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Abstract

The primary objective of this study was to create a genome-wide high resolution map (i.e., .100 bp) of ‘rearrangement
hotspots’ which can facilitate the identification of regions capable of mediating de novo deletions or duplications in
humans. A hierarchical method was employed to fragment segmental duplications (SDs) into multiple smaller SD units.
Combining an end space free pairwise alignment algorithm with a ‘seed and extend’ approach, we have exhaustively
searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the
NA18507 human genome (186 coverage), including the previously identified novel 4.8 Mb sequence from de novo
assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes
and display an enrichment of duplicated gene nucleotide variants (DNVs). These regions are correlated with increased non-
allelic homologous recombination (NAHR) event frequency which presumably represents the origin of copy number
variations (CNVs) and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered
within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for
24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico
localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal
recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs
may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of ‘rearrangement
hotspots’, which likely serve as templates for NAHR, may provide a powerful approach towards understanding the
underlying mutational mechanism(s) for development of constitutional and acquired diseases.
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Introduction

Segmental duplications (SDs) or low-copy repeats are blocks of

DNA.1 kbp in size which share a high level of sequence

homology (.90%) [1–4]. The catalogue of SDs comprises

approximately 5% of the human genome encompassing 18% of

genes [1–4]. They are considered antecedents to the formation of

copy number variants (CNVs) which comprise approximately 12%

of the human genome and are responsible for considerable human

genetic variation [2,5]. Emerging evidence suggests that SD

regions are frequently associated with known genomic disorders

with the vast majority representing novel sites whose genomic

architecture is susceptible to disease-causing rearrangements [5].

However, the complexity of their structural architecture in the

human genome and, more importantly, their role in disease

pathogenesis remains largely elusive.

There is a growing body of evidence suggesting the involvement

of multiple events in the origin of genomic rearrangements such as

non-allelic homologous recombination (NAHR), non-homologous

end joining (NHEJ), fork stalling and template switching (FoSTeS),

and microhomology-mediated break-induced replication (MMBIR)

[6–8]. Although the origins of the aforementioned mechanisms are

strongly associated with highly homologous regions residing outside

of common repeat elements (e.g., transposons) [9], the non-random

distribution of highly homologous regions within SDs that are

susceptible to such mechanisms remain to be fully elucidated.

Moreover, evolutionary conservation of these mechanisms compli-

cates the identification of SD breakpoints due to differing levels of

sequence homology.

Genomic disorders arising from microdeletions/duplications fail

to be adequately explained by a single underlying event. The true

contribution of NAHR, NEHJ, MMBIR and FoSTeS events to

the origin of genomic rearrangement remains elusive, although

large-scale studies are beginning to implicate NAHR as one of the

primary evenst contributing to the origin of these genomic copy

number changes [9,10]. Genomic DNA situated between distal

and proximal SDs represents a critical region often reported to be

deleted/duplicated due to misalignment of the SDs between

homologous chromosomes [11]. Evidence suggests that the

breakpoint architecture of SDs (i.e., distal and proximal) is

associated with a higher propensity for NAHR-mediated rear-

rangement predisposing to an abnormal phenotype [12]. In other

words, the increased frequency of pathogenic rearrangements is

often directly correlated with the structural complexity of the local

genomic regions involved. This is consistent with numerous

reports indicating that highly homologous regions within SDs

influence NAHR-mediated rearrangement events [9,10,13].

Throughout this paper, these highly homologous regions will be
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referred to as ‘rearrangement hotspots’. Classic examples of

NAHR-mediated genomic rearrangement include genomic disor-

ders such as 3q29 microdeletion/duplication syndrome, globo-

zoospermia, and Williams-Beuren syndrome [14–16].

In a recent report, the detection and validation of 8,599 CNVs

using microarrays [17] and subsequent targeted sequencing on

1067 of these CNV breakpoints [9] revealed extreme homologous

regions consistent with NAHR-mediated rearrangements as the

primary event in the origin of CNVs. In this study, we identified

genome-wide ‘rearrangement hotspots’ within SD regions that

often predispose to genomic disorders in humans, mediated

predominately by NAHR. We specifically devised a hierarchical

approach to detect SD units using an all-hit mapping algorithm,

interrogating every 100 bp (GC-corrected read depth window

with a 1 bp overlap) excluding common repeat elements.

Reference-guided assembly was obtained from reads based on

the NA18507 human genome and duplicated sequences were

extracted from the assembly using detected breakpoints (Fig. 1).

The primary objective of this study was to create genome-wide

signatures of ‘rearrangement hotspots’ which can facilitate the

detection of genomic regions capable of mediating de novo deletions

or duplications in humans. To create a genome-wide high

resolution map of ‘rearrangement hotspots’, we developed an

end-space free pairwise alignment algorithm integrating a ‘seed

and extend’ technique which can accurately investigate the

complex structural architecture associated with the technically

challenging and problematic nature of segmental duplications.

The hypothesis of this study is that highly homologous SD regions

(i.e., rearrangement hotspots) predispose to genomic rearrange-

ments arising from recombination and replication-based events.

Results and Discussion

Detection of Segmental Duplication (SD) Units
Given that SDs intuitively consist of common repeat elements,

SDs were fragmented into multiple smaller SD units which did not

overlap with known repeat elements during the read depth-based

analysis. In this study, 20,237 non-redundant sets of SD units with

at least one inter- or intra-chromosomal rearrangement event were

identified, representing 16.65 Mbp of SD units residing outside of

common repeat elements in the human genome (Information
S1). At first glance, this total content of SDs may appear small

compared with that previously reported [3] and that reported in

the database of genomic variants (DGV) which is mainly

attributed to methodological differences (i.e., exclusion of common

repeats, GC-correction, shorter window length, low read depth

threshold). Results from this study and Perry et al [18], suggest that

previously reported SD breakpoints are overinflated in size, further

emphasizing the importance of creating a high-resolution map of

‘rearrangement hotspots’. Read depth distribution for duplicated

and non-duplicated regions throughout the genome produced a

distinctive distribution pattern with an approximate 7% error rate

(Information S1).

Considering CNVs have a tendency to overlap with nearby SD

breakpoints, the results of this study were compared with a recent

study which identified common CNV breakpoints in three

populations (i.e., 57 Yoruba, 48 European and 54 Asian

individuals) [19]. The detected autosomal SD units greater than

200 bp shared 82% concordance (i.e., .50% overlap) with

common CNV breakpoints using low coverage short-read data

(Information S1). Moreover, 79% of breakpoints residing within

genes with .3 copies as previously reported [20], were located

within SD breakpoints identified in this study (Information S1).

Comparison with previous read depth-based reports highlights

the advantages of our hierarchical strategy which include: 1) the

use of a 100 bp read depth window with a 1 bp overlap to detect

SD units which enabled the capacity to detect SD units with

higher resolution; 2) the use of a lower threshold (i.e., mean +2

standard deviations) than previously reported methods in order to

detect homozygous and hemizygous duplications; 3) fragmentation

of SDs into smaller SD units in order to separate duplicated

regions from common repeated elements while reducing align-

ment bias for rearrangement analysis and computational time; and

4) integration of end space alignment algorithm with a ‘seed and

extend’ clustering technique to the duplicated region of the

reference guided assembly sequences to perform an exhaustive

search (i.e., 409 million alignments) to identify rearrangement

breakpoints (Information S2).

Compared with copy number gains identified using microarray

analysis [17], sequencing data used in this study revealed that

autosomal SD unit breakpoints overlapped 54% with copy

number gains [17], which increased to 67% when compared with

436 coverage (Information S1) [19]. Discrepancies are

attributed to methodical biases, as detection of structural variants

can be specific to different methodical approaches and discrepan-

cies between methods can be as high as 80% [4]. The

rearrangement analysis within the novel sequence revealed

multiple hits within the duplicated sequences (i.e., .90%

similarity) that were previously uncharacterized (Information
S2.).

Characterization of Rearrangement Hotspots Within
Segmental Duplications

Using 409 million pairwise alignments, we identified 1963

complex SD units or ‘rearrangement hotspots’ within SDs in the

human genome with significantly high distribution of duplicons

(p,1.061026) with at least 10 duplicons per SD unit (Fig. 2a).

Within these regions, an increase in copy number gain (i.e.,

increase of 62% in copy number gains within hotspots) with at

least 50% overlap with SD units and CNV breakpoints has been

observed compared with a previous report [17]. Importantly, 25%

of these ‘rearrangement hotspots’ (i.e., 489/1963) overlapped with

166 unique genes (Fig. 2b) of which 77% (i.e., 375/489) were

contained within 82 genes with increased copy number gain that

have been previously validated using microarray analysis [17].

That 25 of these genes are highly variable in copy number within

three populations indicates population-specific frequency of the

underlying events in the origin of CNVs [19] which, in turn,

implies an increase in frequency of genomic rearrangement events

within hotspot regions. However, the extent of gene conversion

within the NAHR hotspot is still unknown. In our analysis, we

observed a relative increase of gene content transfer within agenic

hotspot regions (i.e., approximately 50%) compared with the

remainder of agenic non-hotspot duplicated regions (i.e., 32%)

(Fig. 2c). The finding of elevated levels of gene content transfer is

consistent with a previous study which hypothesized such a finding

as an apparent feature for hotspots arising from homologous

recombination [6]. Further analysis on duplicated gene variants

(DNVs), which is a special type of paralogous sequence variant,

was compared between the hotspot and non-hotspot duplicated

regions [21]. We observed a 3-fold increase in DNVs located

within hotspots compared with the remainder of the duplicated

regions (p,0.0001) which implies greater diversity within hotspot

regions. This finding is attributed, in part, to the accumulation of

DNV-derived mutations among derivative homologous sequences

within hotspot regions. We also observed a strong positive

correlation (R2 = 0.63) between the length and the incidence of
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DNVs within hotspot regions (Fig. 2d). Genome-wide read depth

comparison revealed that a subset of high read depth regions are

positively correlated with rearrangement hotspots (Fig. 2e).

Distribution of Inter- and Intra-chromosomal Rearrange-

ments. Segmental duplications (SDs) can be categorized

according to the location of the rearrangement (Information
S1) considering that recombination events can occur between

homologues (i.e, inter-chromosomal) or by looping out within a

single homologue (i.e., intra-chromosomal). Our analysis revealed

that 7% of genes (i.e., 1,626/22,159) overlapped with 5,502 non-

redundant SD units which represented 73% (i.e., 41/56) of the

most highly variable genes previously identified in the human

genome within three populations [19] (Fig. 2b). We have

identified 91,971 duplicons (i.e., average of 4.5 duplicons per SD

unit) with overlapping breakpoints throughout the SD regions.

Extreme inter- and intra-chromosomal rearrangements occurred

in 10% of genes (i.e., 166/1626) that overlapped with SD units, of

which 50% have been previously validated [17]. Further analysis

revealed that genic regions were enriched with intra-chromosomal

recombination, whereas agenic regions evolved through both

inter- and intra-chromosomal recombination (Information S1).

Such intra-chromosomal recombination within genic SD units

Figure 1. A schematic illustrating our hierarchical approach. mrsFAST was used to obtain read depth distribution of the NA18507 human
genome with maximum mismatch (n = 2) was allowed against the repeat masked reference human genome (build 36). A mean-based approach was
utilized to computationally predict the boundaries of regions associated with excessive read depth. MAQ was used to obtain the consensus genome
(mapping quality Q.30 and n = 2) from the NA18507 genome assembly. The consensus sequence for highly excessive read depth regions was
obtained in order to apply a window-based alignment algorithm. The previously identified novel 4.8 Mb sequence from de novo assembly within this
genome was also included in the rearrangement analysis.
doi:10.1371/journal.pone.0028853.g001
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may represent conserved genomic organizations subject to gene

conversion and concerted evolution [3,6,7]. Extreme variation,

attributed in part, to SDs has been reported in at least 20% of the

copy number variable gene families in three human populations

[19].

Previous cytogenetic studies have demonstrated that pericen-

tromeric and subtelomeric SD regions are strikingly polymorphic

and both represent hotbeds for genomic rearrangement [22,23].

Investigation of recombination within SD units revealed that

pericentromeric regions of chromosomes 2, 5, 7, 10, 15, 16, 17, 22

and Y were enriched with inter-chromosomal recombination,

whereas only chromosome 11 was associated with intra-chromo-

somal breakpoints (Information S1). Subtelomeric regions of

chromosomes 1, 2, 4, 7, 9, 10, 11, 16, 19, 20, 22, and X were

enriched with inter-chromosomal recombination, whereas chro-

mosomes 3, 6, 12, 13, 14 and Y were associated with extreme

intra-chromosomal breakpoints. This idiosyncratic rearrangement

pattern suggests that multiple translocations involving distal

regions of chromosomes create complex breakpoints within SDs.

This is exemplified by the pseudoautosomal region 1 (PAR1)

which displayed extensive inter- and intra-chromosomal tandem

duplications, consistent with sex chromosome evolution (Infor-
mation S1). Another complex region where extensive intra-

chromosomal rearrangements were identified is the distal

heterochromatic region of the Y chromosome (i.e., Yq12), housing

the male specific (MSY) region (Information S1). A compre-

hensive map of this complex region was generated using PCR

analysis in a previous study [24]. In our analysis, we detected both

homozygous and hemizygous duplications using read depth

information which represents an extension to previous SD analysis

[19,20] by the inclusion of sex chromosomes (Information S1).

An intriguing observation was the identification of complex

rearrangements in multiple gene families where rapid evolution of

NBPF, PRAME, RGPD, GAGE, LRRC, TBC1, NPIP and TRIM

gene families appear to be predominantly attributed to intra-

chromosomal gene transfer, whereas other complex gene families

(e.g., ANKRD, OR, GUSB, FAM, POTE, ZNF and GOLG) appear to

be more diverse with respect to transfer of gene content, occurring

both within and between chromosomes (Information S2.). As

previously reported [20], the DUX family gene was associated with

the most copies within the reference genome. The rearrangement

analysis of the novel sequence within 10q26.3 region suggests at

least 10 additional copies of the DUX4 gene is specific to novel

sequences within the NA18507 human genome. (Information
S1).

Gene Ontology Analysis within ‘Rearrangement

Hotspots’. To investigate the impact of genes residing within

‘rearrangement hotspot’ regions identified in this study and their

relation to complex disease, genes were functionally categorized

using PANTHER gene ontology analysis (Information S1).

Genes residing within ‘rearrangement hotspot’ regions appear to

be involved in functions associated primarily with nucleic acid

metabolism (22%) and cellular processes (16%), although

associations also exist for developmental process (9%), cell cycle

(9%), and cell communication (8%). This finding is consistent with

a previous report in which copy number gains were associated

Figure 2. Segmental duplication (SD) units which represent the most complex rearrangements within the NA18507 human
genome. a) A total of 1963 SD complex units (i.e., $10 rearrangements) were identified that were significantly different (p,1.061026) compared
with the rest of the NA18507 genome duplicated regions. The plot illustrates the concordance of the predicted autosomal complex regions
compared with previous studies [17,19]. b) Genes that completely or partially overlapped with detected SD units in which 73% (41/56) of the most
variable genes in three different populations were detected in our analysis of the NA18507 human genome. Among the 1626 genes identified in this
study, 10% (i.e., 166/1626) of genes that overlapped with a SD unit revealed extreme inter- and intra-chromosomal rearrangements, 50% of which
have been previously validated [17]. c) Observed gene content transfer between hotspot and non-hotspot agenic SD units. d) scatter plot illustrating
DNV count for hotspot and non-hotspot SD units. e) A histogram illustrating the mean read depth (RD) of the computationally predicted SD unit
breakpoints. The blue bars represent the mean read depth for each of the 20,237 SD unit breakpoints and the red bars represent the mean read
depth for hotspot regions.
doi:10.1371/journal.pone.0028853.g002
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with genes involved in nucleic acid metabolism and developmental

processes, whereas copy number losses were enriched for genes

involved in cell adhesion [25]. That genes residing in

‘rearrangement hotspot’ regions are consistently associated with

functions affecting multiple processes important in normal growth

and development, further underscores the critical role that

rearrangement hotspots play in the genetic etiology of complex

disease.

Clinical Relevance of ‘Rearrangement Hotspots’
We have produced a genome-wide high resolution map of

‘rearrangement hotspots’ which likely serve as templates for

NAHR and consequently may represent an underlying mecha-

nism for development of constitutional and acquired diseases

arising from de novo deletions or duplications. A collection of 24

previously identified genomic disorders predominantly mediated

by de novo NAHR events are catalogued in the DECIPHER

database [12]. Comparison of our hotspot regions with pathogenic

deletions/duplications breakpoints mapped for those genomic

disorders constituting only 15 common genomic loci revealed that

20% of the detected hotspots are clustered within proximal and

distal SDs that are flanked by these pathogenic deletions/

duplications (Fig. 3). This finding indicates a higher rate of

NAHR within the genome-wide rearrangement hotspot regions

detected in this study.

The rearrangement structure of these hotspots based on our in

silico predictions (Fig. 4) reveals the complex architecture associated

with SDs. To validate the complexity of these hotspots, FISH

analysis was performed on selected regions harbouring hotspot

clusters demonstrated 94% (i.e., 17/18) concordance with in silico

predictions of co-localization (Fig. 5a, 5b, and 6). One example of

an identified ‘rearrangement hotspot’ is a duplication at the 16p12.1

complex region, which contains an S2 inversion [25], where the

alignment localized multiple derivatives of the NPIPL3 gene within

chromosomes 16 and 18 (Fig. 5a and Information S1). The

identified breakpoints revealed the presence of derivative copies of

the NPIPL3 gene within the short arm of chromosomes 16 and 18,

possibly attributed to NAHR-mediated recombination, where

pathogenic deletions and duplications have been reported in

patients with mental retardation and intellectual disability [26–

32]. The derivatives are located within the pathogenic deletion

breakpoints among the patients with neurodevelopment disorders.

Unfortunately, these studies used methodologies unable to localize

derivative copies, and consequently the NPIPL3 gene was

disregarded as a susceptibility gene. A second complex region,

22q11.21, housed a large duplication consisting of two copies, with

the ‘core duplicon’ being copied multiple times in chromosomes 5,

6, 20 and 22 (Fig. 5b). Phenotypes attributed to pathogenic

deletions and duplications within chromosomes 5 and 22 [33,34]

revealed breakpoint patterns within a ‘core duplicon’, suggestive of

NAHR-mediated duplication.

A third complex region, revealed a previously uncharacterized

gene desert within 1q21 indicating a possible harvest region for the

NBPF gene family. This 68 Kbp gene desert region revealed

extreme intra-chromosomal rearrangement without any signature

of inter-chromosomal duplication in our in silico analysis (Fig. 6).

The gene fragments from NBPF1,3,9,10,14,15,16,20 and 24

appear to be copied and transferred to 1q21.1 (142867911–

142935940) and consequently creating extreme overlapping

tandem duplications. The fosmid clone G248P8712C10 covering

this region was used on metaphase chromosomes to predict

derivative duplicated loci. Multiple signals were obtained within

1p36.12 and 1q21.1 regions, while a weak signal was obtained

within the 1p10p13 region which was not detected by our in silico

analysis. The donor region located 2 Mb distal from the gene

desert transferred gene content to this 68 kbp region which is

associated with recurrent pathogenic deletions and duplications

implicated in developmental disorders and neuroblastoma

[12,35,36]. One may speculate that gene deserts may represent

reservoirs for creation of novel genes and underscores the necessity

to further explore this previously ignored region of the human

genome. The complexity of tandem duplications (e.g., 1q21.1) can

have a direct impact on estimating copy number for a gene (e.g.,

NBPF). In such cases, the estimation of copy number based solely

on read depth may be affected due to the nature of the tandem

duplication.

Limitations
While the results of this study highlight the importance of

restricting the number of vulnerable genomic regions that are

targeted for clinical application, read depth-based approaches are

associated with certain limitations. One of the limitations of our

approach was the exclusion of inversions and insertions as the read

map algorithm mrsFAST employed in this study was unable to

return information regarding the orientation of duplicated loci

[37] and as a result the map of ‘rearrangement hotspots’ will miss

regions with complex orientations. Coverage is another constraint

to detect SDs due to the positive correlation between coverage and

detection rate [20]. A much higher (i.e., .406) coverage will

significantly increase the detection capacity of SD units. It is

widely accepted that no single method has the capacity to capture

the entire content of structural variants in the genome. For

example, read pair and read depth approach overlapped only 20%

among the detected variants [4], therefore, a portion of

‘rearrangement hotspots’ will be missed by our analysis. Moreover,

a portion of highly duplicated regions (.99% sequence identity)

analyzed in this study is reference sequence-specific due to MAQ’s

(mapping and assembly with quality) limitation to align short reads

within those region precisely [38]. While the results of this

hypothesis-driven in silico study are consistent with limited FISH

analysis, additional genome-wide validation is required. In a

recent report, it has highlighted the current limitation of de novo

assembly approaches that produce a consensus genome with at

least 16.2% shorter than the reference genome [39]. As de novo

assembly progresses with large genome initiatives (i.e., 1000

genomes), integration of comprehensive de novo assembly with our

hierarchical approach will afford maximum potential to detect a

complete picture of population-specific ‘rearrangement hotspots’.

Collectively, the results of this study emphasize the complexity of

genomic rearrangements and the importance of NAHR-mediated

recombination events in the origin of deletions and duplications

which underlie the manifestation of germline and somatic disease.

Diseases arising from structural changes in the human genome

are strongly correlated with the local sequence structure in which

NAHR appears to be the predominant mechanism producing such

vulnerable regions that often predispose to genomic diseases [6].

Isolating these regions based on high sequence homology will

significantly reduce target regions and enable the development of

hotspot-specific genotyping assays to capture disease associated

deletions/duplication with both higher sensitivity and coverage.

The breakpoints previously reported in SDs by aligning non-

overlapping read depth windows of 5 kbp using the reference

human genome [3,20] limits the capacity to detect short highly

homologous regions vulnerable to NAHR-mediated rearrange-

ment. In this study, we have identified genome-wide ‘rearrange-

ment hotspots’ with elevated frequency of pathogenic NAHR-

mediated events. We have also detected an overwhelming number

of overlapping CNV breakpoints, accumulation of DNVs and

Segmental Duplications in Humans
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gene content transfer within hotspot regions. The read depth

distribution of these hotspot regions revealed considerably higher

read depth compared with the rest of the duplicated regions in the

genome. The genome-wide characterization of ‘rearrangement

hotspots’ will enhance the clinical applicability of high resolution

genome analysis to uncover uncharacterized genomic disorders.

Although current microarray platforms vary in both coverage and

sensitivity [40], the generation of a genome-wide ‘rearrangement

hotspot’ map will serve as a powerful tool for a custom design of

microarrays targeting regions vulnerable to mutational events that

predispose to genomic disorders.

Although NAHR appears to be the dominant mechanism in the

origin of pathogenic chromosomal rearrangements, the complete

identification of hotspot breakpoints due to NAHR, NHEJ,

MMBIR and FoSTeS remains to be fully characterized. The

generation of a genome-wide high resolution map of ‘rearrange-

ment hotspots’, which likely serve as templates for NAHR,

represents a risk factor for manifestation of constitutional and

acquired diseases as these regions are capable of mediating de novo

deletions or duplications. Fine mapping limited to only 20% of

detected hotspot regions identified in this study using microarray

will detect NAHR-mediated deletions/duplications for 24 known

genomic disorders and the remaining 80% will increase the

possibility of detecting novel de novo chromosomal loss or gain. We

anticipate that discovery of genomic variants using this robust

hierarchical approach will translate not into the replacement of

microarray-based methods with whole-genome or exome sequenc-

ing of patients suspected to have complex disease. Instead, it

represents a valuable tool which can be utilized for superior design

and selection of probes, and ultimately the creation of a

customized microarray chip specifically targeting ‘rearrangement

hotspot’ signatures to detect complex genomic diseases.

Materials and Methods

Data Acquisition and Processing
We have obtained short read data for the NA18507 human

genome sequenced using reversible terminator chemistry on an

Figure 3. The physical position of rearrangement hotspots that has been mapped within the proximal/distal breakpoints of a
pathogenic deletion (red horizontal block) or duplication (green horizontal block).
doi:10.1371/journal.pone.0028853.g003
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IIlumina Genome Analyzer [41]. The original data consisted of

.306coverage of the genome. We have obtained more than half of

the data from the Short Read Archive Provisional FTP (NCBK) site

(ftp://ftp.ncbi.nih.gov/pub/TraceDB/ShortRead/SRA000271/)

with an average read length of approximately 36 bp. The analysis

accuracy of this dataset has been previously described [41]. The

4.8 Mb novel sequence detected in the NA18507 genome by a

previous de novo assembly was also integrated in our rearrangement

analysis. The length distribution revealed that the contigs/scaffolds

are over fragmented and .80% of the sequence length is ,1 kb in

length. The NA18507 human genome was selected as it is

representative of the ancestral African Euroban population which

has been previously shown to contain the most diverse polymor-

phisms compared with other populations [19,20], rendering it an

ideal sample to generate a ‘rearrangement hotspot’ map as the

majority of the hotspot regions detected should exist within other

populations.

Short Read Mapping
We have applied mrsFAST (micro-read substitution only fast

alignment search tool - version 2.3.0.2) which implements an all-

to-all algorithm unlike other short read mapping algorithms [37].

Specifically, it is a fast alignment search tool which uses cache

oblivious short read mapping algorithm to align short reads in an

individual genome against a repeat masked reference human

genome within a user-specified number of mismatches. We have

mapped our short reads using mrsFAST with a maximum of two

mismatches allowed against the repeat masked (UCSC hg18)

genome assembly (Information S1). The advantage of using

mrsFAST is that it returns all possible hits in the genome for a

short read, allowing the detection of differential read depth

distribution within duplicated regions of the human genome.

Using the NA18507 human genome (186 coverage), 1.5 billion

short reads were processed with 55.78% (i.e., ,839 million short

reads) mapped to the repeat masked human reference genome

with the mrsFAST aligner (Information S1) which returned all

possible mapping locations of a read; a key requirement to

accurately predicting the duplicated regions within the reference

genome.

GC Correction
There exists a known bias with next generation sequencing

technology towards GC-rich and GC-poor regions. Moreover,

during library preparation using an Illumina Genome Analyzer,

amplification artefacts are introduced in both GC-poor and GC-

rich regions producing an uneven distribution of read coverage

[20] which has the potential of detecting false positive duplicated

regions. We have used a simple GC correction method to reduce

this bias. Overlapping windows (i.e., by 1 bp) with length ‘l’ was

used for read depth computation. Each read was assigned only

once by its starting position and read depth was computed for each

chromosomal position. The original mean read depth was

calculated for each ‘l’ length (i.e., 100 bp) block using equation

(1). We have computed G+C percentage for every 100 bp window

from the reference human genome and the read depth was

subsequently interrogated for adjustment. The adjusted read depth

was computed using the following equation:

RDi,adjusted~RDi|
m1

m2
ð1Þ

where RDi, adjusted is the read depth after GC correction, RDi is

the original read depth computed for ith window, m1 is the overall

median of all the windows with 100 bp length and m2 is the mean

depth for all windows with same GC percentage. All subsequent

analysis was carried out on the GC-corrected read depth.

Read Depth (RD) and Interval Detection
The first step in dissecting SD unit breakpoints using the

NA18507 genome from all hit map information was to compute

read depth from short read sequence mapping and detect SD

intervals that do not overlap with a repeat region of the genome.

Read depth was computed for each point after obtaining

mapped anchoring positions of the short reads from mrsFAST.

We have built a table for each chromosome, each containing

coordinates where the common repeats are located. The read

depth mean was computed for a chromosome from the genome

content excluding common repeat regions. For each window

with l length (100 bp) an event was determined. Events with

excessive read depth and with a deletion were detected using

equation (2).

event(l)~

2 ExcessiveRDð Þ if
Pl

k~0

RD§meanz2|st:d

0 Deletionð Þ if RDv1

1 otherwise;

8>>><
>>>:

ð2Þ

To investigate the interrogating window if it falls within a

common repeat elements, we have built a library for the repeat

masked regions (masked interspersed repeats, i.e. LINES, SINES,

etc.) of the human genome. The mean length of the detected SD

units was 822 bp (Information S1). The read depth distribution

between the detected duplication subunits and the non-duplicated

regions of the genome show significant read depth differences with

an approximately 7% error rate (Information S1).

NA18507 Short Read Reference Guided Assembly
The current version of mrsFAST does not return the quality of

the aligned reads within a consensus genome. Instead, we have

used MAQ version 0.7.1 (Mapping and Assembly with Quality)

which assembles genomes with a specified quality. MAQ searches

for the un-gapped match with lowest mismatch score (i.e.,

maximum of 2) in the first 28 bp. To confidently map alignments,

MAQ assigns each alignment a Phred scaled quality score which

measures the probability that the true alignment is not the

alignment that is detected by MAQ. If a short read maps to

multiple positions in the genome, MAQ will randomly pick one

position and give the excluded position a mapping quality of zero.

We have mapped and assembled the NA18507 genome short

reads into the reference genome using MAQ allowing at most 2

mismatches.

Figure 4. Landscape of chromosomal rearrangements in the NA18507 human genome. Chromosomal rearrangements located within
duplicated regions are plotted against the human genome. Green bars represent the signature of intra-chromosomal rearrangements, black bars
represent inter-chromosomal rearrangements and red bars represent ‘rearrangement hotspots’. Cytobands with duplications for each chromosome
and selected genes that completely or partially overlapped with SD units are also indicated.
doi:10.1371/journal.pone.0028853.g004
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Detection of Genomic Re-arrangements
Using read depth as a measure to detect SD unit breakpoints

may produce regions that share ,90% sequence identity. To

reduce false positive and computational burden after detecting SD

unit breakpoints, we utilized a basic version of the end space

alignment algorithm (without seed and extend approach) and

performed pairwise alignment for each of the SD units against the

rest of the genome SD units. We included only those SD units for

rearrangement analysis described in the following section that

contained at least one duplicon .100 bp with .90% sequence

identity. We detected 20,237 SD units when every 100 bp window

was assessed for a possible rearrangement.

End-Space Free Alignment Algorithm
The ability to detect highly homologous regions between two

sequences is essential for duplicon detection. Multiple clusters of

non-adjacent duplicons with .90% sequence identity cannot be

mapped using basic alignment algorithms. As previously reported,

the basic pairwise global alignment algorithm will miss duplicon

breakpoints that are non-adjacent within an SD with different

Figure 5. Signature of rearrangement hotspots located at a) 16p12.1 and b) 22q11.21. A 40 kbp region within 16p12.1 is illustrated with
its corresponding derivative copies which were localized by hierarchical analysis. This region consists of the NPIPL3 gene derivatives. The inter- and
intra-chromosomal localization of the copies is approximated in the physical map within the chromosome contig (18p11.21). The alignments are
color coded for chromosomes (i.e., color coded rectangles below the read depth plot) and FISH validation is illustrated for both inter- and intra-
chromosomal localization. The pathogenic deletions and duplications located within these regions [27–32] are depicted in red and green bars,
respectively The blue bars under the contig represent the approximated inversions previously reported by Antonacci, F. et al [26]. b) Analysis of a
37 kbp duplicated region within 22q11.21 revealed it is comprised of a core 2.7 kbp tandem duplicon copied from different chromosomes. Black lines
represent the read depth (x-axis), green shade represent an SD unit, and blue bars represent the region with common repeat elements. The
horizontal blocks (color coded according to chromosomes) are the rearrangement (intra/inter) fragments with .90% sequence similarity and
.100 bp in length.
doi:10.1371/journal.pone.0028853.g005

Figure 6. Rearrangement hotspots comprising a 68 kb gene desert located within 1q21.1 region. Validation of a gene desert where
extreme intra-chromosomal rearrangement without any signature of inter-chromosomal duplication observed in our in silico predictions. The
rearrangement consists of gene fragments from the NBPF gene family located within the p and q arm of chromosome 1.
doi:10.1371/journal.pone.0028853.g006
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thresholds of sequence identity [6]. Semi-global alignment has a

tendency to produce pattern-like alignments (see example below),

which are not informative for complex regions with multiple

duplications. We have implemented a modified version of the

pairwise alignment algorithm where the alignments are scored

ignoring end spaces of the two sequences. Adding the option of

end spaces in our alignment does not produce pattern-like

alignments and therefore accurately pinpoints the breakpoints of

the duplicon with an allowed gap that crosses the threshold of

.90% sequence identity. The neutral rate of evolutionary decay

suggests that 10% sequence divergence is required to accurately

detect duplications that are primate-specific [6].

Example:

S1:ACGCAATTCGACTAGATCGGGTCGATGATCGAT-

CGATGATCGAGACAGCATAGCAG

S2: CAATTCGACTAGATCGATCGACGATCGATCGAT

Semi-Global Alignment:

S1: ACGCAATTCGACTAGATCGGGTCGATGATCGAT-

CGATGATCGAGACAGCATAGCAG

S2: ***CAATTCGACTAGATC*GATC***GA*CGATC***-

GAT*****C*G*AT*****

End-Space Free Alignment:

S1: CAATTCGACTAGATCGGGTCGATGATCGATCGAT

S2: CAATTCGACTAGATC*GATCGACGATCGATCGAT

In order to implement the algorithm, a dynamic programming

technique was utilized which is a modified version of Smith-

Waterman dynamic programming [42]. This approach will detect

the pairwise alignment relative to a penalty function correspond-

ing to semi-global alignment. We used the dynamic programming

(DP) algorithm to compute the above alignments and used the

backtrack pointer to identify the best alignment.

Dynamic Programming Matrix and Recursive Trace Back
As a core searching algorithm, we have implemented a penalty

function to complete the dynamic programming matrix M. First,

we initialized the first column and row with zeroes which provided

forgiving spaces at the beginning of the sequences in order to

obtain the highest similarity between the interrogated sequences.

Our intention was to locate duplicons between a pair of sequences

(i.e.., s and t) with .90% identity and alignment with minimal

gaps to avoid pattern-like structures. We encoded A with 1, G with

2, C with 3 and T with 4 to construct the (mz1)|(nz1) DP

matrix M, where m and n is the length of two given sequences s and

t, respectively. The algorithm uses a dynamic programming

technique to fill a matrix M by a look up penalty function from the

565 matrix C. We have introduced penalty function g(i,j) for

matched alignment with a score of 2. For the mismatches between

a pair of bases, we introduced a penalty of 22 for mismatch and

23 for misaligned sequence produced by sequence assembly tools

(i.e., MAQ). We used a 23 penalty to reduce the amount of

misaligned portions of the sequence into duplicon identification.

To allow the algorithm to ignore the end positions of the

sequences if it has low similarity, we have performed a trace back

from the highest value returned by function Sim(s,t) in the matrix

M (Information S1). For any two given sequences (i.e., s and t), a

semi-global alignment is an alignment between a substring (in this

case duplicon) of s and t.

a½i,j�~ max

a½i,j{1�{3

a½i{1,j{1�zg(i{1,j{1)

a½i{1,j�{3

8><
>:

ð3Þ

Sim(s,t)~ max of M ð4Þ

The memory requirement to fill out DP matrix M is O(mn). The

computational time to complete the dynamic programming

Matrix M and to determine the maximum value in M for a given

pair of sequence s and t with nearly similar length is O(n2) and to

trace back starting from the maximum point in the matrix takes

O(m+n) time to obtain optimal alignment.

Now, it might be apparent that ignoring end spaces might not

detect true breakpoints and for long sequences it might produce

really short alignments. Considering that majority of the

commonly used alignment search methods (i.e., BLAST, BLAT,

and SHRiMP) implement a ‘‘seed and extend’’ method to obtain

faster sequence comparison [43–46], this method was also applied

in this study. To perform an exhaustive search within the scope of

100 bp windows for any two given segmental unit sequences

obtained from NA18507 genome, we have applied the dynamic

programming algorithm for each 100 bp window with 10 bp

overlaps as ‘‘seeds’’. The highly similar seeds (.90%) went

through the ‘‘extend’’ step and the rest was ignored. We

acknowledge that this approach might detect the same breakpoints

multiple times if multiple seeding events are obtained from a

highly duplicated region. Therefore, we have compared the

previously extended duplicon breakpoints from the same SD unit

and the overlapping ‘‘seeds’’ and only the maximum extended

duplicon was kept (Information S1). ‘Extend’ is a recursive

procedure which extends bi-directionally by 10 bp and the extend

step ceases in each direction when further extension does not cross

the sequence identity threshold. As a result, the procedure

terminates if any further extension of both directions returns

,90% sequence identity.

FISH Validation
Cytogenetic preparations were made from lymphoblastoid

culture (obtained from Coriell cell repositories) for the NA18507

sample. The cell suspension was dropped on slides using a

thermotone, aged overnight and hybridized with test (i.e.,

spectrum orange) and control probes. Following post-hybridiza-

tion washes and 4,6-diamidino-2-phenylindole (DAP1) counter-

staining, slides were analyzed using fluorescence microscopy.

Pseudocoloring and image editing was performed using Photoshop

software. To validate our duplicon rearrangement within SD units,

we selected three complex regions in the human genome: 1q21.1,

16p12.1 and 22q11.21. In this study, we used fosmid genomic

clones corresponding to a duplicated locus as a probe against

chromosomal metaphase. The localization of FISH clones within

these regions and the corresponding derivative loci validated

.94% (i.e., 17/18) of the in silico co-localization predictions. The

FISH technique was unable to provide a precise estimate of

rearrangement at the level of 100 bp due to resolution limitations

(Information S1).

Permutation
The basic analyses were conducted using a permutation

procedure to assess statistical significance of 1-sided tests. The

rearrangement for each SD unit was permuted randomly between

the two groups and test statistics was computed in each

permutation. All results reported in this study used 1 million

permutations to derive an empirical P-value.

Gene Ontology Analysis. Gene ontology data analysis was

performed using PANTHER (version 7.0) database [45]. We have
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analyzed the biological processes of the hotspots genes

(Information S1).
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