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Abstract

To simplify fabrication and reduce costs of conical structures for arctic offshore development,

a multifaceted conical shape was proposed to replace the conventional smooth CODe. This raised

a number of concerns about the mechanisms for ice interaction with this multifaceted conical

structure (Mes) and the validity of analytical models whicb were developed for the smooth

conical structure (SCS).. A venical neck at the top of the MeS was proposed for a protorype and

industry bas desired a large siu for this neck. Le .• its diameter to be only slightly smaller than

water·line diameter. This raised another coocem; what was the effect of this vertical neck OD

ice loads?

To address these concerns. a university-industry joint program (NSERC file # 661­

119188) was initiated to carty OUt a series of test program. 1be program involved three series

of tests carried out in three Canadian test facilities (ESSO Resourtts Canada. Calgary; NRCC's

Institute for Mechanical Engineering, Ottawa; and NRCC's Institute for Marine Dynamics. St.

John's) with structural models al scales of 1:50 to 1:10 and at a cost about 1.3 million Canadian

dollars. The results of these teStS were presented in test repons published by each facility; while

presenting these test results DO detailed analysis was carried OUI to understaDd the icelstruemte

interaction in a comprehensive manner. TI)t data contained in these test reports have been used

in this study to understand in depth the various interaction scenarios possible between a multi­

year ice ridge and the MeS.
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1be direct analysis of the test data. presented in this study. covers answers to most of

the concerns raised by the offshore industry but is not limited to them. Besides the ice failure

mechanisms involved in the process of ice interaction with the MCS models. the paramelers

analyzed include neck size. sttUcturaJ orientation. ridge width. and the events that caused the

maximum ridge loads. In the analysis of the ice failure mce:banisms. three ridge failure patterns

are identified. Both ridge cracking and ridge segment ride up processes are recognized to be

events causing the maximum ridge loads. The i.nfluence of a number of factors on ice cracking

panem and ice loads exerted on the MCSs are considered in the data analysis.

To provide an insight into the interaction process and the ice failure mce:hanisms. a series

of numerical simulations are carried out using a commercial discrele element code (DECICE).

DEOCE is capable of realistically simulating the ice breaking processes accompanied by broken

ice pieces riding up on the structural surface. This overcomes the disadvantage of the

conventional Hnite element analysis in which the ride-up forces are to be approximately

computed under an unrealistic assumption that only one layer of ice rides up. The simulations

using DECICE show the broken ice pieces to be actively involved in the breaking process of

impinging ice. The effect of neck size on ridge and sheet ice loads is also studied using

DECICE.

An analytical model is developed which takes the panicular feature of the MCSs and

ridge length into account; this model should provide designers with a simple estimation of ridge

cracking loads. This analytical model is given in the form of a set of equations covering the
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initial crack: event and hinge crack event for both finite length ($bon) and infinite length (long)

ridges. Three loading conditiom for hinge cracks in an infmite ridge are considered in the

equations. The most conservative loading condition for the hinge cracks is chosen for shon

ridges to give a cooservative estimation of the maximum ridge loads. The equations for long

ridges are expressed in a general form whh differelll coefficienlS for various crack events and

loading conditions.

An extensive comparison of lhe experimental results given in this thesis, for level ice

fields, has been made wilh We analytical models mat were develped for prediction of level ice

loads on SCSs. 'The results show Nevel's analytical model for sheet ice load estimation to be

fairly valid for use in estimation of sheet ice loads on MCSs mough it was developed for smooth

cones. Ralston's model is also acceptable for MCSs if approprialC: parameters are chosen for

inputs to this model.

Of the various analytical models available for ridge load estimation, the model developed

in this thesis gives the best prediction (closest to the measured loads). As a second choice,

Wang's plasticity model which has been widely accepted for smoolh cones is also applicable to

the case of MeSs.
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Chapter 1 Introduction

1.1 Background of the Test Program

Up to lhc:early 1990's, many significant geological strueD.1reS in the Canadianfronticrarea5 have

been drilled and tested for oil and gas at a row cost of over IS billion Canadian doUars.

Discoveries have been significant as the oil reserves (including discovered and po[C:otial) in the

Grand Banks and Beaufort Sea areas alone are about 8 billion barrels (Croasdale, 1991).

However. Hibernia and Terra Nova are lhc: only froD!ier oil projects being or [0 be developed

to date. 1be high cost for safe exploration and production is the main reason for slow progress

with the frontier oil developments.

Conical shaped struCtl1tt$ can induce ice beDding failure and this mode will exert much

lower loads on the strue:ture compared to ice loads from a crushing failure mode. Therefore

conical shaped structures are preferred for arctic oil and gas exploration/production operations.

The conical structures designed till the 1990's have been of smoothly curved surfaces and bave

assumed steel coDStI'UCtion. The difficulties ellCOWllered in manufacauing a smOOth surface lead

to a higber cost of consauetion, consequently making the total cost of oil and gas development

projects h.igber. For ease of fabrication and savings in the cost of construction, Exxon

Production Research Company proposed the developmem of a multifaceted surface to

approximate t:be smooth surface (Weiss, 1988). This newly proposed configuration of the



SUUeture will be referred (0 as the muIrifaceted conical strucrun (MCS) in the rest of dlis thesis,

and tl1e conventional smoothly curved conical structure will be referred to as SCS.

Utilization of such a SUUCUlre raised several DeW concerns about ice load estimation. 'The

main concerns are described as foUows:

1. The mechagism of ice failure_The multifaceted surface may affect the ice failure process

aDd make the process quite different from that for a smoothly<WVed conical suueQlre

(SCS); beoce lbe ice loads on lbe multifaceted surface may be different.

2. The effect of ice interactiog with the vertical neck (refer to Figures 3.1 and 3.2).

Designers preferred the diameter of the verocal neck (() be only slightly smaller than die

water·line diameter (Weiss 1988) but were afnid a large neck could lead to a higher ice

load. The ice load formulae aDd procedures given in the design codes up to that time did

not account for ice interaction with a normal veroca1 neck. let alone this large neck.

3_ The "£hods or Pros;edures for estimation of ice loads on this type of MCSs. All the

existing formulae aB:1 procedures for ice load estimation in design codes have been

supponed by andIor based on tests with SCSs; hence it was questionable whether these

formulae and procedures could still be used for MCSs.

To stUdy the new featureS of ice interaction with a MCS and help understand the ice

failure mechanisms and develop proper ice load estimation formulae, a NSERC

University·lndustty coUaborative researcb program (NSERC fIle # 661·119/88) was initiated.

Ibis program. with a funding of 1.3 million Canadian doUan was carried out by Memorial



University of Newfoundland (MUN). FSSO Resources Canada Ltd. (ERC) (on behalf of

Imperial Oil Resources and its industry panners including Exxon Production Research and

Mobil Oil Ltd.). and National Researcb Council of Canada (NRCC). The program involved

lhree series of tests carried out in the three facilities: ERC's outdoor ice basin at Calgary and

the indoor ice tanks of NRCC's [mtiture for Marine Dynamics (IMD) at St. John's,

Newfoundland. and Institute for Mechanical Engineering (IME) in Onawa.

ERC's tests wete done during the wimer of 1988-1989 (to be referred to as Year One

Tests) and the wioterof 1989-1990 (to be referred to as Year Two Tests). respectively. The 1MB

and IMD tests were completed during the spring and the summer of 1992. respectively.

1.2 Background of This Study

Eacb of the test teams docwnented tlleir results in separate ~t reports (Metge and Weiss 1989.

Metge and Tucker 1990, Irani et al 1992. Lau et al 1993). These repons mainly recorded the

test conditions and the physical measurements for each individual tests. No theoretical analysis

was done during presentation of these test reports; tlle present researcb work: is the rlrSf.

comprehensive study carried out on the experimental results documented in these test: reports.

Since concerns 1 and 2 presented in the last section could not be answered without an

overall analysis of test results, sucb an analysis of these [est. results became vital and imporum.

Moreover widely used analytical models for ice load estimation. available earlier, were based



on test conducted with SCSs: hence concern 3 required an eXlensive evaluadon of the validity

of theses models for the newly proposed MCS. Considering the difference in me loading

cooditions between a SCS and a MCS. DeW analytical models accounting for the characleristic

interaction of ice ridge with MCSs were found to be desirable for estimating ice ridge loads on

MCSs. Another concern, Le.• lbe effect of neck size, could have been bener addressed if me

conditions of two leStS were kept the same except for strueturc's neck size. Unfonunalely, no

single pair of such tests could be found in all the test series. Therefore. a set of numerical

simulations with the same paramelers were undertaken for this purpose. Numerical simulations

were belpful in understanding the mechanism of ice failure (concern I). All studies carried out

to address these aspects and the conclusions obtained from these stUdies are presented in this

thesis. Except for the test results obtained from the test reports. aU the grapbical plots. analysis

and conclusions presented in this thesis were obtained as a pan of the investigation carried OUt

for this thesis work:.

1.3 Objectives

The principal objectives of the present study are to get an insight into the iceJMCS interaction

and to provide theoretical and ptaCtical ~Its for designers to consider in their struCtural design

or for researchers' further study. The study will focus on the concerns raised by industry. [t is

divided into the following taslcs:

I. Identification qf the relationship between the ice loads and me ice cAC!c.ing Process under

lest COnditions. The task will be fulftlled by thoroughly analyzing all the test data



including both the load records and the video records. A numerical analysis will also be

perfonned to assist in the completion of this task. This is expected to help in the further

understanding of ice-structure interaction and to aid in the development of theoretical

models for ice cracking load estimation.

2. A study of the effects of sUYetural parameters and orientations on the ice crack pattern

and lbe jce loads on the structure. These include oeck size (one of me factors of concern,

to industry). the relative orientation between a suuetuea1 facet face and sheet ice motion.

the ridge orientation. etc. This task. will be completed by means of analysis of the tests

and numerical simulation.

3. Development of a theogtjg' model for easy estimatioQ of ice ridge cracking loads on

i...MCS., Ibis is considered as a separate item because the ice ridge cracking load is the

most imponant consideration for structural designers and no analytical or semi-empirical

models are available for a MCS.

4. Evaluation of the suitability of exjsting analytjcal models for estimation of ice loads on

~. Due to the reasons described in Section 1.2. an evaluation of the validity of

existing SCS models fOl" a Mes became a necessity. Since the MCS bas [wo diameters

(inscribed and circumscribed) and a vertical neck which are not accounted for in these

existing analytical models. determination of which geometrical dimension(s) is (ace)

appropriate to be used as inputs to these existing models is another work that had be

done.



1.4 Organization of the Thesis

This thesis consists of eight chapters and its main coments can be divided into four partS. The

first part that foUows this inttoduction is a literature review given in Chapter 2. The review

focuses on che ridge teSts with SCSs that can be considered as a counterpan of the present tests.

Anodler area of literature reviewed is on typical analytical models developed earlier by adler

researchers.

The second pan is a single chapter. Chapter 3. which presents a summary of the tests

and their results. tbe materials given in this chapter provide a data base for the analysis in the

chapters that follow.

The third part consists of two chapters: Chapter 4 and Chapter S. 1be nest portion of

Chapter 4 summarizes the key scenarios of the ice-structure interaction process. which is

followed by an analysis of the effect of neck size and the structural orientation on the sheet ice

loads and. on the ridge ice loads. Chapter S presentS a series of numerical simulatioDS carried

out using a discrete element code. The simulation mainly focuses on the identiftcation of the

relationship between ice loads and ice cracking process. The effect of neck size is also analyzed

by the numerical studies presemed in Chapter 5. This part directly addresses concerns 1 and 2

or taSks 1 and 2 given earlier.

O!apters 6 and 7 contribute me founb part of litis thesis. Chapter 6 is dedicaled [0 the



presentation of lbe Dewly developed theoretical model for the estimation of ice ridge cracking

loads on MeSs. Irs verification using test data is given in Chapter 7. Chapter 7 also contains (he

examination of other earlier t:heoreticaJ models available. 1bese models were developed for

estimation of eilber ridge ice loads or sbeet ice loads on SCSs. This part is expected to address

coocem 3 or tasks 3 and 4 given earlier.

Finally, an additional but more important chapter, Chapter 8, is arranged to summarize

the coaclwions obtained and contributions made in me course of (his study and to give

recommendations for further srudies in this area.



Chapter 2 Literature Review

Before the present research program. there have been few theoretical andIor experimental studies

on MeS reported in the open literature. The literature that is reviewed in this chapter is part of

the large literature available on ice interaction with SCSs. In addition. this review will also covcr

some impona.nt developments and conclusions arrived from earlier research on ice interaction

wilhSCSs.

During the past two decades, many excellent review papers and reports (Chao 1992a &

1mb. Wessels and Kato 1989. Marcellus et aJ 1988. Sodhi 1987. Nessim et al1987. K.rankkaJ.a

and Maananen 1984. CroasdaJe 1975 & 1980, Cammaert and Muggeridge 1988) have been

published on ice-structure interaction. In these publications. the results and progress in the

studies of ice sheet loads on SCSs were extensively reviewed. However, the SCS and ice ridge

interaction have received lesser attention. Therefore. the emphasis in this chapter will be given

to review the studies of ridgeiSCS interaction.

2.1 Experimental Studies of Ice Ridge Forces

So far, only a few rest data for ice ridge forces exist in the open literature. In the following,

several typical model leSt programs are reviewed. A brief introduction to these test programs

will be followed by a summary of the test results which are organized into five subsections.



Lewis and Croasdale (1978) reported one of che earlier test programs on ridge-eone

interaction. 1be tests were conducted with a 45° conical suuctute model and saline ice ridges

at a test scale of about 1:50. Eleven ridges were successfully tested for strucrurelridge

interaction. The ridges were built from ice sheets and could be considered as pressure ridges or

layer ridges. The results have been used to support analytical models (Croasdale 1975 & 1980.

Kim. and Kotr'aS 1973).

Kamesaki and Yoshimura (1988) conducted a new series of tests with two cone models

at a scale of 1:100. The slope angles at waterline for chese (wo models were 45° and 40.7°,

respectively. The ratio of ridge keel depth and ice sheet lhickoess, ridge length. and ridge

orientation were changed to investigate their effects.

Abdelnour (1988) presented a summary of two extensive test programs. based on the

work: carried out by AbdeLnour and Teh (1976) and Edwards and Abdelnour (1977). A total of

sixty ridges were tested against a 45° cone with a waterline diameter of 0.61 meters. The ridges

and lhe surrouoding sheet ice were modeled using a synthetic material to simulate natural ice at

scales between 1:50 and 1:75. Besides the broadside and 45° skewed orientation, an end·on

orientation of the ridges (the ridge axis was parallel to its moving direction) was also tested.

Ridge length varied from 0.38 meters. to simulate very short ridges. [0 4.1 meters, to simulate

inflnite ridges. The experimental data from these tests have been used [0 develop and verify

analytical models (Wang 1984. Abdelnour 1988).
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2.1.1 Failure Process and Forces of Broadside Ridges

The cypical ridge Failure sequence observed and described by Lewis and Croasdale (1978) can

be presented in four steps as follows:

I. When the ridge is initially approaching the cone the ice sheet between the ridge and lhc:

cone breaks. The corresponding force is quite low (compared to the maximum force),

and is at the level of the ice sheet force.

2. As die ridge moves funber forwards. the cone encounters the underwater leading edge

of me ridge and begins lO lift tbe ridge slightly. causing an initial crack in the ridge.

usually at the center of the ridge. often referred to as initial crack or center crack; it bas

also been observed that the crack could extend through the ridge into the ice sheet. 1be

magnilUde of force increases sharply until the crack forms and then levels off. The

magnitude of the force at this instant may not be at its maximum but it is much higher

than the earlier peaks associated with the breaking of the tee sheet.

3. As che motion continues. the ice sheet is separated from me ridge by a tensile failure.

The ridge is now noticeably deflected upwards and the initial crack is widened and

extends further into me ice sheet. The magnitude of the force continues to increase but

has not ruched its maximum.

4. The ridge continues to be deflected upwards until a second crack (hinge crack:) occurs

at some distance away from the center crack. Then, the ridge and ice sheet fail

simultaneously, and the surrounding sheet ice which have been deflected considerably

upwards begins to settle back: into the water. The force is at its peak magniwde.
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The above failure sequence is typical only for relatively long and broadside ridges

surrounded by a moderately thick: ice sheet. In fact. the mode of ridge failure is depeodcOl 00

the type of interaction. ridge length, sheet thickness, and many other factors. Abdelnour (1988)

summarized four distinct failure processes observed for the broadside ridges of various lengths.

1. Complete separation of the ridge from the ice sheet followed by interaction of the

advancing ice cover with the ridge

2. Complete separation of the ridge from the ice sheet followed by a central crack in the

ridge and clearing of the ridge around the CODe.

3. Separation of the ridge from the ice sheet ahead of the ridge (side of ridge nearest to the

cone) and at the ridge ends followed by central crn:ldng of ridge and occasiooally by

hinge cracks.

4. Ridge failure at the center followed by hinge cracks. No apparent ridge/sheet separation;

either or both cads of ridges still fumly embedded in ice sheet.

The average ratio of hiDge crack force to initial crack force was 1.73 on average for

Lewis and CroasdaJc's tests (1978). This ratio for Abdelnour's results was estimated to be close

tal.

2.1.2 Effect oC Ridge Orientation on Failure Process and Peak Loads

Kamesaki and Yoshimura (1988) observed lbat the eod-on ridges were broken like a semi-infmite

beam loaded at the end. The broken beams. approximately the size of the ridge width. frequently
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piled up in front of the CODe.

Abdelnour (1988) reported two distinct failure processes observed for lhe interaction of

end-on ridges with a SCS.

Complete separation of me ridge from the ice sheet followed by interaction of the ridge

with the advancing ice sheet.

Separation of the ridge from the ice sheet at both sides with a sequential hinge failure.

The failure process for the 30" and 45° skewed ridges was observed [0 be similar to the

ones for broadside interaction scenario. However. after the oc:c:umncc of the center crack and.

hinge crack. the ridge could come in conlaCt with the cone once more and could produce another

hinge crack (Abdelnour 1988. KamesaJci and Yoshimura 1988). Kamesaki and Yoshimura's tests

also showed mat the «1' skewed ridges failed in a quite different way: the poninD of lbe ridge

beI:Ween its leading edge and me center crack was DOt broken. and the ponico between ilS

nailing edge and me center crack was completely cracked along the moving direction.

Abdelnour's (1988) results showed lhat tbe broadside orientation yielded an average load

that was at least twice as large as that for the eod-on orientation. However. K.amesaki and

Yoshimura's results (1988) indicated that the loads for these two orientations were roughly at

the same level.
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2.1.3 Effects of Sheet Thickness and Strength

on Failure Process and Peak Loads

Thickness of the ice sheet strongly affects the failure process, and bence the ice loads

(Abdelnouc. 1988). If the ice sbeet was sufficiently lb.i.n (compared to the ridge kccl depth), the

ridge teoded to rotate in its plane after a center crack: developed. [f the surrounding ice sheet was

sufficiently thick, a local bending failure or a circumferential crack was liJcely to occur in the

centre of me ridge because of the high confinement effect of the surrounding icc sheet (Kamesaki

aDd Yoshimura, 1988). Abdelnour (1988) pointed out that an increase in ice thickness by a factor

of two resulted in an increase in the force by at least two to four times for most cases of his

tests.

Another important effect of the ice sheet was to increase the global force through the

ride·up sceoario. Wang (1979) sum.ma.rized the peak forces of the ridges with and wimout ice

sbeet ride-up (the data were quoted from Edwards and Abdelnour's lCStS (1977». The results

showed that the sheet ice ride~up action increased the average vertical and horizontal peak forces

by 31 % and by 29%. respectively.

2.1.4 Ratio of Horizontal to Vertical Forces

The mean ratio of the borizontal to venica1 peak. forces for the 27 tested ridges, swnnwized by

Abdelnour (1988), was 1.18. The corresponding value for Lewis and Croasdale's tests was 1.66,
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and for Kamesaki and Yoshimura's tests was 1.97. All these data were for 45" cones.

The r.il.tio of borizomal and vertical forces on a cone can be theoretically ex:pr-essed as

(Croa.s<We. 1975. 1980),

PIP "" SinCl+~COSCl
H V" COSU-lJosinu

(2.1)

where PH and Pvate the horizontal and vertical forces. respc:c:tively, a is the cone slope angle

from the borizomal, and Il is the ice/CODe surface friction coefficient.

While applying equation (2.1) to the above tesIS. one will find the ratio should vary from

1.15 to 1.56 as coefticicnr of friction IJ. varies from 0.1 to 0.2. It is obvious that K.am.esaki and

Yoshimura's teSts yield a ratio much higher than the one predicled by equation (2.1). The same

conclusion CQuid also be drawn from the results of other test programs. This difference could

be due to the fact that lhis fonnula is valid only for two-dimensional cases and also may be due

[0 the error in coefficient of friction measurement as pointed OUt by AbdeInour (1988).

2.1.5 Effect of Ridge Length on Peak Forces

Abdelnour (1988) used a dimensionless ridge length 2LIL~ (0 measure the effect of the ridge

length. where L is the balf ridge length, and Lc is the characteristic leoith of a ridge in water.

He concluded that a ridge with the dimensionless length between 1 and 1.5 exerted a higber

vertical force than a ridge with a dimensionless length below or above this range. These
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relatively short ridges may exhibit forces twice as high as an infinite ridge.

Kamesaki and Yoshimwa (1988) ploaed the peak.: forces against a ratio of 2U1:4:. where

Ht is ridge keel depth. The plot showed that the force increased with the increase of 2UHt until

2URk reached a value of 20; when 2Ul4. ratio increased beyond 20 (where the ridge might

be regarded as infinite) the peak force became almost a constant.

2.2 Analytical Models for Ridge Force Estimation

2.2.1 CroasdaJe Model and Abdelnour Model

Croasdale (l975 &. 1980) applied the lbeory of an beam on an elastic foundation. developed by

Hetenyi (1946), to estimate the maximum force of a ridge on a CODe. It was assumed that ice

ridge will crack wben the rensile stress at its outer fibre equals the ice flexunJ strength. The

formulae for venical forces were derived and given in the form:

(2.2)

where PI ~ and p~. are vertical forces for center and binge cn.cks. respectively; Zc and Zt. are the

distance from centroidal axis of the ridge to its top and bottom layers; C7r I and (1, ~ are ridge

flexural strength for top and bottom in tension, respectively; Lc; is characteristic length of the
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ridge and attached ice sheers and I is moment of iDenia of ridge cross section. The horizontal

forces can be calculated using Equation (2.1).

In this model. the ridge was assumed co be infini~. and the effect of the auached sheet

ice was not taken into consideration. Moreover. a concentraced load acting at the ridge/cone

contact point was assumed. that is. the effect of the load distribution along the contact edge was

not raken into account.

Abdelnour (1981, 1988) also applied Hetenyi's theory to the ridge/cone problem. His

expression of load formula including the effect of ridge length and attached sheet ice was

considered, is rewritten wilh the ootatiOlJS used in this thesis as foUaws:

(2.3)

where Frs and FHS are load functions for initial (cectal) and binge cracks, respectively, and they

can be expressed as

(2.4)
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where 2L represents full ridge length. Y is the location where the maximum moment occurs or

where ridge failure bappe~ and it can be obtaiDed by differentiating the moment equation and

equating it to zero. 'The beDding momem for a hinge crack can be written as follows:

For convenience. Equation (2.2) rogetber with Equation (2.3) will be referred to

as the CroasdaIe-Abdelnour model in this lhesis.

2.2.2 Kim and Kotras Model

Kim. and Kocras (1973) developed a sequentially straighlforward approach. also based on the

Lewis and Croasdale's observation and Hcrenyi's theory. lbe ridge and the su.rrounding ice

sheet were treated as an elastic beam. and plate on an elastic foundation. respectively. Their

approach used in determining the failure sequeoce can be sum.m.arized in seven steps. which was

later coded into a computer program by Semeniuk (1975). lbe first four stepS are for initial (or

cenrer) crack and the rest arc for analysis of the hinge cracks.
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1. After the ridge contacts the cone, the ridge's upwards deflection, Woo at the contact point

can be calculated for a given penetration distance X. For this Woo the ridge and sheet

deflection W(x,y) is approximately derermiJ:led using beam and plate theory.

2. Determine the vertical force required to lift the ice to the deflection W(x.y).

3. Check: both shear and bending stresses at the interface between the ridge and the attached

ice sheet to see if the ridge is separated from the sheet.

4. ChecIc to see if the center crack occurs. If the ice sheet was not separaled from the ridge.

the ridge/sheet combination was idealized as a beam with anacbed flanges. Compare the

stresses at the center of the ridge with ridge flexunl scrength to see if failure (center

crack) occurs. If no failure occurs, i.Jx:rease the penetration and repeat stepS 1 through

4 until the initial crade occurs.

5. As the ridge (and sheet. if it was DOt separaltd from the ridge) moves funher forwards.

update its deflection and the required forces.

6. Check: the separation at sbectlridge interface again. After the initial (or center) crack. the

sheet. if not separated from the ridge before the initial crack. could be detaChed from the

ridge just before hinge cracks.

7. Check the stress to see if the hinge cracks occur (similar to Step 4).

2.2.3 Ride-up Model

!be Croasdale-Abdelnour model and Kim and Kottas model are only (or infInite ridges which

do DOt account for the possible ride-up process. Winkler and. Nordgren (1986) developed a
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model for calculation of the ridge force during the ridc-up process with the assumption that the

ridge is free-floating within a surrounding ice floc.

TIle ride-up problem of a ridge was analyzed in twO steps. The ridge ftrst was modeled

as a rigid body undergoing lacge rotation and translation in irs cross-sectional plane. The forces

acting 00 the ridge consist of the force exerted by the cooe, buoyancy force, gravity load, and

a force ttaDSmitted from the ice floe behind. For each stage of the ride.-up process (Le. for a

cenain rotation angle of the ridge). the ridge force on the cone can be ca.lculared by solving the

equilibrium equation of the force system. Then the ridge was treated. as an elastic beam on the

cone. A maximum ridge force for flexunl failure can be determined at each stage of the ride-up

process. The maximwn force over the entire ride-up process gives the overall maximum ridge

force for a given ridge cross section.

The approach was also extended to include the effects of dynamics and local crushing

(Nordgren and Winkler 1989), and to probabilistic analysis (Winkler and Reece 1986).

2.2.4 Plasticity Method

All the above models are based on elasticity theory. and are likely (0 uoder~timate the actual

forces. To estimate an upper bound of ridge forces. Wang (1979 & 1984) developed a model

based on plasticity theQry.
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In this model. the ice ridge and ice sheet were assumed to be elastic-perfectly plastic and

resting on an elastic-perfectly plastic foundation. The ice sheet in front of the leading edge of

the ridge was assumed to be separated from the ridge before the ridge cracked. lben. the upper

bound theorem was appUed to this sbeeHidge~one system. Five components of lhe rale of

energy dissipation were considered. viz.• the rates of energy dissipation due to ice sheet and

ridge beDding, ice sheet and ridge weight (or buoyancy) and friction between the ridge and the

cone. Five types of admissible velocity fields were considered.. two of which were designed for

long ridges with center and hinge cracks. another two for sOOrt ridges with a center crack only,

and one for very short ridges without cnck at all. Eacb. of these five velocity fields gave an

upper bound for the ridge force. Among the five bounds. the smallest was selected as the

calculated value.

This model has been widely used in ridge force estimation and analysis (Schreiber ~l at

(989). Nevel (1991) simplified the force equation for the long ridge type I velocity field which

is the most likely breaking pattern for long ridges.

2.2.5 Comparison of Models and Discussions

Comparison of these analytical models with experimental data has been carried out by many

researchers (Wang 1979, MacceUus et al 1988. KamesaJd and Yoshimura 1988. and Chao

1mb. etc). The latest and the most extensive ODe was dODe by Chao (1mb). These

comparisons share a common conclusion: the elasticity ~thods generally unduestimalt! the
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ridge loads on a cone, while the plasticity methods may oW!r-prediet the loads.

!be plastici[)' model and the Kim and Kottas model are theoretically the most elegant ones

because mey simulate the real situations more completely than other models. Compared with the

Kim and Kotras model. Wang's plasticity model covers more situations in terms of ridge length

and possible crack: patterns (velocity fields). Wang (1979) did an extenSive comparison of these

[wo models using the results of fifty ridge tests and showed the plasticity mOOeL predicted the

loads beuer. while Kim and Kotras model under-predicted the loads.

The Croasdale-Abdelnour mcxlel is quite simple and easy to apply for ridge load

estimation. This model does not include the forces due to the sheet ice pieces riding up. neither

does the Winkler and Nordgren model (1986).

2.3 Ice Sheet Interaction with a SCS

Numerous test programs have been carried out to slUdy the ice sheet/cone interaction (see the

reviews: Croasdale 1980. Sodhi 1987. Wessels and Kata 1989). The observed failure process

and modes are summarized as follows.

As the ice sheet first encounters a CODe, local crushing occurs on the underside edge of

the ice sheet, which causes an interaction force normal to the surface of the saucture. The force.

which increases as the crushing area increases, will deflect the ice sheet. If the ice speed is low
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and me cone diameter is small compared (Q the thickness of me ice, radial cracks will initiate

the ice·sbeet failure. Peak:: interaction force. however, occurs when circumferential cracks

develop around the cone, leading to the formation of wedge-shaped broken ice pieces. (f the

cone diamecer is relatively large. the maximum tensile stresseS of the ice cover change fTom the

circumferential direction (0 the radial direction. This process causes an ice sheet to fail fIrSt

circumfereotially and thereafter radially. The cracked ice pieces will be pushed up on the surface

of the structure, which bas been termed ritk-up, then will slide over the surface and down into

water or on the ice cover.

Many factors could affect lhe ice failure mode. lncreasing roughness of the cone surface,

or increasing ice thickDes.s could gradually alter the failure mode from beDding to shear. With

increasing speed of iceJsttuetute interaction, the distance between r.be circumferential cracks

would decrease. and fInally, the ice-sheet failure would change abruptly from beDding to shear.

resulting in a lower peak force due to the dynamic effect.

2.4 Analytical Models for Ice Sheet and SCS Interaction

There exist many analytical models m:1 empirical (or semi-em.pirical) equations developed for

estimation of sheet ice forces on SCSs (Chao 1992a). In tenns of the theory the models were

based on, they can be divided into two categories: elasticity models and plasticity models. This

section reviews two typical elasticity models and ODe plasticity model.
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2.4.1 RaIstoo Model

Ralston (1978 & 1980) applied the technique of plastic limit analysis to the case of ice/cone

interaction and developed an analytical model to estimate me maximum ice sheet fortes on a

CODe. 1be derived formulae for horizontal force PH and vertical force Pv an given by:

PH'" A.. [Ai 0/tl + ~p..ghD~ + A,p,Jh(D;-D:'>J

Py '" 8 t PH + 81 p",gh{D; - D~)

(2.7)

where Or and h are flexural strength and thickness of ice sheet, respectively; Dr and D. are top

and waterline diameters of a cone, respectively; A,. At. A]. A.. 8" and B1 are the coefficients

determined by solving complete elliptic integral equations and by optimizing me bound for lhe

failure force (refer (0 Ralston 1978).

2.4.2 Croasdale Model

Croasdale (1980) presented a simple elasticity analysis model. The ice sheet was treated as a

semi·inftnite elastic beam on an elastic foundation subjected to a vertical load Pvand a borizomaJ

load PH at ODe eod. The ice forces on the structure were given by:

(2.8)

when:
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(2.9)

x'L
r.I.--'

4D

r is a modification coefficient «(or a 20 structlire, r =I), L. is characteristic length of sheet ice.

E is a function of slope angle of the cone (a) and friction coefficienr: (,u.) and is equal to Po/PH

as given in equation (2.1). Pv call be determined using equation (2.1). R.ecemly, Croasdale and

his associates have modified Utis model to include the effect of ice rubble in front of a cone

(Croasdale et al. 1994, Croasdale and Cammaert. 1993).

2.4.3 Nevel Model

Nevel (l992) presented a rigorous model based on elasticity theory and his earlier lheoretical

studies. The model treated the ice floe as a series of truncated wedges which were formed as

a result of radial cracking. It was based on the following observation from physical tests: as the

wedges move against the cone, they may break due to the bending failure at the bottom of the

wedges; in the mean time the smaller ice pieces broken from the wedges during the preceding

interaction process are pushed funher up on the cone surface. The model assumes that the ice

pieces completely cover the front balf of the cone. The impinging wedges subjected [Q both

vertical and horizontal (in plane) loads may break simultaneously or sequentially. For the

sequential break. the model assumed that the maximum. load occurs when the center wedge

breaks.
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'The greatest contribution of lb:is model is its formulation of me forces due to ice riding

up on the cone swface. The model is capable of dealing with lite computation of sheet ice loads

on a SCS with a number of conical sections, including a vertical neck. Two action conditions

were considered in the model: passive action and active action. As the author stated in his paper

(Nevel. 1992), "active ice action is defined when the broken ice pieces On the surface of the

cone slide into the section above". and "passive ice action is defined when the broken ice pieces

do DOl: slide into the section above". In an application, wen of this model can cboose eilhc:r of

these two action conditions.

2.4.4 Comparison of Models and Discussions

Chao (1992a) and Marcellus ~t aJ (1988) compared the various analytical models and empirical

formulae. A genenl cooclusion from the comparison is lhat Ralston's model which was based

on plastidcy theory overestimates the failure loads while the models based on elasticity theory.

including the CroasdaIe model, underestimate the load. These comparisons and conclusions do

not cover the Nevel model because it was published later.

Chao (l992a) and Macellus t!t al (1988) also analyzed the crack and ride-up components

of the predicted failure load. !bey stated that the difference between the predicted loads from

the plasticity model (Ralston's model) and elasticity models was mainly due to the difference in

predicted crack loads. The crack loads predicted from Ralston's model is mucb larger than those

from elasticity models, while the ride*up loads from all the models are relatively close to each
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other. This might be because the ice sheet under plasticity theory could stand larger forces.

Many of the offshore drilling structUreS, proposed for use in the Arctic. have sides with

multiple slopes or at least venical upper walls (like the neck in the MeS to be sbown in lhe next

chapter) to reduce the cbaDce of high ice ridc:-up and to maximize the working surface with

respect to the base diameter. When the broken ice pieces ride up to the corner of [wo slopes the

leading ice piece cannot go further. This leading piece could either be crushed or lifted. This.

if it lXCUI'S. could increase the load on the upper Slope or upper vertical wall aDd also increase

the total load. Coon et of (1985) and Immiyama el of (1994) srudied this aspect and gave a set

of formulae accounting for lhis additional load. Of the three models reviewed above, the Nevel

model is the only ODe accounting for this effect.

2.5 Numerical Analysis

2.5.1 Finite Element Analysis

Bertha (1973. APOA # 57) carried out one of the earliest fInite element analysis (FEA) of an

ice ridge wilh attached ice sheet against a CODe using a commercial code ANSYS in the early

1970s. The ice was assumed (0 be a fast brittle, isotropic. homogeneous. linear elastic material.

The simulation for a long ice ridge (4000 feet long) sbowed a crack pattern similar to the one

observed by Lewis and Croasdale (1918), and the peak load was also reached during the binge

crack process. His simulation also showed thal the maximum force for the short ridge was about
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30% lower than that for the loog ridge.

Maattanenand Hoikkanen(l990) applied the finiteelemenr: method to determinc ice sheet

loads on a CODe. The ice sheet was subjected to edge load due to the resistance of me cone and

disaibuted loads on the upper surface of the ice cover due to the weight of the piled-up ice

pieces. 1be ice sheet was tteated as an elastic wedge on an elastic foundation. They compared

the predictions with their full·sca1e measurements (Maattanen and Muswnaki 1985) and the

predictions from Ralston's model. The results showed that their model yielded a better

agreement. Maananen (1986) also applied lhis approach to the case of sloping walls.

Derradji-Aouat (l994a&: 1994b) implememeda nonlinear and time-dependcntconstitutive

model. Le. Sinha's model (Sinha 1984 &: 1988). into a finite clement progr;un to compute sheet

ice loads on a CODe. He took. the ride-up ice into account, but assumed the thickDess of ride-up

ice [0 be the same as lhe pareDt ice floe. It has been recognized that the [olal thickness of lhe

ride-up ice (more than one layer) could be much bigger (McKenna and Speocer 1994).

The above FEAs are based on a number of assumpations some of which are not fully

realistic. For example. the assumption of tight contact along the ice/CODe coD1act line may be

valid only for the very small struClUrC: and relatively soft ice (Sanderson 1988). For a large

strUcture, ws assumption may result in an overestimation of the ice crack load. The assumption

is not realistic even for small structures if the ice is quite brinte. As many tests have shown. the

cracks of brittle ice usually form a front such that. only pan of it can contaCt me cone for the
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next crack. Another example is lhat most of FEAs consider !:be effect of the ice rubble on the

cone and. on the top of the ice sheet by adding their force (due to their gravity loads) to the total

ice loads. As pointed out by some researchers (McKenna and Spencer 1994), the rubble. besides

their positive contribution to the lOW loads, could also assist in the failure of the ice sheet.

2.5.2 Discrete Elemeot Analysis

The discrete element technique is a powerful tool that bas been widely used in rock mechanics

and many other areas including ice mechanics (Mustoe uo[ 1989, Williams and Mustoe 1993).

]be theory of this technique was given by Williams (Williams el at 1985, Pande n 011990). A

distinct feature of me Discrete Element Method (OEM) is that each element is considered as a

distinct body which communicates with its surrounding elements via face. edge. and comer

interaction forces that change as lhe bodies move and/or deform.

Compared with the finite element technique, the discrete element technique is more

suitable for the analysis of multiple, interacting, deformable, discontinuous or- fraccured bodies

undergoing large motioDS and rotations. which is the case of ice interaction with conical shaped

strUCture. In addition. the analysis with OEM can realistically and fully account for the effect

of rubble ice wbich FEM can only paniaJly take into account.

There are many Itinds (although similar) of discrete element approaches available in the

literaDJre and many computer codes have been developed. Evgin and Sun (1990) gave an
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extensive review of these approaches. The most elegant one was developed by Hocking and his

co-workers (Hocking n aJ 1985a, 1985b. 198.5<:) and coded in a computer program flI'St named

CICE and later on changed (0 DECICE.

OECICE formulation is based upon an internal discretization of Simply Deformable

Finite Elements (SDFE). In other words. the linear shape function is implememed for the

elements in DECICE. The detailed formulation of OEM is given in DECICE Theoretical Manual

(by lntera Information Tccboologies). An overview of DECICE will be presented in Chapter S.

Only a few applications of OEM to ice/sloping sttueture interaction will be briefly reviewed in

this section.

Rigid elements were used in early development ofdiscrete clement technique. The typical

approach using a rigid element was proposed by Kawai (1977 & 1979), termed as Rigid

Body-Spring Model (RBSM). This model consists of a fmite number of small rigid bodies

(elements) connected with springs distributed over the contact area of neighbouring bodies.

Displacement components of an arbitrary point: in that rigid clemeD! are expressed in tenns of

the displacement components of the element center of gravicy. The problem is reduced to solving

a set of simultaneous linear equations similar to FEM but in terms of displacements of the center

of gravity of all elements at each load increment step.

Watanabe and Kawai (1980) first applied this approach to analyze the bending collapse

problem of level ice against an ice-breaker bow model with emphasis on the prediction of ice
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crack pattern. The stress-strain law in their analysis was elastic-perfectly plastic. The results

showed that the calculated and experimental crack patterns coincided with each other weU.

Later. Yoshimura and KamesaJd (1981) adopted the same method to analyze the crack panern

of the ice sheet in front of a cone, but they considered the StreSS relicf accompanied with the

initiation of cracks. Shibue and his associates (Shibue and Kata 1988. Shibuc: ~t aI 1994)

introduced a thick-walled shell element into the RBSM. They analyzed the failure process of ice

sheets as well as ice ridges against conical structures and incliDcd indenters. The stress-strain

relationship used in their analysis was idc:ntified by simulation of ice property tests.

Although lbc: predictiocs from RBSM were claimed to give good agreement with

experimental results. the disadvantage of lhis approach is obvious. Firstly. it is assumed that the

element used in RBSM is rigid and element deformabilicy is DOt considered; thus, this approach

is only appropriate for stUdying the brittle behaviour of ice. 1be creep and ductile behaviour

cannot be considered in this approach. The reason that good agreement was obtained berween

the prediction and experimental results could be that the events studied involved mainly brittle

behaviour of ice. Secolldly, generation of the element mesh largely depends on prior analysis

experience. It has a great influence on the ice collapse pattern since failure occurs only at

element edges which are linlc:ed with springs to the surrounding elements. Thus. a flne mesh is

required in the failure zone in order to get typical failure patterns.

In the CICE or DECICE program, the OEM bas been generalized to the case of elemem

deformability, i.e., SDFEs are used. Depending on the constiwtive behaviour applied to the ice,
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this approach allows modelling of ice behaviour from brittle fracturing to creep failure. This

improvement overcomes the disadvantage of me RBSM mentioned above.

This approach and lbe corresponding code DECICE have been verified and validalCd for

ice (both sbcet and ridges) interaction with a conical sttucnue and/or a sloping strucru.re

(Hocking et al 1985a & 1985b). The computation showed that the approach could properly

simulate the ice failure process. 1be ice sheet ride-up and pile-up on a stepped slope artificial

island have also been analyzed using DECICE. lbe ice sheet was discretized using beam

bending elements, and the island was modelled as a single rigid clement. The elements of the

ice sheet were locked together initially to simulate the completely crack-free ice. With the ice

sbeet moving against: the island. the ice experiences fracturing. Wbencver a fracture was judged

to have occurred according to stress condition and chosen criterion, the element (if the crack

went through it) would be broken into two to model the crack. This work together with the

computation of interaction forces between elements were deDe automatically_The calculation was

carried out with a time increment; thus the time history of the ride-up and pile-up process could

be simulated. Predicted forces were in the same level as those measured. This work

demonstrated the power of DECICE in simulating of ice ride-up and pUe-up event. It was

recommended (0 be a unique numerical approach for this kiDd of simulation (Evgin and Sun

1990).

DECICE has also been applied to o<ber areas of ice mechanics; for example. dynamic

impact of ice on an offshore strUCbIre (Hocking et al 198.Sc:). identification of ice propenies
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(Intera Technology Inc. 19800), analYJils of ice spray platfonn (Applied Mechanics lDc. 1985>,

and ice ridging loads (Inlera Technology Inc. 1986b), etc.
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A five year test program initiated in 1988 as a joint university-industry project was carried out

by Memorial University of Newfoundland (MUN), ESSO Resources Canada (ERe) representing

Imperial Oil Resources, Exxon Production Research, Mobil Research and Development, and

National Research Council of Canada's lnstinue for Marine Dynamics (IMD) and Institute for

Mechanical Engineering (IME). Three series of tests wilh structural models at scales varying

from 1:1010 1:50 were conducted in three Canadian ice basins: Esso Resources Canada (£Re)'s

outdoor ice basin in Calgary, £MD's large ice Wlk: in St.John's. Newfoundland, and IME's tank

in Ottawa (Croasdale and Muggeridge 1993). These tests generated one of the largest dala bases

in the world for ice-cone interaction. As a member of the research leam. I was involved in

carrying out pan of the leStS at NRCC's IMD indoor ice basin at St. John's during the summer

of 1992. The description of the various ice basim and the reporting of all the earlier test results

are dODe to make lhe presentation complete and comprehensive. In addition, the earlier

presentation of test results contained some errors which bad to be assessed and corrected after

a proper review of lhe videos and compuler records of me test results.

3.1 Test Facilities

3.1.1 ERe's Ice Basin

The outdoor ice basin at me ERC's Research Laboratory in Calgary is the widest ice testing
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basin in the world. It is capable of allowing near fuB-scale tests (0 be carried out against which

ice load algorithms can be evalual'Cd (Robbins elol 1975).

This basin is 30 meters wide by SS meters long, with a water depth varying from 1.4

meters (in the area for ice formation) (0 3.0 meters (in the area for a test saucture to be

mounted). 1be maximum useful ice field run length is in the order of 35 meters. A test structure

can be mounted on a three point support system (ODe more support was added for these faceted

cone tests). A floating towing boom is anached to troUeys which travel on rails along the edics

of the basin; when the boom is towed. it pulls the ice against the structure. The basin is

equipped with refrigeration mau and compressors which are capable of mai.ntaining the

temperature at 10" to 20" C below ambient air temperature depending on the number of mats

connected.

The Wiler deplh of 3 meters in this basin is ideal for the tests on 1:10 scale model

sttuCD.U'eS wbose full-scale counterparts are proposed for the Beaufort and Chuchki Sea

exploratory drilling operation in about 30 m of water (Weiss 1988).

3.1.2 IMD's and lME's Ice Tanks

tMD's ice tank is the longest indoor ice testing tank: in eltisteocc. This ice basin is 96 m loog

by 12 m wide. with an useful ice length of about 76 meters. The water depth is 3 meters. Unlike

ERe's ice basin. IMD's ice tank is equipped with a towing carriage, from wbicb a test model

is lOwed (0 move against ice. 1be towing carriage is capable of speeds up to 4 meters per second
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and has a Micro Vax computer for data collection, and a set of video cameras for recording test

runs above and below lhe water surface from several angles. The refrigeration system in lMD's

tank: is computer-controUed to ensure that the air temperature is unifonn near the water surface.

Air lerDpCrature can be conaolled from .30" C to 150 C.

IME's tank: is 21 m long by 7 m wide and 1.2 m deep. Similar to [Ml)'s tank. the IME's

tank: also has a rowing carriage which spans the ranIc. and can travel the length of the tank to (OW

a sttuetutt through ice. with maximum possible speeds up to 6S cmIs. The temperature in the

insulated room which houses the tank can be controlled to as low as -2(1 C.

3.2 Structures and Instrumentation

3.2.1 Prototype Structures and Test Models

The proposed pTOlOtype stI\JC.tllttS are shown in Figures 3.1 and 3.2. 1be SbUCtures consist of

three sections: a main cone (the lower poniOD of me structure). a vertical neck. and a collar.

each ofwhicb has six. facets. The difference between these twO structureS is their neck size. The

strucrure shown in Figure 3.1 bas a relatively smaller neck size; thus ilS models will be termed

as "small neck" model. Similarly. the models of the struenlre shown in Figure 3.2 will be

termed as "large neck" models because of their large sized neck:. The slope for all the sides

of the main cone is 5:6 (venica1 to horizontal) or 39.8 degrees for both structures. Side slope

of the coUar that sits on the top of the main cone and under the neck is 2: 1. A real production

platform could be 50 percent Iaeger (Weiss, 1988).
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Figure 3.2 The Prototype Structure with Large Neck
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In much of the earlier teStS with SCSs, me diameter of the waterline was three or more

times the diameter of the neck. Consequently. the ice fonnulae and the procedure given

in the design codes were also based on those testS with small neck structures. The tests with this

small neck: MCS model were expected to eumiDe the validity of those formulae and to compare

with the "large DeCk" tests. On the other hand. designers have found it advantageous (0 make

the wa[C:rline diameter only slightly greater than the neck diameter (Weiss. 1988). The ratio of

waterline diameter to the neck diameter being 1.2 to 2.0 would be highly desirable. Therefore.

the "large neck" protOtype baving a ratio of 1.5 was proposed.

In ERC's tests, twO models wert: tested in cwo winters. a 1:10 model with small and

large necks was I'eSted in 1988·1989 winter (to be termed as "Year One" tests), and a 1:20

large oeckmodel was tested 1989-1990 wimer (Year TWQ tests). lnIMD series also. twO models

were tested: a 1:25 model with large and small necks. and a 1:50 large neck model. One small

neck model with a nominal scale of 1:50 was tested in !ME's tank.

The model used in the 1MB series was not lested wilb, the water surface elevation

corresponding to the full-scale waterline inscribed diameler of 30 meters. The model structure

was purposely raised out of the water to increase the loads on the main cone and to avoid high

ice pile-ups. Tbe scale at waterline varied from test to teSt, with an average scale about 1:30

(Irani et at 1992). It should be kept in mind that the scale of 1:50 which will be mentioned in

the following sections of this thesis is only a nomina.l scale.
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3.2.2 Instrumentation

In ERe's tests, four tri-ax.ia.Iload cells were used [0 measure the global loads and their moments

on the CODe. These load cells connected lhe cone struaure to four steel columns that were firmly

attached [0 the basin floor. Each afme three compoocD[s of the global force. Fu F,. and F~. was

the sum of the corresponding components outpUt from the four load cells.

The loads on the vertical neck of me ERC's StrUctural models were measured by using

four shear pins. Two pins were mounted togelber with their sensitive directions at right angles

to each other to provide load measuremeots in both X and Y directions in the borizonral plane.

X and Y components of the total load on the neck: can be calculated from the individual shear

pin measurements.

In IMD's tests, the models were similarly instrumented. but with three six-compooem

dynamometers for global load measurements, and [wo dynamometers for neck. load

measurements.

In [ME's lCSts, global, neck and collar loads were separately measured. each with a

single dynamometer. respectively. Besides. the main cone facets were also insttumented to

measure the loads on them. After the tranSformation of the facet loads from their local

coordinate system to the global coordinate system. a vector sum of these facet loads and collar

loads as well as neck. loads should be very close to the global loads.
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3.2.3 Coordinate System

lbc global coordinate system was dermed as foUows: the origin of X. Y. Z is located at the

intersection of the vertical centerline and the waterline. !be X-uis is positive in the direction

of ice motion. the positive Z-axis is directed vertically upwards. and the direction of me Y-axis

is such that X, Y. Z axes form a right-banded coordinate system.

1be forces in all the three facilities were measured and expressed using lhis coordinate

system.. To be consistent. this thesis also uses this global coordinale system for analysis and

numerical simulation.

3.3 Test Matrices

3.3.1 Overall Scope

From the previous experience in SCS tests, a set of parameters were identified as essential for

detailed undersranding of ice-Mes iDlcraction and design consideration of ice loads on the

proposed MCS prorocypes. Some changes were made in the course of the test program, and the

parameters fmalty tested are listed in Table 3.1.

In all the lhree facilities. some parameters related to test ice were also varied either on
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pwpose or due to the difficulties in the control of ice formation. These parameters include: ice

floe thickness. ridge width and thickness. ice (floe and ridge) strength. etc.

ERC's ERC's
Parameters Varied Year One Year Two [ME'Tests [MD's Tests

Tests Tests

Model scale 1:10 1,20 UO 1,23. UO

Neck Size Small. Large Large Small Small. Large

Structural Orientation No No Yes No

Ridge Orientation Yes Yes No No

Ice Movement Rate No No Yes Yes

Table 3.1 Ovenll Scope of The Test Program

Some technical terms used in Table 3.1 and (0 be used in the remaining pan of this thesis

ace defined as follows.

1. Structural Orientadoo means me direction of the saucrure's front facet with respect to

the direction of ice motion. A total of tbrce struenual orientations were tested. viz ..

A. Face-en Orientation: the front facet faces the ice motion.

8. Edge-on Orientation: a cooc's comer between CWO adjacent facets is head-on the

impinging ice.

C. IntermeditJle Orientation: the front facet is inclined at 150 to the face-on

orientation.

2. Ridge Orientation means the orientation of the ridge longitudinal axis with respect to
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the directioQ of the ice motion.

A. Broadside Orientation: the ridge longitudinal axis was perpendicular to the

direction of ice motion.

B. Obliqla (or Skewed) Orientation: ridge is inclined at an angle of 300 from the

broadside orientatioD (the ERe tests).

3. Ice Movement Rate means ice speed in the ERe tests, and it is carriage's moving

(forwards) speed in the IME tests and the IMD tests.

In the IME testS, aU Ute three structure orientations were tested, while in the ERe and

the IMD tests, only the face-on orientation was tested. All the ridges were tested in broadside

orientation in the IMD and the IME tests, but five ridges inclined at a 30" oblique angle to the

broadsK1e orientation were aJso rested in the ERe series.

3.3.2 Tests Matrices

A total of 126 test runs including 31 ridges were performed in lbe three facilities: 8 runs with

ice ridges and 4 runs wi.th ice sheets in ERC's Year-Qne tests, and 8 ridges and 7 sheet runs for

Year-Two tests; 14 ridges and 18 sheet runs for the IMD tests, and 15 ridges and 52 sheet runs

for 1MB's teSts. A brief test matrix for the Year-Qoe and the Year-Two ERe tests is presented

in Tables 3.2 and 3.3. respectively.

In Tables 3.2 and 3.3, three letters. Y, T, and R represent "year". 'test" and "ruo".
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respectively. Thus YlTiRI means "run 1 of test 1 for Year-One tests". Since YITIRI was

aborted, it does Il()( appear in Table 3.3. If not specified in Tables 3.2 and 3.3. all the ridges

(usually 2) in each of the tests were embedded in the same ice sheet. All the tests conducted in

ERe's ice basin (both the Year..()ne and the Year-Two tests) were carried out with an ice speed

of 6 em per second. This parameter is DOt listed in Tables 3.2 and 3.3.

Neck Ice Type Ice Dimension Ridge Test Duration
Test No. Size (m) Orientation (seconds)

YITIRI Sm.a11 Sheet 0.33 93

YITlR2 Small Ridge 3.SxLOO Broadside 97

Y1TlR3 Sm.a11 Ridge 3.7><0.90 Broadside 270

Y1T2R2 Large Sheet 0.34 10

YIT2R3 Large Ridge 4.5xO.95 Broadside 162

Y1T2R4 Large Ridge 3..5x1.OS Broadside 202

Y1DRI Large Ridge 3.5xl.1O Oblique 30" 200

YlTIR2 Large Sheet 0.27 92

Y1DR3 Large Ridge 3.5x1.25 Broadside 135

Sheet 0.12
YIT4RI Large

Ridge 3.5)(0.95 Oblique 30"
210

YIT4R2 Large Ridge 2.5><0.95 Oblique 30' 21lO

Table 3.2 Test Matrix for ERe's Year-One Tests

Table 3.4 presents the matrices of (ME's sheet ice tests, and Table 3.5 sbows the

matrices for [ME's ridge tests. The tests with the 1:25 large neck model of the IMD series are
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listed in Table 3.6 with the rest of the tests of this series given in Table 3.7.

Ice Dimension Ridge Test Duration
Test No. Ice Type: (m) Orientation (sccoDds)

Y2TlRl Sheet 0.25 110

Y2T1R2 Sheet 0.25 26

Sheet 0.32
Y2T2Rl

Ridge 3.0.0.90 Oblique 30"
103

Sheet 0.36
Y2T2R2

Ridge 2.5xO.95 Oblique 30"
177

Sheet 0.385
Y2TIRI

Ridge 2.15.0.86 Broadside
211

Y2TIR2 Ridge 2. 17x.O.90 Broadside 110

Sheet 0.41
Y2T4Rl

Ridge 2.6x1.17 Broadside
155

Y2T4R2 Ridge 2.6x1.22 Broadside 120

Shee, 0.05
Y2T5Rl

Ridge 2.0.0.30 Broadside
160

Y2T5R2 Ridge 2.0.0.21 Broadside 13

Table 3.3 Test Matrix of ERe's Year-Two Tests

A few items used in Tables 3.2 through 3.7 are defmed as raUaws .

• lc~ DitMnsion are thickness for icc. sheets and width by thickness for ridges. The length

of the ridges for each leSt facility equals its ice basin width. 1bere are two numbers for
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ridge thickness in Tables 3.5 lhrougb 3.7. the first ooe (outside the parentheses) is the

toW thickness including the dlickness of the soft layer at the bonom of the ridges. and

the second one (the number within pareotheses). is the thickness of the ridge core. This

will be further explained in the next section.

• Scale Faceo,. in Tables 3.4 and 3.5 represents the ratio of the protocype's waterline

diameter to the model's waterline diameter.

• N in column 6 of Table 3.5 means "not available" or "not measured"

• lee SMet No. in column 3 of Tables 3.4 and 3.5 indicates what tests share the same ice

sheet. Le.• dlose tests share the common ice sheet for different test runs.

• Ridge Type in column 5 of Tables 3.6 and 3.7 identifies two different types of ridges

which were construete:d with "Dump TlUCk" and "SpLit Layer" tccbniques, respectively.

The description of these two techniques are given in the next section.

• UK and I1s1l in columns 6 and 7 of Table 3.4 represent the flexural strength for sheet ice

with top in tension and bottom in tension. respectively. The same definition applies to

column 6 of Table 3.5. a. was DOt measured for many of the: IME tests.

• un and O"rb in column 6 of Table 3.5 are the streDgth for ridges and have meanings

parallel ro 11. and a.... 1be values of I1n and 11ft> or 1111 and 11111 are separated with a forward

slash mark. No strength da[a were available for test C53.



Tes' Suuonue I", I'" Ice -. -. Test Seal'
No. Orient. Sheet SP"'! Thk. Duration Factor

No. (cmls) (em) (!<Pal (kPa) (scconds)

COl lnterm. I 2.6 2.6 73 N 80 30

CO2 Intenn. I 9.8 2.3 73 N 30

C03 lnlmn. I '.8 2.3 73 N 30

C04 Interm. 2 2.2 3.3 166 N 110 35.2

COS Interm. 2 3.8 3.7 166 N SO

C06 Intenn. 2 6.2 3.7 166 N 20

C07 Intmn. 3 2.0 2.' 2. 2. lOS

COB Immn. 3 4.0 2.3 2. 24 45

C09 Intenn. 3 6.0 2.2 2. 24 40

CIO Interm. 4 2.2 4.0 67 58 118

Cll Intonn. 4 4.1 3.8 67 58 55

CI2 Intenn. 4 6.1 4.1 67 58 30

el3 Intonn. 5 2.0 1.7 67 N 110

CI4 Intenn. 5 4.3 1.6 67 N 55

CIS Intenn. 5 6.0 1.8 67 N 40

CI6 F=-<ln 6 6.0 3.4 72 96 ISO 32.9

CI7 F=-<ln 7 6.0 2.4 122 73 SO

CI8 F=-<ln 7 6.1 2.1 59 N 30

CI9 Face-on 7 6.2 2.3 21 N 30

C20 Faee-on 8 5.9 5.7 37 N 70

C21 F=-<ln 8 5.8 5.7 17 N 60

= F=-<ln 9 5.9 3.4 134 N 40

C23 F=-<ln • 6.0 3.3 47 N 30
32.3

C24 Face-on • 5.8 3.4 25 N 30

C2S Face-on 10 6.0 4.5 12S N 3S

C26 Fa.ce-on 10 6.0 4.6 102 N 40

Table 3.4 Test Mattix for IME's Ice Sheet Tes[S
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Too' S..awe loe loe Ioe a. ". Too' SCaI,
Na. Orienta. Shoe< Sp<cd Thk. Duration Factor

Na. (cmls) (an> (kPa) (IlPa) (seconds)

C27 F=-on IO •.0 4.7 82 N 50 32.3

C28 Fo=cn II 5.7 4.4 81 .3 35

C2. F=-on II 5.7 4.2 45 N 45

eJ. F=-on II 5.7 4.5 2. N 45

C3I Edge-on 12 5.7 2.4 5. 22 40

eJ2 Edge-on 12 5.7 2.• 27 • 40

eJ3 Erlge-<>n 12 5.7 1.8 17 3 40

C34 Edge-on 13 5.7 3.5 112 71 60

C35 Edge-on I3 5.7 3.4 44 64 40

C3. Edge-on I3 5.8 3.4 25 I3 75

eJ7 Edge-on 14 •.2 5.• 60 41 40

eJ8 Edge-on 14 5.' 5.• 40 40 110

eJ' Edge-on IS •.2 4.' 44 3• 45

C40 Edge..aD 15 •.2 5.1 15 14 40

C41 Edge-on 15 5.' 5.4 12 14 50

C42 F=-on I. •.0 3.3 41 40 45

C43 lnrerm. I. •. 1 3.• 41 40 45

C44 Edge-on 1. •.0 3.3 41 40 40

C5. F=-on 21 •.2 2.8 21 II 50

C54 Face-on 23 •. 1 4.2 80 40 120

C55 F=-<>n 24 5.8 3.• 7. 27 40

C56 F=-<>n 24 5.' 3.5 4' 24 50

C57 F=-<>n 24 5.' 3.• 25 IO 40

COO Face-on 26 ... 3.0 3. , 50

C., Interm. 2. 5.' 3.1 3. • 40

C.2 Edge-on 2. ... 3.1 36 • 40
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Table 3.4 Test Matrix for [ME's Ice Sheet Tests (CODt'd)



T", Strue. lee I'" Ice Dimension aria. or T", Scale
No. Orien. Speed Type (an) t1,/a.... Dw-. Fac.

(cmIs) (kPa)/(kPa) (sec.)

Edg_ Ridge 58 x 16 (9) 701N 32.3
C4' on 5.0 Sbee, 2.6 1217 120

Edg_ Ridge nx 1S{1O) O'IN
C46 on 6.1 Sbeet 2.6 11/11 100

C47A Edg_ Ridge 67 x 27 (8) 2651N 90
on '.0

Sbeet 2.0 20n

C478 Ridge 109 It 25 (8) 1141N 60

Foce Ridge 67 x 13 (1) tS6JSO
C4g on '.0 Sbeet 3.0 201' "Focc Ridge lOS I 16 (8) 155151
C40 no 5.g

Shoct 3.4 201' "
Foce Ridge 63 x 17 (8) 82/171

CSI on 6.2
Shoct 3.0 21111 60

Foce Ridge 60 x IS (6) 1311199
CS2 on '.0 Sbee, 3.2 gl3 70

F.", Ridge tOO x 20 (9) NIN
CS3 on '.0 Shoct 3.0 8IJ 60

CSS Ridge 64 x25 (6) 334/581 70
F=
on 6.0 Shoct 3.7 46111

C'O Ridge 100 x IS (1O) 160/110 70

C63 Ridge 64 x 18 (5) 3451238 '0 31.2
EdS- 6.0
on Sbeet 3.7 48122

C64 Ridge 100 x 20 (8.5) 1301120 70 32.3

COS 6.0 Ridge 62 x3S (9) 2311208 70 31.2
EdS-

Sbee, 3.3 53n3on

COO Ridge 100 x 42 (12) 98/12S 70
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Table 3.5 Test Mattix of {ME's Ridge Tests



Test No. Ice Speed Ice Type Ice Dimension Ridge Type Test
(cmls) (em) Duration

(seconds)

M4I 1 Sheet 16.0 130

M42 6 Sheet 16.0 80

M43 4 Sheet 16.0 120

Sheet 16.0
M44 4

Ridge 100 x 43.S Split layer
ISO

Sheet 16.0
M45 4

Ridge 100 x 32.7 Split Layer
ISO

M46 4 Sheet 16.4 SO

Sheet 16.4
M47 4

Ridge 100 x SO (33.5) Dump Truck
150

MSI 1 Sheet 9.5 160

MS2 6 Sheet 9.5 80

Ridge 100 x 36.8 Split Layer 150
MS3 7

Sheet 9.5 120

Sheet 9.5
MS4 4

100 x SO (28.0) Dump Truck
150

Ridge

Sheet 12.4
M61 4

Ridge 100 x 33.4 Split Layer
150

M62 4 Sheet 12.4 350

M63 1 Sheet 12.4 115

M64 6 Sheet 12.4 120

Sheet 12.4
M65 4

Dump Truck
ISO

Ridge 100 x SO (23.8)

Table 3.6 Test Mattix for £MO's Tests with 1:25 Scale Large Neck Model
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Test Ice Ice Type Ice Dimension Ridge Type Test
No. Speed (em) Duration

(cmls) (Seconds)

1:25 Small Neck Model

M31 1 Sheet 15.8 125

M32 6 Sheet 15.8 100

4 Ridge 100 x 42.0 SpLit Layer 150
M33

4 Sheet 15.8 125

Sheet 15.8
M34 4

Ridge 100 x 32.0 Split Layer
150

M35 4 Sheet 14.8 50

Sheet 14.8
M36 4

Ridge 100 x 50 (30) Dump Truck
150

Sheet 14.8
M37 4

Ridge 100 x 50 (36.4) Dump ttuek
150

1:50 Large Neck Model

M71 1 Sheet 16.0 450

Mn 6 Sheet 16.0 60

M73 4 Sheet 16.0 80

Sheet 16.0
M74 4

Ridge 100 x 32.9 Split Layer
150

Sheet 16.0
M75 4

Ridge 300 x 32.9 Split layer
150

M76 4 Sheet 16.4 120

Sheet 16.4
M77 4

Ridge 100 x 50 (24) Dump Truck
150

Table 3.7 Test Mattix of IMD's Tests with 1:25 Scale Small Neck Model
and 1:50 Scale Large Neck Mtldel
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3.4 Tested Ice

3.4.1 The Ice for ERe's Tests

Saline ice was used for the ERe tests. The ridges were constructed utilizing a layering process

in which four rechniques were used: spray ice. flooding between raised edges, piling up and

flooding of snow, and layering down blocks of ice pieces (Metge and Weiss 1989. Metge and

Tucker 1990).

Flexural strength and elastic modulus of sheet ice and ridge ice were determined by a

number of in siw beam tests. The beams were loaded downwards (0 submerge and break;

therefore. they failed in tension at the bottom. The measured strengths represented by u.. for

sheet ice and (Tit> for ridge ice are given in the column 3 afTable 3.8. The related elastic moduli.

E,. for ridge ice and F., for sheet ice. are given in colwnn 4 of the same table. Ridge strength was

also measured by the "ridge fragment lift" tests in which a ridge fragment was lifted out of the

water until it broke under its own weight. In this case. the ridge failed in tension at the top. This

strength, represenred by alt. is listed in the column 5 of Table 3.8.

Sheet ice decsiry (pO>. buoyancy (PJ and friction coefficient p. (between ice and a painted

steel surface) were also measured for each test (except for ERe's tests Y2T5Rl and Y2T5R3).

and are listed in Table 3.8.
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T,,' loe arb,asb E,.E, Un Ioe loe Ps'Pb P.No. Type Salinity T_.
(!cPa) (MPa) (ppl.) ('C) r!,r;tJ)/

(kPa m')

YITlRl 5_ 165 1136 ,.. -5.0 945190 .083

YITIR2 Rid • 128 3>2 154 6.0 -5.0

YITlR3 Rid2C 116 301 7.3 -5.0

VIT2R2 5_ 183 836 -4.0 913/120 .133

YIT2R3 Ridli!c 182 349 11' 6.0 -2.7

YIT2R4 Ridl!C 162 295 170 7.3 -3.7

VlTIRI Ridll:c 86 271 114 6.0 -<i.0 932/102 .036

YITJR2 5_ 249 1129 -5.0

YITJR3 IUde ISO 281 113 7.3 -4.0

YIT4Rl 5_ 159 1.591 -2.0 965/89 .038

Ridlle 119 580 55 -2.0

YIT4R2 Ridac 86 106 lIS -2.0

Y2TlRl Shoo, '0 203 10.0 -10.0 917/100

Y2T1R2 5_ SO 203 10.0 -LO.O

Y2T2Rl 5_ 3> 288 7.8 -2.0 9101103 0.071

Rid • 25 SO 8.0 -2.0

Y2T2R2 5_ 141 1154 7.8 -2.0

Rid e 40 80 83 3.4 -2.0

Y2T3RI Sheet 135 569 10 '---- 930/88 0.078

Ridll'c 138 650 157 ~
Y2TlR2 RidRC 108 177 0.0

Y2T4Rl 5_ 141 853 15 - 9301120 0.085

IUde 62 187 122 ~
Y2T4R2 RidlZc 30 114 132 -3.0

Y2TSRI Sheet 36 -l.0

RidlfC 20

Y2TSR2 Ridge 41 263

Table 3.8 Ice Properties for the ERe Tests



52

3.4.2 Tbe Ice for IME's and IMD's Tests

IMD used the £GlADIS model ice (see Timco. 1986 for details), and !ME used a modified

version of the EG/ADIS model ice (Lau ~I at 1993).

The two methods used in IMD ridge construction are the Split Layer (SL) and the Dump

Truck (01) tee:hniques. In the SL technique, scverallayers of level ice strips were laid one over

the orner to form a ridge. The DT technique requires dumping soaH ice pieces iDle the ridge

area to form a ridge comprised of randomly orientated pieces of broken ice. Besides the DT

technique. £ME also utilized a combination of the DT and the layering techniques. i.e .• dumping

a layer of ice pieces and allowing lhem lO solidify before the next layer was dumped. [n both

£ME's ridges and lMD's DT ridges. there was a relatively large UDCOmoLidated layer at the

lower pan of a ridge. In Tables 3.5 through 3.7. the ridge thickness includes this unconsolidated.

layer. and the numbers in parentheses are the thicknesses of the consolidated layer.

The ice propenies for IMD's tests are given in Table 3.9. and those for £ME tests were

included in Tables 3.4 and 3.5. In Tables 3.4, 3.5, 3.8. and 3.9. a... and CT.. represenl flexural

Slrength of sbeel ice in tension allhe boaom and allhe top, respectively, and Pr and Pt. are lbe

ridge ice density and buoyancy, respectively. The elastic moduli for IMD's ice can be

determined by lhe ratio orE/a. given in column 4 of Table 3.9. [ME's leSt report does not give

any information on the moduli. According to Timco (1986>, a value of 2150 might be chosen

for the ratio of E./u•.



T'" 11,. 11. E/11. pip. 11", 11. E, PIP", P.No.
(kP.) (J<P.) l~:}{ (J<P.) (J<P.) (MPa)

~~~~
M31 44.4 79.8 4810 916186 0.11

M32 44.1 79.4 4810 916186 0.11

M33 43.6 18.7 4810 9l6l86 99.3 to3.1 110 8991104 0.11

M34 42.5 111 4810 916/86 48.1 11.1 74.5 904198 0.11

M35 29.4 42.4 31% 921/81 0.09

M36 29.3 42.3 3796 921/81 16.2 16.8 5.9 0.09

M31 28.9 42.1 31% 921/81 32.5 29.3 4.1 0.09

M41 41.1 74.4 5212 914/88 0.09

M42 40.6 73.5 5212 914/88 0.09

M43 40.4 129 5212 914/88 0.09

M44 40.2 72.3 5212 914/88 112.2 126.2 105.4 890/112 0.09

M45 39.7 71.2 5212 914/88 69.2 109.8 206.7 901I1Ot 0.09

M46 19.7 39.0 4615 923n9 0.09

M41 19.6 38.8 4615 923n9 26.5 34.5 6.6 0.09

M51 30.1 43.' 3002 928n4 0.09

M52 30.2 41.6 3002 92sn4 0.09

M53 29.9 40.8 3002 92sn4 80.5 84.4 183.4 905/97 0.09

MS4 27.3 32.5 3002 928n4 10.9 20.1 2.4 0.09

M61 22.5 36.5 3213 919/84- 65.5 84.4 160.0 8961107 0.08
M62 22.5 36.0 3213 919/84 0.08

M63 22.5 35.4 3212 919/84 0.08

M64 22.5 35.1 3213 919/84 0.08

M65 22.5 34.2 32" 919/84 12.0 l7.t 1.0 0.08

M11 33.7 10.2 8494 918184- 0.08

M12 33.2 69.1 8494 918184 0.08

M13 32.8 69.3 8494 918184- 0.08

M14 32.5 69.0 8494 918/84- 135.5 111.7 282.2 897/106 0.08

M15 32.0 68.5 8494 918/84- 135.5 ill.? 282.2 897/106 0.08

M16 18.7 42.8 5383 920/82 0.08

M11 18.' 41.9 5383 920182 12.7 15.8 9.6 0.08

Table 3.9 Ice Properties of IMD Tests
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3.5 Test Results

The time history of the measured forces and momenrs for these rests were documented in four

test repons (Metge and Weiss 1989. Metge and Tucker 1990. Irani t!t all992. Lau erall993).

The maximum values aftbe forces on tested sttucmral models are listed in Tables 3.10 through

3.12.

tbe following are some notes for these tables.

• In Tables 3.11 and 3.12. the test numbers followed by the word R in column 1 of these

tables are ridge tests.

• F.... FIllY' and F_ represent the X, Y. and Z components of the maximum global loads.

respectively; C.... flll7" and f. deoote the X. Y. and Z compoDents of the maximum oc:ck:

loads. respectively; g.... gOll)" and &ear. represent me x. Y. and Z components of the

maximum collar loads. respectively.

• The numbers given in theses tables are lhe absolute values of the force magniQldes.

Under the coordinate system defmed in Section 3.2.3. lhe Z (vertical) components of the

loads are negative in sign because their direction (downwards) is opposite to the positive

direction of Z axis (upwards). Similarly, the sign for the Y component also varies from

test to test.
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• A few numbers presented in Table 3.10 are different from those given in the summary

of the ERe leSt reports. !be summary of the maximum forces given in ERe's test

reports contains a few errol'S. [f the numerical values from the summa.ry. data records.

and ploning were the same or were very close. the values given in ERe's summary are

adopted bere. Otherwise, the values from lbc: plotting and/or data records are given in

Table 3.10 with those from ERe's summary included within a parenthesis.

• In Tables 3.11 and 3.12, the numbers labelled with a • are from those records of force

history which have a shape jump and give an un-reasonably large value of the maximum

forces.

• In some IME tests, ice pieces dropped mOO the inside of me cone through the open panel

where the far back facet should have been located; this caused ice jamming on the

supporting frame and affected the ourput of che main dynamometer which measured

global loads. thus causing some errors. To eliminate these errors, as suggested by the

£ME test team (Irani et at 1992), the sum of me forces on the facets. collar, and neck.

were taken as global forces.



Maximum Global Forces Maximum Neck Forces
T,,' 1«

F_ ,_No. Typo F_ F_ '-
(kN} (kN) (kN) (I<N) (kN)

YITIRI S_ 40 7.9 (0) SO 1.5 1.5

YITlR2 RidRc 130 20 (10) ISO 7.0 1

YtTlR3 RidRC 103 33.4 (IS) 185.8 (130) 18.0 7.5 (2)

YIT2R2 Sheet 10 8 8 0.8 0.8

YITlR3 Ridge 160 30 (10) 190

YlTIR4 -, 149.2 (145) 60 170 8.3 1.0

Y1TJRl Rid2c 94.3 (92) 22.2 (18) 116 13.5 3.0 (1.5)

YlTJR2 S"'" I7 11(0) 19

YITJR3 Rid2c 115 13 138 6.5 2.0 (0)

S_ 11 0 IS 0 0
YIT4Rl

IUd"" 31 40 1 015 (12)

Y1T4R2 1Udg< 40 21.8 (5) SO 3.5 1.22 (0)

Y2TlRl S_ 10 1.1 12.6 (11) 0.7 0.2 (0)

Y2TlR2 Shoet 3.2 (1.5) 6 4 0.5 (0.8) 0.75 (0.3)

S"", 19 7 22 5 0
Y2T2Rl

7Rid e 63 13 40 18

S_ 20 5 20 8 2
Y2T2R2

34Rid e n 19.6 (18) 60 9(1)

Sheet 30 5 38 2.5 0
Y2DRI

Ridllc 1966.5 68) 25.9 (28) 12 (70) 7.1 (2)

Y2T3R2 Ridge .. 43 83 13 I7

S"'" 30 0 3S , 0
Y2T4Rl

Ridl!:c 63 7S 6.8 1.0(0.5)17 (0)

Y2T4R2 Ridge 83 20 100 97) 20.5 4 (0.5)

S"'" 2 0 4 0 0
Y2T5Rl

Ridll:c 7 2.4 (0) 8.' 0.8 (I) 0

Y2TSR2 IUd.. 12 1 IS 0.3 (0) 0

Table 3.10 ERe Test Results

56



Test Maximum Global Forces Max. Neck Forces Max. Collar Forces
No. F_ F~ F_ f_ f., f_ g.. g~ g-

(kNJ (kNJ (kNJ (N) (N) (N) (N) (N) (N)

COl 0.24 0.07 0.25 30 lO lO 40 10 20

CO2 0.23 0.08 0.24 40 0 0 30 lO lO

C03 0.22 0.05 0.25 30 lO 0 40 lO 20

COO 0.37 0.08 0.42 40 '0 10 40 10 20

COS 0.32 0.12 0.37 30 lO 10 30 20 lO

COO 0.26 0.13 0.31 30 30 0 30 10 lO

C07 0.16 0.05 0.20 lO 0 0 20 lO lO

C08 0.18 0.05 0.19 lO 0 0 20 0 '0
COO 0.19 0.06 0.21 10 0 0 40 lO lO

CIO 0.45 0.11 0.51 40 10 '0 50 20 20

Cll 1.28 .. 0.17 1.11 100 " 30 0 4'" " 70 210 ..

C12 0.49 0.14 0.60 30 10 0 40 lO 20

cn 0.12 0.06 0.16 10 0 lO lO 0 lO

Cl. 0.10 0.03 0.13 0 0 0 to 0 0

CIS 0.10 0.04 0.13 lO 0 0 to 0 0

CI. 0.73 0.10 0.61 120· 10 to 200 " lO SO"
C,7 0.20 0.07 0.25 40 0 lO SO" 10 20

CL8 0.16 0.06 0.19 lO 10 0 20 0 10

CI0 0.18 0.03 0.20 10 0 0 30 0 0

CZO 0.63 0.18 0.71 100 " to lO t20 .. 30 50

CZl 0.60 0.14 0.62 100 " to to uo· lO 50

= 0.36 0.13 0.49 30 lO 0 30 30 20

C'..3 0.37 O.B 0.40 40 20 lO "'" 10 40

C24 0.39 0.07 0.39 SO" 10 '0 60 lO 30

CZ5 1.81 .. 0.30 1.41· 280· 20 lO 310- 60 140 "
CZ. 0.05 0.40 0.98 SO 10 0 270" lO 110·
C27 0.85 0.24 0.89 SO 10 10 70 lO 30

CZ8 0.54 0.17 0.58 SO '0 lO "'" lO 40

C29 0.71 0.12 0.65 40 10 10 200 " lO lO

C30 0.31 0.09 0.44 30 0 lO 30 10 10

C31 0.10 0.04 0.17 0 0 0 LO 0 lO

02 0.09 0.03 0.13 0 0 0 10 0 0

03 0.08 0.04 0.13 0 0 0 10 0 0

Table 3.11 IME Test Results
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Test Maximum Globat Forces Max. Neck Forces Max. Collar Forces
No. F_ F., F_ f_ f., f_ g- g., g.,

(kN) (kN) (kN) (N) (N) (N) (N) (N) (N)

C34 0.25 D.ll 0.35 20 10 0 20 '0 LO

as 0.24 0.15 0.31 20 10 0 30 10 LO

06 0.19 O.OS 0.28 LO 0 LO 20 0 '0
C31 0.67 0.14 0.80 so LO LO SO 20 30

08 0.67 0.18 0.83 70 " 40 10 SO" 20 40

09 0.42 0.08 0.57 30 10 0 40 10 20

C40 0.35 0.09 0.45 20 10 LO 30 10 20

C4' 0.27 O.OS 0.41 20 10 20 30 10 LO

C42 0.24 0.04 0.22 LO 0 0 20 LO LO
C43 0.28 0.07 0.27 LO 0 10 20 '0 LO

C44 0.18 0.02 0.18 LO 0 0 LO 0 '0
C4S R 0.53 0.15 0.60 0 0 0 '0 10 '0
C46 R 0.7S 0.31 0.82 0 0 0 10 10 10
C47A R 0.78 0.21 0.74 0 0 0 '0 0 '0
C47B R 0.93 0.21 1.02 0 0 0 LO 0 0
e4g R 0.52 0.08 0.42 10 0 0 20 0 LO
e49 R 0.90 0.23 0.78 SO" 10 so 60" 10 20
cso 0.34 0.04 0.29 '0 0 10 '0 0 0
CSL R l.ll 0.35 0.91 10 0 0 10 10 20
C52 R 0.96 0.3 O.SO 10 10 0 60 so 30
CS3R 1.28 0.47 1.04 10 0 0 20 10 10
CS4 0.71 0.16 0.57 so 10 60" so 20 20

CS5 0.44 0.08 0.35 20 0 '0 30 10 10

CS6 0.44 0.08 0.34 20 0 10 30 10 10
C57 0.43 O.oJ 0.38 20 0 20 20 0 10
CS8 R 1.S7 0.37 1.17 20 10 30 30 10 10

CS9 R 2.02 0.40 1.53 LO 0 10 40 10 20
C60 0.32 O.OS 0.27 10 0 0 20 0 10
C6l 0.30 0.06 0.24 '0 0 LO 20 10 10
C62 0.20 0.05 0.20 10 0 0 10 0 10
C63 R 0.85 0.25 0.79 20 10 10 20 0 10
C64 R 1.17 0.26 Ll7 30 20 10 40 20 SO

C6S R 0.98 0.34 0.92 LO 0 0 10 10 10
C66 R 2.17 0.56 I.TI 20 10 10 so 20 20

Table 3.11 £ME Test Results (cont'd)
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Maximum Global Forces Maximum Neck Forces
Test No. F_ F~ F_ '- r~ r_

kN) (kN) (kN) (kN) (kN) (kNl

M3( 4.52 0.81 5.46 0.6 0.08 0.07
M32 5.18 1.25 6.06 0.49 0.05 0.06

M33 5.32 1.29 6.65 0.51 0.06 0.06

M33 R 21.07 1.80 20.75 2.08 0.18 1.21

M34R 14.57 1.38 14.92 0.74 0.15 0.09

M35 3.42 0.60 4.22 0.36 0.02 0.03

M36 R 9.09 2.25 10.92 1.34 .. 0.13 0.19

M31 R 12.43 1.91 12.60 1.43· 0.46 .. 0.18

M41 5.25 l.Ot 5.37 0.33 0.07 0.05

M42 6.27 US 6.57 0.40 0.06 0.06

M43 6.54 l.39 6.94 0.48 0.08 0.06

M44 R 25.51 3.27 23.5 2.01 l.n- 0.32
M45 R 13.96 1.58 12.69 uo 0.26 0.25

M46 5.08 0.12 5.07 0.31 0.08 0.07

M47R 14.84 3.09 13.41 2.84 0.41 0.55
MSl 2.16 0.34 2.17 0.10 0.03 0.02

MS2 2.38 0.36 3.35 0.45 .. 0.04 0.04

MS3 2.25 0.34 2.26 0.21 0.04 0.03
MS3 R 5.13 0.36 4.74 0.22 0.05 0.03
M54 R 7.68 2.10 7.60 1.19 0.46 0.27

M61 R 10.86 l.0l 10.36 1.02 0.16 0.22

M62 3.08 0.65 3.28 0.25 0.04 0.04

M63 2.96 0.25 2.85 0.21 0.03 0.02

M64 3.26 0.45 3.46 0.19 0.03 0.03

M65R 8.40 1.61 8.83 1.21 0.35 0.24

M71 8.86 1.94 4.10 0.98 0.38 0.13

M12 9.99 2.25 5.80 l.OI 0.33 0.13
M73 10.40 2.33 5.56 0.98 0.45 0.14

M74 R 15.17 2.48 14.89 2.83 2.58 0.59

M75 R 19.76 1.90 19.70 2.24 L08 4.28 ..

M76 6.34 1.50 3.68 0.97 0.23 0.12
M77R 9.14 2.91 7.98 3.82 0.98 0.47

Table 3.12 IMD Test Results
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Chapter 4 Analysis of the Tests
60

This chapter consists of two parts. 'The nrst part concerns the interaction mechanism and lhe

causes for the maximum ridge loads, and are presented in Sections 4.1 and 4.2. respectively.

The problem about the ratio of the vertical component to the borizomal component of maximum

ridge load is also addressed in Section 4.2. Sections 4.3 and 4.4 comprise the second pan that

discusses the effects of various parameters on the cracking pattern and ice loads. The effects of

ridge width. suuctura1 (or ridge) orientation. and necle size on ridge forces as weU as ridge crack.

pattern are analyzed in Section 4.3. Section 4.4 focuses On the analysis of the effects of

struerural orientation and neck size on the sheet ice forces.

4.1 Typical Interaction Scenario

The time history records of the ice forces experienced by the MCS models were compared with

the time-synchronized output of a set of video cameras. Several modes of ice sbeet and ridge

failures have been identified from the video records and the information given in the test reports

(Metge and Weiss 1989, Metge and Tucker 1990. Irani ~r a1 1992. tau n a1 1993) and are

summarized in this section.

FoUowing a brief description of the sheet ice failure process in subsection 4.1.1. three

failure pattems of the tested ridges will be presemed in subsections 4.1.2. 4.1.3. and 4.1.4.
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respectively. These descriptions are mainly based on the ERe and lMD teStS.

4.1.1 The Process of Sheet Ice and MCS InteractioD

The typical process of ice sheet failure is described as follows:

1. When an ice sbeet contacts the SO'UCtW'e and the sbcet begins (0 be slightly deflected

upwards. a pair of radial craclc5 initiale from the edges (or corners) of the ice sheet in

contact with the front facet, forming a series of three truncated wedges against the frOnt

facet and the two frooHide facets. respectively. 1llis interaction usually generates a local

peak value of global sheet ice force OD the structure. After this initial crack. the global

force may sharply drop to a lower level.

2. As the ice sheet continues to move forwards. it is further deflected upwards and the force

continues to increase. At a certain stage. one or more circumferential crack(s) is (are)

formed. The global force again drops from another local peak value.

3. The broken ice pieces gradually ride up 00 the cone. During this period of time. some

large ice pieces may also be broken into smaller pieces some of which may faJl down

either on the approaching ice sheet or imo the water. The force record is quite flat or

gently increasing.

4. As the above process repealS more or less in a regular rhythmic manner, the ice pieces

in front of the structure gradually accumulare to form a rubble pile which helps to prop

some larger ice pieces and make them ride up so high that the top of tbe neck can be

reached. 1llis event together with the ongoing cncking process may produce the
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maximum gJobal ice sheet force.

The above interaction process is typical only for ERe tests, IMD 1:25 model tests. and

pan of IME tests with the struetur'3.I. model in facc-oQ oriematioD. Even in lhese tests some

different events were observed. For instance. in the ERe test Y2T3Rl (sheet ice lest) in which

the ice sheet had a straight leading edge. the initial crack was a circumferentiaI crack instead of

radial crack(s). 1be ice used in the lMD 1:50 model tests was softer. and the clolcks were mucb

closer to ooe another. fonning smaller pieces, and lowered the ride-up height. The ice failed in

a mixed mode of shearing and crushing and the sO'Ucmral mcxlel appeared to plough its way

through the ice sheet with a narrow broken channel behind it.

For a structural model in edge-on orientation. as that in the [ME tests, its front edge

acted like an inclined wedge to initiate a radial crack. As the ice sheet continued moving, two

tIUlX':ated ice wedges (or more) rode up on the two front facets. forming cirtumfenmtiaJ cracks.

1be CODe'S two front facets were fully covered by small ice pieces which were clearly

demarcated in two groups by the front edge line of the structure.

4.1.2 Ridge Failure Pattern 1

The failure process described below generally applies for those ridges with high strength. It is

believed that this would be the predominant failure pattern for multi-year ridges. The failure

panerns of most of the ridges tested in the ERC's basin and the ridga ofIME's leStS CS1. CS3.



63

C58. and CS9 fall in this calegory.

The interaction events described below give the sequence of the icc cracking and clearing

process:

1. Cracking of the Sheet ice in font of a Ridge

When a ridge with its surrounding ice sheet approaches me structural model. the ice

sheet in front of the ridge (between the ridge and the structure) breaks. but does not

occessariJ.y separate from the ridge. In some cases, a circumferemi.a.l crack could reach

the front edge of the ridge. resulting in limited local separation of part of the ice sheet

from the ridge.

2. IndegratioQ of the SbVCtul'e into the Lower Edge Qf the Ridge

As the ridge with the brolcen ice sheet moves forward. the lower pan of the strUcture

contacts the lower edge of the ridge and begins (0 indent into it. 80m the horizonm.l. and

the venical components of the global force increase sharply to a magnitude much higher

than the sheet ice rOItt. In the meantime. the ice sheet between the ridge and the

structure, if attached to the ridge. may separale and break. The lower pan of the

structure (the main cone body) is usually covered with the broken ice pieces formed

during the earlier ice sheet cracking process and are pushed up by the ice ridge

movement.

3. Initial Crac!dng

As the indentation of ice ridge progresses. the geoerattd vertical force becomes large

enough (0 lift the ridge slightly. aod causes an initial crack. The cradr:: usually starts at



64

or close to the center line of the stnJctu.re's front facet or at one oftbe facet comers, and

extends across the: ridge width. Sometimes the crack even extends into the ice sbeet

behind lhe ridge. Although the lifting up of the ridge was discernible. no signiflCaD[

rotation was noticed up to this stage. 1be ice pieces riding up on the structUre's sUlfacc

might panJy fall down when the ridge's initial crack occurs. The force associated. with

lhis cracking process kept On increasing until the crack occurred; the force history

usually had a progressive increase followed by a sbalp decrease. The peak value of this

force could be the maximum force experieoced by the suuccure. or just a local peak.

4. Hinge Cracking

As the ridge and sheet continued to move further forwards. the initial crack quickly

widens and extends further into the ice sheet behind the ridge. In some cases, the crack

propagates even into tbe Dext ridge which was several meters apart from [he interacting

ice ridge. The ice pieces located in the froDl of the strUCture are pushed up further. The

ridge itself becomes noticeably deflected upwards. When this deformation process

progresses to a certain stage, a pair of cracks. usually tenned as hingt! crader. occur in

lhe ridge at some distance away from the center line (or the initial crack). During this

hinge cracking process, the surrounding ice sheet also cracks. The hinge cracks together

with a long circumferential crack formed behind the ridge generate two large ridge

fragments. In many cases, the fragments have a piece of ice sheet segment anached to

their trailing edges. In other cases, the ridge segments are separated from the sbeet. The

global ice force continues to increase during this failure process and would reach its

maximum value at the moment before or wben the hinge craclcs occucred. Again, a
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sudden increase in the force history is associated wilh the hinge crack occurrence, and

then the force levels off.

S. Further Cracking and Clearing Process

After the hinge cracking, the cracked ridge and ice pieces are pushed upwards to a

considerable height and rotate around both X and Y axes. The ridge fragments and the

anached sheet segments may crack again. As the motion cootinues. the ridge fragments

and some sheet ice pieces are pushed funber forwards and upwards to ride up on the

structure. During this process, (WO noticeable events may occur. The ftrst event occurs

for the case in whicb the ridge fragments and large ice pieces are cracked into smaller

pieces during me riding·up process. In this case, the pieces get cleared by sliding to the

back of the structure or back on the ice in front of the stIUCture. The force exerted on

the structure for this case may be lower than the peaks for the hinge or the initial crack

process. The secoDd event occurs for the case when some ridge fragments and sheet ice

pieces still remain too large [0 be cleared away. These large sheet ice pieces and ridge

fragments ride up the strucnm: to such a height that tbcy reach the top of the neck

(recorded highest one in ERe's Year-One tests was about a meter above the top of the

neck). Under some circumstances. a few large ridge fragmentS and ice pieces could be

jammed in front of the neck and could rest on the main CODe surface for a while. This

in turn prevents the clearing the ice pieces that ride up the front facets of the sttucture

and makes the ice sheet behind more difficulr to crack. As a result. this would generate

the maximum force acting on the saucture.



66

lbe above description is geoeral. It does DOt cover some panicular evems for some of

the panicular test runs. For lnstaoee, lhe hinge cracks in ERe test YITlRJ. YlnR3 and

Y2T4R2 were followed by a secondary radial crack., but their overall failure process is different

from that presented in the next subsection.

Compared with the interaction process for a ridge against a SCS described in Section

2.Ll of Chapter 2. this ridge failure paaem bas some similarities to that for the case of SCSs.

This meam the faceted surface may not significantJy affect the failure process of a ridge.

4.1.3 Ridge Failure Pattern U

This failure pattern was mainly observed from IMD's Split Layer (SL) ridge tests. The ridges

for ERe tests Y2TSRl and Y2TSR2 and me ridge for !ME's test C48 had a similar failure

pattern. Before the initial cracks are fonned. the interaction process for these ridges is basically

similar to that described in the last subsection. 1be description being given here focuses aD wbat

is different. Le. the process of ridge cracking.

When the structure starts deflecting a ridge. lhc: ridge slightly rides up on the slIUcrure's

front facet. !ben. a pair of cracks begin at the [wo comers of the front facet and run gradually

away from each other till they cross the width of the ridge. Almost simultaneously, a pair of

hinge cracks are formed, each on OIlC side of the structure, at an approximate distance of 1

meter from the comer of the from facet (in the case of IMD tests). This pair of hinge cracks
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propagate and ttend to converge toward one another till they meet in the sheet behind the ridge.

The ponioD of the crack in the ice sheet is parallcl to and very close to the trailing edge line of

the ridge. The radial and hinge cracks break the central section of tbe ridge into three pieces,

one witb a trapezOidal shape on the front facet and tbe other two triangular pieces 00 either side

of the front facct.

As the ice moves forwards further. the trapezoidal piece is pusbc:d up on the front Cacet

and may ride up [0 reacb the neck. The (wo triangular pieces are pushed up a little. and then

slide down on the two front-side facets and finally fall downstream. Although some complex

riding-up and jamming events were observed in the IMD leSts, the clearing process is, generally

speaking, smoother than that for the Failure Panero I.

4.1.4 Ridge Failure Pattern m

As Table 3.9 indicates. the Dump Truck ridges teSted in the lMD tank were weaker lhan the

Split Layer ridges. These weak ridges failed in a different manner. Tbe ridge for IME test. C64

may also fall in this category.

1be Dump Truck ridges bad a thick unconsolidated layer at the bonom. When the

SlroCture begins to contact a ridge. it indents the lower part of the ridge and lhe ridge bottom

experiences a crushing process. 1bis process continues till the interaction force becomes large

enough to deflect the ridge upwards.
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As the ridge get deflected. a pair of radial cracks Conn and extend from the two comers

of the front facet lO the trailing edge of the ridge. At almost the same moment, a circumferential

crack occurs in the ridge. These craclcs break three relatively small pieces away from the ridge.

The remaining portion of the ridge is pushed forwards by me ice sheet behind it; the upward

moving ridge in tum pushes the ridge pieces up on the structure. A little later. the structure once

again COntaCtS the new 1cxa1 flOOl edge of the ridge and forms anomer circumferential crack

which may still be within the ridge. or may extend into the interface of the ridge and the ice

sheet behind. This crack breaks once again more pieces away from the ridge. This process may

repeat once or twice. depending on the ridge's consolidation condition and its width. TIle

maximum force is usually reached when the st:ruetUte is fuUy covered. by ice pieces and a fresh

cracking process was about to start or is progressing.

4.2 Ridge Crack Loads and Maximum Loads

Previous SCS testS (Lewis and Croasdale 1978) indicalCd that the ~aJc (maxinwm) force

occu"ed when the ridge was erae/ad the second arM (hinge cracks) at some distance away from

theftrsl crack (centu or radial eracJc). It was stated in section 4.1 r.hal lIle maximwn force for

a MCS model. especially for those ERC tests, could occur during any of the three events: initial

cracking, binge cracking, and clearing process. To clarify the relationship between the maximwn

load and crack loads. the video and computer records and the plots of force history given in the

test reports have been reviewed and cbec.ked. Tbe linking of the ice failure eventS and their

corresponding loads through the recorded test time bas been recognized for the ERC tests and
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the IMD tests. Because the link between load history and crack events has not been identified

for the IME tests, only the results of tlle ERe and IMD leSLS will be analyzed in this section.

4.2.1 What Causes the Maximum Loads ?

Table 4.1 lists the ERe test dara dlat show the initial (radial) crack force, hinge crack force. the

maximum force as well as the interaction evems which gave rise to the maximum loads. 1bc:

parallel information for the IMD tests is given in Table 4.2. In these tables. X, and 21 represent

the horizontal and vertical initial crack forces. respectively. X H and~ are for the horizontal and

venica.l hinge enek: forces. and F.. and F_ deoote me horizontal and che vertical components

of lhe maximum global forces, respectively.

Table 4.1 indicates that initial crack. hinge crack, and the clearing process. are all a

possible source for the maximum forces. This is quite different from the results of the SCS rests

(Lewis and Croasdale 1978. Abdelnour 1988).

As shown in Table 4.1, the ridge riding up (or resting on) Lhe structure is one of the

main causes for the maximum loads. For instance. in the last portion of the clearing process in

test YlTIRJ. two buge ridge segments slowly slid over the side facets of the strucrure and a

large ridge fragment sitting on the front facet with its top leaning against the front side of neck

yielded a very high maximum vertica.l global load and high horizontal neck load (see Table

3.10). A similar situation was observed in test YIT2R3 wbere a few large ridge fragments rode
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up high on front and side facets and exerted extremely large forces 00 the sttucrurc.

Ceoter First
Cnek Hinge Maximum Load and the Interaction Event

Test Load Crack
No. Lo'" Lood The Events Resulting in the

(IcN) (IcN)
(IcN)

Maximum Ridge Loads

X, Z. X. Z. F. F.

YITlR2 16 113 130 ISO 130 ISO 1st HinJllC Crack

Y1TlRJ 90 110 103 130 103 186 1st Hinge CracklRidge Riding

YIT2R3 150 120 140 110 160 190 Rid•• 1Min. and Restiog

YITlR4 135 14S 149 110 Rid.. lMin.

YITIRI 13 91 83 108 94.3 116 Ridge Riding and ~ting

YlTIR3 S6 10 80 91 125 138 Ridv:c RidinlZ and Resting

Y1T4RI 28 32 32 40 32 40 HiDR.C""k

YIT4R2 40 50 35 40 40 50 Radial Crack

Y2T2Rl 20 30 25 30 63 40 Rid8' Riding

Y2T2R2 32 25 28 3S 12 60 RidQC Ridinll:, Breaking Fragment

Y2T3Rl 60 12 42 60 66.5 12 Rid•• RidinR1lUdial Crack

Y2T3R2 S1 68 68 83 68 83 I Hinge Crack

Y2T4Rl S8 68 63 1S 63 1S Hinge Crack

Y2T4R2 SI 63 16 91 83 100 Many Fragments Riding

Y2T5RI 1 8.5 1 8.5 Radial Crack

Y2T5R2 12 15 12 IS Radial C=k

Table 4.1 Crack Loads and Maximum Loads for the ERe Tests

Table 4.1 also shows that 7 ridges had their maximum loads associated wilh either radial
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or hinge crack. [n addition. ODe component of the maximum forces for each of other two ridges

reached its maximum value during the hinge crack process. It is obvious lhat the cracking

process, either for central crack: or binge cracks. is still a major interaction event to give rise

to the maximum ridge load on a MCS. Even in the cases of the tests Y1TIRl and Y2DRl

where at least ODe component of the maximum force was caused by riding·up process, the crack

force(s) is only slightly lower than the maximum value. All these indicate that the cracking

process sbould still be considered at the flISt place for the maximum ridge load estimation.

lnitialCnck Secoad Crack: Maximum Loads and the lntenction Evems
Loo<h Lood>

Tos' (kN)
No. (kN) (kN)

X, l, X. Z. F_ F_ Events

M33 21.07 20.75 9.8 12.8 21.07 20.75 ridge seoaratinR: from sheet

M34 14.57 14.92 14.57 14.92 radial and hinge cracks

M36 6.44 7.61 9.09 10.92- ridJl:c ridin2. sheet craclcing

M37 10.15 10.73 12.43 12.6 12.43 12.6 radial and hinge craw

M44 25.51 23.5 25.51 23.5 r.JdiaI and llin2e cracks

M'5 13.96 12.29 13.46 12.69 13.69 12.69 initial and secoDd cracks

M.7 9.76 8.78 14.84 13.47 14.84 13.47 2nd radial and hinjtc cracks

M53 5.51 4.74 2.2 2.19 5.13 4.47 ridge seoaratin.ll: from sheet

M54 7.68 6.05 7.68 7.60 radial &. hinge I clearing

M61 10.86 10.36 6.3 6.0 10.86 10.36
"'"" "'" hin2< cncb

M65 7.32 7.56 7.32 6.1 8.. 8.83 3rd radial and hinge cracks

M7, lS.l1 14.89 5..6 4.88 IS.17 14.89 initial radial crack

M75 19.2 19.7 16.59 16.1 19.76 19.7 3rd radial and hinge crack

M77 .... 5.17 9.14 7.68 9.14 7.98 1st crack I dearing

Table 4.2 Ridge Crack Loads and Maximum. Loads for the tMD Tests
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Because it was difficult to distinguish the moment of OCCUlTeace for the radial cracks

from Wt for the hinge crack(s) for most of IMD's "dump ridge" tests, the "Initial Crack

Loads" and the "Second Crack Loads" shown in Table 4.2 are forces associating with the rust

group and the secoDd group of cracks, respectively. Each of these groups of cracks consist of

radial and binge cracks. The maximum force might occur when the third or fourth group of

radial and hinge cracks were occurring if there were more than two groups of cracks formed.

Nine out of 14 ridges (lOUl) for the IMD tests geoeraled their maximum forces within

the cracking process, and others showed lhe maximum forces during the process of either the

ridge separating from the sheet or the clearing of ice pieces. Again. it indicates that tbe

maximum forces may likely occur during the ridge cracking process.

4.2.2 Horizontal and Vertical Ridge Forces

Most analytical models for the prediction of ridge forces on a SCS (Wang 1984. Croasdale 1980.

Kim and Kotr'aS (973) used Equation (2.1) to calculate one component of the global force from

the other. Thus. validation of Equation (2.1) is of cenain importance.

1be ratio of the two components of the maximum forces for all the ridge tests together

with those for the ERe initial and hinge crack forces were calculated and are presenred in Table

4.3. "E..., used as a column bead in this table, means the ratio in the column was calculated

with Equation (2.1), while the definition for other symbols is the same as those for Tables 4.4
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and 4.5. The angle used in the equation is the sloping angle of the main cone facet, i.e .• 39.S-.

Because the friction coefficients required for Equation (2.1) were not measured in the IME tests,

this equation has DOt been applied to these tests. It should be noted that Equation (2.1) was based

on a coordinate system with its z axis downwards. and the coordinate system used in this thesis

and all me rests has its Z axis upwards. Therefore an negative sign should be added in from of

right side of the equation for the present system.

ERC'STESTS IMD'S TESTS [ME'S TESTS

Test No. X,IZ, XHIZH F./F_ E. T"" F./F_ E. T",' F./F_
No. No.

YITlR2 0.673 0.867 0.867 M33 L.OtS C4S 0.883

YITlR3 0.818 0.792 0.554
0.984

M34 0.977
1.039

C46 0.915

Y1T2R3 1.250 1.273 0.842 M36 0.832 C47A 1.054

YlTIR4 0.931 0.876
1.087

M37 0.987
0.998

C47B 0.912

YlTIRI 0.753 0.769 0.813 M44 1.086 C4S 1.000

YITJR3 0.800 0.879 0.906
0.896

M4S 1.079 C49 1.lS4

YlT4Rl 0.875 0.800 0.800 MS7 1.102 01 1.220

YIT4R2 0.800 0.875 0.800
0.900

MS3 1.148 02 1.200

Y2T2RI 0.667 0.833 1.S15 MS4 l.Oll CS3 1.231

Y2T2R2 1.280 0.800 1.200
0.961

M61 1.048 08 1.342

Y2T3Rl 0.833 0.700 0.924 M6S 0.9S1
0.979

09 1.320

Y2T3R2 0.838 0.819 0.819
O.97S

M74 1.019 C63 1.076

Y2T4Rl 0.853 0.840 0.840 M7S 1.003 C64 1.000

Y2T4R2 0.810 0.784 0.830
0.988

M77 1.14S C6S t.06S

Y2TSRl 0.824 0.824 COO 1.226

Y2TSR2 0.800 0.800

Average 0.858 0.8.54 0.892 0.970 1.029 1.005 1.086

Table 4.3 Horizontal aDd Vettica1 Ridge Forces for all the Tests
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Slrictly speaking, the ratio should be calculated for the horizootal and vertical forces

occuning at lbc: same moment. In this sense, lhc ratio of the two components for the initial and

hinge crack loads are appropriately calculated. However. a few ratios fOf some ridges' maximum

force ace only nominal because the maximum horizontal and the maximum vertical forces were

generated durin& different interaction events and at different inswlts in the interaction history.

These include ERe's YITlR3. Y2T3Rl, and [MD's M4S. MS4, M7S, and. Mn. Fonunarely,

die differences were not very large, except for the case of YITlR3.

Table 4.3 shows lbat the results of Equation (2.1) for the IMD tests agree well with those

measured. but the calculated values for me ERe rests are significantly larger than the mea.sured

ones. Also. the data for the ERe tests are relatively scattered.

4.3 Influence of Various Parameters on

Ridge Failure Process and Forces

This section presenlS the analysis of the effect of three tested factors which are. namely. the

structure or ridge orienration. the size: of the struetwe's neck. and ridge width. Since the

sauetuees used in the IMD tests were all in face--on orientation and the ridge widths were the

same for most of its tests, this series is used only for the analysis of the effect of neck size,

wb..ich is arranged in the subsection 4.3.3. The ERe and. !ME series rested both the orientation

factor and ridge width, thus the analysis of these factors are based on these (wo test. series. In



1S

addition. the !ME aDd ERe tests are also to be used in the analysis of neck: size effect. 1be

analysis of orientation factor is to be presented in the subsection 4.3.2, and the effect of ridge

widl:h will be analyzed in the subsection 4.3.1.

In the analysis of the effect of these three facoors on ridge forces, the measured maximum

forces an: oon-dimensionlized by url/(Zt LJ whicb is conventionally believed to be a combined

parameter able to cover the effect of the members it contains (Abdelnour 1988). AIl lhe items

in this parameter are the same as those defmed in Equation (2.2). I.." and I arc for the ridge only,

Le.• they do DOt include the effect of the surrounding ice sheet. After the non-dimensionlisation.

the above three facoors (ridge width. strUCt\lI3.l oricmation. and neck size) stand out as major

parameters that might affect the dimensionless forces. There may be more factors affecting the

forces, but we will focus only on the analysis of these three factors.

4.3.1 Effect of Ridge Width

Based on their widths. the IME ridges can be divided into [wo groups, viz.• one with a width

varying from 60 em to 72 em. me other being around 1 meter (see Table 3.5). These two groups

are being referred to as "narrow ridges" and "wide ridges". respectively. In the following

analysis. the ridge width. BI • is oon-dimensionli2.ed by dividing it with the circumscribed

waterline diameter of the suucture. Ow.

Of the five wide ridges used in the {ME tests. lhrtt experieoced a local circumferential
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crack:. The ridges for tests C47B. eM and C66 all of which were tested under the edge-on

conditions revealed the same sequence ofcrack occurrence: the initial central crack was followed

by a ciraunferential crack around the struewraJ model. The circumferential crack broke off an

arch-shaped ridge ice piece which was about 30 em measured along me ridge width from the

ridge's leading edge. and about 4S em along the ridge leading edge with the central crack as its

symmeuical axis. Anotber wide ridge. viz., C49, tested under the face-on cooditioo. bad an

initial circumferential crack in front oftbc suucture. In contrast to these wide ridges. the narrow

ridges did not have local circumferential cracks.

In the IMD tests, only one ridge was wider than the olbers (see Tables 3.6 and 3.7). The

ridge for test M7S was 3 melers wide. or lhree times wider than others (all other ridges were

one meter wide). This ridge failed like a thick: icc sbeet. First. a pair of radial cracks and a

circumferential crack formed. Then a smaller circumferential crack occurred within the ftrst

circumferential crack:. A few seconds later, the third circumferential crack and anomer pair of

radial cracks appeared. The ridge experienced a total of four circumferential cracks and five

pairs of radial cracks until it failed. Other (relatively narrower) ridges. except for M45 and

M65. experienced no more than two circumferential cracks. Unlike other ridges. the ridges M45

and M6S also sbowed a multi-circumferential crack: pa«cro. but they failed in a mixed mode

showing strong shearing failure fealUre. It is clear from the above that a wider ridge more likely

fails through the generation of more (local) circumferential and radial cracks.

(n the ERe tests. an exuemely wide ridge (with width of 4.5 meters) was tested in
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YlTIR3. The widest ridge fo[" Year Two tests was che one for Y2T2Rl. with a width of 3

meters. A common crack feature for lbese two wide ridges is that they had multiple radial cracks

(refer to Table 4.4 in the next subsection). This is very distinct from the other ridges's single

radial crack: pattern. 'The multiple radial cracks can also be considered as one lype of local

cracks. Thus, the wider ridges for the ERe tests also had more local cracks.

To sNdy the influence of ridge widlb on the maximum ridge forces. the dimensionless

forces are plotted against dimensionless ridge width (]VOw) in Figures 4.1 through 4.4. The

points (x and 0) represent the test data, and the lines are from a liDear regression analysis. Since

the effect of ridge widch may depend on other parameters, viz. neck size, muctural orientation,

and force component. the data are sorted into eight groups. and two groups are plotted in each

figure. For instance. the twO groups of the data ploaed in Figure 4.1 are those venical forces

aD large neck sttueture in face-on and edgc-oo orientations. respectively. It should also be noted

chat the edge-on orientation for the ERe leslS is actually that in which the ridge was oblique at

a 30" angle.

Since all the IMD ridges except for M75 bad the same width (one meter). resulting in

the ideDtica.l value of BID. for all the tests except for M75. the plotting in these figures do oot

include the IMD tests. 1be data for the large neck SttUCture are from ERe's tests, and those for

the small neck structure are mainly from !ME's tests. 1be data from ERe's two small neck

snucture tests. YITlR2 and YlTIRJ. are also included in the face-Qn orientation for the small

neck structure (Figures 4.3 and 4.4).
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Because of the incompleteness in the data, tCSt C53 in the !ME series and tests Y2TSRl

and Y2T5R2 in the ERe series ace excluded from lhis analysis and from aU the other analyses

to be presented in this thesis.

Generally. the effect of ridge width is quite significant for the large neck: strUCture but

less significant for the small neck structure. For both edge-oa and face-oD orientations of the

large neck structure, bom the vertical and the horizontal components of the dimensionless forces

increase as the ridge width increases (Figures 4.1 and 4.2). lbe vertical forces for lbe case of

a face-on orientation of a small neck structure show a similac trend (Figure 4.3), whereas this

effect is nearly negligible for the adler cases, viz., the horizontal forces on a small neck

structure in both orientations (Figure 4.4) and the vertical forces for the edge-on orientation of

the small neck SlnICture (Figure 4.3).

A possible reason for the above treDd may be that the wider ridges usually lead to large

segments after their cracking, and lhese large segments are more likely to be sruck in front of

large OCi:k. thus resulting in large forces.

4.3.2 Effect of Structural Orientation

In the [ME test series, the structure was in edge-on orientation for eight (8) ridges, and in face­

on orientation for the rem.a.ining seven (7) ridges. In the ERe tests, five (S) out of sixteen (total)

were oblique at a 30" angle. This ridge orientation makes one comer of the front facet contact
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the ridge first. a contact situation somewhat simil.ar lO that for IME's edgc-()o tests. In the rest

of this sectiOD. both cases will be referred [0 as edge-on orientatioo.

The location of the radial (basically, the initial crack) and the flnt pair of hinge cracles

for the ERe and IME tests are listed in Tables 4.4 aDd 4.5. respectively. In these rabies. the

dimensionless location of the cracks are expressed as the distaDce from the center line of me

ridge (or the center line of the structure) divided by the circumscribed waterline diameter of the

structure. 1be direction is defIned as follows: as ODe stands aD the center line of a ridge, facing

in the direction of ice motion. the crack occurring to one's left side is defined as Left; similarly

for the Right. If there were two radial cracks Cor a test run, their locations are marked with L

(or R) which means the crack. appeared on the Left (or Right) def"Ined above.

Ridge orientation has an obvious effect on the location of the initial cracle(s). In the ERe

tests. every oblique ridge except: Y2T2Rl bad a single initial crack starting from lbc: contact

point between the ridge and the structure's front comer. Even lhe ridge for test Y2TIRl bad oae

centrally located radial crack. On the orner band. only three (3) broadside ridges, out of eleven

(11) in total, had initial cracks close to, but nor. at, the .saucnue's fron! comer.

Table 4.5 sbows a similar trend in me IME resu: every ridge in the edge-on (csu except

for C45 and C46 had a single central initial crack, whereas only four out of seven ridges,

initially cenlraJly cracked for the face-on orientatiOD. Ridges C4S and C46 were not frozen

completely. ibe location of the cracks were JUS( the weak points where the ridge moulds were
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joined (Irani e.l all992). Iftbese [wo test runs are excluded from the presc:m analysis. me initial

cracks for the £ME tests would all occur at the center line for the edge-on orientation.

Dimensiooless Radial (Initial) Dimensionless First Hinge
Test Ridge Crack Location • Crack Location •
No. Orientation

NO.1 No.2 No.3 u:ft Rjght

YITlR2 Broadside 0.202 L 1.761 2.165

Y1TlRJ Broadside 0.029 L 0.115 R 2.050 1.588

Y1TIRJ Broadside 0.029 R 0.248 L 0.248 R 2.483 2.483

YITIR4 Broadside 0.231 L 2.454 2.511

YlTIRI Oblique 300 2.194 2.107

Y1TIRJ Broadside 0.029 R 1.761 2.194

YIT4RI Oblique 3C1' 0 0.953 1.963

YIT4R2 Oblique 30" 0 1.097 1.155

Y2TIRI Oblique 30'" 0 0.866 L 0.346 R 4.215 4.388

Y2TIR2 Oblique 30" 0 1.443 3.233

Y2TIRI Broadside 0.924 L 0.924 2.598

Y2TIR2 Broadside 0.496 L 5.774 2.600

Y2T4RI Broadside 0.288 L 2.309 3.000

Y2T4R2 Broadside 0.462 L 2.483 4.388

Y2T5RI Broadside 0.496 R 0.496 L

Y2T5R2 Broadside 0.520 R 1.270 L

Broadside 2.440 2.614
Average

Oblique 1.980 2.569

• the dimensionless locatioQ _ CL I 0 ... wheTe CL is me distaDce measure:I rrom the end: 10 me ridge
ceolu, and 0 .. is circumscribed walCfline cliameter.

Table 4.4 Crack Location of the ERe Ridges
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SlIUC1lUO Dimensionless Dimensionless Hinge
Test No. lnilia1 Crack Cracks Location

Orientation Location

Left Right

C45 Edge on 0.42 R. 0 1.119 1.445

C46 Edge on 0.42 R 1.119 1.445

C47A Edge on 0 0.560 0.811

C47B Edge on 0 0.796 1.026

C48 Face on 0.233 R, 0.233 L 0.932 1.166

C49 Face on 0.233 R, 0.317 L 1.725 1.40

C51 Face on 0 1.212 1.40

C52 Face on 0,0.255 L 0.932 0.932

C53 Face on 0 1.632 1.818

CS8 Face on 0 1.865 1.678

C59 Face on 0 1.585 1.865

C63 Edge on 0 0.900 0.630

CM Edge 00 0 1.305 1.119

C65 Edge on 0 0.721 0.721

C66 Edge on 0 1.756 1.801

Face on 1.412 1.466
Average

Edge on 1.035 1.125

Table 4.5 Crack: Location of the !ME Ridges

Another aspect of the crack, which the sttucture orientation seems to affect, is the

distance between the two rust binge cracks. 1be !ME tests indicate that this distance. 00

average, is smaller for the edge-on tests. As sbown in Table 4.5. the average value of this
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distance for the face-on leSts is about 33 % larger lhan that for the edge-on orIentation. However.

me values for the ERe leSCS do DOt strOngly support this lI'end. Table 4.4 shows this distance

for ERe's broadside ridges on average is only 11 % larger than that for me oblique ridges. It

should also be DOted that the data are quite scattered. Indeed, the structure (or ridge) orientation

is only aor.: of many facton lbat may affect the binge and radial crack locatio~.

To identify its effect on ridge forces. the ridge (or structure) orientation must be

separated from the otbcr two factors: viz.• neck: size and ridge width. The plot given in Figures

4.1 through 4.4 were arranged to show the effect of orientation factor as well. Eacb of the

graphs is for a single neck size: viz.• Figures 4.1 and 4.2 are for the large occk sttueture. while

Figures 4.3 and 4.4 are for tbe small neck structure. In each of these figures, the forces for the

two orientations can be directly compared for a given ridge width.

It can be seen from. Figure: 4.1 that the orientation, on avenge, rarely has any effect on

the vertical forces for the large neck structure because the regression lines for the two

orientations nearly coincide. However, as indicated in Figure 4.2. the edge-on orientation seems

to induce larger horizonlal forces on the large neck: structure for BID. > 1.

1be small neck. structures show a reverse uead: the horizontal forces for the face-on

orientation, on average. are larger than those for the edge-on orientation. see Figure 4.4. The

case for the vertical forces on a small oeck. structure is a little complex. Figure 4.3 shows that

the forces for these two orientations are very scattered in the vicinity of dimensionless ridge
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width equal to 0.6 (aarrow ridges). lbough the regression line for edge-on orientation is above

its counterpan for the face.-on orientation, it is really hard [0 say which orientation experienced

larger forces. In the region of 8/0.. = 1 (wide ridges), the horizontal forces for the (ace-oo

orieotatioD are obviously larger.

The oriematioo's effect can be roughly summarized below.

• For the small oed:: structure, the forces on a face-on struetu.re are basically larger than

Chose on the same structure in an edge-on orientation. The distance between hinge cracks

are also larger for the face-on orientation.

• For the large neck structure, effect of ridge orientation is not significant. 1bc vertical

forces for these {wo orientations on average are fairly close. as are the average crack:

locations. Only the horizontal forces on the edgc-on structure are larger lha.n their

counterparts for face-on orientation.

4.3.3 Effect or Neck Size

To analyze the effect of neck size. me mean values of dimensionless forces and. their standard

deviations are listed in Table 4.6. The data included in this table for the IMD series are those

for the 1:25 scale models. 1bcdimensionless ridge widths fortbese IMD tests were all the same:

BID.. = 0.72. In the ERe series. most tests were carried out with large neck: stroerure in both

face-on and edge-on orientations. and only [wo tests were run for the small neck structure. In

the £ME series. as sbown. only the small neck structure (in both orientations) was tested.
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Mean Value of Dimensionless Standard Deviation
Test SllUClUr.lI Forces

Series or Ridge
Component Large Small large smallOrientation

Neck Neck Neck neck

Vertical 20.71 25.0 8.40 5.67
Face..<JO

Horizontal 17.71 17.0 6.60 1.41

ERe Vertical 17.84 g.5g
Edge-on

Horizontal 20.16 14.12

Vertical 30.86 34.25 11.14 14.11
1MD Face-on

Horizontal 32.29 32.25 11.00 14.59

Vertical 14.80 5.48
Face-oo

Horizontal 18.35 6.77

!ME Vertical 14.88 3.91
Edge-on

Horizontal 15.19 3.87

Table 4.6 Statistical Measurements on the Neck: Size Effect

Because the IMD tests cover both neck sizes and bad a single value in ridge width the

results from this series are the most convenient and solid data for the study of neck size effect.

It is shown in Table 4.6 lhat the mean vertical force for the large neck. strUcouc in IMD's tests

is smaJler than its counterpart for the small neck structure, but the borizontal mean force for the

large neck structure is slightly lacger (very close to the forces on the small neck: StnlCture).

Exactly me same trend is also found in the ERe tests for lhe face-on oricmation in this table.

To utilize both the £ME and the ERe tests for this analysis. they are plotted in Figures

4.5 and 4.6. The comparison of the dimensionless forces from these two series tests should be
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made at the same value of BID•. Since these teSts share the values of BID. in the vicinity of

BID. - 1. they are comparable in that region. These graphs show that the forces on the large

neck stn.JCtUre in face..()n orientation (avenge) are quite close [Q (slightly smaller than) those on

the small neck: structure in the vicinity of BID. = 1. It should be DOted that this trend is only

in average (or least square) sense and is supported by a small sample of the data. Looking at

these figures more closely. one may DOte that the forces are quite close to each other for a few

individual tests for both Deck sizes.
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One may argue that the scale factor played a role in the difference between the forces on

the structures with different neck size. lndeed. all the forces for the lacge neck: suucwre were
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from the ERe leSts whose scale was l:lOand 1:20. while most data for the small neck saucture

were from the lME tests whose StIUctural model was at the scale of 1:50. Although one cannot

be completely sure the scale factor does IlOI: play any role. the [Wo points from tests YlTlRl

and YITlRJ identified in Figures 4.5 and 4.6 are somewhat reassuring that the role is small.

These [wo ridges were lested with small neck: structure at 1:10 scale. The [WO points for the

large neck: saucw.re (represented with x) just below those for YlTlR2 and YlTIR3 in Figures

4.5 and 4.6 are for tests YlTIR4 and YlTIR3 both of wbicb were at 1:10 scale as weU: thus

they are directly comparable. It is shown in the figures that their forces are well above those for

the large neck strUCture. The only exception is the borizooral force for YlTlR3 which might be

smaller than its counterpan for the large neck: saucnm if lhc:re was ODe.
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The data fo~ edgc...(lo orientation are plotted in Figures 4.7 and 4.8 for vertical and

horizontal forces, respectively. Within the region of BID. < 1.01 in Figures 4.1 and 4.8, the

regression line for the small neck structure is higher lhan its' counterpan for the large neck

structure. It is also shown in these figures that there is one case for the venica1 and horizontal

fotceS. respectively, wherein me force for the large neck SUUCtllre is larger than the force for

the small occk suucture whose value of BID.. is the same as that for the large DeCk structure.

It sbould also be DOted that the data art: quite scattered in these figures. Considering all the

above, we would say that the forces on the edgC-QD large neck structure and small neck structure

are relatively closer to one another.
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The effect of neck size is summarized as follows.

• For the face-.QD orientation. the mean horizontal force for the large oeck stnlCNre is very

close to (slightly larger than) the mean horizontal force on me small neck structure. wbile

the mean vertical force on the large neck struCNre is smaller than its counterpart on the

small DeCk structure.

• For the edge-on oriell1ation, the mean forces on the small DeCk size Stn1Ct1lre arc fairly

close to those on tbe larger oeck: structure.

It should be pointed OUt that the data sample for the above analysis, excepc: for the

comparison in the case of the IMD tests, was quite small. In addition. the number of factors
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considered here is quite limited. Therefore the effect of neck size summarized above is by no

means meant to be general.

4.4 Analysis of Sheet Ice Forces

It bas been made clear in Chapters I aDd 3 that a particular coocem for this proposed MeS was

the effect of the large neck on ice loads. This section concentrates on the analysis of this effect.

For SCSs. it does not maner in which direction the ice moves towards the saucture. the loads

on the struc(Uce should be the same. For MeSs. it does. The effect of structure orientation on

sheet ice loads. thus. is also analyzed in this section.

4.4.1 Approach for the AoaIysis

Since the test scales varied from 1:50 to 1: 10 in our three series tests, ice mechanical properties.

sttucNre dimensions. and the ice forces all varied over a very wide range. Because the ice was

not perfectly manufactuced to the target scale (Croasdale and Muggeridge 1993). it is improper

to directly compare the teSt measurements for analysis of the effectS of various factors. To

identify the effect of !he two particular factors. viz .. the neck size and StnlCture orientation. for

the tested MeSs. a dimensionless analysis is necessary.

In his analysis of sheet ice forces on SCSs. Kam (1986) assumed that lhe total forces

(horizontal or vertical), F, can be Don-dimensionlized in the form of F/(uth2) and this
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dimensionJess force can be expressed as a sum of the ride-up component (the fIest twO terms)

and the breaking component (the last lenn) as follows:

(4.1)

Where F. (fro h. Pi. g. D•• and 0,. are the measured force, flexural strength of ice. ice thickness.

ice density, acceleration due to gravity, waterline diameter. diameter at the lOp of eooc (there

were DO oecles for the S[IUctures in Kata's tests), respectively. He applied linear regression

approach (0 his test data to detennine the coefficients A,. and B.

To apply this approach (0 the case of our MCS tests, a few mlXlifications are required.

The circumscribed waterline diameter and the circumscribed neck diameter will be used in the

places of 0 .. and DT • respectively. It is believed that the first two terms in Equation (4.1) do not

fully (or properly) cover the effect of neck size; bence. this effect should be separated from the

equation and be treated as anomer independent variable. Equation (4.1) can be rewrinen as:

(4.2)

where B is the same as f.b.a( in Equation (4.1), and Cp is defmed as follows

(4.3)
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The relation between A and A. can be easily found by comparing Equations (4.2) and

(4.3) with Equation (4.1):

(4.4)

Kata (1986) assumed that A,. and B depeod on cone slope angle. In the present case, the

structures for all me tests bad me same slope angle, but the ratio of DrfD•• which represents

dimensionless neck size. and the structural orientation varied. Thus. A and B in Equation (4.2)

are functions of these two parameters. It should also be oared mat c;. given in Equation (4.3)

is independent of DrID. and stnICtUnl1 oriemation.

Generally. the dimensionless forces can be expressed as

(4.5)

For a given ratio of D-rtD. and struetura.l orientation. Equation (4.5) is reduced to be in lhe same

ronn as Equation (4.1), but with A and B being consWlt and Dr included in A. Similarly, for

a given Cpt the dimensionless forces are functions of structural orientation and the ratio Dr/Dw -

The basis for the analysis. (0 be presented in this section. can be described as follows.

First. the tests are soned into groups in each of which the tests have the same structural

orientation and the same OrJD•. Then. use least square method [Q find the best fit line for each

group of the tests, and plot the test groups with the same structural orientation but different ratio
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of DrtDw together with their best: fit lines in the same graph. A comparison of these data would

show the effect of neck size. The effect of structural orientation is analyzed in a similar way.

4.4.2 Effect of Structural Orientation on Sheet Ice Forces

Orientation of the structure in sheet ice varied only in the IME test series with a single small

occk suucture. The analysis of this effect is. thus. limited to these tests. Because D,JOw was

roughly a constant for all these tests, the dimensionless forces are a function of C, and sttuetural

orientation itself. A total of three orientations were tested: faCt! on, inu1711Ldiau. aDd edge on

which were defined in Subsection 3.3.1 and were identified in Table 3.4. For each of these

structural orientations, the dimensionless forces are plotted against C, in Figures 4.9 and 4.10

for the horizontal and vertical components, respectively_ 1be poinls (0, +. and x) are test

measurements, and the three lines are the best fit lines in a least square sense.

Generally, the dimensionless forces for all the three orientations are fairly close to each

other at a given value of c,. especially for small values of Cp. In the whole tested range of Cp.

the forces for the edge-on orientation are slightly lower than the others. and the forces for face­

on and int.ermediale orientations are quite close to each other. particularly for the verti<:al forces.

1bese mean that the inlermediale orientation. compared with the face-on orientation. does not

significantly change the dimensionless forces. but the edge-on orientation does.

The above trend is supported by twO sets of directly comparable teSts. each of which
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covers alltbe lhree orientations. the first set consists of leS1S C42 (fac.e-on), C43 (intermediate),

and C44 (edgc-on), and the: other set iocludes COO (face~). C61 (intermediate). and C62 (edge-

on). As shown in Table 3.4, the ice thickness, flexural strength, icc speed. and sbUetUra1

dimensions for the three test runs in each set were either exactly the same or very close to each

other. In other words. the values of C, for the tests in each set are Dearly the same. !be

measured forces presented in Table 3.11 show the forces for edge-on orientation to be smaller

than those for other orieotation. 1be forces for C60. the face-on orientation test run, was larger

than lhose for intermediate orientation. C62. However. the forces for C42 (face-on) were smaller

than those for C43 (intermediate).
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It is also shown in Figures 4.9 and 4.10 that me slope of the best fit line for the edge-on

orientation is smaller than that for the face-on orientation and the slope for the raccoOn and

intermediate orientations are very close. Because me slope, viz.• the coefficient A, represents

[he ride-up component, we may say the ride-up forces on [he edge-on sttucture are smaller chan

those on me same structure but in other orientations.

4.4.3 Effect of Neck Size OD Sheet Ice Forces

To analyze neck size effect, the tests wilh the same structural orientation should be used. Thus.
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all the ERe and IMD tests which were performed with face-on structure and those [ME tests

with structure in raccoOn orientation are to be analyzed in this subsection.

According to the values of DrID•• all the face-on tests can be divided into three groups.

The ftrSt group consists of those ERe and IMD tests with large neck structures and will be

referred to as "large neck". The value ofDrfD. for this group was 2/3. The second group wilh

DyID... = 113, "small neck" group, includes the lMD tests wilh small oeck and the ERe's test

YITIRl. The £ME tests with raccoOn struenual orientation comprise lhe third. group for which

0.215 is taken as the ratio of D,lDw because most tests in this group had the ratio at this value

(it was 0.219 only for six tests in this group). These lME tests are acw.a1ly also the small neck

structure with designed D,-ID... equal to 113. Because the structure was raised up a bit during the

test the effective waterline diameter D was incTeased; thus, the value of Or'D. was reduced. To

distinguish this group from the "small neck" group, it will be referred to as "lME face-on"

group.

Figures 4.11 and 4.12 presentS the planing for the venical and horizontal dimensionless

forces for these tests. Based only on the best fit lines in these figures, the effect of neck size: can

be summarized as follows.

• Both vertical and horizontal components of the dimensionless forces on the large neck:

strucmre are lacger lhan others.

• The vertical forces for the "small neck" group are larger than those for the "!ME face­

on" group. but their horizontal forces are in a reverse order.
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It should be ooled that the neck size effect summ.arized above is only in least square

Figures 4.11 and 4.12 sbow that the data are quicc: scattered. At certain points of C;. the

forces for the large neck: are well below those for the small neck sttUC01re. To show this. a

smaller window of Figure 4.11 is taken and presented in Figure 4.13 in which both (he best fit

lines and the test measuretnenlS are exactly the same as their counterparts in Figure 4.11. It is

shown in Figure 4.13 that the forces for a few large neck tests wilhin Cp < 2 are tremendously

low. much lower man the best fit line and the measured forces on the small neclc structure as

well.

- x large neck
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t» 7 - - + IME face-on
~
.2 6
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Figure 4.13 Zoomed Plotting of Venical Forces against Cp



Chapter 5 Numerical Simulation
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The icefMCS interaction process and irs relation to the generated loads described in the last

chapter was a result of reviewing video records and the time history of recorded forces. which

was quite general and qualitative. A quantitative understaDcling of the mecbanisms involved in

the icelMCS interaction was offered by a series of numerical simulations that. wert carried OUt

using a discrete element code. DECleE. '!be simulation was also used to analyze the effect of

oeck size on the ice forces developed since this was ODe of industry's major coocems.

ERe's tests YITlR2 and YITlRl were chosen as a basis for lhe simulation due to the

fact lbat YITIRI. YITlR2. and YITlRJ were the only tests with a smallocck structure at the

largest scale, namely. 1: 10. Generally. if other parameters are kept the same for two tests, the

larger the test scale. the closer to reality the rest result will be. The frrst set of simulations were

carried out to examine the various inu:raction mechanisms involved in the process. The measured

geometric and mechanical properties were used as inputs to this set of simulations which are

presented in Sections 5.2 and 5.3 for the sbeet and the ridge, respectively.

1bc idea implemented in the analysis of neck size is that if only the neck: size is allowed

to change. the difference in the resultant ice toads and the interaction process should reflect the

effect of the neck size. Thus, all the parameters used in the first set of simulations remain the

same in the second set, except for the neck: which is replaced by a large neck. 1be comparison
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of the results of these two sets of simulations is expected to reveal some information on the nttk

size effect. These simulatioos are presented in Seaion 5.4.

5.1 The Approach for Numerical Simulation

As reviewed in Chapter 2. there exist two main methods for the numerical simulation of

icelstrUCtJJte interaction: Finite Element Method (FEM) and Discrete Element Method (DEM).

Because of the advantage of the DEM in simulating the craclting process and the interaction of

cracked ice, this method was adopted for the simulation being presented here.

5.1.1 DEClCE Program and the Procedures for Problem Solving

DECIeE is a large computer software based on OEM and is ODe of the best of its Icind (refer

to Section 2.5.2 of Chapter 2). By courtesy of IMD who owns a copy of DECleE, the

simulation and analysis were dODe using lbis software. 1be formulation of the OEM

implememed in DECIeE as well as the capability and panicular usage of the program were

derailed in the 'Theoretical Manual. Programmer's Manuals. and User's Manual. The general

procedures used in OEClCE to solve a problem are briefly described below.

1be fU'St step is data input and initialization. The input data include elemem topology.

material properties, initial and boundary conditiow:, etC. Using the input data, DECICE

automaticaUy does the following: forms equatiow: for the discrete elements, determines time step
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increments. and checks stability conditions for the user defmed (as input) solution scheme. Then.

DECleE will do lbe following at each time step:

L Interaction and Applied Forces are computed for each element. TIle computation of

interaction forces is based on lhe information of interaction relationship between

neighbouring elements. Applied forces include buoyancy. drag, gravity. and lbc: fon:es

due to boundary conditions.

2. Constjnuive Behaviour Matrix. for strains and stresses, is ca1culaled using the prescribed

material properties. When an clemem is judged (0 be fracnued. additional newelemem(s)

will be generated and the streSses in the plane of the fracrure are relaxed.

3. Motioo and Stare of Elements are updated. tbe clement motion including deformation

and rotation are calculated from the dynamic equilibrium equations and elemeot strain

rates. The computation also updates element coordinates. neighbouring elemeots. etc.

4. History OutDUr Files are generated to record element state aDd geometry for post­

processing.

After all the above is done. the procedure is repeated for the next time step until the

prescribed "eod time" is rcacbed.

The above description is only a very brief overview of the various procedures: more

deWls are involved during numerical solutioD. Some details for pan of the procedures will be

given in the remaining 5ei:tions of this chapter.



103

5.1.2 Structure and Ice Modelling

In the ERe tests, as described in ChaPlet'" 3. the structure was flXed 00 the floor of the ice basin.

!be strUcnm was designed such that it can be considered as a rigid body, i.e. no deformation

aDd any other motions occur during its interaction with ice. The tested ice (of both the ridges

and sh«ts) which was quite brittle was moved by a boom against the structure (see Chapter 3).

Figure 5.1 Simulated Small Neck MCS Structure

To simulate the MCS structure, a set of rigid shell elements were used as sbown in

Figure 5.1. which fonn a suuc::cure baving exactly the same dimensions as those for the tested
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SUUCD.Ue. The rigid elements are conoected together and fixed to ensure that the sttucnuc will

experiecce zero deformation during me icelsuuetUre interaction process.

The ice basin walls are simulated, with (wo rigid bars. labelled as elements 2 and 3.

respectively, as shown in Figure 5.2. These bars. like the MCS strueeu.re, are also fIXed to

ensure they will be motionless in the interaction process. 1be main function of these bars is 00

provide a realistic boundary condition for the ice between them. Both the sheet and ridge ex.tend

from ooe basin wall (the bar) to the other. Elements 4 arxl 1 shown in Figure 5.2 denote

respectively the strUCtUI'e and the rigid boom used to push the ice against the suuctu.re.

Figure S.2 Simulated Ice. Basin Walls and the structure

As shown in Figure 5.2, both the ridge (elements 25 through 34) and the sheet are
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discretized iDlO a number of elements, prescribing the measured ice thickness. In DECICE (or

any other OEM programs), each of these elements is treared as a distinct body. For imtance.

although the nodes of the neighbouring elemeDCS may have the same coordinates. DECICE treats

them as different nodes. Before cracks occur, the ice should be a continuum. To simulate this.

a "Zone Lock" provision in DECICE is applied to lock: all the ice clements together. Separation

occurs only when fracruring occurs which may appear either within the elements or along their

mesh lines. Beause the "zone lock" was applied only to the ice elements. the bouodary

conditions along the basin walls are DOt affected (viz.• the deformation perpendicular to the walls

is not permined. while the deformation parallel to the walls is permitted).

lbe general boundary colldition also includes prescribed velocity and load conditions. For

all the ERe tests, the ice was pushed by a boom towards the saucture at a speed of six

centimetres per second. The condition is simulated by generating a push bar (element 1 in Figure

5.2) bebind the ice and assigning it the above velocity. Thus. in the simulations. the ice will be

pushed forward by the bar at a speed of six ceotimcues per second. The speed remains

unchanged. DO manee what interaction event occurs at the icelMCS interface. until the bar

contactS the struCture. Since the bar is rigid it will not fracture when it is subjected to a very

large interaction force.

The external loads acting on the ice coosist of buoyancy and gravity (besides that

provided by thc: constant velocity motion of element 1). which are simulated by assigning the

measured buoyancy and gravity to all the ice elements. Because the velocity was relatively low,
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the drag force exerted by the water was ignored. Before a real test starts ice freely floats on the

water surface and its gravity and buoyancy balance one another. This condition is carefully

simulated by sufficiently accurate computation of the correct waterline position for the ice. [f

the waterline is wrongly set, ice elements will experience vibrations due to the unbalanced

bUoyancy and gravity forces. which might not happen in real tests.

To simplify the simulation and save compulCI" CPU time. linear elastic behaviour bas

been assumed for the ice. This assumption was based on the analysis presented in Appendix A

of this thesis and the observatioDS made during the ERe tests. It is also assumed further dlat the

ice material is isorropic: and homogeneous lhroughout the ice sheets or ridges. Appendix A

shows that the error caused by this assumption is minor for the tests to be simulated.

The globaJ coordinate system described. in Section 3.2.3 is adopted for the present

numerical simulation. Under lhis coordinate system, the waterline bas a zero Z coordinate, the

ice sheet, ridge, and tbe structure are symmetrical about X axis. Because the vertical ice loads

on the structure are downward, they are negative in sign.

5.1.3 Failure Criteria and Ice Streogths

DECICE provides several crileria for judging various material failure. Because elastic brittle

material behaviour was assumed for ice. t:he Mobr-Coulomb tension cut-off brittle failure

crilerion is chosen for the present simulation to judge the failure of ice elemeots. The elements
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ace allowed to fail along the mesh faces aMlor through the centroid in each of the three modes:

flexural. tensile. and. compressive. Wilhin DECICE me failure criterion is defined below.

An element in pure beDding has the maximum tensile stress at either its upper surface

fibre or its lower surface fibre. depending on its direction of beDding. The elements may also

be subjected to direct (or axial) stresses. The maximum total stress l7j, is a vector sum of all the

suesses in the direction under consideration. When the streSS condition satisfies the foUowing

relationship, the elemenl is judged to have fractured.

(5.1)

wbere Ur is the measured flexural stIengtb of the ice. The crack is generated along lhe face

perpendicular to the direction of maximum stress Oil.

Tensile failure occurs wben the minimum. principal streSS u] is Iaeger than or equal to the

tensile streogth of the ice. lbe cnck is along a plane whose unit normal is aligned with the

major principal axis (the direction of (11)'

The compressive failure criterion is generally defined as

I't" I ~ .s + ~o a (5.2)

where T aDd a are the shear and oormal sttes:ses on the fracrure plane; T, is the shear strength
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of ice. and IJo is the internal friCtiOD coefficient of ice defined by lAo = taD. 'P. wbere '" is the

internal friction angle of ice.

Equation (5.2) can be directly applied to the mesh faces. However. because fracture of

an element occurs through its centroid. an expression of the criterion in terms of principal

stresses is required for judging the element failure. Using the relationship of the principal

stresses in the Mohr-Coulomb criterion. this expression can be easily derived as follows

(5.3)

where U c is the unconimed compressive strength, and (11 and 0'] are the major (maximum) and

minor (minimum) principal stresses, respectively. The UDCOnitned compression Slreogth Uc and

the shear strength T, have the foUowing relationship

(5.4)

[n other words, only [wo parameters are required to define this criterion. DECICE requires Uc

and. 'P to be input. If all principal streSSeS are different in magnib1de. there are two equally

probable fracture planes which are perpendicular to the Ul 9 U, plane and maIct angles of ±(45° ­

<;,/2) with the major principal axis (lhe direction of al)'

The above Mobr.coulomb criterion requires a total of four user.-defmed panuneters:
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flexural strength (1r for the flexural failure. compression strength tlc and the internal friction

angle «J for compression failure. and CT, for tension failwe. In the ERe lCStS. only flexunl

strengths were measured. Therefore. the other parameters have been estimated. The estimation

is presenlCd in Appendix B.

S.2 Simulation of Sheet Ice and Structure Interaction

5.2.1 Ice Configuration and Elements

The ERe test YITIRI was perfonned with sheet ice moving ata constant speed of6 centimeues

per secood against the 1:10 small neck: structure which was in "face-oo" orientation (refer to

Chapter 3). The test lasted for about 93 seconds with a real interaction duration of about 77

seconds which is equivalent to an ice length of 4.6 meters. At the moment when the ice began

moving, the front edge of the ice was about 96 em away from the front facet of the structure (at

waterline level). At the 16th second after the test started. the structure and the ice Contacted one

another; bence, the 16m second will be taken as the staring time (zero second) for the

comparison of the test with me simulations to be shown in Figures 5.4, 5.7. 5.8. and 5.24. In

other words. the real test time is equal to me time shown in these figures plus 16 seconds.

The total length of ice sheet extended to about 9.5 meters (only 4.6 m was used in

YITlRl) from its front edge to the ftrst ridge which was used for the later test: YITlR2.

Because the sheet ice which was not directly involved in the interaction might also have an effect
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on the interaction (by providing certain boundary condition), an ice sheet of 9 meters long has

been simulated to include this effect. To reduce lbe simulation time (CPU time), the 5ttueture

is set to nearly contact the front edge of the simulated ice, which means that the simulation

begins at lite 16th second of the test time. Figure 5.3 shows the configuration of ice and

sttueture.

Figure 5.3 Ice Sheet and Elements

The ice sheet is di.scretized into 27 elements and numbered from 5 to 31. Elements 2 and

3 ace rigid bars simulating the ice basin wall. Elements 1 and 4 simulate the boom and the

structure, respectively. No additional restraint is applied (0 £be boundaries of the ice sheet.

which realistically simulates the boundary conditions in the physical lests.



Figure 5.4

III

5.2.2 Overview of Simulation Results

In the simulation. the ice sheet was set to move at <) cmls (ice speed in lhe teSt) towards the

structure. The whole simulation lasled for 86.6 seconds which is slightly longer than the acroal

lest dun.tion. Time hiSlOry of the global forces on the structure obtained from simulation

together with the measu.red loads are plotted in Figure S.4. Figure S.S sbows the cr3Ck pattern

of icc at 78th second of the simulation time.

60,---~-~-~---~--~-~--,

- simulation

40 test

-40

-600L_-'~O-~20"""'-30~--40~---:5:::0'--'--60-:-:---=7=O--:60
Time (second)

Simulared and Measured Global Sheet Loads

Under lhe coordinate system used in this thesis. the horizontal forces. F.. acts along the

positive direction of X axis (Le. the direction of ice motion), thus appear above the reference

line (the straight borizontal line) in Figure 5.4. The venical force. Ft. acts downwards and is

opposile to the positive direction of Z axis. and hence is located below the n:fereoce line. This
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will also be applied to all the plou: of F. and F. in me rest of this chapter.

Although there is an apparent difference in the measured and the simulated loads (Figure

5.4), the overall uend agrees well. especially in the latter portion (after 57th second) of the force

time history in which both simulated and measured maximum loads occurred. During the time

range the test lasted. me simulated maximum horizontal and vertica1loads are 43.8 kN and 53.9

kN respectively, compared to 40 kN and 50 kN for the measured maximum horizontal and

vertical loads. The simulated maximum loads occu.rred at 67th second after the ice flest con(acted

the sttueru.re, while it was 65th second for the measured maximum loads. Considering the

complexity in the interaction process, the closeness in both magnitude of the maximum loads and

the moments that occurred are quite satisfactory.

Figure 5.5 Ice SheetlMCS Imeraction Sceoario at me 78th Second
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5.2.3 Effect of Element Size

To study the effect of element size (mesh size), several meshes were Died. Figure 5.6 shows a

very fme mesh in which the ice sheet consists of 120 elements. The results of the simulation

with lhis IUlC mesh are plotted in Figure S.7 as the dotted lines. For the pwpose of comparison.

the simulation with the coarse mesh (Figure 5.3) is also plotted in Figure 5.7 as solid line.

Figure 5.6 Interaction of Structure wilb Fine Mesbed Ice Sheet at the 78th second

The crack pancrns for the two meshes ace also quite similar. The scenarios shown in

Figures 5.5 and 5.6 are at the same moment of the interaction but for coarser and finer mesbes.

respectively. A comparison between them indicates the similarity in crack pattern for the

different meshes. Although the initial element size of the coarser mesh is about 4.5 times larger

than the element from the finer mesh. the differeoce in the average size of the broken ice pieces

from these twO meshes is relatively minor. This closeness of results in broken ice piece size
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should mainly be crediled to the DECICE code. Unlike the classical finite element technique.

the OEM implemeolCd in DECICE cracks an element once the stress in it reaches the prescribed

failure criterion. and simultaneously. a new elemcDl is automatic:ally gcoerated. In this manner,

a large clement can be gradually cracked into many smaller elements. Consequently, the imat

sizes of the broken ice pieces for the coarser and finer meshes tend to be close.

- coarse mesh

40 fine mesh

-40
F.

~0:---:1'=0--:20:---=30:C--40-'o---50~-~--~---!80

TIme (second)

Figure 5.7 Effect of Element Mesh on Global Sheet Loads

Figure 5.7 shows that the simulated loads from these two meshes are generally quite

close to each other. Considering the complexity in the interaction process, this result is quite

satisfacmry. On the other hand, the difference is also discernible. The floe mesh yields slightly

Larger loads till the 51th second and produces lower loads afterwards. Basically. the floe mesh

results in a relatively mild variatioDS in the time history of the global load. while the loads



1\5

simulated with the coarse mesb have more sharp jumps and drops. Moreover. the maximum load

produced by the coarse mesh seems to be nearer the tcst results than the ftner mesh.

-600L_~10~-20::':---30::':--""40~--::50~--::60~-=70=--BO:!'

Time (second)

Figure 5.8 Measured Sheet Loads and the Simulation with Fine Mesh

To further examine the effect of element size. the simulation with the fine mesh rogether

with the test measurement is plotted in Figure 5.8. From the overall appearance. this fine mesh

seems to have improved me simulation result: a particularly good agreement is obtained for the

middle portion of the time history record (from. the 20th 10 the 60th secood). Ho~ver. the

simulated loads are significantly lower in the first portion (from 0 to 20 seconds) and the laSt

ponion (from 60th to 71th second). The simulated maximum loads ace significantly lower than

the measured ones as weU. As shown in Figure S.4. although the simulation with the coarser

mesh produces loads lower than the measured forces in the fltSt portion. it agrees weU during
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the later poniCD of load history which contains the maximum load and may be more important

in the sense of design consideration. Hence. the fmer mesh may be better only for some

siruations and not for all.

The above problem is one of the general problems eocounrered in the use of the DECreE

code. Before a further discussion of this problem, let's look at what happened in the actual

physical test. A major crack. as seen in the recorded video tape of the physical tests, has

propagated as far as a few meters away from its starting point. which has two direct results: a

drop in interaction force and release of the internal stresses accumulated in ice. After each major

crack, the ice around the crack became more easily deformed (because of less restrainE) and

exerted less forces on the st:r'UCtUre, and it usually took a while for the ice to move furtber to

develop a high resistance (as high as before the cracking) on the structure. This is reflected as

the wavy shape in the time history oftbe global forces. The major crack (usually large and long)

might also generare a larger size of broken ice piece in the process of icc craddng Of in the

interaction process that foUowed. These larger pieces might pile up on the structure's surface

or fall down onto the top of the impinging ice, and sometimes they might get sruck between the

structure and ice sheet, as observed in the ERe tests. All these actions would generally create

some complex conditions for the successive ice cracking process. As a result, the peak in the

global load history becomes larger than the preceding ones. The major crack or collapse could

lead to sharper drops in load history because the movement of larger pieces usually results in

large changes in the force history. The values of peak loads became relatively stable after the

process reached a cenain stage up to which enough ice pieces bad accumulated in front and on
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me surface of the stlUCtUI'e. This is also ooe of the reasoDS why sufftcient time duration was used

for a physical test and a simulation. The measured test record of force history (me dotted lines

in Figure 5.4) reflects well the trend described above.

lbe fracture mechanism implemented in the DECICE code is on an elemeDt-ro--elemem

basis. that is. it does DOt consider the propagation of a crack away from the interaction zone.

Once an element is assessed to be incipient to cracking, the crack appears only within this

element. The code also releases the stresses in the element just cneked. but the stresses remains

unchanged in its neighbouring elemelllS, if they~ DOt fracturing, [0 which the rea.I crack should

have propagated through. Thus, if the ice mesh is very fiDe: (such as the ODe shown in Figure

5.6 or even fmer), i.e.• the element length (or width) is much shaner than me possible crack:

length (of the physical test), the resullaDt loads on the StnlCture may vary in a milder manner.

This explanation illustrates the case of the simulation with a finer mesh, shown in Figure 5.8.

in whicb the mean force from the simulation is relatively flat and does DOt fully foUow those

large jumps and deep drops in the time histOry of the measured forces.

It should also be made clear here that the above discussions and reasoning do not mean

that a coarser mesb is better than a finer mesh. In fact, an extremely coarse mesh may lead to

a bad (even incorrect) simulation both in crack panern and load history. If the DECICE code

allowed cracks to propagate through more than one element. a frner mesh should be chosen.

With the present implementation of the element-to-element fracturing mechanism in the current

version of DECrCE, an appropriate discretization should be the ODe that allows major cracks to
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occur across the full length at a cenain time step of simulation. This type of mesh may lead to

some exaggerated jumps aDd drops in load history at early stages of interaction, but it will

simulate better the trend of force variation in the later portion of interaction scenario in which

the maximum loads usually occur. The discretization of the ice sheet (Figure 5.3) and the ridge

as well as the ice sbeet surrounding it (shown in Figure 5.2 and to be presented in the next

section) is based on the above considerations.

5.2.4 Interaction of Sheet with Small Neck Structure

This subsection presents a relatively detailed analysis of the interaction process and the

mechanisms involved in the sheet ice interaction with the small neck structure. The analysis is

based on the information from the output of the simulation.

At an early Stage of interaction. only element 27 is in contact with the structure (refer

to Figure 5.3). Its displacement and rotations are shown in Figures 5.9 A and B. When element

27 is being lifted upwards. it is in down bending (top fibre in tension) about the X axis and in

up bending (lhe bottom fibre in tension) about the Yaxis. At me O.96th second. the total stress

along Y direction (wbich is a sum of all the stresses in this direction) reaches the beading

strength, and mus, the elemel1l fractures and becomes (wo elements (the: element 27 and 32), as

shown in Figure 5.10. The fracture face is perpendicular to the direction of dominant stress

which is beDding stress in the Y direction in this case, thus the fracture face orientales in the X

direction.
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In the meantime. elements 26 and 28 are also deflected upwards. Unlike element 27,

these two elements are subjected [0 up bending in both the X and Y directions. and the bending

shear stress is dominant at the momenr: (O.99th second) when the fracture occurs almost

Slmulraneously in these twO elements which, as a result, break into four elements labelled as 26.

28, 33. and 34 (Figure 5.10).

Figure 5.9 A Displacements of Element 27

The above fracture process is reflected as the first jump and the drop that follows in the

time history of the global ice load shown in Figure 5.4.

After me cracks. the sttesses on the fracture faces ace instantaneously released. but the

ice is still held in contact with the SlIUcnue. As ice motion continues. the two front elements,
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elements 27 and 32. are pushed farther against the stnJetUre. which gradually increases hom. the

internal sttesses and the force 00 the structure. At the 2.llh second. these two elements are

separated from the ice sheet along the edge of element 18 (Figure 5.3). Element 27 (the new

one, as shown in Figure 5.10) cracks at the 5.26th sccoDd with large beading stress being in the

X direction. and symmeaically. elemenr: 32 also cracks, generating two DeW elementS (elemems

35 and 36) as shown in Figure 5.10. These cracks correspond to the second peale: in the time

history of the global forces.
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Figure $.9 B Rotations of Element 27

The cenual (radial) crack along the X axis (the nrst crack in element 27), together with

the craclcs along the mesh lines of element 27 (along the X axis), reasonably simulate the radial

cracks observed in the physical test. While the cracks in elements 26 and 28 mgetbet' with a
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separation line between element 18 and elements 35 and 36 form an approximate circumferemial

crack (Figure 5.10). In the tests, the time interval measured from the moment when the ice and

stroeture contacted to the moment wben the rUSt circumferential crack occurred was in the range

of 2 to 3 seconds (Melge and Weiss 1989). The simulation agrees fairly well with the test.

Figure 5.10 Cracks of Front Elements

Figure 5.11 Side View of Ice SbeetIMCS Interaction SiDJation at the 9th Second
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In the subsequent few secollds, elemeQIS 27 and 32 (Figure 5.10) gradually slide back

under elements 35 and 36. and later down on the surface of the stnlCwre. Figure 5.11 shows a

side view at one time step of this process. Meanwhile. the forces acting on lhe strucnue remain

small (Figure 5.4).

CIlI:::::=:J 3.'

Figure 5.12 Side View of Ice SbeetlMCS Interaction Situation at the 225m. Second

Starting at about the 12th second. ice and sttucture develop further fum contact, which

leads to cracks in elemems 27 and 32 (also fail in bending) at about the 16th secoad. and gives

rise to a continuous increase in force history and a small drop at the moment when the crack

occurs (see Figure 5.4). 1be horizoDtal force reac.bes its local peak when the front most pieces

aet against the transition between the main cone and the collar. Figure 5.12 shows a case for this

portion of the interaction process.

Up to the 32th second of me interaction. the simulation generally agrees well with the

test in global forces and crack pattern. In me next 10 seconds or so, the simulated forces have
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a continuous decrease, and they are significantly lower than the measured forces. 1be decrease

in force is caused by the easiness in clearing of the broken ice pieces. A closer look at lhe

simulation data indicates that once the: ice pieces pass the corners or the tr.msition between the

main cone and the upper portion. they easily slide back: with little resistance. In addition, there

was enough room between the suueture and the uo<racked ice (element 18) lO allow some ice

pieces to slide down below the ice cover. 'These events did not happen in the test, which may

be doe [0 the disadvantage of baving a coarser mesh.

The Dext cycle of interaction starts approximately at the 40th second and ends at about

the: 55th secood. in whicb elemeots 17. 18. and 19 are cracked in a manner similar to that for

elements 26, 27. and 28 (refer ro Figwes 5.3 and 5.10). However, tbe simulalCd forces follow

more closely the trend of variation of the measured forces (Figure 5.4). It can be seen in Figure

S.4 that the peaks of the simulated forces as well as the measured horizontal forces are larger

than those occurring during the previous cycle. The reason is that the ice pieces broken from

previous interaction process playa key role in the subsequent interaction process. 1be broken

ice pieces exen their weights as ice forces on the structure and they also introduce resistance to

the ice behind to initiate a crack. Figure 5.13 shows ODe oftbose situations. In addition to the

above. an extra fon::c is also required to push the broken pieces either up or forwards on the

StrUcture surface. Test measurements have shown that the frictional resisrance for ice pieces

passing a comer is much higher than the sliding friction on a flat surface (Merge and Weiss

1989). Hence the clearing force may also be larger than that required for SCSs.
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Figure 5.13 Side View of Ice Sheet/MeS Imeraction Scenario at lhe 48th Second
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Figure 5.14 Side View of Ice SheetIMCS Interaction Scenario at the 78th Second

The effect of the broken ice pieces becomes more significant in the next cycle (starting

from the 55th second) in which the interaction becomes relatively stable. As the pieces
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accumuLate on the front and side facets of the strUcture, they Conn a rubble. TIle continuity of

the interaction process keeps a certain number of ice pieces on the structure. Figure 5.14 shows

a scenario of this phase of interaction. The forces for this phase. as shown in Figure 5.4. are

much larger than before.

The rubble ice should be mainly responsible for tbis force increase. An obvious source

for the force increase is the weighl: of the rubble ice. Because some ice pieces directly sit on or

are panly supported by the structure. their weight (at least pan of it) is exened on the sttucture,

instead of being supported by buoyancy. An additional effect of the rubble ice is that it creates

more difficult SiruatiODS for impinging ice sheet to fail in beDding. An exueme situation may be

that the advantage of a sloping sttucture in inducing bending failure of ice may be temporarily

reduced or even lost. For instance. the: intact ice in Figure 5.14 cannot contact the structure

surface. rather it moves horizontally against the rubble ice. 1bc force acting on the intact ice is

mainly a horizontal force which pushes the rubble moving forwards and also upwards due to the

existeocc of the structure's slope. AI: this moment, intact ice is mainly subjected to compression.

instead of bending, and thus it can carry larger forces since the compression strength is much

higher than the flexural strength. This situation creales a relatively large force on the StruClUre.

As the top part of the rubble is removed due to its falling down inID water, the intacl ice may

either cootaet the strucnue or the ice pieces on it and thus the bending process may be resumed

once again.
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5.3 Simulation of Ridge and Structure Interaction

This section presents a simulation of ERe's teSt YITIR2 in which a ridge of 3.5 m wide and

one metee thick was tested against the 1:10 small neck SlIUCture. Similar to test YITIR!. test

YI TlR2 was also perfonned with a constant ice speed of six ceotimetres per second.

5.3.1 The Ridge, Sheets, and Their Discretization

Figure 5.2 (in Section 5.1.2) is the ice coDfiguration and the saucnue for this simulation. The

three dimensional elements 25 through 34 are for the ridge to which all the mechanical

properties given in Table 3.8 apply for lhis simulation.

Previous srudies on SCSs have shown that the surrounding ice sheet can play an

important role in the interaction of a ridge with a conical·shaped st:ruetuce (refer to Chapter 2

of this thesis). To take accoum: of the ice sheet effect. two pi.eces of ice sheet are simulated: one

in front of the ridge and the other behind the ridge. Abdelnour (1981) stated that the effective

width of each ice sheet is ../lIs' The characteristic length of ice sheet. t.. is deflDCd by

(5.5)

where E, is Young's modulus of the sheet ice and equals 1136 MPa in this case (refer to Table
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3.8), h is lhe ice sheet lhickness and is 0.33 m for YlTlR2 (see Table 3.2), P.. is the water

density, g (=9.81 mls2) is gravity acceleration. and II is Poisson's ratio wb.ich. as usual in elastic

analysis. is set to be 0.33. Water density P.. = 1035 kg/m1 is calculated with Pw "'" p. + Pit.

where P, and P" are ice density and buoyancy respectively and were given in Table 3.8.

With Equation (5.5), the cbaracteristic length of ice sbect is calculated to be 4.4 meten.

The calculated widlh of each of the ice sheets (along the X axis) is about 6 meters which was

taken as the width for eacb of the cwo simulated ice sheets shown in Figure 5.2. Each sheet is

discretized into (wo rows of elements. labeUed as 5 through 24 and 3S through 54. respectively.

Similar to the simulation of the sheet ice in the last section, three dimensional elements are used

for the ridge and the ice sheets.

'The principles for determination of element size, discussed in Section 5.2.3. are also

applied to the present simulation. The factors taken into accouot include length of major cracics,

cnck pattern of the ridge and the sheets, etc. Other help came from the experience provided by

lntera Technlogy Inc. (111) who was the developer and is the copyright owner of DECIeE. ITI

bas applied this software to analyze ice ridge interaction with a ship (lntera Technology. 1986a)

which has some similarities to the siwation in our case (in their case. the ship bow width and

element length were quite close, both are about 10 meters in dimension).

In the analysis being presented in this section, aU the elemeDt numbers mentioned

subsequently are referred to those given in Figure 5.2.
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5.3.2 Comparison of Simulation with Test

The simulated time history of ridge global loads are plocted in Figure 5.15 as lhe solid lines. For

the purpose of comparison, the measured loads are also plotted in the same figure as dOl lines.

150
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Figure 5.15 Time History of Simulaled and Measured Global Ridge Loads

Figure 5.16 is a sketch of the overall ridge crack: paaems from the test and the

simulation. The distance is measured from the center of the ridge (along the Y axis). A

interaction scenario from the simulation is shown in Figure 5.17. A picmre of ridge crack

pattern which was taken after the binge crack:s is sbown in Figure 5.18.
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Figure 5.16 Measured and Simulated Ridge Crack. Patterns

Figure 5.17 Simulated RidgelMCS Interaction Scenario at the 116tb Second
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Generally, the simulated loads and crack pattern agree fairly well with those measured.

as shown by Figures 5.15 and 5.16. The measured average distance from the rmt pair of binge

cracks to the center of the ridge was 6.8 meters, while me simulation yields a value of 6 meters

for this distance. The simulated maximum vertical load (FJ is 154 kN. compared to ISO kN for

the maximum measured vertical load. 1be maximum borizontal loads are 134 kN and 130 kN

for the simulation and the test, respectively.

Figure 5.18 Ridge Crack Pattern of YITlR2

00 the other band. the simulation is DOt perfect. 'The most visible difference. as sbown

in Figure 5.16. is that the tested ridge expericoced secondary hinge cracks during itS clearing

process, but the simulated ridge did not. In the test, the ridge was re-<:raclced at the moment

marked by "f" in Figure 5.15. a few seconds after the ftrSt hinge cracks. In the simulation,
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however. the ridge experienced only a central crack: and one pair of binge cr:ilCks which was

followed by a clearing process without further craclcing in the ridge segments (refer to Figures

5.16 and 5.17). The secondary binge cracks made the clearing easier for the test. This difference

is clearly reflecled in the time history of the global loads. The measured loads sharply dropped

immediately after the second hinge cracks and then dCi:reased continuously. whereas the

simulated load. though it decreases at the moment 'T'. went through a lWmber of

increases/decreases afterwards. A5 a result. the: maximum. leSt loads occurred at the moment

when the fitSt hinge cracks were formed. while the occurrence of the maximum simulated forces

was delayed by a few secoDds.

The simulation shows that the ridge failed in bending due (0 the moment about the X

axis. which conflttllS that the general mechanism for ridge failure in the case of SCSs (see

Chapter 2) is still valid for this MCSs. However. the simulation also shows that the ridgc's front

bottom edge fully contacted lite front facet of the structure at the moment when the centtal crack

was occurring. This is different from the assumption of point contact during ridgeIMCS

interaction. Hence. an appropriate theory is required to aceoum for me new fearure of the

interaction. 1be requiremem will be fulfilled by the equations to be developed in Chapter 6.

5.3.3 Relation oC Interaction Process and Global Forces

The process of ice sheet (in front of l.be ridge) lnreraction with lhe strUCture for lhis test

is similar to that described in l.be last section. Figure 5.15 shows that the simulated loads are
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lower than those measured during the early stage of this portion of interaction (from beginning

to the 67th second). One of the reasoru; for this is that the simulation started at a totally "zero

caDditioo" in which the structure was clean of ice and the forces on the structure was zero, but

the test did DOt stan at the zero condition. In fact. the structure surface was already covered with

ice pieces from the preceding test run. In the simulation. it tooK a while for the broken sbeet ice

pieces to accumulate in front aDd on the surface of the strUCture to maintain a relatively high

load. All these resulted in the lower values for simulated loads.

As the interaction process during the simulation proceeds. more and more broken ice

pieces accumulate on the surface of structure. These pieces directly increase the ice loads (see

the analysis in the last section). One: relatively larger piece of ice on each side of the StrUcture

is fmnly lodged against the neck.. shown in Figure 5.19. Because the slope of the neck: is deeper.

the horizoDtal component of the force becomes larger. This situation is also partly responsible

for the relatively high level in the horizontal global load between the moments "a" and. "b",

as shown in Figure 5.15.

Figure 5.19 RidgeIMCS lmeraction Scenario at the nod Second
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At the moment "b" the ice pieces slide aside and thea down into waler, lhus resulting

in a drop in the force b.i.story. The remaining pan of the elements 9 and 10 (their front part has

broken off) begins cracking and separating from. the ridge. figure 5.20 shows a scenario for Ibis

period of the interaction.

'1===1~F~I
7-12.' ~ 3.5

Figure 5.20 RidgelMCS Interaction Scenario at the 82ndSecond

As me motion continues, me front bottom edge of the ridge contacts the ice pieces on the

lower pan of the sttucrure and causes them to slide upwacds on the surface and forward to the

front side facets. At the moment "c" (Figure 5.1S), the ridge gains a firm CODtaCt with the

structure. and begins deflecting upWards. In the mean time, small rotations about the Y axis also

starts, and the global forces quickly increase. When this process develops to a certain stage the

central crack forms (at the moment "d" in Figure 5.15). Figure 5.21 preseDlS the situation at

the moment JUSt after lhe central crack. Up to lhe central crack: the sheet behind the ridge is still

connected to the ridge, but pan of the front sheet is separated from the ridge. The central crack

is accompanied or immediately followed by the cracking in elements 49. 50.38.47.41.52, etc.

Figure 5.21 shows the crack panern detected and marked by DECICE.
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Figure 5.21 Crack Pattern immediately after Evem "ct"

It is wonh pausing a while to examine the difference in the cracks detected by DECIeE

and those observed in pbysical tests. In the numerical simulation with DECICE. wben the sttess

in an element or its faces reaches a prescribed failure criterion the program assesses lhat a crack

has fonned and delineates the crack immediately. The cracked ice pieces (elements). however.

are still rumly in contact with one another along their fncture faces. and it appears no crack has

0CCUCTed. lbe crack takes a while to develop to a form to be visible to human eyes. If we

assume lhe visible crack: to be half a millimetre or above (UDder the condition that the crack is

about 10 meters away from eyes, or fantler), it takes a fraction of a second to a few seconds

from the moment when the crack is judged to occur to the moment at which the crack develops

to this given width. Tbe real time interval depends on the interaction situation and the distanee
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from the crack to the eyes. In the physical tests, such as those of me ERe leStS. the cl3Cks

detected by our eyes were those at tbeir well developed stage. Therefore. a crack seems to

appear slightly earlier in the simulation than it does in the corresponding physical test.

Figure 5.22 Crack: Pattern during Event "e"

While the ridge continues its upward deflection and rotations after the central crack, the

central crack extends into the sheet. resulting in the separation along the mesh face between

sheet elements 49 and SO. Meanwhile. part of the sheet (pan of element 8) in front of ridge

(element 28) separates from the ridge. At the moment "e". the bending stresses in the Y

direction on the mesh face between elements 31 and 32 reach the failure criterion and is judged

to have separated, whJcb is followed by the separation along the mesh face of elements 27 and

28. 'The ridge crack (element separation) is accompanied with the separation of a few ice sheet
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elements (elements 7, 11.47.48, and. 51) from the ridge. as shown in Figure 5.22. This event

can be considered to be the beginning of the hinge crack process because this pan of the hinge

crack is detected only by DECICE but invisible to the human eyes (as previously explained).

What is interesting is that the recorded loads from lhe leSt also has similar but milder variations

JUSt before the event "e" occurs (Figure 5.15), but no obvious hinge cracks are seen from the

test video tape at Lhat moment. It is questionable whether a crack bas already occurred in the

test, which might be invisible at that moment.

As the ice moves further towards the structure. the ice forces continuously increase. At

the moment "f' in the simulation, the two ridge segments experience a sudden sliding back

(decrease in both deformation and rotations). This results in the sharp drop in force history. The

hinge cracks observed from the test should have occurred at an instant between the simulated

events e and f. When mey were occurring, a sharp movement (jerk) of the ridge was also

observed; it was noted that me secoDdary binge cracks occurred during the event marked 'T'.

After the event "f'. the simulated ridge segments are in a long sliding (first up then

down) and rotation process (the clearing process). The sbeet ice behind the ridge gets gradually

cracked and broken·up to give room for further sliding..<fown and rotation of the ridge segments.

The dominant motion in this period of intetaetion is the rotation around the Z axis, which is

mixed with motions in all the other five degrees of freedom. Figure 5.23 sbows one of the

scenarios after the event "b". !be loads in this clearing process is eventually reduced to a level

similar to iliat for sheet ice loads (Figure 5.15).
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Figure 5.23 The Ridgc-5beet Ice Clearing Process

5.4 Numerical Study on the Effect of Neck Size

It was stated in previous chaPlers that industry has desired a large vertical neck wbose diameter

is oaly slightly smaller than the waterline diameter of the main cone, and was coocemed about

the possible adverse effect of this large size neck on ice loads. Although two DeCk. sizes were

tested (Chapter 3) and the data from the tests wilh were compared (Chapter 4), they still need

further studies for che reasons given below.

For analysis of the neck size: effect (or any other factors). the ideal condition in a series

of physical tests sbould be like this: only the DeCk size should vary and aU other parameters
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should remain constant; then comparison between them would show the effect of neck size.

Unfommately. because of the limitations in the teSt leChnique. all our lCSts did not perfectly

satisfy this strict condition. aDd lbc:refore many other parameters inevitably played a role in the

variation of ice forces. The problem is that no existing analytical approach can completely

eliminate the effect of all the parameters other than DeCk size. Allhough the analysis given in

Chapter 4 has taken many parameters into account, there were still some parameters whose

effect were not eliminated. The effect of these remaining parameters might be hidden in the

results of the analysis.

An alternative to the physical experiment for the study of neck size effect is (0 do

numerical simulation. An advantage of the numerical simulation is that the parameters can be

easily controlled. In the present case, two comparable sets of simulations were performed for

both the sheet ice test (YITlRl) and the ridge ice test (YITIR2). The small neck strueCUte

(Figure 3.1) was used in the fIrst set whose results have been presented in Sections 5.2 and 5.3

for tests YtT1Rl and YITlR2. respectively. In the second set of simulatioDS, the neck of the

structure was replaced with a larger oeck: with other parameters remaining unchanged. i.e.• the

sU'Ucture shown in Figure 3.2 was used in lbe second sec of simulations. 'TI1ese results are

presented in Subsection 5.4.1 for sheec ice and Subsection 5.4.2 for ridge ice. Comparison of

the results from these two sets of a simulations are expected to show the effect of large neck on

ice forces.
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5.4.1 Ice Sheet Interaction with a Large Neck Structure

Simila. to the simulation presented in Section 5.2, the ice dimensions and mechanical properties

measured in test YITIRI (Tables 3.2 and 3.8) were taken as inputs for this simulation. 1be only

difference is the DeCk of the strUCture, i.e.• the large neck: sttuetJJ.re (Figure 3.2) is used for this

simulation. The loads from this simulation. together with those from the simulation fo[" the small

neck. sttUCtu.re (Figure 5.4), are plotted in Figure 5.24.
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Figure 5.24 Simulated Sheet Loads for Large and Small Neck Suueru.res

Figure 5.24 indicates that the difference in forces from the [wo simulations are noticeable

but not very big. As discussed in Section 5.2, the later portion of the interaction is of greater

imporu.nce because both simulated and measured maximum loads occurred in this part.
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Therefore. the analysis and comparison of results are focused on this portion (after 57th second

of the simulation). The overall lIeDd for this portion is that the simulation with large neck

struCN.I'C yields larger borizoDlal peak force but smaller vertical force (see Figure 5.24). The

maximum horizontal and vertical forces simulated with lbe large neck strueru.re are 49.8 kN and

51.1 leN. respectively. Compared with me maximum simulated loads for the small neck. Stl'UCtUIe

(43.8 leN and 53.9 kN for the horizontal and vertical maximum forces. respectively), the

counterparts for the large neck structure increase by 13.7% for the horizonta11oad component

and decreases by 5.2% in the vertical load component.

Figure 5.25 A Scenario of Sheet Ice Interaction with the Large Neck Structure

The above results reflect two aspects of the effect of the larger neck on sheet ice loads.

The wider neck partly prevents the ride~up of the broken ice pieces. which increases the

difficulties in deflection and beDding of the impinging icc sheet. This gi.ves rise to certain

incrust in the borizontal load. On the olher band, the large neck reduces the length of main
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cone slope. or the area of structwe surface between waterline and the neck (refer to Figure 3.2).

Hence. less amount of ice pieces can sit on (or ride up) on the main CODe. As a result, lhe

vertical load to wbich ride-up component contributes a large poniCD becomes less lhan that for

the small neck SttuCRIre. Figure 5.25 presents a typical siwation for this case.

The sheet ice crack pattern for this large neck stI'UCtlU'e is essentially the same as that for

the small neck. The rime history of the simulated loads for these [Wo structure follow the same

overall trend as wen.

5.4.2 Ice Ridge Interaction with Large Neck Structure

Similar to me ice sheet interaction study presented in Section 5.4.1, the interaction of the ice

ridge (VIT1R2) with the large neck structure was investigated. The geomettic configuration.

mechanical properties. and element mesh size. etc.• remained the same as lhose in tbe simulation

for the small neck structuce. wbile the structure was replaced by the large neck:: structure, shown

earlier in Figure 3.2 of Chapter 3.

It is shown in Figure 5.26 that the ridge loads for strUcrures with differem neck sizes are

quite close to one another. The simulation for the large Deck: structure yields a maximum

horizontal load of 154 leN, and a maximum vertical load of 161 leN. Compared with the

maximum simulalCd borizontal load (134 kN) and vertical load (154 leN) for the sm.a.ll neck

st:rUen1I'e. tlle large neck increases the horizontal load by 14.9%. and the vertical load by 4.5%.
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Figure 5.26 Simulated Ridge Ice Loads on the Large and Small Neck: Sttuetutes

Figure 5.27 An Interaction Scenario of the Ridge Interacting with the Large Neck: Structure

Similar to the case of sheet ice, the mechanism and process of ridge cracking exhibited

for the large neck sttuCture are essentially the same as those for the small neck struelUre.

Because the large neck significantly reduces me area of the main cone slope, fewer sheet ice
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pieces can aceumula[e on the CODe. As a result. the sheet ice loads for the period of interaction

just before the ridge contacts the strUcture are much lower than those for the small strUCture.

Figure 5.27 is a typical scenario for this period of interaction. wbich shows that there are fewer

ice pieces on the cone and some pieces have slid off the structure.

There is a notable differeoce in the effect of neck: size on sheet ice loads and ridge ice

loads. The large neck increases the maximum horizontal sheet ice load, but reduces the vertical

load component. However, the large neck: increases both maximum. horizontal and vertical ridge

loads even though the increase in vertical load is at a much lower rite. The main reasoo is that

the ridge segments are more difficult to be cleared off the strue:ture. Because of lheir large size,

the ridge segments are subjected to greater resistance: than the sheet ice. This larger resistance

combined with the pushing forces from the ice sheet behind the ridge segments crealeS an

unfavourable situation as shown in Figure 5.28: movement of the ridge segments are partly

blocked ana larger portion of ridge segments' weight is supported by the structure instead of the

water buoyancy. Since the loads cxened by the ridge segments dominate the total ice loads, the

overall vertical ice loads have, thus, increased.

Figure 5.28 Side View of a Sceaario of Ridge Clearing Process
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5.4.3 Discussions of Neck Size Effect

The effect of neck: size: on icc loads from the present simulations can be summarized as follows.

I. The maximum horizontal ridge loads acting on the small neck structure and the large

neck srrucrure are 134 leN and 154 leN, respectively. Compared with the small neck

structure, the large neck: structure increases the maximum borizontal ridge load by

14.9%.

2. The maximum. venical ridge loads acting on me small neck struCture and the large neck:

structure are 154 leN and 161 leN. respectively. Compared with the small neck sttucture.

the large neck structure increases the maximum vertical ridge load by only 4.5%.

3. TIle maximum horizontal sheet ice loads exerted on the small neck structure and the large

neck: structure are 43.8 leN and 49.8 leN. respectively. The large neck: increases the

maximum borizontal sheet ice load by 13.7%.

4. The maximum vertical sheet ice forces exened on the small neck structure and the large

neck stlUCcure are 53.9 leN and 51.1 leN. respectively. The large neck decreases the

maximum vertical sheet ice load by $.2%.

The trend given in items II and 1/3 above agree with the results from the analysis of the

pbysical teSts given in Table 4.6 (Section 4.3.3) and Figure 4.12 (Section 4.4.3), Le.• the large

neck increases tbe maximum borizontal forces for bom ridges and sheets. However. the analysis

of the physical testS show that large neck decreases the maximum vertical ridge load (Table 4.6)

but increases the maximum vertical sheet ice loads (Figure 4.11); these trends of the nec.k:
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influence on the maximum vertical forces do DOt agree with the results of the numerical

simulation given in items #2 and #4 above.

The disagreement could be caused by many factors; me major ones may be the errors in

the analysis of the tests, the tests themselves. and the numerical analysis. As mentioned at the

beginning of lhis section. the analysis of the tests does not eliminate all the factors other than

DeCk. size:, which might be one source of the error. If an error of 10% (or even more) in the

physical tests and the numerical simulations is found. it won't surprise an engineer. Besides. the

trend given in Table 4.6 and Figure 4.12 is in a least square sense. As shown in Figure 4.13,

there are indeed a few cases of large neck tests giving maximum venica1 sbeet ice forces

significantly lower than me best fit values for the small neck: strueture.
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The ridge loads on a sttuClUr"e. as shown in Chapter 3. are usually much higber than lhe sheet

ice loads. The lnternational Association for Hydraulic Research (lAHR) Working Group on Ice

Forces (Wessels and Kato 1989) bas recommended: "at least similar (to those for sheet ice)

efforts should be made to study the ice forces exerted on the offshore structures by pressure

ridges. as they may present the worst load case". This recommendation bas also been

apprecial'ed by iDdusuy (Chao 1992b). Indeed. an appropriate method for determining the ridge

load is of utmost imponance. All the existing analytical models were based on the tests with

SCSs. and they did not account for the particular features of the MeSs.

An analytical model is being developed in this chapter for practical use in the calculation

of the maximum ridge loads on a MeS. Sections 6.2 through 6.4 develop an analytical model

for computing ridge icc forces exerted on a MCS by infmite length ridges. Section 6.5 presents

equations for the computation of the forces exerted by ridges of finite length. A brief but quite

intensive discussion of the analytical model is given in Section 6.6. Section 6.7 deals with the

issue of ride-up force c:ompuration.

6.1 The Problem and Its Simplification

As shown by the analysis in Chapter 4, ridge craclcing is ODC of the interaction events wbich is
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likely to give rise to lhe maximum ridge load. Hence, the ridge loads generated due to the initial

and hinge cracks will be considered as possible maximum loads on a MeS. As shown in Figures

4.1 through 4.4. the ridge loads on the tested face-on MCSs in most cases (except the case of

Figure 4.2) are larger than those on edge-on MeSs. Hence. the structure is assumed to be in

face-on orientation and the ridge in broadside orientation so that the forces exened on the

sttUCIUl'e would be a maximum. The ridge is assumed to behave as an elastic beam on an elastic

foundation. subjected to vertical loads. To be conservative, the surrounding ice sheet is assumed

Dot to separate from the ridge until the hinge cracks occur.

1be attached ice sbeet significantly affects ridge defonnation and load. (ts effect has two

different coosequences: (i) increase of foundation modulus; and (ti) participation in the ridge

bending. According to Kim and Kotr'aS (1973), the aaached ice increases me foundation modulus

by u2.0wgl.. making the tola1 foundation modulus per unit length of the ridge to be:

(6.1)

wbere I. is the characteristic length oCtile ice sheet and is defined by Equation (5.5). During the

ridge bending process, tbe attached ice sheet also coDbibuleS to total rigidity. This effect of lhe

sheet can be taken into account by adding twO flanges, each with a width Be' 00 the ridge beam.

Be can be approximately determined wilh the foUowing equation:

B,:.;2I, (6.2)

Thus, Ute combination of the ridge and its surrounding ice sheet can be treated as an



148

elastic beam on an elastic foundation. Figure 6.1 shows the overall cross section of this beam

whose foundation modulus per unit length is given by Equation (6.1). TIle characteristic length

of this beam (ridge plus sheet) is given by

'f4E,l
LC·~~-k-

(6.3)

wbere J is the moment of inertia of the beam. which is sum of the moment of inertia of the

flanges. [t. aDd the moment of inertia of me isolated ridge. / .. Le.

(6.4)

From here on, this beam will be referred to as n"dge for short. whereas the ridge wilhout ice

sheet attached will be identifled as an isolated ridge.

T
H

I

Figure 6.1 Cross Section of Ridge Beam with Ice Sheet Flanges
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'The positive sense of x, y. and z axes of the Cartesian coordinate system beiDg used in

the following analysis is coincident. with that defined in Chapter 3. but its origin shifts to the

intersection aCthe ridgc's two central planes at the wa[C:c surface where the weight and buoyancy

of the ice are balanced (see Figure 6.1). The upward·acting shearing force and upward. convex

bending moment. (which makes the bottom layer of the beam to be in tension) are considered

positive. Using this coordinate system, the equation governing defonnarion of the above beam

is oflhe form.:

(6.S)

where q. the intensicy of a distributed load. will be given according to the interaction condition.

lbis equation was derived for the loaded portion of the beam. Outside the loaded poniOD, chis

equation is still valid if q is set to zero.

In Equation (6.5), the ice ridge beam is considered to be a constaDt stiffness beam under

vertical flexural loads only; this idealization has been widely accepted by industry and research

community (Kim and Kotras 1973, Wang 1979. Croasdale 1980. American Perroleum Institute

1988. Schreiber el ai 1989). Additional calculations carried out (0 show sufficicocy of

considering vertical loads oDly are given in Appendix C. One question that needs to be answered

is the error due to application of elementary bending theory on which Equation (6.5) is based.

From the results of an elasticity solution reponed by Higdon er aL (1967, p. 257), it is fouod that

bending stress (in y direction) from elementary theory is very close to that from more exact
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lheory of elasticity. The differeoce between using me elementary theory and the elasticity theory

is less than 0.2 percent. The vertical stress (in z direction) calculated from elasticity theory is

much less than the stress in y direction computed from elementary beam theory. for a beam

whose length is several times the depth. Shear stress is the: same for both the elemcnwy beam

bending tbeo[)' and the elasticity theory; it has a zero value at top and bottom fibres and reaches

irs maximum value at beam's neutral axis. In this analysis. the ice ridge is considered [0 be a

brittle material. i.e., once its maximum stress equals ridge strength the ridge cracks across its

entire cross section. Since !.be maximum stress for this beading problem occurs at the top or

boaom fibre. shear stress does not affect the maximum beDding stress, and comequently does

not affect accuracy of calculation of maximum. loads on a MCS.

The ridge cracking loads can be obtained by solving Equation (6.5) by me superposition

method (Hetenyi 1946). The approach 10 be used consists of three steps:

1. Choose a reasonably simplified loading coDdition(s) for initial (central) cracking and

binge cracking process.

2. Under each given loading condition. the bending moment M(y) will be derived. And

men. the location of the maximum bending moment, Y. will be determined by solving

the roUowing equation:

dM(y) -0
dy

(6.6)
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1llis location is considered as the section where the end:: will appear. Tbe maximum

bending moment M_ = M(Y) can be found out by substituting Y back into the

expression of the bending momCDl.

3. Ooce the maximum bending moment M_ is deten:niDed. the maximum ridge load for

that particular cracking process will be given by tbe equation:

M '" _ 0,1

- <.
(6.7)

where Z. = t.. and (I, = (It, if the top layer of the ridge is in tension, and z.. ::: III and CT,

::: fT. II for the bottom Layer of the ridge in tension (see Figure 6.1). t1,. and at 10 are the

ridge flexural streogth with top layer and bottom layer in tension, respectively. The

negative sign in Equation (6.7) is due to the definition of the coordinate system and the

positive sense of the bending moment. If absolute value of MrtaT,. t,.. and 4 are used. the

negative sign sbouJd be ignored.

6.2 Loading Conditions

For tbe predominant fail~ mode of ridges (the failure pattern I. see Section 4.1), a ridge

usually undergoes an initial (cenuaJ) cracking followed by a pair of binge cracks. h is assumed

here that the maximum force occurs during either the ceottal crack: or the binge crack. depending

on whichever generates a larger load.

For a face-on MCS and a broadside ridge. we assume they have an ideal fum. contact
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along the COO[act interface during me centnl cracking process. Figure 6.2 A is a sketch showing

tbe top view of this contact condition.. The force on the ridge under this contact condition can

be simulaled with a uniformly disaibuted load as shown in Figure 6.2 8. For the convenience

of derivation of equations, the load length which equals the length of structure's facet at water

line is represented by 21. This definition will be used throughout the remaining parts of this

chapter.

- - - h

Figure 6.2 A

Figure 6.2 B

ConUCt Condition for Initial Crack

Loading Condition for Initial Crack
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After the initial (central) crack. bas formed. a pair of binge cracks will occur at a cenain

distance away from the central crack. The coo[ac{ condition for the hinge crack can vary from

fum contact along the whole interface to point contact on the two comers of the froot facet.

depeoding on ridge and sheet ice rigidity. structure size. previous interaction condition. and

many other factors. These two extreme contact cooditions can be represented by a unifomlly

distributed load and a pair of concenttated loads. respectively. 'The comer contact and the

concentrated loads are shown in Figure 6.3 A and 6.3 B. respectively. while the uniformly

distributed load and the corresponding contact condition are similar to those for the initial crack

shown in Figures 6.2A and. 6.2 B except for the fact that the central crack already exists in the

ridge for this case. Between these extreme contaet conditions. an intermediate coodition could

be considered such that the comact is quite complete at the facet comers and gradually reduces

to zero at the center line of the facet. This condition can be simulated by a triangular load. as

shown in Figure 6.4.

Figure 6.3 A Comer COD1aet for Hinge Crack
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I'

Figure 6.3 B

Figure 6.4

Conceotraled Loads for Hinge Crack

I'
n~e ==",<mTI,-..--~

Triangular Loads for Hinge Crack

Of course, lhe real contact coodition could be anything between lbe two eXb"eme

conditions or even outside them. Any of the three conditions chosen bere may be applicable only

for a few inter:action scenarios. but together mey can cover most of the contact conditions

observed during the tests.



155

6.3 Bending Moment and Crack Locations

for Infinite Ridges

FoUowing the procedures given in Section 6.1, this section will present the derived beDding

moment. !be material is organized into four subsections: the moments aDd crack locations for

the initial crack are shown in subsection 6.3.1. and those for hinge cracks under uniformly

distributed. coocenaated, and triangularly distributed loads are presented in subsectiODS 6.3.2.

6.3.3. and 6.3.4. respectively.

6.3.1 Bending Moment and Crack Location for Initial Crack

For the loading condition given in Figure 6.2 B. the beDding momeDl: in the ridge for the pan

where y ~ 0 is given as

M/yl' - ~q,L;[B(y.Q.B(I-y)J

M/yl' - ~q,L;[B(y.Q-B(y-Q]

Os:ys:l

y.1

(6.8)

where ql is intensity of the uniform load per unit length, and 4. is cba.racteristic length of the

ridge defined in Equation (6.3). B(y+l}, B(y-l}, and 8(1-y) are functions of y, t, and 4.. and

given in Appendix D. Since both the ridge and the load arc symmetrical about the x-z plane, the

bending moment in the pan of Y s;; 0 is also symmeaical with respect to those given in the

Equation (6.8).
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Application of Equation (6.6) to Equation (6.8) yields:

C(y+O - C(l-y) • 0

C(y+O - C(y-O • 0

where C(y+l), C(y-l), and C(l-y) are also given in Appendix D.

(6.9)

Solving equation (6.9) for y gives "il that dcf'1..Dt:S tile location of the section where the

crack occurs and the bending momem: M/(y) reaches its maximum value Mi. i.e.• Mi(y) = Mi _

The solution of Equation (6.9) can be expressed in a dimensionless form as follows

(6.10)

Part of its numerical values are plotted in Figure 6.5.

[n Figure 6.5. the dotted line represents y=l. the cotner of tbe structUre's facet. The

values of ylL( above this line would mean that the crack occurs outside the ice-structure interface

area. When yILt; is below this line the crack: will occur within the interface area.

Figure 6.5 shows that the initial crack: theoretically occurs at y = O. Thus. it is

reasonable to assume that the initial crack occurs at the cemer of the contact area. In the rest of

this thesis. tile analysis for hinge cracks whicb occur after the initial crack will be based on this

assumption.
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Triangular

1.5

~.. 1..
0.5

Concentrated

~
1'\ .

Initial crack

o 0.5 1

211L,

1.5

Figure 6.5 Normalized Crack Location of Initial and Hinge Cracks

The physical tests and the numerical simulatioas well support lbe above results. Tables

4.4 and 4.5 (in Chapter 4) showed me initial crack of many ridges tested with face-on suu.cture

occurred at or near the center of me contact area. The numerical simulation also showed an

initial crack. at the center of the ridge.

After obtaining Yi' one can determine the maximum moment Mi by substituting Yj into

equations (6.8). In geoeral, Mf can be expressed as

M, - q,f,(l, L,)

where /i(/.LJ is a function of I and Lc and will be addressed in Section 6.4.

(6.11)
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6.3.2 Bending Moment and Cnock Location for Hinge Cnock under

Uniformly Distributed Load Condition

After the occuaeoce of the central (initial) crack:. the ridge breaks into two semi·infinite

segments; it is assumed that me loads and lhe sectional profile are symmettical about the x-z

plane. Thus. ODe needs to consider one segment only. Under the uniformly distribuled load, the

bending moment, M4(y), along the semi-inftnite ridge can be written as

M.(y) • -i••L; [u,C{J)-.,D(y)+B(Y)+B(I-y»)

Mh) • -i••L; [u,C(y)-.,D(y)+B(y)-B(y-~J

where ltd is the intensity of the uniform load, and u1 and III are defined by

Itt =1 + B(l) - e(l)

., • 1 +28m -Cm

8m, BIy), B(I-y). BIy-I), C(l), CIy), and Diy) are given in Appendix D.

Applying Equation (6.6) to Equation (6.12) leads to

O~y:d

(6.12)

(6.13)

2u, D(y) - .,A(y) - cry) + C(l-y) • 0

2u, D(y) - .,A(y) -cry) + C(y-~ • 0

where u, aoo."2 are the coefficients defined by Equation (6.13).

O:S.yd

y.1
(6.14)
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Solving Equation (6.14), one would obtain a solution of the form

(6.15)

where y", represents the localionof the section where M.(y) reaches iLS peak value M". and hence

is the location of me binge crack. The function g.(2l1LJ is also plotted against 2ULc in Figure

6.S. 1bc figure indicates that the binge crack: caused by a unUonnly distributed load appears

outside !be ridge/structure contact area. Since the cwo semi-infinite ridge segments are

symmetrical about x-z plane. lbere is also a crack: in the other segment (lhe pan wbere y < 0),

at a distance y" away from the center crack:.

Substituting y = y" back into Equation (6.12) gives the maximum bending moment M. for the

hinge cracks under die uniformly distribulCd load. M", can be expressed in die form

(6.16)

where h(l,LJ is a function of I and Lc and will be addressed in Section 6.4.

6.3.3 Bending Moment and Crack Location for Hinge Crack under

Concentrated Load Condition

If eacb of the cwo semi-infinite ridges is subjected to a CODCeDlrated load at the contact points
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at the facet comers as sbown in Figure 6.3 A. the bending moment for the ridge within y > 0

can be derived as

M<(y). -±P<L<Is,C(Y)+C(I-y)-2"D(y)J

M<M • - ±pA [s, cry) + C(Y-Q - 2" D(y)J y,1

(6.11)

wberePt is the concentrated load on the semi-inf'mite ridge. Functions C(y}, C(l-y). CrY-i), and

D(y) are given in Appendix D. SI and S2 are functions of I and are defined as

3 1 • C(l) + D(l)

$1· C{l) + 2D(l)

Applying Equation (6.6) to Equation (6.17), we have:

sID(y)-s,A(y)-D(l-y)" 0

s:zD(Y) -Sl.A.(y) ... D(y-I) ., 0

Os.yd

y,1

(6.18)

(6.19)

FunctionA(y) is given in Appeodix D. s, and S2 are defmed in Equation (6.18). The location for

the maximum bending moment or the hinge crack. Yt • thus can be obtained by solving Equation

(6.19), and it can be expressed in the following general form:

~ • g (2lIL)
L< < <

The function gc(21IL,) is plotted also in Figure 6.5.

(6.20)

Figure 6.5 shows lbat the binge cracks caused by concentraced load could have occurred
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at three pairs of locatiODS. Firstly, a pair of cracks will appear at the sec.tiom at a distance

varying from O.79Lc (at 21ILc - 0) to I,SUe (at 21ILc = 0.89) away from the cenler of the

contact area when lYLe is less than 0.891. Secoodly, wilhin the range of 0.89 <2114<O.94 two

pairs of cracks may appear: ODC pair occurs following the above regularity. the other pair may

appear just at the contact points (i.e. the loading points). At these two pairs of locations, the

bending moments an: very close. with the maximum difference less than 10%. When the ratio

2lILc increases funber. say larger than 0.941. the cracks will occur at the loading points only.

If a ridge/structure combination bad a value of 2/lLc > 0.94. the ridge after the

occurrence of hinge cracks cannot still pass the strUCture because the width of the structure is

larger than 21 whereas the distance between the two cracks is only 21. This means tbar: other

cracks must occur to let the ridge pass beyond the structure. The approach for a semi-infinite

beam under a concenttated force at its one end can be applied (0 this problem.

Fonunately, the combination of a ridge and a sttucture which has a value of lYLe> 0.8,

does Dot occur under realistic condition. Based on the information compiled by Cammaert and

Muggeridge (1988), the calculation presented. in Appendix E of this thesis shows that the range

of ridge c.bar2c:teristic lengths for the Beaufort Sea and the Chukchi Sea is between 55 and 370

meters. If this limitation is applied to the prmotype suucwre shown in Figure 3.1. the range of

211L~ varies between 0.05 and 0.31 which is much below 0.94 or 0.89. The maximum value for

the ridges and the structural models used in the present tests was 0.47 which is also much

smaller than 0.89. Hence, one can say that considering the situations for 2t.n...: < 0.89 is good
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enough for real life situations. Thus. only one pair of crack locations (the pan: above the dashed

line) will be considered for concentrated loading conditioDS.

SUbstituting "Ie for y in equations (6.17), we have the expression of the maximum bending

moment Me as follows

M, • pJ,(~L,)

wbere fc(l,LJ is a function of I and Lc and will be addressed in Section 6.4.

6.3.4 Bending Moment and Crack Location Cor Hinge Crack

under Triangular Load Condition

(6.21)

For the ttiangulac distributed loading coodition given in Figure 6.4, the beDding moment can be

wrinen as

1 1 q,L: 21
M/yl' -.P,L,C(Y)-ZMoD(y)+81[.t(Y)-.t(I-Yl-L;B(I-y))

M/yl' -.!.P,L C(y)-.!.M,D(y)+ ••L; [.t(Yl-.t(Y-O+~B(Y-OI
4 c 2 81 L

c

Osysl

(6.22)

where q, is the maximum value of the load intensity. A.(y), Iffy-i), and Sty-I) are given in

Appendix C. M(J and Po ace the resultant moment and force. respectively, and they are
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iDdepeadeDl of Y and are defined as follows

Po • _ q,L; [1-A(Q-~B(Q-2B(Q+Ec(QJ
2/ L, L,

Mo • _ q,L; [l-A(Q-~B(Q-B(Q+J..C(m
21 Lc Lt

Applying Equation (6.6) to Equation (6.22) yields the following equations:

PoD(y)+~A(y)- q,L; [B(y)+B(l-y)-....!.ql-y)) • 0
Lc 21 L,.

Mo q,L; I
PoD(y)+T.A<Y)- U[B(y)-B<Y-Q-T,c<Y-m • 0

(6.23)

(6.24)

The solution of Equation (6.24) is the location of lhe maximum bending moment or the

location of lbe hinge crack under a pair of triangular disbibuled loads. The solution can be

expressed in the following general form:

where gl211L,) is a dimensionless function and is also ploned in Figure 6.$.

(6.25)

Substituting Y, for y in Equation (6.22) gives maximum bending moment M. which can

be expressed as follows
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wberef,(l. LJ is a function of I and L c and will be addressed in Section 6.4.

6.4 Formulae for Estimation of the Loads

Exerted by Infinite Ridges

(6.26)

The maximum. beDding moments Mi' Mil' Me. and M,givco in Equations (6.11), (6.16), (6.21),

and (6.26) are for the OCCUlTencC of initial crack: and hinge cracks under uniform. cooccotraled.

and triangular loading, respectively. The maximum loads for cracking can be determined by

applying Equation (6.7) to these maximum moments. Substituting EquatiODS (6.11), (6.16),

(6.21), and (6.26) into (6.7), one obtains the following equations:

2lq /,(1. L,> • -!!.!!!...
I 21 Z,

21q~ f~(I,Lc) • 0,,, 1

21 z"
2p !cO.Le) =~

c 2. 2:(,

lq /,(I.L,) '"' a,b I
t I z"

(6.27)

(6.28)
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In above equations. 2/q;. 2lq# lpc' and lq, are the ultimace loads for initial crack and

hinge cracks under uniform. concentrated. triangular loads. ~tively. It should also be noted

that an, me ridge flexural strength wilh itS top in leOSion. and ~ the distance from ridge's

centroidal axis 00 its tOp surface. are used in Equation (6.27) which is valid only for initial

crack. On the other band, u, •• the ridge flexural strength with itS bottom in tension and, 4. the

diswaee from the cemroidal axis to the bonom surface. are used in Equation (6.28). This is due

to the fact that the initial crack: breaks the ridge with its top in tension. whereas the hinge cracks

break the ridge with its bottom in [ension. It should also be noted that ~ and Zt. are the absolute

values of lbe corresponding disrance because their signs have already been taken into accowu

in t:be equations.

Equations (6.27) and (6.28) can be rewritten in a neater form. as:

(6.29)

(6.30)

(6.31)

(6.32)

where P,. Pr; Pc. aDd PT are the maximum initial crack load and the hinge crack load under
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unifonn. concenualed, and triangular loading conditions. Le.,

(6.33)

F,{2l1LJ. FD (2l1L.). Fcf2//L.). and F,(2l1LJ are dimensioaless load functions. whicb can be

considered to be normalized vertical ridge load for inImite ridges. def'med as follows:

21 21LcF,(-).----
L. !,(l. L.)

(6.34)

(6.35)

These load function are functions of 211L1; (the dimensionless structural facct length at

waterline level), and are shown in Figure 6.6.

20,-----~----~----~
Triangular

L:oad

15

:;.
N 10
;;:

Concentrated
Load

°O:-------:"0.'::5------~-----.J1.5

Figure 6.6 Load Functions of lnfmite Ridges
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These functions can be approximated in a general form by the following quadratic

function:

(6.36)

The coefficienlS Q", at. and ~ werede~ using the li.oear regression approach and are

listed in Table 6.1.

Crack Loading .. a, a,

Initial Crack Uniform Load (Ft) 4.0 1.7 1.2

Uniform Load (FoJ 6.2 2.7 2.0
Hinge Crack

CODCentrated Load (Fd 6.2 5.2 8.1

Triangular Load (F,) 6.2 3.4 3.8

Table 6.1 Coefficients of F(Z11LJ

Thus. the initial crack: load can be calculated with EquatiOD5 (6.29) and (6.36). The hinge

crack load. theoretically speaking, should be calculated with one aftbe equations. (6.30), (6.31),

or (6.32), depending on which loading cooditioo is most appropriate. Generally, designers would

appreciate a single simple equation for ridge load estimation rather than a number of equations

as given in Equations (6.30) through (6.32). To be conservative, the conceottated loading

condition should be used for hinge crack load estimation. Since the concentrated load is one of

extreme loading COoditiOWi and the Fcf2VLJ envelops the olher two load function curves, the
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equation for the concentrated loading condition. viz.• Equation (6.31) will predict a larger ridge

load.

It sbould be noted that formulae presented above are only valid for me venica1 ridge

loads. The horizonuJ load can be calculated using Equation (2.1).

6.5 Consideration of Ridge Length Effect

So far. the ridges coasidered are infinitely long. Many ~bers bave pointed out lhat the

ridge length could significantly affect the load if the ridges are soon (Ralston 1978. Wang 1979,

Abdelnour 1988). This effect will be investigated in lhis section.

Similar to the simplification made in section 6.1, me ridge is still assumed to be an

clastic beam on an elastic foundation. but with finite length 2L (L is the half ridge length).

Uniformly disuibuted load is also assumed to be me loading conditiOQ for initial crack fonnation

in this flDite ridge. Among the three loading conditions considered for hinge cracks. the

concentrated loading condition has been chosen as the critical one for the formation of hinge

crack: in this finite ridge. Again. this cboice would lead to a prediction of larger ridge crack

loads. Figure 6.7 is a sketch showing the interaction scenario and the loading condition for the

hinge crack formation in a finite ridge. Similar to the derivation for infinite ridges. the formulae

given below are also valid only for the estimation of maximum vertical ridge loads. The

borizontal component of a flllite length ridge can be estimated with che help of Equation (2.1).
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Figure 6.7 COlUaCt and Loading Cooditioas fOT Hinge Cracks in a Finite Ridge

6.5.1 Initial Crack Load of a F"mite Length Ridge

Using che results and the assumption chat initial crack occurs aJong center plane of the ridge used

earlier (see Section 6.3.1), ODe can directly derive an equation for the computation of initial

crack formation load for a finite ridge. At the center of the ridge. the beDding moment for lhe

initial crack can be wriaen as

• .mI. sUlhL. sUlh(L.-I,,) • sUlh(L.-I.> .mL• .m(L.-I.> (6.37)
M.(L•• l.J '"' qlzLc [ sinh2L• • sin2L. }

where qil is intensity of the uniform load. LII and I. are normalized half ridge length and baIf



facet length, respectively_

L,,'" LILt;

Applying Equation (6.7) to this case, one can express the initial crack. load. PIS' as

The load function. F.(L".I,J. is defmed by Equation (6.40) and is plotted in Figure 6.8.

170

(6.38)

(6.39)

1',-_-~-_~_~_~_~_---,

10

-".....
~ 7

2 I "" facet length at water1ine

2L =lull ridge length

Lt; =characteristic length

2/fL.-

Figure 6.8 Load Function for the Central Cl'3Ck in a Finite Length Ridge
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6.5.2 Hinge Crack Load of a Finite Length Ridge

under a Concentrated Load

For convenience in derivation of equations. two local coordinates (for y and its origin only) YI

and Y1 are defmed in this section (see Figure 6.1).

For a finite length ridge UDder a pair of concenttated loads. P~. (Figure 6.7), the bending

moment along its length is given by

M~). P.J2 C,sinhY,sinYl+Dl(coshYlsinil-sinhYtcos~)]
M~,l' p.J2C,sinhi,...i,+D,(coohi,...i,-smhy,cosY,l]

o s i, s (L~-I,) (6.41)

o s Y; s I"

Coefficients P, 0' C, . C1 • DI • and D1 are functions of L,. and i" and are given as follows

Ct = sinhL.. eos(l."-I,)cosbt... -siDL.. cosh(L.. -l,)cosl,,

D, • smhL.lm.{L.-I,,) coshl.-cos(L.-1,,)smhIJ

+smL.I.mh(L.-I,,) cos I.- cosh(L.-I,,) smlJ

C, = smhL. cosl.cosh(L.-I.,) -smhL. coshl. cos(L.-I,,)

D, • smhL.lsinl. cosb(L. -I,,)-cosl. smh(L. -I.,)]

+ smL.lsiDhl. cos(L. -1,,)-coshl.sin(L.-1.,)1

The normalized coordinates are defmed as

(6.42)

(6.43)
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(6.44)

Application of Equation (6.6) to Equation (6.41) gives the following:

Ct(cosb.Y1 sinYI + siDhYl COS~) + D1sinhit sin~ • 0

Cz(coshy: sin;2 + siDhJ; cos;;> + Dzsinhyzsmyz ,. 0

Their solution can be generally presented as

(6.45)

Substitution of the solutions of Equation (6.4S) into (6.41) gives me local maximum

values of the bending moments for the [wo portions of the ridge, respectively. The overall

maximum bending moment is the larger of these twO local maximum moments. After a detailed

investigation. it was observed that the overall maximum bending moment is most likely to occur

in the portion I < Y < L - I. i.e. the portion outside tbe loading area.

Again. application of Equation (6.1) to the present case gives an equation for the

estimation of the: vertical hinge crack load of a finite ridge. PHS' as follows:

(6.46)

where me load function FHCL...IJ is given below and is plotted in Figure 6.9.



173

F~,IJ represents the dimensionless load exerted by me ridge for hinge crack formation

and is a function of Lft and I,. (defined earlier in Equation (6.38». The figure is based on a

detailed computation considering a number of combination of these (wo variables.
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Figure 6.9 Load function for Hinge Cracks in a Finite Length Ridge

6.6 Discussion about the Analytical Model

The main difference of a SCS and a MeS is in their surface configuration. Since the surface of
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a MCS comprises several Oat facets. the width of contact area for the ridge with a MCS equals

the facet length if the structure is in face-on orientation and the ridge is in broadside orientation.

On the other band. the COntaCt area for a SCS and a ridge may be much narrower.

The aoa.1ytical models presented in this chaplCr may be used to compulC the maximum

ridge loads exened 00 a MeS. while the Croasdale-AbdeInour model (refer to Section 2.2.1 of

Chapter 2) was derived for SCSs. Both of these models are based on the theory of an elastic

beam on an elastic foundation (Hetenyi 1946). Because local crushing is ignored, the loading

condition for the present model is a line load with three lypes of load distribution along the

interface line (equal (0 me facet length), whereas me CroasdaIe-Abdelnour model used a point

load as the loading condition. with the load at the point of contact between the ridge and the scs

(at the center of the ridge). Thus. it is obvious that the main difference in Croasdale-Abdelnour

model and the present model is the effect of the length of the (oad, or the effect of the facet

length. In this sense, Equation (2.2) is a counterpart of Equations (6.29) through (6.32). A

discussion of lheir similarities and differences are given in Section 6.6.1. Similarly, Equarion

(2.3) is a counrerpan of Equations (6.39) and (6.46). These equations show the effet:t of ridge

length on crack loads, whicb will be discussed in Section 6.6.2.

6.6.1 Effect of Facet Length on the Loads and

Crack Locations of infinite Ridges

Comparing Equations (6.29) rhrougb (6.32) with Equation (2.2), one can see that the coefficient
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4.0 in Equation (2.2) is analogous to the load function Fl2l1Lj given in Equation (6.29), and

the coefficient 6.2 in Equation (2.2) is analogous to the load func:tioas given in Equations (6.30)

lhroug' (6.32).

The load functiODS plotted in Figure 6.6 show that both the i.nitial crack: load and the

hinge crack. load increase steadily as the dimensionless facet length 2//4 increases. The starting

point (where 211Lc = 0) of the fuoctions for initial crack and hinge crack loads are the very

values oCthe coefficients for Equation (2.2), 4.0 and 6.2, respectively_ This clearly shows that

the Croasdale's (Equation (2.2» is only a partic.u.lar case of the preseDl models. In other words.

a SCS is the particular case of a MCS with its facet length equal to zero.

From the above discussions. a conclusion may be drawn as follows: For a given ridge

and a MCS, the more facets it has. the lower the ridge load will be exencd on it. The lower

bound is the case of a SCS. or a MCS with facet length equal to zero.

A glance at the curves in Figure 6.6 may give one an impression that che ridge load,

especially the hinge crack load. on a MeS may be twice or even three times as large as the load

on a SCS if the 2l1L~ is large (let's say larger than 1.0). It is DOt aue in cea1 cases. As

mentioDed in section 6.3.3. the range of 2I1Lc for the Chukchi and Seaufon Seas where this type

of structures were proposed to be used. is 0.05 to 0.31. For me largest value of 2//4, viz.,

0.31, F,(O.Jl) "" 4.65. and FcfO.31) = 8.6. Compared with the coefficients 4.0 and 6.2. these

values of F1 and Fe are only 15% and 38.6% higher. 1be largest value of 2//4 of all the tests
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presented in Chapter 3 was 0.472. For this extreme value, the hinge crack load predicted with

the preseD1 model is about 69% larger than that from Equation (2.2), and it is about 27% for

the initial crack.

'The effect of facet length (or the number of facets) on crack location can be seell from

Figure 6.5. The initial crack for bolb. SCS and MeS occurs at the center of the ridge (or the

center of the front facet at warerliDe level). The hinge crack for SCSs. if Equation (2.2) is

applied. is always located at

where i '"' 0, 1,2, ... (6.48)

It is rarely possible to have ylL~ ~ 2.25 or. Thus. we can let i= 0 and obtain the crack location

ylLc =0.785. This, as shown in Figure 6.5. is the location where all tbe curves for binge crack:

locatiorui begin. 'This. again. shows that CroasdaIe's equation is only a special case of the

present model.

Because the values represented by curves in Figure 6.5 steadily increase as 2lILc

increases, the crack location for MeS is fanher away from the ridge center, but it wiU not be

too far since the value of 2114 UDder actual conditions is usually less than 0.31.
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6.6.2 Effect of Ridge Length on Crack Loads

Ralston (1978) pointed out that a decrease in ridge length, according to Hetenyi's (1946)

description of fInite beams. will increase the ridge load if the ridge length is relatively short. His

plotting of ridge vertical force. predicted with Hercoyi's theory, against dimellSioniess ridge

length clearly showed lhis trend.

Figure 6.8 shows the effect of ridge length on vertical central crack: load for various facet

lengths. Basically. the curves of load function can be divided into two regions by a critical value

around 2LlLc ,.. 2.9 which also to a certain extem depends on the value of dimensionless facet

length (21ILc)' When the ridge's dimensionless length is lower lhan these critical values. the load

function and thus the load decreases sharply as the dimensionless ridge length increases. As the

dimensionless ridge length increases to values larger dwl these critical values. the load function

slowly increases until 2LlLc reaches an upper threshold value about 5.8. Wilhin the range of

2ULc = 2.9 to 5.8. the value of load function is lower than its value when the ridge length is

infIniry. Hence. the effect of ridge length on vertical central crack load, according to Figure 6.8,

can be stated as follows:

I. For ridges with lengths shaner than 2.9 times of meir characteristic lengtll, me load

increases as the length decreases.

2. For ridges whose lengths faIl in me range of 2.9 to 5.8 times of their characteristic

length, me load will be lower than that of an infInite length ridge with other propenies

remainini same. 1be load slowly increases as ridge length ioc.reases.
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3. If a ridge's length is (onger lhan 5.8 times of its characteristic length. it can be

approximately trealed as an infinite ridge.

Figure 6.8 also shows that an increase in facet length gives rise [0 an increase in vertical

central crack load for a ridge with a given length and characteristic length. This is similar to the

ttend shown in Figure 6.6. The values of the load function beyond 2LlLc: = 5.8 in Figure 6.8

are in complele agreement with those in Figure 6.6 at correspoDding points of dimensionless

facet lengths 2ilLe:. It is worth mentioning here that the line with facet length equal to zero in

Figure 6.8 is euctly the same as that obtained with Equation (2.4), which is !:he vertical load

function obtained for a fmite length ridge.

The effect of ridge length on the vertical bioge crack load can be seen in Figure 6.9. [t

shows !.hat the load function decreases as the ridge length increases for all possible facet lengths.

Generally speaking. if the ridge length is longer than about 6.8 times of its characteristic length,

neglecting the effect of me ridge length results aaly in a negligible error. In other words. a ridge

can be tteated as infinitely long if its dimensionless length is larger than 6.8. 'The value of this

critical point depeods on the value of the dimensionless facet length, as shown in Figure 6.9.

For insU.nce, for a SCS (Le. l = 0). the critical point can be lowered to a value of 2LIL~ = 5.8.

In addition. Figure 6.9 also shows that facet length plays a significant role in the effect

of ridge length on binge crack: load. Basically, for a ridge with given length and cbaracteristic

length. the larger is the dimensionless facet length, the higber the load will be.
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6.6.3 Short, Fmite, and Long Ridges

According to Wang (1979), Semeniuk (1975) has divided the ridges (for the cases of SCSs) into

three groups in his modification of APOA project 87 (Semeniuk. 1975) that implemented the

Kim and Kooas method (see Chapter 2 of this thesis). The first group consists of those ridges

whose dimensionless length is less than 0.835. 1bese so-called shon ridgu were considered to

be the ridges that do not fail as they move against a cone. The second group comprises of the

ridges with dimensionless lengths in the ranges of 0.835 to 5.0. These ridges were considered

to be fmite and lbeir load should be computed using Hetenyi's finite beam theory. The ridges

with dimensionless lengths greater than 5.0 fell in the lhird group that can be ttealed as infinite

beams.

The curve for zero dimensionless facet lengths (Le .• a smoolh cone) in Figures 6.8 aIJ:i

6.9 well support the above classification. It shows that the load required to fail a very short

ridge (2IJL~ < 0.835) is unbelievably high. This ridge. as described by Ralston (1978). may

slide over the surface of the structure without cracking because the force needed for this may

be lower than mat for developing a crack in me ridge. In the case of SCSs. the effect of ridge

length. as previously pointed out, is negligible if the dimensionless ridge length is greater than

5.8. This value is quite close to the ooe (Le.• 5.0) chosen by Semeniuk (1975). In fact. when

the dimensionless ridge length is greater than 5.0. irs effect on the vertical load on a SCS (boch

initial and hinge cracks) becomes insignificant.
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In the case of MCSs, the values of me points which divid ridges into the three groups

should be increased because the load required to fail a ridge increases as lhe dimensionless facet

length increases. The detailed computation shows that ridges with 2Lf4 lower than a certain

value and 2IJLc greater than 0.1 do DOt experience hinge cracks at all. tbe critical value of

2LlLc can be roughly expressed as 6(2l1LJ. i.e.• for 2114 > 0.1. if a ridge's 2ULc < 6(2ULJ

no cracks would occur. For example. if 21ILc = 0.2. the ridge will oot have hinge crack if its

2LlLc < 1.2. The upper bound values below which the shan ridges are defined should be no

lower than the values given by the above rule. 'That is the reason why the curves with 2YLe

larger than 0.3 in Figure 6.9 begin with very high values of 2LlLr This is another aspect of the

ridge length effect.

6.6.4 The Maximum Ridge Crack Loads

With tbe present analytical model. the maximum. ridge crack load on a MCS is the larger of the

initial and hinge crack loads predicted with equations (6.39) and (6.46), or (6.29) through (6.32)

if the ridge length is long enough.

For a given ridge and strucw.rc: (i.e. the dimensionless ridge length aDd facet length are

given), it is obvious Lbat the value of hinge crack load function is larger than that for the central

crack. However, this does not mean that the hinge crack load is always larger than the central

crack load. The reasons are given below.
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For a centtal crack, the ridge ice stRngth is the one with its top surface layer in tension.

which is usually higher than lhe ice strength with its bottom swface layer in tension. and the

latter is used in equations for hinge cracks. Also. Z, is used in lhe equations for centtal crack

load, i.e. Equations (6.29) and (6.39), aDd 4 is used in me equations for binge crack load. i.e.,

Equations (6.46) and (6.30) through (6.32). Because the attached sheet is included in the ridge

beam. the modified cross section has a centroidal axis closer to the lOp, which results in a

smaller z,. and a Iaeger 4- The combined effect of all these parameters rogether can lead to the

prediction of the vertical cenrral crack load higber than that for the binge crack:. Thus. it can be

said that whether the hinge crack: or cenrraJ. crack produces the maximum load depends DOt only

the value of load function but also on the relative value of two flexural strengths and the

condition of the surrounding ice sbeet.

If me binge crack governs the maximum crack load. me load predicted wilh Equation

(6.46) is larger than that obtained for infinite length ridges (Le.• Equations (6.30) througb (6.32)

). If the initial crack induces a larger load. the load predicted with Equation (6.39) is possible

to be smaller than that obtained from Equation (6.29) for 2.9 < 2L!4 < 5.8.

6.7 Ride-up Forces and Total Forces

So far, the formulation and discussions are given only for ridge crack loads. As stated in

Chapten 3 and 4, the ridge cracking is usuaUy accompanied by the sbeet ice pieces riding up

on the cone surface. This ride-up process also generates ice loads on the structure. The total
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maximum. forces should include both the ridge crack forces and the forces due to the ice pieces

riding up.

As reviewed in Section 2.4.3. the analytical model developed by Nevel (1992) is capable

ofcomputing the ride-up forces on SCSs with multiple conical sectiODS including a veItical neck.

It is just suitable for the cases of the MeSs dealt within this lhesis. The Nevel model separately

computes the breaking compooent and the ride.-up component of the total sheet icc forces. The

pan for the computation of the ride.up forces is adopted here.

The Nevel model assumes that the: broken ice pieces completely cover the front half of

the sttueture:. To apply the Nevel model to the case of the prestDJ: MCSs. it is assumed that the

front facet and the (wo front side·facetS be completely covered. with ice pieces for the face-on

orientation; for the edge-on orientation. the cwo front side-facets (no front facet in this case) are

assumed to be fully covered by the ice pieces and the side facet behind the from side-facet on

eacb side is only half covered, from its from: edge (the bebiod edge of the front side·facet) to

its cenler line (symmetrical axis).

Large variation in the bc:ight of the ride-up was observed during the tests. To be general.

lhe ice can be assumed to reach the middle of the neck: (in the vertical direc:tion). In t:be

computation for the comparison of lhe present model with the Wang and Croasdale-Abdelnour

models to be presented in Section 7.2. the ice pteces: ride-up height was taken only to the top

of the collar because the Wang model tan account for the ride-up ice only to the top of sloped
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sections (the Wang model uses pan of the Ralsron model ro compute the ride-up component).

Adding up me ride-up forces computed wilh the Nevel model to the forces given by

Equations (6.39) and (6.46) or EquatioM (6.29) through (6.32) will give the total forces acting

on a MCS due to the process of ridge cracking.
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Validation of Analytical Models

This chapter consists of three main pans: (i) verifying the models developed in the last: chapter.

(ii) cbeck.i.ng the suitability of Wang's model (Wang, Y.S., 1979 & 1984) and the Croasdale·

Abdeloour madel to estimate the ridge loads on MeSs, and (iii) examining the vatidily of the

Ralston model, the Nevel model, and the Croasdale model for the prediction of sheet ice load

on MCSs. Tbese three pans will be arranged in Sections 7.1 through 7.3. The analytical models

to be validated in Sections 7.2 and 7.3 were reviewed in Chapter 2. The verification and

validation will be performed by comparing the prediction from the analytical models wir.h the

test results compiled in Chapter 3.

A few ridges are not used in the comparison and analyses in this chapter, mainly due to

their incompleteness in data. These include ERe's tests Y2TSRl and Y2TSR2. and [ME's C53.

7.1 Verification of the Present Analytical Model

The method given in Chapter 6 bas been coded into a computer program to compute the loads

00 the MeSs for the given test conditions. The ice properties and suuetural dimensiom shown

in Chapter 3 were used as inputs.

In the ERe test series, the ridges YlnRI, YIT4Rl. YIT4R2, Y2T2Rl, and Y2TIR2
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orienwed at an oblique angle of 30". In the JlI,{E test series. the structure was in edgC-(lD

orientation for the ridge tests C4S, C46. C47A. C47B, C63. eM, C65 and C66. Basically, a

point contact, just like that for SCSs, can be assumed for these lests. Thus. the parameter Zl (the

length of the loading) is set to be zero for the above [estS for input.

For the structures in raccoOn orientation, it was assumed lhat each of the front facet and

two front side·faccts were covered with broken ice pieces. Similarly, the two front side-facets

of a sll'UC.t1U'e in edge-on orientation were also assumed fully covered with ice pieces, but only

a half of me two side·facets (behind the front side-facets) were assumed loaded with ice p)eces.

lbis latter pan of the assumption can help to properly account for the conttibution of ride-up

process [0 the toW load on an edgC-oD structure. The ice pieces were assumed to have reached

the top of the collar.

7.1.1 Comparison of Computed and Measured Loads

The computed vertical and horizontal loads using Equations (6.39) and (6.46) ace plotted in

Figure 7.1 and Figure 7.2, respectively. Since Equations (6.39) and (6.46) were derived for

fmite ridges. the effect of ridge length on ridge loads for I:hese tests were taken into account.

Because the measured and predicted forces are in three different orders for the tests in

lhree facilities, Figures 7.1 and 7.2 give a log-log plot which is expected to provide an overall

view. 1be detailed and fl.IlCr plots will be given in the Den subsection.
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The vertical and borizooral coordinates of each point in the figures are the measured and

predicted. values of the force for an individual ridge. The inclined solid line is at a 45" slope.

A point above this line means the predicted toIU is greater than the measured value. In other

words. an over prediction gives a point above the 45" line. 1be points under the line:. of course,

For quantitative evaluation of the analytical model. a set of statistical measures are

adopted. These include the mean of the force ratios of predicted to measured forces (R,), the

StaDdard deviation of force ratios (5..), tbe root mean square of relative errors of the prediction

(RMS), and the correlation coefficieot (R), as defined below:

s, •
(7.1)

R· _1_ E [(F" - F,l (Fa< - F.))
N S"'Sc /_1

where F. l and Fpl are ith measured and predicted forces. respectively, N is number of the tests

analyzed (or the number of points in Figures 7.1 or 7.2), and
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(7.2)

_ I N

F,::lIN~ F,.

Bs in Table 7.1 is the slope of the best fitting line through the origin.

Statistical OVERALL ERe TESTS lMD TESTS !ME TESTS

Measures finiIC infinite finite inftnite rmile infinite rmite infinite

Vert. 1.12 1.06 1.29 1.20 0.90 0.84 1.16 1.14
R,

Hori. 1.11 1.06 1.42 1.32 0.86 0.81 LOS 1.04

Vert. 0.37 0.33 0.38 0.34 0.31 0.21 0.31 0.31
S,

Hori. 0.41 0.37 0.46 0.43 0.28 0.18 0.22 0.23

Vert. 0.39 0.34 0.46 0.40 0.33 0.26 0.35 0.34
R.,

Hori. 0.42 0.37 0.62 0.54 0.31 0.26 0.23 0.23

Yen. 1.15 1.02 1.15 1.02 0.90 0.84 1.10 1.00
B,

Hori. 1.39 1.22 1.40 1.23 0.87 0.82 0.98 0.93

Vert. 0.93 0.93 0.75 0.75 0.85 0.93 0.77 0.73
R

Hori. 0.95 0.94 0.84 0.77 0.86 0.94 0.88 0.83

Table 7.1 Statistical Measures of the Predicted Ridge Loads

These statistical measures for the ridge load computation based on the finite ridge model

(Equations (6.39) and 6.46» are listed in Table 7.1. For the purpose of comparison. the
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statistical measures for the computation based on the infinite ridge model (Equations (6.29)

through 6.32» arc also listed in Table 7.1.

Both Table 7.1 and Figures 7.1 & 1.2 indicate that the prediction of maximum ice ridge

loads with the present analytical model agrees well with the test measurements. The overall ratio

of the predicted ro the measured forces is 1.12 for vertical force and 1.11 for borizoDtal force.

respectively. These numbers show that £he prediction is only slightly higher tllan che

mea.surement. The relatively low values of S, and~ also indicate the low error level of the

prediCtiOD.

7.1.2 Analysis of the Prediction

The predicted and measured maximum. ridge forces for the ERe. IMD and IME tests arc

separately plotted in Figures 7.3 through 7.8. for a closer look. The vertical coordinates of the

plus signs (+) in these figures represent the prediction with Equations (6.39) and (6.46), wh.icb

will be referred to as finite ridge model in the following analysis. i.e., the effect of ridge length

is WeeD into account (identified with "finite" in Table 7.1). Vertical coordinates of the circles

(0) represem the forces predicted \Vim. Equations (6.29) ao:1 (6.32) whicb will be referred to as

infmite ridge model in the analysis below. Le .• without considering the ridge length effect

(labeUed as "inftnite" in Table 7.1). The points (0 and +) in Figures 7.3. 7.5. and 7.7 are

labelled with abbreviated test number that are obtained simply by omitting the lener(s) in the full

test numbers. For instance, 241 sbown in Figure 7.3 denoteS the ERe test Y2T4Rl.
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Figures 1.3 and 7.4 show that most points are above the 45° line. which means both the

inimite and fmite ridge models overprediet the ridge loads for the ERe leSts. The numbers in

Table 1.1 also statistically show the same ueod: R, and B. for both infInite and fmite ridge

models are Iaeger than 1. They also indicate that the degree of over·prediction for the borizontal

loads is higher than that for the vertical loads. As discussed in Chapter 4 (shown in Table 4.3),

Equation (2.1) does not correctly represent the relation between the vertical and borizontalloads.

In the case of the ERe tests, the numbers in Table 4.3 showed lbat applying Equation (2.1) to

the tests will incorrectly increase the borizontalload by 8.7% on average. In other words. even

if an analytical model can perfectly predict those vertica1loads (with zero error). use of Equation

(2.1) may result in an average oyer prediction by about 8.7%. This may be pan of reason for

the over·prediction of the horizontal loads.

Compared wilh me measured vertical load of 185.8 kN fOf ridge 113 (ERe test

YITlRJ). the prediction with the finite ridge model is quite low. only 123.7 leN or 33% under­

prediction of the load. One of the factors responsible for this large error may be the

extraordinarily large venical load. The ratio of the venica1 (18S.8 kN) (0 the horizontal loads

(103 Ic.N) for YITlRJ is 1.8, the larges( of alllbe measured loads shown in Table 3.10. This

large venical load was primarily caused by the exuemely heavy ride up. UnfotlUnately, (be

present analytical model does DO( cover these ride-up events. If the venicaI hinge crack load

(130 kN) is taken as me maximum venicalload (as wrongly presented in the summary ofERC'

(es( repon) me prediction would agree well with tbe measuremeOl.
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At the other end, the analytical model significantly overpredicted both vertical and

borizontal loads for ridges 241 and 242 (the tests Y2TIRl and Y2T2R2). 1be ratio of lhe

flexwal strength "r/tlrb (top in tension to bottom in tension) for ridges 241 and 242, as shown

in Table 3.8. were 1.97 and 3.38, respectively. These unusually large ratios together with the

strong sheet ice led to the higher predicted initial crack loads. There were two factors wt might

have played I role in (he rela.tively low measured loads. Firstly, the days before me test day

were eXlRmely cold. The mean temperature for the two pm:eding days was -25°. which could

make the ice more brime. 10 fact, the video tape showed thar: the end propagated quite fae and

fast. Secondly, ridge 241 had a crack near ilS center before the test began. Although no pre­

crack was reported for ridge 242, the sheet ice in from of the ridge was damaged by the

propagated cracks from the preceding test; these could have resulted in low measured loads.

Figures 7.5 and 7.6 present the predicted and measured ridge forces for the IMD rests.

It is obvious, as shown by the graphs and the values of Rp and B. for the IMD leSLS in Table 7.1.

that the preseot analytical model significantly uoderpredicted the loads. It will be shown in the

next sectiODoflhis cbapter that applying the plasticity model (Wang 1979 & 1984) also seriously

uDderpredicts the ridge loads for the IMD tests. Table 4.6 has shown that the dimensionless

ridge loads for the IMD tests are significantly larger than those for the ERe and IME testS.

Moreover, Section 7.3 will also show that the analytical models predicting sbeet ice loads also

underestimate the sheet ice forces for the IMD teSts. The reason for these is not clear. The

complexity in failwe mode of the IMD ridges may be one, if not all, of the reasons. Alt:hough

the analytical models underpredict the loads. there is less scatter in the predicted loads for the
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IMD tests than that for the ERC tests. This can be seen from the figures. the low values of 5,..

and the relatively high values of correlation coefficient R.

Figures 7.7 and 7.8 give the prediction and the measurements for IME's tests. Generally.

the prediction agrees well with the measurements, as shown by the figures and by the fact that

R, given in Table 7.1 is very close to (slightly higher than) unily wilb. a small value of standard

deviation. The prediction for the IME tests yields the best Qvenll agreement of all the three

series tests. The largest error, 73% over-prediction. occurs for the vertical load of ridge 48.

The effect of ridge length is shown by the difference in values identified by + and 0 in

Figures 7.3 through 7.8. On the whole, the ridge length does oot affect the ridge loads very

mucb. This is due to the fact that the mean dimensionless ridge length (2LILJ for all these three

series tests (with effect of sheet ice included) was 4.74, a value quile close to the critical value

above which the effect of ridge length is negligible (refer to Section 6.62).

The effect. for each individual test is different. depending on its dimensionless ridge

length. As shown in the figures, the ridge length almost does DOt affect the ridge force for

ridges 34, 36, 37, 47, 54, 65, and n in the IMD tests, and 45,472,48,63, and 64 in the IME

tests, 221 and 222 in the ERe tests. 'The dimensionless ridge lengths for these ridges vary in the

ranges of 5.5 to 8.2. On the other hand, the effect is significant for the following ridges: ERC's

ridge 123, 124, 133, and 141, IMD's 44, 53, 74, and 75, and IME's 58, 59, and 66. The

dimensionless ridge length for these ridges fall in the ranges of 3.1 (0 4.4.
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tbe degree of the ridge length effect also depends on which crack governs the maximum

ridge force. If the initial crack results in the maximum force. the effect may only slighlly reduce

lb.e ridge load usually. Ridges that belong (0 this category include: 112. 113. 131, 142. 23l.

232.241 and 242 for the ERe tests, 33. 45. and 61 for the IMD tests, and 46. 471, 49. 51. and

64 for the IME tests. If the hinge crack gives rise to the maximum force. lhe effect usually

increases inversely proportional [0 the dimcosionIess ridge length. The cases in which the effect

of the dimensionless ridge length is insignificant includes ridges S3 and 74 in the IMD tests and

ridges 51 and 52 in the lME tests. Ridges 141. 123. and 133 in the ERe tests, 58. 59. and 66

in the IME tests, and 7S in the lMD lCSts belong to the cases in which the ridge length effect

is significam.

7.2 Validation of Other Analytical Models

for Ridge Load Estimation

One of the concerns on che Mess was the validity of those analytical models which were widely

accepted for SCSs. This sectioo evaJuates two typical analytical models, Wang's model (1979

& 1984) and the Croasda.Ie-AbdeInouc model (CroasdaIe 1980. Abdelnour 1981 & 1988), by

comparing £heir predictions with the test results presented in Chapters 3 and 4. Moreover.

comparison between the analytical models and the present model (given in Chapter 6) will also

be carried out to further evaluate them.
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Wang's model and the present model include the ride-up forces. but the Croasdale­

Abdelnour model does not. To make the predictions comparable between lhe analytical models.

the ride-up forces computed with the Nevel model (the same as those for the present model) are

added lO the prediction wing the CroasdaIe·Abdelnour model as lhe total ridge ice loads. Since

Wang's model is incapable of accounting for the effect of ice ride-up on the vertical neck. the

height of ice ride-up is taken from the waterline to the top of the collar for all three models.

7.2.1 The Load Predictions

The predicted loads with the lhree analytical models together with those mea.swed are ploned

in Figures 7.9 through 7.14. Although both the fmite ridge and the infinite ridge formulations

for the present analytical model and the Croasdale·Abdelnour model were applied to predict me

ridge loads. only those from fInite ridge formulations (i.e. wir.h ridge length taken into account)

are presented in these figures. However. the results of the prediction with infinite ridge

formulations will also be discussed in the next subsection.

In these figures, the symbols "0", "+". and "x" represent the predictions of the

present model. Wang's model, and the CroasdaJe-Abdelnour model (labeUed as C-A in the

figures), respectively. Their best fit lines through the origin of the coordinate are given by dash

line. dash-dot line. and dotted line, respectively. The solid line in these figures has a slope of

45°. The points and lines above this solid line mean that the a.naIytical model over-predicts the

loads. otherwise. the analytical model under·predicts me loads.
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7.2.2 Evaluation or the Analytical Models

Although the gnphs in Figures 1.9 through 7.14 show the difference in me predictions from

three ana.lytical models. it is still difficult to quantitatively evaluate them. Again. the statistical

quantities given in Equation (7.1) are used to help the evaluation. The compu[t(f statistical

quantities for the venical and the borizoota.lloads of each of the three facilities' tesu ace given

in Tables 7.2 and 7.3, respectively.

MODEL TESTS R, S, RMS R II,

ERC LSI 0.54 0.74 0.79 1.25
Wang's Model

lMD 0.79 0.37 0.43 0.78 0.74

!ME 1.09 0.22 0.23 0.90 1.07

ERC 1.17 0.37 0.41 0.71 0.96
Finite

lMD 0.75 0.22 0.33 0.89 0.78the Beam
Croasdale Theory !ME 0.99 0.23 0.23 0.85 0.94

and
Abdelnour ERC 1.13 0.34 0.37 0.69 0.92

Model InfInite
lMD 0.74 0.19 0.32 0.94 0.75Beam

Theory !ME 0.98 0.24 0.24 0.82 0.92

ERC 1.29 0.38 0.48 0.75 1.15
Finite

lMD 0.90 0.31 0.33 0.85 0.90Beam
The Theory !ME 1.16 0.31 0.35 o.n 1.10

Present
Analytical ERC 1.20 0.34 0.40 0.75 1.02

Model Infmite
lMD 0.84 0.21 0.26 0.93 0.84Beam

Theory !ME 1.14 0.31 0.34 0.73 1.00

Table 7.2 Statistical Measures of Vertical Load Predictions for the Three Models
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MODEL TESTS R, S, RMS R B,

ERC 1.67 0.62 0.92 0.86 L51
Wang's Model

lMD 0.76 0.34 0.41 0.79 0.72

!ME 1.06 0.26 0.26 0.85 0.96

ERC 1.28 0.44 0.52 0.17 1.16
Finite

lMD 0.73 0.20 0.34 0.89 0.75
!he Beam

Croasdale Theory !ME 0.91 0.20 0.22 0.87 0.82
and

Abdelnour ERC 1.24 0.42 0.48 0.70 1.11

Model Infinite
lMD 0.71 0.16 0.33 0.96 0.72Beam

Theory !ME 0.90 0.22 0.24 0.84 0.80

ERC 1.42 0.46 0.62 0.84 1.40
Finite

lMD 0.86 0.28 0.31 0.86 0.87The Beam
!'=em Theory !ME 1.05 0.22 0.23 0.88 0.98

Analytical
ERC 1.32 0.43 0.54 0.17 1.23Model

Infmitc
IMD 0.81 0.18 0.26 0.94 0.82

Beam
Theory !ME 1.04 0.23 0.23 0.83 0.93

Table 7.3 Statistical Measures of Horizontal Load. Predictions for the Three Models

To quantitatively evaluate the analytical models. the rules for judging the qUality of their

predictions are defined as : A model is considered to be better if its' prediction yields i) R,

closer to or sligbtly larger than unity wilh smaller~. ii) relatively smaller RMS. iii) a larger

R, closer (0 unity. and IV) B. closer to or slightly larger than unity.

Let's first look at the Wang model. This model, on an average, over-predicted the loads
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by $1~ for vertica.lloads and by 67% for borizontalloads aCtbe ERe tests, as shown in Tables

7.2 and 7.3. Figures 7.9 and 7.10 as well as the corresponding values of the statistical measures

in Tables 7.2 and 7.3 show that the prediction had a large scatter. resulting in large values of

root mean square ("RMS" in the tables). On the other hand, the Wang model significantly

under-predicted both the vertical and horizontal loads for the IMD tests, and the data are less

scattered. Its prediction for the lME lests yielded a very good agreement with the measurements.

lbe average ratio Rp is very close to unicy with relatively smaller S".

Croasdale-Abdelnour's fmite ridge theory given in Equation (2.3) significantly under­

predicted the venical and horizontal loads for the IMD tests and slightly UDder-predicted both

loads for the !ME testS. However, its predictions for the ERe tests were quite good. especially

those for lhe vertical loads of the ERe tests.

[fcomparing the predictions of the three models. it can be seen from both the figures and

the tables that the preseot model is the best ODC. Both the Wang model and the present model

over-predicted the loads of the ERe tests, but the present model yields a lower prediction. For

the IMD lests alllhree models undec-predicled. bul the preseol model gives a highesl prediction

wbose R, is 0.9. 1be predictions of Wang's model and me preseol model for me IME lests are

very close and are bencr lha.n the Croasdale-AbdelDour model. The Croasdale-Abdeloour model

shows a better performance for the prediction of the ERC lests.

The CroasdaJe-Abdeloour model is based on elastic lheory and was suppc.rted by the
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saline ice tests. The Wang model. as previously pointed out. was based on plasticity theory and

was supported by the test with model ice ridges (Wang 1979). The ice ridges used in the ERe

tests were also coasuucled with saline ice and seem to behave in an elastic and brittle manner.

On the other band. the ice ridges used in the IMD and (ME tests (especially the IMD tests) were

made of model ice which seems to behave more or less in an elastic·plastic manner. Thus. it is

understandable that Wang's model did weD for the lMD and IME tests but significantly over­

predicted the ERe tests, and the CroasdaJe-Abdelnour model shows the best performance widl

lite ERe tests. Although the preseot model is also based on elastic theory, it takes the special

features of the faceted cone into account. Heoce as expected it gives a bener accuncy for the

prediction.

To provide an overall assessment of the accuracy of predictions of these models. their

overall statistical measures for all the tests in the three facilities are listed in Table 7.4. Although

the numbers in this table still show that the Croasdale-Abdelnour model under-predicts the loads.

it appears as if all three models are acceptable for the prediction of ice ridge loads on the tested

MCSs. These overall values of the statistical measures give a general idea about the models'

predictions. but cover over the large errors for tests at eacb individual facility. For instance. lhe

significant over-prediction for me ERe tests and under-prediction for the rMD tests by the Wang

model are partly cam:eUed to give a R" close to L Similar charges also occurred to the

Croasdale-Abdelnour and the present models. The effect of the cancellation is (0 a lower degree

in the present model.
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MODEL R, S, RMS R B,

Wang's model l.l3 0.49 0.51 0.94 1.24

CroasdaJe- finite 0.91 0.33 0.33 0.92 0.96
VERTICAL Abde1oou<

WAD model infmite 0.95 0.31 0.31 0.92 0.92

the Present finite l.l2 0.37 0.39 0.93 1.15
model

infinite l.06 0.33 0.34 0.93 l.02

Wang's model l.l6 0.58 0.60 0.97 1.50

HORIZONTAL CroasdaIe- finite 0.91 0.38 0.38 0.95 l.l5

WAD Abde1oou<
model infinite 0.95 0.36 0.37 0.93 1.10

lhe Present fmite 1.11 0.41 0.42 0.95 1.39
Model

infinite l.06 0.37 0.37 0.94 1.22

Table 7.4 Overall Statistical Measures of PredictiODS of the Three Models

A noticeable fearure of the predicted loads. ploued in Figures 7.9 lhrough 1.14, should

be pointed OUt and explained. lhat is the overlaps of the "0" and "x" for some of me ERe tests

and the !ME tests. These occur on those ridges that were oblique at a 300 angle for the ERe

tests and those tested with the structure in an edge-on orienration for the IME tests. In all these

cases, the contact area was assumed to be a point; in other words. a point load at me center line

of the ridges was assumed. As previously stated, the difference between the present model and

the Croasdale-Abdelnour model is the loading condition. and the Croasdale-Abdelnour model

is identical to the present model when the contact area becomes a point. Hecce the point loading

condition of the tests that was used as an input ro lbese two models bas made lheir prediction
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identical ro one another.

7.3 Validation of the Theoretical Models

for Sheet Ice Load Prediction

Another pan of the concern three. stated in Chapter 1. was the validity of those theoretical

models for prediction of floe ice loads on MCSs. 1besc: models were all developed forSCSs and

widely used or accepted for such structures. 1beic validicy will be examined in this section.

7.3.1 The models and the Inputs

RalslOO's model (1918 & 1980) has been most widely used for the prediction of sheet ice loads

on SCSs and is recommended by the American Petroleum (nstinue (1988). Croasda1e's (1980)

three dimensional model (ro be abbreviated as Croasdalc's model) was another widely accepted

earlier model. These (wo models can be considered as representatives of their kind based on

plasticity theory and elasticity theory. respectively. Therefore. these two models together wilh

the Nevel model (Nevel, 1m) will be evaluated in this sectiOD.

The recently developed Nevel's model is considered to be conceptually more suitable for

application to Mess because of its characteristics:

A. It divides the ice floe into several wedges that act agaM a cone and ride up on the
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cooc's surface. The forces are exened on the cone through the cone/ice contact lines or

points. Thus. if the ice is divided into the number of wedges which is equal to the

number of facets of a balf cone, this model is capable of being directly applied to MeSs.

B. Nevel's model considers multi-section characteristics of the cone and its effect on ice

loads. Thus. theoretically speaking, it is able (0 account for the effect of the venical neck

and the ttansition from the main cone to the collar.

Due to the characteristics of the tested MCSs and the requirement of Ralston's model and

Croasdale's model. pan of the inputs to these two models were not so certain. The parameters

needed for detennining icc forces include waterline diameter. cone slope angle, and height of

ice ride-up. All these are presented and discussed as fonows:

1. Waterline diameter. Only one waterline diameter exists for a smooth cone, but there are

two for a MeS: an inscribed diameter and a circumscribed diameter and the latter is

about 1.155 times larger than the former. To show the effect of this parameter, a

separate computation for each of these diameters will be carried OUt with bolh Ralston's

and Croasdale's models. The coordinates for the cone geomeay used in Nevel's model

are those along the center line of the ice wedge. Since this line is the center line

(symmetrical axis) of a facet, thus the inscribed diameter is chosen as a reasonable value

for Nevel's model.

2. Cone slope angle. Again the six·sided cone has £wo slope angles: one is its facet angle

which is 39,8", and me odler is its corner slope angle which is about 35.8". Since the ice

floe exerted its forces mainly against die facet and rode up on it. the facet slope angle
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bas been used as the main cone slope angle for all three models.

3. Height of ice ride up. Slrictly speaking, Rals[Oo's and Croasdale's models are only

capable of accounting for the height [() the top of the main cone. However. tests have

shown that ice pieces rode up at least to the top of the collar which was up to 60

centimeaes (for 1:10 stIUcnual models) above the main cone top. Thus. the ride-up

height was measured from the waterline to the top of tbe collar. The freeboard of the

main CODe, measured from the waterline to the top of the main cone, is also taken as the

input of another ride-up height for studying the effect of this parameter. Although

Nevel's model is capable of including the effect of the neck. lbe input ride-up height for

it is also taken as the distance from the waterline to the collar top to make the

computation comparable.

7.3.2 Computation Results

Computation for a tOtal of 40 sheet ice tests using face-on.structures were conducted. These tests

are: YITIR2. YIT3R2. YIT4Rl. Y2T1R2. Y2T2R2, Y2T3Rl. and Y2T4Rl for the ERe tests,

M31. M32. M33. M3S. M41, M42. M43. M46. MSl, MS2. MS3, M62. M63. M64. M71.

M72. M73. and M76 for the IMD tests, and C16 through C30 (15 tests). C42. CSO. CS4

lhrough C57, and COO for l:he IME rests.

The predicted loads are plotted against lhose measured in Figures 7.15 through 7.20. The

keys in these figures have the foUowing meanings:
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NIL Nevel's model with cooe's inscribed diameter and the ride·up height measured from the

waterline to the top of the collar.

RIL Ralston's model with inscribed diameter and ride-up bight to the collar top.

RCL Ralston's model with circumscribed diameter and ride-up height to the collar top,

RCN Ralston's model with circumscribed. diameter and ride·up height to main cone top.

en.. eeL. and CCN are for CroasdaIc's model with diameter and ride·up height the same as

RIL. RCL. and RCN. respectively.

Because of the wide range of the loads. the plots are given in log-log format to make this

sectiOD more compact. lbe disadvantage of log-log ploning is that it may hide the scatter of the

data. This will be overcome by listing the statistical measures shown in the next subsection.

11lese graphs are only expected to provide a genenJ idea as [0 bow the data are disttibuted.

Nevel's model is capable of handling two ride-up interaction conditions one of which is

tenned as "passive action" and the other as "active action" (refer to Section 2.4.3). Compared

to passive action. the active action generates an additioaal force between the sttuChU'e and ice

Thus, the active action may result in a larger overall force. 1be active action was assumed for

all the computations shown in this subsection. [t will be shown in the next subsection that the

effect of assuming the active action is insignificant for vertica.l load prediction compared with

the passive action, but it slightly increases the horizontal load.
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Figure 7.19 Venical Sheet Ice Loads, NIL. ReN, and CCN
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7.3.3 Analysis or Prediction

First of all. lel's look: at the overall performance of each model for all the tests. The statistical

measures for all the tests are listed in Table 7.5. The numbers in the table show that Nevel's

model (NIL), on average, provides me best prediction of all the models with all the chosen

parameter (Le.• me diamerer and ride-up beight) combinations. RCL gives the second best

average prediction with vertical loads slightly under-predicted aDd borizontalloads significan1ly

over-predicted. RIL also yields reasonable prediction on average. All others including eel.

CIL. CCN. and RCN significantly under-predict the loads.

R. S, RMS R
Model

Ver. Hori. Ver. Hori. Ver. HOO. Vcr. Hori.

NIL 1.17 1.01 0.48 0.43 0.51 0.43 0.90 0.90

RIL 0.89 1.11 0.39 0.66 0.41 0.66 0.92 0.91

ClL 0.58 0.90 0.23 0.43 0.48 0.44 0.93 0.92

RCL 0.97 1.21 0.41 0.67 0.41 0.71 0.93 0.91

CCL 0.63 0.98 0.25 0.45 0.45 0.45 0.93 0.92

RCN 0.88 0.71 0.39 0.35 0.40 0.45 0.92 0.93

CCN 0.53 0.54 0.22 0.26 0.53 0.53 0.93 0.93

Table 7.5 Overall Statistical Measures of Sheet Ice Load Prediction

As pointed out in the last section, the overill statistical measures give a geoeral idea

about a model's prediction but hide errors which may be presented for individual test series.
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1berefole. a detailed list of those statistical measures for each series teSts are given in Table 7.6

for vertical load prediction and in Table 7.7 for horizontal load prediction.

ERC IMD !ME
Model

R, 50 RMS R. 50 RMS S, RMSR,

NIL 1.26 0.68 0.73 0.83 0.23 0.29 1.42 0.36 0.55

RIL 1.35 0.71 0.79 0.77 0.15 0.28 0.82 0.20 0.28

ClL 0.73 0.38 0.47 0.43 0.09 0.58 0.65 0.16 0.38

RCL 1.42 0.74 0.85 0.82 0.15 0.24 0.93 0.23 0.24

CCL 0.77 0.40 0.46 0.46 0.09 0.55 0.73 0.18 0.33

RCN 1.29 0.69 0.75 0.73 0.17 0.32 0.86 0.21 0.26

CCN 0.65 0.36 0.50 0.37 0.10 0.64 0.61 0.15 0.42

Table 7.6 Statistical Measures for Vertical Sheet Load Prediction

ERC IMD !ME
Model

R, S, RMS R, S, RMS R, RMSS,

NIL 1.19 0.55 0.58 0.74 0.30 0.40 1.17 0.35 0.39

RIL 2.10 0.99 1.49 1.01 0.28 0.28 0.82 0.26 0.32

ClL 1.44 0.67 0.80 0.73 0.22 0.35 0.85 0.26 0.30

RCL 2.22 1.02 1.59 1.09 0.30 0.32 0.94 0.29 0.29

CCL 1.52 0.70 0.87 0.78 0.24 0.32 0.95 0.28 0.29

RCN 1.13 0.52 0.54 0.57 0.22 0.49 0.68 0.22 0.38

CCN 0.71 0.34 0.45 0.36 0.16 0.66 0.63 0.20 0.42

Table 7.7 Statistical Measures for Horizontal Sheet Load Prediction
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It is shown from the tables thal Ralston's model (RCL, RIL. and RCN) and Nevel's

model (Nll.) oYer predicted both the venica.l and borizontal loads for the ERe tests, while

Croasdalc's model (Cn. and eeL) significantly under·predicted the vertical loads aDd over­

predicted the horizontal loads; CCN model under-predicted both the horizontal and vertical

loads. It seems that Croasdalc's model is better than Ralston's model for horizontal load

prediction but worse for vertical load prediction. Of all the models, Nevel (NIL) and RCN of

Ralston model give the best predictions.

For IMD's tests, all the models undc:r-pttdicted the vertical loads with NIL and RCL

giving the highest prediction. RCL and RIL predict the horizontal loads very well but all the

others under-predict the horizontal loads. Generally, Ralston model's prediction is slightly better

than that from Nevel's model which. however, performed better than Croasdalc's model. If the

IMD tests alone are used to judge the models. RCL may be the best choice. There are four tests,

M71. M72. M73. and M76. in me IMD series for which NIL considerably under-predicled the

horizontal loads. The data given in Table 3.12 of Chapter 3 showed me ratio of the measured

horizonraJ force to the vertical to be near 2 for these four tests whicb is unreasonably large,

while the ratio for the~ of the tests was eilber smaller than or very close to 1.

In the !ME teSts, i[ nuns out that Nll... is the only ODC which over-predic[ed the loads.

Compared with the predic[ion by Croasdale's model and the other cases of Ralston's model,

ReL of Ralston model gave a good prediction for the IME tests.
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Combining lbe analyses given above along with all the information gleaned out from

graphs shown in Figures 1.15 through 7.20 and the numbers listed in Tables 7.5 through 7.7.

we may draw the cooclusioD as follows: Nevel model (NIL) is fairly suitable for application to

prediction of sbeet ice loads on MeSs such as those tested. If proper parameters are chosen.

Ra1ston's model is also applicable to MeSs. like RCL or RIL. Croasdalc's three dimensional

model generally under·predicted the loads even though it yielded some good prediction for me

ERe tests.

To further lest Nevel's model and examine the effect oftbc: choice of passive action and

active action, another (wo input conditions are applied to the model. Both of these cooditions

consider lhe icc: ride-up on the vertical neck, and active action is assumed for me fIm one,

which is being labelled as NNA. while the second one considers the passive action and is tenned

as NNP. 1be prediction of Nevel's model for these two conditions are plotted in Figures 7.21

and 7.22. The corTeSpOOding statistical measures are given in Table 7.8.

NNA NNP
TESTS

R, S, RMS R. S. RMS

Ver. 1.45 0.79 0.91 1.45 0.79 0.91
ERe Hori. 1.52 0.69 0.86 1.29 0.59 0.66

Ver. 0.95 0.25 0.26 0.94 0.25 0.26
lMD Hori. 0.91 0.34 0.36 0.78 0.31 0.37

Ver. 1.46 0.37 0.59 1.46 0.37 0.59
!ME Hon. 1.24 0.37 0.44 1.19 0.35 0.40

Vcr. 1.27 0.50 0.57 l.27 0.50 0.57
OVERAll. Hon. 1.16 0.48 0.51 l.05 0.44 0.44

Table 7.8 Statistical Measures of NNA and NNP Predictions
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Figure 7.22 Predicted Horizontal Sheet Ice Loads with NNA and NNP
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Figure 7.21 shows that the predicled vertical loads Ys. the measured vertical loads for

the ERe and lME tests were mainly located above the 450 line. which means that me model

gives a comervative prediction for these two series tests. Although some points for the IMD

tests are below the line, most points are basically fairly close to the line. The numbers in Table

7.8 give quantitative description of this aend. R, bas a value of 1.45 for the ERe test witlJ

relatively large value of Spo and RMS which means the data are quite widely spread. and an

almost the same value of R,.. 1.46. for the IME tests accompanied by smaller values of S, and

RMS representing a better prediction. R,. drops to 0.95 (for NNA. and 0.94 for NNP) for the

IMD tests but is still close enougb to the perfect value of 1. indicating a slightly less under­

prediction for these tests.

A similar trend is reflected in Figure 7.22 and by the numbers for horizontal load

prediction in sbown Table 7.8. The exception is tbe tremendous under-prediction for four of the

IMD tests (M1l, M72. M73. and M76) for which the reason bas been previously explored in

this section. From the above discussion and the infonnation extracted from the overall statistical

measures in Table 7.8. it is seen that Nevel's model considering the ride-up on the neck: gives

a good prediction of sheet icc loads on the tested MeSs.

An interesting feature of tbesc prediction is that NNA aDd NNP give almost the same

value of the vertical loads (Figure 7.21) but slightly different for horizontal load prediction

(Figure 7.22). lbe reason for this is quite simple. The active action applied in NNA generateS

additional forces on the collar and the venical neck: sections and these additiooaJ forces only take
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a small poniOD of lotalloads on I:he structure. Since the neck was vertical and the slope of collar

facet was steeper (compared [0 the slope of the main cone, see Figure 3.1), the additional forces

mainly contributed to the borizoDtal component of the lOta! force.



Chapter 8 Conclusions and

Recommendations

210

1be study presented in this thesis covers quite a wide range of topics on ice loads exerted on the

newly proposed MCS. 1be results are summarized in such a manner that the industry's concerns

are addressed in the order given in Chapter 1. and are presented in three sections (8.1 through

8.3). Section 8.4 is arranged to summarize the main COIllributioDS made during the course of lhe

present investigations. Some recommendations for further work are also given in Section 8.S.

8.1 Conclusions Regarding Ice Failure Mechanisms

and Maximum Loads

Both the leSlS and numerical simulations show that ice ridges and ice sheets failed in berx1ing

modes; this is quite similar to the failure mechanisms obtained for ice interaction with SCSs.

Conclusions regarding ice crack patterns, events causing the maximum ice loads. and the effect

of sauctwal orientation 00 crack: panern and ice loads are given in this section. These results

and cooclusions are expected to address concern # I (Section 1.1).
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8.1.1 Ice Ridge and Ice Sheet Crack patterns

Three ridge failure patterns were identified (presented in subsections 4.1.2. 4.1.3. and 4.1.4).

The predominant pattern is pattern I whicb is quite similar (0 the pattern observed for ridgelSCS

interaction. A coaunon feature for the other two crack patterns is the closer distance berween

cracks and also more the presence of local cracks.

Ice sheet crack patterns (subsection 4.1.1) are also similar to lhose for SCSs. but (WO

simultaneous radial cracks extending from the comers of the front facet occurred as initial cracks

in a I1UIIlber of lCSlS which bave been rarely seen in the case of SCSs.

8.1.2 Events Generating Maximum Loads

Besides the initial and the hinge cracking, large ice pieces riding-up or accumulating on the

structure's surface were also eveots which caused the maximum ridge loads (subsection 4.2.1).

The maximum sheet ice loads occurred after sufficient broken ice pieces accumulated in front

of the structure and covered the structure's surface (subsections 4.1.1, 5.2.4, and 5.4.1).

8.1.3 Effect of Structural Orientation

Compared to raccoOn orientation, edge-on oricmation resulted in a smaller distance betweeo cwo

hinge cracks in the ridges. The initial cracks in the ridges for the edge-on MeSs occ.urred at me
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centre of the ridge (the contact point) for nearly all r.he tests, while a few of the initial cracks

for raccoOn MCSs oc::cuIRd Deal' to but DOt at the centre of the ridges (refer to subsection 4.3.2).

In the interaction with an ice sheet. the front edge of an edge-on MCS acted like a inclined rigid

wedge to initiate a radial crack extending from the edge and to separate ice sheet into (wo

wedges (subsection4.LI).

Compared to the face-on orientation. the edge-on orientation generally reduced both the

venical and the borizontal maximum sbeet ice loads; the maximum sheet ice loads on the MCSs

in intcnnediate orientation were closer (0 those for the Mes in face-on orienlation (refer (0

subsection 4.4.2).

The effect of suucturaI orientation OD maximum ridge ice loads depended on Deck size.

load components. and ridge width. For the small neck MeSs. the horizontal Loads on the face~

on MeSs were larger than their counterpartS on the edge-on MeSs; and the venica1 loads on

the face-on MeSs were larger for wide ridges and they were closer (0 the vertical loads on the

edge-on MeSs for narrow ridges. For the large acck MCSs, the vertical loads OD face-on MeSs

were slightly larger chan those on edge-on MCSs; but the horizontal forces on the face-on MCSs

were smaller than their counterparts on the edge-on MeSs for wide ridges. and they were closer

to one another for narrow ridges (subsection 4.3.2).
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8.2 Conclusions Regarding the Effect of Neck Size

The effect of neck size was industry's major concern, and it was experimcmally and numerically

examined in this thesis. A general conclusion is that the effect of neck: size is not very big, at

least it is not as signiiteant as expected (at me time the MCS prototype was proposed). Relatively

detailed conclusions for this effect on the maximum ridge loads and sheet ice loads are given in

two separate subsections below. These address concern' 2.

8.2.1 Effect of Neck Size 00 Ice Ridge Loads

80th the analyses of experimental results (subsection 4.3.3) and the numerical simulations

(subsection 5.4.3) showed that the large neck: irK:reased the maximum horizontal ridge loads. The

analyses of the leSt results indicated lhat the large DeCk reduced the maximum vertical loads, but

numerical simulation yielded a very small increase in the vertical maximum loads. For me

conservative (safer) consideration in design, an increase due to the large neck may be

considered.

8.2.2 Effect of Neck SIze 00 Ice Sheet Loads

Similar [0 the ridge loads. both the analyses of the lCStS and the numerical simulation showed

that the large neck increased the maximum horizontal sheet ice loads. The analyses of the tests
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also showed the large neck tended to increase lbe maximum vertical sheet ice loads. however

Ibe numerical simulation resulted in a small decrease in the maximum vertical load when the

sma.11 neck was replaced by the large oeck. For a safer design, it is recommended that designers

sbould consider an increase in both the borizontal and the venicalloads due to the change of chc:

neck size from the small to the large.

8.3 Conclusions Regarding Validation

of Load Equations

The conclusions summarized in this section address coocem /I 3.

8.3.1 Validation of Ridge Ice Load Equations

Of the three analytical models (Wang's model, Croasdale-Abdelnour model. and the model

presented in Chapter 6), the present model gives the best prediction for all the three series of

leStS. As a second choice. Wang's model may also be used roc the maximum ridge load

estimation, but Croasdale-Abdelnour model could seriously underestimate the maximum ridge

loads (sections 7.1 and 7.2).
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8.3.2 Validation of Sheet Ice Load Equations

Nevel's model for the maximum sheet ice load estimation is recommended for use in the case

of a MCS since it gave the best ovenll prediction for the sheet ice loads OD the leSted MeSs and

is also capable of accounting for the particular features of multiple·sectioned MeSs wilh a

vertical neck: (section 7.3). The widely used Ra.1ston model can also be used in the case of

MeSs. but it's performance may DOt be as good as the Nevel model.

8.4 Contributions of This Work

The present research work: conuibures to me study of ice loads on MCS in four different ways

as summarized below.

1. An extensive analysis of all the tests to identify the effect of various parameters.

The analysis of tests results presented in Chapter 4 is the first one covering the data from

all test series. The analysis panty addresses twO of the industry's concerns, viz.• (i)

failure patterns and mechanisms of multi-year ridge ice in front of this new MCS and the

causes that generate the maximum ridge ice loads; and (til effects of various model

pacamerers on ice loads and ice/structUre interaction. Effects of relative orientation

between the suucture and the ice ridge. width of the ice ridges. and size of the vertical

neck on ice loads on me MCS have been SOJdied. The analysis covers both the ice ridge

and sheet tests. Although these parameters were tested in the test program. their effects
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were hidden due to the variations of other parameters. By non-dimensionalizing the

results, the preseDl analysis bas successfully identified lheir effects.

2. A set of numerical simulations with a discrete element computer code.

The numerical analysis presented in Chapter 5 models the ice and saucwre using the

experimentally determined values of ice properties and simulates realistically the entire

process of iceJstructure interaction, including the effects of rubble ice and riding·up

process. lnflueoce of the ice pieces lodged under ice cover and ridge are recognized. An

insight into the mecbanism of ice sheet breaking is gained by studying ice deformations

and interaction forces. All these cannot be obtained from physical tests done due to

difficulties eooounted in iDstrumeDLltioO. More importantly, the effect of neck size is

investigated under an ideal conditioo_ Since so many parameters can affect ice/suucrure

interaction process and ice loads. the effect of neck size recognized from (he analysis of

physical tests may still contain the effect of other parameters. In the present numerical

simulations. all other parameters are kept exactly the same and only the neck size is

varied for the twO IUDS. Thus, the comparison of the results of these two IUDS bas

revealed the effect of neck size more accurately.

3. Development or an anaIyticallllOdel to predict ice ridge cracldDg loads 00 a MCS

The analytical models presented in Chapter 6 are new and are found to be immensely

useful for predicting ice ridge cracking loads on a MCS with an accuracy better than any

other existing models (the assessment is presented in Chapter 7). TIle development
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involved recognizing and simplifying ridge's loading coDditions (or ridgelsttUcmre

comact conditions), obtaining relevant analytical solutions for various loading conditions,

implementing the analytical model in a computer program. simplifying the equations to

an easily usable fonn, and computation of ice forces for various possible values of the

parameters (facet length, ridge characteristic length, ctc.). The simplified fonn of the

equations are quite easy to be used and should be a helpful and convenient rool for MCS

designers.

4. Evaluation of widely used analytical models

Industry wanted to exam.iDc whether the analytical models widely acceplCd for SCS

design could also be used for MeS. These earlier models were developed for SCSs and

were based on tests with SCS strUcnual models. A total of six (6) analytical models were

evalua[C(f in this srody using me test data obtained for MCSs. It is found that Nevel's

model and Ralston's model give reasonable load prediction if proper parameters are

chosen. Conclusions drawn from this evaluation will provide a reference basis for

designers involved in MCS designs to decide which analytical model could be better used

and what geometrical dimensions would be appropriate for input in their ice load

estimatiOD.

8.S Recommendations for Future Work

As shown in Section 4.2. the m.aximum ice ridge loads experieoced by a MCS could be
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generated either during the ridge cracking process or during the ridge scgment clearing process.

A question that is left unanswered in this study is about the conditions under which the

maximum ridge loads are generated by the cracking process and the conditions under wrucb the

ride·up process gener.ll£:$ the maximum ridge loads. Indeed. this is a very complicated problem

and verifications of these aspectS would greatly help the further wx1erstanding of the mechanism

involved in the maximum load generation.

In addition. the equations for estimating the: maximum ridge loads generated during the

clearing process need to be developed. Since the ride-up process bas been ODe of the events

causing the maximum ridge loads. the development of this type of equations would be of great

use importance for the total coverage of all possible events gene13.Ung the maximum ridge loads.
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Appendix A Assumption for Ice Behaviour

1be material behaviour of ice is quite complicated. but under certain circumstances. its

behaviour can be well approximated by simple lheory_ The analysis presented in this appendix

will sbow that an elasticity theory is acceptable for description of the material behaviour of ice

for the tests presented in this thesis.

Sanderson (1988) has compiled research results about ice behaviour which be states as

"when ice is subjected to a stress it initially deforms in three distinct ways: it undergoes an

immediate elastic strain Ec• a transient time-dependem delayed elastic strain e". and a time·

dependent nonlineac viscous creep strain t"." Tbere are well verified constitutive equations

describing this stress·suain behaviour (Sinha. 1978. L979, 1983).

1be aue elastic strain ec follows Hooke's law:

(A.I)

where E is Young's modulus and a is a stress applied. The time-depeodeDt delayed elastic strain

ed• which has also been termed as primary creep strain. is defined by
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(A.2)

where d is actual grain size and 1 is time (in seconds). The meanings of parameters c/. d1• Q p

S, and b together with their values are listed in Table A.I.

The viscous creep strain e. is expressed as foUows:

(A.3)

where t., is a reference viscous strain rate at the reference stress 0"1 and n is a constant. Their

values are also listed in Table A.l.

The total strain I!c is sum. of all the strains expressed in the above equation. Thus e., is

given by:

(A.4)

For a given ice with constanJ: Young's modulus. the true elastic stain £c is a constant

value while both ltd and t. are time dependent; hence the total strain is also time dependeDt.

Basically, me total strain gradually increases as the time continues to increase. Within the range

of a small amount of time after the stress bas been applied, the elastic strain ~ usually

dominates. For WsWICC:, if ice with a Young's modulus E - 9.5 GPa is subjected to a COmitant
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stress of 2.5 MPa, the stains e.,. ed • e... and e, at time t .. 10 seconds are (in 5.1) 2.63 x 10-1.

0.10 xlO"", 0.28 x 10-". and 3.01 x Hr', respectively. The elastic strain is 87% of the total

main.

Parameters Value Unit Meaning of the parameter

d, 1.0 meto, reference grain size

c, 9 x 10" a constant for the reference grain size d l.. 2.5 x Hr' s" inverse relaxation rate

1 a consWlt

0.34 a constant

a CODSlaDt

a, 1.0 x Hf Pa. refereoce stress

'., 1.76 X lCJ' s·' reference viscous strain rate at stress U1

Table A.I Parameters for Sinha's Model

To estimate tbe strain condition of the tested tee. the ice strength and measured modulus

are used as a constants in Equations (A.!) through (A.4). The computed strains are plotted

against time in Figures A.I and A.2 for the ERe test TlYIRl and TYITlR2. respectively_ The

computed time is up to 120 seconds. this duration is much longer than the duration of me

interaction for each ice crack in the physical tests. 'The viscous creep strains for these two tests

are very small. such that they emerge in the bottom border line of the graphs in Figures A.I and

A.2 (bence, they cannot be seen in these figures).
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Figure A.I Stra.im for lhe ERe test YITlRl, computed with Equation (A.4)
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Figure A.2 Strains for the ERe test YIT1R2. computed. with EquatiOD (A.4)
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Figures A.I and A.2 clearly show the twO features of the ice used in these tests:

i) total strain gradually increases as time increases. and

ii) elastic strain dominates.

Because t:he estimated compressive strength is mucb higher than the measured flexural

suength. strain computation was also perfonned with the compressive strengths, (Te' which are

estimated using Equations (3.1) and (3.13) in the book by Cammaert and Muggeridge (1988).

The strains at time t := 20 seconds together with those computed. using the flexural srrengths are

listed in Table A.2

YlTiRl E = 1.136 GPa YlTlR2 E = 332 MPa
Strain

a.=8921cPa at = 165 kPa (Tc = 865 kPa (1r = 128 kPa

'. 7.85 x 10-' l.4S x 10"' 2.46 x 10-) 3.64 x 10"'

'. 8.26 x 10-' 1.52 x 10"" 2.57 x 10-3 3.81 x 10....

100 x...,~ 95.0 95.' 95.1 95.5

Table A.2 Strains For YIT1Rl and YITlR2 at 20th Second of Loading

The numbers in Table A.2 sbow that the elastic strain is about 95% of the total strain.

Computations with stresses as low as one tenth of the flexural strength also give similar values

of the ratio of elastic Stain to total strain.

"The above analysis quantitatively shows that elastic strain (thus the deformation) is
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dominant for both the sheet ice test YITlRI and the ridge test YiTlR2. Therefore. elastic

behaviour of ice is assumed for the analysis of I:bese teSts.
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Estimate of Parameters for

Mohr-Coulomb Criterion

The Mobr-Coulomb criterion implemented in DECICE requires four parameters: flexural

strength art compressive strength uc• tensile strength a,. and the internal friction angle of ice Ip.

Out of I:he four parameters only the flexural ~ngth was measured for each of me ERe tests.

Because no direct relationship between flexural snength and compression or tensile strength has

been found. an alternate approach for the strength estimation was used. 'The maio idea of lhi.s

approach is that me unIcnown parameters can be estimated using available empirical formulae

and then scaled down to the lest scale.

B.1 Estimate of Compressive and Tensile Strength

Cammaen and Muggeridge (1988) have compiled most of the empirical formulae for the

estimation of compression and tensile strengths of ice. Three formulae for the estimation of

compressive. tensile, and flexunl strengths are quoted in Equations (B. I), (B.2), and (B.3),

respectively (Cammaen and Muggeridge 1988. p83. 89. and 91).

a =1.65(1 - ~)
< ~27s

(B.1)



0,=0.82(1- ~)
~142

~0, = 0.75 (1 - ~ 202 )
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(B.2)

(8.3)

where the strengths are in MPa, the briDe volume .... is in ~ and can be estimated using

Equation (B.4) (Cammaen. and Muggeridge 1988. p77).

v = S (0.532 • 49.185)., ITI

where 5/ represents the ice salinity. in %0; and T. the temperature, in "C.

(8.4)

It is assumed that the above equations are consistent. that is. if Equation (B.3) predictS

the correct flexural Strength. then Equations (B. 1) and (B.2) also sbould predict the correct

compressive and tensile strengths respectively.

In Table B.1. the strengths directly calculated using the above equations are listed in the

flISt row for each test. Within the column of (Jr, the second row of each test gives the measured

value of the flexural strength. It is clear the predicted flexural strength is much Luger than the

value measured. To use measured tlexunl strength «(1,.,.) in the failure criterion means that the
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calculated flexural sttength (u/~) is scaled down by the ratio" which is defIned as follows:

(8.5)

The values of lJ for the tests are listed in the extreme right column of Table B. 1.

According [() the assumption made above. the calculated compressive and tensile strength

which are given in the first row for each of the tests, thus. should be divided by the ratio lJ to

make them corresponding to the measured flexural strength. The values of the scaled

compressive and tensile strength are given in the second row of each test.

T S, '. Suength ( KPa ) Strength
Test Scale

("C) (%0) (%0) Sou= " " " Factor

Calculated 892 296 348
YITIRI -5 5.6 58.1

Scaled 423 140 165
2.11

Calculaled 865 277 334
YlTlR2 -5 6.0 62.2

Scaled 331 106 128
2.61

Table 8.1 Estimated Compressive and Tensile Suengtbs

10 its API Recommended Practice 2N (RP-2N), American Petroleum Instih1te (1988) also

recommended some pinned dala for use in ice strength estimation. Some of these data are

different from those on which the equation {B. I) through (B.3) were based. However. it is fouod
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Wt these data also support the above calculation. For a brine volume of 6O%G. the ratio of

tensile strength to flexural Strength given in RP-2N is about 0.75 which is fairly close to the

ratio for the above calcuJatioWi (me ratio is 0.83 for the test YIT1R2. and 0.85 for YITIRI.

which can be calculated from me numbers given in Table B.l). The ratio of calculated

compressive strength to flexural strength is near 2.6 which is slightly lower than the ratio of 3.2

(lower bouDd) for the API's data.

8.2 Internal Friction Coefficient

Another parameter required for Mohr-Coulomb criterion is the imemal friction coefficient 1Jo.

As shown in Chapter S of this thesis. the foUowing relationship holds good for the Mohr­

Coulomb criterion:

(il.6l

where T, and Uc ace shear and compressive strengths. respectively. The internal friction

coefficient, Jlfj. can be expressed in terms of internal friction angle '1':

(il.1)

Equation (B.6) can be rewritten to express the intemal friction coefficient in tenns of

compressive and shear strength, shown in Equation (B.8).
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(B.8)

If the ratio of compressive strength to shear strength is found. the internal friction coefficient.

or the friction angle. can be determioed.

Unfortunately. relatively little information is available on the shear strength. 'The data

compiled by Camnw:rt and Muggeridge (1988) including lbosc given in RP-2N (American

Petroleum Institute 1988) show quite a wide seancr. The ratio of compressive strength to the

shear strength, thus, varies over a wide range. For the briDe volume of 60%0 (the value for the

ERe tests), the data indicates that 2.2 to 4.5 may be a reasonable range for the ratio (f,jT._

Corresponding to this range is the range of 0.095 to 0.903 for imemal friction coefficient Po.

Thus. the internal angle calculated using Equation (B.7) is in the range of S.4~ to 42.1°.
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Appendix C Simplification of Ridge

Crack Problem

This appendix is arranged to demODStrate the sufficiency of considering the vertical loads only

in analysis of icc ridge cracking loads on MeSs. [n fact, many researchers (Croasdale 1980;

Abdelnour 1981.1988; Schreiber etal1989) have already used this simplified loading condition

for analysis of ice ridge cracking loads on SCSs. including a number of imponant research

projects supponed by Arctic Petroleum OperalOrs Association: APOA projects No. 57 (Kim and

Kotras 1973), No. 87 (Semeniuk 1975), No. 96 (Wang 1979. 1984). etc:. In all these analyses

except for the plasticity analysis by Wang (1979, 1984), the ridge was treated as an elastic beam

with CODStant stiffness. resting on elastic foundation. subjected to a vertical concentrated load

at the contact point.. 1bese aoalytica1 models based on elementary beDding theory and the above

idealizations are also recommended for engineering use by industry (American Petroleum

Instiblle 1988. Croasdale 1980).

In addition to the vertical force acting on the ridge, which all the above analytical models

have considered, more forces would be acting on the ridge. Could the effects of theses forces

be neglected and if so, what is the degree of error caused ? These concerns will be addressed

in this appendix.
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The cross section of the ridge is idealized (0 be rectangUlar. as shown in Figure C.I. In the test

program presented in Chapter 3, most of the ridges had a .rectangular cross section; hence this

idealization is fairly reasonable for these tests. A pair of flanges are included in lhe ridge cross

section to account for the effect of aaacbed ice sheet. According to Equations (6.2) and (5.5).

width of the flange depeDds on ice sbeet's Young's modulus~. thickness h, and Poisson's ratio

II. For the ice ridges and sheets used in the MCS test program, typical values of parameters of

an ice ridge and its flanges are given in Table C.l. In Table C.I, Z, is calculated using

dimensions a, h. and B~ and tbeir relationships to ridge height H. deCmed in other columns of

this table.

Figure C.I Forces on a Ridge
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z,

Meaning of the Symbol Ridge Flange Width
Width

Expression in Terms of 3.3 H 4.5 H
Ridge Height H

Ice Sheet
Thickness

113H

DistanCe from
Neutral Axis to
Top Fibre of

the Ridge

O.34H

Table C.l Ridge Dimension

When a ridge comes into contact with the MeS, it is subjected to a nonnal force P and

a taDgeotial force,J'. where ~ is coefficient of friction bccween ice ridge and MCS surface. The

direction of P is perpendicular to the contaCt interface and IJP is along the contact surface;

Figure C.I shows the directions of these forces.

Due to the applied load P. crushing usually occurs at me contact interface before the

ridge cracking occurs. The crushing may change the location of forces P and /J.P. To simplify

analysis. lhis effect is also ignored, as earlier researchers have done in analysis of ridge loads

on SCSs (Croasdale 1980, Abdelnour 1981, 1988). Action of forces P and,J' can be replaced

by a venical force Pv, a horizontal force PH' and two torques, Mvand MH _ Figure C.2 shows

these forces and torques.

Pv and PH can be expressed in terms of the oonnal force P. friction coefficient p.. and

slope angle of the front facet: of tbe MCS. a:
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P" '" P(cosa: - j.1 sin Cl) (C.l)

PH'" P(sincx + ,",COS a.) (C.2)

Figure C.2 Equivalent Forces on the Ridge

The tOW torque. m, acting at the centroid of the ridge and its flanges, can be expressed

(C.3)

where Mv and M
H

are the torques geoeratcd due to the shifting of location of PII and PH'
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respectively.

Values of Pv and PH vary with a number of factors. For a given friction coefficient Jl and

slope angle cr, Pvand PH are functions of normal force P. For the MCS tests, in whicb the

avenge values of ~ can be approximately taken as 0.1 and CIt - 4QO. Pv = O.704P and PK =
0.117P. Thus. we obtain me following relation for lbese MeSs:

P = 0.717 P • l.02P
B 0.704'" ...

(C.4)

P,

,
a.....?' '--'-- -/
..1__'.::,.

I---Il_ZH~

Figure C.3 Idealized Geometty of Multi-year Ridges

Value of m is srrongly dependent on shape of ridge cross section. slope angle of the

structure, and interaction process; hence it is more difficult to determine it exactly. Here only

two idealized extreme cases are discussed: Care 1 (represented by Figure C.2) in which the

forces act at the lower froot edge of the ridge; aDd Case 2 (shown in Figure C.3) where the
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forces act near the top front edge of the ridge. For cast! 1. the toW torque, m,. can be

calculated as:

m, = tapy-p'<H-Z~ = l.65HPy-O.66HPa = O.977HPy (C.5)

where a is ridge widdl. H is ridge height. and Z, is the d.istaoce from the oeuaal axis ro the mp

fibre of the ridge (refer to Figure C.2).

The ridge cross section shown in Figure C.3 is the idealized geometry of multi·yeac

ridges defined by Wright er al (1979). Due to the existence of the flanges (they are oot shown

in Figure C.) that accounts for the influence of attached ice sheet. the centrOid of entire cross

section of ridge and flanges is usually located quite close co the lower surface of attached ice

sheet such that the contact point B is nearly along the same horizontal axis as centroid c. In this

case, PH does DOt geoerale any significant torque. 'The toU1 torque for this case (case 2), m2, is

approltimately the one generated by Py :

.... O.5aPy ' 2.75HPy (C.6)

It is obvious that the total torque given by equation (C.6) is greater than the one given by

Equation (C.S). If this torque is ignored in analysis. the larger the torque, the higher the error

will be. Thus. [0 comider the worst COad-itiOD. Equation (C.6) will be used in me analysis of

error made due to ignoring the effect of torque.
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The combined action of forces Pvand PH and torque m wiJIlead to very complicated equations

for estimatiOD of ice ridge loads on aMeS. Magniwdes of stresses due to lhese forces and

torque will be analyzed below [0 determine which one is dominant aDd to estimate the degree

of error that will be generated if onc or more of these force components are ignored. Strictly

speaking, the ridge geometry shown in Figure C.) should be used in this analysis. Since the

purpose of this appendix is 00 demonstrate lhc: sufficicocy of considering the vertical load in

ridge cracking load analysis. the simplified geometry shown in Figure C.2 is used to make the

analysis simple.

If the vertical beDding moment my (about the oeuttaJ axis parallel to J: axis) for the

location y is given. the maximum. normal stress at bottom fibre. is,,, due lO my can be written as:

m.,(H-Z,)
01'=----

I.
(C.?)

where /z is the moment of inertia about neutral axis parallel to coordinate axis I and is given by:

Similarly. if borizontal bending moment mH (about the neutral axis parallel to 1: axis) for

the same location y is given. the normal stteSses at the left and right edges of the ridge. due to
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mH • can be wrinen in the following form:

where I; is the moment of inenia about the neutral axis parallel to :z axis.

1, = -& (h(a+2B,l'+(H-hla'J • S3.7 H'

(C.9)

(C. 10)

Beading moments M v and M H are linear functions of Pv and Plh respectively. Accounting

for the relation PH = 1.02 Pvo we have the foUowing relationship for the beDding momentS at

given location y:

(C.Il)

Thus. the ratio of (TN to (Tv can be derived as:

(C.i2)

Equation (C. (2) shows that tIN is mucb smaller than (Tv- If PH is neglected, it affects the nonna.l

stress by less than 2.3 percent.

11lc: maximum shear stress due (0 the torque m is very difficult (0 calculate. To simplify

the problem. we can ignore the flanges. i.e., consider the ridge only. This simplification could
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tremendously enlarge the shear suess. If the maximum shear stress for the ridge only is still

smaller than aVo the verticaJ bending is dominant loading condition.

According to Roark (1965), the maximum sbear stress in a rectangular beam can be

expressed as:

't "" In (1.50+0.98) '" 1.07 m

- a2 H 2 H)

lbe ratio OfT_ to uvca.n be expressed as:

(C.l3)

"t'lILU "" 1.07ml%

Oy ,"yB' (N-Z)
"" -!!!.. l.07xO.48x3 • 0.77 m

my 2 my
(C. 14)

Bending momell1 mv is larger lhan torque m. For instaocc my for hinge crack could be 7 H P.,

which, compared to Equation (C.6), is oearly three times m. Heoce it can be seen from Equation

(C. 14) avis much larger than "'_' Recalling that we have considered the ridge only in the above

analysis. the real shear stress can be much smaller than that obtained above.

In Equation (C.1) we used (H-ZJ. which means that we considered the upward bending

(hinge crack). For upward crown beDding, (H-ZJ should be replaced by 4 resulting in a

smaller Uv which is about half the upward bending (hinge crack) stress. From the data presented

above, we can see this bending stress to be still dominant. Hence the neglecting of the effect of

horizontal load and the torque are justified by the results shown above.
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Appendix D Functions A(y), B(y), C(y),

D(y) and Their Operations

D.l A(y), B(y), C(y), D(y)

The functions AO'), B(y), C(y), and D(y), are functions ofy and 4. They are defined as follows:

when:

A(y) "" e-i (cosy+smy)
B(y) : .-; siny

C(y) = .-; (cosy-siny)

D(y) "" e-; cosy

(D.l)

y is a variable (is the Ycoordinale in our case) and Lc is the characteristic length of a ridge.

A(I), 8(t). e(/), and D(l) can be obtained by substitutingy with I in Equation (0.1).

The functions defined in Equation (C. I) are related as follows:

D(y)+B(y) = A(y)

D(y)-B(y) • C(y)

'The relationships were helpful in deriving the equations given in Chapter 6.
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The derivatives of these functions, expressed in any of the four functions, A(y), B(y), cry). and

D(y), are given as follows

dB(y) • 2-c(y)
dy L<

dC(y) • _1-D(y)
dy Lc

d'A(y) • _1- C(y)
dy' L;

d'B(y) • _1-D(y)
dy1 L;
~ .1-A(y)

ely1 L;
d'D(y) • 1-B(y)

dy1 L;

(D.2)

The integrations can also be expressed in tenus of A(y), c.t.c.:

fA(y)dy. -L<D(y)

L
f8(y)dy = - iA(y)

fC(y)dy • L<B(y)

L
fD(y)dy. -iC(y)

In these: equations, the integral constants were igoored.

(D.3)



D.3 A(l-y), B(l-y), C(l-y), D(l-y)

and Their Derivatives

258

Substituting (t.y) for y in Equations (D.l) gives

.4(1-1) • fl-<i-i1[cos(l-y)+siD(l_y»)

B(l-y) .. e-<i-i'lsin(/_y)

C(I-y) - .-';-;> ["",,(I-1>-,;,.(I-y»)
D(l-y) .. e-(i-i> cas( I-y)

whece

and /, in our case, is ODC half of a facet length at warertine.

The derivatives of these functions can be expressed as follows

dA(l-y) • ~B(I-y)
dy L c

dB(l-y) •• ...!.C(I-y)
dy Lc

dC(I-y) • ~D(I-y)
dy L c

dD(l-y) • ...!.A(I-y)
dy Lc

(0.4)

(O.S)
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Substituting (y-J) for y in Equations (D. 1) gives

.(y_I) '" e-(i-f)(cos(y_l)+sU1(y_/)}

8(y-l) .. e-{i-i")sin(y_l)

C(y-I) •• -<;-f'[cco(y_I)_sin(y_l))

D(y-I) '" e-<i-f)cos(y-l)

The derivatives of these fuoctions can be expressed as foUows

dA(y-l) = _lB(y_l)
dy 'e

dB(y-l) = -!.C(y-I)
dy Ie

dC(y-l) = -lD(y-l)
dy Ie

dD(y-l) = _ -!.A(y-l)

dy 'e

<0.6)

(D.7)
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Appendix E Multi-Year Ice Characteristics

for Beaufort and Chukchi Sea

Cammaert and Muggeridge (1988) compiled data available in me open literature aoom multi-

year ice characteristics for the Canadian Beaufort Sea, the Alaskan Beaufort Sea and the

Chukchi Sea. Some of these data are listed in Table E.l.

Ridge Sail Height Maximum Floe ThicIaJess Ridge frequency
(m) Sbcet (m) (No. of Ridges Ibn)

Region
Mean Max.

11lickness
Mean Max.(m)

Canadian 8.9 2.2 5.2 12
Beaufort 3.3

Sea (14.3) (4.0)

Alaskan 3 to 7
Beaufort 1.7 (9.4) 1.8

Sea

Chukchi 1.6 1.6 3 to 10
Sea

Numbers in brackets dcDOle extreme icc featureS

Table E.l Multi-Year Ice Characteristics

The data for the Canadian Beaufort Sea given in Table E.l apply to the southern region

of the sea, wbett tile continental shelf extends to about ISO kilometres from sbore. The area



261

that has been explored for hydrocarbons extends to approximately the 6O-m water depth

contour. Some additiooal data have been recorded in the deeper wate. area (polar Ice Zone).

The deepest multi-year ridge keel ever measured was about 47 meters below sea level

(Cammaen and Muggeridge 1988. page 1), and multi-year ice thickness could reach as high

as 4 meters. Because the multi-year ice in this region could drift to as far south as the S-m

water depth, it should be considered in determining the design loads. Similarly. some extreme

ice features were also measured in the Alaskan Beaufort Sea. For lnstmCt. a maximum ridge

keel of about 31 meters has been recorded. The ridge sail heights corresponding to these

extreme keel heights are also i.ocluded in Table E.I (the numbers in brackets).

The lacget ice dimensions for the test program presented in Chapter 3. which was

considered as "one in 100 years in the Beaufort or Chukchi Seas". were: 27 meters for ridge

thickness. and. 8 meters for sheet thickness (Weiss. 1988).

With a given sail height, the remaining dimensions of a ridge can be approximately

determined using the idealized cross .section proftle given by Wright tl al (1979). Cox tI aJ

(1984) reported Young's modulus values for samples obtained from multi-year ridges in the

Alaskan Beaufort Sea. Mean values of 5.02 and 6.99 GPa were obtained at a strain rates

between 10" and to-} s·, and at a temperature of -SOC. Correspooding values of 5.95 and 7.62

GPa were obtained at strain rates of 1<t' and to-} sol at a temperature of -2O"C.

The characteristic length of a ridge with flanges can be calculated with Equation (6.3)
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which can also be used for calculation of the characteristic length for a ridge without sheet ice

by ignoring the cODtribution of the sheet [0 lhe foundation modulus and the moment of inertia.

The calculation results together with the values of ice dimensions and modulus used are listed

in Table E.2.

Sail Sheet 4 (m) L,(m)
Region Height Thickness

(m) (m) E,~5.02 E,-7.62 E,=5.02 E,=7.62
(GPa) (GPa) (GPa) (GPa)

3.3 2.2 111.9 124.2 95.5 104.9
Canadian

8.9 2.2 235.5 261.4 217.3 239.5Beaufort Sea
14.3 4.0 336.1 373.0 310.9 342.7

Alaskan 1.7 1.8 68.0 75.5 57.6 63.5
Beaufort Sea

9.4 1.8 245.3 272.3 228.9 252.4

Chukchi Sea 1.6 1.6 65.0 72.2 54.5 60.0

Test Target 6.3 8.0 181.7 201.7 163.9 181.2

Table E.2 Ridge Characteristic LeDgtb

In Table E.2. L, and Lc are the characteristic length for a ridge without and with

attached flanges, respectively. The mean floe thickness were used in place of the mean sheet

thickness and the maximum sheet thickness for a ridge in the Canadian Beaufort Sea since 00

sheet thiclcness was available. Also the mean sheet thickness for the AJaskan Beaufort Sea was

used for the extreme ridges due to the same reason. Two extreme values of modulus. the

lowest and the highest. given by Cox ~t oJ (1984) were lUCd.
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The dara in Table E.2 indicate that

L The highest characteristic length could be 313 meters for a ridge without ice attached,

and 342.7 meters for a ridge with ice sheet attached. under the coDdition of lhe

Canadian Beaufort Sea. 1be corresponding lowest values are 111.9 and 95.5 meters,

respectively.

2. The lowest characteristic lengths for Alaskan Beaufort Sea could be 68 meters and 57.6

meter, respectively. The highest cbaractc:ristic length could exceed 272.3 meters (or a

ridge without sheet attached. and 232 meters for a ridge with sheet anached because the

sheet thiclcness used in the calculation was the mean sheet thickness for me extreme

ridge. The maximum sheet thickness is expected to be much higber.

3. For the target ridge and sheet modeUed in the MCS [est program. the minimum

characteristic length could be 181.7 and 163.9 meters for a ridge without and with ice

sheet attached. respectively.
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