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Abstract

We examined whether samarium hexaboride (SmB6) is a topological insulator, or not

by reviewing and reanalyzing all published experimental results to date. Despite the

fact that the SmB6 has long been known as a Kondo insulator, with strong correla-

tions and band hybridization, it is still of great interest because of low-temperature

transport anomalies which have recently been interpreted as evidence that SmB6 is a

topological insulator. SmB6 behaves electronically at high temperature like an insu-

lator, and at low temperature its resistance mysteriously saturates.

We studied de Haas van-Alphen quantum oscillation results to resolve the Fermi

surface topology in this material. Although dHvA measurement may be consistent

with two-dimensional conducting electronic states, we find an elongated 3D ellipsoidal

Fermi surface is also consistent with the experimental results. Furthermore, resistance

measurements also can give some evidence of SmB6 surface conductivity, by studying

different geometries to determine whether the conduction is dominated by the surface

or the bulk. Also, We simulated the conductivity of a thin sample to assess whether the

experimental measurements on their sample are consistent with surface conductivity.

After analyzing these experiments and others, our conclusion is that the main

experimental results can be described as either bulk or surface conduction, but re-

sistivity measurements strongly suggest surface conduction. Even if further studies

prove the surface conductivity, further studies will be required to show that SmB6 is
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a topological material.
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Chapter 1

Introduction

Topological insulators are materials that exhibit a qualitatively new aspect of quantum

mechanics. Topological insulators are insulators in bulk but have gapless surface

states which conduct. These gapless states must exist due to the topology of the

band structure. Several dozens of such materials have been discovered, but most of

them are weakly correlated band insulators. Samarium hexaboride a strong correlated

Kondo insulator was proposed to be a 3D topological insulator in 2011 [6]. In this

work, we examined whether samarium hexaboride is a topological insulator, or not

by reviewing and reanalyzing all published experimental results to date.

In quantum mechanics, the state of a system is described by linear combinations of

orthonormal vectors forming a basis set, and this orthonormal basis spans the Hilbert

space, which is a linear vector space. It is topological when the Hilbert space has a non-

trivial topology. Then, we can find different kinds of topological insulators depending

on the topology of the Hilbert space. The non-trivial topology is a feature of gapped

energy states, and as long as the energy gap remains open, the topology cannot change.

However, because of the potential that confines electrons within the sample, there will

be gapless states at the boundary. Thus, two-dimensional topological insulators are
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related to gapless edge states. Likewise, three-dimensional topological insulators are

connected to gapless surface states [4].

In 1980, the quantum Hall (QH) state was discovered, and it is now understood

to be an example of a topological insulator [3]. The quantum Hall effect happens at

low temperature and high magnetic field. The electrons in the bulk move in cyclotron

orbits with the radius depending on the magnitude of the applied magnetic field.

However, electrons near the edge move in semi-circle paths along the edge. This gives

the idea how electrons in bulk cannot carry current, and the electrons near the surface

do.

1.1 History of topological insulators

Before 1980, in condensed matter systems, all states of matter could be classified by

the principle of broken symmetry. The discovery of quantum Hall (QH) states in

1980 was the first example of a quantum state that depends only on topology. Thus,

this class has no broken symmetry. Subsequently, another new topological class has

arisen which is called Quantum Spin Hall (QSH) states or topological insulator. The

main difference between QH states and QSH states is that QH states need an external

magnetic field which breaks time reversal symmetry while QSH states are time reversal

(TR) invariant. Both cases (QH) and (QSH) have been experimentally observed [3].

1.1.1 Integer quantum Hall effect

The quantum Hall system, the first known topological insulator, is due to the Landau

quantization. In a 2D system, the electronic spectrum is a set of highly degenerate

“Landau levels” with energy
(
ν + 1

2

)
wc, where wc = eB

mc
is the cyclotron frequency

and ν is an integer. When the chemical potential lies between Landau levels, the
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longitudinal conductivity vanishes, and the Hall conductivity is νe
2

h
,

σ =

 0 −ν e
2

h

ν
e2

h
0

 , (1.1)

where e is a charge of the electron, h is Planck’s constant and ν is the number of filled

Landau levels. It is important to note that quantum Hall states explicitly breaks time

reversal (TR) symmetry due to the magnetic field. In 1985, Von Klitzing was awarded

the Nobel Prize in physics for discovering that the Hall conductivity σxy was exactly

quantized to integer multiples of e
2

h
. This quantization of Hall conductance is now

known as a topological invariant. It was shown by Thouless, Kohmoto, Nightingale,

and den Nijs (TKNN) in 1982 that this effect is not only quantum mechanical but

also is a new topological phenomenon. The TKNN invariant ν is now known as the

first Chern number.

1.1.2 Quantum Spin Hall effect

A new topological class of materials called the quantum spin Hall effect (QSHE)

was theoretically predicted in 2006 by Bernevig and Zhang [22] and experimentally

observed by Koenig et al. in 2007 [17], and Roth et al. in 2009 [25]. The QSHE occurs

in 2D topological insulators that are invariant under time reversal (TR), and spin-orbit

coupling plays a fundamental role. The QSHE is essentially two time-reversed copies

of the quantum Hall insulator. Their charge currents cancel, but the spin current is

quantized. It is called a quantum spin Hall insulator with spin conductance equal

to 2e2

h
. Kane and Mele (2005) [24] recognized that the electronic states of the QSH

insulator are described by a new topology given by a Z2 index. Z is the set of integers

and Z2 is the quotient group which classifies even or odd integers. In conventional
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insulators, Z2 = +1 (even), but reverses sign in topological insulators, Z2 = −1. The

index Z2 is determined by the number of edge states which cross the Fermi level [21].

1.1.2.1 Mercury Telluride HgTe quantum wells

The first two-dimensional topological insulator was predicted to occur in mercury

cadmium telluride (HgTe/CdTe) quantum wells in 2006 by Bernevig, Hughes, and

Zhang (BHZ) [23]. The fundamental property of HgTe is band inversion where the

s and p levels at the conduction and valence band edges are interchanged compared

to normal insulator such as CdTe. In the HgTe, the band gap is smallest near the

Γ point (~k = 0) in the Brillouin zone. BHZ showed that the HgTe layer exhibits an

inverted band structure, for an appropriate range of well thickness (when the well

thickness d is greater than a certain critical thickness dc). For thickness d < dc (thin

HgTe layer) the band structure is in the normal state, while for the thickness d > dc

(thick HgTe layer), the band structure is in the inverted system. At d = dc, the gap

closes at the Γ point. Because of time reversal symmetry and Kramers’ theorem, both

bands are doubly degenerate. [23] gives the most general model describing these two

bands system

H =

H(~k) 0

0 H∗(−~k)

 , (1.2)

where

H(~k) = ε(~k) + di(~k)σi. (1.3)

d1 = Akx, (1.4)

d2 = Aky, (1.5)

d3 = M − B(k2
x + k2

y), (1.6)
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ε(~k) = C −D(k2
x + k2

y) (1.7)

and A, B, C, D, and M are model parameters. The term di(~k)σi is due to spin

orbit coupling. At the Γ point, the energy eigenvalues are ε(0) ±M . M varies with

the well thickness; M = 0 at d = dc, so M changes sign between the two sides of

the transition (+M at d < dc and -M at d > dc) and the bands reverse. In either

situation, we have a doubly degenerate filled band, separated by a doubly degenerate

vacant band. Time reversal symmetry ensures that the Hall conductance vanishes,

there is a cancellation between the contributions of filled bands. However, the spin

Hall conductance vanishes when M > 0, but is σ(s)
xy = 2e2

h
for M < 0. Both the spin

and electrical conductances are calculated using Berry’s phases, as we shall explain

in Section 1.2.

1.1.3 Three-dimensional (3D) topological insulators

Later on, theoretical groups (Fu and Kane [26]; Fu et al [11]; Kane and Mele

[24]; Moore and Balents [27]; Qi et al [8]; Roy [14]) extended the concept of

2D to 3D topological insulators. Moore and Balents [27], L. Fu, C. Kane and E.

Mele [11], and R. Roy [14] discovered that three-dimensional insulators can obtain

a topological order through a spin-orbit driven band inversion, similar to HgTe in

2D. They showed that in a three-dimensional topological insulator there are four Z2

topological numbers, (ν0; ν1, ν2, ν3). Where the ν0 is the most important number,

because it gives the distinction between a strong and weak topological insulators,

while the other topological numbers provide information on dispersion and topology

of the Fermi surfaces of surface states. When ν0 = 1, a 3D TI is called a “ strong

topological insulator”, in which gapless surface states exist on every surface. On the

other hand, it is called weak topological insulator when ν0 = 0 and gapless states may
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be absent on some surfaces [3, 4, 6, 20].

The first topological insulator, discovered in 2008 by R. Cava and Z. Hasan [28],

was bismuth antimonide (Bi1−xSbx). As well, Bi2Te3 and Sb2Te3 were theoretically

predicted as 3D topological insulators [15], and also Bi2Se3 [15,28]. In 3D topological

insulators, when time-reversal symmetry is broken by a magnetic field, the surface

states become quantum Hall states with σxy = ±1
2
e2

h
[3].

In this work, we are interested in SmB6, which is a very interesting 3D topological

insulator candidate with the Z2 invariants equal to (1;1, 1, 1). If it is indeed a

topological insulator, it will be the first material where both electron correlations and

non-trivial band topology play important role [4].

1.2 Basics of Topology in Topological insulators

1.2.1 Berry phase

The Berry phase is important in the discussions of topological insulator; as we shall

explain, the Hall conductance can be calculated using Berry phase. In 1984, Michael

Berry [1, 4] discovered that a quantum system adiabatically transported around a

closed path in the space of external parameters acquires a phase that depends only

on the geometry of the circuit.

Let us consider a quantum-mechanical system described by a Hamiltonian H(R),

where R = (R1, R2, R3, ...) is an external parameter (for example, a magnetic field).

The parameter R(t) is varied slowly with time. Thus the Schrödinger equation takes

the form:

H(R)|n(R)〉 = En(R)|n(R)〉, (1.8)

where |n(R)〉 are eigenstates of H(R).
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In order to analyze the phase of the system, we assume that the initial state is a

pure state |n(R(0))〉 and we slowly vary R(t) with time. The phase θ(t) of the state

|ψ(t)〉 = e−iθ(t)|n(R(t))〉 during the adiabatic evolution will contain more than the

dynamical phase. Thus, the time evolution of the system is governed by:

H(R(t))|ψ(t)〉 = ih̄
d

dt
|ψ(t)〉; (1.9)

also we have

H(R(t))|n(R(t))〉 = En(R(t))|n(R(t))〉, (1.10)

therefore have

En(R(t))|n(R(t))〉 = h̄

(
d

dt
θ(t)

)
|n(R(t))〉+ ih̄

d

dt
|n(R(t))〉; (1.11)

and since 〈n(R(t))|n(R(t))〉 = 1, we find

En(R(t)) = h̄

(
d

dt
θ(t)

)
+ ih̄〈n(R(t)|

(
d

dt
|n(R(t))〉

)
(1.12)

hence, the phase θ(t) is given by:

θ(t) = 1
h̄

∫ t

0
En(R(t′))dt′ + γn(t) (1.13)

where

γn(t) = −i
∫ t

0
dt′〈n(R(t′)|

(
d

dt′
|n(R(t′))〉

)
(1.14)

The first term in θ(t) is the usual dynamic phase while the second term γn(t) is the

Berry phase.

When R is a vector quantity (such as the components of a magnetic field), it is
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useful to define a vector potential ~An(R)

~An(R) = i〈n(R)|
(
~∇R|n(R)〉

)
(1.15)

so that

γn =
∫
C
dR · ~An(R), (1.16)

where C is a path through the parameter space of ~R, and the endpoints are ~R(0) and

~R(t). ~An(R) is called the Berry vector potential. If the path is closed this line integral

can be transformed to a surface integral via Stokes theorem,

γn = −i
∫
dSiεijkFjk,= −i

∫
dS · ~B (1.17)

where Fjk = ∂jAk − ∂kAj is the Berry curvature and Bi = εijkFjk. Thus an integral

over a closed surface depends on singularities of B inside the surface.

The integral of the Berry curvature over the full 2D Brillouin zone of all filled

bands is the Hall conductance σxy,

σxy = −ie
2

h

∫ dkxdky
(2π)2

m∑
a=1

F a
xy(k), (1.18)

where m is number of filled bands and the Berry curvature is:

F a
xy = ∂kx〈a, k|(∂ky|a, k〉)− ∂ky〈a, k|(∂kx|a, k〉) (1.19)

= (∂kx〈a, k|)(∂ky|a, k〉)− (∂ky〈a, k|)(∂kx|a, k〉) (1.20)

|a, k〉 represents a state with momentum k in the ath band. Because it depends only

on singularities in the curvature and not on details of the band structure, it is a

topological invariant (the Chern number, ν).
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1.2.2 Time reversal

Time reversal is defined as reversal of direction of motion, T P̂T−1 = −P̂ , while it

leaves the position operator X̂ unchanged TX̂T = X. Therefore, it also reverses the

sign of angular momentum L̂

T L̂T−1 = −L̂ (1.21)

and spin Ŝ

T ŜT−1 = −Ŝ. (1.22)

The TR operator is an anti-unitary operator which can be written in the form:

T = UK, (1.23)

where K is complex conjugation and U is a unitary operator.

When the time reversal operator is applied twice the result must return to the

original state

T 2 = UKUK = UU∗ = U(UT )−1 = φ1 (1.24)

where φ is a phase and that equals to ±1. The case of T 2 = 1 applies to particle

with integer spin. On the other hand, in case of spin 1
2 particles, T 2 = −1. This

leads Kramers’ theorem, which states that for systems of 1
2 integer spin, all states are

doubly degenerate (Kramers’ degeneracy).

Time reversal symmetry guarantees that the Hall conductance vanishes. This is

due to a cancellation between the current contributions of the two spin components. In

the spin conductance, instead of canceling, these contributions add, giving a quantized

spin Hall conductance.

9



1.3 Summary

In this chapter, we present some information about the phenomena of topological

insulators, and we review the first two-dimensional topological insulators (predicted

in mercury cadmium telluride (HgTe/CdTe), as well as some physical phenomena

that are related to this topic. The rest of this Thesis is organized as follows: in

Chapter 2, we will discuss aspects of samarium hexaboride (SmB6) and review its band

structure. Chapter 3 and Chapter 4 are devoted to examining SmB6 by reanalyzing

previously published experimental studies of de Haas van-Alphen quantum oscillations

[45] and resistivity [55]. As well, we simulated the conductivity of a thin sample to

assess whether the experimental measurements on their sample are consistent with

surface conductivity. In Chapter 5 and Chapter 6, we present the discussion and the

conclusion of whether samarium hexaboride (SmB6) is a topological insulator or not.
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Chapter 2

Samarium hexaboride

2.1 What is samarium hexaboride ?

Samarium hexaboride (SmB6) is one of the rare earth hexaborides (RB6) that have

been studied for many decades. It was discovered more than fifty years ago by Anthony

Menth, Ernest Buehler, and Ted Geballe [43]. SmB6 is known to be a “Kondo

insulator” -a classical mixed valence narrow gap semiconductor with a large effective

mass. The hybridization between localized f -electrons and conduction bands leads

to very narrow band gap opening, as shown in Figure 2.1, which makes it difficult to

observe clear in-gap states near the Fermi level.

SmB6 is a paramagnetic metal at room temperature, with a Curie-Weiss suscep-

tibility characteristic of magnetic Sm+3 ions. Below 50 K, it changes into a param-

agnetic insulator with a small (10 meV) gap. However, there is a low-temperature

resistivity plateau, which is the significant property that brings researchers’ interest

to study SmB6. This behavior may indicate the existence of surface conductivity, as

in a topological insulator.

As recently as 2010, M. Dzero, K. Sun, V. Galitski, and P. Coleman [30] proposed
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Figure 2.1: The hybridization between localized f -electrons and conduction bands
leads to gap opening. The hybridization occurs at the X point, as shown in figure.
(After Fig. 2a Ref. [34]).

that Kondo insulators can become topologically ordered due to the large spin-orbital

coupling and the hybridization between conduction and f electrons. Despite a long

time of experimental and theoretical endeavor, many essential aspects are still under

discussion.

2.1.1 Crystal structure

SmB6 crystallizes in the CsCl type structure (simple cubic structure) with the Sm ions

located at the corners and B6 octahedra located at the body center of the cubic lattice,

as shown in Figure 2.2. It has a space group No. 221 (Pm3m, O1
h). Its lattice constant

is a = 4.133 Å, and the atomic position parameter of boron is x = 0.199924 [36].

The bulk Brillouin zone (BZ) of SmB6 is a cube with six square faces. The center

of the cube is the Γ point, while the centers of the square faces are the X points. The

lower part of Figure 2.3 shows that each X point and an entirely opposite partner are

equivalent, because of the inversion symmetry of the crystal. The Brillouin zone of a

[001] is shown above.
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Figure 2.2: The crystal structure of SmB6 with Pm3m space group. The Sm ions are
located at the corners and the B6 octahedron at the center of the cubic lattice.

Figure 2.3: The bulk and surface BZs of SmB6. The Γ-point is at ~k = (0, 0, 0), the
X points are at ~k = π

a
(1, 0, 0) and the M points are at ~k = π

a
(1, 1, 0) and R point at

~k = π
a
(1, 1, 1) is not indicated. On the surface BZ, Γ̄ is at ~k = (0, 0), X̄ is at ~k =

π
a
(1, 0) and M̄ is at ~k = π

a
(1, 1).

2.2 SmB6 electron structure

2.2.1 Electronic configuration

The full form of the Sm electronic configuration is:
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1s22s22p63s23p64s23d104p65s24d105p64f 66s2,

in which the Sm2+ ion has the same configuration with removal of 6s2 electrons:

1s22s22p63s23p64s23d104p65s24d105p64f 6.

While the Sm3+ electronic configuration given as:

1s22s22p63s23p64s23d104p65s24d105p64f 5.

Sm 4f levels in the presence of SOC (spin orbit coupling) are split first into J = 5
2

and J = 7
2 states.

2.2.2 Band calculation of SmB6

Band structure calculation is a powerful method for investigating electronic structure,

in particular the narrow band gap. There are a number of band structure calculations

which have done in the past. I am going through some of them to help us understand

possible origins of the resistivity plateau for SmB6.

2.2.2.1 Tight- binding models for samarium hexaboride

The tight-binding model gives a first important step towards a better understanding

of the physical properties of SmB6. The main idea for building a realistic tight binding

model for SmB6 came from a detailed first principle calculations of A. Yanase and

H. Harima [37] and of V. N. Antonov et al. [36]. Later on, the calculation of V.

N. Antonov, B. N. Harmon and A. N. Yaresko in 2002 [36] for SmB6 explained the

hybridization between 4f and 5d orbitals. As recently as 2015, C. J. Kang et al. [38],

have investigated the band structure and band symmetry of SmB6.

2.2.2.2 Old calculations

In 1992, A. Yanase and H. Harima calculated the energy band structure of YbB12,

SmB6, and CeNiSn including the spin orbit interaction by using the Linearized Aug-
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mented Plane-wave (LAPW) with the local density approximation (LDA) method.

According to the results of their calculations, seven bands are well-localized 4f bands

of Sm. These bands are separated to three and four bands with J = 5
2 and J = 7

2 due

to the spin-orbit splitting of the 4f bands. Further, it was found that a small direct

gap between the occupied and unoccupied bands in which the gap is less than 0.001

Ry (0.0136 eV) exists at the Fermi energy along the ∆ line in k-space (see Figure 2.4).

Figure 2.4: Calculated energy band structure of SmB6 showing the occupied and un-
occupied bands. The 4f bands with J = 5

2 appear near 0.86 Ry (11.7 eV) whereas 4f
bands with J = 7

2 appear near 0.91 Ry (12.4 eV). Also, two bands are 5p bands on Sm
with J = 3

2 near -0.39 Ry (-5.3 eV). The circles indicate where there is hybridization
between the 4f bands and conduction band. (Reproduced from A. Yanase and H.
Harima [37] with permission).

Figure 2.4 shows the hybridization between the 4f bands and conduction bands

which are located along the ∆, Z and S lines in k-space. Two 4f bands in the lower
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group hybridize with the conduction band, which consists of bonding orbits between

B 2p and Sm 5d electrons. The places where hybridization are largest is indicated by

circles in Fig.2.4.

V. N. Antonov et al. [36] investigated the electronic structure and optical spectra

of SmB6 and YbB12, and calculated energy band structure using the fully relativistic

Dirac LMTO band structure method using the LSDA and LSDA+U approximations.

This calculation is in good agreement with the previous one by A. Yanase and H.

Harima. They found that the energy band structure with the LSDA approximation

can be divided into three zones separated by energy gaps. The first zone has mostly

B 2s character mixed with some amount of Sm sp character (it is not shown because

is below the energy range shown in Fig. 2.5). The next group is the B 2p bands

which are separated from the B 2s bands by a gap of 3 eV. The flat Sm 4f bands

are near the Fermi energy. The Sm 5d bands are partly occupied, and they are also

separated from B 2p states by the energy gap around 0.7 eV at the X-point as seen

in the Figure. 2.5. Thus, at Fermi level, there is a small direct energy gap about 23

meV.

I should also mention that the measurement of the optical conductivity spectrum

in Ref. [36] contains key features of both divalent Sm2+ and trivalent Sm3+, consistent

with the mixed valence character of SmB6 seen in the band structure calculations.

2.2.2.3 New calculations

Recently, Feng Lu et al. [42] proposed that SmB6 is a strongly correlated topological

insulator with unique surface states containing three Dirac cones on the (001) surface.

Dirac cones are surfaces that describe the electronic energy dispersion; ε(k) ∼ k, i. e.

the dispersion is linear with k; they can be directly detected by angle-resolved photoe-

mission spectroscopy (ARPES). They have employed the local density approximation
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B 2p

Sm 4f

Sm  5d

Figure 2.5: Self consistent fully relativistic, spin polarized energy band structure
and total DOS calculated for SmB6 with the LSDA and LSDA+U approximations.
(Reproduced from V. N. Antonov et al. [36] with permission)

with Gutzwiller method combining with a Green’s function scheme to study SmB6.

Consequently, their results and the dynamical mean-field theory (DMFT) method

show that the separation between 4f electron bands is much larger than what was

previously found using density functional theory (DFT). That is because DFT cannot

capture the strong correlation of 4f electron bands. As a result, they have concluded

that the DFT method gives unphysical results because the overlap between the J = 5
2

and J = 7
2 bands that lead the band and the corresponding wave functions at the Γ

and X points to have the wrong symmetry and shape.

Later, C.-J. Kang et al. [38] have investigated the band structure of SmB6 us-

ing density functional theory (DFT). Moreover, they included the strong correlation

effect by a 10 times enhanced spin-orbit coupling (SOC) for Sm 4f electrons. Addi-

tionally, they applied the full-potential linearized augmented plane wave (FLAPW)
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band method and projector augmented wave (PAW) band method.

Their complete results show the 0.018 eV band gap and Sm 4f bands are dominant

near EF , where J = 5
2 states are located below EF and J = 7

2 states are above EF with

about 1 eV energy split between these states. In order to have separation between

J = 5
2 and J = 7

2 bands similar to that from DMFT, they used DFT and 10 times

enhanced spin orbit coupling, which removes unphysical overlap between J = 5
2 and

J = 7
2 bands without modifying the orbital characters significantly. As a result, the

J = 5
2 and J = 7

2 bands are well separated with about 6 eV and the band overlap

between them is reduced. Although this method makes the Sm-d and B-p bands

shifted slightly up, the band gap is increased from 18meV to 43 meV and the band

structure is still identical.

In summary, the size of the energy gap varies considerably with different meth-

ods that used to calculate the band structure. The LAPW with LDA method [37]

shows the gap is less than 13.6 meV. Fully relativistic Dirac LMTO band structure

method [36] gives a result of 23 meV, and the density functional theory (DFT) [38]

shows that the band gap is 43 meV. All of these results are large than the activation

gap observed in resistance measurements.
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Chapter 3

Quantum Oscillations

The de Haas–van Alphen effect is a quantum mechanical effect in which the magnetisa-

tion and other measurements of a metallic crystal oscillate as a function of the inverse

applied magnetic field. It is a powerful technique for measuring the Fermi surface,

as since the oscillation frequency depends on the external area of the Fermi surface

perpendicular to B. In this chapter, I used the published data of dHvA experiments

to fit it for 3D and 2D Fermi surfaces of SmB6 .

3.1 De Haas-van Alphen effect

The electrons in any system are characterized by their quantum number ~k = 2π
L

(nx, ny, nz)

and the energy of free electrons is given by:

E(k) = h̄2k2

2m (3.1)

In 2D, without magnetic field, electrons in the sample are allowed to occupy any of

the quantum states in momentum space that lie within the Fermi disk E(k) ≤ EF as

shown in Figure 3.1(a). However, in the magnetic field B the Lorentz force influences
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the electrons to take a circular motion.

The Hamiltonian of an electron in a magnetic field is:

H =
~p− q ~A(~r, t)

2m

2

+ qV (~r) (3.2)

where q is electric charge, V (~r) is a scalar potential, and ~∇× ~A = ~B is a vector po-

tential, when ~B points perpendicular to the sample. We can rewrite the Hamiltonian

with the theory of harmonic oscillators as:

H = h̄wc

(
n+ 1

2

)
(3.3)

where wc = eB

mc
, and n is an integer. Hence the energy levels of the 2D system are:

En = (n+ 1
2)h̄wc. (3.4)

There energy levels can be drawn in k-space as:

h̄
(
k2
x + k2

y

)
2m =

(
n+ 1

2

)
h̄wc (3.5)

as shown in Fig 3.1.

In the 3D system, if the field points in the z-direction, the eigenvalues of the

Hamiltonian are determined by the quantum numbers kz, and n,

Ekz ,n = h̄2k2
z

2m + (n+ 1
2)h̄wc, (3.6)

where n is a non-negative integer.

Hence the moments in the plane perpendicular to B is quantised, which is known

as Landau quantization. The electrons are restricted to the cylinders in k space
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Figure 3.1: Electron states in the k space 2D system. When B = 0 there is one state
per area (2π

L
)2. While at B 6= 0, the electron energy is quantized into Landau levels

and each circle has energy En = (n+ 1
2)h̄wc.

defined by h̄(k2
x+k2

y)
2m =

(
n+ 1

2

)
h̄wc, as shown in Figure 3.2; these cylinders are known

as“Landau tubes", which shrink as B is increased.

As the magnetic field is increased, the space between Landau tubes increases and

the number of tubes inside the Fermi sphere decreases as the tube passes through the

Fermi surface. In general, when any Landau tube crosses an extremal orbit, as shown

in Figure 3.3, the metal’s properties will oscillate as a function of 1
B
. The oscillation

frequency is given by:

F = h̄c

2πeA, (3.7)

where hc
e
≡ φ = 4.14× 10−11 T cm2 is the flux quantum, and A is the cross sectional

area of the Fermi surface in k space. Note that the frequency will has units of Tesla.

This oscillation is known as a magnetic quantum oscillation. Quantum oscillations ap-
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Figure 3.2: In 3D system with magnetic field, the electrons are restricted to the
cylinders within the Fermi-sphere.

pear in many measurements, however, we are interested to study only the oscillations

of the magnetization, which is known as the de Haas-van Alphen (dHvA) effect. The

dHvA effect is a powerful technique discovered by de Haas and van Alphen in 1930

[52] for measuring the Fermi surface. This technique is applied at low temperatures

and strong magnetic field, and it provides details of the extremal areas of a Fermi

surface. De Haas-van Alphen oscillations are a thermodynamic effect, as a result from

the Landau quantization of the electronic spectrum. By changing the magnetic field

direction, different cross-sectional areas of the Fermi surface can be mapped out. In

this way, the whole Fermi surface can be mapped. The period of oscillation is found

by the Fourier transformation of magnetisation oscillations.

In 2D, when the strength of the field B increases, the radius of the circular orbits

will increase until an orbit “pops out” of the Fermi surface. This leads to oscillatory
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behaviour in the magnetization and the free energy. As the orbits pass through the

Fermi surface, they instantaneously become un-occupied, and the oscillations in the

free energy will have a maximum amplitude. However, in a 3D system (Fig 3.3),

the circles are replaced by cylinders. As B increases, the radius of the cylinders

increases and the cylinders emerge continuously without dramatic change from the

Fermi sphere as the radius of the cylinder passes this extremal radius. As a result,

the magnetisation in 3D oscillation are not as sharp (singular) as the 2D case.

Figure 3.3: (a) Landau tube is containing the electrons orbits in the nth Landau level
with energy equal to the Fermi energy of the sample. (b) There are small amount
of the electrons which are at the intersection area between the Landau tube and the
Fermi surface can remain in the states. (c) The Landau tube is tangent to a Fermi
surfaces and the intersection is extremal orbit which is always perpendicular to the
applied field.

3.1.1 Technique for the measurement of dHvA

To measure the de Haas-van Alphen oscillations, there are two major techniques. The

first is the field modulation method and the second is the torque method. In this

work, we are interested in examining experiments which use the torque method.
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3.1.1.1 Field modulation method

This method can be used to study the behavior of ~M . The system consists of three

coils: detecting, compensation, and field modulation coils; each coil has an important

role. The field modulation coil generates an alternating magnetic field which produced

electromotive forces in both detecting and compensation coils. Then, the alternating

voltage is induced in the detecting coil. This voltage contains a component propor-

tional to ∂M
∂B

, where M is the magnetisation of the sample. The signals obtained from

detecting coil are periodic in 1
B
. The Fourier analysis of the collected data can obtain

the dHvA frequency Eq.(3.7).

3.1.1.2 Torque method

The torque measures the absolute value of the magnetization. The magnetic torque

~τ = V ~M × ~B acts on the sample when an external magnetic field is applied to the

sample and isM⊥BV , where V is the volume, B is the external magnetic field applied

to the sample and M⊥ is the component of ~M perpendicular to ~B.

3.2 Using de Haas-van Alphen to measure the Fermi

surface of SmB6

There have been two dHvA studies of SmB6 with differing conclusions: one determined

the Fermi surface to be 2D, and the other to be 3D. In this section, we will discuss

these results.
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3.2.1 Samarium hexaboride with 2D Fermi surface

In this section, we discuss the data of [45]. In their work, the torque magnetometer

method was used. The SmB6 single crystal samples used were grown by the flux

method and then each one was etched with acid to remove the residual aluminum

flux. Their measurements were performed at 0.3 K with the magnetic field up to

45 T across a range of tilt angles.The tilt angle φ is the angle between the applied

field and one of the main cubic axes of the crystal. Magnetisation oscillations were

measured for each tilt angle and were each analyzed using a fast Fourier transform.

Three Fourier transform peaks were observed, corresponding to three different Fermi

surfaces labelled as α, β, γ and shown separately in Figs. 3.4, 3.5, 3.6. Also, the

results show that the Fermi surfaces appear to be two-dimensional (2D) and arise

from the crystalline (101) and (100) surfaces. To understand the idea of different

surfaces, I am going to explain each one of them as described in Ref. [45].

3.2.1.1 α, β, and γ surfaces

The first oscillation frequency Fα was observed at frequency 30.5 T. This is attributed

to the (100) surface families. Three branches of Fα are observed, because of the

fourfold symmetry of the SmB6 cubic structure, with minima at φ0 = 0◦, and 90◦.

The data are fit to F0/|cos(φ− φ0)|, which corresponds to a cylindrical fermi surface

aligned in the (100)directions associated with each of the (100) surfaces of the crystal,

as shown in Figure 3.4.

Second, the oscillation frequency Fβ observed at frequencies higher than 900 T,

shown in Fig. 3.5. It shows a large angular dispersion and tracks the 2D angular

dependence associated with (101) surface families. Due to the fourfold crystalline

symmetry, several branches are observed within minima at φ = −45o, and 45◦. The

data are fit to the functions Fβ0/|cos(φ + 45◦)|, and Fβ0/|cos(φ − 45◦)| corresponding
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Figure 3.4: The oscillating frequency Fα in SmB6 of the observed Fermi surfaces α is
shown as a function of φ. Solid lines are fits to F0/|cos(φ− φ0)| (a 2D Fermi surface)
with φ0 = 0◦, and 90◦. (Reproduced from G. Li, et al. [45]).

to cylindricals fermi surface aligned in the (101)directions associated with each of the

(101) surfaces of the crystal.

Similar to Fα, Fig. 3.6 shows the angular dependence of the oscillating frequency

Fγ that is observed at 385 T. The γ pockets arise from Fermi cylinders on the (100),

(001), and (1̄00) surfaces and the Fγ pattern has fourfold crystal symmetry. There

are three branches located around φ = 0◦, and 90◦. The angular dependence is fit by

the functions Fγ0/|cos(φ− 0◦)|, Fγ0/|cos(φ− 90◦)|, and Fγ0/|cos(φ− 180◦)|.

To summarize, G. Li, et al. [45] measurements used a magnetic field up to 45 T

and temperature down to 0.03 K. They observed a small ellipsoidal Fermi surface (low

frequency) which they associate with surface states, and conclude that SmB6 has 2D

topological surface states.
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Figure 3.5: The oscillating frequency Fβ of SmB6 is shown as a function of φ. The
solid lines are fits to F0/|cos(φ − φ0)| (a 2D Fermi surface) with φ0 = -45◦, and 45◦.
(Reproduced from G. Li, et al. [45]).

3.2.2 Samarium hexaboride with 3D Fermi surface

On the other hand, B. S. Tan et al. [44] observed a large three-dimensional Fermi

surface similar to PrB6 and LaB6 (metallic rare earth hexaborides), centered at X

point of Brillouin zone. They have used both high and low frequency oscillations.

Their results were six Brillouin zone (BZ) X-point ellipsoids that are large enough

to overlap. This overlap generates “necks” on the Fermi surface. The high-frequency

oscillations, which were bigger than 1 kT, helped to observe a 3D Fermi surface

occupying half the BZ, while the lower ones helped to discover small orbits located at

the necks between the large Fermi surface shapes.
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Figure 3.6: The oscillating frequency Fγ in SmB6 is shown as a function of φ. The
solid lines are fits to F0/|cos(φ − φ0)| (a 2D Fermi surface) with φ0 = 0◦ and 90◦.
(Reproduced from G. Li, et al. [45]).

3.3 Fermi surface shape in SmB6: 3D and 2D fits

In this section, I will investigate Fermi surface shape determined by magnetisation

oscillation to see if they are better described by 2D or 3D Fermi surfaces. I use the

data from G. Li, et al. [45], to fit 3D surfaces for each of the α, β, and γ oscillations.

The relation between the extremal area A in k-space and the dHvA frequencyF (given

in units of Tesla) is

A = 2π e
h̄c
F (3.8)

= 9.53585× 1011 × F cm−2 (3.9)
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The cross-sectional area of an ellipse takes the form

A = a2cπ√
a2 sin2 θ + c2 cos2 θ

, (3.10)

where a and c are the lengths of the semi-principal axes, and θ is the angle of the

cross section. When c� a, the Fermi surface shape becomes cylindrical, i.e. 2D, and

the cross sectional area is

A = a2π

|cos θ| (3.11)

First, I fit the data to Eqs. 3.10 and 3.11 to find the shapes of Fermi surfaces of

the α , β, and γ surfaces separately. These results are summarized in Table 3.1 .To

compare these results (2D, and 3D fit) we will need to know χ2,

χ2 =
∑
i

(xi − di)2

σ2
i

(3.12)

where di is the measured dHvA frequency, xi is the frequency given by the best fit

model, and σi is the error bar for each data point. Then we need to find χ2

N
which

should be approximately 1, where N is the number of points in the dataset.

The χ2 values are significantly reduced between the 2D and 3D fits for the α and

γ oscillations. In these cases, the fitted values a and c (3D case) are within a factor

3, which suggested that 3D ellipsoid model describes the data better than the 2D

cylinder model. However, the β fits are not significantly improved when the extra

parameter c is included which suggests that the 3D model is not better than the 2D

model; moreover the large value for χ2

N
suggests that neither model is very good. Only

for the γ oscillations we find χ2

N
∼ 1 which indicates that the 3D fit is consistent with

the experimental data and uncertainties.

Figures 3.7-3.9 shows the angular dependence of the dHvA frequency for each
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3D fit (ellipsoid) 2D fit (cylinder)

Surface a (cm−1) c (cm−1) χ2

N
a (cm−1) χ2

N
N

α 2.30± 0.02× 106 4.9 ±0.7× 106 0.35 3.14± 0.04 0.65 74

β 6.61 ±0.06× 106 42 ±9× 106 5.5 9.39 ±0.07 6.3 66

γ 7.78±0.04× 106 26 ±18× 106 1.5 10.97±0.07 4.62 50

Table 3.1: Table of the results of fits the data to Eqs. 3.10 and 3.11.

of the α, β, and γ surfaces. These come from fitting the data set from Ref. [45]

to the 3D model. The results of the fit to the 2D model produces figures that are

indistinguishable from the 3D model.
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Figure 3.7: Angular dependence of the dHvA frequency Fα. The solid lines are our fit
to 3D equation, and the dots are the data extracted from the Fig. 3 A in Ref. [45].
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Figure 3.8: Angular dependence of the dHvA frequency Fβ. The solid lines are our fit
to 3D equation, and the dots are the data extracted from the Fig. 3 B in Ref. [45].
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Figure 3.9: Angular dependence of the dHvA frequency Fγ. The solid lines are our fit
to 3D equation, and the dots are the data extracted from the Fig. 3 C in Ref. [45].
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Figure 3.10: Fermi surfaces of the α surface, drawn using the results of our 3D fit.
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Figure 3.11: Fermi surfaces of the β surface, drawn using the results of our 3D fit.

34



Figure 3.12: Fermi surfaces of the γ surface, drawn using the results of our 3D fit.
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Figure 3.13: The shape of SmB6 Fermi surfaces 3D fit according to the results of the
3D fits. This figure shows the results of Figs. 3.10, 3.11, and 3.12 all together.
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Figure 3.13 shows the shape of SmB6 Fermi surfaces where the elongated β surfaces

located at the corners and γ surfaces located at the faces while the 3D α surfaces

located inside the γ surfaces.

To conclude, we find that the β surface is compatible with a 2D Fermi surface, or

of 3D Fermi surfaces that are elongated ellipsoids as Ref [45] showed. On the other

hand, the χ2 values and the values of a and c in the 3D fits for the α and γ surfaces

indicate the Fermi surfaces associated with the α and γ branches have 3D ellipsoidal

shapes.
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Chapter 4

Resistivity of SmB6

4.1 Resistivity of SmB6

Despite the fact that the SmB6 has long been known as a Kondo insulator [?,21,30,33],

with strong correlations and band hybridization (see Chapter 2), some of its essential

properties still defy understanding. One of these mysteries is electrical conductivity

of SmB6 at very low temperature, and what is responsible for this low-temperature

behavior.

The resistivity of SmB6 and the magnitude of its Hall coefficient increase dramati-

cally with decreasing the temperature, while the most remarkable phenomenon is seen

at temperatures lower than 4 K, where the resistivity and Hall do not continue to rise,

but instead they saturate and remain finite as T → 0. In other words, SmB6 behaves

electronically at high temperatures like a semiconductor, and at low temperature, its

resistance mysteriously saturates [63].

S. Wolgast et al. [55] studied the transport of SmB6 with a specialized sample ge-

ometry to study the mystery of the residual resistivity. As a result, their experiments

seems to indicate that as the temperature is reduced, SmB6 goes from a 3D bulk
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conductor to a 2D surface conductor with an insulating bulk. In order to determine

whether the conduction is dominated by surface or bulk, they used a thin sample of

SmB6 with eight coplanar electrical contacts, (four on each side of the sample) as

shown in Figure 4.1.

In the conventional lateral measurement Rlat (Figure 4.1(a, b)) the contacts are

only on one side. This arrangement cannot tell whether the conduction at low temper-

ature is bulk dominated or surface dominated. At high temperature, all the current

will flow on the front side contact. But at low temperature, where the resistivity

becomes large, the current will still flow on the front side for both cases (bulk or sur-

face dominated). It is easy to notice that Rlat is very similar in both cases, and this

explains why Rlat alone can not distinguish whether the conduction is bulk dominated

or surface dominated.

Likewise, a hybrid measurement Rhyb is made by passing current through two

front side contacts, but the voltage is across two back side contacts (see Figure 4.1(e,

f)). At high temperature Rhyb should be identical to Rlat in both cases (bulk or surface

conductor). At low temperature if the bulk remains conducting, the current will still

follow as same as Rlat case. However, if the surface remains conducting, the front side

will have most the current and a tiny current will flow around the back side. Then

Rlat will be much larger than Rhyb.

However, in the vertical contact configuration Rvert the current passes from one

front side contact to the back side contact with the voltage applied between the front

side and back side contact (see Figure 4.1(c, d)). At high temperature, if the bulk

is conductive, all the current flows perpendicularly through the sample. Due to the

large distance between the voltage contact and the current contact, there is no current

near the voltage contacts and Rvert will be very small. At low temperatures where

the resistivity increases significantly, the current will continue to flow as long as the
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Figure 4.1: Different configurations of electrical contacts. Arrows indicate current
direction. The figures on the left hand side show the cases when the bulk is conduc-
tivity, and the right hand side figures show the cases of an insulating bulk. (a) lateral
measurement Rlat where the current passes through the bulk. (b) Rlat configuration
where the bulk becomes insulating and the current flows around the surface. (c) Rvert

configuration, where the current passes horizentally through the bulk. (d) Rvert where
the bulk becomes insulating and the current forced to flow around the surface. (e)
Hybrid measurement Rhyb for conducting bulk. (f) Rhyb for insulating bulk. (Based
on Ref. [55], Fig 3).

bulk is conductive. However, if the surface is conductive, the entire current will be

forced to flow around the surface of the sample and the Rvert will be very large.
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In all cases, if the surface conductivity is the same as the bulk conductivity, for all

three measurement configurations the resistance will be proportional to the resistivity

with a proportionality constant R = Cρ that depends on the geometry of the sample.

For example, in the textbook case of long, thin wire C = L
A
, where L is the length

and A is the cross-section area. However, if the surface has a high conductivity, there

is no simple dependence of resistance on geometry or temperature.

In order to examine the resistivity and the conductivity of SmB6, we are going to

study two different cases.

4.1.1 Bulk conductor (non-topological insulator)

The conductivity in this case depends only on the temperature and the sample geom-

etry,

σ ∝ exp
−Eg
KBT . (4.1)

Experiments show that the conductivity can be described by

σ = σa + σb exp
−Eg
KBT . (4.2)

The second term is the conductivity of semiconductor, with gap Eg. The first term is a

temperature independent constant, which can interpreted as a bulk feature associated

with hopping of some kind. The resistivity also depends on the temperature ρ = 1
σ
,

ρ = 1

σa + σb exp
−Eg
KBT

. (4.3)

The resistance R will be proportional to the resistivity,

R = C

σa + σb exp
−Eg
KBT

. (4.4)
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Figure 4.2 shows the temperature dependence of the electrical resistivity and

conductivity based on Eq. 4.2 and Eq. 4.3.

Figure 4.2: (a) Temperature dependence of the electrical conductivity based on Eq.
4.2. (b) Temperature dependence of the electrical resistivity based on Eq. 4.3. (arbi-
trary units).

4.1.2 Surface conductor (topological insulator)

In this case, the conductivity σ depends on the position ~r. We will have a bulk

conductivity σbulk when ~r is located in the bulk and a surface conductivity σsurface
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when ~r is at or near the surface. We assume that the bulk conductivity is activated,

σbulk = σ0 exp
−Eg
KBT , (4.5)

and the surface conductivity is

σsurface = σs. (4.6)

The total conductance of a sample is a combination between bulk and surface conduc-

tivity. The bulk conductivity depends on the temperature, while the surface conduc-

tivity does not. At low temperature, the bulk conductivity will be negligible compared

to surface.

Then since ρ(~r) = 1
σ(~r) , we have

ρbulk = 1
σbulk

= exp
Eg

KBT

σ0
, (4.7)

ρsurface = 1
σsurface

= 1
σs
. (4.8)

Because the resistivity depends on the position, there is no simple proportionality

relation between ρ and the total resistance R. R can only be found by measurement

or by numerical method.

4.2 Numerical method

In order to find the relation between ρ(x) and the total resistance R, we will review

Maxwell’s equations in Gaussian units (CGS).

Gauss’s law for electric field:

∇ · E = 4πρ (4.9)
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Gauss’s law for magnetic field:

∇ ·B = 0 (4.10)

Maxwell-Faraday equation:

∇× E = −1
c

∂B
∂t

(4.11)

Ampère-Maxwell equation:

∇×B = 4π
c
J + 1

c

∂E
∂t
. (4.12)

The electric field ~E(x) also can be written in terms of the electric potential V ,

~E(x) = −∇V (x). (4.13)

Ohm’s law is given as

~J(x) = σ(x) ~E(x), (4.14)

when ~J is the current density.

From equations 4.13 and 4.14 we have:

~J(x) = −σ(x)∇V (x). (4.15)

We also need the continuity equation which is given by,

∇ · ~J = 0 (4.16)

or

~∇ · (−σ(x)∇V (x)) = 0, (4.17)

The system is subject to the following boundary conditions. First, we assume
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that there is no current perpendicular to the boundaries, except where the current

enters or leaves the sample. The voltage is fixed where the voltage leads are attached

to the sample.

I used the relaxation method to solve for the voltage V (x) using Eq. (4.17) and

the boundary conditions described above. To implement this, I wrote equations for

all parts of the system (corners, faces, edges, and the bulk) in discrete form. These

equations are given in the Appendix. The relaxation method is an iterative method

that is used to solve partial differential equations. It begins with a set of arbitrary

voltages at each point in the sample, except at those points where the voltage is fixed

(at the input and output leads). The voltage at every point is recalculated using the

continuity equation Eq. (4.17). This process is repeated until the the system has

relaxed (the voltage stops changing with each iteration).

I developed code using the Mathematica program. In my simulation, a thin lx = ly

= lz
10 sample was used, with input and output leads at the centres of the largest faces

(the top and bottom). A grid size of 50× 50× 50 was used. Different initial voltage

configurations were tested, including random, constant and smoothly increasing. The

random and constant initial configurations resulted in very slow relaxation, so I used

the smooth increase between the bottom face set at V = 0 and the top face set at

V = Vout for my initial voltage configuration.

After testing the program, I determined that 50,000 iterations were required for

the system to relax. This took about 120 hours for each one, depending on the

machine. Initial tests were run on the first year physics lab computers and on a

machine owned by Dr. Plumer. The final results were collected on my own computer.
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4.3 Resistance and resistivity of SmB6: fits

4.3.1 Resistance and resistivity calculation using experimen-

tal data

4.3.1.1 Data 1

In experimental work [60], M. C. Hatnean et al. reported the resistivity of SmB6

as a function of temperature. This is a little unusual, as normally the resistance

and not resistivity measurements are reported. The resistivity must be inferred by

by taking into account the sample geometry. They used large, high quality single

crystals in their experiments, which were prepared by floating zone technique. They

cut a bar-shaped sample from the SmB6 crystal for their resistivity measurements.

In this section, we examine whether the experimental data is better described by the

non-topological insulator case or the topological insulator case.

We first consider case 1: non-topological insulator. In order to find the values of

σa, σb, and Eg, we use their data and fit it to Eq. 4.4. The result of our fit are σa

C

= 0.0391 ±0.0002 ohm −1, σb

C
=4200 ±900 ohm −1, and Eg = 53.3±0.9 K (4.6 ±0.4

meV). Because of the elongated shape of the sample we assume that R = ρL
A
, where

L is the length, A is cross-sectional area of the sample, and C = L
A
.

In second case, of topological insulator (ie, surface conductor), and due to the

sample shape Fig 4.4, the surface and bulk resistance equations take a formula of two

resistances as R1 and R2 connected in parallel,

R = R1 ×R2

R1 +R2
(4.18)

where R1 is the surface resistance and R2 is the bulk resistance.

The surface resistance is
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Figure 4.3: Experimental data shows the resistivity vs temperature (reproduced from
Ref. [60]).

R1 = L

A1
ρsurface (4.19)

and the bulk resistance is

R2 = L

A2
ρbulk, (4.20)

where L is the length of the sample, A1 is the cross-sectional area of the surface, A2

is the cross-sectional area of the bulk, and A2 � A1.

As before,

ρsurface = 1
σs

(4.21)
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Figure 4.4: Schematic picture for the thin and elongated sample shape used. A1 is
the cross-sectional area of the surface, A2 is the cross-sectional area of the bulk. In a
real sample A1 � A2.

ρbulk = 1
σbulk

= exp
Eg
T

σ0
. (4.22)

Then the total resistance is

R = Lρsurfaceρpulk
A2ρsurface + A1ρpulk

(4.23)

= 1
A1σs

L
+ A2σ0 exp

−Eg
T

L

. (4.24)

We fit the experimental data to R = 1

c1+c2 exp
−Eg

T

to get the unknown values which

48



3 4 5 6 7
T

5

10

15

20

25

ρ

Figure 4.5: Resistivity vs temperature for a bar shaped sample of SmB6. The dots
are data points extracted from Ref. [60], and the solid line is the fit to Eq.4.4.

is exactly the same form as for the bulk conductivity case. As a result, we find that
A1σs

L
= c1 = 0.0391 ±0.0002 ohm −1 , A2σ0

L
= c2 = 4200 ±900 ohm −1, and Eg = 53.3

±0.9 K (4.6 ±0.4meV). Then by using these values in Eq. 4.24, we will have the same

graph that is shown in Fig 4.5.

4.3.1.2 Data 2

Another experimental work [55], (described above) has studied the transport proper-

ties of SmB6 with a specialized sample geometry to find the resistivity at low tem-

perature. We study this data to see if it is described by the case of a non-topological

insulator (bulk conductor).

To find the values of σa

C
, σb

C
, and Eg, we use their data and fit it to Eq. 4.4. The

results of the fit are σa

C
= 0.262 ±0.003 ohm −1, σb

C
=1200 ±400 ohm −1 and Eg =
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Figure 4.6: Experimental data shows the resistivity vs temperature for various config-
urations of voltage and current contacts. (Reproduced from Ref. [55] with permission).

43.03 ±1.82 K (3.71 ±0.16 meV). Figure 4.7 shows the resistance vs. temperature of

data and fit, where we fit this data using the bulk conductor model (Eq. 4.4).
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Figure 4.7: Resistance vs temperature. The dots are data points extracted from
Ref. [55], and the solid line is the fit to Eq. 4.5 (case of non-topological insulator, bulk
conductor).
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4.3.2 Resistance and resistivity calculation for a surface con-

ductor

We use a numerical relaxation method to calculate the resistance of a thin surface

conducting sample with current and voltage leads at the same place (on the front

and back faces of the sample). We set all the currents perpendicular to the boundary

to be zero, except where the current comes in or out; the voltage is also fixed at

these points. Also, the conductivity that we use is a function of the temperature and

position. As discussed in Section 4.2, I solved Eq. 4.17 numerically, using the discrete

equations given in the Appendix.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
S

60
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68
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72

Rohms

Figure 4.8: Resistance vs S in our calculation.

We introduce the parameter S = σbulk

σsurface
, the ratio of bulk conductivity, and

surface conductivity and we performed our calculation using the specific of values of

S (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25).

The temperature is related to the value of S as
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S = σbulk
σsurface

(4.25)

= σ0exp
−Eg
KBT

σs
. (4.26)

Then

T = Eg
− log(S) + log(σ0

σs
) . (4.27)

We cannot calculate the temperature T , because we do not know the value of σ0
σs
,

but we can use Eq. (4.27) to illustrate the temperature dependence of R using an

estimated value of σ0
σs
.

Figure 4.9: Resistance vs temperature in our fits, by using an estimated values of σ0
σs
.

This plot shows the correct qualitative dependence of the resistance R or temper-

ature, as found in the measurements. (Fig 4.6, Rlat curve.)

S. Wolgast et al. [55], argued that SmB6 becomes a surface conductor at low tem-

perature based on their measurements behavior of different configurations as shown
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in Fig 4.6. As we discussed before, Rlat configuration the current flow similar in

both scenarios, which make it difficult to distinguish between surface dominated and

bulk dominated conduction in this configuration alone. However, Rvert in a surface

conductor is larger than it is in the bulk conductor. Also, Rhyb at high-temperature

in both cases will be identical to Rlat, but at low-temperature, Rhyb > Rlat in the

surface dominated conduction, and it will still be identical to Rlat in bulk dominated

conduction.

Both experiments [55, 60] conclude that SmB6 is a surface conductor. We find

that their data described by either bulk or surface conductance; however, we did not

examine all the different voltage and current leads configurations. However, even if

the conductance is on the surface, that does not mean that SmB6 is a topological

insulator, because there are other origins of surface conductivity, as we discuss in

Chapters 5 and 6.
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Chapter 5

Discussion

SmB6 is a fully three-dimensional material with strong electron correlations. It’s 4f

electrons are hybridized with the 5d conduction band at around 50 K where SmB6

goes through metal to insulator transition. Most importantly, at temperatures below

3 K the resistivity saturates and remains finite as T −→ 0. This material has been

investigated by a number of recent spectroscopy, quantum oscillation (Chapter 3),

resistivity (Chapter 4) and measurements, as well as angle-resolved photoemission

spectroscopy (ARPES) and scanning tunneling microscopy (STM) experiments.

5.1 Quantum oscillation of SmB6

In Chapter 3 we examine the results of de Haas van Alphen measurements of the

Fermi surface of SmB6. We showed that even if there is a surface that is compatible

with a 2D Fermi surface, the χ2 values and the values of a and c in the 3D fits of some

surfaces indicate the Fermi surfaces arise from 3D ellipsoidal shaped Fermi surface

centered around the X-point of the Brillioun zone.
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5.2 Resistivity of SmB6

In the previous Chapter, we studied experimental measurements of the resistivity of

SmB6 [55,60]. The resistance as a function of temperature fits well to either the bulk

conducting or surface conducting models. However, the studies of S. Wolgast et al,

who measured the resistance for different voltage and current contact configurations,

showed that SmB6 becomes a surface conductor at low temperature based on their

measurements using of different configurations of voltage and current contacts. Where

Rlat is similar to Rhyb at high temperature, while at low temperature Rlat > Rhyb.

Also, Rvert showed the largest curve at low temperature. Further modeling of the

exact setups they used would be helpful to confirm this.

Polishing and etching the sample also affects the resistance [63]. Polishing and

etching may damage the surface, producing cracks, which increases the surface con-

ductivity. This has led to the proposal that surface conductivity could be due to

“dangling p-bonds” will cause some change and decrease the resistivity.

5.3 Angle-resolved photoemission spectroscopy

5.3.1 Brief description of ARPES

Photoemission spectroscopy depends on the photoelectric effect, originally observed

by Hertz (1887) and later explained by Einstein’s photoelectric effect equation (1905).

He recognized that when light with energy hν (where h is Plank’s constant and ν is

the frequency of the light) shines on a sample with work function φ, an electron

can absorb a photon and get away of the material with a maximum energy (kinetic

energy) Ekin = hν − φ. Thus photo-electron spectroscopy can measure the energy

of an electron inside a solid. In addition, the momentum of the electrons can also
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be obtained where p =
√

2mEkin, and different momentum electrons will escape at

different angles from the surface of a material [64].

Angle-resolved photoemission spectroscopy (ARPES) can examine the electronic

structure of the surface state and the low energy excitations of solids. Although, the

spin-resolved ARPES can investigate the spin structure of the surface state, these spin

structure still has some argument because of the limited energy resolution of ARPES

comparative to the small Kondo gap of SmB6. The results of spin-polarized ARPES

studies are still controversial due to a highly challenging measurement that comes

from the narrowness of the bulk insulating gap. For more details and description of

ARPES see Ref. [67].

5.3.2 ARPES studies on SmB6

Recently, there are many ARPES studies on SmB6. One of them is Neupane et al. [34]

who find the surface electronic structure of topological Kondo SmB6. Other important

results were provided by N. Xu et al. [10], and J. Jiang et al. [9] at the same time,

whose their experimental results established that SmB6 is the first realization of a

three-dimensional topological Kondo insulator.

On the other hand, Z. H. Zhu et al. [68] combined the ARPES with density

functional theory calculations. They concluded that the surface state of SmB6 has a

metallic property because of polarity. In other words, they suggested that a conduct-

ing surface state of SmB6 originates from boron bonds located in the (001) crystal

surface, which is a non-topological polar surface.
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5.4 Scanning Tunneling Microscopy

Scanning tunneling microscopy (STM) is another useful surface states probe; it is

a tool that obtains the atoms images on the surfaces of materials. The STM was

developed in 1982 by Gerd Binnig and Heinrich Rohrer and they won Nobel Prize

(1986) in physics. STM data use the color scale to provide spatial information about

variations in electron tunneling current values on very small length scale. STM detects

the irregularities produced by the electrons surrounding the atoms on the surface by

the probe and the resistance is mapped by a computer into an image. See reference

[65] for a more detailed description of STM.

5.4.1 STM studies of the surface state of SmB6

STM has played an important role in discovering the new physics in both topological

insulators and Kondo lattices. It is thus an ideal probe for showing the electronic

structure evolution of SmB6 and the existence of a topological surface state.

As recently as 2013, Yee et al. [50], confirmed that SmB6 is a Kondo insula-

tor, where they inserted the cleaved surface of SmB6 sample into scanning tunneling

microscopy. They also observed that at lowest temperatures the remaining spectral

weight crossing the hybridization gap, which make them think that may consistent

with a topological surface state.

Similar to Yee et al., Ruan et al. [66] found the temperature dependence of the

surface space spectra in which the hybridization gap opens at temperatures above

60 K and the emergence of a collective in-gap resonance at T < 40 K. Although the

low-temperature behavior may come from a topological surface state, STM has not

provided enough evidence to show that SmB6 is a topological Kondo insulator [30].

Very recently, some experiments injected spin-polarized tunneling electrons into a
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topological insulator sample to study the spin of topological insulators, and to examine

the energy dependence of the effective spin polarization at the topological surface. As

a result, they verified a large spin polarization for topological insulator materials.

In this Chapter, we summarized the main experiments that examined SmB6.

Some of their results provide direct evidence of SmB6 metallic surface states at the

low temperature. This metallic surface states does not necessarily indicate that SmB6

is a topological insulator. The presence of boron dangling bonds on a polar surface

could also lead to a metallic surface in SmB6.
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Chapter 6

Conclusions

The overall objective of this work was to examine whether there is enough experimen-

tal evidence to conclude that SmB6 is a topological insulator or not. We discussed the

topological insulator phenomenon and the properties of samarium hexaboride (SmB6),

and we find that this aspect contains many physics problems.

Our fits of de Haas-van Alphen measurements shows the possibility of having ei-

ther a 3D ellipsoidal shape or a 2D Fermi surface. Therefore, dHvA cannot tell if

SmB6 has surface or bulk conductance. Also, the resistance calculations show that

the resistance function fits well to both the bulk conducting and surface conduct-

ing models. However, using different configurations of voltage and current contacts

demonstrates that the conductivity is most likely on the surface. In another word, we

think it is most likely that SmB6 has a metallic surface state.

The existence of a metallic surface state in SmB6 could be due to the topological

surface properties. However, there is not enough evidence to say that SmB6 is indeed a

topological insulator, since even if the conductivity comes from the surface, it does not

mean that SmB6 is a topological insulator. This conductivity could be because of the

general property of hexaborides (boron dangling bonds) on a polar surface, or because
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of any other reason. The experiments that can tell if the SmB6 has a topological

insulator properties are those which measure the spin surface and spin polarization,

spin polarized conductance spectroscopy or study the experiments that can detect

dangling bonds. A definite answer will come when we have enough experiments that

study the surface state properties.
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Appendix A

Numerical method

In chapter 4, I discussed the relaxation method that I work with, and which is subject

to some boundary conditions. To solve the voltage V (x), I wrote equations for all the

system (corners, faces, edges, and the bulk) in discrete form using equations from 4.9

to 4.17 in Chapter 4.

I used nx, ny, nz as a points on the grid, where nx = ny = nz = 50. Also, I set

the size of the sample as lx = ly = 10, and lz = 1. Then, dlx = lx
nx
, dly = ly

ny
, and

dlz = lz
nz
.

A.1 corners:

(A.1)V [1, 1, 1] = dl2xdly
2dlz

2

dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [2, 1, 1]
dlx2 + V [1, 2, 1]

dly2 + V [1, 1, 2]
dlz2

)

V [nx, 1, 1] = dl2xdly
2dlz

2

dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [nx − 1, 1, 1]

dl2x
+ V [nx, 2, 1]

dly2 + V [nx, 1, 2]
dlz2

)
(A.2)

V [1, ny, 1] = dl2xdly
2dlz

2

dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [2, ny, 1]

dl2x
+ V [1, ny − 1, 1]

dly2 + V [1, ny, 2]
dlz2

)
(A.3)
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V [1, 1, nz] = dl2xdly
2dlz

2

dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [2, 1, nz]

dl2x
+ V [1, 2, nz]

dly2 + V [1, 1, nz − 1]
dlz2

)
(A.4)

(A.5)
V [nx, ny, 1] = dl2xdly

2dlz
2

dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [nx − 1, ny, 1]

dl2x

+ V [nx, ny − 1, 1]
dly2 + V [nx, ny, 2]

dlz2

)

(A.6)
V [nx, 1, nz] = dl2xdly

2dlz
2

dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [nx − 1, 1, nz]

dl2x

+ V [nx, 2, nz]
dly2 + V [nx, 1, nz − 1]

dlz2

)

(A.7)
V [1, ny, nz] = dl2xdly

2dlz
2

dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [2, ny, nz]

dl2x

+ V [1, ny − 1, nz]
dly2 + V [1, ny, nz − 1]

dlz2

)

(A.8)
V [nx, ny, nz] = dl2xdly

2dlz
2

dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [nx − 1, ny, nz]

dl2x

+ V [nx, ny − 1, nz]
dly2 + V [nx, ny, nz − 1]

dlz2

)

A.2 Edges:

(A.9)

V [i, 1, 1]

= dl2xdly
2dlz

2

dlx2dly2 + dlx2dlz2 + 2dlz2dly2

(
V [i+ 1, 1, 1] + V [i− 1, 1, 1]

dl2x

+ V [i, 2, 1]]
dly2 + V [i, 1, 2]]

dlz2

)
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(A.10)

V [i, ny, 1]

= dl2xdly
2dlz

2

dlx2dly2 + dlx2dlz2 + 2dlz2dly2

(
V [i+ 1, ny, 1] + V [i− 1, ny, 1]

dl2x

+ V [i, ny − 1, 1]]
dly2 + V [i, ny, 2]]

dlz2

)

(A.11)

V [i, 1, nz]

= dl2xdly
2dlz

2

dlx2dly2 + dlx2dlz2 + 2dlz2dly2

(
V [i+ 1, 1, nz] + V [i− 1, 1, nz]

dl2x

+ V [i, 2, nz]]
dly2 + V [i, 1, nz − 1]]

dlz2

)

(A.12)

V [i, ny, nz]

= dl2xdly
2dlz

2

dlx2dly2 + dlx2dlz2 + 2dlz2dly2

(
V [i+ 1, ny, nz] + V [i− 1, ny, nz]

dl2x

+ V [i, ny − 1, nz]]
dly2 + V [i, ny, nz − 1]]

dlz2

)

(A.13)
V [1, i, 1] = dl2xdly

2dlz
2

dlx2dly2 + 2dlx2dlz2 + dlz2dly2

(
V [2, i, 1]
dl2x

+ V [1, i+ 1, 1] + V [1, i− 1, 1]]
dly2 + V [1, i, 2]]

dlz2

)

(A.14)
V [1, i, nz] = dl2xdly

2dlz
2

dlx2dly2 + 2dlx2dlz2 + dlz2dly2

(
V [2, i, nz]

dl2x

+ V [1, i+ 1, nz] + V [1, i− 1, nz]]
dly2 + V [1, i, nz − 1]]

dlz2

)

(A.15)
V [nx, i, 1] = dl2xdly

2dlz
2

dlx2dly2 + 2dlx2dlz2 + dlz2dly2

(
V [nx − 1, i, 1]

dl2x

+ V [nx, i+ 1, 1] + V [nx, i− 1, 1]
dly2 + V [nx, i, 2]]

dlz2

)

(A.16)
V [nx, i, nz] = dl2xdly

2dlz
2

dlx2dly2 + 2dlx2dlz2 + dlz2dly2

(
V [nx − 1, i, nz]

dl2x

+ V [nx, i+ 1, nz] + V [nx, i− 1, nz]
dly2 + V [nx, i, nz − 1]]

dlz2

)
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(A.17)
V [1, 1, i] = dl2xdly

2dlz
2

2dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [2, 1, i]
dl2x

+ V [1, 1, i]
dly2 + V [1, 1, i+ 1] + V [1, 1, i− 1]]

dlz2

)

(A.18)
V [1, ny, i] = dl2xdly

2dlz
2

2dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [2, ny, i]

dl2x

+ V [1, ny − 1, i]
dly2 + V [1, ny, i+ 1] + V [1, ny, i− 1]]

dlz2

)

(A.19)
V [nx, 1, i] = dl2xdly

2dlz
2

2dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [nx − 1, 1, i]

dl2x

+ V [nx, 2, i]
dly2 + V [nx, 1, i+ 1] + V [nx, 1, i− 1]]

dlz2

)

(A.20)
V [nx, ny, i] = dl2xdly

2dlz
2

2dlx2dly2 + dlx2dlz2 + dlz2dly2

(
V [nx − 1, ny, i]

dl2x

+ V [nx, ny − 1, i]
dly2 + V [nx, ny, i+ 1] + V [nx, ny, i− 1]]

dlz2

)

A.3 Faces

(A.21)
V [1, i, j] =

(
1
dl2x

+ 2
dly2 + 2

dlz2

)(
V [2, i, j]
dl2x

+ V [1, i− 1, j] + V [1, i+ 1, j]
dly2 + V [1, i, j − 1] + V [1, i, j + 1]

dlz2

)

(A.22)
V [nx, i, j] =

(
1
dl2x

+ 2
dly2 + 2

dlz2

)(
V [nx − 1, i, j]

dl2x
+

V [nx, i− 1, j] + V [nx, i+ 1, j]
dly2 + V [nx, i, j − 1] + V [nx, i, j + 1]

dlz2

)
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(A.23)
V [j, 1, i] =

(
2
dl2x

+ 1
dly2 + 2

dlz2

)(
V [j − 1, 1, i] + V [j + 1, 1, i]

dl2x

+ V [j, 2, i]
dly2 + V [j, 1, i− 1] + V [j, 1, i+ 1]

dlz2

)

(A.24)
V [j, nx, i] =

(
2
dl2x

+ 1
dly2 + 2

dlz2

)(
V [j − 1, nx, i] + V [j + 1, nx, i]

dl2x

+ V [j, nx − 1, 1]
dly2 + V [j, nx, i− 1] + V [j, nx, i+ 1]

dlz2

)

(A.25)
V [i, j, 1] =

(
2
dl2x

+ 2
dly2 + 1

dlz2

)(
V [i− 1, j, 1] + V [i+ 1, j, 1]

dl2x

+ V [i, j − 1, 1] + V [i, j + 1, 1]
dly2 + V [i, j, 2]

dlz2

)

V [i, j, nz] =
(

2
dl2x

+ 2
dly2

+ 1
dlz2

)(
V [i− 1, j, nz] + V [i+ 1, j, nz]

dl2x

V [i, j − 1, nz] + V [i, j + 1, nz]
dly2

+ V [i, j, nz − 1]
dlz2

)
(A.26)

A.4 Bulk:

V [i, j, k] = 2σ[i, j, k]
(

1
dl2x

+ 1
dly2 + 1

dlz2

)
(σ[i+ 1, j, k] + 4σ[i, j, k]− σ[i− 1, j, k]) (V [i

+ 1, j, k]) + (σ[i− 1, j, k] + 4σ[i, j, k]− σ[i+ 1, j, k])
(
V [i− 1, j, k]

4dl2x

)
+ (σ[i, j

+ 1, k] + 4σ[i, j, k]− σ[i, j − 1, k]) (V [i, j + 1, k]) + (σ[i, j − 1, k] + 4σ[i, j, k]

− σ[i, j + 1, k])
(
V [i, j − 1, k]

4dly2

)
+ (σ[i, j, k + 1] + 4σ[i, j, k]− σ[i, j, k

− 1]) (V [i, j, k+ 1]) + (σ[i, j, k− 1] + 4σ[i, j, k]−σ[i, j, k+ 1])
(
V [i, j, k − 1]

4dlz2

)
(A.27)
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The total current is calculated across a section in the middle of the sample,

(A.28)currenttotal =
∑
ij

(σ[i, j, 6](V [i, j, 6]− V [i, j, 5]))dlxdly

75


