equal to the number of elements used in

an analysis. Whenever new elements are created by mesh divisions, corresponding

objects are created dynamically. The dynamic initialization also enables the destruc­

tion of the object once it is not required further. This feature helps in the effective

utilization of the memory.
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Gaun:

The class GOtw handles the gaussian quadrature and weights for the numerical

integration. The data of the class are the gaussian points and weights. An array of

objects is created and each object Stores the quadrature and weight for a particular

order of integration.

Shape:

The class 6hape handles the shape function derivatives with respect to local coor·

dinates~, 'TJ and (. Here an array of objects is created and each object stores the shape

function derivatives required for a particular order of integration. These derivatives

are evaluated at all the gaussian points required for a particular order of integration

and kept in two arrays. The evaluation is carried out at the initial stages of the anal­

ysis and stored in permanent arrays. The arrays are initialized dynamically and the

memory is allocated according to the requirement for a particular order of integration.

Edge:

The Edge class handles the data corresponding to an edge in a finite element mesh.

The edge objects are initialized dynamically similar to the Node and Elemmt objects.

Matri.%:

The class Matrix [30] is developed to facilitate tbe mathematical operations using

symbolic notations. Using tbis class, matrices of dimensions 2,3 and 4 can be created.

The matrices are created dynamically using different constructors for different matrix
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dimensions. The operator overloading feature helps in carrying out mathematical

operations using symbolic notations. U a, b and c are matrix objects, then

a • b· matrix multiplication

a +b - Matrix addition

a - b -Matrix subtraction

Similar to matrix class, classes for ,'octors can be created.

5.5 External functions

The external functions do Dot come under classes. They arc declared in the main

program. These functions carry out the manipulation of objects with its functions

resulting in the creation of new data.

5.6 External data

The external data similar to external functions, do not come under the classes. These

data are common and can be accessed by any object irrespective of which class the

object belongs to. The main external data are:

Kef} -Sk)' line storage of global stiffness matrix. The matrix is initialized dy­

namically. Once the matrix is of no use after solution, it is deleted by deallocating

the memory.

neqq(]( J - Used for storing the boundary conditions and degree of freedom of tbe

nodes.
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5.7 Advantages of using OOP

L The data are hidden in the objects. Only the member functions of the object

can view tbe datL Thus the data is safe from accidental change. This increases

the reliabilit)·, data management and ease of verification of the program.

2. l'rny inclusion of a new element or technique in tbe program can be ea.sily done

using the inheritance concept. Similar to class ShelLelement, any class can be

derived {rom tbe parent Element class or from the already derived ShelLelement

class itself. The inherited element can use tbe already developed functiollS, 50

only the functions and data specific to the new element need to be developed.

This feature makes the program concise and facilitates extension.

3. As tbe daUll1Ild functions are grouped into different classes, it is easy to veri~'

and modify the code according to the requirement during later stages. The

modification do DOt adversely affect other parts of the program. This 8\-'Oids

any major modification .....hich results in ease of maintenance and improvement

of the FE code.

4. The dynamic initialization of object and data helps in the optimum usage of

memory. Whenever objects and data are not required further, they are deallo­

cated saving the memory.
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5. Mathematical operations can be carried OUt using symbolic notations which

results in concise and simple programs.
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Chapter 6

NUMERICAL STUDIES AND
DISCUSSIONS

Various numerical examples are presented in this chapter to demonstrate the accuracy,

advantages and applications ohhe present element to various problems. The problems

analyzed are:

1. Square plate under concentrated and distributed load with different boundary

conditions.

2. A Barrel vault( Cylindrical roof) loaded by its self weight

3. A Hemispherical shell loaded by diametrically opposed point loads in both X

and Y directions.

4. A thin Cylindrical shell loaded by two centrally located and diametrically op-

posed concentrated forces.

The element matrices are evaluated by both reduC€d (p)and full integration (p + 1)

techniques. The displacements and stresses obtained from the present formulations
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are compared with the analytical solutions and the results available in the literature.

The results obtained are in excellent agreement with the reference ,"-alues and they

are sometimes more accurate with fewer degrees of freedom. The effect of having an

adaptive mesh is also analyzed.

6.1 Square plate problem

An isotropic square plate shown in figure 6.1 is analyzed under different loading

and boundary conditions. Using the symmetry, only one quarter of the plate is

modelled for the analysis. The plate deforms under bending action and the inplane

displacements are constrained in the tangential directions. The analysis is carried

out for varying thicknesses to study the element behavior under thick and thin shell

situations. The analysis is also carried out for different meshes. The results are

compared with the exact ,-alues given by Timoshenko. Different cases considered in

the analysis of the plate are:

1. Simply supported plate under concentrated load at the center

2. Simply supported plate under uniformly distributed load.

3. Clamped plate under concentrated load at the center.

4. Clamped plate under uniformly distributed load.

Cases 2 and 4 are analyzed for different thicknesses whereas the cases 1 and 3 are

analyzed for a refined mesh. The relined mesh has an edge length ratio of 3:7 with
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Figure 6.1: Square Plate and meshes used for the analysis
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smaller elements near the center of the plate. All the cases are analyzed using 2 x 2

and 4 x 4 meshes for orders upto six. The results are given in tables from 6.2 to 6.9.

The displacement solutions obtained are normalized using the following formulae.

Q = W~:D for a uniformly distributed load q.

W DP= ;Z2 for a central concentrated load P.

Von Mises equivalent stress is given by:

The obtained stress results can be made dimensionless using the following equa-

0= :;;~ for uniformly distributed load q.

iJ = ;~";~t for central concentrated load P.

where Wm= is the maximum displa.cement,D~Flexural rigidity and L-the length

of the plate.

Disctl3sions'

1 The results obtained are in excellent agreement with the exact values given by

Timosbenko [IJ. (See table 6.1)

2 The solution converges to the exact value when a 4 x 4 mesh is used. 2 x 2 mesh

gives reasonably good results with an error of 0.8% in displacement.
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3. For a particular mesh type, reasonably good results are obtained at order 4.

For orders above 4, the increase in the displacement solution is marginal and it

converges towards a particular value.

4. At lower orders, the p-integration gives reasonably good results compared to the

p+1 integration. As the order increases, the difference in solution between p

and p+1 integration techniques decreases and both converge towards the exact

solution.

5. The solution obtained for thickness ratios 100 and 200 indicate (refer figure 6.2)

that the element gives accurate results for all the thin plate cases. This sho·ws

that the element is free of locking in thin plate cases. However, for obtaining

accurate results, the analysis should be carried using higber orders (order>3).

6. The solutions obtained for moderately thick plate (thickness ratios 10 and 20)

deviate marginally from the exact thin plate solution (refer figure 6.2). This is

due to the shear deformation effect which is not considered in the thin plate

theory. Thus the developed element is good for both the thin and moderately

thick plate analysis.

7. The analysis of cases 1 and 3 using a refined mesh near the center shows that

the improvement in results are only marginal. The improvement using a 4 x 4

refined mesh is 0.1 %.
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Unifonn load (0-) Concentrated load (.8)

Simply Supported Plate 40.62 x 10-001 0.01160

Clamped Plate 12.6 x 1O-G4 0.00560

Table 6.1: Exact values given by Timoshenko[l]

Mesh Order DOF Full integration (p+1) Reduced integration (p)
p i5 x 10 P i5 x HI"

48 0.010358 0.8291 0.011640 5.2208

84 0.011403 1.4381 0.011569 2.1382

2x2 120 0.011489 1.7435 0.011527 2.1119

156 0.011529 1.9586 0.011536 2.0067

192 0.011534 2.0355 0.011534 2.0326

192 0.011252 1.3397 0.011632 3.5579

336 0.011587 2.0098 0.011615 2.4852

4 x 4 480 0.011605 2.2980 0.011608 2.5372

624 0.011608 2.4457 0.011609 2.4546

768 0.011609 2.4745 0.011609 2.4725

Table 6.2: S8 plate under CL: Displacements and stresses for different p-Ievels
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Mesh Order DOF Full integration (p+l) Reduced integration (p)
p u x 10 p a- x 10

48 0.01080 1.1961 0.011646 3.8785

84 0.011515 1.8394 0.011593 2.2766

2 x 2 120 0.011556 2.1395 0.011569 2.3984

156 0.011572 2.2899 0.011576 2.2846

192 0.011574 2.3060 0.011574 2.2944

192 0.011408 1.8438 0.011633 3.2527

336 0.011614 2.4631 0.011623 2.7590

4 x 4 480 0.011620 2.7394 0.Ql162113 2.8439

624 0.011621 2.7791 0.01162142 2.7973

768 0.011621 2.8091 0.01162145 2.8057

Table 6.3: 55 plate under CL( Refined mesh) : Displacements and stresses for different
p-levels
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alt Order DOF Full integration (p+l) Reduced integration (p)
a x 10 il x 10 0: X 10 (j x 10

48 42.559036 6.1782 42.811762 6.8628

84 42.727699 6.6485 42.724441 6.6087

10 120 42.723385 6.6409 42.723188 6.6422

156 42.723538 6.6356 42.723242 6.6398

192 42.723285 6.6387 42.723242 6.6398

48 40.691104 6.5689 41.231454 6.8001

84 41.157466 6.6362 41.145936 6.5409

20 120 41.144756 6.5658 41.144539 6.5699

156 41.144973 6.5642 41.145002 6.5613

192 41.144631 6.5680 41.144571 6.5702

48 39.844679 6.4319 40.725 7.1920

84 40.665527 6.7625 40.641 6.5622

100 120 40.629848 6.5434 40.636 6.6239

156 40.633957 6.5839 40.6344 6.5881

192 40.634313 6.5935 40.6344 6.6037

48 39.810915 6.42468 40.709952 8.3009

84 40.63886 6.7707 40.622912 6.6944

200 120 40.590717 6.5172 50.599067 6.6626

156 40.601571 6.5863 40.607379 6.5942

192 40.603450 6.6149 40.603969 6.6466

Table 6.4: Simply supported plate under UDL: Displacements and stresses for differ-
ent p-levels for 2x2 mesh
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alt Order DOF Full integration p+l) Reduced integration (p)
ax 10 a x HI" 0: X 10 (j x 10

192 42.716103 6.6837 42.733357 6.6903

336 42.728403 6.6504 42.728471 6.6481

10 480 42.728324 6.6503 42.728312 6.6503

624 42.728322 6.6500 42.728338 6.6500

768 42.723285 6.6387 42.723242 6.6398

192 41.101802 6.5975 41154588 6.6170

336 41.149904 6.5813 41.149701 6.5752

20 480 41.149653 6.5771 41.149641 6.5770

624 41.149656 6.5769 41.149657 6.5768

768 41.149640 6.5770 41.149636 6.5770

192 40.4734 6.5530 40.649380 6.6218

336 40.645898 6.6084 40.644534 6.5759

100 480 40.644481 6.5772 40.644471 6.5777

624 40.644495 6.5774 40.644502 6.5769

768 40.644479 6.5744 40.644475 6.5775

192 40.443609 6.5290 40.633593 6.6366

336 40.630299 6.6142 40.628759 6.5763

200 480 40.628590 6.5768 40.628597 6.5805

624 40.628629 6.5776 40.628660 6.5771

768 40.628619 6.5784 40.62817 6.5791

Table 6.5: Simply supported plate under UDL: Displacements and stresses for differ-
ent p-levels for 4 x 4 mesh
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M",h Order DOF Full integration (p+l) Reduced integration (p)

~ u x 10" P fJ x 1

40 0.004021 0.5500 0.005661 4.8341

72 0.005365 1.1427 0.005545 1.8806

2 x 2 104 0.005448 1.4416 0.005499 1.8482

136 0.005494 1.6601 0.005508 1.7292

168 0.005501 1.7568 0.005503 1.7821

176 0.005181 1.0694 0.005645 3.3656

312 0.005599 1.7211 0.005627 2.2142

4x4 448 0.005616 2.0391 0.0056520 2.2492

584 0.005620 2.1548 0.005621 2.1645

720 0.005621 2.1839 0.005621 2.1822

Table 6.6: Clamped plate under CL: Displacements and stresses for different p-levels
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Mesh Order DOF Full integration (p+1) Reduced integration (p)
p ox1 P fJ x 10

'0 0.00410698 0.9462 0.00573866 3.3065

72 0.00534751 1.6047 0.00554412 2.1172

2 x 2 104 0.00540033 1.9123 0.00545614 2.2289

136 0.00545640 2.0916 0.00547534 2.1239

168 0.00546361 2.1400 0.00546984 2.1406

176 0.00525508 1.5769 0.00564976 3.0067

312 0.00562349 2.1783 0.00563388 2.4865

'x 4 448 0.00563012 2.4539 0.005631174 2.5593

584 0.00563125 2.5139 0.00563155 2.5132

720 0.00563146 2.5251 0.00563152 2.5221

Table 6.7: Clamped plate under CL (Refined mesh): Displacements and stresses for
different p-levels
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ai' Order DOF Full integration p+1 Reduced integration (p)
ax Hr it x 10" ax 10" axl

40 14.402024 3.3714 15.181394 3.5497

72 15.027938 3.2114 15.032938 3.1344

10 104 15.029661 3.1986 15.030136 3.2009

136 15.030604 3.1851 15.030774 3.1818

168 15.030176 3.1868 15.030103 3.1879

40 11.702466 3.0850 13.410317 4.0672

72 13.244227 3.2604 13.253143 3.0889

20 104 13.244141 3.1458 13.245671 3.1707

136 13.245951 3.1476 13.246489 3.1433

168 13.245753 3.1815 13.24573 3.1947

40 9.98163 2.8361 12.8164 5.2150

72 12.552414 3.6244 12.627861 2.9444

100 104 12.494106 2.9482 12.5076n 3.1394

136 12.518231 3.0067 12.540286 3.1J913

168 12.524950 3.0831 12.529525 3.1498

40 9.902362 2.8252 12.797384 8.0031

72 12.317853 3.9219 12.588766 4.8914

200 104 12.172562 2.9629 12.233130 3.4484

136 12.280628 3.1511 12.254022 3.1281

168 12.288732 3.0108 12.302198 3.1169

Table 6.8: Clamped plate under UDL: Displacements and stresses for different p.levels
for 2 x 2 mesh

76



ajt Order DOF Full integration (p+1) Reduced integration (p)
0: X 10 ij x 10 ox 10 ex 10

176 14.991591 3.2754 15.054392 3.2875

312 15.045586 3.2209 15.046093 3.2165

10 448 15.045992 3.2209 15.045999 3.2208

584 15.046023 3.2203 15.046026 3.2201

720 15.045995 3.2201 15.045989 3.2200

176 13.090285 3.1820 13.280815 3.2231

312 13.271446 3.1643 13.272364 3.1553

20 448 13.272145 3.1579 13.272257 3.1580

584 13.272268 3.1576 13.272286 3.1576

720 13.272250 3.1580 13.272244 3.1581

176 12.04682 3.0760 12.686873 3.2343

312 12.676513 3.1955 12.677913 3.1401

448 12.677133 3.1468 12.677310 3.1496

100 584 12.677315 3.1460 12.677417 3.1426

720 12.677316 3.1475 12.677334 3.1478

176 11.975876 3.0651 12.667827 3.3115

312 12.655612 3.2039 12.657885 3.1267

200 448 12.656142 3.1451 12.656457 3.1589

584 12.656599 3.1452 12.656940 3.1379

720 12.656589 3.1499 12.655694 3.1540

Table 6.9: Clamped plate under DOL: Displacements and stresses for different p-leveis
for 4 x 4 mesh
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6.2 Barrel Vault problem

A barrel-vault supported by rigid diaphrams at both ends and loaded by its self

weight is shown in figure 6.3. The diaphram prevents the displacement in the Y and

Z directions but allows displacements in the X direction. The shell is free along the

sides. Only one quarter of the shell is modelled using symmetry. The shell is analyzed

for both 2 x 2 and 4 x 4 meshes for different orders. The deflection and stresses are

noted at point B shown in figure 6.3. The results are given in table 6.11. The results

are compared with the solutions obtained using CONSHL and 9 node isoparametric

elements given in reference [34). The reference values are given in table 6.10.

Discussions:

1. The deep shell theory solution for the vertical deflection is 3.610 given in ref­

erence [35J. The results obtained arc in good agreement with the reference

values.

2. The solution converges towards the reference values for both 2 x 2 and 4 x 4

cases. However, the results obtained deviates from the reference values by a

margin of 0.36%.

3 For order p = 2 , the displacement solutions obtained using p.integration is

fairly accurate compared to p+l integration. For higher orders( p > 3), both p

and p+1 integration gives accurate results. HO'.vever the stress results given by

78



-.--.:/

/ '.
11 .. 0.0

Weil!Ua(I.208J3lbfli1u::.

I d its finite element meshes.Figure 6.3; Barrel vall t an

79



CONSHL 34 9 node isoparametric 34
Mesh 0 F DeHn(wB D F Defin WB)
1 x 1 46 2.28660

2 x 2 162 3.10276 96 0.96239

4 x 4 604 3.51078 352 2.90531

6x6

8x8

768

1344

3.38604

3.48602

Table 6.10: Barrel-vault problem: Reference Values

p-integration at lower orders are poor

4. Improved results are obtained in lesser number of degrees of freedom compared

to the references.

6.3 Hemispherical Shell with 18° hole

The performance of the shell element is also evaluated using a standard test problem

of a hemispherical shell with a hole shown in figure 6.4. Diametrically opposed point

loads are applied along both X and Y directions. The analysis is carried out using

mesh sizes 6 x 6 and 8 x 8 meshes for different orders. The deflection and stresses are

noted at the load application point. The results obtained are shown in table 6.12.
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mesh order DOF Full integration (p+l) Reduced integration (p)
'B WB ",~ 'B WB "~

92 0.372100 -0.957140 1040.506 1.987855 -3.761128 3088.372

158 1.912085 -3.614304 1740.534 1.949662 -3.686610 2137.938

2 x 2 224 1.934311 -3.659151 1737.825 1.941783 -3.672662 1700.015

290 1.932715 -3.658392 1681.836 1.938505 -3.667703 1670.697

356 1.933390 -3.659472 1702.009 1.937836 -3.666542 1713.927

344 1.541941 -2.978150 1538.454 1.932873 -3.659486 1755.367

596 1.922040 -3.640431 1714.368 1.927410 -3.649818 1702.1955

4 x 4 848 1.923212 -3.643108 1680.741 1.926985 -3.649142 1680.0102

1100 1.924137 -3.644597 1683.046 1.926948 -3.649085 1685.55

1352 1.925004 -3.645980 1685.724 1.926945 -3.649078 1687.58

Table 6.11: Barrel Vault: Displacements and stresses for different p-levels
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Figure 6.4: Pinched hemispherical shell with a hole and finite element model
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Discussions:

1. MacNeal and Harder [36] gave a value of 0.094 for the deflection. Simo et al

suggested [37J a value of 0.093. The obtained results are in excellent agreement

with the reference values. Good results are obtained for both the kind of meshes.

2. It is seen that very poor displacement solutions are obtained at lower orders

when p+l integration is used; whereas, reduced integration gives fairly accurate

results. However, reduced integration gives poor results in stresses at lower

orders.

3. Both p and p + 1 integration techniques gives reasonably accurate solutions

above order 3. The accurate results shows that the element is free of locking at

higher orders.

6.4 Pinched Cylindrical Shell

A cylindrical shell shown in figure 6.5 is loaded by two centrally located and diamet­

rically opposed concentrated forces is analyzed. Two types of boundary conditions

are considered.

1. The ends are covered by a rigid diaphram which allow displacement only in the

axial direction and rotation about the tangent to the shell houndary.

2. The ends are free.
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mesh order OOF FUll integration (pH) Reduced integration (p)
<5 avon <5 O'von

793 0.009434 3107.2894 0.094383 166479.385

6x6

8x8

1369 0.090686 4684.8534 0.09323 101848.110

1945 0.092695 4815.711 0.093178 9181.2165

2521 0.092882 5481.421 0.093084 6829.915

3097 0.092922 5737.211 0.093075 6061.283

1377 0.025288 5505.55 0.094329 154163.298

2385 0.092883 5210.000 0.093929 213356.661

3393 0.093666 5519.417 0.093905 8141.598

4401 0.093725 6080.657 0.093886 6781.044

5409 0.093752 6322.967 0.093878 6400.492

Table 6.12: Hemispherical shell: Displacements and stresses for different p-levels

Mesh Taylor 38

4 x 4 0.086524

8 x 8 0.094153

12 x 12 0.093679

16 x 16 0.093501

Table 6.13: Hemispherical shell: Reference values
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Figure 6.5: Pinched cylindrical shell, loading and dimensions.

Using the double symmetry, only one eighth of the cylinder is modelled. The de-

flection and the stresses are noted at the load application point. The results obtained

are given in tables 6.14 and 6.17. For a rigid diaphram case the exact displacement

can be taken as 0.2189866 gi,·en by Lindberg [39]. For the free ends case, a good

approximation is given by [40].

<1 = o.o~~~R
3

= 5.4236

where R is the radius, L-Half length, t- thickness, D-flexural rigidity and p~

magnitude of the force.
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Discussions:

1. The results are in good agreement with the reference values given in tables 6.15

and 6.16. In the first case, 8 x 8 mesh gives a displacement of -0.216463 with an

error of 1.1%. In the second case, 8 x 8 mesh gives a displacement of 45.702495

with 5.1% error.

2. The results obtained using a refined mesh are given in tables 6.18 and 6.19.

The usage of a refined mesh near the center gives better results than a uniform

mesh. A refined 4 x 4 mesh gives a displacement solution -0.217503 ,,'ith an

error of 0.67% for the first case which is better than the results obtained by a

8 x 8 mesh. This show the usage of an adaptive mesh can substantially reduce

the computational effort in this case.

3. As seen in the previous example problems, p integration gives fairly good dis­

placement solution at lower orders.
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mesh order DOF Full integration (p+1) Reduced integration (p)
8 a ..on 8 avon

4x4

8x8

351 -0.344940 58.25696 -6.074268 4481.965

607 -5.47641 178.715 -5.826518 438.722

863 -5.81271 226.5698 -5.827853 330.805

1119 -5.823329 259.2499 -5.826866 310,431

1375 -5.825999 280.7692 -5.826972 303.431

1343 -2.893403 192.237 -5.768616 1844.044

2335 -5.676699 279.4197 -5.703403 406.242

3327 -5.700569 321.4383 -5.702514 375.915

4319 -5.702098 347.7745 -5.702545 366.086

5311 -5.702495 362.560 -5.702551 368.172

Table 6.14: Cylindrical shell, free ends' Displacements and stresses for different p­
levels

Mesh
2 x 2

CONSHL [34]
o F Defin(6
165 3.17403

9 node isoparametric 34
Dor Defln 6)

95 0.02909

4 x 4 607 4.88251 351 0.33731

6 x 6 1329 5.07955 767 1.32131

8 x 8 2331 5.12217 1343 2.67958

16 x 16

20 x 20

5247

8159

4.90646

5.08053

Table 6.15: Cylindrical shell, free ends: Reference Values
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CONSHL 9 node isoparametric
Mesh DOF Defln( DOF Defln(15
6x6 1284 0.16921 734 0.07965

lOx 10 3536 0.20439 2022 0.15596

14 x 14 6908 0.21366 3950 0.18976

18 x 18 11400 0.21703 6518 0.20376

22 x 22 9726 0.21054

26 x 26 13574 0.21428

Table 6.16: Cylindrical shell, diaphramed ends: Reference Values

m.,;h order DOF Full integration (p+1 Reduced integration (p)
6 a.~ 6 <7"01\

328 -0.034825 37.4533 -0.213514 648.468

572 -0.118245 79.822 -0.200309 342.127

4x4 816 -0,186143 126.1358 ·0.202316 245.497

1060 -0.197897 162.8665 -0.201361 214.482

1304 -0.200528 184.734 -0.201470 207.455

1296 -0.123709 98.5164 -0.221637 607.251

2264 -0.204047 183.2335 -0.217313 322.566

8 x 8 3232 -0.214558 231.8988 -0.216473 289.599

4200 -0.216074 257.7662 -0.216504 274.844

5168 -0.216463 271.34165 -0.216511 277.082

Table 6.17: Cylindrical shell, diaphramed ends: Displacements and stresses for dif-
ferent p-Ievels
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m",h order DOF Full integration (p+1) Reduced integration (p)
;

""~
;

""~

351 -0.36801 93.6067 ~5.926577 3421.523

607 -5.463178 261.2930 -5.826124 408.551

4x4 863 -5.815227 303.002 -5.4909 368.794

1119 -5.824009 332.207 -5.825030 536.092

1375 -5.824777 348.798 -5.824977 356.392

Table 6.18; Cylindrical shell, free ends: Displacements and stresses for a refined mesh

m",h order DOr Full integration (p+l) Reduced integration (p)
; O"VIm ; a"....

328 -0.079245 76.5209 -0.221415 607.143

572 -0.183349 158.8652 -0.218160 322.519

4 x 4 816 -0.213509 210.105 -0.217719 280.372

1060 -0.216841 239.496 -0.217700 261.594

1304 -0.217503 254.952 -0.217617 262.481

Table 6.19" Cylindrical shell, diaphramed ends: Displacements and stresses for a
refined mesh
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Chapter 7

Conclusion

A hierarchical nine node p-version curved shell element is successfully developed in­

corporating symbolic computations. The formulation is based on the assumption that

the normal to the middle surface remains practically straight after deformation, which

permits the shear deformation effect prominent in thick shells. The displacement ap­

proximation function can be of any order in the ~ and ,., directions. For plates and

shells, the displacement variation across the thickness is practically linear, hence no

hierarchical variation is needed in the ( direction. The displacement approximation

functions are derived from the Lagrangian family. In this formulation, both the ap­

proximation functions and nodal variables are hierarchical in nature, i.e. the dement

properties corresponding to a particular order p is a subset of those corresponding to

order p+ L The element geometry is approximated using the top and bottom plane

coordinates of the nodes. The lower order matrices need not be evaluated in the

subsequent computation of higher order matrices. Only the additional higher order

matrices need to be evaluated, thus reducing computational effort. However, this can
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be done only for higher orders (p > 3) because the stiffness matrix do not converge

at lower orders.

An attempt is made to evaluate the closed form stiffness matrix by direct inte­

gration using symbolic computations. This is possible for a rectangular flat plate

where the jacobian is constant for the element, but the direct integration becomes

impossible for the case where the jacobian is a function of {, 1] and (. An alternative

general symbolic technique for the calculation of element matrices is developed. A

number of locations where the usage of symbolic computations result in reduction in

computational effort is identified. Effective methods for the evaluation of the jaco­

bian, stiffness matrix, strain matrix and load vectors using symbolic computations are

incorporated in the development of the FE code. The FE code is developed using the

object oriented programming language C++. OOP helps to develop efficient codes

with ease of maintenance, verification, re-usability and extension.

The various numerical problems presented show that the results given by the

element is in good agreement with the reference values. It is also shown that the

element is able to converge to the exact solution in many cases using fewer degrees

of freedom. The element doesn't show any locking problem at higher orders (p > 3).

At lower orders p-integration is able to give relatively good results compared to p+ 1

integration. The formulation is effective for both thin and moderately thick shells.
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Recommendations

1. Initial mesb design does not affect the convergence rate critically. However,

better results can he obtained by using a combination of mesh divisions (h.

refinement) and p--refinement.

2. The direct integration of element matrices for a rectangular flat plate is possible

using symbolic computation. In such case, a large reduction in computational

effort is possible. In the case of curved shells and irregular plates, direct in­

tegration is not possible as such. However, direct integration can be done by

making the elements smaller and rectangular with few assumptions about the

jacobian components. This can be done in future work.
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Appendix A

Shape functions

A.I One dimensional Lagrangian Shape functions

Linear:

.Nl =~(l-{)

N2 = ~(l +()

Quadratic:

N, ~ -~W-')

N, ~ (1 +,)(1-,)

Cubic:

N, ~ -~(1 - O(~ +<)(~ - ,)

N, ~ H(I+<)(1-0(~-O

N, ~ H(l+')(I-')(~+')
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A.2 Hierarchical Lagrangian Shape functions for
second order

N, ~ ~(I - ()(I - ")

N,~ ~(I+()(I-")

N, ~ ~(I + ()(I +")

N. ~ ~(I - ()(I +")

N, ~ ~(I- ")(e -I)

N6 = ~(l + ()(1'/2 -1)

N7 = ~(l +I'/){e ~ 1)

N, ~ ~(I - ()(,( - I)

N9 = ~(e - 1)(TJ2 -1)
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Appendix B

Classes used in the FE program

#ifndef HATRIX_HPP

#define MATRIX_HPP

#include <stdlib.h>

#include <iostream.h>

#include <stdio .b>

class Matrix {

private;

double ""mIn; I Ibasa pointer

double *"pp;

double ......ff;

int r,c,ra,rb,rc,rd;

public:

//constructors and destructors

HatrixO; Ilcreates 3x3 matrix

Hatrix<lnt row, int col); Ilcreates a 2-D array

Hatrix(int row1, int row2, int row3); //creates a 3-D array

Hatrix(int rovi,int rOll2,int rO\l3,int rov4); //creates a 4-D array

doublet operatorO (int row, int co1);

double.lr: operator() (int rovi, int row2, iot row3);

doublet operatorO (int rowi, int row2, int row3, int rov4);

Hatrix(int rows, int columns,double initval); //initialization by a value initv

Matrix(Hatrixt x, int columns); //initialization by a matrix 'x'
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Matrix!: operator"-(l'latrixl x); I I Assignment operator

Matrixt operator=(double d); I I Assignment operator

Matrix operator+(Matrixl x); II Addition operator

Matrixl operator+"(Matrixl x); II Addition operator

Matrix operator.(Hatrixl x); II Multiplication Operator

Matrix!: operator*"(Matrixl: x); II Multiplication Operator

Matrix operator*(double d); II Multiplication Operator

Matrixl: operator. (double d); I I Multiplication Operator

-Matrix 0 ; Ildestructor
int upper_rowO { return (r-l); }

int upper_colO { return (c-l); }

);

class Node

private:

double X. Y,Z;

public:

virtual void read_coordinatesO=O;

);

class Element

private:

int order;

public:

virtual void read_nodconnectOrO;

virtual void jacobianO"O;

);

class Shape

{

private;

int order;

public:
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1;

class Material

private;

double mu, Elas_const;

int mat_Dum;

public:

virtual void read_properties ()=O;

1;

class Gauss

public;

1;

class Shell_Dode: public Node

public:

static int num_nodes; I/number of nodes

double hx,hy,hz; Iltop and bottom coordinates

void read_coordinatesO;

void create_Dode<int );

double get_xO {return X;}

double get_yO {return Y;}

double get_z 0 {return Z;}

friend void bound 0 ;

-Shell_DodeO { }

1;

class Shell_gauss; public Gauss

private:

double t[6] ,w[6];

public:
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int g;

Shell_gauss(int) ;

double get_t(int q) { return t[q]; }

double get_w(int q) {return w[q]; }

friend void read_gauss 0 ;

-Shell_gaussO { }

l;

class Shell_shape: public Shape

public:

int order;

Matrix n,m;

private:

void initializeO;

\\Shape function derivatives of different order shape functions

void nldx(int,int);

void n2dx(int,int);

void n3dx(int,int);

void n4dx(int, int) ;

void n5dx(int,int);

void n6d:dint, int) ;

public:

Shell_shape(int ord,int num) : n(IO,num,35,5) ,m(IO,num,35.5)

ordertord;

initializeO;

l
-Shell_shape 0 { }

l;

class Shell_element· pUblic Element

private:
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Matrix klocal,a,vl; II S"tiffness, cons"tan"t and vec"tor matrices

double h[10] ,x(10) ,yHO] ,z(10) ,h1(10) ,h2[10) ,h3[i0);

double load_vec (201] ;

s"ta"tic in"t sta"tus;

int elem_no;

void evaLK(double,double);

public:

static int num_elemen"tS,RAD;

s"tatic floa"t BL;

int EC(5);

int center_node(6];

Matrix strain, stress ;

double Disp(150];

int connect [40] ;

int order;

void read_Dodconnect();

void make_vectors 0 ;
void constant 0 ; IIEvaluate constants

void j acobian( int, int ,Shell_gauss *ptr); IICalculate jacobian

void Jacobn(double r,double s,double t);

II Stiffness matrix calculation

void stiffness (int, int ,ShelLshape *sptr ,Shell_gauss *ptr);

IIStrain matrix calculation

void B_matrix(int, int ,int ,Shell_shape *sptr);

IIDynamic initialization of Matrices

Shell_element (void)

klocal(201,20l) ,a(4, 25) ,v1(4,20l) ,strain(14, 7) ,stress (14, 7)

{ order"2; modify"'O; }

void assemblyO; II Assembly of stiffness matrices

void body_force(Shell_shape *sptr,int p,int comb,double

DET ,double .-eight);

void print_stiff 0;
void checkO;

void Bstrain(Shell_shape *sptr,Shell_gauss *ptr);

void stress_strain(int ,double); IICalculate stresses and strains
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II Functions for the Conjugate Gradient solver

void eval_diagonal(int pn);

void evaLSP(double .p, int pn);

II Functions for Illesh divisions and order increment

void eval_newcoordsO;

void create_element(int connect [4] [9J, int r, int

edconn(4) (4J);

void make_element(int E);

void edge_connectivity(int eno, int ecl,int ec2,int

ec3.int ec4);

void add_centernodeO;

void setnodal_connectO;

void load_assembly 0 ; II Assembly of load vectors

void Disp_vector(); I I Displcement vetor creation

void initializeO;

friend void elnode(Shell_element *eptr);

friend void read_nodloadsO;

friend void solution_tech_lCSheILelelllent *eptr);

friend void jcg_solver(int ee, Shell_element *eptr);

friend void refine_element ( Shell_element *eptr, int eno);

-Shell_element 0 { }
};

class Edge

private:

};

class ShelLedge : public Edge

{

private:

Matrix STRESS; II Stresses at the centre of each edge

int edna, order; I lEdge Dumber and order

public:

static int Dum_edges;
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static float EL; IIEdge load

int bound; II Boundary edge

int div_stat,other_ed;

int node_stat ,load_stat;

int Ec[3] , Nc[3) ,el,e2,mid[7) ;11 nodes and elements in an edge

She1l3Idge(void): STRESS (3 ,6)

{ :ERROR,=O;Ee[l)",O;Ec[2]-=O;

Ne[l) ..O; Nc(2)-O; elsO; e2-0;

bound=O; node_stat-O; order=2; load_stat=O;}

void edge_data(int E,int s, int nl, int n2, int m);

void find_error(Shel1_element .eptr,int edno); II Error in stresses

betveen adjaseent elements

IIFunetioDs for edge divisions

void ereate1_edge(int nl, int n2,int m, int r, int pos, int

elmno,int BOUND,int LS);

void create2_edge(int pos, int elmno);

void create_edge(int N1,int N2,int m,int El,int E2,int

posl,int pos2);

void create_nevedges(int *old,int *New,int *E,int *N_E);

void increment_DodeO;

void ed,ge_load(Shell_element *eptr);

II Set the boundary constraints for the new nodes and edges

void set_neqql();

void seCDeqq20;

friend void findedge_load(Shell_element *eptr);

-Shell_edge 0 { }

};

#endif
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Appendix C

Jacobian components evaluated

using MAPLE
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> 01 =1/4* (I-xi)" {l-etal" (-xi-eta-ll:
> 02: =1/4" (l+xi 1" {I-eta) .. (xi-eta-ll :
> n3 =1/4* (l+xi)" (l+eta)" (xi+eta-l):
> 04 :1/4* (l-xi)" {l+eta}" (-xi+eta-l) :
> 05 ",1/2'" (I-xi "2)" (I-eta) :
> 06 =1/2* (1-eta~2)"(l+xi):
> 07: =l/Z* (I-xi"2)" (!+eta) :
> n8:=!/2*(1-eta"ZJ*(l-xi}:
> x: =n1 *x1+n2*x2+03 *x3+04 *x4+n5 *x5+n5*x6+n7 *x7+08 *x8+nl*ze

ta/2 *v3xl+02" zeta/ 2 *v3x2+n3 *zeta/2 *v3x3 +04" zeta /2 *v3x4+n
5" zeta /2 *v3x5 +06" zeta/2 *v3x6+n7" zeta/2 ·v3x7 +08" zeta /2 *v3
x8 :

> y: =01*yl+n2*y2+n3 *y3+n4 *y4+nS *y5+n6"y6+n7*y7+nS*y8+nl*ze
ta/2 ·v3yl+02" zeta/ 2 *v3y2+n3" zeta/2 *v3y3+n4" zeta/ 2 *v3y4 +0
5*zeta/2 *v3yS +06" zeta/2 *v3y6+n7" zeta /2 *v3y7+08" zeta /2 *v3
y8:

> z: =n1 *z1+02*z2+03· z3+n4 ·z4+n5"z5+n6"z6+n7" z7+n8· z8+nl "ze
ta /2 ·v3 z1 +n2" zeta/2 ·v3 z2+n3" zeta/2 "v3 z3 +n4" zeta /2 ·v3 z4 +n
5" zeta/ 2 ·v3z5 +n6 *zeta / 2 ·v3 z6+n7" zeta / 2 *v3 z7 +n8 *zeta/ 2 *v3
z8:

> j11 :=collect (expand (diff (x,xi)), [xi, eta, zeta] ,distribute
d) ;

1 1 (1 I 1 I):=-;x8+;x6+ gv3x3- g v3x4+ g v3xl- g v3x2 11~

(
1 I I I I I J

+ 4 v3x3 -;v3x5-;v3x7+
4

v3xl+:;v3x4+:;v3x2 s~

+(!xl-x7-.o +.!. x2 +! x3+.!. X4)~+(-!x2 +! xl +! x3 _.!. X4)"
2 2224444

+(! x8-.!. xl-! x6+! x2 _! x4 +! X3)"' +(-!V3X8+! V3x6) ,
24244444

+(! x3 +.0 -x7+!x4~!x2-! Xl)" ~
2 2 2 2

(
1 I I 1 I I J+ -4v3x2+:;v3x4+;v3x5+'4v3x3-zv3x7-4v3xl ;11S

(
1 I I 1 1 1 )'+ -gv3x4+gv3x3+gv3x2-:;v3x6-gv3xl+'4v3x8 11 ~
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> j 12: ""collect (expand (diff (y, xi) } , [xi, eta, zeta) ,distribute
d) ;

1 1 [I I I I )j12:=-y6--yB+ --v3yZ--v3y4+-v3yl+-v3y3 11~
2 2 8 8 8 8

[
I 1 1 1 1 I J+ --v3y7+-v3y2+-v3y1+-v3y3--v3y5+-v3y4 ~;
2 4 4 4 2 4

[
1 1 1 1 J [1 1 1 1 J+ -y2+-y3-y7+-y1+-y4-y5 ;+ -y3--y4+-y1--y2 11
2222 4444

[
1 1 1 1 1 1 J' [1 1 )+ --y6--y4+-y3--y1+-y8+-y2 11"+ -v3y6--v3y8 ~
24442444

[
I 1 I 1 J+ -y4-y7--yl+-y3--y2+y5 11;
2 2 2 2

[
I 1 I 1 I 1 )

+ -v3y4--v3y7+-v3y3+-v3yS--v3yl--v3y2 ;11~
4 2 4 2 4 4

[
1 1 1 1 1 1 ),

+ --v3yl--v3y4+-v3y2+-v3y8+-v3y3--v3y6 11 ~
8 8 8 4 8 4

> j 13: ""collect (expand(diff (z ,xi», [xi, eta, zeta] ,distribute
d);

1 1 [1 1 I 1 Jj13:::::-z6--z8+ --v3z4--v3z2+-v3z3+-v3z1 11~
2 2 8 8 8 8

[
I 1 1 1 1 I )

+ --v3z5+-v3z4+-v3z1 +-v3z2--v3z7+-v3z3 ~;
2 4 4 4 2 4

[
1 1 1 1 ) [1 1 1 1)+ -zl+-z4+-z1+-z2-z7-z5 <;+ -zl--z2+-zl--z4 11
2222 4444

[
1 1 1 1 1 1), [1 1 J+ --z4+-z2--z1+-z3--z6+-z8 11 + --v3z8+-v3z6 ~
44442244

[
1 1 1 1 J+ -z7--z2+z5--z1+-z4+-zj 11;
2 2 2 2

[
1 1 I I 1 1 )

+ -v3z5--v3z7--v3z1--v3z2+-v3z3+-v3z4 <;t] ~
2 2 4 4 4 4

[
1 1 1 1 I 1 ),

+ -v3z3--v3z1--v3z6--v3z4+-v3z8+-v3z2 t] ~
8 8 4 8 4 8I > j21 :::collect (expand (diff (x, eta)) , [xi, eta, zeta] ,distribut
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ed) ;

1 1 (I 1 1 1 I 1 1j2l := - - x5 +- x7 + - v3x4 + - v3x2 + - v3x3 + - v3x1 - - v3x8 - - v3x6 TI ~
22444422

(
1 1 1 1 1 (1 1 1 1 1+ -v3x3--v3x4+-v3x1--v3x2 ~~+ --x2+-xJ+-x3--x4 ~
8888 4444

(
1 1 1 1 1+ -x2+-x4-xB+-x1+-x3-x6 TI
2 2 2 2

(
1 1 1 1 1 1 l' (1 1 1+ --x2--x7--xl+-x5+-x4+-x3 ~ + -v3x7--v3x5 ~
42424444

(
1 1 1 1 1+ -x3--x1+x8--x4+-x2-x6 Tl1;
2 2 2 2

(
1 1 1 1 1 1 1

+ --v3x4+-v3x8+-v3x2--v3x6+-v3x3--v3xl l;Tl~
4 2 4 2 4 4

(
1 1 1 1 1 I l'+ -v3x5--v3x2+-v3x3+-v3x4--v3xl--v3x7 1; ~
4 8 8 8 8 4

:> j22: "'collect (expand (diff (y, eta)) , [xi, eta, zeta] ,distribut
ed) ;

1 1 (1 I 1 I 1 1 1j22:", -- y5+-y7 + -v3yl +-v3y4 +-v3y3 --v3y8-- v3y6 +-v3y2 TI ~
2 2 4 4 4 2 2 4

(
1 1 1 1 1 (1 1 1 1 1+ --v3y2--v3y4+-v3yJ+-v3y3 ~1;+ -y3--y4+-y1--y2 ~
8888 4444

(
1 1 1 1 1+ -y8+-yl+-y4+-y3+-y2-)'6 TI
2 2 2 2

(
1 1 1 1 1 1 l' (1 1 1+ --y7--y1--y2+-yS+-y3+-y4 1; + --v3y5+-v3y7 ~
24424444

(
1 1 1 1 1+ -)'3--)'4+-y2+y8--)'1-)'6 TIl;
2 2 2 2

(
I 1 1 I I 1 1

+ --v3yl--v3y4+-v3y2+-v3yB--v3y6+-v3y3 l;TI~
4 4 4 2 2 4

(
1 I I 1 1 1 l'+ -v3y4+-v3yS--v3y1+-v3y3--v3y2--v3y7 1; ~
8 4 8 8 8 4

r
> j23: :collect (expand (diff (z, eta)), [xi, eta, zeta] ,distribut

edl;
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1 1 (1 1 1 1 I 1 )
j23 := - - z5 +-:.7 + - v3z3 -- v3z8 --v3z6 +- v3z4 +- v3z] +- v3z2 11 ~

22422444

(
1 1 1 1 ) (1 1 1 1)+ "":-v3t.4--v3z2+-v3z3+-v3z1 ~;+ -zl--z2+-lJ--z4 1;
8 8 8 8 4 4 4 4

(
1 1 1 I)+ -z4+-z2-1.8-z6+-z3+-Z} 11
2 2 2 2

(
1 1 1 1 1 1), (1 1 )+ -z4+-z3--z1--zl--z7+-z5 1; + -v3z7--v3zj ~
44442244

(1 1 1 I)+ -zl-z6--z}--z.4+z8+-z2 TI;
2 2 2 2

(
1 1 I I 1 1 )

+ --V326+-v3z3+-v3z8--v3z1+-v3z2--v3z4 1;Tl~
2 4 2 4 4 4

(
1 I I 1 I 1 ),

+ -v3z3--v3z2+-v3z4--v3z1+-v3z5--v3z7 1; ~
8 8 8 8 4 4

> j31: "'collect {expand {diff (x, zeta», [xi, eta, zeta), distribu
ted) :

1 I 1 I 1 1 1 I
j3l := - - v3x4 -- v3xl - - v3x2 - - v3x3 +- v3x8 +- v3x5 +- v3x6 +- v3x7

8 8 8 8 4 4 4 4

+( -; v3xB +; v3x6J1; +(; v3x7 -; v3x5J11

(
1 I 1 1 1 1 ),+ -v3x2+-v3xl--v3x5+-v3x4--v3x7+-v3x3 1;
8 8 4 8 4 8

(
I I 1 I 1 1 ),

+ -v3xl--v3x6--v3x8+-v3x4+-v3x2+-v3x3 II
8 4 4 8 8 8

(
I 1 1 1 )+ -v3x3--v3x4+-v3xl--v3x2 TI;
8 8 8 8

(
1 I 1 I 1 1),+ -v3x5--v3.x2+-v3x3+-v3x4--v3xI--v3x7 Tl~
4 8 g 8 g 4

(
1 1 1 1 1 I ),

+ --v3x4+-v3x3+-v3.x2--v3x6--v3xI+-v3xB Tl ~
g 8 8 4 8 4

r

> j32: "'collect (expand(diff (y, zeta)) , [xi, eta, zeta], distribu
ted) ;
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1 1 1 1 1 1 I 1
j32 := 4" v3y7+4" v3yB - Sv3y4 - '8 v3y1- '8 v3y2 - '8 v3y3 +4 v3y5 + 4: v3y6

+(; v3y6 -; V3YB)~+(-;V3Y5 +; V3Y7) 11

(
I 1 I I 1 1 ],

+ --v3y5+-v3y2+-v3y4+-v3y1--v3y7+-v3y3 ~
4 8 8 8 4 8

(
1 1 I I 1 1 ],

+ -v3y1--v3y8+-v3y3--v3y6+-v3y4+-v3y2 11
8 4 8 4 8 8

(
I I I I ]+ --v3y2--v3y4+-v3y1+-v3y3 11~
8 8 8 8

(
1 1 1 1 1 I ] ,

+ -v3y4+-v3y5--v3y1+-v3y3--v3y2--v3y7 ,,~
8 4 8 8 8 4

(
I 1 1 I I 1 ],

+ --v3y1--v3y4+-v3y2+-v3yS+-v3y3--v3y6 11 ~
8 8 8 4 8 4

> j33; =collect (expand(diff (z, zeta)}, [xi, eta, zeta), distribu
ted) ;

I 1 I I 1 I I I
j33 := - v3z7 + - v3z8 - - v3z4 - - v3z1 - - v3z2 - - v3z3 + - v3z,5 + - v3z6
44888844

+(-;V3Z8+~V3Z6 );+(;dZ7-;V3z5)"

(
1 J 1 1 1 1 ],

+ - v3z2 - - v3z5 +- v3z1 +- v3z3 - - v3z7 +- v3z4 ~
8 4 8 8 4 8 ...

[
1 1 1 I 1 1 )'+ -v3z3+-v3z4+-v3z2--v3z6+-v3z1--v3zS '1
8 8 8 4 8 4

[
1 I I 1 ]+ --v3z4--v3z2+-v3z3+-dz1 ,,~
8 8 8 8

[
1 1 I 1 I I ] ,

+ -v3z3--v3z2+-v3z4--v3t.l+-v3z5--v3z7 'l~
8 8 8 8 4 4

[
1 1 I 1 I 1 ]'+ - v3z3 - - v3z1 - - v3z6 - - v3z4 + - v3z8 +- v3z2 '1 ~
8 8 4 8 4 8

[ >
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