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ABSTRACT 

A series of lipophilic esters of tyrosol and hydroxytyrosol, two naturally occurring phenols in 

olive oil with interesting biological properties, were prepared by an enzymatic and simplified 

base extraction procedure.  Both tyrosol and hydroxytyrosol are hydrophilic molecules with poor 

solubility in lipophilic media, resulting in limited usage in foods and limited uptake by the cells 

and bioavailability in vivo. The antioxidant activities of esters so produced were evaluated using 

the 2,2-diphenyl-1-picrylhydrazyl (DPPH), human low-density lipoprotein (LDL) oxidation, and 

DNA strand scission assays. The antiviral properties of selected esters were measured using 

hepatitis C virus (HCV) protease and alpha-glucosidase inhibitory activities. Antiglycation by 

bovine serum albumin (BSA)-glucose assay, protection effect against oxidative stress, generation 

anti-inflammatory products by nitrite assay, and cytotoxic properties by 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay of selected esters were also evaluated. All 

methods used for the antioxidant activity evaluation indicated that tyrosol (TY) and its 

derivatives were less active than the corresponding hydroxytyrosols (HTY), which reflected the 

influence of the ortho-diphenolic (catechol) structure of the latter on antioxidant capacity. For 

hydroxytyrosol, the introduction of the lipid moiety decreased its antioxidant activity. We 

observed the inhibition of HTY saturated fatty acid esters against hydroxyl radical induced DNA 

oxidation decreased as alkyl chain length increased. Meanwhile, an unsaturation-dependent 

antioxidant effect was observed for TY and HTY esters in DNA strand scission assay, and for 

TY esters in DPPH assay. However, in the LDL oxidation assay, the polyunsaturated fatty acid 

(PUFA) moiety of TY esters may be oxidized. For antiviral properties of selected esters, most of 

the TY derivatives that showed potent inhibition on α-glucosidase were not active against HCV 

while HTY esters showed very good HCV protease inhibition, especially HTY caprylate, stearate 
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and oleate esters which displayed 3-fold stronger inhibition than that of embelin (the positive 

control). Moreover, it was found that lipophilization by esterification could improve the anti-

inflammatory and antiglycation effects of tyrosol and hydroxytyrosol. These results indicate that 

the lipophilic ester derivatives can served as antioxidant ingredients in food, as well as anti-

inflammatory, antiglycation, and antiviral agents, and ingredients in other therapeutic 

applications, supplements and natural health products. 
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CHAPTER 1 1 

INTRODUCTION  2 

The Mediterranean diet has always been considered to be very healthy due to a high content of 3 

olive oil with a multitude of benefits such as cardioprotective and anti-cancer effects. The olive 4 

oil-enriched Mediterranean diet was found to reduce the risk of different types of heart attack or 5 

cardiovascular disease complications by 50% (de Lorgeril et al., 1996). Another study enrolled 6 

individuals in a randomized way to the Mediterranean diet, supplemented with extra virgin olive 7 

oil (EVOO), over a follow-up of about 5 years, and found that adopting the Mediterranean-type 8 

diet reduced the risk of CVD complications by 30% (Estruch et al., 2013). Studies have found 9 

that the minor components of olive oil exert their anti-cancer effect by inhibiting cell 10 

proliferation and promoting apoptosis in colorectal cancer cell lines (Gill et al., 2005; Fini et al., 11 

2008), and can prevent colon carcinomas in rats (Bartoli et al., 2000), possibly by regulating cell 12 

division associated with intestinal diamine oxidase (Wollin & Jaques, 1976). Santos-González et 13 

al. (2012) studied the effect of dietary oils on the level of plasma proteins during aging in rats 14 

using a proteomic approach, and demonstrated that the intake of a diet rich in virgin olive oil had 15 

great benefits for improving and maintaining antioxidant status, an anti-inflammatory state and 16 

an anti-atherogenic lipid profile during aging. The health benefits of olive oil are mainly due to 17 

the presence of the high content of monounsaturated fatty acid (MUFAs) and minor components 18 

with biological properties such as tocopherols, squalene and phenolics (Murkovic et al., 2004; 19 

Roufs, 2007; Silva et al., 2016). 20 

Phenolics have been demonstrated to have antioxidant property and inhibit oxidation of 21 

biomolecules (e.g. membrane lipids, LDL, proteins and DNA), and thus prevent or inhibit 22 

pathologies such as inflammation, atherosclerosis and carcinogenesis (Biesalski, 2007). Among 23 
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olive oil phenolics, tyrosol (TY) and hydroxytyrosol (HTY) are two characteristic olive oil 1 

phenolic compounds with antioxidant properties in vitro. Meanwhile, they also exhibit biological 2 

benefits such as antibacterial, antiviral, anti-inflammatory, neuroprotective and anticancer 3 

effects, among others. As an antioxidant, tyrosol plays a defensive role in cells against injury due 4 

to oxidation (Giovannini et al., 1999), and has a cardioprotective effect (Lucas et al., 2010). 5 

Hydroxytyrosol has anti-leishmanial activity against promastigotes of Leishmania infantum, L. 6 

donovani, and L. major (Kyriazis et al., 2013). However, due to its lack of ortho-diphenolic 7 

structure, the in vitro antioxidant activity of tyrosol is weak, when compared with 8 

hydroxytyrosol. 9 

Generally, the solubility of phenolic compounds in aqueous media is good due to their high 10 

polarity, compared to that of the living cell, where the antioxidant activity is required. Therefore, 11 

because of the limited solubility of these phenolics in lipid media, the search for new lipophilic 12 

derivatives with enhanced properties that could extend their application in oil-based foods and 13 

cosmetics, as well as making them more efficient in emulsions, is of great interest. In addition, 14 

the food industry is demanding powerful and economical antioxidants with nutritional properties 15 

to improve the value and the quality of foods (Moure et al., 2001).  16 

Tyrosol and hydroxytyrosol derivatives have also been synthesized in order to improve the 17 

antioxidant and biological properties of the parent compounds. Glycosylated derivatives and 18 

lipophilic derivatives in the form of alkyl ether and fatty acid ester have been prepared. 19 

Hydroxytyrosol alkyl ether derivatives were found to play a positive role in liver cancer (Pereira-20 

Caro et al., 2011) and colon adenocarcinoma (Pereira-Caro et al., 2013; Mateos et al., 2013), and 21 

are more stable under biological conditions than hydroxytyrosol. Hydroxytyrosol fatty acid esters 22 

possessed increased antioxidant activity and improved inhibition against oxidation of proteins 23 
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and lipids caused by peroxyl radicals (Trujillo et al., 2006), and have better neuroprotective 1 

(Munoz-Marin et al., 2012; Guerrero et al., 2012), antiplatelet and anti-inflammatory effects 2 

(Reyes et al., 2013). Aissa et al. (2012) synthesized several tyrosyl esters with increasing 3 

lipophilicity and found that they exhibit antibacterial and anti-leishmanial activities with a better 4 

affinity with lipophilic membrane constituents. Hence, these modified compounds could be 5 

important for further application in food and pharmaceutical fields. However, the relationship 6 

between the length of alkyl side chain and their antioxidant and biological ability is still unclear. 7 

Little information exists on polyunsaturated fatty acid esters of tyrosol or hydroxytyrosol and 8 

comparison of the ability of whole series of tyrosol esters with hydroxytyrosol esters. 9 

Due to the improved biological and antioxidant activity found for several tyrosol and 10 

hydroxytyrosol derivatives compared to tyrosol and hydroxytyrosol themselves, we decided to 11 

synthesize a series of tyrosol and hydroxytyrisol derivatives using a green enzymatic method. 12 

We synthesized tyrosol and hydroxytyrosol with different fatty acids, including saturated fatty 13 

acids (from C4:0 to C18:0), MUFA (oleic acid), and Omega-3 polyunsaturated fatty acids (α-14 

linolenic acid, EPA, DHA). Then, we identified the compounds by thin layer chromatography 15 

(TLC) and high-performance liquid chromatography-mass spectrometry (HPLC-MS), and 16 

purified them using a simplified base extraction method. Later, the antioxidant activities of the 17 

compounds so prepared were tested in order to explore the relationships between the activity and 18 

structure of compounds including the varying number of phenolic hydroxyl groups, the degree of 19 

unsaturation of the fatty acid side chain, and the length of the side chain. The study aimed to 20 

provide information about the potential of using tyrosol and hydroxytyrosol fatty acid esters as 21 

effective antioxidants by testing their 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging ability. 22 

Their antioxidant potential in biological model systems was also investigated in order to 23 
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highlight their efficiency by testing cupric ion-induced human low-density lipoprotein (LDL) 1 

oxidation and DNA strand scission assay. 2 

The biological activities of tyrosol and hydroxytyrosol esters were also studied by testing the 3 

antiviral activity including anti-Hepatitis C virus (HCV) and the anti-human immunodeficiency 4 

virus (HIV) effect of selected esters in order to fill the existing gap in the literature in this area. It 5 

is well documented that oxidative stress caused by reactive species of oxygen (ROS) damages 6 

crucial cellular signaling proteins, and this is recognized as a mediator of inflammation (Mittal et 7 

al., 2014). The Human hepatoma cell line, HepG2, is a reliable model for biological studies of 8 

intracellular antioxidants (Alia et al., 2005). The protective ability of selected fatty acid esters 9 

against oxidative stress induced by tert-butyl hydroperoxide (t-BuOOH) was evaluated in the 10 

HepG2 model system. In addition, the cytotoxicity and antiglycation effects of selected 11 

compounds were also tested in this study. 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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 1 

CHAPTER 2 2 

LITERATURE REVIEW 3 

2.1 Tyrosol and Hydroxytyrosol 4 

Tyrosol and hydroxytyrosol are phenylethanoids, derivatives of phenethyl alcohol, with 5 

antioxidant properties in vitro. They are classified as natural phenolic compounds present in a 6 

variety of plant sources, especially in olives and olive oil (Ryan & Robards, 1998; Romero & 7 

Brenes, 2012). As phenolics, they are expected to have high antioxidant activities (Carrasco-8 

Pancorbo et al., 2005) which are due to the redox potentials (a measure of the electronegativity 9 

of a substance compared with hydrogen) of the phenolic hydroxyl groups (Dubey, 2014) and the 10 

structural factors in the chemical configuration of the molecules (Cheng et al., 2002).  Due to 11 

their antioxidant properties, tyrosol and hydroxytyrosol play a defensive role in cells against 12 

injury due to oxidation (Manna et al., 1997; Giovannini et al., 1999) 13 

Furthermore, they are revealed to show biological activities in vivo, mediated by mechanisms 14 

other than just scavenging free radicals (Forman et al., 2014). Tyrosol and hydroxytyrosol 15 

exhibit activities such as cardioprotective (Lucas et al., 2010), antibacterial (Capasso et al., 1995; 16 

Bisignano et al., 1999), anti-pathogen (Ortega-García & Peragón, 2010; Kyriazis et al., 2013), 17 

antiviral (Yamada et al., 2009), anti-inflammatory (de la Puerta et al., 1999; Bitler et al., 2005; 18 

Vivancos & Moreno, 2008), neuroprotective (Rodríguez-Morató et al., 2015) and anticancer 19 

(Owen et al., 2000; Bernini et al., 2013) effects, inhibition of human LDL oxidation (Visioli et 20 

al., 1995) and prevention of platelet aggregation (Petroni et al., 1995), as well as exhibiting 21 

activity against T. brucei (Belmonte-Reche et al., 2016). They also have positive effects in 22 
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metabolic syndrome and other health benefits which are associated with in vitro and in vivo 1 

experimental studies (Bulotta et al., 2014; Granados-Principal et al., 2010; Visioli & 2 

Bernardini, 2011).  Thus, research into tyrosol, hydroxytyrosol and their derivatives has received 3 

increasing interest over the last decade, because of their improved biological activities and 4 

antioxidant effects.    5 

2.1.1 Structures and Derivatives 6 

Tyrosol (p-hydroxyphenethyl alcohol; p-hydroxybenzethanol; p-tyrosol) can be easily dissolved 7 

in water, alcohol, ether, acetone and acetic acid. Needle-like crystals of tyrosol can be obtained 8 

from chloroform. Hydroxytyrosol (3,4-dihydroxyphenylethanol) is a water- and fat-soluble 9 

bioactive alcoholic ortho-diphenol. Tyrosol and hydroxytyrosol are present in olive oils in the 10 

free and conjugated forms as secoroids or aglycones (Miro-Casas et al., 2003). In nature, 11 

hydroxytyrosol is rarely present in the free form. Hydroxytyrosol occurs mainly in the esterified 12 

form as oleuropein which is hydrolyzed to hydroxytyrosol (Fernandez-Bolanos et al., 2008). The 13 

chemical structures of tyrosol and hydroxytyrosol are given in Figure 2-1. In order to improve 14 

their fat-solubility and to increase their activities, the molecular structures may be modified to 15 

obtain lipophilic derivatives in the form of alkyl ether, lipophilic fatty acid ester, and 16 

glycosylated derivatives.  17 

 18 

Figure 2-1. Chemical structures of tyrosol and hydroxytyrosol.  19 
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Madrona et al. (2009) prepared a series of hydroxytyrosol alkyl ether derivatives by a three-step 1 

method (Figure 2-2) with good yield (≥ 60%) and the derivatives retained the high protective 2 

capacity of free hydroxytyrosol (Halaouli et al., 2005), while Procopio et al. (2011) synthesized 3 

another type of derivatives- hydroxytyrosol lipophilic fatty acid esters (Figure 2-3) and reported 4 

a high free radical-scavenging capacity. In addition, the alkyl ether derivatives were found to play a 5 

positive role in liver cancer (Pereira-Caro et al., 2011) and colon adenocarcinoma (Pereira-Caro 6 

et al., 2013; Mateos et al., 2013). 7 

 8 

Figure 2-2. Synthesis of hydroxytyrosol alkyl ethers by a three-step method. 9 

Hydroxytyrosol fatty acid esters (Figure 2-4) can also be biosynthesized by enzymatic catalysis 10 

via acylation assisted by Candida antarctica lipase (Bouallagui et al., 2011). The results of 11 

DPPH radical activity showed that the antioxidant activity of esterified derivatives was similar to 12 

that of hydroxytyrosol. 13 

 14 

Figure 2-3. Synthesis of hydroxytyrosol lipophilic fatty acid esters by a chemical method. 15 



 

8 
 

 1 

Figure 2-4. Synthesis of hydroxytyrosol lipophilic fatty acid esters by an enzymatic method. 2 

 3 

Bernini et al. (2008) reported that hydroxytyrosol and its lipophilic derivatives can be 4 

synthesized from tyrosol by acylation or transesterification to protect the alcoholic hydroxyl 5 

group in order to curtail its excessive oxidation, then IBX/DMP oxidation and Na2S2O3 reduction 6 

are used to form a lipophilic ester derivative, and then removal of the protecting group to 7 

generate hydroxytyrosol. Bernini et al. (2012) also synthesized a series of catechol derivatives 8 

(fatty acid methyl ester and carbonate) and evaluated their antioxidant activity by an in vitro 9 

ABTS assay and on whole cells by DCF fluorometric assay. Rogaie et al. (2013) showed that 10 

tyrosol, hydroxytyrosol and other polyphenols have a high free radical scavenging activity and 11 

effective antioxidant properties as evaluated by quantum chemical calculations to establish a 12 

structure-activity relationship of antioxidants for tyrosol, hydroxytyrosol, hydroxytyrosol acetate, 13 

as well as other derivatives. Trincone et al. (2012) utilized α- glucosidase secreted by the sea 14 

hare (Aplysia fasciata) viscera for catalytic glycosylation of tyrosol and hydroxytyrosol to form 15 

the corresponding glycosides.  16 

Aissa et al. (2012) synthesized several tyrosyl esters with increasing lipophilicity using lipase 17 

from Candida antarctica (Novozyme 435), and pointed out that tyrosol was esterified via its 18 

primary hydroxyl group. Aissa et al. (2007) also reported another enzymatic esterification of 19 
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tyrosol and ethyl acetate with lipase from Staphylococcus xylosus (SXLi). Five tyrosol 1 

derivatives, composed of hypocrol A trichodenol B, 4-hydroxyphenethyl acetate, 4-2 

hydroxyphenethyl tetradecanoate and 1-oleyltyrosol were found by Ding et al. (2016) in sponge-3 

derived fungi. 4 

2.1.2 Sources 5 

Olives are the richest source of tyrosol and hydroxytyrosol. They are present in most parts of the 6 

olive tree, including the leaves, fruit, tree wood and, therefore, in olive oil (Ghanbari et al., 2012).   7 

There are health gurus promoting olive oil as the miracle food. Modern science has now 8 

discovered that the medicinal effectiveness of foods containg olive tree products is largely due to

their content of antioxidants tyrosol and hydroxytyrosol. Although the content of phenolics 10 

varies with cultivar and harvest, the total phenolics in virgin olive oil is composed of 30% 11 

tyrosol and hydroxytyrosol, and their secoroids derivatives as well as other conjugated forms 12 

such as oleuropein and ligstroside aglycones representing almost half of the total phenolic 13 

content of the virgin olive oil (Owen et al., 2000). Hydroxytyrosol, tyrosol and their derivatives 14 

with elenolic acid, derived from the glycosides ligstroside and oleuropein, are the most abundant 15 

phenolic compounds in olive oil (Servili et al., 2004; Tasioula-Margari & Okogeri, 2001; Goulas 16 

et al., 2012). In extra virgin olive oil, the most abundant secoiridoids are the dialdehydic form of 17 

elenolic acid linked to hydroxytyrosol or tyrosol (142.2 ± 4.7 mg/g) (Incani et al., 2016). During 18 

storage of virgin olive oil, secoiridoid derivatives decreased and hydroxytyrosol and tyrosol 19 

content increased (Kotsiou & Tasioula-Margari, 2016; Krichene et al., 2015). Early and mid-20 

harvest oils had high hydroxytyrosol and tyrosol (maximum 20.7 mg/kg) while the late harvest 21 

had less than 20% of the initial value (Jolayemi et al., 2016). Franco et al. (2014) reported an 22 

increase of hydroxytyrosl, tyrosol and their secoiridoid derivatives from green to spotted stage of 23 
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maturation, and then a decrease up to the mature stage. The main phenolic compound in fresh 1 

olive fruit is oleuropein (Brenes et al., 1995). However, the phenolic content of olive fruit is very 2 

complex and depends upon factors such as fruit maturation stage, part of the fruit (e.g., pulp or 3 

seed), cultivar, and season (Charoenprasert & Mitchell, 2012). Oleuropein (3-4.5 g/kg) and 4 

hydroxytyrosol (0.2-71 g/kg) are the main phenolic compounds in olive pulp (Vinha et al., 2005; 5 

Romero et al., 2002; Sivakumar et al., 2005). Olive pulp also has a high content of 6 

hydroxytyrosol, tyrosol, and their glycosides (Romero et al., 2002). In pulp, the contents of 7 

tyrosol and hydroxytyrosol do not change much during growing stages in different cultivars 8 

(Alagna et al., 2012). 9 

Many phenolic compounds present in olive pulp are also found in olive leaf tissue. However, 10 

tyrosol and hydroxytyrosol are not as abundant in olive tree leaves as they are in the fruit and oil 11 

(Sánchez de Medina et al., 2012). Oleuropein is the major phenolic compound in olive tree 12 

leaves, and it represents up to 9% of the dry weight matter (Ryan et al., 2002; Kiritsakis et al., 13 

2010). In addition, leaves contain hydroxytyrosol, hydroxytyrosol glucoside, tyrosol, tyrosol 14 

glucoside, oleuroside (Kiritsakis et al., 2010).   15 

Small branches (fibrous softwood) of olive tree have a lesser amount of oleuropein, 16 

hydroxytyrosol, tyrosol, α-taxifolin and verbascoside compared to those in the leaves (Japón-17 

Luján & Luque de Castro, 2007). It has been found that microwave-assisted extraction can help 18 

the recovery of high levels of phenolics: 19 g/kg oleuropein, 2 g/kg tyrosol, 1 g/kg verbascoside, 19 

and 0.7 g/kg hydroxytyrosol were recovered from small branches (Japón-Luján & Luque de 20 

Castro, 2007). During ripening of olives, the concentration of hydroxytyrosol was around 1 g/kg 21 

(dry weight) in July, and then the amount decreased until October and then increased, whereas 22 
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the concentration of tyrosol changed during the ripening period, ranging from 0.51 g/kg (dry 1 

weight) in July to 0.13 g/kg (dry weight) in December (Ortega-García & Peragón, 2010).  2 

Tyrosol and hydroxytyrosol can also be found in wine. In wines, tyrosol, which is formed from 3 

tyrosine by yeast during alcoholic fermentation (Hazelwood et al. 2008; Piñeiro et al., 2011), had 4 

a higher average content when compared to hydroxytyrosol (500-1800 μg/L) produced by 5 

hydroxylation of tyrosol, showing values between 20 and 60 mg/L (Bordiga et al., 2016). 6 

Hydroxytyrosol and tyrosol concentrations remain relatively constant during wine aging 7 

(Ribéreau-Gayon et al. 2000; Barón et al., 1997). The production and accumulation of tyrosol 8 

and hydroxytyrosol was influenced by both yeast species involved in the alcoholic fermentation 9 

and aeration conditions which could have an effect on the enzymatic conversion of tyrosol to 10 

hydroxytyrosol (Romboli et al., 2015).   11 

Tyrosol, hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid could also be found in the 12 

activated charcoal used during the fermentation process of the Japanese rice wine 13 

"sake" (Mizushina et al., 2014).  Pre-fermentative cold maceration Tannat red wines showed the 14 

highest concentration of tyrosol (37.85 ± 5.02 mg/L) among traditional maceration, pre-15 

fermentative cold maceration, maceration enzyme and grapeseed tannins addition (Favre et al., 16 

2014). Tyrosol exhibited an unusual high value (143 mg/l, as average) in the wines elaborated 17 

with the recombinant Saccharomyces cerevisiae EKD13 strain (Juega et al., 2014). Among the 18 

red wines analyzed, Piñeiro et al. (2011) found tyrosol concentrations ranging from 20.51 to 19 

44.46 mg/L, whereas hydroxytyrosol ranged from zero to 5.02 mg/L, and the Cabernet 20 

Sauvignon B and Tempranillo F varieties contained the highest amounts of hydroxytyrosol while 21 

Merlot variety showed the highest tyrosol content. There are different red wines containing much 22 

higher tyrosol concentrations than Pinot noir Champagnes (18 mg/L; Chamkha et al., 23 
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2003), Mazuelo (20–30 mg/L; Garde-Cerdán & Ancín-Azpilicueta, 2008),  Graciano, 1 

Tempranillo, or Cabernet Sauvignon, 7–26 mg/L; Monagas et al., 2005), autochthonous Italian 2 

wines (17–62 mg/L;  Bevilacqua et al., 2004), and autochthonous Hungarian and Canadian wines 3 

(38–82 mg/L; Nikfardjam & Pickering, 2008). 4 

2.2 Fatty Acids 5 

Fatty acids can be classified into saturated and unsaturated fatty acids, the latter being further 6 

divided into monounsaturated and polyunsaturated. Fatty acids can form more complex 7 

molecules, including triacylglycerols, phospholipids, sterols and their esters, among others. In 8 

this study, we selected different types of fatty acids, saturated (butyric acid to stearic acid), 9 

monounsaturated (MUFA, oleic acid) and polyunsaturated (α-linolenic acid, EPA, DHA) fatty 10 

acids. 11 

2.2.1 Saturated fatty acids 12 

Saturated fatty acids (SFA), such as stearic acid, contain no unsaturated linkages between carbon 13 

atoms and cannot incorporate any more hydrogen atoms. Fatty acids can be classified according 14 

to their chain length: short chain fatty acids (SCFA), medium chain fatty acids (MCFA), and 15 

long chain fatty acids (LCFA).  16 

SCFA, also called the volatile fatty acids (VFA), range from C2:0 to C4:0, such as acetic acid 17 

(C2:0), propionic acid (C3:0) and butyric acid (C4:0). Among their various properties, SCFA are 18 

readily absorbed by intestinal mucosa (Cummings et al., 1987), and can be more quickly 19 

absorbed in the stomach than MCFA because of their higher solubility in water, smaller 20 

molecular size, and shorter chain length (Bezard & Bugaut, 1986). MCFA have six to twelve 21 

carbon atoms while LCFA contain 14 or more carbon atoms (Shahidi, 2006). MCFA can be 22 
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rapidly cleared from the blood and get absorbed and metabolized much like glucose (Babayan, 1 

1987). MCFA can be absorbed more quickly into the intestinal lumen than LCFA (Bach & 2 

Babayan, 1982). LCFA have low water solubility because water solubility and oxidation 3 

susceptibility decrease as chain length increases. Triacylglycerols containing high amounts of 4 

long chain SFAs, especially stearic acid, have low absorption in the human body (Hashim & 5 

Babayan, 1978). General recommendations frequently focus on reducing SFA intake for 6 

improving cardiometabolic health.  7 

2.2.2 Monounsaturated fatty acids 8 

MUFAs are fatty acids that have only one double bond in their carbon chain and exist in cis and 9 

trans configurations.  The high-MUFA diets can lower total cholesterol and LDL cholesterol and 10 

hence decrease the cardiovascular disease (CVD) risk (Kris-Etherton et al., 1999). MUFAs can 11 

also decrease risk for cancer, age-related cognitive decline and Alzheimer's disease (López-12 

Miranda et al., 2010).  In the experiments carried out in this work, oleic acid was selected. Oleic 13 

acid is an 18 carbon monounsaturated omega-9 fatty acid. Olive oil is predominantly composed 14 

of oleic acid. Oleic acid shows multiple benefits such as anti-inflammatory, reducing 15 

cardiovascular risk, and anticancer (Reardon et al., 2012; Gonçalves-de-Albuquerque et al., 16 

2016; Guzmán et al., 2016; Fonolla-Joya et al., 2015; Perdomo et al., 2015; Menendez et al., 17 

2006).  18 

2.2.3 Polyunsaturated fatty acids 19 

Polyunsaturated fatty acids (PUFAs) contain two or more double bonds in their backbone. The 20 

essential fatty acids (EFA) are the PUFA that must be taken by humans and other animals 21 

through their diet as they cannot be synthesized in the body, including omega-3 (ω-3) and 22 



 

14 
 

omega-6 (ω-6) fatty acids. Omega-3 fatty acids have a final carbon–carbon double bond in the 1 

3rd carbon from the methyl end group whereas ω-6 fatty acids have it in the 6th position. 2 

Omega-3 fatty acids (Figure 2-5), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and 3 

docosahexaenoic acid (DHA), have various properties for which they can be classified as 4 

functional food ingredients. The omega-3 fatty acids play an important role in cardiovascular 5 

health, relieving arthritis and contributing to the brain and central nervous system as well as 6 

healthy eyes and healthy cholesterol levels (Sargent et al, 1995). Many studies have shown that 7 

higher consumption of n ω -3 PUFA, especially ALA, EPA, and DHA, is associated with lower 8 

incidences of heart failure and other cardiovascular events (Yashodhara et al., 2009; Lee et al., 9 

2009; Saremi et al., 2009). The efficacy of omega -3 fatty acids in primary and secondary 10 

prevention of CHD (Coronary Heart Disease) has been demonstrated (Kochar et al., 2014). 11 

Omega-3 PUFAs have shown cancer preventive effects in some rodent models of mammary 12 

carcinogenesis by impacting gene expression, reducing angiogenic signals, and promoting anti-13 

inflammatory mechanisms via alterations in the biosynthesis of lipid mediator molecules 14 

(Signori et al., 2011). 15 
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 1 

Figure 2-5. Chemical structure of α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and 2 

docosahexaenoic acid (DHA).   3 

2.3 Lipid oxidation 4 

The unsaturated fatty acids, especially PUFAs, are mainly responsible for lipid oxidation. The 5 

risk of oxidation increases with the number of double bonds present in the fatty acids. For 6 

instance, DHA (C22:6) with six double bonds, is oxidized easier than linolenic acid (C18:3) with 7 

only three double bonds. During lipid oxidation, various primary and secondary oxidation 8 

products are formed that influence food quality. Oxidized foods can cause oxidative stress in 9 

biological systems and thus initiate numerous diseases. 10 

2.3.1 Mechanism of lipid oxidation 11 

Lipids are prone to oxidation in the presence of catalytic systems such as light, heat, enzymes, 12 

metals, metalloproteins and microorganisms (Shahidi & Zhong, 2010). Four different 13 
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mechanisms are able to induce lipid peroxidation, namely autoxidation, photooxidation, thermal 1 

oxidation and enzymatic oxidation; most of which involve reactive species such as free radicals 2 

as the intermediate. Autoxidation is the most frequently encountered peroxidation and involves a 3 

free radical mechanism as shown in Figure 2-6. The simplified pathways of lipid autoxidation 4 

consists of three phases: initiation, propagation, and termination. 5 

In the initiation stage, unsaturated lipid molecules (RH) lose a hydrogen atom and produce a 6 

lipid free radical (R∙) and this oxidation normally proceeds very slowly until it reaches a sudden 7 

increase after an induction period. This reaction requires the presence of initiators such as heat, 8 

light/ionizing radiation and metal ions/metalloproteins. The hydrogen at the carbon next to the 9 

double bond of unsaturated fatty acids is the easiest one to be donated because of its lower C-H 10 

bond energy.  11 

During the propagation stage, the lipid radicals (R∙) react with oxygen to form peroxyl radicals 12 

(ROO∙) and get a hydrogen atom to form hydroperoxides (ROOH) which is the primary products 13 

of oxidation. This reaction may be repeated for thousands of times during propagation until no 14 

hydrogen source is available or the chain is interrupted, for instance, by antioxidants (DeMan, 15 

1999). The hydroperoxides can later break down to form alkoxyl (RO∙), peroxyl (ROO∙), 16 

hydroxyl (HO∙) and new lipid radicals (R∙) under light, heat, or metals.  17 

During the termination step, the accumulated lipid radicals (R∙) and peroxyl radicals (ROO∙) 18 

react with each other to from non-radical products. The unstable accumulated hydroperoxides 19 

will break down to a wide range of secondary oxidation products, including aldehydes, ketones, 20 

alcohols, hydrocarbons, volatile organic acids and furans, among others, some of which possess 21 

off odours. The possible pathways of secondary oxidation of oleic acid are shown in Figure 2-7 22 

(Leray, 2016). The C8-hydroperoxide, formed from oleic acid in primary oxidation, produces the 23 
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alkoxyl radical which is then cleaved by the homolytic beta-scission of a carbon-carbon bond on 1 

either side of the oxygen-containing carbon atom, and later produces the alkene (1-decene) and 2 

the aldehydes (decanal and 2-undecenal), among others. Most of the unsaturated aldehydes may 3 

undergo further oxidation to produce other volatile compounds. Among these compounds, 4 

malonidialdehyde (MDA) is one of the most cited product originating from PUFAs. The possible 5 

generation pathways of MDA are shown in Figure 2-8 (adapted from Esterbauer et al., 1991). 6 

 7 

 8 

Figure 2-6. Lipid autoxidation pathways.   9 
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 1 

Figure 2-7. The possible pathways of secondary oxidation of oleic acid. 2 

 3 

 4 

Figure 2-8. The possible generation pathways of malondialdehyde (MDA). 5 
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2.3.2 Factors affecting lipid oxidation 1 

Lipid oxidation is influenced by various internal and external factors. The main factors are fatty 2 

acid profile and processing method, the energy input such as light or heat, the concentration of 3 

oxygen, minor components in the oil such as free fatty acids, monoacylglycerols, 4 

diacylglycerols, metal, phospholipids, pigments, peroxides and antioxidants, among others. 5 

Both saturated and unsaturated fatty acids can undergo oxidation, but the oxidation of saturated 6 

fatty acids requires special conditions, such as the propagation of mold and the presence of an 7 

enzyme, to allow saturated fatty acids to undergo β-oxidation in order to form acid and methyl 8 

ketone (Nelson et al., 2008). However, the oxidation rate of saturated fatty acids is much slower 9 

than that of unsaturated fatty acids. The rate of oxidation of unsaturated fatty acids is related to 10 

the number and the position of double bonds, and the geometric shape of the molecule. The fatty 11 

acids with more double bonds are most susceptible to oxidation. The oxidation rate of stearic, 12 

oleic, linoleic and linolenic acid (C18 series) can be in the ratio of 1: 100: 1200: 2500 (DeMan, 13 

1999). In addition, the fatty acids with cis configuration or conjugated double bonds are easier to 14 

be oxidized than those with trans configuration or non-conjugated double bonds (Rustan & 15 

Drevon, 2005). In general, the oxidation rate of free fatty acids is higher compared with their 16 

esterified form, possibly due to their greater ability to pick up trace metals from the environment 17 

(Taub & Singh, 1997). 18 

In general, the oxidative rate is accelerated with increasing temperature. The high temperature 19 

can promote not only the disappearance and the production of free radicals, but also the 20 

decomposition and polymerization of peroxides. In addition, temperature can affect the rate of 21 

oxidation, and the mechanism of the reaction. At room temperature, oxidation occurs mostly on 22 

the methylene adjacent to a double bond to generate peroxides. However, when the temperature 23 
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exceeds 200°C, oxidation will also occur on double bonds of the unsaturated fatty acid to 1 

generate cyclic compound by the Diels-Alder reaction (Figure 2-9; Choe & Min, 2006).   2 

  3 

Figure 2-9. Cyclic compound formation from linoleic acid by Diels-Alder reaction at high 4 

temperature.  5 

Some minor components in the oil, such as metal, phospholipids, pigments, and antioxidants will 6 

also affect the oxidative stability. The presence of metal ions such as copper and iron will 7 

accelerate the oxidation of the oil, as metal ions can reduce the activation energy of the initial 8 

reaction of autoxidation. Some pigments, such as carotenoids, are good antioxidants that can 9 

reduce the oxidation rate, if they are not removed by deodourization and bleaching during the 10 

refining process.  11 

2.3.3 Influence of lipid oxidation 12 

Lipid oxidation compromises the sensory quality of food products and limits the shelf-life of 13 

others. The foods containing lipids are susceptible to oxidation which leads to their quality 14 
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deterioration and rancidity development. Rancidity of foods caused by lipid oxidation causes not 1 

only loss of flavour, but also loss of colour, nutrient value, and the accumulation of compounds 2 

which may have detrimental effects on the health of consumers. Lipid oxidation leads to the 3 

decomposition of fatty acids, resulting in the formation of volatile compounds.  Many of these 4 

compounds have an unpleasant odour, and are responsible for flavour problems in food products 5 

(Grosch, 1982). The oils that are most susceptible to oxidation are those oils which are rich in 6 

PUFAs such as fish oil and algae oil. The oxidation of PUFA will reduce the amount of essential 7 

fatty acids of edible lipids, and has a detrimental effect on other components, such as vitamins 8 

and proteins. The toxicity of oxidized cholesterols has been demonstrated with their powerful 9 

atherogenic effect in vivo and in vitro and cytotoxic and mutagenic properties (Addis & Warner, 10 

1991; Osada et al., 1998). 11 

The harmful radicals produced as a result of lipid oxidation will accelerate human aging, 12 

especially at high levels in the body. In addition, they will also produce toxins and carcinogens 13 

that seriously affect human health. Free radicals can lead to cancer by damaging DNA (Dreher & 14 

Junod, 1996). The DNA damage, caused by reactive oxygen metabolites such as hydroxyl radical 15 

and hydroperoxides which are generated through lipid oxidation, has been classified into the 16 

form of base damage, single-strand and double-strand breaks, crosslinking between DNA, 17 

chromosomal aberrations, and sister chromatid exchanges (Ray et al., 2000). Malondialdehyde 18 

(MDA), a secondary oxidation product of oxidation of PUFA with 3 or more double bonds, can 19 

cause cross-linking in lipids, proteins and nucleic acids (Freeman & Crapo, 1982; Flohe et al., 20 

1985). 21 

2.4 Mechanisms of action of antioxidants 22 
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According to the diverse mechanisms of action of antioxidants, they can be classified into free 1 

radical terminators, chelators of metal ions that catalyze lipid oxidation, or as oxygen scavengers 2 

that react with oxygen in closed systems. Antioxidants that can break the chain reaction of 3 

autoxidation by hydrogen (or electron) donation, and then generate more stable radicals, can be 4 

called primary antioxidants. Others are considered as secondary antioxidants. Phenolic 5 

antioxidants are classified as free radical terminators, and are regarded as primary antioxidants. 6 

The emphasis of this study is on phenolic antioxidants, and their action mechanism is discussed 7 

below. 8 

The first detailed kinetic study of phenolic antioxidant activity was reported by Boland and ten 9 

Have (1947). Phenolic antioxidants (AH), interfere with lipid oxidation at both of the initiation 10 

stage (Reactions 1 and 2) and propagation stage (Reactions 4 and 5), and can donate hydrogen 11 

atoms (Reactions 1 and 5) or transfer electrons to lipid radicals, alkoxyl or peroxyl radicals and 12 

produce more stable antioxidant radicals. The antioxidant reactions are shown below. 13 

ROO. / RO. + AH             ROOH/RH + A.           (1)     14 

ROO. / RO. + A.                     ROOA/ROA                 (2)   15 

A. + A.                 A-A                                              (3)   16 

ROO.  + RH               ROOH + R.                                     (4)   17 

R. + AH               RH + A.                                     (5)   18 

As the carbon-hydrogen bond energy of the free radical scavenger decreases, the transfer of 19 

hydrogen to the free radical is more energetically favourable (Akoh & Min, 2008). And during 20 

reaction 1 and 2, molecules were not in balance. Therefore, as a good antioxidant, Reaction 1 21 
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should be faster than Reaction 3 and the antioxidant radical produced via Reactions 1 and 5 1 

should be more stable and more difficult to promote autoxidation. The antioxidant radicals (A.) 2 

produced by Reaction 1 can react with alkoxyl radical to form non-radical products (ROA) or 3 

with peroxyl radical to form ROOA or with another antioxidant radical to form A-A. These 4 

reactions are thermodynamically favourable. 5 

Any compound that has a reduction potential lower than the reduction potential of a free radical 6 

is capable of donating its hydrogen atom to that of the free radical unless the reaction is not 7 

kinetically feasible. The efficiency of an antioxidant depends mainly on its speed of releasing 8 

hydrogen atom which is influenced by mainly three factors: shielding effect of phenolic hydroxyl 9 

groups, inductive effect of substituent groups, and conjugation effect (Silva et al., 2000; Craft et 10 

al., 2012). The effects of these factors can be demonstrated by O-H bond dissociation energy 11 

(BDE) of the phenolic hydroxyl group.  12 

Figure 2-10 provides an explanation of the conjugated resonance stabilization of phenoxyl 13 

radicals by delocalization of its unpaired electron around the aromatic ring (Craft et al., 2012). 14 

The weaker the O-H bond of the antioxidant, the more likely and faster it will react with free 15 

radicals. In other words, the BDE of an antioxidant is a parameter of the capacity of a phenolic 16 

compound as a free-radical terminator (Wright et al., 2001). The greater the BDE required, the 17 

less the efficiency of a phenolic compound in participating in free-radical scavenging. 18 

When hydrogens at para and ortho positions of the phenolic are replaced by other groups, such 19 

as hydroxy, alkoxy, and amino groups, BDE decreases and the antioxidant activity increases 20 

(Table 2-1; Lucarini et al., 1996). This explains the increase of the number of methyl groups on 21 

benzene ring that leads to increased antioxidant activity. Gordon (1990) reported that the 22 

presence of chain or branched alkyl groups in the para position decreases the antioxidant activity.   23 
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The efficiency of phenolic antioxidants on autoxidation is also influenced by oxidation 1 

conditions, and the nature of the sample being oxidized (Naczk & Shahidi, 2004). Often phenolic 2 

compounds lose their activity as an antioxidant at very high concentrations and are involved in 3 

initiation reactions as prooxidants (Reactions 6, 7) (Gordon, 1990).  4 

AH + O2             HOO.  + A.              (6)   5 

AH + ROOH             H2O + RO.  + A.           (7)   6 

In the oil in which the deterioration is not serious, phenolic antioxidants can effectively prolong 7 

the induction period, while they do not work well in retarding decomposition of already 8 

deteriorated lipids (Mabrouk & Dugan, 1961). This is the reason why the phenolic antioxidants 9 

should be added to foodstuffs as early as possible, better at the beginning, during processing and 10 

storage in order to obtain maximum protection effect against oxidation (Shahidi et al, 1992). 11 

 12 

Figure 2-10. Conjugative resonance stabilization of phenoxyl radical. 13 

 14 

 15 

 16 
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Table 2-1. Bond dissociation energies (BDE) of substituted phenols. 1 

Substituted Phenol BDE (kcal/mol) 

Phenol 87.6 

o-cresol 84.1 

p-cresol 85.9 

Tri-tert-butylphenol 80.9 

4-tert-butylphenol 85.7 

3,5-ditert-butylphenol 86.6 

3,5-dimethoxyphenol 86.7 

Butylated hydroxytoluene (BHT) 81.1 

2,3,6-trimethyl-4-methoxyphenol 79.2 

2,4,6-Trimethoxyphenol 79.3 

2,6-di-tert-butyl-4-methoxyphenol 78.4 

6-hydroxy-2,2,5,7,8-pentamethylchroman 
(HPMC) 78.7 

α-tocopherol 78.7 

 2 

 3 

2.5 Measurement of antioxidant activity 4 

Protection mechanisms against the detrimental effects of oxidations are provided by the action of 5 

antioxidants, and the measurement of antioxidant activity is well documented. Researchers have 6 

traditionally measured the antioxidant activity by identifying and quantifying the exact species of 7 

oxidation products and by lipid oxidation measurements such as acid value (AV), peroxide value 8 

(PV), thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD), and by 9 

assessing volatile compounds (Kristinová et al., 2009). More recently, various chemical and 10 
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biological methods have been reported, for instance, scavenging activity against certain types of 1 

free radicals, reducing power, metal chelation, and LDL-cholesterol oxidation inhibition assay, 2 

among others. Methods of assessing antioxidant activity fall into two broad categories: radical 3 

scavenging assays and measuring the ability of antioxidants in inhibiting oxidation reactions in a 4 

model system. The two types of methods used for measuring antioxidant activity are discussed in 5 

the sections below. 6 

2.5.1 Radical scavenging assays 7 

Radical scavenging assays are simple, quick, and usually automated, and widely used in initial 8 

screening and evaluation of various antioxidant compounds or extracts of natural products/by-9 

products. They can be classified into hydrogen atom transfer (HAT) reaction-based and single 10 

electron transfer (SET) reaction-based methods. Antioxidants can scavenge free radicals or other 11 

oxidation products such as hydroperoxides by HAT or/and SET (Prior et al., 2003), leading to 12 

the same end results, although the mechanism involved is different (Prior, Wu, & Schaich, 13 

2005). HAT-based methods measure the efficiency of an antioxidant to scavenge free radicals by 14 

hydrogen donation while SET-based methods are dependent on transferring one electron to 15 

reduce any compound (reduce higher valent elements to their lower valence state), mainly metals 16 

(iron, copper, among others), carbonyls and radicals (Shahidi & Zhong, 2005, 2007, 2015). 17 

Antioxidant activities can be expressed not only as inhibition against ROS-mediated oxidation of 18 

the probe, but also equivalent to a selected reference antioxidant such as trolox, ascorbic acid or 19 

other compounds. Oxidation of the probe can be easily measured by various up-to-date detection 20 

instrumentation such as spectrophotometric, fluorometric, EPR (electron paramagnetic 21 

resonance), FT-IR (Fourier transform-infrared), and amperometric methods, among others. 22 

Oxygen radical absorbance capacity (ORAC), total radical trapping antioxidant parameter 23 
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(TRAP) and crocin bleaching assays are the example for HAT-based methods, while trolox 1 

equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and 2, 2-2 

diphenyl-1-picrylhydrazyl (DPPH) assays are major measurement for SET (Shahidi & Ho, 3 

2007).  4 

The ORAC assay measures the antioxidant scavenging activity against the peroxyl radicals 5 

induced by generators, and thus it reflects classical radical chain breaking antioxidant activity by 6 

hydrogen atom transfer (Ou et al., 2001). In the early time, the ORAC involved β-phycoerythrin 7 

(β-PE, a fluorescent protein isolated from Porphyridium cruentum) as the fluorescent probe (Cao 8 

et al., 1993) which was replaced by fluorescein (Figure 2-11) because of the limitations of β-PE 9 

(Cao & Prior, 1999). Fluorescein reacts with peroxyl radicals leading to the loss of fluorescence 10 

that can be the indicator of the extent of the decomposition. A set of fluorescence decompositon 11 

curves can be built in the absence or presence of antioxidants, and the net integrated area under 12 

the curves (area obtain in the presence of antioxidants compared to that of a blank run without 13 

antioxidants) can be calculated as an indicator of the peroxyl radical scavenging capacity of the 14 

antioxidants. Standard antioxidants such as trolox are used as reference, and activity results of 15 

the tested antioxidants are often reported as trolox equivalents. Most of the peroxyl radical 16 

generators used in ORAC assays are azo compounds such as the lipophilic AIBN (α,α-17 

azobisisobutyronitrile), ABAP (2,2-azobis(2-amidinopropane) hydrochloride) and AMVN (2,2’-18 

azobis(2,4-dimethylnaleronitrile)) and the hydrophilic AAPH (2,2’-azobis(2-amidinopropane) 19 

dihydrochloride) (Becker et al., 2004). Reaction of peroxyl radical generation is given below: 20 

R-N=N-R             N2 + 2ROO. (8) 21 

The original version of the ORAC assay is limited to measurement of hydrophilic chain breaking 22 

antioxidant capacity against only peroxyl radicals; lipophilic antioxidants with particular 23 
O2 
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importance against lipid oxidation are not included. Later studies adapted the assay to measuring 1 

either hydrophilic or lipophilic antioxidants using a solution of acetone/ water (50:50, v/v) 2 

containing 7% randomly methylated β-cyclodextrin (RMCD) to solubilize the antioxidants 3 

(Huang et al., 2002; Wu et al., 2004). The ORAC assay is automated and excellent results have 4 

been obtained using a multichannel liquid handling system coupled with a fluorescence 5 

microplate reader in either a 96- or 48-well format (Ou et al., 2001; Huang et al., 2002). As 6 

generation of peroxyl radical is sensitive to temperature, the control of temperature throughout 7 

the reaction is important. Incubation of the reaction buffer at 37 °C prior to the dissolution of 8 

AAPH is recommended in order to decrease the intra-assay variability (Prior et al., 2003). Small 9 

temperature differences in the external wells of the microplate can reduce the reproducibility of 10 

the assay (Lussignoli et al., 1999). The long time required for the analysis (≥1 h) has also been a 11 

major disadvantage of the ORAC assay, but this limitation has been partially overcome by 12 

development of high-throughput assays (Huang et al., 2002).  13 

 14 

 15 

Figure 2-11. The chemical structure of fluorescein. 16 
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 1 

Figure 2-12. The chemical structure of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical.   2 

 3 

Other similar HAT-based methods such as TRAP and crocin bleaching assays have the same 4 

principle and common features of ORAC assay as they involve azo compounds as peroxyl 5 

radical generators, fluorescent probe or UV–vis probe and an antioxidant (Shahidi & Zhong, 6 

2007). 7 

DPPH radical scavenging assay is an SET-based method with HAT mechanism being only a 8 

marginal reaction pathway in the assay (Prior et al., 2005). The DPPH (Figure 2-12) radical is 9 

one of the few stable organic nitrogen radicals with a deep purple colour due to the 10 

delocalization of the spare electron on the whole molecule. The DPPH radical absorbs at 517 nm 11 

and is a substrate-free system. This antioxidant assay is based on measurement of the reducing 12 

ability of antioxidants toward DPPH radical. The efficiency can be measured by electron 13 

paramagnetic resonance (EPR) or by UV spectrophotometry by measuring the decrease of its 14 

absorbance due to the loss of DPPH colour at 517 nm.  15 

The DPPH radical and antioxidants are diluted in an alcoholic solutions such as methanol or 16 

ethanol. When DPPH radical reacts with a hydrogen donor, the reduced form (DPPH) is 17 
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generated and the colour of the DPPH mixture fades. The decrease of absorbance depends 1 

linearly on the antioxidant concentration. Trolox is often used as a standard antioxidant 2 

(Thaipong et al., 2006; Pisoschi et al., 2009). The widely used DPPH assay was first reported by 3 

Brand-Williams et al. (1995). The percentage of the DPPH remaining is calculated as: 4 

% DPPH.
remaining = 100 * [DPPH.

remaining] /[DPPH.
initial] 5 

Results are reported as the EC50 that is defined as the percentage of remaining DPPH radical 6 

(DPPH.
remaining) being proportional to the antioxidant concentration and the concentration of the 7 

antioxidant necessary to decrease the initial DPPH radical concentration (DPPH.
initial) by 50%. 8 

The time taken to reach the steady state with EC50 is defined as TEC50 that is also calculated. 9 

Occasionally, antiradical efficiency (AE) is reported as was proposed by Sánchez‐Moreno et al. 10 

(1998) which combines EC50 and TEC50 into one parameter according to the following equation.  11 

AE = (1/EC50) TEC50 12 

DPPH scavenging abilities of fruit (guava) extracts with the spectrophotometric method have 13 

been studied (Thaipong et al., 2006) and results expressed in trolox equivalents (µM trolox 14 

equivalents/g fresh mass). Citrus oils were measured by HPLC using DPPH (Choi et al., 2000). 15 

Phenolic compounds generally exhibited significant scavenging effects against the DPPH radical 16 

(Antolovich et al., 2002). The DPPH assay can been compared with other methods including the 17 

ABTS assay, superoxide-anion scavenging and lipid oxidation (Lu & Foo, 2000; Gil et al., 18 

2000). The DPPH assay can also be combined with online HPLC for rapid screening and 19 

identification of various antioxidant samples which reduces the loss of antioxidants during 20 

purification processes. For instance, Qiu et al. (2012) screened and identified natural antioxidants 21 

in peanut shell using the DPPH-HPLC-DAD-TOF/MS method. 22 
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The DPPH test is simple and rapid, and does not require special sample treatment, which 1 

explains its widespread use in testing antioxidant activity. However, its sensitivity may be 2 

affected by a number of factors, such as the type and amount of solvent used, presence and 3 

concentration of hydrogen and metal ion and freshness of DPPH reagent (Shahidi & Zhong, 4 

2015). For instance, the result may be complicated when the test compounds have spectra that 5 

overlap with that of DPPH at 517 nm. Anthocyanins have strong absorbance at 517 nm, and 6 

interfere with the results and their interpretation. DPPH discoloration is related with radical 7 

reaction, reduction, and steric accessibility. Therefore, small molecules that have better access to 8 

DPPH radical show better antioxidant capacity with this test. The DPPH radical is a stable 9 

nitrogen radical, which bears no similarity to the highly reactive peroxyl radicals involved in 10 

lipid oxidation. Thus, many antioxidants that react quickly with peroxyl radicals may react 11 

slowly or may even be inert to DPPH. 12 

The EPR detection method can perform better when measuring highly coloured and cloudy 13 

samples compared with the classic spectrophotometric detection (Gardner et al., 1998). The 14 

DPPH radical that has an unpaired electron can generate different paramagnetic properties or 15 

EPR spectra under a varying magnetic field. The peak intensity proportional to the concentration 16 

of DPPH in the EPR spectrum decreases with time in the presence of antioxidants as a result of 17 

DPPH radical scavenging by the antioxidants. The rate of decrease in DPPH signal intensity at 18 

an end point may be used as the indicator of scavenging capacity of the antioxidant against the 19 

DPPH radical (Zhong & Shahidi, 2011). 20 

The FRAP assay is a typical SET-based method that measures the reduction of a ferroin analog, 21 

the Fe3+ complex of tripyridyltriazine Fe(TPTZ)3+ to the intensely blue coloured Fe2+ complex 22 

Fe(TPTZ)2+ by antioxidants in an acidic medium (pH 3.6). Antioxidant activity is obtained as 23 
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absorbance increases at 593 nm, and can be expressed as micromolar Fe2+ equivalents or relative 1 

to an antioxidant standard (Antolovich et al., 2002). Trolox (Pellegrini et al., 2003) or ascorbic 2 

acid (Gil et al., 2002) can be used as the standard. The reason for acidic pH conditions is to 3 

maintain iron solubility, and more importantly facilitate electron transfer. Low pH condition 4 

decreases the ionization potential that increases the redox potential, causing a shift in the 5 

dominant reaction mechanism (Simic & Jovanovic, 1994; Hagerman et al., 1998). Besides 6 

tripyridyltriazine (TPTZ), ferrozine (Molina-Diaz et al., 1998) and potassium ferricyanide are 7 

also used as the iron-binding ligand (Berker et al., 2010).  The FRAP assay is totally electron 8 

transfer based rather than mixed hydrogen atom transfer and single electron transfer, so 9 

combined with other methods such as TEAC and, among others, can be very useful in 10 

distinguishing dominant mechanisms with different antioxidants. The FRAP assay is simple, fast 11 

and both manual and automated procedures were first described by Benzie and Strain (1996) to 12 

measure reducing power in plasma, but the assay was subsequently adapted and used for the 13 

assay of antioxidants in other biological fluids, foods, and plant extracts (Ou et al., 2002; 14 

Pellegrini et al., 2003). FRAP results can vary tremendously depending on the time scale of 15 

analysis, ranging from several minutes to several hour. Fast-reacting phenols that bind the iron or 16 

break down to the compounds with lower or different reactivity can be better analyzed with short 17 

analysis times, while slow-reacting polyphenols require longer reaction times for detection. 18 

Pulido et al. (2000) examined the FRAP assay of dietary polyphenols in water and methanol that 19 

the absorption of polyphenols such as caffeic acid and quercetin increased even after several 20 

hours of reaction time. Thus, a single-point absorption endpoint may not represent a completed 21 

reaction. 22 
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Other SET-based methods such as TEAC assay are similar to FRAP assay in that they rely on the 1 

hypothesis that the redox reactions proceed very rapidly. Compared with FRAP assay, TEAC 2 

assay is carried out at neutral pH and gives comparable relative values, but its values are usually 3 

higher for a given series of antioxidant compounds (Pulido et al., 2000; Cao & Prior, 2001; Erel, 4 

2004).  5 

2.5.2 Antioxidant evaluation in a model system 6 

Antioxidants are important as additives for food preservation and health products, for their 7 

protective roles in the body against oxidative stress and the associated diseases and health 8 

disorders. Thus, model systems are used for antioxidant activity evaluation. The antioxidant 9 

evaluation in a model system is evaluated by monitoring the related changes by sensory, 10 

physical, chemical or instrumental methods. Model systems can be classified into two types, 11 

food model system and biological model system. 12 

The evaluation of antioxidants in a food model system can be done in oils, emulsions, and 13 

muscle foods, among others. The antioxidant evaluation in food model systems is usually carried 14 

out under accelerated oxidation conditions by increasing temperature and oxygen supply, adding 15 

metal catalysts, or exposing the reactants to light. The process of lipid oxidation can be 16 

monitored by measuring the changes in oxygen consumption, oxidation substrate, oxidation 17 

products, and system change. Methods used to determine the extent of lipid oxidation include 18 

sensory evaluation, peroxide value (PV), conjugated dienes (CD), TBARS (thiobarbituric acid 19 

reactive substances), total carbonyl compounds, and volatile aldehydes, among others 20 

(summarized in Table 2-2; Shahidi & Zhong, 2015). In the oil systems, bulk oil, triacylglycerols 21 

and free fatty acids or their alkyl ester are used for antioxidant evaluation. The evaluation of 22 

antioxidant activity depends on the speed and rate of lipid oxidation and the oxidative state of the 23 
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model system in the absence or presence of antioxidants. Besides oil systems, the oil/water 1 

emulsion systems can be used for a more comprehensive assessment of antioxidant activity. One 2 

of the commonly practiced antioxidant evaluation in oil-in-water emulsion system is the β-3 

carotene bleaching assay in which the emulsion composed of β-carotene, linoleic acid and water 4 

is used. Other emulsion systems include vegetable oil-in-water emulsion (e.g. sunflower oil, or 5 

soybean oil-in-water emulsions), fish oil-in-water emulsion, or fatty acids/water emulsions 6 

(Shahidi & Zhong, 2015). The methods to measure the products produced in emulsion systems 7 

by oxidation are similar with that of oil systems such as TBARS, and CD, among others.It is also 8 

reasonable to use raw or cooked muscle foods, especially cooked ground meat, to assess 9 

effectiveness of antioxidants in a food system. Evaluation of the antioxidant efficiency in cooked 10 

ground meat can help by predicting if antioxidant works in thermal processing of whole or 11 

modified tissue foods, to prevent rapid oxidation of its lipid and meat flavour deterioration 12 

(Rubin & Shahidi, 1988). Lipid oxidation in muscle foods is complex as lipid might interact with 13 

other components such as protein, haem, metal and salt (Ladikos & Lougovois, 1990). Proteins 14 

in meat can also be oxidized during thermal treatment, and produce carbonyl compounds leading 15 

to quality deterioration. Muscle food model systems used for antioxidant assessment include 16 

ground pork, beef, poultry meat or fish, ground or fillet, in fresh, refrigerated, or cooked forms. 17 

During processing, antioxidants may be added to muscle foods at different steps and their 18 

efficiency evaluated by measuring the oxidation products with or without antioxidants.  19 

 20 

 21 

 22 
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Table 2-2. Major methods used for measuring oxidation products. 1 

Method Oxidation marker Reagent Detection Results 
expression 

peroxide 
value (PV) Hydroperoxide 

Potassium iodide Titration % 
inhibition 

Thiocyanate or  

xylenol orange 
Spectrophotometry % 

inhibition 

Triphenylphosphine FTIR % 
inhibition 

Conjugated 
dienes Conjugated dienes  Spectrophotometry % 

inhibition 

conjugable 
oxidation 
products 
(COPs) 

conjugated trienes 
and tetraenes  Spectrophotometry % 

inhibition 

TBARS 
malonaldehyde or 
malondialdehyde 
(MDA) equivalents 

Thiobarbituric acid 
(TBA) Spectrophotometry % 

inhibition 

p-anisidine 
value 

Aldehydic 
oxidation products 
(principally 2-
alkenals and 2,4-
alkadienals) 

p-methoxyaniline 
(anisidine) Spectrophotometry % 

inhibition 

Total 
carbonyls 

Carbonyl 
compounds 

2,4-
Dinitrophenylhydrazin
e (DNPH) 

Spectrophotometry % 
inhibition 

Headspace 
volatile 

Volatile 
compounds, 
usually volatile 
aldehydes 

 Headspace gas 
chromatography 

% 
inhibition 

Oil stability 
index (OSI) 

Volatile organic 
acids  

The Rancimat or 
the Oxidative 
Stability 
Instrument 

Induction 
period, 
protection 
factor 

 2 
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To assess the efficiency of antioxidant in protecting the body from oxidative stress and the 1 

associated diseases and health disorders, biological systems are used, including in vitro, ex vivo 2 

and in vivo biological model systems. The methods include LDL-cholesterol oxidation inhibition 3 

assay, inhibition of DNA oxidation, and cellular assays (red blood cells and HepG2 cells) for 4 

evaluation of antioxidant activity. 5 

Oxidized LDL is a risk factor for atherosclerosis (Steinberg & Witztum, 2010). LDL can 6 

undergo peroxidation in which transition metal ions such as cupric ion play an important role 7 

(Aust & Svingen, 1982). Oxidized LDL include both lipid oxidation products and oxidized 8 

apoprotein particles that promote the atherogenic effects (Liangli et al., 2012). Oxidation of 9 

protein leads to extensive alteration in the protein composition and structure. The lipid/protein 10 

oxidation products generated during the oxidation of LDL include fatty acid oxidation products 11 

(free and esterified fatty acid peroxides and hydroxides, prostaglandin-like products, aldehydes, 12 

core aldehydes that contain esterified lipid backbone, pentane and other hydrocarbons), lipid 13 

derived products (lysophosphatidylcholine, cholesterol oxidation products, internally modified 14 

phosphatidyl ethanolamine/serine products), and protein oxidation products (protein carbonyls, 15 

non-enzymatic proteolyzed fragments, modified cysteine, cystine, histidine, methionine, lysine, 16 

arginine, tryptophan, and tyrosine, lipid–protein adducts which could be classified as ceroids 17 

(lipofuscins) (Parthasarathy et al., 2010). The formation of LDL oxidation products might 18 

depend on the type of oxidant, the fatty acid profile, the extent of oxidation, and the presence or 19 

absence of other agents such as redox metals. Generally, PUFAs in LDL are prone to the 20 

oxidation while MUFAs are less oxidizable (Reaven et al., 1993; Lada & Rudel, 2003). LDL 21 

oxidation might be due to lipoxygenase reaction, copper and ceruloplasmin-mediated oxidation, 22 

iron-mediated oxidation, peroxidase-mediated oxidation including myeloperoxidase and haem, 23 
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peroxynitrite-mediated oxidation, thiol-dependent oxidation, xanthine oxidase, NADPH oxidase, 1 

and other superoxide generators, AAPH or other means of radical generation including 2 

cytochromes (Parthasarathy et al., 2010). The LDL oxidation by different mechanisms might 3 

lead to different results. Peroxidase-mediated oxidation requires co-oxidants such as hydrogen 4 

peroxides or lipid peroxides, and generate very little aldehyde products as compared to metal-5 

catalyzed oxidations (Heinecke, 1997). The treatment of LDL with AAPH, the radical generator, 6 

resulted in more protein oxidation than lipid peroxidation (Noguch et al., 1994; Dinis et al., 7 

2002). Antioxidants such as some polyphenols have inhibition effect against LDL oxidation by 8 

scavenging free radicals and other ROS, chelating prooxidant metals, and binding with the apo-9 

lipoprotein B, which promotes the access of antioxidant to the lipids and prevents interaction 10 

with prooxidants (Shahidi & Zhong, 2015). The formation of conjugated dienes during lipid 11 

peroxidation was usually uesd as the marker for measuring the oxidizability of LDL. In the 12 

assay, LDL-cholesterol, initiator metal ion (cupric ion, Cu2+) or peroxyl radical and antioxidants 13 

are incubated at 37 °C for 20 h, and the formation of conjugated dienes is periodically monitored 14 

at 234 nm. Antioxidant activity is reported as % inhibition of conjugated dienes formation as 15 

compared with a control without antioxidants. 16 

Oxidative stress and DNA damage caused by free radical attacks are related to various diseases 17 

and pathological conditions such as carcinogenesis, atherosclerosis, and ageing (Klaunig & 18 

Kamendulis, 2004; Ishii, 2007; Laviano et al., 2007; Bonomini et al., 2008). The DNA strand 19 

scission assay is used to evaluate the antioxidant activity of phenolic compounds and extracts in 20 

DNA model systems for their potential as antimutagenic agents (Chandrasekara & Shahidi, 21 

2011). The DNA strand scission assay is performed to assess the protective effect of antioxidants 22 

on hydroxyl and peroxyl radical-induced DNA scission of plasmid pBR322. DNA stand scission 23 
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results in the reduction of supercoiled circular DNA into increased levels of an open circular 1 

form (Hiramoto et al., 1996). Hydroxyl and peroxyl radicals are used in this assay due to being 2 

responsible for oxidative damage to DNA, especially the mitochondrial DNA (Perron et al., 3 

2008). Hydroxyl radicals can be generated by the reaction between O2
.- and H2O2 , in the 4 

presence of metal ions, while the peroxyl radical is usually generated by AAPH. After incubation 5 

with radicals and antioxidants at 37 °C, the DNA fractions are separated by gel electrophoresis 6 

and bands are visualized under trans-illumination of UV light. DNA stand scission results in the 7 

reduction of supercoiled circular DNA into increased levels of an open circular form (Hiramoto 8 

et al., 1996). Thus, both supercoiled circular DNA and open circular form may be observed as 9 

results of DNA oxidation. The concentration of the supercoiled and nicked DNA fractions is 10 

obtained from densitometry as indicated by the intensity or density of the corresponding bands. 11 

Antioxidants inhibit DNA scission possibly through a combination of radical scavenging and 12 

ferrous ion chelation mechanisms, and their inhibition efficiency can be calculated as DNA 13 

retention (% DNA retained un-oxidized and supercoiled). In the presence of antioxidants, the 14 

concentration of DNA with the open circular form decreases and concentration of DNA with 15 

supercoiled form increases, when compared with that devoid of any antioxidant. 16 

2.6 Bioactivities  17 

It is well known that phenolic compounds have antioxidant, antiviral, anti-inflammatory, 18 

anticancer, antidiabetic, anti-allergic, and antimicrobial activities, among others. The 19 

mechanisms of these biological activities of phenolics and their related health effects have been 20 

reviewed (Scalbert et al. 2005; Aron & Kennedy 2008). Phenolics can act as antioxidants and 21 

inhibit oxidation of biomolecules (e.g. membrane lipids, LDL, proteins and DNA) and thus 22 

prevent or inhibit pathologies such as inflammation, atherosclerosis and carcinogenesis 23 
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(Biesalski 2007). Olives have multiple benefits and health-promoting bioactives due to their 1 

nutrients and functional ingredients such as tyrosol, hydroxytyrosol and their derivatives. The 2 

polyphenolic compounds contained in olives have been reported to exert various bioactivities, 3 

including antioxidant, anti-inflammatory, and antimicrobial activities against bacteria, fungi, and 4 

mycoplasma. 5 

2.6.1 Antiviral 6 

In early times, the ‘virus’ was used to describe microbial pathogens that could not be removed by 7 

filtration (Knight, 1974). Now, it is defined as infective agents which depend on living host cells 8 

for their replication (Lycke & Norrby, 2014).  Viruses can be either enveloped or non-enveloped, 9 

with DNA or RNA genomes (nucleic acid core). Compared to non-enveloped viruses, enveloped 10 

viruses have lipid bilayer membranes acquired through budding from the hosts' cell membrane. 11 

In all viruses, a capsid consisting of a protein shell surrounds the viral nucleic acid. Viral 12 

infection (viral replication) involves the incorporation of viral DNA or RNA into a host cell, 13 

replication of that material, and the release of the new viruses. The viruses will attach to 14 

receptors on the host cell surface and enter through the host cell membrane and then get 15 

uncoated. During replication, early regulatory proteins, new viral RNA or DNA, and late 16 

structural proteins are synthesized. Finally, they are assembled and release from the cell. Viral 17 

infection can cause mild, moderate, and severe diseases, including influenza, liver infection 18 

(hepatitis), encephalitis, and acquired immune deficiency syndrome (AIDS), among others. 19 

Millions of people have been infected by virus, and even died of these disease. For instance, 370 20 

million chronic infections were caused by hepatitis B virus (HBV), 130 million people were 21 

infected by HCV, 40 million people by HIV as reported by Alter (2006). Therefore, antiviral 22 

therapy is necessary. Several targets for antiviral therapy have been found, including viral 23 
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attachment to cell and fusion, protein translation in infected cells, protein processing, DNA 1 

synthetic enzymes, DNA integrase, and immune system, among others (Pawlotsky, Chevaliez, & 2 

McHutchison,2007; Pommier, Johnson, & Marchand, 2005; Giri, Ugen, & Weiner,2004). Thus, 3 

antiviral agents can act as fusion inhibitors, interferon, specific protease inhibitors, reverse 4 

transcriptase inhibitors, DNA polymerase inhibitors, DNA integrase inhibitors, and effective 5 

vaccines, in order to restore immune surveillance, among others. 6 

HCV is a positive strand RNA enveloped virus with six non-structural proteins (NS2, NS3, 7 

NS4A, NS4B, NS5A, and NS5B) which aid in either viral assembly and/or viral replication 8 

(Lindenbach & Rice, 2005; Lindenbach et al., 2005). HCV is the major cause of several severe 9 

liver diseases including chronic hepatitis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. 10 

Unfortunately, there is no effective vaccine, and the current treatments are expensive and 11 

associated with severe side effects (McHutchison et al., 1998; Patel & McHutchison, 2004). For 12 

instance, the combinations of pegylated interferon-α (Peg-IFNα) and ribavirin have been 13 

reported to be only successful for approximately 50% of individuals infected with HCV 14 

(McHutchison et al., 1998). Peg-IFN-α is a general antiviral agent supporting the immunological 15 

response while the mechanism of action of ribavirin has not yet been completely understood 16 

(Feld & Hoofnagle, 2005; Parker, 2005). The side effects caused by this treatment include 17 

fatigue, flu-like symptoms, mild anxiety, skin rash, nausea, diarrhea, autoimmune diseases, 18 

haemolytic anemia, depression, and other neuropsychiatric side effects (Fried et al., 2002; 19 

Hauser, 2004). Recently, specifically directed antivirals such as direct-acting antiviral 20 

compounds targeting the NS3/4A protease are being updated and tested (Jacobson et al., 2011; 21 

Poordad et al., 2011; Götte & Feld, 2016). The early NS3/4A inhibitors, including simeprevir, 22 

vaniprevir, asunaprevir and faldaprevir show overlapping resistance profiles and a limited 23 
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genotype coverage (Sarrazin et al., 2012). The new protease inhibitors MK-5172 and neceprevir 1 

showed higher antiviral activity and a broader genotype coverage with favourable resistance 2 

profiles (Clark, Peter, & Nelson, 2013). New drugs targeting other viral proteins are also under 3 

development (Poordad & Dieterich, 2012; Wartelle‐Bladou et al., 2012). Phenolic compounds 4 

are reported to exhibit the anti-HCV activity. Polyak et al. (2007) showed that flavonolignans 5 

(silibinins) present in silymarin are responsible for the anti-HCV activities, possibly due to the 6 

inhibitory action of silibinin on the NS5B RNA-dependent RNA polymerase (Ahmed–Belkacem 7 

et al., 2010). Another flavonoid, (−)-epigallocatechin-3-gallate (EGCG), showed a dose-8 

dependent inhibition against HCV infection (Ciesek et al., 2011; Calland et al., 2012; Zhong, 9 

Ma, & Shahidi, 2012). Bachmetov et al. (2012) found that quercetin inhibited the activity of NS3 10 

protease. Duan et al. (2004) reported three polyphenol components from the ethyl acetate 11 

fraction of the traditional Chinese medicine Galla which could inhibit NS3 protease in vitro. 12 

Gallic acid (GA), a natural phenolic compound, inhibited and decreased HCV expression 13 

through its antioxidant capacity (Govea Salas et al., 2016). Hydroxyanthraquinones showed 14 

inhibition activity against NS3 helicase, depending on the number and position of the phenolic 15 

hydroxyl group (Furuta et al., 2015). 16 

The HIV is a Ientivirus of the Retroviridae family and there are two main subtypes, HIV-1 and 17 

HIV-2. Both viruses lead to AIDS but the pathogenic course of HIV-2 appears to be longer 18 

(Kong et al., 1988; Evans et al., 1988). It has been reported by Joint United Nations Programme 19 

on HIV/AIDS (UNAIDS) (2016) that there were almost 36.7 million people worldwide infected 20 

by HIV at the end of 2015 and 1.8 million people were children. HIV-1 reverse transcriptase, 21 

protease, and integrase play an important role in the viral life cycle.  The first antiretroviral drug 22 

were azidothymidine (AZT) that blocked reverse transcription by binding the reverse 23 
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transcriptase (Mitsuya et al., 1985).  Later, the antiretroviral drugs were classified into 1 

nucleoside analog RT inhibitors (NRTIs) and non-nucleoside RT inhibitors (NNRTls). NRTIs 2 

are nucleoside derivatives that block reverse transcription by competitively binding to the active 3 

site of RT, including AZT, ddI, ddC, d4T, and abacavir. NNRTls such as nevirapine, delavirdine, 4 

and efavirenz, binding to regions other than the active site and sterically block the incorporation 5 

of incoming nucleosides (De Clercq, 1992). However, the HIV reverse transcriptase lacks proof-6 

reading activity, making it highly error-prone and capable of mutating its genome, leading to the 7 

generation of mutant viruses that can replicate even in the presence of multiple drugs (Wain-8 

Hobson, 1993). Later, HIV protease inhibitors were developed that can prevent cleavage of gag 9 

and gag-pol precursors, and thus arrest maturation and block infectivity of nascent virions 10 

(Karacostas et al., 1989; Roberts et al., 1990), including amprenavir, indinavir, nelfinavir, 11 

saquinavir, and ritonavir (Flexner, 1998; Miller, 1999). They can reduce viral load rapidly and 12 

profoundly within a few days after the start of treatment (Ho et al., 1995; Benson, 1995). It is 13 

known that olive leaf extracts exhibit antiviral activities against HIV-1.  Lee-Huang et al. (2003) 14 

found that olive leaf extract (OLE) could inhibit acute infection and cell-to-cell transmission of 15 

HIV-1. Bao et al. (2007) also reported the inhibition effect of olive leaf extract against HIV-1 16 

and hydroxytyrosol was identified as the main molecule responsible for binding to HIV-1 17 

envelop protein gp41. Many phenolic compounds such as EGCG have been reported to have 18 

anti-HIV activity (Singh, Bharate & Bhutani, 2005).  19 

Phenolic compounds are also known to inhibit many other viruses. EGCG can inhibit the 20 

maturation, replication, infectivity and function of adenovirus, coronavirus, influenza virus, 21 

rotavirus, herpes simplex virus (HSV), and hepatitis A virus (HAV), among others (Zhong, Ma, 22 

& Shahidi, 2012). Polyhydroxycarboxylates derived from phenolic compounds, caffeic acid and 23 
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alkyl-esters of gallic acid have been reported to have inhibition effect against herpes simplex 1 

virus (Meerbach et al., 2001; Chiang et al., 2002; Savi et al., 2005). Hydroxytyrosol can inhibit 2 

influenza virus by morphological change of the virus, and it was revealed that hydroxytyrosol 3 

was effective against the enveloped viruses, but not against the non-enveloped viruses (Yamada 4 

et al., 2009). 5 

2.6.2 Anti-inflammatory 6 

Inflammation is a normal biological response of body tissues to harmful stimuli such as 7 

pathogens, damaged cells, or irritants, and is a self-protection response involving immune 8 

systems help eliminating the initial cause of cell injury, clearing out damaged cells and tissues, 9 

and initiating tissue repair. The classical signs of inflammation are redness, swelling, warmth, 10 

and sometimes pain and some immobility. However, inflammation can lead to progressive tissue 11 

damage caused by unbalanced or prolonged inflammation, and it plays a role in some chronic 12 

diseases such as cancer and diabetes. There are two types of inflammation, acute and chronic. 13 

Acute inflammation is the initial response of the body to harmful stimuli, and is usually 14 

beneficial for the host while chronic inflammation leads to a progressive shift in the type of cells 15 

present at the site of inflammation, and is associated with various chronic illnesses, including 16 

cancer (Bartsch & Nair, 2006; Lin & Karin, 2007). Inflammation is often characterized by 17 

recruitment of mast cells and leukocytes and an increased release and accumulation of soluble 18 

mediators (e.g. arachidonic acid, cytokines and chemokines, etc.) and reactive oxygen species 19 

(ROS)  at the site of damage (Coussens & Werb, 2002). Under an oxidative environmental stress, 20 

ROS can be produced over a long time by and promote endothelial dysfunction by oxidation of 21 

crucial cellular signaling proteins such as tyrosine phosphatases, and thus the ROS  can be both a 22 

signaling molecule and a mediator of inflammation (Mittal et al., 2014). In addition, reactive 23 



 

44 
 

nitrogen species (RNS), inducing nitrosative stress and adding to the pro-inflammatory burden of 1 

ROS, can be formed by combing ROS with NO at a diffusion limited rate (k=5 to 10×109 2 

M−1s−1) (Beckman, 1996; Mittal et al., 2014). Therefore, production of ROS/RNS plays an 3 

important role in the activation of a variety of kinases and transcription factors mediating 4 

immediate cellular stress responses and the progression of many inflammatory diseases, 5 

depending on the redox changes. These transcription factors include nuclear factor kappa B (NF-6 

κB), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α 7 

(HIF1-α), activator protein-1 (AP-1), nuclear factor of activated T cells (NFAT) and NF-E2 8 

related factor-2 (Nrf2), among others (Reuter et al., 2010). It has been reported that induction of 9 

cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), aberrant expression of 10 

inflammatory cytokines [tumour necrosis factor (TNF), interleukin-1 (IL-1), IL-6 and 11 

chemokines (IL-8; CXC chemokine receptor 4, CXCR4) play a role in oxidative stress-induced 12 

inflammation (Reuter et al., 2010). As an example, NF -KB and AP-1 are redox-sensitive and 13 

become activated under oxidative/nitrosative stress leading to the up-regulation of numerous 14 

inflammatory genes, such as those coding for iNOS and COX-2, among others (Kamata & 15 

Hirata, 1999). In research, some inflammatory mediators can be used to simulate inflammation, 16 

including cytokines (e.g., TNF-α), the stress of hyperoxia, ischemia-reperfusion injury, bacterial 17 

toxins (LPS), and mediators that ligate cell surface receptors (PAF, thrombin, histamine, VEGF, 18 

and bradykinins) (Mittal et al., 2014).  19 

The most common anti-inflammatory drugs can be classified as corticosteroids and non-steroidal 20 

anti-inflammatory drugs (NSAIDS). Corticosteroids reduce inflammation by reducing the 21 

production of chemicals, such as prostaglandins (PGs) and leukotrienes (LT5), involved in 22 

inflammation (Vane & Botting, 1987). However, their pharmacologic actions on ocular tissue are 23 
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still unclear (Jaanus & Lesher, 1995). The more recent NSAIDS, such as aspirin and naproxen 1 

(Aleve), provide effective therapy for inflammatory by blocking the enzyme cyclooxygenase, 2 

thus inhibiting the prostaglandin synthesis pathways (Hunskaar & Hole, 1987). However, these 3 

drugs are expensive and have side effects. For instance, NSAIDS can develop serious adverse 4 

gastrointestinal events (Gabriel, Jaakkimainen & Bombardier, 1991).  5 

Therefore, natural products and anti-inflammatory food related products are known to be lower 6 

in cost with limited side effects and intolerance compared to drugs for treating inflammation. 7 

Phenolic compounds found abundantly in plant foods have been studied for their anti-8 

inflammatory activities in controlling the synthesis or gene expression and enzyme activity of 9 

many pro-inflammatory mediators (Shahidi & Zhong, 2009). Phenolic compounds act as anti-10 

inflammatory agents by modulation of pro-inflammatory gene expression such as 11 

cyclooxygenase, lipoxygenase, nitric oxide synthases and several pivotal cytokines, mainly by 12 

acting through NF-κB and mitogen-activated protein kinase signalling (Santangelo et al., 2007). 13 

Curcumin, a low molecular weight polyphenol, has an anti-inflammatory effect. Lal et al., (2000) 14 

reported that curcumin could be used as a safe therapy in the treatment of idiopathic 15 

inflammatory orbital pseudotumours. Quercitrin and rutin, the most common flavonoids, 16 

exhibited beneficial effects in experimental inflammation in the rat induced by trinitrobenzene 17 

sulphonic acid (de Medina et al., 1996). EGCG has been shown to possess anti-inflammatory 18 

activity by scavenging NO and the peroxynitrite anion (Paquay et al. 2000). The phenolic 19 

compounds, Baicalein, oroxylin A, and wogonin, isolated from S. baicalensis showed strong 20 

anti-inflammatory activities by inhibiting the production of NO (Huang, Lee, & Yang, 2006). 21 

The herb S. japonica, containing high amount of phenolics and flavonoids, displayed anti-22 
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inflammatory effect by in vitro inhibition of the production of NO and TNF-α (Zhang et al., 1 

2011).  2 

Tyrosol and hydroxytyrosol, the olive phenolics, have been found to have anti-inflammatory 3 

activity. Tyrosol have been demonstrated to inhibit, in vitro and in vivo, pro-inflammatory gene 4 

expression by scavenging reactive oxygen species (de la Puerta et al., 2001). Giovannini et al. 5 

(2001) reported that tyrosol and caffeic acid could inhibit inflammatory reactions by inhibiting 6 

LPS-induced TNF-alpha release. Tyrosol could also prevent inflammation by inhibiting iNOS 7 

and COX-2 gene expression (De Stefano et al., 2007). Tyrosol derived from extra virgin olive oil 8 

could decrease inflammatory mediator production by human whole blood cultures (Miles, 9 

Zoubouli, & Calder, 2005). Hydroxytyrosol has been found to show strong anti-inflammatory 10 

effect by inhibiting TNF-α,interleukin 1 beta (IL-1β), iNOS, and COX-2 expression (Cicerale, 11 

Lucas, & Keast, 2012). Oleuropein, the derivative of hydroxytyosol can prevent inflammatory by 12 

inhibiting lypoxygenase activity and the production of leukotriene B4 (Omar, 2010). Oleuropein 13 

could reduce inflammatory responses by inhibiting TLR and MAPK signaling (Ryu et al., 2015). 14 

2.6.3 Anticancer 15 

Cancer is one of the major causes of global mortality in humans. In 2012, the worldwide burden 16 

of cancer increased to an estimated 14 million new cases per year and cancer deaths were 17 

predicted to rise from an estimated 8.2 million annually to 13 million per year (Stewart & Wild, 18 

2016). Furthermore, increasing evidence suggests that inflammatory response plays a pivotal role 19 

in a multitude of chronic ailments, including cancer. Thus, increased production of pro-20 

inflammatory mediators and pro-inflammatory transcription factors could drive some 90% of all 21 

cancers (Sethi et al., 2012). Thus, the incidence of cancer decreased in patients taking 22 

nonsteroidal anti-inflammatory drugs (Trinchieri, 2012). Besides, the promising anti-cancer 23 
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drugs can be classified into chemotherapeutic (alkylating agents, antimetabolites, antimitotics, 1 

antibiotics, and topoisomerase inhibitors, among others), hormonal therapeutic (the steroid 2 

drugs) and immunotherapeutic agents (interferons, interleukins and vaccine). Many successful 3 

anti-cancer drugs are natural products or their analogues as important sources of anti-cancer 4 

molecules (Cragg & Newman, 2013). Among these natural products, phenolic compounds 5 

(flavonoids, hydroxycinnamates, hydroxybenzoates, coumarins, xanthones, chalcones, stilbenes, 6 

lignins and lignans) have proven to possess anticancer activities as reviewed by Carocho and 7 

Ferreira (2013). Curcumin, resveratrol, and their related derivatives, as well as gallic acid, 8 

chlorogenic acid, caffeic acid, carnosol, capsaicin, 6-shogaol, 6-gingerol, and their corresponding 9 

derivatives are also suggested to be effective in prevention of cancer metastasis (Weng & Yen, 10 

2012). EGCG has been known to possess promising anticancer potential, which is thought to be 11 

attributed to its antioxidant activity, induction of phase II enzymes, inhibition against TNF-α 12 

expression and release, inhibition against cell proliferation, and induction of apoptosis, among 13 

others (Pham-Huy et al. 2008). Rosemary extract has also been shown to possess anticancer 14 

effect by inhibiting 7,12-dimethylbenz(a)anthracene (DMBA)-induced mouse skin papilloma 15 

formation and rat mammary carcinogenesis, due to its high content of polyphenols such as 16 

carnosol, carnosic acid, rosmanol, rosmarinic acid, and ursolic acid (Huang et al., 1994; 17 

Singletary, MacDonald, & Wallig, 1996; Ngo, Williams, & Head, 2011). 18 

Tyrosol and hydroxytyrosol have been shown to have promising anticancer potential.  19 

Epidemiologic data show that the Mediterranean diet has significant protective effects against 20 

cancer and coronary heart disease, mainly due to the phenolic fractions (simple phenols: tyrosol, 21 

hydroxytyrosol) of olive oil, which confers its health-promoting properties by the route of 22 

antioxidant activity (Filik & Ozyilkan, 2003). Tyrosol and hydroxytyrosol have been reported to 23 
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have breast cancer prevention benefits, by their ability to protect against DNA damage in breast 1 

cancer cell lines (Alegre et al., 2013). Fabiani et al. (2002) suggested that hydroxytyrosol might 2 

exert a protective activity against cancer by arresting the cell cycle and inducing apoptosis in 3 

tumour cells. Hydroxtyrosol and its derivative oleuropein inhibited human breast cancer by 4 

inhibiting the rate of cell proliferation, inducing cell apoptosis, and blocking of G1 to S phase 5 

transition manifested (Han et al., 2009). 6 

2.6.4 Other activities 7 

There have been many reports that reveal phenolic compounds possess many other properties 8 

such as antiatherogenic, antidiabetic, anti-allergic, and antimicrobial activities, among others. 9 

Among plant phenolics, tyrosol and hydroxytyrosol have been reported to reduce LDL-10 

cholesterol activity, decreasing the risk of cardiovascular disease, preventing several chronic 11 

diseases (for example, atherosclerosis), strokes and antimicrobial activity.  12 

Resveratrol can play a role in the prevention of human cardiovascular diseases by its cholesterol-13 

lowering effect and inhibition against LDL-cholesterol oxidation (Frémont, 2000).  Myricetin, a 14 

natural bioflavonoid, can act as a potent anticarcinogen and antimutation as well as 15 

cardioprotective agent and antidiabetic agent (Ong & Khoo, 1997). Tyrosol and hydroxytyrosol 16 

have been shown to possess antimicrobial properties against several strains of bacteria 17 

responsible for intestinal and respiratory infections in vitro (Cicerale, Lucas, & Keast, 2012). 18 

Cranberry proanthocyanidins can competitively inhibit cellular adherence of uropathogenic 19 

strains of P-type E coli to mucosal cells in the urinary tract and thereby show antimicrobial effect 20 

(Howell, 2002). Alves et al. (2013) found that phenolic compounds such as 2,4-21 

dihydroxybenzoic, vanillic, syringic and p-coumaric acids from mushroom species could be used 22 

as antimicrobial agents. Polyphenols of millets exhibited antimicrobial activity (Viswanath, 23 
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Urooj, & Malleshi, 2009). Phenolic acids such as caffeic, p-coumaric, ferulic and protocatechuic 1 

acids have been reported to exhibit antifungal effects (Dragland et al., 2003). Olive phenolics 2 

such as tyrosol play an important role in dynamics of growth and morphogenesis in the human 3 

fungal pathogen Candida (Chen et al., 2004). Luteolin and its glycosides found in millets exhibit 4 

antiarrhythmic activities (Han, Shen, & Lou, 2007). Tricin can act as antitumour and anti-5 

leukemic agents (Lee et al., 1981). Eighteen phenolics such as (-)-epicatechin, ferulic acid, 6 

chlorogenic acid, (+)-catechin and p-hydroxybenzoic were identified in the extracts of the 7 

Cotoneaster species and are found to possess protective effect against Alzheimer's disease (AD) 8 

and diabetes mellitus (DM), as well as antimicrobial and anti-mutagenic effect (Uysal et al., 9 

2016). Kumar and Pandey (2013) reviewed the biological activities of flavonoids and revealed 10 

that flavonoids exhibited coronary heart disease prevention and hepatoprotective effects. 11 

In addition, the ability of tyrosol to bind LDL had been reported, and thus it could prevent lipid 12 

peroxidation and atherosclerotic processes (Covas et al., 2002).  Hydroxytyrosol can act a 13 

therapeutic tool in the prevention of neurodegenerative diseases by crossing the blood-brain 14 

barrier (Rodríguez-Morató et al, 2015). It is demonstrated that hydroxytyrosol, oleuropein, and 15 

oleuropein aglycone have the ability to prevent tau (the proteins expressed in neurons of the 16 

central nervous system) fibrillization in vitro (Daccache et al., 2011). Hydroxytyrosol was found 17 

to be a new multi-targeted anti-angiogenic compound due to its inhibitory effects on endothelial 18 

cell proliferation, migration and “tubule-like” structure formation on Matrigel (Fortes et al., 19 

2012). Carluccio et al. (2003) demonstrated that hydroxytyrosol and oleuropein inhibited early 20 

stages in atherogenesis, by reducing lipopolysaccharide (LPS)-stimulated expression of vascular 21 

adhesion molecule-1 (VCAM-1) in human vascular endothelial cells. Hydroxytyrosol could 22 
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reduce the expression of ageing-related proteins as well as the infarct size and cardiomyocyte 1 

apoptosis (Mukherjee et al., 2009).   2 
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CHAPTER 3 1 

MATERIAL AND METHODS 2 

3.1 Materials 3 

The lipases from Candida antarctica (Novozyme-435) and lipase from Candida rugosa (AY30, 4 

type VII) were bought from Sigma-Aldrich (St. Louis, MO, USA). Amano lipase PS from 5 

Burkholderia cepacia (Pseudomonas cepacia) was purchased from Amano Enzyme Inc. 6 

(Nagoya, Japan). Tyrosol (4-hydroxyphenethyl alcohol) and hydroxytyrosol (4-(2-7 

Hydroxyethyl)-1, 2-benzenediol) were purchased from Sigma-Aldrich. Docosahexaenoic acid 8 

(DHA) single cell oil (DHASCO) containing about 40 % DHA was obtained from DSM 9 

(Columbia, MD, USA). The EPADEL capsules were obtained from Mochida Pharmaceutical 10 

Industries LTD (Tokyo, Japan) and kindly provided by Professor Kazuo Miyashita of Hokaido 11 

University (Hakodate, Japan). Free fatty acids (butyric, caproic, caprylic, capric, lauric, myristic, 12 

palmitic, stearic, oleic, and linolenic acids) were purchased from Nu-Chek (Elysian, MN, USA). 13 

Trolox (6-hydroxy-2,5,7,8-tetratnethylchroman-2-carboxylic acid) was purchased from Sigma-14 

Aldrich. The solvents and reagents such as ethanol, acetone, hexane, methanol, sulphuric acid, 15 

isooctane, chloroform, acetic acid, diethyl ether, carbon and sodium carbonate as well as mono- 16 

and dibasic sodium and potassium phosphates and methyl tertiary-butyl ether were purchased 17 

from Fisher Scientific Co. (Nepean, ON, Canada). 2,2'-Azobis (2-tnethylpropionamidine) 18 

dihydrochloride (AAPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 2,2-19 

diphenyl-1-picrylhydrazyl (DPPH) were obtained from Sigma-Aldrich Canada Ltd. (Oakville, 20 

ON, Canada). Hydrogen peroxide, sodium hydroxide, butylated hydroxyanisole (BHA), 21 

butylated hydroxytoluene (BHT), 5,5-dimethyl-1 - pyrroline-N-oxide (DMPO), ferrous sulphate, 22 
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ferric chloride, ethylenediaminetetraacetic acid (EDTA), agarose, trizma acetate(Tris acetate salt) 1 

and human LDL cholesterol were also purchased from Sigma-Aldrich Canada Ltd. 2 

Deoxyribonucleic acid (DNA) of pBR 322 (E.coli strain RRI) was purchased from Thermo fisher 3 

Scientific (Waltham, MA, USA). Silica gel thin layer chromatographic plates (TLC; 60-A, F-4 

254; 2.5*7.5 cm; 200 Micron) were purchased from Select Scientific (Atlanta, GA, USA). 5 

The RAW 264.7 cells, derived from murine macrophages, were obtained from the American 6 

Type Culture Collection (Rockville, MD, USA). Cell culture medium was acquired from GIBCO 7 

(Grand Island, NY, USA). The SensoLyte 520 HCV fluorimetric Protease Assay Kit (lot #1028) 8 

and HCV NS3/4A protease (lot# 103-075), purchased from Anaspec. Company (San Jose, CA, 9 

USA). α-Glucosidase (from Bacillus stearothermophilus) were purchased from Sigma-Aldrich 10 

Canada Ltd. Fetal bovine serum (FBS) was purchased from Biological Industries (Cromwell, 11 

CT, USA), and tert-butylhydroperoxide (t-BuOOH) and dichlorofluorscein-2’7’-diacetate 12 

(DCFH-DA) were purchased from Sigma-Aldrich. HepG2 cells (lot #07112007) were purchased 13 

from Health Science Research Resources Bank (Osaka, Japan). BSA (bovine serum albumin, 14 

lyophilized powder purified by heat shock fractionation) and glucose were purchased from 15 

Sigma–Aldrich. 16 

3.2 Methods 17 

3.2.1 Synthesis of tyrosol and hydroxytyrosol fatty acid esters 18 

3.2.1.1 Extraction and purification of DHA 19 

DHASCO (60 g, treated with 200 ppm butylated hydroxytoluene; BHT) was saponified by 20 

refluxing for 1 h at the boiling temperature of the mixture (62 °C) under a blanket of nitrogen 21 

using a mixture of KOH (13.8 g), water (26.4 mL) and 95% (v/v) ethanol (158.4 mL). To the 22 
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saponified mixture, distilled water (120 mL) was added and the unsaponified matter was 1 

extracted into hexane (2×200 mL) and discarded. The aqueous phase containing saponifiable 2 

matter was acidified (pH=1.0) with 3M HCl. The mixture was transferred to a separatory funnel 3 

and the liberated fatty acids were extracted into 50 ml of hexane (4 times). The hexane layer, 4 

containing free fatty acids, was then dried over anhydrous sodium sulphate and the solvent 5 

removed at 40 °C to recover DHA which was then stored at -60 °C until use. For urea 6 

complexation, the free fatty acids (60 g) were mixed with 900 ml urea (20%, w/v) in 95% 7 

ethanol, and heated at 65 °C with stirring until the whole mixture turned into a clear 8 

homogeneous solution. The mixture was left to stand for 24 h at 4 °C for urea-fatty acid adduct 9 

crystallization. The mixture was then filtered by using a Buchner funnel lined with a thin layer of 10 

glass wool. The filtrate was diluted with an equal volume of water and acidified to pH 4-5 with 11 

6M HCl; an equal volume of hexane was subsequently added and the mixture was stirred 12 

thoroughly for 1 h, then transferred to a separatory funnel. The hexane layer, containing liberated 13 

fatty acids, was separated from the aqueous layer containing urea. The hexane layer was washed 14 

with distilled water (the separation procedure repeated twice) to remove the remaining urea and 15 

subsequently dried over anhydrous sodium sulphate and the solvent was then removed at 40 °C 16 

using a rotary evaporator.  17 

3.2.1.2 Preliminary screening 18 

The preliminary selection of enzymes were carried out in 20 mL vials in which the chosen 19 

enzyme (Candida antarctica lipase SP 435, Candida cylindracae lipase AY30, Amano lipase PS 20 

from Burkholderia cepacia, 20 mg) was added to a solution of tyrosol (20.7 mg, 0.15 mmol) in t-21 

butyl methyl ether (5 mL), containing the selected fatty acid, such as DHA (1.5 mmol). Control 22 

reactions without enzyme were carried out under the same conditions. The mixture was shaken 23 
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under a nitrogen blanket at 40 °C for 24 h. After the reactions were quenched by filtering off the 1 

enzyme, the filtrates were subsequently taken to dryness using a rotary evaporator at 40 °C  2 

3.2.1.3 General procedure for enzymatic esterification 3 

The general enzymatic synthesis procedure was modified form that reported by Grasso et al. 4 

(2007). Candida Antarctica lipase (100 mg) and the acyl donor (DHA, EPA, 18 mmol; butyric 5 

acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, 6 

oleic acid, and linolenic acid, 6 mmol) were added to a solution of the substrate (TY or HTY, 3 7 

mmol) in t-butyl methyl ether (100 mL) and the mixture was shaken (400 rpm) in an orbital 8 

shaker at 40 °C for 24 h. The reactions were quenched by filtering off the enzyme and 9 

concentrated to yield a crude residue, which was further purified. 10 

3.2.1.4 Purification and identification of tyrosol and hydroxytyrosol esters 11 

Purification of the TY and HTY esters from the crude product mixture was achieved by using a 12 

simplified base extraction method in order to remove the unreacted free fatty acids. The extra 13 

free fatty acids (1 g) was removed by refluxing for 20 min (after that there will be only the target 14 

compounds and solvent left) at the boiling temperature of the mixture (45 °C) with stirring under 15 

a blanket of nitrogen using a mixture of sodium carbonate (equal weight to the synthesis mixture, 16 

1 g), water (5 mL) and 95% (v/v) ethanol (15 mL). After the reaction, extra undissolved sodium 17 

carbonate was removed by filtering through a Whatman No.1 filter paper. The target compound 18 

was extracted with n-hexane (3 × 20 mL), and the organic phase was dried by filtering through a 19 

layer of anhydrous sodium sulphate. Finally, the filtrates were taken to dryness using a rotary 20 

evaporator at 40 °C. 21 
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The mixture is then analyzed by using thin layer chromatographic (TLC) analysis. The reaction 1 

mixture (0.1 ml) from synthesis procedure was transferred to a 4 mL vial, and the solvent was 2 

removed under a stream of nitrogen. The sample was redissolved in 2 mL of methanol/water 3 

(95:5, v/v) for TLC analysis and HPLC analysis. After loading the samples, the TLC plates were 4 

developed in a mixture of hexane/ethyl acetate/formic acid (3:3:0.12, v/v/v) by adding 3 mL of 5 

hexane, 3 mL of ethyl acetate, and 0.12 mL of formic acid to the 100 mL chromatography tank. 6 

After that, the plate was loaded into the tank and allowed to develope. Normally, three to five 7 

samples could be analyzed in one plate. 8 

The composition of the reaction mixture was determined by using reversed phase high-9 

performance liquid chromatography-mass spectrometry (HPLC-MS), using an Agilent 1100 10 

HPLC unit (Agilent Technologies, Palo Alto, CA, USA) with a UV diode array detector (UV-11 

DAD). Separation was achieved on a SUPELCOSIL™ C-18 column (4.6 mm×250 mm, 5 μm) 12 

(Sigma-Aldrich) coupled with a SUPELCOSIL™ LC-18 Supelguard™ Cartridge (4.0 mm×20 13 

mm, 5 μm) (Sigma-Aldrich) by gradient elution with a methanol/water mobile phase (80:20-14 

95:5, v/v, from 0 to 20 min, and 95:5, v/v, for 10 min) at a flow rate of 1 mL/min, and fractions 15 

were detected at 216-232 nm by UV detector. HPLC flow was further analyzed online by the MS 16 

detector system (LC-MSD-Trap-SL, Agilent) with atmospheric pressure chemical ionization 17 

(APCI) at positive mode for identification of each fraction. The MS conditions were as follows: 18 

drying gas flow rate, 5 L/min; nebulizer pressure, 60 psi; drying gas temperature, 350 °C; APCI 19 

temperature, 400 °C; and capillary voltage, 110 V. 20 

3.2.2 Antioxidant evaluation 21 

3.2.2.1 DPPH radical scavenging activity 22 



 

56 
 

DPPH radical scavenging activity of TY, HTY and their esters was determined according to the 1 

method described by Wang and Shahidi (2013) with slight modification. TY, HTY and their 2 

esters in ethanol (250 µL) were mixed with 1 mL of ethanolic solution of DPPH (0.18 mM). 3 

Different samples were used at different concentrations from 100 µM to 25 mM. Contents of 4 

each test solution were thoroughly mixed and allowed to stand in the dark for 10 min. The 5 

mixture was subsequently injected into the sample cavity of a Bruker E-scan electron 6 

paramagnetic resonance (EPR) spectrometer (Bruker Biospin Co., Billercia, MA, USA). Ethanol 7 

was used as the control instead of the test compounds. The operating parameters of the Bruker E-8 

scan were set as follows: 5.02 × 102 receiver gain, 1.86 G modulation amplitude, 2.621 s sweep 9 

time, 8 scans, 100.00 G sweep width, 3495.53 G center field, 5.12 ms time constant, 9.795 GHz 10 

microwave frequency, and 86.00 kHz modulation frequency. Meanwhile, trolox solutions 11 

(12.5−400 µM) were evaluated for their DPPH radical scavenging activity as described above.  12 

The DPPH scavenging activity of the test compounds was calculated using the equation below. 13 

DPPH scavenging activity (%) = 100 * (1 − signal intensitysample/signal intensitycontrol)  14 

where the control contained no trolox or test compounds. 15 

The trolox solutions (12.5−400 µM) used in this study yield a linear DPPH scavenging activity 16 

(%) versus trolox concentration regression line. The DPPH radical scavenging capacities of the 17 

test compounds were expressed as micromolar (µM) trolox equivalents per millimolar sample 18 

(mM), which was calculated according to the trolox standard curve. 19 

3.2.2.2 Cupric ion-induced human low-density lipoprotein oxidation 20 

The inhibitory effect of TY, HTY and their esters on cupric ion-induced human LDL 21 

peroxidation was measured according to the method described by Ambigaipalan and Shahidi 22 
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(2015) with slight modification. LDL (5 mg/mL) was dialyzed in 10 mM phosphate buffer (pH 1 

7.4, 0.15 M NaCl) using a dialysis tube with a molecular weight cut off of 12−14 kDa (Fisher 2 

Scientific) with stirring at 4 °C under a nitrogen blanket in the dark for 12 h. Diluted LDL 3 

cholesterol (0.03 mg LDL/mL, 0.8 mL) was mixed with TY, HTY and their esters (10 μM, 100 4 

μL). The samples were pre-incubated at 37 °C for 15 min. The reaction was initiated by adding a 5 

solution of cupric sulphate (50 μM, 100 μL), and the samples were then incubated at 37 °C for 6 

15 h. Appropriate blanks were run for each sample by replacing LDL and cupric sulphate with 7 

PBS for background correction. A control sample (with LDL and cupric ion but without testing 8 

compound) and a blank sample (with LDL but without cupric ion and testing compound) were 9 

prepared. The formation of conjugated dienes was recorded at 234 nm using a diode array 10 

spectrophotometer (Agilent). The oxidative status of the reactive mixture at the testing interval 11 

(3, 9 and 15 h post incubation) was followed by monitoring its absorbance at 234 nm with 12 

respect to the zero point (without incubation at 37 °C).  13 

3.2.2.3 DNA strand scission assay 14 

The protective effect of TY, HTY and their esters on peroxyl and hydroxyl radical-induced 15 

supercoiled DNA damage was according to a procedure described by Ambigaipalan and Shahidi 16 

(2015) with slight modification. The plasmid pBR322 DNA was dissolved in 0.5 mM phosphate 17 

buffer (PBS, pH 7.4) to 50 μg/mL. Sample solution in ethanol (1 mM) was diluted in 0.5 mM 18 

PBS (pH 7.4) to 10 μM. In a 0.5 mL Eppendorf tube, PBS (2 μL), pBR 322 DNA (2 μL), sample 19 

(2 μL), H2O2 (1.0 mM, 2 μL) and FeSO4 (0.5 mM, 2 μL) were added in the order stated to test 20 

the inhibition of hydroxyl radical-induced DNA scission. In another Eppendorf tube, PBS (2 μL), 21 

pBR 322 DNA (2 μL), sample (2 μL), and AAPH (11.25 mM, 4 μL) were added in the order 22 

stated to determine the inhibition against peroxyl radical-induced DNA scission. A control with 23 
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DNA alone and a blank devoid of sample were prepared with each set. The mixture was 1 

incubated at 37 °C for 1 h in the dark.  2 

After incubation, 1 μL of the loading dye (0.25% bromophenol blue, 0.25% xylene cyanol, and 3 

50% glycerol) were added to the reaction mixture. The mixture (10 μL) was then loaded onto 4 

0.7% agarose gel prepared in Tris−acetic acid−EDTA (TAE) buffer (40 mM Tris acetate, 1 mM 5 

EDTA, pH 8.5). SYBR safe was added into agarose gel solution at a concentration of 100 μL/L 6 

of TAE buffer as a DNA gel stain. Electrophoresis was run at 80 V for 1 h using a model B1A 7 

horizontal mini gel electrophoresis system (Owl Separation Systems Inc., Portsmonth, NH, 8 

USA) and a model 300 V power supply (VWR International Inc., West Chester, PA, USA) at 9 

room temperature in TAE buffer. The bands were visualized under trans-illumination of UV light 10 

using the Alpha-Imager gel documentation system (Cell Biosciences, Santa Clara, CA, USA). 11 

The intensity (area %) of bands was analyzed using Chemilmager 4400 software (Cell 12 

Biosciences) to quantify DNA scission. 13 

The retention of supercoiled DNA strand (%) was calculated using the following equation. 14 

DNA retention (%) = 100 (area of supercoiled DNA with oxidative radical and sample/area of 15 

supercoiled DNA in control)  16 

3.2.3 Antiviral Activities 17 

3.2.3.1 HCV protease inhibitory activity 18 

Inhibitory activity of TY, HTY and their selected derivatives (compounds containing C4:0; C8:0; 19 

C18:0; C18:1; EPA; DHA) against HCV protease was evaluated as an indicator for their antiviral 20 

activity. The assay was slightly modified from the method described by Zhong, Ma, and Shahidi 21 

(2012). The SensoLyte 520 HCV fluorimetric Protease Assay Kit (lot #1028) and HCV NS3/4A 22 
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protease (lot# 103-075) from Anaspec. Company (San Jose, CA, USA) were used for the HCV 1 

protease inhibition assay. HCV protease inhibition assay was carried out in a 384-well black 2 

plate (BD Falcon) as follows: 2 μL of sample solutions (in dimethyl sulphoxide (DMSO)) and 10 3 

μL of a freshly prepared 1 in 50 dilution (made in assay buffers) of the enzyme substrate were 4 

put in each well. This was followed by the addition of 8 μL of freshly prepared 0.5 μg/mL of the 5 

enzyme into each well and subsequent incubation at 37 °C for 30 min. The fluorescence was then 6 

measured at excitation/emission wavelengths of 490 nm/520 nm, respectively, by a Tecan 7 

Infinite F200 PRO microplate reader (Männedorf, Switzerland). Percentage inhibition was 8 

calculated as follows:  9 

% Inhibition=100 × (Fcontrol − Fsample) / Fcontrol  10 

where, Fcontrol and Fsample represent the fluorescence value of the control without test compounds 11 

and of those with added test compounds. Samples were assayed at different concentrations to 12 

plot a concentration versus inhibition percentage curve, and IC50 values, i.e., concentration 13 

resulting in 50% inhibition, were determined. A known HCV protease inhibitor, embelin,, was 14 

used as a reference.  15 

3.2.3.2 Determination of inhibitory activity against alpha-glucosidase 16 

The inhibitory activities of TY, HTY and their selected derivatives (compounds containing C4:0; 17 

C8:0; C18:0; C18:1; EPA; DHA) on alpha-glucosidase were determined using the method 18 

reported by Zhong, Ma, and Shahidi (2012) on 96-well plates. Ten microlitres of sample solution 19 

(in DMSO) and 80 μL of substrate solution (2 mM of 4-nitrophenyl α-D-glucopyranoside in 100 20 

mM potassium phosphate buffer, pH 7.0) were added to each well. After 10 μL (0.50 U/mL) of 21 

enzyme from Bacillus Stearothermophilus (Sigma, Lot# SLBP7209V) in buffer were added per 22 
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well, the plates were incubated at 37 ºC for 20 min. In the control wells, sample solution was 1 

replaced with DMSO. The absorbance at 405 nm was measured on a plate reader before and after 2 

incubation. The increase in absorbance (∆A) was used to calculate the inhibition. 3 

Inhibition% = (∆Acontrol- ∆Asample)/∆Acontrol 4 

where, ∆Acontrol and ∆Asample represent the absorbance change after incubation of control with 5 

DMSO only and of those with added test compounds. 6 

IC50 values (the concentration at which the compound inhibits 50% of enzyme activity) were 7 

calculated from the inhibition%-versus concentration curves. Acarbose was used as a reference 8 

inhibitor (positive control) for alpha-glucosidase.  9 

3.2.4 Cell Culture and Cytotoxic Assay 10 

The cell viabilities and cytotoxic properties of selected fatty acid esters were evaluated by 3-(4,5-11 

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay modified from Wang et al. 12 

(2016). Human hepatoma carcinoma cells (HepG2) were grown in DMEM medium containing 13 

10% FBS and 100 U penicillin and streptomycin, the cells were maintained in humidified 14 

atmosphere of 5% CO2 at 37℃. HepG2 cells were seeds in 96-well plate (about 5000 cells per 15 

well) and incubated for 16 hours, after then added various compounds keep the concentration at 16 

10 μg/ml, incubated for 24 or 48 h, then added 20 μL MTT (5 mg/mL) and continue incubating 17 

for 3 h. Removed the medium and added 100 μL DMSO to dissolve the crystal before measuring 18 

the absorption at 570 nm. The inhibition rate was calculated by using the following formula. 19 

Inhibition rate (%)=100*(ODcontrol-ODsample)/ODcontrol 20 

3.2.5 Determination of ROS generation in HepG2 Cells 21 
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Determination of ROS generation in HepG2 cell was carried out using the dichlorofluorescin 1 

(DCFH) assay of Wang et al. (2016). Before experiment, HepG2 cells were seeded in 96-well 2 

black plate (about 30000 cells per well) and incubated for 14 h, then various concentrations of 3 

compounds were added and incubated for 4 h. Removed the culture medium, washed with PBS 4 

and added 10 μM DCFH-DA, continue incubating for 30 min. Then the medium was removed 5 

and washed with PBS again. Added 400 uM t-BuOOH and incubated for another 90 min, and 6 

washed with PBS before measuring the fluorescence by using a Tecan Infinite F200 PRO 7 

microplate reader (excitation and emission wavelengths were 485 and 535 nm, respectively). The 8 

control groups were added FBS-free medium instead for t-BuOOH.  9 

3.2.6 Nitrite assay 10 

The LPS-induced NO production by the macrophages was determined by a modified method 11 

reported by Zhong et al. (2012). The RAW 264.7 cells, derived from murine macrophages, were 12 

cultured in DMEM supplemented with 10% endotoxin-free, heat-inactivated fetal calf serum 13 

(GIBCO, Grand Island, NY, USA), 100 units/mL penicillin, and 100 μg/mL streptomycin. RAW 14 

264.7 cells were plated at a density of 1×106 cells/mL into 24 well plates, the culture medium 15 

was changed to serum-free DMEM without phenol red and incubated overnight where they were 16 

activated by medium containing LPS (Escherichia coli O127:E8, molecular weight, 60 kDa, 17 

Sigma Chemical Co.). The RAW 264.7 cells were treated with various compounds and LPS or 18 

LPS only for 24 h. The supernatants are harvested and the amount of nitrite, an indicator of NO 19 

synthesis, is measured by use of the Griess reaction. Briefly, supernatants (100 μL) are mixed 20 

with the same volume of Griess reagent (1% sulphanilamide in 5% phosphoric acid and 0.1% 21 

naphthylethylenediamine dihydrochloride in water) in duplicate on 96-well plates. Finally, the 22 
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absorbance at 570 nm was measured with an ELISA reader. A serial dilution of sodium nitrite 1 

(NaNO2) was used as the standard. 2 

3.2.7 Bovine Serum Albumin (BSA)-Glucose Assay 3 

The assay used to test the antiglycation activities in vitro was modified from Wang et al. (2016). 4 

BSA (2 mg/mL) was co-incubated with 33 mM D-glucose in 0.1 M, pH 7 PBS at 37 °C for 7 5 

days. Aminoguanidine (AG, 1 mM) was used as a positive control and tyrosol and 6 

hydroxytyrosol derivatives were added to the glycation model at 100 µM. After incubation, 100 7 

µL sample solution were pippeted to each well of the 96-well plate and fluorescent AGEs 8 

(advanced glycation end-products) were indicated by fluorescence intensity with excitation 9 

wavelength of 355/40 nm and emission wavelength of 405/10 nm (Victor X4 Multilabel Plate 10 

Reader, PerkinElmer, Santa Clara, CA, USA). 11 

3.3 Statistical method 12 

All the tests were conducted with three replicates (three separate sample preparations). Data were 13 

presented as mean ± standard deviation (SD). The statistical analysis was performed by using 14 

SPSS 16.0 software (SPSS Inc. Chicago, IL, USA). Differences between means were evaluated 15 

by one-way analysis of variance (Student-Newman-Keuls post-hoc test). Comparisons that 16 

yielded P values < 0.05 were considered significant. 17 

 18 

 19 

 20 

 21 
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CHAPTER 4 1 

RESULTS AND DISCUSSION 2 

4.1 Synthesis of tyrosol and hydroxytyrosol fatty acid esters 3 

4.1.1 Enzyme screening  4 

Three lipases from Candida antarctica (Novozyme-435), Candida rugosa (AY30, type VII), and 5 

Pseudomonas cepacia (Burkholderia cepacia) were screened for their ability to combine DHA 6 

with tyrosol (Table 4-1), and the compound was identified by HPLC-MS (Figures 4-1 and 4-2). 7 

These lipases catalysed synthesis of the free fatty acid with tyrosol and hydroxytyrosol afforded 8 

varying yields. The yield of tyrosol DHA ester with various lipases was in the order of Candida 9 

antarctica > Pseudomonas cepacia > Candida rugosa. The synthesis of tyrosol DHA ester can 10 

be catalysed by all three lipases used. However, there was no significant difference (p>0.05) in 11 

this synthesis when lipases from Pseudomonas cepacia and Candida rugosa were tested and 12 

their efficiency was very low. Candida antarctica catalysed this synthesis very effectively, and 13 

showed the highest yield for production of tyrosol DHA ester (86.28 %, after 24 h). The results 14 

reported here agree with the findings of Grasso et al. (2007) who synthesized hydroxytyrosol 15 

lipophilic analogues with 12 different lipases, and reported that lipase from Candida antarctica 16 

gave the highest yield. Buisman et al. (1998), using hydroxytyrosol, octanoic acid and 17 

immobilized lipases from Candida antarctica, found the yield was 85% in diethyl ether within 18 

15 hours (35 ºC). Lipase from Candida antarctica is known to have regioselectivity which 19 

ensures that the HTY and TY are esterified to the primary hydroxyl group (alcoholic hydroxyl 20 

groups) (Bouallagui et al., 2011; Crauste et al., 2016; Mateos et al., 2008). Lipase from Candida 21 

antarctica was selected for carrying out the subsequent experiments. 22 



 

64 
 

Table 4-1. Effect of enzyme type on the synthesis of tyrosol DHA ester (yield %). 1 

Source of enzyme Yield (%) 

Candida antarctica 86.28 ± 2.37 

Candida rugosa 0.46 ± 0.24 

Burkholderia cepacia 1.48 ± 0.11 

Values are mean values of triplicate determinations±standard deviation.  2 

 (a)DHA 3 

 4 

(b)Tyrosol 5 

 6 

 (c) TY DHA ester 7 

A 

B 
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 1 

Figure 4-1. High-performance liquid chromatography (HPLC) chromatograms of starting 2 

materials (a, b) and resultants (c) of synthesis of tyrosol DHA ester at 280 nm. A: DHA; B: 3 

tyrosol; and C: tyrosol DHA ester. 4 

 5 

Figure 4-2. Chemical structures and mass spectrometric data of tyrosol DHA ester. 6 

 7 

Ty DHA 

B 

A 

C 

C 
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4.1.2 Mole ratio effect 1 

In order to obtain good yields of the esterification with lower cost, different tyrosol to DHA mole 2 

ratios were used. The effect of mole ratio of substrates on the synthesis of tyrosol DHA is shown 3 

in Table 4-2. As the number of moles of DHA increased from 1 to 10, the yield of synthesis of 4 

the ester increased. In this experiment, TLC was used first to see if there was a spot for the 5 

tyrosol DHA ester, which means the ester was succesfully synthesized. The spots of synthesized 6 

ester (tyrosol /DHA) were not found in the TLC plates at 1:1 and 1:2 mole ratio, while that at 1:6 7 

and 1:10 mole ratio (tyrosol /DHA) was clearly seen which was further confirmed by HPLC-MS. 8 

Good yield of tyrosol DHA ester can be obtained at a tyrosol to DHA mole ratio of 1:6 (84.87%) 9 

and 1:10 (86.28%) because excess DHA helped the reaction of tyrosol with DHA by enzyme. In 10 

the experiment by Grasso et al. (2007), the mole ratio of the acyl donor and hydroxytyrosol or 11 

homovanillic alcohol was 20:1, affording a yield of 90.9 - 98.1%. De Pinedo et al. (2005) 12 

synthesized phenols with ethyl fatty acid ester at a mole ratio of 1:30 at 37 °C for 16 h and the 13 

yields are 29 - 97%. Thus, it is reasonable to use more acylating agent. However, considering the 14 

economic factors, the mole ratio of tyrosol to DHA was selected to be 1:6 as there was no 15 

significant difference with that at a ratio of 1:10. In addition, the yield (84.87%) of tyrosol DHA 16 

ester at a mole ratio of 1:6 was quite good and acceptable as it is known that yields above 70% 17 

are good (Furniss, 1989).   18 

 19 

 20 

 21 

 22 



 

67 
 

Table 4-2. Effect of mole ratio of substrates on synthesis of tyrosol DHA ester.* 1 

Mole ratio tyrosol /DHA** Yield (%) 

1:1 Not Detected 

1:2 Not Detected 

1:6 84.87 ± 0.54* 

1:10 86.28 ± 2.37* 

*Values are mean values of triplicate determinations ± standard deviation. **Mole ratios of 2 

tyrosol to DHA were 1:2, 1:6 and 1:10.  3 

4.1.3 Comparison of the enzymatic and chemical methods 4 

The chemical method to synthesis tyrosol DHA esters was modified from that of Zhong (2010). 5 

DHA was converted to the corresponding acyl chloride by reaction with thionyl chloride. 6 

Stearoyl chloride, a commercial product was used as such. Esterification of tyrosol was carried 7 

out with acyl chlorides (stearoyl chloride, docosahexaenoyl chloride) at a mole ratio of 1:1. Acyl 8 

chloride was added dropwise to tyrosol which was dissolved in ethyl acetate. The reaction was 9 

carried out in the presence of pyridine which removed the released HCl from the medium. The 10 

mixture was then heated in an oil bath at 50°C under a nitrogen blanket with constant stirring. 11 

The reaction mixture upon completion of the esterification was cooled to ambient temperature 12 

and filtered. The filtrate was then washed 3 times with distilled water (60°C), and the ethyl 13 

acetate layer was collected and passed through a cone of anhydrous sodium sulphate. The dry 14 

powder of crude products containing a mixture of tyrosol esters (at different degrees of 15 

substitution) may be obtained by evaporating the solvent. 16 

Using the Chemical esterification method, TY was known to be esterified on the primary 17 

hydroxyl group (alcoholic hydroxyl groups) as confirmed by HPLC-MS (Figure 4-1 and 4-2). In 18 
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this study, with the chemical method, a good yield (88.09±1.20%) may be obtained when using a 1 

tyrosol to DHA mole ratio of 1:1, while enzymatic method needs a higher ratio of DHA 2 

(acylating agent) to tyrosol with a similiar yield.  3 

With regard to the labor requirement, both methods appear to be comparable. From the purely 4 

experimental standpoint, the enzymatic method is more time-consuming in this study, as 5 

synthesis of esters takes more time (24 h), but it is simpler and requires less energy.  Meanwhile, 6 

with esters of DHA, good yields (chemical method, 88.09%; enzymatic method, Table 4-2, 7 

86.28%) were obtained by both methods. In addition, the enzymatic reaction workup was easier, 8 

making the chromatographic purification unnecessary as only t-butyl methyl ether and extra 9 

DHA left after synthesis. Moreover, the chemicals used such as pyridine are toxic (International 10 

Agency for Research on Cancer, 2007). Thus, removal of these toxic compounds and purification 11 

are necessary. Purification needs flash chromatography which is time consuming, and might also 12 

cause loss of target compounds (Roge et al., 2011). Therefore, in this study, enzymatic synthesis 13 

was followed.14 
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1 

Figure 4-3. General structures of synthesized fatty acid esters. 2 

 3 

4.1.4 Syntheis of TY and HTY fatty acid esters 4 

The study undertaken in a previous section was extended to other free fatty acids to investigate 5 

the influence of the length and degree of unsaturation of the fatty acid in the esterification 6 

reaction. The lipophilic TY/HTY esters have been synthesized by a simple, chemoselective 7 

procedure (Figure 4-3). Enzymes (lipase from Candida Antarctica) were used for the 8 

transesterification reactions, and the results obtained are shown in Table 4-3.  Higher yields of 9 

ester formation were observed for shorter chain fatty acids under the same experimental 10 

conditions. For instance, the yield of TY caproate (69.3%) was higher than that of TY stearate 11 

(41.6%). Compared with saturated fatty acid ester (TY stearate), higher yields were obtained 12 

when unsaturated fatty acids (oleic acid and linolenic acid) were used as the acylating agent in 13 

the reaction, possibly due to a better  solubility in the reaction medium. Stamatis et al. (1999) 14 

also found a decrease in the esterification yields with increasing chain length while Yan et al. 15 
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(1999) found just the opposite effect. The results on the effect of the chain length of the saturated 1 

carboxylic acids in the literature are contradictory and unclear (De Pinedo et al., 2005; Mateos et 2 

al., 2008). For obtaining better yields of TY DHA and TY EPA, higher amounts of acylating 3 

agents and longer reaction times were needed. 4 

Table 4-3. Reaction yields for some phenolic fatty acid esters. 5 

Phenol Acylating agent Product  Yield (%) 

TY Butyric acida TY butyrate  63.8 

TY caproic acida TY caproate 69.3 

TY lauric acida TY laurate 45.8 

TY stearic acida TY stearate 41.6 

TY oleic acida TY oleate 44.8 

TY linolenic acida TY linolenate 56.0 

TY EPAb TY EPA 88.1 

TY DHAb TY DHA 84.9 

HTY EPAb HTY EPA 75.3 

HTY DHAb HTY DHA 63.2 

a. Reaction conditions: phenol to fatty acid ratio 1:2, Candida Antarctica lipase, t-butyl methyl 6 

ether, 37 °C, 24 h. b. Reaction conditions: phenol to fatty acid ratio 1:6, Candida Antarctica 7 

lipase, t-butyl methyl ether, 37 °C, 24 h. Values are mean values of triplicate determinations. 8 

4.2 Antioxidant evaluation 9 

4.2.1 DPPH radical scavenging activity 10 

DPPH radical scavenging method is a rapid, simple and inexpensive method for evaluating the 11 

antioxidant potential. DPPH can react with the sample in both ethanol and water, whereas other 12 

methods analyzing antioxidant can just be run in a selected solvent (Kedare & Singh, 2011). 13 
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Thus, in this work, the stable and commercially-available artificial radical DPPH was used to 1 

directly measure the radical quenching ability of TY, HTY and their esters.  In this study, all test 2 

compounds exhibited DPPH radical scavenging activity to different extent, as reflected in the 3 

signal intensity in the EPR spectra of the DPPH radical which decreased by all the test 4 

compounds (Figure 4-4).  5 

 6 

Figure 4-4. Signal intensity of DPPH (0.18 mM) and the TY butyrate with DPPH (1 mM) as 7 

observed by EPR.  8 

The quantitative results of the DPPH radical scavenging assay of the samples are summarized in 9 

Table 4-4. Among all samples tested, HTY showed the highest capacity of 1005.14 µM trolox 10 

equivalents per mM of sample. This means that HTY had the same DPPH radical scavenging 11 

capacity as trolox. It was previously reported that HTY has the highest activity because it is the 12 

most polar antioxidant, as explained by the polar paradox theory and the interface phenomenon 13 

(Porter, 1993) that explain more polar antioxidants are more effective in their DPPH radical  14 

scavenging activity. In contrast, the DPPH radical scavenging capacity of TY observed in this 15 
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study was much lower. A previous study by Vlachogianni et al. (2015) found that low 1 

concentration (5–400 µM) of TY did not reveal any capacity to scavenge the DPPH radical. 2 

As shown in Figure 4-5a, TY and its saturated fatty acid esters except TY butyrate all exhibited 3 

very weak DPPH radical scavenging ability. When comparing the radical scavenging capacity of 4 

TY saturated fatty acid (SFA) esters, TY butyrate showed the highest capacity as trolox 5 

equivalents, followed by TY myristate (Figure 4-5a). Meanwhile, the DPPH radical scavenging 6 

ability of TY was lower than that of TY butyrate, but higher than that of other SFA esters. As 7 

Figure 4-5b shows, all HTY SFA esters exhibited much higher DPPH radical scavenging ability 8 

compared to their TY analogues which ranged from 20.39 to 578.94 µM trolox equivalents per 9 

mM sample. Obviously, the introduction of the lipid part into HTY decreased its DPPH radical 10 

scavenging ability. The reason for high capacity of TY butyrate might because the lipophilic 11 

derivatives of TY may have greater accessibility/affinity to the lipophilic DPPH radical than the 12 

TY itself. Moreover, acylation may have an effect on the hydrogen atom donation capability of 13 

TY by altering its electron density and distribution on the aromatic ring. 14 

As shown in Figure 4-6a, TY and its unsaturated esters all exhibited very weak DPPH radical 15 

scavenging ability which ranged from 1.25 to 5.43 µM trolox equivalents per mM sample. 16 

Overall, the DPPH radical scavenging ability of TY esters positively correlated with the number 17 

of unsaturations in the fatty acid. In addition, the DPPH radical scavenging ability of TY was 18 

lower than that of TY DHA, but higher than that of other esters. As Figure 4-6b shows, all HTY 19 

unsaturated fatty acid (UFA) esters exhibited much higher DPPH radical scavenging ability 20 

compared to their TY analogs which ranged from 174.05 to 414.03 µM trolox equivalents per 21 

mM sample. This is similar to SFA esters that the introduction of the lipid part into HTY 22 

decreased its DPPH radical scavenging ability. For HTY esters containing C18, the DPPH 23 
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radical scavenging ability increased with the number of unsaturations in the fatty acids. In 1 

contrast, the DPPH radical scavenging ability of HTY DHA and HTY EPA was similar and 2 

lower than that of HTY C18:1 and HTY C18:3.  3 

According to Braude et al. (1954), phenols can transfer electrons from the phenolic hydroxyl 4 

groups to DPPH radicals to quench them. Therefore, the number and position of the active group 5 

(phenolic hydroxyl group) of phenols may affect DPPH radical quenching properties. In this 6 

study, HTY exhibited a higher DPPH radical quenching ability than TY. Similar results were 7 

also observed by Carrasco-Pancorbo et al. (2005). It was speculated that the lower antioxidant 8 

activity of TY compared to HTY can be attributed to the absence of the ortho-diphenolic 9 

hydroxyl grouping in its chemical structure (Mateos at al., 2003). It is known that ortho-10 

diphenols are more effective antioxidants than simple phenols, due to the stabilisation of the 11 

phenoxyl radical through hydrogen bonding (Foti & Ruberto, 2001; Goupy et al., 2003).  12 

According to Grasso et al. (2007), the results show that the antiradical activity of HTY is not 13 

notably influenced by the presence and length of saturated acyl chain at C-1, while de Pinedo et 14 

al. (2007) reported there was a small effect of the length of the alkyl chain in radical-scavenging 15 

activity and found an increase of the side chain length leads to an increase in the radical-16 

scavenging capacity. However, in this study, the introduction of SFA decreased the DPPH 17 

scavenging capacity except for TY butyrate, possibly due to the reduced ability of the product to 18 

undergo conformational changes. A previous study showed that isoquercitrin esters exhibited a 19 

lower radical scavenging activity than isoquercitrin itself, and the antiradical activity decreased 20 

with increasing carbon chain length. Isoquercitrin butyrate exhibited the highest antiradical 21 

activity (Salem et al., 2010). Similarly, Takahashi et al. (2003) also showed similar results in the 22 

case of alkylaminophenols of various alkyl chain lengths. In addition, Jakovetić et al. (2013) 23 
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showed that all-synthesized cinnamic acid esters exhibited better antioxidant potential than 1 

cinnamic acid itself and their radical-scavenging effectiveness decreased with increasing of their 2 

alkyl chain length, with ethyl cinnamate being the most potent antioxidant. Therefore, 3 

introduction of an alkyl ester side chain had different results on the antioxidant activity of 4 

phenolic acid systems (Silva et al., 2000; Reis et al., 2010; Gaspar et al., 2009; Roleira et al., 5 

2010). Gaspar et al. (2010) reported that sinapic acid had a higher activity when compared to that 6 

of its alkyl esters, and they assume the effect of the alkyl ester side chain in hydroxycinnamic 7 

systems is strongly related to the number of hydroxyl groups and the aromatic substitution 8 

pattern. Other studies also found that caffeic acid alkyl esters had lower DPPH radical 9 

scavenging activities than caffeic acid itself, dependent on the extension, or type, of the ester side 10 

chain (Roleira et al., 2010; Silva et al., 2000). Similar results have been reported by Kikuzaki et 11 

al. (2002) that introduction of alkyl part to ferulic acid decreases its activity against DPPH. 12 

Overall, the present study and previous papars revealed that the effect of alkyl esterification on 13 

the antioxidant activity may differ depending on the type of phenolic acids, possibly due to 14 

different mechanisms of action of phenolic acids, which are mainly determined by their ring 15 

substitution. Therefore, the antioxidant activity of the phenolic compounds is influenced by their 16 

molecular structure, hydrogen-donating ability and subsequent stabilization of the formed 17 

phenoxyl radical (Silva et al., 2000). The dissimilarity in the antioxidant capacity of phenols and 18 

their derivatives might be related with to steric hindrance caused by the bulkiness of the alkyl 19 

groups (Miller & Rice-Evans, 1997), and the antioxidant activity might be higher when a 20 

catechol group is present (Roleira et al., 2010).  21 

According to Crauste et al. (2016), all n-3 PUFA-phenol esters tested in the literature showed 22 

radical scavenging ability in the DPPH radical assay. However, the correlation between the 23 
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introduction of the unsaturated lipid part and the increase or decrease in the radical scavenging 1 

ability of the phenolic derivatives is still uncertain (Crauste et al., 2016). For example, Zhong 2 

and Shahidi (2011) reported that EPA and DHA tetra acyl esters of epigallocatechin gallate 3 

(EGCG) (3’, 5’, 3”, 5”-esters) both exhibited a greater ability in scavenging DPPH radical than 4 

EGCG itself. They speculated that the enhanced lipophilicity and reduced electron density of the 5 

O-H bound at position 4’ and 4” caused by the acylation contributed to this enhancement effect 6 

(Zhong & Shahidi, 2011). However, researchers have found that HTY acetate and HTY C18:1 7 

exhibited a lower DPPH radical scavenging activity than HTY (Bouallagui et al., 2011; Gordon 8 

et al., 2001). According to Mbatia, et al. (2011), this drop in radical scavenging ability could be 9 

attributed to the increased hydrophobicity, which may result in decreased solubility in the assay 10 

medium. Meanwhile, the present study showed that the DPPH radical scavenging ability of all 11 

TY esters and HTY esters containing C18 increased with the number of unsaturations in the FA. 12 

Actually, similar unsaturation-dependent antioxidant effect has previously been reported for 13 

PUFA-quercetin esters (Mainini et al., 2013). 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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Table 4-4. DPPH radical-scavenging activities of tyrosl (TY) and hydroxytyrosol (HTY) esters. 1 

Compound uM trolox/mM TY ester uM trolox/mM HTY ester 
Parent compound 3.95±0.55b,c 1005.14±57.80a 

butyrate ester 66.41±4.63a 475.09±12.06c 

caproate ester 3.04±1.41b,c 578.94±57.80b 

caprylate ester 2.76±0.74b,c 113.38±10.59f 

caprate ester 3.33±0.72b,c 321.60±14.93d 

laurate ester 3.17±0.73b,c 20.39±8.19g 

myristate ester 3.72±1.21b,c 448.04±58.28c 

palmitate ester 0.31±0.15c 550.37±27.48b 

stearate ester 1.72±0.35b,c 174.05±27.31e,f 

oleate ester 1.25±0.27b,c 328.20±58.86d 

α-linolenate ester   1.69±1.34b,c 414.03±48.82c 

EPA ester 2.47±0.53b,c 220.26±4.40e 

DHA ester 5.43±0.83b 182.89±10.46e,f 

Values are mean values of triplicate determinations±standard deviation. Values with different 2 

superscripts are different (p<0.05) from one another. 3 

 4 

 5 

 6 

 7 
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 1 

  2 

Figure 4-5. DPPH scavenging capacity of saturated fatty acid esters in µmol trolox 3 

equivalents/mmol. (a) DPPH scavenging capacity for tyrosol and its saturated fatty acid esters; 4 

(b) DPPH scavenging capacity for hydroxytyrosol and its saturated fatty acid esters. Bars with 5 

different letters are significantly different at P < 0.05 (triplicate determinations). 6 
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 1 

 2 

Figure 4-6. DPPH scavenging capacity of unsaturated fatty acid esters in µmol trolox 3 

equivalents/mmol. (a) DPPH scavenging capacity for tyrosol and its stearate and unsaturated 4 

fatty acid esters; (b) DPPH scavenging capacity for hydroxytyrosol and its stearate and 5 

unsaturated fatty acid esters. Bars with different letters are significantly different at P < 0.05 6 

(triplicate determinations). 7 
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4.2.2 DNA strand scission assay 1 

DNA strand scission assay was performed to assess the protective effect of tyrosol (TY), 2 

hydroxytyrosol (HTY) and their different fatty acid esters on hydroxyl and peroxyl radical-3 

induced DNA scission of plasmid pBR322. More than 90% of undamaged pBR322 DNA is 4 

generally in the supercoiled form. The damage of the pBR322 DNA results in the reduction of 5 

the supercoiled form into increased levels of an open circular form (Hiramoto et al., 1996). 6 

Figure 4-7 shows the electrophoretic pattern of DNA strand scission induced by peroxyl and 7 

hydroxyl radicals with and without the presence of antioxidative agents. In agarose, the 8 

undamaged supercoiled circular form of DNA (I lane) has a relatively high electrophoretic 9 

mobility whereas the open circular DNA (H lane) has a reduced electrophoretic mobility as 10 

reported previously (Lin et al., 2008). However, for TY esters, the undamaged supercoiled 11 

circular DNA and the open circular DNA were both present in the agarose gel.   12 

 13 

 14 

 15 

 16 
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 1 

Figure 4-7. (a) Agarose gel electrophoresis of inhibition of hydroxyl radical-induced DNA 2 

scission by tyrosol and tyrosol esters (10 uM); (b) peroxyl radical-induced DNA scission by 3 

tyrosol and tyrosol esters (10 uM). Lane designations are: A, DNA + tyrosol; B, DNA + tyrosol 4 

butyrate; C, DNA + tyrosol caproate; D, DNA + tyrosol caprylate; E, DNA + tyrosol caprate; F, 5 

DNA + tyrosol laurate; G, DNA + tyrosol myristate; H, DNA + radical; I, DNA; S, supercoiled 6 

DNA strands; and N, nicked DNA strands. 7 

Table 4-5 presents the percentage inhibitory effects of TY, HTY and their esters on DNA strand 8 

scission induced by peroxyl and hydroxyl radicals. TY and its esters exhibited a protective effect 9 

ranging from 10.48 to 28.85% against hydroxyl radical-induced DNA scission at a concentration 10 

of 10 μM, while HTY and its esters exhibited a higher inhibitory effect that ranged from 18.58 to 11 

53.49% at the same concentration. For peroxyl radical-induced DNA scission, TY and its esters 12 

showed inhibition that ranged from 47.36 to 63.19% at a concentration of 10 μM, whereas 13 

inhibition of HTY and its ester varied from 56.13 to 77.60% at the same concentration.  14 
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As shown in Figure 4-8a, TY, HTY and their saturated FA esters all exhibited protective effects 1 

against hydroxyl radical-induced DNA scission to some extent at a concentration of 10 μM. TY 2 

SFA esters achieved the DNA retention rates which ranged from 11.15 to 26.94%, while HTY 3 

esters achieved the DNA retention rates which ranged from 18.58 to 50.35%. Among SFA esters, 4 

HTY butyrate ester showed the highest inhibitory effect. Furthermore, HTY exhibited a higher 5 

protective effect than TY. Meanwhile, for a pair of esters with the same saturated lipid part, the 6 

HTY ester also exhibited a higher protective effect than the TY saturated analogues except for 7 

caprate (decanoate) ester. For TY, the introduction of the lipid part increased the protective effect 8 

on hydroxyl radical-induced DNA damage as TY showed the lowest DNA retention (10.48%). 9 

However, for HTY, the introduction of saturated fatty acids (SFA) decreased the protective 10 

effect. 11 

From Figure 4-8b, it can found that TY, HTY and their SFA esters exhibited very good 12 

protective effects against peroxyl radical-induced DNA scission at a concentration of 10 μM. TY 13 

and its SFA esters showed a similar DNA retention which ranged from 47.36 to 63.19 %, 14 

whereas that for the corresponding values of HTY and its esters varied from 56.13 to 65.72%. 15 

Meanwhile, HTY showed a similar protective effect against peroxyl radical-induced DNA 16 

scission to most of its esters. Among the TY esters with SFA, tyrosol caprylate ester and tyrosol 17 

laurate ester showed the highest inhibitory effect, while the HTY butyrate ester showed the 18 

highest inhibitory effect among HTY esters with SFA. 19 

As shown in Figure 4-9a, TY, HTY and their UFA esters all exhibited protective effects against 20 

hydroxyl radical-induced DNA scission to some extent at a concentration of 10 μM. TY and its 21 

UFA esters achieved the DNA retention which ranged from 10.48 to 28.85%, while HTY and its 22 

UFA esters achieved the DNA retention rates which ranged from 19.71 to 53.49%. In contrast, 23 
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HTY exhibited a higher protective effect than TY. Meanwhile, for a pair of esters with the same 1 

lipid part, the HTY ester also exhibited a higher protective effect than the TY analogues. 2 

Furthermore, for TY or HTY esters, their DNA retention rates were all positively correlated with 3 

the number of unsaturations in the FA. For TY, the introduction of the unsaturated lipid part 4 

increased the protective effect on hydroxyl radical-induced DNA damage due to their higher 5 

lipophilicity. However, for HTY, the introduction of the lipid part decreased the protective effect 6 

except for DHA, possibly due to a combined influence of lipophilicity and the loss of the 7 

alcoholic hydroxyl group.   8 

As shown in Figure 4-9b, TY, HTY and their UFA esters also exhibited the protective effects 9 

against peroxyl radical-induced DNA scission at a concentration of 10 μM. TY and its UFA 10 

esters showed a similar DNA retention which ranged from 50.39 to 62.22%, whereas the 11 

corresponding values of HTY and its UFA esters varied from 56.13 to 77.60%. For the HTY 12 

UFA esters, their DNA retention increased slightly with the degree of unsaturation in the FA. 13 

Meanwhile, HTY showed a similar protective effect against peroxyl radical-induced DNA 14 

scission to most of its UFA esters except for HTY DHA. 15 

ROS, such as hydroxyl radical, hydrogen peroxide (H2O2) and superoxide (O2
•-) are major 16 

sources of oxidative stress in cells, which can damage proteins, lipids, and DNA (Orrenius et al, 17 

2007). Oxidative DNA damage is involved in tissue damage resulting from heart attack and 18 

stroke, cardiovascular diseases including arteriosclerosis, as well as cancer, aging, Alzheimer’s 19 

and Parkinson’s diseases (Perron et al., 2008). The protective effects on oxidative DNA damage 20 

of TY and HTY have previously been observed (Aruoma et al., 1998; Quiles et al., 2002; Grasso 21 

et al., 2007). In contrast, HTY exhibited a higher protective effect than TY (Quiles et al., 2002; 22 

Grasso et al., 2007). Perron et al. (2008) suggested that polyphenols can prevent hydrogen 23 
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peroxide-induced DNA damage by binding to iron. Liao e al. (2004) suggested that the ortho-1 

phenolic hydroxyl groups of polyphenol are responsible for chelating metal ions. Therefore, the 2 

difference in protective effects of HTY and TY on oxidative DNA damage may be attributed to 3 

the ortho-diphenolic hydroxyl group in the chemical structure of HTY.  4 

TY and HTY esters all exhibited the protective effects against hydroxyl and peroxyl radical-5 

induced DNA scission at a concentration of 10 μM, possibly due a combination of radical 6 

scavenging and ferrous ion chelation. The results of this work indicate that the introduction of 7 

fatty acids in general (except for DHA) to HTY decreases the protective effect on hydroxyl 8 

radical-induced DNA damage, whereas introduction of fatty acids to TY increases the protective 9 

effect on hydroxyl radical-induced DNA damage. Grasso et al. (2007) pointed out within the 10 

group of lipophilic analogues of HTY that protective effects of these compounds against DNA 11 

damage were adversely proportional to their chain length. In this study, we also found 12 

introduction of longer chain saturated fatty acids to HTY decreased the protective effect on 13 

hydroxyl radical-induced DNA damage except for stearate HTY, possibly due to the polarity and 14 

nature of fatty acid side chain. In a previous study, Grasso et al. (2007) have also found that 15 

HTY esters were less effective than HTY in their protective effect on hydrogen peroxide-induced 16 

DNA damage. Zhong and Shahidi (2012) reported that the ester derivatives of EGCG were more 17 

effective than EGCG in protecting against DNA scission, which was thought to be due to 18 

cumulative factors of lipophilicity, steric features (DNA binding affinity), hydroxyl radical 19 

scavenging and metal chelation capacity, all of which could play a role in the overall antioxidant 20 

efficacy of the test compounds. In our study, the greater antioxidant efficacy of TY esters was 21 

possibly due to its higher lipophilicity. In a previous study, it was found that the radical-22 

scavenging activity of phenolic antioxidants increased with the introduction of electron-donating 23 
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groups (methyl, methoxy, and hydroxy) in the ortho- or para-position of 4-OH, while the activity 1 

decreased in the presence of electron-withdrawing groups (trifluoromethyl and nitro) (Shang et 2 

al., 2009). We further found that the protective effects on oxidative DNA damage of TY and 3 

HTY were all positively correlated with the number of unsaturations in the FA. Actually, 4 

Mainini et al. (2013) reported that the antioxidant activity of PUFA-quercetin increased with the 5 

number of unsaturations in the FA. According to Richard et al. (2008), LC-PUFA may act as a 6 

kind of antioxidant, which could scavenge superoxide in an unsaturation-dependent manner 7 

(Grasso et al., 2007). 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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Table 4-5. Inhibition of supercoiled DNA scission induced by peroxyl and hydroxyl radicals by 1 

tyrosol, hydroxytyrosol and their fatty acid esters. 2 

Compound 
Hydroxyl radical retention% Peroxyl radical retention% 

Tyrosol Hydroxytyrosol Tyrosol Hydroxytyrosol 

Parent 
compound 

10.48±2.13d 50.86±1.95a 60.69±6.62a 61.78±4.90a,b 

butyrate ester 13.71±2.63d 50.35±2.72a 59.48±1.67a,b 65.72±5.56a,b 

caproate ester 15.44±2.63c,d 29.81±1.54b 59.17±6.01a,b 59.83±5.56b 

caprylate ester 11.15±1.05d 25.39±4.14b,c 63.19±4.77a 61.73±5.71b 

caprate ester 26.94±0.88a 21.48±4.36b,c 60.10±4.37a 58.44±3.79b 

laurate ester 22.68±3.50a,b,c 22.81±4.55b,c 63.19±2.22a 65.52±7.81a,b 

myristate ester 13.39±1.65d 22.40±3.24b,c 57.22±4.32a,b,c 64.94±5.29a,b 

palmitate ester 16.38±2.27b,c,d 18.58±0.70c 47.36±1.32c 58.65±3.03b 

stearate ester 13.48±1.55d 19.71±5.68c 55.05±3.07a,b,c 56.13±3.74b 

oleate ester 14.49±5.79d 22.25±4.19b,c 53.91±1.76a,b 63.92±6.13a,b 

α-linolenate 
ester 

16.79±2.57b,c,d 22.98±2.36b,c 50.39±2.15b,c 64.72±3.73a,b 

EPA ester 23.32±2.57a,b,c 31.29±7.54b 56.46±4.14a,b,c 64.78±3.73a,b 

DHA ester 28.85±3.31a 53.49±7.02a 62.22±4.43a 77.60±8.10a 

*Values are mean values of triplicate determinations±standard deviation. Values with different 3 

superscripts are different (p<0.05) from one another. 4 
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 1 

 2 

Figure 4-8. DNA retention (%) of saturated fatty acid esters in hydroxyl and peroxyl radical 3 

induced oxidative scission. (a) DNA retention (%) in hydroxyl radical induced oxidative scission 4 

for TY, HTY and their saturated fatty acid esters; (b) DNA retention (%) in peroxyl radical 5 

induced oxidative scission for TY, HTY and their saturated fatty acid esters. Bars with different 6 

letters are significantly different at P < 0.05 (triplicate determinations). 7 
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 1 

 2 

Figure 4-9. DNA retention (%) of unsaturated fatty acid esters in hydroxyl and peroxyl radical 3 

induced oxidative scission. (a) DNA retention (%) in hydroxyl radical induced oxidative scission 4 

for TY, HTY and their stearate and unsaturated fatty acid esters; (b) DNA retention (%) in 5 

peroxyl radical induced oxidative scission TY, HTY and their stearate and unsaturated fatty acid 6 

esters. Bars with different letters are significantly different at P < 0.05 (triplicate determinations). 7 

 8 

0

10

20

30

40

50

60

70

Phenol C18:0 C18:1 C18:3 C20:5 C22:6

D
N

A 
re

te
nt

io
n 

(%
)

TY and its esters HTY and its esters

b b
b b

ab
a

A

B B B

B

Aa

0

10

20

30

40

50

60

70

Phenol C18:0 C18:1 C18:3 C20:5 C22:6

D
N

A 
re

te
nt

io
n 

(%
)

TY and its esters HTY and its esters

b b
b b

ab
a

A

B B B

B

A

0

10

20

30

40

50

60

70

Phenol C18:0 C18:1 C18:3 C20:5 C22:6

D
N

A 
re

te
nt

io
n 

(%
)

TY and its esters HTY and its esters

b b
b b

ab
a

A

B B B

B

Aa

0
10
20
30
40
50
60
70
80
90

Phenol C18:0 C18:1 C18:3 C20:5 C22:6

D
N

A 
re

te
nt

io
n 

(%
)

TY and its esters HTY and its esters

ab
ab ab b

ab
aB

B
B B B

Ab

0
10
20
30
40
50
60
70
80
90

Phenol C18:0 C18:1 C18:3 C20:5 C22:6

D
N

A 
re

te
nt

io
n 

(%
)

TY and its esters HTY and its esters

ab
ab ab b

ab
aB

B
B B B

Ab



 

88 
 

4.2.3 Cupric Ion-Induced Human LDL oxidation 1 

Oxidised LDL is considered a risk factor for atherosclerosis (Steinberg & Witztum, 2010). LDL 2 

can undergo peroxidation (Morel et al., 1983) in which transition metal ions such as cupric ion 3 

play an important role (Aust & Svingen., 1982). In this study, human LDL was used to assess the 4 

inhibitory effect of TY, HTY and their esters on cupric ion-induced lipid peroxidation. In vitro, 5 

the oxidation of LDL may be initiated by cupric ion, resulting in the formation of conjugated 6 

dienes which can be measured as the change in the absorbance at 234 nm (Wagner & Heinecke, 7 

1997).  8 

 As shown in Figures 4-10 and 4-11, the UV absorbance for the control, the blank and the test 9 

samples in general (except for HTY and HTY caproate) were increased during the incubation 10 

time up to 9 h, and were maintained thereafter. The time-dependent increase in the UV 11 

absorbance for the blank sample (with LDL but without cupric ion and testing compound) 12 

indicated continuous formation of conjugated dienes from LDL during 37 °C incubation even in 13 

the absence of cupric ion. From Figure 4-10a, it can be seen that the absorbances of all the TY 14 

SFA esters were always lower than that of the control samples (with LDL and cupric ion but 15 

without testing compound) during the 15 h of incubation, indicating that all the TY SFA esters 16 

can inhibit LDL oxidation within this period, which was also the same for HTY UFA esters as 17 

their absorbance was lower than that of the control sample at any point in time during the test 18 

period (Figure 4-11b). However, for HTY SFA esters and TY UFA esters, their absorbance at 19 

234 nm was lower than that of the control sample during the initial 3 h, indicating that all these 20 

esters can inhibit LDL oxidation during this period (Figure 4-10b and 4-11a). After that, the UV 21 

absorbance at 234 nm for HTY caprylate, TY linolenate, TY EPA and TY DHA increased 22 

quickly, and these were even beyond that of the control sample after 15 h of incubation, 23 
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indicating that HTY caprylate had little protective effect against LDL oxidation and the PUFA 1 

moiety of the TY esters may be oxidized, thus resulting in the formation of conjugated dienes. 2 

The inhibitory effects on cupric ion-induced LDL oxidation of all test samples are reported in 3 

Table 4-6. For SFA esters, the compounds containing C6:0 showed the best inhibitory ability 4 

among all the TY and HTY SFA esters during the entire incubation period of up to 15 h. For 5 

UFA esters, TY oleate showed a higher inhibitory activity than other UFA TY esters during the 6 

15 h incubation period, while HTY linolenate showed the best inhibitory ability among all the 7 

esters during the initial 3 h of incubation.  8 

The LDL used in this study contained 20-22% protein, 10-15% triacylglycerol, 20-28% 9 

phospholipid, 37-48% cholesteryl ester and 8-10% cholesterol. The average LDL comprises 86% 10 

linoleic acid, 12% arachidonic acid and 2% DHA, which provides a rich source of lipid 11 

peroxidation substrate (Abuja & Esterbauer, 1995). In this study, the HTY UFA esters exhibited 12 

higher inhibitory effects on LDL oxidation than that of the TY analogues. However, the results 13 

for SFA esters are opposite for UFA esters and TY esters showed a higher inhibitory activity 14 

than most of the HTY esters. The inhibitory effects on LDL oxidation of TY and HTY have 15 

previously been reported (Aruoma et al., 1998; Di Benedetto et al., 2007). According to Di 16 

Benedetto et al. (2007), HTY exhibited a higher inhibitory effect on cell-mediated oxidation of 17 

LDL than TY. We propose that the extra ortho-diphenolic hydroxyl group of HTY compared to 18 

TY contributes to the difference in this inhibitory effect. Tyrosol SFA esters showed a higher 19 

protective effect, possibly due to their ability as antioxidants to modulate human LDL. 20 

 LDL oxidation is a HAT-based antioxidant assay, which can be used to measure hydroxyl 21 

radical (HO•) and lipid peroxyl radicals (ROO•) quenching ability, reducing power (especially for 22 

donating hydrogen atom), and transition metal ion chelating ability (Craft et al., 2012; Tan & 23 
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Lim, 2015). In this study, all esters of TY and HTY exhibited inhibitory effects on cupric ion-1 

induced LDL oxidation during the first 3 h of incubation. Among SFA esters, HTY caproate 2 

showed the highest inhibition effect while for UFA esters, HTY linolenate displayed the best 3 

effect. In a previous study, Trujillo et al. (2006) reported that the HTY esters containing acetate, 4 

C14:0 C16:0, C18:1 and C18:2 all showed a protective effect on lipids against oxidation caused 5 

by peroxyl radicals and linoleate ester showed the best inhibition effect. In this work, our results 6 

showed that the HTY esters, except the caproate ester, exhibited much lower inhibitory effect on 7 

cupric ion-induced LDL oxidation than that of HTY. However, according to Trujillo et al. 8 

(2006), the protective effect of HTY on lipids against oxidation caused by peroxyl radicals was 9 

similar to that of HTY containing acetate, C14:0, C16:0 and C18:1, and was lower than that of 10 

HTY 18:2. This is in agreement with the results that HTY caproate had a similar protective effect 11 

to HTY against LDL oxidation. Furthermore, most of the esters did not show good inhibition as 12 

TY and HTY themselves.  A previous study also showed this trend that hydroxytyrosol 13 

glucuronide only maintained a slight activity in protecting LDL from cupric ion-induced 14 

oxidation (Khymenets et al., 2010). The difference in experimental methods used in the two 15 

studies might be responsible for the observed results. Crauste et al. (2016) have suggested that 16 

the discrepancies between the observed activities are unavoidable for phenol esters when using 17 

two different methods. 18 

 19 

 20 

 21 

 22 
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Table 4-6. Inhibition (%) against human LDL cholesterol oxidation by tyrosol, hydroxytyrosol 1 

and its esters incubated at 37 °C for 15 h. 2 

Compounds 
Incubation time (h) 

0.00 3.00 9.00 15.00 

TY 100±9.63a 237.25±10.12def 279.05±8.81hij 258.29±14.18i 

C 4:0 100±2.78a 230.56±12.47def 313.03±13.46fgh 343.68±15.61defg 

C 6:0 100±7.15a 240.68±3.51def 259.92±26.08j 284.29±14.30ghi 

C 8:0 100±2.52a 246.99±2.88cdef 330.59±25.33efg 323.01±12.63defghi 

C 10:0 100±8.14a 208.25±5.98f 301.11±6.42fghi 304.19±14.22efghi 

C 12:0 100±12.22a 234.44±9.58def 323.30±13.97fg 302.77±22.02efghi 

C 14:0 100±4.80a 245.31±8.50def 332.97±1.03efg 335.39±3.70defgh 

C 16:0 100±5.10a 202.63±5.33f 302.83±15.22fghi 322.07±19.35defghi 

C 18:0 100±3.88a 206.42±12.61f 304.99±10.73fghi 311.40±17.16efghi 

C 18:1 100±3.43a 210.82±3.78f 303.09±5.17fghi 297.91±6.17fghi 

C 18:3 100±3.75a 274.45±2.61cd 383.87±3.11bc 384.17±4.56bcd 

EPA 100±9.07a 250.63±0.62cdef 368.75±2.99cd 439.68±3.41a 

DHA 100±11.85a 288.74±1.07bc 421.95±2.57a 423.84±4.04ab 

HTY 100±8.88a 94.46±14.60h 86.75±4.76k 79.82±6.07j 

C 4:0 100±9.19a 290.29±16.77bc 330.91±24.41efg 317.74±22.04defghi 

C 6:0 100±7.37a 97.12±12.61h 90.74±2.10k 85.09±5.02j 

C 8:0 100±4.33a 337.08±3.55a 406.25±8.36ab 364.40±21.69cdef 

C 10:0 100±3.20a 321.42±5.58ab 365.91±22.05cde 350.28±23.89cdefg 

C 12:0 100±9.14a 230.25±8.49def 321.32±23.28fg 323.74±20.51defghi 

C 14:0 100±2.26a 223.83±9.08def 305.20±5.66fghi 296.83±18.84fghi 

C 16:0 100±8.38a 236.39±9.81def 328.22±8.05efg 340.08±11.86defgh 

C 18:0 100±6.20a 202.23±9.71f 289.04±11.95ghij 270.22±35.53hi 

C 18:1 100±9.94a 239.82±2.31def 255.10±2.98j 261.61±13.64i 

C 18:3 100±2.07a 147.57±27.44g 256.54±5.25ij 275.69±4.03ghi 
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EPA 100±12.18a 221.95±12.93ef 272.92±11.32hij 284.44±15.37ghi 

DHA 100±5.98a 263.98±14.04cde 341.09±2.86def 369.55±6.99cde 

blank 100±4.21a 237.18±36.78def 277.75±10.75hij  334.60±59.86defgh 

control 100±24.79 a 342.62±37.83a  400.84±16.89ab 403.18±17.46abc 

*Values are mean values of triplicate determinations±standard deviation. Values with different 1 

superscripts are different (p<0.05) from one another. 2 

 3 

 4 
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 1 

Figure 4-10. The inhibition of saturated fatty acid esters against formation of conjugated dienes 2 

at 234 nm against human LDL oxidation over a 15-hour period (triplicate determinations). (a) 3 

Relative absorbance for tyrosol and its saturated fatty acid esters; (b) relative absorbance for 4 

hydroxytyrosol and its saturated fatty acid esters.  5 

 6 
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 1 

Figure 4-11. The inhibition of unsaturated fatty acid esters against formation of conjugated 2 

dienes at 234 nm against human LDL oxidation over a 15-hour period (triplicate determinations). 3 

(a) Relative absorbance for tyrosol and its stearate and unsaturated fatty acid esters; (b) relative 4 

absorbance for hydroxytyrosol and its stearate and unsaturated fatty acid esters. 5 

 6 

 7 

 8 

 9 

 10 
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4.3 Antiviral Properties 1 

4.3.1 HCV Protease Inhibition 2 

HCV infection is a contagious liver disease which is considered as a serious health threat 3 

globally. There are nearly 200 million people worldwide who are infected with HCV, and the 4 

chronic infection of this virus is associated with cirrhosis, hepatocellular carcinoma and liver 5 

transplantation (Stauber & Stadlbauer, 2006). Furthermore, there are limited therapies using 6 

interferon and pegylated interferon in combination with ribavirin. Also for a large population of 7 

HCV-infected patients the treatment has failed (Poordad et al., 2013). Therefore, it is urgent that 8 

we develop new drugs and agents against hepatitis C infection. It is known that HCV establishes 9 

chronic infection by using the viral Ser protease NS3/4A to cleave some cellular targets involved 10 

in innate immunity and the target can be the mitochondrial antiviral signaling protein (Li et al., 11 

2005). The NS3/4A protease of HCV is an essential noncovalent enzyme for the maturation of 12 

the virus, and represents one of the important therapeutic targets for anti-HCV treatment (Stauber 13 

& Stadlbauer, 2006). NS3/4A protease directs posttranslational cleavage of the polyprotein 14 

expressed by the RNA virus, and also possesses RNA helicase activity and release the functional 15 

proteins that are required for HCV replication (Li et al., 2005). The inhibitors of HCV NS3/4A 16 

protease could be effective therapy options for hepatitis C patients. Inhibitors of NS3/4A may 17 

bind to the enzyme and inhibit activation of viral proteins leading to disrupting the processes 18 

relevant to the suppression of HCV (Seiwert et al., 2008).  19 

The inhibitory effect of TY, HTY and their derivatives against HCV NS3/4A protease was 20 

measured using an in vitro assay and compared with embelin (positive control), a known HCV 21 

protease inhibitor; the results are shown in Table 4-7. TY and its esters did not show any 22 

significant effect in inhibiting the protease, having a high IC50 value of>100 µM compared to 23 
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that of the positive control embelin which was 32.6 µM, while HTY esters showed a protease 1 

inhibitory activity. In contrast, HTY inhibited the protease. Among the HTY SFA esters, the 2 

compounds containing C18:0 and C8: 0 displayed good protease inhibitory activity that was 4-3 

fold stronger than that of embelin. Furthermore, the compounds with UFA were also quite 4 

acceptable, especially HTY oleate (10.0 µM).  5 

Table 4-7. Inhibitory effect (IC50) of TY, HTY and their derivatives against HCV protease. 6 

Compounds TY C4:0 C8:0 C18:0 C18:1 EPA DHA Embelin 

IC50(µM) >100 >100 >100 >100 >100 >100 >100 32.6±2.8 

Compounds HTY C4:0 C8:0 C18:0 C18:1 EPA DHA Embelin 

IC50(µM) >100 36±6.6 8.2±3.9 8.9±2.9 10±5.8 100±2.8 34±4.1 32.6±2.8 

*Values are mean values of triplicate determinations±standard deviation.  7 

HTY esters showed better inhibition compared with HTY which might be due to the changes in 8 

steric features and hydrophobicity of the compounds leading to their superior binding affinity to 9 

the enzyme. A previous study reported that the ester derivatives of EGCG with fatty acids had 10 

better antiviral activities which revealed that the esters may be more sterically favoured than 11 

EGCG in binding to the protease (Zhong, Ma & Shahidi, 2012). Clark et al. (1998) also revealed 12 

that steric and conformational effects govern the infectivity of the virus. The difference in the 13 

inhibition of TY and HTY esters suggests that the number of phenolic hydroxyl groups plays an 14 

important role in antiviral activity. The lower inhibition of EPA and DHA esters compared with 15 

those of caprylate and stearate esters maybe due to non-specific interaction of longer acyl side 16 

chain which decreases the activity through aggregation induced by hydrophobic interaction. In 17 

our study, TY did not show any inhibition at concentrations of up to 100 μM which is in 18 

agreement with a past study (Zuo et al., 2007). 19 
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4.3.2 α-Glucosidase inhibitory activity 1 

α-Glucosidases are hydrolytic enzymes that play a vital role in carbohydrate digestion and 2 

biosynthesis of viral envelope glycoproteins. α-Glucosidases are essential for the maturation of 3 

viral glycosylated envelope proteins and inhibitors will misfold and break down of the viral 4 

glycoproteins and subsequent reduction in virion secretion (Chang et al., 2013). In addition, α-5 

glucosidase inhibition provides a promising strategy for the development of novel anti-HIV 6 

drugs because the glycosylation of viral envelope glycoproteins is essential for infectivity of HIV 7 

(Hattori et al., 2013). α-Glucosidases are also responsible for the final breakdown of 8 

carbohydrates, from disaccharides to absorbable monosaccharide units (He et al., 2014). Thus, 9 

inhibitors of alpha-glucosidase can serve as useful drugs for type II diabetes by decreasing 10 

carbohydrate digestion and absorption. 11 

In this study, TY, HTY and their esters were examiined for their α-glucosidase inhibitory activity 12 

and compared with acarbose (positive control), a known α-glucosidase inhibitor used to reduce 13 

postprandial hyperglycaemia. Table 4-8 presents the IC50 values of all test compounds. As 14 

summarized in Table 4-8, acarbose was found to be the most potent inhibitor of alpha-15 

glucosidase as it showed the lowest IC50 (0.05 µM). It was found that all esters showed lower 16 

inhibition against α-glucosidase when compared with acarbose, but the esters examined did not 17 

display inhibitory activity with IC50 value of>100 µM. Furhtermore, TY itself did not show any 18 

inhibition effect. In contrast, TY esters such as TY EPA had α-glucosidase inhibitory activity 19 

which means important hydrophobic interactions occurring between these compounds and α-20 

glucosidase. TY oleate showed the lowest IC50 value (78 µM) among all esters which means it 21 

had the highest potency as alpha-glucosidase inhibitor among all tested derivatives. The TY 22 

esters showed inhibition effect which might be due to enhanced lipophilicity.  23 



 

99 
 

These results suggest that the inhibition effects of TY and their derivatives against α-glucosidase 1 

are possibly due to the binding affinity of the compounds which are influenced by hydrophobic 2 

interaction and steric features as TY oleate and TY EPA having a higher inhibitory activity than 3 

TY DHA which has a higher steric hindrance. Zhong, Ma and Shahidi (2012) reported that 4 

EGCG tetraesters with saturated fatty acids had better antiviral activities in inhibiting α-5 

glucosidase than EGCG EPA and DHA due to the steric features and hydrophobic interaction 6 

effects. Furthermore, while most of the TY derivatives that showed potent inhibition on α-7 

glucosidase were not active against HIV, which is in agreement with findings of Hattori et al. 8 

(2013), thus suggesting that other factors such as the physiochemical properties affect the anti-9 

HIV activity of these compounds. Hattori et al. (2013) also reported that derivatives of 10 

chlorogenic acid show high inhibition against α-glucosidase and the inhibition of enzymes was 11 

significantly increased by lengthening the alkyl chain. Another study also found that derivatives 12 

(alkyl chains incorporated in a heterocycle ring) of catechin exhibited much stronger inhibition 13 

against α-glucosidase than (+)-catechin (Hakamata et al., 2006). Tanaka et al. (2005) found that 14 

(S)-hexahydroxydiphenoyl (HHDP) esters of dihydrochalcone glucosides (04-1.6 μg/mL) 15 

inhibited α-glucosidase at a lower concentration than EGCG (3.1 μg/mL). Cheng et al. (2014) 16 

showed that derivatives of chrysin, diosmetin, apigenin, and luteolin had higher glucosidase 17 

inhibitory activity (IC50 < 24.396 μM) compared with that of the reference drug, acarbose 18 

(IC50 = 563.601 μM), and higher than their precursors except for luteolin derivatives. 19 

 20 

 21 

 22 
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Table 4-8. Inhibitory effect (IC50) of TY, HTY and their derivatives against a-glucosidase. 1 

Compounds TY C4:0 C8:0 C18:0 C18:1 EPA DHA Acarbose 

IC50(µM) >100 >100 82±1.6 91±4.5 78±2.4 80±5.3 >100 0.05±1.3 

Compounds HTY C4:0 C8:0 C18:0 C18:1 EPA DHA Acarbose 

IC50(µM) >100 >100 >100 >100 >100 >100 >100 0.05±1.3 

*Values are mean values of triplicate determinations±standard deviation.  2 

4.4 The Effect of Tyrosol, Hydroxytyrosol and their Esters on the Viability of HepG2 3 

In this study MTT assay, a colorimetric assay, was performed to determine the cytotoxicity of 4 

tyrosol (TY), hydroxytyrosol (HTY) and their esters. MTT, a yellow tetrazolium compound, is 5 

positively charged and readily penetrates living cells and can be reduced to purple formazan 6 

(Mosmann, 1983), possibly due reaction with NADH or similar reducing molecules that transfer 7 

electrons to MTT (Marshall, Goodwin & Holt, 1995). Dead cells cannot convert MTT into 8 

formazan, thus colour formation serves as a useful and convenient cell-viability indicator. In this 9 

study, treated cells were incubated for 24 or 48h. It is known that longer incubation time will 10 

result in increased colour and sensitivity up to a point that the incubation time is limited, due to 11 

the cytotoxic nature of the detection reagents which have a requirement of energy from the cell 12 

to generate a signal. Reducing compounds are known to interfere with tetrazolium reduction 13 

assays. Reducing compounds such as ascorbic acid can reduce tetrazolium salts non-14 

enzymatically and cause increased absorbance in the assay (Ulukaya, Colakogullari & Wood, 15 

2004; Chakrabarti, 2001; Barltrop, 1991). 16 

The results of the cell viability of TY, HTY and their esters are shown in Table 4-9. In the 17 

literature, 80% of cell viability is often used as the criterion for cytotoxicity (Iwasawa, Ayaki & 18 

Niwano, 2013). TY, HTY and their esters did not manifest any significant cytotoxicity following 19 
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24 or 48h exposure to a concentration at 10 μg/mL as their cell viability was higher than 80%. 1 

When compared with 24h treatment, there was a reduction in cell viability after 48h exposure to 2 

TY, TY stearate, TY EPA, and HTY caprylate which means they have some cytotoxic effects on 3 

HepG2 cells. Whereas TY butyrate, TY caprylate, TY oleate, TY DHA, HTY  butyrate, HTY 4 

caprylate, HTY stearate, HTY EPA, and HTY DHA increased the viability of cells after 48h 5 

when compared with that after 24h that means they have little cytotoxicity. Introduction of fatty 6 

acids such as oleic acid to TY or HTY improved their cytotoxic activity. HTY has a lesser 7 

cytotoxic effect than TY after 24 or 48 h of incubation as their cell viability was much higher. 8 

Meanwhile, HTY esters were also less cytotoxic than their TY analogues after 24 h of incubation 9 

except for DHA ester. 10 

In this study, neither TY, HTY nor their esters exhibited a cytotoxic effect which is in agreement 11 

with Wen et al. (2013) that TY, 4-hydroxyphenylacetic acid (4-HA), 3-hydroxyphenylacetic acid 12 

(3-HA),2-hydroxyphenylacetic acid (2-HA) and salidroside showed a cell viability of higher than 13 

90%. HTY esters all showed a similar cell viability except for HTY DHA. HTY or HTY acetate 14 

which showed no significant differences in cell viability after a 24 h exposure (Pereira-Caro et 15 

al., 2012). Pereira-Caro et al. (2011) also pointed out that the alkyl hydroxytyrosyl ethers showed 16 

no cytotoxic effects and there were no differences in cell viability after 24 h of incubation in 17 

HepG2 Cells and similar results were obtained in enterocyte-like Caco-2 cells (Pereira-Caro et 18 

al., 2010).  In contrast, HTY and oleuropein were cytotoxic in MCF-7 cells in a dose dependent 19 

manner (Han, Talorete, Yamada & Isoda, 2009). In addition, there was little difference in cell 20 

viability between most of the esters, possibly due to the nature of MTT assay which is based on 21 

the metabolic activity of the cells. Han, Talorete, Yamada and Isoda (2009) revealed the 22 

influence of the contact surface with hydroxytyrosol or oleuropein and suggested that phenolic 23 
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compounds of olive leaf have health protective rather than healing effects. When used for 1 

protective effects against cell damage as daily consumption, less cytotoxicity and higher cell 2 

viability is better, thus butyrate esters can provide the best choice as anti-cancer activity has 3 

requirement for enhanced toxicity. For instance, the enhanced toxicity of fatty acid-modified 4 

dendrimeric prodrugs exert good anti-cancer activity (Gao et al., 2015). Our results suggest that 5 

HTY DHA may serve best for anti-cancer activity as it has the highest cytotoxic effect among all 6 

the tested compounds after incubation of 24h while TY EPA showed the highest cytotoxicity 7 

after 48 h incubation.  8 

Table 4-9. The effect on cell viability by (a) TY and its esters treatment; (b) HTY and its esters 9 

treatment. 10 

(a) TY and its esters  11 

Compound 
(10 μg/ml)  

Cell 
Viability % 
（24 h） 

SD 
Cell 
Viability % 
（48 h） 

SD 

TY 104.63 8.49 99.85 13.27 

TY C4:0 118.43 4.80 138.52 14.38 

TY C8:0 94.43 6.49 118.65 1.36 

TY C18:0 110.86 2.18 100.06 7.75 

TY C18:1 91.52 6.59 110.02 12.13 

TY EPA 96.08 8.76 75.69 8.48 

TY DHA 100.24 2.74 109.83 3.19 

 12 

 13 

 14 
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 (b) HTY and its esters  1 

Compound 
(10 μg/ml)  

Cell 
Viability % 
（24 h） 

SD 
Cell 
Viability % 
（48 h） 

SD 

HTY 122.01 11.75 139.98 3.25 

HTY C4:0 127.55 6.61 136.19 7.67 

HTY C8:0 112.81 7.32 103.84 7.90 

HTY 
C18:0  111.35 2.89 121.81 8.17 

HTYC18:1  120.13 3.35 145.84 9.35 

HTY EP4 113.21 12.28 122.57 16.14 

HTY DHA 84.69 12.95 97.33 3.98 

*Values are mean values of triplicate determinations±standard deviation.  2 

 3 

 4 

4.5 Protection on HepG2 against t-BuOOH induced oxidative stress 5 

Cellular oxidative stress was measured by the dichlorofluorescein assay in the human 6 

hepatocarcinoma cell line (HepG2) to determine the effect of TY, HTY and their selected fatty 7 

acid esters on the intracellular generation of the ROS (Wang & Joseph, 1999). It is known that 8 

ROS have cell-signaling functions (Nohl, Gille & Staniek, 2005) and play an important role in 9 

the pathogenesis of ischemia-reperfusion injury and lead to cell ageing and age-related 10 

degenerative diseases, such as cancer (Zulueta et al., 1997; Valko et al., 2006). Although various 11 

methods can be used for oxidative stress assessment of cells (Holley & Cheeseman, 1993), the 12 

direct evaluation of ROS can be a very good evidence for oxidative damage to living cells (Wang 13 

& Joseph, 1999). In this study, 29, 79-dichlorofluorescin diacetate (DCFH-DA) was used as a 14 
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fluorometric assay for hydrogen peroxide, due to emitting fluorescence of DCFH-DA after being 1 

oxidized (LeBel, Ischiropoulos & Bondy, 1992). In cells, the nonpolar DCFH-DA is hydrolyzed 2 

enzymatically by intracellular esterases to nonfluorescent DCFH after crossing cell membranes 3 

(LeBel, Ischiropoulos & Bondy, 1992; Bass et al., 1983). The nonfluorescent DCFH is then 4 

oxidized by intracellular ROS to highly fluorescent DCF (LeBel, Ischiropoulos & Bondy, 1992) 5 

that can be used as an index to quantify the overall oxidative stress in cells (Wang & Joseph, 6 

1999). 7 

 In this study, HepG2 cells were incubated for 14 h and then treated with different doses of TY, 8 

HTY and their esters for 4 h. A much higher ROS production was observed after 4 h in the 9 

presence of 400 µM t-BuOOH as compared to controls with FBS-free medium without t-BuOOH 10 

and the testing compounds (Figure 4-12). TY and HTY did not show any ROS inhibition even at 11 

the highest concentration (10 µg/mL).  However, after being treated, ROS generation was 12 

decreased in the presence of 0.5-10 µg/mL fatty acid esters except that for 0.5 µg/mL HTY 13 

oleate ester (Figure 4-12). Treating HepG2 cultures with 1 µg/mL esters greatly decreased ROS 14 

production except for HTY oleate. It is obvious that 5 µg/mL HTY DHA, 10 µg/mL TY 15 

caprylate, TY stearate, TY EPA, TY DHA and HTY DHA reduced ROS levels to those of 16 

untreated cells (Figure 4-12a). Treating cells with 0.5 µg/mL of test samples resulted in a lower 17 

decrease in ROS generation than that observed in cells treated with higher concentrations of 18 

samples. When HepG2 cells were treated with 10 µg/mL HTY DHA, ROS production in the 19 

presence of t-BuOOH was reduced most compared to that of control untreated cells and cells 20 

treated with other samples. 21 

Human hepatoma HepG2, used as a model in our study, is a well-differentiated transformed cell 22 

line that is often used for biochemical and nutritional studies where many antioxidants and 23 
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conditions can be assayed with minor inter-assay variations (Goya, Mateos & Bravo, 2007). In 1 

this study, t-BuOOH was used as a prooxidant that can directly oxidize DCFH to DCF while 2 

decomposing to peroxyl radicals and generating lipid peroxides and ROS, thus increasing 3 

fluorescence (Alía et al., 2006). Moreover, other prooxidants such as hydrogen peroxide cannot 4 

evoke cellular stress (Alía et al., 2005). From this study, we found that ROS generation induced 5 

by t-BuOOH in HepG2 in an oxidative stress situation could be completely inhibited by a 4 h 6 

treatment with 5 µg/mL HTY DHA, 10 µg/mL TY caprylate and TY stearate, TY EPA, TY 7 

DHA and HTY DHA while other doses of test compounds acted as full or partial inhibitors. 8 

Thus, the synthesized esters of TY and HTY containing lipophilic fatty acids strongly inhibited 9 

the generation of ROS induced by t-BuOOH in HepG2 and the effects were dose-dependent, 10 

leading to prevention or delaying conditions that cause oxidative stress in the cell. It was known 11 

that decreasing oxidative stress state could prevent the development of tumours and cancer. It 12 

has been suggested that olive oil phenolics could scavenge ROS under natural and chemically 13 

simulated oxidative stress conditions (Paiva-Martins et al., 2009). However, in this study, TY 14 

and HTY could not inhibit ROS generation. In contrast, it has been found that HTY can reduce 15 

ROS generation induced by t-BuOOH when cells were pretreated (Goya, Mateos & Bravo, 2007) 16 

and TY exerted beneficial effects in ethanol-induced oxidative stress in HepG2 cells (Stiuso et 17 

al., 2016). Stiuso et al. (2016) revealed that the generation of high intracellular ROS 18 

concentrations may be due to increased β-oxidation of fatty acids. A previous study also revealed 19 

that HTY and TY reduce H2O2-induced ROS level in breast epithelial MCF10A cells, whereas 20 

TY failed to reduce in human breast cancer cells and HT only reduced H2O2-induced ROS level 21 

slightly in breast cancer cells (Warleta et al., 2011), possibly because TY and HTY can act as 22 

direct antioxidants with a redox activity or indirect antioxidants that can provide cellular 23 
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protection against oxidative stress (Warleta et al., 2011). In our study, esters of TY and HTY 1 

showed quite high inhibition against t-BuOOH induced ROS generation in HepG2, is in 2 

agreement with a previous study that HTY acetate had antioxidative stress protective effects at 3 

physiological concentrations similar to or even slightly higher than that of HTY (Pereira-Caro et 4 

al., 2012). 5 
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 1 

Figure 4-12. Effect of TY, HTY and their esters on intracellular reactive oxygen species (ROS) 2 

generation (triplicate determinations). HepG2 cultures were treated with the noted concentrations 3 

(0.5, 1, 5, 10 µg/mL) of TY C8:0 and TY C18:0 and HTY DHA (a), HTY C4:0, C8:0 and 4 

C18:1(b) for 4 h. In this study, TY and HTY did not show activity (NA) at the highest 5 

concentration. 6 

4.6 Inhibition of LPS-induced nitrite production by EPA and DHA esters of tyrosol and 7 

hydroxytyrosol 8 

Nitric oxide (NO) is an important mediator in states of inflammatory diseases (Kiemer, Müller, 9 

& Vollmar, 2002), as well as an important molecule for host defense response against various 10 

pathogens (Bogdan, Röllinghoff, & Diefenbach, 2000). NO is produced in various mammalian 11 

cells, including macrophages, neutrophils, platelets, fibroblasts, endothelium, neuronal, and 12 

smooth muscle cells, from L-arginine using NADPH and molecular oxygen by three forms of 13 
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nitric oxide synthases (NOS), namely endothelium NO synthase (eNOS), neural NO synthase 1 

(nNOS) and inducible NO synthase (iNOS) (Yang et al., 2009; Joo et al., 2014). At nanomolar 2 

concentrations, NO plays an important role in host defence and the regulation of various 3 

pathophysiological processes such as neuronal communication, vasodilatation, and neurotoxicity 4 

(Moncada, Palmer, & Higgs, 1991; Kruidenier & Verspaget, 2002). However, if NO is 5 

overproduced and uncontrolled, it will induce host cells damage associated with acute and 6 

chronic inflammations due to the cytotoxic potential of NO (Taira, Nanbu, & Ueda, 2009). LPS 7 

is a potent activator of monocytes and macrophages from the cell walls of gram-negative bacteria 8 

and involves the generation of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-9 

α, interleukin (IL)-1, and IL-6 (Meng & Lowell, 1997). Therefore, inhibition of NO production 10 

in LPS-stimulated RAW 264.7 cells is one of the possible ways to develop anti-inflammatory 11 

agents.  12 

In this study, the ability of TY and HTY-EPA and -DHS esters to inhibit NO production in 13 

murine RAW 264.7 macrophages was evaluated and compared with that of their parent 14 

compounds TY and HTY. As shown in Figures 4-13 and 4-14, LPS treatment resulted in a sharp 15 

increase in the nitrite level in the macrophages as the nitrite accumulation in the cells 16 

increased. All tested compounds were effective in inhibiting the nitrite accumulation in RAW 17 

264.7 cells in a concentration dependent manner. Treatment of cells with TY EPA and DHA 18 

esters significantly reduced nitrite accumulation at 5 and 25 µg/mL in RAW 264.7 macrophages 19 

and the inhibition effects were higher than TY itself (Figure 4-13).  In contrast, HTY exhibited 20 

higher inhibition towards NO synthesis than HTY EPA and lower than HTY DHA at 5 µg/mL. 21 

Among the tested compounds, HTY showed the most potent inhibition at 25 µg/mL. This 22 
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suggests that esters could act as efficient anti-inflammatory agents by inhibiting the production 1 

of NO. 2 

TY and HTY have been reported for their anti-inflammatory effect by NO inhibition. HTY has 3 

been demonstrated to show strong anti-inflammatory activity by inhibiting production of NO, 4 

possibly by reducing the expression of genes of iNOS and mediating via the NF-κB pathway 5 

(Richard et al., 2011). Treatment with TY increased the anti-inflammatory effects by inhibiting 6 

NO production in the anterior segment (the front third of the eye) (Mihara et al., 2016). Sato et 7 

al. (2016) revealed that TY inhibited iNOS expression and activated NF-κB translocation 8 

in LPS-stimulated RAW264.7 cells. It has been reported that HTY acetate significantly reduced 9 

nitrite levels with a significant decrease of iNOS protein expression at similar levels of HTY 10 

itself (Aparicio-Soto et al., 2015). Similar mechanisms may be involved for TY and HTY-EPA 11 

and -DHA esters with possible additional contribution from the fatty acid side chain. In 12 

addition, the phenolics (TY and HTY) found in virgin olive oil are able to directly scavenge NO 13 

(de la Puerta et al., 2001). 14 
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 1 

 Figure 4-13. Effects of tyrosol and its derivatives compound on LPS-induced NO production in 2 

RAW264.7 macrophages. Bars with different letters are significantly different at P < 0.05 3 

(triplicate determinations). 4 
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 1 

Figure 4-14. Effects of hydroxytyrosol and its derivatives compound on LPS-induced NO 2 

production in RAW264.7 macrophages. Bars with different letters are significantly different at P 3 

< 0.05 (triplicate determinations). 4 

4.7 Antiglycation effects by BSA-glucose assay 5 

The non-enzymatic glycation, altering the structure and functional properties of proteins, is 6 

related to the pathogenesis of some chronic diseases, especially diabetes and its associated 7 

complications (Meerwaldt et al., 2008; Vlassara & Palace, 2002), leading to the formation and 8 

accumulation of AGEs (Peng et al., 2011). AGEs are a group of complex and heterogeneous 9 

molecules such as fluorescent pentosidine and non-fluorescent carboxymethyllysine (CML) 10 

(Peng et al., 2011). Because of the harmful effects of AGEs such as diabetic complications, the 11 
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AGE formation inhibitors are recently being examined. However, many AGE inhibitors exhibit 1 

side effects and are highly toxic for diabetic patients (Thornalley, 2003). Therefore, new 2 

antiglycation drugs from natural products with lower side effects and less toxicity would be more 3 

beneficial to treat diabetic patients. 4 

In this study, the tyrosol (TY) and hydroxytyrosol (HTY) and their selected esters were 5 

evaluated for their effects on the formation of AGEs by BSA-glucose system. D-glucose used in 6 

this experiment was allowed to react with BSA (protein resource) and served as the main 7 

glycating sugar with the highest concentration in the body (Sadowska-Bartosz, Galiniak, & 8 

Bartosz, 2014). The carbonyl scavenger aminoguanidine (AG) was used as a positive control. As 9 

shown in Figures 4-15 and 4-16, the parent TY molecule exhibited antiglycation activity whereas 10 

HTY molecule did show any inhibition activity towards AGEs formation whose relative content 11 

of fluorescent AGE was much higher than that of the control. Compared with the parent TY 12 

molecule, esters of TY with oleic acid and saturated fatty acids (SFA) with 10, 12 and 14 13 

carbons showed slightly higher inhibitory activity against fluorescent AGEs formation. In 14 

addition,TY SFA esters containing 12 and 14 carbons showed a higher inhibition effect than AG. 15 

HTY SFA esters with 10, 12 and 14 carbons showed antiglycation effect, but at a lower level 16 

than that of AG. 17 

TY has proven to have AGEs inhibition effect (Koko, Osman, & Galal, 2009), possibly due to 18 

the aromatic structure that are active in suppressing immune responses in both in vitro and in 19 

vivo assays (Wang et al., 1987). In this study, HTY did show any antiglycation effect. However, 20 

Navarro et al. (2015) showed that HTY exhibits antiglycative action by direct trapping of 21 

dicarbonyl compounds. Free radicals are associated with the glycation process during which 22 

superoxide radicals and dicarbonyl ketoaldehydes are generated, which may get involved in the 23 
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formation of AGEs (Sun et al., 2011). Therefore, the differences between esters are possibly 1 

influenced by their ability to scavenge free radicals or inhibit their generation which is 2 

influenced by the fatty acid side chain. 3 

 4 

Figure 4-15. Relative content of fluorescent AGEs of aminoguanidine (AG), tyrosol (TY) and 5 

lipophilized TY derivatives. Bars with different letters are significantly different at P < 0.05 6 

(triplicate determinations). 7 
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 1 

Figure 4-16. Relative content of fluorescent AGEs of aminoguanidine (AG), hydroxytyrosol 2 

(HTY) and lipophilized HTY derivatives. Bars with different letters are significantly different at 3 

P < 0.05 (triplicate determinations). 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

0

50

100

150

200

250

300

350

400

450

500
Re

la
tiv

e 
co

nt
en

t o
f f

lu
or

es
ce

nt
 A

GE
s 

(A
U

)
a

b
bc bc

cccc



 

115 
 

CHAPTER 5 1 

SUMMARY AND RECOMMENDATIONS 2 

The work reported in this thesis examined the lipophilization of tyrosol (TY) and hydroxytyrosol 3 

(HTY) for their expanded application and improved bioefficiency in food and natural health 4 

products. A series of TY and HTY esters of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, 5 

C18:0, C18:1, C18:3, EPA and DHA were prepared enzymatically and a simplified base 6 

extraction purification procedure was employed. These ester derivatives, as expected, showed 7 

enhanced lipophilicity, and were evaluated for their bioactivities using a number of in vitro, ex 8 

vivo and in vivo tests. The bioactivities examined included antioxidant activity determinations 9 

using both chemical and biological model system assays,.  The latter included antiviral activity, 10 

anti-inflammatory activity in LPS-stimulated murine macrophages, antiglycation activity in 11 

BSA-glucose system, ROS generation and cell viabilities in human hepatocarcinoma cell line.  12 

The lipophilic esters of TY and HTY were all effective in scavenging DPPH radical, inhibited  13 

cupric ion-induced LDL oxidation and exhibited protective effects against hydroxyl raidical- and 14 

peroxyl radical-induced DNA scission. These results demonstrate the high influence of the ortho-15 

diphenolic structure on the antioxidant capacity of HTY. For HTY, the introduction of the lipid 16 

part decreased its antioxidant activities. Meanwhile, an unsaturation-dependent antioxidant effect 17 

was observed for TY and HTY esters in DNA strand scission assay, and for TY esters in the 18 

DPPH assay. However, in LDL oxidation assay, the polyunsaturated fatty acid moiety of TY 19 

esters may be oxidized. In antiviral assays, HTY esters showed a HCV protease inhibitory 20 

activity while TY esters had α-glucosidase inhibitory activity. The anti-inflammatory activity of 21 

TY and HTY derivatives was evaluated in LPS-stimulated murine macrophages and were found 22 

to be effective in inhibiting LPS-induced NO. It was also found that the esterification of these 23 
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compounds could improve their antiglycation effects and inhibition against ROS generation with 1 

little cytotoxic effects. In addition, the improvement of bioavailability maybe due to their 2 

increased liposome membrane affinity and hence enhanced cellular absorption in vivo. 3 

Future research on the antioxidant activities of TY and HTY may focus on their properties in 4 

food model (bulk oil and oil in water emulsion ) and to examine the effect of side chain length. 5 

In this study, it was suggested that TY and HTY lipophilic esters can be used as functional food 6 

ingredients and pharmaceuticals for health promotion and disease risk reduction. Therefore, 7 

more investigation needs to be carried out on bioactivities of TY and HTY derivatives ex vivo 8 

and in vivo using cell line and animal models, followed by human clinical trials. Research should 9 

also focus on the economic feasibility of large scale production of selected esters and purification 10 

to assess their absorption and metabolism, as well as possible allergic and genotoxic potencies. 11 

 12 
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