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Abstract

To simplify fabrication and reduce costs of conical structures for arctic offshore development,

a multifaceted conical shape was proposed to replace the conventional smooth cone. This raised

a number of about the isms for ice i ion with this i conical
structure (MCS) and the validity of analytical models which were developed for the smooth
conical structure (SCS). A vertical neck at the top of the MCS was proposed for a prototype and
industry has desired a large size for this neck, i.e., its diameter to be only slightly smaller than
water-line diameter. This raised another concern: what was the effect of this vertical neck on

ice loads ?

To address these concerns, a university-industry joint program (NSERC file # 661-
119/88) was initiated to carry out a series of test program. The program involved three series
of tests carried out in three Canadian test facilities (ESSO Resources Canada, Calgary; NRCC's
Institute for Mechanical Engineering, Ottawa; and NRCC'’s Institute for Marine Dynamics, St.
John's) with structural models at scales of 1:50 to 1:10 and at a cost about 1.3 million Canadian
dollars. The results of these tests were presented in test reports published by each facility; while
presenting these test results no detailed analysis was carried out to understand the ice/structure
interaction in a comprehensive manner. The data contained in these test reports have been used
in this study to understand in depth the various interaction scenarios possible between a multi-

year ice ridge and the MCS.



The direct analysis of the test data, presented in this study, covers answers to most of
the concerns raised by the offshore industry but is not limited to them. Besides the ice failure
mechanisms involved in the process of ice interaction with the MCS models, the parameters
analyzed include neck size, structural orientation, ridge width, and the events that caused the
maximum ridge loads. In the analysis of the ice failure mechanisms, three ridge failure patterns
are identified. Both ridge cracking and ridge segment ride up processes are recognized to be
events causing the maximum ridge loads. The influence of a number of factors on ice cracking

pattern and ice loads exerted on the MCSs are considered in the data analysis.

To provide an insight into the interaction process and the ice failure mechanisms, a series
of numerical simulations are carried out using a commercial discrete element code (DECICE).

DECICE is capable of realisti i ing the ice il ied by broken

ice pieces riding up on the structural surface. This overcomes the disadvantage of the
conventional finite element analysis in which the ride-up forces are to be approximately

under an isti ion that only one layer of ice rides up. The simulations

using DECICE show the broken ice pieces to be actively involved in the breaking process of
impinging ice. The effect of neck size on ridge and sheet ice loads is also studied using

DECICE.

An analytical model is developed which takes the particular feature of the MCSs and

ridge length into account; this model should provide desi; with a simple estimation of ridge

cracking loads. This analytical model is given in the form of a set of equations covering the



initial crack event and hinge crack event for both finite length (short) and infinite length (long)
ridges. Three loading conditions for hinge cracks in an infinite ridge are considered in the
equations. The most conservative loading condition for the hinge cracks is chosen for short
ridges to give a conservative estimation of the maximum ridge loads. The equations for long
ridges are expressed in a general form with different coefficients for various crack events and

loading conditions.

An extensive comparison of the experimental results given in this thesis, for level ice
fields, has been made with the analytical models that were develped for prediction of level ice
loads on SCSs. The results show Nevel's analytical model for sheet ice load estimation to be
fairly valid for use in estimation of sheet ice loads on MCSs though it was developed for smooth
cones. Ralston’s model is also acceptable for MCSs if appropriate parameters are chosen for

inputs to this model.

Of the various analytical models avail for ridge load estimation, the model Y
in this thesis gives the best prediction (closest to the measured loads). As a second choice,
Wang’s plasticity model which has been widely accepted for smooth cones is also applicable to

the case of MCSs.
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Chapter 1  Introduction

1.1 Background of the Test Program

Up to the early 1990’s, many significant geological structures in the Canadian frontier areas have

been drilled and tested for oil and gas at a total cost of over 15 billion Canadian dollars.

Discoveries have been significant as the oil reserves (i i i and p ial) in the
Grand Banks and Beaufort Sea areas alone are about 8 billion barrels (Croasdale, 1991).
However, Hibernia and Terra Nova are the only frontier oil projects being or to be developed
to date. The high cost for safe exploration and production is the main reason for slow progress

with the frontier oil developments.

Conical shaped structures can induce ice bending failure and this mode will exert much

lower loads on the structure compared to ice loads from a crushing failure mode. Therefore

conical shaped structures are preferred for arctic oil and gas i ion op:
The conical structures designed till the 1990’s have been of smoothly curved surfaces and have

assumed steel ion. The difficulties in ing a smooth surface lead

to a higher cost of construction, consequently making the total cost of oil and gas development

projects higher. For ease of fabrication and savings in the cost of construction, Exxon

Production Research Company the of a i surface to
approximate the smooth surface (Weiss, 1988). This newly proposed configuration of the



2
structure will be referred to as the multifaceted conical structure (MCS) in the rest of this thesis,

and the conventional smoothly curved conical structure will be referred to as SCS.

Utilization of such a structure raised several new concerns about ice load estimation. The
main concerns are described as follows:
1. The mechanism of ice failure. The multifaceted surface may affect the ice failure process
and make the process quite different from that for a rved conical

(SCS); hence the ice loads on the multifaceted surface may be different.

2. The effect of ice interaction with the vertical neck (refer to Figures 3.1 and 3.2).
Designers preferred the diameter of the vertical neck to be only slightly smaller than the
water-line diameter (Weiss 1988) but were afraid a large neck could lead to a higher ice
load. The ice load formulae and procedures given in the design codes up to that time did
not account for ice interaction with a normal vertical neck, let alone this large neck.

3. for estimation of ice I on thi of MCSs. All the

existing and for ice load estimation in design codes have been

supported by and/or based on tests with SCSs; hence it was questionable whether these

formulae and procedures could still be used for MCSs.

To study the new features of ice interaction with a MCS and help understand the ice
failure mechanisms and develop proper ice load estimation formulae, a NSERC
University-Industry collaborative research program (NSERC file # 661-119/88) was initiated.

This program, with a funding of 1.3 million Canadian dollars was carried out by Memorial



3
University of Newfoundland (MUN), ESSO Resources Canada Ltd. (ERC) (on behalf of

Imperial Oil Resources and its industry partners i ing Exxon P i and

Mobil Oil Ltd.), and National Research Council of Canada (NRCC). The program involved
three series of tests carried out in the three facilities : ERC’s outdoor ice basin at Calgary and
the indoor ice tanks of NRCC'’s Institute for Marine Dynamics (IMD) at St. John's,

Newfoundland, and Institute for Mechanical Engineering (IME) in Ottawa.
ERC'’s tests were done during the winter of 1988-1989 (to be referred to as Year One

Tests) and the winter of 1989-1990 (to be referred to as Year Two Tests), respectively. The IME

and IMD tests were completed during the spring and the summer of 1992, respectively.

1.2 Background of This Study

Each of the test teams documented their results in separate test reports (Metge and Weiss 1989,
Metge and Tucker 1990, Irani er a/ 1992, Lau er al 1993). These reports mainly recorded the

test conditions and the physical for each indivi tests. No ical analysis
was done during presentation of these test reports; the present research work is the first

comprehensive study carried out on the experimental results documented in these test reports.

Since concerns 1 and 2 presented in the last section could not be answered without an
overall analysis of test results, such an analysis of these test results became vital and important.

Moreover widely used analytical models for ice load estimation, available earlier, were based
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on test conducted with SCSs; hence concern 3 required an extensive evaluation of the validity

of theses models for the newly d MCS. Considering the di in the loading

conditions between a SCS and a MCS, new ical models ing for the

interaction of ice ridge with MCSs were found to be desirable for estimating ice ridge loads on
MCSs. Another concern, i.e., the effect of neck size, could have been better addressed if the
conditions of two tests were kept the same except for structure’s neck size. Unfortunately, no
single pair of such tests could be found in all the test series. Therefore, a set of numerical
simulations with the same parameters were undertaken for this purpose. Numerical simulations
were helpful in understanding the mechanism of ice failure (concern 1). All studies carried out
to address these aspects and the conclusions obtained from these studies are presented in this
thesis. Except for the test results obtained from the test reports, all the graphical plots, analysis
and conclusions presented in this thesis were obtained as a part of the investigation carried out

for this thesis work.

1.3 Objectives

The principal objectives of the present study are to get an insight into the ice/MCS interaction
and to provide theoretical and practical results for designers to consider in their structural design
or for researchers’ further study. The study will focus on the concerns raised by industry. It is

divided into the following tasks:

test conditions. The task will be fulfilled by thoroughly analyzing all the test data
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including both the load records and the video records. A numerical analysis will also be
performed to assist in the completion of this task. This is expected to help in the further

of i il ion and to aid in the development of theoretical

models for ice cracking load estimation.

and the ice loads on the structure. These include neck size (one of the factors of concern,
to industry), the relative orientation between a structural facet face and sheet ice motion,

the ridge orientation, etc. This task will be completed by means of analysis of the tests
and numerical simulation.

D: ofa ical model for easy estimation of ice ridge cracking loads on
a MCS. This is considered as a separate item because the ice ridge cracking load is the

most important i ion for structural desi| and no lytical or i irical

models are available for a MCS.

a MCS. Due to the reasons described in Section 1.2, an evaluation of the validity of

existing SCS models for a MCS became a necessity. Since the MCS has two diameters
(inscribed and circumscribed) and a vertical neck which are not accounted for in these
existing analytical models, determination of which geometrical dimension(s) is (are)
appropriate to be used as inputs to these existing models is another work that had be

done.



1.4 Organization of the Thesis

This thesis consists of eight chapters and its main contents can be divided into four parts. The
first part that follows this introduction is a literature review given in Chapter 2. The review
focuses on the ridge tests with SCSs that can be considered as a counterpart of the present tests.
Another area of literature reviewed is on typical analytical models developed earlier by other

researchers.
The second part is a single chapter, Chapter 3, which presents a summary of the tests
and their results. The materials given in this chapter provide a data base for the analysis in the

chapters that follow.

The third part consists of two chapters: Chapter 4 and Chapter 5. The first portion of

Chapter 4 izes the key ios of the i i ion process, which is
followed by an analysis of the effect of neck size and the structural orientation on the sheet ice
loads and on the ridge ice loads. Chapter 5 presents a series of numerical simulations carried
out using a discrete element code. The simulation mainly focuses on the identification of the
relationship between ice loads and ice cracking process. The effect of neck size is also analyzed
by the numerical studies presented in Chapter 5. This part directly addresses concerns 1 and 2

or tasks 1 and 2 given earlier.

Chapters 6 and 7 contribute the fourth part of this thesis. Chapter 6 is dedicated to the
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presentation of the newly developed theoretical model for the estimation of ice ridge cracking
loads on MCSs. Its verification using test data is given in Chapter 7. Chapter 7 also contains the
examination of other earlier theoretical models available. These models were developed for
estimation of either ridge ice loads or sheet ice loads on SCSs. This part is expected to address

concern 3 or tasks 3 and 4 given earlier.

Finally, an additional but more important chapter, Chapter 8, is arranged to summarize

the i obtained and ibuti made in the course of this study and to give

recommendations for further studies in this area.



Chapter 2  Literature Review

Before the present research program, there have been few theoretical and/or experimental studies

on MCS reported in the open lit The li that is revi in this chapter is part of

the large literature available on ice interaction with SCSs. In addition, this review will also cover

some il and ions arrived from earlier research on ice interaction

with SCSs.

During the past two decades, many excellent review papers and reports (Chao 1992a &
1992b, Wessels and Kato 1989, Marcellus er a/ 1988, Sodhi 1987, Nessim ez al 1987, Krankkala
and Maartanen 1984, Croasdale 1975 & 1980, Cammaert and Muggeridge 1988) have been

on i i i In these icati the results and progress in the

studies of ice sheet loads on SCSs were extensively reviewed. However, the SCS and ice ridge
interaction have received lesser attention. Therefore, the emphasis in this chapter will be given

to review the studies of ridge/SCS interaction.

2.1 Experimental Studies of Ice Ridge Forces

So far, only a few test data for ice ridge forces exist in the open literature. In the following,

several typical model test are revi . A brief i jon to these test

will be followed by a summary of the test results which are organized into five subsections.
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Lewis and Croasdale (1978) reported one of the earlier test programs on ridge-cone
interaction. The tests were conducted with a 45° conical structure model and saline ice ridges
at a test scale of about 1:50. Eleven ridges were successfully tested for structure/ridge
interaction. The ridges were built from ice sheets and could be considered as pressure ridges or
layer ridges. The results have been used to support analytical models (Croasdale 1975 & 1980,

Kim and Kotras 1973).

K: ki and Yoshil (1988) a new series of tests with two cone models

at a scale of 1:100. The slope angles at waterline for these two models were 45° and 40.7°,
respectively. The ratio of ridge keel depth and ice sheet thickness, ridge length, and ridge

orientation were changed to investigate their effects.

Abdelnour (1988) presented a summary of two extensive test programs, based on the
work carried out by Abdelnour and Teh (1976) and Edwards and Abdelnour (1977). A total of
sixty ridges were tested against a 45° cone with a waterline diameter of 0.61 meters. The ridges
and the surrounding sheet ice were modeled using a synthetic material to simulate natural ice at
scales between 1:50 and 1:75. Besides the broadside and 45° skewed orientation, an end-on
orientation of the ridges (the ridge axis was parallel to its moving direction) was also tested.
Ridge length varied from 0.38 meters, to simulate very short ridges, to 4.1 meters, to simulate
infinite ridges. The experimental data from these tests have been used to develop and verify

analytical models (Wang 1984, Abdelnour 1988).



2.1.1 Failure Process and Forces of Broadside Ridges

The typical ridge failure sequence observed and described by Lewis and Croasdale (1978) can
be presented in four steps as follows:

1.  When the ridge is initially approaching the cone the ice sheet between the ridge and the
cone breaks. The corresponding force is quite low (compared to the maximum force),
and is at the level of the ice sheet force.

2. As the ridge moves further forwards, the cone encounters the underwater leading edge
of the ridge and begins to lift the ridge slightly, causing an initial crack in the ridge,
usually at the center of the ridge, often referred to as initial crack or center crack; it has
also been observed that the crack could extend through the ridge into the ice sheet. The
magnitude of force increases sharply until the crack forms and then levels off. The
magnitude of the force at this instant may not be at its maximum but it is much higher
than the earlier peaks associated with the breaking of the ice sheet.

3. As the motion continues, the ice sheet is separated from the ridge by a tensile failure.
The ridge is now noticeably deflected upwards and the initial crack is widened and
extends further into the ice sheet. The magnitude of the force continues to increase but
has not reached its maximum.

4.  The ridge continues to be deflected upwards until a second crack (hinge crack) occurs

at some distance away from the center crack. Then, the ridge and ice sheet fail

, and the ing sheet ice which have been deflected considerably

upwards begins to settle back into the water. The force is at its peak magnitude.
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The above failure sequence is typical only for relatively long and broadside ridges
surrounded by a moderately thick ice sheet. In fact, the mode of ridge failure is dependent on
the type of interaction, ridge length, sheet thickness, and many other factors. Abdelnour (1988)
summarized four distinct failure processes observed for the broadside ridges of various lengths.

1. Complete separation of the ridge from the ice sheet followed by interaction of the
advancing ice cover with the ridge

2. Complete separation of the ridge from the ice sheet followed by a central crack in the
ridge and clearing of the ridge around the cone.

3.  Separation of the ridge from the ice sheet ahead of the ridge (side of ridge nearest to the
cone) and at the ridge ends followed by central cracking of ridge and occasionally by
hinge cracks.

4.  Ridge failure at the center followed by hinge cracks. No apparent ridge/sheet separation;

either or both ends of ridges still firmly embedded in ice sheet.

The average ratio of hinge crack force to initial crack force was 1.73 on average for

Lewis and Croasdale’s tests (1978). This ratio for A ’s results was esti) to be close

to 1.

2.1.2 Effect of Ridge Orientation on Failure Process and Peak Loads

Kamesaki and Yoshimura (1988) observed that the end-on ridges were broken like a semi-infinite

beam loaded at the end. The broken beams, approximately the size of the ridge width, frequently



piled up in front of the cone.

Abdelnour (1988) reported two distinct failure processes observed for the interaction of
end-on ridges with a SCS.
®  Complete separation of the ridge from the ice sheet followed by interaction of the ridge
with the advancing ice sheet.

®  Separation of the ridge from the ice sheet at both sides with a sequential hinge failure.

The failure process for the 30° and 45° skewed ridges was observed to be similar to the

ones for ide i ion scenario. , after the of the center crack and

hinge crack, the ridge could come in contact with the cone once more and could produce another
hinge crack (Abdelnour 1988, Kamesaki and Yoshimura 1988). Kamesaki and Yoshimura's tests
also showed that the 60° skewed ridges failed in a quite different way: the portion of the ridge
between its leading edge and the center crack was not broken, and the portion between its

trailing edge and the center crack was completely cracked along the moving direction.

Abdelnour’s (1988) results showed that the broadside orientation yielded an average load
that was at least twice as large as that for the end-on orientation. However, Kamesaki and
Yoshimura’s results (1988) indicated that the loads for these two orientations were roughly at

the same level.



2.1.3 Effects of Sheet Thickness and Strength

on Failure Process and Peak Loads

Thickness of the ice sheet strongly affects the failure process, and hence the ice loads
(Abdelnour, 1988). If the ice sheet was sufficiently thin (compared to the ridge keel depth), the
ridge tended to rotate in its plane after a center crack developed. If the surrounding ice sheet was
sufficiently thick, a local bending failure or a circumferential crack was likely to occur in the

centre of the ridge because of the high effect of the ing ice sheet (Kamesaki

and Yoshimura, 1988). Abdelnour (1988) pointed out that an increase in ice thickness by a factor
of two resulted in an increase in the force by at least two to four times for most cases of his

tests.

Another important effect of the ice sheet was to increase the global force through the
ride-up scenario. Wang (1979) summarized the peak forces of the ridges with and without ice
sheet ride-up (the data were quoted from Edwards and Abdelnour’s tests (1977)). The results
showed that the sheet ice ride-up action increased the average vertical and horizontal peak forces

by 31% and by 29%, respectively.

2.14 Ratio of Horizontal to Vertical Forces

The mean ratio of the horizontal to vertical peak forces for the 27 tested ridges, summarized by

Abdelnour (1988), was 1.18. The corresponding value for Lewis and Croasdale’s tests was 1.66,



and for Kamesaki and Yoshimura's tests was 1.97. All these data were for 45° cones.

The ratio of horizontal and vertical forces on a cone can be theoretically expressed as

(Croasdale, 1975, 1980):

sine +pcose
Bl i s

where P, and P, are the horizontal and vertical forces, respectively, « is the cone slope angle

from the horizontal, and u is the ice/cone surface friction coefficient.

‘While applying equation (2.1) to the above tests, one will find the ratio should vary from
1.15t0 1.56 as coefficient of friction u varies from 0.1 to 0.2. It is obvious that Kamesaki and
Yoshimura's tests yield a ratio much higher than the one predicted by equation (2.1). The same
conclusion could also be drawn from the results of other test programs. This difference could
be due to the fact that this formula is valid only for two-dimensional cases and also may be due

to the error in coefficient of friction measurement as pointed out by Abdelnour (1988).

2.1.5 Effect of Ridge Length on Peak Forces

Abdelnour (1988) used a dimensionless ridge length 2L/L, to measure the effect of the ridge
length, where L is the half ridge length, and L, is the characteristic length of a ridge in water.
He concluded that a ridge with the dimensionless length between 1 and 1.5 exerted a higher

vertical force than a ridge with a dimensionless length below or above this range. These



relatively short ridges may exhibit forces twice as high as an infinite ridge.
Kamesaki and Yoshimura (1988) plotted the peak forces against a ratio of 2L/H,, where
H, is ridge keel depth. The plot showed that the force increased with the increase of 2L/H, until

2L/H, reached a value of 20; when 2L/H, ratio increased beyond 20 (where the ridge might

be regarded as infinite) the peak force became almost a constant.

2.2 Analytical Models for Ridge Force Estimation

221 Croasdale Model and Abdel Model

Croasdale (1975 & 1980) applied the theory of an beam on an elastic foundation, developed by
Hetenyi (1946), to estimate the maximum force of a ridge on a cone. It was assumed that ice
ridge will crack when the tensile stress at its outer fibre equals the ice flexural strength. The
formulae for vertical forces were derived and given in the form:
40,1 62 o, I

P, = —I P,
Y gL, = z L,

.2)

v

where P,, and P, , are vertical forces for center and hinge cracks, respectively; z and z, are the
distance from centroidal axis of the ridge to its top and bottom layers; o,, and o,, are ridge

flexural strength for top and bottom in tension, respectively; L, is characteristic length of the
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ridge and attached ice sheets and / is moment of inertia of ridge cross section. The horizontal

forces can be calculated using Equation (2.1).

In this model, the ridge was assumed to be infinite, and the effect of the attached sheet

ice was not taken into i i I8 load acting at the ridge/cone
contact point was assumed, that is, the effect of the load distribution along the contact edge was

not taken into account.

Abdelnour (1981, 1988) also applied Hetenyi's theory to the ridge/cone problem. His

expression of load formula including the effect of ridge length and attached sheet ice was

is itten with the ions used in this thesis as follows:
o, I 0,1
= F, P =-_F @2.3)
Ly 18 hv % L. HS

where F, s and Fy ¢ are load functions for initial (cental) and hinge cracks, respectively, and they

can be expressed as

2L 2L
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where 2L represents full ridge length. Y is the location where the maximum moment occurs or
where ridge failure happens and it can be obtained by differentiating the moment equation and
equating it to zero. The bending moment for a hinge crack can be written as follows:

L Y ot LY y L Ly
sinh— sin = sinh —= - smh

Lc LG Lt m : c Lr

2 (s‘nh’— - sin’—)
Lc L(

MQ) = -P, L, @.6)

For convenience, Equation (2.2) together with Equation (2.3) will be referred to

as the Croasdale-Abdelnour model in this thesis.

222 Kim and Kotras Model

Kim and Kotras (1973) ped a i if ward also based on the
Lewis and Croasdale’s observation and Hetenyi’s theory. The ridge and the surrounding ice
sheet were treated as an elastic beam and plate on an elastic foundation, respectively. Their

used in ining the failure can be ized in seven steps, which was

later coded into a computer program by Semeniuk (1975). The first four steps are for initial (or

center) crack and the rest are for analysis of the hinge cracks.
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After the ridge contacts the cone, the ridge’s upwards deflection, Wy, at the contact point

can be calculated for a given penetration distance X. For this W, the ridge and sheet
W(x,y) is i ined using beam and plate theory.

Determine the vertical force required to lift the ice to the deflection W(x,y).

Check both shear and bending stresses at the interface between the ridge and the attached
ice sheet to see if the ridge is separated from the sheet.

Check to see if the center crack occurs. If the ice sheet was not separated from the ridge,
the ridge/sheet combination was idealized as a beam with attached flanges. Compare the
stresses at the center of the ridge with ridge flexural strength to see if failure (center
crack) occurs. If no failure occurs, increase the penetration and repeat steps 1 through
4 until the initial crack occurs.

As the ridge (and sheet, if it was not separated from the ridge) moves further forwards,
update its deflection and the required forces.

Check the separation at sheet/ridge interface again. After the initial (or center) crack, the
sheet, if not separated from the ridge before the initial crack, could be detached from the
ridge just before hinge cracks.

Check the stress to see if the hinge cracks occur (similar to Step 4).

Ride-up Model

The Croasdale-Abdelnour model and Kim and Kotras model are only for infinite ridges which

do not account for the possible ride-up process. Winkler and Nordgren (1986) developed a
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model for calculation of the ridge force during the ride-up process with the assumption that the

ridge is free-floating within a surrounding ice floe.

The ride-up problem of a ridge was analyzed in two steps. The ridge first was modeled
as a rigid body undergoing large rotation and translation in its cross-sectional plane. The forces
acting on the ridge consist of the force exerted by the cone, buoyancy force, gravity load, and
a force transmitted from the ice floe behind. For each stage of the ride-up process (i.e. for a
certain rotation angle of the ridge), the ridge force on the cone can be calculated by solving the
equilibrium equation of the force system. Then the ridge was treated as an elastic beam on the
cone. A maximum ridge force for flexural failure can be determined at each stage of the ride-up
process. The maximum force over the entire ride-up process gives the overall maximum ridge

force for a given ridge cross section.

The approach was also extended to include the effects of dynamics and local crushing

(Nordgren and Winkler 1989), and to probabilistic analysis (Winkler and Reece 1986).

224 Plasticity Method

All the above models are based on elasticity theory, and are likely to under-estimate the actual

forces. To estimate an upper bound of ridge forces, Wang (1979 & 1984) developed a model

based on plasticity theory.
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In this model, the ice ridge and ice sheet were assumed to be elastic-perfectly plastic and
resting on an elastic-perfectly plastic foundation. The ice sheet in front of the leading edge of
the ridge was assumed to be separated from the ridge before the ridge cracked. Then, the upper
bound theorem was applied to this sheet-ridge-cone system. Five components of the rate of
energy dissipation were considered, viz., the rates of energy dissipation due to ice sheet and
ridge bending, ice sheet and ridge weight (or buoyancy) and friction between the ridge and the
cone. Five types of admissible velocity fields were considered, two of which were designed for
long ridges with center and hinge cracks, another two for short ridges with a center crack only,
and one for very short ridges without crack at all. Each of these five velocity fields gave an
upper bound for the ridge force. Among the five bounds, the smallest was selected as the

calculated value.

This model has been widely used in ridge force estimation and analysis (Schreiber er al
1989). Nevel (1991) simplified the force equation for the long ridge type I velocity field which

is the most likely breaking pattern for long ridges.

225 Comparison of Models and Discussions

Comparison of these analytical models with experimental data has been carried out by many

researchers (Wang 1979, Marcellus er al 1988, Kamesaki and Yoshimura 1988, and Chao

1992b, etc). The latest and the most extensive one was done by Chao (1992b). These

share a ion: the elasticity methods g de i the
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ridge loads on a cone, while the plasticity methods may over-predict the loads.

The plasticity model and the Kim and Kotras model are theoretically the most elegant ones
because they simulate the real situations more completely than other models. Compared with the
Kim and Kotras model, Wang’s plasticity model covers more situations in terms of ridge length
and possible crack patterns (velocity fields). Wang (1979) did an extensive comparison of these
two models using the results of fifty ridge tests and showed the plasticity model predicted the

loads better, while Kim and Kotras model under-predicted the loads.

The Croasdale-Abdelnour model is quite simple and easy to apply for ridge load
estimation. This model does not include the forces due to the sheet ice pieces riding up, neither

does the Winkler and Nordgren model (1986).

2.3 Ice Sheet Interaction with a SCS

Numerous test programs have been carried out to study the ice sheet/cone interaction (see the
reviews: Croasdale 1980, Sodhi 1987, Wessels and Kato 1989). The observed failure process

and modes are summarized as follows.

As the ice sheet first encounters a cone, local crushing occurs on the underside edge of
the ice sheet, which causes an interaction force normal to the surface of the structure. The force,

which increases as the crushing area increases, will deflect the ice sheet. If the ice speed is low
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and the cone diameter is small compared to the thickness of the ice, radial cracks will initiate
the ice-sheet failure. Peak interaction force, however, occurs when circumferential cracks

develop around the cone, leading to the formation of wedge-shaped broken ice pieces. If the

cone di; is i large, the i tensile stresses of the ice cover change from the
circumferential direction to the radial direction. This process causes an ice sheet to fail first
circumferentially and thereafter radially. The cracked ice pieces will be pushed up on the surface
of the structure, which has been termed ride-up, then will slide over the surface and down into

water or on the ice cover.

Many factors could affect the ice failure mode. Increasing roughness of the cone surface,

or i ing ice thi could alter the failure mode from bending to shear. With

speed of i i ion, the distance between the circumferential cracks

would decrease, and finally, the ice-sheet failure would change abruptly from bending to shear,

resulting in a lower peak force due to the dynamic effect.

2.4 Analytical Models for Ice Sheet and SCS Interaction

There exist many ytical models and irical (or semi irical) i ped for
estimation of sheet ice forces on SCSs (Chao 1992a). In terms of the theory the models were
based on, they can be divided into two categories: elasticity models and plasticity models. This

section reviews two typical elasticity models and one plasticity model.
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24.1 Ralston Model

Ralston (1978 & 1980) applied the technique of plastic limit analysis to the case of ice/cone

and ped an ytical model to estimate the maximum ice sheet forces on a

cone. The derived formulae for horizontal force Py and vertical force P, are given by:

Py = A [A,0h* + A,p ghD} + Asp gh(D}-DP] o
P, = B, Py + B,p, gh(D} - D})

where g, and A are flexural strength and thi of ice sheet, respectively; Dy and D, are top

and waterline di; of a cone, respectively; A,, A,, A;, A, B, and B, are the coefficients

determined by solving complete elliptic integral equations and by optimizing the bound for the

failure force (refer to Ralston 1978).
24.2 Croasdale Model

Croasdale (1980) presented a simple elasticity analysis model. The ice sheet was treated as a
semi-infinite elastic beam on an elastic foundation subjected to a vertical load Py and a horizontal

load Py at one end. The ice forces on the structure were given by:

“
Py= (c‘D‘,u”/pwgh:r + c;zhD p8)T @8

where
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T is a modification coefficient (for a 2D structure, I'=1), L, is characteristic length of sheet ice,
£ is a function of slope angle of the cone («) and friction coefficient (x) and is equal to P/Py
as given in equation (2.1). Py can be determined using equation (2.1). Recently, Croasdale and
his associates have modified this model to include the effect of ice rubble in front of a cone

(Croasdale er al, 1994, Croasdale and Cammaert, 1993).

243 Nevel Model

Nevel (1992) presented a rigorous model based on elasticity theory and his earlier theoretical
studies. The model treated the ice floe as a series of truncated wedges which were formed as
a result of radial cracking. It was based on the following observation from physical tests: as the
wedges move against the cone, they may break due to the bending failure at the bottom of the
wedges; in the mean time the smaller ice pieces broken from the wedges during the preceding
interaction process are pushed further up on the cone surface. The model assumes that the ice
pieces completely cover the front half of the cone. The impinging wedges subjected to both
vertical and horizontal (in plane) loads may break simultaneously or sequentially. For the
sequential break, the model assumed that the maximum load occurs when the center wedge

breaks.
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The greatest contribution of this model is its formulation of the forces due to ice riding

up on the cone surface. The model is capable of dealing with the computation of sheet ice loads
on a SCS with a number of conical sections, including a vertical neck. Two action conditions
were considered in the model: passive action and active action. As the author stated in his paper
(Nevel, 1992), ““active ice action is defined when the broken ice pieces on the surface of the
cone slide into the section above'’, and “‘passive ice action is defined when the broken ice pieces
do not slide into the section above’’. In an application, users of this model can choose either of

these two action conditions.

244 Comparison of Models and Discussions

Chao (1992a) and et al (1988) the various lytical models and empirical

A general lusion from the ison is that Ralston’s model which was based

on plasticity theory overestimates the failure loads while the models based on elasticity theory,
including the Croasdale model, underestimate the load. These comparisons and conclusions do

not cover the Nevel model because it was published later.

Chao (1992a) and Macellus er al (1988) also analyzed the crack and ride-up components
of the predicted failure load. They stated that the difference between the predicted loads from
the plasticity model (Ralston’s model) and elasticity models was mainly due to the difference in
predicted crack loads. The crack loads predicted from Ralston’s model is much larger than those

from elasticity models, while the ride-up loads from all the models are relatively close to each
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other. This might be because the ice sheet under plasticity theory could stand larger forces.

Many of the offshore drilling structures, proposed for use in the Arctic, have sides with
multiple slopes or at least vertical upper walls (like the neck in the MCS to be shown in the next
chapter) to reduce the chance of high ice ride-up and to maximize the working surface with
respect to the base diameter. When the broken ice pieces ride up to the corner of two slopes the
leading ice piece cannot go further. This leading piece could either be crushed or lifted. This,
if it occurs, could increase the load on the upper slope or upper vertical wall and also increase
the total load. Coon er al (1985) and Izumiyama et al (1994) studied this aspect and gave a set

of ing for this additi load. Of the three models reviewed above, the Nevel

model is the only one accounting for this effect.

2.5 Numerical Analysis

251 Finite Element Analysis

Bercha (1973, APOA # 57) carried out one of the earliest finite element analysis (FEA) of an
ice ridge with attached ice sheet against a cone using a commercial code ANSYS in the early
1970s. The ice was assumed to be a fast brittle, isotropic, homogeneous, linear elastic material.
The simulation for a long ice ridge (4000 feet long) showed a crack pattern similar to the one
observed by Lewis and Croasdale (1978), and the peak load was also reached during the hinge

crack process. His simulation also showed that the maximum force for the short ridge was about
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30% lower than that for the long ridge.

Maattanen and Hoikkanen (1990) applied the finite element method to determine ice sheet
loads on a cone. The ice sheet was subjected to edge load due to the resistance of the cone and
distributed loads on the upper surface of the ice cover due to the weight of the piled-up ice

pieces. The ice sheet was treated as an elastic wedge on an elastic foundation. They compared

the predictions with their full-scale ( and i 1985) and the
predictions from Ralston’s model. The results showed that their model yielded a better

agreement. Maattanen (1986) also applied this approach to the case of sloping walls.

Derradji-Aouat (1994a & 1994b) i anonlinear and ti
model, i.e. Sinha's model (Sinha 1984 & 1988), into a finite element program to compute sheet
ice loads on a cone. He took the ride-up ice into account, but assumed the thickness of ride-up
ice to be the same as the parent ice floe. It has been recognized that the total thickness of the

ride-up ice (more than one layer) could be much bigger (McKenna and Spencer 1994).

The above FEAs are based on a number of assumpations some of which are not fully
realistic. For example, the assumption of tight contact along the ice/cone contact line may be
valid only for the very small structure and relatively soft ice (Sanderson 1988). For a large
structure, this assumption may result in an overestimation of the ice crack load. The assumption
is not realistic even for small structures if the ice is quite brittle. As many tests have shown, the

cracks of brittle ice usually form a front such that only part of it can contact the cone for the
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next crack. Another example is that most of FEAs consider the effect of the ice rubble on the
cone and on the top of the ice sheet by adding their force (due to their gravity loads) to the total
ice loads. As pointed out by some researchers (McKenna and Spencer 1994), the rubble, besides

their positive contribution to the total loads, could also assist in the failure of the ice sheet.

2.5.2 Discrete Element Analysis

The discrete element technique is a powerful tool that has been widely used in rock mechanics
and many other areas including ice mechanics (Mustoe ez al 1989, Williams and Mustoe 1993).
The theory of this technique was given by Williams (Williams ez a/ 1985, Pande er al 1990). A
distinct feature of the Discrete Element Method (DEM) is that each element is considered as a

distinct body which i with its i via face, edge, and corner

interaction forces that change as the bodies move and/or deform.

Compared with the finite element technique, the discrete element technique is more

suitable for the analysis of multiple, i il i il or bodies

undergoing large motions and rotations, which is the case of ice interaction with conical shaped
structure. In addition, the analysis with DEM can realistically and fully account for the effect

of rubble ice which FEM can only partially take into account.

There are many kinds (although similar) of discrete element approaches available in the

literature and many computer codes have been developed. Evgin and Sun (1990) gave an
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extensive review of these approaches. The most elegant one was developed by Hocking and his

co-workers (Hocking ez al 1985a, 1985b, 1985¢) and coded in a computer program first named

CICE and later on changed to DECICE.

DECICE formulation is based upon an internal di ization of Simply D

Finite Elements (SDFE). In other words, the linear shape function is implemented for the
elements in DECICE. The detailed formulation of DEM is given in DECICE Theoretical Manual
(by Intera Information Technologies). An overview of DECICE will be presented in Chapter 5.

Only a few ications of DEM to i ping structure i ion will be briefly reviewed in

this section.

Rigid elements were used in early development of discrete element technique. The typical
approach using a rigid element was proposed by Kawai (1977 & 1979), termed as Rigid
Body-Spring Model (RBSM). This model consists of a finite number of small rigid bodies
(elements) connected with springs distributed over the contact area of neighbouring bodies.
Displacement components of an arbitrary point in that rigid element are expressed in terms of
the displacement components of the element center of gravity. The problem is reduced to solving
a set of simultaneous linear equations similar to FEM but in terms of displacements of the center

of gravity of all elements at each load increment step.

Watanabe and Kawai (1980) first applied this approach to analyze the bending collapse

problem of level ice against an ice-breaker bow model with emphasis on the prediction of ice
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crack pattern. The stress-strain law in their analysis was elastic-perfectly plastic. The results
showed that the calculated and experimental crack patterns coincided with each other well.
Later, Yoshimura and Kamesaki (1981) adopted the same method to analyze the crack pattern
of the ice sheet in front of a cone, but they considered the stress relief accompanied with the
initiation of cracks. Shibue and his associates (Shibue and Kato 1988, Shibue er al 1994)
introduced a thick-walled shell element into the RBSM. They analyzed the failure process of ice
sheets as well as ice ridges against conical structures and inclined indenters. The stress-strain

relationship used in their analysis was identified by simulation of ice property tests.

Although the predictions from RBSM were claimed to give good agreement with

results, the di: antage of this is obvious. Firstly, it is assumed that the

element used in RBSM is rigid and element ility is not i thus, this ap

is only appropriate for studying the brittle behaviour of ice. The creep and ductile behaviour
cannot be considered in this approach. The reason that good agreement was obtained between
the prediction and experimental results could be that the events studied involved mainly brittle
behaviour of ice. Secondly, generation of the element mesh largely depends on prior analysis
experience. It has a great influence on the ice collapse pattern since failure occurs only at
element edges which are linked with springs to the surrounding elements. Thus, a fine mesh is

required in the failure zone in order to get typical failure patterns.

In the CICE or DECICE program, the DEM has been generalized to the case of element

deformability, i.e., SDFEs are used. D ing on the ituti iour applied to the ice,
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this approach allows modelling of ice behaviour from brittle fracturing to creep failure. This

imp! the dit of the RBSM mentioned above.

This approach and the corresponding code DECICE have been verified and validated for
ice (both sheet and ridges) interaction with a conical structure and/or a sloping structure
(Hocking er al 1985a & 1985b). The computation showed that the approach could properly
simulate the ice failure process. The ice sheet ride-up and pile-up on a stepped slope artificial
island have also been analyzed using DECICE. The ice sheet was discretized using beam
bending elements, and the island was modelled as a single rigid element. The elements of the
ice sheet were locked together initially to simulate the completely crack-free ice. With the ice
sheet moving against the island, the ice experiences fracturing. Whenever a fracture was judged

d ing to stress ition and chosen criterion, the element (if the crack

to have
went through it) would be broken into two to model the crack. This work together with the
computation of interaction forces between elements were done automatically. The calculation was
carried out with a time increment; thus the time history of the ride-up and pile-up process could
be simulated. Predicted forces were in the same level as those measured. This work
demonstrated the power of DECICE in simulating of ice ride-up and pile-up event. It was
recommended to be a unique numerical approach for this kind of simulation (Evgin and Sun

1990).

DECICE has also been applied to other areas of ice mechanics; for example, dynamic

impact of ice on an offshore structure (Hocking er a/ 1985c), identification of ice properties
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(Intera Technology Inc. 1986a), analysis of ice spray platform (Applied Mechanics Inc. 1985),

and ice ridging loads (Intera Technology Inc. 1986b), etc.
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Chapter 3  Faceted Cone Test Program

A five year test program initiated in 1988 as a joint university-industry project was carried out

by Memorial University of Newfoundland (MUN), ESSO Canada (ERC)
Imperial Oil Exxon P it Mobil and D and

National Research Council of Canada’s Institute for Marine Dynamics (IMD) and Institute for
Mechanical Engineering (IME). Three series of tests with structural models at scales varying
from 1:10 to 1:50 were conducted in three Canadian ice basins: Esso Resources Canada (ERC)’s
outdoor ice basin in Calgary, IMD’s large ice tank in St. John's, Newfoundland, and IME's tank
in Ottawa (Croasdale and Muggeridge 1993). These tests generated one of the largest data bases
in the world for ice-cone interaction. As a member of the research team, I was involved in
carrying out part of the tests at NRCC’s IMD indoor ice basin at St. John's during the summer
of 1992. The description of the various ice basins and the reporting of all the earlier test results

are done to make the p i and i In addition, the earlier

presentation of test results contained some errors which had to be assessed and corrected after

a proper review of the videos and computer records of the test results.

3.1 Test Facilities

311 ERC'’s Ice Basin

The outdoor ice basin at the ERC’s Research Laboratory in Calgary is the widest ice testing
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basin in the world. It is capable of allowing near full-scale tests to be carried out against which

ice load algorithms can be evaluated (Robbins er al 1975).

This basin is 30 meters wide by 55 meters long, with a water depth varying from 1.4
meters (in the area for ice formation) to 3.0 meters (in the area for a test structure to be
mounted). The maximum useful ice field run length is in the order of 35 meters. A test structure
can be mounted on a three point support system (one more support was added for these faceted
cone tests). A floating towing boom is attached to trolleys which travel on rails along the edges
of the basin; when the boom is towed, it pulls the ice against the structure. The basin is
equipped with refrigeration mats and compressors which are capable of maintaining the
temperature at 10° to 20° C below ambient air temperature depending on the number of mats

connected.

The water depth of 3 meters in this basin is ideal for the tests on 1:10 scale model

whose full-scal are for the Beaufort and Chuchki Sea

exploratory drilling operation in about 30 m of water (Weiss 1988).

3.1.2 IMD’s and IME’s Ice Tanks

IMD’s ice tank is the longest indoor ice testing tank in existence. This ice basin is 96 m long
by 12 m wide, with an useful ice length of about 76 meters. The water depth is 3 meters. Unlike
ERC’s ice basin, IMD’s ice tank is equipped with a towing carriage, from which a test model

is towed to move against ice. The towing carriage is capable of speeds up to 4 meters per second
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and has a Micro Vax computer for data collection, and a set of video cameras for recording test
runs above and below the water surface from several angles. The refrigeration system in IMD’s
tank is computer-controlled to ensure that the air temperature is uniform near the water surface.

Air temperature can be controlled from -30° C to 15° C.

IME'’s tank is 21 m long by 7 m wide and 1.2 m deep. Similar to IMD’s tank, the IME’s
tank also has a towing carriage which spans the tank and can travel the length of the tank to tow
a structure through ice, with maximum possible speeds up to 65 cm/s. The temperature in the
insulated room which houses the tank can be controlled to as low as -20° C.

3.2 Structures and Instrumentation

3.21 Prototype Structures and Test Models

The proposed prototype structures are shown in Figures 3.1 and 3.2. The structures consist of
three sections: a main cone (the lower portion of the structure), a vertical neck, and a collar,
each of which has six facets. The difference between these two structures is their neck size. The
structure shown in Figure 3.1 has a relatively smaller neck size; thus its models will be termed
as “‘small neck’” model. Similarly, the models of the structure shown in Figure 3.2 will be
termed as *‘‘large neck’’ models because of their large sized neck. The slope for all the sides
of the main cone is 5:6 (vertical to horizontal) or 39.8 degrees for both structures. Side slope
of the collar that sits on the top of the main cone and under the neck is 2:1. A real production

platform could be 50 percent larger (Weiss, 1988).
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Figure 3.2 The Prototype Structure with Large Neck
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In much of the earlier tests with SCSs, the diameter of the waterline was three or more

times the diameter of the neck. C , the ice and the given

in the design codes were also based on those tests with small neck structures. The tests with this
small neck MCS model were expected to examine the validity of those formulae and to compare
with the “‘large neck’’ tests. On the other hand, designers have found it advantageous to make
the waterline diameter only slightly greater than the neck diameter (Weiss, 1988). The ratio of
waterline diameter to the neck diameter being 1.2 to 2.0 would be highly desirable. Therefore,

the “‘large neck’” prototype having a ratio of 1.5 was proposed.

In ERC's tests, two models were tested in two winters, a 1:10 model with small and
large necks was tested in 1988-1989 winter (to be termed as ‘“Year One’’ tests), and a 1:20
large neck model was tested 1989-1990 winter (Year Two tests). In IMD series also, two models
were tested: a 1:25 model with large and small necks, and a 1:50 large neck model. One small

neck model with 2 nominal scale of 1:50 was tested in IME’s tank.

The model used in the IME series was not tested with the water surface elevation
corresponding to the full-scale waterline inscribed diameter of 30 meters. The model structure
was purposely raised out of the water to increase the loads on the main cone and to avoid high
ice pile-ups. The scale at waterline varied from test to test, with an average scale about 1:30
(Irani er al 1992). It should be kept in mind that the scale of 1:50 which will be mentioned in

the following sections of this thesis is only a nominal scale.
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3.2.2 Instrumentation

In ERC'’s tests, four tri-axial load cells were used to measure the global loads and their moments
on the cone. These load cells connected the cone structure to four steel columns that were firmly
attached to the basin floor. Each of the three components of the global force, F,, F,, and F,, was

the sum of the corresponding components output from the four load cells.

The loads on the vertical neck of the ERC’s structural models were measured by using
four shear pins. Two pins were mounted together with their sensitive directions at right angles
to each other to provide load measurements in both X and Y directions in the horizontal plane.
X and Y components of the total load on the neck can be calculated from the individual shear

pin measurements.

In IMD’s tests, the models were similarly instrumented, but with three six-component

dynamometers for global load and two for neck load

measurements.

In IME'’s tests, global, neck and collar loads were separately measured, each with a
single dynamometer, respectively. Besides, the main cone facets were also instrumented to
measure the loads on them. After the transformation of the facet loads from their local
coordinate system to the global coordinate system, a vector sum of these facet loads and collar

loads as well as neck loads should be very close to the global loads.
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3.23 Coordinate System

The global coordinate system was defined as follows: the origin of X, Y, Z is located at the
intersection of the vertical centerline and the waterline. The X-axis is positive in the direction
of ice motion, the positive Z-axis is directed vertically upwards, and the direction of the Y-axis

is such that X, Y, Z axes form a right-handed coordinate system.

The forces in all the three facilities were and exp: using this
system. To be consistent, this thesis also uses this global coordinate system for analysis and
numerical simulation.

3.3 Test Matrices

3.3.1 Overall Scope

From the previous experience in SCS tests, a set of parameters were identified as essential for

detailed understanding of ice-MCS i ion and design i ion of ice loads on the

proposed MCS prototypes. Some changes were made in the course of the test program, and the

parameters finally tested are listed in Table 3.1.

In all the three facilities, some parameters related to test ice were also varied either on
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purpose or due to the difficulties in the control of ice formation. These parameters include: ice

floe thickness, ridge width and thickness, ice (floe and ridge) strength, etc.

ERC's ERC’s
Parameters Varied Year One Year Two | IME’ Tests | IMD's Tests
Tests Tests
Model scale 1:10 1:20 1:50 1:25, 1:50
Neck Size Small, Large Large Small Small, Large
Ori i No No Yes No
Ridge Orientation Yes Yes No No
Ice Movement Rate No No Yes Yes

Table3.1  Overall Scope of The Test Program

Some technical terms used in Table 3.1 and to be used in the remaining part of this thesis

are defined as follows.
L O means the direction of the ’s front facet with respect to

the direction of ice motion. A total of three structural orientations were tested, viz.,
A. Face-on Orientation: the front facet faces the ice motion.
B. Edge-on Orientation: a cone’s corner between two adjacent facets is head-on the
impinging ce.
C. Intermediate Orientation: the front facet is inclined at 15° to the face-on

orientation.

2. Ridge O means the ori ion of the ridge itudinal axis with respect to
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the direction of the ice motion.

A. dside Ori i the ridge longitudinal axis was i to the

direction of ice motion.
B. Oblique (or Skewed) Orientation: ridge is inclined at an angle of 30° from the
broadside orientation (the ERC tests).
Ice Movement Rate means ice speed in the ERC tests, and it is carriage’s moving

(forwards) speed in the IME tests and the IMD tests.

In the IME tests, all the three structure orientations were tested, while in the ERC and

the IMD tests, only the face-on orientation was tested. All the ridges were tested in broadside

orientation in the IMD and the IME tests, but five ridges inclined at a 3(° oblique angle to the

broadside orientation were also tested in the ERC series.

Tests Matrices

A total of 126 test runs including 31 ridges were performed in the three facilities: 8 runs with

ice ridges and 4 runs with ice sheets in ERC’s Year-One tests, and 8 ridges and 7 sheet runs for

Year-Two tests; 14 ridges and 18 sheet runs for the IMD tests, and 15 ridges and 52 sheet runs

for IME’s tests. A brief test matrix for the Year-One and the Year-Two ERC tests is presented

in Tables 3.2 and 3.3, respectively.

In Tables 3.2 and 3.3, three letters, Y, T, and R represent ‘‘year’, ‘test’’ and “‘run’’,
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respectively. Thus Y1TIR1 means “‘run 1 of test 1 for Year-One tests’’. Since Y1T2R1 was
aborted, it does not appear in Table 3.3. If not specified in Tables 3.2 and 3.3, all the ridges
(usually 2) in each of the tests were embedded in the same ice sheet. All the tests conducted in
ERC’s ice basin (both the Year-One and the Year-Two tests) were carried out with an ice speed

of 6 cm per second. This parameter is not listed in Tables 3.2 and 3.3.

Neck | Ice Type Ice Dimension Ridge Test Duration
Test No. Size (m) Orientation (seconds)
YITIR1 Small Sheet 0.33 - 93
YITIR2 Small Ridge 3.5x1.00 Broadside 97
YITIR3 Small Ridge 3.7x0.90 Broadside 270
Y1T2R2 Large Sheet 0.34 - 10
YIT2R3 | Large | Ridge 4.5x0.95 Broadside 162
YIT2R4 Large Ridge 3.5x1.05 Broadside 202
YIT3R1 Large Ridge 3.5x1.10 Oblique 30° 200
YIT3R2 Large Sheet 0.27 - 92
YIT3R3 | Large | Ridge 3.5x1.25 Broadside 135
Sheet 0.12 -
YIT4RL | Lacge [ oo 3.5%0.95 Oblique 30° 10
YIT4R2 | Large | Ridge 2.5x0.95 Oblique 30° 280

Table 3.2 Test Matrix for ERC's Year-One Tests

Table 3.4 presents the matrices of IME'’s sheet ice tests, and Table 3.5 shows the

matrices for IME's ridge tests. The tests with the 1:25 large neck model of the IMD series are



listed in Table 3.6 with the rest of the tests of this series given in Table 3.7.

Ice Dimension Ridge Test Duration

Test No. Ice Type (m) Orri i

Y2TIR1 Sheet 0.25 110

Y2TIR2 Sheet 0.25 26
Sheet 0.32

Y2rzRi Ridge 3.0x0.90 Obliue 30° 103
Sheet 0.36

i Ridge 2.5%0.95 Oblique 30° 12
Sheet 0.385

2Rt Ridge 2.75%0.86 | Broadside 2t

Y2T3R2 Ridge 2.17x0.90 Broadside 170
Sheet 0.41

YZIRd Ridge 2.6x1.17 Broadside 135

Y2T4R2 Ridge 2.6x1.22 Broadside 120
Sheet 0.05

Y2T5R1 Ridge 2.0x0.30 160

Y2TS5R2 Ridge 2.0x0.27 Broadside 73

Table 3.3 Test Matrix of ERC’s Year-Two Tests

A few items used in Tables 3.2 through 3.7 are defined as follows.

43

® [ce Dimension are thickness for ice sheets and width by thickness for ridges. The length

of the ridges for each test facility equals its ice basin width. There are two numbers for
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ridge thickness in Tables 3.5 through 3.7, the first one (outside the parentheses) is the
total thickness including the thickness of the soft layer at the bottom of the ridges, and
the second one (the number within parentheses), is the thickness of the ridge core. This
will be further explained in the next section.

Scale Factor in Tables 3.4 and 3.5 represents the ratio of the prototype’s waterline
diameter to the model’s waterline diameter.

N in column 6 of Table 3.5 means “‘not available’ or ‘‘not measured™

Ice Sheet No. in column 3 of Tables 3.4 and 3.5 indicates what tests share the same ice
sheet, i.e., those tests share the common ice sheet for different test runs.

Ridge Type in column 5 of Tables 3.6 and 3.7 identifies two different types of ridges
which were constructed with **Dump Truck’” and ““Split Layer’” techniques, respectively.
The description of these two techniques are given in the next section.

oy, and o, in columns 6 and 7 of Table 3.4 represent the flexural strength for sheet ice

with top in tension and bottom in tension, respectively. The same ition applies to
column 6 of Table 3.5. o,, was not measured for many of the IME tests.

0, and g, in column 6 of Table 3.5 are the strength for ridges and have meanings
parallel to o, and oy,. The values of o, and o, Or 0, and gy, are separated with a forward

slash mark. No strength data were available for test C53.



Test Structure Ice Ice Tce LA O Test Scale
No. Orient. | Sheet | Speed Thk. Duration | Factor
No. (cm/s) (cm) (kPa) | (kPa) (seconds)

Col Interm. 1 2.6 2.6 73 N 80 30
C02 Interm. 1 9.8 2.3 73 N 30

C03 Interm. 1 4.8 23 73 N 30

C04 Interm. 2 2.2 3.3 166 N 110 35.2
C05 Interm. 2 3.8 3.7 166 N 50

C06 Interm. 2 6.2 37 166 N 20

C07 Interm. 3 2.0 24 29 24 105

C08 Interm. 3 4.0 23 29 24 45

C09 Interm. 3 6.0 22 29 24 40

C10 Interm. 4 2.2 4.0 67 58 118

C11 Interm. 4 4.1 3.8 67 58 55

C12 Interm. 4 6.1 4.1 67 58 30

C13 Interm. 5 2.0 1.7 67 N 110

Cl4 Interm. 5 4.3 1.6 67 N 55

Cl15 Interm 5 6.0 1.8 67 N 40

Cl16 Face-on 6 6.0 3.4 72 150 329
C17 Face-on 7 6.0 24 122 73 50

C18 Face-on . 6.1 2.1 59 N 30

C19 Face-on 7 6.2 2.3 21 N 30

C20 Face-on 8 59 S 37 N 70

C21 Face-on 8 5.8 5.7 17 N 60

c22 Face-on 9 59 3.4 134 N 40

3 [ Faceon | 9 | 60 | 33 | a1 | N 0| %
C24 Face-on 9 5.8 3.4 25 N 30

C25 Face-on 10 6.0 4.5 125 N 35

C26 Face-on 10 6.0 4.6 102 N 40

Table 3.4

Test Matrix for IME'’s Ice Sheet Tests
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Test Structure Ice Ice Ice A LN Test Scale
No. Orienta. | Sheet | Speed Thk. Duration | Factor
No. | (cm/s) | (cm) | (kPa) | (kPa) | (seconds)

c27 Face-on 10 6.0 4.7 82 N S0 323
C28 Face-on 11 5.7 4.4 81 63 35

C29 Face-on 11 5.7 4.2 45 N 45

C30 Face-on 11 57 4.5 26 N 45

C31 Edge-on 12 5.7 24 56 22 40

C32 Edge-on 12 5 2.0 27 9 40

C33 Edge-on 12 5.7 1.8 17 3 40

C34 Edge-on 13 5.7 3.5 112 71 60

C35 Edge-on 13 5.7 3.4 44 64 40

C36 Edge-on 13 5.8 3.4 25 13 75

C37 Edge-on 14 6.2 56 60 41 40

C38 Edge-on 14 5.9 5.6 40 40 110

C39 | Edgeon | 15 62 4.9 a4 39 45

C40 Edge-on 15 6.2 5.1 15 14 40

C41 Edge-on 15 59 5.4 12 14 50

C42 Face-on 16 6.0 33 41 40 45

C43 Interm. 16 6.1 3.0 41 40 45

C44 Edge-on 16 6.0 33 41 40 40

C50 Face-on 21 6.2 2.8 21 11 50

C54 Face-on 23 6.1 4.2 80 40 120

Cs5 Face-on 24 5.8 3.6 76 27 40

C56 Face-on 24 5.9 3.5 49 24 50

C57 Face-on 24 59 3.6 25 10 40

C60 Face-on 26 6.0 3.0 36 9 50

C61 Interm. 26 5.9 3.1 36 9 40

C62 Edge-on 26 6.0 3.1 36 9 40

Test Matrix for IME’s Ice Sheet Tests (cont’d)




Test Struc. Ice Ice Ice Dimension | o,/a,, or Test | Scale
No. Orien. | Speed Type (cm) 00y Dur. Fac.
(cm/s) (kPa)/(kPa) | (sec.)
Edge Ridge 58 x 16 (9) 70/N 323
Cc4s5 on 5.9 Sheet 26 1217 120
Edge Ridge 72 x 15(10) 95/N
Cé6 on 6.1 Sk 26 1711 100
C47A Edge Ridge 67 x 27 (8) 265/N %0
on 59
Sheet 29 207
catB Ridge 109x25(8) | 14N 60
Face Ridge 67 x 13 (7) 156/50
Cc4a8 on 5.9 Sheet 30 2005 55
Face Ridge 105 x 16 (8) 155/51
c49 on 5.8 Sh 34 205 55
Face Ridge 63 x 17 (8) 82/171
Gt | o | 62 [Mopeer 30 211 &0,
Face Ridge 60 x 15 (6) 137/199
Cs2 on 5.9 Sheet 32 3 70
Face Ridge 100 x 20 (9) N/N
Cs3 on 59 Sh 3.0 3 60
Cs8 Ridge 64 x 25 (6) 334/581 70
Face
on 6.0 Sheet 37 46/11
cs9 Ridge | 100x15(10) | 160/110 70
C63 Ridge 64 x 18 (5) 345/238 50 31.2
Edge 6.0
on Sheet 37 4822
C64 Ridge 100 x 20 (8.5) 130/120 70 323
C65 6.0 Ridge 62 x 35 (9) 231/208 70 312
Edge
s Sheet 33 5323
66 Ridge | 100x42(12) | 98/125 70
L=
Table 3.5 Test Matrix of IME's Ridge Tests
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Test No. | Ice Speed | Ice Type Ice Dimension Ridge Type Test
(cm/s) (cm) Duration
(seconds)
M41 1 Sheet 16.0 130
M42 6 Sheet 16.0 80
M43 4 Sheet 16.0 120
Sheet 16.0
M4 4 Ridge 100 x 43.5 Split Layer 130
Sheet 16.0
it 4 Ridge 100 x 32.7 Split Layer 150
M46 4 Sheet 16.4 50
Sheet 16.4
M7 4 Ridge 100 x 50 (33.5) Dump Truck 1
MS51 1 Sheet 9.5 160
M52 6 Sheet 9.5 80
Ridge 100 x 36.8 Split Layer 150
ME2 4 Sheet 9.5 120
Sheet 9.5
M4 4 Ridge 100 x 50 (28.0) | Dump Truck 1%
Sheet 12.4
Mol 4 Ridge 100 x 33.4 Split Layer 150
M62 4 Sheet 12.4 350
M63 Sheet 12.4 115
Mé64 6 Sheet 12.4 120
Sheet 12.4
M63 & Ridge 100 x 50 (23.8) | Dump Truck 130
Table 3.6 Test Matrix for IMD's Tests with 1:25 Scale Large Neck Model




Test Ice Ice Type Ice Dimension Ridge Type Test
No. Speed (cm) Duration
(cm/s)
1:25 Small Neck Model
M31 1 Sheet 15.8 125
M32 6 Sheet 15.8 100
4 Ridge 100 x 42.0 Split Layer 150
b3 4 Sheet 15.8 125
Sheet 15.8
s Ridge 100x32.0 | Split Layer -
M35 4 Sheet 14.8 50
Sheet 14.8
M6, 4 Ridge 100 x 50 (30) | Dump Truck 0
Sheet 14.8
M37 4 Ridge 100 x 50 (36.4) Dump truck 150
1:50 Large Neck Model
M71 1 Sheet 16.0 450
M72 6 Sheet 16.0 60
M73 4 Sheet 16.0 80
Sheet 16.0
Mt 4 Ridge 100 x 32.9 Split Layer 130
Sheet 16.0
M5 * Ridge 300 x 32.9 Split Layer 150
M76 4 Sheet 16.4 120
Sheet 16.4
weit s Ridge | 100x50(24) | Dump Truck | '°°
Table 3.7 Test Matrix of IMD’s Tests with 1:25 Scale Small Neck Model

and 1:50 Scale Large Neck Model
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3.4 Tested Ice

341 The Ice for ERC’s Tests

Saline ice was used for the ERC tests. The ridges were constructed utilizing a layering process
in which four techniques were used: spray ice, flooding between raised edges, piling up and
flooding of snow, and layering down blocks of ice pieces (Metge and Weiss 1989, Metge and

Tucker 1990).

Flexural strength and elastic modulus of sheet ice and ridge ice were determined by a
number of in situ beam tests. The beams were loaded downwards to submerge and break;
therefore, they failed in tension at the bottom. The measured strengths represented by g, for
sheet ice and o, for ridge ice are given in the column 3 of Table 3.8. The related elastic moduli,
E, for ridge ice and E, for sheet ice, are given in column 4 of the same table. Ridge strength was
also measured by the “‘ridge fragment lift"" tests in which a ridge fragment was lifted out of the
water until it broke under its own weight. In this case, the ridge failed in tension at the top. This

strength, represented by oy, is listed in the column 5 of Table 3.8.

Sheet ice density (p,), buoyancy (p,) and friction coefficient u (between ice and a painted
steel surface) were also measured for each test (except for ERC's tests Y2T5R1 and Y2T5R3),

and are listed in Table 3.8.
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o r';';e OOy | BB | oy 5,};“, Tf,fp_ PPy | B
«pa) | OMPD) @) | O | gy
(kPay _(kg/mr’)
YITIR] | Sheet 165 1136 5.6 -5.0 945/90 083
YITIR2 | Ridge 128 352 154 6.0 -5.0
YITIR3 116 301 73 -5.0
YIT2R2 | Sheet 183 836 4.0 913/120 | .133
YIT2R3 | Ridge 182 349 115 6.0 2.7
YIT2R4 | Ridge 162 295 170 7.3 -3.7
Y1IT3R1 | Ridge 86 271 114 6.0 6.0 932/102 | .036
YIT3R2 | Sheet 249 1129 -5.0
YIT3R3 150 281 113 73 4.0
YIT4R1 | Sheet 159 1591 20 965/89 038
Ridge 119 580 55 2.0
Y1T4R2 | Ridge 86 106 115 -2.0
Y2TIRL | Sheet 50 203 100 | -10.0 f 917/100
Y2TIR2 | Sheet 50 203 10.0 -10.0
Y2T2R1 | Sheet 35 288 7.8 2.0 910/103 | 0.071
Ridge 25 50 8.0 2.0
Y2T2R2 | Sheet 141 1154 78 2.0
Ridge 40 80 83 34 -2.0
Y2T3R1 | Sheet 135 569 19 930/88 | 0.078
Ridge | 138 659 157 2.0
Y2T3R2 i 108 177 0.0
Y2T4R1 | Sheet 141 853 15 930/120 | 0.085
62 187 122 4.0
Y2T4R2 | Ridge 39 114 132 -3.0
Y2TSR1 | Sheet 36 -1.0
Ridge 20
Y2TSR2 | Ridge 41 2i3
Table 3.8 Ice Properties for the ERC Tests
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34.2 The Ice for IME’s and IMD’s Tests

IMD used the EG/AD/S model ice (see Timco, 1986 for details), and IME used a modified

version of the EG/AD/S model ice (Lau er al 1993).

The two methods used in IMD ridge construction are the Split Layer (SL) and the Dump
Truck (DT) techniques. In the SL technique, several layers of level ice strips were laid one over
the other to form a ridge. The DT technique requires dumping small ice pieces into the ridge
area to form a ridge comprised of randomly orientated pieces of broken ice. Besides the DT
technique, IME also utilized a combination of the DT and the layering techniques, i.e., dumping
a layer of ice pieces and allowing them to solidify before the next layer was dumped. In both
IME’s ridges and IMD's DT ridges, there was a relatively large unconsolidated layer at the
lower part of a ridge. In Tables 3.5 through 3.7, the ridge thickness includes this unconsolidated

layer, and the numbers in are the thi of the idated layer.

The ice properties for IMD's tests are given in Table 3.9, and those for IME tests were
included in Tables 3.4 and 3.5. In Tables 3.4, 3.5, 3.8, and 3.9, o,, and o, represent flexural
strength of sheet ice in tension at the bottom and at the top, respectively, and p, and p, are the
ridge ice density and buoyancy, respectively. The elastic moduli for IMD’s ice can be
determined by the ratio of E/o,, given in column 4 of Table 3.9. IME’s test report does not give

any i ion on the moduli. According to Timco (1986), a value of 2150 might be chosen

for the ratio of E/g,,.
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Tt 0w | 0 | B | PPy | O | Ox | E: | Pdoe | B
(kPa) | (kPa) (kg/m’)/ | (kPa) | (kPa) | (MPa) | (kg/m’)/
(kg/m’) (kg/m’

M31 | 444 | 798 | 4810 | 916/86 0.11
M32 | 441 | 794 | 4810 | 916/86 0.11
M33 | 436 | 787 | 4810 | 916/86 | 993 | 103.7 | 77.0 | 899/104 | 0.11
M34 | 425 | 77.1 | 4810 | 916/86 | 48.7 | 77.7 | 74.5 | 904/98 | 0.11
M35 | 294 | 424 | 3796 | 92181 0.09
M36 | 293 | 423 | 3796 | 921/81 | 162 | 168 | 59 0.09
M37 | 289 | 42.1 | 3796 | o281 | 325 | 203 | 47 0.09
M4l | 411 | 744 | 5212 | 914/88 0.09
Ma2 | 406 | 735 | 5212 | o14/88 0.09
M43 | 404 | 729 | 5212 | 914/88 0.09
Mas | 402 | 723 | 5212 | o1a/88 | 1122 | 1262 890/112 | 0.09
Mas | 397 | 712 | 5212 | 914188 | 69.2 | 109.8 901/101 | 0.09
M46 | 197 | 390 | 4615 | 92379 0.09
Ma7 | 196 | 388 | 4615 | 92379 | 265 | 345 | 66 0.09
Ms1 | 307 | 43.4 | 3002 | 928/74 0.09
M52 | 302 | 416 | 3002 | 928/74 0.09
M53 | 299 | 408 | 3002 | 928/74 | 80.5 | 84.4 | 183.4 | 905/97 | 0.09
Msa | 273 | 325 | 3002 | 92874 | 109 | 20.1 | 24 0.09
M6l | 225 | 365 | 3213 | 919/84 | 655 | 844 | 160.0 | 896/107 | 0.08
M62 | 225 | 360 | 3213 | 919/84 0.08 |
M63 | 225 | 354 | 3212 | 919/84 0.08
M64 | 225 | 35.1 | 3213 | 919/84 0.08
M65 | 225 | 342 | 313 | 919584 | 120 | 17.1 | 110 0.08
M7t | 337 | 702 | 8494 | 918/84 0.08
M72 | 332 | 69.7 | 8494 | 918/84 0.08
M73 | 328 | 69.3 | 8494 | 918/84 0.08
M74 | 325 | 69.0 | 8494 | 918/84 | 135.5 | 111.7 | 2822 | 897/106 | 0.08
M75 | 32.0 | 68.5 | 8494 | 918/8¢ | 1355 | 111.7 | 282.2 | 897/106 | 0.08
M76 | 187 | 42.8 | 5383 | 920/82 8
M77 | 184 | 419 | 5383 | os2 | 127 | 158 | 96 0.08

Table 3.9 Ice Properties of IMD Tests
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Test Results

The time history of the measured forces and moments for these tests were documented in four

test reports (Metge and Weiss 1989, Metge and Tucker 1990, Irani er al 1992, Lau er al 1993).

The maximum values of the forces on tested structural models are listed in Tables 3.10 through

3.12.

The following are some notes for these tables.

In Tables 3.11 and 3.12, the test numbers followed by the word R in column 1 of these

tables are ridge tests.

Fu, Fny, and F,,, represent the X, Y, and Z components of the maximum global loads,
respectively; fo,, f,, and f_, denote the X, Y, and Z components of the maximum neck
loads, respectively; gm, Emy and g, represent the X, Y, and Z components of the

maximum collar loads, respectively.

The numbers given in theses tables are the absolute values of the force magnitudes.
Under the coordinate system defined in Section 3.2.3, the Z (vertical) components of the

loads are negative in sign because their directi is opposite to the positive

of Z axis (up . Simil , the sign for the Y component also varies from

test to test.
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® A few numbers presented in Table 3.10 are different from those given in the summary
of the ERC test reports. The summary of the maximum forces given in ERC's test
reports contains a few errors. If the numerical values from the summary, data records,
and plotting were the same or were very close, the values given in ERC’s summary are
adopted here. Otherwise, the values from the plotting and/or data records are given in

Table 3.10 with those from ERC’s summary included within a parenthesis.

In Tables 3.11 and 3.12, the numbers labelled with a * are from those records of force
history which have a shape jump and give an un-reasonably large value of the maximum

forces.

® In some IME tests, ice pieces dropped into the inside of the cone through the open panel
where the far back facet should have been located; this caused ice jamming on the
supporting frame and affected the output of the main dynamometer which measured
global loads, thus causing some errors. To eliminate these errors, as suggested by the
IME test team (Irani ef al/ 1992), the sum of the forces on the facets, collar, and neck

were taken as global forces.
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Global Forces Neck Forces
Test Ice
No. Type Fu By Fu fx fay
(kN) (kN) (kN) (&N) (N
YITIRL | Sheet 40 7.9 (0) 50 L5 L5
YITIR2 | Ridge 130 20 (10) 150 7.0 2
YITIR3 | Ridge 103 33.4 (15) 185.8 (130) 18.0 752
YIT2R2 | Sheet 10 8 8 0.8 0.8
YIT2R3 | Ridge 160 30 (10) 190
YIT2R4 | Ridge | 149.2 (145) 60 170 83 1.0
YIT3RI | Ridge 94.3 (92) 22.2 (18) 116 135 3.0(L.5)
YIT3R2 | Sheet 17 11 (0) 19
YIT3R3 | Ridge 125 13 138 6.5 2.0 (0)
Sheet 12 0 15 0 0
YIT4R1
i 32 15 (12) 40 2 0
YIT4R2 | Ridge 40 21.8 (5) 50 35 1.22 (0)
Y2T1R1 | Sheet 10 2.1 12.6 (11) 0.7 0.2 (0)
Y2T1R2 | Sheet 3.2(1.5) 6 4 0.5 (0.8) 0.75 (0.3)
Sheet 19 7 22 5 0
Y2T2R1 N
Ri 63 13 40 18 7
Sheet 20 S 20 8 2
Y2T2R2
Ridge 72 19.6 (18) 60 34 9 (M
Sheet 30 5 38 2.5 0
Y2T3R1 [
Ridge 66.5 (68) 25.9 (28) 72 (70) 19 7.1Q2)
Y2T3R2 | Ridge 68 43 8 13 17
Sheet 30 0 35 S 0
Y2T4R1
Ridge 63 17 (0) 75 6.8 1.0 (0.5)
Y2T4R2 | Ridge 83 20 100 (97) 20.5 4(0.5)
Sheet 2 0 4 1] 0
Y2TSR1 [
Ridge 7 2.4 (0) 8.5 0.8 (1) 0
Y2TSR2 | Ridge 12 2 15 0.3 (0) 0
Table 3.10  ERC Test Results
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Test Global Forces Max. Neck Forces Max. Collar Forces
No- IF | Fay | P | fu | far | fw | B | e | Em
&N) | &N) | (kN) ™ ™ ™ ™ @™ [ ™)
co1L 0.24 0.07 0.25 30 10 10 40 10 20
C02 0.23 0.08 0.24 40 0 0 30 10 10
Cco3 0.22 0.05 0.25 30 10 0 40 10 20
Co4 0.37 0.08 0.42 40 10 10 40 10 20
C05 0.32 0.12 0.37 30 10 10 30 20 10
Co6 0.26 0.13 031 30 30 0 30 10 10
co7 0.16 0.05 0.20 10 0 0 20 10 10
Co8 0.18 0.05 0.19 10 0 0 20 0 10
co9 0.19 0.06 0.21 10 0 0 40 10 10
C10 0.45 0.11 0.51 40 10 10 50 20 20
Ci1 128 ¢ 0.17 111 100 * 30 0 490 * 70 210 *
c12 0.49 0.14 0.60 30 10 0 40 10 20
C13 0.12 0.06 0.16 10 0 10 10 0 10
Cl4 0.10 0.03 0.13 0 0 0 10 0 0
Cl15 0.10 0.04 0.13 10 0 0 10 0 0
C16 0.73 0.10 0.61 120 * 10 10 200 * 10 80 *
C17 0.20 0.07 0.25 40 0 10 50 * 10 20
C18 0.16 0.06 0.19 10 10 0 20 0 10
c19 0.18 0.03 0.20 10 0 [ 30 [ 0
C20 0.63 0.18 0.71 100 * 10 10 120 * 30 50
(o]} 0.60 0.14 0.62 100 * 10 10 110 * 10 50
c2 0.36 0.13 0.49 30 10 0 30 30 20
23 0.37 0.13 0.40 40 20 10 90 * 10 40
C24 0.39 0.07 0.39 80 * 10 10 60 10 30
[er2] 1.81* 0.30 141 * | 280 * 20 10 310 * 60 140 *
26 0.95 0.40 0.98 50 10 0 270 * 10 110 *
27 0.85 0.24 0.89 50 10 10 70 10 30
c28 0.54 0.17 0.58 50 10 10 90 * 10 40
c29 0.71 0.12 0.65 40 10 10 200 * 10 10
C30 0.37 0.09 0.44 30 0 10 30 10 10
C31 0.10 0.04 0.17 0 0 0 10 0 10
C32 0.09 0.03 0.13 0 0 0 10 0 0
C33 0.08 0.04 0.13 0 0 0 10 0 0

Table 3.11 IME Test Results



Test Maximum Global Forces | Max. Neck Forces | Max. Collar Forces |
No: Fo |Fay [Fu [fu [fy [f= [Bm 8w |Em
&N) |KN) | N) | (N) ™) ™ ™ N ™
C34 0.25 0.11 0.35 20 10 0 20 10 10
C3s 0.24 0.15 0.31 20 10 0 30 10 10
C36 0.19 0.05 0.28 10 0 10 20 0 10
C37 0.67 0.14 0.80 50 10 10 50 20 30
38 0.67 0.18 0.83 70 * 40 10 80* |20 40
c39 0.42 0.08 0.57 30 10 0 40 10 20
c40 0.35 0.09 0.45 20 10 10 30 10 20
C41 0.27 0.05 0.41 20 10 20 30 10 10
C42 0.24 0.04 0.22 10 0 0 20 10 10
C43 0.28 0.07 0.27 10 0 10 20 10 10
C44 O.IS_‘ 0.02 0.18 10 0 0 10 0 10
C45 R 0.53 0.15 0.60 0 0 0 10 10 10
C46 R 0.75 0.31 0.82 0 0 1] 10 10 10
C47AR | 0.78 0.21 0.74 0 0 0 10 0 10
C47BR | 0.93 0.21 102 0 0 0 10 0 0
C48 R 0.52 0.08 0.42 10 1] 0 20 0 10
C49R 0.90 0.23 0.78 80 * 10 50 60* |10 20
Cs0 0.34 0.04 0.29 10 0 10 10 0 0
C51R L1l 0.35 0.91 10 [ 0 10 10 20
C52 R 0.96 0.3 0.80 10 10 0 60 50 30
CS3R 1.28 0.47 1.04 10 0 0 20 10 10
Cs4 0.71 0.16 0.57 S0 10 60 * 20 20
Css 0.44 0.08 0.35 20 0 10 30 10 10
Cs6 0.44 0.08 0.34 20 0 10 30 10 10
Cs7 0.43 0.07 0.38 20 0 20 20 0 10
C58 R 1.57 0.37 1.17 20 10 30 30 10 10
CS9R 2.02 0.40 1.53 10 0 10 40 10 20
€60 0.32 0.05 0.27 10 0 [} 20 0 10
C61 0.30 0.06 0.24 10 0 10 20 10 10
C62 0.20 0.05 0.20 10 0 0 10 0 10
C63 R 0.85 0.25 0.79 20 10 10 20 0 10
C64 R 117 0.26 1.17 30 20 10 40 20 50
C65 R 0.98 0.34 0.92 10 0 0 10 10 10
C66 R 2.17 0.56 177 20 10 10 50 20 20

Table 3.11 IME Test Results (cont’d)



Test No.

M33 R

M36 R

59

M37R

M4l

M42

M43

M44 R

M45 R

M46

M47 R

6.34

3.68

9.14

7.98

Table 3.12

IMD Test Results



Chapter 4  Analysis of the Tests

This chapter consists of two parts. The first part the i it ism and the

causes for the maximum ridge loads, and are presented in Sections 4.1 and 4.2, respectively.

The problem about the ratio of the vertical to the hori of

ridge load is also addressed in Section 4.2. Sections 4.3 and 4.4 comprise the second part that
discusses the effects of various parameters on the cracking pattern and ice loads. The effects of
ridge width, structural (or ridge) orientation, and neck size on ridge forces as well as ridge crack
pattern are analyzed in Section 4.3. Section 4.4 focuses on the analysis of the effects of

structural orientation and neck size on the sheet ice forces.

4.1 Typical Interaction Scenario

The time history records of the ice forces experienced by the MCS models were compared with
the time-synchronized output of a set of video cameras. Several modes of ice sheet and ridge
failures have been identified from the video records and the information given in the test reports
(Metge and Weiss 1989, Metge and Tucker 1990, Irani er a/ 1992, Lau er al 1993) and are

summarized in this section.

Following a brief description of the sheet ice failure process in subsection 4.1.1, three

failure patterns of the tested ridges will be presented in subsections 4.1.2, 4.1.3, and 4.1.4,
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respectively. These descriptions are mainly based on the ERC and IMD tests.

4.1.1

The Process of Sheet Ice and MCS Interaction

The typical process of ice sheet failure is described as follows:

1

When an ice sheet contacts the structure and the sheet begins to be slightly deflected
upwards, a pair of radial cracks initiate from the edges (or corners) of the ice sheet in
contact with the front facet, forming a series of three truncated wedges against the front

facet and the two front-side facets, respecti . This i ion usually alocal

peak value of global sheet ice force on the structure. After this initial crack, the global
force may sharply drop to a lower level.

As the ice sheet continues to move forwards, it is further deflected upwards and the force
continues to increase. At a certain stage, one or more circumferential crack(s) is (are)
formed. The global force again drops from another local peak value.

The broken ice pieces gradually ride up on the cone. During this period of time, some
large ice pieces may also be broken into smaller pieces some of which may fail down
either on the approaching ice sheet or into the water. The force record is quite flat or
gently increasing.

As the above process repeats more or less in a regular rhythmic manner, the ice pieces
in front of the structure gradually accumulate to form a rubble pile which helps to prop
some larger ice pieces and make them ride up so high that the top of the neck can be

reached. This event together with the ongoing cracking process may produce the
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maximum global ice sheet force.

The above interaction process is typical only for ERC tests, IMD 1:25 model tests, and
part of IME tests with the structural model in face-on orientation. Even in these tests some
different events were observed. For instance, in the ERC test Y2T3R1 (sheet ice test) in which
the ice sheet had a straight leading edge, the initial crack was a circumferential crack instead of
radial crack(s). The ice used in the IMD 1:50 model tests was softer, and the cracks were much
closer to one another, forming smaller pieces, and lowered the ride-up height. The ice failed in
a mixed mode of shearing and crushing and the structural model appeared to plough its way

through the ice sheet with a narrow broken channel behind it.

For a structural model in edge-on orientation, as that in the IME tests, its front edge
acted like an inclined wedge to initiate a radial crack. As the ice sheet continued moving, two
truncated ice wedges (or more) rode up on the two front facets, forming circumferential cracks.
The cone’s two front facets were fully covered by small ice pieces which were clearly

demarcated in two groups by the front edge line of the structure.

4.1.2 Ridge Failure Pattern I

The failure process described below generally applies for those ridges with high strength. It is

believed that this would be the predominant failure pattern for multi-year ridges. The failure

patterns of most of the ridges tested in the ERC’s basin and the ridges of IME's tests C51, C53,
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C58, and C59 fall in this category.

The i ion events ibed below give the seqt of the ice cracking and clearing
process:
1. Cracking of Sheet ice in fa
‘When a ridge with its ing ice sheet the model, the ice

sheet in front of the ridge (between the ridge and the structure) breaks, but does not
necessarily separate from the ridge. In some cases, a circumferential crack could reach
the front edge of the ridge, resulting in limited local separation of part of the ice sheet
from the ridge.
ion of into Lo e

As the ridge with the broken ice sheet moves forward, the lower part of the structure
contacts the lower edge of the ridge and begins to indent into it. Both the horizontal and
the vertical components of the global force increase sharply to a magnitude much higher
than the sheet ice force. In the meantime, the ice sheet between the ridge and the
structure, if attached to the ridge, may separate and break. The lower part of the
structure (the main cone body) is usually covered with the broken ice pieces formed
during the earlier ice sheet cracking process and are pushed up by the ice ridge
movement.

Initial Cracking

As the i ion of ice ridge the vertical force becomes large

enough to lift the ridge slightly, and causes an initial crack. The crack usually starts at
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or close to the center line of the structure’s front facet or at one of the facet corners, and
extends across the ridge width. Sometimes the crack even extends into the ice sheet
behind the ridge. Although the lifting up of the ridge was discernible, no significant
rotation was noticed up to this stage. The ice pieces riding up on the structure’s surface
might partly fall down when the ridge’s initial crack occurs. The force associated with
this cracking process kept on increasing until the crack occurred; the force history
usually had a progressive increase followed by a sharp decrease. The peak value of this

force could be the i force i by the L or just a local peak.

. Hinge Cracki

As the ridge and sheet continued to move further forwards, the initial crack quickly
widens and extends further into the ice sheet behind the ridge. In some cases, the crack
propagates even into the next ridge which was several meters apart from the interacting
ice ridge. The ice pieces located in the front of the structure are pushed up further. The
ridge itself becomes noticeably deflected upwards. When this deformation process
progresses o a certain stage, a pair of cracks, usually termed as hinge cracks, occur in
the ridge at some distance away from the center line (or the initial crack). During this
hinge cracking process, the surrounding ice sheet also cracks. The hinge cracks together
with a long circumferential crack formed behind the ridge generate two large ridge
fragments. In many cases, the fragments have a piece of ice sheet segment attached to
their trailing edges. In other cases, the ridge segments are separated from the sheet. The
global ice force continues to increase during this failure process and would reach its

maximum value at the moment before or when the hinge cracks occurred. Again, a
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sudden increase in the force history is associated with the hinge crack occurrence, and
then the force levels off.

5. Eurther Cracking and Clearing Process
After the hinge cracking, the cracked ridge and ice pieces are pushed upwards to a
considerable height and rotate around both X and Y axes. The ridge fragments and the
attached sheet segments may crack again. As the motion continues, the ridge fragments
and some sheet ice pieces are pushed further forwards and upwards to ride up on the
structure. During this process, two noticeable events may occur. The first event occurs
for the case in which the ridge fragments and large ice pieces are cracked into smaller
pieces during the riding-up process. In this case, the pieces get cleared by sliding to the
back of the structure or back on the ice in front of the structure. The force exerted on
the structure for this case may be lower than the peaks for the hinge or the initial crack
process. The second event occurs for the case when some ridge fragments and sheet ice
pieces still remain too large to be cleared away. These large sheet ice pieces and ridge
fragments ride up the structure to such a height that they reach the top of the neck
(recorded highest one in ERC’s Year-One tests was about a meter above the top of the
neck). Under some circumstances, a few large ridge fragments and ice pieces could be
jammed in front of the neck and could rest on the main cone surface for a while. This
in turn prevents the clearing the ice pieces that ride up the front facets of the structure
and makes the ice sheet behind more difficult to crack. As a result, this would generate

the maximum force acting on the structure.
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The above description is general. It does not cover some particular events for some of

the particular test runs. For instance, the hinge cracks in ERC test YITIR3, Y1T2R3 and
'Y2T4R2 were followed by a secondary radial crack, but their overall failure process is different

from that presented in the next subsection.

Compared with the interaction process for a ridge against a SCS described in Section
2.1.1 of Chapter 2, this ridge failure pattern has some similarities to that for the case of SCSs.

This means the faceted surface may not significantly affect the failure process of a ridge.

4.1.3 Ridge Failure Pattern IT

This failure pattern was mainly observed from IMD's Split Layer (SL) ridge tests. The ridges
for ERC tests Y2TSR1 and Y2TSR2 and the ridge for IME’s test C48 had a similar failure
pattern. Before the initial cracks are formed, the interaction process for these ridges is basically
similar to that described in the last subsection. The description being given here focuses on what

is different, i.e. the process of ridge cracking.

‘When the structure starts deflecting a ridge, the ridge slightly rides up on the structure’s
front facet. Then, a pair of cracks begin at the two corners of the front facet and run gradually
away from each other till they cross the width of the ridge. Almost simultaneously, a pair of
hinge cracks are formed, each on one side of the structure, at an approximate distance of 1

meter from the corner of the front facet (in the case of IMD tests). This pair of hinge cracks
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propagate and trend to converge toward one another till they meet in the sheet behind the ridge.
The portion of the crack in the ice sheet is parallel to and very close to the trailing edge line of
the ridge. The radial and hinge cracks break the central section of the ridge into three pieces,
one with a trapezoidal shape on the front facet and the other two triangular pieces on either side

of the front facet.

As the ice moves forwards further, the trapezoidal piece is pushed up on the front facet
and may ride up to reach the neck. The two triangular pieces are pushed up a little, and then
slide down on the two front-side facets and finally fall downstream. Although some complex
riding-up and jamming events were observed in the IMD tests, the clearing process is, generally

speaking, smoother than that for the Failure Pattern I.

4.14 Ridge Failure Pattern IIT

As Table 3.9 indicates, the Dump Truck ridges tested in the IMD tank were weaker than the
Split Layer ridges. These weak ridges failed in a different manner. The ridge for IME test C64

may also fall in this category.

The Dump Truck ridges had a thick unconsolidated layer at the bottom. When the
structure begins to contact a ridge, it indents the lower part of the ridge and the ridge bottom
experiences a crushing process. This process continues till the interaction force becomes large

enough to deflect the ridge upwards.
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As the ridge get deflected, a pair of radial cracks form and extend from the two corners

of the front facet to the trailing edge of the ridge. At almost the same moment, a circumferential
crack occurs in the ridge. These cracks break three relatively small pieces away from the ridge.
The remaining portion of the ridge is pushed forwards by the ice sheet behind it; the upward
moving ridge in turn pushes the ridge pieces up on the structure. A little later, the structure once
again contacts the new local front edge of the ridge and forms another circumferential crack
which may still be within the ridge, or may extend into the interface of the ridge and the ice
sheet behind. This crack breaks once again more pieces away from the ridge. This process may
repeat once or twice, depending on the ridge's consolidation condition and its width. The
maximum force is usually reached when the structure is fully covered by ice pieces and a fresh

cracking process was about to start or is progressing.

4.2 Ridge Crack Loads and Maximum Loads

Previous SCS tests (Lewis and Croasdale 1978) indicated that the peak (maximum) force
occurred when the ridge was cracked the second time (hinge cracks) at some distance away from
the first crack (center or radial crack). It was stated in section 4.1 that the maximum force for

a MCS model, especially for those ERC tests, could occur during any of the three events: initial

cracking, hinge cracking, and clearing process. To clarify the i ip between the
load and crack loads, the video and computer records and the plots of force history given in the
test reports have been reviewed and checked. The linking of the ice failure events and their

corresponding loads through the recorded test time has been recognized for the ERC tests and
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the IMD tests. Because the link between load history and crack events has not been identified

for the IME tests, only the results of the ERC and IMD tests will be analyzed in this section.

4.2.1 ‘What Causes the Maximum Loads ?

Table 4.1 lists the ERC test data that show the initial (radial) crack force, hinge crack force, the
maximum force as well as the interaction events which gave rise to the maximum loads. The
parallel information for the IMD tests is given in Table 4.2. In these tables, X; and Z; represent
the horizontal and vertical initial crack forces, respectively, X; and Z, are for the horizontal and
vertical hinge crack forces, and F,, and F,, denote the horizontal and the vertical components

of the i global forces, resp

Table 4.1 indicates that initial crack, hinge crack, and the clearing process, are all a
possible source for the maximum forces. This is quite different from the results of the SCS tests

(Lewis and Croasdale 1978, Abdelnour 1988).

As shown in Table 4.1, the ridge riding up (or resting on) the structure is one of the
main causes for the maximum loads. For instance, in the last portion of the clearing process in
test YITIR3, two huge ridge segments slowly slid over the side facets of the structure and a
large ridge fragment sitting on the front facet with its top leaning against the front side of neck
yielded a very high maximum vertical global load and high horizontal neck load (see Table

3.10). A similar situation was observed in test Y1T2R3 where a few large ridge fragments rode



up high on front and side facets and exerted extremely large forces on the structure.

Center First
Crack Hinge Maximum Load and the Interaction Event
Test Load Crack
No. Load Load | The Events Resulting in the
&N) &N) 0 Ridge Loads
X | Z | Xa | Zy | Fax | Fu
YITIR2 | 76 | 113 | 130 | 150 | 130 | 150 | 1st Hinge Crack
YITIR3 | 90 | 110 [ 103 | 130 | 103 | 186 | Ist Hinge Crack/Ridge Riding
YIT2R3 | 150 | 120 | 140 | 110 | 160 | 190 | Ridge Riding and Resting
YIT2R4 135 | 145 | 149 | 170 | Ridge Riding
YIT3R1 | 73 97 83 | 108 | 94.3 | 116 | Ridge Riding and Resting
YIT3R3 | 56 70 80 91 | 125 | 138 | Ridge Riding and Resting
YIT4R1 | 28 32 32 40 32 40 | Hinge Crack
YIT4R2 | 40 50 35 40 40 50 | Radial Crack
Y2T2R1 | 20 30 25 30 63 40 | Ridge Riding
Y2T2R2 | 32 | 25 | 28 | 35 | 72 | 60 | Ridge Riding, Breaking Fragment
Y213R1 | 60 | 72 | 42 | 60 | 66.5| 72 | Ridge Riding/Radial Crack
Y2T3R2 | 57 68 68 83 68 83 | Hinge Crack
Y2T4R1 | S8 68 63 75 63 75 | Hinge Crack
Y2T4R2 | 51 63 76 97 83 100 | Many E Riding
Y2T5R1 4 8.5 7 8.5 | Radial Crack
Y2TSR2 | 12 15 12 15 | Radial Crack
Table 4.1 Crack Loads and Maximum Loads for the ERC Tests
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Table 4.1 also shows that 7 ridges had their maximum loads associated with either radial
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or hinge crack. In addition, one component of the maximum forces for each of other two ridges
reached its maximum value during the hinge crack process. It is obvious that the cracking
process, either for central crack or hinge cracks, is still 2 major interaction event to give rise
to the maximum ridge load on a MCS. Even in the cases of the tests YIT3R1 and Y2T3R1
where at least one component of the maximum force was caused by riding-up process, the crack
force(s) is only slightly lower than the maximum value. All these indicate that the cracking

process should still be considered at the first place for the maximum ridge load estimation.

Initial Crack Second Crack Maximum Loads and the Interaction Events
Loads Loads

Test (&N)
No. (kN) &N)

X Z Xu Zy Fue F.. | Events

M33 | 21.07 | 20.75 9.8 12.8 | 21.07 | 20.75 | ridge separating from sheet

M34 | 14.57 | 14.92 14.57 | 14.92 | radial and hinge cracks
M36 | 6.44 | 7.61 9.09 | 10.92 | ridge riding, sheet cracking
M37 | 10.15 | 10.73 | 12.43 | 12.6 | 12.43 | 12.6 | radial and hinge cracks
M44 | 2551 | 235 25.51 | 23.5 | radial and hinge cracks

M45 | 13.96 | 12.29 | 13.46 | 12.69 | 13.69 | 12.69 | initial and second cracks

M47 | 9.76 878 | 14.84 | 13.47 | 14.84 | 13.47 | 2nd radial and hinge cracks
MS53 5.51 4.74 2.2 2.19 5.13 4.47 | ridge ing from sheet
M54 7.68 6.05 7.68 7.60 | radial & hinge / clearing

M61 | 10.86 | 10.36 6.3 6.0 10.86 | 10.36 | radial and hinge cracks

M65 7.32 7.56 7.32 6.1 8.4 8.83 | 3rd radial and hinge cracks

M74 | 15.17 | 14.89 | 5.46 4.88 15.17 | 14.89 | initial radial crack

M75 19.2 19.7 | 16.59 | 16.1 19.76 | 19.7 | 3rd radial and hinge crack
M77 | 4.64 5.17 9.14 7.68 9.14 7.98 | Ist crack / clearing

Table 4.2 Ridge Crack Loads and Maximum Loads for the IMD Tests
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Because it was difficult to distinguish the moment of occurrence for the radial cracks

from that for the hinge crack(s) for most of IMD’s ‘‘dump ridge’’ tests, the ‘‘Initial Crack
Loads™ and the “‘Second Crack Loads’’ shown in Table 4.2 are forces associating with the first
group and the second group of cracks, respectively. Each of these groups of cracks consist of
radial and hinge cracks. The maximum force might occur when the third or fourth group of

radial and hinge cracks were occurring if there were more than two groups of cracks formed.

Nine out of 14 ridges (total) for the IMD tests generated their maximum forces within
the cracking process, and others showed the maximum forces during the process of either the
ridge separating from the sheet or the clearing of ice pieces. Again, it indicates that the

maximum forces may likely occur during the ridge cracking process.

4.2.2 Horizontal and Vertical Ridge Forces

Most ical models for the prediction of ridge forces ona SCS (Wang 1984, Croasdale 1980,
Kim and Kotras 1973) used Equation (2.1) to calculate one component of the global force from

the other. Thus, validation of Equation (2.1) is of certain importance.

The ratio of the two components of the maximum forces for all the ridge tests together
with those for the ERC initial and hinge crack forces were calculated and are presented in Table
4.3. ““E.”", used as a column head in this table, means the ratio in the column was calculated

with Equation (2.1), while the definition for other symbols is the same as those for Tables 4.4
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and 4.5. The angle used in the equation is the sloping angle of the main cone facet, i.e., 39.8°.
Because the friction coefficients required for Equation (2.1) were not measured in the IME tests,
this equation has not been applied to these tests. It should be noted that Equation (2.1) was based
on a coordinate system with its z axis downwards, and the coordinate system used in this thesis
and all the tests has its z axis upwards. Therefore an negative sign should be added in front of

right side of the equation for the present system.

ERC'S TESTS IMD'S TESTS IME'S TESTS
Test No. | X/Z, | Xy/Zy | For/Fa E. Test | Fol/Fra E. Test For/Foa
No. No.

YITIR2 | 0.673 | 0.867 0.867 M33 1.015 C45 0.883
YITIR3 | 0.818 | 0.792 0.554 0564 M34 | 0977 Loe C46 0.915
YIT2R3 | 1.250 | 1.273 0.842 M36 | 0.832 C47A 1.054
YIT2R4 0.931 0.876 L1087 M37 | 0.987 0998 C47B 0.912
YIT3R1 | 0.753 | 0.769 0.813 M44 | 1.086 C48 1.000
YIT3R3 | 0.800 | 0.879 0.906 0.8%6 M4s 1.079 C49 1.154
YIT4R1 | 0.875 | 0.800 0.800 M57 1.102 Cs1 1.220
YIT4R2 | 0.800 | 0.875 0.800 0.500 MS3 | 1.148 Cs52 1.200
Y2T2R1 | 0.667 | 0.833 1.575 M54 | 1011 Cs3 1.231
Y2T2R2 | 1.280 | 0.800 1.200 0.961 M61 | 1.048 Cs8 1.342
Y2T3R1 | 0.833 | 0.700 0.924 M65 | 0.951 0372 C59 1.320
Y2T3R2 | 0.838 | 0.819 0.819 0575 M74 1.019 C63 1.076
Y2T4RI | 0.853 | 0.840 0.840 M75 | 1.003 C64 1.000
Y2T4R2 | 0.810 | 0.784 0.830 0-988 M77 | 1.145 C65 1.065
Y2T5R1 | 0.824 0.824 C66 1.226
Y2T5R2 | 0.800 0.800

Average | 0.858 | 0.854 0.892 | 0.970 1.029 | 1.005 1.086

Table 4.3 Horizontal and Vertical Ridge Forces for all the Tests
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Strictly speaking, the ratio should be calculated for the horizontal and vertical forces
occurring at the same moment. In this sense, the ratio of the two components for the initial and

hinge crack loads are i , a few ratios for some ridges’ maximum

force are only nominal because the il i and the i vertical forces were

generated during different interaction events and at different instants in the interaction history.
These include ERC’s YITIR3, Y2T3R1, and IMD’s M45, M54, M75, and M77. Fortunately,

the differences were not very large, except for the case of Y1TIR3.

Table 4.3 shows that the results of Equation (2.1) for the IMD tests agree well with those
measured, but the calculated values for the ERC tests are significantly larger than the measured

ones. Also, the data for the ERC tests are relatively scattered.

4.3 Influence of Various Parameters on

Ridge Failure Process and Forces

This section presents the analysis of the effect of three tested factors which are, namely, the
structure or ridge orientation, the size of the structure’s neck, and ridge width. Since the
structures used in the IMD tests were all in face-on orientation and the ridge widths were the
same for most of its tests, this series is used only for the analysis of the effect of neck size,
which is arranged in the subsection 4.3.3. The ERC and IME series tested both the orientation

factor and ridge width, thus the analysis of these factors are based on these two test series. In
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addition, the IME and ERC tests are also to be used in the analysis of neck size effect. The
analysis of orientation factor is to be presented in the subsection 4.3.2, and the effect of ridge

width will be analyzed in the subsection 4.3.1.

In the analysis of the effect of these three factors on ridge forces, the measured maximum
forces are non-dimensionlized by ¢, J/(z L) which is conventionally believed to be a combined
parameter able to cover the effect of the members it contains (Abdelnour 1988). All the items
in this parameter are the same as those defined in Equation (2.2). L, and / are for the ridge only,
i.e., they do not include the effect of the surrounding ice sheet. After the non-dimensionlisation,
the above three factors (ridge width, structural orientation, and neck size) stand out as major
parameters that might affect the dimensionless forces. There may be more factors affecting the

forces, but we will focus only on the analysis of these three factors.

43.1 Effect of Ridge Width

Based on their widths, the IME ridges can be divided into two groups, viz., one with a width
varying from 60 cm to 72 cm, the other being around 1 meter (see Table 3.5). These two groups
are being referred to as ‘‘narrow ridges’ and ‘‘wide ridges’’, respectively. In the following
analysis, the ridge width, B,, is non-dimensionlized by dividing it with the circumscribed

waterline diameter of the structure, D,,.

Of the five wide ridges used in the IME tests, three experi a local cij
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crack. The ridges for tests C47B, C64 and C66 all of which were tested under the edge-on
conditions revealed the same sequence of crack occurrence: the initial central crack was followed

by a circumferential crack around the I model. The ci ial crack broke off an

arch-shaped ridge ice piece which was about 30 cm measured along the ridge width from the
ridge’s leading edge, and about 45 cm along the ridge leading edge with the central crack as its
symmetrical axis. Another wide ridge, viz., C49, tested under the face-on condition, had an
initial circumferential crack in front of the structure. In contrast to these wide ridges, the narrow

ridges did not have local circumferential cracks.

In the IMD tests, only one ridge was wider than the others (see Tables 3.6 and 3.7). The
ridge for test M75 was 3 meters wide, or three times wider than others (all other ridges were
one meter wide). This ridge failed like a thick ice sheet. First, a pair of radial cracks and a
circumferential crack formed. Then a smaller circumferential crack occurred within the first
circumferential crack. A few seconds later, the third circumferential crack and another pair of
radial cracks appeared. The ridge experienced a total of four circumferential cracks and five
pairs of radial cracks until it failed. Other (relatively narrower) ridges, except for M45 and
M65, experienced no more than two circumferential cracks. Unlike other ridges, the ridges M45
and M65 also showed a multi-circumferential crack pattern, but they failed in a mixed mode
showing strong shearing failure feature. It is clear from the above that a wider ridge more likely

fails through the generation of more (local) circumferential and radial cracks.

In the ERC tests, an extremely wide ridge (with width of 4.5 meters) was tested in
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YIT2R3. The widest ridge for Year Two tests was the one for Y2T2R1, with a width of 3
meters. A common crack feature for these two wide ridges is that they had multiple radial cracks
(refer to Table 4.4 in the next subsection). This is very distinct from the other ridges’s single
radial crack pattern. The multiple radial cracks can also be considered as one type of local

cracks. Thus, the wider ridges for the ERC tests also had more local cracks.

To study the influence of ridge width on the maximum ridge forces, the dimensionless
forces are plotted against dimensionless ridge width (B/D,) in Figures 4.1 through 4.4. The
points (x and o) represent the test data, and the lines are from a linear regression analysis. Since
the effect of ridge width may depend on other parameters, viz. neck size, structural orientation,
and force component, the data are sorted into eight groups, and two groups are plotted in each
figure. For instance, the two groups of the data plotted in Figure 4.1 are those vertical forces
on large neck structure in face-on and edge-on orientations, respectively. It should also be noted
that the edge-on orientation for the ERC tests is actually that in which the ridge was oblique at

a 30° angle.

Since all the IMD ridges except for M75 had the same width (one meter), resuiting in
the identical value of B/D,, for all the tests except for M75, the plotting in these figures do not
include the IMD tests. The data for the large neck structure are from ERC'’s tests, and those for
the small neck structure are mainly from IME’s tests. The data from ERC’s two small neck
structure tests, Y1T1R2 and Y1T1R3, are also included in the face-on orientation for the small

neck structure (Figures 4.3 and 4.4).
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Because of the incompleteness in the data, test C53 in the IME series and tests Y2TSR1
and Y2T5R2 in the ERC series are excluded from this analysis and from all the other analyses

to be presented in this thesis.

Generally, the effect of ridge width is quite significant for the large neck structure but
less significant for the small neck structure. For both edge-on and face-on orientations of the

large neck structure, both the vertical and the hori: 1 of the di i forces

increase as the ridge width increases (Figures 4.1 and 4.2). The vertical forces for the case of
a face-on orientation of a small neck structure show a similar trend (Figure 4.3), whereas this
effect is nearly negligible for the other cases, viz., the horizontal forces on a small neck
structure in both orientations (Figure 4.4) and the vertical forces for the edge-on orientation of

the small neck structure (Figure 4.3).

A possible reason for the above trend may be that the wider ridges usually lead to large
segments after their cracking, and these large segments are more likely to be stuck in front of

large neck, thus resulting in large forces.

432 Effect of Structural Orientation

In the IME test series, the structure was in edge-on orientation for eight (8) ridges, and in face-
on orientation for the remaining seven (7) ridges. In the ERC tests, five (5) out of sixteen (total)

were oblique at a 30° angle. This ridge orientation makes one corner of the front facet contact
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the ridge first, a contact situation somewhat similar to that for IME’s edge-on tests. In the rest

of this section, both cases will be referred to as edge-on orientation.

The location of the radial (basically, the initial crack) and the first pair of hinge cracks
for the ERC and IME tests are listed in Tables 4.4 and 4.5, respectively. In these tables, the
dimensionless location of the cracks are expressed as the distance from the center line of the

ridge (or the center line of the divided by the ci ibed ine diameter of the

structure. The direction is defined as follows: as one stands on the center line of a ridge, facing
in the direction of ice motion, the crack occurring to one’s left side is defined as Left; similarly
for the Right. If there were two radial cracks for a test run, their locations are marked with L

(or R) which means the crack appeared on the Left (or Right) defined above.

Ridge orientation has an obvious effect on the location of the initial crack(s). In the ERC
tests, every oblique ridge except Y2T2R1 had a single initial crack starting from the contact
point between the ridge and the structure’s front corner. Even the ridge for test Y2T2R1 had one
centrally located radial crack. On the other hand, only three (3) broadside ridges, out of eleven

(11) in total, had initial cracks close to, but not at, the structure’s front corner.

Table 4.5 shows a similar trend in the IME tests: every ridge in the edge-on tests except
for C45 and C46 had a single central initial crack, whereas only four out of seven ridges,
initially centrally cracked for the face-on orientation. Ridges C45 and C46 were not frozen

completely. The location of the cracks were just the weak points where the ridge moulds were
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joined (Irani er al 1992). If these two test runs are excluded from the present analysis, the initial

cracks for the IME tests would all occur at the center line for the edge-on orientation.

Dimensionless Radial (Initial) | Dimensionless First Hinge

Test R;dge Crack Location * rack Location *
No No.1 | No.2 | No.3 Left Right
YITIR2 | Broadside | 0202L| - - 1.761 2.165
YITIR3 | Broadside | 0.029L | 0.115R| - 2.050 1.588
YIT2R3 | Broadside | 0.029R | 0.248L | 0.248R 2.483 2.483
YIT2R4 | Broagside |0.231L| - s 2.454 2.511
YIT3R1 | Oblique 30° | 0 . . 2.194 2.107
YIT3R3 | Broadside | 0.029R| - = 1.761 2.194
YIT4R1 | Oblique 30° [ 0 - . 0.953 1.963
YIT4R2 | Oblique 3° | 0 = = 1.097 1155
Y2T2R1 | Oblique30° | 0 | 0.866L [ 0346 R 4215 4.388
Y2T2R2 | Oblique 3° | 0 - - 1.443 3.233
Y2T3R1 | Broadside | 0.924L| - - 0.924 2.598
Y2T3R2 | Broadside | 0.496L| - . 5.774 2.600
Y2T4R1 0.288L| - z 2309 3.000
Y2T4R2 0462L| - - 2.483 4.388

Y2TSR1 | Broadside | 0.496R | 0.496L| - - 8

Y2T5R2 | B 0520R|1270L| - = -
Broadside s = - 2.440 2.614
Avenage [ o lique g - = 1.980 2.569

* the dimensionless location = CL / D,,

Table 4.4

where CL is the distance measured from the crack to the ridge
center, and D, is circumscribed waterline diameter.

Crack Location of the ERC Ridges
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Si Di i Dij i Hinge

Test No. Initial Crack Cracks Location

Orientation Location

Left Right
C45 Edge on 0.42R, 0 1.119 1.445
C46 Edge on 0.42R 1.119 1.445
C47A Edge on 0 0.560 0.811
C47B Edge on 0 0.796 1.026
C48 Face on 0.233R, 0.233 L 0.932 1.166
C49 Faceon | 0.233R, 0.317L 1.725 1.40
C51 Face on 0 1.212 1.40
C52 Face on 0,0.255 L 0.932 0.932
C53 Face on 0 1.632 1.818
C58 Face on 0 1.865 1.678
Cs9 Face on 0 1.585 1.865
C63 Edge on 0 0.900 0.630
C64 Edge on 0 1.305 1.119
C65 Edge on 0 0.721 0.721
C66 Edge on [ 1.756 1.801
Face on - 1.412 1.466
Averge | Eige on B 1.035 1.125

Table 4.5 Crack Location of the IME Ridges

Another aspect of the crack, which the structure orientation seems to affect, is the
distance between the two first hinge cracks. The IME tests indicate that this distance, on

average, is smaller for the edge-on tests. As shown in Table 4.5, the average value of this
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distance for the face-on tests is about 33 % larger than that for the edge-on orientation. However,
the values for the ERC tests do not strongly support this trend. Table 4.4 shows this distance
for ERC’s broadside ridges on average is only 11% larger than that for the oblique ridges. It

should also be noted that the data are quite d. Indeed, the (or ridge)

is only one of many factors that may affect the hinge and radial crack locations.

To identify its effect on ridge forces, the ridge (or structure) orientation must be
separated from the other two factors: viz., neck size and ridge width. The plot given in Figures
4.1 through 4.4 were arranged to show the effect of orientation factor as well. Each of the
graphs is for a single neck size: viz., Figures 4.1 and 4.2 are for the large neck structure, while
Figures 4.3 and 4.4 are for the small neck structure. In each of these figures, the forces for the

two oril ions can be directly for a given ridge width.

It can be seen from Figure 4.1 that the orientation, on average, rarely has any effect on
the vertical forces for the large neck structure because the regression lines for the two
orientations nearly coincide. However, as indicated in Figure 4.2, the edge-on orientation seems

to induce larger horizontal forces on the large neck structure for B/D, > 1.

The small neck structures show a reverse trend: the horizontal forces for the face-on
orientation, on average, are larger than those for the edge-on orientation, see Figure 4.4. The
case for the vertical forces on a small neck structure is a little complex. Figure 4.3 shows that

the forces for these two orientations are very scattered in the vicinity of dimensionless ridge
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width equal to 0.6 (narrow ridges). Though the regression line for edge-on orientation is above
its counterpart for the face-on orientation, it is really hard to say which orientation experienced
larger forces. In the region of B/D, = 1 (wide ridges), the horizontal forces for the face-on

orientation are obviously larger.

The orientation’s effect can be roughly summarized below.

® For the small neck structure, the forces on a face-on structure are basically larger than
those on the same structure in an edge-on orientation. The distance between hinge cracks
are also larger for the face-on orientation.

@ For the large neck structure, effect of ridge orientation is not significant. The vertical
forces for these two orientations on average are fairly close, as are the average crack
locations. Only the horizontal forces on the edge-on structure are larger than their

for face-on

4.3.3 Effect of Neck Size

To analyze the effect of neck size, the mean values of dimensionless forces and their standard
deviations are listed in Table 4.6. The data included in this table for the IMD series are those
for the 1:25 scale models. The dimensionless ridge widths for these IMD tests were all the same:
B/D,, = 0.72. In the ERC series, most tests were carried out with large neck structure in both
face-on and edge-on orientations, and only two tests were run for the small neck structure. In

the IME series, as shown, only the small neck structure (in both orientations) was tested.



Mean Value of Dimensionless Standard Deviation
Test Structural | Forces
Sefies. |, o R’d:;n Component | Large | Small | Large | small
Neck | Neck | Neck | neck
Vertical 2071 | 250 840 | 567
Faceon | yiorizonal | 1771 | 170 | 6.60 1.41
ERC Vertical 17.84 - 8.58 -
Edgoon i 20.16 = 14.12 s
Vertical 308 | 3425 | 1114 | 1471
IMD | Face-on [ omal | 3229 | 3225 | 11.00 | 14.59
Vertical - 14.80 " 5.48
Face-on [ by rizonmal p 18.35 5 6.77
IME Vertical - 14.88 - 3.91
Edge-on | orizonal - 15.19 3 3.87

Table 4.6  Statistical Measurements on the Neck Size Effect

Because the IMD tests cover both neck sizes and had a single value in ridge width the
results from this series are the most convenient and solid data for the study of neck size effect.
It is shown in Table 4.6 that the mean vertical force for the large neck structure in IMD’s tests
is smaller than its counterpart for the small neck structure, but the horizontal mean force for the
large neck structure is slightly larger (very close to the forces on the small neck structure).

Exactly the same trend is also found in the ERC tests for the face-on orientation in this table.

To utilize both the IME and the ERC tests for this analysis, they are plotted in Figures

4.5 and 4.6. The comparison of the dimensionless forces from these two series tests should be
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made at the same value of B/D,. Since these tests share the values of B/D,, in the vicinity of
B/D,, = 1, they are comparable in that region. These graphs show that the forces on the large

neck in face-on orie i age) are quite close to (slightly smaller than) those on

the small neck structure in the vicinity of B/D,, = 1. It should be noted that this trend is only
in average (or least square) sense and is supported by a small sample of the data. Looking at
these figures more closely, one may note that the forces are quite close to each other for a few

individual tests for both neck sizes.
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Figure 4.5 Vertical Ridge Forces on Face-on Structures

One may argue that the scale factor played a role in the difference between the forces on

the structures with different neck size. Indeed, all the forces for the large neck structure were
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from the ERC tests whose scale was 1:10 and 1:20, while most data for the small neck structure
were from the IME tests whose structural model was at the scale of 1:50. Although one cannot
be completely sure the scale factor does not play any role, the two points from tests YITIR2
and Y1TIR3 identified in Figures 4.5 and 4.6 are somewhat reassuring that the role is small.
These two ridges were tested with small neck structure at 1:10 scale. The two points for the
large neck structure (represented with x) just below those for YITIR2 and Y1TIR3 in Figures
4.5 and 4.6 are for tests YIT2R4 and YIT3R3 both of which were at 1:10 scale as well; thus
they are directly comparable. It is shown in the figures that their forces are well above those for

the large neck The only ion is the hori: force for Y1TIR3 which might be

smaller than its counterpart for the large neck structure if there was one.
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The data for edge-on orientation are plotted in Figures 4.7 and 4.8 for vertical and
horizontal forces, respectively. Within the region of B/D,, < 1.01 in Figures 4.7 and 4.8, the
regression line for the small neck structure is higher than its’ counterpart for the large neck
structure. It is also shown in these figures that there is one case for the vertical and horizontal
forces, respectively, wherein the force for the large neck structure is larger than the force for
the small neck structure whose value of B/D,, is the same as that for the large neck structure.
It should also be noted that the data are quite scattered in these figures. Considering all the
above, we would say that the forces on the edge-on large neck structure and small neck structure

are relatively closer to one another.
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Figure 4.8 Horizontal Ridge Forces on Edge-on Structures

The effect of neck size is summarized as follows.

® For the face-on orientation, the mean horizontal force for the large neck structure is very
close to (slightly larger than) the mean horizontal force on the small neck structure, while
the mean vertical force on the large neck structure is smaller than its counterpart on the
small neck structure.

® For the edge-on orientation, the mean forces on the small neck size structure are fairly

close to those on the larger neck structure.

It should be pointed out that the data sample for the above analysis, except for the

comparison in the case of the IMD tests, was quite small. In addition, the number of factors
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considered here is quite limited. Therefore the effect of neck size summarized above is by no

means meant to be general.

4.4 Analysis of Sheet Ice Forces

It has been made clear in Chapters 1 and 3 that a particular concern for this proposed MCS was
the effect of the large neck on ice loads. This section concentrates on the analysis of this effect.
For SCSs, it does not matter in which direction the ice moves towards the structure, the loads
on the structure should be the same. For MCSs, it does. The effect of structure orientation on

sheet ice loads, thus, is also analyzed in this section.

4.4.1 Approach for the Analysis

Since the test scales varied from 1:50 to 1:10 in our three series tests, ice mechanical properties,
structure dimensions, and the ice forces all varied over a very wide range. Because the ice was
not perfectly manufactured to the target scale (Croasdale and Muggeridge 1993), it is improper
to directly compare the test measurements for analysis of the effects of various factors. To
identify the effect of the two particular factors, viz., the neck size and structure orientation, for

the tested MCSs, a dimensionless analysis is necessary.

In his analysis of sheet ice forces on SCSs, Kato (1986) assumed that the total forces

(horizontal or vertical), F, can be non-dimensionlized in the form of F/(gh?) and this
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force can be exp as a sum of the ride-up component (the first two terms)
and the breaking component (the last term) as follows:

p,x
T'“D =piy B2 o +B @.1

‘Where F, o, h, p;, g, D,, and Dy are the measured force, flexural strength of ice, ice thickness,
ice density, acceleration due to gravity, waterline diameter, diameter at the top of cone (there
were no necks for the structures in Kato's tests), respectively. He applied linear regression

approach to his test data to determine the coefficients A, and B.

To apply this approach to the case of our MCS tests, a few modifications are required.
The circumscribed wateriine diameter and the circumscribed neck diameter will be used in the
places of D,, and Dy, respectively. It is believed that the first two terms in Equation (4.1) do not
fully (or properly) cover the effect of neck size; hence, this effect should be separated from the
equation and be treated as another independent variable. Equation (4.1) can be rewritten as:

F
o, h?

=4AC,+B “2

where B is the same as that in Equation (4.1), and C, is defined as follows

= Dlp.gl(ash) “3
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The relation between A and A, can be easily found by comparing Equations (4.2) and

(4.3) with Equation (4.1):

A=A, (1-D}D}) @.4)

Kato (1986) assumed that A, and B depend on cone slope angle. In the present case, the
structures for all the tests had the same slope angle, but the ratio of D;/D,, which represents
dimensionless neck size, and the structural orientation varied. Thus, A and B in Equation (4.2)

are functions of these two parameters. It should also be noted that C, given in Equation (4.3)

is i of D/D,, and

Generally, the dimensionless forces can be expressed as

F
o h?

= f(C,, neck size, orientation) 4.5)

For a given ratio of D+/D,, and structural orientation, Equation (4.5) is reduced to be in the same

form as Equation (4.1), but with A and B being constant and D; included in A. Similarly, for

a given C,, the di i forces are ions of i ion and the ratio D,/D,,.

The basis for the analysis, to be presented in this section, can be described as follows.
First, the tests are sorted into groups in each of which the tests have the same structural
orientation and the same D./D,,. Then, use least square method to find the best fit line for each

group of the tests, and plot the test groups with the same structural orientation but different ratio
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of Dy/D,, together with their best fit lines in the same graph. A comparison of these data would

show the effect of neck size. The effect of structural orientation is analyzed in a similar way.

442 Effect of Structural Orientation on Sheet Ice Forces

Orientation of the structure in sheet ice varied only in the IME test series with a single small
neck structure. The analysis of this effect is, thus, limited to these tests. Because D;/D,, was
roughly a constant for all these tests, the dimensionless forces are a function of G, and structural
orientation itself. A total of three orientations were tested: face on, intermediate, and edge on
which were defined in Subsection 3.3.1 and were identified in Table 3.4. For each of these

ori i the dis i forces are plotted against C, in Figures 4.9 and 4.10

for the hori and vertical pectively. The points (0, +, and x) are test

measurements, and the three lines are the best fit lines in a least square sense.

Generally, the dimensionless forces for all the three orientations are fairly close to each
other at a given value of C,, especially for small values of C,. In the whole tested range of C,,
the forces for the edge-on orientation are slightly lower than the others, and the forces for face-
on and intermediate orientations are quite close to each other, particularly for the vertical forces.

These mean that the i i i i with the face-on orientation, does not

significantly change the dimensionless forces, but the edge-on orientation does.

The above trend is supported by two sets of directly comparable tests, each of which
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covers all the three orientations. The first set consists of tests C42 (face-on), C43 (intermediate),

and C44 (edge-on), and the other set includes C60 (face-on), C61 (intermediate), and C62 (edge-
on). As shown in Table 3.4, the ice thickness, flexural strength, ice speed, and structural
dimensions for the three test runs in each set were either exactly the same or very close to each
other. In other words, the values of C, for the tests in each set are nearly the same. The
measured forces presented in Table 3.11 show the forces for edge-on orientation to be smaller
than those for other orientation. The forces for C60, the face-on orientation test run, was larger
than those for i i i ion, C62. , the forces for C42 (face-on) were smaller

than those for C43 (intermediate).
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Figure 4.9 Effect of Orri ion on Hori Sheet Forces
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Figure 4.10 Effect of Structural Orientation on Vertical Sheet Forces

It is also shown in Figures 4.9 and 4.10 that the slope of the best fit line for the edge-on

orientation is smaller than that for the face-on orientation and the slope for the face-on and

intermediate orientations are very close. Because the slope, viz., the coefficient A, represents

the ride-up component, we may say the ride-up forces on the edge-on structure are smaller than

those on the same structure but in other orientations.

4.43 Effect of Neck Size on Sheet Ice Forces

To analyze neck size effect, the tests with the same structural orientation should be used. Thus,
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all the ERC and IMD tests which were performed with face-on structure and those IME tests

with structure in face-on orientation are to be analyzed in this subsection.

According to the values of D,/D,, all the face-on tests can be divided into three groups.
The first group consists of those ERC and IMD tests with large neck structures and will be
referred to as ‘‘large neck’’. The value of Dy/D,, for this group was 2/3. The second group with
D;/D,, = 1/3, **small neck’” group, includes the IMD tests with small neck and the ERC'’s test
YITIRI. The IME tests with face-on structural orientation comprise the third group for which
0.215 is taken as the ratio of Dy/D,, because most tests in this group had the ratio at this value
(it was 0.219 only for six tests in this group). These IME tests are actually also the small neck
structure with designed D-/D, equal to 1/3. Because the structure was raised up a bit during the
test the effective waterline diameter D was increased; thus, the value of D;/D,, was reduced. To
distinguish this group from the ‘‘small neck’’ group, it will be referred to as ‘‘IME face-on’

group.

Figures 4.11 and 4.12 presents the plotting for the vertical and horizontal dimensionless
forces for these tests. Based only on the best fit lines in these figures, the effect of neck size can
be summarized as follows.

® Both vertical and hori; of the di i forces on the large neck

structure are larger than others.
® The vertical forces for the ‘‘small neck’ group are larger than those for the ‘‘IME face-

on’’ group, but their horizontal forces are in a reverse order.
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It should be noted that the neck size effect summarized above is only in least square

sense. Figures 4.11 and 4.12 show that the data are quite scattered. At certain points of C,, the
forces for the large neck are well below those for the small neck structure. To show this, a
smaller window of Figure 4.11 is taken and presented in Figure 4.13 in which both the best fit
lines and the test measurements are exactly the same as their counterparts in Figure 4.11. It is
shown in Figure 4.13 that the forces for a few large neck tests within C, < 2 are tremendously

low, much lower than the best fit line and the measured forces on the small neck structure as

well.
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Figure 4.13 Zoomed Plotting of Vertical Forces against C,



Chapter 5 Numerical Simulation

The ice/MCS interaction process and its relation to the generated loads described in the last

chapter was a result of reviewing video records and the time history of recorded forces, which

was quite general and itative. A itati' ing of the i involved in
the ice/MCS interaction was offered by a series of numerical simulations that were carried out
using a discrete element code, DECICE. The simulation was also used to analyze the effect of

neck size on the ice forces developed since this was one of industry’s major concerns.

ERC’s tests YIT1IR2 and Y1T1R1 were chosen as a basis for the simulation due to the
fact that YITIRI1, YITIR2, and YITIR3 were the only tests with a small neck structure at the
largest scale, namely, 1:10. Generally, if other parameters are kept the same for two tests, the
larger the test scale, the closer to reality the test result will be. The first set of simulations were
carried out to examine the various interaction mechanisms involved in the process. The measured

and

were used as inputs to this set of simulations which are

presented in Sections 5.2 and 5.3 for the sheet and the ridge, respectively.

The idea implemented in the analysis of neck size is that if only the neck size is allowed
to change, the difference in the resultant ice loads and the interaction process should reflect the
effect of the neck size. Thus, all the parameters used in the first set of simulations remain the

same in the second set, except for the neck which is replaced by a large neck. The comparison



101
of the results of these two sets of simulations is expected to reveal some information on the neck

size effect. These simulations are presented in Section 5.4.

5.1 The Approach for Numerical Simulation

As reviewed in Chapter 2, there exist two main methods for the numerical simulation of
ice/structure interaction: Finite Element Method (FEM) and Discrete Element Method (DEM).
Because of the advantage of the DEM in simulating the cracking process and the interaction of

cracked ice, this method was adopted for the simulation being presented here.

5.1.1 DECICE Program and the Procedures for Problem Solving

DECICE is a large computer software based on DEM and is one of the best of its kind (refer
to Section 2.5.2 of Chapter 2). By courtesy of IMD who owns a copy of DECICE, the
simulation and analysis were done using this software. The formulation of the DEM
implemented in DECICE as well as the capability and particular usage of the program were
detailed in the Th ical Manual, P 's Manuals, and User's Manual. The general

procedures used in DECICE to solve a problem are briefly described below.

The first step is data input and initialization. The input data include element topology,

material properties, initial and boundary conditions, etc. Using the input data, DECICE

does the ing: forms ions for the discrete ines time step
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increments, and checks stability conditions for the user defined (as input) solution scheme. Then,

DECICE will do the following at each time step:

: O

Interaction and Applied Forces are computed for each element. The computation of
interaction forces is based on the i ion of i i ionship between

neighbouring elements. Applied forces include buoyancy, drag, gravity, and the forces

due to boundary conditions.
Constitutive Behaviour Matrix, for strains and stresses, is calculated using the prescribed
material properties. When an element is judged to be it new

will be generated and the stresses in the plane of the fracture are relaxed.

Motion and State of Elements are updated. The element motion including deformation
and rotation are from the d; ic equilibrium ions and element strain

etc.

rates. The computation also updates element
History Output Files are generated to record element state and geometry for post-
processing.

After all the above is done, the procedure is repeated for the next time step until the

prescribed “‘end time” is reached.

The above description is only a very brief overview of the various procedures; more

details are involved during numerical solution. Some details for part of the procedures will be

given in the remaining sections of this chapter.



5.1.2 Structure and Ice Modelling

In the ERC tests, as described in Chapter 3, the structure was fixed on the floor of the ice basin.
The structure was designed such that it can be considered as a rigid body, i.e. no deformation
and any other motions occur during its interaction with ice. The tested ice (of both the ridges

and sheets) which was quite brittle was moved by a boom against the structure (see Chapter 3).

A

=y =—

Figure 5.1 Simulated Small Neck MCS Structure

To simulate the MCS structure, a set of rigid shell elements were used as shown in

Figure 5.1, which form a structure having exactly the same dimensions as those for the tested
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The rigid are together and fixed to ensure that the structure will

experience zero ion during the i i ion process.

The ice basin walls are simulated with two rigid bars, labelled as elements 2 and 3,
respectively, as shown in Figure 5.2. These bars, like the MCS structure, are also fixed to
ensure they will be motionless in the interaction process. The main function of these bars is to
provide a realistic boundary condition for the ice between them. Both the sheet and ridge extend
from one basin wall (the bar) to the other. Elements 4 and 1 shown in Figure 5.2 denote

respectively the structure and the rigid boom used to push the ice against the structure.

Figure 5.2 Simulated Ice, Basin Walls and the structure

As shown in Figure 5.2, both the ridge (elements 25 through 34) and the sheet are
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discretized into a number of ibing the ice thi In DECICE (or

any other DEM each of these el is treated as a distinct body. For instance,
although the nodes of the neighbouring elements may have the same coordinates, DECICE treats
them as different nodes. Before cracks occur, the ice should be a continuum. To simulate this,
a ““Zone Lock’* provision in DECICE is applied to lock all the ice elements together. Separation
occurs only when fracturing occurs which may appear either within the elements or along their
mesh lines. Because the ‘‘zone lock’ was applied only to the ice elements, the boundary
conditions along the basin walls are not affected (viz., the deformation perpendicular to the walls

is not permitted, while the deformation parallel to the walls is permitted).

The general boundary condition also includes prescribed velocity and load conditions. For
all the ERC tests, the ice was pushed by a boom towards the structure at a speed of six

centimetres per second. The ition is si by ing a push bar (element 1 in Figure

5.2) behind the ice and assigning it the above velocity. Thus, in the simulations, the ice will be
pushed forward by the bar at a speed of six centimetres per second. The speed remains
unchanged, no matter what interaction event occurs at the ice/MCS interface, until the bar
contacts the structure. Since the bar is rigid it will not fracture when it is subjected to a very

large interaction force.

The external loads acting on the ice consist of buoyancy and gravity (besides that
provided by the constant velocity motion of element 1), which are simulated by assigning the

measured buoyancy and gravity to all the ice elements. Because the velocity was relatively low,
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the drag force exerted by the water was ignored. Before a real test starts ice freely floats on the

water surface and its gravity and buoyancy balance one another. This condition is carefully

by i accurate ion of the correct waterline position for the ice. If
the waterline is wrongly set, ice elements will experience vibrations due to the unbalanced

buoyancy and gravity forces, which might not happen in real tests.

To simplify the simulation and save computer CPU time, linear elastic behaviour has
been assumed for the ice. This assumption was based on the analysis presented in Appendix A
of this thesis and the observations made during the ERC tests. It is also assumed further that the
ice material is isotropic and homogeneous throughout the ice sheets or ridges. Appendix A

shows that the error caused by this assumption is minor for the tests to be simulated.

The global coordinate system described in Section 3.2.3 is adopted for the present
numerical simulation. Under this coordinate system, the waterline has a zero Z coordinate, the
ice sheet, ridge, and the structure are symmetrical about X axis. Because the vertical ice loads

on the structure are downward, they are negative in sign.

5.13 Failure Criteria and Ice Strengths

DECICE provides several criteria for judging various material failure. Because elastic brittle

material behaviour was assumed for ice, the Mohr-Coulomb tension cut-off brittle failure

criterion is chosen for the present simulation to judge the failure of ice elements. The elements
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are allowed to fail along the mesh faces and/or through the centroid in each of the three modes:
flexural, tensile, and compressive. Within DECICE the failure criterion is defined below.

An element in pure bending has the maximum tensile stress at either its upper surface
fibre or its lower surface fibre, depending on its direction of bending. The elements may also
be subjected to direct (or axial) stresses. The maximum total stress o, is a vector sum of all the
stresses in the direction under consideration. When the stress condition satisfies the following

relationship, the element is judged to have fractured.

9, 2 0, ($.1)

where g is the measured flexural strength of the ice. The crack is generated along the face

to the direction of i Stress ;.

Tensile failure occurs when the minimum principal stress o; is larger than or equal to the
tensile strength of the ice. The crack is along a plane whose unit normal is aligned with the

major principal axis (the direction of o;).

The compressive failure criterion is generally defined as

|t 25, + poo (5.2)

where 7 and o are the shear and normal stresses on the fracture plane; 7, is the shear strength
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of ice, and p, is the internal friction coefficient of ice defined by w, = tan ¢, where ¢ is the

internal friction angle of ice.

Equation (5.2) can be directly applied to the mesh faces. However, because fracture of
an element occurs through its centroid, an expression of the criterion in terms of principal
stresses is required for judging the element failure. Using the relationship of the principal

stresses in the Mohr-Coulomb criterion, this expression can be easily derived as follows

g, 20, + o,m’(%+%) 5.3)

where ¢, is the unconfined compressive strength, and o, and o, are the major (maximum) and

minor (minimum) principal stresses, respecti . The ion strength o, and

the shear strength 7, have the following relationship
[
A LA™ =0

In other words, only two parameters are required to define this criterion. DECICE requires o,
and ¢ to be input. If all principal stresses are different in magnitude, there are two equaily
probable fracture planes which are perpendicular to the ¢,-0; plane and make angles of +(45° -

«/2) with the major principal axis (the direction of ;).

The above Mohr-Coulomb criterion requires a total of four user-defined parameters:
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flexural strength o, for the flexural failure, compression strength o, and the internal friction

angle ¢ for compression failure, and ¢, for tension failure. In the ERC tests, only flexural

strengths were measured. Therefore, the other p have been esti The
is presented in Appendix B.
5.2 Simulation of Sheet Ice and Structure Interaction

5.2.1 Ice Configuration and Elements

The ERC test Y1TIR1 was performed with sheet ice moving at a constant speed of 6 centimetres
per second against the 1:10 small neck structure which was in “‘face-on’” orientation (refer to
Chapter 3). The test lasted for about 93 seconds with a real interaction duration of about 77
seconds which is equivalent to an ice length of 4.6 meters. At the moment when the ice began
moving, the front edge of the ice was about 96 cm away from the front facet of the structure (at
waterline level). At the 16th second after the test started, the structure and the ice contacted one
another; hence, the 16th second will be taken as the staring time (zero second) for the
comparison of the test with the simulations to be shown in Figures 5.4, 5.7, 5.8, and 5.24. In

other words, the real test time is equal to the time shown in these figures plus 16 seconds.

The total length of ice sheet extended to about 9.5 meters (only 4.6 m was used in
YITIR1) from its front edge to the first ridge which was used for the later test YITIR2.

Because the sheet ice which was not directly involved in the interaction might also have an effect
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on the interaction (by providing certain boundary condition), an ice sheet of 9 meters long has
been simulated to include this effect. To reduce the simulation time (CPU time), the structure
is set to nearly contact the front edge of the simulated ice, which means that the simulation

begins at the 16th second of the test time. Figure 5.3 shows the configuration of ice and
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Figure 5.3 Ice Sheet and Elements

The ice sheet is discretized into 27 elements and numbered from 5 to 31. Elements 2 and
3 are rigid bars simulating the ice basin wall. Elements 1 and 4 simulate the boom and the

. No additi restraint is applied to the boundaries of the ice sheet,

which isti i the boundary itions in the physical tests.
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5.2.2 Overview of Simulation Results

In the simulation, the ice sheet was set to move at 6 cm/s (ice speed in the test) towards the
structure. The whole simulation lasted for 86.6 seconds which is slightly longer than the actual
test duration. Time history of the global forces on the structure obtained from simulation
together with the measured loads are plotted in Figure 5.4. Figure 5.5 shows the crack pattern

of ice at 78th second of the simulation time.

60 s a3
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Figure 5.4 Simulated and Measured Global Sheet Loads

Under the coordinate system used in this thesis, the horizontal forces, F,, acts along the
positive direction of X axis (i.e. the direction of ice motion), thus appear above the reference
line (the straight horizontal line) in Figure 5.4. The vertical force, F,, acts downwards and is

opposite to the positive direction of Z axis, and hence is located below the reference line. This
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will also be applied to all the plots of F, and F, in the rest of this chapter.

Although there is an apparent di in the and the si loads (Figure

5.4), the overall trend agrees well, especially in the latter portion (after 57th second) of the force

time history in which both si and i loads rred. During the time
range the test lasted, the simulated maximum horizontal and vertical loads are 43.8 kN and 53.9
kN respectively, compared to 40 kN and 50 kN for the measured maximum horizontal and

vertical loads. The simulated maximum loads occurred at 67th second after the ice first contacted

the structure, while it was 65th second for the i loads. Considering the

inthe i ion process, the in both i of il loads and

the moments that occurred are quite satisfactory.

Figure 5.5 Ice Sheet/MCS Interaction Scenario at the 78th Second
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5.23 Effect of Element Size

To study the effect of element size (mesh size), several meshes were tried. Figure 5.6 shows a
very fine mesh in which the ice sheet consists of 120 elements. The results of the simulation
with this fine mesh are plotted in Figure 5.7 as the dotted lines. For the purpose of comparison,

the simulation with the coarse mesh (Figure 5.3) is also plotted in Figure 5.7 as solid line.

Figure 5.6 Interaction of Structure with Fine Meshed Ice Sheet at the 78th second

The crack patterns for the two meshes are also quite similar. The scenarios shown in
Figures 5.5 and 5.6 are at the same moment of the interaction but for coarser and finer meshes,
respectively. A comparison between them indicates the similarity in crack pattern for the
different meshes. Although the initial element size of the coarser mesh is about 4.5 times larger
than the element from the finer mesh, the difference in the average size of the broken ice pieces

from these two meshes is relatively minor. This closeness of results in broken ice piece size
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should mainly be credited to the DECICE code. Unlike the classical finite element technique,

the DEM implemented in DECICE cracks an element once the stress in it reaches the prescribed
failure criterion, and simultaneously, a new element is automatically generated. In this manner,
a large element can be gradually cracked into many smaller elements. Consequently, the final

sizes of the broken ice pieces for the coarser and finer meshes tend to be close.

—— coarse mesh

0 10 20 30 40 50 60 70 80
Time (second)
Figure 5.7 Effect of Element Mesh on Global Sheet Loads

Figure 5.7 shows that the simulated loads from these two meshes are generally quite

close to each other. Considering the ity in the i ion process, this result is quite

satisfactory. On the other hand, the difference is also discernible. The fine mesh yields slightly
larger loads till the 57th second and produces lower loads afterwards. Basically, the fine mesh

results in a relatively mild variations in the time history of the global load, while the loads
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simulated with the coarse mesh have more sharp jumps and drops. Moreover, the maximum load

produced by the coarse mesh seems to be nearer the test results than the finer mesh.

8
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Figure 5.8 Measured Sheet Loads and the Simulation with Fine Mesh

To further examine the effect of element size, the simulation with the fine mesh together

with the test measurement is plotted in Figure 5.8. From the overall appearance, this fine mesh
the sil ion result: a i ly good is obtained for the

seems to have impi
middle portion of the time history record (from the 20th to the 60th second). However, the

simulated loads are significantly lower in the first portion (from O to 20 seconds) and the last

portion (from 60th to 71th second). The sis i loads are signif lower than
the measured ones as well. As shown in Figure 5.4, although the simulation with the coarser

mesh produces loads lower than the measured forces in the first portion, it agrees well during
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the later portion of load history which contains the maximum load and may be more important
in the sense of design consideration. Hence, the finer mesh may be better only for some

situations and not for all.

The above problem is one of the general problems encountered in the use of the DECICE
code. Before a further discussion of this problem, let’s look at what happened in the actual
physical test. A major crack, as seen in the recorded video tape of the physical tests, has
propagated as far as a few meters away from its starting point, which has two direct results: a

drop in interaction force and release of the internal stresses accumulated in ice. After each major

crack, the ice around the crack became more easily (b of less int) and
exerted less forces on the structure, and it usually took a while for the ice to move further to
develop a high resistance (as high as before the cracking) on the structure. This is reflected as
the wavy shape in the time history of the global forces. The major crack (usually large and long)
might also generate a larger size of broken ice piece in the process of ice cracking or in the
interaction process that followed. These larger pieces might pile up on the structure’s surface
or fall down onto the top of the impinging ice, and sometimes they might get stuck between the
structure and ice sheet, as observed in the ERC tests. All these actions would generally create

some complex itions for the ive ice ing process. As a result, the peak in the

global load history becomes larger than the preceding ones. The major crack or collapse could
lead to sharper drops in load history because the movement of larger pieces usually results in
large changes in the force history. The values of peak loads became relatively stable after the

process reached a certain stage up to which enough ice pieces had accumulated in front and on
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the surface of the structure. This is also one of the reasons why sufficient time duration was used
for a physical test and a simulation. The measured test record of force history (the dotted lines

in Figure 5.4) reflects well the trend described above.

The fracture mechanism implemented in the DECICE code is on an element-to-element
basis, that is, it does not consider the propagation of a crack away from the interaction zone.
Once an element is assessed to be incipient to cracking, the crack appears only within this
element. The code also releases the stresses in the element just cracked, but the stresses remains

in its nei; i if they are not ing, to which the real crack should

have propagated through. Thus, if the ice mesh is very fine (such as the one shown in Figure
5.6 or even finer), i.e., the element length (or width) is much shorter than the possible crack
length (of the physical test), the resultant loads on the structure may vary in a milder manner.
This explanation illustrates the case of the simulation with a finer mesh, shown in Figure 5.8,
in which the mean force from the simulation is relatively flat and does not fully follow those

large jumps and deep drops in the time history of the measured forces.

It should also be made clear here that the above discussions and reasoning do not mean
that a coarser mesh is better than a finer mesh. In fact, an extremely coarse mesh may lead to
a bad (even incorrect) simulation both in crack pattern and load history. If the DECICE code

allowed cracks to propagate through more than one element, a finer mesh should be chosen.

With the present i ion of the el t-to-el il ism in the current

version of DECICE, an appropriate discretization should be the one that allows major cracks to
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occur across the full length at a certain time step of simulation. This type of mesh may lead to
some exaggerated jumps and drops in load history at early stages of interaction, but it will
simulate better the trend of force variation in the later portion of interaction scenario in which
the maximum loads usually occur. The discretization of the ice sheet (Figure 5.3) and the ridge
as well as the ice sheet surrounding it (shown in Figure 5.2 and to be presented in the next

section) is based on the above considerations.

5.24 Interaction of Sheet with Small Neck Structure

This subsection presents a relatively detailed analysis of the interaction process and the
mechanisms involved in the sheet ice interaction with the small neck structure. The analysis is
based on the information from the output of the simulation.

At an early stage of interaction, only element 27 is in contact with the structure (refer
to Figure 5.3). Its displacement and rotations are shown in Figures 5.9 A and B. When element
27 is being lifted upwards, it is in down bending (top fibre in tension) about the X axis and in
up bending (the bottom fibre in tension) about the Y axis. At the 0.96th second, the total stress
along Y direction (which is a sum of all the stresses in this direction) reaches the bending
strength, and thus, the element fractures and becomes two elements (the element 27 and 32), as

shown in Figure 5.10. The fracture face is perpendi to the direction of i stress
which is bending stress in the Y direction in this case, thus the fracture face orientates in the X

direction.
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In the meantime, elements 26 and 28 are also deflected upwards. Unlike element 27,

these two elements are subjected to up bending in both the X and Y directions, and the bending
shear stress is dominant at the moment (0.99th second) when the fracture occurs almost

in these two which, as a result, break into four elements labelled as 26,

28, 33, and 34 (Figure 5.10).
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Figure 5.9 A Displacements of Element 27

The above fracture process is reflected as the first jump and the drop that follows in the

time history of the global ice load shown in Figure 5.4.

After the cracks, the stresses on the fracture faces are instantaneously released, but the

ice is still held in contact with the structure. As ice motion continues, the two front elements,



120

elements 27 and 32, are pushed farther against the which Iy i both the
internal stresses and the force on the structure. At the 2.1th second, these two elements are
separated from the ice sheet along the edge of element 18 (Figure 5.3). Element 27 (the new

one, as shown in Figure 5.10) cracks at the 5.26th second with large bending stress being in the

X direction, and symmetrically, element 32 also cracks, ing two new
35 and 36) as shown in Figure 5.10. These cracks correspond to the second peak in the time

history of the global forces.
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Figure 5.9 B Rotations of Element 27

The central (radial) crack along the X axis (the first crack in element 27), together with
the cracks along the mesh lines of element 27 (along the X axis), reasonably simulate the radial

cracks observed in the physical test. While the cracks in elements 26 and 28 together with a
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separation line between element 18 and elements 35 and 36 form an approximate circumferential
crack (Figure 5.10). In the tests, the time interval measured from the moment when the ice and
structure contacted to the moment when the first circumferential crack occurred was in the range

of 2 to 3 seconds (Metge and Weiss 1989). The simulation agrees fairly well with the test.
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Figure 5.11 Side View of Ice Sheet/MCS Interaction Situation at the 9th Second
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In the subsequent few seconds, elements 27 and 32 (Figure 5.10) gradually slide back

under elements 35 and 36, and later down on the surface of the structure. Figure 5.11 shows a
side view at one time step of this process. Meanwhile, the forces acting on the structure remain

small (Figure 5.4).
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Figure 5.12 Side View of Ice Sheet/MCS Interaction Situation at the 22.5th Second

Starting at about the 12th second, ice and structure develop further firm contact, which
leads to cracks in elements 27 and 32 (also fail in bending) at about the 16th second, and gives
rise to a continuous increase in force history and a small drop at the moment when the crack
occurs (see Figure 5.4). The horizontal force reaches its local peak when the front most pieces
act against the transition between the main cone and the collar. Figure 5.12 shows a case for this

portion of the interaction process.

Up to the 32th second of the i ion, the si it agrees well with the

test in global forces and crack pattern. In the next 10 seconds or so, the simulated forces have
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a continuous decrease, and they are significantly lower than the measured forces. The decrease
in force is caused by the easiness in clearing of the broken ice pieces. A closer look at the
simulation data indicates that once the ice pieces pass the corners or the transition between the
main cone and the upper portion, they easily slide back with little resistance. In addition, there
was enough room between the structure and the un-cracked ice (element 18) to allow some ice
pieces to slide down below the ice cover. These events did not happen in the test, which may

be due to the disadvantage of having a coarser mesh.

The next cycle of interaction starts approximately at the 40th second and ends at about
the 55th second, in which elements 17, 18, and 19 are cracked in a manner similar to that for
elements 26, 27, and 28 (refer to Figures 5.3 and 5.10). However, the simulated forces follow
more closely the trend of variation of the measured forces (Figure 5.4). It can be seen in Figure
5.4 that the peaks of the simulated forces as well as the measured horizontal forces are larger
than those occurring during the previous cycle. The reason is that the ice pieces broken from
previous interaction process play a key role in the subsequent interaction process. The broken
ice pieces exert their weights as ice forces on the structure and they also introduce resistance to
the ice behind to initiate a crack, Figure 5.13 shows one of those situations. In addition to the
above, an extra force is also required to push the broken pieces either up or forwards on the
structure surface. Test measurements have shown that the frictional resistance for ice pieces
passing a corner is much higher than the sliding friction on a flat surface (Metge and Weiss

1989). Hence the clearing force may also be larger than that required for SCSs.
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Figure 5.14 Side View of Ice Sheet/MCS Interaction Scenario at the 78th Second

The effect of the broken ice pieces becomes more significant in the next cycle (starting

from the 55th second) in which the interaction becomes relatively stable. As the pieces

124
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accumulate on the front and side facets of the structure, they form a rubble. The continuity of
the interaction process keeps a certain number of ice pieces on the structure. Figure 5.14 shows
a scenario of this phase of interaction. The forces for this phase, as shown in Figure 5.4, are

much larger than before.

The rubble ice should be mainly responsible for this force increase. An obvious source
for the force increase is the weight of the rubble ice. Because some ice pieces directly sit on or
are partly supported by the structure, their weight (at least part of it) is exerted on the structure,

instead of being supp by . An it effect of the rubble ice is that it creates

more difficult situations for impinging ice sheet to fail in bending. An extreme situation may be
that the advantage of a sloping structure in inducing bending failure of ice may be temporarily
reduced or even lost. For instance, the intact ice in Figure 5.14 cannot contact the structure
surface, rather it moves horizontally against the rubble ice. The force acting on the intact ice is
mainly a horizontal force which pushes the rubble moving forwards and also upwards due to the
existence of the structure’s slope. At this moment, intact ice is mainly subjected to compression,
instead of bending, and thus it can carry larger forces since the compression strength is much
higher than the flexural strength. This situation creates a relatively large force on the structure.
As the top part of the rubble is removed due to its falling down into water, the intact ice may
either contact the structure or the ice pieces on it and thus the bending process may be resumed

once again.
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5.3 Simulation of Ridge and Structure Interaction

This section presents a simulation of ERC's test YITIR2 in which a ridge of 3.5 m wide and
one meter thick was tested against the 1:10 small neck structure. Similar to test YITIRI1, test

Y1T1R2 was also performed with a constant ice speed of six centimetres per second.
5.3.1 The Ridge, Sheets, and Their Discretization

Figure 5.2 (in Section 5.1.2) is the ice configuration and the structure for this simulation. The
three dimensional elements 25 through 34 are for the ridge to which all the mechanical

properties given in Table 3.8 apply for this simulation.

Previous studies on SCSs have shown that the surrounding ice sheet can play an
important role in the interaction of a ridge with a conical-shaped structure (refer to Chapter 2
of this thesis). To take account of the ice sheet effect, two pieces of ice sheet are simulated: one
in front of the ridge and the other behind the ridge. Abdelnour (1981) stated that the effective

width of each ice sheet is v/2/,. The characteristic length of ice sheet, [, is defined by

3 02s
P L )
T 12p,8(1-vD)

where E, is Young’s modulus of the sheet ice and equals 1136 MPa in this case (refer to Table



127
3.8), h is the ice sheet thickness and is 0.33 m for Y1TIR2 (see Table 3.2), p,, is the water
density, g (=9.81 m/s?) is gravity acceleration, and » is Poisson’s ratio which, as usual in elastic
analysis, is set to be 0.33. Water density p, = 1035 kg/m’ is calculated with p, = p, + p,.

where p, and p, are ice density and buoyancy respectively and were given in Table 3.8.

With Equation (5.5), the characteristic length of ice sheet is calculated to be 4.4 meters.
The calculated width of each of the ice sheets (along the X axis) is about 6 meters which was
taken as the width for each of the two simulated ice sheets shown in Figure 5.2. Each sheet is
discretized into two rows of elements, labelled as 5 through 24 and 35 through 54, respectively.
Similar to the simulation of the sheet ice in the last section, three dimensional elements are used

for the ridge and the ice sheets.

The principles for determination of element size, discussed in Section 5.2.3, are also
applied to the present simulation. The factors taken into account include length of major cracks,
crack pattern of the ridge and the sheets, etc. Other help came from the experience provided by
Intera Technlogy Inc. (ITI) who was the developer and is the copyright owner of DECICE. ITI
has applied this software to analyze ice ridge interaction with a ship (Intera Technology, 1986a)
which has some similarities to the situation in our case (in their case, the ship bow width and

element length were quite close, both are about 10 meters in dimension).

In the analysis being presented in this section, all the element numbers mentioned

subsequently are referred to those given in Figure 5.2.
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5.3.2 Comparison of Simulation with Test

The simulated time history of ridge global loads are plotted in Figure 5.15 as the solid lines. For

the purpose of comparison, the measured loads are also plotted in the same figure as dot lines.
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Figure 5.15 Time History of Simulated and Measured Global Ridge Loads

Figure 5.16 is a sketch of the overall ridge crack patterns from the test and the
simulation. The distance is measured from the center of the ridge (along the Y axis). A
interaction scenario from the simulation is shown in Figure 5.17. A picture of ridge crack

pattern which was taken after the hinge cracks is shown in Figure 5.18.
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Generally, the simulated loads and crack pattern agree fairly well with those measured,

as shown by Figures 5.15 and 5.16. The measured average distance from the first pair of hinge
cracks to the center of the ridge was 6.8 meters, while the simulation yields a value of 6 meters
for this distance. The simulated maximum vertical load (F,) is 154 kN, compared to 150 kN for
the maximum measured vertical load. The maximum horizontal loads are 134 kN and 130 kN

for the sii ion and the test,

D

Figure 5.18 Ridge Crack Pattern of YITIR2

On the other hand, the simulation is not perfect. The most visible difference, as shown
in Figure 5.16, is that the tested ridge experienced secondary hinge cracks during its clearing
process, but the simulated ridge did not. In the test, the ridge was re-cracked at the moment

marked by ““f"” in Figure 5.15, a few seconds after the first hinge cracks. In the simulation,
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however, the ridge experienced only a central crack and one pair of hinge cracks which was
followed by a clearing process without further cracking in the ridge segments (refer to Figures
5.16 and 5.17). The secondary hinge cracks made the clearing easier for the test. This difference
is clearly reflected in the time history of the global loads. The measured loads sharply dropped
immediately after the second hinge cracks and then decreased continuously, whereas the
simulated load, though it decreases at the moment “‘f’’, went through a number of
increases/decreases afterwards. As a result, the maximum test loads occurred at the moment
when the first hinge cracks were formed, while the occurrence of the maximum simulated forces

was delayed by a few seconds.

The simulation shows that the ridge failed in bending due to the moment about the X
axis, which confirms that the general mechanism for ridge failure in the case of SCSs (see
Chapter 2) is still valid for this MCSs. However, the simulation also shows that the ridge’s front
bottom edge fully contacted the front facet of the structure at the moment when the central crack
was occurring. This is different from the assumption of point contact during ridge/MCS
interaction. Hence, an appropriate theory is required to account for the new feature of the

interaction. The requirement will be fulfilled by the equations to be developed in Chapter 6.

533 Relation of Interaction Process and Global Forces

The process of ice sheet (in front of the ridge) interaction with the structure for this test

is similar to that described in the last section. Figure 5.15 shows that the simulated loads are
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lower than those measured during the early stage of this portion of interaction (from beginning

to the 67th second). One of the reasons for this is that the simulation started at a totally ‘‘zero
condition’’ in which the structure was clean of ice and the forces on the structure was zero, but

the test did not start at the zero condition. In fact, the structure surface was already covered with

ice pieces from the ing test run. In the si ion, it took a while for the broken sheet ice
pieces to accumulate in front and on the surface of the structure to maintain a relatively high

load. All these resulted in the lower values for simulated loads.

As the interaction process during the simulation proceeds, more and more broken ice
pieces accumulate on the surface of structure. These pieces directly increase the ice loads (see
the analysis in the last section). One relatively larger piece of ice on each side of the structure
is firmly lodged against the neck, shown in Figure 5.19. Because the slope of the neck is deeper,
the horizontal component of the force becomes larger. This situation is also partly responsible
for the relatively high level in the horizontal global load between the moments ‘‘a’* and *‘b"’,

as shown in Figure 5.15.
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Figure 5.19 Ridge/MCS Interaction Scenario at the 72nd Second
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At the moment “‘b’’ the ice pieces slide aside and then down into water, thus resulting
in a drop in the force history. The remaining part of the elements 9 and 10 (their front part has
broken off) begins cracking and separating from the ridge. Figure 5.20 shows a scenario for this

period of the interaction.
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Figure 5.20 Ridge/MCS Interaction Scenario at the 82nd Second

As the motion continues, the front bottom edge of the ridge contacts the ice pieces on the
lower part of the structure and causes them to slide upwards on the surface and forward to the
front side facets. At the moment ‘‘c’’ (Figure 5.15), the ridge gains a firm contact with the
structure, and begins deflecting upwards. In the mean time, small rotations about the Y axis also
starts, and the global forces quickly increase. When this process develops to a certain stage the
central crack forms (at the moment “‘d’’ in Figure 5.15). Figure 5.21 presents the situation at
the moment just after the central crack. Up to the central crack the sheet behind the ridge is still
connected to the ridge, but part of the front sheet is separated from the ridge. The central crack

is ied or i i by the cracking in elements 49, 50, 38, 47, 41, 52, etc.

Figure 5.21 shows the crack pattern detected and marked by DECICE.



Figure 5.21 Crack Pattern immediately after Event **d””

It is worth pausing a while to examine the difference in the cracks detected by DECICE
and those observed in physical tests. In the numerical simulation with DECICE, when the stress
in an element or its faces reaches a prescribed failure criterion the program assesses that a crack
has formed and delineates the crack immediately. The cracked ice pieces (elements), however,
are still firmly in contact with one another along their fracture faces, and it appears no crack has
occurred. The crack takes a while to develop to a form to be visible to human eyes. If we
assume the visible crack to be half a millimetre or above (under the condition that the crack is
about 10 meters away from eyes, or farther), it takes a fraction of a second to a few seconds
from the moment when the crack is judged to occur to the moment at which the crack develops

to this given width. The real time interval depends on the interaction situation and the distance
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from the crack to the eyes. In the physical tests, such as those of the ERC tests, the cracks

detected by our eyes were those at their well developed stage. Therefore, a crack seems to

appear slightly earlier in the simulation than it does in the corresponding physical test.

Figure 5.22 Crack Pattern during Event “‘e’”

While the ridge continues its upward deflection and rotations after the central crack, the
central crack extends into the sheet, resulting in the separation along the mesh face between
sheet elements 49 and 50. Meanwhile, part of the sheet (part of element 8) in front of ridge
(element 28) separates from the ridge. At the moment ‘‘e’, the bending stresses in the Y
direction on the mesh face between elements 31 and 32 reach the failure criterion and is judged

to have which is by the ion along the mesh face of elements 27 and

28. The ridge crack (element ion) is jied with the ion of a few ice sheet
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elements (elements 7, 11, 47, 48, and 51) from the ridge, as shown in Figure 5.22. This event
can be considered to be the beginning of the hinge crack process because this part of the hinge
crack is detected only by DECICE but invisible to the human eyes (as previously explained).
What is interesting is that the recorded loads from the test also has similar but milder variations
just before the event “‘e’” occurs (Figure 5.15), but no obvious hinge cracks are seen from the
test video tape at that moment. It is questionable whether a crack has already occurred in the

test, which might be invisible at that moment.

As the ice moves further towards the structure, the ice forces continuously increase. At
the moment ‘‘f*’ in the simulation, the two ridge segments experience a sudden sliding back

in both ion and i This results in the sharp drop in force history. The

hinge cracks observed from the test should have occurred at an instant between the simulated
events e and f. When they were occurring, a sharp movement (jerk) of the ridge was also

observed; it was noted that the secondary hinge cracks occurred during the event marked ““f".

After the event “‘f’, the simulated ridge segments are in a long sliding (first up then
down) and rotation process (the clearing process). The sheet ice behind the ridge gets gradually
cracked and broken-up to give room for further sliding-down and rotation of the ridge segments.
The dominant motion in this period of interaction is the rotation around the Z axis, which is
mixed with motions in all the other five degrees of freedom. Figure 5.23 shows one of the
scenarios after the event “‘h’’. The loads in this clearing process is eventually reduced to a level

similar to that for sheet ice loads (Figure 5.15).
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Figure 5.23 The Ridge-Sheet Ice Clearing Process

54 Numerical Study on the Effect of Neck Size

It was stated in previous chapters that industry has desired a large vertical neck whose diameter
is only slightly smaller than the waterline diameter of the main cone, and was concerned about
the possible adverse effect of this large size neck on ice loads. Although two neck sizes were
tested (Chapter 3) and the data from the tests with were compared (Chapter 4), they still need

further studies for the reasons given below.

For analysis of the neck size effect (or any other factors), the ideal condition in a series

of physical tests should be like this: only the neck size should vary and all other parameters
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should remain constant; then comparison between them would show the effect of neck size.

Unfortunately, because of the limitations in the test technique, all our tests did not perfectly

satisfy this strict ition, and many other inevi played a role in the

variation of ice forces. The problem is that no existing Lyti can

eliminate the effect of all the parameters other than neck size. Although the analysis given in
Chapter 4 has taken many parameters into account, there were still some parameters whose
effect were not eliminated. The effect of these remaining parameters might be hidden in the

results of the analysis.

An alternative to the physical experiment for the study of neck size effect is to do

An of the numerical simulation is that the parameters can be

easily controlled. In the present case, two sets of si ions were for
both the sheet ice test (YITIR1) and the ridge ice test (Y1T1R2). The small neck structure
(Figure 3.1) was used in the first set whose results have been presented in Sections 5.2 and 5.3
for tests YIT1IRI and Y1T1R2, respectively. In the second set of simulations, the neck of the
structure was replaced with a larger neck with other parameters remaining unchanged, i.e., the
structure shown in Figure 3.2 was used in the second set of simulations. These results are
presented in Subsection 5.4.1 for sheet ice and Subsection 5.4.2 for ridge ice. Comparison of
the results from these two sets of a simulations are expected to show the effect of large neck on

ice forces.
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5.4.1 Ice Sheet Interaction with a Large Neck Structure

Similar to the simulation presented in Section 5.2, the ice di i and

measured in test Y1T1R1 (Tables 3.2 and 3.8) were taken as inputs for this simulation. The only
difference is the neck of the structure, i.e., the large neck structure (Figure 3.2) is used for this
simulation. The loads from this simulation, together with those from the simulation for the small

neck structure (Figure 5.4), are plotted in Figure 5.24.
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Figure 5.24 Simulated Sheet Loads for Large and Small Neck Structures

Figure 5.24 indicates that the difference in forces from the two simulations are noticeable

but not very big. As discussed in Section 5.2, the later portion of the interaction is of greater

importance because both si and il loads occurred in this part.
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Therefore, the analysis and comparison of results are focused on this portion (after 57th second

of the simulation). The overall trend for this portion is that the simulation with large neck
structure yields larger horizontal peak force but smaller vertical force (see Figure 5.24). The
maximum horizontal and vertical forces simulated with the large neck structure are 49.8 kN and

S1.1kN, ively. C with the i i loads for the small neck structure

(43.8 kN and 53.9 kN for the horizontal and vertical maximum forces, respectively), the
counterparts for the large neck structure increase by 13.7% for the horizontal load component

and decreases by 5.2% in the vertical load component.

Figure 5.25 A Scenario of Sheet Ice Interaction with the Large Neck Structure

The above results reflect two aspects of the effect of the larger neck on sheet ice loads.
The wider neck partly prevents the ride-up of the broken ice pieces, which increases the
difficulties in deflection and bending of the impinging ice sheet. This gives rise to certain

increase in the horizontal load. On the other hand, the large neck reduces the length of main
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cone slope, or the area of structure surface between waterline and the neck (refer to Figure 3.2).
Hence, less amount of ice pieces can sit on (or ride up) on the main cone. As a result, the
vertical load to which ride-up component contributes a large portion becomes less than that for

the small neck structure. Figure 5.25 presents a typical situation for this case.

The sheet ice crack pattern for this large neck structure is essentially the same as that for
the small neck. The time history of the simulated loads for these two structure follow the same

overall trend as well.

Ice Ridge Interaction with Large Neck Structure

Similar to the ice sheet interaction study presented in Section 5.4.1, the interaction of the ice
ridge (Y1TIR2) with the large neck structure was investigated. The geometric configuration,
mechanical properties, and element mesh size, etc., remained the same as those in the simulation
for the small neck structure, while the structure was replaced by the large neck structure, shown

earlier in Figure 3.2 of Chapter 3.

It is shown in Figure 5.26 that the ridge loads for structures with different neck sizes are
quite close to one another. The simulation for the large neck structure yields a maximum
horizontal load of 154 kN, and a maximum vertical load of 161 kN. Compared with the
maximum simulated horizontal load (134 kN) and vertical load (154 kN) for the small neck

structure, the large neck increases the horizontal load by 14.9%, and the vertical load by 4.5%.



142

200
——— large neck
100+ small neck i
Fx
Z o
-1001 T
2 3 3
4 5

2% 40 60 80 100 120 140 160
Time (second)

Figure 5.26 Simulated Ridge Ice Loads on the Large and Small Neck Structures
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Figure 5.27 An Interaction Scenario of the Ridge Interacting with the Large Neck Structure

Similar to the case of sheet ice, the mechanism and process of ridge cracking exhibited
for the large neck structure are essentially the same as those for the small neck structure.

Because the large neck significantly reduces the area of the main cone slope, fewer sheet ice
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pieces can accumulate on the cone. As a result, the sheet ice loads for the period of interaction
just before the ridge contacts the structure are much lower than those for the small structure.
Figure 5.27 is a typical scenario for this period of interaction, which shows that there are fewer

ice pieces on the cone and some pieces have slid off the structure.

There is a notable difference in the effect of neck size on sheet ice loads and ridge ice
loads. The large neck increases the maximum horizontal sheet ice load, but reduces the vertical
load component. However, the large neck increases both maximum horizontal and vertical ridge
loads even though the increase in vertical load is at a much lower rate. The main reason is that
the ridge segments are more difficult to be cleared off the structure. Because of their large size,

the ridge are subji to greater resi: than the sheet ice. This larger resistance

combined with the pushing forces from the ice sheet behind the ridge segments creates an

unfavourable situation as shown in Figure 5.28: movement of the ridge segments are partly

blocked and larger portion of ridge ” weight is by the instead of the
water buoyancy. Since the loads exerted by the ridge segments dominate the total ice loads, the

overall vertical ice loads have, thus, increased.

=l

Figure 5.28 Side View of a Scenario of Ridge Clearing Process




543 Discussions of Neck Size Effect

The effect of neck size on ice loads from the present simulations can be summarized as follows.
1. The maximum horizontal ridge loads acting on the small neck structure and the large
neck structure are 134 kN and 154 kN, respectively. Compared with the small neck

structure, the large neck i the i horizontal ridge load by

14.9%.

2. The maximum vertical ridge loads acting on the small neck structure and the large neck
structure are 154 kN and 161 kN, respectively. Compared with the small neck structure,
the large neck structure increases the maximum vertical ridge load by only 4.5%.

3. The maximum horizontal sheet ice loads exerted on the small neck structure and the large
neck structure are 43.8 kN and 49.8 kN, respectively. The large neck increases the
maximum horizontal sheet ice load by 13.7%.

4. The maximum vertical sheet ice forces exerted on the small neck structure and the large
neck structure are 53.9 kN and 51.1 kN, respectively. The large neck decreases the

maximum vertical sheet ice load by 5.2%.

The trend given in items #1 and #3 above agree with the results from the analysis of the
physical tests given in Table 4.6 (Section 4.3.3) and Figure 4.12 (Section 4.4.3), i.e., the large
neck increases the maximum horizontal forces for both ridges and sheets. However, the analysis
of the physical tests show that large neck decreases the maximum vertical ridge load (Table 4.6)

but increases the maximum vertical sheet ice loads (Figure 4.11); these trends of the neck
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influence on the maximum vertical forces do not agree with the results of the numerical

simulation given in items #2 and #4 above.

The disagreement could be caused by many factors; the major ones may be the errors in
the analysis of the tests, the tests themselves, and the numerical analysis. As mentioned at the
beginning of this section, the analysis of the tests does not eliminate all the factors other than
neck size, which might be one source of the error. If an error of 10% (or even more) in the
physical tests and the numerical simulations is found, it won't surprise an engineer. Besides, the
trend given in Table 4.6 and Figure 4.12 is in a least square sense. As shown in Figure 4.13,
there are indeed a few cases of large neck tests giving maximum vertical sheet ice forces

significantly lower than the best fit values for the small neck structure.



Chapter 6  Analytical Studies

The ridge loads on a structure, as shown in Chapter 3, are usually much higher than the sheet

ice loads. The i iation for i (IAHR) Working Group on Ice

Forces (Wessels and Kato 1989) has recommended: ‘‘at least similar (to those for sheet ice)
efforts should be made to study the ice forces exerted on the offshore structures by pressure

ridges, as they may present the worst load case’. This recommendation has also been

appreciated by industry (Chao 1992b). Indeed, an iate method for ining the ridge
load is of utmost importance. All the existing analytical models were based on the tests with

SCSs, and they did not account for the particular features of the MCSs.

An analytical model is being developed in this chapter for practical use in the calculation
of the maximum ridge loads on a MCS. Sections 6.2 through 6.4 develop an analytical model
for computing ridge ice forces exerted on a MCS by infinite length ridges. Section 6.5 presents
equations for the computation of the forces exerted by ridges of finite length. A brief but quite

of the analytical model is given in Section 6.6. Section 6.7 deals with the

issue of ride-up force computation.

6.1 The Problem and Its Simplification

As shown by the analysis in Chapter 4, ridge cracking is one of the interaction events which is
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likely to give rise to the maximum ridge load. Hence, the ridge loads generated due to the initial
and hinge cracks will be considered as possible maximum loads on a MCS. As shown in Figures
4.1 through 4.4, the ridge loads on the tested face-on MCSs in most cases (except the case of
Figure 4.2) are larger than those on edge-on MCSs. Hence, the structure is assumed to be in
face-on orientation and the ridge in broadside orientation so that the forces exerted on the
structure would be 2 maximum. The ridge is assumed to behave as an elastic beam on an elastic
foundation, subjected to vertical loads. To be conservative, the surrounding ice sheet is assumed

not to separate from the ridge until the hinge cracks occur.

The attached ice sheet signi affects ridge ion and load. Its effect has two

different (i) increase of it and (ii) icipation in the ridge

bending. According to Kim and Kotras (1973), the attached ice increases the foundation modulus

by 2/2p,gl,, making the total foundation modulus per unit length of the ridge to be:

k=p,g(B,+2/21) 6.1
where  is the characteristic length of the ice sheet and is defined by Equation (5.5). During the
ridge bending process, the attached ice sheet also contributes to total rigidity. This effect of the

sheet can be taken into account by adding two flanges, each with a width B,, to the ridge beam.

B, can be i ined with the ing

B, =21, 6.2)

Thus, the combination of the ridge and its surrounding ice sheet can be treated as an
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elastic beam on an elastic foundation. Figure 6.1 shows the overall cross section of this beam

whose foundation modulus per unit length is given by Equation (6.1). The characteristic length

of this beam (ridge plus sheet) is given by

‘[4E1
L= __k; ©.3)

where [ is the moment of inertia of the beam, which is sum of the moment of inertia of the
flanges, /;, and the moment of inertia of the isolated ridge, I, i.e.

I=I+1, 6.4)
From here on, this beam will be referred to as ridge for short, whereas the ridge without ice

sheet attached will be identified as an isolated ridge.

— Bg—t IBt ) Be—1
T :rfl 4“ “““““““““ i
H
l -
—b—

Figure 6.1 Cross Section of Ridge Beam with Ice Sheet Flanges
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The positive sense of x, y, and z axes of the Cartesian coordinate system being used in

the following analysis is coincident with that defined in Chapter 3, but its origin shifts to the
intersection of the ridge’s two central planes at the water surface where the weight and buoyancy
of the ice are balanced (see Figure 6.1). The upward-acting shearing force and upward convex
bending moment (which makes the bottom layer of the beam to be in tension) are considered
positive. Using this coordinate system, the equation governing deformation of the above beam

is of the form:

E,Iﬂ =-kz+q (6.5)
dy*

where g, the intensity of a distributed load, will be given ing to the i

This equation was derived for the loaded portion of the beam. Outside the loaded portion, this

equation is still valid if ¢ is set to zero.

In Equation (6.5), the ice ridge beam is considered to be a constant stiffness beam under
vertical flexural loads only; this idealization has been widely accepted by industry and research
community (Kim and Kotras 1973, Wang 1979, Croasdale 1980, American Petroleum Institute

1988, et al 1989). Additional i carried out to show sufficiency of

considering vertical loads only are given in Appendix C. One question that needs to be answered
is the error due to application of elementary bending theory on which Equation (6.5) is based.
From the results of an elasticity solution reported by Higdon er al (1967, p. 257), it is found that

bending stress (in y direction) from elementary theory is very close to that from more exact
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theory of elasticity. The difference between using the elementary theory and the elasticity theory

is less than 0.2 percent. The vertical stress (in z direction) calculated from elasticity theory is

much less than the stress in y directi d from y beam theory, for a beam
whose length is several times the depth. Shear stress is the same for both the elementary beam
bending theory and the elasticity theory; it has a zero value at top and bottom fibres and reaches
its maximum value at beam’s neutral axis. In this analysis, the ice ridge is considered to be a
brittle material, i.e., once its maximum stress equals ridge strength the ridge cracks across its
entire cross section. Since the maximum stress for this bending problem occurs at the top or
bottom fibre, shear stress does not affect the maximum bending stress, and consequently does

not affect accuracy of calculation of maximum loads on a2 MCS.

The ridge cracking loads can be obtained by solving Equation (6.5) by the superposition
method (Hetenyi 1946). The approach to be used consists of three steps:
1. Choose a reasonably simplified loading condition(s) for initial (central) cracking and
hinge cracking process.
2. Under each given loading condition, the bending moment M(y) will be derived. And
then, the location of the maximum bending moment, ¥, will be determined by solving

the following equation:

amo) _, 6.6)
dy
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This location is considered as the section where the crack will appear. The maximum
bending moment M,, = M(Y) can be found out by substituting ¥ back into the
expression of the bending moment.
Once the maximum bending moment M, . is determined, the maximum ridge load for

that particular cracking process will be given by the equation:

M, =-— 6.7

where z, = z and g, = o,, if the top layer of the ridge is in tension, and z, = z, and o,
= 0, for the bottom layer of the ridge in tension (see Figure 6.1). o, and o, are the
ridge flexural strength with top layer and bottom layer in tension, respectively. The
negative sign in Equation (6.7) is due to the definition of the coordinate system and the
positive sense of the bending moment. If absolute value of M., z, and z, are used, the

negative sign should be ignored.

Loading Conditions

For the predominant failure mode of ridges (the failure pattern I, see Section 4.1), a ridge

usually undergoes an initial (central) cracking followed by a pair of hinge cracks. It is assumed

here that the maximum force occurs during either the central crack or the hinge crack, depending

on whichever generates a larger load.

For a face-on MCS and a broadside ridge, we assume they have an ideal firm contact
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along the contact interface during the central cracking process. Figure 6.2 A is a sketch showing
the top view of this contact condition. The force on the ridge under this contact condition can

be si with a uni it load as shown in Figure 6.2 B. For the convenience

of derivation of equations, the load length which equals the length of structure’s facet at water

line is by 2I. This ition will be used throughout the remaining parts of this

chapter.

o E———
e

cone

Figure 6.2 A Contact Condition for Initial Crack

b2

Figure 6.2B Loading Condition for Initial Crack
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After the initial (central) crack has formed, a pair of hinge cracks will occur at a certain
distance away from the central crack. The contact condition for the hinge crack can vary from
firm contact along the whole interface to point contact on the two comners of the front facet,

depending on ridge and sheet ice rigidity, structure size, previous interaction condition, and

many other factors. These two extreme contact itions can be by a

distributed load and a pair of concentrated loads, respectively. The corner contact and the
concentrated loads are shown in Figure 6.3 A and 6.3 B, respectively, while the uniformly
distributed load and the corresponding contact condition are similar to those for the initial crack

shown in Figures 6.2A and 6.2 B except for the fact that the central crack already exists in the

ridge for this case. Between these extreme contact it an i i ition could
be considered such that the contact is quite complete at the facet corners and gradually reduces
to zero at the center line of the facet. This condition can be simulated by a triangular load, as

shown in Figure 6.4.

Figure 6.3 A Corner Contact for Hinge Crack



Figure 6.3 B Concentrated Loads for Hinge Crack

1 z

)
{ il s
q. U U Qe
Figure 6.4 Triangular Loads for Hinge Crack

Of course, the real contact condition could be anything between the two extreme
conditions or even outside them. Any of the three conditions chosen here may be applicable only
for a few interaction scenarios, but together they can cover most of the contact conditions

observed during the tests.
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6.3 Bending Moment and Crack Locations

for Infinite Ridges

Following the procedures given in Section 6.1, this section will present the derived bending

moment. The material is ized into four i the and crack ions for

the initial crack are shown in subsection 6.3.1, and those for hinge cracks under uniformly

and tri istri loads are in ions 6.3.2,

6.3.3, and 6.3.4, respectively.
6.3.1 Bending Moment and Crack Location for Initial Crack

For the loading condition given in Figure 6.2 B, the bending moment in the ridge for the part
where y > 0 is given as
L33
M©)=-—q,.L, - l
0) 2%  [BO+D+B(I-y)] O<ys| ©.8)
M) = - +q,L21B+D-By-D] yal

where ¢, is intensity of the uniform load per unit length, and L, is characteristic length of the
ridge defined in Equation (6.3). B(y+1), B(y-}), and B(l-y) are functions of y, /, and L, and
given in Appendix D. Since both the ridge and the load are symmetrical about the x-z plane, the
bending moment in the part of y < 0 is also symmetrical with respect to those given in the

Equation (6.8).



of Equation (6.6) to Eqy (6.8) yields:
Cly+h-C(-y) =0 0s<ysl 6.9
Coy+D-Cy-D =0 yal

where C(y+1), C(y-l), and C(l-y) are also given in Appendix D.

Solving equation (6.9) for y gives y, that defines the location of the section where the
crack occurs and the bending moment M,(y) reaches its maximum value M, i.e., M;(y) = M.

The solution of ion (6.9) can be in a di i form as follows

% =g(2AIL) (6.10)

Part of its numerical values are plotted in Figure 6.5.

In Figure 6.5, the dotted line represents y=!, the corner of the structure’s facet. The
values of y/L, above this line would mean that the crack occurs outside the ice-structure interface

area. When y/L, is below this line the crack will occur within the interface area.

Figure 6.5 shows that the initial crack theoretically occurs at y = 0. Thus, it is
reasonable to assume that the initial crack occurs at the center of the contact area. In the rest of
this thesis, the analysis for hinge cracks which occur after the initial crack will be based on this

assumption.
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Figure 6.5  Normalized Crack Location of Initial and Hinge Cracks

The physical tests and the numerical simulations well support the above results. Tables
4.4 and 4.5 (in Chapter 4) showed the initial crack of many ridges tested with face-on structure
occurred at or near the center of the contact area. The numerical simulation also showed an

initial crack at the center of the ridge.

After obtaining y,, one can determine the maximum moment M; by substituting y, into

equations (6.8). In general, M, can be expressed as

M, =q,f(L, L) 6.11)

where f(I,L,) is a function of / and L_and will be addressed in Section 6.4.



158
6.3.2 Bending Moment and Crack Location for Hinge Crack under

Uniformly Distributed Load Condition

After the occurrence of the central (initial) crack, the ridge breaks into two semi-infinite
segments; it is assumed that the loads and the sectional profile are symmetrical about the x-z
plane. Thus, one needs to consider one segment only. Under the uniformly distributed load, the
bending moment, M,(y), along the semi-infinite ridge can be written as

M,0) = -1 g L% [4,C0) - 4, D&Y+ BO) + BU-)] osys!
4 (6.12)

M,0) = ~14,12 14,C0)- 1, D6) +BO)- BO-D] yal

where qq is the intensity of the uniform load, and u, and u, are defined by

u =1+ BO - CO
u, = 1+2B(0)-CO

(6.13)

B()), B). B(y), Bo-), C@), C(). and D(y) are given in Appendix D.

Applying Equation (6.6) to Equation (6.12) leads to

2u, D(y) - u,A(Y) - CO) + C(l-y) = 0 O<ysl
24, DO) - ,AG) ~C0) + Co-D) = 0 yal

(6.14)

where «; and u, are the coefficients defined by Equation (6.13).
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Solving Equation (6.14), one would obtain a solution of the form

Ya

7 £,2L) (6.15)

where y, represents the location of the section where M,(y) reaches its peak value M,, and hence
is the location of the hinge crack. The function g,(2//L,) is also plotted against 2/L, in Figure
6.5. The figure indicates that the hinge crack caused by a uniformly distributed load appears
outside the ridge/structure contact area. Since the two semi-infinite ridge segments are
symmetrical about x-z plane, there is also a crack in the other segment (the part where y < 0),

at a distance y, away from the center crack.

Substituting y = y, back into Equation (6.12) gives the maximum bending moment M, for the

hinge cracks under the uniformly distributed load. M, can be expressed in the form

M, = ¢, f(LL) (6.16)

where f,(I,L,) is a function of / and L, and will be addressed in Section 6.4.

6.3.3 Bending Moment and Crack Location for Hinge Crack under

Concentrated Load Condition

If each of the two i-infinite ridges is subj toa load at the contact points
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at the facet corners as shown in Figure 6.3 A, the bending moment for the ridge withiny > 0

can be derived as

M.0) = - 1 p,L.[s,C0) + CU~y) -25, DO)] osyst
4
6.17)
M.0) = - p.L,15,C0) + CO-D - 25, DO 2l
where p, is the load on the semi-infinite ridge. Functions C(y), C(l-y), C(y-}), and
D(y) are given in Appendix D. s, and s, are functions of / and are defined as
s, =€) + D) &i®
5, =C() + 2D
Applying Equation (6.6) to Equation (6.17), we have:
5,D(y) -5,A(y)-D(l-y) =0 Osysl ©.19
5,D(y) -5, A(») +D(y-1) =0 y2l
F ion A(y) is given in ix D. 5, and s, are defined in Equation (6.18). The location for

the maximum bending moment or the hinge crack, y,, thus can be obtained by solving Equation

(6.19), and it can be expressed in the following general form:

% = g.UL) 6.20)

The function g.(2//L,) is plotted also in Figure 6.5.

Figure 6.5 shows that the hinge cracks caused by concentrated load could have occurred
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at three pairs of locations. Firstly, a pair of cracks will appear at the sections at a distance
varying from 0.79L, (at 2/[/L, = 0) to 1.52L_ (at 2I/L, = 0.89) away from the center of the
contact area when 2//L. is less than 0.891. Secondly, within the range of 0.89 <2/ <0.94 two
pairs of cracks may appear: one pair occurs following the above regularity, the other pair may
appear just at the contact points (i.e. the loading points). At these two pairs of locations, the
bending moments are very close, with the maximum difference less than 10%. When the ratio

2l/L, increases further, say larger than 0.941, the cracks will occur at the loading points only.

If a ridge/structure combination had a value of 2//L, > 0.94, the ridge after the
occurrence of hinge cracks cannot still pass the structure because the width of the structure is
larger than 2/ whereas the distance between the two cracks is only 2/. This means that other
cracks must occur to let the ridge pass beyond the structure. The approach for a semi-infinite

beam under a concentrated force at its one end can be applied to this problem.

Fortunately, the combination of a ridge and a structure which has a value of 2//L, > 0.8,

does not occur under realistic condition. Based on the information compiled by Cammaert and

Muggeridge (1988), the i in A dix E of this thesis shows that the range
of ridge characteristic lengths for the Beaufort Sea and the Chukchi Sea is between 55 and 370
meters. If this limitation is applied to the prototype structure shown in Figure 3.1, the range of
2l/L varies between 0.05 and 0.31 which is much below 0.94 or 0.89. The maximum value for
the ridges and the structural models used in the present tests was 0.47 which is also much

smaller than 0.89. Hence, one can say that considering the situations for 2/Z, < 0.89 is good
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enough for real life situations. Thus, only one pair of crack locations (the part above the dashed

line) will be i for loading

Substituting y, for y in equations (6.17), we have the expression of the maximum bending

moment M, as follows

M, = . f(LL) ©20

where f,(I,L,) is a function of / and L_ and will be addressed in Section 6.4.

6.3.4 Bending M and Crack L ion for Hinge Crack
under Triangular Load Condition
For the tri; i loading ition given in Figure 6.4, the bending moment can be
written as
1 1 alL: 21
M) =-—PyL.CO)-—M,DG)+———[AD)-A(-y)-——B(-y)] Osysl
4 2 8l L
< (6.22)
1 1 all 2
MG)= —;P,AC(y)—iuoD(y)* i [A(y)—A(y—D*TB(y-l)] y2l

where g, is the maximum value of the load intensity. A(y), A(y-}), and B(y-/) are given in

Appendix C. M, and P, are the resultant moment and force, respectively, and they are
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independent of y and are defined as follows

"‘ 3 Ien A(t)-—sm-za(m—ca)l
(6.23)
M, - [1—A(o——n(n—n(n~ ca)]
Applying Equation (6.6) to Equation (6.22) yields the following equations:
M,
L~ LA y)—,_—’cu—y)l - osysi
< 4 (6.24)
M, ‘1, c
P,DO)+2A0)- 25 BO)-BO- t)—-co b = yal

The solution of Equation (6.24) is the location of the maximum bending moment or the
location of the hinge crack under a pair of triangular distributed loads. The solution can be

expressed in the following general form:
Y
= =g(2l/L) (6.25)
LG

where g,(2//L) is a dimensionless function and is also plotted in Figure 6.5.

y fory in ion (6.22) gives i bending moment M, which can

be expressed as follows



M, = q, f(L1) (6.26)

where f(I, L) is a function of / and L_ and will be addressed in Section 6.4.

6.4 Formulae for Estimation of the Loads
Exerted by Infinite Ridges

The maximum bending moments M, , M, M, , and M, given in Equations (6.11), (6.16), (6.21),

and (6.26) are for the occurrence of initial crack and hinge cracks under uniform, concentrated,

and tri: loading, respectively. The il loads for cracking can be determined by

applying Equation (6.7) to these il ituti ions (6.11), (6.16),
(6.21), and (6.26) into (6.7), one obtains the following equations:

L
21q‘f'_(;'l_=) e _"_:'_' ©.27)

LL 1
21q, faLL) _ %
21 7
2p, LGl | ol (6.28)
2 Z,

1q, FLE) _ oul

1 z,
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In above equations, 2lg, 2lq, 2p., and lq, are the ultimate loads for initial crack and

hinge cracks under uniform, i loads, respectively. It should also be noted

o, ,, the ridge flexural strength with its top in tension, and Zz, the distance from ridge’s
centroidal axis to its top surface, are used in Equation (6.27) which is valid only for initial
crack. On the other hand, o,,, the ridge flexural strength with its bottom in tension and, z,, the
distance from the centroidal axis to the bottom surface, are used in Equation (6.28). This is due
to the fact that the initial crack breaks the ridge with its top in tension, whereas the hinge cracks
break the ridge with its bottom in tension. It should also be noted that z and z, are the absolute
values of the corresponding distance because their signs have already been taken into account

in the equations.

Equations (6.27) and (6.28) can be rewritten in a neater form as:

ey L F,(—) (6.29)

Pyl g 2L (6.30)
2y L ( )

p =l p 2l (6.31)
€ 4L L

p - sl g (2l (6.32)
Tl L

where P, Pp, P, and Py are the maximum initial crack load and the hinge crack load under



uniform, concentrated, and triangular loading conditions, i.e.,

P,=2lg,, Py=2lg,, P.=2p , P.=lg, (6.33)

F(2UL,), Fp(2U/L,), F(2I/L), and F(2l/L,) are dimensionless load functions, which can be
considered to be normalized vertical ridge load for infinite ridges, defined as follows:

21L,
F3ly -2 (6.34)
L fi(L L)
21 21L, 21 2L, 21 1L
F (%) - —t Loy —C F(%%) = G (6.35)
LT RGL S L~ fGrL) L RGL)
These load function are of 2l/L, (the di i facet length at

waterline level), and are shown in Figure 6.6.

Triangul
"e%ad

oy
s
=
5p Initial Crack 1
0 " .
[} 0.5 1 15

2L,

Figure 6.6 Load Functions of Infinite Ridges
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These functions can be approximated in a general form by the following quadratic

function:

21 21 21
F(T,) -aow.z*a-,(z)’ (6.36)

The coefficients @, a,, and a, were determined using the linear regression approach and are

listed in Table 6.1.

Crack Loading 2, a, a,
Initial Crack Uniform Load (F) 4.0 1.7 1.2
Uniform Load (Fp) 6.2 2.7 2.0

Hinge Crack | entrated Load Fd 6.2 5.2 8.1
Triangular Load (Fp) 6.2 3.4 3.8

Table 6.1 Coefficients of F(2I/L,)

Thus, the initial crack load can be calculated with Equations (6.29) and (6.36). The hinge
crack load, i ing, should be with one of the equations, (6.30), (6.31),

or (6.32), depending on which loading ition is most iate. Gi , desil would

appreciate a single simple equation for ridge load estimation rather than a number of equations
as given in Equations (6.30) through (6.32). To be conservative, the concentrated loading
condition should be used for hinge crack load estimation. Since the concentrated load is one of

extreme loading conditions and the F(2//L,) envelops the other two load function curves, the
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equation for the loading ition, viz., ion (6.31) will predict a larger ridge

load.

It should be noted that formulae presented above are only valid for the vertical ridge

loads. The horizontal load can be calculated using Equation (2.1).

6.5 Consideration of Ridge Length Effect

So far, the ridges considered are infinitely long. Many researchers have pointed out that the
ridge length could significantly affect the load if the ridges are short (Ralston 1978, Wang 1979,

Abdelnour 1988). This effect will be investigated in this section.

Similar to the simplification made in section 6.1, the ridge is still assumed to be an
elastic beam on an elastic foundation, but with finite length 2L (L is the half ridge length).
Uniformly distributed load is also assumed to be the loading condition for initial crack formation
in this finite ridge. Among the three loading conditions considered for hinge cracks, the
concentrated loading condition has been chosen as the critical one for the formation of hinge
crack in this finite ridge. Again, this choice would lead to a prediction of larger ridge crack
loads. Figure 6.7 is a sketch showing the interaction scenario and the loading condition for the
hinge crack formation in a finite ridge. Similar to the derivation for infinite ridges, the formulae
given below are also valid only for the estimation of maximum vertical ridge loads. The

horizontal component of a finite length ridge can be estimated with the help of Equation (2.1).
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Figure 6.7 Contact and Loading Conditions for Hinge Cracks in a Finite Ridge

6.5.1 Initial Crack Load of a Finite Length Ridge

Using the results and the assumption that initial crack occurs along center plane of the ridge used
earlier (see Section 6.3.1), one can directly derive an equation for the computation of initial
crack formation load for a finite ridge. At the center of the ridge, the bending moment for the
initial crack can be written as

sinl, sinhZ, sinh(L,~1) + sioh(L,-1,) sinL, sin(L,-1,)

637
sinh2L, - sin2L, !

M,(L,.1) = q,L2 [

where g, is intensity of the uniform load, L, and [, are normalized half ridge length and half
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facet length, respectively.
L,=L/L, L=1/L, (6.38)
Applying Equation (6.7) to this case, one can express the initial crack load, Py, as

a7

- B (6.39)

P =2lq, =

3

The load function, F,(L,.L,), is defined by Equation (6.40) and is plotted in Figure 6.8.

21, (siph2L, + sin2L,) D)
sinl, sinbL_sinh(L, -1,) +sinhl, sinL, sin(Z,-1,) ’

Fo(Lul) =

2! = facet length at waterline
2L = full ridge length
L, = characteristic length

Fo(Ly, 1)

20/L,=

0.70

Figure 6.8 Load Function for the Central Crack in a Finite Length Ridge
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6.5.2 Hinge Crack Load of a Finite Length Ridge

under a Concentrated Load

For i in derivation of it two local i (for y and its origin only) y,

and y, are defined in this section (see Figure 6.7).

For a finite length ridge under a pair of concentrated loads, P, (Figure 6.7), the bending

moment along its length is given by

M(3,) = P,,[2C sinhy sinF, + D, (coshy,siny, ~sinhy,cos5,)] 0T &) (o
MG,) = P,[2C,sinhsin¥, + D,(cosh¥;sin 5, -sinhy,cosy,)] [P APYA

Coefficients P,,, C,, C,, D, , and D, are functions of L, and /, and are given as follows

Py Pl 64
2(sinh’L, -sin? L)

0
"

sinhZ, cos(L,~1,) cosh/,~sin L, cosh(L,~1,) cosl,
sinhZ, [sin(L,-!,) coshl,~cos(L,~1,) sinhl,]

« sinL [sinh(Z, 1) cosl, - cosh(Z,-1,) sinl,]

C, = sinhL, cosl, cosh(Z,-1,)-sinhL, coshl, cos(L,-1,)
sinhZ,[sin/, cosh(L,~1,) -cosl, sish(Z,~1,)]
+sinL, [sinh/, cos(L,~1,) - coshl, sin(L,~1)]

o
]

(6.43)

R
]

The normalized coordinates are defined as



5 oL A (6.44)

Application of Equation (6.6) to Equation (6.41) gives the following:

C,(cosh7, sing, + sinh, cosF,) + D, sinhy, sinF, = O

et o O (6.45)
C,(coshy, siny, + sinhy, cosy,) + D,sinhy,siny, = 0
Their solution can be generally presented as
n=Y n=Y
of the i of ion (6.45) into (6.41) gives the local maximum

values of the bending moments for the two portions of the ridge, respectively. The overall
maximum bending moment is the larger of these two local maximum moments. After a detailed
investigation, it was observed that the overall maximum bending moment is most likely to occur

in the portion / < y < L - [, i.e. the portion outside the loading area.

Again, application of Equation (6.7) to the present case gives an equation for the

estimation of the vertical hinge crack load of a finite ridge, Py, as follows:

Py =2P, =

o, !
=— Fg(L,, 6.46)
A Fla k) ¢

where the load function Fi(L,,l,) is given below and is plotted in Figure 6.9.
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4(sink’L, - sin®L )

FfL,1) = — —
2C sinhY sinY, + D,(coshY, sin¥, - sinh¥, cosY,)

6.47)

Fy(L,,1,) represents the dimensionless load exerted by the ridge for hinge crack formation
and is a function of L, and /, (defined earlier in Equation (6.38)). The figure is based on a

detailed computation considering a number of combination of these two variables.

501

30f

Fy(L,4)

201

of Fg(L,,1,)=62

Figure 6.9 Load Function for Hinge Cracks in a Finite Length Ridge

6.6 Discussion about the Analytical Model

The main difference of a SCS and a MCS is in their surface configuration. Since the surface of
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a MCS comprises several flat facets, the width of contact area for the ridge with a MCS equals
the facet length if the structure is in face-on orientation and the ridge is in broadside orientation.

On the other hand, the contact area for a SCS and a ridge may be much narrower.

The analytical models presented in this chapter may be used to compute the maximum
ridge loads exerted on a MCS, while the Croasdale-Abdelnour model (refer to Section 2.2.1 of
Chapter 2) was derived for SCSs. Both of these models are based on the theory of an elastic
beam on an elastic foundation (Hetenyi 1946). Because local crushing is ignored, the loading
condition for the present model is a line load with three types of load distribution along the
interface line (equal to the facet length), whereas the Croasdale-Abdelnour model used a point
load as the loading condition, with the load at the point of contact between the ridge and the SCS
(at the center of the ridge). Thus, it is obvious that the main difference in Croasdale-Abdelnour
model and the present model is the effect of the length of the load, or the effect of the facet

length. In this sense, ion (2.2) is a of ions (6.29) through (6.32). A

discussion of their similarities and differences are given in Section 6.6.1. Similarly, Equation
(2.3) is a counterpart of Equations (6.39) and (6.46). These equations show the effect of ridge

length on crack loads, which will be discussed in Section 6.6.2.

6.6.1 Effect of Facet Length on the Loads and
Crack Locations of Infinite Ridges

Comparing Equations (6.29) through (6.32) with Equation (2.2), one can see that the coefficient
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4.0 in Equation (2.2) is analogous to the load function F,(2l/L,) given in Equation (6.29), and

the coefficient 6.2 in ion (2.2) is to the load functions given in ions (6.30)

through (6.32).

The load functions plotted in Figure 6.6 show that both the initial crack load and the
hinge crack load increase steadily as the dimensionless facet length 2//L, increases. The starting
point (where 2//L, = 0) of the functions for initial crack and hinge crack loads are the very
values of the coefficients for Equation (2.2), 4.0 and 6.2, respectively. This clearly shows that
the Croasdale’s (Equation (2.2)) is only a particular case of the present models. In other words,

a SCS is the particular case of a MCS with its facet length equal to zero.

From the above discussions, a conclusion may be drawn as follows: For a given ridge
and a MCS, the more facets it has, the lower the ridge load will be exerted on it. The lower

bound is the case of a SCS, or a MCS with facet length equal to zero.

A glance at the curves in Figure 6.6 may give one an impression that the ridge load,
especially the hinge crack load, ona MCS may be twice or even three times as large as the load
on a SCS if the 2//L_ is large (let’s say larger than 1.0). It is not true in real cases. As
mentioned in section 6.3.3, the range of 2//L, for the Chukchi and Beaufort Seas where this type
of structures were proposed to be used, is 0.05 to 0.31. For the largest value of 2//L., viz.,
0.31, F,(0.31) = 4.65, and F(0.31) = 8.6. Compared with the coefficients 4.0 and 6.2, these

values of F; and F are only 15% and 38.6% higher. The largest value of 2//L. of all the tests
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presented in Chapter 3 was 0.472. For this extreme value, the hinge crack load predicted with
the present model is about 69% larger than that from Equation (2.2), and it is about 27% for

the initial crack.

The effect of facet length (or the number of facets) on crack location can be seen from
Figure 6.5. The initial crack for both SCS and MCS occurs at the center of the ridge (or the
center of the front facet at waterline level). The hinge crack for SCSs, if Equation (2.2) is

applied, is always located at

Rl

= % +2im where i = 0,1,2,... (6.48)

It is rarely possible to have y/L, = 2.25 x. Thus, we can let i= 0 and obtain the crack location
y/L. = 0.785. This, as shown in Figure 6.5, is the location where all the curves for hinge crack
locations begin. This, again, shows that Croasdale’s equation is only a special case of the

present model.

Because the values represented by curves in Figure 6.5 steadily increase as 2//L,
increases, the crack location for MCS is farther away from the ridge center, but it will not be

too far since the value of 2//L_ under actual conditions is usually less than 0.31.



6.6.2 Effect of Ridge Length on Crack Loads

Ralston (1978) pointed out that a decrease in ridge length, according to Hetenyi's (1946)
description of finite beams, will increase the ridge load if the ridge length is relatively short. His
plotting of ridge vertical force, predicted with Hetenyi's theory, against dimensionless ridge

length clearly showed this trend.

Figure 6.8 shows the effect of ridge length on vertical central crack load for various facet
lengths. Basically, the curves of load function can be divided into two regions by a critical value
around 2L/L. = 2.9 which also to a certain extent depends on the value of dimensionless facet
length (2/L,). When the ridge’s dimensionless length is lower than these critical values, the load
function and thus the load decreases sharply as the dimensionless ridge length increases. As the

ridge length i to values larger than these critical values, the load function

slowly increases until 2L/L, reaches an upper threshold value about 5.8. Within the range of
2L/L. = 2.9 to 5.8, the value of load function is lower than its value when the ridge length is
infinity. Hence, the effect of ridge length on vertical central crack load, according to Figure 6.8,
can be stated as follows:
1. For ridges with lengths shorter than 2.9 times of their characteristic length, the load
increases as the length decreases.
2.  For ridges whose lengths fall in the range of 2.9 to 5.8 times of their characteristic
length, the load will be lower than that of an infinite length ridge with other properties

remaining same. The load slowly increases as ridge length increases.



178
3. If a ridge’s length is longer than 5.8 times of its characteristic length, it can be

approximately treated as an infinite ridge.

Figure 6.8 also shows that an increase in facet length gives rise to an increase in vertical
central crack load for a ridge with a given length and characteristic length. This is similar to the

trend shown in Figure 6.6. The values of the load function beyond 2L/L, = 5.8 in Figure 6.8

are in complete agreement with those in Figure 6.6 at ing points of di
facet lengths 2//L.. It is worth mentioning here that the line with facet length equal to zero in
Figure 6.8 is exactly the same as that obtained with Equation (2.4), which is the vertical load

function obtained for a finite length ridge.

The effect of ridge length on the vertical hinge crack load can be seen in Figure 6.9. It
shows that the load function decreases as the ridge length increases for all possible facet lengths.
Generally speaking, if the ridge length is longer than about 6.8 times of its characteristic length,
neglecting the effect of the ridge length resuits only in a negligible error. In other words, a ridge
can be treated as infinitely long if its dimensionless length is larger than 6.8. The value of this
critical point depends on the value of the dimensionless facet length, as shown in Figure 6.9.

For instance, for a SCS (i.e. [ = 0), the critical point can be lowered to a value of 2L/L_ = 5.8.

In addition, Figure 6.9 also shows that facet length plays a significant role in the effect
of ridge length on hinge crack load. Basically, for a ridge with given length and characteristic

length, the larger is the dimensionless facet length, the higher the load will be.
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6.6.3 Short, Finite, and Long Ridges

According to Wang (1979), Semeniuk (1975) has divided the ridges (for the cases of SCSs) into
three groups in his modification of APOA project 87 (Semeniuk, 1975) that implemented the
Kim and Kotras method (see Chapter 2 of this thesis). The first group consists of those ridges
whose dimensionless length is less than 0.835. These so-called shorr ridges were considered to
be the ridges that do not fail as they move against a cone. The second group comprises of the
ridges with dimensionless lengths in the ranges of 0.835 to 5.0. These ridges were considered
to be finite and their load should be computed using Hetenyi’s finite beam theory. The ridges
with dimensionless lengths greater than 5.0 fell in the third group that can be treated as infinite

beams.

The curve for zero dimensionless facet lengths (i.e., a smooth cone) in Figures 6.8 and
6.9 well support the above classification. It shows that the load required to fail a very short
ridge (2//L. < 0.835) is unbelievably high. This ridge, as described by Ralston (1978), may
slide over the surface of the structure without cracking because the force needed for this may
be lower than that for developing a crack in the ridge. In the case of SCSs, the effect of ridge
length, as previously pointed out, is negligible if the dimensionless ridge length is greater than
5.8. This value is quite close to the one (i.e., 5.0 ) chosen by Semeniuk (1975). In fact, when
the dimensionless ridge length is greater than 5.0, its effect on the vertical load on a SCS (both

initial and hinge cracks) becomes insignificant.
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In the case of MCSs, the values of the points which divid ridges into the three groups
should be increased because the load required to fail a ridge increases as the dimensionless facet

length i The detailed jion shows that ridges with 2L/L_ lower than a certain

value and 2//L, greater than 0.1 do not experience hinge cracks at all. The critical value of
2L/L can be roughly expressed as 6(2//L,), i.e., for 2[/L. > 0.1, if a ridge’s 2L/L, < 6(2l/L)
no cracks would occur. For example, if 2//L, = 0.2, the ridge will not have hinge crack if its
2L/L. < 1.2. The upper bound values below which the short ridges are defined should be no
lower than the values given by the above rule. That is the reason why the curves with 2//Z,
larger than 0.3 in Figure 6.9 begin with very high values of 2L/L,. This is another aspect of the

ridge length effect.

6.6.4 The Maximum Ridge Crack Loads

‘With the present analytical model, the maximum ridge crack load on a MCS is the larger of the
initial and hinge crack loads predicted with equations (6.39) and (6.46), or (6.29) through (6.32)

if the ridge length is long enough.

For a given ridge and structure (i.e. the dimensionless ridge length and facet length are
given), it is obvious that the value of hinge crack load function is larger than that for the central
crack. However, this does not mean that the hinge crack load is always larger than the central

crack load. The reasons are given below.
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For a central crack, the ridge ice strength is the one with its top surface layer in tension,

which is usually higher than the ice strength with its bottom surface layer in tension, and the
latter is used in equations for hinge cracks. Also, z, is used in the equations for central crack
load, i.e. Equations (6.29) and (6.39), and z, is used in the equations for hinge crack load, i.e.,
Equations (6.46) and (6.30) through (6.32). Because the attached sheet is included in the ridge
beam, the modified cross section has a centroidal axis closer to the top, which results in a
smaller z, and a larger z,. The combined effect of all these parameters together can lead to the
prediction of the vertical central crack load higher than that for the hinge crack. Thus, it can be
said that whether the hinge crack or central crack produces the maximum load depends not only
the value of load function but also on the relative value of two flexural strengths and the

condition of the surrounding ice sheet.

If the hinge crack governs the maximum crack load, the load predicted with Equation
(6.46) is larger than that obtained for infinite length ridges (i.e., Equations (6.30) through (6.32)
). If the initial crack induces a larger load, the load predicted with Equation (6.39) is possible

to be smaller than that obtained from Equation (6.29) for 2.9 < 2L/L. < 5.8.

6.7 Ride-up Forces and Total Forces

So far, the formulation and discussions are given only for ridge crack loads. As stated in
Chapters 3 and 4, the ridge cracking is usually accompanied by the sheet ice pieces riding up

on the cone surface. This ride-up process also generates ice loads on the structure. The total
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maximum forces should include both the ridge crack forces and the forces due to the ice pieces

riding up.

As reviewed in Section 2.4.3, the analytical model developed by Nevel (1992) is capable
of computing the ride-up forces on SCSs with multiple conical sections including a vertical neck.
It is just suitable for the cases of the MCSs dealt within this thesis. The Nevel model separately
computes the breaking component and the ride-up component of the total sheet ice forces. The

part for the computation of the ride-up forces is adopted here.

The Nevel model assumes that the broken ice pieces completely cover the front half of
the structure. To apply the Nevel model to the case of the present MCSs, it is assumed that the
front facet and the two front side-facets be completely covered with ice pieces for the face-on

orientation; for the edge-on ori ion, the two front side-fz (no front facet in this case) are

assumed to be fully covered by the ice pieces and the side facet behind the front side-facet on
each side is only half covered, from its front edge (the behind edge of the front side-facet) to

its center line (symmetrical axis).

Large variation in the height of the ride-up was observed during the tests. To be general,
the ice can be assumed to reach the middle of the meck (in the vertical direction). In the
computation for the comparison of the present model with the Wang and Croasdale-Abdelnour
models to be presented in Section 7.2, the ice pieces ride-up height was taken only to the top

of the collar because the Wang model can account for the ride-up ice only to the top of sloped
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sections (the Wang model uses part of the Ralston model to compute the ride-up component).

Adding up the ride-up forces computed with the Nevel model to the forces given by
Equations (6.39) and (6.46) or Equations (6.29) through (6.32) will give the total forces acting
on a MCS due to the process of ridge cracking.
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Chapter 7  Validation of Analytical Models

This chapter consists of three main parts: (i) verifying the models developed in the last chapter,
(ii) checking the suitability of Wang’s model (Wang, Y.S., 1979 & 1984) and the Croasdale-
Abdelnour model to estimate the ridge loads on MCSs, and (iii) examining the validity of the
Ralston model, the Nevel model, and the Croasdale model for the prediction of sheet ice load
on MCSs. These three parts will be arranged in Sections 7.1 through 7.3. The analytical models

to be validated in Sections 7.2 and 7.3 were reviewed in Chapter 2. The verification and

will be by ing the iction from the lytical models with the

test results compiled in Chapter 3.

A few ridges are not used in the comparison and analyses in this chapter, mainly due to

their incompleteness in data. These include ERC’s tests Y2T5R1 and Y2T5R2, and IME's C53.

7.1 Verification of the Present Analytical Model

The method given in Chapter 6 has been coded into a computer program to compute the loads

on the MCSs for the given test iti The ice ies and il ions shown

in Chapter 3 were used as inputs.

In the ERC test series, the ridges YIT3R1, YIT4R1, Y1T4R2, Y2T2R1, and Y2T2R2
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orientated at an oblique angle of 30°. In the IME test series, the structure was in edge-on
orientation for the ridge tests C45, C46, C47A, C47B, C63, C64, C65 and C66. Basically, a
point contact, just like that for SCSs, can be assumed for these tests. Thus, the parameter 2/ (the

length of the loading) is set to be zero for the above tests for input.

For the structures in face-on orientation, it was assumed that each of the front facet and
two front side-facets were covered with broken ice pieces. Similarly, the two front side-facets
of a structure in edge-on orientation were also assumed fully covered with ice pieces, but only
a half of the two side-facets (behind the front side-facets) were assumed loaded with ice pieces.
This latter part of the assumption can help to properly account for the contribution of ride-up
process to the total load on an edge-on structure. The ice pieces were assumed to have reached

the top of the collar.

7.1.1 Comparison of Computed and Measured Loads

The vertical and hori: loads using ions (6.39) and (6.46) are plotted in

Figure 7.1 and Figure 7.2, respectively. Since Equations (6.39) and (6.46) were derived for

finite ridges, the effect of ridge length on ridge loads for these tests were taken into account.

Because the measured and predicted forces are in three different orders for the tests in
three facilities, Figures 7.1 and 7.2 give a log-log plot which is expected to provide an overall

view. The detailed and finer plots will be given in the next subsection.



W

10
X.
X
= a2 X X
iw 3 X,
o +,
§ 1
10 IME & ERC
° g
2
]
-1 o
o .0
a10 o %o
o IMD
-1
10
107 10° 10' 10° 10
Measured Load (kN)
Figure 7.1 Vertical Predicted and Measured Ridge Loads
10°
XX
.2 | %%
§/10 Xx %
E-1 +,
§1 p
[ 3 IME + Ly ERC
g
b1
-g 0
a0 ¢ o
IMD
107
107 10° 10" 10° 10°

Figure 7.2 Horizontal Predicted and Measured Ridge Loads

Measured Load (kN)



187

The vertical and horizontal coordinates of each point in the figures are the measured and
predicted values of the force for an individual ridge. The inclined solid line is at a 45° slope.
A point above this line means the predicted force is greater than the measured value. In other
words, an over prediction gives a point above the 45° line. The points under the line, of course,

means an under-prediction.

For itati ion of the ical model, a set of statistical measures are

adopted. These include the mean of the force ratios of predicted to measured forces (R,), the
standard deviation of force ratios (S;), the root mean square of relative errors of the prediction

(RMS), and the correlation coefficient (R), as defined below:

N
i § Fp
R, = — —r
" WE R
1w, F 2
S, = |— (=2£)? - R,
NP> . * a.n

1 = -
R= - F, F_, - F,
N 5.5, ‘EI [(F, - Fp) (F,, w1
where F,,; and F,; are ith and predi forces, respectively, N is number of the tests

analyzed (or the number of points in Figures 7.1 or 7.2), and
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1 = 1 & _
Spe = ;EF:,-F: Sc = T,EF:I F:

i=1 i=1 (72)
= .1 ¢ = _ 1
F,=— Fip F = — F,

Bs in Table 7.1 is the slope of the best fitting line through the origin.

Statistical | OVERALL | ERCTESTS | IMD TESTS | IME TESTS
Measures | finite | infinite | finite | infinite | finite | infinite | finite | infinite

Vert. | 1.12 1.06 1.29 1.20 0.90 0.84 1.16 1.14
Be Hori. | 1.11 1.06 1.42 1.32 0.86 0.81 1.05 1.04
Vert. | 0.37 0.33 0.38 0.34 0.31 0.21 0.31 0.31
S Hori. | 0.41 0.37 0.46 0.43 0.28 0.18 0.22 0.23
Vert. | 0.39 0.34 0.46 0.40 0.33 0.26 0.35 0.34
Rus Hori. | 0.42 0.37 0.62 0.54 0.31 0.26 0.23 0.23
Vert. | 1.15 1.02 1.15 1.02 0.90 0.84 1.10 1.00
Bs Hori. | 1.39 1.22 1.40 1.23 0.87 0.82 0.98 0.93
Vert. | 0.93 0.93 0.75 0.75 0.85 0.93 0.77 0.73
R Hori. | 0.95 0.94 0.84 0.77 0.86 0.94 0.88 0.83

Table 7.1  Statistical Measures of the Predicted Ridge Loads

These statistical measures for the ridge load computation based on the finite ridge model

(Equations (6.39) and 6.46)) are listed in Table 7.1. For the purpose of comparison, the
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for the ion based on the infinite ridge model (Equations (6.29)

through 6.32)) are also listed in Table 7.1.

Both Table 7.1 and Figures 7.1 & 7.2 indicate that the prediction of maximum ice ridge
loads with the present analytical model agrees well with the test measurements. The overall ratio
of the predicted to the measured forces is 1.12 for vertical force and 1.11 for horizontal force,
respectively. These numbers show that the prediction is only slightly higher than the

measurement. The relatively low values of S, and Rys also indicate the low error level of the

prediction.
7.1.2 Analysis of the Prediction
The i and i ridge forces for the ERC, IMD and IME tests are

separately plotted in Figures 7.3 through 7.8, for a closer look. The vertical coordinates of the

plus signs (+) in these figures the iction with ions (6.39) and (6.46), which

will be referred to as finite ridge model in the following analysis, i.e., the effect of ridge length
is taken into account (identified with “‘finite’’ in Table 7.1). Vertical coordinates of the circles

(0) the forces i with ions (6.29) and (6.32) which will be referred to as

infinite ridge model in the analysis below, i.e., without considering the ridge length effect
(labelled as ““infinite’” in Table 7.1). The points (o and +) in Figures 7.3, 7.5, and 7.7 are
labelled with abbreviated test number that are obtained simply by omitting the letter(s) in the full

test numbers. For instance, 241 shown in Figure 7.3 denotes the ERC test Y2T4R1.
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Figures 7.3 and 7.4 show that most points are above the 45° line, which means both the

infinite and finite ridge models overpredict the ridge loads for the ERC tests. The numbers in
Table 7.1 also statistically show the same trend: R, and B, for both infinite and finite ridge
models are larger than 1. They also indicate that the degree of over-prediction for the horizontal
loads is higher than that for the vertical loads. As discussed in Chapter 4 (shown in Table 4.3),
Equation (2.1) does not correctly represent the relation between the vertical and horizontal loads.
In the case of the ERC tests, the numbers in Table 4.3 showed that applying Equation (2.1) to

the tests will i increase the hori load by 8.7% on average. In other words, even

if an analytical model can perfectly predict those vertical loads (with zero error), use of Equation
(2.1) may result in an average over prediction by about 8.7%. This may be part of reason for

the over-prediction of the horizontal loads.

Compared with the measured vertical load of 185.8 kN for ridge 113 (ERC test
Y1TIR3), the prediction with the finite ridge model is quite low, only 123.7 kN or 33% under-
prediction of the load. One of the factors responsible for this large error may be the
extraordinarily large vertical load. The ratio of the vertical (185.8 kN) to the horizontal loads
(103 kN) for Y1TIR3 is 1.8, the largest of all the measured loads shown in Table 3.10. This
large vertical load was primarily caused by the extremely heavy ride up. Unfortunately, the
present analytical model does not cover these ride-up events. If the vertical hinge crack load
(130 kN) is taken as the maximum vertical load (as wrongly presented in the summary of ERC’

test report) the prediction would agree well with the measurement.
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At the other end, the ical model signi oVt i both vertical and

horizontal loads for ridges 241 and 242 (the tests Y2T2R1 and Y2T2R2). The ratio of the
flexural strength ¢, /o, (top in tension to bottom in tension) for ridges 241 and 242, as shown
in Table 3.8, were 1.97 and 3.38, respectively. These unusually large ratios together with the
strong sheet ice led to the higher predicted initial crack loads. There were two factors that might
have played a role in the relatively low measured loads. Firstly, the days before the test day
were extremely cold. The mean temperature for the two preceding days was -25°, which could
make the ice more brittle. In fact, the video tape showed that the crack propagated quite far and
fast. Secondly, ridge 241 had a crack near its center before the test began. Although no pre-
crack was reported for ridge 242, the sheet ice in front of the ridge was damaged by the
propagated cracks from the preceding test; these could have resulted in low measured loads.

Figures 7.5 and 7.6 present the predicted and measured ridge forces for the IMD tests.

It is obvious, as shown by the graphs and the values of R; and B, for the IMD tests in Table 7.1,

that the present ytical model signi! i the loads. It will be shown in the

next section of this chapter that applying the plasticity model (Wang 1979 & 1984) aiso seriously
underpredicts the ridge loads for the IMD tests. Table 4.6 has shown that the dimensionless
ridge loads for the IMD tests are significantly larger than those for the ERC and IME tests.
Moreover, Section 7.3 will also show that the analytical models predicting sheet ice loads also
underestimate the sheet ice forces for the IMD tests. The reason for these is not clear. The
complexity in failure mode of the IMD ridges may be one, if not all, of the reasons. Although

the analytical models underpredict the loads, there is less scatter in the predicted loads for the
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IMD tests than that for the ERC tests. This can be seen from the figures, the low values of S;,

and the relatively high values of correlation coefficient R.

Figures 7.7 and 7.8 give the prediction and the measurements for IME’s tests. Generally,
the prediction agrees well with the measurements, as shown by the figures and by the fact that
R, given in Table 7.1 is very close to (slightly higher than) unity with a small value of standard
deviation. The prediction for the IME tests yields the best overall agreement of all the three

series tests. The largest error, 73% over-prediction, occurs for the vertical load of ridge 48.

The effect of ridge length is shown by the difference in values identified by + and o in
Figures 7.3 through 7.8. On the whole, the ridge length does not affect the ridge loads very
much. This is due to the fact that the mean dimensionless ridge length (2L/L,) for all these three
series tests (with effect of sheet ice included) was 4.74, a value quite close to the critical value

above which the effect of ridge length is negligible (refer to Section 6.62).

The effect for each individual test is different, depending on its dimensionless ridge
length. As shown in the figures, the ridge length almost does not affect the ridge force for
ridges 34, 36, 37, 47, 54, 65, and 77 in the IMD tests, and 45, 472, 48, 63, and 64 in the IME
tests, 221 and 222 in the ERC tests. The dimensionless ridge lengths for these ridges vary in the
ranges of 5.5 to 8.2. On the other hand, the effect is significant for the following ridges: ERC's
ridge 123, 124, 133, and 141, IMD’s 44, 53, 74, and 75, and IME’s 58, 59, and 66. The

dimensionless ridge length for these ridges fall in the ranges of 3.1 to 4.4.
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The degree of the ridge length effect also depends on which crack governs the maximum

ridge force. If the initial crack results in the maximum force, the effect may only slightly reduce
the ridge load usually. Ridges that belong to this category include: 112, 113, 131, 142, 231,
232, 241 and 242 for the ERC tests, 33, 45, and 61 for the IMD tests, and 46, 471, 49, 51, and

64 for the IME tests. If the hinge crack gives rise to the maximum force, the effect usually

D to the dis i ridge length. The cases in which the effect
of the dimensionless ridge length is insignificant includes ridges 53 and 74 in the IMD tests and
ridges 51 and 52 in the IME tests. Ridges 141, 123, and 133 in the ERC tests, 58, 59, and 66
in the IME tests, and 75 in the IMD tests belong to the cases in which the ridge length effect

is significant.

7.2 Validation of Other Analytical Models
for Ridge Load Estimation

One of the concerns on the MCSs was the validity of those analytical models which were widely
accepted for SCSs. This section evaluates two typical analytical models, Wang’s model (1979
& 1984) and the Croasdale-Abdelnour model (Croasdale 1980, Abdelnour 1981 & 1988), by
comparing their predictions with the test results presented in Chapters 3 and 4. Moreover,
comparison between the analytical models and the present model (given in Chapter 6) will also

be carried out to further evaluate them.
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Wang’s model and the present model include the ride-up forces, but the Croasdale-

Abdelnour model does not. To make the icti between the ytical models,

the ride-up forces computed with the Nevel model (the same as those for the present model) are

added to the iction using the Croasdal model as the total ridge ice loads. Since

‘Wang’s model is incapable of accounting for the effect of ice ride-up on the vertical neck, the

height of ice ride-up is taken from the waterline to the top of the collar for all three models.

7.2.1 The Load Predictions

The predicted loads with the three analytical models together with those measured are plotted
in Figures 7.9 through 7.14. Although both the finite ridge and the infinite ridge formulations
for the present analytical model and the Croasdale-Abdelnour model were applied to predict the
ridge loads, only those from finite ridge formulations (i.e. with ridge length taken into account)
are presented in these figures. However, the results of the prediction with infinite ridge

will also be di: in the next

In these figures, the symbols ‘‘0"", ““+'", and ‘‘x’’ represent the predictions of the
present model, Wang’s model, and the Croasdale-Abdelnour model (labelled as C-A in the
figures), respectively. Their best fit lines through the origin of the coordinate are given by dash
line, dash-dot line, and dotted line, respectively. The solid line in these figures has a slope of
45°. The points and lines above this solid line mean that the analytical model over-predicts the

loads, otherwise, the analytical model under-predicts the loads.
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722 Evaluation of the Analytical Models

Although the graphs in Figures 7.9 through 7.14 show the difference in the predictions from

three analytical models, it is still difficult to quantitatively evaluate them. Again, the statistical

quantities given in Equation (7.1) are used to help the ion. The
quantities for the vertical and the horizontal loads of each of the three facilities tests are given

in Tables 7.2 and 7.3, respectively.

MODEL TESTS | R, s, RMS R B

ERC | 151 0.54 0.74 0.79 1.25

Wangiaibodel ™MD | 079 0.37 0.43 0.78 0.74

IME | 1.09 0.22 0.23 0.90 1.07

ERC | 117 0.37 0.41 0.71 0.96

Finite " vip | 075 022 | 033 08 | 078

Cmﬁ-ﬂe Theory | IME | 0.99 0.23 0.23 0.85 0.94

A ERC | L13 0.34 0.37 0.69 092

Model | Tofinte [y | 074 019 | 032 | o094 | 075

Theory | IME 0.98 0.24 0.24 0.82 0.92

ERC | 129 0.38 0.48 0.75 1.15

Finite " \ib | 090 031 0.33 0.85 0.90

The Theory | IME 1.16 0.31 0.35 0.77 1.10
Present

Analytical ERC | 120 0.34 0.40 0.75 1.02

Model [;i"': ™MD | o084 0.21 0.26 0.93 0.84

Theory | IME 1.14 0.31 0.34 0.73 1.00

Table 7.2  Statistical Measures of Vertical Load Predictions for the Three Models



MODEL TESTS Rp Sp RMS R B,

ERC 1.67 0.62 0.92 0.86 1.51

Wang's: Model ™MD | 076 034 0.41 079 0.72

IME 1.06 0.26 0.26 0.85 0.96

ERC 1.28 0.44 0.52 0.77 1.16

Finte |""op | 073 | 020 0.34 089 | 075

Cr:a::ale Theory | IME 0.91 0.20 0.22 0.87 0.82

A ERC 1.24 0.42 0.48 0.70 111
Model | Infinite

Beam | _MD 0.71 0.16 0.33 0.96 0.72

Theory | IME 0.90 0.22 0.24 0.84 0.80

ERC 1.42 0.46 0.62 0.84 1.40

Finite " \ip | 0.6 28 03 08 | 087

The Beam : 0. 31 : :
Present | Theory | IME 1.05 0.22 0.23 0.88 0.98
Analytical

Model il ERC 1.32 0.43 0.54 0.77 1.23
inite

B IMD 0.81 0.18 0.26 0.94 0.82

Theory | IME 1.04 0.23 0.23 0.83 0.93

Table 7.3  Statistical Measures of Horizontal Load Predictions for the Three Models

To quantitatively evaluate the analytical models, the rules for judging the quality of their
predictions are defined as : A model is considered to be better if its’ prediction yields i) R,
closer to or slightly larger than unity with smaller S,, ii) relatively smaller RMS, iii) a larger

R, closer to unity, and iv) B, closer to or slightly larger than unity.

Let’s first look at the Wang model. This model, on an average, over-predicted the loads
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by 51% for vertical loads and by 67% for horizontal loads of the ERC tests, as shown in Tables

7.2 and 7.3. Figures 7.9 and 7.10 as well as the ing values of the

in Tables 7.2 and 7.3 show that the prediction had a large scatter, resulting in large values of
root mean square (‘‘RMS’’ in the tables). On the other hand, the Wang model significantly

under-predicted both the vertical and horizontal loads for the IMD tests, and the data are less

scattered. Its prediction for the IME tests yielded a very good with the

The average ratio R, is very close to unity with relatively smaller Sp.

Croasdale-Abdelnour’s finite ridge theory given in Equation (2.3) significantly under-
predicted the vertical and horizontal loads for the IMD tests and slightly under-predicted both
loads for the IME tests. However, its predictions for the ERC tests were quite good, especially

those for the vertical loads of the ERC tests.

If comparing the predictions of the three models, it can be seen from both the figures and
the tables that the present model is the best one. Both the Wang model and the present model
over-predicted the loads of the ERC tests, but the present model yields a lower prediction. For
the IMD tests all three models under-predicted, but the present model gives a highest prediction
whose R; is 0.9. The predictions of Wang’s model and the present model for the IME tests are
very close and are better than the Croasdale-Abdelnour model. The Croasdale-Abdelnour model

shows a better performance for the prediction of the ERC tests.

The Croasdale-Abdelnour model is based on elastic theory and was supported by the
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saline ice tests. The Wang model, as previously pointed out, was based on plasticity theory and
was supported by the test with model ice ridges (Wang 1979). The ice ridges used in the ERC
tests were also constructed with saline ice and seem to behave in an elastic and brittle manner.
On the other hand, the ice ridges used in the IMD and IME tests (especially the IMD tests) were
made of model ice which seems to behave more or less in an elastic-plastic manner. Thus, it is
understandable that Wang’s model did well for the IMD and IME tests but significantly over-
predicted the ERC tests, and the Croasdale-Abdelnour model shows the best performance with
the ERC tests. Although the present model is also based on elastic theory, it takes the special
features of the faceted cone into account. Hence as expected it gives a better accuracy for the

prediction.

To provide an overall of the of ictions of these models, their

overall statistical measures for all the tests in the three facilities are listed in Table 7.4. Aithough
the numbers in this table still show that the Croasdale-Abdelnour model under-predicts the loads,
it appears as if all three models are acceptable for the prediction of ice ridge loads on the tested
MCSs. These overall values of the statistical measures give a general idea about the models’
predictions, but cover over the large errors for tests at each individual facility. For instance, the
significant over-prediction for the ERC tests and under-prediction for the IMD tests by the Wang
model are partly cancelled to give a R, close to 1. Similar charges also occurred to the
Croasdale-Abdelnour and the present models. The effect of the cancellation is to a lower degree

in the present model.
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MODEL R, s, | rMs R By
Wang’s model 1.13 0.49 0.51 0.94 1.24
Croasdale- | finite 0.97 0.33 0.33 0.92 0.96
VERTICAL A
LOAD model infinite | 0.95 0.31 0.31 0.92 0.92

the Present | finite 1.12 0.37 0.39 0.93 118
infinite 1.06 0.33 0.34 0.93 1.02
‘Wang’s model 1.16 0.58 0.60 0.97 1.50

HORIZONTAL (Emasdzl& finite 0.97 0.38 0.38 0.95 115
LOAD

model | infinite | 0.95 | 036 | 037 | 093 | 110

the Present | finite 1.11 0.41 0.42 0.95 1.39
infinite 1.06 0.37 0.37 0.94 1.22

Table 7.4  Overall isti of Predictions of the Three Models

A noticeable feature of the predicted loads, plotted in Figures 7.9 through 7.14, should
be pointed out and explained, that is the overlaps of the “‘0’" and “‘x’’ for some of the ERC tests
and the IME tests. These occur on those ridges that were oblique at a 30° angle for the ERC
tests and those tested with the structure in an edge-on orientation for the IME tests. In all these
cases, the contact area was assumed to be a point; in other words, a point load at the center line
of the ridges was assumed. As previously stated, the difference between the present model and

the Croasdale-Abdelnour model is the loading ition, and the C -Abde model

is identical to the present model when the contact area becomes a point. Hence the point loading

condition of the tests that was used as an input to these two models has made their prediction
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identical to one another.
7.3 Validation of the Theoretical Models

for Sheet Ice Load Prediction

Another part of the concern three, stated in Chapter 1, was the validity of those theoretical
models for prediction of floe ice loads on MCSs. These models were all developed for SCSs and

widely used or accepted for such structures. Their validity will be examined in this section.

7.3.1 The models and the Inputs

Ralston’s model (1978 & 1980) has been most widely used for the prediction of sheet ice loads

on SCSs and is recommended by the American Petroleum Institute (1988). Croasdale’s (1980)

three di i model (to be i as C ’s model) was another widely accepted

earlier model. These two models can be considered as representatives of their kind based on

plasticity theory and icity theory, respectively. Therefore, these two models together with

the Nevel model (Nevel, 1992) will be evaluated in this section.

The recently developed Nevel's model is considered to be conceptually more suitable for
application to MCSs because of its characteristics:

A. It divides the ice floe into several wedges that act against a cone and ride up on the
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cone’s surface. The forces are exerted on the cone through the cone/ice contact lines or
points. Thus, if the ice is divided into the number of wedges which is equal to the
number of facets of a half cone, this model is capable of being directly applied to MCSs.
Nevel’s model considers multi-section characteristics of the cone and its effect on ice
loads. Thus, theoretically speaking, it is able to account for the effect of the vertical neck

and the transition from the main cone to the collar.

Due to the characteristics of the tested MCSs and the requirement of Ralston’s model and

Croasdale’s model, part of the inputs to these two models were not so certain. The parameters

needed for determining ice forces include waterline diameter, cone slope angle, and height of

ice ride-up. All these are presented and discussed as follows:

1.

Waterline diameter. Only one waterline diameter exists for a smooth cone, but there are
two for a MCS: an inscribed diameter and a circumscribed diameter and the latter is
about 1.155 times larger than the former. To show the effect of this parameter, a
separate computation for each of these diameters will be carried out with both Ralston’s
and Croasdale’s models. The coordinates for the cone geometry used in Nevel’s model
are those along the center line of the ice wedge. Since this line is the center line
(symmetrical axis) of a facet, thus the inscribed diameter is chosen as a reasonable value
for Nevel's model.

Cone slope angle. Again the six-sided cone has two slope angles: one is its facet angle
which is 39.8°, and the other is its corner slope angie which is about 35.8°. Since the ice

floe exerted its forces mainly against the facet and rode up on it, the facet slope angle
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has been used as the main cone slope angle for ail three models.

3.  Height of ice ride up. Strictly speaking, Ralston’s and Croasdale’s models are only
capable of accounting for the height to the top of the main cone. However, tests have
shown that ice pieces rode up at least to the top of the collar which was up to 60
centimetres (for 1:10 structural models) above the main cone top. Thus, the ride-up
height was measured from the waterline to the top of the collar. The freeboard of the
main cone, measured from the waterline to the top of the main cone, is also taken as the
input of another ride-up height for studying the effect of this parameter. Although
Nevel’s model is capable of including the effect of the neck, the input ride-up height for
it is also taken as the distance from the waterline to the collar top to make the

computation comparable.

7.3.2 Computation Results

Computation for a total of 40 sheet ice tests using face-on structures were conducted. These tests
are: YITIR2, YIT3R2, Y1T4R1, Y2T1R2, Y2T2R2, Y2T3R1, and Y2T4R1 for the ERC tests,
M31, M32, M33, M35, M41, M42, M43, M46, M51, M52, M53, M62, M63, M64, M71,
M72, M73, and M76 for the IMD tests, and C16 through C30 (15 tests), C42, CS0, C54

through C57, and C60 for the IME tests.

The predicted loads are plotted against those measured in Figures 7.15 through 7.20. The

keys in these figures have the following meanings:
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NIL Nevel's model with cone’s inscribed diameter and the ride-up height measured from the
waterline to the top of the collar,
RIL  Ralston’s model with inscribed diameter and ride-up hight to the collar top,
RCL Ralston’s model with circumscribed diameter and ride-up height to the collar top,
RCN  Ralston’s model with circumscribed diameter and ride-up height to main cone top,
CIL, CCL, and CCN are for Croasdale’s model with diameter and ride-up height the same as

RIL, RCL, and RCN, respectively.

Because of the wide range of the loads, the plots are given in log-log format to make this
section more compact. The disadvantage of log-log plotting is that it may hide the scatter of the
data. This will be overcome by listing the statistical measures shown in the next subsection.

These graphs are only expected to provide a general idea as to how the data are distributed.

Nevel’s model is capable of handling two ride-up interaction conditions one of which is
termed as ‘‘passive action’’ and the other as ‘‘active action’’ (refer to Section 2.4.3). Compared
to passive action, the active action generates an additional force between the structure and ice
Thus, the active action may result in a larger overall force. The active action was assumed for
all the computations shown in this subsection. It will be shown in the next subsection that the
effect of assuming the active action is insignificant for vertical load prediction compared with

the passive action, but it slightly increases the horizontal load.
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First of all, let’s look at the overall performance of each model for all the tests. The statistical
measures for all the tests are listed in Table 7.5. The numbers in the table show that Nevel's
model (NIL), on average, provides the best prediction of all the models with all the chosen
parameter (i.e., the diameter and ride-up height) combinations. RCL gives the second best
average prediction with vertical loads slightly under-predicted and horizontal loads significantly

over-predicted. RIL also yields reasonable prediction on average. All others including CCL,

Analysis of Prediction

CIL, CCN, and RCN significantly under-predict the loads.

As pointed out in the last section, the overall statistical measures give a general idea

about a model’s prediction but hide errors which may be presented for individual test series.

RMS
Miodel Ver. Hori. Ver. | Hori. | Ver. Hori. Ver. Hori.
NIL 1.17 1.01 0.48 0.43 0.51 0.43 0.90 0.90
RIL 0.89 1.11 0.39 0.66 0.41 0.66 0.92 0.91
CIL 0.58 0.90 0.23 0.43 0.48 0.44 0.93 0.92
RCL 0.97 1.21 0.41 0.67 0.41 0.71 0.93 0.91
CCL 0.63 0.98 0.25 0.45 0.45 0.45 0.93 0.92
RCN 0.88 0.71 0.39 0.35 0.40 0.45 0.92 0.93
CCN | 053 | 0.54 0.22 | 0.26 | 053 | 0.53 0.93 | 093
Table 7.5  Overall Statistical Measures of Sheet Ice Load Prediction
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Therefore, a detailed list of those statistical measures for each series tests are given in Table 7.6

for vertical load prediction and in Table 7.7 for horizontal load prediction.

ERC IMD IME
Modd I 9, s, | RMS | R, s, | rRMs| R, s, | RMs
NIL 1.26 | 0.68 0.73 | 0.83 | 0.23 | 0.29 1.42 | 0.36 | 0.55
RIL 135 | 0.71 0.79 | 0.77 | 0.15 | 0.28 | 0.82 | 0.20 | 0.28
CIL 0.73 | 038 | 0.47 | 0.43 | 0.09 | 0.58 | 0.65 | 0.16 | 0.38
RCL 142 | 074 | 0.85 | 0.82 | 0.15 | 0.24 | 0.93 | 0.23 | 0.24
CCL 0.77 | 040 | 046 | 046 | 0.09 | 055 | 0.73 | 0.18 | 0.33
RCN 129 | 069 | 0.75 | 0.73 | 0.17 | 0.32 | 0.86 | 0.21 | 0.26
CCN 0.65 0.36 0.50 | 0.37 [ 0.10 | 0.64 | 0.61 | 0.15 | 0.42
Table 7.6  Statistical Measures for Vertical Sheet Load Prediction
ERC IMD IME
Model 1™ e T s, |RMs| R, | S» |RMS| R, | S | RMS
NIL 1.19 | 0.55 | 0.58 | 0.74 [ 0.30 | 0.40 | 1.17 | 0.35 | 0.39
RIL 2.10 | 0.99 1.49 1.01 | 0.28 | 0.28 | 0.82 | 0.26 | 0.32
CIL 144 | 067 | 0.80 | 0.73 | 022 | 035 [ 0.85 | 0.26 | 0.30
RCL 2.22 1.02 1.59 1.09 | 030 | 0.32 | 0.94 | 0.29 | 0.29
CCL 1.52 | 0.70 | 0.87 | 0.78 | 0.24 | 0.32 [ 0.95 | 0.28 | 0.29
RCN 1.13 0.52 | 0.54 | 0.57 | 0.22 | 049 | 0.68 | 0.22 | 0.38
CCN 0.71 034 | 045 | 0.36 | 0.16 [ 0.66 | 0.63 | 0.20 | 0.42
Table 7.7 for Sheet Load P




215

It is shown from the tables that Ralston’s model (RCL, RIL, and RCN) and Nevel's

model (NIL) over predicted both the vertical and horizontal loads for the ERC tests, while
Croasdale’s model (CIL and CCL) significantly under-predicted the vertical loads and over-

predicted the horizontal loads; CCN model under-predi both the i and vertical

loads. It seems that Croasdale’s model is better than Ralston’s model for horizontal load
prediction but worse for vertical load prediction. Of all the models, Nevel (NIL) and RCN of

Ralston model give the best predictions.

For IMD'’s tests, all the models under-predicted the vertical loads with NIL and RCL
giving the highest prediction. RCL and RIL predict the horizontal loads very well but all the
others under-predict the horizontal loads. Generally, Ralston model’s prediction is slightly better
than that from Nevel’s model which, however, performed better than Croasdale’s model. If the
IMD tests alone are used to judge the models, RCL may be the best choice. There are four tests,
M71, M72, M73, and M76, in the IMD series for which NIL considerably under-predicted the
horizontal loads. The data given in Table 3.12 of Chapter 3 showed the ratio of the measured
horizontal force to the vertical to be near 2 for these four tests which is unreasonably large,

while the ratio for the rest of the tests was either smaller than or very close to 1.

In the IME tests, it turns out that NIL is the only one which over-predicted the loads.
Compared with the prediction by Croasdale’s model and the other cases of Ralston’s model,

RCL of Ralston model gave a good prediction for the IME tests.
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Combining the analyses given above along with all the information gleaned out from
graphs shown in Figures 7.15 through 7.20 and the numbers listed in Tables 7.5 through 7.7,
we may draw the conclusion as follows: Nevel model (NIL) is fairly suitable for application to
prediction of sheet ice loads on MCSs such as those tested. If proper parameters are chosen,
Ralston’s model is also applicable to MCSs, like RCL or RIL. Croasdale’s three dimensional
model generally under-predicted the loads even though it yielded some good prediction for the

ERC tests.

To further test Nevel’s model and examine the effect of the choice of passive action and
active action, another two input conditions are applied to the model. Both of these conditions
consider the ice ride-up on the vertical neck, and active action is assumed for the first one,
which is being labelled as NNA, while the second one considers the passive action and is termed

as NNP. The prediction of Nevel’s model for these two conditions are plotted in Figures 7.21

and 7.22. The i isti are given in Table 7.8.

NNA NNP
TESTS Re S, RMS R, S, | RMS
Ver. 145 | 079 | o091 | 145 | 079 | o091
ERC Hori | 152 | 069 | 08 | 129 | 059 | 0.66
Ver. | 095 | 025 | 026 | 094 | 025 | 026
IMD Hori. | 091 | 034 | 036 | 078 | 031 | 037
Ver. 146 | 037 | 05 | 146 | 037 | 059
IME Hori. | 124 | 037 | 044 | 119 | 035 | 0.40
Ver, 127 | 050 | 057 | 127 | 050 | 057
OVERALL [moi | 1.6 | 048 | 051 | 105 | 044 | 0.44

Table 7.8  Statistical Measures of NNA and NNP Predictions
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Figure 7.21 shows that the predicted vertical loads vs. the measured vertical loads for

the ERC and IME tests were mainly located above the 45° line, which means that the model
gives a conservative prediction for these two series tests. Although some points for the IMD
tests are below the line, most points are basically fairly close to the line. The numbers in Table
7.8 give quantitative description of this trend. R, has a value of 1.45 for the ERC test with
relatively large value of Sp and RMS which means the data are quite widely spread, and an
almost the same value of Ry, 1.46, for the IME tests accompanied by smaller values of S, and
RMS representing a better prediction. R, drops to 0.95 (for NNA, and 0.94 for NNP) for the
IMD tests but is still close enough to the perfect value of 1, indicating a slightly less under-

prediction for these tests.

A similar trend is reflected in Figure 7.22 and by the numbers for horizontal load

prediction in shown Table 7.8. The ion is the inds iction for four of the
IMD tests (M71, M72, M73, and M76) for which the reason has been previously explored in

this section. From the above di ion and the i i from the overall statistical

measures in Table 7.8, it is seen that Nevel’s model considering the ride-up on the neck gives

a good prediction of sheet ice loads on the tested MCSs.

An interesting feature of these prediction is that NNA and NNP give almost the same
value of the vertical loads (Figure 7.21) but slightly different for horizontal load prediction
(Figure 7.22). The reason for this is quite simple. The active action applied in NNA generates

additional forces on the collar and the vertical neck sections and these additional forces only take
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a small portion of total loads on the structure. Since the neck was vertical and the slope of collar

facet was steeper (compared to the slope of the main cone, see Figure 3.1), the additional forces

mainly contributed to the horizontal component of the total force.
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Chapter 8 Conclusions and

Recommendations

The study presented in this thesis covers quite a wide range of topics on ice loads exerted on the
newly proposed MCS. The results are summarized in such a manner that the industry’s concerns
are addressed in the order given in Chapter 1, and are presented in three sections (8.1 through

8.3). Section 8.4 is to ize the main ions made during the course of the

present i igati Some i for further work are also given in Section 8.5.

8.1 Conclusions Regarding Ice Failure Mechanisms

and Maximum Loads

Both the tests and numerical simulations show that ice ridges and ice sheets failed in bending
modes; this is quite similar to the failure mechanisms obtained for ice interaction with SCSs.
Conclusions regarding ice crack patterns, events causing the maximum ice loads, and the effect
of structural orientation on crack pattern and ice loads are given in this section. These results

and conclusions are expected to address concern # 1 (Section 1.1).
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8.1.1 Ice Ridge and Ice Sheet Crack patterns

Three ridge failure patterns were identified (presented in subsections 4.1.2, 4.1.3, and 4.1.4).
The predominant pattern is pattern I which is quite similar to the pattern observed for ridge/SCS
interaction. A common feature for the other two crack patterns is the closer distance between

cracks and also more the presence of local cracks.

Ice sheet crack patterns (subsection 4.1.1) are also similar to those for SCSs, but two

radial cracks ing from the corners of the front facet occurred as initial cracks

in a number of tests which have been rarely seen in the case of SCSs.

8.1.2 Events Generating Maximum Loads

Besides the initial and the hinge cracking, large ice pieces riding-up or accumulating on the
structure’s surface were also events which caused the maximum ridge loads (subsection 4.2.1).
The maximum sheet ice loads occurred after sufficient broken ice pieces accumulated in front

of the structure and covered the structure's surface (subsections 4.1.1, 5.2.4, and 5.4.1).

8.1.3 Effect of Structural Orientation

Compared to face-on orientation, edge-on orientation resulted in a smaller distance between two

hinge cracks in the ridges. The initial cracks in the ridges for the edge-on MCSs occurred at the
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centre of the ridge (the contact point) for nearly all the tests, while a few of the initial cracks
for face-on MCSs occurred near to but not at the centre of the ridges (refer to subsection 4.3.2).
In the interaction with an ice sheet, the front edge of an edge-on MCS acted like a inclined rigid
wedge to initiate a radial crack extending from the edge and to separate ice sheet into two

wedges (subsection 4.1.1).

C to the face-on ori ion, the edge-on orientation generally reduced both the

vertical and the horizontal maximum sheet ice loads; the maximum sheet ice loads on the MCSs
in intermediate orientation were closer to those for the MCS in face-on orientation (refer to

subsection 4.4.2).

The effect of i ion on i ridge ice loads depended on neck size,

load components, and ridge width. For the small neck MCSs, the horizontal loads on the face-
on MCSs were larger than their counterparts on the edge-on MCSs; and the vertical loads on
the face-on MCSs were larger for wide ridges and they were closer to the vertical loads on the
edge-on MCSs for narrow ridges. For the large neck MCSs, the vertical loads on face-on MCSs
were slightly larger than those on edge-on MCSs; but the horizontal forces on the face-on MCSs
were smaller than their counterparts on the edge-on MCSs for wide ridges, and they were closer

to one another for narrow ridges (subsection 4.3.2).



8.2 Conclusions Regarding the Effect of Neck Size

The effect of neck size was industry’s major concern, and it was experimentally and numerically

examined in this thesis. A general conclusion is that the effect of neck size is not very big, at

least it is not as significant as expected (at the time the MCS p pe was
detailed conclusions for this effect on the maximum ridge loads and sheet ice loads are given in

two separate subsections below. These address concern # 2.

8.2.1 Effect of Neck Size on Ice Ridge Loads

Both the analyses of experimental results (subsection 4.3.3) and the numerical simulations
(subsection 5.4.3) showed that the large neck increased the maximum horizontal ridge loads. The
analyses of the test results indicated that the large neck reduced the maximum vertical loads, but
numerical simulation yielded a very small increase in the vertical maximum loads. For the
conservative (safer) consideration in design, an increase due to the large neck may be

considered.

8.2.2 Effect of Neck Size on Ice Sheet Loads

Similar to the ridge loads, both the analyses of the tests and the numerical simulation showed

that the large neck i the i i sheet ice loads. The analyses of the tests
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also showed the large neck tended to increase the maximum vertical sheet ice loads, however
the numerical simulation resulted in a small decrease in the maximum vertical load when the
small neck was replaced by the large neck. For a safer design, it is recommended that designers
should consider an increase in both the horizontal and the vertical loads due to the change of the

neck size from the small to the large.

8.3 Conclusions Regarding Validation

of Load Equations

The conclusions summarized in this section address concern # 3.
8.3.1 Validation of Ridge Ice Load Equations
Of the three analytical models (Wang’s model, Croasdale-Abdelnour model, and the model

presented in Chapter 6), the present model gives the best prediction for all the three series of

tests. As a second choice, Wang’s model may also be used for the maximum ridge load

but Croasdale-A model could seriously i the i ridge

loads (sections 7.1 and 7.2).



8.3.2 Validation of Sheet Ice Load Equations

Nevel’s model for the i sheet ice load estimation is for use in the case

of a MCS since it gave the best overall prediction for the sheet ice loads on the tested MCSs and
is also capable of accounting for the particular features of multiple-sectioned MCSs with a
vertical neck (section 7.3). The widely used Ralston model can also be used in the case of

MCSs, but it’s performance may not be as good as the Nevel model.

8.4 Contributions of This Work

The present research work contributes to the study of ice loads on MCS in four different ways

as summarized below.

L An extensive analysis of all the tests to identify the effect of various parameters.
The analysis of tests results presented in Chapter 4 is the first one covering the data from
all test series. The analysis partly addresses two of the industry’s concerns, viz., (i)
failure patterns and mechanisms of multi-year ridge ice in front of this new MCS and the
causes that generate the maximum ridge ice loads; and (ii) effects of various model
parameters on ice loads and ice/structure interaction. Effects of relative orientation
between the structure and the ice ridge, width of the ice ridges, and size of the vertical
neck on ice loads on the MCS have been studied. The analysis covers both the ice ridge

and sheet tests. Although these parameters were tested in the test program, their effects
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were hidden due to the variations of other By i i izing the

results, the present analysis has successfully identified their effects.

A set of numerical simulations with a discrete element computer code.

The numerical analysis presented in Chapter 5 models the ice and structure using the

experimentally determined values of ice p ies and si istil the entire

process of i i i i ing the effects of rubble ice and riding-up

process. Influence of the ice pieces lodged under ice cover and ridge are recognized. An
insight into the mechanism of ice sheet breaking is gained by studying ice deformations
and interaction forces. All these cannot be obtained from physical tests done due to

difficulties d in i ion. More i , the effect of neck size is

investigated under an ideal condition. Since so many can affect ice/

interaction process and ice loads, the effect of neck size recognized from the analysis of
physical tests may still contain the effect of other parameters. In the present numerical
simulations, all other parameters are kept exactly the same and only the neck size is
varied for the two runs. Thus, the comparison of the results of these two runs has

revealed the effect of neck size more accurately.

Development of an analytical model to predict ice ridge cracking loads on a MCS
The analytical models presented in Chapter 6 are new and are found to be immensely
useful for predicting ice ridge cracking loads on a MCS with an accuracy better than any

other existing models (the assessment is presented in Chapter 7). The development
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involved recognizing and simplifying ridge’s loading conditions (or ridge/structure

contact it ining relevant analyti ions for various loading conditions,

the ytical model in a simplifying the equations to
an easily usable form, and computation of ice forces for various possible values of the
parameters (facet length, ridge characteristic length, etc.). The simplified form of the
equations are quite easy to be used and should be a helpful and convenient tool for MCS

designers.

Evaluation of widely used analytical models

Industry wanted to examine whether the analytical models widely accepted for SCS
design could also be used for MCS. These earlier models were developed for SCSs and
were based on tests with SCS structural models. A total of six (6) analytical models were
evaluated in this study using the test data obtained for MCSs. It is found that Nevel’s

model and Ralston’s model give load iction if proper are

chosen. Conclusions drawn from this evaluation will provide a reference basis for
designers involved in MCS designs to decide which analytical model could be better used
and what geometrical dimensions would be appropriate for input in their ice load

estimation.

Recommendations for Future Work

As shown in Section 4.2, the maximum ice ridge loads experienced by a MCS could be
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generated either during the ridge cracking process or during the ridge segment clearing process.
A question that is left unanswered in this study is about the conditions under which the
maximum ridge loads are generated by the cracking process and the conditions under which the
ride-up process generates the maximum ridge loads. Indeed, this is a very complicated problem
and verifications of these aspects would greatly help the further understanding of the mechanism

involved in the maximum load generation.

In addition, the ions for estimating the i ridge loads during the

clearing process need to be developed. Since the ride-up process has been one of the events
causing the maximum ridge loads, the development of this type of equations would be of great

use importance for the total coverage of all possible events generating the maximum ridge loads.
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Appendix A Assumption for Ice Behaviour

The material behaviour of ice is quite complicated, but under certain circumstances, its
behaviour can be well approximated by simple theory. The analysis presented in this appendix
will show that an elasticity theory is acceptable for description of the material behaviour of ice

for the tests presented in this thesis.

Sanderson (1988) has compiled research results about ice behaviour which he states as
“‘when ice is subjected to a stress it initially deforms in three distinct ways: it undergoes an
immediate elastic strain &, a transient time-dependent delayed elastic strain &, and a time-
dependent nonlinear viscous creep strain &,.”” There are well verified constitutive equations

describing this stress-strain behaviour (Sinha, 1978, 1979, 1983).
The true elastic strain &, follows Hooke's law:

(A.D)

where E is Young’s modulus and o is a stress applied. The time-dependent delayed elastic strain

&g, which has also been termed as primary creep strain, is defined by
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d,
ea = e () () [1-exp(-(a)")] A

where d is actual grain size and 7 is time (in seconds). The meanings of parameters c,, d,, G,

s, and b together with their values are listed in Table A.1.

The viscous creep strain &, is expressed as follows:

e, = &,t (;q-)' (A.3)
1

where &, is a reference viscous strain rate at the reference stress o, and n is a constant. Their

values are also listed in Table A.1.

The total strain g, is sum of all the strains expressed in the above equation. Thus ¢, is

given by:

e, =¢e +e,+ e, A4

4
For a given ice with constant Young's modulus, the true elastic stain &, is a constant
value while both & and &, are time dependent; hence the total strain is also time dependent.

Basically, the total strain i as the time i to increase. Within the range

of a small amount of time after the stress has been applied, the elastic strain &, usually

dominates. For instance, if ice with a Young’s modulus E = 9.5 GPa is subjected to a constant



238

stress of 2.5 MPa, the stains &, &, &, and g, at time t = 10 seconds are (in s) 2.63 x 107,

0.10 x10*, 0.28 x 10*, and 3.01 x 10*, respectively. The elastic strain is 87% of the total

strain.

P Value Unit | Meaning of the parameter
d; 1.0 meter | reference grain size
¢ 9 x 10° a constant for the grain size d,
o 2.5 x 10* st inverse ion rate
s 1 a constant
b 0.34 a constant
o 3 a constant
a 1.0 x 10° Pa. reference stress
0 1.76 x 107 st reference viscous strain rate at stress o,
Table A.1  Parameters for Sinha’s Model

To estimate the strain condition of the tested ice, the ice strength and measured modulus

are used as a constants in Equations (A.1) through (A.4). The computed strains are plotted

against time in Figures A.1 and A.2 for the ERC test T1Y1R1 and TY1T1R2, respectively. The

computed time is up to 120 seconds, this duration is much longer than the duration of the

interaction for each ice crack in the physical tests. The viscous creep strains for these two tests

are very small, such that they emerge in the bottom border line of the graphs in Figures A.1 and

A.2 (hence, they cannot be seen in these figures).
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Figures A.1 and A.2 clearly show the two features of the ice used in these tests:
i) total strain gradually increases as time increases, and

ii) elastic strain dominates.

Because the estimated compressive strength is much higher than the measured flexural

strength, strain ion was also with the i o, which are

estimated using Equations (3.1) and (3.13) in the book by Cammaert and Muggeridge (1988).

The strains at time t = 20 seconds together with those computed using the flexural strengths are

listed in Table A.2
YITIRL E = 1.136 GPa YITIR2 E = 352 MPa
Strain 0, =892KkPa | o, =165kPa | o, =865kPa | o, = 128 kPa
e 7.85 x 10* 1.45 x 10* 2.46 x 10° 3.64 x 10*
5, 8.26 x 10* 1.52 x 10* 2.57 x 10° 3.81 x 10*
100 x g /e, 95.0 95.4 95.7 95.5

Table A.2  Strains For YITIRI and YITIR2 at 20th Second of Loading

The numbers in Table A.2 show that the elastic strain is about 95% of the total strain.
Computations with stresses as low as one tenth of the flexural strength also give similar values

of the ratio of elastic stain to total strain.

The above analysis quantitatively shows that elastic strain (thus the deformation) is
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dominant for both the sheet ice test YITIR1 and the ridge test YIT1IR2. Therefore, elastic

behaviour of ice is assumed for the analysis of these tests.
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Appendix B Estimate of Parameters for

Mohr-Coulomb Criterion

The Mohr-Coulomb criterion implemented in DECICE requires four parameters: flexural
strength o, compressive strength o, tensile strength o,, and the internal friction angle of ice ¢.
Out of the four parameters only the flexural strength was measured for each of the ERC tests.
Because no direct relationship between flexural strength and compression or tensile strength has

been found, an alternate approach for the strength estimation was used. The main idea of this

is that the can be esti using avail empirical

and then scaled down to the test scale.

B.1 Estimate of Compressive and Tensile Strength

C and i (1988) have iled most of the iri for the

estimation of compression and tensile strengths of ice. Three formulae for the estimation of
compressive, tensile, and flexural strengths are quoted in Equations (B.1), (B.2), and (B.3),
(C: and idge 1988, p83, 89, and 91).

o, = 165(1 - ; ) ®.1)
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o, =082 (1 - %) ®2)

o, =075(1 - %) ®3)

where the strengths are in MPa, the brine volume », is in % and can be estimated using

Equation (B.4) (Cammaert and Muggeridge 1988, p77).

vy = S, (0532 + 42185

) ®.4)

where S, represents the ice salinity, in %o; and T, the temperature, in °C.

It is assumed that the above ions are i that is, if Equation (B.3) predicts

the correct flexural strength, then Equations (B.1) and (B.2) also should predict the correct

and tensile D

In Table B.1, the strengths directly calculated using the above equations are listed in the
first row for each test. Within the column of gy, the second row of each test gives the measured
value of the flexural strength. It is clear the predicted flexural strength is much larger than the

value measured. To use measured flexural strength (;,,) in the failure criterion means that the
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calculated flexural strength (o;,) is scaled down by the ratio n which is defined as follows:

Zre

O

(B.5)

The values of 5 for the tests are listed in the extreme right column of Table B.1.

According to the assumption made above, the calculated compressive and tensile strength
which are given in the first row for each of the tests, thus, should be divided by the ratio n to
make them corresponding to the measured flexural strength. The values of the scaled

compressive and tensile strength are given in the second row of each test.

T S; s Strength ( KPa ) Strength
Test Scale
€O | (%) | (o) | Source % o % | Facwor
Calculated 892 296 348
YITIR1 -5 5.6 58.1 Sealed 423 140 165 2.11
Calculated 865 277 334
YITIR2 -5 6.0 62.2 31 106 128 2.61
Table B.1 i Compressive and Tensile

In its API Recommended Practice 2N (RP-2N), American Petroleum Institute (1988) also
recommended some plotted data for use in ice strength estimation. Some of these data are

different from those on which the equation (B.1) through (B.3) were based. However, it is found



245
that these data also support the above calculation. For a brine volume of 60%o, the ratio of
tensile strength to flexural strength given in RP-2N is about 0.75 which is fairly close to the
ratio for the above calculations (the ratio is 0.83 for the test YIT1R2, and 0.85 for Y1TIR1,
which can be calculated from the numbers given in Table B.1). The ratio of calculated
compressive strength to flexural strength is near 2.6 which is slightly lower than the ratio of 3.2

(lower bound) for the API's data.

B.2 Internal Friction Coefficient

Another parameter required for Mohr-Coulomb criterion is the internal friction coefficient yq.
As shown in Chapter 5 of this thesis, the following relationship holds good for the Mohr-

Coulomb criterion:

g

r:=7‘(g°1+1-%) ®.6)

where 7, and ¢, are shear and ive strengths, pecti . The internal friction
coefficient, po, can be expressed in terms of internal friction angle ¢:

Bo = tang ®.7)

Equation (B.6) can be rewritten to express the internal friction coefficient in terms of

compressive and shear strength, shown in Equation (B.8).
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N

g T
Mo = r_= - (B.8)
s

c

If the ratio of compressive strength to shear strength is found, the internal friction coefficient,

or the friction angle, can be determined.

U 2 i little i ion is i on the shear strength. The data

compiled by Cammaert and Muggeridge (1988) including those given in RP-2N (American
Petroleum Institute 1988) show quite a wide scatter. The ratio of compressive strength to the
shear strength, thus, varies over a wide range. For the brine volume of 60%o (the value for the
ERC tests), the data indicates that 2.2 to 4.5 may be a reasonable range for the ratio o./7,.
Corresponding to this range is the range of 0.095 to 0.903 for internal friction coefficient p,.
Thus, the internal angle calculated using Equation (B.7) is in the range of 5.4° to 42.1°.
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Appendix C Simplification of Ridge
Crack Problem

This appendix is arranged to demonstrate the sufficiency of considering the vertical loads only
in analysis of ice ridge cracking loads on MCSs. In fact, many researchers (Croasdale 1980;
Abdelnour 1981, 1988; Schreiber er al 1989) have already used this simplified loading condition

for analysis of ice ridge cracking loads on SCSs, including a number of important research

projects by Arctic P Operators A iation: APOA projects No. 57 (Kim and

Kotras 1973), No. 87 (Semeniuk 1975), No. 96 (Wang 1979, 1984), etc. In all these analyses
except for the plasticity analysis by Wang (1979, 1984), the ridge was treated as an elastic beam

with constant stiffness, resting on elastic i i to a vertical load

at the contact point. These analytical models based on elementary bending theory and the above

are also for i ing use by industry (American Petroleum

Institute 1988, Croasdale 1980).

In addition to the vertical force acting on the ridge, which all the above analytical models
have considered, more forces would be acting on the ridge. Could the effects of theses forces
be neglected and if so, what is the degree of error caused ? These concerns will be addressed

in this appendix.
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C.1 Modelling of Loading Condition

The cross section of the ridge is idealized to be rectangular, as shown in Figure C.1. In the test
program presented in Chapter 3, most of the ridges had a rectangular cross section; hence this
idealization is fairly reasonable for these tests. A pair of flanges are included in the ridge cross
section to account for the effect of attached ice sheet. According to Equations (6.2) and (5.5),
width of the flange depends on ice sheet’s Young's modulus E,, thickness k, and Poisson’s ratio
v. For the ice ridges and sheets used in the MCS test program, typical values of parameters of
an ice ridge and its flanges are given in Table C.1. In Table C.1, Z is calculated using
dimensions a, &, and B, and their relationships to ridge height H, defined in other columns of

this table.

>
=]
-
bz

Figure C.1 Forces on a Ridge
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Symbols a B, h Z

Distance from

Meaning of the Symbol | Ridge Flange Width Ice Sheet Neutral Axis to

Width Thickness Top Fibre of
the Ridge
Expression in Terms of | 3.3 H 45H I3H 034 H
Ridge Height H
Table C.1 Ridge Dimension

‘When a ridge comes into contact with the MCS, it is subjected to a normal force P and
a tangential force uP, where u is coefficient of friction between ice ridge and MCS surface. The
direction of P is perpendicular to the contact interface and uP is along the contact surface;

Figure C.1 shows the directions of these forces.

Due to the applied load P, crushing usually occurs at the contact interface before the
ridge cracking occurs. The crushing may change the location of forces P and uP. To simplify
analysis, this effect is also ignored, as earlier researchers have done in analysis of ridge loads
on SCSs (Croasdale 1980, Abdelnour 1981, 1988). Action of forces P and uP can be replaced
by a vertical force Py, a horizontal force Py, and two torques, My and M. Figure C.2 shows

these forces and torques.

Py and Py can be expressed in terms of the normal force P, friction coefficient x, and

slope angle of the front facet of the MCS, o
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P, = P(cosa - psina) .1

Py = P(sina +pcosa) (C.2)

— x—]

Figure C.2 Equivalent Forces on the Ridge

Thewulwxmw.m.acdngumecemidohheridgeandifsﬂmga.canbeupmed

m =M, - My ©3

where M, and M, are the torques generated due to the shifting of location of Py and Py,
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respectively.

Values of Py and Py vary with a number of factors. For a given friction coefficient x and
slope angle a, Py and Py are functions of normal force P. For the MCS tests, in which the
average values of 4 can be approximately taken as 0.1 and o = 40°, Py = 0.704P and Py=
0.717P. Thus, we obtain the following relation for these MCSs:

_ o7
7 0704

P, = 1L02P, ()

£ =

S o~ ssm

Figure C.3 Idealized Geometry of Multi-year Ridges

Value of m is strongly dependent on shape of ridge cross section, slope angle of the
structure, and interaction process; hence it is more difficult to determine it exactly. Here only
two idealized extreme cases are discussed: Case I (represented by Figure C.2) in which the

forces act at the lower front edge of the ridge; and Case 2 (shown in Figure C.3) where the
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forces act near the top front edge of the ridge. For case I, the total torque, m,, can be

calculated as:
m = %aPV—P,,(H—Z,) = 1.65HP,-066HP, = 0.977THP, (C.5)

where a is ridge width, H is ridge height, and Z, is the distance from the neutral axis to the top

fibre of the ridge (refer to Figure C.2).

The ridge cross section shown in Figure C.3 is the idealized geometry of multi-year
ridges defined by Wright er al (1979). Due to the existence of the flanges (they are not shown
in Figure C.3) that accounts for the influence of attached ice sheet, the centroid of entire cross
section of ridge and flanges is usually located quite close to the lower surface of attached ice
sheet such that the contact point B is nearly along the same horizontal axis as centroid c. In this
case, Py does not generate any significant torque. The total torque for this case (case 2), m,, is
approximately the one generated by Py:

m, ~05aP,=275HP, (C.6)
It is obvious that the total torque given by equation (C.6) is greater than the one given by
Equation (C.5). If this torque is ignored in analysis, the larger the torque, the higher the error
will be. Thus, to consider the worst condition, Equation (C.6) will be used in the analysis of

error made due to ignoring the effect of torque.
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C.2 Simplification of Loading Condition

The combined action of forces P, and Py and torque m will lead to very complicated equations
for estimation of ice ridge loads on a MCS. Magnitudes of stresses due to these forces and
torque will be analyzed below to determine which one is dominant and to estimate the degree
of error that will be generated if one or more of these force components are ignored. Strictly
speaking, the ridge geometry shown in Figure C.3 should be used in this analysis. Since the
purpose of this ix is to the i of idering the vertical load in

ridge cracking load analysis, the simplified geometry shown in Figure C.2 is used to make the

analysis simple.

If the vertical bending moment m, (about the neutral axis parallel to x axis) for the

location y is given, the maximum normal stress at bottom fibre, oy, due to m, can be written as:

My (H=%) (111 2 ©n

T

o, =
where £, is the moment of inertia about neutral axis parallel to coordinate axis x and is given by:
L= %[(ZB‘W)Z,’—23‘(2,—h)3+a(H-Z,)3] - 0.48H* (X))

Similarly, if horizontal bending moment m,, (about the neutral axis parallel to z axis) for

the same location y is given, the normal stresses at the left and right edges of the ridge, due to



my, can be written in the following form:

1
i (€9
" I,
where . is the moment of inertia about the neutral axis parallel to z axis,
L= % [h(a+2B)*+(H-h)a’] ~ 53.7 H* (C.10)

Bending moments m, and m,, are linear functions of Py and Py, respectively. Accounting

for the relation Py = 1.02 Py, we have the following relationship for the bending moments at

given location y:

Thus, the ratio of o, to oy, can be derived as:

% my 1.02x3.3H 0.48H*

LT JU 2
oy 20#H-Z)my I a2y S53TH*
3

(C.11)

= 00226 ©.12)

Equation (C.12) shows that g, is much smaller than g,. If Py, is neglected, it affects the normal

stress by less than 2.3 percent.

The maximum shear stress due to the torque m is very difficult to calculate. To simplify

the problem, we can ignore the flanges, i.e., consider the ridge only. This simplification could
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tremendously enlarge the shear stress. If the maximum shear stress for the ridge only is still

smaller than oy, the vertical bending is dominant loading condition.

According to Roark (1965), the maximum shear stress in a rectangular beam can be

expressed as:
% _m (1.5a+09H) = 1.07m (C.13)
a’H? H

The ratio of 7,,, to o, can be expressed as:

Tme __ 10TmL  m 107x048x3 _ 0.77m .14

o, mHEH-Z) m, 2 m,

Bending moment m, is larger than torque m. For instance m, for hinge crack could be 7 H P,
which, compared to Equation (C.6), is nearly three times m. Hence it can be seen from Equation
(C.14) oy is much larger than 7,,,,. Recalling that we have considered the ridge only in the above

analysis, the real shear stress can be much smaller than that obtained above.

In Equation (C.7) we used (H-Z), which means that we considered the upward bending
(hinge crack). For upward crown bending, (H-Z,) should be replaced by Z, resulting in a
smaller oy, which is about half the upward bending (hinge crack) stress. From the data presented
above, we can see this bending stress to be still dominant. Hence the neglecting of the effect of

horizontal load and the torque are justified by the results shown above.
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Appendix D Functions A(y), B(y), C(y),
D(y) and Their Operations
D.1  A®, B®, CH), DY)

The functions A(y), B(). C(y), and D(y), are functions of y and L. They are defined as follows:

A() = e (cosy+siny)

B(y) = ¢ siny o1
C(y) = e7 (cosy-siny)
D(y) = e cosy
where -
y =yI/L,

y is a variable (is the y coordinate in our case) and L. is the characteristic length of a ridge.

A(l), B(l), C(1), and D(I) can be obtained by substituting y with / in Equation (D.1).

The functions defined in Equation (C.1) are related as follows:

D(y)+B(y) = A®)
D(y)-B(y) = C()
The relationships were helpful in deriving the equations given in Chapter 6.
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D.2 Derivatives and Integrations of

A(®y), B(), C(), and D)

The derivatives of these functions, expressed in any of the four functions, 4(y), B(). C(y), and

D(y), are given as follows

e | 2 FA0) 2
i R - A
480 _ 1 LBY) 2
T O e on
o, _2 o | 2
& " L0 il
e | L Do) | 2
& - 20
The i ions can also be in terms of A(y), e.t.c.:
[a»dy = -L.D(»)
L
[Bdy = -2 40)
®3)

[condy = LB
[pody = -%C(y)

In these equations, the integral constants were ignored.
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D.3 A(l-y), B(-y), C@-y), D(-y)

and Their Derivatives

Substituting (I-y) for y in Equations (D.1) gives

Al-y) = e [cos(I-5)+sin(I-5)]
B(-y) = e ™ sin(i-5)

_ £ - (D.49)
Cll-y) = e [cos(I-y)-sin(I-5)]
D(I-y) = e’ cos(I-5)
where
T=1r,
and /, in our case, is one half of a facet length at waterline.
The derivatives of these functions can be expressed as follows
dA(y) _ 2 gy
dy L‘B( y)
4By | Leg,
dy L
dciy) _ 2 e
.5 (o ) e 77, %) &
a L‘D( y)
dD(l-y) 1
S0 - A~
a L (I-y)



259

D.4 A(y-D, B(y-D, C(y-), D(y-I)

and Their Derivatives

Substituting (y-/) for y in Equations (D.1) gives

AQ-1) = D [cos(7-1) +sin(F-1)]
By-1) = e FDsin(5-1)

N i = D.6)
Cly-1) = e [cos(y-1) -sin(y-1)]
D(y-1) = e cos(5-1)
The derivatives of these functions can be expressed as follows
d4-D _ 245,
o lgﬂ(y U]
2BOD - Lew-n
dy I ®.7
acG-h _ 2 pey g
dy ,‘D(y )
ao-h _ 1L,
dy 1‘40 D
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Appendix E Multi-Year Ice Characteristics

for Beaufort and Chukchi Sea

Cammaert and i (1988) iled data

in the open lif about multi-
year ice characteristics for the Canadian Beaufort Sea, the Alaskan Beaufort Sea and the

Chukchi Sea. Some of these data are listed in Table E.1.

Ridge Sail Height | Maximum | Floe Thickness Ridge frequency
(m) Sheet (m) (No. of Ridges /km)
Begion Mean Max. (m) Mean Max.

Canadian 8.9 22 52 12
Beaufort 33

Sea (14.3) (4.0)
Alaskan 3107
Beaufort 1.7 9.4 1.8

Sea
Chukchi 1.6 1.6 3w 10

Sea

Numbers in brackets denote extreme ice features

Table E.1 Multi-Year Ice Characteristics

The data for the Canadian Beaufort Sea given in Table E.1 apply to the southern region

of the sea, where the continental shelf extends to about 150 kilometres from shore. The area
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that has been explored for hydrocarbons extends to approximately the 60-m water depth

contour. Some additi data have been in the deeper water area (Polar Ice Zone).

The deepest multi-year ridge keel ever measured was about 47 meters below sea level
(Cammaert and Muggeridge 1988, page 7), and multi-year ice thickness could reach as high
as 4 meters. Because the multi-year ice in this region could drift to as far south as the 5-m
water depth, it should be considered in determining the design loads. Similarly, some extreme
ice features were also measured in the Alaskan Beaufort Sea. For instance, a maximum ridge
keel of about 31 meters has been recorded. The ridge sail heights corresponding to these

extreme keel heights are also included in Table E.1 (the numbers in brackets).

The target ice di ions for the test in Chapter 3, which was

considered as ‘‘one in 100 years in the Beaufort or Chukchi Seas’’, were: 27 meters for ridge

thickness, and 8 meters for sheet thickness (Weiss, 1988).

With a given sail height, the remaining dimensions of a ridge can be approximately
determined using the idealized cross section profile given by Wright er al (1979). Cox er al
(1984) reported Young's modulus values for samples obtained from multi-year ridges in the
Alaskan Beaufort Sea. Mean values of 5.02 and 6.99 GPa were obtained at a strain rates

between 10~ and 107 s? and at a of -5°C. C ing values of 5.95 and 7.62

GPa were obtained at strain rates of 10° and 10 s™ at a temperature of -20°C.

The characteristic length of a ridge with flanges can be calculated with Equation (6.3)
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which can also be used for calculation of the characteristic length for a ridge without sheet ice
by ignoring the contribution of the sheet to the foundation modulus and the moment of inertia.

The calculation results together with the values of ice dimensions and modulus used are listed

in Table E.2.
Sail Sheet L, (m) L. (m)
Region Height Thickness
(m (@) E=5.02 | E=7.62 | E=5.02 | E=7.62
(GPa) (GPa) (GPa) (GPa)
3.3 22 111.9 124.2 95.5 104.9
Canadian
Beaufort Sea 8.9 2.2 235.5 261.4 217.3 239.5
14.3 4.0 336.1 373.0 310.9 342.7
Alaskan 1.7 1.8 68.0 75.5 57.6 63.5
it Ses 9.4 1.8 245.3 272.3 228.9 252.4
Chukchi Sea 1.6 1.6 65.0 72.2 54.5 60.0
Test Target 6.3 8.0 181.7 201.7 163.9 181.2

Table E.2 Ridge Characteristic Length

In Table E.2, L, and L, are the characteristic length for a ridge without and with
attached flanges, respectively. The mean floe thickness were used in place of the mean sheet

and the il sheet thi for a ridge in the Canadian Beaufort Sea since no

sheet thickness was available. Also the mean sheet thickness for the Alaskan Beaufort Sea was
used for the extreme ridges due to the same reason. Two extreme values of modulus, the

lowest and the highest, given by Cox et al (1984) were used.
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The data in Table E.2 indicate that
The highest characteristic length could be 373 meters for a ridge without ice attached,
and 342.7 meters for a ridge with ice sheet artached, under the condition of the
Canadian Beaufort Sea. The corresponding lowest values are 111.9 and 95.5 meters,
respectively.
The lowest characteristic lengths for Alaskan Beaufort Sea could be 68 meters and 57.6

meter, respecti . The highest istic length could exceed 272.3 meters for a

ridge without sheet attached, and 252 meters for a ridge with sheet attached because the
sheet thickness used in the calculation was the mean sheet thickness for the extreme
ridge. The maximum sheet thickness is expected to be much higher.

For the target ridge and sheet modelled in the MCS test program, the minimum
characteristic length could be 181.7 and 163.9 meters for a ridge without and with ice

sheet attached, respectively.
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