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Abstract

Streamline simulation is a powerful tool that can be used for full field forecasting,

history matching, flood optimization, and displacement visualization. This research

thesis presents the extension of a semi-analytical streamline simulation method and

its application in the near-wellbore region in two-dimensional polar coordinate sys-

tems and three-dimensional cylindrical coordinate systems. The main objective of

this research thesis is to study the effects of the permeability heterogeneity and well

completion details in the near-wellbore region. These effects dictate the streamline

geometries, which in turn influence well productivity. It is revealed that the semi-

analytical streamline simulation method developed in this research thesis is the only

known streamline method with sufficient accuracy for streamline simulation in po-

lar/cylindrical geometries.

Previous streamline applications used a constant flow rate condition for each stream

tube. However, wells in low permeability reservoirs are often produced at constant

pressure. In this research thesis, streamline simulation is performed under constant

pressure boundaries. This is a novel and non-trivial extension of streamline simulation.

The semi-anlytical streamline method is applied in the perforated wells. Results in-

dicate that it is the only method that can accurately simulate the streamline path
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in such wells. A new skin calculation method based on the semi-anlytical stream-

line simulation method is introduced and applied in perforated wells. This new skin

calculation method is believed to be superior and can be used to examine the effect

of the perforation parameters. It provides useful information for evaluating the well

completion strategy.

In this work, the two-phase displacement process is simulated along stream tubes. So-

lutions are constructed by treating each stream tube as a flow unit by invoking novel

analytical solutions for such geometries. Visualization experiments are direct ways

to investigate the effect of the heterogeneity on flow distribution. Two-dimensional

radial waterflooding visualization experiments are performed under constant pres-

sure boundaries for homogeneous and heterogeneous porous media. The homogenous

case is used to history match and determine the relative permeabilities. Using these

relative permeabilities, the semi-analytical streamline simulation method is indepen-

dently validated against the results from the heterogeneous visualization experiments.
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Chapter 1

Introduction and Overview

Reservoir simulation is an essential tool for reservoir management. Reservoir simu-

lation combines mathematical models, geological models, numerical, and computer

programs in order to simulate the behavior of fluids within the reservoir over time.

The finite-difference numerical method is the most commonly used numerical method

in commercial reservoir simulators. In the finite-difference method, the reservoir is

divided into smaller blocks. The inter-block fluxes are then calculated. The finite-

difference method is efficient; however, with the incorporation of geological complex-

ity and reservoir characterization, streamline and stream tube simulation have been

proven more efficient (Thiele et al., 2010). In the near-wellbore region, heterogeneities

always exist because of drilling or well completion effects. This research thesis applies

a semi-analytical streamline method in the near-wellbore region to predict the flow

performance.
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1.1 Streamline and Stream Tube Modeling

Streamline simulation is a powerful tool that is used for reservoir management, history

matching, and displacement visualization. It is especially effective in solving fluid

flow problems in geologically complex and heterogeneous systems. In waterflooding,

streamline simulation is an efficient method to understand the flow process of water

and oil between injection wells and production wells. The distinguishing feature of

streamline simulation is that fluid flow is decoupled from cell-to-cell interactions, as

in conventional finite-difference methods, into one-dimensional (1D) problems along

streamlines. No fluid can flow across streamlines, hence, it is not suitable for displacing

processes involving cross-streamline transport mechanisms such as capillary pressure,

transverse dispersion, and compressibility (Datta-Gupta and King, 1995). Table 1.1

lists the advantages and disadvantages for streamline simulation.

Table 1.1: Advantages and Disadvantages for Streamline Simulation

Streamline
Simulation Feature

Advantages • Powerful in visualization of flow patterns.

• Effective in geologically complex and heterogeneous systems.

• Good at tracking water fronts in waterflooding.

• Efficient than conventional finite-difference methods because
it decoupled 3D problems into 1D problems along streamlines.

Disadvantages • Streamlines are not update at every time step.

• Streamline model ignores gravity and diffusive effects.
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Streamlines are "instantaneous lines that are everywhere tangential to the velocity

field" (Thiele, 2001). They describe the fluid movement through time in the reservoir.

The density of the streamlines indicates the magnitude of the local flow velocity.

Dense distribution indicates fast flow and sparse distribution represents slow flow.

Time-of-flight (TOF ) is a key concept in streamline simulation. It is the travel time

of a neutral particle along a streamline. This concept was first introduced by Pollock

(1988) and first used as a spatial variable by Datta-Gupta and King (1995). The

TOF provides quantitative information on the connectivity between the injector and

the producer (Datta-Gupta and King, 2007).

A most important feature in a streamline model is that streamlines constitute a space

filling, non-intersecting family of curves. Streamlines are calculated throughout the

reservoir from the instantaneous velocity field. In the uniqueness context of the

Laplace equation, for any location only one velocity vector can exist. This means

flow can only go in one direction at one location. Streamlines can never cross, and

they show the direction in which a massless fluid element will travel at any point in

time.

Streamline simulation involves the following major steps (Datta-Gupta and King,

2007):

1. Generate pressure and velocity field by numerically solving the pressure equation

under given boundary conditions and applying Darcy’s law;

2. Trace streamlines based on the local total fluid velocity;

3. Calculate time-of-flight along the streamlines;

4. Solve the transportation equation along the streamlines for an appropriate pe-
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riod of time when it is adequate to assume fixed streamlines;

5. Update streamlines as needed based on mobility effects and changing well con-

ditions;

6. Calculate saturation distribution based on the updated streamlines.

A stream tube is a tubular region in space bounded by a surface of streamlines as

illustrated in Figure 1.1. In two dimensions, a stream tube is a region bounded by

two streamlines. Since velocity is tangential to the streamlines, no convective flux

can cross the boundaries of a stream tube. This shows that the calculation along a

stream tube is completely decoupled from other stream tubes.

Figure 1.1: Schematic of a Stream Tube in 3D

Previous streamline/stream tube applications have been performed under constant

flow rate conditions only. However, in a real field, reservoir production may be op-

erated under constant injection pressure and constant flowing bottom hole pressure.

Wells in low permeability reservoirs are often, by necessity, produced at constant

pressure. Specifically, for a production well, pressure is often kept constant above

the bubble point pressure. In this research thesis, streamline simulation is performed
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under the assumption of constant pressure boundaries, which is a novel and highly

non-trivial extension of streamline simulation.

1.2 Near-wellbore Streamline Modeling

Usually, the reservoir can be modeled at two distinct scales; near-wellbore modeling

and full field modeling. Streamline simulation has been mostly used in Cartesian

coordinate systems. Through the research presented in this research thesis, it is also

rigorously extended to cylindrical coordinate systems. Cartesian coordinate modeling

is often applied to full field modeling, while cylindrical coordinate modeling is utilized

for near-wellbore modeling. A streamline illustration of a full field five-spot water-

flooding pattern is provided in Figure 1.2. Figure 1.3 shows the relationship between

radial grids and Cartesian grids. As illustrated, radial grids are based on a much

higher resolution grid in a limited region surrounding the wells. It provides more de-

tailed information near the well, hence it has the ability to model how heterogeneities

affect the flow pattern in the near-wellbore region. In this research thesis, streamline

simulation is applied in the near-wellbore region, and it is performed in polar coordi-

nate systems for two-dimensional (2D) problems and cylindrical coordinate systems

for three-dimensional (3D) problems. The methodology used in this research thesis is

demonstrated to be superior to previously reported methodologies for the near-well

streamline simulation.
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Figure 1.2: Full Field Five-Spot Waterflooding Streamline Model (Thiele, 2001)

Figure 1.3: Embedding Radial Flow Numerical Model within a Cartesian Grid (British
Geological Survey, 2013)
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1.3 Solution of Riemann Problems in Stream Tubes

Buckley-Leverett (1942) described the one-dimensional (1D) Riemann problem for

constant flow rate for a two-immiscible-phase displacement process. The classical

Buckley-Leverett theory does not apply under the constant pressure boundary con-

ditions. The associated 1D Riemann problem for constant pressure boundaries was

solved in Johansen and James (2015) for multi-component systems and described in

Johansen et al. (2016) for waterflooding. However, Riemann solutions for the classi-

cal Buckley-Leverett theory and Johansen et al. (2016) apply only to 1D problems.

Specifically, both of these references describe displacement problems for constant cross

section area porous media only (1D). For the problems considered in this research the-

sis, the stream tube cross section area changes along the stream tube arc length. For

constant flow rate boundary conditions, the flow velocity can be obtained by dividing

the flow rate by the cross section area; however, the 1D Riemann solution in Johansen

and James (2015) and Johansen et al. (2016) cannot be used in stream tubes with

changing cross-sectional area. Stream tubes with constant pressure boundaries require

a three-dimensional (3D) Riemann solution. Johansen and Liu (2016) presented the

solution of the Riemann problem in three-dimensional (3D) porous media. Applying

this solution, the location of the displacement front and the flow rate at any given

time, the time for water breakthrough at the outlet can be obtained. By connecting

the fronts in neighboring stream tubes, the global front for the entire near-wellbore

region is obtained. The flow rate at the well is the summation of flow rates over all

stream tubes.
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1.4 Purpose of Research

The objective of this research thesis is to explore and understand streamline simulation

in the near-wellbore region.

The first goal of this research thesis is to apply a semi-analytical streamline simulation

method to homogeneous and heterogeneous media in a near-wellbore region in two

dimensions and three dimensions. Johansen (2010) proposed a new semi-analytical

streamline simulation method that can be applied to the near-wellbore region. In his

method, the pressure distribution polynomial function was assumed to a logarithmic-

linear (log-lin) form in 2D and bi-linear logarithmic (bilin-log) in 3D within each

grid block. Depending on the pressure function, streamlines within each grid block

can be expressed as smooth curves instead of straight line segments. This method

is applied in this research and it is important because streamline simulation in the

near-wellbore region is a relatively new area. Little literature can be found in the

near-wellbore streamline simulation. Skinner (2011), Skinner and Johansen (2012),

and Hadibeik (2011) reported the streamline simulation in the near-wellbore region.

Through this research thesis, a rigorous understanding of the principles of streamline

tracing and transport problem solving along streamlines in the near-wellbore region

is presented.

The second goal of this research thesis is to demonstrate the application of the stream-

line simulation method in the near-wellbore region. The transport problem for two-

phase, immiscible displacement process is solved along stream tubes under constant

pressure boundaries. Applying the Riemann solution along a stream tube, front loca-

tion and flow rate can be solved. They are crucial information for the understanding

of the displacement process.
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The third important goal of this research thesis is the application of the stream-

line simulation model in well skin calculation. A new total mechanical skin calcula-

tion method for a perforated well based on the semi-analytical streamline simulation

method is introduced in this research thesis. Skin is an important parameter for pro-

duction predictions. It helps us to understand how the near-wellbore damages affect

the skin factor and flow. It is a new area for application of the streamline simulation,

and the methodology is demonstrated to be superior to existing methods.

The fourth goal of this research thesis is to use visualization experiments to demon-

strate that the near-wellbore streamline simulator can be applied to history matching

the displacement process in the radial geometry. In addition to streamline simulation,

visualization experiments provide a direct way to investigate the effect of heterogene-

ity on fluid distributions in the near well region. Streamline methods have advantages

for history matching since they allow us to visualize the sensitivity of the production

response to reservoir model parameters such as permeability (Datta-Gupta and King

2007). In this research thesis, a series of waterflooding visualization experiments are

performed at constant pressure boundaries using glass-bead macro-models. Homoge-

neous and heterogeneous radial macro-models are designed (James 2012) and fabri-

cated to study the waterflooding mechanisms. Flow behavior in the heterogeneous

near-wellbore region can be understood by laboratory visual models when matched

with simulations. The displacement front is captured by the camera and correspond-

ing parameters such as flow rate and breakthrough time are recorded. Simultaneously,

the streamline simulator is applied to model the actual displacement processes. The

simulated location of the water front at a specific time, the water breakthrough time,

and flow rates are obtained. The accuracy of the present streamline simulator and

its superiority over other near-well streamline models are demonstrated through com-

parisons between simulated and experimental results.
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1.5 Thesis Structure

This research thesis is organized in six chapters. Chapter 1 includes the general

background for streamline simulation and the near-wellbore streamline simulation. It

also outlines the purpose for this research thesis.

Chapter 2 provides some relevant literatures on streamlines, stream tube simulation,

front tracking method, and some relevant researches on visualization experiments.

Chapter 3 discusses the basic information for developing the streamline model in the

near-wellbore region. It also provides the methodologies for generating streamlines us-

ing the semi-analytical streamline simulation method in 2D polar coordinate systems

and 3D cylindrical coordinate systems. Pressure distribution within grid block is as-

sumed to be logarithmic-linear (log-lin) in 2D polar coordinate systems and bi-linear

logarithmic (bilin-log) in 3D cylindrical coordinate systems. The determination of grid

block corner pressures, which are used in the semi-analytical streamline simulation

method, is also presented in this chapter. Finally, it describes the novel streamline

tracing procedure.

Chapter 4 demonstrates some applications of the semi-analytical streamline model.

First, it shows how to solve the two-phase immiscible problem by mapping the 3D

Riemann solution along stream tubes. Then, a skin calculation method based on

streamline simulation method for perforated wells is introduced. A series of case

studies are also described and discussed.

Chapter 5 describes the set-up and the process for the two-dimensional (2D) wa-

terflooding visualization experiments. The experimental procedures and properties

characterization are also included. Finally, the semi-analytical streamline simulation
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method is used to history match the relative permeabilities of the experiments per-

formed.

Chapter 6 gives a brief summary of the conclusion from this research thesis. It also

provides the recommendations for future work.
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Chapter 2

Literature Review

2.1 Introduction

Streamline and stream tube simulation have been used in the oil industry for decades.

They are used to model flow in porous media for multiple purposes in both petroleum

and ground water literature. This chapter reviews some published literature related

to streamlines/stream tube modeling. It also includes a brief review of front tracking

methods, which are similar to the streamline method presented in this work. Finally,

a section reviewing visualization experiments is also included since this research runs

waterfront visualization experiments which are used to compare to the simulation

results. In reviewing the relevant literature, chronological order is used to highlight

original contributions. In two dimensions, a stream tube is a region bounded by a

pair of streamlines. For obvious reasons, there is some overlap among the streamlines

and stream tube modeling.
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2.2 Streamline and Stream Tube Simulation

2.2.1 Streamline and Stream Tube Simulation Origins

Table 2.1 summarizes the majority of streamline and stream tube simulation methods

reported before 1980. These models apply to only simple displacement mechanism in

two dimensions.

Table 2.1: Streamline and Stream Tube Simulation Methods before 1980

Author (Year) Details

Lagrange (1781) Introduced the two-dimensional stream function.

Muskat and Wyckoff (1934) Applied the analytical streamline methods to model
fluid flow.

Muskat (1937) Used streamline modeling to model incompressible
fluid flow through a two-dimensional porous media.

Fay and Pratts (1951) Applied stream tube modeling in petroleum reser-
voir simulation.

Pitts and Crawford (1970) Studied permeability heterogeneity using the
stream tube modeling process.

LeBlanc and Caudle (1971) Introduced a stream tube model with variable mo-
bility ratios.

Martin and Wegner (1979) Extended the fixed stream tube method by updat-
ing stream tube paths.

Streamline modeling was first introduced in Lagrange (1781). Lagrange introduced

the two-dimensional stream function which defines the streamlines. As with many

subjects in reservoir engineering, streamline and stream tube studies date back to

the work of Muskat. Muskat and Wyckoff (1934) applied the analytical streamline
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methods to model fluid flow. Their theory was based on the solution of Laplace line-

source and -sink equation and the superposition principle. They concluded that high

permeability communication is more important than the well location. This indirectly

shows the effect of the reservoir heterogeneity on fluid recovery.

Muskat (1937) used streamline modeling to model incompressible fluid flow through

a two-dimensional porous media. The analytical solutions for the stream function

and the potential function for the two-dimensional displacement flow problem were

derived. Subsequently, the application of stream tube modeling was extended to

petroleum fluid modeling.

Fay and Pratts (1951) first applied stream tube modeling to petroleum reservoir sim-

ulation. A numerical model was developed for single-phase flow to determine stream-

lines. A two-phase flow model in stream tubes was then used in a two-well homoge-

neous two-dimensional system. The model was used to predict the breakthrough time

of the injected fluid. Their two-phase results contained some inaccuracies because no

simple numerical method was identified capable of tracking the streamlines in their

model.

Pitts and Crawford (1970) first studied permeability heterogeneity in the stream tube

modeling process. In their model, heterogeneous porous media and homogeneous

porous media were simulated in two dimensions. Their model shows that the fluid

preferentially flows through the high permeability zone. Although this method cap-

tured the permeability effect, gravity, and capillary pressure effects were not consid-

ered.

LeBlanc and Caudle (1971) introduced a stream tube model that was able to simulate

two-phase flow in a two-dimensional heterogeneous reservoir with variable mobility
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ratios. The flow rate was integrated along each streamline in this model to capture

the variation in total velocity and was suitable for secondary oil recovery prediction.

This stream tube model reduced the computational time substantially compared to

conventional methods and was therefore very valuable in waterflooding of an oil reser-

voir.

Martin et al. (1973) extended the fixed stream tube method by updating stream

tubes at given times. The new method worked well for M < 1 and M > 100,

M being mobility ratio (Batycky, 1997). However, recalculating streamline paths

introduces non-uniform initial conditions along new streamlines. Martin and Wegner

(1979) extended their previous method to multi-well, two-phase systems to overcome

this problem. A fixed steam tube numerical method was established for the changing

mobility field and mapped the original saturation to the new stream tube locations.

Then, the local saturation velocity and the total flow rate were used to calculate

the saturation movements. Martin and Wegner showed that the largest error occurs

for the isolated inverted five-spot pattern for favorable mobility ratios and that the

stream tube model would help to reduce numerical diffusion.

The streamline/stream tube methods discussed so far are more computationally ef-

ficient than conventional finite-difference simulations. However, these methods are

only applicable to 2D problems for simple displacement mechanisms. Next, the hy-

brid approaches used in streamline simulation and some more advanced streamline

simulation methods will be reviewed.
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2.2.2 Hybrid Approach to Three-Dimensional Streamline Mod-

eling

Table 2.2 lists the summary of the hybrid approaches to three-dimensional streamline

method developed in the 1980s.

Table 2.2: Summary of Hybrid Approaches to 3D Streamline Modeling

Author (Year) Details

Lake et al. (1981) Applied streamlines in three dimensionsdimensions.

Emanuel et al. (1989) Used a hybrid finite-difference/stream tube model to CO2
injection and waterflooding.

Mathews et al. (1989) Applied hybrid finite-difference/stream tube method to a
miscible water-alternating-gas injection.

Tang et al. (1989) Applied hybrid finite-difference/stream tube method to
capture the transition from radial flow near the wells to
linear flow away from the wells.

Lake et al. (1981) first attempted to apply streamlines in three dimensions. They

combined an areal stream tube model with a cross-sectional finite difference simulator

to simulate a 3D reservoir under large-scale polymer flooding. In their model, they

assumed that the areal flow was dominated by the well placement. The vertical

flow was dominated by the geology and the displacement fluid type. In the vertical

direction, a finite difference solution was applied to get the average upscaled 1D

solution, which was used as the average solution in stream tubes to solve the 3D

problem. This hybrid approach was a more efficient approach than using the two

independent modeling methods (areal stream tube method and cross-sectional finite

difference method).
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Emanuel et al. (1989) applied a hybrid finite-difference/stream tube approach similar

to Lake et al. (1981) to CO2 injection projects and a mature waterflooding case. A

finite-difference simulator was used to model the displacement efficiency and vertical

sweep, and the stream tube model was used for the areal performance. Fractals were

used to describe reservoir heterogeneity in this model. Their results agreed with field

data and required less simulation time.

Mathews et al. (1989) applied a hybrid finite-difference/stream tube method to a

miscible water-alternating-gas injection. In their model fractals were used to describe

the reservoir heterogeneity. They compared the accuracy with the conventional finite

difference method. Results indicated that a hybrid finite-difference method/stream

tube method could enable the efficient use of effort and computational time.

Tang et al. (1989) also utilized the hybrid approach to a waterflooding case and a

CO2 flooding case. To capture the transition from radial flow near the wells to linear

flow away from the wells, they first determined an average cross-sectional response

function, then varied the width of the cross section in the finite difference simulation.

Furthermore, Tang et al. generated ten different fractional flow curves to account for

varying CO2 slug sizes, which results from updating the flow rates for each stream

tube as the flood progresses (Thiele, 1994).

The next section describes the Pollock’s method, which represents a milestone in

streamline modeling.
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2.2.3 Pollock’s Streamline Method

Figure 2.1: Schematic of a Streamline through a Square Grid Block in 2D

Pollock (1988) improved the three-dimensional streamline method by defining a piece-

wise linear interpolation of the velocity field within a grid block. His approach was a

major breakthrough in streamline modeling since it was applicable directly in three-

dimensional cases. Figure 2.1 demonstrates a 2D streamline in a square grid block.

Pollock’s method is a semi-analytical particle tracking method with velocities gen-

erated from a block centered finite-difference pressure solution. The points (i, j),

(i, j− 1), (i, j+ 1), (i− 1, j), and (i+ 1, j) are the pressure nodes calculated from the

finite-difference method. The next step in Pollock’s method is to calculate velocities

across the block boundaries ux,0, ux,∆x, uy,0 and uy,∆y using Darcy’s law. At the end

of this step, velocities across the block boundaries are known. It is then assumed that

each directional velocity component varies linearly in the component direction within
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each grid block as shown in Equation 2.1 to 2.3 for 3 space dimensions x, y, z.

ux = ux,0 + ax(x− x0), ax = ux,∆x − ux,0
∆x , (2.1)

uy = uy,0 + ay(y − y0), ay = uy,∆y − uy,0
∆y , (2.2)

uz = uz,0 + az(z − z0), az = uz,∆z − uz,0
∆z , (2.3)

where ux, uy and uz are the velocities in x−, y−and z− direction respectively, ax, ay,

and az are the velocity gradients in x−, y−, and z− direction, respectively.

After defining the velocity field, travel times from an entry point to the three possible

exit boundaries are calculated in each direction separately. The particle then exit the

boundary with the minimum positive travel time. This minimum time is the time-

of-fight (TOF ) for the streamline in the block considered. Using this TOF , the exit

point for this grid block is determined. This exit point is the entry point for the next

grid block. One streamline is obtained by continuing this process until the particle

reaches the boundary. Pollock’s streamline method is, to date, the most commonly

used streamline simulation method in the industry. It is noted that this method does

not allow streamlines to exit from the same face as they enter. Hence, since this

is physically possible, Pollock’s method is expected to give large errors in situations

with large grid blocks. However, the semi-analytical streamline simulation method

proposed in this research allows streamlines to exit from the same face as they enter;

and therefore, it is a more accurate approach.
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2.2.4 Recent Streamline and Stream Tube Simulation Devel-

opments

Table 2.3 summarizes the recent development of streamline and stream tube simula-

tion methods.

Thiele (1994) applied stream tube modeling to non-linear flow displacement processes

in heterogeneous reservoirs, by mapping analytical solutions (Buckley and Leverett,

1942) along stream tubes in the displacement calculation. By this numerical dispersion

is shown to reduce substantially. This method requires two to five orders of magnitude

less computation time than the traditional finite difference simulation approach. It is

also emphasized that, unlike the work in this research thesis, Thiele’s approach used

constant flow rate boundary conditions.

Datta-Gupta and King (1995) extended Pollock’s particle tracking method in the

reservoir engineering field to cases with arbitrary well configuration, also assuming

constant flow rates. They used time-of-flight (TOF ) as a spatial variable. In the TOF

system, the transport equation along the streamline is solved. The TOF formulation

decreases the influence of geological heterogeneity on transport calculations.

Bratvedt et al. (1996) modeled streamlines in three dimensions by extending Pollock’s

method and applying an operator splitting to incorporate gravity in the front tracking

method. Their method is more accurate and computationally efficient compared to

the traditional finite difference methods.

Batycky et al. (1997) developed a three-dimensional, two-phase streamline simula-

tion method. In their model, heterogeneity, changing well conditions, gravity and

mobility were considered in the numerical solutions by re-calculating streamlines at
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Table 2.3: Recent Development of Streamline and Stream tube Modeling

Author (Year) Details

Pollock (1988) Introduced the most efficient semi-analytical
streamline tracing method in three dimensions.

Thiele (1994) Applied stream tube modeling to non-linear flow
displacement processes in heterogeneous reservoirs.

Datta-Gupta and King
(1995)

Extended Pollock’s particle tracking method in the
reservoir engineering field with an arbitrary config-
uration of wells.

Bratvedt et al. (1996) Applied an operator splitting to incorporate gravity
in the front tracking method.

Batycky et al. (1997) Developed a heterogeneous three-dimensional, two-
phase streamline simulation method.

Peddibhotla et al. (1997) Used a three-dimensional mapping algorithm and
a third order Total Variation Diminishing (TVD)
scheme to solve the multi-phase flow equations.

Thiele (2001) Summarized the applicability of streamline
simulation.

Rodriguez et al. (2003) Developed a full three-dimensional streamline sim-
ulator for two-phase incompressible flow that in-
cluded capillary pressure.

Matringe and Gerritsen
(2004)

Investigated the factors that affect the accuracy of
streamline modeling.

Juanes and Matringe
(2009)

Introduced a higher-degree of streamline tracing
method in two-dimensional triangular or quadrilat-
eral grid systems.

selected times. This streamline method decoupled a three-dimensional fluid displace-

ment into two-phase multiple one-dimensional problems. Hence it has a consistent

agreement with the finite difference method and is far more computationally efficient.
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Front tracking along streamlines in their model also demonstrated that the streamline

method is an efficient visualization tool in reservoir simulation.

Peddibhotla et al. (1997) presented two major improvements to streamline modeling.

First, they used a three-dimensional mapping algorithm instead of averaging stream-

lines during changing well conditions. Second, to minimize numerical dispersion and

prevent unphysical oscillations, they used a third order Total Variation Diminishing

(TVD) scheme to solve the multi-phase flow equations.

Thiele (2001) summarized the applicability of streamline simulation for upscaling,

quantifying displacement efficiency, history matching, and field optimization. Thiele

also pointed out the advantage of streamline simulation in flow visualization, its ca-

pability on full field modeling, its computational speed, and its increasing ability to

model more complicated physics.

Rodriguez et al. (2003) developed a full three-dimensional streamline simulator for

a two-phase incompressible flow that included capillary pressure. In this model, the

capillary pressure was separated from the convective part, so was the gravity term.

This operator splitting was first used in Bratvedt et al. (1996).

Matringe and Gerritsen (2004) investigated the factors that affect the accuracy of

the streamline modeling. They mentioned that for the homogeneous quarter five spot

pattern, the analytical streamline pattern is known. The errors in streamline location,

streamline arc length and time-of-flight can affect the streamline simulation results.

They applied the mixed hybrid finite element method which is more accurate on flux

calculations than the traditional finite difference method. They also presented two

methods to improve streamline tracing within grid blocks: using an adaptive mesh

refinement, or using a second order interpolation of the velocity field.
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Juanes and Matringe (2009) introduced a higher-degree of streamline tracing method

in two-dimensional triangular or quadrilateral grid systems. In their method, the

mixed finite element method is used to solve the pressure and velocity field simulta-

neously. The velocity field is then used in the stream functions to trace streamlines.

Compared to low-degree tracing such as Pollock’s method, this high-degree tracing is

more accurate and less sensitive to grid distortion. However, the velocity interpreta-

tion methods are limited to the mixed finite element framework.

2.2.5 Near-wellbore Streamline Simulation

Most streamline/stream tube methods were developed for full field scale. Very little

literature exists relevant for near-wellbore streamline simulation.

Hadibeik et al. (2011) presented a streamline simulation method for near-wellbore

fluid flow modeling in vertical and deviated wells. In their streamline tracing process,

three coefficients used to trace the streamline path were introduced according to the

divergence free flow velocity in cylindrical coordinates, i.e.

∇ · ~u = 1
r

∂

∂r
(rur) + 1

r

∂

∂θ
(uθ) + ∂

∂z
uz = 0. (2.4)

Rewriting Equation 2.4 results in:

∇ · ~u =
3∑
i=1

ci = cr + cθ + cz. (2.5)

where ci is a constant for each discretization cell. Hadibeik et al. (2011) proposed:

cr = 2(ri+1uri+1 − riuri)
r2
i+1 − r2

i

, (2.6)

cθ = ri(uθi+1 − uθi)
θi+1 − θi

, (2.7)
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cz = (uzi+1 − uzi)
zi+1 − zi

. (2.8)

where r, θ, and z describe cylindrical coordinates, ur, uθ, and uz are the velocity in

the radial direction, angular direction and vertical direction, respectively.

The time-of-flight across the cell is then given by:

∆τri = 1
cr
ln
(
riuri
r0ur0

)
, (2.9)

∆τθi = 1
cθ
ln
(
uθi
uθ0

)
, (2.10)

∆τzi = 1
cz
ln
(
uzi
uz0

)
. (2.11)

In their method, the velocity relations seem to lack physical significance.

Skinner (2011) and Skinner, Johansen (2012) presented two-dimensional streamline

modeling in the near-wellbore region. This simulation was based on Pollock’s method

and was used to evaluate the well completion strategies in general, and perforation

skin in particular. They optimized the completion design by using the design of

experiments methodology combined with streamline simulation. It is a useful tool for

maximizing productivity for individual wells.

In their method, the reservoir is first divided into grid blocks in a polar coordinate sys-

tem. Once the pressure in each grid block center po is found by solving the cylindrical

Laplace equation, the velocities across the simulation grid block boundaries can be

calculated by using Darcy’s law for both radial j and angular i directions. After the

face velocities are known, velocities throughout the entire reservoir are determined.
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Figure 2.2: Pollock’s Single Grid Block for Near-Wellbore Region in 2D

In Skinner (2011) and Skinner, Johansen (2012), the Pollock’s method was employed

in a log-lin fashion. For a single grid block (i, j) shown in Figure 2.2, the angular

velocity uθ varies linearly in the θ−direction within each grid block. However, pressure

is known to drop logarithmically in the radial direction towards the wellbore, hence

the velocity in the radial direction ur varies as the inverse of the radius. Equations

2.12 and 2.13 below are the general formulas for the velocity in r− and θ−directions,

respectively, which is the idea of the streamline method applied in polar coordinates,

i.e.

uri,j =
ari,j
r

+ bri,j, (2.12)

uθi,j = aθi,jθ + bθi,j. (2.13)

The coefficients ari,j, bri,j, aθi,j and bθi,j in Equations 2.12 and 2.13 are determined by the
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boundary velocities and will differ for each grid block. They can be expressed as:

ari,j = ri−1/2ri+1/2

ri+1/2 − ri−1/2
(uri−1/2,j − uri+1/2,j), (2.14)

bri,j = uri+1/2,j −
ari,j
ri+1/2

, (2.15)

aθi,j =
uθi,j−1/2 − uθi,j+1/2

θj−1/2 − θj+1/2
, (2.16)

bθi,j = uθi,j+1/2 − aθi,j+1/2θj+1/2, (2.17)

since the velocity distribution throughout the reservoir is known. For any entry point

in a grid block, a particle can exit from three possible boundaries. In Pollock’s method,

the particle cannot exit from the same boundary as it entered because the streamlines

are assumed to be straight lines. Clearly, this is a severe restriction. The required

transit times tr and tθ for the particle to travel from the entry point to the possible

boundaries are determined by Equations 2.18 and 2.19 below,

tri,j =
∫ ren

rex

dr

ur
=
∫ ren

rex

dr
ar

i,j

r
+ bri,j

, (2.18)

tθi,j =
∫ θex

θen

dθ

uθ
=
∫ θex

θen

dθ

aθi,jθ + bθi,j
. (2.19)

In the near-wellbore region, the radius for the entry point is always larger than the

exit point, due to the pressure distribution. For a homogeneous reservoir, the interval

[rex, ren] travel time is:

tri,j =
∫ ren

rex

dr

ur
=
∫ ren

rex

dr
ar

i,j

r

= 1
2ari,j

(r2
en − r2

ex). (2.20)

For a heterogeneous reservoir, the particle travel time in the radial direction is:

tri,j =
∫ ren

rex

dr
ar

i,j

r
+ bri,j

= 1
br2i,j

[
bri,j(ren − rex)− ari,jln

(
ari,j + bri,jren

ari,j + bri,jrex

)]
. (2.21)
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The general form for the particle travel time in angular direction is:

tθi,j =
∫ θex

θen

dθ

aθi,jθ + bθi,j
= 1
aθi,j

[
ln

(
bθi,j + aθi,jθex

bθi,j + aθi,jθen

)]
. (2.22)

The time-of-flight (TOF ) for each grid block is the minimum positive transit time:

TOFi,j = min(tri,j, tθi,j). (2.23)

The actual exit point can then be determined by the TOF , together with the velocities

in the radial and angular direction in each block.

Johansen (2010) proposed a new semi-analytical streamline simulation method that

can be applied to the near-wellbore region. In this method, the pressure distribution

polynomial function was assumed to be logarithmic-linear (log-lin) in 2D and bi-

linear logarithmic (bilin-log) in 3D within each grid block. Depending on the pressure

function, streamlines within each grid block can be expressed as smooth curves instead

of straight line segments. This method is applied in this research, and will be described

in detail in Chapter 3.

2.3 Front Tracking Method

The front tracking method is a method for calculating the convective motion of fronts

throughout a reservoir. In the front tracking method, saturation discontinuities are

calculated by conservation equations for the two-phase immiscible displacement pro-

cess along streamlines. Table 2.4 reviews the front tracking method to date.
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Table 2.4: Summary of Front Tracking Method

Author (Year) Details

Buckley and Leverett
(1942)

Introduced 1D Riemann problem for constant flow
rate in two-phase flow.

Higgins and Leighton
(1962)

Applied Buckley-Leverett (1942) theory along
stream tubes.

Morel-Seytous (1965) Expressed an analytical-numerical method in water
flooding predictions.

Glimm et al. (1983) Introduced hyperbolic equations to track the shock
front without numerical and physical dispersion in
3D.

Bratvedt et al. (1992,
1996)

Developed a new front tracking scheme incorporat-
ing gravity in 3D.

Glimm et al. (1999) Developed an improved algorithm for the interac-
tion of a tracked contact discontinuity with an un-
tracked shock wave.

Nilsen and Lie (2009) Applied front tracking methods to streamline sim-
ulation in three-dimensional models.

Johansen and James (2015) Introduced 1D Riemann problem for constant pres-
sure boundaries for multi-component systems.

Johansen et al. (2016) Introduced 1D Riemann problem for constant pres-
sure boundaries for waterflooding.

Johansen and Liu (2016) Introduced analytical solution of Riemann problems
for two-phase flow in 3D stream tubes.

Buckley and Leverett (1942) presented the analytical solution for a fluid displacement

front in an immiscible displacement process in one space dimension and constant

flow rate. The Buckley-Leverett theory applies to two immiscible phases under the

assumption that the flow rate is constant over time. It is reviewed in Appendix A.
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Higgins and Leighton (1962) introduced stream tube bundles to model two-phase

displacements in a complex rock geometry. Each stream tube was treated as a one-

dimensional object throughout the displacement process, and the fluid saturation

was calculated along the tubes by applying the Buckley-Leverett (1942) fractional

flow theory for constant flow rate. This was the first time to apply the Riemann

solutions in stream tubes. Although the stream tube bundles were fixed throughout

the displacement process, the resistance within each tube was updated at the end of

each time step instead of using a changing mobility field. Then, injection volumes into

stream tubes were calculated based on tube resistances. Their model showed good

agreement with experimental results. Higgins and Leighton (1962) utilized stream

tubes to model three-phase displacements in porous media. The results also showed

a good agreement with laboratory waterflooding data.

Morel-Seytoux (1965) expressed an analytical-numerical method in water flooding

predictions. They discussed the impact of well pattern geometry in the two-phase

displacement process. It is a simple model because some restrictive assumptions were

made, for instance, fluids were assumed incompressible; mobility ratio was treated as

a constant and the displacement front was assumed piston-like; gravity and capillary

pressure were ignored in this model. Results showed that well pattern geometry is

a major factor in predicting water-flood recovery. It also provided new ideas for

changing mobility ratios.

Glimm et al. (1983) established the front tracking method which is similar to the

streamline method in the sense that a local flow direction is calculated from a pressure

equation. They introduced hyperbolic equations to track the shock front without nu-

merical and physical dispersion for homogeneous and heterogeneous reservoirs. Their

model can also be applied to immiscible displacements and variable mobility ratios.
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Bratvedt et al. (1992) developed a new front tracking scheme incorporating gravity.

They updated the hyperbolic conservation laws by a separate gravity driven compu-

tation and developed a new method to solve the saturation in the simulation process.

In their computational process, the discontinuity surface was treated as an indepen-

dent object. At that time, their model only focused on the front tracking of the

discontinuity surface.

Bratvedt et al. (1996) improved the front tracking method along streamlines with

gravity effects. Throughout the simulation, the pressure equation was solved im-

plicitly, and the saturation equation was solved explicitly. A block-based numerical

streamline method was used in the saturation calculation. In comparison, the satu-

ration calculation in this research is based on an analytical method that can be used

for an arbitrary geometry of stream tubes, which makes this research more accurate

and more efficient.

Glimm et al. (1999) introduced a simplified description of the microtopology of the in-

terface, based on interface crossings with cell block edges, and developed an improved

algorithm for the interaction of a tracked contact discontinuity with an untracked

shock wave.

Nilsen and Lie (2009) applied front tracking methods to streamline simulation in three-

dimensional models. Their numerical results demonstrate that both streamlines and

the front tracking method enable efficient simulation of compressible flow.

The Riemann problem for constant flow rate in two-phase flow was described in

Buckley, Leverett (1942). The associated Riemann problem for constant pressure

boundaries was recently published by Johansen and James (2015) and Johansen et

al. (2016). Under the constant pressure boundaries, the flow rate varies over time. In
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this model, the analytical solution for flow rate as a function of time is determined. It

also provides an analytical solution for the location of the displacement front at any

given time, the time for frontal breakthrough at the outlet, and saturation profiles

after frontal breakthrough.

Johansen and Liu (2016) introduced an analytical solution of Riemann problems for

two-phase flow in 3D stream tube geometries. This method is applied to model the

two-phase flow process in stream tubes in this research thesis, and will be described

in detail in Chapter 4.

2.4 Visualization Experiments

All hydrocarbon reservoirs are heterogeneous. It is necessary to understand the

physics associated with flow in these reservoirs. Visualization experiments can be

used to study the two-phase displacement flow behavior in homogeneous and het-

erogeneous media, measure the interfacial tension and phase saturation, measure the

relative permeability, and study oil recovery. In the petroleum field, visualization

experiments are often performed in four main types of visual porous media: 1. Hele

Shaw cells; 2. pore scale mircomodels; 3. unconsolidated porous media (glass beads

packs and sand packs); 4. consolidated glass beads packs. This section reviews some

of the visualization experiments to date.

2.4.1 Porous Media for Visualization Experiments

A Hele Shaw cell, a common model used to study fluid-fluid displacement, is con-

structed by using two parallel closely-spaced glass plates. Chuoke et al. (1959) con-
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ducted a Hele Shaw micromodel to study two-phase flow. They used two types of

fluids (water-glycerine, and water with and without initial interstitial water ) to dis-

place oil through Hele Shaw cell. Paterson (1981) and Chen (1987) used circular

Hele Shaw cells to observe the radial fingering phenomena. Butler and Mokry (1993)

and James et al. (2008) studied the effect of Vapor Extraction Process (VAPEX) for

reservoirs with free bottom water. The reasons for the popularity of the Hele Shaw

cell in the visualization experiments are: 1. It can be easily constructed and set up;

2. It provides reasonable qualitative results.

Pore scale micromodels have been increasingly used to investigate the flow behavior

of fluids on the pore scale. Most pore scale micromodels are made of glass plates with

chemical reactions or interaction of a laser on the glass surface. Pore scale micromodels

were used to relate pore structure and pore network to residual saturation (Chatzis

et al., 1983). They are also used to study pore scale phenomena associated with the

Vapor Extraction Process (VAPEX) for heavy oil recovery (Chatzis 2002, James and

Chatzis 2004, James 2009) and capillary fingering effect (van der Marck and Glas,

1997). This type of model is relatively easy to fabricate and has the ability to choose

the wetting properties depending on the material, and can reproduce the network

pattern.

Unconsolidated porous media (glass beads packs and sand packs) have a structure

similar to that of a Hele Shaw cell but with glass beads or sand between two glass

plates. Because this type of porous media is cheap and easy to make, it is widely used

to investigate two-dimensional two-phase flow problems. Chatenever and Calhoun

(1952) used an unconsolidated porous media with a single layer of glass beads covered

by color film to study the two-phase (brine and crude oil) immiscible displacement

fluid behavior. Front patterns and the residual oil and water were observed and
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discussed. They found that in a system at steady state, two immiscible fluids that

flow simultaneously in a porous medium will establish their own pathways. Since

Chatenever and Calhoun (1952) the application of unconsolidated porous media has

increased because it is convenient to fabricate. Some other unconsolidated porous

media visualization experiments with heterogeneity are reviewed in 2.4.2.

Consolidated porous media are usually created by melting glass beads and glass plates

into one piece. James (2003) investigated the effect of the model height and dip angle

on live oil production from consolidated glass beads saturated with bitumen using

butane as solvent. However, consolidated porous media are relative complicated to

fabricate.

2.4.2 Unconsolidated Visualization Experiments with Het-

erogeneity

Flow experiments performed in this research thesis use two-dimensional visual models

packed with unconsolidated glass beads. Table 2.5 summarizes unconsolidated glass

beads visualization experiments reviewed in this section and describes the experimen-

tal goals and the porous media patterns. In this table, the figures in column 3 are

references form the literature list in column 1.

Brock and Orr Jr. (1991) performed flow visualization experiments and numerical

simulations to study the combined effects of viscous fingering and permeability hetero-

geneity. There were four different glass bead packs used. In each model, experiments

were performed at three different flow rates (3, 6, and 9 ml/min) and mobility ratios

(M = 1, 40, and 80). The initial fluids used were two grades of mineral oil, Soltrol 10

(a refined isoparaffin), and toluene. Injected fluids were dyed with Automate Red B
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Table 2.5: Summary of Unconsolidated Visualization Experiments with Heterogenity

Author (Year) Experiment Goals Porous Media Patterns

Brock and Orr
Jr. (1991)

Performed flow visualization
experiments and numerical
simulations to study the
combined effects of viscous
fingering and permeability
heterogeneity.

Dawe et al.
(1992)

Studied the effects of
well-defined heterogeneous
porous media on immiscible
flooding.

Roti and Dawe
(1993)

Studied the effects of layer
thickness, permeability con-
trast, angle of layer to flow
direction, mobility ratio, and
flood rate.

Silva and Dawe
(2003)

Used different geologic mod-
els to study the effect of
permeability and wettability
heterogeneities.
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dye at a concentration of approximately 0.005 grams of dye per gram of fluid. They

found that in the homogeneous model, fingering patterns were sensitive to the mo-

bility ratio but not to flow rate. In the layered and heterogeneous model, flow was

largely determined by the patterns of heterogeneity. Their experiment results and

simulation results were similar.

Figure 2.3: Packing Patterns used in Dawe et al. (1992)

Dawe et al. (1992) studied the effects of well-defined heterogeneous porous media on

immiscible flooding by using the glass beads pack. In their model, the heterogeneities

were layers and lenses, with some of the lenses exhibiting a wettability contrast. As

shown in Figure 2.3, the lens patterns A and B had a conductance contrast of 2.55; pat-

tern C consisted of a single-glass matrix but with a lens having hydrophobic properties

(the lens beads were coated with the water repellent chemical dimethyldichlorosilane).

The lenses were 3 cm wide and 10 cm long. The layered pattern D had a conductance

contrast of 2.5 (center layer has the higher conductance) and a layer width of 2 cm.

The effect of flooding rate (6.67× 10−2, 1× 10−2, 1.67× 10−2, and 0.5× 10−2 cc/sec),
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initial fluid saturations, and wettability on drainage and imbibition were discussed.

The primary conclusions that Dawe et al. obtained were that capillary forces become

more important and can even dominate the flow, the balance between capillary and

viscous forces is rate dependent, and the effects of capillary forces become larger as

the flow rate decreases.

Roti and Dawe (1993) performed experiments on glass beads packs and numerical

simulations to study flow displacements, effluent profiles and streamline patterns for

layered systems with flow not parallel to the layers. They studied the effects of layer

thickness (0 to 0.4 times the width of the model), permeability contrast (0.1 to 25),

the angle of the layer to flow direction (0 to 90◦), mobility ratio, and flow rate. They

found that for miscible displacements, the breakthrough recovery decreases with an

increase in permeability contrast.

Silva and Dawe (2003) performed two-dimensional visualization immiscible displace-

ment experiments in unconsolidated glass beads models. Different geologic models

were used to study the effect of permeability and wettability heterogeneities. In their

waterflooding experiments, high permeability regions were bypassed due to capillary

pressure differences. They pointed out that their results could also be used to study

the reservoir production performance in immiscible displacement.

The unconsolidated visualization experiments with heterogeneity described so far are

in 2D porous media. However, they are all simple 1D fluid displacements from one

side of the porous media to the opposite side. Next, radial visualization experiment

(real 2D flow) will be reviewed.
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2.4.3 Radial Visualization Experiment

Paterson (1981) used a Hele Shaw cell with inward and outward flow to observe the

radial fingering phenomena. The Hele Shaw cell used in the experiments consisted of

two 13 mm thick glass disks, 600 mm in diameter, spaced a few millimetres apart.

In the experiments, the fluid was injected or withdrawn in the center of the porous

media at a constant rate. The width of fingers was examined, and they provided an

approximate equation for the growth of the fingers.

Figure 2.4: Fluid Patterns in Paterson (1981)

Chen (1987) performed viscous fingering experiments in Hele Shaw cells by injecting a

liquid to radially displace a much more viscous liquid. The Hele-Shaw cell was made by

using two glass plates of 0.55 cm×10 cm×10 cm with four spacers of 75+2 microns in

thickness clamped in between. The top plate has a small hole (of 0.17 cm in diameter)

drilled in the center for injecting the fluids. Both smooth and etched plates were used

to study the influence of plate roughness on the fingering mechanism. The fingering

patterns were strongly affected by the geometry of the network etched on the glass
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plate surface. Chen used different flow rates (1.4 × 10−4, 2.0 × 10−4, and 5.6 × 10−4

ml/s) to study the influence of the flow rate in the miscible case. The results showed

that fingering patterns were strongly affected by the flow rate in the immiscible case.

Figure 2.5 shows the radial viscous fingering patterns in Chen (1987).

Figure 2.5: Radial Viscous Fingering Patterns in Chen (1987)
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Huang et al. (2012) conducted a series of injection experiments in a Hele-Shaw cell-like

radial-flow device which was filled with fine sand. The objective of these experiments

was to investigate the flow mechanisms when porous media were invaded and displaced

by aqueous glycerin solution or polyacrylamide solution. They found that with the

same porous media properties, as the injection velocity and the fluid viscosity increase,

the porous media transited from solid-like to fluid-like. They also mentioned that the

Hele-Shaw cell is a useful tool for understanding the flow mechanisms in the injection

processes.

(a) Experimental Setup

(b) Fluid Pattern

Figure 2.6: Experimental Setup and Fluid Patterns in Huang et al. (2012)
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The radial visualization experiments, which are made of transparent materials, enable

the visual observation in two dimensions. However, they have limitations for 3D visu-

alization. For 3D visualization a CT scanner and NMR (nuclear magnetic resonance)

are needed.

Valsecch et al. (2012) developed a new approach to visualize the geometrical fea-

tures and flow patterns for various well completion types in the near-wellbore region.

They used the acid-stimulated carbonate rock as the porous media. CT scanning

technology was applied for the image processing. As can be seen from Figure 2.7,

water was continuously injected through a pipe. The non-metallic hoses distribute

fluid to the outer shell of the experiment. Then, the fluid flows through the porous

media toward the inner pipe. The fluid flows out from the inner pipe was recycled to

pump. Streamlines and 3D surface reconstructions were visualized using magnetic res-

onance imaging (MRI) acquisitions with the Paraview software to better understand

the structures and the fluid flow movement near the wellbore. Their visualization

experiment was based on a CT scanner. In this research thesis, the water front will

be directly visualized and recorded by a camera.

Figure 2.7: Experiment Vessel and Schematic of Experiment in Valsecch et al. (2012)

40



2.5 Conclusion

As in the literature, streamline simulation was mainly applied in the Cartesian co-

ordinate to simulate the full field model. Very little literature exists relevant for the

near-wellbore streamline simulation. Hadibeik et al. (2011) introduced a stream-

line tracing method according to the divergence-free flow velocity in the cylindrical

coordinate. However, in their method, the velocity relations seem to lack physical

significance. Skinner (2011) and Skinner, Johansen (2012) presented 2D streamline

modeling based on Pollock’s method in the near-wellbore region. In their model,

streamlines excessively avoid the heterogeneous areas. Their model may require large

grid refinement to provide accurate results. The streamline simulation method ap-

plied in this research depends on a logarithmic-linear pressure function inside each

grid block. It is believed that this is the first time a strict logarithmic interpolation

is used in the pressure assumption in the radial direction.

The visualization experiments performed in the previous literature were performed

in square or rectangular porous media to study the two-phase displacement flow be-

havior, measure the interfacial tension and phase saturation, measure the relative

permeability, and study oil recovery. A few experiments were used to study the flow

patterns in the near-wellbore region. Valsecch et al. (2012) performed their near-

wellbore visualization experiment based on a CT scanner. In this research thesis, a

radial visualization porous media is used. The waterfronts in the near-wellbore region

are directly visualized and recorded by a camera during the experiment. Pressures

at the outlet and inlet of the porous media are kept constant, which is different from

most visualization experiments in the literature.
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Chapter 3

Streamline Simulation

Methodology in Near-Wellbore

Regions

In reservoir simulation, the properties of reservoir fluids and porous media are used to

predict changes in reservoir pressure and fluid saturation with high precision. Stream-

line models represent an efficient reservoir simulation method. The semi-analytical

streamline simulation method proposed in this research thesis first solves the pressure

distribution on the static grid block system using the conventional finite difference

method. Then, it uses smooth curves in the grid block to represent the streamlines

in each block by assuming that the pressure changes along the block boundaries are

linear in axial and angular directions and logarithmic in the radial direction.

In this chapter, the basic information for developing the streamline model in the near-

wellbore region is first discussed. Next, the methodologies for generating streamlines
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using the semi-analytical streamline simulation method in 2D polar coordinate sys-

tems and 3D cylindrical coordinate systems based on a log-lin and bilin-log pressure

assumption are described, respectively. The streamline generation methodology pre-

sented in this research thesis is an expanded version of that in Johansen (2010). A

finite difference method calculates pressure in the center of grid blocks.

The semi-analytical streamline simulation method is based on the corner pressures

for each grid block. The determination of these corner pressures from pressures in

grid block centers is also presented in this chapter. Next, the pressure analyses are

described. Finally, the streamline tracing procedure is described.

3.1 Near-Wellbore Model Geometry and Assump-

tions

The 2D and 3D streamline models generated in this research thesis are performed

in the polar coordinate system and the cylindrical system, respectively. Figure 3.1

depicts a well located in the center (0, 0) of the the polar grid with polar coordinates of

(r, θ). The well has a radius of rw with a corresponding constant pressure of pw. The

exterior boundary of the near-wellbore region is re with a constant external pressure

of pe. The scenario is realistic for large reservoirs in the early stages of production,

as well as reservoirs with maintained pressure support by water injection (Skinner,

2011).
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Figure 3.1: Near-Wellbore Region Sketch in 3D (Skinner, 2011)

Figure 3.2: Relationship between Cartesian Coordinate System and the 2D Polar Coordi-
nate System

The relationships between the Cartesian coordinate system (x, y) and the polar coor-

dinate system (r, θ) are shown in Figure 3.2. As illustrated in Figure 3.2, the radius

r for any point is measured from point (0, 0) in the polar systems and the angle θ

is measured counter-clockwise for the positive x−axis. The relationship can also be

written as:

x = rcosθ, (3.1)
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y = r sin θ, (3.2)

r =
√
x2 + y2, (3.3)

θ = arctan
(
y

x

)
. (3.4)

3.1.1 Near-Wellbore Model Geometry

In the polar coordinate system, the reservoir is segmented into grid blocks. The

number of grid blocks in the radial and angular direction are N and M , respectively;

i represents the radial block index and j represents the angular block index; i ± 1/2

represents boundary in the radial direction and j ± 1/2 represents boundary in the

angular direction. The grid block construction is shown in Figure 3.3.

Figure 3.3: Generalized Grid Block in the 2D Polar Coordinate System

The grid blocks are not of equal size in the radial direction. The distance between

pressure nodes in the radial direction is logarithmical to represent a typical pressure

distribution in the near-well region. By doing this, the pressure drops between adja-
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cent radial nodes are equal in a homogeneous isotropic medium. Equation 3.5 shows

the relationship between two pressure nodes in the radial direction:

ri = ari−1 = rwa
i−1, (3.5)

where i = 1, 2, · · · , N , where a is a constant.

Using Equation 3.5 for wellbore radius and the reservoir radius:

re = rN = rwa
N−1. (3.6)

The constant a can then be expressed as:

a =
(
re
rw

) 1
N−1

. (3.7)

For any given wellbore radius and reservoir radius, the radius for any pressure node

then can be written as:

ri = rw

(
re
rw

) i−1
N−1

. (3.8)

Once the node radii are determined, the block boundaries for the interlock flow cal-

culation are defined by (Aziz and Settari, 1979):

ri+1/2 = ri+1 − ri
ln(ri+1/ri)

. (3.9)

3.1.2 Near-Wellbore Model Assumptions

As mentioned in Chapter 1, previous streamline simulations for two-phase flow were

based on the assumption of constant flow rate. For most laboratory and real field water

injection operations, fixed injection and production pressures are applied. In this

research thesis, streamline simulation is performed under the assumption of constant

pressure boundaries. Water front calculations are also performed under the same

boundary conditions.
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Streamline simulation is well suited for problems dominated by convection; however,

in diffusive problems such as gas expansion and capillary pressure, streamlines are

not well defined. Several researchers have incorporate these effects, e.g. Bratvedt et

al. (1996) for the inclusion of gravity and Pasarai and Arihara (2005) incorporated

effects of diffusion. The streamline simulation applied in this research thesis is based

on the following assumptions:

• Incompressible fluid and rock

• Diffusive effects are negligible

• Gravity is ignored

This will yield an elliptic pressure equation, for which streamlines are well defined.

These assumptions are valid for vertical wells in an oil reservoir. In an oil reservoir, oil

and water can be assumed incompressible and diffusion free. For a long vertical well,

the near-wellbore region radius is not long compared to the vertical thickness of the

reservoir. This means that gravity plays a minority role in the displacement process.

It is emphasized that these restrictions can be removed by invoking the methods in

Bratvedt et al. (1996) and Pasarai and Arihara (2005).
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3.2 Equations in Cylindrical Coordinate Systems

3.2.1 The Gradient Operator in Cylindrical Coordinate Sys-

tems

The gradient represents the maximum rate of change (vector) of a property. In Carte-

sian coordinates the gradient operator can be written as:

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (3.10)

Applying the chain rule for differentiation in the x−direction and y−direction,

∂

∂x
= ∂

∂r

∂r

∂x
+ ∂

∂θ

∂θ

∂x
,f (3.11)

∂

∂y
= ∂

∂r

∂r

∂y
+ ∂

∂θ

∂θ

∂y
. (3.12)

According to Equations 3.1 to 3.4:
∂r

∂x
= 2x

2
√
x2 + y2 = x

r
= cos θ, (3.13)

∂r

∂y
= 2y

2
√
x2 + y2 = y

r
= sin θ, (3.14)

∂θ

∂x
= ∂

∂x
(arctan

(
y

x

)
) = − y

r2 = −1
r

sin θ, (3.15)

∂θ

∂y
= ∂

∂y
(arctan

(
y

x

)
) = x

r2 = 1
r

cos θ. (3.16)

Therefore, the gradient in the cylindrical coordinate system is:

∇ =


cos θ − sin θ

r
0

sin θ cos θ
r

0

0 0 1




∂
∂r

∂
∂θ

∂
∂z

 . (3.17)
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3.2.2 The Pressure Gradient in Cylindrical Coordinate Sys-

tems

In the cylindrical coordinate system, the unit vectors ~er, ~eθ, and ~ez are:

~er = [cos θ, sin θ, 0], (3.18)

~eθ = [− sin θ, cos θ, 0], (3.19)

~ez = [0, 0, 1]. (3.20)

Therefore the gradient operator is:

∇r = ~er · ∇ = cos2 θ
∂

∂r
+ sin2 θ

∂

∂r
= ∂

∂r
, (3.21)

∇θ = ~eθ · ∇ = 1
r

sin2 θ
∂

∂θ
+ 1
r

cos2 θ
∂

∂θ
= 1
r

∂

∂θ
, (3.22)

∇z = ~ez · ∇ = ∂

∂z
. (3.23)

The pressure gradient in the cylindrical coordinate system, therefore, is:

∇r,θ,zp =
[
∂p

∂r
,
1
r

∂p

∂θ
,
∂p

∂z

]
. (3.24)

3.2.3 Darcy’s Law in the Near-Wellbore Region

In the cylindrical coordinate system, the volumetric flux can be written by Darcy’s

Law:

~u = − 1
µ
∇r,θ,zp · K̄ = − 1

µ

[
∂p

∂r
,
1
r

∂p

∂θ
,
∂p

∂z

]
·


Kr Kθ 0

Kθ Kt 0

0 0 Kz

 (3.25)

where Kr, Kt, and Kz are the diagonal elements of the permeability tensor in the

polar coordinates given by Equations 3.26 and 3.27 below and Kθ is the off-diagonal
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element defined by Equation 3.28. These permeabilities can be calculated from the

principal permeabilities in the x− and y−directions:

Kr = Kx cos2 θ +Ky sin2 θ, (3.26)

Kt = Kx sin2 θ +Ky cos2 θ, (3.27)

Kθ = (Ky −Kx) sin θ cos θ. (3.28)

Darcy’s law (Equation 3.25) for the components of the flux u in r−, θ−, and z−directions

are therefore:

ur = − 1
µ

(
Kr

∂p

∂r
+ 1
r
Kθ

∂p

∂θ

)
, (3.29)

uθ = − 1
µ

(
Kθ

∂p

∂r
+ 1
r
Kt
∂p

∂θ

)
. (3.30)

uz = − 1
µ

(
Kz

∂p

∂z

)
. (3.31)

The Laplace Equation is a second order partial differential equation. In the cylindrical

coordinate system, the Laplace equation is:

∇r,θ,z · ~u = 0. (3.32)

Expressing mass conservation of an incompressible fluid with fixed boundary condi-

tions, the volumetric flux in Equation 3.25 produces:

∇r,θ,z · ~u =
[
∂

∂r
,
1
r

∂

∂θ
,
∂

∂z

]
· (ur, uθ, uz) = 0, (3.33)

i.e.,

∇r,θ,z · ~u = 1
r

∂

∂r
(rur) + 1

r

∂

∂θ
(uθ) + ∂

∂z
(uz) = 0, (3.34)

This yields the general Laplacian in a cylindrical coordinate system:
1
r

∂

∂r

(
rKr

∂p

∂r

)
+ 1
r

∂

∂r

(
Kθ

∂p

∂θ

)
+ 1
r

∂

∂θ

(
Kθ

∂p

∂r

)
+ 1
r2

∂

∂θ

(
Kt
∂p

∂θ

)
+ ∂

∂z

(
Kz

∂p

∂z

)
= 0.

(3.35)
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In an isotropic medium, Kr = Kt = K and Kθ = 0. Because the media can still be

heterogeneous, K does not cancel. The Laplacian Equation 3.34 in isotropic media

then simplifies to:
1
r

∂

∂r

(
rK

∂p

∂r

)
+ 1
r2

∂

∂θ

(
K
∂p

∂θ

)
+ ∂

∂z

(
Kz

∂p

∂z

)
= 0. (3.36)

3.3 Solution of the Pressure Distribution

In the polar coordinate system, the reservoir is subdivided into grid blocks. Figure

3.4 is the discretized near-wellbore region. The discretized pressures in both radial

and angular directions are given in Equations 3.37 and 3.38 below; i = 1, · · · , N ; j =

1, · · · ,M :

Figure 3.4: Discretization of Near-Wellbore Grid Blocks in 2D

51



1
r

∂

∂r

(
rK

∂p

∂r

)
∼=

ri+1/2,jKi+1/2,j(pi+1,j − pi,j)
ri,j(ri+1/2,j − ri−1/2,j)(ri+1,j − ri,j)

−
ri−1/2,jKi−1/2,j(pi,j − pi−1,j)

ri,j(ri+1/2,j − ri−1/2,j)(ri,j − ri−1,j)
, (3.37)

1
r2

∂

∂θ

(
K
∂p

∂θ

)
∼=

Ki,j+1/2(pi,j+1 − pi,j)
r2
i,j(θi,j+1/2 − θi,j−1/2)(θi,j+1 − θi,j)

−
Ki,j−1/2(pi,j − pi,j−1)

r2
i,j(θi,j+1/2 − θi,j−1/2)(θi,j − θi,j−1) , (3.38)

where Ki±1/2,j and Ki,j±1/2 are the upscaled permeability for the adjacent grid blocks

in the radial and angular direction, respectively. They are determined by Kr and Kt:

Ki+1/2,j =
ln( ri+1,j

ri,j
)

1
Kr

i,j
ln( ri+1/2,j

ri,j
) + 1

Kr
i+1,j

ln( ri+1,j

ri+1/2,j
)
, (3.39)

Ki,j+1/2 =
2Kt

i,jK
t
i,j+1

Kt
i,j +Kt

i,j+1
. (3.40)

If the discretization in angular direction is uniform, Equation 3.38 is simplified to:
1
r2

∂

∂θ

(
K
∂p

∂θ

)
∼=
Ki,j+1/2(pi,j+1 − pi,j)

r2
i,j∆θ2 −

Ki,j−1/2(pi,j − pi,j−1)
r2
i,j∆θ2 , (3.41)

Using this to discretize Equation 3.36 and rearranging results in:(
ri+1/2,jKi+1/2,j

ri,j(ri+1/2,j − ri−1/2,j)(ri+1,j − ri, j)

)
pi+1,j +

(
Ki,j+1/2

r2
i,j∆θ2

)
pi,j+1 +(

ri−1/2,jKi−1/2,j

ri,j(ri+1/2,j − ri−1/2,j)(ri,j − ri−1,j)

)
pi−1,j +

(
Ki,j−1/2

r2
i,j∆θ2

)
pi,j−1 −( ri+1/2,jKi+1/2,j

ri,j(ri+1/2,j − ri−1/2,j)(ri+1,j − ri,j)

)
+
(

ri−1/2,jKi−1/2,j

ri,j(ri+1/2,j − ri−1/2,j)(ri,j − ri−1,j)

)

+
(
Ki,j+1/2 +Ki,j−1/2

r2
i,j∆θ2

)pi,j = 0. (3.42)

The general expression of the discretized Laplacian (Equation 3.42) for an isotropic
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reservoir is:

ai,jpi,j + bi,jpi,j+1 + ci,jpi,j−1 + di,jpi−1,j + ei,jpi+1,j = 0. (3.43)

Comparing Equation 3.42 and 3.43 we obtain the expression for the coefficients:

ai,j = −
( ri+1/2,jKi+1/2,j

ri,j(ri+1/2,j − ri−1/2,j)(ri+1,j − ri,j)

)

+
(

ri−1/2,jKi−1/2,j

ri,j(ri+1/2,j − ri−1/2,j)(ri,j − ri−1,j)

)
+
(
Ki,j+1/2 +Ki,j−1/2

r2
i,j∆θ2

), (3.44)

bi,j =
(
Ki,j+1/2

r2
i,j∆θ2

)
, (3.45)

ci,j =
(
Ki,j−1/2

r2
i,j∆θ2

)
, (3.46)

di,j =
(

ri−1/2,jKi−1/2,j

ri,j(ri+1/2,j − ri−1/2,j)(ri,j − ri−1,j)

)
, (3.47)

ei,j =
(

ri+1/2,jKi+1/2,j

ri,j(ri+1/2,j − ri−1/2,j)(ri+1,j − ri,j)

)
. (3.48)

The finite-difference formulation of the Laplace Equation (3.42) is a system of linear

equations of the form:

Ap = D (3.49)

where p is a vector of unknown grid block pressures. The matrix A is the coefficient

matrix, representing the inter-block permeabilities, and D is the vector containing the

boundary conditions.
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3.3.1 Wellbore and External Boundary Conditions

Figure 3.5: Pressure Nodes for Near-Wellbore Grid Blocks in 2D

As can be seen from Figure 3.5, node points for the internal and external boundaries

are located on the boundaries of the grid blocks. Hence, the internal boundary radius

r1,j is equal to be the wellbore radius rw. Specifically, the first node radius is the

same as the wellbore radius. This ensures the first node pressure p1,j is the wellbore

pressure pw,j, i.e.

p1,j = pw,j = pw, (3.50)

r1,j = rw. (3.51)

Similar to the internal boundary conditions, the external node radius rN,j is the

reservoir radius re:

rN,j = re. (3.52)
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The corresponding node pressure at the external boundary pN,j is equal to the reservoir

pressure pe,j:

pN,j = pe,j. (3.53)

3.3.2 Angular Boundary Conditions

Because of the geometry of the near-wellbore reservoir, another boundary condition

must be applied. In the angular direction, the first grid block j = 1 is connected with

the last block j = M in each layer. This means, the angular grid block j reaches

j = M , and j + 1 coincides with j = 1. Similarly, the angular grid block j reaches

j = 1, and j − 1 coincides with j = M .

3.3.3 Solution of the System of Linear Equations

The pressure equations for the 2D case will define a system of linear equations (Equa-

tion 3.49). Using the example of a 3×4 grid, the linear equations will be the following

Equation 3.55 below.

The system of equations were implemented in MATLAB ® (Memorial University li-

cense) to solved the Laplacian. The pressure for each grid block in the Polar coordinate

system is then known. The inverse matrix solution is:

p = A−1D, (3.54)

where p is a vector of unknown grid block pressures. The matrix A is the coefficient

matrix, representing the inter-block permeabilities, and D is the vector containing the

boundary condition.
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p1,1

p1,2

p1,3

p1,4

p2,1

p2,2

p2,3

p2,4

p3,1

p3,2

p3,3

p3,4



=



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

d2,1 0 0 0 a2,1 b2,1 0 c2,1 e2,1 0 0 0

0 d2,2 0 0 c2,2 a2,2 b2,2 0 0 e2,2 0 0

0 0 d2,3 0 0 c2,3 a2,3 b2,3 0 0 e2,3 0

0 0 0 d2,4 b2,4 0 c2,4 a2,4 0 0 0 e2,4

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



−1

pw

pw

pw

pw

0

0

0

0

pe

pe

pe

pe



(3.55)
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3.4 Semi-Analytical Streamline Generation in 2D

Polar Coordinate Systems

We will next describe the generation of streamlines in two situations: homogeneous

reservoir in 3.4.1 and heterogeneous reservoir in 3.4.2, both in anisotropic reservoirs.

The determination of the corner pressures from pressures in grid block centers is

presented in 3.4.3. The pressure analyses are then described in 3.4.4.

Figure 3.6: Relationship between Streamline and Velocity in Planar Flow

Streamlines are curves that are instantaneously tangent to the velocity vector of the

flow, i.e. streamlines are integral curves that are locally tangential to a given velocity

field at a given instant in time. The streamline construction is illustrated in two

dimensions in Figure 3.6. The vector ~u is the velocity vector, ux and uy are the

directional components of the flow velocity vector, d~r is the infinitesimal arc length

of the streamline.

According to its definition, the slope of the streamline at any point is given by the

ratio of the components of the velocity at a given instant of time. In two-dimensional
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Cartesian coordinates, a streamline can be defined by:

~y′(x) = [1, y′(x)]√
1 + y′(x)2

= [ux, uy]√
u2
x + u2

y

, (3.56)

As for the Cartesian case, a streamline in the polar coordinate system must satisfy:

~r′(θ) = [1, lnr′D(θ)]√
1 + lnr′D(θ)2

= [uθ, ur]√
u2
θ + u2

r

. (3.57)

Streamlines can also be written in the parametric form:

dt = dr

ur(r, θ, z) = dθ

uθ(r, θ, z) . (3.58)

In a polar coordinate system, assume that pressures at the four corners of a grid block

are determined by an accurate algorithm after solving the Laplacian equation. The

method to obtain the four corner pressures will be described in the 3.4.3. These

corner pressures (p1, p2, p3, and p4) are shown in Figure 3.7.

Figure 3.7: Grid Block with Corner Pressure in 2D

Assume the pressure changes linearly with lnrD in radial direction and linearly in the

θ direction. Consider a log-lin pressure distribution within a grid block, i.e.:

p(rD, θ) = aθlnrD + bθ + clnrD + d, (3.59)

where rD = r/rw, r is the radius for any location within this grid block and rw is
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the wellbore radius. The function p in Equation 3.59 satisfies the Laplacian 3.36.

From classical theory of PDE, this solution is unique. For any given grid block, the

coefficients a, b, d, and d in Equation 3.59 are determined from a linear 4× 4 system

given by the pressures at grid block vertexes:

a

b

c

d


=



θ2lnrD1 θ2 lnrD1 1

θ1lnrD1 θ1 lnrD1 1

θ1lnrD2 θ1 lnrD2 1

θ2lnrD2 θ2 lnrD2 1



−1

p1

p2

p3

p4


. (3.60)

As previously mentioned, the slope of a streamline at any point is defined by the ratio

of the components of the velocity. From Darcy’s Law and Equation 3.59, velocities

can be expressed as:

ur = − 1
µ

(
Kr

∂p

∂r

)
= −Kr

µ

∂

∂r
[aθlnrD + bθ + clnrD + d] = −Kr

µr
(aθ + c), (3.61)

uθ = − 1
µ

(
1
r
Kt
∂p

∂θ

)
= −Kt

µr

∂

∂θ
[aθlnrD + bθ + clnrD + d] = −Kt

µr
(alnrD + b). (3.62)

Here, ur and uθ are Darcy velocities in the radial and angular directions, respectively;

µ is the fluid viscosity, Kr and Kt are the permeabilities in the radial and angular

directions, respectively. They can be calculated from Equation 3.26 and 3.27.

The time-of-flight depends on the real velocity rather than the Darcy velocity. The

relationship between the real velocity and the Darcy velocity is:

v = u

φ
, (3.63)

where u is the Darcy velocity and φ is the porosity.
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3.4.1 Streamline Generation Method for Homogeneous Reser-

voirs

For a homogeneous reservoir, pressure decreases in a logarithmic fashion in the radial

direction towards the wellbore and is constant as a function of θ. Hence, in Equation

3.59, alnrD + b = 0. In this case, streamlines are straight lines towards the wellbore

which can be expressed as:

θ = θen r ∈ (ren, rex), (3.64)

where θen is the angle for the entry point; ren and rex are the radius for the entry

point and the exit point, respectively.

A homogeneous reservoir is mathematically a special case of a heterogeneous reservoir

in the near-wellbore region. The coefficients a and b are equal to 0 for a homogeneous

reservoir, hence, from Equations 3.61 and 3.62, the velocities become:

ur = −Krc

µr
, (3.65)

uθ = 0. (3.66)

Then, the real velocity in radial direction is:

vr = ur
φ

= Krc

φµr
. (3.67)

The time-of-flight for this streamline is defined by the travel distance in the radial

direction and the real velocity in the radial direction:

TOF =
∫ rex

ren

dr

|vr|
= φµ

∫ ren

rex

rdr

Krc
= φµ(r2

en − r2
ex)

2Krc
. (3.68)
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3.4.2 Streamline Generation Method for Heterogeneous Reser-

voirs

For a heterogeneous reservoir, pressure changes in the angular direction. Hence we

assume that alnrD + b 6= 0 in Equation 3.59. If alnrD + b = 0, the homogeneous

reservoir streamline generation method in 3.4.1 is applied. Similarly to the Cartesian

case, we find that any streamline must satisfy:
dr

dθ
= 1
r

ur
uθ

= 1
r

Kr(aθ + c)
Kt(alnrD + b) , (3.69)

which, when integrated becomes:∫
rKt(alnrD + b)dr =

∫
Kr(aθ + c)dθ, (3.70)

(ãlnrD + b̃)2 − (c̃θ + d̃)2 = C, (3.71)

where ã = a
√
Kt; b̃ = b

√
Kt; c̃ = a

√
Kr and d̃ = c

√
Kr. The value of C is constant for

a streamline inside a grid block. Every point on the streamline must satisfy Equation

3.71. We can calculate the constant C from the entry point in this grid block:

C = (ãlnrDen + b̃)2 − (c̃θen + d̃)2. (3.72)

According to Equations 3.61 and 3.62, we get:

aθ + c = −urµr
Kr

, (3.73)

alnrD + b = −uθµr
Kt

. (3.74)

In order to express velocity in the radial direction by radial coordinate only, we

substitute c̃ = a
√
Kr and d̃ = c

√
Kr into Equation 3.71 and get:

(ãlnrD + b̃)2 − (aθ + c)2Kr = C. (3.75)

In order to express velocity in the angular direction by angular coordinate only, we
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substitute ã = a
√
Ktand b̃ = b

√
Kt into Equation 3.71:

(alnrD + b)2Kt − (c̃θ + d̃)2 = C. (3.76)

Substituting Equation 3.73 and 3.74 into Equation 3.75 and 3.76 above gives:

(ãlnrD + b̃)2 − u2
r(µr)2

Kr

= C, (3.77)

u2
θ(µr)2

Kt

− (c̃θ + d̃)2 = C. (3.78)

Hence, the absolute value for Darcy velocities in the radial and angular directions can

be written as:

|ur| =

√
Kr

[
(ãlnrD + b̃)2 − C

]
µr

,
(3.79)

|uθ| =

√
Kr

[
(c̃θ + d̃)2 + C

]
µr

.
(3.80)

Then, the real velocities are:

|vr| =
ur
φ

=

√
Kr

[
(ãlnrD + b̃)2 − C

]
φµr

,
(3.81)

|vθ| =
uθ
φ

=

√
Kr

[
(c̃θ + d̃)2 + C

]
φµr

.
(3.82)

If C < 0, the streamline is a hyperbola in the (θ, lnrD)−space. The explicit formula

for the streamline is:

θ = − d̃
c̃

+ n

c̃

√
(ãlnrD + b̃)2 − C, (3.83)

where n = ±1 and is determined from ãlnrDen + b̃ = n
√
C + (c̃θen + d̃)2. The time-

of-flight is given by:

TOF =
∫ ren

rex

dr

|vr|
= φµ

∫ ren

rex

rdr√
Kr

[
(ãlnD + b̃)2 − C

] . (3.84)

If C > 0, the streamline is a hyperbola in the (lnrD, θ)-space. The explicit expression
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for the streamline is:

lnrD = − b̃
ã

+ n

ã

√
Kt

[
(c̃θ + d̃)2 + C

]
, (3.85)

with n = ±1 and the time-of-flight for this streamline is:

TOF =
∫ θex

θen

dθ

|vθ|
= φµ

∫ θex

θen

r(θ)dθ√
Kt

[
(c̃θ + d̃)2 + C

] . (3.86)

We can also use numerical method (Runge-Kutta fourth order method) to determine

the streamline path by using Equations 3.61 and 3.62:
ur
uθ

= Kr(aθ + c)
Kt(alnrD + b) . (3.87)

3.4.3 Determination of Corner Pressures

Pressure nodes obtained by solving the discrete Laplace equation are located in the

logarithmic center of each grid block; however, the semi-analytical streamline gen-

eration method relies on knowing the pressure in the corners of the grid block. In

Figure 3.8, the •-nodes are the original pressure nodes po(i, j) we obtained by us-

ing the finite difference method to solve the Laplacian; the N-nodes are the pressure

points (p1, p2, p3, and p4) needed for the center grid block (blue grid block) in the

semi-analytical method. In this section, the method to calculate the pressure in the

corners of a grid block is described.
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Figure 3.8: Grid Shifting of Pressure Distribution in 2D

The grid blocks used in the semi-analytical method are the same grid blocks used to

solve the Laplace equation. Instead of using the pressure nodes in the center of each

grid block, pressure points at the four corners are utilized in the streamline simulation.

In order to generate the streamlines by the present method, corner pressures need to

be determined. To achieve this, we impose three principles in an incompressible and

source free system where gravity and capillary effects are negligible:

1. Flux continuity across each grid block boundary;

2. Pressure continuity across each grid block boundary;

3. Mass conservation over the control volume bounded by the pressure nodes

(po1, po2, po3, and po4).

A 4 × 4 grid system is used to demonstrate how to apply these three principles to

obtained the corner pressure, see Figure 3.9.
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(a) Radial Grid Blocks (b) Transformed Grid Blocks

Figure 3.9: Grid blocks for Pressure Distribution Calculation in 2D

A transform is used to perform the pressure calculation:

lnrD = y, θ = x. (3.88)

Then, the pressure pi(rD, θ) in Equation 3.59 is:

pi = aixy + bix+ ciy + di. (3.89)

In Figure 3.9, four pressure nodes poi, i = 1, 2, 3, 4, are calculated from the Laplacian

for grid block 1, 2, 3, and 4. The radius r and angle θ are known, therefore, the

transform can be written as:

lnrD(1,2) = lnrD1 = Y1, lnrD(3,4) = lnrD2 = Y2, (3.90)

θ(1,4) = −α = −X, θ(2,3) = α = X. (3.91)

where X, Y1 and Y2 refer to the transformed nodes coordinates shown in Figure 3.9.
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The pressure at the interface between grid block 1 and 2 can be calculated from the

flux continuity equation (Principle 1 above):∫ yu

yl

Kt1
∂p

∂x
dy =

∫ yu

yl

Kt2
∂p

∂x
dy, (3.92)

where Kt1 and Kt2 are the permeability in the angular direction of grid blocks 1 and

2, respectively. Here, u and l are the upper and lower integration limit, respectively.

By developing this expression, we find:

p12 = Kt1po1 +Kt2po2
Kt1 +Kt2

, (3.93)

where p12 is the pressure for the half distance point between the pressure node 1 and

2.

For the interface between grid block 1 and 4:∫ xu

xl

Kr1
∂p

∂y
dx =

∫ xu

xl

Kr2
∂p

∂y
dx, (3.94)

i.e.

p14 = Kr4po4Y2 +Kr1po1Y1

Kr4Y2 +Kr1Y1
, (3.95)

where p14 is the pressure for the logarithmic center between the pressure node 1 and

4; Kr1 and Kr4 are the permeability in the radial direction of grid blocks 1 and 4,

respectively.

Similarly, we can calculate the value for p23 and p34, i.e.

p34 = Kt3po3 +Kt4po4
Kt3 +Kt4

, (3.96)

p23 = Kr2po2Y1 +Kr3po3Y2

Kr2Y1 +Kr3Y2
. (3.97)

In order to solve the parameters in the linear pressure assumption, 13 equations are

needed. At this point, we can write 12 equations (Equation 3.98 to 3.109 below) for

the 8 known pressure points. For the 4 finite difference method pressure nodes, 4
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equations can be obtained:

po1 = −a1XY1 − b1X + c1Y1 + d, (3.98)

po2 = a2XY1 − b2X + c2Y1 + d, (3.99)

po3 = a3XY2 + b3X + c3Y2 + d, (3.100)

po4 = −a4XY2 + b4X + c4Y2 + d. (3.101)

Pressures on the interfaces satisfy the pressure assumptions in both blocks. Hence,

for each point two equations can be obtained (Principle 2 above):

p12 = c1Y1 + d, (3.102)

p12 = c2Y1 + d, (3.103)

p23 = b2X + d, (3.104)

p23 = b3X + d, (3.105)

p34 = c3Y2 + d, (3.106)

p34 = c4Y2 + d, (3.107)

p14 = −b1X + d, (3.108)

p14 = −b4X + d. (3.109)

We need one more equation. This last equation is the material balance equation for

steady state flow over the control volume defined by the grid block bounded by the

four known pressures po1, po2, po3, po4 (Principle 3 above), i.e.
8∑
i=1

qi = 0, (3.110)

where qi is the flow rate in the radial and angular direction at the boundaries, i.e.

q1 = Kr1

∫ 0

−X

∂p1

∂y
dx = Kr1

(
−a1X

2

2 + c1X

)
, (3.111)
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q2 = Kr2

∫ X

0

∂p2

∂y
dx = Kr2

(
a2X

2

2 + c2X

)
, (3.112)

q3 = −Kr3

∫ X

0

∂p3

∂y
dx = −Kr3

(
a3X

2

2 + c3X

)
, (3.113)

q4 = −Kr4

∫ 0

−X

∂p4

∂y
dx = −Kr4

(
−a4X

2

2 + c4X

)
, (3.114)

q5 = −Kt1

∫ 0

Y1

∂p1

∂x
dy = −Kt1

(
−a1Y

2
1

2 − b1Y1

)
, (3.115)

q6 = Kt2

∫ 0

Y1

∂p2

∂x
dy = Kt2

(
−a2Y

2
1

2 − b2Y1

)
, (3.116)

q7 = Kt3

∫ 0

Y2

∂p3

∂x
dy = Kt3

(
a3Y

2
2

2 + b3Y2

)
, (3.117)

q8 = −Kt4

∫ 0

Y2

∂p4

∂x
dy = −Kt4

(
a4Y

2
2

2 + b4Y2

)
. (3.118)

After numerous calculations we found that the 13 equations (Equation 3.98-3.109 and

Equation 3.110) are linearly independent. This is because the principles are physically

independent. Parameters ai, bi, ci, and d for these four grid blocks are determined from

a linear 13× 13 system described above (Equation 3.119). The pressure for any point

within these four grid blocks (x, y) can then be calculated by Equation 3.59, and the

pressure profiles for these four grid blocks obtained. Extended to the entire reservoir,

the pressure distribution needed for the present semi-analytical method is therefore

known and streamlines can be generated.
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a1

b1

c1

a2

b2

c2

a3

b3

c3

a4

b4

c4

d



=



−XY1 −X Y1 0 0 0 0 0 0 0 0 0 1

0 0 0 XY1 −X Y1 0 0 0 0 0 0 1

0 0 0 0 0 0 XY2 X Y2 0 0 0 1

0 0 0 0 0 0 0 0 0 −XY2 X Y2 1

0 0 Y1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 Y1 0 0 0 0 0 0 1

0 0 0 0 X 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 X 0 0 0 1

0 0 0 0 0 0 0 0 Y2 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 Y2 1

0 −X 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 −X 0 1

A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 0



−1

p1

p2

p3

p4

p12

p12

p23

p23

p34

p34

p14

p14

0



. (3.119)
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In Equation 3.119 the coefficients are:

A1 = −Kr1X
2

2 − Kt1Y
2

1
2 , (3.120)

B1 = −Kt1Y1, (3.121)

C1 = Kr1X, (3.122)

A2 = Kr2X
2

2 + Kt2Y
2

1
2 , (3.123)

B2 = Kt2Y1, (3.124)

C2 = Kr2X, (3.125)

A3 = −Kr3X
2

2 − Kt3Y
2

2
2 , (3.126)

B3 = −Kt3Y2, (3.127)

C3 = −Kr3X, (3.128)

A4 = Kr4X
2

2 + Kt4Y
2

2
2 , B4 = Kt4Y2, (3.129)

C4 = −Kr4X. (3.130)

3.4.4 Pressure Analysis for the 2D Streamline Simulation

The pressure assumption discussed in this section is the pressure distribution within

each grid block i, j given by Equation 3.59. We demand three principles for the

pressure distribution:

1. Flux continuity across each grid block boundary;

2. Pressure continuity across each grid block boundary;
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3. Satisfy Laplace equation at each point inside grid blocks.

There are some high degree pressure polynomials that satisfy Laplace equation but

they are not practical in the near-wellbore region. It is complicated and computation-

ally expensive to find the pressure solution for high degree pressure polynomials. For

these reasons, in this research thesis, we ignore such high degree pressure assumptions

and focus on the classical Pollock’s pressure assumption (piecewise constant), and our

piecewise log-lin pressure assumption.

First, we will discuss the feasibility of the Principle 1 above.

In Pollock’s method, the velocities across the simulation grid block boundaries are

calculated by using Darcy’s law. This satisfies the flux continuity across each grid

block interface. For the piecewise log-lin pressure assumption, as described in 3.4.3,

the principle of the flux continuity across each grid block interface is also satisfied.

Next, we will discuss the Principle 2 above.

For homogeneous cases, both Pollock’s pressure assumption and the piecewise log-lin

pressure assumption are continuous across the grid block boundaries, i.e. satisfies

Principle 2. For heterogeneity cases, Pollock’s pressure assumption cannot satisfy the

pressure continuity principle. The velocity field calculated from the finite difference

method is used in combination with Equations 3.133 and 3.132 to calculate the ve-

locities in the angular and radial directions. The pressure distribution for each grid

block can be determined by Darcy’s velocity (Equation 3.131). Pressure distribu-

tions for the present method and Pollock’s method are shown in Figure 3.10. The

ratio of permeability between the heterogeneity and the bulk reservoir is 1/10. As

we can see from Figure 3.10, there are some pressure discontinuities across the grid
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boundaries for Pollock’s pressure distribution. In contrast to Pollock’s method and as

demonstrated pressure distribution for the present method is smooth and continuous.

As described in 3.4.3, the determination of the corner pressure ensures the global

pressure is continuous over grid block boundaries for the piecewise log-lin pressure

assumption.

(a) Pollock’s Pressure Distribution

(b) Pressure Distribution for the Present Streamline Method

Figure 3.10: Enlarged Pressure Field for the Present Method and Pollock’s Method
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Therefore, Pollock’s method cannot be used in coarse grids without potentially intro-

ducing large errors.

Finally, we will discuss the Principle 3 above.

As described in Chapter 2, in the Pollock’s streamline method, the angular velocity

uθ is assumed to vary linearly in θ−direction within each grid block and the radial

velocity ur is assumed to increase as the inverse of the radius, see Equations 2.12 and

2.13. According to Darcy’s law, velocity is proportional to the pressure gradient. The

velocity assumption used in Pollock’s method is therefore equivalent to assuming a

pressure function given in Equation 3.131 within each grid block:

p(r, θ) = A(lnr) +Bθ2 + Cr +Dθ + E. (3.131)

This is incompatible with having a constant pressure within each grid block as assumed

by the boundary velocity calculation in Pollock’s method. Then, the velocities are

given by:

ur = −Kr

µ

∂p

∂r
= −Kr

µ

(
A

r
+ C

)
, (3.132)

uθ = −Kt

µr

∂p

∂θ
= −Kt

µr
(2Bθ +D). (3.133)

For an isotropic reservoir, Kr = Kt = K. As in Equation 3.131:
1
r

∂

∂r

(
rK

∂p

∂r

)
+ 1
r2

∂

∂θ

(
K
∂p

∂θ

)
= KC

r
+ 2KB

r2 . (3.134)

Therefore, Pollock’s pressure assumption cannot satisfy the Laplacian for 2D isotropic

porous media (Equation 3.135).

The second partial derivatives of the log-lin pressure is identically equal to 0, which

means the piecewise log-lin pressure assumption satisfies the Laplacian for 2D isotropic
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porous media,
1
r

∂

∂r

(
rK

∂p

∂r

)
+ 1
r2

∂

∂θ

(
K
∂p

∂θ

)
= 0. (3.135)

Hence, we can conclude that the piecewise log-lin pressure assumption satisfies Prin-

ciple 3 listed above. The Pollock’s pressure assumption cannot satisfy Principle 3

listed above.

Table 3.1 summarizes the imposed principles for the two pressure distributions dis-

cussed. As we have shown, the log-lin pressure assumption is more accurate and can

also be applied in the 3D case.

Table 3.1: Summary of Demanded Principles

Pressure
Assumption

Flux Continuity
Across Grid Blocks
Boundaries (1)

Pressure Continuity
Across Grid Blocks
Boundaries (2)

Satisfy
Laplace
Equation (3)

Pollock’s Pressure
Assumption

Yes No No

Bi-linear Pressure
Assumption

Yes Yes Yes
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3.5 Semi-Analytical Streamline Generation in 3D

Cylindrical Coordinate Systems

3.5.1 Streamline Generation Method

For a 3D cylindrical grid block shown in Figure 3.11, the pressure is assumed to change

linearly on each edge of the box in the z− and θ−direction, while logarithmically in the

r−direction. Following Johansen (2010) the bi-linear logarithmic (bilin-log) pressure

function is:

p(rD, θ, z) = aθlnrDz + bθlnrD + cθz + dlnrDz + eθ + flnrD + gz + h. (3.136)

This bilin-log pressure assumption satisfies the general Laplacian in 3D (Equation

3.35).

Figure 3.11: A Single Grid Block in 3D

The coefficients in Equation 3.136 are given by the 8 corner pressures. By taking

derivatives according to Darcy’s Law, the velocities are derived.

ur = − 1
µ

(
Kr

∂p

∂r

)
= −Kr

µr
(aθz + bθ + dz + f), (3.137)

uθ = − 1
rµ

(
Kt
∂p

∂θ

)
= −Kt

µr
(alnrDz + blnrD + cz + e), (3.138)

75



uz = − 1
µ

(
Kz

∂p

∂z

)
= −Kz

µ
(aθlnrD + cθ + dlnrD + g), (3.139)

where Kr and Kt are defined in Equation 3.26 and 3.27, respectively; and Kz is the

permeability in z−direction.

The streamlines are determined by a system of two ODEs as follows:

If aθz + bθ+ dz + f 6= 0, lnrD is used as a parameterization for streamlines. The two

ODEs can be then written as:

uθ
ur

= Kt(azlnrD + blnrD + cz + e)
Kr(aθz + bθ + dz + f) , (3.140)

uz
ur

= Kzr(aθlnrD + cθ + dlnrD + g)
Kr(aθz + bθ + dz + f) . (3.141)

If azlnrD + blnrD + cz + e 6= 0, θ is used as a parameterization for streamlines. The

streamlines are then determined by a system of two ODEs:

ur
uθ

= Kr(aθz + bθ + dz + f)
Kt(azlnrD + blnrD + cz + e) , (3.142)

uz
uθ

= Kzr(aθlnrD + cθ + dlnrD + g)
Kt(azlnrD + blnrD + cz + e) . (3.143)

If aθlnrD + cθ + dlnrD + g 6= 0, z is used as the parameterization. The two ODEs

then are:

ur
uz

= Kr(aθz + bθ + dz + f)
Kzr(aθlnrD + cθ + dlnrD + g) , (3.144)

uθ
uz

= Kt(azlnrD + blnrD + cz + e)
Kzr(aθlnrD + cθ + dlnrD + g) . (3.145)

At least one of these situations will provide the streamline in each grid block since

we do not consider a stagnation curve as a streamline. We may have to change pa-

rameterization when tracing the streamlines but the parameterization will not change
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within a grid block for a streamline. If more than one situation is true, we calcu-

late the possible travel times for all situations and the time-of-flight is the minimum

among them. Then the time-of-flight is used to determine the streamline path. The

TOF for a streamline is given by:

TOF = min(tr, tθ, tz), (3.146)

where

tr = φ
∫ rex

ren

dr

|ur|
, (3.147)

tt = φ
∫ θex

θen

dθ

|uθ|
, (3.148)

tz = φ
∫ zex

zen

dz

|uz|
. (3.149)

These integrals can be solved by numerical integration methods.

3.5.2 Determination of Corner Pressures

As with the two-dimensional case, pressure nodes calculated from the finite difference

method are located in the logarithmic center of each grid block in the radial direction

and in the half distance center of each grid block in the angular and the z−direction.

In order to obtain the pressure in the z−direction, the point distributed grid structure

is used in the z−direction. The grid blocks used in 3D are shown in Figure 3.12.

If we assume that the discretization in the angular and vertical directions is uniform,

the general expression of the discretized Laplacian 3.35 in 3D is:

ai,j,kpi,j,k + bi,j,kpi,j+1,k + ci,j,kpi,j−1,k + di,j,kpi−1,j,k

+ei,j,kpi+1,j,k + fi,j,kpi,j,k−1 + gi,j,kpi,j,k+1 = 0, (3.150)
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Figure 3.12: Pressure Nodes for 3D Grid Blocks

where the coefficients are :

ai,j,k = −
( ri+1/2,j,kKi+1/2,j,k

ri,j,k(ri+1/2,j,k − ri−1/2,j,k)(ri+1,j,k − ri,j,k)

)

+
(

ri−1/2,j,kKi−1/2,j,k

ri,j,k(ri+1/2,j,k − ri−1/2,j,k)(ri,j,k − ri−1,j,k)

)

+
(
Ki,j+1/2,k +Ki,j−1/2,k

r2
i,j,k∆θ2

)
+
(
Ki,j,k+1/2 +Ki,j,k−1/2

∆z2

), (3.151)

bi,j,k =
(
Ki,j+1/2,k

r2
i,j,k∆θ2

)
, (3.152)

ci,j,k =
(
Ki,j−1/2,k

r2
i,j,k∆θ2

)
, (3.153)

di,j,k =
(

ri−1/2,j,kKi−1/2,j,k

ri,j,k(ri+1/2,j,k − ri−1/2,j,k)(ri,j,k − ri−1,j,k)

)
, (3.154)

ei,j,k =
(

ri+1/2,j,kKi+1/2,j,k

ri,j,k(ri+1/2,j,k − ri−1/2,j,k)(ri+1,j,k − ri,j,k)

)
, (3.155)
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fi,j,k =
(
Ki,j,k−1/2

∆z2

)
, (3.156)

gi,j,k =
(
Ki,j,k+1/2

∆z2

)
. (3.157)

The pressure equation written for each grid point and the resulting linear equations

can be expressed in matrix form as:

Ap = D. (3.158)

The pressure matrix can be solved by the inverse of the system matrix:

p = A−1D, (3.159)

where p is a vector of unknown grid block pressures. The matrix A is the coefficient

matrix, representing the inter-block permeabilities, and D is the vector containing

the boundary condition. The inverse matrix MATLAB ® code is used to obtain the

solution of Equation 3.158.

After obtaining the finite difference pressure nodes, the same transform in 2D (Equa-

tion 3.88) is used in the calculation to obtain the corner pressure nodes in 3D. Since

the transform is used in the calculation, the grid block geometry is transformed into

cubes. As illustrated in Figure 3.13, eight node pressures (poi, i = 1, 2, 3, 4, 5, 6, 7, 8)

for 8 grid blocks are calculated from the finite difference method. Pressures for the

logarithmic centers in the radial direction and half distance centers in the angular and

z−direction such as p12, p15, p56, and p26 shown in Figure 3.13 are calculated by the

flux continuity principle (Principle 1 in 3.4.3). i.e.∫ zu

zl

Kz1
∂p

∂r
dz =

∫ zu

zl

Kz5
∂p

∂r
dz, (3.160)

where Kz1 and Kz5 are the permeability in the z−direction of grid blocks 1 and 5,

respectively. Here, u and l are the upper and lower integration limit, respectively.
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(a) 3D View

(b) Face View

Figure 3.13: Transformed 3D Grid Blocks

For an incompressible system, pressures for the points located in the center of the

grid block faces created by any four node points (p1234, p2367, p5678, p1458, p1256, and

p3478) and the corner point c (located in center of the cube in Figure 3.13) are then

calculated by mass conservation over the control volume around the primal grid block

(Principle 3 in 3.4.3) as: ∑
q = 0. (3.161)
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For any system like this, 8×7+1 = 57 unknowns shown in Equation 3.162 (ai, bi, ..gi, i =

1, 2, ...8, and h) are introduced:

pi(rD, θ, z) = aiθlnrDz + biθlnrD + ciθz + dilnrDz + eiθ + filnrD + giz + h,

(3.162)

where h is the pressure value pc for corner point formed by these 8 grid blocks. We

need 57 equations to compute pc. Table 3.2 summarizes the equations that are used.

Table 3.2: Equations for Corner Pressure Calculation

Description Number of Equations

Pressure equations for 8 node points 8

Pressure equations for 12 midpoints between two
node points (Principles 2 in 3.4.3: Each midpoint
satisfies the pressure equation for 2 grid blocks)

24

Pressure equations for 6 points located in the cen-
ter of the grid block faces created by any four node
points (Principles 2 in 3.4.3: Each point satisfies
the pressure equation for 4 grid blocks)

24

Material balance equation for steady state flow
over the control volume bounded by eight node
points (Principles 3 in 3.4.3)

1

These 57 equations determine a linear 57 × 57 system, the solution of which is the

corner pressures. Once the corner pressures are known, the pressure for any location

within the grid blocks can be calculated by Equation 3.162. Extended to the entire

porous media, the globally continuous pressure distribution at any location within the

medium can be generated.

The principle discussed above is rigorous, however, for most cases we can use the
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averaging method to determine the corner pressures for simplification.

3.6 Streamline Tracing Procedure

Using the present semi-analytical streamline method described above (Section 3.4),

we can trace a single streamline from injector to producer in the near-wellbore region

as shown in the flow chart in Figure 3.15 and descried below:

1. Give a particle launching point. The launching point defines the initial space

location of the particle. In the near-wellbore region, the launching point is

located at the inner boundary for an injection well and located at the outer

boundary for a production well (Figure 3.14).

(a) Injector Located in Center (b) Producer Well Located in Center

Figure 3.14: Schematic of Injection Wells and Production Wells

2. Consider the velocity for the given launching point. If the velocity equals to

zero, stop tracing; and consider the next launching point.
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3. Determine the grid block coordinates which the given launching (or entry) point

belongs to.

4. Calculate the potential exit points within the grid block in 3.

5. Calculate the time-of-flight of the streamline as minimum of the travel time to

the potential exit points in 4.

6. Determine the actual exit point by considering the r−, θ−, z−directions inde-

pendently, defined by the TOF calculated in 5.

7. Use this exit point as the entry point of the next grid block and calculate the

coordinates for this new grid block.

8. Go back to step 2 for a new tracing process until the fluid particle reaches the

other boundary.
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Figure 3.15: Flow Chart of Stream Tracing Procedure

As shown in Figure 3.16, in this research thesis, a stream tube is a tubular region

in space bounded by two streamlines in 2D. In 3D, a stream tube is defined by four

streamlines. In this research thesis, the starting points for these four streamlines are

located at numerical layer interfaces. The streamline coordinates, cross section area

and the streamline arc length are stored to be used when solving two-phase transport

problems in Chapter 4.
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(a) A 2D Stream Tube Defined by Two

Streamlines

(b) A 3D Stream Tube Defined by Four Stream-

lines

Figure 3.16: Schematic of Stream Tubes Structure
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Chapter 4

Applications and Case Studies in

Near-Wellbore Regions

In the previous chapter, the method for determining the streamline paths in the near-

wellbore region was presented. The application of streamline simulation is becoming

standard for reservoir flow visualization, dynamic reservoir characterization, and op-

timal flood management. This chapter will discuss the utility of streamline simulation

in the near-wellbore region with three main aspects: 1. Water flooding prediction; 2.

Streamline modeling for open hole well completions; 3. Skin calculation for perforated

wells.

4.1 Modeling Two-Phase Flow in Stream Tubes

Streamline models provide fast and accurate solutions to displacements even for

strongly heterogeneous systems. The computational efficiency is due to the fact that
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the streamline simulation method decouples the full 3D problem into a set of multiple

1D problems along streamlines. Fluids move along the natural streamline grid rather

than between discrete grid blocks as in conventional methods (Batycky, 1997). The

fluid movement can be calculated by using Riemann solutions based on the fractional

flow function.

Previous streamline simulation methods used the analytical 1D Riemann approach

(Buckley and Leverett, 1942) to describe constant flow rate cases. A Riemann solution

for waterflooding consists of a propagation of a smooth rarefaction wave trailing a

shock front as in Figure 4.1. The propagation velocity is monotonically increasing

from the injector to producer. The theory is briefly reviewed in Appendix A.

Figure 4.1: Analytical 1D Riemann Solution

The classical fractional-flow theory was under the assumption of constant flow rate.

In a stream tube, the flow velocity in the tube is the flow rate divided by the cross

section area of the stream tube, and for a given constant flow rate this can be used

directly in the Riemann solution. However, if the boundary condition instead is

specified as constant pressure it is no longer true that the flow rate is constant or
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even known a priori. Such constant pressure boundaries occur when the reservoir is

operated under constant injection pressure and constant production pressure or as in

laboratory experiments, under constant differential pressure. For the case of constant

pressure boundaries, the flow rate is a function of time. Johansen, James (2015) and

Johansen et al. (2016) determined the 1D Riemann solution for constant pressure

boundaries. In a stream tube, the area is changing along the stream tube and the

problem is not 1D. For a constant pressure boundary stream tube, it requires a 3D

Riemann solution as determined in Johansen and Liu (2016) both before and after

breakthrough of the front, and briefly described in 4.1.1.

The application of streamline simulation to model two-phase flow involves five major

steps. A flow chart for simulating two-phase flow using the Riemann approach along

stream tubes is shown in Figure 4.2.

1. Input the geological and fluids information such as reservoir dimensions, per-

meability, porosity and viscosities.

2. Solve the Laplace equation by using the finite difference method and then deter-

mine the corner pressures as described in 3.4.3 to obtain the continuous profile

for the entire reservoir.

3. Generate the streamlines for single-phase flow as described in 3.4.1 or 3.4.2.

4. Bundle the neighboring streamlines into stream tubes and capture the stream

tube information such as cross section area and stream tube length.

5. Map the 3D Riemann solution along stream tubes to simulate the fluid move-

ment.

In this research thesis, streamlines are assumed constant. This means, streamlines
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are not updated with time. With an unfavorable mobility ratio or the change of well

conditions, streamlines need to be updated frequently.

Figure 4.2: Flow Chart of Riemann Approach along Stream Tubes
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Next, we will present a semi-analytical Riemann approach for constant pressure

boundary used to move fluid numerically along stream tubes, which is described in

Johansen and Liu (2016).

4.1.1 Solution of the Riemann Problems in Stream Tubes

under Constant Pressure Boundaries

In a waterflooding process, in a near-wellbore region study, the injection well is located

in the center of a cylindrical reservoir. Fluids are produced at the outer boundary. The

injection pressure pw and the production pressure pe are kept constant by assumption.

After stream tubes are generated, for each stream tube, the pressures on the inlet

and outlet boundaries are constants (Figure 4.3). This solution is also applicable to

the case when differential pressure between the injection well and production well is

constant during the flow process. The pressure boundary conditions for the problem

are:

p(0, t) = pin = pw, (4.1)

p(L, t) = pout = pe, (4.2)

where pin and pout are the inlet pressure and outlet pressure, respectively, and L is

the length of the stream tube.

In accordance with classical Fractional Flow theory, we assume initial saturations

for the reservoir and injected saturations are constant. The saturation boundary

conditions are:

SL = S(0, t) = 1− Sor, t ≥ 0, (4.3)

SR = S(x, 0) = Swc, x ∈ [0, L], (4.4)
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Figure 4.3: Near-Wellbore Stream Tube Sketch

where SL and SR are the water saturation at the inlet and outlet of the stream tube,

respectively, and Sor is the residual saturation and Swc is the connate water saturation.

A Riemann solution for this problem is described by a propagation of two waves.

Specifically, the saturation jump is the leading shock front at saturation (S∗), see

Figure 4.1 andAppendix A. The velocities participating in an overall global solution

increase in the direction from the injection side to the production side. Equation 4.5

is used to calculate the fluid movement.

Before water breakthrough, the shock front flow rate q at a given time t is given by:

q(t) = ∆p
−V (x(S∗,t))

f ′(S∗) J (S∗) + 1
λR

∫ L
x(S∗,t)

dx
A(x)

, (4.5)

where

J (S∗) =
∫ SL

S∗

f ′′(S)dS
A2
[
V −1[V ((x(S∗, t))φf ′(S)

f ′(S∗)

]
λ(S)

. (4.6)

Here, x represents arc length along the stream tube, ∆p is the constant pressure

difference between the inlet and the outlet, x(S∗, t) is travel distance for front satu-

ration S∗ from the injection point at time t, V (x) is the volume of the stream tube

from injection to x, A(x) is the cross section area for the stream tube at x, f(S) is
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the fractional flow function, f ′(S), f ′′(S) are the first and second derivative of water

fractional flow with respect to water saturation S, respectively, λ is the total fluid

mobility λ = λo + λw , and λR is the total mobility at the SR, λR = λSR
.

The shock front flow rate is used to determine the travel distance from the classical

Buckley and Leverett solution. Since S∗ is known, for any x∗ ∈ [0, L], we can calculate

V (x(S∗, t)). According to mass conservation, this volume during an infinitesimal time

dt is the same as the injection volume during the same time:

dx(S∗, t) = q(t)f ′(S∗)
φA(x(S∗, t))dt. (4.7)

After breakthrough, the time for an arbitrary water saturation larger than shock front

saturation S ∈ [S∗, SL] to reach the outlet x = L is given by:

ts = 1
2[V 2(x(S, t∗))− V 2(L)] φJ (S)

∆pf ′2(S) + t∗, (4.8)

where

J (S) =
∫ SL

S

f ′′(s)ds
A2
[
V −1[V (x(S, t))φf ′(s)

f ′(S)

]
λ(s)

, (4.9)

where t∗ is the breakthrough time of the front, φ is porosity, s is the saturation

between S and SL, V (L) is the volume for the entire stream tube described before.

The flow rate after breakthrough at time ts can then be calculated by:

q(ts) = [V 2(L)− V 2(x(S, t∗))]φ
2V 2(L)f ′2(S)(ts − t∗)

. (4.10)

Here, t∗ is determined by integration of Equation 4.7 between x = 0 and x = L using

Equation 4.5 for q(t).
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Figure 4.4: Flow Chart of Riemann Approach along Stream Tube

Figure 4.4 is the flow chart for simulating two-phase flow, using the semi-analytical

Riemann approach along stream tubes.

1. Choose a stream tube.

2. Specify the initial shock front travel distance from the inlet, x(S∗, t).

3. Determine if it is before breakthrough. If it is after breakthrough (the travel

distance is larger than the stream tube length), label the stream tube as post
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breakthrough and follow steps 9 through 11 below for post breakthrough calcu-

lation. Go back to 1 (next stream tube).

4. With the known travel distance x(S∗, t) determine the volume of the stream

tube V (x(S∗, t)) from the injection to x.

5. Calculate the value of V (x(S∗, t))φf
′(S)

f ′(S∗) , then use this value to calculate the

value of A2
[
V −1[V (x(S∗, t))φf

′(S)
f ′(S∗)

]
. Then, obtain J (S∗) defined by Equation

4.6. The integration is obtained by the numerical method which is described in

Appendix C.

6. Calculate flow rate q(t) at time t by applying Equation 4.5.

7. Calculate the incremental travel distance dx in time interval dt by using Equa-

tion 4.7.

8. Update the shock front travel distance x(S∗, t) = x(S∗, t) + dx and return to 3.

9. Calculate the travel distance x(S, t∗) at breakthrough time t∗ for an arbitrary

saturation larger than shock front saturation S ∈ [S∗, SL] for any post break-

through stream tube.

10. Calculate the time ts for an arbitrary saturation larger than shock front satura-

tion S ∈ [S∗, SL] to reach the outlet x = L.

11. Calculate the flow rate q(ts) for an arbitrary saturation larger than shock front

saturation at time ts.

Following this Riemann approach, the flow rate, and waterfront at different times can

be determined.
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4.1.2 Calculation of Stream tubes Areal Geometry

The streamlines are generated under the assumption of single-phase flow. In 2D, the

space between two streamlines is a stream tube. The Riemann solution provides the

analytical solution for a homogeneous stream tube. For a heterogeneous case, the

length of each streamline and the stream tube boundaries are obtained numerically

during the streamline tracing process. As shown in Figure 4.5, the stream tube

boundaries are represented by the solid lines; streamlines in the middle of the stream

tubes are represented by dotted lines. The cross section area is calculated as the

equation in Figure 4.5. It is defined by the 4 points with the same radius.

Figure 4.5: Stream Tube Area Calculation in 2D

For each stream tube, L1 is the length of stream tube boundary 1, and L2 for boundary

2. Both length can be calculated. The middle streamline length L is also known. The

length of the center streamline is used to represent the length of the stream tube

since the coordinates for this streamline may be needed for the heterogeneous stream
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tubes. As illustrated in Figure 4.5, stream tube boundaries and the center streamline

are divided into the same number of segments. The stream tube area is a unique

function of stream tube length since the stream tubes are fixed. Figure 4.6 is an

example on the areal geometry versus stream tube length for different stream tubes.

The permeability contrast between the block and the bulk in this particular example

is 3/4. The stream tube length is the distance from the injector.

Figure 4.6: Area and Length Relationship for Two Selected Stream Tubes
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4.1.3 Treatment of the Stream tubes with a Heterogeneity

The 3D Riemann solution described in 4.1.1 provides the analytical solution for a

homogeneous stream tube. In the case of heterogeneous stream tube, it requires

a special procedure. Figure 4.7 shows a stream tube with one heterogeneity. The

permeability of the heterogeneity is denoted by KH ; permeability for the rest of the

stream tube is K. The 3D Riemann solution can only be applied in stream tubes

with unique permeability, any stream tube with heterogeneity inside is split into

three homogeneous stream tubes. While generating the streamlines we can capture

the intersection points between the center streamline and the heterogeneity. Once

the coordinates of these points are known, the pressure for these two points p1, p2

can be calculated by using Equation 3.59. This stream tube is then split into three

homogeneous stream tubes with known inlet and outlet pressures. The 3D Riemann

approach can then be applied to each of them. In each stream tube, under the

constant pressure boundaries, the flow rate varies with time, however, for a fixed

time, it is constant as a function of stream tube arc length. The flow rate depends on

the permeability, hence we first use pressure boundaries pw, p1 and the permeability

K in Stream Tube 1 to calculate the water front movement and flow rate. Once

the waterfront reaches the the intersection point 1, parameters (pressure boundaries

p1, p2 and permeability KH) in Stream tube 2 are used in the calculation to obtain

the waterfront and flow rate. As soon as the front reaches the Intersection point 2,

parameters in Stream tube 3 are used to calculate the water front movement and flow

rate. The treatment of the stream tubes with heterogeneity requires only the use of the

pre-breakthrough equations. We can alternatively use the upscaled permeability to

do the movement calculation. Using the upscaled permeability only provides the same

breakthrough time as the method we applied in this research thesis but it introduces
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errors for the frontal movement (smears out the water front along this stream tube).

Figure 4.7: Stream Tube with a Heterogeneity

4.1.4 Riemann Solution for Homogeneous Radial Reservoirs

For a homogeneous reservoir, streamlines are straight radial lines from the injection

well surface to the production ring. The θ−coordinate along one of these streamlines

is constant. The geometry for a stream tube is shown in Figure 4.8.

Then, the analytical solution for the flow rate is determined in Johansen and Liu

(2016) as a special case of the general solution and is given by:

q(t) = 2∆pαh
−[(x+ rw)2 − r2

w]J (S∗) + 1
λR
ln
(

re

x+rw

) , (4.11)

where

J (S∗) =
∫ SL

S∗

f ′′(S)dS
[r2
wf
′(S∗) + [(x+ rw)2 − r2

w]f ′(S)φ]λ(S) . (4.12)
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Figure 4.8: Stream Tube for Homogeneous Reservoirs (Johansen and Liu, 2016)

In Chapter 5, the 2D waterflooding process experiments were performed in glass-

beads macro-models. The glass-beads macro-models properties are used to trace the

streamlines. By applying the solution of 3D Riemann problem along each stream

tube at constant pressure boundary conditions, the location of the water front at

a specific time, the water breakthrough time, and the flow rates can be obtained.

These simulated results are used to history match with the laboratory data. The

application of the 3D Riemann approach along stream tubes in simulating macro-

model waterfloodings is described in Chapter 5.

4.2 Streamline Modeling Case Studies in Open Hole

Wells

This section describes the case studies for streamline simulation in single-phase flow

with an open hole well completion i.e. where well completion details do not influence
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the stream line pattern. Two-phase flow case study results will be used to demon-

strate the history matching ability for streamline simulation and will be described in

Chapter 5, also for open hole wells. Table 4.1 summarizes cases discussed in this

section.

Table 4.1: Summary of Case Studies-Open Hole Wells for Single-Phase Flow

Case Dimensions Homogeneous/
Heterogeneous Method Applied

1 2D Homogeneous
Fully Analytical
Pollock’s Method
Semi-Analytical Method

2 2D
Heterogeneous-
Low Permeability Sector
(Two Subcases)

Pollock’s Method
Semi-Analytical Method

3 2D
Heterogeneous-
High Permeability Sector
(Two Subcases)

Pollock’s Method
Semi-Analytical Method

4 3D Homogeneous anisotropic Pollock’s Method
Semi-Analytical Method

5 3D Heterogeneous Semi-Analytical Method

4.2.1 Case 1: 2D Homogeneous Case

In a homogeneous reservoir, the permeability throughout the reservoir is constant.

The domain simulated is a cylindrical ring with an inner radius of 0.05 m (wellbore)

and an outer radius of 50 m. The permeability is isotropic and homogeneous which

equals to 1.0 Darcy. The inner and outer boundaries have constant pressures of 280
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bar and 300 bar, respectively. The details of the parameters used in this case are

shown in Table 4.2. Figure 4.9 shows the pressure profile for a homogeneous near-

wellbore reservoir. The r-axis represents the radius from the wellbore center and the

p-axis represents the corresponding pressure. The colour represents the pressure in

accordance with the colour bar. The pressure profile is identical for all angles since the

formation is homogeneous. The symmetric pressure distribution has a funnel shape

in the near-wellbore region. Pressure decreases in a logarithmic fashion in the radial

direction towards the wellbore but is constant as a function of angle.

Table 4.2: Parameters used for Open Hole Case 1

Parameters Units Values

Wellbore Radius m 0.05

External Radius m 50

Radial Blocks 50

Tangential Blocks 50

Wellbore Pressure Pa 280× 105

External Pressure Pa 300× 105

Bulk Permeability m2 1× 10−12

Oil Viscosity Pa · s 10−3
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Figure 4.9: Pressure Distribution for Open Hole Case 1

Figure 4.10: Streamline Traced by Different Methods for Open Hole Case 1
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For Case 1, a fully analytical solution exists as will be described below. The stream-

lines are traced by three different methods: the semi-analytical method, Pollock’s

method, and the fully analytical method. As shown in Figure 4.10, entry angle and

exit angle for each streamline are the same for all the methods. Hence streamline

trajectories for all methods are identical. This is because the pressure decreases in

a logarithmic fashion in the radial direction towards the wellbore and there is no

pressure gradient in the θ-direction at the same radius. However, the time-of-flight

values differ from the fully analytical solution for the two approximate methods. To

quantify the variations, the average relative error for the time-of-flight is calculated

by Equation 4.13 below. The relative error in TOF for an approximate method is

defined as:

eTOF =
∑ |TOFi − tofi|

TOFi
, (4.13)

where TOFi and tofi are the fully analytical and the approximately calculated incre-

mental time-of-flight for radial interval i, respectively.

Figure 4.11: Relative Errors in Time-of-Flight for Open Hole Case 1
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Table 4.3: Relative Errors in Time-of-Flight for Open Hole Case 1

Grid Block Number in
the Radial Direction

Error for Pollock’s
Method

Error for Semi-
Analytical Method

10 2.47× 10−1 4.02× 10−13

20 1.10× 10−1 1.21× 10−12

30 7.10× 10−2 4.00× 10−12

40 5.23× 10−2 1.48× 10−11

50 4.14× 10−2 7.51× 10−12

60 3.43× 10−2 1.40× 10−11

70 2.92× 10−2 2.92× 10−11

80 2.55× 10−2 1.04× 10−10

90 2.26× 10−2 3.72× 10−11

100 2.03× 10−2 5.08× 10−11

Figure 4.11 and Table 4.3 show the error for the present semi-analytical method and

Pollock’s method relative to the fully analytical solution. The result shows that the

present semi-analytical method is in agreement with the analytical solution. When

the grid resolution is low, Pollock’s method to determine the time-of-flight exhibits

unacceptable errors.

Next, we will prove that for the homogeneous reservoir the present semi-analytical

method is mathematically identical to the fully analytical solution. Therefore, the er-

rors for the semi-analytical method listed in Table 4.3 are caused by digital truncation

only.
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At steady state the pressure equation in cylindrical coordinates is:
d

dr

(
r
dp

dr

)
= 0. (4.14)

where r is the radius and p is the pressure. The general solution for Equation 4.16 is:

p(r) = Alnr +B. (4.15)

where the constants A and B is determined from the boundary conditions. The

pressure form is the same as in the present semi-analytical method.

Consider a homogeneous reservoir of inner radius rw and outer radius re. The corre-

sponding pressures are pw and pe. The analytical pressure for any radius is:

p(r) =
(
ln(r/rw)
ln(re/rw)

)
(pe − pw) + pw. (4.16)

The fully analytical solution for the time-of-flight is:

TOF = φ
(r2
e − r2

w)
2Krln(re/rw) .

(4.17)

This TOF expression is the same expression as in the present semi-analytical method

as shown in Equation 3.68. Hence, for the homogeneous reservoir, the semi-analytical

solution provides the same pressure and time-of-flight results as the analytical method.

As described in 3.4.4, in the homogeneous case, the velocity assumption used in

Pollock’s method is equivalent to assuming a pressure function as:

p(r, θ) = A(lnr) + Cr + E. (4.18)

It is different from the fully analytical method, which causes the TOF error in Pol-

lock’s method. This points to the fact that Pollock’s method in radial geometries in

general hampered by systematic error. It also explains its performance in 2D hetero-

geneous reservoirs. In radial geometries, these errors in Pollock’s method are severe
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because of the logarithmic (non-linear) pressure distribution. This is in contrast to

Cartesian geometries, where such behaviour is not observed because the pressure is

linear.

4.2.2 Case 2: 2D Heterogeneity with a Low Permeability

Sector

In the near-well region, heterogeneities always exist. No analytical solution can be

found for heterogeneous reservoirs except in idealized situations. The streamlines are

traced by the two methods (present semi-analytical method and Pollock’s method).

In Case 2, a large area of low permeability sector is placed in the third quadrant of

the reservoir. We show two subcases here: In Subcase 2.1 the ratio of permeabilities

between the heterogeneity and the bulk reservoir is 1/4 and in Subcase 2.2 the ratio

is 1/2. The detailed parameters used are shown in Table 4.4.
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Table 4.4: Parameters used for Open Hole Case 2

Parameters Units
Values

Subcase 2.1 Subcase 2.2

Wellbore Radius m 0.05 0.05

External Radius m 50 50

Radial Blocks 50 50

Tangential Blocks 50 50

Wellbore Pressure Pa 280× 105 280× 105

External Pressure Pa 300× 105 300× 105

Bulk Permeability m2 1× 10−12 1× 10−12

Oil Viscosity Pa · s 10−3 10−3

Radial Blocks with Low Permeability 40-47 40-47

Tangential Blocks with Low Permeability 25-36 25-36

Block Permeability m2 0.25× 10−12 0.5× 10−12

The permeability field is shown in Figure 4.12 (a) and the pressure distribution in Fig-

ure 4.12 (b) for Subcase 2.1. The red area represents the block with bulk permeability;

the blue area represents the low permeability area. The pressure roughly decreases

in a logarithmic fashion as it approaches the wellbore, as in the homogeneous case.

However, the heterogeneity has a significant influence on the pressure distribution lo-

cally. The lower permeability value results in a larger radial pressure gradient within

the heterogeneous sector. As can be seen from the 90◦ side view, the pressure for the

grid blocks surrounding the heterogeneity also changes to accommodate the pressure

change in the heterogeneous area (Skinner, 2011). As can be seen from the 45◦ side
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view, the pressure decreases smoothly in a logarithmic fashion towards the wellbore.

The pressure distribution for Subcase 2.2 is similar to the pressure distribution for

Subcase 2.1, just with a larger pressure change.

(a) Permeability Profile

(b) Pressure Profile

Figure 4.12: Permeability and Pressure Profile for Open Hole Subcase 2.1
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As can be observed from the Figure 4.13, the results from the present method and

Pollock’s method do not coincide. For Subcase 2.1, (Kblock/Kbulk = 1/4) streamlines

generated by Pollock’s method do not flow across the low permeability area and the

nearby grid blocks. This appears unphysical, as the grid blocks with the higher per-

meability should allow fluid flow. It is therefore concluded that Pollock’s method

produces a systematic error in radial cases which is also apparent in the TOF calcu-

lations. On the contrary, only some of the semi-analytical streamlines, very close to

the low permeable boundaries, avoid flowing across the low permeable region which

is physically far more reasonable. For Subcase 2.2 (Kblock/Kbulk = 1/2), it is observed

that, unlike the previous case, some streamlines generated by Pollock’s method flow

through the low permeability area. However, streamlines generated by the present

semi-analytical method maintain the same trend as in the previous case, i.e. only

some of the streamlines, very close to the low permeable boundaries, avoid flowing

across the low permeable region. Pollock’ s method gives unrealistic results since the

streamlines avoid the low permeability area in both cases excessively. This is in con-

trast to the physical fact that some of the fluid will flow through these regions, and

this is captured by the present semi-analytical method.
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(a) Subcases 2.1: Kblock/Kbulk = 1/4

(b) Subcases 2.2: Kblock/Kbulk = 1/2

Figure 4.13: Streamlines for Open Hole Case 2
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Figure 4.14: TOF for Different Methods for Open Hole Case 2

Since the reservoir is symmetric, half of the TOFs of the streamlines are shown in

Figure 4.14. According to this figure, TOFs between Pollock’s method and the present

semi-analytical method have the same tendency: TOFs increase as streamlines get

closer to the heterogeneity. However, TOFs obtained from the present semi-analytical

method increase more than that from Pollock’s method. TOFs from the present semi-

analytical method are separated into two sections: in the heterogeneity and in the

bulk. They are relatively stable in their respective section. This means that almost

independently of where the streamline is located, almost the same travel time is

required as long as the streamlines are in the same section.
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4.2.3 Case 3: 2D Heterogeneity with a High Permeability

Sector

In Case 3, as opposite to the pervious case, a large area high permeability was placed

in the third quadrant of the reservoir. We also show two subcases here: In Subcase

3.1 the ratio of permeabilities between the heterogeneity and the bulk reservoir is 4/1

and in Subcase 3.2 the ratio is 2/1. The remaining parameters used in this case are

the same as for the two-dimensional heterogeneity case with low permeability. Figure

4.15 shows the permeability profile and pressure profile for Subcase 3.1. The red area

represents a high permeability sector in the reservoir. It is noticed that Subcase 3.1

has an opposite change of pressure distribution within the heterogeneity compared to

two-dimensional heterogeneity with low permeability case in 4.2.2, showing a smaller

pressure drop within the heterogeneous sector. The pressure distribution for Subcase

3.2 is similar with Subcase 3.1 with less pressure change at the heterogeneity.

As illustrated in Figure 4.16, streamlines from Pollock’s method avoid the area on the

sides of the heterogeneity which is unphysical. It is attributed to the same systematic

errors in Pollock’s method as described in 4.2.2. Similar to the previous case, the

present semi-analytical method provides a more reasonable result.
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(a) PermeabilityProfile

(b) PressureProfile

Figure 4.15: Permeability and Pressure Profile for Open Hole Subcase 3.1
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(a) Subcase 3.1: Kblock/Kbulk = 4/1

(b) Subcase 3.2: Kblock/Kbulk = 2/1

Figure 4.16: Streamlines for Open Hole Case 3
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4.2.4 Case 4: 3D Homogeneous and Anisotropic Case

In this section, we demonstrate the performance of the present method in three di-

mensions through a homogeneous anisotropic reservoir case. The basic 3D case is

shown in Figure 4.17 and considers a homogeneous cylinder reservoir with a radius of

50 m and height of 50 m. A production well with a diameter of 0.3 m is placed in

the center of the bottom layer of this reservoir, which has a fixed pressure of 150 bar.

An injection ring (pressure support) with a radius of 50 m is opened on the top layer

with a constant injection pressure of 200 bar. The permeability in the z−direction is

10 times smaller than the permeability in the radial and angular direction. The rest

of the outer boundaries are no flow boundaries. The details for this case are shown

in Table 4.5.

Table 4.5: Parameters used for Open Hole Case 4

Parameters Units Values

Wellbore Radius m 0.3

External Radius m 50

Radial Blocks 10

Tangential Blocks 20

Z-direction Layers 6

Wellbore Pressure Pa 150× 105

External Pressure Pa 200× 105

Bulk Permeability in x- and y-directions m2 1× 10−13

Bulk Permeability in z-directions m2 1× 10−14

Oil Viscosity Pa · s 10−3
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Figure 4.17: Open Hole Case 4 Structure

Both Pollock’s method and the present semi-analytical method are applied to simulate

this case. The results in Figure 4.18 show that the present method gives a more

physically reasonable result with smoother streamline trajectories.

The TOF for a streamline from Pollock’s method and the present semi-analytical

method are 6.68 × 109 s and 7.42 × 109 s, respectively, a discrepancy of approxi-

mately 10%, which is significant since it is reflective of the breakthrough time of a

displacement front.
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(a) 3D View

(b) Side View

Figure 4.18: Streamlines for Open Hole Case 4
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4.2.5 Case 5: 3D Heterogeneous Case

In the near-wellbore region, the reservoir radius is re = 12 m with a well in the center

rw = 0.05 m and the reservoir thickness is z = 5 m. The pressures along the wellbore

and the reservoir boundary in the z−direction are assumed constant. A high per-

meability ring is placed from 3 m to 4 m in the z−direction, as illustrates in Figure

4.19. In the near-wellbore region, the high permeability areas usually start from the

the inner boundary because of perforation; however, in order to show curvature of

streamlines easily, the high permeability zone is arranged to the area very close to

the outer boundary. The detailed parameters used are shown in Table 4.6. Figure

4.20 shows streamlines generated by the present semi-analytical method. Pollock’s

method can not provide streamlines for this case.

(a) Overall View (b) Top View

Figure 4.19: Open Hole Case 5 Structure
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Table 4.6: Parameters used for Open Hole Case 5

Parameter Units Value

Wellbore Radius m 0.05

External Radius m 12

Reservoir Thickness m 5

Radial Blocks 50

Tangential Blocks 20

Z-direction Layers 5

Wellbore Pressure Pa 280× 105

External Pressure Pa 300× 105

Bulk Permeability m2 1× 10−13

Oil Viscosity Pa · s 1× 10−3

Radial Blocks with High Permeability 48

Tangential Blocks with High Permeability 1-20

Layers with High Permeability 4

Block Permeability m2 1−12
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(a) Overall View

(b) Top View

Figure 4.20: Streamlines for Open Hole Case 5
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Streamlines are fluctuating in each layer however within a small range along the

z−axis. Figure 4.21 shows the streamlines launching form the outer boundary for each

layer seperately. In Figure 4.21, the x−axis and y−axis represent the spatial location

through the reservoir, while the z−axis represents the vertical distance. Streamlines

tend to approach upwards in the middle for the first 4 layers. Streamlines tend to

approach downwards in the middle of Layer 5.

Figure 4.22 is the side sketch for Case 5. The main purpose for this figure is to

show the tendency in the z−direction for all layers. The high permeability ring is

at layer 4, as can be seen from Figure 4.22. All streamlines tend to approach to

the high permeable ring and the level of tendency is depending on the distance from

the high permeable ring. In other words, the closer to the high permeable ring, the

more obvious the approach tendency is. Layer 4 is different with this tendency. It

is because the upscaled permeability between layer 4 and layer 3 and the upscaled

permeability between layer 4 and layer 5 used in the pressure calculation overcome

the heterogeneity affect in this layer.
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5

Figure 4.21: Streamlines for Open Hole Case 5 in Different Layers
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Figure 4.22: Side Sketch for the 3D Case

4.3 Skin Calculation by Using Streamline Simula-

tion Method

In the near-wellbore region, rock properties may vary due to different factors such as

drilling damage, perforation damage, crushed zone damage and other effects. This

causes an additional pressure drop in the near-wellbore region, which can be expressed

by a mechanical skin factor. Assuming one-phase steady-state incompressible flow

in an undamaged near-well region, the flow rate in a homogeneous and isotropic

formation of thickness h can be calculated by:

Q = 2πKh(pe − pw)
µln(re/rw) , (4.19)

where K is the permeability, re and rw are the radius for an external boundary and

the wellbore, respectively. The corresponding pressure at the external boundary is
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denoted as pe and the pressure in the wellbore as pw.

In a perforated well, additional pressure drop is caused by flow convergence into

perforations, crushed formation in the vicinity of the perforations, and damaged zone

from mud invasion (Figure 4.23). The permeability for the damaged zone is smaller

than the reservoir permeability.

Figure 4.23: Damaged Zone in the Near-Wellbore Region

For steady-state incompressible flow, Equation 4.19 can be written for each region in

Figure 4.23 separately:

Q = 2πKdh(pd − pw)
µln(rd/rw) , (4.20)

Q = 2πKh(pe − pd)
µln(re/rd)

. (4.21)

Since the fluid is assumed incompressible, the flow rate Q is the same in both regions.

UsuallyKd and rd are unknown. Combining Equation 4.20 and 4.21, the flow equation

including skin can be written as:

Q = 2πKh(pe − pw)
µ [ln(re/rw) + S] , (4.22)

where S is the mechanical skin factor.
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Each stream tube has a unique flux. The flow rate for any stream tube can be

calculated by:

qi = Kri

µ

∫ θu

θl

∂pi
∂lnrD

∂θ, (4.23)

where Kri is the permeability in the radial direction for grid block i in the outer ring.

Here, θu and θl are the upper and lower limit in the angular direction, respectively.

Figure 4.24: Stream Tubes Representation for Near-Wellbore Region in 2D

In this near-wellbore streamline simulation, entry points for a number of stream-

lines are defined on the external boundary. After calculating the streamlines using

the present semi-analytical method, they are bundled into stream-tubes. Since the

launching points of streamlines are known, the lower and upper limits in the-θ direc-

tion are also known.

The total flow rate for the entire reservoir can be obtained by summing the contri-

bution for individual stream tubes, Q = ∑
qi. The total mechanical skin can then be

calculated from Equation 4.22. The skin calculations using the streamline simulation

method can be used to calculate the overall productivity of the well. Streamlines do

not have a flow rate. Therefore, we use the stream tubes here.
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4.3.1 The Skin Components in Perforated Wells

During the drilling process, the formation is damaged by drilling mud invasion unless

under-balanced drilling is used. However, the vast majority of wells are drilled over-

balanced for regulatory reasons. Such damage will result in a reduced permeability

in a near well region (Figure 4.23). It is known as the damaged zone permeability

Kd, which is smaller than the formation permeability K. Klotz et al. (1974) and

Hong (1975) concluded that the contribution of the damaged zone to the total skin

in a perforated well heavily depends on the perforation length and the damaged zone

radius. Hawkins’ formula (Equation 4.24) shows the relative effects of permeability

impairment and the penetration of damage:

S =
(
K

Kd

− 1
)
ln
(
rd
rw

)
(4.24)

Figure 4.25: Crushed Zone in the Near-Wellbore Region

Figure 4.25 illustrates the crushed zone surrounding perforations. While creating

perforations using a high powered perforation gun, the high compressive stress placed

on the rock creates a crushed zone surrounding the perforation holes. This leads to

126



a region of significantly reduced permeability (KC). Pucknell and Behrmann (1991)

reported that the crushed zone reduces the permeability in the range of 50% to 80%.

In a perforated well, the perforations do not open up the whole formation. The reser-

voir fluid has to flow with the flow lines converging near the penetrated area at the

wellbore. The convergence of the flow lines near the wellbore causes an additional

pressure drop near the wellbore, which in turn, creates a convergence skin. Stream-

lines directly demonstrate the flow patterns. Streamlines close to the perforations go

directly into the perforation tunnel. Streamlines opposite of the perforations bypass

the casing toward the perforations, as shown in Figure 4.26.

Figure 4.26: Convergence Effect in the Near-Wellbore Region (Skinner, 2011)

4.3.2 Model Representations

The perforations are distributed around the wellbore as shown in Figure 4.27. The

angle between two perforations is called the phase angle; the perforation spacing is

the vertical distance between two perforations; the perforation length is the length of

a perforation tunnel from the wellbore. Perforations are used in cased and cemented

wells. The casing and cement is a non-permeable ring that disconnects the well and the

reservoir formation. No fluid can flow through this ring. Therefore, perforations are

127



created to provide communication channels between the wellbore and the formation

using a perforation gun with high powered shaped charges.

Figure 4.27: Perforation Geometry (Karakas and Tariq, 1991)

Figure 4.28 illustrates a radial grid used in streamline simulation representing a per-

forated wellbore. The casing is a non-permeable ring between the well and the for-

mation, hence the transmissibility between the innermost ring and the wellbore is

assigned the value of zero except inside the perforation. This approach accurately

describes the real flow process. All streamlines avoid the casing as the flow converges

towards the perforations. The crushed zone is represented by a set of grid blocks with

a low permeability (Kc) layer adjacent to the perforation holes (Figure 4.28).
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Figure 4.28: Model Representations in the Near-Wellbore Region

Perforations are the communication channels between a cased wellbore and a for-

mation. In this work, the pressure for the grid blocks adjacent to casing inside the

perforation is set equal to the wellbore pressure pw.

4.3.3 Skin Calculation in a Two-Dimensional Perforated Well

In a perforated well, the reservoir fluid can only flow into the well through the per-

foration channel. The reservoir permeability for this case is homogeneous and equal

to 1 Darcy. The inner and outer boundaries have constant pressures of 280 bar and

300 bar, respectively. The inner-radius is 0.15 m and the outer radius is 20 m. The

perforation diameter is 0.028 m, the perforation length is 0.102 m. As a simplifica-

tion, we do not consider the crushed zone in this case. Both Pollock’s method and the

present method are applied to trace streamlines.The details of the parameters used

in this case are shown in Table 4.7.
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Table 4.7: Parameters used for 2D Perforated Well

Parameters Units Values

Wellbore Radius m 0.150

External Radius m 20

Perforation Radius m 0.028

Perforation Length m 0.102

Damaged Zone Radius m 0.207

Damaged Zone Permeability m2 0.5× 10−12

Bulk Permeability m2 1× 10−12

Wellbore Pressure Pa 250× 105

External Pressure Pa 300× 105

Oil Viscosity Pa · s 0.8× 10−3

Radial Blocks 150

Tangential Blocks 100

For the near-wellbore region, the results in Figure 4.29 shows that Pollock’s method

fails to simulate the perforation case since most streamlines stop at the casing. The

present method gives more physically reasonable results with streamlines bypassing

the casing thereby causing convergence skin. Therefore, in order to obtain correct

results, the present semi-analytical method should be applied for perforated well com-

pletions.
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(a) Streamlines Traced by Present Semi-analytical Method

(b) Streamlines Traced by Pollock’s Method

Figure 4.29: Streamline Traced in Perforated Well - 1 Perforation
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Having generated the streamlines, we bundle them into stream-tubes, and then apply

Equation 4.23 to calculate the flow rate in each stream-tube. We obtain the total

flow rate for the entire reservoir (q = 0.051m3/s) by adding the contributions for

each stream tube. This flow rate is then used with the boundary pressures in Table

4.7 to calculate the skin factor using Equation 4.22, which is 2.77. We also use a

classical skin calculation method (Karakas and Tariq, 1991) reviewed in Appendix

B to calculate the skin factor; the value obtained is 3.45. Karakas-Tariq model is the

stardard method used by the industry.

Next, we use the same parameters to generate a perforation case which has four

perforation holes by using the present semi-analytical streamline simulation method.

The results are shown in Figure 4.30. As can be seen from the figure, the streamlines

are symmetric. Streamlines are separated by stagnations (stapled), bypassing the

casing toward the closest perforation. If we take a look at a quarter of the streamlines

(from Symmetry line 1 to Symmetry line 2 indicated in Figure 4.30), streamlines

launching close to the symmetry lines are more curved than the streamlines launching

in between the symmetry lines. Streamlines launching from the center for the quadrant

converge to the closest perforation.
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Figure 4.30: Streamline Traced in Perforated Well - 4 Perforations

4.3.4 Skin Calculation in a Three-Dimensional Perforated

Well

Since Pollock’s method can not accurately simulate the perforation case, only the

present semi-analytical method is used in this section. Figure 4.31 shows a segment

of the well along the z-direction. Two perforations were created at different heights

in a three-dimensional reservoir with the phase angle for the perforations being 180◦.

There are two layers of streamlines starting at different heights at the wellbore radius.

The red streamlines start at a higher level and the green streamlines start at a lower

level. As can be seen from the figure, the streamlines are separated by a stagnant
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surface. The streamlines tend to approach the perforations in the z-direction, rather

than bypassing the casing. Basically, how the streamlines approach the perforation

holes depend on their location in the angular direction.

This 3D case is also used to study the effect of the perforation length on the total skin.

The results are used to compare with a classical skin calculation method (Karakas

and Tariq, 1991). The details of their parameters used in this case are shown in Table

4.8.
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Table 4.8: Parameters used for 3D Perforated Well

Parameters Units Values

Wellbore Radius m 0.15

External Radius m 20

Perforation Radius m 0.03

Radial Blocks 50

Tangential Blocks 100

Z-direction Layers 10

Crushed Zone Radius m 0.045

Damaged Zone Length m 0.207

Damaged Zone Permeability m2 0.5× 10−12

Crushed Zone Permeability m2 0.1× 10−12

Phase Angle ◦ 180

Perforation Spacing m 0.16

Bulk Permeability m2 1× 10−12

Wellbore Pressure Pa 250× 105

External Pressure Pa 300× 105

Oil Viscosity Pa · s 0.8× 10−3

Radial Blocks 50

Tangential Blocks 100

Z-direction Layers 10
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Figure 4.31: Streamlines Traced in 3D Perforated Well

The model geometry of a perforation and the corresponding geometry used in Karakas-

Tariq method is shown in Figure 4.32.

Figure 4.32: Perforation Parameters Representation
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As illustrated in Figure 4.33, the skin calculated by the Karakas-Tariq method exhibits

an unphysical behavior with increasing perforation length beyond the damaged zone.

Skin obtained from the present semi-analytical method provides a more physically rea-

sonable result, since skin monotonically decreases with increasing perforation length,

while the Karakas-Tariq method creates an unphysical bump when the perforation

length is close to the damaged zone outer boundary. The Karakas-Tariq methods is an

industry standard. It is concluded that the new skin calculation procedure presented

in this research thesis is superior both in accuracy and flexibility.

Figure 4.33: Effect of Perforation Length to Skin

4.3.5 Case Studies Conclusion

In a homogeneous reservoir, the present semi-analytical streamline simulation method

provides identical TOF as the fully analytical solution while Pollock’s method is
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hampered by errors.

Pollock’s method leads to a systematic error in the near well-bore streamline trac-

ing for the heterogeneous cases. As we observe in the 2D heterogeneous cases Pol-

lock’s method exhibits unrealistic behavior. Pollock’s method also fails to trace the

streamlines in perforated wells and in 3D heterogeneous case. However, the present

semi-analytical streamline simulation method provides physically reasonable results

in general and for perforated wells in particular. The present semi-analytical stream-

line simulation method provides both reasonable streamline paths and TOF values

for the heterogeneous reservoirs. These errors in Pollock’s method are severe because

of the logarithmic (non-linear) pressure distribution.

The present semi-analytical streamline simulation method can be used to calculate

perforation skin. The skin values obtained from the present semi-analytical method

provides a more physically reasonable result than standard method. Unlike in the

standard skin calculation method, which creates an unphysical bump when the per-

foration length is close to the damaged zone outer boundary, the new skin calculation

method provides a monotonically decreasing skin value with increasing perforation

length. Hence, the new skin calculation method is believed to be superior to existing

models.
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Chapter 5

Two-Dimensional Waterflooding

Visualization Experiments

Waterflooding is a conventional secondary recovery method in oil production. In this

research thesis, several waterflooding visualization experiments (James, 2012) are per-

formed using unconsolidated glass bead filled macro-models in the radial geometry,

shown in Figure 5.1. The purpose of these experiments is to visually observe what

happens in the heterogeneous near-wellbore region during waterflooding. It also pro-

vides the physical data to demonstrate the history matching ability of the streamline

simulation.

Reservoir waterfloods can be operated at constant injection rate or constant bottom

hole pressure. In this research thesis, the laboratory scale waterflooding experiments

are performed under constant differential pressure boundary conditions. The corre-

sponding parameters such as the location of water displacement front, together with

oil and water flow rates are recorded as functions of time. By applying the solution of
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the 3D Riemann problem (discussed in Section 4.1) in the stream tube simulation

at constant pressure boundary conditions, the location of the waterfront at a specific

time, the water breakthrough time, and flow rates can be obtained. By tuning the

relative permeabilities, these simulated results are used to history match with the

laboratory data.

In this chapter, the experimental set-up, design of experiments and experimental

procedure are first introduced, followed by the comparisons between experiments and

the history matched simulated results.

5.1 Experimental Set-up

The overall set-up for this experiment is shown in Figure 5.1. A custom glass-bead

pack macro-model was designed for the radial glass cell (James 2012). A radial glass

cell was also fabricated based on this design. Uniform-sized glass beads (BT-3) are

filled into the glass cell to pack the porous media. An injection well is placed in the

center of the porous media. A 1/4′′ tubing with perforations is placed at the outer

radial radial boundary as the production well. During the experiment, dyed oil and

water are injected through two custom made accumulators into the porous media

through the center point and produced from the outer boundary. Two OMEGA PX

409-100AUSB pressure gauges with 0.001 psi precision at the inlet and outlet are

used to measure the pressure at the boundaries. Pressure at the outlet is kept at

atmospheric pressure, the injection pressure is kept constant by adjusting the flow

rate of the pump. Hence, the pressure difference between the inlet and outlet is

kept constant at 2.7 and 2.6 psi for homogeneous and heterogeneous experiments,

respectively (pressure profile is shown in Appendix D). Five graduated cylinders
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(50 ml and 10 ml) are used to measure the produced fluid volume. The images of the

waterfronts are captured by using a Cannon Rebel XS digital camera with a resolution

of 10.10 Megapixels. Table 5.1 describes in detail the experimental equipment and

components used in the experiments.

Table 5.1: Apparatus List

Parameters Type Quantity

Pump ISCO 500D 1

Accumulator Custom Made (2 L) 2

Computer IBM Think Station 1

Camera Cannon Rebel XS 1

Light Box Custom made 1

Graduated Cylinder 50 ml, 10 ml 5

1/8′′ 2-way Ball Valve Swagelokr SS-83KF2 5

Female Branch Tee, 1/4′′ Swagelokr SS-400-3TTF 6

Union Cross, 1/8′′ Swagelokr SS-200-4 2

Custom made bracket Custom Made 2

1/8′′ tubing Swagelokr SS-T2-S-028-20 15

1/4′′ tubing Swagelokr SS-T4-S-035-6ME 2

Pressure Gauge OMEGA PX 409-100AUSB 2

141



(a) Overall Setup

(b) Porous Media Schematic

Figure 5.1: Experimental Schematic for 2D Water Flooding Visualization Experiment
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5.2 Design of Experiment

Design of experiment (DOE) is a method for systematically analyzing the relation-

ship between the factor(s) and the response(s) of an experiment. It is the process of

planning experiments so that appropriate data can be analyzed by statistical meth-

ods. The DOE procedure mainly involved the following tasks: selecting one or more

independent variables, manipulating their effects on one (or some) dependent param-

eters, and determining the sensitivity of dependent variable(s) upon changing the

independent parameters (Montgomery and Runger, 2006). The guideline for design

experiments are:

1. Define the objectives.

2. Choice of factors and responses.

3. Select of experimental design.

4. Performing the experiment.

5. Analysis of data.

6. Obtain conclusion and recommendations.

5.2.1 Objectives

Although the analytical solution exists for the homogeneous reservoir, we still need

to perform the homogeneous experiment for two reasons: to measure the absolute

permeability, and to obtain a history matched relative permeability to independently
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simulate the heterogeneous experiments. The purpose of the heterogeneous experi-

ments is to visually observe what happens in the heterogeneous near-wellbore region

during waterflooding. The experimental results also provide the physical data to

demonstrate the history matching ability of the streamline simulation.

5.2.2 Choice of factors

In the 2D waterflooding experiments the factors can be:

• Reservoir type: reservoir type can be homogeneous and heterogeneous.

• Permeability: permeability is depending on the size of glass beads used to pack

the porous media. Since we used a tubing with perforations to perform as the

production ring at the outer boundary, we have to make sure the unconsolidated

glass beads can not flow out of the porous media through the perforation holes.

In other words, the diameter of glass beads must larger than the perforation

diameter. However, if the diameter of the glass beads is too large, it will result

in a very short breakthrough time. Hence, BT-3 glass is the most appropriate

choice.

• Fluid viscosity: in order to obtain a stable front, the viscosity of the displaced

fluid should be relatively small. Hence, varsol oil is used in the experiments.

As can be seen from the mobility ratio obtained in Equation 5.14, the choice of

varsol ensures a stable front as designed.

• Pressure difference: the pressure difference should be kept in a small range to

prevent the expanding of the porous media shell.
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In the 2D waterflooding experiments, direct responses are waterfront location, the

breakthrough time and the volume of the produced fluid.

5.2.3 Select of experimental design

When designing the experiments, we have to consider limitations mentioned in 5.2.2

for the experimental model. A total of 3 experimental runs are designed to be per-

formed in order to study effects of heterogeneity in the near-wellbore region.

5.3 Experimental Procedures

Three main stages are involved in the visualization experiment: 1. Initial imbibition;

2. Primary drainage; 3. Waterflooding (Secondary imbibition).

In the initial imbibition process, injected water displaces the air inside the porous

media. In this step, porosity and absolute permeability can be calculated (described

in 5.4.3 and 5.4.4). Once the air is eliminated from the system, the injection flow

rate and the pressure difference can be used to calculate the absolute permeability.

Porosity can be obtained since the total amount of water injected and produced are

recorded.

In the primary drainage process, oil is injected and used to displace the water inside

the system. At the end of this stage, a reservoir with oil and connate water inside the

pore channel is formed. At this point, the connate water saturation and the initial oil

in place can be obtained (described in 5.4.5).

During waterflooding, water is injected into the model to displace the oil at connate
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water saturation. The pressure difference between the inlet and outlet is kept constant

and recorded with time. The corresponding inflow rate and outflow rate are recorded

as well. The waterfront movement as a function of time is captured by the camera.

Breakthrough time is also recorded as the time when the first water droplet appears

in the production ring. In this process, the flow rate is not smooth, hence relative

permeabilities cannot be accurately measured. The relative permeabilities for oil and

water are considered as uncertainties and are determined by the history matching

method using the semi-analytical streamline simulator. The residual oil saturation is

calculated at the end of the waterflooding process (described in 5.4.6). The steps for

the water flooding process are:

1. Change the inflow fluid to dyed water.

2. Set up the experiment according to the Figure 5.1.

3. Determine the differential pressure.

4. Set up the alarm for the pressure boundaries on the computer.

5. Start the pump with an initial injection value.

6. Record the displacement front using a camera before breakthrough once per

minute.

7. Adjust the flow rate to keep a constant differential pressure.

8. Record the boundary pressures and the flow rate.

9. Measure the oil and water flow cumulative production.

10. Shut down the pump when all dyed water has been injected.
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5.4 Properties Characterization

5.4.1 Porous Media Dimensions

Before the flooding process, the porous media dimensions are measured and shown

in Table 5.2. Porous media thickness are changing in each experiment since they are

dependent on the pressure we pack the glass cell with. Data for the porous media

heights are shown in each experiment separately.

Table 5.2: Porous Media Dimensions

Parameters
Values

SI Units Lab Units

Wellbore Radius (rw) 0.0079 m 0.003 in

External Radius (re) 0.1524 m 6.000 in

5.4.2 Fluid Viscosities

Fluid viscosities are measured by a Cambridge PVT Viscometer. Viscosities for water

and oil are shown in Table 5.3.
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Table 5.3: Fluid Viscosities

Fluids
Values

SI Units Lab Units

Water 1× 10−3 Pa · s 1.00 cP

Oil 1.19× 10−3 Pa · s 1.19 cP

Next, we will show the absolute permeability, porosity, connate water saturation and

residual oil saturation measurement procedures and calculation methods. The sample

calculations and the error analysis are shown in Appendix D.

5.4.3 Absolute Permeability Measurement

The same uniform-sized glass beads (BT-3) are used to pack the porous media. The

permeability measurement for this kind of glass beads is performed in the homoge-

neous model. In the initial imbibition process, once the air is eliminated from the

system, the injection flow rate and the pressure difference can be used to calculate

the absolute permeability by using Equation 4.19. Once air is displaced from the

system, the permeability test starts:

1. Set the pump to a constant flow rate q.

2. Measure the flow rate at the outlet; make sure it reaches steady state.

3. Record the pressure difference ∆p when the outlet flow rate is equal to injection

rate q.
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4. Repeat the measurement for several different flow rates.

According to Equation 4.19, permeability can be calculated by:

K =
qµln

(
re

rw

)
2πh∆p , (5.1)

where K is the permeability, re and rw are the radius for an external boundary and

the wellbore, respectively, q is the flow rate and ∆p is the pressure difference between

the inlet and the outlet.

For each flow rate, one permeability value can be obtained (Appendix D). Perme-

ability values obtained from each flow rate are averaged for further calculation. The

permeability value (1.58 ± 0.03 × 10−12 m2) measured from the homogeneous glass-

beads macro-model is used as the bulk permeability in the heterogeneous experiments.

Here, the permeability value measured from the glass-beads macro-model is smaller

than the BT-3 glass-beads permeability (408± 67× 10−12 m2) used in Sohrab (2010).

Sohrab used the falling head measurement technique to measure the permeability.

However, in our glass-beads macro-model, the injection well in the center and the

production ring at the outer ring are not fully open hole. The partially perforated

production ring has a large effect on the permeability, hence we can not use the per-

meability value obtained from the falling head measurement. We have to treat these

boundaries as part of the reservoir, hence the value we obtained is smaller than that

in Sohrab (2010). In order to obtain the accurate flow rate, the measured absolute

permeability (1.58± 0.03× 10−12 m2) for our porous media is applied in this research

thesis.
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5.4.4 Porosity Measurement

The porosity of the unconsolidated glass-beads pack is measured using the fluid sat-

uration method in the imbibition process. The total injection volume is V1; the total

production volume is V2. The total bulk volume Vt is calculated by the shell dimen-

sion. The porosity is:

φ = V1 − V2

Vt
. (5.2)

There is another way to measure the porosity. During this process, water is injected

to the dry porous media shell and fully saturates the reservoir. The mass of the dry

porous media shell M1 and mass of the porous media shell saturated with water M2

are measured, respectively. The density of water ρw is known. The total bulk volume

Vt is calculated by the shell dimension. Porosity can be calculated by:

φ = M1 −M2

ρwVt
= V1 − V2

Vt
. (5.3)

5.4.5 Connate Water Saturation Measurement

At the end of primary drainage process, the connate water saturation can be obtained.

The test procedure and the calculation of the connate water saturation are:

1. Change the injection fluid from water to oil and start the pump to inject the oil

at a constant flow rate (5 ml/min).

2. Continue injection until no water is produced at the outlet.

3. Read the volume of injected oil Voi from the pump and read the volume of oil
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produced in the graduated cylinder Vop. Initial oil in the porous media is:

Voil = Voi − Vop. (5.4)

4. The pore volume was known from the imbibition stage. The volume of connate

water that remains in the porous media is:

Vwc = V1 − V2 − Voil. (5.5)

5. Calculate the connate water saturation:

Swc = V1 − V2 − Voil
V1 − V2

, (5.6)

where V1 and V2 are the volumes of water injected and produced in the initial imbi-

bition process, respectively; Voil is the volume of initial oil in place; and Swc is the

connate water saturation.

5.4.6 Residual Oil Saturation Measurement

Residual oil saturation is calculated at the end of the waterflooding process. At the

end of this stage, the volume of water injected (Vwi) and the volume of oil produced

(Vop2 ) are recorded from the pump and the graduate cylinder at the outlet, respec-

tively. The volume of oil remaining in the system is:

Vor = Voil − Vop2. (5.7)

The residual oil saturation then can be calculated as:

Sor = Vor
V1 − V2

, (5.8)

where V1 and V2 are the volume of water inject and produced in initial imbibition

process, respectively, Sor is the residual oil saturation.
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5.5 History Matching of Experimental Results

In this section, we will first describe the history matching approach and demon-

strate the respective results for the homogeneous experiment. Then, the Corey model

obtained from the homogeneous experiment is used to independently simulate the

heterogeneous experiments and compare with the experimental results. Finally, the

history matched results for the heterogeneous experiments are demonstrated.

There are many models available to history match the relative permeabilities. With

all the available models, the choice of which model we should apply to history match is

extremely important. Corey model can be incorporated to the 3D Riemann solution

described in 4.1. The flow rate can be obtained as a function of time, which can

be compared with the experimental flow rate. The history matched homogeneous

Corey model is used to independently validate the heterogeneous experiments. This

approach ensures the accuracy of the developed streamline model.

5.5.1 Approach Description

For the homogeneous experiment, the area of each stream tube along radii can be

explicitly determined. By applying the 3D Riemann solution along stream tubes as

discussed in Section 4.1 and tuning the relative permeabilities, the exact solution of

the displacement process such as breakthrough time and flow rate in the homogeneous

reservoir are obtained.
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Figure 5.2: History Matching Approach
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Only one experiment with homogeneous porous media was performed. Two hetero-

geneous experiments are used to study the flow behavior in the near-wellbore region.

The main purpose of the homogeneous experiment is to measure the absolute perme-

ability of the glass-beads macro-model, which is also used as the bulk permeability in

the heterogeneous experiments. The history matched relative permeabilities from the

homogeneous experiment are used to validate if they can be applied to the heteroge-

neous experiments. The validation approach is shown in Figure 5.2.

The relative permeability curves are estimated by matching the Corey relative per-

meability model (1954):

Krw = aw

(
Sw − Swc

1− Sor − Swc

)nw

, (5.9)

Kro = ao

( 1− Sor − Sw
1− Sor − Swc

)no

, (5.10)

where Krw and Kro are the relative permeabilities for water and oil, respectively; Sw

is the water saturation; Swc and Sor are the connate water saturation and the residual

oil saturation, respectively; and the exponents no and nw range from 1 to 6.

Trial and error is applied to history match the relative permeabilities. The detailed

procedure is:

1. Measure the homogeneous porous media dimensions rw, re, h and fluid viscosities

µw and µo.

2. Characterize the homogeneous porous media absolute permeabilityK (described

in 5.4.3), porosity φ (described in 5.4.4) and connate water saturation Swc

(described in 5.4.5), residual oil saturation Sor (described in 5.4.6).

3. Assume values of aw, ao, nw and no in Corey model described in Equation 5.9

and 5.10.
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4. Apply Equation 4.5 to calculate the flow rate q(t).

5. Determine breakthrough time by integration of Equation 4.7.

6. Calculate the post breakthrough flow rate by using Equation 4.10 if the simu-

lated breakthrough time is the same as the experimental breakthrough time. If

breakthrough times are different, go back to 3.

7. Calculate the flow rate error between the simulated and experimental results.

8. Output values of aw, ao, nw and no in the Corey model for later use if the flow

rate relative error between the simulated and experimental results at the end is

less than 10%. If the error is larger than 10%, go back to 3. The relative error

is defined as:

eq = 1
N

∑ |qe − qs|
qe

, (5.11)

where qe and qe are the experimental and simulated flow rate, respectively, and

N is the number of measurements.

9. Apply the values of aw, ao, no and nw in the homogeneous experiment and

the heterogeneous properties in to Equation 4.5 and 4.7 to simulate the break-

through time.

10. Compare the simulated breakthrough time with the experimental breakthrough

time for heterogeneous experiments.
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5.5.2 Homogeneous Reservoir Experiment and History Matched

Results

The fluids and reservoir properties are measured according to the procedures described

in 5.4, and the results are shown in Table 5.4. The simulator applied the same values

to history match the actual waterflooding process. This is the first time a radial water

flooding experiment is demonstrated to match an analytical solution for such flow,

and with excellent agreement.

The experimental flow rates and history matched flow rates are shown in Figure 5.3.

The inlet flow rates fluctuate because they are manually changed to keep constant

differential pressure between the inlet and the outlet. Hence, we cannot directly use

the experimental data to calculate the relative permeabilities. However, the history

matched flow rate provides a smooth result and history matched relative permeabili-

ties.
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Table 5.4: Experimental Parameters used for the Homogeneous Experiment

Parameters
Homogeneous Experiment

SI Units Lab Units

Wellbore Radius 0.0079 m 0.3 in

External Radius 0.1524 m 6.000 in

Reservoir Thickness 0.0119 m 0.5 in

Porosity 0.454 0.454

Differential Pressure 17249.9 Pa 2.7 psi

Bulk Permeability 1.58× 10−12 m2 1.58 Darcy

Connate Water Saturation 0.277 0.277

Residual Oil Saturation 0.166 0.166

Oil Viscosity 1.19× 10−3 P · s 1.19 cP

Water Viscosity 1× 10−3 Pa · s 1.00 cP

Breakthrough Time 33 min 33 min

Figure 5.4 and Table 5.5 demonstrate the cumulative production rate for the exper-

imental and history matched results. In Figure 5.4, the red color represents data for

oil, blue color represents data for water and black color represents the data for total

flow rate. The dots are the experimentally measured values and the solid lines are

the history matched results. The breakthrough times for the experimental and the

simulation are both 33 min. At the breakthrough time, the recovery difference is only

0.06%. After breakthrough, there is minor variation. As can be seen from Table 5.5,

the variations for the cumulative water produced decrease less with increasing time.

At 48 min, the difference in cumulative oil produced between the experimental and
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history matched results is 0.49% and the difference of the cumulative water produced

is 2.65%.

Figure 5.3: Flow Rate Comparison for the Homogeneous Experiment

Figure 5.4: Cumulative Production Comparison for the Homogeneous Experiment
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Table 5.5: Data for Cumulative Production for the Homogeneous Experiment

Time(min)

History Matched
Cumulative
Production (ml)

Experimental
Cumulative
Production (ml)

Error (%)

Total Oil Water Total Oil Water Total Oil Water

2 20.7 20.7 0 21.0 21.0 0 1.22 1.22 -

4 36.7 36.7 0 38.0 38.0 0 3.33 3.33 -

6 48.8 48.8 0 50.0 50.0 0 2.41 2.41 -

8 64.8 64.8 0 62.0 62.0 0 4.59 4.59 -

14 102.6 102.6 0 100.0 100.0 0 2.58 2.58 -

17 120.3 120.3 0 118.0 118.0 0 1.93 1.93 -

20 137.4 137.4 0 138.0 138.0 0 0.44 0.44 -

22 148.5 148.5 0 149.0 149.0 0 0.31 0.31 -

26 170.3 170.3 0 170.0 170.0 0 0.17 0.17 -

29 186.2 186.2 0 186.0 186.0 0 0.08 0.08 -

33 206.9 206.9 0 207.0 207.0 0 0.06 0.06 -

36 222.3 207.6 14.6 220.0 209.0 11.0 1.03 0.55 33.20

38 232.5 208.1 24.4 230.0 210.0 20.0 1.10 0.79 22.13

41 247.9 208.8 39.1 246.0 211.0 35.0 0.78 0.92 11.72

48 283.9 210.5 73.4 282.0 215.0 71.0 0.66 0.49 2.65
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The history matched relative permeabilities are shown in Figure 5.5 (Equation 5.12

and 5.13).

Krw = 0.258
(
Sw − 0.277

0.557

)4
, (5.12)

Kro = 0.855
(0.834− Sw

0.557

)2
. (5.13)

Figure 5.5: History Matched Relative Permeabilities for the Homogeneous Experiment

Figure 5.6 shows the history matched displacement fronts after 1 minute of injection

and for every five minutes thereafter. We can observe that the simulated displace-

ment fronts are concentric circles for the homogeneous reservoir. As the front moves

closer to the production ring (outer boundary), the displacement front moves in a

shorter distance in the same time interval. This radial frontal movement has not been

analyzed before and is highly non-trivial in its analytical calculation.
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Figure 5.6: History Matched Displacement Fronts for the Homogeneous Experiment

The camera is used to capture the overall shape of the fronts at each time interval.

Figure 5.7 shows the experimental displacement and the history matched fronts every

three minutes. In the experiment, to visually differentiate the waterfront, oil and

water are dyed red and blue, respectively. The injection well is at the center of the

glass-beads packed porous media. Blue water is injected at the center, and fluid is

produced at the outer ring. The displacement front is moving from the center towards

the production ring as a stable front because the mobility ratio is favorable. The value

of mobility ratio shown in Equation 5.14:

M =
Krw(Sor)

µw

Kro(Swc)
µo

= 0.36. (5.14)

The black lines are the history matched waterfront with the corresponding injection

time. This homogeneous experiment shows the concentric movement of the water-
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front. The agreement between the history matched waterfronts and the experimental

waterfront is excellent. At later times, experimental fronts are not as stable as at

earlier times. This is due to the technical limitations for the production ring created

in the experiment. A densely and randomly perforated tube with hole size smaller

than the size of glass beads connects to the glass-beads. Four bigger holes in the

perforated tube which is used as the production ring in the experiment are connected

to the outlet. In the experiment, the production ring is partially perforated, while in

simulation, it is treated fully open.

A non-linear regression could be employed to the history matched results. However,

we have measured the fractional flow function of water and the total rate as a function

of time (Figure 5.4). For a regression process, we would need f(S) as s function of

water saturation. The determination of which would require using the calculus of

variation, since f(S) appears in the integral equation (Equation 4.6). This is beyond

the scope of this research thesis. According to the history matched results from the

homogeneous experiment, we can obtain the following results: using regression to

obtain a best fit with a Corey model is deemed unnecessary since the trial and error

applied in the homogeneous experiment provides a very good match after a few trials.

This also, therefore, indicates that the Corey model is adequate for these experiments.
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Figure 5.7: Displacement Fronts Comparison for the Homogeneous Experiment

5.5.3 Heterogeneous Reservoir Experiments Simulation us-

ing Homogeneous Corey Model

Two heterogeneous experiments with a low permeability sector, performed under the

same differential pressure, are described in this section. The low permeable sectors
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Table 5.6: Experimental Parameters used for the Heterogeneous Experiments

Parameters Heterogeneous Replicate 1 Heterogeneous Replicate 2

SI Units Lab Units SI Units Lab Units

Wellbore
Radius 0.0079 m 0.3 in 0.0079 m 0.3 in

External
Radius 0.1524 m 6.000 in 0.1524 m 6.000 in

Reservoir
Thickness 0.0115 m 0.5 in 0.0112 m 0.5in

Porosity 0.426 0.426 0.417 0.417

Differential
Pressure 17926 Pa 2.6 Psi 17926 Pa 2.6 Psi

Bulk
Permeability 1.58× 10−12 m2 1.58 Darcy 1.58× 10−12 m2 1.58 Darcy

Block
Permeability 1.08× 10−12 m2 1.08 Darcy 1.08× 10−12 m2 1.08 Darcy

Connate Water
Saturation 0.360 0.360 0.364 0.364

Residual Oil
Saturation 0.193 0.193 0.208 0.208

Oil Viscosity 1.19× 10−3 P · s 1.19 cP 1.19× 10−3 Pa · s 1.19 cP

Water
Viscosity 1× 10−3 Pa · s 1.00 cP 1× 10−3 Pa · s 1.00 cP

Breakthrough
Times 61 min 61 min 63 min 63 min
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are cut from a consolidated glass-beads core. Permeability for this low permeable

core is pre-tested in a core holder. We performed two experiments under the same

differential pressure for replication. The parameters for these two experiments are

shown in Table 5.6.

Since the heterogeneous sector takes up less than 10% of the total volume, the values

of aw, ao, no, and nw in the homogeneous experiment and the heterogeneous properties

rw, re, h, φ, K, Swc, and Sor with the differential pressure ∆p are used to simulate the

flow rate and the breakthrough time for heterogeneous replicate 1 and heterogeneous

replicate 2. Figure 5.8 shows the simulated flow rates by using the homogeneous Corey

model and the experimental flow rates. As can be seen from this figure, simulated flow

rates by using the homogeneous Corey model are well matched with the experimental

flow rates. However, the breakthrough times are different between the simulated and

experiment results.
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Figure 5.8: Flow Rate Comparison for the Heterogeneous Experiments using Homogeneous
Corey Model

The simulated breakthrough times are 58 min and 57.5 min by using the homoge-

neous Corey model, respectively. The relative error between the simulated and the

experimental breakthrough time are shown in Table 5.7.

Table 5.7: Relative Errors in Breakthrough Time for the Heterogeneous Experiments

Replicate
Simulated
Breakthrough
Time (min)

Experimental
Breakthrough
Time (min)

Error (%)

1 58.0 61.0 4.92

2 57.5 63.0 8.73

As can be seen from Table 5.7, the breakthrough time errors are acceptable for both
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heterogeneous experiments. However, they are different for these two heterogeneous

experiments. We define the dimensionless time as:

tBTr = t

tBT
, (5.15)

where t is the real time and tBT is the experimental breakthrough time.

Next, we use the dimensionless time to compare simulated cumulative productions,

which obtained by using the homogeneous Corey model, with the experimental flow

rate for the heterogeneous experiments. Table 5.8 and 5.9 show the detailed cumula-

tive total production data for the heterogeneous experiments and the corresponding

errors. Figure 5.9 shows the cumulative total productions for the heterogeneous ex-

periments.

According to the cumulative production data, the errors are different for replicate

experiments. Heterogeneous replicate 2 shows larger errors in both breakthrough time

and cumulative production. This may be because we pack the porous media for each

experiment and also the connate water saturations and the residual oil saturations

are different in the heterogeneous experiments.
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Table 5.8: Cumulative Production Data for Heterogeneous Replicate 1 using Homogeneous
Corey Model

Dimensionless Time

Simulated
Cumulative
Production (ml)

Experimental
Cumulative
Production (ml)

Error (%)

0.02 9.9 6.0 64.97

0.10 23.9 27.0 11.36

0.18 33.6 35.0 3.98

0.26 43.8 43.0 2.13

0.34 49.7 51.0 2.47

0.44 58.5 60.0 2.42

0.54 67.0 69.0 2.86

0.62 73.9 76.0 2.72

0.69 79.0 83.0 4.78

0.77 86.3 90.0 4.14

0.87 94.2 100.0 5.78

1.00 104.9 107.0 1.94

1.03 107.8 110.0 20.2

1.08 112.1 116.0 3.39

1.15 116.4 122.0 4.60

1.21 122.2 128.0 4.52

1.31 131.1 136.0 3.62
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Table 5.9: Cumulative Production Data for Heterogeneous Replicate 2 using Homogeneous
Corey Model

Dimensionless Time

Simulated
Cumulative
Production (ml)

Experimental
Cumulative
Production (ml)

Error (%)

0.02 9.8 5.0 95.97

0.10 20.7 14.0 47.61

0.17 30.1 23.0 30.79

0.25 37.6 28.0 34.25

0.33 44.2 36.0 22.75

0.44 53.4 46.0 16.16

0.52 59.4 53.0 12.17

0.60 66.1 58.0 13.90

0.67 70.0 64.0 9.34

0.73 75.1 69.0 8.91

0.83 82.1 77.0 6.68

1.00 95.5 86.0 11.11

1.03 97.2 89.0 9.23

1.10 101.7 96.0 5.97

1.16 106.2 102.0 4.12

1.25 112.8 109.0 3.46
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Figure 5.9: Cumulative Production Comparison for the Heterogeneous Experiments

We also use the average values (porosity, connate water saturation and residual oil

saturation) of the two heterogeneous experiments in Table 5.10 and the homogeneous

Corey model to simulate the average breakthrough time and the average flow rates.

The simulated average breakthrough time is 60.5 min. Compared with the average

experimental breakthrough time, which is 62.0 min, the error is only 2.42 %. Then,

we plot the average cumulative production of the two heterogeneous experiments,

which obtained by using the homogeneous Corey model, as a function of dimensionless

time. Meanwhile, we plot the experimental the average cumulative production and

standard deviations as a function of dimensionless time. Figure 5.10 shows the average

cumulative total production for the heterogeneous experiments.
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Table 5.10: Average Values for the Heterogeneous Experiments

Parameters Replicate 1 Replicate 2 Average Standard
Deviation

Porosity 0.426 0.417 0.422 0.006

Connate Water
Saturation 0.360 0.364 0.362 0.003

Residual Oil
Saturation 0.193 0.208 0.201 0.011

Breakthrough
Time (min) 61.0 63.0 62.0 1.4

Simulated
Breakthrough
Time (min)

58.0 57.5 57.8 0.4

Breakthrough
Time Error (%) 4.92 8.73 6.77 −

Figure 5.10: Cumulative Production Comparison for Heterogeneous Experiments
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According to the cumulative production data, even through the errors are different for

replicate experiments. The simulated and experimental average breakthrough time

and average flow rates are well matched. Hence, the homogeneous Corey model can

be applied in the heterogeneous experiments.

5.5.4 Heterogeneous Reservoir Experiments and History Matched

Results

Breakthrough time is the most important parameter in the waterflooding experiment.

The simulated breakthrough times for the heterogeneous experiments by using the

homogeneous Corey model are different from the experimental breakthrough time,

hence we use the trial and error method described in 5.5.1 to history match the

relative permeabilities for the heterogeneous experiments to get a better match. We

tuned the relative permeabilities for the two heterogeneous experiments separately to

obtain a better agreement in breakthrough time. As illustrated in Figure 5.11, history

matched flow rates match almost perfectly with the experimental flow rates for both

experiments. The experimental dots are very close to the history matched line for

both experiments.
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Figure 5.11: Flow Rate Comparison for the Heterogeneous Experiments

The cumulative production rates for the heterogeneous experiments are shown in Table

5.11 and 5.12 and plot in Figure 5.12. As for the homogeneous experiment, we also

use the breakthrough time as the main parameter for the history match process in the

heterogeneous experiments. The cumulative production rates are also matched with

excellent agreement. At 80 min, the total cumulative flow rate difference between the

history matched and experimental results are 1.44% and 2.25% for each replication,

respectively.
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Table 5.11: Cumulative Production Comparison for Heterogeneous Replicate 1

Time(min)

History Matched
Cumulative
Production (ml)

Experimental
Cumulative
Production (ml)

Error (%)

Total Oil Water Total Oil Water Total Oil Water

1 9.8 9.8 0 6.0 6.0 0 63.20 63.20 -

6 23.9 23.9 0 27.0 27.0 0 11.38 11.38 -

11 33.7 33.7 0 35.0 35.0 0 3.76 3.76 -

16 42.2 42.2 0 43.0 43.0 0 1.94 1.94 -

21 50.0 50.0 0 51.0 51.0 0 1.91 1.91 -

27 59.0 59.0 0 60.0 60.0 0 1.62 1.62 -

33 67.9 67.9 0 69.0 69.0 0 1.61 1.61 -

38 75.2 75.2 0 76.0 76.0 0 1.06 1.06 -

42 81.0 81.0 0 83.0 83.0 0 2.40 2.40 -

47 88.2 88.2 0 90.0 90.0 0 1.97 1.97 -

53 96.8 96.8 0 100.0 100.0 0 3.15 3.15 -

59 105.4 105.4 0 106.0 106.0 0 1.47 1.47 -

61 106.8 106.8 0 107.0 107.0 0 0.18 0.18 -

63 109.7 107.1 2.6 110.0 108.0 2.0 0.28 0.84 29.73

66 114.0 107.5 6.5 116.0 110.0 6.0 1.76 2.31 8.37

70 119.7 108.0 11.7 122.0 110.0 11.0 1.88 2.75 6.84

74 125.4 108.4 17.0 128.0 112.0 16.0 1.99 3.18 6.27

80 134.0 109.2 24.9 136.0 112.5 23.5 1.44 2.97 5.89
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Table 5.12: Cumulative Production Comparison for Heterogeneous Replicate 2

Time(min)

History Matched
Cumulative
Production (ml)

Experimental
Cumulative
Production (ml)

Error (%)

Total Oil Water Total Oil Water Total Oil Water

1 5.0 5.0 0 5.0 5.0 0 2.93 2.93 -

6 16.9 16.9 0 14.0 14.0 0 21.70 21.70 -

11 25.1 25.1 0 23.0 23.0 0 9.13 9.13 -

16 32.2 32.2 0 28.0 28.0 0 13.83 13.83 -

21 38.6 38.6 0 36.0 36.0 0 7.37 7.37 -

28 47.2 47.2 0 46.0 46.0 0 0.03 0.03 -

33 53.2 53.2 0 53.0 53.0 0 0.40 0.40 -

38 59.0 59.0 0 58.0 58.0 0 1.72 1.72 -

42 63.7 63.7 0 64.0 64.0 0 0.41 0.41 -

46 68.4 68.4 0 69.0 69.0 0 0.89 0.89 -

52 75.3 75.3 0 77.0 77.0 0 2.20 2.20 -

63 87.8 87.8 0 86.0 86.0 0 2.05 2.05 -

65 90.0 87.0 3.1 89.0 87.0 2.0 1.20 0.09 56.3

69 94.8 87.4 7.3 96.0 90.0 6.0 1.34 2.98 23.12

73 99.4 87.7 11.7 102.0 91.0 11.0 2.53 3.60 6.26

79 106.5 88.3 18.2 109.0 93.0 19.0 2.25 5.03 4.11
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(a) Replicate 1

(b) Replicate 2

Figure 5.12: Accumulated Production Comparison for the Heterogeneous Experiments
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(a) Replicate 1

(b) Replicate 2

Figure 5.13: History Matched Relative Permeabilities for the Heterogeneous Experiments
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The relative permeability curves determined by history matching are shown in Fig-

ure 5.13. The matched Corey relative permeability models for the heterogeneous

experiments are:

Krw1 = 0.235
(
Sw − 0.360

0.447

)4
, (5.16)

Kro1 = 0.891
(0.807− Sw

0.447

)2
, (5.17)

Krw2 = 0.228
(
Sw − 0.364

0.428

)4
, (5.18)

Kro2 = 0.867
(0.792− Sw

0.428

)2
. (5.19)

The overall Corey model for the heterogeneous experiments is shown in Appendix

D.

Figure 5.14 shows the simulated streamlines and displacement fronts every five min-

utes. The black lines are the streamlines, and the blue lines are the displacement

fronts. Since the pressure differences for replicate 1 and replicate 2 are the same,

streamlines are identical for both experiments. We observe that some of the stream-

lines, very close to the low permeable boundaries, try to avoid flowing across the low

permeable region. This trend is not very obvious since the difference between the

block and the bulk permeability is small. The simulated displacement fronts show

delayed movements in the low permeable sector. For both experiments, fronts move

slowly when getting closer to the boundary. More specifically, it is hard to differentiate

the waterfronts in the bulk area for later times.
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(a) Replicate 1

(b) Replicate 2

Figure 5.14: Simulated Displacement Fronts for the Heterogeneous Experiments
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History matched and experimental displacement fronts are shown in Figure 5.15. In

the experiments, oil and water are dyed to red and blue, respectively. Blue water is

injected at the center, and fluid is produced at the outer ring. As can be seen from

Figure 5.15, the blue water moves toward the outer boundary. When the water front

reaches the heterogeneous sector, the water front moves slower in the heterogeneous

sector than in the rest of the area. In the simulation, the black lines represent the

production ring, and the blue lines are the simulated waterfronts at different times.

The red lines indicate the low permeable sector. As shown in the figures, the simu-

lated waterfronts describe the experimental fronts accurately. However, at later times,

experimental fronts are somewhat different from the simulated front. The same be-

havior is observed in the homogeneous experiment. This is because the production

ring created in the experiment is a perforated tube. In the simulations, the production

ring is treated fully open. This causes the frontal differences at late times.
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(a) Replicate 1

181



(b) Replicate 2

Figure 5.15: Displacement Fronts Comparison for the Heterogeneous Experiments
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5.5.5 Simulated and History Matched Waterfront Compari-

son

The simulated waterfronts for heterogeneous experiments by using the homogeneous

Corey model and the history matched waterfronts are shown in Figure 5.16. As

can be observed, the simulated waterfronts move faster than the history matched

waterfronts. This is in accordance with the breakthrough time (Table 5.13) since

the simulated breakthrough times are earlier than the history matched breakthrough

time. The simulated and history matched waterfronts for replicate 1 are very close.

Because the breakthrough time has a larger difference for replicate 2, the simulated

and history matched waterfronts have a larger difference for replicate 2. However, the

error between the average simulated and history matched breakthrough time is only

2.89%.

Table 5.13: Simulated and History Matched Breakthrough Times for the Heterogeneous
Experiments

Replicate
Simulated
Breakthrough
Time (min)

History Matched
Breakthrough
Time (min)

Error (%)

1 58.0 61.3 5.38

2 57.5 63.2 9.02

Average 60.5 62.3 2.89
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(a) Replicate 1

(b) Replicate 2

Figure 5.16: Simulated and History Matched Displacement Fronts for Heterogeneous Ex-
periments
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5.6 Experiments Conclusion

The absolute permeability test was performed for the unconsolidated glass beads using

the radial cell and was found to be 1.58 × 10−12 m2. The permeability of the small

heterogeneous sector was 1.08× 10−12 m2.

We first history matched the relative permeabilities for the homogeneous experiment.

The homogeneous Corey model parameters were then applied to simulate the het-

erogeneous experiments. The breakthrough times and flow rates obtained from the

simulator were compared with the experimental results. Breakthrough time error be-

tween the simulated result and the experimental results were 4.92% and 8.73% for

replicate 1 and replicate 2, respectively. The flow rate errors for replicate 1 were

acceptable. However, the flow rate errors for replicate 2 were relatively large.

The breakthrough time errors and the flow rate errors were different for these two

heterogeneous experiments, which indicate the porous media changed in each test.

Hence, we used the dimensionless time to compare the average breakthrough time and

average flow rate for the two heterogeneous experiments. The average breakthrough

time error was only 2.42%. The simulated average flow rates well matched with the

experimental results.

We also used the history match method to determine the relative permeabilities for the

heterogeneous experiments separately. The history matched breakthrough times were

the same as the experimental breakthrough times for both heterogeneous experiments.

According to breakthrough time and the flow rate errors, we can conclude that by

tuning relative permeabilities for each experiment separately, excellent results were

obtained. The Corey model parameters, obtained by the history match method, were

different from the homogeneous Corey model parameters. They are listed in Table

185



5.14. According to the history matched results, this approach provides excellent

agreements. Hence, the history match approach may further be applied to relative

permeability tests by using the Corey model.

Table 5.14: Corey Model Parameters

Parameters Replicate 1 Replicate 2 Homogeneous

aw 0.235 0.228 0.258

ao 0.891 0.867 0.855

nw 4 4 4

no 2 2 2

This is the first time a radial water flooding experiment is demonstrated to match

an analytical solution for such flow. It is believed that these experiments confirm the

accuracy of the semi-analytical streamline simulation method.

In the 2D water flooding experiments, the porous media is water wet. In a water wet

system, capillary pressure is a positive force in the water drainage process. When

history matching the experiment process, we ignored the capillary pressure. However,

capillary pressure will increase the recovery factory in the experiment.
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Chapter 6

Summary

6.1 Conclusions

The streamline simulation method is an effective and complementary technology in

reservoir simulation. It demonstrates the effectiveness in solving full field problems.

The near-wellbore streamlines simulation researches are shown in very little literature.

The semi-analytical streamline simulation method presented in this research thesis

is performed in the near-wellbore region for a single well and shows the advantage

in simulating the near-wellbore region, especially when heterogeneities exist and in

perforated wells. The model presented in this research thesis is derived for vertical

wells. It can easily be applied to horizontal wells just by changing the directional

permeability calculation method.

The semi-analytical streamline simulation method applied in this research thesis is

superior in the pressure distribution compared to the industry standard streamline

simulation method (Pollock’s method). For the incompressible system without con-
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sidering the gravity and diffusive effects, an elliptic pressure equation is obtained.

The finite difference method is then applied to obtain the node pressures. We then

impose flux continuity, pressure continuity across each grid block boundary and local

mass conservation to calculate the corner pressures from the finite difference pressure

nodes. In this research thesis, streamlines are defined by a closed formula derived from

the 2D log-lin pressure approximation function and 3D bilin-log pressure approxima-

tion function. The pressure analysis proves that the pressure assumption used in the

present semi-analytical streamline simulation method satisfies Laplace equation at

each point inside each simulation grid block. It also shows the advantage of satisfying

the principle of pressure continuity across the block boundaries. Hence, the pressure

assumptions ensure the accuracy of the present semi-analytical streamline simulation

method.

The present semi-analytical streamline simulation method shows its advantage in

modeling single-phase flow in 2D in both open hole wells and perforated wells. Stream-

line trajectories for the present semi-analytical method, Pollock’s method, and the

fully analytical method are identical; however, the TOF result shows that the present

semi-analytical method is identical to the fully analytical solution, with errors caused

by digital truncation only. Pollock’s method, on the other hand, exhibits unaccept-

able errors in TOF especially with low grid resolutions. Streamlines capture flow

paths which accurately represent the distribution of permeability, as streamlines are

denser in the high permeability area. The 2D heterogeneity case with a low per-

meability sector illustrates that streamlines are strongly influenced by the reservoir

permeability. Streamlines generated from Pollock’s method do not flow across the low

permeable area and the nearby grid blocks which produce systematic errors. On the

contrary, only some of the semi-analytical streamlines, very close to the low permeable

boundaries, avoid flowing across the low permeable region which is physically more
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reasonable. Streamlines generated by the present semi-analytical method in the two-

dimensional heterogeneity case with a high permeability contrast sector show more

reasonable results compared to the standard method. The TOF results show that

fluid flows faster in the high permeable area. Hence, to provide maximum productiv-

ity, the lower permeability area should be avoided by selective perforation or inflow

control devices. The present streamline simulator obviously shows the advantage in

modeling the streamlines for the perforated wells. Pollock’s method fails to trace the

streamlines in the 2D perforation case. Pollock’s method in Polar coordinates was

derived in the context of Cartesian coordinates. Although it works very well in Carte-

sian coordinates, it is not necessarily applicable in the Polar/Cylindrical coordinates.

In contrast, the present streamline simulator gives physically reasonable streamline

paths.

Most significantly, it is revealed through this research thesis that the semi-analytical

streamline simulation method developed is the only known streamline method with

sufficient accuracy and efficiency for streamline simulation in polar/cylindrical geome-

tries.

The new skin calculation method for the perforated wells introduced in this research

thesis is superior to the classical skin calculation method (Karakas-Tariq method).

This new skin calculation method is based on the continuous pressure assumption

in the present semi-analytical streamline simulation method. The skin calculation

method established in this research thesis represents an accurate determination of the

flow rate for both two-dimensional and three-dimensional cases. The 3D perforated

case demonstrates that the present semi-analytical streamlines can handle the 3D

complex geometry and provides an accurate result. This is a novel and non-trivial

extension of streamline simulation. In other words, regardless of complex geometry in
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the near-wellbore region, it provides an accurate solution. Unlike the Karakas-Tariq

method which exhibits the unphysical behavior with increasing perforation length

near the damaged zone, the new skin calculation method creates physically reason-

able results. Furthermore, it captures the effect of flow convergence. Results clearly

indicate that as the perforation length increases, skin value decreases, as opposed to

the standard method. The new skin calculation method introduced in this research

thesis can also easily be used to study the effect of other perforation parameters.

Two-dimensional waterflooding visualization experiments are performed in radial glass-

beads macro-models to represent the near-wellbore region. They are used to observe

visually what happens in the homogeneous and heterogeneous near-wellbore region

during water flooding at constant differential pressure. This is the first time water

flooding experiment is performed in the radial geometry in macro-models. The 2D wa-

terflooding experiments are operated under constant differential pressure conditions.

Experimental results visually help us to understand what happens in the heteroge-

neous near-wellbore region during water flooding. The stream tube simulation method

is used to history match the laboratory scale displacements successfully.

Because some unphysical behavior shows up in streamlines generated from Pollock’s

method in the single-phase flow, we abandoned Pollock’s method in the stream tube

simulation for the two-phase flow in this research thesis. In two phase flow simula-

tions, we coupled the 3D Riemann solution and the present semi-analytical stream

tube simulation to describe two-phase flow in the homogeneous and heterogeneous

porous media under the constant differential pressure condition. The cross section

area is changing along the stream tube in the near-wellbore region. Utilizing the 3D

Riemann solution along each stream tube transformed the 3D problem into a set of 1D

problems. Each stream tube is treated as a 1D system along which solutions of mass
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conservation equations are solved. In the constant pressure boundary case, the flow

rate becomes a function of time as the flood progresses. The present semi-analytical

streamline method using constant pressure boundary conditions is demonstrated for

the first time. As shown in the history matching results, the streamline simulation

can be used to describe the fluid movement in the experiments accurately. This

demonstrates the history matching ability of the present streamline simulation. The

excellent match between the waterflooding experimental and the simulated results

also provides the evidence of the accuracy of the present semi-analytical streamline

simulator for heterogeneous reservoirs.

According to the TOF result in the homogeneous reservoir, the perfect matching for

the experimental results and the results from the perforated wells, we can conclude

that the present semi-analytical method is superior to Pollock’s method in homoge-

neous reservoirs, heterogeneous reservoirs and perforated wells. The present semi-

analytical method also provides more reasonable total skin results compared to the

standard method.

6.2 Significance of Research

The typical streamline simulation model is designed for full field planning, and uses

simplistic models for near-well flow calculations. The streamline simulation presented

in this research thesis focuses on the near-wellbore region. It is significant in the

petroleum industry.

The semi-analytical streamline simulation method is a powerful tool to visualize how

heterogeneities affect flow distribution in the near-wellbore region. Meanwhile, it
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can model the nature of the components contributing to skin, which would help the

engineers make the final choice of well completion. The potential application for this

semi-analytical streamline simulation method in the industry can be calculation of

exact productivity and skin factor for individual wells; well completion optimization

(perforation optimization); determination of waterfront in the near well region. The

semi-analytical streamline simulation method can be used to determine the local flow

characteristics, which are subsequently incorporated in the reservoir simulator. It will

bridge the gap between completion and reservoir technology.

6.3 Limitations

The stream tube approach discussed in this research thesis has its limitations. The

3D Riemann solution applied in this research thesis requires an explicit expression for

stream tube cross section area. In a radial geometry for a homogeneous case, stream

tube areas as a function of the arc length for each stream tube can be explicitly

expressed. For a heterogeneous case, no explicit expression can be obtained. Hence

the geometry of the stream tube is used to calculate the cross section area numerically.

In the streamline simulation method, certain assumptions are applied. In an oil

reservoir, oil and water are assumed incompressible. If we want to apply this semi-

analytical streamline simulation method in a gas well, compressibility should be taken

into consideration. It is reasonable to ignore gravity in vertical wells since the near-

wellbore region radius is not long compared to the vertical thickness of the reservoir.

For a horizontal well, we can invoke the same method presented in Bratvedt et al.

(1996).
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The stream tube approach cannot represent any cross flow between stream tubes

caused by diffusion such as capillary pressure in two-phase flow and mechanical dis-

persion in miscible flow. To incorporate gravity and dispersion, the present semi-

analytical streamline method, operator splitting techniques can be invoked.

6.4 Recommendations

Throughout this research thesis streamline simulation has only been performed with

anisotropy in the z− direction. In other words, we can handle only the case with

permeability in z− direction being different from the horizontal (radial and angular)

direction (Kz 6= K,K = Kr = Kt). However, it can be extended to anisotropy

also in the radial direction and the angular direction (Kr 6= Kt). The present semi-

analytical streamline simulation method can be applied to the anisotropic reservoir as

long as the pressure distribution is obtained. The pressure solution method for a fully

anisotropic case in horizontal direction is more complicated than the isotropic case.

For an anisotropic reservoir, two approaches can be applied to obtain the pressure

distribution. The first approach is to apply the full Laplace equation. This will

include Kθ described in Equation 3.28 into the numerical discretion equation. Once

the pressure is determined, the streamline expression can be obtained as described in

this research thesis. The second approach is to use an anisotropic transform that maps

an anisotropic medium onto an isotropic one. The detailed procedure to apply this

transform is described in Johansen et al. (2016). The application of this transform

is recommended in the future research. It will provide a more flexible application of

the work in this research thesis.

This research thesis is based on quadrilateral grid blocks. Depending on the grid block
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shape, errors may occur in the representation of the geometry of a perforated well.

Unstructured grids may better satisfy the complex geometry in a perforated well. The

streamline simulation method introduced in this research thesis can also be applied for

the triangular grid blocks. As the geometries get more complex, the triangular grid

blocks may satisfy multiple constrains that are difficult for structured grids (Gupta

and King, 2007). For triangular grid blocks, the pressure can be calculated by the

finite element method. The log-lin pressure assumption is applied in each triangle.

Hence, with three pressure nodes, three pressure equations can be obtained. One flux

continuous equation can be introduced for each grid to solve the continuous pressure

distribution.
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Appendixes

Appendix A: Buckley-Leverett Theory

In this appendix, the Buckley-Leverett (1942) analytical 1D Riemann solution is

briefly described for water flooding of an reservoir.

For 1D waterflooding of an oil reservoir, the conservation of mass is described by:

φ
∂S

∂t
+ ut

(
∂fw
∂x

)
= 0, (A-1)

where φ is the porosity, S is the water saturation, t is the time, ut is the total velocity

ut = uw + uo, fw is the water fractional flow function fw = uw/ut, and x is the travel

distance from the inlet.

We assume initial saturations for the porous media and injected saturations are con-

stant. The saturation boundary conditions are:

SL = S(0, t) = 1− Sor, t ≥ 0, (A-2)

SR = S(x, 0) = Swc, x ∈ [0, L], (A-3)

where SL and SR are the water saturation at the inlet and outlet of the stream tube,

respectively, and Sor is the residual saturation and Swc is the connate water saturation.
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Each saturation value propagates with a velocity given by:

v(S) = ut
φ
f ′(S), (A-4)

Figure A-1: Propagating Velocity for 1D Riemann Solution (Craft and Hawkins, 1991)

The location of any saturation at time t is:

x(t) = x0 + ut
φ
f ′(S) · t. (A-5)

Consider three saturation values on the initial water saturation the slopes for each

velocity are shown in Figure A-2.
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Figure A-2: Propagating Velocities for Three Different Saturation Points (Craft and
Hawkins, 1991)

The associated locations for these three saturations are shown in Figure A-3. As can

be seen from this figure, this may lead two saturation at the same location (x1), which

is physically impossible.

Figure A-3: Propagating Velocities for Three Different Saturation Points (Craft and
Hawkins, 1991)

When velocity at trailing end of a transport chain is higher than at the leading edge,

a shock wave will form.
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Figure A-4: Schematic of a Shock Wave (Craft and Hawkins, 1991)

According to material balance, net volume (mass) traveling into shock must equal the

volume of water transported by the shock itself:

ut[f(S−)− f(S+)]A∆t = σ(S− − S+)Aφ∆t. (A-6)

Figure A-5: Material Balance for the Shock (Craft and Hawkins, 1991)

Figure A-5 shows the material balance for the shock. In this figure, σ is the velocity

of the shock value, and S∗ is the water saturation value behind the shock front.
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Figure A-6: Welge’s Tangent Method for 1D Riemann Solution (Welge, 1952)

The shock wave with velocity σ can be determined by the tangent procedure in Figure

A-6 (Welge, 1952) and must satisfy:

σ = ut
φ

f(S−)− f(S+)
S− − S+ , (A-7)

For a shock, the velocity behind the shock is larger than ahead of shock.

v(S−) ≥ v(S+) (A-8)

The overall velocity must increase from injected state to the initial state as shown in

Figure A-7.
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Figure A-7: Analytical 1D Riemann Solution (Welge, 1952)

Appendix B: Karakas-Tariq Skin Calculation Method

In this appendix, the main procedures for the typical skin calculation method (Karakas-

Tariq, 1991) is described. It is based on finite element simulation in 2D subdomains.

1. Calculate horizontal component of skin, sH :

sH = ln(rw/rwe). (B-1)

The effective well radius, rwe, is given by:

rwe =


1
4Lp if θ = 0◦

αθ(rw + Lp) otherwise.
(B-2)

Where Lp is the perforation length, rw is the wellbore radius. The parameter

αθ is given by Figure B-1.
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Figure B-1: αθ used in Karakas-Tariq Method (Karakas-Tariq, 1991)

2. Calculate wellbore skin, swb:

swb = c1(θ)exp[c2(θ)rwD], (B-3)

where rwD = rw/(Lp + rw). Equation B-3 is valid for 0.30 ≤ rwD ≤ 0.90, and c1

and c2 are given in Figure B-2.

Figure B-2: c1 and c2 used in Karakas-Tariq Method (Karakas-Tariq, 1991)

3. Calculate vertical skin, Sv:

sv = 10ahb−1
D rbpD, (B-4)

where a = a1log10rpD + a2, and b = b1rpD + b2. The values of a1, a2, b1, and b2

are given in Figure B-3
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Figure B-3: Parameters to Calculate Vertical Skin used in Karakas-Tariq Method
(Karakas-Tariq, 1991)

The parameter hD is defined as:

hD = (h/Lp)
√
KH/Kv, (B-5)

and rpD = (rp/2h)(1+
√
KH/Kv). KH andKv are the permeability in horizontal

direction and vertical direction, respectively. Equation B-4 is valid for hD ≤ 10

and rpD ≥ 0.01.

4. Determine the combined skin effect caused by perforations, sp:

sp = sH + sv + swb. (B-6)

5. Calculate the crushed zone effects:

sc = h

Lp

(
K

Kc

− 1
)
ln

(
rc
rp

)
, (B-7)

where K is the reservoir permeability and Kc is the crushed zone permeability.

6. Add crushed zone effect to the perforation skin:

s′p = sp + sc. (B-8)

7. Add damaged-zone effects. For perforations within damaged zone, the skin
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caused by the combined effects of perforations and damage is:

st =
(
K

Kd

− 1
)
ln
(
rd
rw

)
+
(
K

Kd

− 1
)

(sp + sx), (B-9)

where sx (given in Figure B-4) is negligible for rd ≥ 1.5(r”,+Lp).

Figure B-4: Parameters to Calculate Crushed Zone Skin used in Karakas-Tariq Method
(Karakas-Tariq, 1991)

For perforations extending beyond the damaged zone, modify the well radius and the

perforation length: perforations extending beyond the damaged zone, modify the well

radius and the perforation length:

L′p = Lp − [1− (Kd/K)]Ld, (B-10)

r′w = rw[1− (
√
Kd/K)]Ld, (B-11)

where Ld is the damaged zone length.

Appendix C: Numerical Integration Methods for 3D

Riemann Solution

In this appendix, the detailed steps for the numerical integration methods used in the

3D Riemann solution are demonstrated.
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In the 3D Riemann solution, we use the numerical integration method to calculate

the value of J (S). For the front saturation S∗, J (S∗) is:

J (S∗) =
∫ SL

S∗

f ′′(S)dS
A2
[
V −1[V ((x(S∗, t))φf ′(S)

f ′(S∗)

]
λ(S)

, (C-12)

where x(S∗, t) is travel distance for front saturation S∗ from the injection point at

time t, V (x) is the volume of the stream tube from injection to x, A(x) is the cross

section area for the stream tube at x, f ′(S), f ′′(S) is the first and second derivative

of water fractional flow function with respect to water saturation S, respectively, λ is

the total fluid mobility λ = λo+λw , and λR is the total mobility at the SR, λR = λSR
.

We use the following steps to calculate the J (S∗) value:

1. Use the saturation interval ∆S to define n saturation values Si from lower

integration limit S∗ to the upper integration limit SL,

Si = S∗ + (i− 1)∆S, (C-13)

where i ∈ [1, n], Sn = SL.

2. Calculate the first derivative f ′(Si), second derivative f ′′(Si) of water fractional

flow function and the total mobility λ(Si) with respect to the corresponding

water saturation Si.

3. With the known travel distance x(S∗, t), determine the volume of the stream

tube V (x(S∗, t)) from the injection to x.

4. Calculate the value of V (x(S∗, t))φf
′(S)

f ′(S∗) , then use this value to calculate the value

of A2
[
V −1[V (x(S∗, t))φf

′(S)
f ′(S∗)

]
.

5. Calculate the value in Equation C-14 for each saturation value Si:

∆J (Si) = f ′′(S)∆S
A2
[
V −1[V ((x(S∗, t))φf ′(S)

f ′(S∗)

]
λ(S) . (C-14)
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6. Calculate J (S∗) by summing the ∆J (Si) for individual saturation:

J (S∗) =
n∑
i=1

∆J (Si). (C-15)

We also use the numerical method to calculate the value of 1
λR

∫ L
x(S∗,t)

dx
A(x) . The pro-

cedure is:

1. Use the distance interval ∆x to define n saturation values xi from lower inte-

gration limit x to the upper integration limit L,

xi = x+ (i− 1)∆x, (C-16)

where i ∈ [1, n], xn = L.

2. Obtain the cross section area A(xi) for the corresponding distance xi.

3. Calculate the value of:
∆x
A(xi)

. (C-17)

4. Then, 1
λR

∫ L
x(S∗,t)

dx
A(x) can be calculated as:

1
λR

∫ L

x(S∗,t)

dx

A(x) = 1
λR
·
n∑
i=1

∆x
A(xi)

(C-18)

Appendix D: Experimental Data

D. 1 Error Analysis

In the experiment, measured data always have errors. The methods we used to mea-

sure the pore volume and porosity depend on the measurement of volume and weight.

Fluctuations in the volume measurements also caused the error in flow rate calcula-
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tion. These differences can be attributed to the precision of the graduated cylinders,

and the response time to read volumes.

For many instruments, we assume that the reading error is ± 1/2 of the smallest

division. In our experiments 10 ml graduated cylinders with the 1 ml graduation

level are used to measure the fluid volume. The level of water and oil is read to the

nearest 1 ml, hence, a reasonable estimate of the uncertainty in this case would be

±0.5 ml.

The mean value and the standard deviation are used in error analysis. The standard

deviation is calculated by the following equation:

SN =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2, (D-19)

where x1, x2, . . . , xN are the observed values of the sample items and x̄ is the mean

value of these observations; N is the number of measurements.

We performed two replicate heterogeneous experiments. However, the connate water

saturation and the residual oil saturation are different and these points cannot be

controlled. Since the pressure difference for the two heterogeneous experiments are

the same, these two experiments are treated as replicate runs. To measure the error of

the heterogeneous experiments, the standard deviations corresponding to different pa-

rameters are calculated. Table D-1 shows the detail of standard deviation calculation

for different parameters measurements based on replicate runs.
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Table D-1: Standard Deviations for Heterogeneous Experimental Parameters

Parameters Replicate 1 Replicate 2 Average Standard
Deviation

Porosity 0.426 0.417 0.422 0.006

Connate Water
Saturation 0.360 0.364 0.362 0.003

Residual Oil
Saturation 0.193 0.208 0.201 0.011

Breakthrough
Time (min) 61 63 62 1.414

Table D-2: Summary of Heterogeneous Experimental Parameters

Parameters Value

Porosity 0.422± 0.006

Connate Water Saturation 0.362± 0.006

Residual Oil Saturation 0.201± 0.011

Breakthrough Time (min) 62± 1.414

The Corey model parameters obtained by history matching method for the heteroge-

neous experiments are shown in Table D-3.

Hence, the Corey model for the heterogeneous experiments can be written as:

Krw = (0.232± 0.005)
(
Sw − 0.362± 0.006

0.437± 0.012

)4
, (D-20)

Kro = (0.879± 0.017)
(0.799± 0.006− Sw

0.437± 0.012

)2
. (D-21)
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Table D-3: Standard Deviations for Heterogeneous Experimental Corey Model Parameters

Parameters Replicate 1 Replicate 2 Average Standard
Deviation

aw 0.235 0.228 0.232 0.005

ao 0.891 0.867 0.879 0.017

nw 4 4 4 0

no 2 2 2 0

Next, we use the homogeneous porous media to show the properties characterization.

D. 2 Absolute Permeability Measurement for Homogeneous

Porous Media

Table D-4: Absolute Permeability Measurement Data

Test # Flow Rate (ml/min) Pin (psi) Pout (psi)

1 5 14.312 14.000

2 10 14.593 14.003

3 15 14.989 14.004
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For test 1, using Equation 5.1:

q = 5 ml/min = 8.33× 10−8 m3/s,

µw = 1× 10−3 Pa · s,

re = 0.1524 m,

rw = 0.0076 m,

h = 0.0119 m,

∆p = 0.309 psi = 2130.48 pa

K =
8.33× 10−8 × 1× 10−3ln

(
0.1524
0.0076

)
2π × 0.0119× 2130.48 = 1.54× 10−12 m2.

Three tests are performed at three different flow rates. The average and the standard

deviation are shown in Table D-5.

Table D-5: Standard Deviation of Permeability Measurements Based on Replicate Runs

Test # Permeability (m2) Average Standard Deviation

1 1.54× 10−12

1.58× 10−12 3.41× 10−142 1.62× 10−12

3 1.58× 10−12

Hence, K = 1.58± 0.03× 10−12 m2.

D. 3 Porosity Measurement for Homogeneous Porous Media

In the imbibition process, we add the read uncertainty in the calculation.

1. The total water injection volume:

V1 = 1752± 0.5 ml.
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2. The total water production volume:

V2 = 1359± 0.5 ml.

Using Equation 5.2:

re = 0.1524 m,

rw = 0.0076 m,

h = 0.0119 m,

φ = ((1752± 0.5)− (1359± 0.5))× 10−6

π × 0.0119× (0.15242 − 0.00792) = 0.454± 0.001.

D. 4 Connate Water Saturation Measurement for Homoge-

neous Porous Media

1. The volume of injected oil in the primary drainage process:

Voil = 2032± 0.5 ml.

2. The total volume of oil produced in the primary drainage process:

Vop = 1748± 0.5 ml.

3. Initial oil in the porous media is:

Voil = Voi − Vop = (2032± 0.5)− (1748± 0.5) = 284± 0.7 ml.

4. The volume of connate water that remains in the porous media is:

Vwc = V1 − V2 − Voil = (1752± 0.5)− (1359± 0.5)− 284± 1 = 109± 1.0 ml.

5. The connate water saturation is:

Swc = 109± 1
(1752± 0.5)− (1359± 0.5) = 0.277± 0.008.
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D. 5 Residual Oil Saturation Measurement for Homogeneous

Porous Media

1. The total volume of water injected in the waterflooding process:

Vwi = 602± 0.5 ml.

2. The total volume of oil produced is:

Vop2 = 219± 0.5 ml.

3. The volume of oil remaining in the system is:

Vor = Voil − Vop2 = 65± 0.7 ml.

4. The residual oil saturation then can be calculated as:

Sor = 65± 1
(1752± 0.5)− (1359± 0.5) = 0.166± 0.008.

220



D. 6 Experimental Pressure Profile

Figure D-1 and D-2 are the pressure profile for the experiments.

Figure D-1: Pressure Profile for Homogeneous Experiment

Figure D-2: Pressure Profile for Heterogeneous Experiments
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D. 7 History Match Procedure

The trial and error solution seeking is applied in the homogeneous experiment (de-

scribed in 5.5.2) to obtain the relative permeabilities. The detailed history match

process is:

1. In the trial and error process, we find the parameters aw and ao in Corey model

(Equations 5.9 and 5.10) change more frequently than the exponents nw and no.

Hence, in the history match process, we first determine the exponents and keep

them constant (nw = 4 and no = 2) based on the trial and error results.

2. From experiment measurements and material balance calculations , we input the

reservoir dimensions rw = 0.0079 m, re = 0.1524 m, h = 0.0119 m, porosity

φ = 0.454, differential pressure between the inlet and outlet ∆p = 17249.9 Pa,

permeability K = 1.58×10−12 m2, fluid viscosities µo = 1.19×10−3 P · s, µw =

1.19× 10−3 P · s, connate water saturation Swc = 0.277, residual oil saturation

Sor = 0.166.

3. Based on the trial and error values obtained, we input initial nw = 4, no = 2,

awi = 0.8 and aoi = 0.2.

4. We change aw and ao with interval of 0.001 and simulate breakthrough times

for each aw and ao. The breakthrough time is determined by integration of

Equation 4.7 between x = 0 and x = L using Equation 4.5 for q(t), where L is

the length of stream tubes.

5. Since the homogeneous experimental breakthrough time is 33 min, we define

a range of [32.5, 33.4] to find the two simulated boundary times. These two

simulated boundary times must the in the range and closest to the boundaries,
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respectively. The two boundary times are used to limit the aw and ao values in

6-11 below to make sure that the simulated breakthrough time has a error less

than 10% compare to the experimental breakthrough time.

6. Find the corresponding aw and ao for the two simulated boundary times. The

boundary values for the homogeneous experiment are shown in D-6.

Table D-6: History Match Boundary Times and Corresponding aw and ao

Breakthrough

Time (min)
aw ao

33.30 0.260 0.860

32.45 0.254 0.854

7. Input a fixed value of ao = 0.857 in Equation 5.10, which is the average value of

simulated boundary values (Table D-6), and lower boundary value of aw = 0.254

in Equation 5.9. Increase aw with an incremental of 0.001 and simulate the

breakthrough time and the flow rate. The breakthrough time is determined by

integration of Equation 4.7 and the flow rate is calculated by using Equation

4.5.

8. Calculate the flow rate error between the simulate results and the experimental

results by using Equation D-22. Find the minimum error is 0.0177.

Eq = 1
N

∑ |qs − qe|
qe

, (D-22)

where qs and qe are the simulated and experimental flow rate, respectively, N

is the number of measurement.

Table D-7 shows the values of aw and ao and the corresponding flow rate error.

223



Table D-7: Value of aw and ao and Simulated Values

ao aw
Breakthrough

Time (min)

Flow Rate

Error (%)

0.857 0.254 32.95 0.0196

0.857 0.255 32.82 0.0191

0.857 0.256 32.70 0.0186

0.857 0.257 32.58 0.0182

0.857 0.258 32.45 0.0177

9. Obtain the corresponding value of aw = 0.258 which provide the smallest flow

rate value with fixed value of ao.

10. Input the fixed value of aw = 0.258 and the minimum boundary value of ao =

0.854. Increase ao with interval of 0.001, simulate the breakthrough time and

the flow rate. Calculate the flow rate error between the simulate results and the

experimental results. Find the minimum error 0.0172 and the corresponding ao

is 0.855. Table D-8 shows the values and the corresponding flow rate error.

Table D-8: Value of aw and ao Values and Corresponding Flow Rate Error

aw ao
Flow Rate

Error (%)

0.258 0.854 0.0174

0.258 0.855 0.0172

11. Output history matched Corey Model parameters:

aw = 0.258, ao = 0.855, nw = 4, and no = 2.
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Appendix E: Source Code

In this appendix, the MATLAB ® code files used in this research thesis are demon-

strated.

E. 1 Two-Dimensional Open Hole Well Heterogeneous Case

Streamline Simulator

1 c l e a r a l l ;

2 % Def ine block no . f o r R and theta d i r e c t i o n

3 N=20;J=20;M=N∗J ;

4 % Def ine we l lbo r e rad iu s=50 m, r e s e r v o i r rad iu s =0.05m

5 Re=50;Rw=0.05;

6 % Boundary Pre s su re s : we l lbo r e p r e s su r e =280∗10^5 pa ←↩

r e s e r v o i r p r e s su r e =300∗10^5 pa

7 Pw=280∗10^5; Pe=300∗10^5;

8 % Def ine the block pe r emab i l i t y K_block=1e−12

9 K=1e−12.∗ones (N , J , 3 ) ;

10 uo=0.8e−3;% Def ine f l u i d v i s c o s i t y cp

11 % Def ine he t e r ogene i t y block no . and pe rmeab i l i t y

12 HENR1=17;HENR2=14;HENT1=16;HENT2=15;

13 K ( HENR2 : HENR1−1,HENT2 : HENT1−1 ,1)=0.25e−13;

14 K ( HENR2 : HENR1−1,HENT2 : HENT1−1 ,2)=0.25e−13;

15 R=0:1:N−1;

16 ro=Rw ∗(Re/Rw ) . ^ ( R . / ( N−1) ) ;% Ca lcu la te node r a d i i
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17 rb=ones (1 , N+1) ;

18 rb ( 1 , 2 : N )=(ro ( : , 2 : N ) .∗ ro ( : , 1 : N−1) ) . ^ 0 . 5 ;

19 rb ( 1 , [ 1 N+1])=[Rw^2/rb ( 1 , 2 ) Re^2/rb (1 , N ) ] ;% Ca lcu la te ←↩

boundary r a d i i

20 Ro=repmat (ro ' , 1 , J ) ; Rb=repmat (rb ' , 1 , J ) ; % Ro , Rb Radius f o r ←↩

nodes f o r a l l g r i d block

21 Tn=l i n s p a c e (2∗ pi /(2∗J ) ,2∗ pi−2∗pi /(2∗J ) ,J ) ; % Theta Nodes ←↩

ang le

22 ttn=repmat (Tn ' , 1 , N ) ' ;% Theta Nodes ang le f o r a l l g r i d block

23 Dn=360/J∗ pi /180 ;% Def ine theta ang le

24 Kr=(K ( : , : , 1 ) . ∗ ( cos ( ttn ) ) .^2+K ( : , : , 2 ) . ∗ ( s i n ( ttn ) ) .^2 ) ;% ←↩

Calcu la te Kr from the p r i n c i p l e pe rmeab i l i t y

25 Kt=(K ( : , : , 2 ) . ∗ ( cos ( ttn ) ) .^2+K ( : , : , 1 ) . ∗ ( s i n ( ttn ) ) .^2 ) ;% ←↩

Calcu la te Kt from the p r i n c i p l e pe rmeab i l i t y

26 Mblock=Kt/uo ; Mblockr=Kr/uo ;% Block Mobi l i ty

27 Mbr=ones (N+1,J ) ; Mbr ( [ 1 N+1] , : )=Mblockr ( [ 1 N ] , : ) ;% Upscaled←↩

mobi l i ty in r d i r e c t i o n

28 Mbr ( 2 : N , : )=log (Ro ( 2 : N , : ) . / Ro ( 1 : N−1 , : ) ) . / ( ( 1 . / Mblockr ( 1 : N←↩

−1 , : ) .∗ l og (Rb ( 2 : N , : ) . / Ro ( 1 : N−1 , : ) ) ) +(1./Mblockr ( 2 : N , : ) .∗←↩

l og (Ro ( 2 : N , : ) . / Rb ( 2 : N , : ) ) ) ) ;

29 Mbt=ones (N , J ) ;% Upscaled mob i l i ty in the angular d i r e c t i o n

30 Mbt ( : , 1 : J−1)=2.∗Mblock ( : , 1 : J−1) .∗ Mblock ( : , 2 : J ) . / ( Mblock←↩

( : , 1 : J−1)+Mblock ( : , 2 : J ) ) ;

31 Mbt ( : , J )=2.∗Mblock ( : , 1 ) .∗ Mblock ( : , J ) . / ( Mblock ( : , 1 )+Mblock←↩

( : , J ) ) ;% Last column mobi l i ty in the angular d i r e c t i o n
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32 Tr1=Rb ( 1 , : ) .∗ Mbr ( 1 , : ) . / ( Ro ( 1 , : ) . ∗ ( Rb ( 2 , : )−Rb ( 1 , : ) ) . ∗ ( Ro←↩

( 1 , : )−Rb ( 1 , : ) ) ) ;

33 Trb=Rb ( 2 : N , : ) .∗ Mbr ( 2 : N , : ) . / ( Ro ( 2 : N , : ) . ∗ ( Rb ( 3 : N+1 , :)−Rb ( 2 : N←↩

, : ) ) . ∗ ( Ro ( 2 : N , : )−Ro ( 1 : N−1 , : ) ) ) ; %Tran sm i s i b i l i t y in the ←↩

r a d i a l d i r e c t i o n

34 % Calcu la te the t r a n sm i s i b i l i t y c o e f f i e c i n t s ( a , b , c , d , e ) in ←↩

d i f f e r e n t d i r e c t i o n s

35 e ( 1 , : )=Rb ( 2 , : ) .∗ Mbr ( 2 , : ) . / ( Ro ( 1 , : ) . ∗ ( Rb ( 2 , : )−Rw ) . ∗ ( Ro ( 2 , : )−←↩

Ro ( 1 , : ) ) ) ;

36 e ( 2 : N−1 , : )=Rb ( 3 : N , : ) .∗ Mbr ( 3 : N , : ) . / ( Ro ( 2 : N−1 , : ) . ∗ ( Rb ( 3 : N , : )−←↩

Rb ( 2 : N−1 , : ) ) . ∗ ( Ro ( 3 : N , : )−Ro ( 2 : N−1 , : ) ) ) ;

37 e (N , : )=Rb (N+1 , :) .∗ Mbr(1+N , : ) . / ( Ro (N , : ) . ∗ ( Rb (N+1 , :)−Rb (N , : ) )←↩

. ∗ ( Rb (N+1 , :)−Ro (N , : ) ) ) ;

38 T=ze ro s (N , J−1) ; t=ze ro s (N , 1 ) ;

39 b=Mbt . / ( ( Ro . ^2 ) . ∗ ( Dn^2) ) ;

40 bo=[t b ( : , 1 : J−1) ] ; oob=[b ( : , J ) T ] ;

41 c=[Mbt ( : , J ) Mbt ( : , 1 : J−1) ] . / ( ( Ro . ^2 ) . ∗ ( Dn^2) ) ;

42 coo=[T c ( : , 1 ) ] ; oc=[c ( : , 2 : J ) t ] ;

43 d=[Tr1 ; Trb ] ;

44 Tre=[ ze ro s (1 , J ) ; e ( 1 : N−1 , : ) ] ;

45 a=−b−c−d−e ;

46 am=[ ze ro s (N , 1 ) a ( : , 2 : J ) ] ;

47 x1=reshape ( [ Trb ; z e r o s (1 , J ) ] ' , M , 1 ) ; x2=reshape (Tre ' , M , 1 ) ;

48 y1=reshape (oc ' , M , 1 ) ; y2=reshape (bo ' , M , 1 ) ;

49 y10=reshape (oob ' , M , 1 ) ; y20=reshape (coo ' , M , 1 ) ;

50 AA=reshape (a ' , M , 1 ) ;
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51 % Def ine Wellbore and Outter boundary pr e s su r e

52 DiagVecs=[x1 , y10 , y1 , AA , y2 , y20 , x2 ] ;

53 DiagIndx =[−J,−J+1 ,−1 ,0 ,1 ,J−1,J ] ;

54 D=ze ro s (M , 1 ) ;

55 D ( 1 : J )=Pw ;

56 D (M−J+1:M )=Pe ;

57 % Co e f f i c i e n t matrix

58 A = spd iags ( DiagVecs , DiagIndx , M , M ) ;

59 f o r i=1:J

60 A (i , : ) =0;

61 A (i , i )=1;

62 A (M−i+1 , :)=0;

63 A (M−i+1,M−i+1)=1;

64 end

65 u = A\D ;

66 % Calcu la te node p r e s su r e s

67 p=reshape (u , J , N ) ; P=p ' ;

68 % Find the pe rmeab i l i t y from node p r e s su r e s to PO

69 RDo=log (Ro/Rw ) ; RDb=log (Rb/Rw ) ; d1=RDo ( 2 : N , : )−RDb ( 2 : N , : ) ;

70 Kr2=Kr ( 2 : N , : ) ; Kr1=[Kr ( 2 : N , J ) Kr ( 2 : N , 1 : J−1) ] ; Kr4=[Kr ( 1 : N−1,J←↩

) Kr ( 1 : N−1 ,1:J−1) ] ; Kr3=Kr ( 1 : N−1 , : ) ;

71 Kt2=Kt ( 2 : N , : ) ; Kt1=[Kt ( 2 : N , J ) Kt ( 2 : N , 1 : J−1) ] ; Kt4=[Kt ( 1 : N−1,J←↩

) Kt ( 1 : N−1 ,1:J−1) ] ; Kt3=Kt ( 1 : N−1 , : ) ;

72 % Calcu la te p r e s su r e f o r h a l f l o ga r i thmi c po int in the ←↩

r a d i a l d i r e c t i o n
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73 Ptij=(Kr ( 2 : N , : ) .∗ P ( 2 : N , : )+Kr ( 1 : N−1 , : ) .∗ P ( 1 : N−1 , : ) ) . / ( Kr ( 2 : N←↩

, : )+Kr ( 1 : N−1 , : ) ) ;

74 % Calcu la te p r e s su r e f o r h a l f d i s t ance po int in the angular←↩

d i r e c t i o n

75 KRP=P .∗ Kt ;

76 Prij=(KRP+[KRP ( : , J ) KRP ( : , 1 : J−1) ] ) . / ( Kt+[Kt ( : , J ) Kt ( : , 1 : J←↩

−1) ] ) ;

77 P2=P ( 2 : N , : ) ; P1=[P ( 2 : N , J ) P ( 2 : N , 1 : J−1) ] ; P4=[P ( 1 : N−1,J ) P ( 1 : N←↩

−1 ,1:J−1) ] ; P3=P ( 1 : N−1 , : ) ;

78 P12=Prij ( 2 : N , : ) ; P14=[Ptij ( : , J ) Ptij ( : , 1 : J−1) ] ; P34=Prij ( 1 : N←↩

−1 , : ) ; P23=Ptij ;

79 f o r i=1:N−1

80 f o r j=1:J

81 PP=[P1 (i , j ) ; P2 (i , j ) ; P3 (i , j ) ; P4 (i , j ) ; P12 (i , j ) ;←↩

P12 (i , j ) ; . . .

82 P23 (i , j ) ; P23 (i , j ) ; P34 (i , j ) ; P34 (i , j ) ; P14 (i , j←↩

) ; P14 (i , j ) ; 0 ] ;

83 mm=[Tn (1 ) ∗d1 ( 1 , 1 ) −Tn (1 ) −d1 ( 1 , 1 ) 0 0 0 0 0 0 0←↩

0 0 1 ; . . .

84 0 0 0 −Tn (1 ) ∗d1 ( 1 , 1 ) Tn (1 ) −d1 ( 1 , 1 ) 0 0 0 0←↩

0 0 1 ; . . .

85 0 0 0 0 0 0 Tn (1 ) ∗d1 ( 1 , 1 ) Tn (1 ) d1 ( 1 , 1 ) 0 0←↩

0 1 ; . . .

86 0 0 0 0 0 0 0 0 0 −Tn (1 ) ∗d1 ( 1 , 1 ) −Tn (1 ) d1←↩

( 1 , 1 ) 1 ; . . .

87 0 0 −d1 ( 1 , 1 ) 0 0 0 0 0 0 0 0 0 1 ; . . .
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88 0 0 0 0 0 −d1 ( 1 , 1 ) 0 0 0 0 0 0 1 ; . . .

89 0 0 0 0 Tn (1 ) 0 0 0 0 0 0 0 1 ; . . .

90 0 0 0 0 0 0 0 Tn (1 ) 0 0 0 0 1 ; . . .

91 0 0 0 0 0 0 0 0 d1 ( 1 , 1 ) 0 0 0 1 ; . . .

92 0 0 0 0 0 0 0 0 0 0 0 d1 ( 1 , 1 ) 1 ; . . .

93 0 −Tn (1 ) 0 0 0 0 0 0 0 0 0 0 1 ; . . .

94 0 0 0 0 0 0 0 0 0 0 −Tn (1 ) 0 1 ; . . .

95 −Kr1 (i , j ) ∗Tn (1 ) ^2/2+Kt1 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2←↩

Kt1 (i , j )∗(−d1 ( 1 , 1 ) ) Kr1 (i , j ) ∗Tn (1 ) . . .

96 Kr2 (i , j ) ∗Tn (1 ) ^2/2−Kt2 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2 ←↩

−Kt2 (i , j )∗(−d1 ( 1 , 1 ) ) Kr2 (i , j ) ∗Tn (1 ) . . .

97 −Kr3 (i , j ) ∗Tn (1 ) ^2/2+Kt3 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2←↩

Kt3 (i , j )∗(−d1 ( 1 , 1 ) ) −Kr3 (i , j ) ∗Tn (1 ) . . .

98 Kr4 (i , j ) ∗Tn (1 ) ^2/2−Kt4 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2 ←↩

−Kt4 (i , j )∗(−d1 ( 1 , 1 ) ) −Kr4 (i , j ) ∗Tn (1 ) 0 ] ;

99 Vec=mm\PP ;

100 po (i , j )=Vec (13) ;

101 end

102 f o r j=J

103 end

104 end

105 % Rearrange the corner p r e s su r e to the corner po int ←↩

coo rd ina t e s

106 TO=l i n s p a c e (0 ,2∗ pi−2∗pi /(J ) ,J ) ;

107 tn=[TO 2∗ pi ] ;

108 po=[Prij ( 1 , : ) ; po ; Prij (N , : ) ] ;
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109 po=[po po ( : , 1 ) ] ;

110 LRD=log (rb . / Rw ) ;

111 LRD (N+1)=LRD (N+1)+LRD (1 ) ; LRD (1 ) =0;

112 RD=exp ( LRD ) ;

113 % Calcu la te the c o e f f i e c i e n t s f o r the log−l i n p r e s su r e ←↩

assumpution

114 f o r i=1:N

115 f o r j=1:J

116 PP=[po (i , j ) ; po (i , j+1) ; po (i+1,j+1) ; po (i+1,j )←↩

; ] ; %P=pre s su r e

117 mm=[tn (j ) ∗LRD (i ) tn (j ) LRD (i ) 1 ; . . .

118 tn (j+1)∗LRD (i ) tn (j+1) LRD (i ) 1 ; . . .

119 tn (j+1)∗LRD (i+1) tn (j+1) LRD (i+1) 1 ; . . .

120 tn (j ) ∗LRD (i+1) tn (j ) LRD (i+1) 1 ; ] ;

121 Vec=mm\PP ;

122 aa (i , j )=Vec (1 ) ; bb (i , j )=Vec (2 ) ; cc (i , j )=Vec (3 )←↩

; dd (i , j )=Vec (4 ) ;

123 end

124 end

125 hold on

126 % Plot pre sure d i s t r i b u t i o n and permeab i l i t y

127 AN=l i n s p a c e (0 ,2∗ pi−2∗pi /J , J ) ;

128 xp=Ro .∗ cos ( repmat (AN ' , 1 , N ) ' ) ;

129 yp=Ro .∗ s i n ( repmat (AN ' , 1 , N ) ' ) ;

130 s u r f ( [ xp xp ( : , 1 ) ] , [ yp yp ( : , 1 ) ] , [ Kr Kr ( : , 1 ) ]∗10^15) ; % ←↩

s u r f a c e p l o t f o r pe rmeab i l i t y
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131 s u r f ( [ xp xp ( : , 1 ) ] , [ yp yp ( : , 1 ) ] , [ p p ( : , 1 ) ] ) ;% su r f a c e p l o t ←↩

f o r p r e s su r e

132 a_=aa . ∗ ( Kr . ^ 0 . 5 ) ; b_=bb . ∗ ( Kr . ^ 0 . 5 ) ; c_=aa . ∗ ( Kt . ^ 0 . 5 ) ; d_=cc . ∗ (←↩

Kt . ^ 0 . 5 ) ;

133 sita=0:2∗ pi /200:2∗ pi ;

134 p l o t (Re∗ cos ( sita ) ,Re∗ s i n ( sita ) , ' black ' ) ;

135 hold on

136 ut=−Kt/uo . ∗ ( aa .∗ l og (Ro/Rw ) . / Ro+bb . / Ro ) ; % ut+ f low ←↩

con t e r c l o ckw i s e ut− f l ow c l o ckw i s e

137 tn=[TO 2∗ pi ] ;

138 T=ones (N+10,J ) ;

139 f o r j=1:J

140 w=1;

141 % Def ine the launching po int coo rd ina te : RDin , th in

142 RDin=Re/Rw ;

143 thin=tn (j+1)+tn (2 ) /2 ;

144 XX=N+1;

145 YY=c e i l ( thin/tn (2 ) ) ;

146 i f YY==J+1;

147 YY=1;

148 end

149 % Check i f the s t r eaml ine reaches to the boundary

150 whi l e XX>1&& YY<=J ;

151 a11=a_ (XX−1,YY ) ; b11=b_ (XX−1,YY ) ; c11=c_ (XX−1,YY ) ; d11=d_ (←↩

XX−1,YY ) ;
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152 % Check i f the r e s e r v o i r i s homogenous , i f yes , use ←↩

homogeneous s t r eaml in e t r a c i ng method , i f not , c a l c u l a t e ←↩

C

153 i f abs ( a11 )<=10^(−10)&& abs ( b11 )<=10^(−10)

154 RDout=RD (XX−1) ;

155 Rd=RDout : ( RDin−RDout ) /10 : RDin ;

156 ur=Kr (XX−1,YY ) /uo ∗(cc (XX−1,YY ) . / ( ( Rd ( 1 : 1 0 ) ∗Rw+Rd ( 2 : 1 1 )←↩

∗Rw ) /2) ) ;

157 TT=ones (1 , 11 ) ∗thin ;

158 dt=((RDin−RDout ) ∗Rw /10) . / ur ;

159 Tof=sum(dt ) ;

160 e l s e

161 C=(a11∗ l og ( RDin )+b11 )^2−(c11∗thin+d11 ) ^2;

162 % Use r as paramete r i za t i on to t r a c e s t r eaml ine

163 i f C<0

164 n=(c11∗thin+d11 ) / ( ( a11∗ l og ( RDin )+b11 )^2−C ) ^ 0 . 5 ;

165 syms RDD

166 theta=−d11/c11+(n/c11 ) ∗ ( ( a11∗ l og ( RDD )+b11 )^2−C ) ^ 0 . 5 ;

167 RD1=subs ( solve ( theta−tn (YY+1) , RDD ) ) ;

168 RD2=subs ( solve ( theta−tn (YY ) , RDD ) ) ;

169 RDD1=RD1 (RD1>=RD (XX−1)& RD1<=RDin ) ;

170 RDD2=RD2 (RD2>=RD (XX−1)& RD2<=RDin ) ;

171 i f isempty ( RDD1 )==0 && i s r e a l ( RDD1 )==1&& s i z e (RDD1 , 1 )==1←↩

%% RDD1==RDin

172 i f abs (RDD1−RDin )<RDin/10000

173 RDD1 =[ ] ;
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174 end

175 end

176 i f isempty ( RDD2 )==0 && i s r e a l ( RDD2 )==1&& s i z e (RDD2 , 1 )==1←↩

%% RDD1==RDin

177 i f abs (RDD2−RDin )<RDin/10000

178 RDD2 =[ ] ;

179 end

180 end

181 i f ( isempty ( RDD1 )==1 | | i s r e a l ( RDD1 )==0) && ( isempty ( RDD2←↩

)==1 | | i s r e a l ( RDD2 )==0 )

182 Rd=(RD (XX−1) : ( RDin−RD (XX−1) ) /10 : RDin ) ;

183 TT=−d11/c11+(n/c11 ) ∗ ( ( a11∗ l og (Rd )+b11 ) .^2−C ) . ^ 0 . 5 ;

184 i f min (TT )<tn (YY )−1e−5| |max(TT )>tn (YY+1)+1e−5

185 TT=ones (1 , 11 ) ∗thin ;

186 end

187 dt=((RDin−RD (XX−1) ) ∗Rw /10) . / ( ( ( a11∗ l og ( ( Rd ( 1 : 1 0 )+Rd←↩

( 2 : 1 1 ) ) /2)+b11 ) .^2−C ) . ^0 . 5∗ Kr (XX−1,YY ) ^0.5/ uo . / ( (←↩

Rd ( 1 : 1 0 ) ∗Rw+Rd ( 2 : 1 1 ) ∗Rw ) /2) ) ;

188 Tof=sum(dt ) ;

189 end

190 i f isempty ( RDD1 )==0 && i s r e a l ( RDD1 )==1&& s i z e (RDD1 , 1 )==1←↩

&& ( isempty ( RDD2 )==1 | | i s r e a l ( RDD2 )==0 ) % ex i t ←↩

from tn (YY+1)

191 rr=so r t ( [ RDin RDD1 ] ) ;

192 Rd=rr (1 ) : ( rr (2 )−rr (1 ) ) /10 : rr (2 ) ;
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193 dt2=((rr (2 )−rr (1 ) ) ∗Rw /10) . / ( ( ( a11∗ l og ( ( Rd ( 1 : 1 0 )+Rd←↩

( 2 : 1 1 ) ) /2)+b11 ) .^2−C ) . ^0 . 5∗ Kr (XX−1,YY ) ^0.5/ uo . / ( (←↩

Rd ( 1 : 1 0 ) ∗Rw+Rd ( 2 : 1 1 ) ∗Rw ) /2) ) ;

194 Tof=sum( dt2 ) ;

195 TT=−d11/c11+(n/c11 ) ∗ ( ( a11∗ l og (Rd )+b11 ) .^2−C ) . ^ 0 . 5 ;

196 end

197 i f isempty ( RDD2 )==0 && i s r e a l ( RDD2 )==1&& s i z e (RDD2 , 1 )==1←↩

&& ( isempty ( RDD1 )==1 | | i s r e a l ( RDD1 )==0 ) % ex i t ←↩

from tn (YY)

198 % Exit from RDD1

199 rr=so r t ( [ RDin RDD2 ] ) ;

200 Rd=rr (1 ) : ( rr (2 )−rr (1 ) ) /10 : rr (2 ) ;

201 dt2=((rr (2 )−rr (1 ) ) ∗Rw /10) . / ( ( ( a11∗ l og ( ( Rd ( 1 : 1 0 )+Rd←↩

( 2 : 1 1 ) ) /2)+b11 ) .^2−C ) . ^0 . 5∗ Kr (XX−1,YY ) ^0.5/ uo . / ( ( Rd←↩

( 1 : 1 0 ) ∗Rw+Rd ( 2 : 1 1 ) ∗Rw ) /2) ) ;

202 Tof=sum( dt2 ) ;

203 TT=−d11/c11+(n/c11 ) ∗ ( ( a11∗ l og (Rd )+b11 ) .^2−C ) . ^ 0 . 5 ;

204 end

205 % Entry and ex i t at same eadge T1 or T2

206 i f isempty ( RDD1 )==0 && i s r e a l ( RDD1 )==1&& s i z e (RDD1 , 1 )==2←↩

&& ( isempty ( RDD2 )==1 | | i s r e a l ( RDD2 )==0 ) % entry ←↩

and ex i t from T1

207 i f abs (max( RDD1 )−RDin )<RDin/10000

208 rr=so r t ( RDD1 ) ;

209 Rd=rr (1 ) : ( rr (2 )−rr (1 ) ) /10 : rr (2 ) ;
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210 dt2=((rr (2 )−rr (1 ) ) ∗Rw /10) . / ( ( ( a11∗ l og ( ( Rd ( 1 : 1 0 )+Rd←↩

( 2 : 1 1 ) ) /2)+b11 ) .^2−C ) . ^0 . 5∗ Kr (XX−1,YY ) ^0.5/ uo . / ( (←↩

Rd ( 1 : 1 0 ) ∗Rw+Rd ( 2 : 1 1 ) ∗Rw ) /2) ) ;

211 Tof=sum( dt2 ) ;

212 TT=−d11/c11+(n/c11 ) ∗ ( ( a11∗ l og (Rd )+b11 ) .^2−C ) . ^ 0 . 5 ;

213 e l s e

214 rr=so r t ( [max( RDD1 ) RDin ] ) ;

215 Rd=rr (1 ) : ( rr (2 )−rr (1 ) ) /10 : rr (2 ) ;

216 dt2=((rr (2 )−rr (1 ) ) ∗Rw /10) . / ( ( ( a11∗ l og ( ( Rd ( 1 : 1 0 )+Rd←↩

( 2 : 1 1 ) ) /2)+b11 ) .^2−C ) . ^0 . 5∗ Kr (XX−1,YY ) ^0.5/ uo . / ( (←↩

Rd ( 1 : 1 0 ) ∗Rw+Rd ( 2 : 1 1 ) ∗Rw ) /2) ) ;

217 Tof=sum( dt2 ) ;

218 TT=−d11/c11+(n/c11 ) ∗ ( ( a11∗ l og (Rd )+b11 ) .^2−C ) . ^ 0 . 5 ;

219 end

220 i f max(TT )>tn (YY+1)+10^−5||min (TT )<tn (YY )−10^−5

221 TT=ones (1 , 11 ) ∗thin ;

222 end

223 end

224 i f isempty ( RDD2 )==0 && i s r e a l ( RDD2 )==1&& s i z e (RDD2 , 1 )==2←↩

&& ( isempty ( RDD1 )==1 | | i s r e a l ( RDD1 )==0 ) % entry ←↩

and ex i t from T2

225 i f abs (max( RDD2 )−RDin )<RDin/10000

226 rr=so r t ( RDD2 ) ;

227 Rd=rr (1 ) : ( rr (2 )−rr (1 ) ) /10 : rr (2 ) ;

228 dt2=((rr (2 )−rr (1 ) ) ∗Rw /10) . / ( ( ( a11∗ l og ( ( Rd ( 1 : 1 0 )+Rd←↩

( 2 : 1 1 ) ) /2)+b11 ) .^2−C ) . ^0 . 5∗ Kr (XX−1,YY ) ^0.5/ uo . / ( (←↩
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Rd ( 1 : 1 0 ) ∗Rw+Rd ( 2 : 1 1 ) ∗Rw ) /2) ) ;

229 Tof=sum( dt2 ) ;

230 TT=−d11/c11+(n/c11 ) ∗ ( ( a11∗ l og (Rd )+b11 ) .^2−C ) . ^ 0 . 5 ;

231 e l s e

232 rr=so r t ( [max( RDD2 ) RDin ] ) ;

233 Rd=rr (1 ) : ( rr (2 )−rr (1 ) ) /10 : rr (2 ) ;

234 dt2=((rr (2 )−rr (1 ) ) ∗Rw /10) . / ( ( ( a11∗ l og ( ( Rd ( 1 : 1 0 )+Rd←↩

( 2 : 1 1 ) ) /2)+b11 ) .^2−C ) . ^0 . 5∗ Kr (XX−1,YY ) ^0.5/ uo . / ( (←↩

Rd ( 1 : 1 0 ) ∗Rw+Rd ( 2 : 1 1 ) ∗Rw ) /2) ) ;

235 Tof=sum( dt2 ) ;

236 TT=−d11/c11+(n/c11 ) ∗ ( ( a11∗ l og (Rd )+b11 ) .^2−C ) . ^ 0 . 5 ;

237 end

238 i f max(TT )>tn (YY+1)+10^−5||min (TT )<tn (YY )−10^−5

239 TT=ones (1 , 11 ) ∗thin ;

240 end

241 end

242 end

243 % Use the te as paramete r i za t i on to t r a c e s t r eaml ine

244 i f C>0

245 n=(a11∗ l og ( RDin )+b11 ) / ( ( c11∗thin+d11 )^2+C ) ^ 0 . 5 ;

246 syms theta

247 T1=subs ( solve (R−RD (XX−1) , theta ) ) ;

248 T2=subs ( solve (R−RD (XX ) , theta ) ) ;

249 TT1=round ( ( T1 (T1>=tn (YY )&T1<=tn (YY+1) ) ) .∗1000) . / 1000 ;

250 TT2=round ( ( T2 (T2>=tn (YY )&T2<=tn (YY+1) ) ) .∗1000) . / 1000 ;

251 i f isempty ( TT1 )==0 && i s r e a l ( TT1 )==1&& s i z e (TT1 , 1 )==1
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252 i f abs (TT1−thin )<thin/10000

253 TT1 =[ ] ;

254 end

255 end

256 i f isempty ( TT2 )==0 && i s r e a l ( TT2 )==1&& s i z e (TT2 , 1 )==1

257 i f abs (TT2−thin )<thin/10000

258 TT2 =[ ] ;

259 end

260 end

261 i f ( isempty ( TT1 )==1 | | i s r e a l ( TT1 )==0) && ( isempty ( TT2 )←↩

==1 | | i s r e a l ( TT2 )==0)% Only e x i t f o r the theta edges

262 % Enter po int i s not at tn (YY+1) AND tn (YY) edge

263 i f abs (thin−tn (YY+1) )>1e−3 && abs (thin−tn (YY ) )>1e−3

264 t1=thin : ( tn (YY+1)−thin ) /10 : tn (YY+1) ;

265 t2=tn (YY ) : ( thin−tn (YY ) ) /10 : thin ;

266 tm1=(t1 ( 1 : 1 0 )+t1 ( 2 : 1 1 ) ) /2 ;

267 tm2=(t2 ( 1 : 1 0 )+t2 ( 2 : 1 1 ) ) /2 ;

268 Rd1=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗t1+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;

269 Rd2=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗t2+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;

270 Rdm1=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗tm1+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;

271 Rdm2=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗tm2+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;
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272 dt1=(tn (YY+1)−thin ) /10∗uo∗Rdm1 . / ( ( ( c11∗tm1+d11 )←↩

.^2+C ) . ^0 . 5∗ Kt (XX−1,YY ) ^0 .5 ) ;

273 tof1=sum( dt1 ) ;

274 dt2=(thin−tn (YY ) ) /10∗uo∗Rdm2 . / ( ( ( c11∗tm2+d11 )←↩

.^2+C ) . ^0 . 5∗ Kt (XX−1,YY ) ^0 .5 ) ;

275 tof2=sum( dt2 ) ;

276 end

277 % Enter po int i s at tn (YY+1)edge

278 i f abs (thin−tn (YY+1) )<=1e−3&& abs (thin−tn (YY ) )>1e−3

279 Rd1=RD (XX−1) : ( RDin−RD (XX−1) ) /10 : RDin ;

280 t1=ones (1 , 11 ) ∗thin ;

281 ur=Kr (XX−1,YY ) /uo ∗(cc (XX−1,YY ) . / ( ( Rd1 ( 1 : 1 0 ) ∗Rw+←↩

Rd1 ( 2 : 1 1 ) ∗Rw ) /2) ) ;

282 dt1=((RDin−RD (XX−1) ) ∗Rw /10) . / ur ;

283 tof1=−1;

284 t2=tn (YY ) : ( thin−tn (YY ) ) /10 : thin ;

285 tm2=(t2 ( 1 : 1 0 )+t2 ( 2 : 1 1 ) ) /2 ;

286 Rd2=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗t2+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;

287 Rdm2=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗tm2+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;

288 dt2=(thin−tn (YY ) ) /10∗uo∗Rdm2 . / ( ( ( c11∗tm2+d11 )←↩

.^2+C ) . ^0 . 5∗ Kt (XX−1,YY ) ^0 .5 ) ;

289 tof2=sum( dt2 ) ;

290 end

291 % Enter po int i s tn (YY) edge
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292 i f abs (thin−tn (YY+1) )>1e−3 && abs (thin−tn (YY ) )<=1e←↩

−3

293 t1=thin : ( tn (YY+1)−thin ) /10 : tn (YY+1) ;

294 tm1=(t1 ( 1 : 1 0 )+t1 ( 2 : 1 1 ) ) /2 ;

295 Rd1=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗t1+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;

296 Rdm1=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗tm1+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;

297 dt1=(tn (YY+1)−thin ) /10∗uo∗Rdm1 . / ( ( ( c11∗tm1+d11 )←↩

.^2+C ) . ^0 . 5∗ Kt (XX−1,YY ) ^0 .5 ) ;

298 tof1=sum( dt1 ) ;

299 t2=ones (1 , 11 ) ∗thin ;

300 Rd2=(RD (XX−1) : ( RDin−RD (XX−1) ) /10 : RDin ) ;

301 ur=abs (Kr (XX−1,YY ) /uo ∗(cc (XX−1,YY ) . / ( ( Rd2 ( 1 : 1 0 )←↩

∗Rw+Rd2 ( 2 : 1 1 ) ∗Rw ) /2) ) ) ;

302 dt2=((RDin−RD (XX−1) ) ∗Rw /10) . / ur ;

303 tof2=−1;

304 end

305 i f max( Rd1 )>RD (XX )+10^−5||min ( Rd1 )<RD (XX−1)−10^−5

306 tof1=−1;

307 end

308 i f max( Rd2 )>RD (XX )+10^−5||min ( Rd2 )<RD (XX−1)−10^−5

309 tof2=−1;

310 end

311 dt=[tof1 tof2 ] ;

312 Tof=min(dt (dt>0) ) ;
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313 i f Tof ==tof1

314 Rd=Rd1 ;

315 TT=t1 ;

316 e l s e

317 Rd=Rd2 ;

318 TT=t2 ;

319 end

320 end

321 % Find r e a l s t r eaml ine between r and theta

322 i f isempty ( TT1 )==0 && i s r e a l ( TT1 )==1&& s i z e (TT1 , 1 )==1 &&←↩

( isempty ( TT2 )==1 | | i s r e a l ( TT2 )==0 ) % ex i t from RD(←↩

XX−1)

323 ttt=so r t ( [ thin TT1 ] ) ;

324 t3=ttt (2 ) :−(ttt (2 )−ttt (1 ) ) /10 : ttt (1 ) ;

325 tm3=(t3 ( 1 : 1 0 )+t3 ( 2 : 1 1 ) ) /2 ;

326 Rd3=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗t3+d11 ) .^2+C ) . ^ 0 . 5 ) ;

327 Rdm3=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗tm3+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;

328 dt3=−(ttt (1 )−ttt (2 ) ) /10∗uo∗Rdm3 . / ( ( ( c11∗tm3+d11 )←↩

.^2+C ) . ^0 . 5∗ Kt (XX−1,YY ) ^0 .5 ) ;

329 Tof=sum( dt3 ) ;

330 TT=t3 ; Rd=Rd3 ;

331 end

332 i f isempty ( TT2 )==0 && i s r e a l ( TT2 )==1&& s i z e (TT2 , 1 )==1 &&←↩

( isempty ( TT1 )==1 | | i s r e a l ( TT1 )==0 ) % ex i t from RD(←↩

XX)
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333 ttt=so r t ( [ thin TT2 ] ) ;

334 t3=ttt (2 ) :−(ttt (2 )−ttt (1 ) ) /10 : ttt (1 ) ;

335 tm3=(t3 ( 1 : 1 0 )+t3 ( 2 : 1 1 ) ) /2 ;

336 Rd3=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗t3+d11 ) .^2+C ) . ^ 0 . 5 ) ;

337 Rdm3=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗tm3+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;

338 dt3=−(ttt (1 )−ttt (2 ) ) /10∗uo∗Rdm3 . / ( ( ( c11∗tm3+d11 )←↩

.^2+C ) . ^0 . 5∗ Kt (XX−1,YY ) ^0 .5 ) ;

339 Tof=sum( dt3 ) ;

340 TT=t3 ; Rd=Rd3 ;

341 end

342 i f isempty ( TT1 )==0 && i s r e a l ( TT1 )==1&& s i z e (TT1 , 1 )==2 &&←↩

( isempty ( TT2 )==1 | | i s r e a l ( TT2 )==0 ) % ex i t from RD(←↩

XX−1)

343 ttt=so r t ( TT1 ) ;

344 t3=ttt (2 ) :−(ttt (2 )−ttt (1 ) ) /10 : ttt (1 ) ;

345 tm3=(t3 ( 1 : 1 0 )+t3 ( 2 : 1 1 ) ) /2 ;

346 Rd3=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗t3+d11 ) .^2+C ) . ^ 0 . 5 ) ;

347 Rdm3=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗tm3+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;

348 dt3=−(ttt (1 )−ttt (2 ) ) /10∗uo∗Rdm3 . / ( ( ( c11∗tm3+d11 )←↩

.^2+C ) . ^0 . 5∗ Kt (XX−1,YY ) ^0 .5 ) ;

349 Tof=sum( dt3 ) ;

350 TT=t3 ; Rd=Rd3 ;

351 end
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352 i f isempty ( TT2 )==0 && i s r e a l ( TT2 )==1&& s i z e (TT2 , 1 )==2 &&←↩

( isempty ( TT1 )==1 | | i s r e a l ( TT1 )==0 ) % ex i t from RD(←↩

XX)

353 ttt=so r t ( TT2 ) ;

354 t3=ttt (2 ) :−(ttt (2 )−ttt (1 ) ) /10 : ttt (1 ) ;

355 tm3=(t3 ( 1 : 1 0 )+t3 ( 2 : 1 1 ) ) /2 ;

356 Rd3=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗t3+d11 ) .^2+C ) . ^ 0 . 5 ) ;

357 Rdm3=exp(−b11/a11+(n/a11 ) ∗ ( ( c11∗tm3+d11 ) .^2+C )←↩

. ^ 0 . 5 ) ;

358 dt3=−(ttt (1 )−ttt (2 ) ) /10∗uo∗Rdm3 . / ( ( ( c11∗tm3+d11 )←↩

.^2+C ) . ^0 . 5∗ Kt (XX−1,YY ) ^0 .5 ) ;

359 Tof=sum( dt3 ) ;

360 TT=t3 ; Rd=Rd3 ;

361 end

362 end

363 end

364 % Calcu la te new gr id block coo rd ina t e s

365 RDout=min ( [ Rd (1 ) Rd (11) ] ) ;

366 i f RDout==Rd (1 )

367 tout=TT (1 ) ;

368 e l s e

369 tout=TT (11) ;

370 end

371 i f abs (thin−tn (YY ) )<0.01&&abs (thin−tn (YY+1) ) <0.01

372 i f abs (tout−tn (YY ) ) <0.01

373 YY=YY−1;
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374 end

375 i f abs (tout−tn (YY+1) ) <0.01

376 YY=YY+1;

377 end

378 i f abs ( RDout−RD (XX−1) ) <0.01

379 XX=XX−1;

380 end

381 i f abs ( RDout−RD (XX ) ) <0.01

382 XX=XX+1;

383 end

384 e l s e

385 i f RDout==RD (XX−1)

386 XX=XX−1;

387 e l s e

388 i f thin> tout&& abs (tout−tn (YY ) ) <0.01 % entry at tn (←↩

YY+1) and ex i t at tn (YY)

389 YY=YY−1;

390 end

391 i f thin < tout && abs (tout−tn (YY+1) ) <0.01 % entry at ←↩

t< tn (YY+1) and ex i t at tn (YY+1)9

392 YY=YY+1;

393 end

394 end

395 end

396 i f YY==J+1

397 YY=1;
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398 end

399 i f YY==0

400 YY=J ;

401 end

402 RDin=RDout ;

403 thin=tout ;

404 i f XX>1

405 i f abs (thin−tn (YY ) )<10^−5 && abs (RDin−RD (XX ) )<10^−5

406 i f ut (XX−1,YY )<0 && ut (XX−1,YY−1)<0 &&ut (XX , YY ) ∗ut (←↩

XX , YY−1)>0

407 YY=YY−1;

408 end

409 end

410 i f abs (thin−tn (YY+1) )<10^−5 && abs (RDin−RD (XX ) )<10^−5

411 i f ut (XX−1,YY )>0 && ut (XX−1,YY+1)>0&&ut (XX , YY ) ∗ut (←↩

XX , YY+1)>0

412 YY=YY+1;

413 end

414 end

415 end

416 % Plot s t r eaml ine

417 x=Rd .∗ Rw .∗ cos (TT ) ;

418 y=Rd .∗ Rw .∗ s i n (TT ) ;

419 f i g u r e (5 )

420 p l o t (x , y , 'B− ' )

421 hold on
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422 % Save TOF value

423 T (w , j )=Tof ;

424 w=w+1;

425 end

426 end

427 save ( ' s t r eaml ine ' )

E. 2 Three-Dimensional Homogeneous and Anisotropic Case

Streamline Simulator

1 c l e a r a l l

2 % Def ine block no . f o r R and theta d i r e c t i o n s

3 Nr=30;Nt=10;nz=10;Nz=nz+1;N=Nr∗Nt∗Nz ;

4 % Permeabi l i ty in X,Y,Z d i r e c t i o n f o r ORIGNAL blocks

5 kx=1e−13.∗ones (Nr , Nt , nz ) ; ky=1e−13.∗ones (Nr , Nt , nz ) ; kz=1e←↩

−14.∗ones (Nr , Nt , nz ) ;

6 % Def ine we l lbo r e rad iu s=50 m, r e s e r v o i r rad iu s =0.05m, ←↩

r e s e r v o i r h ight 10∗Nz

7 Re=50;Rw=0.05; Dz=5;dz=Dz ∗ ( 0 : 1 : nz ) ;

8 % Boundary Pre s su re s : we l lbo r e p r e s su r e =280∗10^5 pa ←↩

r e s e r v o i r p r e s su r e =300∗10^5 pa

9 Pw=280∗10^5; Pe=300∗10^5;

10 zz=10^−10;%Def ine d i g i t a l t runca t i on ZERO

11 % Permeabi l i ty in X,Y,Z d i r e c t i o n f o r b lock cente red b locks
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12 Kx ( : , : , [ 1 Nz ] )=kx ( : , : , [ 1 nz ] ) ; Kx ( : , : , 2 : nz )=(kx ( : , : , 1 : nz−1)+←↩

kx ( : , : , 2 : nz ) ) /2 ;

13 Ky ( : , : , [ 1 Nz ] )=ky ( : , : , [ 1 nz ] ) ; Ky ( : , : , 2 : nz )=(ky ( : , : , 1 : nz−1)+←↩

ky ( : , : , 2 : nz ) ) /2 ;

14 Kz ( : , : , [ 1 Nz ] )=kz ( : , : , [ 1 nz ] ) ; Kz ( : , : , 2 : nz )=2∗kz ( : , : , 1 : nz−1)←↩

.∗ kz ( : , : , 2 : nz ) . / ( kz ( : , : , 1 : nz−1)+kz ( : , : , 2 : nz ) ) ;% ←↩

Permeab i l i ty at X,Y,Z d i r e c t i o n used in po int ←↩

d i s t r i b u t e d

15 uo=0.8e−3;%Def ine f l u i d v i s c o s i t y cp

16 R=0:1:Nr−1;

17 ro=Rw ∗(Re/Rw ) . ^ ( R . / ( Nr−1) ) ;% Ca lcu la te node r a d i i

18 rb=ones (1 , Nr+1) ;

19 rb ( 1 , 2 : Nr )=(ro ( : , 2 : Nr ) .∗ ro ( : , 1 : Nr−1) ) . ^ 0 . 5 ;

20 rb ( 1 , [ 1 Nr+1])=[Rw^2/rb ( 1 , 2 ) Re^2/rb (1 , Nr ) ] ;% Ca lcu la te ←↩

boundary r a d i i

21 Ro=repmat (ro ' , [ 1 , Nt , Nz ] ) ; Rb=repmat (rb ' , [ 1 , Nt , Nz ] ) ; % Ro , ←↩

Rb Radius f o r nodes f o r a l l g r i d b locks

22 Tn=l i n s p a c e (2∗ pi /(2∗ Nt ) ,2∗ pi−2∗pi /(2∗ Nt ) ,Nt ) ; % Theta Nodes

23 ttn=repmat (Tn ' , 1 , Nr ) ' ; ttn=repmat (ttn , [ 1 , 1 , Nz ] ) ;

24 Dn=360/Nt∗ pi /180 ; % Delat theta between nodes

25 Kr=Kx . ∗ ( cos ( ttn ) ) .^2+Ky . ∗ ( s i n ( ttn ) ) . ^ 2 ; % Permeab i l i ty in r←↩

d i r e c t i o n

26 Kt=Ky . ∗ ( cos ( ttn ) ) .^2+Kx . ∗ ( s i n ( ttn ) ) . ^ 2 ; % Permeab i l i ty in ←↩

tangent d i r e c t i o n

27 Mblock=Kt . / uo ; Mblockr=Kr . / uo ; Mblockz=Kz . / uo ;% Block ←↩

Mobi l i ty f o r r , tangent and Z d i r e c t i o n
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28 Mbr=ones (Nr+1,Nt , Nz ) ; Mbz=ze ro s (Nr , Nt , Nz+1) ;% Upscaled ←↩

mobi l i ty at r , z d i r e c t i o n

29 Mbr ( [ 1 Nr +1 ] , : , : )=Mblockr ( [ 1 Nr ] , : , : ) ;% Upscaled mob i l i ty ←↩

at r d i r e c t i o n

30 Mbr ( 2 : Nr , : , : )=log (Ro ( 2 : Nr , : , : ) . / Ro ( 1 : Nr−1 , : , : ) ) . / ( ( 1 . /←↩

Mblockr ( 1 : Nr−1 , : , : ) .∗ l og (Rb ( 2 : Nr , : , : ) . / Ro ( 1 : Nr−1 , : , : ) ) )←↩

+(1./Mblockr ( 2 : Nr , : , : ) .∗ l og (Ro ( 2 : Nr , : , : ) . / Rb ( 2 : Nr , : , : ) ) )←↩

) ;

31 Mbt=ones (Nr , Nt , Nz ) ;% Upscaled mob i l i ty at theta d i r e c t i o n

32 Mbt ( : , 1 : Nt−1 , : ) =2.∗Mblock ( : , 1 : Nt−1 , : ) .∗ Mblock ( : , 2 : Nt , : ) . / (←↩

Mblock ( : , 1 : Nt−1 , : )+Mblock ( : , 2 : Nt , : ) ) ;

33 Mbt ( : , Nt , : ) =2.∗Mblock ( : , 1 , : ) .∗ Mblock ( : , Nt , : ) . / ( Mblock←↩

( : , 1 , : )+Mblock ( : , Nt , : ) ) ;% Last column i s Mobi l i ty from ←↩

the l a s t to 1

34 Trb=ze ro s (Nr , Nt , Nz ) ;

35 Mbz ( : , : , 2 : Nz )=2.∗Mblockz ( : , : , 1 : Nz−1) .∗ Mblockz ( : , : , 2 : Nz ) . / (←↩

Mblockz ( : , : , 1 : Nz−1)+Mblockz ( : , : , 2 : Nz ) ) ;

36 Mbr ( : , : , [ 1 Nz ] ) =0.5∗Mbr ( : , : , [ 1 Nz ] ) ; Mbt ( : , : , [ 1 Nz ] ) =0.5∗Mbt←↩

( : , : , [ 1 Nz ] ) ;

37 Tr1=Rb ( 1 , : , : ) .∗ Mbr ( 1 , : , : ) . / ( Ro ( 1 , : , : ) . ∗ ( Rb ( 2 , : , : )−Rb ( 1 , : , : )←↩

) . ∗ ( Ro ( 1 , : , : )−Rb ( 1 , : , : ) ) ) ; %F i r s t l a y e r upsca led ←↩

mobi l i ty at r d i r e c t i o n i s the block mob i l i ty

38 Trb ( 1 : Nr−1 , : , : )=Rb ( 2 : Nr , : , : ) .∗ Mbr ( 2 : Nr , : , : ) . / ( Ro ( 2 : Nr , : , : )←↩

. ∗ ( Rb ( 3 : Nr+1 , : , : )−Rb ( 2 : Nr , : , : ) ) . ∗ ( Ro ( 2 : Nr , : , : )−Ro ( 1 : Nr←↩

−1 , : , : ) ) ) ;

39 % Calcu la te the t r a n sm i s i b i l i t y c o e f f i e c i n t s a , b , c , d , e , f , g
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40 e ( [ 1 Nr ] , : , : )=Rb ( [ 2 Nr +1 ] , : , : ) .∗ Mbr ( [ 2 Nr +1 ] , : , : ) . / ( Ro ( [ 1 ←↩

Nr ] , : , : ) . ∗ ( Rb ( [ 2 Nr +1 ] , : , : )−Rb ( [ 1 Nr ] , : , : ) ) . ∗ ( [ Ro ( 2 , : , : )←↩

; Rb (Nr+1 , : , : ) ]−Ro ( [ 1 Nr ] , : , : ) ) ) ;

41 e ( 2 : Nr−1 , : , : )=Rb ( 3 : Nr , : , : ) .∗ Mbr ( 3 : Nr , : , : ) . / ( Ro ( 2 : Nr−1 , : , : )←↩

. ∗ ( Rb ( 3 : Nr , : , : )−Rb ( 2 : Nr−1 , : , : ) ) . ∗ ( Ro ( 3 : Nr , : , : )−Ro ( 2 : Nr←↩

−1 , : , : ) ) ) ;

42 oob=ze ro s (Nr , Nt , Nz ) ; bo=ze ro s (Nr , Nt , Nz ) ; oc=ze ro s (Nr , Nt , Nz ) ;←↩

coo=ze ro s (Nr , Nt , Nz ) ;

43 b=Mbt . / ( ( Ro . ^2 ) . ∗ ( Dn^2) ) ; bo ( : , 2 : Nt , : )=b ( : , 1 : Nt−1 , : ) ; oob←↩

( : , 1 , : )=b ( : , Nt , : ) ;

44 c=[Mbt ( : , Nt , : ) Mbt ( : , 1 : Nt−1 , : ) ] . / ( ( Ro . ^2 ) . ∗ ( Dn^2) ) ; coo ( : , Nt←↩

, : )=c ( : , 1 , : ) ; oc ( : , 1 : Nt−1 , : )=c ( : , 2 : Nt , : ) ;

45 d=[Tr1 ; Trb ( 1 : Nr−1 , : , : ) ] ; Tre=ze ro s (Nr , Nt , Nz ) ; Tre ( 2 : Nr , : , : )=e←↩

( 1 : Nr−1 , : , : ) ;

46 f=Mbz ( : , : , 2 : Nz+1) . / ( ( Dz^2) ) ; g=Mbz ( : , : , 1 : Nz ) . / ( ( Dz^2) ) ;

47 e (Nr , : , 1 : Nz−1)=0;d ( 1 , : , 2 : Nz )=0;

48 a=b+c+d+e+f+g ;

49 x1=reshape ( permute (Trb , [ 2 , 1 , 3 ] ) ,N , 1 ) ; x2=reshape ( permute (Tre←↩

, [ 2 , 1 , 3 ] ) ,N , 1 ) ;

50 y1=reshape ( permute (oc , [ 2 , 1 , 3 ] ) ,N , 1 ) ; y2=reshape ( permute (bo←↩

, [ 2 , 1 , 3 ] ) ,N , 1 ) ;

51 y10=reshape ( permute (oob , [ 2 , 1 , 3 ] ) ,N , 1 ) ; y20=reshape ( permute (←↩

coo , [ 2 , 1 , 3 ] ) ,N , 1 ) ;

52 z1=reshape ( permute (g , [ 2 , 1 , 3 ] ) ,N , 1 ) ; z2=reshape ( permute (f←↩

, [ 2 , 1 , 3 ] ) ,N , 1 ) ;

53 AA=reshape ( permute (a , [ 2 , 1 , 3 ] ) ,N , 1 ) ;
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54 DiagVecs=[−z2 ,−x1 ,−y10 ,−y1 , AA ,−y2 ,−y20 ,−x2 ,−z1 ] ;

55 DiagIndx =[−Nr∗Nt ,−Nt ,−Nt+1 ,−1 ,0 ,1 ,Nt−1,Nt , Nr∗Nt ] ;

56 % Co e f f i c i e n t matrix A f o r the p r e s su r e

57 A = spd iags ( DiagVecs , DiagIndx , N , N ) ;

58 % Def ine the boundary cond i t i on vec to r D

59 D=ze ro s (N , 1 ) ;

60 t=l i n s p a c e (−pi , pi , 1 00 ) ;

61 D ( 1 : Nt )=Tr1 ( : , : , 1 ) ∗Pw ;

62 D (N−Nt+1:N )=e (Nr , : , Nz ) ∗Pe ;

63 u = A\D ;

64 f o r i=1

65 p lo t3 (Re∗ cos (t ) ,Re∗ s i n (t ) , ( i−1)∗Dz∗ones (1 ,100) )

66 hold on

67 p lo t3 (Rw∗ cos (t ) ,Rw∗ s i n (t ) , ( i−1)∗Dz∗ones (1 ,100) )

68 hold on

69 end

70 % Calcu la te the p r e s su r e s o l u t i o n

71 p=permute ( reshape (u , Nt , Nr , Nz ) , [ 2 , 1 , 3 ] ) ;

72 Rb1=Ro ( 2 : Nr , : , : ) ; Rb2=Ro ( 1 : Nr−1 , : , : ) ; RB=Rb ( 2 : Nr , : , : ) ; RD1=Rb1←↩

. / RB ; RD2=Rb2 . / RB ;

73 Kr2=Kr ( 2 : Nr , : , : ) ; Kr1=[Kr ( 2 : Nr , Nt , : ) Kr ( 2 : Nr , 1 : Nt−1 , : ) ] ;

74 Kr4=[Kr ( 1 : Nr−1,Nt , : ) Kr ( 1 : Nr−1 ,1:Nt−1 , : ) ] ; Kr3=Kr ( 1 : Nr←↩

−1 , : , : ) ;

75 Kt2=Kt ( 2 : Nr , : , : ) ; Kt1=[Kt ( 2 : Nr , Nt , : ) Kt ( 2 : Nr , 1 : Nt−1 , : ) ] ;

76 Kt4=[Kt ( 1 : Nr−1,Nt , : ) Kt ( 1 : Nr−1 ,1:Nt−1 , : ) ] ; Kt3=Kt ( 1 : Nr←↩

−1 , : , : ) ;
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77 d1=log ( RD1 ) ; d2=log ( RD2 ) ;

78 % Calcu la te p r e s su r e at R boundar ies

79 Ptij=(−d2 .∗ Kr ( 2 : Nr , : , : ) .∗ p ( 2 : Nr , : , : )+d1 .∗ Kr ( 1 : Nr−1 , : , : ) .∗ p←↩

( 1 : Nr−1 , : , : ) ) ./(−d2 .∗ Kr ( 2 : Nr , : , : )+d1 .∗ Kr ( 1 : Nr−1 , : , : ) ) ;

80 KTP=p .∗ Kt ; Prij=(KTP+[KTP ( : , Nt , : ) KTP ( : , 1 : Nt−1 , : ) ] ) . / ( Kt+[←↩

Kt ( : , Nt , : ) Kt ( : , 1 : Nt−1 , : ) ] ) ;% p12 , p34

81 P2=p ( 2 : Nr , : , : ) ; P1=[p ( 2 : Nr , Nt , : ) p ( 2 : Nr , 1 : Nt−1 , : ) ] ; P4=[p ( 1 :←↩

Nr−1,Nt , : ) p ( 1 : Nr−1 ,1:Nt−1 , : ) ] ; P3=p ( 1 : Nr−1 , : , : ) ;

82 P12=Prij ( 2 : Nr , : , : ) ; P14=[Ptij ( : , Nt , : ) Ptij ( : , 1 : Nt−1 , : ) ] ; P34=←↩

Prij ( 1 : Nr−1 , : , : ) ; P23=Ptij ;

83 % Calcu la te corner p r e s su r e s

84 f o r k=1:Nz

85 f o r i=1:Nr−1

86 f o r j=1:Nt

87 PP=[P1 (i , j , k ) ; P2 (i , j , k ) ; P3 (i , j , k ) ; P4 (i , j , k ) ; P12←↩

(i , j , k ) ; P12 (i , j , k ) ; . . .

88 P23 (i , j , k ) ; P23 (i , j , k ) ; P34 (i , j , k ) ; P34 (i , j , k )←↩

; P14 (i , j , k ) ; P14 (i , j , k ) ; 0 ] ; %P=pre s su r e

89 mm=[Tn (1 ) ∗d1 ( 1 , 1 , 1 ) −Tn (1 ) −d1 ( 1 , 1 , 1 ) 0 0 0 0 0←↩

0 0 0 0 1 ; . . .

90 0 0 0 −Tn (1 ) ∗d1 ( 1 , 1 , 1 ) Tn (1 ) −d1 ( 1 , 1 , 1 ) 0 0←↩

0 0 0 0 1 ; . . .

91 0 0 0 0 0 0 Tn (1 ) ∗d1 ( 1 , 1 , 1 ) Tn (1 ) d1 ( 1 , 1 , 1 )←↩

0 0 0 1 ; . . .

92 0 0 0 0 0 0 0 0 0 −Tn (1 ) ∗d1 ( 1 , 1 , 1 ) −Tn (1 ) ←↩

d1 ( 1 , 1 , 1 ) 1 ; . . .
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93 0 0 −d1 ( 1 , 1 , 1 ) 0 0 0 0 0 0 0 0 0 1 ; . . .

94 0 0 0 0 0 −d1 ( 1 , 1 , 1 ) 0 0 0 0 0 0 1 ; . . .

95 0 0 0 0 Tn (1 ) 0 0 0 0 0 0 0 1 ; . . .

96 0 0 0 0 0 0 0 Tn (1 ) 0 0 0 0 1 ; . . .

97 0 0 0 0 0 0 0 0 d1 ( 1 , 1 , 1 ) 0 0 0 1 ; . . .

98 0 0 0 0 0 0 0 0 0 0 0 d1 ( 1 , 1 , 1 ) 1 ; . . .

99 0 −Tn (1 ) 0 0 0 0 0 0 0 0 0 0 1 ; . . .

100 0 0 0 0 0 0 0 0 0 0 −Tn (1 ) 0 1 ; . . .

101 −Kr1 (i , j ) ∗Tn (1 ) ^2/2+Kt1 (i , j )∗(−d1 ( 1 , 1 , 1 ) )←↩

^2/2 Kt1 (i , j )∗(−d1 ( 1 , 1 , 1 ) ) Kr1 (i , j ) ∗Tn←↩

(1 ) . . .

102 Kr2 (i , j ) ∗Tn (1 ) ^2/2−Kt2 (i , j )∗(−d1 ( 1 , 1 , 1 ) )←↩

^2/2 −Kt2 (i , j )∗(−d1 ( 1 , 1 , 1 ) ) Kr2 (i , j ) ∗Tn←↩

(1 ) . . .

103 −Kr3 (i , j ) ∗Tn (1 ) ^2/2+Kt3 (i , j )∗(−d1 ( 1 , 1 , 1 ) )←↩

^2/2 Kt3 (i , j )∗(−d1 ( 1 , 1 , 1 ) ) −Kr3 (i , j ) ∗Tn←↩

(1 ) . . .

104 Kr4 (i , j ) ∗Tn (1 ) ^2/2−Kt4 (i , j )∗(−d1 ( 1 , 1 , 1 ) )←↩

^2/2 −Kt4 (i , j )∗(−d1 ( 1 , 1 , 1 ) ) −Kr4 (i , j ) ∗Tn←↩

(1 ) 0 ] ;

105 Vec=mm\PP ;

106 po (i , j , k )=Vec (13) ;

107 end

108 end

109 end

110 PO=[Prij ( 1 , : , : ) ; po ; Prij (Nr , : , : ) ] ;
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111 PO=[PO PO ( : , 1 , : ) ] ;

112 Roo=Rb . / Rw ; LRD=log ( Roo ( : , 1 ) ' ) ; LRD (Nr+1)=LRD (Nr+1)+LRD (1 ) ;←↩

LRD (1 ) =0;

113 RD=exp ( LRD ) ;

114 f o r i=1:Nz

115 PRZ ( : , i )=PO ( : , 1 , i ) ;

116 end

117 xro=repmat ( ( RD∗Rw ) ' , 1 , Nz ) ;

118 yz=0:Dz : nz∗Dz ;

119 yz=repmat (yz ' , 1 , Nr+1) ; yz=yz ' ;

120 tn=l i n s p a c e (0 ,2∗ pi , Nt+1) ;

121 aa=ones (Nr , Nt , Nz−1) ; bb=ones (Nr , Nt , Nz−1) ; cc=ones (Nr , Nt , Nz−1)←↩

; dd=ones (Nr , Nt , Nz−1) ;

122 ee=ones (Nr , Nt , Nz−1) ; ff=ones (Nr , Nt , Nz−1) ; gg=ones (Nr , Nt , Nz−1)←↩

; hh=ones (Nr , Nt , Nz−1) ;

123 kr=kx . ∗ ( cos ( ttn ( : , : , 1 : nz ) ) ) .^2+ky . ∗ ( s i n ( ttn ( : , : , 1 : nz ) ) ) . ^ 2 ;←↩

% Permeab i l i ty in r d i r e c t i o n

124 kt=ky . ∗ ( cos ( ttn ( : , : , 1 : nz ) ) ) .^2+kx . ∗ ( s i n ( ttn ( : , : , 1 : nz ) ) ) . ^ 2 ;←↩

% Permeab i l i ty in tangent d i r e c t i o n

125 % Calcu la te the c o e f f i e c i e n t s f o r the b i l i n−l og p r e s su r e ←↩

assumpution

126 f o r i=1:Nr

127 f o r j=1:Nt

128 f o r k=1:Nz−1

129 P=[PO (i , j , k ) ; PO (i , j+1,k ) ; PO (i+1,j+1,k ) ; PO (i←↩

+1,j , k ) ; . . .
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130 PO (i , j , k+1) ; PO (i , j+1,k+1) ; PO (i+1,j+1,k+1)←↩

; PO (i+1,j , k+1) ] ; %P=pre s su r e

131 A=[tn (j ) ∗LRD (i ) ∗Dz ∗(k−1) tn (j ) ∗LRD (i ) tn (j ) ∗Dz←↩

∗(k−1) LRD (i ) ∗Dz ∗(k−1) tn (j ) LRD (i ) Dz ∗(k−1)←↩

1 ; . . .

132 tn (j+1)∗LRD (i ) ∗Dz ∗(k−1) tn (j+1)∗LRD (i ) tn (j←↩

+1)∗Dz ∗(k−1) LRD (i ) ∗Dz ∗(k−1) tn (j+1) LRD (←↩

i ) Dz ∗(k−1) 1 ; . . .

133 tn (j+1)∗LRD (i+1)∗Dz ∗(k−1) tn (j+1)∗LRD (i+1) ←↩

tn (j+1)∗Dz ∗(k−1) LRD (i+1)∗Dz ∗(k−1) tn (j←↩

+1) LRD (i+1) Dz ∗(k−1) 1 ; . . .

134 tn (j ) ∗LRD (i+1)∗Dz ∗(k−1) tn (j ) ∗LRD (i+1) tn (j )←↩

∗Dz ∗(k−1) LRD (i+1)∗Dz ∗(k−1) tn (j ) LRD (i←↩

+1) Dz ∗(k−1) 1 ; . . .

135 tn (j ) ∗LRD (i ) ∗Dz∗k tn (j ) ∗LRD (i ) tn (j ) ∗Dz∗k ←↩

LRD (i ) ∗Dz∗k tn (j ) LRD (i ) Dz∗k 1 ; . . .

136 tn (j+1)∗LRD (i ) ∗Dz∗k tn (j+1)∗LRD (i ) tn (j+1)∗←↩

Dz∗k LRD (i ) ∗Dz∗k tn (j+1) LRD (i ) Dz∗k 1 ; ←↩

. . .

137 tn (j+1)∗LRD (i+1)∗Dz∗k tn (j+1)∗LRD (i+1) tn (j←↩

+1)∗Dz∗k LRD (i+1)∗Dz∗k tn (j+1) LRD (i+1) ←↩

Dz∗k 1 ; . . .

138 tn (j ) ∗LRD (i+1)∗Dz∗k tn (j ) ∗LRD (i+1) tn (j ) ∗Dz∗←↩

k LRD (i+1)∗Dz∗k tn (j ) LRD (i+1) Dz∗k 1 ; ] ;

139 Vec=A\P ;
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140 aa (i , j , k )=Vec (1 ) ; bb (i , j , k )=Vec (2 ) ; cc (i , j , k )=←↩

Vec (3 ) ; dd (i , j , k )=Vec (4 ) ;

141 ee (i , j , k )=Vec (5 ) ; ff (i , j , k )=Vec (6 ) ; gg (i , j , k )=←↩

Vec (7 ) ; hh (i , j , k )=Vec (8 ) ;

142 end

143 end

144 end

145 TOF=0;

146 f o r m=nz

147 f o r k=3

148 f o r j=1:Nt

149 % Def ine the launching po int coo rd inate : RDin , thin , z in

150 RDin=Re/Rw ;

151 thin=tn (j )+(k−1)∗tn (2 )/5+tn (2 ) /10 ;

152 zin=(m−1)∗Dz+0.5∗Dz ;

153 % Determine the g r id block coo rd ina t e s

154 XX=Nr+1;

155 YY=c e i l ( thin/tn (2 ) ) ;

156 ZZ=c e i l ( zin/Dz ) ;

157 i f YY==Nt+1;

158 YY=1;

159 end

160 i f YY==0

161 YY=Nt ;

162 end

163 % Check i f the s t r eaml ine reaches to the boundary
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164 whi l e RDin>1&&ZZ>0

165 % Use r as paramete r i za t i on to t r a c e the s t r eaml ine

166 i f abs (aa (XX−1,YY , ZZ ) ∗thin∗zin+bb (XX−1,YY , ZZ ) ∗thin+dd (←↩

XX−1,YY , ZZ ) ∗zin+ff (XX−1,YY , ZZ ) )>zz ;

167 step=−(RDin∗Rw−RD (XX−1)∗Rw ) /19 ;

168 r_r=RDin∗Rw : step : RD (XX−1)∗Rw ;% upper and lower ←↩

l im i t a t i o n f o r r

169 t_r=ze ro s (1 , l ength ( r_r ) ) ;

170 z_r=ze ro s (1 , l ength ( r_r ) ) ;

171 t_r (1 )=thin ; z_r (1 )=zin ;% i n i t i a l c ond i t i on

172 f o r i=1:( l ength ( r_r )−1)% ca l c u l a t i o n loop

173 F_tr=@ (lrd , t ) kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗←↩

z_r (i ) ∗ l og ( lrd/Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( lrd/Rw←↩

)+cc (XX−1,YY , ZZ ) ∗z_r (i )+ee (XX−1,YY , ZZ ) ) / . . .

174 (kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z_r (i ) ∗t+bb←↩

(XX−1,YY , ZZ ) ∗t+dd (XX−1,YY , ZZ ) ∗z_r (i )+ff (←↩

XX−1,YY , ZZ ) ) ) ;

175 F_zr=@ (lrd , z ) kz (XX−1,YY , ZZ ) ∗lrd ∗(aa (XX−1,YY , ZZ←↩

) ∗t_r (i ) ∗ l og ( lrd/Rw )+cc (XX−1,YY , ZZ ) ∗t_r (i )+←↩

dd (XX−1,YY , ZZ ) ∗ l og ( lrd/Rw )+gg (XX−1,YY , ZZ ) )←↩

/ . . .

176 (kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗t_r (i )+bb←↩

(XX−1,YY , ZZ ) ∗t_r (i )+dd (XX−1,YY , ZZ ) ∗z+ff (←↩

XX−1,YY , ZZ ) ) ) ;

177 k_1=F_tr ( r_r (i ) , t_r (i ) ) ;

178 k_2=F_tr ( r_r (i ) +0.5∗step , t_r (i ) +0.5∗step∗k_1 ) ;
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179 k_3=F_tr ( ( r_r (i ) +0.5∗step ) , ( t_r (i ) +0.5∗step∗k_2←↩

) ) ;

180 k_4=F_tr ( ( r_r (i )+step ) , ( t_r (i )+k_3∗step ) ) ;

181 t_r (i+1)=t_r (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4 ) ∗←↩

step ;% main equat ion

182 kk_1=F_zr ( r_r (i ) , z_r (i ) ) ;

183 kk_2=F_zr ( r_r (i ) +0.5∗step , z_r (i ) +0.5∗step∗kk_1 )←↩

;

184 kk_3=F_zr ( ( r_r (i ) +0.5∗step ) , ( z_r (i ) +0.5∗step∗←↩

kk_2 ) ) ;

185 kk_4=F_zr ( ( r_r (i )+step ) , ( z_r (i )+kk_3∗step ) ) ;

186 z_r (i+1)=z_r (i ) +(1/6) ∗( kk_1+2∗kk_2+2∗kk_3+kk_4 )←↩

∗step ;% main equat ion

187 end

188 % Determine i f the s o l u t i o n i s po s s i b l e , i f ←↩

po s s i b l e c a l c u l a t e the

189 % TOF f o r t h i s s t r eaml ine

190 Rd=r_r/Rw ;

191 i f any (t_r−0<=zz )

192 t_r=t_r+2∗pi ;

193 i f any (t_r<tn (Nt )−zz ) | | any (t_r>tn (Nt+1)+zz ) | |←↩

any (z_r<dz (ZZ )−zz ) | | any (z_r>dz (ZZ+1)+zz )

194 r_r =[ ] ; t_r =[ ] ; z_r =[ ] ;

195 end

196 end

197 i f any (t_r−2∗pi>=1e−4)
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198 t_r=t_r−2∗pi ;

199 i f any (t_r<tn (1 )−zz ) | | any (t_r>tn (2 )+zz ) | | any (←↩

z_r<dz (ZZ )−zz ) | | any (z_r>dz (ZZ+1)+zz )

200 r_r =[ ] ; t_r =[ ] ; z_r =[ ] ;

201 end

202 end

203 i f a l l (t_r−2∗pi<1e−4)&&a l l (t_r−0>=1e−4)

204 i f any (t_r<tn (YY )−1e−4) | | any (t_r>tn (YY+1)+1E−4)←↩

| | any (z_r<dz (ZZ )−zz ) | | any (z_r>dz (ZZ+1)+zz )

205 r_r =[ ] ; t_r =[ ] ; z_r =[ ] ;

206 end

207 end

208 i f isempty ( r_r )==0

209 x=Rd∗Rw .∗ cos ( t_r ) ;

210 y=Rd∗Rw .∗ s i n ( t_r ) ;

211 length_r=0;

212 f o r i=1:19

213 length_r=length_r+((x (i+1)−x (i ) )^2+(y (i+1)←↩

−y (i ) )^2+(z_r (i+1)−z_r (i ) ) ^2) ^0 . 5 ;

214 end

215 dt_r=((RDin∗Rw−RD (XX−1)∗Rw ) /19) . ∗ ( ( Rd ( 1 : 1 9 ) ∗Rw+Rd←↩

( 2 : 2 0 ) ∗Rw ) /2) . / ( Kr (XX−1,YY , ZZ ) /uo . . .

216 . ∗ ( aa (XX−1,YY , ZZ ) . ∗ ( ( t_r ( 1 : 1 9 )+t_r ( 2 : 2 0 ) ) /2) . ∗ ( ( z_r←↩

( 1 : 1 9 )+z_r ( 2 : 2 0 ) ) /2)+bb (XX−1,YY , ZZ ) . ∗ ( ( t_r ( 1 : 1 9 )←↩

+t_r ( 2 : 2 0 ) ) /2) . . .
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217 +dd (XX−1,YY , ZZ ) . ∗ ( ( z_r ( 1 : 1 9 )+z_r ( 2 : 2 0 ) ) /2)+ff (XX−1,←↩

YY , ZZ ) ) ) ;

218 T_r=sum( dt_r ) ;

219 end

220 e l s e

221 r_r =[ ] ; t_r =[ ] ; z_r =[ ] ;

222 end

223 % Use theta as paramete r i za t i on to t r a c e the s t r eaml ine

224 i f abs (aa (XX−1,YY , ZZ ) ∗ l og ( RDin ) ∗zin+bb (XX−1,YY , ZZ ) ∗ l og (←↩

RDin )+cc (XX−1,YY , ZZ ) ∗zin+ee (XX−1,YY , ZZ ) )>zz ;

225 i f abs (thin−tn (YY ) )>zz ;

226 step=−(thin−tn (YY ) ) /19 ;% Exit at tn (YY)

227 t_t1=thin : step : tn (YY ) ;% upper and lower l im i t a t i o n←↩

f o r theta

228 r_t1=ze ro s (1 , l ength ( t_t1 ) ) ;

229 z_t1=ze ro s (1 , l ength ( t_t1 ) ) ;

230 r_t1 (1 )=RDin∗Rw ; z_t1 (1 )=zin ;% i n i t i a l c ond i t i on

231 f o r i=1:( l ength ( t_t1 )−1)% ca l c u l a t i o n loop

232 F_tr=@ (t , lrd ) kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗←↩

z_t1 (i ) ∗t+bb (XX−1,YY , ZZ ) ∗t+dd (XX−1,YY , ZZ ) ∗←↩

z_t1 (i )+ff (XX−1,YY , ZZ ) ) / . . .

233 (kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z_t1 (i ) ∗←↩

l og ( lrd/Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( lrd/Rw )+←↩

cc (XX−1,YY , ZZ ) ∗z_t1 (i )+ee (XX−1,YY , ZZ ) ) )←↩

;
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234 F_tz=@ (t , z ) kz (XX−1,YY , ZZ ) ∗r_t1 (i ) ∗(aa (XX−1,YY ,←↩

ZZ ) ∗t∗ l og ( r_t1 (i ) /Rw )+cc (XX−1,YY , ZZ ) ∗t+dd (XX←↩

−1,YY , ZZ ) ∗ l og ( r_t1 (i ) /Rw )+gg (XX−1,YY , ZZ ) ) / . . .

235 (kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗ l og ( r_t1←↩

(i ) /Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( r_t1 (i ) /Rw )+←↩

cc (XX−1,YY , ZZ ) ∗z+ee (XX−1,YY , ZZ ) ) ) ;

236 k_1=F_tr ( t_t1 (i ) , r_t1 (i ) ) ;

237 k_2=F_tr ( t_t1 (i ) +0.5∗step , r_t1 (i ) +0.5∗step∗k_1 ) ;

238 k_3=F_tr ( ( t_t1 (i ) +0.5∗step ) , ( r_t1 (i ) +0.5∗step∗←↩

k_2 ) ) ;

239 k_4=F_tr ( ( t_t1 (i )+step ) , ( r_t1 (i )+k_3∗step ) ) ;

240 r_t1 (i+1)=r_t1 (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4 ) ∗←↩

step ;% main equat ion

241 kk_1=F_tz ( t_t1 (i ) , z_t1 (i ) ) ;

242 kk_2=F_tz ( t_t1 (i ) +0.5∗step , z_t1 (i ) +0.5∗step∗kk_1←↩

) ;

243 kk_3=F_tz ( ( t_t1 (i ) +0.5∗step ) , ( z_t1 (i ) +0.5∗step∗←↩

kk_2 ) ) ;

244 kk_4=F_tz ( ( t_t1 (i )+step ) , ( z_t1 (i )+kk_3∗step ) ) ;

245 z_t1 (i+1)=z_t1 (i ) +(1/6) ∗( kk_1+2∗kk_2+2∗kk_3+kk_4←↩

) ∗step ;% main equat ion

246 end

247 Rd=r_t1/Rw ;

248 % Check i f Rd or Z out o f g r i d block , i f out , i gno r e ←↩

t h i s s t r eaml ine
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249 % i f not out c a l c u l a t e the l ength o f t h i s ←↩

s t r eaml ine

250 i f any (Rd<RD (XX−1)−1E−4) | | any (Rd>RD (XX )+1E−4) | | any (←↩

z_t1<dz (ZZ )−zz ) | | any (z_t1>dz (ZZ+1)+zz )

251 r_t1 =[ ] ; t_t1 =[ ] ; z_t1 =[ ] ;

252 e l s e

253 x=Rd∗Rw .∗ cos ( t_t1 ) ;

254 y=Rd∗Rw .∗ s i n ( t_t1 ) ;

255 length_t1=0;

256 f o r i=1:19

257 length_t1=length_t1+((x (i+1)−x (i ) )^2+(y (i←↩

+1)−y (i ) )^2+(z_t1 (i+1)−z_t1 (i ) ) ^2) ^0 . 5 ;

258 end

259 dt_t1=((thin−tn (YY ) ) /19) . ∗ ( ( Rd ( 1 : 1 9 ) ∗Rw+Rd←↩

( 2 : 2 0 ) ∗Rw ) /2) . / ( Kt (XX−1,YY , ZZ ) /uo . ∗ ( aa (XX←↩

−1,YY , ZZ ) . ∗ . . .

260 ( ( l og ( r_t1 ( 1 : 1 9 ) /Rw )+log ( r_t1 ( 2 : 2 0 ) /Rw ) ) /2) . ∗ ( (←↩

z_t1 ( 1 : 1 9 )+z_t1 ( 2 : 2 0 ) ) /2)+bb (XX−1,YY , ZZ ) . ∗ ( ( l og←↩

( r_t1 ( 1 : 1 9 ) /Rw )+log ( r_t1 ( 2 : 2 0 ) /Rw ) ) /2) . . .

261 +cc (XX−1,YY , ZZ ) . ∗ ( ( z_r ( 1 : 1 9 )+z_r ( 2 : 2 0 ) ) /2)+ee (XX←↩

−1,YY , ZZ ) ) ) ;

262 T_t1=sum( dt_t1 ) ;

263 end

264 e l s e

265 r_t1 =[ ] ; t_t1 =[ ] ; z_t1 =[ ] ;

266 end
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267 i f abs (tn (YY+1)−thin )>zz ;

268 step=(tn (YY+1)−thin ) /19 ;% Exit at tn (YY+1)

269 t_t2=thin : step : tn (YY+1) ;% upper and lower ←↩

l im i t a t i o n f o r l r d

270 r_t2=ze ro s (1 , l ength ( t_t2 ) ) ;

271 z_t2=ze ro s (1 , l ength ( t_t2 ) ) ;

272 r_t2 (1 )=RDin∗Rw ; z_t2 (1 )=zin ;% i n i t i a l c ond i t i on

273 f o r i=1:( l ength ( t_t2 )−1)% ca l c u l a t i o n loop

274 F_tr=@ (t , lrd ) kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗←↩

z_t2 (i ) ∗t+bb (XX−1,YY , ZZ ) ∗t+dd (XX−1,YY , ZZ ) ∗←↩

z_t2 (i )+ff (XX−1,YY , ZZ ) ) / . . .

275 (kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z_t2 (i ) ∗ l og←↩

( lrd/Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( lrd/Rw )+cc (←↩

XX−1,YY , ZZ ) ∗z_t2 (i )+ee (XX−1,YY , ZZ ) ) ) ;

276 F_tz=@ (t , z ) kz (XX−1,YY , ZZ ) ∗r_t2 (i ) ∗(aa (XX−1,YY ,←↩

ZZ ) ∗t∗ l og ( r_t2 (i ) /Rw )+cc (XX−1,YY , ZZ ) ∗t+dd (XX←↩

−1,YY , ZZ ) ∗ l og ( r_t2 (i ) /Rw )+gg (XX−1,YY , ZZ ) ) / . . .

277 (kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗ l og ( r_t2 (←↩

i ) /Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( r_t2 (i ) /Rw )+cc←↩

(XX−1,YY , ZZ ) ∗z+ee (XX−1,YY , ZZ ) ) ) ;

278 k_1=F_tr ( t_t2 (i ) , r_t2 (i ) ) ;

279 k_2=F_tr ( t_t2 (i ) +0.5∗step , r_t2 (i ) +0.5∗step∗k_1 ) ;

280 k_3=F_tr ( ( t_t2 (i ) +0.5∗step ) , ( r_t2 (i ) +0.5∗step∗←↩

k_2 ) ) ;

281 k_4=F_tr ( ( t_t2 (i )+step ) , ( r_t2 (i )+k_3∗step ) ) ;
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282 r_t2 (i+1)=r_t2 (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4 ) ∗←↩

step ;% main equat ion

283 kk_1=F_tz ( t_t2 (i ) , z_t2 (i ) ) ;

284 kk_2=F_tz ( t_t2 (i ) +0.5∗step , z_t2 (i ) +0.5∗step∗kk_1←↩

) ;

285 kk_3=F_tz ( ( t_t2 (i ) +0.5∗step ) , ( z_t2 (i ) +0.5∗step∗←↩

kk_2 ) ) ;

286 kk_4=F_tz ( ( t_t2 (i )+step ) , ( z_t2 (i )+kk_3∗step ) ) ;

287 z_t2 (i+1)=z_t2 (i ) +(1/6) ∗( kk_1+2∗kk_2+2∗kk_3+kk_4←↩

) ∗step ;% main equat ion

288 end

289 Rd=r_t2/Rw ;

290 % Check i f Rd or Z out o f g r i d block , i f out , i gno r e←↩

t h i s s t r eaml ine

291 % i f not out c a l c u l a t e the l ength o f t h i s ←↩

s t r eaml ine

292 i f any (Rd<RD (XX−1)−1E−4) | | any (Rd>RD (XX )+1E−4) | | any←↩

(z_t2<dz (ZZ )−1E−4) | | any (z_t2>dz (ZZ+1)+1E−4)

293 r_t2 =[ ] ; t_t2 =[ ] ; z_t2 =[ ] ;

294 e l s e

295 x=Rd .∗ Rw .∗ cos ( t_t2 ) ;

296 y=Rd .∗ Rw .∗ s i n ( t_t2 ) ;

297 length_t2=0;

298 f o r i=1:19

299 length_t2=length_t2+((x (i+1)−x (i ) )^2+(y (i←↩

+1)−y (i ) )^2+(z_t2 (i+1)−z_t2 (i ) ) ^2) ^0 . 5 ;
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300 end

301 dt_t2=((tn (YY+1)−thin ) /19) . ∗ ( ( Rd ( 1 : 1 9 ) ∗Rw+Rd←↩

( 2 : 2 0 ) ∗Rw ) /2) . / ( Kt (XX−1,YY , ZZ ) /uo . ∗ ( aa (XX−1,←↩

YY , ZZ ) . ∗ . . .

302 ( ( l og ( r_t2 ( 1 : 1 9 ) /Rw )+log ( r_t2 ( 2 : 2 0 ) /Rw ) ) /2) . ∗ ( (←↩

z_t2 ( 1 : 1 9 )+z_t2 ( 2 : 2 0 ) ) /2)+bb (XX−1,YY , ZZ ) . ∗ ( ( l og←↩

( r_t2 ( 1 : 1 9 ) /Rw )+log ( r_t2 ( 2 : 2 0 ) /Rw ) ) /2) . . .

303 +cc (XX−1,YY , ZZ ) . ∗ ( ( z_r ( 1 : 1 9 )+z_r ( 2 : 2 0 ) ) /2)+ee (XX←↩

−1,YY , ZZ ) ) ) ;

304 T_t2=sum( dt_t2 ) ;

305 end

306 e l s e

307 r_t2 =[ ] ; t_t2 =[ ] ; z_t2 =[ ] ;

308 end

309 i f isempty ( r_t1 )==1&& isempty ( r_t2 )==1 % both ←↩

empty

310 lrd_t =[ ] ; t_t =[ ] ; z_t =[ ] ;

311 end

312 i f isempty ( r_t1 )==1&& isempty ( r_t2 )==0 % t1 empty

313 lrd_t=r_t2 ; t_t=t_t2 ; z_t=z_t2 ; T_t=T_t2 ;

314 end

315 i f isempty ( r_t2 )==1&& isempty ( r_t1 )==0 % t2 empty

316 lrd_t=r_t1 ; t_t=t_t1 ; z_t=z_t1 ; T_t=T_t1 ;

317 end

318 i f isempty ( r_t1 )==0&& isempty ( r_t2 )==0 % both not ←↩

empty
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319 i f T_t1<T_t2

320 lrd_t=r_t1 ; t_t=t_t1 ; z_t=z_t1 ; T_t=T_t1 ;

321 e l s e

322 lrd_t=r_t2 ; t_t=t_t2 ; z_t=z_t2 ; T_t=T_t2 ;

323 end

324 end

325 e l s e

326 lrd_t =[ ] ; t_t =[ ] ; z_t =[ ] ;

327 end

328 % Use z as paramete r i za t i on to t r a c e s t r eaml ine

329 i f abs (aa (XX−1,YY , ZZ ) ∗ l og ( RDin ) ∗thin+cc (XX−1,YY , ZZ ) ∗←↩

thin+dd (XX−1,YY , ZZ ) ∗ l og ( RDin )+gg (XX−1,YY , ZZ ) )>zz ;

330 i f abs (dz (ZZ+1)−zin )>=zz

331 step=(dz (ZZ+1)−zin ) /19 ; % out from dz (ZZ+1)

332 z_z1=zin : step : dz (ZZ+1) ;% upper and lower ←↩

l im i t a t i o n f o r l r d

333 t_z1=ze ro s (1 , l ength ( z_z1 ) ) ;

334 r_z1=ze ro s (1 , l ength ( z_z1 ) ) ;

335 t_z1 (1 )=thin ; r_z1 (1 )=RDin∗Rw ; % i n i t i a l c ond i t i on

336 f o r i=1:( l ength ( z_z1 )−1)% ca l c u l a t i o n loop

337 F_tz=@ (z , t ) kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗←↩

l og ( r_z1 (i ) /Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( r_z1 (i ) /←↩

Rw )+cc (XX−1,YY , ZZ ) ∗z+ee (XX−1,YY , ZZ ) ) / . . .

338 (kz (XX−1,YY , ZZ ) ∗r_z1 (i ) ∗(aa (XX−1,YY , ZZ ) ∗t∗←↩

l og ( r_z1 (i ) /Rw )+cc (XX−1,YY , ZZ ) ∗t+dd (XX←↩

−1,YY , ZZ ) ∗ l og ( r_z1 (i ) /Rw )+gg (XX−1,YY , ZZ )←↩
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) ) ;

339 F_zr=@ (z , lrd ) kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗←↩

t_z1 (i )+bb (XX−1,YY , ZZ ) ∗t_z1 (i )+dd (XX−1,YY , ZZ←↩

) ∗z+ff (XX−1,YY , ZZ ) ) / . . .

340 (kz (XX−1,YY , ZZ ) ∗lrd ∗(aa (XX−1,YY , ZZ ) ∗t_z1 (i )←↩

∗ l og ( lrd/Rw )+cc (XX−1,YY , ZZ ) ∗t_z1 (i )+dd (←↩

XX−1,YY , ZZ ) ∗ l og ( lrd/Rw )+gg (XX−1,YY , ZZ ) ) )←↩

;

341 k_1=F_tz ( z_z1 (i ) , t_z1 (i ) ) ;

342 k_2=F_tz ( z_z1 (i ) +0.5∗step , t_z1 (i ) +0.5∗step∗k_1 )←↩

;

343 k_3=F_tz ( ( z_z1 (i ) +0.5∗step ) , ( t_z1 (i ) +0.5∗step∗←↩

k_2 ) ) ;

344 k_4=F_tz ( ( z_z1 (i )+step ) , ( t_z1 (i )+k_3∗step ) ) ;

345 t_z1 (i+1)=t_z1 (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4 ) ∗←↩

step ;% main equat ion

346 kk_1=F_zr ( z_z1 (i ) , r_z1 (i ) ) ;

347 kk_2=F_zr ( z_z1 (i ) +0.5∗step , r_z1 (i ) +0.5∗step∗←↩

kk_1 ) ;

348 kk_3=F_zr ( ( z_z1 (i ) +0.5∗step ) , ( r_z1 (i ) +0.5∗step∗←↩

kk_2 ) ) ;

349 kk_4=F_zr ( ( z_z1 (i )+step ) , ( r_z1 (i )+kk_3∗step ) ) ;

350 r_z1 (i+1)=r_z1 (i ) +(1/6) ∗( kk_1+2∗kk_2+2∗kk_3+←↩

kk_4 ) ∗step ;% main equat ion

351 end

352 Rd=r_z1/Rw ;
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353 % Check i f theta or rd out o f g r id block , i f out ,←↩

i gno r e t h i s s t r eaml ine

354 % i f not out c a l c u l a t e the l ength o f t h i s ←↩

s t r eaml ine

355 i f any (Rd<RD (XX−1)−zz ) | | any (Rd>RD (XX )+zz ) | | any (←↩

t_z1<tn (YY )−zz ) | | any (t_z1>tn (YY+1)+zz )

356 r_z1 =[ ] ; t_z1 =[ ] ; z_z1 =[ ] ;

357 e l s e

358 x=Rd .∗ Rw .∗ cos ( t_z1 ) ;

359 y=Rd .∗ Rw .∗ s i n ( t_z1 ) ;

360 length_z1=0;

361 f o r i=1:19

362 length_z1=length_z1+((x (i+1)−x (i ) )^2+(y (i+1)−←↩

y (i ) )^2+(z_z1 (i+1)−z_z1 (i ) ) ^2) ^0 . 5 ;

363 end

364 dt_z1=((dz (ZZ+1)−zin ) /19) . / ( Kz (XX−1,YY , ZZ ) /uo←↩

. ∗ ( aa (XX−1,YY , ZZ ) . ∗ ( ( t_z1 ( 1 : 1 9 )+t_z1 ( 2 : 2 0 ) )←↩

/2) . . .

365 . ∗ ( ( l og ( r_z1 ( 1 : 1 9 ) /Rw )+log ( r_z1 ( 2 : 2 0 ) /Rw ) ) /2)+cc (XX←↩

−1,YY , ZZ ) . ∗ ( ( t_z1 ( 1 : 1 9 )+t_z1 ( 2 : 2 0 ) ) /2) . . .

366 +dd (XX−1,YY , ZZ ) . ∗ ( ( l og ( r_z1 ( 1 : 1 9 ) /Rw )+log ( r_z1←↩

( 2 : 2 0 ) /Rw ) ) /2)+gg (XX−1,YY , ZZ ) ) ) ;

367 T_z1=sum( dt_z1 ) ;

368 end

369 e l s e

370 r_z1 =[ ] ; t_z1 =[ ] ; z_z1 =[ ] ;
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371 end

372 i f abs (zin−dz (ZZ ) )>=zz

373 step=−(zin−dz (ZZ ) ) /19 ;% out from dz (ZZ)

374 z_z2=zin : step : dz (ZZ ) ;% upper and lower l im i t a t i o n ←↩

f o r l r d

375 t_z2=ze ro s (1 , l ength ( z_z2 ) ) ;

376 r_z2=ze ro s (1 , l ength ( z_z2 ) ) ;

377 t_z2 (1 )=thin ; r_z2 (1 )=RDin∗Rw ;% i n i t i a l c ond i t i on

378 f o r i=1:( l ength ( z_z2 )−1)% ca l c u l a t i o n loop

379 F_tz=@ (z , t ) kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗ l og←↩

( r_z2 (i ) /Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( r_z2 (i ) /Rw )+←↩

cc (XX−1,YY , ZZ ) ∗z+ee (XX−1,YY , ZZ ) ) / . . .

380 (kz (XX−1,YY , ZZ ) ∗r_z2 (i ) ∗(aa (XX−1,YY , ZZ ) ∗t∗←↩

l og ( r_z2 (i ) /Rw )+cc (XX−1,YY , ZZ ) ∗t+dd (XX←↩

−1,YY , ZZ ) ∗ l og ( r_z2 (i ) /Rw )+gg (XX−1,YY , ZZ )←↩

) ) ;

381 F_zr=@ (z , lrd ) kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗←↩

t_z2 (i )+bb (XX−1,YY , ZZ ) ∗t_z2 (i )+dd (XX−1,YY , ZZ )←↩

∗z+ff (XX−1,YY , ZZ ) ) / . . .

382 (kz (XX−1,YY , ZZ ) ∗lrd ∗(aa (XX−1,YY , ZZ ) ∗t_z2 (i )←↩

∗ l og ( lrd/Rw )+cc (XX−1,YY , ZZ ) ∗t_z2 (i )+dd (←↩

XX−1,YY , ZZ ) ∗ l og ( lrd/Rw )+gg (XX−1,YY , ZZ ) ) )←↩

;

383 k_1=F_tz ( z_z2 (i ) , t_z2 (i ) ) ;

384 k_2=F_tz ( z_z2 (i ) +0.5∗step , t_z2 (i ) +0.5∗step∗k_1 ) ;
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385 k_3=F_tz ( ( z_z2 (i ) +0.5∗step ) , ( t_z2 (i ) +0.5∗step∗←↩

k_2 ) ) ;

386 k_4=F_tz ( ( z_z2 (i )+step ) , ( t_z2 (i )+k_3∗step ) ) ;

387 t_z2 (i+1)=t_z2 (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4 ) ∗←↩

step ;% main equat ion

388 kk_1=F_zr ( z_z2 (i ) , r_z2 (i ) ) ;

389 kk_2=F_zr ( z_z2 (i ) +0.5∗step , r_z2 (i ) +0.5∗step∗kk_1←↩

) ;

390 kk_3=F_zr ( ( z_z2 (i ) +0.5∗step ) , ( r_z2 (i ) +0.5∗step∗←↩

kk_2 ) ) ;

391 kk_4=F_zr ( ( z_z2 (i )+step ) , ( r_z2 (i )+kk_3∗step ) ) ;

392 r_z2 (i+1)=r_z2 (i ) +(1/6) ∗( kk_1+2∗kk_2+2∗kk_3+kk_4←↩

) ∗step ;% main equat ion

393 end

394 Rd=r_z2/Rw ;

395 % Check i f theta or rd out o f g r id block , i f out ,←↩

i gno r e t h i s s t r eaml ine

396 % i f not out c a l c u l a t e the l ength o f t h i s ←↩

s t r eaml ine

397 i f any (Rd<RD (XX−1)−zz ) | | any (Rd>RD (XX )+zz ) | | any (←↩

t_z2<tn (YY )−zz ) | | any (t_z2>tn (YY+1)+zz )

398 r_z2 =[ ] ; t_z2 =[ ] ; z_z2 =[ ] ;

399 e l s e

400 x=Rd .∗ Rw .∗ cos ( t_z2 ) ;

401 y=Rd .∗ Rw .∗ s i n ( t_z2 ) ;

402 length_z2=0;
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403 f o r i=1:19

404 length_z2=length_z2+((x (i+1)−x (i ) )^2+(y (i+1)−←↩

y (i ) )^2+(z_z2 (i+1)−z_z2 (i ) ) ^2) ^0 . 5 ;

405 end

406 dt_z2=((zin−dz (ZZ ) ) /19) . / ( Kz (XX−1,YY , ZZ ) /uo . ∗ (←↩

aa (XX−1,YY , ZZ ) . ∗ ( ( t_z2 ( 1 : 1 9 )+t_z2 ( 2 : 2 0 ) ) /2)←↩

. . .

407 . ∗ ( ( l og ( r_z2 ( 1 : 1 9 ) /Rw )+log ( r_z2 ( 2 : 2 0 ) /Rw ) ) /2)+cc (XX←↩

−1,YY , ZZ ) . ∗ ( ( t_z2 ( 1 : 1 9 )+t_z2 ( 2 : 2 0 ) ) /2) . . .

408 +dd (XX−1,YY , ZZ ) . ∗ ( ( l og ( r_z2 ( 1 : 1 9 ) /Rw )+log ( r_z2←↩

( 2 : 2 0 ) /Rw ) ) /2)+gg (XX−1,YY , ZZ ) ) ) ;

409 T_z2=sum( dt_z2 ) ;

410 end

411 e l s e

412 r_z2 =[ ] ; t_z2 =[ ] ; z_z2 =[ ] ;

413 end

414 i f isempty ( r_z1 )==1&& isempty ( r_z2 )==1 % both empty

415 lrd_z =[ ] ; t_z =[ ] ; z_z =[ ] ;

416 end

417 i f isempty ( r_z1 )==1&& isempty ( r_z2 )==0 % t1 empty

418 lrd_z=r_z2 ; t_z=t_z2 ; z_z=z_z2 ; T_z=T_z2 ;

419 end

420 i f isempty ( r_z2 )==1&& isempty ( r_z1 )==0 % t2 empty

421 lrd_z=r_z1 ; t_z=t_z1 ; z_z=z_z1 ; T_z=T_z1 ;

422 end
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423 i f isempty ( r_z1 )==0&& isempty ( r_z2 )==0 % both not ←↩

empty

424 i f T_z1<T_z2

425 lrd_z=r_z1 ; t_z=t_z1 ; z_z=z_z1 ; T_z=T_z1 ;

426 e l s e

427 lrd_z=r_z2 ; t_z=t_z2 ; z_z=z_z2 ; T_z=T_z2 ;

428 end

429 end

430 e l s e

431 lrd_z =[ ] ; t_z =[ ] ; z_z =[ ] ;

432 end

433 % Find r e a l s t r eaml ine among r , t , z

434 i f isempty ( r_r )==1&& isempty ( lrd_t )==1&& isempty ( lrd_z )←↩

==0

435 lrd=lrd_z ; t=t_z ; z=z_z ; tof=T_z ;

436 end

437 i f isempty ( r_r )==1&& isempty ( lrd_t )==0&& isempty ( lrd_z )←↩

==1

438 lrd=lrd_t ; t=t_t ; z=z_t ; tof=T_t ;

439 end

440 i f isempty ( r_r )==0&& isempty ( lrd_t )==1&& isempty ( lrd_z )←↩

==1

441 lrd=r_r ; t=t_r ; z=z_r ; tof=T_r ;

442 end

443 i f isempty ( r_r )==1&& isempty ( lrd_t )==0&& isempty ( lrd_z )←↩

==0
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444 i f T_t<T_z

445 lrd=lrd_t ; t=t_t ; z=z_t ; tof=T_t ;

446 e l s e

447 lrd=lrd_z ; t=t_z ; z=z_z ; tof=T_z ;

448 end

449 end

450 i f isempty ( r_r )==0&& isempty ( lrd_t )==0&& isempty ( lrd_z )←↩

==1

451 i f T_t<T_r

452 lrd=lrd_t ; t=t_t ; z=z_t ; tof=T_t ;

453 e l s e

454 lrd=r_r ; t=t_r ; z=z_r ; tof=T_r ;

455 end

456 end

457 i f isempty ( r_r )==0&& isempty ( lrd_t )==1&& isempty ( lrd_z )←↩

==0

458 i f T_z<T_r

459 lrd=lrd_z ; t=t_z ; z=z_z ; tof=T_z ;

460 e l s e

461 lrd=r_r ; t=t_r ; z=z_r ; tof=T_r ;

462 end

463 end

464 i f isempty ( r_r )==0&& isempty ( lrd_t )==0&& isempty ( lrd_z )←↩

==0

465 l=[T_r T_t T_z ] ;

466 x=f ind (l==min(l ) ) ;
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467 i f x==1

468 lrd=r_r ; t=t_r ; z=z_r ; tof=T_r ;

469 end

470 i f x==2

471 lrd=lrd_t ; t=t_t ; z=z_t ; tof=T_t ;

472 end

473 i f x==3

474 lrd=lrd_z ; t=t_z ; z=z_z ; tof=T_z ;

475 end

476 end

477 i f isempty ( r_r )==1&& isempty ( lrd_t )==1&& isempty ( lrd_z )←↩

==1

478 input ( 'no s t r eaml ine found ' )

479 end

480 Rd=lrd/Rw ;

481 i f abs (RDin−Rd (20) )<=zz

482 RDout=Rd (1 ) ; tout=t (1 ) ; zout=z (1 ) ;

483 end

484 i f abs (RDin−Rd (1 ) )<=zz

485 RDout=Rd (20) ; tout=t (20) ; zout=z (20) ;

486 end

487 % Plot s t r eaml ine

488 x=Rd .∗ Rw .∗ cos (t ) ;

489 y=Rd .∗ Rw .∗ s i n (t ) ;

490 p lo t3 (x , y , z , ' black ' )

491 % Save TOF to t o t a l TOF value
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492 TOF=TOF+tof ;

493 hold on

494 % Calcu la te new gr id block coo rd ina t e s

495 i f RDout==1;

496 XX=1;

497 end

498 f o r i=1:Nr

499 i f RDout>RD (i )+zz&&RDout<=RD (i+1)+zz

500 XX_out=i+1;

501 end

502 end

503 YY_out=c e i l ( tout/tn (2 ) ) ;

504 ZZ_out=c e i l ( zout/Dz ) ;

505 i f XX_out==XX&&ZZ_out==ZZ

506 i f YY_out==YY

507 i f abs (tout−tn (YY ) ) <0.01

508 YY=YY−1;

509 end

510 i f abs (tout−tn (YY+1) ) <0.01

511 YY=YY+1;

512 end

513 e l s e

514 YY=YY_out ;

515 end

516 end

517 i f YY==Nt+1;
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518 YY=1;

519 end

520 i f YY==0

521 YY=Nt ;

522 end

523 thin=tout ;

524 zin=zout ;

525 RDin=RDout ;

526 XX=XX_out ;

527 ZZ=ZZ_out ;

528 i f abs (thin−0)<=zz

529 thin=2∗pi ;

530 YY=Nt ;

531 end

532 end

533 end

534 end

535 end

E. 3 Two-Dimensional Perforated Well Streamline Simulator

1 c l e a r a l l

2 N=100;J=150;M=N∗J ;% Block no . f o r R and theta d i r e c t i o n s

275



3 Re=20;Rw=0.15; % Def ine we l lbo r e rad iu s=50 m, r e s e r v o i r ←↩

rad iu s =0.05m

4 Pw=250∗10^5; Pe=300∗10^5;% Boundary Pre s sure s : we l lbo r e ←↩

pre s su r e =280∗10^5 pa r e s e r v o i r p r e s su r e =300∗10^5 pa

5 K_block=1e−12;K=K_block .∗ ones (N , J , 3 ) ;% Def ine the block ←↩

peremab i l i t y K_block=1e−12 m^2;

6 K_D=0.5∗1e−12;K ( 1 : 7 , : , : )=K_D ;% Def ine the damaged zone ←↩

peremab i l i t y K_D=0.5∗1e−12 m^2;

7 Fluid . swc=0.2; Fluid . sor=0.15;% c r i t i c a l s a tu r a t i on po int

8 uw=1e−3;uo=10e−3;%Def ine f l u i d v i s c o s i t y cp

9 R=0:1:N−1;

10 ro=Rw ∗(Re/Rw ) . ^ ( R . / ( N−1) ) ;% Ca lcu la te node r a d i i

11 rb=ones (1 , N+1) ;

12 rb ( 1 , 2 : N )=(ro ( : , 2 : N ) .∗ ro ( : , 1 : N−1) ) . ^ 0 . 5 ;

13 rb ( 1 , [ 1 N+1])=[Rw^2/rb ( 1 , 2 ) Re^2/rb (1 , N ) ] ;% Ca lcu la te ←↩

boundary r a d i i

14 Ro=repmat (ro ' , 1 , J ) ; Rb=repmat (rb ' , 1 , J ) ; % Ro , Rb Radius f o r ←↩

nodes f o r a l l g r i d b locks

15 Tn=l i n s p a c e (2∗ pi /(2∗J ) ,2∗ pi−2∗pi /(2∗J ) ,J ) ; % Theta Nodes ←↩

ang le

16 ttn=repmat (Tn ' , 1 , N ) ' ;% Theta Nodes ang le f o r a l l g r i d ←↩

b locks

17 Dn=360/J∗ pi /180 ;% Def ine theta ang le

18 Kr=(K ( : , : , 1 ) . ∗ ( cos ( ttn ) ) .^2+K ( : , : , 2 ) . ∗ ( s i n ( ttn ) ) .^2 ) ;% ←↩

Calcu la te Kr from the p r i n c i p l e pe rmeab i l i t y
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19 Kt=(K ( : , : , 2 ) . ∗ ( cos ( ttn ) ) .^2+K ( : , : , 1 ) . ∗ ( s i n ( ttn ) ) .^2 ) ;% ←↩

Calcu la te Kt from the p r i n c i p l e pe rmeab i l i t y

20 Mblock=Kt/uo ; Mblockr=Kr/uo ;% Block Mobi l i ty

21 Mbr=ones (N+1,J ) ; Mbr ( [ 1 N+1] , : )=Mblockr ( [ 1 N ] , : ) ;% Upscaled←↩

mobi l i ty in r d i r e c t i o n

22 Mbr ( 2 : N , : )=log (Ro ( 2 : N , : ) . / Ro ( 1 : N−1 , : ) ) . / ( ( 1 . / Mblockr ( 1 : N←↩

−1 , : ) .∗ l og (Rb ( 2 : N , : ) . / Ro ( 1 : N−1 , : ) ) ) +(1./Mblockr ( 2 : N , : ) .∗←↩

l og (Ro ( 2 : N , : ) . / Rb ( 2 : N , : ) ) ) ) ;

23 Mbt=ones (N , J ) ;% Upscaled mob i l i ty in the angular d i r e c t i o n

24 Mbt ( : , 1 : J−1)=2.∗Mblock ( : , 1 : J−1) .∗ Mblock ( : , 2 : J ) . / ( Mblock←↩

( : , 1 : J−1)+Mblock ( : , 2 : J ) ) ;

25 Mbt ( : , J )=2.∗Mblock ( : , 1 ) .∗ Mblock ( : , J ) . / ( Mblock ( : , 1 )+Mblock←↩

( : , J ) ) ;% Last column mobi l i ty in the angular d i r e c t i o n

26 Tr1=Rb ( 1 , : ) .∗ Mbr ( 1 , : ) . / ( Ro ( 1 , : ) . ∗ ( Rb ( 2 , : )−Rb ( 1 , : ) ) . ∗ ( Ro←↩

( 1 , : )−Rb ( 1 , : ) ) ) ;

27 Trb=Rb ( 2 : N , : ) .∗ Mbr ( 2 : N , : ) . / ( Ro ( 2 : N , : ) . ∗ ( Rb ( 3 : N+1 , :)−Rb ( 2 : N←↩

, : ) ) . ∗ ( Ro ( 2 : N , : )−Ro ( 1 : N−1 , : ) ) ) ; %Tran sm i s i b i l i t y in the ←↩

r a d i a l d i r e c t i o n

28 % Calcu la te the t r a n sm i s i b i l i t y c o e f f i e c i n t s ( a , b , c , d , e ) in ←↩

d i f f e r e n t d i r e c t i o n s

29 e ( 1 , : )=Rb ( 2 , : ) .∗ Mbr ( 2 , : ) . / ( Ro ( 1 , : ) . ∗ ( Rb ( 2 , : )−Rw ) . ∗ ( Ro ( 2 , : )−←↩

Ro ( 1 , : ) ) ) ;

30 e ( 2 : N−1 , : )=Rb ( 3 : N , : ) .∗ Mbr ( 3 : N , : ) . / ( Ro ( 2 : N−1 , : ) . ∗ ( Rb ( 3 : N , : )−←↩

Rb ( 2 : N−1 , : ) ) . ∗ ( Ro ( 3 : N , : )−Ro ( 2 : N−1 , : ) ) ) ;

31 e (N , : )=Rb (N+1 , :) .∗ Mbr(1+N , : ) . / ( Ro (N , : ) . ∗ ( Rb (N+1 , :)−Rb (N , : ) )←↩

. ∗ ( Rb (N+1 , :)−Ro (N , : ) ) ) ;
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32 T=ze ro s (N , J−1) ; t=ze ro s (N , 1 ) ;

33 b=Mbt . / ( ( Ro . ^2 ) . ∗ ( Dn^2) ) ;

34 bo=[t b ( : , 1 : J−1) ] ; oob=[b ( : , J ) T ] ;

35 c=[Mbt ( : , J ) Mbt ( : , 1 : J−1) ] . / ( ( Ro . ^2 ) . ∗ ( Dn^2) ) ;

36 coo=[T c ( : , 1 ) ] ; oc=[c ( : , 2 : J ) t ] ;

37 % Def ine the ca s ing pe rmeab i l i t y to 0

38 d=[Tr1 ; Trb ] ; d ( 1 , 7 : 1 50 ) =0;

39 Tre=[ ze ro s (1 , J ) ; e ( 1 : N−1 , : ) ] ;

40 a=−b−c−d−e ;

41 x1=reshape ( [ Trb ; z e r o s (1 , J ) ] ' , M , 1 ) ; x2=reshape (Tre ' , M , 1 ) ;

42 y1=reshape (oc ' , M , 1 ) ; y2=reshape (bo ' , M , 1 ) ;

43 y10=reshape (oob ' , M , 1 ) ; y20=reshape (coo ' , M , 1 ) ;

44 AA=reshape (a ' , M , 1 ) ;

45 DiagVecs=[x1 , y10 , y1 , AA , y2 , y20 , x2 ] ;

46 DiagIndx =[−J,−J+1 ,−1 ,0 ,1 ,J−1,J ] ;

47 A=spd iags ( DiagVecs , DiagIndx , M , M ) ;% Co e f f i c i e n t matrix A f o r←↩

the p r e s su r e c a l c u l a t i o n

48 % Assign A i n s i d e the p e r f o r a t i o n 1 to ensure the node ←↩

pre s su r e i n s i d e the

49 % pe r f o r a t i o n equa l s to the we l lbo r e p r e s su r e .

50 A ( 1 : 6 , : ) =0;

51 f o r i=1:6

52 A (i , i )=1;

53 end

54 A (J+1:J+6 , :)=0;

55 f o r i=1:6
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56 A (J+i , J+i )=1;

57 end

58 A (2∗J+1:2∗J+6 , :)=0;

59 f o r i=1:6

60 A (2∗J+i , 2∗ J+i )=1;

61 end

62 A (3∗J+1:3∗J+6 , :)=0;

63 f o r i=1:6

64 A (3∗J+i , 3∗ J+i )=1;

65 end

66 A (4∗J+2:4∗J+5 , :)=0;

67 f o r i=2:5

68 A (4∗J+i , 4∗ J+i )=1;

69 end

70 A (5∗J+2:5∗J+5 , :)=0;

71 f o r i=2:5

72 A (5∗J+i , 5∗ J+i )=1;

73 end

74 A (6∗J+2:6∗J+5 , :)=0;

75 f o r i=2:5

76 A (6∗J+i , 6∗ J+i )=1;

77 end

78 A (7∗J+2:7∗J+5 , :)=0;

79 f o r i=2:5

80 A (7∗J+i , 7∗ J+i )=1;

81 end
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82 A (8∗J+3:8∗J+4 , :)=0;

83 f o r i=3:4

84 A (8∗J+i , 8∗ J+i )=1;

85 end

86 A (9∗J+3:9∗J+4 , :)=0;

87 f o r i=3:4

88 A (9∗J+i , 9∗ J+i )=1;

89 end

90 A (10∗J+3:10∗J+4 , :)=0;

91 f o r i=3:4

92 A (10∗J+i , 10∗ J+i )=1;

93 end

94 A (11∗J+3:11∗J+4 , :)=0;

95 f o r i=3:4

96 A (11∗J+i , 11∗ J+i )=1;

97 end

98 f o r i=1:J

99 A (M−i+1 , :)=0;

100 A (M−i+1,M−i+1)=1;

101 end

102 % Def ine the boundary cond i t i on vec to r D

103 D=ze ro s (M , 1 ) ;

104 % Assign node p r e s su r e i n s i d e the p e f o r a t i on to we l lbo r e ←↩

pre s su r e :Pw

105 D ( 1 : 6 )=Pw ; D (J+1:J+6)=Pw ; D (2∗J+1:2∗J+6)=Pw ; D (3∗J+1:3∗J+6)=Pw←↩

;
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106 D (4∗J+2:4∗J+5)=Pw ; D (5∗J+2:5∗J+5)=Pw ; D (6∗J+2:6∗J+5)=Pw ; D (7∗J←↩

+2:7∗J+5)=Pw ;

107 D (8∗J+3:8∗J+4)=Pw ; D (9∗J+3:9∗J+4)=Pw ; D (10∗J+3:10∗J+4)=Pw ;

108 D (11∗J+3:11∗J+4)=Pw ;

109 D (M−J+1:M )=Pe ;

110 % Calcu la te the p r e s su r e s o l u t i o n

111 u = A\D ;

112 p=reshape (u , J , N ) ; P=p ' ;

113 % Find the pe rmeab i l i t y from pre s su r e node to PO

114 RDo=log (Ro/Rw ) ; RDb=log (Rb/Rw ) ; d1=RDo ( 2 : N , : )−RDb ( 2 : N , : ) ;

115 Kr2=Kr ( 2 : N , : ) ; Kr1=[Kr ( 2 : N , J ) Kr ( 2 : N , 1 : J−1) ] ;

116 Kr4=[Kr ( 1 : N−1,J ) Kr ( 1 : N−1 ,1:J−1) ] ; Kr3=Kr ( 1 : N−1 , : ) ;

117 Kt2=Kt ( 2 : N , : ) ; Kt1=[Kt ( 2 : N , J ) Kt ( 2 : N , 1 : J−1) ] ;

118 Kt4=[Kt ( 1 : N−1,J ) Kt ( 1 : N−1 ,1:J−1) ] ; Kt3=Kt ( 1 : N−1 , : ) ;

119 % Calcu la te p r e s su r e f o r h a l f l o ga r i thmi c po int in the ←↩

r a d i a l d i r e c t i o n

120 Ptij=(Kr ( 2 : N , : ) .∗ P ( 2 : N , : )+Kr ( 1 : N−1 , : ) .∗ P ( 1 : N−1 , : ) ) . / ( Kr ( 2 : N←↩

, : )+Kr ( 1 : N−1 , : ) ) ;

121 % Calcu la te p r e s su r e f o r h a l f d i s t ance po int in the angular←↩

d i r e c t i o n

122 KRP=P .∗ Kt ;

123 Prij=(KRP+[KRP ( : , J ) KRP ( : , 1 : J−1) ] ) . / ( Kt+[Kt ( : , J ) Kt ( : , 1 : J←↩

−1) ] ) ;

124 % Determination o f the corner p r e s su r e

125 P2=P ( 2 : N , : ) ; P1=[P ( 2 : N , J ) P ( 2 : N , 1 : J−1) ] ; P4=[P ( 1 : N−1,J ) P ( 1 : N←↩

−1 ,1:J−1) ] ; P3=P ( 1 : N−1 , : ) ;
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126 P12=Prij ( 2 : N , : ) ; P14=[Ptij ( : , J ) Ptij ( : , 1 : J−1) ] ; P34=Prij ( 1 : N←↩

−1 , : ) ; P23=Ptij ;

127 f o r i=1:N−1

128 f o r j=1:J

129 PP=[P1 (i , j ) ; P2 (i , j ) ; P3 (i , j ) ; P4 (i , j ) ; P12 (i , j ) ; P12 (i ,←↩

j ) ; . . .

130 P23 (i , j ) ; P23 (i , j ) ; P34 (i , j ) ; P34 (i , j ) ; P14 (i , j ) ;←↩

P14 (i , j ) ; 0 ] ; %P=pre s su r e

131 mm=[Tn (1 ) ∗d1 ( 1 , 1 ) −Tn (1 ) −d1 ( 1 , 1 ) 0 0 0 0 0 0 0 0 0←↩

1 ; . . .

132 0 0 0 −Tn (1 ) ∗d1 ( 1 , 1 ) Tn (1 ) −d1 ( 1 , 1 ) 0 0 0 0 0 0←↩

1 ; . . .

133 0 0 0 0 0 0 Tn (1 ) ∗d1 ( 1 , 1 ) Tn (1 ) d1 ( 1 , 1 ) 0 0 0 ←↩

1 ; . . .

134 0 0 0 0 0 0 0 0 0 −Tn (1 ) ∗d1 ( 1 , 1 ) −Tn (1 ) d1 ( 1 , 1 )←↩

1 ; . . .

135 0 0 −d1 ( 1 , 1 ) 0 0 0 0 0 0 0 0 0 1 ; . . .

136 0 0 0 0 0 −d1 ( 1 , 1 ) 0 0 0 0 0 0 1 ; . . .

137 0 0 0 0 Tn (1 ) 0 0 0 0 0 0 0 1 ; . . .

138 0 0 0 0 0 0 0 Tn (1 ) 0 0 0 0 1 ; . . .

139 0 0 0 0 0 0 0 0 d1 ( 1 , 1 ) 0 0 0 1 ; . . .

140 0 0 0 0 0 0 0 0 0 0 0 d1 ( 1 , 1 ) 1 ; . . .

141 0 −Tn (1 ) 0 0 0 0 0 0 0 0 0 0 1 ; . . .

142 0 0 0 0 0 0 0 0 0 0 −Tn (1 ) 0 1 ; . . .

143 −Kr1 (i , j ) ∗Tn (1 ) ^2/2+Kt1 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2 Kt1←↩

(i , j )∗(−d1 ( 1 , 1 ) ) Kr1 (i , j ) ∗Tn (1 ) . . .
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144 Kr2 (i , j ) ∗Tn (1 ) ^2/2−Kt2 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2 −Kt2←↩

(i , j )∗(−d1 ( 1 , 1 ) ) Kr2 (i , j ) ∗Tn (1 ) . . .

145 −Kr3 (i , j ) ∗Tn (1 ) ^2/2+Kt3 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2 Kt3←↩

(i , j )∗(−d1 ( 1 , 1 ) ) −Kr3 (i , j ) ∗Tn (1 ) . . .

146 Kr4 (i , j ) ∗Tn (1 ) ^2/2−Kt4 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2 −Kt4←↩

(i , j )∗(−d1 ( 1 , 1 ) ) −Kr4 (i , j ) ∗Tn (1 ) 0 ] ;

147 Vec=mm\PP ;

148 po (i , j )=Vec (13) ;

149 end

150 f o r j=J

151 end

152 end

153 % Rearrange the corner p r e s su r e to the corner po int ←↩

coo rd ina t e s

154 TO=l i n s p a c e (0 ,2∗ pi−2∗pi /(J ) ,J ) ;

155 tn=[TO 2∗ pi ] ;

156 po=[Prij ( 1 , : ) ; po ; Prij (N , : ) ] ;

157 po=[po po ( : , 1 ) ] ;

158 LRD=log (rb . / Rw ) ;

159 LRD (N+1)=LRD (N+1)+LRD (1 ) ; LRD (1 ) =0;

160 RD=exp ( LRD ) ;

161 T=ones (N+10,J ) ;

162 % Calcu la te the c o e f f i e c i e n t s f o r the log−l i n p r e s su r e ←↩

assumpution

163 f o r i=1:N

164 f o r j=1:J
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165 PP=[po (i , j ) ; po (i , j+1) ; po (i+1,j+1) ; po (i+1,j ) ; ] ;

166 mm=[tn (j ) ∗LRD (i ) tn (j ) LRD (i ) 1 ; . . .

167 tn (j+1)∗LRD (i ) tn (j+1) LRD (i ) 1 ; . . .

168 tn (j+1)∗LRD (i+1) tn (j+1) LRD (i+1) 1 ; . . .

169 tn (j ) ∗LRD (i+1) tn (j ) LRD (i+1) 1 ; ] ;

170 Vec=mm\PP ;

171 aa (i , j )=Vec (1 ) ; bb (i , j )=Vec (2 ) ; cc (i , j )=Vec (3 ) ; dd (i , j←↩

)=Vec (4 ) ;

172 end

173 end

174 % Calcu la te the f low ra t e f o r each g r id block ( q1 )

175 q1=K_block . ∗ ( ( aa (N , : ) .∗ tn ( 2 : 1 51 ) .^2/2+cc (N , : ) .∗ tn ( 2 : 1 51 ) )←↩

− . . .

176 (aa (N , : ) .∗ tn ( 1 : 1 50 ) .^2/2+cc (N , : ) .∗ tn ( 1 : 1 50 ) ) ) ;

177 % Calcu la te the t o t a l f low ra t e

178 q_per=sum(q1 ) ;

179 % Calcu la te the TOTAL Skin

180 S=2∗pi ∗(Pe−Pw ) ∗K_block/q_per−l og (Re/Rw ) ;

181 hold on

182 f o r k=2

183 f o r j=1:J ;

184 w=1;

185 % Def ine the launching po int coo rd ina te : RDin , th in

186 RDin=Re/Rw ;

187 thin=tn (j )+tn (2 ) /2 ;

188 % Determine the g r id block coo rd ina t e s
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189 XX=N+1;

190 YY=c e i l ( thin/tn (2 ) ) ;

191 % I f the theta coord inate i s J+1, change in to f r i s t←↩

g r id block

192 i f YY==J+1;

193 YY=1;

194 end

195 % I f the theta coord inate i s 0 , change in to l a s t ←↩

g r id block

196 i f YY==0

197 YY=J ;

198 end

199 % Check i f the s t r eaml ine reaches to the boundary

200 whi l e XX>=2

201 % Check i f alnrD+B equa l s to 0 , i f i t i s use ←↩

the heterogenous method to

202 % t ra c i ng the s t r eaml ine

203 i f abs (aa (XX−1,YY ) ∗thin+cc (XX−1,YY ) )>10E−7;

204 step=−(l og ( RDin )−l og (RD (XX−1) ) ) /19 ;

205 lrd_r=log ( RDin ) : step : l og (RD (XX−1) ) ; % upper←↩

and lower l im i t a t i o n f o r l r d

206 t_r=ze ro s (1 , l ength ( lrd_r ) ) ;

207 t_r (1 )=thin ; % i n i t i a l c ond i t i on

208 f o r i=1:( l ength ( lrd_r )−1)% ca l c u l a t i o n loop←↩

to f i nd the po t e n t i a l e x i t po int
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209 F_tr=@ (lrd , t ) Kt (XX−1,YY ) ∗(aa (XX−1,YY ) ∗←↩

lrd+bb (XX−1,YY ) ) / . . .

210 (Kr (XX−1,YY ) ∗(aa (XX−1,YY ) ∗t+cc (XX←↩

−1,YY ) ) ) ;

211 k_1=F_tr ( lrd_r (i ) , t_r (i ) ) ;

212 k_2=F_tr ( lrd_r (i ) +0.5∗step , t_r (i ) +0.5∗←↩

step∗k_1 ) ;

213 k_3=F_tr ( ( lrd_r (i ) +0.5∗step ) , ( t_r (i )←↩

+0.5∗step∗k_2 ) ) ;

214 k_4=F_tr ( ( lrd_r (i )+step ) , ( t_r (i )+k_3∗←↩

step ) ) ;

215 t_r (i+1)=t_r (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+←↩

k_4 ) ∗step ; % main equat ion

216 end

217 Rd=exp ( lrd_r ) ;

218 % Determine i f the s o l u t i o n i s po s s i b l e , i f←↩

po s s i b l e

219 % ca l c u l a t e TOF

220 i f any (t_r<0)

221 t_r=t_r+2∗pi ;

222 i f any (t_r<tn (J ) ) | | any (t_r>tn (J+1) )

223 lrd_r =[ ] ; t_r =[ ] ;

224 end

225 end

226 i f any (t_r>2∗pi )

227 t_r=t_r−2∗pi ;
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228 i f any (t_r<tn (1 ) ) | | any (t_r>tn (2 ) )

229 lrd_r =[ ] ; t_r =[ ] ;

230 end

231 end

232 i f a l l (t_r<2∗pi )&&a l l (t_r>=0)

233 i f any (t_r<tn (YY ) ) | | any (t_r>tn (YY+1) )

234 lrd_r =[ ] ; t_r =[ ] ;

235 end

236 end

237 i f isempty ( lrd_r )==0

238 dt_r=((RDin−RD (XX−1) ) ∗Rw /19) . ∗ ( ( Rd←↩

( 1 : 1 9 ) ∗Rw+Rd ( 2 : 2 0 ) ∗Rw ) /2) . . .

239 . / ( Kr (XX−1,YY ) ∗(aa (XX−1,YY ) ∗( t_r←↩

( 1 : 1 9 )+t_r ( 2 : 2 0 ) )/2+cc (XX−1,YY ) )←↩

) ;

240 T_r=sum( dt_r ) ;

241 end

242 e l s e

243 lrd_r =[ ] ; t_r =[ ] ;

244 end

245 % Use theta as the paramete r i z t i on to t r a c e the←↩

s t r eaml ine

246 i f abs (aa (XX−1,YY ) ∗ l og ( RDin )+bb (XX−1,YY ) )>1E−7;

247 i f abs (thin−tn (YY ) )>1E−7;

248 step=−(thin−tn (YY ) ) /19 ;% out at tn (YY)

287



249 t_t1=thin : step : tn (YY ) ;% upper and lower←↩

l im i t a t i o n f o r l r d

250 lrd_t1=ze ro s (1 , l ength ( t_t1 ) ) ;

251 lrd_t1 (1 )=log ( RDin ) ;% i n i t i a l c ond i t i on

252 f o r i=1:( l ength ( t_t1 )−1)% ca l c u l a t i o n ←↩

loop

253 F_tr=@ (t , lrd ) Kr (XX−1,YY ) ∗(aa (XX−1,←↩

YY ) ∗t+cc (XX−1,YY ) ) / . . .

254 (Kt (XX−1,YY ) ∗(aa (XX−1,YY ) ∗lrd+←↩

bb (XX−1,YY ) ) ) ;

255 k_1=F_tr ( t_t1 (i ) , lrd_t1 (i ) ) ;

256 k_2=F_tr ( t_t1 (i ) +0.5∗step , lrd_t1 (i )←↩

+0.5∗step∗k_1 ) ;

257 k_3=F_tr ( ( t_t1 (i ) +0.5∗step ) , ( lrd_t1←↩

(i ) +0.5∗step∗k_2 ) ) ;

258 k_4=F_tr ( ( t_t1 (i )+step ) , ( lrd_t1 (i )+←↩

k_3∗step ) ) ;

259 lrd_t1 (i+1)=lrd_t1 (i ) +(1/6) ∗( k_1+2∗←↩

k_2+2∗k_3+k_4 ) ∗step ;% main ←↩

equat ion

260 end

261 Rd=exp ( lrd_t1 ) ;

262 % Check i f Rd out o f g r id block , i f out ,←↩

i gno r e t h i s s t r eaml ine

263 % i f not out c a l c u l a t e the TOF of t h i s ←↩

s t r eaml ine
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264 i f any (Rd<RD (XX−1)−1E−7) | | any (Rd>RD (XX )←↩

+1E−7)

265 lrd_t1 =[ ] ; t_t1 =[ ] ; z_t1 =[ ] ;

266 e l s e

267 dt_t1=((tn (YY+1)−thin ) /19) . ∗ ( ( Rd←↩

( 1 : 1 9 ) ∗Rw+Rd ( 2 : 2 0 ) ∗Rw ) /2) . . .

268 . / ( Kt (XX−1,YY ) ∗(aa (XX−1,YY ) ∗(←↩

lrd_t1 ( 1 : 1 9 )+lrd_t1 ( 2 : 2 0 ) )←↩

/2+bb (XX−1,YY ) ) ) ;

269 T_t1=sum( dt_t1 ) ;

270 end

271 e l s e

272 lrd_t1 =[ ] ; t_t1 =[ ] ;

273 end

274 i f abs (tn (YY+1)−thin )>1E−7;% out at tn (YY←↩

+1)

275 step=(tn (YY+1)−thin ) /19 ;

276 t_t2=thin : step : tn (YY+1) ; % upper and ←↩

lower l im i t a t i o n f o r theta

277 e l s e

278 t_t2=ones (1 , 20 ) ∗thin ;

279 end

280 lrd_t2=ze ro s (1 , l ength ( t_t2 ) ) ;

281 lrd_t2 (1 )=log ( RDin ) ;% i n i t i a l c ond i t i on

282 f o r i=1:( l ength ( t_t2 )−1)% ca l c u l a t i o n loop
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283 F_tr=@ (t , lrd ) Kr (XX−1,YY ) ∗(aa (XX−1,YY ) ∗←↩

t+cc (XX−1,YY ) ) / . . .

284 (Kt (XX−1,YY ) ∗(aa (XX−1,YY ) ∗lrd+bb (XX←↩

−1,YY ) ) ) ;

285 k_1=F_tr ( t_t2 (i ) , lrd_t2 (i ) ) ;

286 k_2=F_tr ( t_t2 (i ) +0.5∗step , lrd_t2 (i )←↩

+0.5∗step∗k_1 ) ;

287 k_3=F_tr ( ( t_t2 (i ) +0.5∗step ) , ( lrd_t2 (i )←↩

+0.5∗step∗k_2 ) ) ;

288 k_4=F_tr ( ( t_t2 (i )+step ) , ( lrd_t2 (i )+k_3∗←↩

step ) ) ;

289 lrd_t2 (i+1)=lrd_t2 (i ) +(1/6) ∗( k_1+2∗k_2←↩

+2∗k_3+k_4 ) ∗step ;% main equat ion

290 end

291 Rd=exp ( lrd_t2 ) ;

292 % Check i f Rd out o f g r id block , i f out ,←↩

i gno r e t h i s s t r eaml ine

293 % i f not out c a l c u l a t e the TOF of t h i s ←↩

s t r eaml ine

294 i f any (Rd<RD (XX−1)−1E−7) | | any (Rd>RD (XX )+1E←↩

−7)

295 lrd_t2 =[ ] ; t_t2 =[ ] ;

296 e l s e

297 dt_t2=((tn (YY+1)−thin ) /19) . ∗ ( ( Rd ( 1 : 1 9 ) ∗←↩

Rw+Rd ( 2 : 2 0 ) ∗Rw ) /2) . . .
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298 . / ( Kt (XX−1,YY ) ∗(aa (XX−1,YY ) ∗( lrd_t2←↩

( 1 : 1 9 )+lrd_t2 ( 2 : 2 0 ) )/2+bb (XX−1,←↩

YY ) ) ) ;

299 T_t2=sum( dt_t2 ) ;

300 end

301 i f abs (tn (YY+1)−thin )<=1E−7;

302 lrd_t2 =[ ] ; t_t2 =[ ] ;

303 end

304 i f isempty ( lrd_t1 )==1&& isempty ( lrd_t2 )==1 ←↩

% both empty

305 lrd_t =[ ] ; t_t =[ ] ;

306 end

307 i f isempty ( lrd_t1 )==1&& isempty ( lrd_t2 )==0 ←↩

% t1 empty

308 lrd_t=lrd_t2 ; t_t=t_t2 ; T_t=T_t2 ;

309 end

310 i f isempty ( lrd_t2 )==1&& isempty ( lrd_t1 )==0 ←↩

% t2 empty

311 lrd_t=lrd_t1 ; t_t=t_t1 ; T_t=T_t1 ;

312 end

313 i f isempty ( lrd_t1 )==0&& isempty ( lrd_t2 )==0 ←↩

% both not empty

314 i f T_t1<T_t2

315 lrd_t=lrd_t1 ; t_t=t_t1 ; T_t=T_t1 ;

316 e l s e

317 lrd_t=lrd_t2 ; t_t=t_t2 ; T_t=T_t2 ;
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318 end

319 end

320 e l s e

321 lrd_t =[ ] ; t_t =[ ] ;

322 end

323 % Find r e a l s t r eaml ine between r and t

324 i f isempty ( lrd_r )==1&& isempty ( lrd_t )==0

325 lrd=lrd_t ; t=t_t ; Tof=T_t ;

326 end

327 i f isempty ( lrd_r )==0&& isempty ( lrd_t )==1

328 lrd=lrd_r ; t=t_r ; Tof=T_r ;

329 end

330 i f isempty ( lrd_r )==0&& isempty ( lrd_t )==0

331 i f T_t<T_r

332 lrd=lrd_t ; t=t_t ; Tof=T_t ;

333 e l s e

334 lrd=lrd_r ; t=t_r ; Tof=T_r ;

335 end

336 end

337 i f isempty ( lrd_r )==1&& isempty ( lrd_t )==1

338 lrd=log ( RDin ) :−( l og ( RDin )−l og (RD (XX−1) ) )←↩

/19 : l og (RD (XX−1) ) ; t=ones (1 , 20 ) ∗thin ;

339 end

340 Rd=exp ( lrd ) ;

341 i f abs (RDin−Rd (20) )<=1E−7

342 RDout=Rd (1 ) ; tout=t (1 ) ;
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343 end

344 i f abs (RDin−Rd (1 ) )<=1E−7

345 RDout=Rd (20) ; tout=t (20) ;

346 end

347 % Plot s t r eaml ine

348 x=Rd .∗ Rw .∗ cos (t ) ;

349 y=Rd .∗ Rw .∗ s i n (t ) ;

350 p l o t (x , y , '−r ' )

351 % Calcu la te new gr id block coo rd ina t e s

352 i f RDout==1;

353 XX=1;

354 end

355 i f XX>=2&& abs ( RDout−RD (XX−1) )<1e−7

356 XX_out=XX−1;

357 e l s e

358 XX_out=XX ;

359 end

360 YY_out=c e i l ( tout/tn (2 ) ) ;

361 i f XX_out==XX

362 i f YY_out==YY

363 i f tout<thin

364 YY=YY−1;

365 end

366 i f tout>thin

367 YY=YY+1;

368 end
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369 e l s e

370 YY=YY_out ;

371 end

372 end

373 i f YY==J+1;

374 YY=1;

375 end

376 i f YY==0

377 YY=J ;

378 end

379 RDin=RDout ;

380 thin=tout ;

381 XX=XX_out ;

382 i f thin==2∗pi&&YY==1

383 thin=0;

384 end

385 %Stop t r a c i ng once s t r eaml ine r e s e a r ch e s to the←↩

pe r f o r a t i o n

386 i f (XX<=2&& thin>=tn (1 )&&thin<=tn (7 ) ) | | ( XX<=3&&←↩

thin>=tn (1 )&&thin<=tn (7 ) ) . . .

387 | | ( XX<=4&& thin>=tn (1 )&&thin<=tn (7 ) ) | | (←↩

XX<=5&& thin>=tn (1 )&&thin<=tn (7 ) ) . . .

388 | | ( XX<=6&& thin>=tn (2 )&&thin<=tn (6 ) ) | | (←↩

XX<=7&& thin>=tn (2 )&&thin<=tn (6 ) ) . . .

389 | | ( XX<=8&& thin>=tn (2 )&&thin<=tn (6 ) ) | | (←↩

XX<=9&& thin>=tn (2 )&&thin<=tn (6 ) ) . . .
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390 | | ( XX<=10&& thin>=tn (3 )&&thin<=tn (5 ) )←↩

| | ( XX<=11&& thin>=tn (3 )&&thin<=tn (5 )←↩

) . . .

391 | | ( XX<=12&& thin>=tn (3 )&&thin<=tn (5 ) )←↩

| | ( XX<=13&& thin>=tn (3 )&&thin<=tn (5 )←↩

)

392

393 XX=1;

394 end

395 % Save TOF value

396 T (w , j )=Tof ;

397 w=w+1;

398 end

399 end

400 end

E. 4 Three-Dimensional Perforated Well Streamline Simulator

1 c l e a r a l l

2 % Def ine block no . f o r R, theta and z d i r e c t i o n s

3 Nr=50;Nt=20;nz=10;Nz=nz+1;N=Nr∗Nt∗Nz ; % block no . f o r R and←↩

theta d i r e c t i o n

4 kx=1e−13.∗ones (Nr , Nt , nz ) ; ky=1e−13.∗ones (Nr , Nt , nz ) ; kz=1e←↩

−14.∗ones (Nr , Nt , nz ) ;% Permeab i l i ty at X,Y,Z d i r e c t i o n ←↩
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f o r ORIGNAL blocks

5 % Def ine we l lbo r e rad iu s=20 m, r e s e r v o i r rad iu s =0.15 m, ←↩

r e s e r v o i r h ight 10∗Nz

6 Re=2;Rw=0.15; Dz=0.02; dz=Dz ∗ ( 0 : 1 : nz ) ;

7 % Boundary Pre s su re s : we l lbo r e p r e s su r e =280∗10^5 pa ←↩

r e s e r v o i r p r e s su r e =300∗10^5 pa

8 Pw=280∗10^5; Pe=300∗10^5;

9 zz=10^−4;%Def ine d i g i t a l t runca t i on ZERO

10 % Permeabi l i ty in X,Y,Z d i r e c t i o n f o r b lock cente red b locks

11 Kx ( : , : , [ 1 Nz ] )=kx ( : , : , [ 1 nz ] ) ; Kx ( : , : , 2 : nz )=(kx ( : , : , 1 : nz−1)+←↩

kx ( : , : , 2 : nz ) ) /2 ;

12 Ky ( : , : , [ 1 Nz ] )=ky ( : , : , [ 1 nz ] ) ; Ky ( : , : , 2 : nz )=(ky ( : , : , 1 : nz−1)+←↩

ky ( : , : , 2 : nz ) ) /2 ;

13 Kz ( : , : , [ 1 Nz ] )=kz ( : , : , [ 1 nz ] ) ; Kz ( : , : , 2 : nz )=2∗kz ( : , : , 1 : nz−1)←↩

.∗ kz ( : , : , 2 : nz ) . / ( kz ( : , : , 1 : nz−1)+kz ( : , : , 2 : nz ) ) ;% ←↩

Permeab i l i ty at X,Y,Z d i r e c t i o n used in po int ←↩

d i s t r i b u t e d

14 % Def ine f l u i d v i s c o s i t y cp

15 uo=0.8e−3;

16 R=0:1:Nr−1;

17 ro=Rw ∗(Re/Rw ) . ^ ( R . / ( Nr−1) ) ;% Ca lcu la te node r a d i i

18 rb=ones (1 , Nr+1) ;

19 rb ( 1 , 2 : Nr )=(ro ( : , 2 : Nr ) .∗ ro ( : , 1 : Nr−1) ) . ^ 0 . 5 ;% Ca lcu la te ←↩

boundary r a d i i

20 rb ( 1 , [ 1 Nr+1])=[Rw^2/rb ( 1 , 2 ) Re^2/rb (1 , Nr ) ] ;
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21 Ro=repmat (ro ' , [ 1 , Nt , Nz ] ) ; Rb=repmat (rb ' , [ 1 , Nt , Nz ] ) ; % Ro , ←↩

Rb Radius f o r nodes f o r a l l g r i d b locks

22 Tn=l i n s p a c e (2∗ pi /(2∗ Nt ) ,2∗ pi−2∗pi /(2∗ Nt ) ,Nt ) ; % Theta Nodes

23 ttn=repmat (Tn ' , 1 , Nr ) ' ; ttn=repmat (ttn , [ 1 , 1 , Nz ] ) ;

24 Dn=360/Nt∗ pi /180 ; %Delat theta between nodes

25 Kr=Kx . ∗ ( cos ( ttn ) ) .^2+Ky . ∗ ( s i n ( ttn ) ) . ^ 2 ; % Permeab i l i ty in r←↩

d i r e c t i o n

26 Kt=Ky . ∗ ( cos ( ttn ) ) .^2+Kx . ∗ ( s i n ( ttn ) ) . ^ 2 ; % Permeab i l i ty in ←↩

tangent d i r e c t i o n

27 Mblock=Kt . / uo ; Mblockr=Kr . / uo ; Mblockz=Kz . / uo ;%Block ←↩

Mobi l i ty f o r r , tangent and Z d i r e c t i o n

28 Mbr=ones (Nr+1,Nt , Nz ) ; Mbz=ze ro s (Nr , Nt , Nz+1) ;%Upscaled ←↩

mobi l i ty at r , z d i r e c t i o n

29 Mbr ( [ 1 Nr +1 ] , : , : )=Mblockr ( [ 1 Nr ] , : , : ) ;% Upscaled mob i l i ty ←↩

at r d i r e c t i o n

30 Mbr ( 2 : Nr , : , : )=log (Ro ( 2 : Nr , : , : ) . / Ro ( 1 : Nr−1 , : , : ) ) . / ( ( 1 . /←↩

Mblockr ( 1 : Nr−1 , : , : ) .∗ l og (Rb ( 2 : Nr , : , : ) . / Ro ( 1 : Nr−1 , : , : ) ) )←↩

+(1./Mblockr ( 2 : Nr , : , : ) .∗ l og (Ro ( 2 : Nr , : , : ) . / Rb ( 2 : Nr , : , : ) ) )←↩

) ;

31 Mbt=ones (Nr , Nt , Nz ) ;% Upscaled mob i l i ty at theta d i r e c t i o n

32 Mbt ( : , 1 : Nt−1 , : ) =2.∗Mblock ( : , 1 : Nt−1 , : ) .∗ Mblock ( : , 2 : Nt , : ) . / (←↩

Mblock ( : , 1 : Nt−1 , : )+Mblock ( : , 2 : Nt , : ) ) ;

33 Mbt ( : , Nt , : ) =2.∗Mblock ( : , 1 , : ) .∗ Mblock ( : , Nt , : ) . / ( Mblock←↩

( : , 1 , : )+Mblock ( : , Nt , : ) ) ;% Last column i s Mobi l i ty from ←↩

the l a s t to 1

34 Trb=ze ro s (Nr , Nt , Nz ) ;

297



35 Mbz ( : , : , 2 : Nz )=2.∗Mblockz ( : , : , 1 : Nz−1) .∗ Mblockz ( : , : , 2 : Nz ) . / (←↩

Mblockz ( : , : , 1 : Nz−1)+Mblockz ( : , : , 2 : Nz ) ) ;

36 Mbr ( : , : , [ 1 Nz ] ) =0.5∗Mbr ( : , : , [ 1 Nz ] ) ; Mbt ( : , : , [ 1 Nz ] ) =0.5∗Mbt←↩

( : , : , [ 1 Nz ] ) ;

37 % Calcu la te the t r a n sm i s i b i l i t y c o e f f i e c i n t s a , b , c , d , e , g , g

38 Tr1=Rb ( 1 , : , : ) .∗ Mbr ( 1 , : , : ) . / ( Ro ( 1 , : , : ) . ∗ ( Rb ( 2 , : , : )−Rb ( 1 , : , : )←↩

) . ∗ ( Ro ( 1 , : , : )−Rb ( 1 , : , : ) ) ) ; %f i r s t l a y e r upsca led ←↩

mobi l i ty at r d i r e c t i o n i s the block mob i l i ty

39 Trb ( 1 : Nr−1 , : , : )=Rb ( 2 : Nr , : , : ) .∗ Mbr ( 2 : Nr , : , : ) . / ( Ro ( 2 : Nr , : , : )←↩

. ∗ ( Rb ( 3 : Nr+1 , : , : )−Rb ( 2 : Nr , : , : ) ) . ∗ ( Ro ( 2 : Nr , : , : )−Ro ( 1 : Nr←↩

−1 , : , : ) ) ) ;

40 e ( [ 1 Nr ] , : , : )=Rb ( [ 2 Nr +1 ] , : , : ) .∗ Mbr ( [ 2 Nr +1 ] , : , : ) . / ( Ro ( [ 1 ←↩

Nr ] , : , : ) . ∗ ( Rb ( [ 2 Nr +1 ] , : , : )−Rb ( [ 1 Nr ] , : , : ) ) . ∗ ( [ Ro ( 2 , : , : )←↩

; Rb (Nr+1 , : , : ) ]−Ro ( [ 1 Nr ] , : , : ) ) ) ;

41 e ( 2 : Nr−1 , : , : )=Rb ( 3 : Nr , : , : ) .∗ Mbr ( 3 : Nr , : , : ) . / ( Ro ( 2 : Nr−1 , : , : )←↩

. ∗ ( Rb ( 3 : Nr , : , : )−Rb ( 2 : Nr−1 , : , : ) ) . ∗ ( Ro ( 3 : Nr , : , : )−Ro ( 2 : Nr←↩

−1 , : , : ) ) ) ;

42 oob=ze ro s (Nr , Nt , Nz ) ; bo=ze ro s (Nr , Nt , Nz ) ; oc=ze ro s (Nr , Nt , Nz ) ;←↩

coo=ze ro s (Nr , Nt , Nz ) ;

43 b=Mbt . / ( ( Ro . ^2 ) . ∗ ( Dn^2) ) ; bo ( : , 2 : Nt , : )=b ( : , 1 : Nt−1 , : ) ; oob←↩

( : , 1 , : )=b ( : , Nt , : ) ;

44 c=[Mbt ( : , Nt , : ) Mbt ( : , 1 : Nt−1 , : ) ] . / ( ( Ro . ^2 ) . ∗ ( Dn^2) ) ; coo ( : , Nt←↩

, : )=c ( : , 1 , : ) ; oc ( : , 1 : Nt−1 , : )=c ( : , 2 : Nt , : ) ;

45 d=[Tr1 ; Trb ( 1 : Nr−1 , : , : ) ] ; Tre=ze ro s (Nr , Nt , Nz ) ; Tre ( 2 : Nr , : , : )=e←↩

( 1 : Nr−1 , : , : ) ;

46 f=Mbz ( : , : , 2 : Nz+1) . / ( ( Dz^2) ) ; g=Mbz ( : , : , 1 : Nz ) . / ( ( Dz^2) ) ;
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47 d ( 1 , : , 1 ) =0;d ( 1 , 2 : 2 0 , 2 ) =0;d ( 1 , : , 3 : 9 ) =0;d ( 1 , 1 : 1 0 , 1 0 ) =0;d←↩

( 1 , 1 2 : 20 , 10 ) =0;

48 d ( 1 , : , 1 1 ) =0;

49 a=b+c+d+e+f+g ;

50 x1=reshape ( permute (Trb , [ 2 , 1 , 3 ] ) ,N , 1 ) ; x2=reshape ( permute (Tre←↩

, [ 2 , 1 , 3 ] ) ,N , 1 ) ;

51 y1=reshape ( permute (oc , [ 2 , 1 , 3 ] ) ,N , 1 ) ; y2=reshape ( permute (bo←↩

, [ 2 , 1 , 3 ] ) ,N , 1 ) ;

52 y10=reshape ( permute (oob , [ 2 , 1 , 3 ] ) ,N , 1 ) ; y20=reshape ( permute (←↩

coo , [ 2 , 1 , 3 ] ) ,N , 1 ) ;

53 z1=reshape ( permute (g , [ 2 , 1 , 3 ] ) ,N , 1 ) ; z2=reshape ( permute (f←↩

, [ 2 , 1 , 3 ] ) ,N , 1 ) ;

54 AA=reshape ( permute (a , [ 2 , 1 , 3 ] ) ,N , 1 ) ;

55 DiagVecs=[−z2 ,−x1 ,−y10 ,−y1 , AA ,−y2 ,−y20 ,−x2 ,−z1 ] ;

56 DiagIndx =[−Nr∗Nt ,−Nt ,−Nt+1 ,−1 ,0 ,1 ,Nt−1,Nt , Nr∗Nt ] ;

57 % Co e f f i c i e n t matrix A f o r the p r e s su r e

58 A = spd iags ( DiagVecs , DiagIndx , N , N ) ;

59 % Def ine the boundary cond i t i on ensure p r e s su r e f o r g r id ←↩

block i n s i d e p e r f o r a t i o n equa l s to Pw

60 A (Nt∗Nr+1 , :)=0;

61 A (9∗ Nt∗Nr+11 , :)=0;

62 f o r i=1

63 A (Nt∗Nr+i , Nt∗Nr+i )=1;

64 A (9∗ Nt∗Nr+10+i , 9∗ Nt∗Nr+10+i )=1;

65 end

66 % Def ine the boundary cond i t i on
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67 D=ze ro s (N , 1 ) ;

68 D (Nt∗Nr+1)=Pw ;

69 D (9∗ Nt∗Nr+11)=Pw ;

70 f o r i=1:Nz

71 D (i∗Nr∗Nt−Nt+1:i∗Nr∗Nt )=Pe ;

72 A ( ( i−1)∗Nr∗Nt+(Nr−1)∗Nt+1:(i−1)∗Nr∗Nt+Nr∗Nt , : ) =0;

73 end

74 f o r i=1:Nz

75 f o r k=1:Nt

76 A ( ( i−1)∗Nr∗Nt+(Nr−1)∗Nt+k , ( i−1)∗Nr∗Nt+(Nr−1)∗Nt+k )←↩

=1;

77 end

78 end

79 t=l i n s p a c e (−pi , pi , 1 00 ) ;

80 % Calcu la te the p r e s su r e s o l u t i o n

81 u = A\D ;

82 f o r i=1

83 p lo t3 (Re∗ cos (t ) ,Re∗ s i n (t ) , ( i−1)∗Dz∗ones (1 ,100) )

84 hold on

85 p lo t3 (Rw∗ cos (t ) ,Rw∗ s i n (t ) , ( i−1)∗Dz∗ones (1 ,100) )

86 hold on

87 end

88 p=permute ( reshape (u , Nt , Nr , Nz ) , [ 2 , 1 , 3 ] ) ;

89 % Calcu la te p r e s su r e at R. theta and z boundar ies

90 Rb1=Ro ( 2 : Nr , : , : ) ; Rb2=Ro ( 1 : Nr−1 , : , : ) ; RB=Rb ( 2 : Nr , : , : ) ; RD1=Rb1←↩

. / RB ; RD2=Rb2 . / RB ;
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91 Kr2=Kr ( 2 : Nr , : , : ) ; Kr1=[Kr ( 2 : Nr , Nt , : ) Kr ( 2 : Nr , 1 : Nt−1 , : ) ] ;

92 Kr4=[Kr ( 1 : Nr−1,Nt , : ) Kr ( 1 : Nr−1 ,1:Nt−1 , : ) ] ; Kr3=Kr ( 1 : Nr←↩

−1 , : , : ) ;

93 Kt2=Kt ( 2 : Nr , : , : ) ; Kt1=[Kt ( 2 : Nr , Nt , : ) Kt ( 2 : Nr , 1 : Nt−1 , : ) ] ;

94 Kt4=[Kt ( 1 : Nr−1,Nt , : ) Kt ( 1 : Nr−1 ,1:Nt−1 , : ) ] ; Kt3=Kt ( 1 : Nr←↩

−1 , : , : ) ;

95 d1=log ( RD1 ) ; d2=log ( RD2 ) ;

96 % Calcu la te p r e s su r e at R boundar ies

97 Ptij=(−d2 .∗ Kr ( 2 : Nr , : , : ) .∗ p ( 2 : Nr , : , : )+d1 .∗ Kr ( 1 : Nr−1 , : , : ) .∗ p←↩

( 1 : Nr−1 , : , : ) ) ./(−d2 .∗ Kr ( 2 : Nr , : , : )+d1 .∗ Kr ( 1 : Nr−1 , : , : ) ) ;

98 KTP=p .∗ Kt ; Prij=(KTP+[KTP ( : , Nt , : ) KTP ( : , 1 : Nt−1 , : ) ] ) . / ( Kt+[←↩

Kt ( : , Nt , : ) Kt ( : , 1 : Nt−1 , : ) ] ) ;% p12 , p34

99 P2=p ( 2 : Nr , : , : ) ; P1=[p ( 2 : Nr , Nt , : ) p ( 2 : Nr , 1 : Nt−1 , : ) ] ; P4=[p ( 1 :←↩

Nr−1,Nt , : ) p ( 1 : Nr−1 ,1:Nt−1 , : ) ] ; P3=p ( 1 : Nr−1 , : , : ) ;

100 P12=Prij ( 2 : Nr , : , : ) ; P14=[Ptij ( : , Nt , : ) Ptij ( : , 1 : Nt−1 , : ) ] ; P34=←↩

Prij ( 1 : Nr−1 , : , : ) ; P23=Ptij ;

101 % Calcu la te corner p r e s su r e s

102 f o r k=1:Nz

103 f o r i=1:Nr−1

104 f o r j=1:Nt

105 PP=[P1 (i , j , k ) ; P2 (i , j , k ) ; P3 (i , j , k ) ; P4 (i , j , k ) ; P12←↩

(i , j , k ) ; P12 (i , j , k ) ; . . .

106 P23 (i , j , k ) ; P23 (i , j , k ) ; P34 (i , j , k ) ; P34 (i , j , k )←↩

; P14 (i , j , k ) ; P14 (i , j , k ) ; 0 ] ; %P=pre s su r e

107 mm=[Tn (1 ) ∗d1 ( 1 , 1 , 1 ) −Tn (1 ) −d1 ( 1 , 1 , 1 ) 0 0 0 0 0←↩

0 0 0 0 1 ; . . .
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108 0 0 0 −Tn (1 ) ∗d1 ( 1 , 1 , 1 ) Tn (1 ) −d1 ( 1 , 1 , 1 ) 0 0←↩

0 0 0 0 1 ; . . .

109 0 0 0 0 0 0 Tn (1 ) ∗d1 ( 1 , 1 , 1 ) Tn (1 ) d1 ( 1 , 1 , 1 )←↩

0 0 0 1 ; . . .

110 0 0 0 0 0 0 0 0 0 −Tn (1 ) ∗d1 ( 1 , 1 , 1 ) −Tn (1 ) ←↩

d1 ( 1 , 1 , 1 ) 1 ; . . .

111 0 0 −d1 ( 1 , 1 , 1 ) 0 0 0 0 0 0 0 0 0 1 ; . . .

112 0 0 0 0 0 −d1 ( 1 , 1 , 1 ) 0 0 0 0 0 0 1 ; . . .

113 0 0 0 0 Tn (1 ) 0 0 0 0 0 0 0 1 ; . . .

114 0 0 0 0 0 0 0 Tn (1 ) 0 0 0 0 1 ; . . .

115 0 0 0 0 0 0 0 0 d1 ( 1 , 1 , 1 ) 0 0 0 1 ; . . .

116 0 0 0 0 0 0 0 0 0 0 0 d1 ( 1 , 1 , 1 ) 1 ; . . .

117 0 −Tn (1 ) 0 0 0 0 0 0 0 0 0 0 1 ; . . .

118 0 0 0 0 0 0 0 0 0 0 −Tn (1 ) 0 1 ; . . .

119 −Kr1 (i , j ) ∗Tn (1 ) ^2/2+Kt1 (i , j )∗(−d1 ( 1 , 1 , 1 ) )←↩

^2/2 Kt1 (i , j )∗(−d1 ( 1 , 1 , 1 ) ) Kr1 (i , j ) ∗Tn←↩

(1 ) . . .

120 Kr2 (i , j ) ∗Tn (1 ) ^2/2−Kt2 (i , j )∗(−d1 ( 1 , 1 , 1 ) )←↩

^2/2 −Kt2 (i , j )∗(−d1 ( 1 , 1 , 1 ) ) Kr2 (i , j ) ∗Tn←↩

(1 ) . . .

121 −Kr3 (i , j ) ∗Tn (1 ) ^2/2+Kt3 (i , j )∗(−d1 ( 1 , 1 , 1 ) )←↩

^2/2 Kt3 (i , j )∗(−d1 ( 1 , 1 , 1 ) ) −Kr3 (i , j ) ∗Tn←↩

(1 ) . . .

122 Kr4 (i , j ) ∗Tn (1 ) ^2/2−Kt4 (i , j )∗(−d1 ( 1 , 1 , 1 ) )←↩

^2/2 −Kt4 (i , j )∗(−d1 ( 1 , 1 , 1 ) ) −Kr4 (i , j ) ∗Tn←↩

(1 ) 0 ] ;
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123 Vec=mm\PP ;

124 po (i , j , k )=Vec (13) ;

125 end

126 end

127 end

128 PO=[Prij ( 1 , : , : ) ; po ; Prij (Nr , : , : ) ] ;

129 PO ( 1 , 1 : 2 , 2 : 3 )=Pw ;

130 PO=[PO PO ( : , 1 , : ) ] ;

131 Roo=Rb . / Rw ; LRD=log ( Roo ( : , 1 ) ' ) ; LRD (Nr+1)=LRD (Nr+1)+LRD (1 ) ;←↩

LRD (1 ) =0;

132 RD=exp ( LRD ) ;

133 f o r i=1:Nz

134 PRZ ( : , i )=PO ( : , 1 , i ) ;

135 end

136 xro=repmat ( ( RD∗Rw ) ' , 1 , Nz ) ;

137 yz=0:Dz : nz∗Dz ;

138 yz=repmat (yz ' , 1 , Nr+1) ; yz=yz ' ;

139 tn=l i n s p a c e (0 ,2∗ pi , Nt+1) ;

140 aa=ones (Nr , Nt , Nz−1) ; bb=ones (Nr , Nt , Nz−1) ; cc=ones (Nr , Nt , Nz−1)←↩

; dd=ones (Nr , Nt , Nz−1) ;

141 ee=ones (Nr , Nt , Nz−1) ; ff=ones (Nr , Nt , Nz−1) ; gg=ones (Nr , Nt , Nz−1)←↩

; hh=ones (Nr , Nt , Nz−1) ;

142 kr=kx . ∗ ( cos ( ttn ( : , : , 1 : nz ) ) ) .^2+ky . ∗ ( s i n ( ttn ( : , : , 1 : nz ) ) ) . ^ 2 ;←↩

% Permeab i l i ty in r d i r e c t i o n

143 kt=ky . ∗ ( cos ( ttn ( : , : , 1 : nz ) ) ) .^2+kx . ∗ ( s i n ( ttn ( : , : , 1 : nz ) ) ) . ^ 2 ;←↩

% Permeab i l i ty in tangent d i r e c t i o n
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144 % Calcu la te the c o e f f i e c i e n t s f o r the t r i l i n −l og p r e s su r e ←↩

assumpution

145 f o r i=1:Nr

146 f o r j=1:Nt

147 f o r k=1:Nz−1

148 P=[PO (i , j , k ) ; PO (i , j+1,k ) ; PO (i+1,j+1,k ) ; PO (i←↩

+1,j , k ) ; . . .

149 PO (i , j , k+1) ; PO (i , j+1,k+1) ; PO (i+1,j+1,k+1)←↩

; PO (i+1,j , k+1) ] ; %P=pre s su r e

150 A=[tn (j ) ∗LRD (i ) ∗Dz ∗(k−1) tn (j ) ∗LRD (i ) tn (j ) ∗Dz←↩

∗(k−1) LRD (i ) ∗Dz ∗(k−1) tn (j ) LRD (i ) Dz ∗(k−1)←↩

1 ; . . .

151 tn (j+1)∗LRD (i ) ∗Dz ∗(k−1) tn (j+1)∗LRD (i ) tn (j←↩

+1)∗Dz ∗(k−1) LRD (i ) ∗Dz ∗(k−1) tn (j+1) LRD (←↩

i ) Dz ∗(k−1) 1 ; . . .

152 tn (j+1)∗LRD (i+1)∗Dz ∗(k−1) tn (j+1)∗LRD (i+1) ←↩

tn (j+1)∗Dz ∗(k−1) LRD (i+1)∗Dz ∗(k−1) tn (j←↩

+1) LRD (i+1) Dz ∗(k−1) 1 ; . . .

153 tn (j ) ∗LRD (i+1)∗Dz ∗(k−1) tn (j ) ∗LRD (i+1) tn (j )←↩

∗Dz ∗(k−1) LRD (i+1)∗Dz ∗(k−1) tn (j ) LRD (i←↩

+1) Dz ∗(k−1) 1 ; . . .

154 tn (j ) ∗LRD (i ) ∗Dz∗k tn (j ) ∗LRD (i ) tn (j ) ∗Dz∗k ←↩

LRD (i ) ∗Dz∗k tn (j ) LRD (i ) Dz∗k 1 ; . . .

155 tn (j+1)∗LRD (i ) ∗Dz∗k tn (j+1)∗LRD (i ) tn (j+1)∗←↩

Dz∗k LRD (i ) ∗Dz∗k tn (j+1) LRD (i ) Dz∗k 1 ; ←↩

. . .
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156 tn (j+1)∗LRD (i+1)∗Dz∗k tn (j+1)∗LRD (i+1) tn (j←↩

+1)∗Dz∗k LRD (i+1)∗Dz∗k tn (j+1) LRD (i+1) ←↩

Dz∗k 1 ; . . .

157 tn (j ) ∗LRD (i+1)∗Dz∗k tn (j ) ∗LRD (i+1) tn (j ) ∗Dz∗←↩

k LRD (i+1)∗Dz∗k tn (j ) LRD (i+1) Dz∗k 1 ; ] ;

158 Vec=A\P ;

159 aa (i , j , k )=Vec (1 ) ; bb (i , j , k )=Vec (2 ) ; cc (i , j , k )=←↩

Vec (3 ) ; dd (i , j , k )=Vec (4 ) ;

160 ee (i , j , k )=Vec (5 ) ; ff (i , j , k )=Vec (6 ) ; gg (i , j , k )=←↩

Vec (7 ) ; hh (i , j , k )=Vec (8 ) ;

161 end

162 end

163 end

164 TTO=repmat (Tn ' , 1 , nz ) ;

165 TTB=repmat (tn ' , 1 , nz ) ;

166 dzz=0.5∗Dz : Dz : nz∗Dz ;

167 Z=repmat (dzz ' , 1 , Nt ) ' ;

168 ZB=repmat (dz ' , 1 , Nt ) ' ;

169 q=reshape (Kr (Nr−1 ,1:Nt , 1 : nz ) ,Nt , nz ) /uo . ∗ ( reshape (aa (Nr←↩

−1 , : , : ) ,Nt , nz ) . ∗ ( TTB ( 2 : Nt+1 , :) .^2−TTB ( 1 : Nt , : ) . ^2 ) .∗ . . .

170 (ZB ( : , 2 : nz+1).^2−ZB ( : , 1 : nz ) .^2 ) ./4+ reshape (bb (Nr−1 , : , : ) ,Nt ,←↩

nz ) . ∗ ( TTB ( 2 : Nt+1 , :) .^2−TTB ( 1 : Nt , : ) . ^2 ) . . .

171 . ∗ ( ZB ( : , 2 : nz+1)−ZB ( : , 1 : nz ) ) ./2+ reshape (dd (Nr−1 , : , : ) ,Nt , nz )←↩

. ∗ ( ZB ( : , 2 : nz+1).^2−ZB ( : , 1 : nz ) .^2 ) .∗ . . .

172 ( TTB ( 2 : Nt+1 , :)−TTB ( 1 : Nt , : ) ) ./2+ reshape (ff (Nr−1 , : , : ) ,Nt , nz )←↩

.∗ . . .
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173 (ZB ( : , 2 : nz+1)−ZB ( : , 1 : nz ) ) . ∗ ( TTB ( 2 : Nt+1 , :)−TTB ( 1 : Nt , : ) ) ) ;

174 q_per=sum(q ) ; q_per=sum( q_per ) ;

175 % Calcu la te t o t a l sk in

176 S=2∗pi ∗Kr (Nr , 1 , 1 ) ∗(Pe−Pw ) ∗nz∗Dz/q_per/uo−l og (Re/Rw ) ;

177 [ x , y , z ]= cy l i nd e r (Rw , Nt ) ;

178 s u r f (x , y , nz∗Dz∗z ) ;

179 t=[ ] ;

180 f o r m=4

181 f o r k=5

182 f o r j=1:10

183 % Def ine the launching po int coo rd ina te : RDin , thin , z in

184 RDin=Re/Rw ;

185 thin=tn (j )+(k−1)∗tn (2 )/5+tn (2 ) /10 ;

186 zin=(m−1)∗Dz+0.5∗Dz ;

187 % Determine the g r id block coo rd ina t e s

188 XX=Nr+1;

189 YY=c e i l ( thin/tn (2 ) ) ;

190 ZZ=c e i l ( zin/Dz ) ;

191 i f YY==Nt+1;

192 YY=1;

193 end

194 i f YY==0

195 YY=Nt ;

196 end

197 % Check i f the s t r eaml ine reaches to the boundary

198 whi l e XX>1&&ZZ>0
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199 % Use r as paramete r i za t i on to t r a c e the s t r eaml ine

200 i f abs (aa (XX−1,YY , ZZ ) ∗thin∗zin+bb (XX−1,YY , ZZ ) ∗thin+dd (←↩

XX−1,YY , ZZ ) ∗zin+ff (XX−1,YY , ZZ ) )>zz ;

201 step=−(RDin∗Rw−RD (XX−1)∗Rw ) /19 ;

202 r_r=RDin∗Rw : step : RD (XX−1)∗Rw ;% upper and lower ←↩

l im i t a t i o n f o r l r d

203 t_r=ze ro s (1 , l ength ( r_r ) ) ;

204 z_r=ze ro s (1 , l ength ( r_r ) ) ;

205 t_r (1 )=thin ; z_r (1 )=zin ;% i n i t i a l c ond i t i on

206 f o r i=1:( l ength ( r_r )−1)% ca l c u l a t i o n loop

207 F_tr=@ (lrd , t ) kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗←↩

z_r (i ) ∗ l og ( lrd/Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( lrd/Rw←↩

)+cc (XX−1,YY , ZZ ) ∗z_r (i )+ee (XX−1,YY , ZZ ) ) / . . .

208 (kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z_r (i ) ∗t+bb←↩

(XX−1,YY , ZZ ) ∗t+dd (XX−1,YY , ZZ ) ∗z_r (i )+ff (←↩

XX−1,YY , ZZ ) ) ) ; % change the func t i on ←↩

as you d e s i r e

209 F_zr=@ (lrd , z ) kz (XX−1,YY , ZZ ) ∗lrd ∗(aa (XX−1,YY , ZZ←↩

) ∗t_r (i ) ∗ l og ( lrd/Rw )+cc (XX−1,YY , ZZ ) ∗t_r (i )+←↩

dd (XX−1,YY , ZZ ) ∗ l og ( lrd/Rw )+gg (XX−1,YY , ZZ ) )←↩

/ . . .

210 (kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗t_r (i )+bb←↩

(XX−1,YY , ZZ ) ∗t_r (i )+dd (XX−1,YY , ZZ ) ∗z+ff (←↩

XX−1,YY , ZZ ) ) ) ;

211 k_1=F_tr ( r_r (i ) , t_r (i ) ) ;

212 k_2=F_tr ( r_r (i ) +0.5∗step , t_r (i ) +0.5∗step∗k_1 ) ;
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213 k_3=F_tr ( ( r_r (i ) +0.5∗step ) , ( t_r (i ) +0.5∗step∗k_2←↩

) ) ;

214 k_4=F_tr ( ( r_r (i )+step ) , ( t_r (i )+k_3∗step ) ) ;

215 t_r (i+1)=t_r (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4 ) ∗←↩

step ;% main equat ion

216 kk_1=F_zr ( r_r (i ) , z_r (i ) ) ;

217 kk_2=F_zr ( r_r (i ) +0.5∗step , z_r (i ) +0.5∗step∗kk_1 )←↩

;

218 kk_3=F_zr ( ( r_r (i ) +0.5∗step ) , ( z_r (i ) +0.5∗step∗←↩

kk_2 ) ) ;

219 kk_4=F_zr ( ( r_r (i )+step ) , ( z_r (i )+kk_3∗step ) ) ;

220 z_r (i+1)=z_r (i ) +(1/6) ∗( kk_1+2∗kk_2+2∗kk_3+kk_4 )←↩

∗step ;% main equat ion

221 end

222 % Determine i f the s o l u t i o n i s po s s i b l e , i f ←↩

po s s i b l e c a l c u l a t e the

223 % TOF f o r t h i s s t r eaml ine

224 Rd=r_r/Rw ;

225 i f any (t_r−0<=zz )

226 t_r=t_r+2∗pi ;

227 i f any (t_r<tn (Nt )−zz ) | | any (t_r>tn (Nt+1)+zz ) | |←↩

any (z_r<dz (ZZ )−1E−4) | | any (z_r>dz (ZZ+1)+1E−4)

228 r_r =[ ] ; t_r =[ ] ; z_r =[ ] ;

229 end

230 end

231 i f any (t_r−2∗pi>=zz )
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232 t_r=t_r−2∗pi ;

233 i f any (t_r<tn (1 )−zz ) | | any (t_r>tn (2 )+zz ) | | any (←↩

z_r<dz (ZZ )−1E−4) | | any (z_r>dz (ZZ+1)+1E−4)

234 r_r =[ ] ; t_r =[ ] ; z_r =[ ] ;

235 end

236 end

237 i f a l l (t_r−2∗pi<1e−4)&&a l l (t_r−0>=1e−4)

238 i f any (t_r<tn (YY )−1e−4) | | any (t_r>tn (YY+1)+1E−4)←↩

| | any (z_r<dz (ZZ )−1E−4) | | any (z_r>dz (ZZ+1)+1E←↩

−4)

239 r_r =[ ] ; t_r =[ ] ; z_r =[ ] ;

240 end

241 end

242 i f isempty ( r_r )==0&&i s r e a l ( r_r )==1

243 x=Rd∗Rw .∗ cos ( t_r ) ;

244 y=Rd∗Rw .∗ s i n ( t_r ) ;

245 length_r=0;

246 f o r i=1:19

247 length_r=length_r+((x (i+1)−x (i ) )^2+(y (i+1)←↩

−y (i ) )^2+(z_r (i+1)−z_r (i ) ) ^2) ^0 . 5 ;

248 end

249 dt_r=((RDin∗Rw−RD (XX−1)∗Rw ) /19) . ∗ ( ( Rd ( 1 : 1 9 ) ∗Rw+Rd←↩

( 2 : 2 0 ) ∗Rw ) /2) . / ( Kr (XX−1,YY , ZZ ) . . .

250 . ∗ ( aa (XX−1,YY , ZZ ) . ∗ ( ( t_r ( 1 : 1 9 )+t_r ( 2 : 2 0 ) ) /2) . ∗ ( ( z_r←↩

( 1 : 1 9 )+z_r ( 2 : 2 0 ) ) /2)+bb (XX−1,YY , ZZ ) . ∗ ( ( t_r ( 1 : 1 9 )←↩

+t_r ( 2 : 2 0 ) ) /2) . . .
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251 +dd (XX−1,YY , ZZ ) . ∗ ( ( z_r ( 1 : 1 9 )+z_r ( 2 : 2 0 ) ) /2)+ff (XX−1,←↩

YY , ZZ ) ) ) ;

252 T_r=sum( dt_r ) ; XXR_out=XX−1;YYR_out=YY ; ZZR_out=ZZ ;

253 end

254 e l s e

255 r_r =[ ] ; t_r =[ ] ; z_r =[ ] ;

256 end

257 % Use theta as paramete r i za t i on to t r a c e the s t r eaml ine

258 i f abs (aa (XX−1,YY , ZZ ) ∗ l og ( RDin ) ∗zin+bb (XX−1,YY , ZZ ) ∗ l og (←↩

RDin )+cc (XX−1,YY , ZZ ) ∗zin+ee (XX−1,YY , ZZ ) )>zz ;

259 i f abs (thin−tn (YY ) )>10e−5;

260 step=−(thin−tn (YY ) ) /19 ; % Exit at tn (YY)

261 t_t1=thin : step : tn (YY ) ; % upper and lower ←↩

l im i t a t i o n f o r l r d

262 r_t1=ze ro s (1 , l ength ( t_t1 ) ) ;

263 z_t1=ze ro s (1 , l ength ( t_t1 ) ) ;

264 r_t1 (1 )=RDin∗Rw ; z_t1 (1 )=zin ; % i n i t i a l c ond i t i on

265 f o r i=1:( l ength ( t_t1 )−1) % c a l c u l a t i o n loop

266 F_tr=@ (t , lrd ) kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗←↩

z_t1 (i ) ∗t+bb (XX−1,YY , ZZ ) ∗t+dd (XX−1,YY , ZZ ) ∗←↩

z_t1 (i )+ff (XX−1,YY , ZZ ) ) / . . .

267 (kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z_t1 (i ) ∗←↩

l og ( lrd/Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( lrd/Rw )+←↩

cc (XX−1,YY , ZZ ) ∗z_t1 (i )+ee (XX−1,YY , ZZ ) ) )←↩

; % change the func t i on as you ←↩

d e s i r e
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268 F_tz=@ (t , z ) kz (XX−1,YY , ZZ ) ∗r_t1 (i ) ∗(aa (XX−1,YY ,←↩

ZZ ) ∗t∗ l og ( r_t1 (i ) /Rw )+cc (XX−1,YY , ZZ ) ∗t+dd (XX←↩

−1,YY , ZZ ) ∗ l og ( r_t1 (i ) /Rw )+gg (XX−1,YY , ZZ ) ) / . . .

269 (kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗ l og ( r_t1←↩

(i ) /Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( r_t1 (i ) /Rw )+←↩

cc (XX−1,YY , ZZ ) ∗z+ee (XX−1,YY , ZZ ) ) ) ;

270 k_1=F_tr ( t_t1 (i ) , r_t1 (i ) ) ;

271 k_2=F_tr ( t_t1 (i ) +0.5∗step , r_t1 (i ) +0.5∗step∗k_1 ) ;

272 k_3=F_tr ( ( t_t1 (i ) +0.5∗step ) , ( r_t1 (i ) +0.5∗step∗←↩

k_2 ) ) ;

273 k_4=F_tr ( ( t_t1 (i )+step ) , ( r_t1 (i )+k_3∗step ) ) ;

274 r_t1 (i+1)=r_t1 (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4 ) ∗←↩

step ; % main equat ion

275 kk_1=F_tz ( t_t1 (i ) , z_t1 (i ) ) ;

276 kk_2=F_tz ( t_t1 (i ) +0.5∗step , z_t1 (i ) +0.5∗step∗kk_1←↩

) ;

277 kk_3=F_tz ( ( t_t1 (i ) +0.5∗step ) , ( z_t1 (i ) +0.5∗step∗←↩

kk_2 ) ) ;

278 kk_4=F_tz ( ( t_t1 (i )+step ) , ( z_t1 (i )+kk_3∗step ) ) ;

279 z_t1 (i+1)=z_t1 (i ) +(1/6) ∗( kk_1+2∗kk_2+2∗kk_3+kk_4←↩

) ∗step ; % main equat ion

280 end

281 Rd=r_t1/Rw ;

282 %check i f Rd or Z out o f g r i d block , i f out , i gno r e ←↩

t h i s s t r eaml ine

283 %i f not out c a l c u l a t e the l ength o f t h i s s t r eaml ine
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284 i f any (Rd<RD (XX−1)−1E−4) | | any (Rd>RD (XX )+1E−4) | | any (←↩

z_t1<dz (ZZ )−zz ) | | any (z_t1>dz (ZZ+1)+zz ) | | i s r e a l (←↩

Rd )==0|| i s r e a l ( z_t1 )==0

285 r_t1 =[ ] ; t_t1 =[ ] ; z_t1 =[ ] ;

286 e l s e

287 x=Rd∗Rw .∗ cos ( t_t1 ) ;

288 y=Rd∗Rw .∗ s i n ( t_t1 ) ;

289 length_t1=0;

290 f o r i=1:19

291 length_t1=length_t1+((x (i+1)−x (i ) )^2+(y (i←↩

+1)−y (i ) )^2+(z_t1 (i+1)−z_t1 (i ) ) ^2) ^0 . 5 ;

292 end

293 dt_t1=((thin−tn (YY ) ) /19) . ∗ ( ( Rd ( 1 : 1 9 ) ∗Rw+Rd←↩

( 2 : 2 0 ) ∗Rw ) /2) . / ( Kt (XX−1,YY , ZZ ) . ∗ ( aa (XX−1,YY←↩

, ZZ ) . ∗ . . .

294 ( ( ( r_t1 ( 1 : 1 9 ) )+(r_t1 ( 2 : 2 0 ) ) ) /2) . ∗ ( ( z_t1 ( 1 : 1 9 )+z_t1←↩

( 2 : 2 0 ) ) /2)+bb (XX−1,YY , ZZ ) . ∗ ( ( ( r_t1 ( 1 : 1 9 ) )+(r_t1←↩

( 2 : 2 0 ) ) ) /2) . . .

295 +cc (XX−1,YY , ZZ ) . ∗ ( ( z_t1 ( 1 : 1 9 )+z_t1 ( 2 : 2 0 ) ) /2)+ee (←↩

XX−1,YY , ZZ ) ) ) ;

296 T_t1=sum( dt_t1 ) ;

297 end

298 e l s e

299 r_t1 =[ ] ; t_t1 =[ ] ; z_t1 =[ ] ;

300 end

301 i f abs (tn (YY+1)−thin )>10e−5;
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302 step=(tn (YY+1)−thin ) /19 ; % Exit at tn (YY+1)

303 t_t2=thin : step : tn (YY+1) ; % upper and lower ←↩

l im i t a t i o n f o r theta

304 r_t2=ze ro s (1 , l ength ( t_t2 ) ) ;

305 z_t2=ze ro s (1 , l ength ( t_t2 ) ) ;

306 r_t2 (1 )=RDin∗Rw ; z_t2 (1 )=zin ; % i n i t i a l c ond i t i on

307 f o r i=1:( l ength ( t_t2 )−1) % c a l c u l a t i o n loop

308 F_tr=@ (t , lrd ) kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗←↩

z_t2 (i ) ∗t+bb (XX−1,YY , ZZ ) ∗t+dd (XX−1,YY , ZZ ) ∗←↩

z_t2 (i )+ff (XX−1,YY , ZZ ) ) / . . .

309 (kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z_t2 (i ) ∗ l og←↩

( lrd/Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( lrd/Rw )+cc (←↩

XX−1,YY , ZZ ) ∗z_t2 (i )+ee (XX−1,YY , ZZ ) ) ) ; ←↩

% change the func t i on as you d e s i r e

310 F_tz=@ (t , z ) kz (XX−1,YY , ZZ ) ∗r_t2 (i ) ∗(aa (XX−1,YY ,←↩

ZZ ) ∗t∗ l og ( r_t2 (i ) /Rw )+cc (XX−1,YY , ZZ ) ∗t+dd (XX←↩

−1,YY , ZZ ) ∗ l og ( r_t2 (i ) /Rw )+gg (XX−1,YY , ZZ ) ) / . . .

311 (kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗ l og ( r_t2 (←↩

i ) /Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( r_t2 (i ) /Rw )+cc←↩

(XX−1,YY , ZZ ) ∗z+ee (XX−1,YY , ZZ ) ) ) ;

312 k_1=F_tr ( t_t2 (i ) , r_t2 (i ) ) ;

313 k_2=F_tr ( t_t2 (i ) +0.5∗step , r_t2 (i ) +0.5∗step∗k_1 ) ;

314 k_3=F_tr ( ( t_t2 (i ) +0.5∗step ) , ( r_t2 (i ) +0.5∗step∗←↩

k_2 ) ) ;

315 k_4=F_tr ( ( t_t2 (i )+step ) , ( r_t2 (i )+k_3∗step ) ) ;
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316 r_t2 (i+1)=r_t2 (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4 ) ∗←↩

step ; % main equat ion

317 kk_1=F_tz ( t_t2 (i ) , z_t2 (i ) ) ;

318 kk_2=F_tz ( t_t2 (i ) +0.5∗step , z_t2 (i ) +0.5∗step∗kk_1←↩

) ;

319 kk_3=F_tz ( ( t_t2 (i ) +0.5∗step ) , ( z_t2 (i ) +0.5∗step∗←↩

kk_2 ) ) ;

320 kk_4=F_tz ( ( t_t2 (i )+step ) , ( z_t2 (i )+kk_3∗step ) ) ;

321 z_t2 (i+1)=z_t2 (i ) +(1/6) ∗( kk_1+2∗kk_2+2∗kk_3+kk_4←↩

) ∗step ; % main equat ion

322 end

323 Rd=r_t2/Rw ;

324 %check i f Rd or Z out o f g r i d block , i f out , i gno r e ←↩

t h i s s t r eaml ine

325 %i f not out c a l c u l a t e the l ength o f t h i s ←↩

s t r eaml ine

326 i f any (Rd<RD (XX−1)−1E−4) | | any (Rd>RD (XX )+1E−4) | | any←↩

(z_t2<dz (ZZ )−1E−4) | | any (z_t2>dz (ZZ+1)+1E−4) | |←↩

i s r e a l (Rd )==0|| i s r e a l ( z_t2 )==0

327 r_t2 =[ ] ; t_t2 =[ ] ; z_t2 =[ ] ;

328 e l s e

329 x=Rd .∗ Rw .∗ cos ( t_t2 ) ;

330 y=Rd .∗ Rw .∗ s i n ( t_t2 ) ;

331 length_t2=0;

332 f o r i=1:19
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333 length_t2=length_t2+((x (i+1)−x (i ) )^2+(y (i←↩

+1)−y (i ) )^2+(z_t2 (i+1)−z_t2 (i ) ) ^2) ^0 . 5 ;

334 end

335 dt_t2=((tn (YY+1)−thin ) /19) . ∗ ( ( Rd ( 1 : 1 9 ) ∗Rw+Rd←↩

( 2 : 2 0 ) ∗Rw ) /2) . / ( Kt (XX−1,YY , ZZ ) . ∗ ( aa (XX−1,YY ,←↩

ZZ ) . ∗ . . .

336 ( ( ( r_t2 ( 1 : 1 9 ) )+(r_t2 ( 2 : 2 0 ) ) ) /2) . ∗ ( ( z_t2 ( 1 : 1 9 )+z_t2←↩

( 2 : 2 0 ) ) /2)+bb (XX−1,YY , ZZ ) . ∗ ( ( ( r_t2 ( 1 : 1 9 ) )+(r_t2←↩

( 2 : 2 0 ) ) ) /2) . . .

337 +cc (XX−1,YY , ZZ ) . ∗ ( ( z_t2 ( 1 : 1 9 )+z_t2 ( 2 : 2 0 ) ) /2)+ee (←↩

XX−1,YY , ZZ ) ) ) ;

338 T_t2=sum( dt_t2 ) ;

339 end

340 e l s e

341 r_t2 =[ ] ; t_t2 =[ ] ; z_t2 =[ ] ;

342 end

343 i f isempty ( r_t1 )==1&& isempty ( r_t2 )==1 % both ←↩

empty

344 lrd_t =[ ] ; t_t =[ ] ; z_t =[ ] ;

345 end

346 i f isempty ( r_t1 )==1&& isempty ( r_t2 )==0 % t1 empty

347 lrd_t=r_t2 ; t_t=t_t2 ; z_t=z_t2 ; T_t=T_t2 ; XXT_out=←↩

XX ; YYT_out=YY+1;ZZT_out=ZZ ;

348 end

349 i f isempty ( r_t2 )==1&& isempty ( r_t1 )==0 % t2 empty
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350 lrd_t=r_t1 ; t_t=t_t1 ; z_t=z_t1 ; T_t=T_t1 ; XXT_out=←↩

XX ; YYT_out=YY−1;ZZT_out=ZZ ;

351 end

352 i f isempty ( r_t1 )==0&& isempty ( r_t2 )==0 % both not ←↩

empty

353 i f T_t1<T_t2

354 lrd_t=r_t1 ; t_t=t_t1 ; z_t=z_t1 ; T_t=T_t1 ;←↩

XXT_out=XX ; YYT_out=YY−1;ZZT_out=ZZ ;

355 e l s e

356 lrd_t=r_t2 ; t_t=t_t2 ; z_t=z_t2 ; T_t=T_t2 ;←↩

XXT_out=XX ; YYT_out=YY+1;ZZT_out=ZZ ;

357 end

358 end

359 e l s e

360 lrd_t =[ ] ; t_t =[ ] ; z_t =[ ] ;

361 end

362 % Use z as paramete r i za t i on to t r a c e s t r eaml ine

363 i f abs (aa (XX−1,YY , ZZ ) ∗ l og ( RDin ) ∗thin+cc (XX−1,YY , ZZ ) ∗←↩

thin+dd (XX−1,YY , ZZ ) ∗ l og ( RDin )+gg (XX−1,YY , ZZ ) )>zz ;

364 i f abs (dz (ZZ+1)−zin )>=10e−6

365 step=(dz (ZZ+1)−zin ) /19 ; % out from dz (ZZ+1)

366 z_z1=zin : step : dz (ZZ+1) ; % upper and lower ←↩

l im i t a t i o n f o r l r d

367 t_z1=ze ro s (1 , l ength ( z_z1 ) ) ;

368 r_z1=ze ro s (1 , l ength ( z_z1 ) ) ;

369 t_z1 (1 )=thin ; r_z1 (1 )=RDin∗Rw ; % i n i t i a l c ond i t i on
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370 f o r i=1:( l ength ( z_z1 )−1) % c a l c u l a t i o n loop

371 F_tz=@ (z , t ) kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗←↩

l og ( r_z1 (i ) /Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( r_z1 (i ) /←↩

Rw )+cc (XX−1,YY , ZZ ) ∗z+ee (XX−1,YY , ZZ ) ) / . . .

372 (kz (XX−1,YY , ZZ ) ∗r_z1 (i ) ∗(aa (XX−1,YY , ZZ ) ∗t∗←↩

l og ( r_z1 (i ) /Rw )+cc (XX−1,YY , ZZ ) ∗t+dd (XX←↩

−1,YY , ZZ ) ∗ l og ( r_z1 (i ) /Rw )+gg (XX−1,YY , ZZ )←↩

) ) ; % change the func t i on as you ←↩

d e s i r e

373 F_zr=@ (z , lrd ) kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗←↩

t_z1 (i )+bb (XX−1,YY , ZZ ) ∗t_z1 (i )+dd (XX−1,YY , ZZ←↩

) ∗z+ff (XX−1,YY , ZZ ) ) / . . .

374 (kz (XX−1,YY , ZZ ) ∗lrd ∗(aa (XX−1,YY , ZZ ) ∗t_z1 (i )←↩

∗ l og ( lrd/Rw )+cc (XX−1,YY , ZZ ) ∗t_z1 (i )+dd (←↩

XX−1,YY , ZZ ) ∗ l og ( lrd/Rw )+gg (XX−1,YY , ZZ ) ) )←↩

;

375 k_1=F_tz ( z_z1 (i ) , t_z1 (i ) ) ;

376 k_2=F_tz ( z_z1 (i ) +0.5∗step , t_z1 (i ) +0.5∗step∗k_1 )←↩

;

377 k_3=F_tz ( ( z_z1 (i ) +0.5∗step ) , ( t_z1 (i ) +0.5∗step∗←↩

k_2 ) ) ;

378 k_4=F_tz ( ( z_z1 (i )+step ) , ( t_z1 (i )+k_3∗step ) ) ;

379 t_z1 (i+1)=t_z1 (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4 ) ∗←↩

step ; % main equat ion

380 kk_1=F_zr ( z_z1 (i ) , r_z1 (i ) ) ;
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381 kk_2=F_zr ( z_z1 (i ) +0.5∗step , r_z1 (i ) +0.5∗step∗←↩

kk_1 ) ;

382 kk_3=F_zr ( ( z_z1 (i ) +0.5∗step ) , ( r_z1 (i ) +0.5∗step∗←↩

kk_2 ) ) ;

383 kk_4=F_zr ( ( z_z1 (i )+step ) , ( r_z1 (i )+kk_3∗step ) ) ;

384 r_z1 (i+1)=r_z1 (i ) +(1/6) ∗( kk_1+2∗kk_2+2∗kk_3+←↩

kk_4 ) ∗step ; % main equat ion

385 end

386 Rd=r_z1/Rw ;

387 %check i f Rd or Z out o f g r i d block , i f out , i gno r e ←↩

t h i s s t r eaml ine

388 %i f not out c a l c u l a t e the l ength o f t h i s ←↩

s t r eaml ine

389 i f any (Rd<RD (XX−1)−zz ) | | any (Rd>RD (XX )+zz ) | | any (←↩

t_z1<tn (YY )−zz ) | | any (t_z1>tn (YY+1)+zz ) | | i s r e a l (←↩

Rd )==0|| i s r e a l ( t_z1 )==0

390 r_z1 =[ ] ; t_z1 =[ ] ; z_z1 =[ ] ;

391 e l s e

392 x=Rd .∗ Rw .∗ cos ( t_z1 ) ;

393 y=Rd .∗ Rw .∗ s i n ( t_z1 ) ;

394 length_z1=0;

395 f o r i=1:19

396 length_z1=length_z1+((x (i+1)−x (i ) )^2+(y (i+1)−←↩

y (i ) )^2+(z_z1 (i+1)−z_z1 (i ) ) ^2) ^0 . 5 ;

397 end

318



398 dt_z1=((dz (ZZ+1)−zin ) /19) . / ( Kz (XX−1,YY , ZZ ) . ∗ ( aa←↩

(XX−1,YY , ZZ ) . ∗ ( ( t_z1 ( 1 : 1 9 )+t_z1 ( 2 : 2 0 ) ) /2) . . .

399 . ∗ ( ( ( r_z1 ( 1 : 1 9 ) )+(r_z1 ( 2 : 2 0 ) ) ) /2)+cc (XX−1,YY , ZZ )←↩

. ∗ ( ( t_z1 ( 1 : 1 9 )+t_z1 ( 2 : 2 0 ) ) /2) . . .

400 +dd (XX−1,YY , ZZ ) . ∗ ( ( ( r_z1 ( 1 : 1 9 ) )+(r_z1 ( 2 : 2 0 ) ) ) /2)+←↩

gg (XX−1,YY , ZZ ) ) ) ;

401 T_z1=sum( dt_z1 ) ;

402 end

403 e l s e

404 r_z1 =[ ] ; t_z1 =[ ] ; z_z1 =[ ] ;

405 end

406 i f abs (zin−dz (ZZ ) )>=10e−6

407 step=−(zin−dz (ZZ ) ) /19 ; % out from dz (ZZ)

408 z_z2=zin : step : dz (ZZ ) ; % upper and lower l im i t a t i o n←↩

f o r l r d

409 t_z2=ze ro s (1 , l ength ( z_z2 ) ) ;

410 r_z2=ze ro s (1 , l ength ( z_z2 ) ) ;

411 t_z2 (1 )=thin ; r_z2 (1 )=RDin∗Rw ; % i n i t i a l c ond i t i on

412 f o r i=1:( l ength ( z_z2 )−1) % c a l c u l a t i o n loop

413 F_tz=@ (z , t ) kt (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗ l og←↩

( r_z2 (i ) /Rw )+bb (XX−1,YY , ZZ ) ∗ l og ( r_z2 (i ) /Rw )+←↩

cc (XX−1,YY , ZZ ) ∗z+ee (XX−1,YY , ZZ ) ) / . . .

414 (kz (XX−1,YY , ZZ ) ∗r_z2 (i ) ∗(aa (XX−1,YY , ZZ ) ∗t∗←↩

l og ( r_z2 (i ) /Rw )+cc (XX−1,YY , ZZ ) ∗t+dd (XX←↩

−1,YY , ZZ ) ∗ l og ( r_z2 (i ) /Rw )+gg (XX−1,YY , ZZ )←↩

) ) ; % change the func t i on as you ←↩
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d e s i r e

415 F_zr=@ (z , lrd ) kr (XX−1,YY , ZZ ) ∗(aa (XX−1,YY , ZZ ) ∗z∗←↩

t_z2 (i )+bb (XX−1,YY , ZZ ) ∗t_z2 (i )+dd (XX−1,YY , ZZ )←↩

∗z+ff (XX−1,YY , ZZ ) ) / . . .

416 (kz (XX−1,YY , ZZ ) ∗lrd ∗(aa (XX−1,YY , ZZ ) ∗t_z2 (i )←↩

∗ l og ( lrd/Rw )+cc (XX−1,YY , ZZ ) ∗t_z2 (i )+dd (←↩

XX−1,YY , ZZ ) ∗ l og ( lrd/Rw )+gg (XX−1,YY , ZZ ) ) )←↩

;

417 k_1=F_tz ( z_z2 (i ) , t_z2 (i ) ) ;

418 k_2=F_tz ( z_z2 (i ) +0.5∗step , t_z2 (i ) +0.5∗step∗k_1 ) ;

419 k_3=F_tz ( ( z_z2 (i ) +0.5∗step ) , ( t_z2 (i ) +0.5∗step∗←↩

k_2 ) ) ;

420 k_4=F_tz ( ( z_z2 (i )+step ) , ( t_z2 (i )+k_3∗step ) ) ;

421 t_z2 (i+1)=t_z2 (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4 ) ∗←↩

step ; % main equat ion

422 kk_1=F_zr ( z_z2 (i ) , r_z2 (i ) ) ;

423 kk_2=F_zr ( z_z2 (i ) +0.5∗step , r_z2 (i ) +0.5∗step∗kk_1←↩

) ;

424 kk_3=F_zr ( ( z_z2 (i ) +0.5∗step ) , ( r_z2 (i ) +0.5∗step∗←↩

kk_2 ) ) ;

425 kk_4=F_zr ( ( z_z2 (i )+step ) , ( r_z2 (i )+kk_3∗step ) ) ;

426 r_z2 (i+1)=r_z2 (i ) +(1/6) ∗( kk_1+2∗kk_2+2∗kk_3+kk_4←↩

) ∗step ; % main equat ion

427 end

428 Rd=r_z2/Rw ;
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429 %check i f Rd or Z out o f g r i d block , i f out , i gno r e ←↩

t h i s s t r eaml ine

430 %i f not out c a l c u l a t e the l ength o f t h i s ←↩

s t r eaml ine

431 i f any (Rd<RD (XX−1)−zz ) | | any (Rd>RD (XX )+zz ) | | any (←↩

t_z2<tn (YY )−zz ) | | any (t_z2>tn (YY+1)+zz ) | | i s r e a l (←↩

Rd )==0|| i s r e a l ( t_z2 )==0

432 r_z2 =[ ] ; t_z2 =[ ] ; z_z2 =[ ] ;

433 e l s e

434 x=Rd .∗ Rw .∗ cos ( t_z2 ) ;

435 y=Rd .∗ Rw .∗ s i n ( t_z2 ) ;

436 length_z2=0;

437 f o r i=1:19

438 length_z2=length_z2+((x (i+1)−x (i ) )^2+(y (i+1)−←↩

y (i ) )^2+(z_z2 (i+1)−z_z2 (i ) ) ^2) ^0 . 5 ;

439 end

440 dt_z2=((zin−dz (ZZ ) ) /19) . / ( Kz (XX−1,YY , ZZ ) . ∗ ( aa (←↩

XX−1,YY , ZZ ) . ∗ ( ( t_z2 ( 1 : 1 9 )+t_z2 ( 2 : 2 0 ) ) /2) . . .

441 . ∗ ( ( ( r_z2 ( 1 : 1 9 ) )+(r_z2 ( 2 : 2 0 ) ) ) /2)+cc (XX−1,YY , ZZ )←↩

. ∗ ( ( t_z2 ( 1 : 1 9 )+t_z2 ( 2 : 2 0 ) ) /2) . . .

442 +dd (XX−1,YY , ZZ ) . ∗ ( ( ( r_z2 ( 1 : 1 9 ) )+(r_z2 ( 2 : 2 0 ) ) ) /2)+←↩

gg (XX−1,YY , ZZ ) ) ) ;

443 T_z2=sum( dt_z2 ) ;

444 end

445 e l s e

446 r_z2 =[ ] ; t_z2 =[ ] ; z_z2 =[ ] ;
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447 end

448 i f isempty ( r_z1 )==1&& isempty ( r_z2 )==1 % both empty

449 lrd_z =[ ] ; t_z =[ ] ; z_z =[ ] ;

450 end

451 i f isempty ( r_z1 )==1&& isempty ( r_z2 )==0 % Z1 empty

452 lrd_z=r_z2 ; t_z=t_z2 ; z_z=z_z2 ; T_z=T_z2 ; XXZ_out=XX ;←↩

YYZ_out=YY ; ZZZ_out=ZZ−1;

453 end

454 i f isempty ( r_z2 )==1&& isempty ( r_z1 )==0 % Z2 empty

455 lrd_z=r_z1 ; t_z=t_z1 ; z_z=z_z1 ; T_z=T_z1 ; XXZ_out=XX ;←↩

YYZ_out=YY ; ZZZ_out=ZZ+1;

456 end

457 i f isempty ( r_z1 )==0&& isempty ( r_z2 )==0 % both not ←↩

empty

458 i f T_z1<T_z2

459 lrd_z=r_z1 ; t_z=t_z1 ; z_z=z_z1 ; T_z=T_z1 ;←↩

XXZ_out=XX ; YYZ_out=YY ; ZZZ_out=ZZ+1;

460 e l s e

461 lrd_z=r_z2 ; t_z=t_z2 ; z_z=z_z2 ; T_z=T_z2 ;←↩

XXZ_out=XX ; YYZ_out=YY ; ZZZ_out=ZZ−1;

462 end

463 end

464 e l s e

465 lrd_z =[ ] ; t_z =[ ] ; z_z =[ ] ;

466 end

467 % f i nd r e a l s t r eaml ine among r , t , z
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468 i f isempty ( r_r )==1&& isempty ( lrd_t )==1&& isempty ( lrd_z )←↩

==0&&i s r e a l ( lrd_z )==1

469 lrd=lrd_z ; t=t_z ; z=z_z ; XX_out=XXZ_out ; YY_out=YYZ_out←↩

; ZZ_out=ZZZ_out ;

470 end

471 i f isempty ( r_r )==1&& isempty ( lrd_t )==0&& isempty ( lrd_z )←↩

==1&&i s r e a l ( lrd_t )==1

472 lrd=lrd_t ; t=t_t ; z=z_t ; XX_out=XXT_out ; YY_out=YYT_out←↩

; ZZ_out=ZZT_out ;

473 end

474 i f isempty ( r_r )==0&& isempty ( lrd_t )==1&& isempty ( lrd_z )←↩

==1&&i s r e a l ( r_r )==1

475 lrd=r_r ; t=t_r ; z=z_r ; XX_out=XXR_out ; YY_out=YYR_out ;←↩

ZZ_out=ZZR_out ;

476 end

477 i f isempty ( r_r )==1&& isempty ( lrd_t )==0&& isempty ( lrd_z )←↩

==0

478 i f T_t<T_z

479 lrd=lrd_t ; t=t_t ; z=z_t ; XX_out=XXT_out ; YY_out←↩

=YYT_out ; ZZ_out=ZZT_out ;

480 e l s e

481 lrd=lrd_z ; t=t_z ; z=z_z ; XX_out=XXZ_out ; YY_out←↩

=YYZ_out ; ZZ_out=ZZZ_out ;

482 end

483 end
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484 i f isempty ( r_r )==0&& isempty ( lrd_t )==0&& isempty ( lrd_z )←↩

==1

485 i f T_t<T_r

486 lrd=lrd_t ; t=t_t ; z=z_t ; XX_out=XXT_out ; YY_out←↩

=YYT_out ; ZZ_out=ZZT_out ;

487 e l s e

488 lrd=r_r ; t=t_r ; z=z_r ; XX_out=XXR_out ; YY_out=←↩

YYR_out ; ZZ_out=ZZR_out ;

489 end

490 end

491 i f isempty ( r_r )==0&& isempty ( lrd_t )==1&& isempty ( lrd_z )←↩

==0

492 i f T_z<T_r

493 lrd=lrd_z ; t=t_z ; z=z_z ; XX_out=XXZ_out ; YY_out←↩

=YYZ_out ; ZZ_out=ZZZ_out ;

494 e l s e

495 lrd=r_r ; t=t_r ; z=z_r ; XX_out=XXR_out ; YY_out=←↩

YYR_out ; ZZ_out=ZZR_out ;

496 end

497 end

498 i f isempty ( r_r )==0&& isempty ( lrd_t )==0&& isempty ( lrd_z )←↩

==0

499 l=[T_r T_t T_z ] ;

500 x=f ind (l==min(l ) ) ;

501 i f x==1
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502 lrd=r_r ; t=t_r ; z=z_r ; XX_out=XXR_out ; YY_out=YYR_out←↩

; ZZ_out=ZZR_out ;

503 end

504 i f x==2

505 lrd=lrd_t ; t=t_t ; z=z_t ; XX_out=XXT_out ; YY_out=←↩

YYT_out ; ZZ_out=ZZT_out ;

506 end

507 i f x==3

508 lrd=lrd_z ; t=t_z ; z=z_z ; XX_out=XXZ_out ; YY_out=←↩

YYZ_out ; ZZ_out=ZZZ_out ;

509 end

510 end

511 i f isempty ( t_r )==1&& isempty ( t_t )==1&& isempty ( t_z )←↩

==1&&zin==0.02||zin==0.18

512 XX_out=XX−1;YY_out=YY ; ZZ_out=ZZ ;

513 end

514 Rd=lrd/Rw ;

515 i f abs (RDin−Rd (20) )<=zz

516 RDout=Rd (1 ) ; tout=t (1 ) ; zout=z (1 ) ;

517 end

518 i f abs (RDin−Rd (1 ) )<=zz

519 RDout=Rd (20) ; tout=t (20) ; zout=z (20) ;

520 end

521 % Plot s t r eaml ine

522 x=Rd .∗ Rw .∗ cos (t ) ;

523 y=Rd .∗ Rw .∗ s i n (t ) ;
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524 p lo t3 (x , y , z , ' r− ' )

525 t1=2∗Tn (1 )−t ;

526 p lo t3 (Rd .∗ Rw .∗ cos (t1 ) ,Rd .∗ Rw .∗ s i n (t1 ) ,z , ' r− ' )

527 hold on

528 % Calcu la te new gr id block coo rd ina t e s

529 thin=tout ;

530 zin=zout ;

531 RDin=RDout ;

532 XX=XX_out ;

533 ZZ=ZZ_out ;

534 YY=YY_out ;

535 i f YY==Nt+1;

536 YY=1;

537 end

538 i f YY==0

539 YY=Nt ;

540 end

541 i f abs (thin−0)<=zz

542 thin=2∗pi ;

543 YY=Nt ;

544 end

545 i f (XX<=2&& thin>=tn (1 )&&thin<=tn (2 )&&ZZ==2) | | ( XX<=2&& ←↩

thin>=tn (1 )&&thin<=tn (2 )&&ZZ==3)

546 XX=1;

547 end

548 end
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549 end

550 end

551 end

E. 5 Two-Dimensional Stream Tube Simulator

1 c l e a r a l l

2 % Def ine block no . f o r R and theta d i r e c t i o n

3 N=50;J=25;M=N∗J ;

4 % Def ine we l lbo r e rad iu s =0.0078m, r e s e r v o i r rad iu s =0.15024m

5 Re=0.3048/2;Rw=0.0157/2;

6 % Def ine oundary Pre s su re s

7 Pw=117210.9; Pe=98595.0;

8 % Def ine the block pe r emab i l i t y and he t e r ogene i t y block ←↩

peremab i l i t y

9 K_block=1.58e−12;K_H=1.08e−12;

10 K=K_block .∗ ones (N , J , 3 ) ;

11 % Def ine he t e r ogene i t y b l i c k number

12 HENR1=42;HENR2=37;HENT1=1;HENT2=1;

13 K ( HENR2 : HENR1 , HENT2 : HENT1 , 1 )=K_H ; K ( HENR2 : HENR1 , HENT2 : HENT1←↩

, 2 )=K_H ;

14 % Def ine c r i t i c a l s a tu r a t i on po int

15 Fluid . swc=0.3; Fluid . sor=0.22;

16 uw=1e−3;uo=1.19e−3;%f l u i d v i s c o s i t y cp
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17 %Def ine Corey Model c o e f f i c i e n t s

18 aw=0.21; ao=0.48;

19 s=Fluid . swc∗ones (N , J ) ;

20 S=(s−Fluid . swc ) /(1−Fluid . swc−Fluid . sor ) ; %S

21 Mw=aw∗S .^2/ uw ; Mo=ao∗(1−S ) .^2/ uo ; Mt=Mw+Mo ;% Total mob i l i ty

22 R=0:1:N−1;

23 ro=Rw ∗(Re/Rw ) . ^ ( R . / ( N−1) ) ;% Ca lcu la te node r a d i i

24 rb=ones (1 , N+1) ;

25 rb ( 1 , 2 : N )=(ro ( : , 2 : N ) .∗ ro ( : , 1 : N−1) ) . ^ 0 . 5 ;% Ca lcu la te ←↩

boundary r a d i i

26 rb ( 1 , [ 1 N+1])=[Rw^2/rb ( 1 , 2 ) Re^2/rb (1 , N ) ] ;

27 Ro=repmat (ro ' , 1 , J ) ; Rb=repmat (rb ' , 1 , J ) ; % Ro , Rb Radius f o r ←↩

nodes f o r a l l g r i d b locks

28 Tn=l i n s p a c e (2∗ pi /(2∗J ) ,2∗ pi−2∗pi /(2∗J ) ,J ) ; % Theta Nodes ←↩

ang le

29 ttn=repmat (Tn ' , 1 , N ) ' ;% Theta Nodes ang le f o r a l l g r i d ←↩

b locks

30 Dn=360/J∗ pi /180 ;% Def ine theta ang le

31 % Calcu la te Kr , Kt from the p r i n c i p l e pe rmeab i l i t y

32 Kr=(K ( : , : , 1 ) . ∗ ( cos ( ttn ) ) .^2+K ( : , : , 2 ) . ∗ ( s i n ( ttn ) ) .^2 ) ;

33 Kt=(K ( : , : , 2 ) . ∗ ( cos ( ttn ) ) .^2+K ( : , : , 1 ) . ∗ ( s i n ( ttn ) ) .^2 ) ;

34 Mblock=Kt .∗ Mt ;% Block Mobi l i ty

35 Mblockr=Kr .∗ Mt ;

36 Mbr=ones (N+1,J ) ;

37 Mbr ( [ 1 N+1] , : )=Mblockr ( [ 1 N ] , : ) ;% Upscaled mob i l i ty at r ←↩

d i r e c t i o n
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38 Mbr ( 2 : N , : )=log (Ro ( 2 : N , : ) . / Ro ( 1 : N−1 , : ) ) . / ( ( 1 . / Mblockr ( 1 : N←↩

−1 , : ) .∗ l og (Rb ( 2 : N , : ) . / Ro ( 1 : N−1 , : ) ) ) +(1./Mblockr ( 2 : N , : ) .∗←↩

l og (Ro ( 2 : N , : ) . / Rb ( 2 : N , : ) ) ) ) ;

39 Mbt=ones (N , J ) ;% Upscaled mob i l i ty at theta d i r e c t i o n

40 Mbt ( : , 1 : J−1)=2.∗Mblock ( : , 1 : J−1) .∗ Mblock ( : , 2 : J ) . / ( Mblock←↩

( : , 1 : J−1)+Mblock ( : , 2 : J ) ) ;

41 Mbt ( : , J )=2.∗Mblock ( : , 1 ) .∗ Mblock ( : , J ) . / ( Mblock ( : , 1 )+Mblock←↩

( : , J ) ) ;% Last column i s Mobi l i ty from the l a s t to 1

42 Tr1=Rb ( 1 , : ) .∗ Mbr ( 1 , : ) . / ( Ro ( 1 , : ) . ∗ ( Rb ( 2 , : )−Rb ( 1 , : ) ) . ∗ ( Ro←↩

( 1 , : )−Rb ( 1 , : ) ) ) ;

43 Trb=Rb ( 2 : N , : ) .∗ Mbr ( 2 : N , : ) . / ( Ro ( 2 : N , : ) . ∗ ( Rb ( 3 : N+1 , :)−Rb ( 2 : N←↩

, : ) ) . ∗ ( Ro ( 2 : N , : )−Ro ( 1 : N−1 , : ) ) ) ;

44 % Calcu la te the t r a n sm i s i b i l i t y c o e f f i e c i n t s ( a , b , c , d , e ) in ←↩

d i f f e r e n t d i r e c t i o n s

45 e ( 1 , : )=Rb ( 2 , : ) .∗ Mbr ( 2 , : ) . / ( Ro ( 1 , : ) . ∗ ( Rb ( 2 , : )−Rw ) . ∗ ( Ro ( 2 , : )−←↩

Ro ( 1 , : ) ) ) ;

46 e ( 2 : N−1 , : )=Rb ( 3 : N , : ) .∗ Mbr ( 3 : N , : ) . / ( Ro ( 2 : N−1 , : ) . ∗ ( Rb ( 3 : N , : )−←↩

Rb ( 2 : N−1 , : ) ) . ∗ ( Ro ( 3 : N , : )−Ro ( 2 : N−1 , : ) ) ) ;

47 e (N , : )=Rb (N+1 , :) .∗ Mbr(1+N , : ) . / ( Ro (N , : ) . ∗ ( Rb (N+1 , :)−Rb (N , : ) )←↩

. ∗ ( Rb (N+1 , :)−Ro (N , : ) ) ) ;

48 T=ze ro s (N , J−1) ; t=ze ro s (N , 1 ) ;

49 b=Mbt . / ( ( Ro . ^2 ) . ∗ ( Dn^2) ) ;

50 bo=[t b ( : , 1 : J−1) ] ; oob=[b ( : , J ) T ] ;%Ttbo=b ( 1 :N−1)

51 c=[Mbt ( : , J ) Mbt ( : , 1 : J−1) ] . / ( ( Ro . ^2 ) . ∗ ( Dn^2) ) ;

52 coo=[T c ( : , 1 ) ] ; oc=[c ( : , 2 : J ) t ] ;

53 d=[Tr1 ; Trb ] ;
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54 Tre=[ ze ro s (1 , J ) ; e ( 1 : N−1 , : ) ] ;

55 a=−b−c−d−e ;

56 am=[ ze ro s (N , 1 ) a ( : , 2 : J ) ] ;

57 x1=reshape ( [ Trb ; z e r o s (1 , J ) ] ' , M , 1 ) ; x2=reshape (Tre ' , M , 1 ) ;

58 y1=reshape (oc ' , M , 1 ) ; y2=reshape (bo ' , M , 1 ) ;

59 y10=reshape (oob ' , M , 1 ) ; y20=reshape (coo ' , M , 1 ) ;

60 AA=reshape (a ' , M , 1 ) ;

61 DiagVecs=[x1 , y10 , y1 , AA , y2 , y20 , x2 ] ;

62 DiagIndx =[−J,−J+1 ,−1 ,0 ,1 ,J−1,J ] ;

63 % Co e f f i c i e n t matrix A f o r the p r e s su r e c a l c u l a t i o n

64 A = spd iags ( DiagVecs , DiagIndx , M , M ) ;

65 % Def ine boundary cond i t i on s

66 f o r i=1:J

67 A (i , : ) =0;

68 A (i , i )=1;

69 A (M−i+1 , :)=0;

70 A (M−i+1,M−i+1)=1;

71 end

72 D=ze ro s (M , 1 ) ;

73 D ( 1 : J )=Pw ;

74 D (M−J+1:M )=Pe ;

75 u = A\D ;

76 p=reshape (u , J , N ) ; P=p ' ;% Find the pe rmeab i l i t y from pre s su r e←↩

node to PO

77 RDo=log (Ro/Rw ) ; RDb=log (Rb/Rw ) ; d1=RDo ( 2 : N , : )−RDb ( 2 : N , : ) ;
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78 Kr2=Kr ( 2 : N , : ) ; Kr1=[Kr ( 2 : N , J ) Kr ( 2 : N , 1 : J−1) ] ; Kr4=[Kr ( 1 : N−1,J←↩

) Kr ( 1 : N−1 ,1:J−1) ] ; Kr3=Kr ( 1 : N−1 , : ) ;

79 Kt2=Kt ( 2 : N , : ) ; Kt1=[Kt ( 2 : N , J ) Kt ( 2 : N , 1 : J−1) ] ; Kt4=[Kt ( 1 : N−1,J←↩

) Kt ( 1 : N−1 ,1:J−1) ] ; Kt3=Kt ( 1 : N−1 , : ) ;

80 % Calcu la te p r e s su r e f o r h a l f l o ga r i thmi c po int in the ←↩

r a d i a l d i r e c t i o n

81 Ptij=(Kr ( 2 : N , : ) .∗ P ( 2 : N , : )+Kr ( 1 : N−1 , : ) .∗ P ( 1 : N−1 , : ) ) . / ( Kr ( 2 : N←↩

, : )+Kr ( 1 : N−1 , : ) ) ;

82 % Calcu la te p r e s su r e f o r h a l f d i s t ance po int in the angular←↩

d i r e c t i o n

83 KRP=P .∗ Kt ;

84 Prij=(KRP+[KRP ( : , J ) KRP ( : , 1 : J−1) ] ) . / ( Kt+[Kt ( : , J ) Kt ( : , 1 : J←↩

−1) ] ) ;

85 % Determination o f the corner p r e s su r e

86 P2=P ( 2 : N , : ) ; P1=[P ( 2 : N , J ) P ( 2 : N , 1 : J−1) ] ; P4=[P ( 1 : N−1,J ) P ( 1 : N←↩

−1 ,1:J−1) ] ; P3=P ( 1 : N−1 , : ) ;

87 P12=Prij ( 2 : N , : ) ; P14=[Ptij ( : , J ) Ptij ( : , 1 : J−1) ] ; P34=Prij ( 1 : N←↩

−1 , : ) ; P23=Ptij ;

88 f o r i=1:N−1

89 f o r j=1:J

90 PP=[P1 (i , j ) ; P2 (i , j ) ; P3 (i , j ) ; P4 (i , j ) ; P12 (i , j ) ;←↩

P12 (i , j ) ; . . .

91 P23 (i , j ) ; P23 (i , j ) ; P34 (i , j ) ; P34 (i , j ) ; P14 (i , j←↩

) ; P14 (i , j ) ; 0 ] ; %P=pre s su r e

92 mm=[Tn (1 ) ∗d1 ( 1 , 1 ) −Tn (1 ) −d1 ( 1 , 1 ) 0 0 0 0 0 0 0←↩

0 0 1 ; . . .
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93 0 0 0 −Tn (1 ) ∗d1 ( 1 , 1 ) Tn (1 ) −d1 ( 1 , 1 ) 0 0 0 0←↩

0 0 1 ; . . .

94 0 0 0 0 0 0 Tn (1 ) ∗d1 ( 1 , 1 ) Tn (1 ) d1 ( 1 , 1 ) 0 0←↩

0 1 ; . . .

95 0 0 0 0 0 0 0 0 0 −Tn (1 ) ∗d1 ( 1 , 1 ) −Tn (1 ) d1←↩

( 1 , 1 ) 1 ; . . .

96 0 0 −d1 ( 1 , 1 ) 0 0 0 0 0 0 0 0 0 1 ; . . .

97 0 0 0 0 0 −d1 ( 1 , 1 ) 0 0 0 0 0 0 1 ; . . .

98 0 0 0 0 Tn (1 ) 0 0 0 0 0 0 0 1 ; . . .

99 0 0 0 0 0 0 0 Tn (1 ) 0 0 0 0 1 ; . . .

100 0 0 0 0 0 0 0 0 d1 ( 1 , 1 ) 0 0 0 1 ; . . .

101 0 0 0 0 0 0 0 0 0 0 0 d1 ( 1 , 1 ) 1 ; . . .

102 0 −Tn (1 ) 0 0 0 0 0 0 0 0 0 0 1 ; . . .

103 0 0 0 0 0 0 0 0 0 0 −Tn (1 ) 0 1 ; . . .

104 −Kr1 (i , j ) ∗Tn (1 ) ^2/2+Kt1 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2←↩

Kt1 (i , j )∗(−d1 ( 1 , 1 ) ) Kr1 (i , j ) ∗Tn (1 ) . . .

105 Kr2 (i , j ) ∗Tn (1 ) ^2/2−Kt2 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2 ←↩

−Kt2 (i , j )∗(−d1 ( 1 , 1 ) ) Kr2 (i , j ) ∗Tn (1 ) . . .

106 −Kr3 (i , j ) ∗Tn (1 ) ^2/2+Kt3 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2←↩

Kt3 (i , j )∗(−d1 ( 1 , 1 ) ) −Kr3 (i , j ) ∗Tn (1 ) . . .

107 Kr4 (i , j ) ∗Tn (1 ) ^2/2−Kt4 (i , j )∗(−d1 ( 1 , 1 ) ) ^2/2 ←↩

−Kt4 (i , j )∗(−d1 ( 1 , 1 ) ) −Kr4 (i , j ) ∗Tn (1 ) 0 ] ;

108 Vec=mm\PP ;

109 po (i , j )=Vec (13) ;

110 end

111 f o r j=J
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112 end

113 end

114 % Rearrange the corner p r e s su r e to the corner po int ←↩

coo rd ina t e s

115 TO=l i n s p a c e (0 ,2∗ pi−2∗pi /(J ) ,J ) ;

116 tn=[TO 2∗ pi ] ;

117 po=[Prij ( 1 , : ) ; po ; Prij (N , : ) ] ;

118 po=[po po ( : , 1 ) ] ;

119 LRD=log (rb . / Rw ) ;

120 LRD (N+1)=LRD (N+1)+LRD (1 ) ; LRD (1 ) =0;

121 RD=exp ( LRD ) ;

122 % Calcu la te the c o e f f i e c i e n t s f o r the log−l i n p r e s su r e ←↩

assumpution

123 f o r i=1:N

124 f o r j=1:J

125 PP=[po (i , j ) ; po (i , j+1) ; po (i+1,j+1) ; po (i+1,j )←↩

; ] ; %P=pre s su r e

126 mm=[tn (j ) ∗LRD (i ) tn (j ) LRD (i ) 1 ; . . .

127 tn (j+1)∗LRD (i ) tn (j+1) LRD (i ) 1 ; . . .

128 tn (j+1)∗LRD (i+1) tn (j+1) LRD (i+1) 1 ; . . .

129 tn (j ) ∗LRD (i+1) tn (j ) LRD (i+1) 1 ; ] ;

130 Vec=mm\PP ;

131 aa (i , j )=Vec (1 ) ; bb (i , j )=Vec (2 ) ; cc (i , j )=Vec (3 )←↩

; dd (i , j )=Vec (4 ) ;

132 end

133 end
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134 hold on

135 % Plot he t e rogen i ty r eg i on

136 rh=rb ( HENR2 ) : ( rb ( HENR1+1)−rb ( HENR2 ) ) /49 : rb ( HENR1+1) ;

137 RH=[rb ( HENR2 ) rb ( HENR1+1) ] ;

138 sh=TO ( HENT2 ) : ( TO ( HENT1+1)−TO ( HENT2 ) ) /20 : TO ( HENT1+1) ;

139 SH=[TO ( HENT2 ) TO ( HENT1+1) ] ;

140 f o r i=1:2;

141 p l o t (RH (1 , i ) ∗ cos (sh ) ,RH (1 , i ) ∗ s i n (sh ) , 'b ' ) ;

142 end

143 f o r i=1:2;

144 p l o t (rh∗ cos (SH (1 , i ) ) ,rh∗ s i n (SH (1 , i ) ) , 'b ' ) ;

145 end

146 Xs =[ ] ; Ys =[ ] ;

147 f o r k=1:2

148 f o r j=1:J ;

149 % Def ine the launching po int coo rd ina te : RDin , th in

150 RDin=Re/Rw ;

151 thin=tn (j )+(k−1)∗tn (2 )/2+tn (2 ) /4 ;

152 XX=N+1;

153 YY=c e i l ( thin/tn (2 ) ) ;

154 i f YY==J+1;

155 YY=1;

156 end

157 i f YY==0

158 YY=J ;

159 end
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160 % Check i f the s t r eaml ine reaches to the boundary

161 whi l e XX>=2

162 % Check i f the r e s e r v o i r i s homogenous , i f yes , use ←↩

homogeneous s t r eaml in e t r a c i ng method , i f not , c a l c u l a t e ←↩

C

163 i f abs (aa (XX−1,YY ) ∗thin+cc (XX−1,YY ) )>10E−7;

164 step=−(l og ( RDin )−l og (RD (XX−1) ) ) /19 ;

165 lrd_r=log ( RDin ) : step : l og (RD (XX−1) ) ;% upper and lower ←↩

l im i t a t i o n f o r l r d

166 t_r=ze ro s (1 , l ength ( lrd_r ) ) ;

167 t_r (1 )=thin ;% i n i t i a l c ond i t i on

168 f o r i=1:( l ength ( lrd_r )−1)% ca l c u l a t i o n loop

169 F_tr=@ (lrd , t ) Kt (XX−1,YY ) ∗(aa (XX−1,YY ) ∗lrd+bb (XX−1,←↩

YY ) ) / . . .

170 (Kr (XX−1,YY ) ∗(aa (XX−1,YY ) ∗t+cc (XX−1,YY ) ) ) ;

171 k_1=F_tr ( lrd_r (i ) , t_r (i ) ) ;

172 k_2=F_tr ( lrd_r (i ) +0.5∗step , t_r (i ) +0.5∗step∗k_1 ) ;

173 k_3=F_tr ( ( lrd_r (i ) +0.5∗step ) , ( t_r (i ) +0.5∗step∗k_2 ) )←↩

;

174 k_4=F_tr ( ( lrd_r (i )+step ) , ( t_r (i )+k_3∗step ) ) ;

175 t_r (i+1)=t_r (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4 ) ∗step ;% ←↩

main equat ion

176 end

177 % Determine i f the s o l u t i o n i s po s s i b l e , i f p o s s i b l e ←↩

c a l c u l a t e TOF

178 Rd=exp ( lrd_r ) ;
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179 i f any (t_r<0)

180 t_r=t_r+2∗pi ;

181 i f any (t_r<tn (J ) ) | | any (t_r>tn (J+1) )

182 lrd_r =[ ] ; t_r =[ ] ;

183 end

184 end

185 i f any (t_r>2∗pi )

186 t_r=t_r−2∗pi ;

187 i f any (t_r<tn (1 ) ) | | any (t_r>tn (2 ) )

188 lrd_r =[ ] ; t_r =[ ] ;

189 end

190 end

191 i f a l l (t_r<2∗pi )&&a l l (t_r>=0)

192 i f any (t_r<tn (YY ) ) | | any (t_r>tn (YY+1) )

193 lrd_r =[ ] ; t_r =[ ] ;

194 end

195 end

196 i f isempty ( lrd_r )==0

197 dt_r=((RDin−RD (XX−1) ) ∗Rw /19) . ∗ ( ( Rd ( 1 : 1 9 ) ∗Rw+Rd←↩

( 2 : 2 0 ) ∗Rw ) /2) . . .

198 . / ( Kr (XX−1,YY ) ∗Mt (XX−1,YY ) ∗(aa (XX−1,YY ) ∗( t_r ( 1 : 1 9 )+←↩

t_r ( 2 : 2 0 ) )/2+cc (XX−1,YY ) ) ) ;

199 T_r=sum( dt_r ) ;

200 end

201 e l s e

202 lrd_r =[ ] ; t_r =[ ] ;
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203 end

204 % Use theta as the paramete r i z t i on to t r a c e the s t r eaml ine

205 i f abs (aa (XX−1,YY ) ∗ l og ( RDin )+bb (XX−1,YY ) )>1E−7;

206 i f abs (thin−tn (YY ) )>1E−7;

207 step=−(thin−tn (YY ) ) /19 ; % out at tn (YY)

208 t_t1=thin : step : tn (YY ) ; % upper and lower ←↩

l im i t a t i o n f o r l r d

209 lrd_t1=ze ro s (1 , l ength ( t_t1 ) ) ;

210 lrd_t1 (1 )=log ( RDin ) ;% i n i t i a l c ond i t i on

211 f o r i=1:( l ength ( t_t1 )−1)% ca l c u l a t i o n loop

212 F_tr=@ (t , lrd ) Kr (XX−1,YY ) ∗(aa (XX−1,YY ) ∗t+cc (XX←↩

−1,YY ) ) / . . .

213 (Kt (XX−1,YY ) ∗(aa (XX−1,YY ) ∗lrd+bb (XX−1,YY ) )←↩

) ;

214 k_1=F_tr ( t_t1 (i ) , lrd_t1 (i ) ) ;

215 k_2=F_tr ( t_t1 (i ) +0.5∗step , lrd_t1 (i ) +0.5∗step∗k_1←↩

) ;

216 k_3=F_tr ( ( t_t1 (i ) +0.5∗step ) , ( lrd_t1 (i ) +0.5∗step∗←↩

k_2 ) ) ;

217 k_4=F_tr ( ( t_t1 (i )+step ) , ( lrd_t1 (i )+k_3∗step ) ) ;

218 lrd_t1 (i+1)=lrd_t1 (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4←↩

) ∗step ;% main equat ion

219 end

220 Rd=exp ( lrd_t1 ) ;

221 % Check i f Rd out o f g r id block , i f out , i gno r e t h i s ←↩

s t r eaml ine
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222 % i f not out c a l c u l a t e the TOF of t h i s s t r eaml ine

223 i f any (Rd<RD (XX−1)−1E−7) | | any (Rd>RD (XX )+1E−7)

224 lrd_t1 =[ ] ; t_t1 =[ ] ; z_t1 =[ ] ;

225 e l s e

226 dt_t1=((tn (YY+1)−thin ) /19) . ∗ ( ( Rd ( 1 : 1 9 ) ∗Rw+Rd ( 2 : 2 0 ) ∗←↩

Rw ) /2) . . .

227 . / ( Kt (XX−1,YY ) ∗Mt (XX−1,YY ) ∗(aa (XX−1,YY ) ∗( lrd_t1←↩

( 1 : 1 9 )+lrd_t1 ( 2 : 2 0 ) )/2+cc (XX−1,YY ) ) ) ;

228 T_t1=sum( dt_t1 ) ;

229 end

230 e l s e

231 lrd_t1 =[ ] ; t_t1 =[ ] ;

232 end

233 i f abs (tn (YY+1)−thin )>1E−7;% Exit at tn (YY)

234 step=(tn (YY+1)−thin ) /19 ;

235 t_t2=thin : step : tn (YY+1) ; % upper and lower ←↩

l im i t a t i o n f o r theta

236 e l s e

237 t_t2=ones (1 , 20 ) ∗thin ;

238 end

239 lrd_t2=ze ro s (1 , l ength ( t_t2 ) ) ;

240 lrd_t2 (1 )=log ( RDin ) ;% i n i t i a l c ond i t i on

241 f o r i=1:( l ength ( t_t2 )−1)% ca l c u l a t i o n loop

242 F_tr=@ (t , lrd ) Kr (XX−1,YY ) ∗(aa (XX−1,YY ) ∗t+cc (XX←↩

−1,YY ) ) / . . .
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243 (Kt (XX−1,YY ) ∗(aa (XX−1,YY ) ∗lrd+bb (XX−1,YY ) )←↩

) ;

244 k_1=F_tr ( t_t2 (i ) , lrd_t2 (i ) ) ;

245 k_2=F_tr ( t_t2 (i ) +0.5∗step , lrd_t2 (i ) +0.5∗step∗k_1←↩

) ;

246 k_3=F_tr ( ( t_t2 (i ) +0.5∗step ) , ( lrd_t2 (i ) +0.5∗step∗←↩

k_2 ) ) ;

247 k_4=F_tr ( ( t_t2 (i )+step ) , ( lrd_t2 (i )+k_3∗step ) ) ;

248 lrd_t2 (i+1)=lrd_t2 (i ) +(1/6) ∗( k_1+2∗k_2+2∗k_3+k_4←↩

) ∗step ;% main equat ion

249 end

250 Rd=exp ( lrd_t2 ) ;

251 % check i f Rd out o f g r i d block , i f out , i gno r e t h i s←↩

s t r eaml ine

252 % i f not out c a l c u l a t e the TOF of t h i s s t r eaml ine

253 i f any (Rd<RD (XX−1)−1E−7) | | any (Rd>RD (XX )+1E−7)

254 lrd_t2 =[ ] ; t_t2 =[ ] ;

255 e l s e

256 dt_t2=((tn (YY+1)−thin ) /19) . ∗ ( ( Rd ( 1 : 1 9 ) ∗Rw+Rd ( 2 : 2 0 )←↩

∗Rw ) /2) . . .

257 . / ( Kt (XX−1,YY ) ∗Mt (XX−1,YY ) ∗(aa (XX−1,YY ) ∗( lrd_t2←↩

( 1 : 1 9 )+lrd_t2 ( 2 : 2 0 ) )/2+cc (XX−1,YY ) ) ) ;

258 T_t2=sum( dt_t2 ) ;

259 end

260 i f abs (tn (YY+1)−thin )<=1E−7;% Exit at tn (YY+1)

261 lrd_t2 =[ ] ; t_t2 =[ ] ;
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262 end

263 i f isempty ( lrd_t1 )==1&& isempty ( lrd_t2 )==1 % both ←↩

empty

264 lrd_t =[ ] ; t_t =[ ] ;

265 end

266 i f isempty ( lrd_t1 )==1&& isempty ( lrd_t2 )==0 % t1 ←↩

empty

267 lrd_t=lrd_t2 ; t_t=t_t2 ; T_t=T_t2 ;

268 end

269 i f isempty ( lrd_t2 )==1&& isempty ( lrd_t1 )==0 % t2 ←↩

empty

270 lrd_t=lrd_t1 ; t_t=t_t1 ; T_t=T_t1 ;

271 end

272 i f isempty ( lrd_t1 )==0&& isempty ( lrd_t2 )==0 % both ←↩

not empty

273 i f T_t1<T_t2

274 lrd_t=lrd_t1 ; t_t=t_t1 ; T_t=T_t1 ;

275 e l s e

276 lrd_t=lrd_t2 ; t_t=t_t2 ; T_t=T_t2 ;

277 end

278 end

279 e l s e

280 lrd_t =[ ] ; t_t =[ ] ;

281 end

282 % Find r e a l s t r eaml ine between r and t

283 i f isempty ( lrd_r )==1&& isempty ( lrd_t )==0
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284 lrd=lrd_t ; t=t_t ;

285 end

286 i f isempty ( lrd_r )==0&& isempty ( lrd_t )==1

287 lrd=lrd_r ; t=t_r ;

288 end

289 i f isempty ( lrd_r )==0&& isempty ( lrd_t )==0

290 i f T_t<T_r

291 lrd=lrd_t ; t=t_t ;

292 e l s e

293 lrd=lrd_r ; t=t_r ;

294 end

295 end

296 i f isempty ( lrd_r )==1&& isempty ( lrd_t )==1

297 lrd=log ( RDin ) :−( l og ( RDin )−l og (RD (XX−1) ) ) /19 : l og (←↩

RD (XX−1) ) ; t=ones (1 , 20 ) ∗thin ;

298 end

299 Rd=exp ( lrd ) ;

300 i f min ( [ Rd (1 ) Rd (20) ] )==Rd (1 ) ;% Rearrange Rd from big to ←↩

smal l

301 Rds=f l i p l r (Rd ) ;

302 TTs=f l i p l r (t ) ;

303 e l s e

304 Rds=Rd ;

305 TTs=t ;

306 end

307 % Plot s t r eaml ine
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308 x=Rds .∗ Rw .∗ cos ( TTs ) ;

309 y=Rds .∗ Rw .∗ s i n ( TTs ) ;

310 p l o t (x , y , ' black ' ) ;

311 % Calcu la te new gr id block coo rd ina t e s

312 i f j==1&& Rds (20)==rb ( HENR1+1)/Rw

313 xm1 (j , 1 )=x (20) ; ym1 (j , 1 )=y (20) ;

314 Rdh1=Rds (20) ; Th1=TTs (20) ;

315 end

316 i f j==1&& abs ( Rds (20)−rb ( HENR2 ) /Rw )<10e−6

317 xm2 (j , 1 )=x (20) ; ym2 (j , 1 )=y (20) ;

318 Rdh2=Rds (20) ; Th2=TTs (20) ;

319 end

320 Xs=[Xs x ( 1 , 1 : 1 9 ) ] ; Ys=[Ys y ( 1 , 1 : 1 9 ) ] ;

321 RDout=min ( [ Rd (1 ) Rd (20) ] ) ;

322 i f RDout==Rd (1 )

323 tout=t (1 ) ;

324 e l s e

325 tout=t (20) ;

326 end

327 i f XX>=2&& abs ( RDout−RD (XX−1) )<1e−7

328 XX_out=XX−1;

329 e l s e

330 XX_out=XX ;

331 end

332 YY_out=c e i l ( tout/tn (2 ) ) ;

333 i f XX_out==XX
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334 i f YY_out==YY

335 i f tout<thin

336 YY=YY−1;

337 end

338 i f tout>thin

339 YY=YY+1;

340 end

341 e l s e

342 YY=YY_out ;

343 end

344 end

345 i f YY==J+1;

346 YY=1;

347 end

348 i f YY==0

349 YY=J ;

350 end

351 RDin=RDout ;

352 thin=tout ;

353 XX=XX_out ;

354 i f thin==2∗pi&&YY==1

355 thin=0;

356 end

357 end

358 % Save the s t r eaml ine and stream tube coord iante f o r f r on t ←↩

c a l c u l a t i o n
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359 [ xs ys ]= s i z e (Xs ) ;

360 ds=abs ( ( Xs ( 1 , 1 : ys−1)−Xs ( 1 , 2 : ys ) ) .^2+(Ys ( 1 , 1 : ys−1)−Ys ( 1 , 2 : ys←↩

) ) .^2 ) . ^ 0 . 5 ;

361 sl=[0 cumsum(ds ) ] ;

362 sls=0:sl (ys ) /(N∗10−1) : sl (ys ) ;

363 Sls (2∗ (j−1)+k , : )=sls ;

364 AXs (2∗ (j−1)+k , : )=in t e rp1 (sl , f l i p l r (Xs ) ,sls , ' l i n e a r ' ) ;% ←↩

Points used to c a l c u l a t e stream tube area

365 AYs (2∗ (j−1)+k , : )=in t e rp1 (sl , f l i p l r (Ys ) ,sls , ' l i n e a r ' ) ;% ←↩

Points used to c a l c u l a t e stream tube area

366 i f j==1

367 % Determine the stream tube l ength f o r the ←↩

heterogeneous s e c t o r

368 A=po l y f i t (Xs , Ys , 2 ) ;%f i t t e d curve

369 xsh1=l i n s p a c e (Xs (1 ) , xm1 (j , 1 ) ,20) ;

370 ysh1=polyva l (A , xsh1 ) ;

371 dsh1=abs ( ( xsh1 ( 1 , 1 : 1 9 )−xsh1 ( 1 , 2 : 2 0 ) ) .^2+(ysh1 ( 1 , 1 : 1 9 )−←↩

ysh1 ( 1 , 2 : 2 0 ) ) .^2 ) . ^ 0 . 5 ;

372 SH (1 , j )=sum( dsh1 ) ;

373 xsh=l i n s p a c e ( xm1 (j , 1 ) , xm2 (j , 1 ) ,20) ;

374 ysh=polyva l (A , xsh ) ;

375 dsh=abs ( ( xsh ( 1 , 1 : 1 9 )−xsh ( 1 , 2 : 2 0 ) ) .^2+(ysh ( 1 , 1 : 1 9 )−ysh←↩

( 1 , 2 : 2 0 ) ) .^2 ) . ^ 0 . 5 ;

376 DSH (j , 1 : 1 9 )=dsh ;

377 SH (2 , j )=sum( dsh ) ;

378 xsh2=l i n s p a c e ( xm2 (j , 1 ) ,Xs (ys ) ,20) ;
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379 ysh2=polyva l (A , xsh2 ) ;

380 dsh2=abs ( ( xsh2 ( 1 , 1 : 1 9 )−xsh2 ( 1 , 2 : 2 0 ) ) .^2+(ysh2 ( 1 , 1 : 1 9 )−←↩

ysh2 ( 1 , 2 : 2 0 ) ) .^2 ) . ^ 0 . 5 ;

381 SH (3 , j )=sum( dsh2 ) ;

382 end

383 Xs =[ ] ; Ys =[ ] ;

384 end

385 end

386 SLLL=(Sls ( 1 : 4 9 , : )+Sls ( 2 : 5 0 , : ) ) /2 ;% Streaml ine l ength

387 SLL=(SLLL ( : , 1 : 4 9 9 )+SLLL ( : , 2 : 5 0 0 ) ) /2 ;

388 XS=(AXs ( 1 : 4 9 , : )+AXs ( 2 : 5 0 , : ) ) /2 ;

389 YS=(AYs ( 1 : 4 9 , : )+AYs ( 2 : 5 0 , : ) ) /2 ;

390 STA=((AXs ( 1 : 5 0 , : )−[AXs ( 5 0 , : ) ; AXs ( 1 : 4 9 , : ) ] ) . ^ 2+ . . .

391 ( AYs ( 1 : 5 0 , : )−[AYs ( 5 0 , : ) ; AYs ( 1 : 4 9 , : ) ] ) . ^2 ) . ^ 0 . 5 ;% ←↩

c a l c u l a t e stream tube area

392 save ( ' stremtube−experiment ' )

E. 6 Two-Phase Flow Simulator

1 c l e a r a l l

2 load streamline ; %Load s t r eaml ine and stream tube ←↩

coo rd ina t e s

3 Fluid . swc=0.364; Fluid . sor=0.208;% c r i t i c a l s a tu r a t i on po int

4 uw=1e−3;uo=1.19e−3;% f l u i d v i s c o s i t y cp
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5 aw=0.23; ao=0.86;% Corey Model c o e f f i c i e n t s

6 fi=0.43;h=0.0119;% Poros i ty and porous media he ight

7 % Calcu la te volume f o r each strem tube

8 SLLL=(Sls ( 1 : 4 9 , : )+Sls ( 2 : 5 0 , : ) ) /2 ;

9 SLL=(SLLL ( : , 1 : 4 9 9 )+SLLL ( : , 2 : 5 0 0 ) ) /2 ;

10 XS=(AXs ( 1 : 4 9 , : )+AXs ( 2 : 5 0 , : ) ) /2 ; YS=(AYs ( 1 : 4 9 , : )+AYs ( 2 : 5 0 , : )←↩

) /2 ;

11 STA=((AXs ( 1 : 5 0 , : )−[AXs ( 5 0 , : ) ; AXs ( 1 : 4 9 , : ) ] ) . ^ 2+ . . .

12 ( AYs ( 1 : 5 0 , : )−[AYs ( 5 0 , : ) ; AYs ( 1 : 4 9 , : ) ] ) . ^2 ) . ^ 0 . 5 ;% ←↩

c a l c u l a t e area

13 f o r i=1:26

14 Vs (i , : )=h∗cumsum( SLLL (i , 5 00 ) /(N∗10−1) ∗0 .5∗ ( STA (i , 1 : 4 9 9 )+STA←↩

(i , 2 : 5 0 0 ) ) ) ;

15 end

16 STA=(STA ( : , 1 : 4 9 9 )+STA ( : , 2 : 5 0 0 ) ) /2 ;

17 STA=STA∗h ;

18 syms Sw

19 % Calcau l t e p r e s su r e f o r i n t e r s e c t i o n po in t s in ←↩

heterogeneous stream tube

20 Ph ( 1 , 1 )=aa ( HENR1 , 1 ) ∗Tn (1 ) ∗ l og (rb (43) /Rw )+bb ( HENR1 , 1 ) ∗Tn (1 )+←↩

cc ( HENR1 , 1 ) ∗ l og (rb (43) /Rw )+dd ( HENR1 , 1 ) ;%42

21 Ph ( 2 , 1 )=aa ( HENR1 , 1 ) ∗Tn (1 ) ∗ l og (rb (37) /Rw )+bb ( HENR1 , 1 ) ∗Tn (1 )+←↩

cc ( HENR2 , 1 ) ∗ l og (rb (37) /Rw )+dd ( HENR2 , 1 ) ;%37

22 % Def ine r e l a t i v e p e rme ab i l i t i e s

23 kro=ao∗((1−Sw−Fluid . sor ) ./(1−Fluid . swc−Fluid . sor ) ) . ^ 2 ;

24 krw=aw ∗ ( ( Sw−Fluid . swc ) ./(1−Fluid . swc−Fluid . sor ) ) . ^ 2 ;
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25 % Def ine f r a c t i o n a l f low f o r water

26 f=(krw/uw ) . / ( krw/uw+kro/uo ) ;

27 % Def ine t o t a l mob i l i ty r a t i o

28 Lamda=K_block ∗( krw/uw+kro/uo ) ;

29 pf1=simple ( d i f f (f , 1 ) ) ;

30 pf2=simple ( d i f f (f , 2 ) ) ;

31 delta_s = 1 ;

32 f_sr=0;

33 % Guess the f r on t s a tu r a t i on

34 Swi=0.7;

35 f1=(f−f_sr ) /(Sw−Fluid . sor )−pf1 ;

36 df1=simple ( d i f f (f1 , 1 ) ) ;

37 counter = 0 ;

38 % Loop to determine f r on t s a tu r a t i on

39 whi l e delta_s > 10^−12

40 Sw=Swi ;

41 f10=subs (f1 ) ; df10=subs ( df1 ) ;

42 Sw_new=Sw−f10/df10 ;

43 delta_s = abs ( Sw_new −Sw ) ;

44 Swi=Sw_new ;

45 i f Swi >1||Swi<0

46 e r r o r ( ' input another va lue ' )

47 end

48 end

49 % Calcu la te the d e r i v a t e s f o r the f r on t s a tu r a t i on

50 SF=Swi ;
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51 pf1_fs=subs ( subs (pf1 , Sw , SF ) ) ;

52 syms Sw

53 s=SF :(1−Fluid . sor−SF ) /99:1−Fluid . sor ;

54 PF1=subs ( subs (pf1 , Sw , s ) ) ; PF2=subs ( subs (pf2 , Sw , s ) ) ;

55 % Calcu la te t o t a l mob i l i ty f o r the f l u i d behind and ahead ←↩

o f f r on t

56 LAMDA=subs ( subs ( Lamda , Sw , s ) ) ;

57 LR=subs ( subs ( Lamda , Sw , Fluid . swc ) ) ;

58 deltat=1;x=Rw ;

59 sx=ze ro s (1e5 , 2 4 ) ;

60 SAB=SF :(1−Fluid . sor−SF ) /99:1−Fluid . sor ;

61 Sw=SAB ;

62 pf1_fsAB=subs ( pf1 ) ;

63 % Mapping 3D Riemann s o l u t i o n to homogeneous stream tubes

64 f o r j=3:26

65 i=1;tb=0;DX=0;x=Rw ;

66 whi l e x<Re

67 v1=pchip ( SLL (j , : ) ,Vs (j , : ) ,x ) ;%f i nd v @ x

68 V=v1∗PF1/pf1_fs∗fi ;

69 A=pchip (Vs (j , : ) , STA (j , : ) ,V ) ;

70 J=sum( PF2∗((1−Fluid . sor−SF ) /99) . / ( A . ^ 2 .∗ LAMDA ) ) ;

71 Dxr=x : (max( SLLL (j , : ) )−x ) /99 :max( SLL (j , : ) ) ;

72 Axr=pchip ( SLL (j , : ) , STA (j , : ) , Dxr ) ;

73 q=(Pw−Pe )/(−v1/pf1_fs∗J+sum( (max( SLLL (j , : ) )−x ) /99 . / ( Axr←↩

) ) /LR ) ;

74 A_f=pchip ( SLL (j , : ) , STA (j , : ) ,x ) ;
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75 % Calcu la te the f r on t movement in dt

76 x=pf1_fs∗q∗deltat/A_f/fi+x ;

77 sx (i , j )=x ;

78 AQ (i , j )=q∗1e6 ∗60 ;

79 % Calcu la te movement in dt f o r S>S∗ and S<SL

80 DX=pf1_fsAB .∗ q .∗ deltat . / pchip ( SLL (j , : ) , STA (j , : ) ,DX ) . / fi←↩

+DX ;

81 i=i+1;

82 end

83 tb (j )=deltat∗i ;

84 % Calcu la te f low ra t e a f t e r breakthrough

85 f o r i=1:14

86 syms Sw

87 s=SAB (i ) :(1−Fluid . sor−SAB (i ) ) /79:1−Fluid . sor ;

88 Sw=s ; PF1=subs ( pf1 ) ; PF2=subs ( pf2 ) ; LAMDA=subs ( Lamda ) ;

89 VS_AB (i )=pchip ( SLL (j , : ) ,Vs (j , : ) , ( DX (i )−Rw ) ) ;

90 V=VS_AB (i ) ∗PF1/pf1_fsAB (i ) ∗fi ;

91 A=pchip (Vs (j , : ) , STA (j , : ) ,V ) ;

92 J=sum( PF2∗((1−Fluid . sor−SF ) /79) . / ( A . ^ 2 .∗ LAMDA ) ) ;

93 Ts=tb (j )−(max(Vs (j , : ) )^2−VS_AB (i ) ^2)∗J∗fi /2/(Pw−Pe )←↩

/( pf1_fsAB (i ) ^2) ;

94 Q_ts (i , j )=1e6 ∗60∗(Pw−Pe ) ∗pf1_fsAB (i )/(−VS_AB (i ) ∗J ) ;

95 end

96 end

97 % Mapping 3D Riemann s o l u t i o n along heterogeneous stream ←↩

tubes
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98 an=TO (2 ) ; h=0.0119;A=an∗h∗(x ) ;

99 f o r j=1:2

100 i=1;

101 % Calcu la te f l u i d movement in f i r s t s e c t i o n o f the ←↩

heterogeneous stream tube

102 whi le x<SH ( 1 , 1 )

103 v1=pchip ( SLL (j , : ) ,Vs (j , : ) ,x ) ;%f i nd v @ x

104 V=v1∗PF1/pf1_fs∗fi ;

105 A=pchip (Vs (j , : ) , STA (j , : ) ,V ) ;

106 J=sum( PF2∗((1−Fluid . sor−SF ) /99) . / ( A . ^ 2 .∗ LAMDA ) ) ;

107 Dxr=x : (max( SLLL (j , : ) )−x ) /99 :max( SLL (j , : ) ) ;

108 Axr=pchip ( SLL (j , : ) , STA (j , : ) , Dxr ) ;

109 q=(Pw−Ph ( 2 , 1 ) )/(−v1/pf1_fs∗J+sum( (max( SLLL (j , : ) )−x ) /99 . / (←↩

Axr ) ) /LR ) ;

110 A_f=pchip ( SLL (j , : ) , STA (j , : ) ,x ) ;

111 x=pf1_fs∗q/A_f/fi∗deltat+x ;

112 sx (i , j )=x ;

113 AQ (i , j )=q∗1e6 ∗60 ;

114 i=i+1;

115 end

116 % Calcu la te f l u i d movement in second s e c t i o n o f the ←↩

heterogeneous stream tube

117 Lamda=K_H ∗( krw/uw+kro/uo ) ;

118 LAMDA=subs ( subs ( Lamda , Sw , s ) ) ;

119 whi le x>SH ( 1 , 1 )&&x<SH ( 2 , 1 )+SH ( 1 , 1 )

120 v1=pchip ( SLL (j , : ) ,Vs (j , : ) ,x ) ;%f i nd v @ x
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121 V=v1∗PF1/pf1_fs∗fi ;

122 A=pchip (Vs (j , : ) , STA (j , : ) ,V ) ;

123 J=sum( PF2∗((1−Fluid . sor−SF ) /99) . / ( A . ^ 2 .∗ LAMDA ) ) ;

124 Dxr=x : (max( SLLL (j , : ) )−x ) /99 :max( SLL (j , : ) ) ;

125 Axr=pchip ( SLL (j , : ) , STA (j , : ) , Dxr ) ;

126 q=(Ph ( 2 , 1 )−Ph ( 1 , 1 ) )/(−v1/pf1_fs∗J+sum( (max( SLLL (j , : ) )−x )←↩

/99 ./ ( Axr ) ) /LR ) ;

127 A_f=pchip ( SLL (j , : ) , STA (j , : ) ,x ) ;

128 x=pf1_fs∗q/A_f/fi∗deltat+x ;

129 A=an∗h∗(x ) ;

130 sx (i , j )=x ;

131 AQ (i , j )=q∗1e6 ∗60 ;

132 i=i+1;

133 end

134 % Calcu la te f l u i d movement in th r i d s e c t i o n o f the ←↩

heterogeneous stream tube

135 Lamda=K_block ∗( krw/uw+kro/uo ) ;

136 LAMDA=subs ( subs ( Lamda , Sw , s ) ) ;

137 whi le x<Re&&x>SH ( 2 , 1 )

138 v1=pchip ( SLL (j , : ) ,Vs (j , : ) ,x ) ;%f i nd v @ x

139 V=v1∗PF1/pf1_fs∗fi ;

140 A=pchip (Vs (j , : ) , STA (j , : ) ,V ) ;

141 J=sum( PF2∗((1−Fluid . sor−SF ) /99) . / ( A . ^ 2 .∗ LAMDA ) ) ;

142 Dxr=x : (max( SLLL (j , : ) )−x ) /99 :max( SLL (j , : ) ) ;

143 Axr=pchip ( SLL (j , : ) , STA (j , : ) , Dxr ) ;
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144 q=(Ph ( 1 , 1 )−Pe )/(−v1/pf1_fs∗J+sum( (max( SLLL (j , : ) )−x ) /99 . / (←↩

Axr ) ) /LR ) ;

145 A_f=pchip ( SLL (j , : ) , STA (j , : ) ,x ) ;

146 x=pf1_fs∗q/A_f/fi∗deltat+x ;

147 A=an∗h∗(x ) ;

148 sx (i , j )=x ;

149 AQ (i , j )=q∗1e6 ∗60 ;

150 i=i+1;

151 end

152 tb (j )=deltat ∗(i−1) ;

153 x=Rw ;

154 st (j )=i−1;

155 i=1;

156 end

157 %Calcu la te t o t a l f low ra t e

158 QS=AQ ( 1 : 2 : min (tb ) , : ) ;

159 f o r i=1:min (tb ) /2

160 QT (i , 1 )=2∗sum(QS (i , : ) ) ;

161 end
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