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ABSTRACT

The origin of the iron oxide apatite (IOA) deposits around Kiruna in the Norrbotten
region of northern Sweden, and similar deposits worldwide, has been debated for decades.
Contrasting theories include: 1) iron oxide extracted from an immiscible silicate liquid-iron
oxide melt; or 2) iron oxide transported and subsequently emplaced by hydrothermal fluids.
This study is the first to combine detailed geochemical studies and in situ U-Pb dating on
accessory minerals with tracer isotope geochemistry on the whole rock and mineral scale
to explore the different hypotheses.

In situ U-Pb geochronology of zircon and titanite confirms a previously documented
event around 1880-1900 Ma in the Norrbotten region, but dates the altered metavolcanic
rocks in the footwall and hanging wall of the ore and a syenite more accurately at 1884 to
1880 Ma. A granite pluton has an age of 1874 Ma, in close overlap with zircon from two
ore bodies (1877 — 1874 Ma). Zircon from the host rocks and the granite exhibit typical
igneous growth zoning, whereas all zircon from the iron ore and some from intrusions show
hydrothermal influences in texture and chemistry, including weight percent of water.
Younger U-Pb dates from monazite and titanite suggest later events influencing the Kiruna
IOA deposits between 1772 and 1628 Ma.

The isotopic systems used in this study, ranging from whole rock Sm-Nd and Lu-Hf
to in situ oxygen and Lu-Hf in zircon, all show significant differences between samples
from host rocks and ore. These differences can be best explained when invoking
hydrothermal fluids at the magmatic-to-hydrothermal transition (T > 600 °C) possibly

exsolved from the intrusions, to mobilise and concentrate iron oxides as the massive IOA
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deposits. The main ore forming event is thought to have occurred around 1874 Ma, and Hf
and Nd isotopic signatures suggest a depleted mantle source for these fluids, potentially
related to the Kiruna greenstone group, which could also be an important iron source. Later
hydrothermal events influenced the iron ores between 1772 and 1628 Ma and Sm-Nd
isotope signatures of monazite indicate crustal inputs during this time frame, when part of

the ore may have been remobilized.
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I-1

1 Introduction and Overview - The iron oxide apatite ore deposits of

Kiruna in northern Sweden

1.1 Background

The large world-class Kiirunavaara iron ore body in the Norrbotten region of Sweden
and smaller ones in the direct vicinity (e.g., Pardk, 1975; Frietsch, 1978; Bergman et al.,
2001) are considered the type locality for iron oxide apatite (IOA), sometimes referred to as
“Kiruna-type” deposits (e.g., Hildebrand, 1986; Miicke and Younessi, 1994; Valley et al.,
2010). However, both their origin and classification among the iron oxide copper gold (IOCG)
group of deposits is highly debated. IOA deposits are massive, low-Ti magnetite and/or
hematite deposits that commonly include apatite and share many similarities with IOCG
deposits, including intense wall rock alteration, but lack economic grades of Cu and Au.

IOCG deposits sensu stricto, such as the Olympic Dam deposit in Australia, are
considered by most authors to have formed involving hydrothermal fluids (Hitzman et al.,
1992; Williams, 2009; Porter, 2010), however, the discussion about the origin of IOA deposits
is ongoing. For Kiruna, the debate has lasted for decades whether these deposits are of
magmatic origin involving an immiscible iron oxide melt (Geijer, 1935; Frietsch, 1978), of
sedimentary-exhalative origin (Parak, 1975) or of hydrothermal origin (Hitzman et al., 1992;
Storey and Smith, 2017). While being very well known, and economically important for
iron oxides, IOA deposits are, surprisingly, not particularly well studied and clearly require
further investigation. The deposits around the town of Kiruna, while being mined for over

a century, are poorly understood and have been chosen as the object of this study.
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The two currently favored, but contrasting formation models for IOA deposits
worldwide are: 1) the emplacement of the iron ore by immiscible silicate liquid-iron oxide
melts; or 2) the transportation and deposition of iron by hydrothermal fluids, similar to
models for the formation of IOCG deposits. Arguments for a magmatic origin of IOA
deposits are often presented in comparison to the El Laco deposit in Chile (e.g., Nystrom
and Henriquez, 1994; Naslund et al., 2002). The magnetite-rich deposits at El Laco strongly
resembles basaltic lava flows and shows vesicles and degassing structures in parts of the
deposit. However, involvement of hydrothermal fluids and metasomatic replacement in the
ore forming processes have been suggested based on magnetite veining surrounding altered
host rocks (Rhodes et al., 1999; Sillitoe and Burrows, 2002). The most recent model for El
Laco combines a magmatic origin with an hydrothermal overprint to explain many of the
observed features (Tornos et al., 2016). Early experiments showed that immiscible iron
oxide melts can exist with high Ti contents enhancing the immiscibility gap (Philpotts,
1967) and Fe-Ti-P-rich melt globules have also been reported in natural systems
(Kamenetsky et al., 2013). Immiscible iron melts are likely responsible for the formation
of nelsonites, Fe-Ti oxide apatite rocks, which commonly contains about 30-50 percent
apatite (Rakovan, 2007) and potentially for layered intrusions with iron-rich and silica-rich
endmembers (Charlier et al., 2011). More recent experiments suggest that high contents of
phosphorous lower the liquidus temperature, enhance iron enrichment and are one of the
main factors in generating an immiscible iron liquid (Charlier and Grove, 2012). In contrast
to nelsonites, iron oxide apatite ores contain less apatite, are defined by their low Ti

contents, and the associated rock type (altered calc-alkaline volcanic rocks vs. anorthosites)
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distinguishes them from nelsonites (Rakovan, 2007). Given the chemical composition of
IOA deposits worldwide and their occurrence in calc-alkaline districts, where iron
immiscibility has not been reported and is improbable to form based on experimental results
(Charlier and Grove, 2012), an immiscible iron oxide melt seems less likely as a sole source
for Kiruna-type deposits.

Thus, the similarities between IOA and IOCG deposits, including intense wall rock
alkali alteration (Na, K + Ca), abundant low-Ti Fe oxides, enrichment in rare earth elements
(REE), especially light REE (LREE), and lack of abundant quartz, have led to the
suggestion of similar hydrothermal origins (Hitzman et al., 1992). IOA deposits are either
considered as endmember of the IOCG group (e.g., Barton and Johnson, 1996; Dill, 2010),
or represent their own deposit type, unique from IOCG deposits sensu stricto with
economic grades of Cu and/or Au (e.g., Williams, 2009; Groves et al., 2010). The most
recent classifications (e.g., Porter, 2010) tend to treat IOCG deposits sensu stricto and
Kiruna-type deposits as separate deposit classes in the larger spectrum of iron oxide-alkali
altered mineralized systems. Many IOA deposits worldwide have seen a recent peak in
interest, such as El Laco (Tornos et al., 2016) and other deposits in Chile (Knipping et al.,
2015), Pea Ridge, USA and Great Bear magmatic zone, Canada (Slack et al., 2016) using
a variety of approaches, but no unifying model has been developed yet. For a clearer answer
whether IOCG deposits sensu stricto and IOA deposits are genetically related and whether
IOA deposits are of hydrothermal or magmatic origin, more data, especially from the
deposits around Kiruna, are required to get a better understanding of the processes that

create these deposits.



1-4

1.2 Aims & Methods

A variety of geochemical tools was used in this study to gain insights on the
emplacement history of the host rocks, their subsequent alteration and the ore genesis of
the IOA deposits around Kiruna. This study is the first ever using the robust U-Pb system
in zircon to directly date the iron oxide apatite ores in the Norrbotten area to constrain the
timing between host rock emplacement, and subsequent hydrothermal alkali metasomatic
alteration, and mineralization. Further, the use of in situ geochemical tracer isotopes on
dated grains gave insights on the source and nature of the hydrothermal alteration, the ore
forming processes and the source of the iron ore (+REE). This combination of in situ U-Pb
dating with trace element tracer isotopes on grain scale (including Lu-Hf, Sm-Nd, and O
isotope systems) has never been done in the Norrbotten region to this extent. The study of
distinct hydrothermal characteristics of major minerals by detailed microscopy and of
accessory minerals by in situ chemical analyses and elemental mapping, especially zircon,
further helped to shed light on the question of an magmatic or hydrothermal origin of the
Kiruna IOA deposits.

The initial fieldwork for this PhD project was done in June 2010 under the direct
supervision of Prof. John M. Hanchar and in close collaboration with colleagues from the
Geological Survey of Sweden (SGU), the Swedish Museum of Natural History, the Lulea
University of Technology (LTU), and from the operating mining company Luossavaara-
Kiirunavaara AB (LKAB). Further samples from the operating mines Kiirunavaara and
Gruvberget were taken by geologists from LKAB to increase sample sizes in 2011 to get

more representative samples for geochronology. A second period of field work was done
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in the summer of 2012 by myself with colleagues from LTU and LKAB. Our extensive
sample set consists of unaltered host rock, altered host rock near the IOA ores (hanging
wall and footwall, veins), and the IOA ores from Kiirunavaara, and the Tuolluvaara,
Rektorn and Nukutus ore bodies from precisely known locations.

All samples were studied by polarized, reflected and cathodoluminescence (CL)
petrography of thin sections for an assessment of the mineral paragenesis and the extent of
alteration. Bulk samples were crushed using jaw crusher and disk mill so that the majority
of material processed was less than 500 pm and larger than 63 um. A split of each sample
was then pulverized for whole rock analysis of major and trace element geochemistry,
determined at the CREAIT facility (Core Research Equipment & Instrument Training
Network) at Memorial University of Newfoundland (MUN) and at Activation Laboratories
Ltd., Ontario, using X-ray fluorescence spectrometry and fusion inductively coupled
plasma mass spectrometry (ICP-MS) techniques. Selected whole rock samples were
prepared for tracer radiogenic isotopes (Nd and Hf) and measured by thermal ionization
mass spectrometry (TIMS) for Sm-Nd and solution multi collector (MC) ICPMS for Lu-
Hf.

Heavy minerals were separated from the sieved fraction using standard techniques
(Wilfley Table, manual separation of the magnetic fraction, heavy liquid separation, and a
Frantz magnetic separator), handpicked and mounted for in situ analyses. All grains were
imaged before the in situ analyses using CL and back-scattered electron (BSE) capabilities
of the FEI Quanta 400 scanning electron microscope (SEM) at MUN or the Hitachi S4300

SEM at the Swedish Museum of Natural History. Uranium-Pb geochronology on zircon,
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monazite and titanite was done using a large radius secondary ion mass spectrometer
(SIMS) at the NordSIM facility at the Swedish Museum of Natural History. The oxygen
isotopic composition of zircon was also determined on dated grains using SIMS. Major and
trace element concentrations of zircon have been analysed using electron probe
microanalyzer (EPMA) and laser ablation (LA) ICPMS. Selected zircon grains were
studied by Fourier transform infrared spectroscopy (FTIR) analyses at California Institute
of Technology (Caltech) and by transmission electron microscopy (TEM) at the Helmholtz
Centre Potsdam GeoForschungsZentrum (GFZ) German Research Centre for Geosciences
Potsdam. Tracer radiogenic isotopes in situ at the mineral scale (Lu-Hf in zircon and Sm-
Nd in monazite) using LA-MC-ICPMS (Finnigan Neptune) have been done at MUN and

at Washington State University.

1.3 Geological overview and previous work

The deposits around Kiruna in the Norrbotten region of northern Sweden are a classic
area in which to investigate IOA mineral deposits. In that region of Sweden, about 40
known iron oxide-apatite deposits and several other mineralization types have been
discovered (Fig. 1.1; Bergman et al., 2001; Martinsson, 2004). They are some of the largest
deposits of this kind in the world, and are the largest in Europe. Several ore bodies occur
around the town of Kiruna, which led to the expression “Kiruna-type” deposits for this class
of low Ti apatite-rich iron ore deposits. The deposits in this part of Sweden have been
mined intermittently since 1645 (Bergman et al., 2001) and continue to be an important
source of iron and copper. A total of 2500 million tons (Mt) of iron ore has been produced

in the Norrbotten region to date with 682 Mt (@ 46 % Fe proven and probable reserves at
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the Kiirunavaara main mine (LKAB, 2014). The Norrbotten region is characterized by a
regional Na-Cl metasomatism, evident in regional scale albitization and associated
widespread occurrence of scapolite NasAl3S19024C1 — CasAl6Si6024CO3 with a dominance
of the Cl-rich end member (Frietsch et al., 1997). Besides the economically important
apatite iron ores, also Cu sulphide mineralisation (both stratiform and epigenetic, e.g.,
Pahtohavara, Fig. 1.1), skarn-rich iron formations, and banded iron formations (BIF) occur
in that area (Bergman et al., 2001). Aitik, Sweden’s largest Cu mine southeast of Kiruna,
is suggested to have formed as a porphyry copper system with a subsequent overprint by
hydrothermal IOCG fluids (Wanhainen and Martinsson, 2010).

The iron oxide-apatite deposits are generally hosted by Svecofennian age
metavolcanic rocks, the Porphyry Group and the Porphyrite Group (ca. 1.91 - 1.88 Ga,
Bergman et al., 2001). Their average content of Fe and P is 30 - 70 % and 0.05 - 5 %,
respectively, and they are enriched in REE, with a dominance of LREE (Parak, 1973). The
Kiruna ore bodies include the huge underground mine Kiirunavaara (in operation), and the
closed mines Luossavaara, Tuolluvaara and the Per Geijer ores (see Fig. 1.2). The second
underground mine Malmberget is situated ca. 85 km SE of Kiruna in the Géllivare area and
consists of several massive ore bodies. There are several closed open pits in the area
between Kiruna and Malmberget. In the Svappavaara area, the new open pit mine
Gruvberget commenced operation in May 2010, and two open pit mines are planned at
Levedniemi and Mertainen (LKAB, 2014). The Tjarrojakka deposit SE of Kiruna is the
only known deposit where apatite iron ore and abundant Cu-sulphides are spatially and

potentially also genetically related (Edfelt et al., 2005).
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Figure 1-1. Simplified regional geology of the Norrbotten region, showing locations of selected
ore deposits (modified after Martinsson and Wanhainen, 2000). KADZ: Karesuando-Arjeplog
deformation zone; NDZ: Nautanen deformation zone. The area around the town of Kiruna is the
focus of this study.
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The apatite iron ore bodies in the Norrbotten region show a variation in their
composition (namely Fe and P contents), but also in host rock relations, lithology,
alteration, grade of metamorphism, and associated minor components. The mineralisation
has been divided into tabular ore bodies and breccia-like mineralisation style with ore veins
in altered host rock (Martinsson, 1994). Characteristic for breccia-like occurrences (e.g.,
Tuolluvaara) are low P contents, and amphibole, pyrite, chalcopyrite, and titanite as
accessory minerals. The tabular ore bodies (e.g., the Per Geijer ores Nukutus and Rektorn)
tend to have slightly higher P contents (up to 4.5 wt.%) and higher amounts of hematite.
The largest ore body Kiirunavaara (Fig. 1.3) is currently mined at 1300 m below the surface,
is ca. 5 km long in the N-S direction, and up to 100 m thick (Bergman et al., 2001). Both
Kiirunavaara and the smaller Luossavaara occur at the contact between trachyandesitic
lavas (footwall) and pyroclastic rhyodacite (hanging wall, Fig. 1.2). The smaller ore bodies
at Tuolluvaara (6 km E of Kiruna) and at Rektorn, Henry and Nukutus (sometimes referred
to as Per Geijer ore bodies, about 3 km NE of Kiruna) instead occur within the pyroclastic
rhyodacite unit, which is intensely altered in the vicinity of the ore bodies.

Until now, age constraints for the Kiruna area have been based on altered host rocks
or late phase samples and their associated minerals; the ore itself has not been dated
directly. For instance, one approach tried to bracket the age of the main ore at Kiirunavaara
with a U-Pb zircon age by Welin (1987) of 1882 + 24 Ma from the hanging wall and a
whole rock Sm-Nd isochron yielding an age of 1890 + 90 Ma for the footwall, hanging wall
and dikes crosscutting the ore (Cliff et al., 1990). In the same study, a granophyric dike and

a granitoid, both sampled underground at Kiirunavaara, yielded U-Pb multigrain zircon
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dates of 1880 = 35 Ma (upper intercept age) and 1880 =+ 3 Ma (concordia age), respectively.
The granophyric dike is described as cutting the ore, therefore providing a minimum age
for ore formation. Combining these ages and taking in account the large uncertainties, Cliff
et al. (1990) suggest a period of 20 Ma for the ore forming processes between 1900 and
1880 Ma. In a following study, eight ore samples from the Kiirunavaara mine were used to
produce a whole rock Sm-Nd isochron with a distinct younger age of 1.49 + 0.13 Ga (Cliff
and Rickard, 1992). The authors interpret these results with a major geochemical
disturbance close to 1.5 Ga. Titanite grains from the magnetite-titanite veins in the Kiruna
area were dated to fall within error in the 1900 and 1880 Ma period (U-Pb TIMS multigrain,
Romer et al., 1994). In the same study, titanite from an amygdule gives a slightly younger
upper intercept age of 1876 £9 Ma, also within error of the previous suggested period. In
more recent studies, Storey et al. (2007) and Smith et al. (2009) used the weighted mean of
206pb/297Ph dates of in situ U-Pb dating in titanite, apatite, allanite, and rutile grains from
the Norrbotten region by laser ablation inductively coupled plasma mass spectrometry (LA-
ICPMS). This technique provides a higher spatial resolu