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ABSTRACT 

 

Wind energy with its low environmental impacts and sustainability has taken up a 

large share of the electricity generation market and it is expected to grow. The original 

power systems are primarily dominated by synchronous generators while wind 

generators utilize asynchronous induction machine to convert wind energy into 

electricity. Moreover, wind speed is not controllable. The integrations of wind energy 

into power systems have a great impact on power system operation. The influences 

brought by wind generators should be understood for maintaining secure and reliable 

operation of power systems.  

The inclusion of power electronic devices enables the variable speed operation of the 

wind generators. It largely facilitates the integrations of wind energy. This thesis 

considers doubly fed induction generators (DFIGs) type of wind generators. The 

appropriate modelling of wind generators for power system analysis is discussed. 

Three aspects of power system operations are considered in this thesis, which are 

steady state, small signal stability and transient stability analysis. The effects of wind 

energy integrations on these three aspects of power systems are investigated in detail.  

Different cases studies are provided throughout the thesis to illustrate effects brought 

by wind energy and arrive at the conclusions.  
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Chapter 1 

Introduction 

 

 

 

1.1 Objectives of the Research 

The demand for clean and renewable energy in electricity generation has been 

increasing around the world. Wind energy has received significant attentions. The 

power quality and energy efficiency of a single wind generator are greatly improved 

due to the development of power electronic devices. However, with the integration 

scales of wind energy increase in power systems, its impacts on power systems have 

raised concerns. This thesis addresses the problem of large scale integrations of wind 

energy in power systems. 

The main goals of this research are listed as following. 

 To recognize the wind energy development and available wind generation 

technologies. 

 To study doubly fed induction generators (DFIGs) and the modeling of DFIGs 

for power system analysis. 

 To implement models of DFIGs for steady state and dynamic analysis. 
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 To discuss the power system steady state, small signal stability and transient 

stability analysis and the impacts brought by large scale integrations of DFIG 

based wind farms.  

 To use suitable case studies to present the impacts and draw conclusions. 

 

1.2 Organization of Thesis 

Chapter 2 presents the developments of the wind energy in the world and in Canada. 

Different types of wind generators are introduced. To study the impacts of 

DFIG-based wind farms on power system operations, the modeling of DFIGs is also 

given in this chapter. The models of DFIG for both steady state analysis and dynamic 

analysis are presented and the simplifications for power system analysis are discussed. 

The impacts of wind energy on power system steady state operation are presented in 

Chapter 3. This chapter mainly comprises three case studies to discuss the features of 

different types of wind generators, the impacts of the wind farm locations and 

connection schemes, and the impacts of varying power output of wind farms in steady 

state operation.  

In Chapter 4, the conventional power system small signal stability analysis without 

wind energy integration is presented. An overview of small signal stability and its 

analysis methods are given. Both time domain simulation and eigenvalue analysis are 

used and compared using case studies. The purpose of this chapter is to give an 

overview of power system small signal stability analysis. 
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The impacts of wind energy integrations on power system small signal stability are 

given in Chapter 5. Dynamic models of a synchronous generator and a DFIG for 

small signal stability analysis are compared and implemented to give insights to the 

differences between a synchronous generator and a DFIG. Two case studies are used 

to investigate the influences of the DFIG base wind farms on power system small 

signal stability. 

In Chapter 6, the conventional power system transient stability analysis without wind 

energy integration is presented. Equal area criterion is introduced to determine the 

critical fault clearing time. Time domain simulation for transient stability analysis is 

introduced and cases studies are given in this chapter. It aims to give an overview of 

power system transient stability analysis. 

Chapter 7 presents the impacts of wind energy integrations on power system transient 

stability analysis. Time domain simulation is first applied to the single machine 

infinite bus (SMIB) systems with a synchronous generator. Different models for 

DFIGs are compared and a DFIG-based wind generation system is implemented to 

investigate its transient behaviors. This gives the insights of dynamic performance of 

a synchronous generator and a DFIG in power system transient stability analysis. Two 

case studies are implemented to investigate the influences of integrations of 

DFIG-based wind farms on power system transient stability. 

Chapter 8 gives the conclusions of the thesis and suggestions for future works. 
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Chapter 2  

Wind Energy Development and the Doubly-Fed 

Induction Generator 

 

 

 

2.0 Introduction 

This chapter presents an overview of wind energy developments and basic knowledge 

on wind generators. The operation and modeling of a doubly-fed induction generator 

(DFIG) is explained in detail. Section 2.1 and 2.2 provide information on the 

developments of wind energy in the world and in Canada respectively. Four types of 

wind generators are introduced in section 2.3. The basic features of induction 

generators are given in section 2.4. Then, the DFIG and its modeling are discussed in 

section 2.5 and 2.6. Section 2.7 summarizes this chapter. 

 

2.1 Wind Energy Developments in the World 

Electrical power systems are of great significance in modern society. They have been 

growing into the world’s biggest energy sources for individual households and 
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industries due to their fast and economic transmission capability. However, traditional 

fossil fuels consumed for electricity generation have caused serious environmental 

problems. Various researches have been conducted on using renewable energy as an 

alternative primary energy source for electricity generations.  

Among all renewable energies, wind energy is the most promising one. It has the least 

impact on the surrounding ecosystem. Besides, wind energy is an unlimited source for 

providing electricity to the grid. 

Under the above circumstances, many countries have dedicated to develop wind 

power generation technologies, especially countries like Denmark and Germany. 

Other governments have also issued policies to promote the development of wind 

energy. In the recent two decades, the installed capacities of wind farms have 

increased rapidly with annual installations reaching 60 GW in 2015, as shown in 

Figure 2.1. The wind power installed capacity was only 3,760 MW in 2000, and has 

grown to 63,013 MW in 2015 [1].  
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Figure 2.1 Annually Installed Global Wind Energy Capacities 2000- 2015 [1] 

Figure 2.2 presents the newly installed capacities in different countries during 2015. It 

is illustrated in Figure 2.2 that China has the largest wind energy installation capacity 

in 2015, followed by Germany, USA and India [1]. 
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Figure 2.2 Newly Installed Capacities in Different Countries in 2015 [1] 

Wind energy has shown great potentials for future electricity generation and has been 

appreciated by many countries across the world. It can be anticipated that the total 

installed capacity of wind energy will keep increasing. 

 

2.2 Wind Energy Developments in Canada 

While the development of wind and other renewable energies in Canada has lagged 

somewhat behind other parts of the world, the recent growth and plans for future 

development are promising [2].  

The development of wind energy for electricity generation in Canada is noticeable 

and Canada is one of the seven countries that surpass the 10,000 MW installation 
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threshold. As reported in [3], Canada finished 2015 with over 11, 000 MW of total 

installed capacity. The total newly installed capacity was 1, 506 MW during 2015.  

The installed capacity status in different provinces of Canada in 2015 is shown in 

Figure 2.3. The installed capacity status in Ontario and Quebec are noticeable, which 

are 4,361 MW and 3,262 MW respectively [3]. Compared to these two provinces, 

other provinces have lower installed capacities of wind energy. 

 

Figure 2.3 Installed Capacities of Wind Generation in Different Provinces of Canada 

as of December 2015 [3] 

Ramea, as a remote community in Newfoundland and Labrador, has developed its 

own way for accepting wind energy into the local power system. Since 2004, Frontier 

Power Systems started to construct a wind farm for Ramea [2, 4]. A wind-diesel 
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hybrid solution has been developed in Ramea, as shown in Figure 2.4, with wind 

energy accounting for a large amount of electricity demands of the local community. 

It is expected to cover electricity demands in Ramea totally by green energy, using 

diesel as backup generators. The excess electricity generated from the wind farm will 

be stored as hydrogen, obtained from water electrolysis. In case the wind generators 

power output cannot meet the load demand, stored hydrogen can be used to generate 

electricity to the grid. This provides a good practice for tackling the intermittent and 

unpredictable characteristics of wind energy. 

 

Figure 2.4 Wind Diesel System in Ramea [4] 
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2.3 Wind Generators 

Over the past periods of development, many concepts of converting wind energy into 

electrical power have been proposed. They can be generally classified into fixed speed 

and variable speed wind power generators. Four types of wind generation 

configurations are commonly used and presented in Figure 2.5-2.8 [5]. 

 

Figure 2.5 Type A Configuration [5] 

In the Type A configuration, a squirrel cage induction generator (SCIG) is connected 

to the grid directly and a capacitor bank is used for supplying reactive power, which is 

one type of the fixed speed wind generators. This configuration can only operate in a 

limited range of speed resulting in low efficiency as the wind speed is variable with 

time. 

 

Figure 2.6 Type B Configuration [5] 
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The Type B configuration can operate on limited variable speed by adding a variable 

resistance to the rotor, which can provide limited variable speed operation. This 

configuration can operate at different speeds by adjusting the variable resistance. 

 

Figure 2.7 Type C Configuration [5] 

Type C is commonly referred to as doubly fed induction generator (DFIG). The rotor 

of the induction machine is connected to an AC-DC-AC power electronic converter. 

The rotor speed can be adjusted by the rotor side converter. This type of wind 

generator is attracting increasing attention due to its energy and cost effectiveness 

compared to other configurations. This is one type of the variable speed wind 

generators. The detailed descriptions of this type are illustrated in section 2.5 and 2.6. 

 

Figure 2.8 Type D Configuration [5] 

Permanent magnet synchronous generator (PMSG) (wound rotor synchronous 

generator (WRSG) or wound rotor induction generator (WRIG)) with full-scale 

converter is the type D configuration as shown in Figure 2.8, which is one type of 
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variable speed wind generators. The generator is connected to the grid through an 

AC-DC-AC power electronic converter.  

The detailed descriptions of wind energy conversion systems are available in [5]. Due 

to the popularity and high demand for DFIGs, this thesis will focus on DFIGs [5]. 

 

2.4 Basic Operation of Induction Generators 

To better understand the operation of a doubly fed induction generator, it is necessary 

to first review the basic operation of induction generators. When the induction 

machine is running as a motor, the stator is connected to a three-phase power supply, 

which produces a rotating magnetic field. The rotating magnetic field ‘pulls’ the rotor 

to run behind it. To work as a generator, a primary mover should be applied to the 

rotor to accelerate rotor speed. When the speed of the rotor surpasses the rotating 

magnetic field, the stator will provide active power to the power source. However, as 

the induction generator is not a self-excited machine, it still requires reactive power 

supplied from the external power source for generating the rotating magnetic field. 

The reactive power can be supplied by the implementation of capacitor banks, as 

shown in the Type A configuration in Figure 2.3. A demonstration of the components 

of an induction generator is shown in Figure 2.9. The stator and rotor are the main 

components of an induction machine. The stator is connected to a power supply, 

through which it can obtain or provide electrical power, and produce a rotating 
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magnetic field. The rotor is short circuited for a normal induction machine, where it 

can receive or provide mechanical power. 

 

Figure 2.9 Structure of An Induction Generator [6] 

 

2.5 Introduction to Doubly Fed Induction Generators 

There are many types of wind energy generators available, among which, DFIGs are 

the most popular ones, due to their high efficiency and flexible control [5, 7]. A DFIG 

is essentially a wound rotor induction generator with its rotor connected to a 

back-to-back power electronic converter, which delivers approximately 30% of the 

rated power, while the stator is connected to the grid directly or through a transformer. 

A structure of the wind energy system with DFIG is provided in Figure 2.10 [7].  

Control systems are applied for controlling pitch angle and back-to-back converter, 
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which renders more control flexibilities to DFIGs. Under the rated wind speed, the 

rotor side converter is used to control the rotor speed to extract the maximum power 

from the wind. Above the rated wind speed, the pitch angle control is activated to 

limit the rotor speed and provide constant power output. The purpose of the grid side 

converter is to provide a path for exchanging power between the rotor and grid, which 

is normally operated at unity power factor, and keep the capacitor voltage constant.  

 

Figure 2.10 Diagram of A Doubly Fed Induction Generator [7] 

Compared with Type A and Type B configurations, the DFIG can operate at variable 

speed and supply limited reactive power to the grid without the requirement of 

external capacitor. Compared with Type D configuration, where full scale of power is 

conveyed through power electronic devices, only 30% of the rated power passes 

through power electronic devices in DFIGs. This reduces the cost of implementing the 

back-to-back converter. 
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2.6 Modeling of Doubly Fed Induction Generators 

For analyzing the impact of wind energy on power system operations, appropriate 

wind generator models should be developed. For this thesis, the focus is the DFIGs. 

Detailed models of DFIGs which include details of the power electronic devices are 

time consuming and unnecessary for power system analysis studies. Assumptions 

could be made that the performances of the power electronic converters are 

satisfactory and its switching dynamics are neglected. These assumptions are 

reasonable when the purpose is to observe the effect of wind energy penetration on 

the external network rather than within the wind farm [8]. 

The modeling of DFIGs can be divided into models for steady state analysis and 

models for dynamic analysis. 

 

2.6.1 Modeling for Steady State Analysis 

Although the power outputs of wind generators within a wind farm may vary, they all 

connect to the same bus within the power system. DFIGs have reactive power 

capability, which makes them behave more like synchronous generators. Under steady 

state analysis, buses with DFIGs can be represented as voltage controlled (PV) buses 

with appropriate reactive power (VAR) limits [9]. The investigation on power system 

steady state operation with DFIG based wind farms is provided in Chapter 3. 
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2.6.2 Modeling for dynamic analysis 

In dynamic analysis, a DFIG based wind farm can be modeled as a single equivalent 

machine. For power system stability studies, a simplified model of DFIG is normally 

adopted to reduce the computational burdens as a large power system may contain 

more than several hundreds of states. A simplified model is presented below for both 

understanding the model that is commonly used in stability analysis and illustrating 

the operational characteristics of a DFIG. The model is used in Chapter 5 and Chapter 

7 for small signal and transient stability analysis. The DFIG system model can be 

divided into wind turbine model, rotor model, generator model and converter model 

[10, 11]. 

 

2.6.2.1 Wind Turbine Model 

The mechanical power extracted from wind can be represented by (2.1) [12]. 

ܲ =
ఘ

ଶ
,ߣሺܥ ܣሻߠ ௪ܸ

ଷ                      (2.1) 

Where  

ܣ , represents power coefficientܥ ,represents air density ߩ  represents the area 

swept by the rotor and ௪ܸ represents wind speed. 

The power coefficient ܥ depends on tip speed ratio ߣ and pitch angle ߠ and they 

are the only controllable quantities in the equation (2.1). The tip speed ratio ߣ is 

defined in (2.2). 
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ߣ =
ఠೝோ

ೢ
                            (2.2) 

Where 

ܴ represents rotor radius and ߱ is the rotor speed. 

The characteristic of ܥ is typically provided by wind turbine manufactures and it 

varies from manufacture to manufacture. Here, the ܥሺߣ,  ሻ is approximated as (2.3)ߠ

[12]. 

ܥ = 0.5 ቀ
ଵଵ

ఒ
− ߠ0.4 − 5ቁ ݁

ି
మభ
ഊ                  (2.3) 

With 

ଵ

ఒ
=

ଵ

ఒା.଼ఏ
−

.ଷହ

ఏయାଵ
                        (2.4) 

Under the rated wind speed, the rotor side converter adjusts the electromagnetic 

torque to adjusts the rotor speed ߱, which controls the tip speed ratio ߣ, as shown in 

(2.2), to obtain the maximum power from the wind. The pitch angle is governed by 

pitch angle controller. Above rated wind speed, the pitch angle controller adjusts ߠ to 

keep power constant. Combining the controlling methods for ߣ and ߠ, the optimal 

mechanical power extracted from wind is obtained under different conditions. 

To simplify the studies, the mechanical power from the wind turbine can be 

considered constant during stability analysis. 
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2.6.2.2 Rotor Model 

The rotor speed results from the balance between the mechanical torque ܶ and the 

generator electromagnetic torque ܶ. Two-mass model and one-mass model are used 

for representing the rotor model of a DFIG. 

The two-mass model is given in (2.5)- (2.7). 

௧ܪ2
ௗఠ

ௗ௧
= ܶ − ሾߠܭ௧௪ + ሺ߱௧ܦ − ߱ሻሿ               (2.5) 

ௗఏೢ

ௗ௧
= ߱௧ − ߱                        (2.6) 

ܪ2
ௗఠೝ

ௗ௧
= ሾߠܭ௧௪ + ሺ߱௧ܦ − ߱ሻሿ                 (2.7) 

Where 

ܶ is the mechanical torque, ܶ is the electromagnetic torque, ߱௧ is the turbine 

speed, ߠ௧௪ is the shaft twist angle, ܭ is the shaft stiffness coefficient, ܦ is the 

damping coefficient and ܪ௧ and ܪ are turbine and generator inertia constants. 

It is also practical to use the one mass rotor model when the oscillations of electrical 

components are the research focus, which is shown in (2.8). 

ௗఠೝ

ௗ௧
=

ఠೞ

ଶு
ሺ ܶ − ܶሻ                        (2.8) 

Where  

 .is the generator inertia ܪ
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2.6.2.3 Generator Model 

The dynamic generator model of DFIG is the model of an induction generator with 

the rotor not short-circuited. The basic equations for a DFIG in d-q frame are given in 

equation (2.9)- (2.16) [13]. 

ௗܸ௦ = ܴ௦ܫௗ௦ − ߱௦߰௦ +  ௗ௦                   (2.9)߰

ܸ௦ = ܴ௦ܫ௦ + ߱௦߰ௗ௦ +  ௦                  (2.10)߰

ௗܸ = ܴܫௗ − ሺ߱௦ − ߱ሻ߰ + ௗ߰                (2.11) 

ܸ = ܴܫ + ሺ߱௦ − ߱ሻ߰ௗ +                 (2.12)߰

߰ௗ௦ = ௗ௦ܫ௦௦ܮ +  ௗ                    (2.13)ܫܮ

߰௦ = ௦ܫ௦௦ܮ +                      (2.14)ܫܮ

߰ௗ = ௗ௦ܫܮ +  ௗ                    (2.15)ܫܮ

߰ = ௦ܫܮ +                      (2.16)ܫܮ

Where 

ܸ represents the voltage, ܫ represents the current, ܴ represents the resistance, ߱௦ 

represents the synchronous rotating speed, ߰ represents the magnetic flux and ܮ 

represents inductance. The subscript of ݍ or ݀ means it is a quantity of quadrature 

axis or direct axis, the subscript ݏ or ݎ means it is a quantity of stator or rotor. 

The rotor fluxes in the basic equations can be converted into generator internal 

voltages using (2.17) and (2.18). 
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ௗܧ
ᇱ = −

ఠೞ

ೝೝ
߰                      (2.17) 

ܧ
ᇱ =

ఠೞ

ೝೝ
߰ௗ                        (2.18) 

From the above basic equations, the following dynamic model can be derived. 

ೞ
ᇲ

ఠೞ

ௗூೞ

ௗ௧
= ௗܸ௦ − ቀܴ௦ +

ೞିೞ
ᇲ

బ்
ᇲ ቁ ௗ௦ܫ −

ఠೝ

ఠೞ
ௗܧ

ᇱ −


ೝೝ
ௗܸ +

ଵ

బ்
ᇲ ܧ

ᇱ + ܺ௦
ᇱܫ௦   (2.19) 

ೞ
ᇲ

ఠೞ

ௗூೞ

ௗ௧
= ܸ௦ − ቀܴ௦ +

ೞିೞ
ᇲ

బ்
ᇲ ቁ ௦ܫ −

ఠೝ

ఠೞ
ܧ

ᇱ −


ೝೝ
ܸ −

ଵ

బ்
ᇲ ௗܧ

ᇱ − ܺ௦
ᇱܫௗ௦   (2.20) 

ௗா
ᇲ

ௗ௧
= ሺ߱௦ − ߱ሻܧ

ᇱ −
ఠೞ

ೝೝ
ܸ −

ఠೞ

బ்
ᇲ ௗܧൣ

ᇱ − ሺܺ௦ − ܺ௦
ᇱሻܫ௦൧      (2.21) 

ௗா
ᇲ

ௗ௧
= −ሺ߱௦ − ߱ሻܧௗ

ᇱ +
ఠೞ

ೝೝ
ௗܸ −

ఠೞ

బ்
ᇲ ܧൣ

ᇱ + ሺܺ௦ − ܺ௦
ᇱሻܫௗ௦൧     (2.22) 

Where  

ܧ ,ௗ௦ are stator current in d-q frameܫ ௦ andܫ ,௧௪ is the shaft twist angleߠ
ᇱ  and ܧௗ

ᇱ  

are equivalent voltage source, ܺ௦ is the steady-state reactance, ܺ௦
ᇱ is the transient 

reactance, ܶ
ᇱ is the transient time constant, ܮ is the mutual inductance and ܮ is 

the rotor inductance.  

Combining (2.19)- (2.22) with (2.8) gives the 5th order model for DFIGs. In stability 

analysis, it is common to neglect the stator transient term [20]. Then, the differential 

equations for the stator currents (2.19) and (2.20) are eliminated and a reduced order 

model is derived. 

The active and reactive power generated can be calculated by (2.23) and (2.24). 

ܲ = ௗܸ௦ܫௗ௦ + ܸ௦ܫ௦ + ௗܸܫௗ + ܸܫ              (2.23) 
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ܳ = ܸ௦ܫௗ௦ − ௗܸ௦ܫ௦ + ܸܫௗ − ௗܸܫ              (2.24) 

The electromagnetic torque ܶ developed on the rotor is shown in equation (2.25). 

ܶ = ߰ௗ௦ܫ௦ − ߰௦ܫௗ௦ = ௗܧ
ᇱ ௗ௦ܫ + ܧ

ᇱ  ௦               (2.25)ܫ

 

2.6.2.4 Converter Model 

In some studies, when the focus is on the internal converter dynamic performance, a 

detailed power electronic converter model is required. In this thesis, the research 

focus is on the impact of DFIG based wind farms on the external power systems. The 

converter can be modeled as a controlled voltage source, assuming the converter can 

reach a new set point quickly. This assumption is mostly possible in practice, as the 

modern power electronic devices equipped with high switching frequencies and 

advanced controllers can provide a desirable dynamic performance [10, 11]. 

The rotor side converter controls the voltage and current applied to the rotor, which 

can be used to control the stator active and reactive power and electromagnetic torque. 

The common control method for rotor side converter of a DFIG is the decoupled 

control [14], which can provide separate controls over stator active and reactive 

power. 

The stator active power and reactive power are shown in (2.26) and (2.27). 

௦ܲ = ௗܸ௦ܫௗ௦ + ܸ௦ܫ௦                     (2.26) 

ܳ௦ = ܸ௦ܫௗ௦ − ௗܸ௦ܫ௦                     (2.27) 
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In decoupled active and reactive power control, the stator flux is oriented to align the 

stator flux vector position with d-axis, giving (2.28) and (2.29) [14]. 

߰ௗ௦ = ߰௦                          (2.28) 

߰௦ = 0                           (2.29) 

Neglecting the stator resistor in (2.9) and (2.10) gives (2.30) and (2.31). 

ௗܸ௦ = −߱௦߰௦ + ௗ௦߰ =
ௗటೞ

ௗ௧
= 0                (2.30) 

ܸ௦ = ߱௦߰ௗ௦ + ௦߰ = ߱௦߰௦ =  ௧               (2.31)ܧ

Where  

 .௧ is the terminal voltageܧ

From the basic equations (2.13) and (2.14), (2.32) and (2.33) can be derived. 

ௗ௦ܫ =
టೞିூೝ

ೞೞ
=

ா

ఠೞೞೞ
−



ೞೞ
 ௗ                 (2.32)ܫ

௦ܫ = −


ೞೞ
                        (2.33)ܫ

Substituting (2.30) - (2.33) into (2.26) and (2.27) gives (2.34) and (2.35). 

௦ܲ = ௦ܫ௧ܧ = −
ா

ೞೞ
                     (2.34)ܫ

ܳ௦ = ௧ܸܫௗ௦ =
ா

మ

ఠೞೞೞ
−

ா

ೞೞ
ௗܫ                  (2.35) 

From (2.34) and (2.35), it is shown that stator active and reactive power outputs are 

controlled by rotor currents ܫ  and ܫௗ  separately. For the desired active and 

reactive power, the rotor currents are determined. Then, the rotor voltages from rotor 
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side converter are determined. 

Mostly, the electromagnetic torque is controlled to force the rotor to operate at the 

optimal speed. The rotor speed is determined by the balancing between the 

mechanical torque and electromagnetic torque. The equation for electromagnetic 

torque is derived in (2.25), which is related to (2.26). The torque controller is used to 

replace the active power controller. The electromagnetic torque can be controlled by 

rotor current ܫ independently, as given in (2.36). 

ܶ = ௗܫ௦ܫܮ − ܫௗ௦ܫܮ = −


ఠೞೞೞ
              (2.36)ܫ

The aim of the grid side converter is to keep the capacitor DC voltage constant and 

provide a path for power exchange. It can be assumed that the grid side converter is 

ideal and operated at unity power factor. The reactive power supplied by the converter 

to the grid is zero. Thus, it makes the reactive power supplied to the grid equal to the 

reactive power from the stator.   
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2.7 Summary 

In this chapter, the general wind power development and wind generators are 

introduced. The demands and the installed capacities of wind energy in the world and 

the wind energy development in Canada are presented. Then, different types of wind 

generation configurations are introduced. As the focus of this thesis is on DFIGs, the 

features and modeling techniques of DFIGs are discussed in detail. The steady state 

model of DFIG will be used in Chapter 3 while the dynamic model will be used in 

Chapters 5 and 7 for small signal and transient stability analysis. This chapter sets a 

foundation for the following chapters. 
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Chapter 3  

Power System Steady State Operation with 

Wind Energy Integrations 

 

 

 

3.0 Introduction 

This chapter introduces the steady state characteristics of wind farms by performing 

power flow and contingency analysis. In section 3.1, 3.2 and 3.3, three aspects of the 

wind farm characteristics are considered and related case studies are presented. The 

first aspect is the effects of different wind farm types on the power system operation, 

with or without reactive power capabilities. The second aspect is planning the 

locations and connection schemes of a wind farm considering power system steady 

state operation. The last aspect focuses on the temporal intermittency of a wind farm 

and its impact on the power system operation. A summary is given in section 3.4. 

 

3.1 Different Wind Farm Types  

In power system steady state operation, wind farms can be aggregated as voltage 
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controlled (PV) or real and reactive power specified (PQ) bus generators with their 

own features. Different types of wind generators can be divided into two groups. One 

group is those absorbing reactive power from the grid, which are Type A and Type B 

configurations. The other group is those with capabilities of providing reactive power, 

which are Type C and Type D configurations. Wind farms without reactive power 

capabilities cannot contribute to the voltage regulation and therefore modeled as PQ 

bus generators. They are commonly controlled as generators with fixed real power 

output and constant power factors (absorbing reactive power). This group will be 

referred to as Type one wind farm in the following sections. Wind farms with reactive 

power capabilities can contribute to voltage regulation and they are modeled as PV 

buses. They are commonly controlled as generators with fixed real power output and 

limited variable reactive power outputs [9]. This group will be referred to as Type two 

wind farm in the following sections. 

 

3.1.1 Case Study: Different Types of Wind Farm  

This case study compares the power system steady state operations of two groups of 

wind generation units. The simulation software used for this case study and the 

following cases is the PowerWorld simulator [14]. In PowerWorld, the first group 

wind farm is represented as a generator with fixed real power (100 MW) and constant 

power factor (absorbs 48.43 Mvar). The second group wind farm is represented as a 

generator with fixed real power (100 MW) and limited reactive power (-50 Mvar ~ 50 
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Mvar). As this case aims to study the characteristics of a specific wind farm, a small 7 

Bus power system is used to give a clear illustration. Both types of wind farms are 

connected to Bus 4 in a 7 Bus power system and both power flow and contingency 

analysis are performed to assess and compare their features and impacts. 

Figure 3.1 shows the 7 Bus power system used for this case study. The wind farm is 

connected to Bus 4 and a capacitor is connected only when the Type one wind farm is 

connected. The system data are given in Appendix A. 

 

Figure 3.1 One Line Diagram of the 7 Bus Power System with Wind Farm 

Figure 3.2 shows the connection diagram of Bus 4 with the Type one wind farm and 

the result of power flow analysis. Bus 4 is modeled as PQ bus and the wind farm 

connected to it requires reactive power from the grid. A capacitor is also connected to 

Bus 4 for bus voltage regulation. It shows that after conducting the power flow 

analysis, the wind farm provides 100 MW of real power and absorbs 48 Mvar of 

reactive power and the capacitor provides 65.94 Mvar for maintaining the bus voltage 
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at 1 pu. 

 

Figure 3.2 Connection of Bus 4 with a Type One Wind Farm  

Figure 3.3 shows the condition of Bus 4 with Type one wind farm after opening Line 

2-4. The voltage magnitude at Bus 4 is ‘pulled’ down, from 1 pu to 0.973 pu, due to 

the loss of power from Bus 2.  

 

Figure 3.3 Contingency Condition of a Type One Wind Farm  

An N-1 contingency analysis is performed for the Type one wind farm condition. The 

line overload violations are shown in Table 3.1. 
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Table 3.1 Results of Contingency Analysis with a Type One Wind Farm 

Contingency  
Definitions 

Contingencies Percent Overload MVA Overload 

Open Line 1-2 Line 1-3 Overload 51.1 33.2 

Open Line 2-6 Line 2-5 Overload 3.3 3.3 

Open Line 7-5 Line 2-5 Overload 15.1 15.1 

 

The system aggregate MVA overload metric is calculated in (3.1). 

ைܣܸܯ
ௌௌ = 33.2 + 3.3 + 15.1 =  (3.1)         ܣܸܯ 51.6

Where 

ைܣܸܯ
ௌௌ represents the system total aggregated MVA overload. 

Figure 3.4 shows the connection diagram of Bus 4 with the Type two wind farm and 

the result of power flow analysis. Bus 4 is modeled as PV bus. No extra capacitor is 

connected to Bus 4 in this case. It also shows that after conducting the power flow 

analysis, the wind farm will provide 100 MW of real power and 18 Mvar of reactive 

power to the system and the bus voltage is regulated at 1 pu. 
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Figure 3.4 Connection of Bus 4 with A Type Two Wind Farm  

Figure 3.5 shows the condition of Bus 4 with the Type two wind farm after opening 

Line 2-4. The voltage magnitude at Bus 4 is kept at the same value as the wind farm 

can provide reactive power to make up for the reactive power loss from Bus 2. The 

reactive power output of the wind farm increased from 18 Mvar to 43 Mvar to 

maintain the bus voltage. 

 

Figure 3.5 Contingency Condition of A Type Two Wind Farm  

An N-1 contingency analysis is performed for the Type two wind farm condition. The 

line overload violations are shown in Table 3.2.  
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Table 3.2 Results of Contingency Analysis with A Type Two Wind Farm 

Contingency  
Definitions 

Contingencies Percent Overload MVA Overload 

Open Line 1-2 Line 1-3 Overload 50.9 33.1 

Open Line 2-6 Line 2-5 Overload 3 3 

Open Line 7-5 Line 2-5 Overload 12.7 12.7 

 

The system aggregate contingency overload is calculated in (3.2). 

ைܣܸܯ
ௌௌ = 33.1 + 3 + 12.7 =  (3.2)           ܣܸܯ 48.8

Comparing the values of system aggregate contingency overload index ܣܸܯை
ௌௌ 

from (3.1) and (3.2), it can be concluded that the power system aggregate MVA 

overload is reduced with a Type two wind farm. 

This case study compares two types of wind farms through power flow analysis and 

contingency analysis. The wind generation units equipped with power electronic 

converters can provide reactive power to the grid instead of absorbing it from the grid. 

This advantage can reduce the cost of implementing external capacitor banks for wind 

farms, use wind farm to contribute to bus voltage regulation and improve the system 

security. 

 

3.2 Wind Farm Planning 

This section focuses on the planning of the location and integration scheme for a wind 
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farm considering the steady state operation. An index for ranking the locations is 

introduced and a case study is presented in subsection 3.2.1. Then, a more practical 

case of replacing a synchronous generator with a wind farm in a large system is 

presented in subsection 3.2.2. 

 

3.2.1 Weighted Transmission Loading Relief 

The index, Weighted Transmission Loading Relief (WTLR), is introduced in 

references [2- 4] for identifying and ranking the locations where the new extra wind 

farm added can enhance the system security.  

In contingency analysis, Transmission Loading Relief (TLR) sensitivity is defined as 

the branch post-contingency flow change with respect to the injection at a certain bus, 

the equation for calculation is shown in (3.3) [15]. 

ௌ,ோேு,ைே்ܴܮܶ =
୭ୱ୲େ୭୬୲୪ ಳೃಲಿಹೕೖ,ೀಿ

ெௐூ௧ಳೆೄ
       (3.3) 

Where 

 ௌ,ோேு,ைே் represents the calculated TLR value by changing power flowܴܮܶ

at branch ݆݇ under contingency ܿ with respect to injecting real power at bus ݅, 

ΔPostContMWFlowோேு,ைே் represents the post-contingency real power flow 

change in branch ݆݇ under contingency ܿ and Δ݊݅ݐ݆ܿ݁݊ܫܹܯௌ represents real 

power injection at bus ݅. 

To assess the effect of injecting power at a certain bus on all branches under all 
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contingencies, Equivalent Transmission Loading Relief (ETLR) is introduced. The 

ETLR value is the sum of all TLRs for one bus, using equation (3.4) [15]. 

ௌܴܶܧ = ∑ ∑ ௌ,ோேு,ைே்ܴܮܶ            (3.4) 

However, ETLR does not consider the severity of the contingency overloads, WTLR 

is introduced by weighting TLRs by the aggregated contingency overload ܲை. The 

calculation equation for WTLR is shown in (3.5) [15]. 

ௌܴܮܹܶ =
ேೀಿ

ಲೀ
ೄೊೄ ∑ ൫ݎ݅ܦܱܥோேு ∗ ௌ,ோேுܴܮܶ ∗∈௦

ܲை,ோேு൯               (3.5) 

Where 

ܰைே் represents the number of contingencies, ܲை
ௌௌ and ܲை,ோேு represent 

aggregated contingency overload for the whole system and for single one branch and 

they are introduced in equations (3.6) and (3.7), ݎ݅ܦܱܥோேு  represents the 

overload direction defined as 1 if the line is overloaded in the forward direction 

during all the contingencies and 0 otherwise. 

ܲை,ோேு = ோேு݃݊݅ݐܴܽܣܸܯ ∗ ∑ ሺ%ܱ݈݀ܽݎ݁ݒ − 100ሻ    (3.6) 

ܲை
ௌௌ = ∑ ܲை,ோேு                 (3.7) 

The calculated WTLR values for each bus indicate that new generations will reduce 

the overloads and enhance system security if the values are negative and will increase 

the overloads if the values are positive. The calculations of the above indexes are 

incorporated in PowerWorld sensitivity analysis tool. 
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3.2.1.1 Case Study: Application of WTLR for Wind Farm Planning 

This case study investigates the optimal integration location for adding a wind farm to 

better enhance the system security in the 7 Bus system with the aid of WTLR index.  

The 7 Bus system is shown in Figure 3.6 and the ranking of weak elements is 

visualized by aggregated MVA overload. It is shown that transmission Lines 1-3 and 

2-5 are the weak elements and will decrease the system security under contingencies. 

The system aggregate MVA overload for this system is 47.73 MVA. 

 

Figure 3.6 Weak Element Visualization 

The WTLR values are calculated for each bus and visualized in Figure 3.7. The dark 

places represent negative WTLR values and indicate where the wind farm should be 

located to enhance the system security.  
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Figure 3.7 WTLR Sensitivity Visualization 

Based on the information provided in Figure 3.7, Bus 5 and Bus 3 are chosen for 

connecting the new wind farm. The wind farm used here is the same Type two wind 

farm with rated 100 MW and reactive power output range of -50 Mvar < Q < 50 Mvar. 

As shown in Table 3.3, the system aggregated MVA overload values are calculated for 

different wind farm real power outputs considering the wind speed variations. It is 

shown that Bus 5 with lower value of WTLR is a better place to connect a new wind 

farm to enhance the system security. 

Table 3.3 System Aggregated MVA Overload for a Wind Farm connected at Bus 5 and 

Bus 3 

Connected 
Bus 

WTLR ETLR 
Wind Farm Real Power Output (MW) 

100 75 50 25 0 

Bus 5 -0.2905 -0.4274 0 6.86 15.41 24.32 40.06 

Bus 3 -0.2561 -0.1683 2.36 6.63 19.35 32.35 47.73 
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Planning a wind farm with the aid of WTLR values is theoretically effective. However, 

the location of a wind farm may not be changeable in a real power system as the wind 

resource is distributed unevenly. The location of a wind farm is decided by the 

available of wind resource. The next subsection discusses how to integrate the wind 

substation into a large system when the site of wind farm has already been decided. 

 

3.2.2 Case Study: Wind Farm Planning in a Large System 

This case study investigates the impact on the steady state operation of a large system 

when a synchronous machine is replaced by a wind farm. The system used for this 

case study is a regional power system of Island Electric Company (IEC) [16]. The 

existing 300 MW generator at the Pheasant Substation is replaced by a new 600 MW 

wind farm. Due to the variability of wind speed, the power output of the wind farm 

varies from 0 MW to 600 MW. The wind farm is the Type two wind farm. Thus, for a 

given wind speed, it will be modeled as PV bus generator with fixed real power and 

limited reactive power range of -250 Mvar < Q< 250 Mvar. The one line diagram of 

the IEC power system is shown in Figure 3.8 and the details are summarized in 

Appendix B. 

In this case study, the base case without wind farm replacement is analyzed first. The 

case of disconnecting a synchronous generator is then discussed. Finally, several 

schemes of connecting a new wind farm to replace the disconnected synchronous 

generator are presented and compared. 
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Figure 3.8 One Line Diagram of Island Electric Company (IEC) Power System [16] 

 

3.2.2.1 Analysis of Base Case 

After performing power flow analysis for the base case, the voltage magnitudes at all 

buses are shown in Figure 3.9. It is illustrated in Figure 3.9 that the bus voltage 

magnitudes vary within the range of 1.03 pu and 0.99 pu. The bus voltage at the 

Pheasant substation is regulated at 1.01 pu and the generator outputs are 300 MW and 

-20.409 Mvar.  
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Figure 3.9 Bus Voltage Magnitude Variations of IEC Power System Base Case 

After performing the N-1 contingency analysis for the base case, it is found that the 

violations are between substations of Hen 345 and Hen 161. In here, N-1 contingency 

analysis assesses the system security when one of the system elements is opened. 

There are two transformers between them as shown in Figure 3.8. When one 

transformer opened, the other one will overload. 

 

3.2.2.2 Analysis of Disconnecting a Synchronous Generator 

This subsection analyzes the condition where the 300 MW synchronous generator at 

the Pheasant substation is disconnected. Figure 3.10 shows the bus voltage 

magnitudes after the generator at the Pheasant Substation is opened. The bus voltages 

dropped down on some buses and the minimum bus voltage is below 0.99 pu due to 

the loss of the generator. 
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Figure 3.10 Bus Voltage Magnitude Variations of IEC Power System with 

Synchronous Generator Disconnection  

The results of N-1 contingency analysis are the same as in the base case, except that 

the transmission line overload is higher, increasing from 101.5% to 104.8%. 

 

3.2.2.3 Analysis of Planning a Wind Farm 

In this section, a new 600 MW wind farm is connected to the IEC power system to 

replace the old 300 MW synchronous generator. Six connection schemes are designed 

and compared to assess how the wind farm connection schemes affect the system 

operation. 

To simplify the analysis, the wind farm is connected at the 161 kV level and requires 

at least two transmission lines for the NewWind substation. Table 3.4 shows the 

available approaches for constructing transmission lines to connect the wind farm into 
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the IEC system. 

Table 3.4 Available Approaches for Construction 

Substations Distance (KM) 

NewWind to Ostrich 15 

NewWind to Dove 55 

NewWind to Crow 30 

NewWind to Peacock 53 

NewWind to Hen 70 

Ostrich to Mallard 45 

Peakcock to Hen 20 

Dove to Cardinal 40 

 

The line parameters are listed below [13]. 

ݎ =  (3.8)                        ݉݇/ߗ 0.037

ݔ =  (3.9)                       ݉݇/ߗ 0.367

ܾ =  (3.10)                      ݉݇/ݏߤ 4.518

Six connection schemes are designed as shown in Table 3.5. Schemes 1-3 build 2 

transmission lines that connect NewWind substation with other two substations while 

Schemes 4-5 add an extra line. 
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Table 3.5 NewWind Substation Connection Schemes 

Scheme 1 
NewWind-Ostrich 
& NewWind-Crow 

Scheme 2 
NewWind-Dove 

& NewWind-Peacock 

Scheme 3 
NewWind-Dove 

& NewWind-Hen 

Scheme 4 
NewWind-Ostrich 
& Ostrich-Mallard 
& NewWind-Crow 

 Scheme 5 
NewWind-Dove 
& Dove-Cardinal 

& NewWind-Peacock 

Scheme 6 
NewWind-Peacock 

& Peacock-Hen 
& NewWind-Dove 

 

Both power flow and contingency analysis are performed for each scheme. From the 

results of power flow analysis, it is found that there are little differences on the bus 

voltage magnitudes between these six schemes. This system is a large system, which 

makes the power from the wind farm have less impact on the system bus voltages.  

Figure 3.11 shows the aggregated MVA overload for each scheme from contingency 

analysis with the wind farm at 100 MW. When the wind farm has 600 MW output, all 

the contingencies are eliminated for all schemes. Scheme 4 is adding a transmission 

line of Ostrich-Mallard to Scheme 1. The system aggregated MVA overload for 

scheme 4 is 10.92 MVA which is lower than Scheme 1 of 11.28 MVA. By adding 

additional transmission line, the system security is enhanced. It is also the same for 
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Scheme 2 and Scheme 5, with aggregated MVA overload decreased from 4.26 MVA 

to 0 MVA by adding line Dove-Cardinal. However, comparing Scheme 2 with Scheme 

6, by adding an extra line of Peacock-Hen, the aggregated MVA overload increased 

from 30.52 MVA to 52.7 MVA. 

 

Figure 3.11 Aggregated MVA Overload of Different Connection Schemes at 100 MW 

Output 

Connecting a newly built wind farm into a relatively large power system may have 

little effect on bus voltages. This case study compares six connection schemes and it 

is found that the system security can be enhanced by adding an extra line. It should be 

noted that this case study does not consider the cost of building transmission lines. 
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3.3 Wind Farm Temporal Intermittency 

One of the biggest disadvantages of using wind energy for electricity generation is 

that wind is unpredictable. Wind speed is characterized by its high variability, both 

spatially and temporally [17]. The wind speed varies both from region to region and 

from time to time. This renders great variability to the outputs of wind farms. The 

intermittent power output from a wind farm cannot meet the power system 

requirements for stable and flexible power supply. It is significant to investigate how 

much the intermittency characteristics of a wind farm can affect the power system 

operation. 

 

3.3.1 Case Study: Wind Farm Temporal Intermittency 

The case study in this section focuses on the impact of the temporal intermittency of a 

wind farm power output on power system steady state operation.  

This case study also adopts the 7 Bus system for analysis. The system one line 

diagram is shown in Figure 3.1. In this system, a wind farm is connected to Bus 4. In 

this section, a powerful tool is introduced for analyzing the intermittent characteristics 

of a wind farm. The tool Time Step Simulation (TSS) provided by PowerWorld is 

suitable for analyzing the system operation over a period.  

The data for varying the system load demands and wind farm power outputs are taken 

from the daily records of Ontario on Feb 18th, 2016 [18]. The load demands and wind 
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farm outputs are given in Table 3.6. To fit the data into the 7 Bus system, the data is 

first scaled into the range of 1- 2. Figure 3.12 shows the graph of comparison between 

load demands and wind farm outputs. The desirable pattern of the wind farm outputs 

is to have the same trend as load demands. It is shown in Figure 3.12 that the biggest 

difference between load demand and wind farm output happened at 8:00 AM. 

Table 3.6 Varying Actual and Scaled Data of Load Demand and Wind Farm Output 

Time 
Load Demand 

 (MW) 
Load Demand 

(scaled) 

Wind 
Farm 

 Output 
(MW) 

Wind Farm Output 
(scaled) 

0:00 16701 1.31 310 1.04 

1:00 15934 1.11 260 1.01 

2:00 15571 1.02 240 1.00 

3:00 15500 1.00 236 1.00 

4:00 15490 1.00 252 1.01 

5:00 15764 1.07 299 1.04 

6:00 16271 1.20 278 1.02 

7:00 17602 1.54 281 1.03 

8:00 18933 1.87 382 1.08 

9:00 18498 1.76 479 1.14 

10:00 17994 1.64 510 1.16 

11:00 17579 1.53 564 1.19 

12:00 17380 1.48 610 1.21 

13:00 17068 1.40 684 1.26 
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14:00 16874 1.35 620 1.22 

15:00 16700 1.31 617 1.22 

16:00 16811 1.34 520 1.16 

17:00 17559 1.53 980 1.42 

18:00 18611 1.79 1455 1.69 

19:00 19425 2.00 1810 1.90 

20:00 19427 2.00 1738 1.86 

21:00 19111 1.92 1435 1.68 

22:00 18480 1.76 1894 1.94 

23:00 17242 1.45 1851 1.92 

0:00 16133 1.16 1990 2.00 

 

 

Figure 3.12 Varying Scaled Load Demand and Wind Farm Output 

The scaled data is then transferred into appropriate input data for performing TSS on 

the 7 Bus system. The transfer equations for load demand and wind farm output are 
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presented in (3.11) and (3.12). 

݀݊ܽ݉݁ܦ݀ܽܮ = ܽݐܽܦ600݈ܵܿܽ݁ − 200              (3.11) 

ݐݑݐݑܱܹ݀݊݅ = ܽݐܽܦ180݈ܵܿܽ݁ − 160              (3.12) 

Where 

 ݐݑݐݑܱܹ݀݊݅ ,represents the total load demand in the 7 Bus system ݀݊ܽ݉݁ܦ݀ܽܮ

represents the wind farm outputs in the 7 Bus system and ݈ܵܿܽ݁ܽݐܽܦ represents the 

scaled data calculated in Table 3.7. 

Both power flow and N-1 contingency analysis are performed for each time point of 

TSS. Voltage magnitudes at bus 1, 2, 6 and 7 stay as the same values throughout TSS. 

The variation of bus voltage magnitudes at bus 3-5 is shown in Figure 3.13. It is 

shown that all three buses experienced a decrease at 8:00 AM, because wind farm 

output cannot ‘keep up with’ load demand as shown in Figure 3.12.  
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Figure 3.13 Bus Voltage Magnitude Variations of the 7 Bus System over 24 Hours 

Figure 3.14 shows the real power outputs of synchronous generators. It is shown that 

at 8:00 AM and 8:00 PM, the synchronous generators outputs increase to meet the 

peak hour load demand. The wind farm power output depends on the wind speed, 

which is not changeable to meet the load demand. With the wind energy integration, 

the synchronous generators within the power system need to be adjusted based on 

both the load changes and wind power outputs.  
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Figure 3.14 Synchronous Generator Output Variations of the 7 Bus System over 24 

Hours 

Performing an N-1 contingency analysis for each time point and the system 

aggregated MVA overload variation is presented in Figure 3.15. There is a dramatic 

increase of system aggregated MVA overload at 8:00 AM, where the wind farm output 

did not match with the load demand. This causes the system to be operated insecurely. 

The system aggregated MVA overload values for other time points are relatively low. 
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Figure 3.15 System Aggregated MVA Overload Variations of the 7 Bus System over 24 

Hours 

This case study uses Time Step Simulation (TSS) tool for assessing the intermittency 

of a wind farm power outputs. It is found that the intermittent power outputs from a 

wind farm affect the system steady state operation. The wind power outputs may keep 

at low level while the load demand increases sharply as in this case study. This will 

cause the bus voltages to drop and system security to decrease. The synchronous 

generators within the system have to adjust their power outputs to meet both the load 

demands and the wind farm power outputs. This is a challenge encountered in real 

world. This may cause bus voltage decrease, more contribution from traditional 

synchronous generators and system insecurity. Before a practical storage solution is 

developed to smooth the wind farms power outputs, this characteristic will still be a 

challenge for wind energy development. 
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3.4 Summary 

This chapter demonstrates the characteristics of wind farms in power system steady 

state operation. Three aspects focusing on the features of different wind farms, 

planning a new wind farm and the wind power intermittency are presented. All 

aspects are illustrated by case studies. Power flow analysis, N-1 contingency analysis 

and time step simulation are the main tools for the case studies.  

The results illustrate that wind farms equipped with power electronic devices can 

contribute to bus voltage regulations and have superior performance under 

contingencies. When planning a wind farm, the locations of the wind farm can be 

chosen based on WTLR index. Different connection schemes also have an impact on 

the power system operation. Due to the intermittency characteristics of the wind farm 

power outputs, the system steady state operation is influenced. When the wind farm 

output cannot meet the load demand, it will cause bus voltages to drop and system 

aggregated MVA overload to increase. 
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Chapter 4 

Conventional Small Signal Stability Analysis 

 

 

 

4.0 Introduction  

This chapter introduces conventional small signal stability analysis of power systems. 

It gives the basic understanding of the power system small signal stability and its 

analysis methods. Section 4.1 gives an overview of power system stability and 

important concepts related to it. The focus of Chapter 4 is given in section 4.2, where 

two small signal stability analysis methods are presented and compared using case 

studies. Small signal stability analysis of a large power system is presented in section 

4.3. A summary is given in section 4.4. 

 

4.1 Power System Stability 

Maintaining the stable condition of a power system is of great significance for safe 

and reliable electricity transmission. Many efforts have been devoted to defining and 

classifying power system stability. The most accepted definition is presented in [19], 
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which states that ‘power system stability is the ability of an electric power system, for 

a given initial operating condition, to regain a state of operating equilibrium after 

being subjected to a physical disturbance, with most system variables bounded so that 

practically the entire system remains intact.’ 

The power system stability problem can be generally classified into rotor angle 

stability, voltage stability and frequency stability depending on the quantity of interest. 

The active power transmission causes rotor angle separation and reactive power 

results in voltage variation. Depending on the size of disturbances, power system 

stability can also be divided into small signal stability and transient stability. Different 

analysis methods are developed and applied to small signal stability and transient 

stability analysis. 

The rest of this section is dedicated to the fundamental swing equation and power 

system oscillations. 

 

4.2.1 Swing Equation 

Swing equation gives the motion of a synchronous machine. It is a fundamental 

equation for understanding the rotor angle stability phenomenon. The rotor motion is 

determined by Newton’s second law, given in (4.1) [16]. 

ܬ
ௗఠೝ

ௗ௧
= ܶ − ܶ                        (4.1) 
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Where 

ܬ  represents the inertia of the rotating masses, ߱  represents the rotor angular 

velocity, ܶ  represents the mechanical torque and ܶ  represents the electrical 

torque. 

The rotor angular velocity ߱ is the derivation of ߠ with respect to time, where ߠ 

is the rotor angular position with respect to a stationary axis. In power system, it is 

more common to use the term ‘ߜ’ as the rotor angle, which is the rotor angular 

position with respect to a synchronously rotating axis. The relation between ߠ and ߜ 

is explained in (4.2) [16]. 

ߠ = ߱௦ݐ +  (4.2)                         ߜ

Then, (4.3) can be obtained from (4.2). 

ௗఠೝ

ௗ௧
=

ௗ

ௗ௧
ቀ߱௦ +

ௗఋ

ௗ௧
ቁ =

ௗమఋ

ௗ௧మ                     (4.3)  

In many literatures, the inertia constant ܪ is used in swing equation. The relation of 

 .is shown by (4.4) [16] ܪ and ܬ

ܬ =
ଶு

ఠೞ
                            (4.4) 

Combining (4.1) and (4.4), (4.5) is obtained. 

em
s

TT
dt

dH


2

22 


                       (4.5) 

The swing equation explains the basic relation between the motion of rotor and 

mechanical and electrical power of the generator. It clearly shows that the change of 
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rotor angle can be caused by primary mover or electrical components of the power 

system. 

 

4.2.2 Synchronous and Damping Torques 

The change of electrical torque ∆ ܶ caused by a perturbation can be divided into two 

components as in (4.6) [13]. 

∆ ܶ = ߜ∆௦ܭ +  ∆߱                      (4.6)ܭ

Where 

௦ܭ  represents synchronous torque coefficient, ܭ  represents damping torque 

coefficient, ∆ߜ  represents rotor angle deviation, ∆߱  represents speed deviation, 

 .∆߱ represents damping torqueܭ represents synchronous torque and ߜ∆௦ܭ

The small signal stability of a power system depends on both components. Lack of 

sufficient synchronous torque will cause steady increase in rotor angle and lack of 

sufficient damping torque will cause rotor oscillation of increasing amplitude. In a 

practical power system, the small signal stability is more concerned with sufficient 

damping of oscillation [13]. 

 

4.2.3 Power System Oscillation  

Oscillations are due to natural modes of the system and therefore cannot be eliminated 

[20]. The small signal stability problem in a practical power system heavily depends 
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on the damping of oscillations. The electromechanical oscillation can be divided into:  

 Local plant mode oscillation;  

 Interarea mode oscillation; 

 Torsional mode oscillation; 

 Control mode oscillation. 

The general form of damped power system oscillation is shown in Figure 4.1 [21]. 

This figure shows the generator speed oscillation obtained from time domain 

simulation. The oscillation is damped as the magnitude of the oscillation is getting 

smaller. To maintain system stability, it is important to ensure all oscillations are 

effectively damped. 

 

Figure 4.1 Illustration of Power System Oscillation [21] 
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4.2 Analysis Methods for Small Signal Stability 

Two methods are used and compared here for analyzing power system small signal 

stability. One is time domain simulation and the other one is eigenvalue analysis. Two 

case studies are conducted on the same Two Area power system [13]. The simulation 

software used is Power System Analysis Tool (PSAT) [22]. 

 

4.2.1 Time Domain Simulation 

Time domain simulation applies numerical integration to solve differential algebra 

equations (DAEs) step-by-step formed by the given system. It gives the result of the 

variation of assessed quantity with time. It is a more common method for transient 

stability analysis, which is investigated in detail in Chapters 6 and 7. 

 

4.2.1.1 Case Study: Time Domain Simulation for Small Signal Stability Analysis 

This case study and the next case study in subsection 4.2.2.1 are conducted on Two 

Area power system, shown in Figure 4.2 [13]. Two generators lie in ‘Area 1’ while the 

other two are included in ‘Area 2’. The two areas are connected by transmission lines. 

The data of this system is provided in Appendix C. 
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Figure 4.2 One Line Diagram of Two Area Power System [13] 

In this case study, time domain simulation is used to analyze small signal stability of 

the given Two Area system. Two scenarios are considered. Scenario One is the system 

without adding control of automatic voltage regulators (AVRs) and power system 

stabilizers (PSSs), while Scenario Two adds an AVR and a PSS to each generator. The 

small disturbance adopted is the load demand increase of 10% for all loads during the 

time period of 1s to 1.1s.  

Time domain simulation is used to obtain the system responses of this disturbance 

numerically. Power system stability is determined by observing the obtained system 

responses. 

When the load increase disturbance is applied to Scenario One system, the responses 

for the rotor angles and rotor speeds are obtained from time domain simulation, 

shown in Figure 4.3 and 4.4 respectively. It is shown that under the given disturbance, 

the rotor angles of synchronous generators 3 and 4 drop dramatically, while the rotor 

speeds of all generators continue to increase. This indicates that after the disturbance, 

the system is not stable. 
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Figure 4.3 Responses of Rotor Angles When Load Increase is Applied (Scenario One) 

 

Figure 4.4 Responses of Rotor Speeds When Load Increase is Applied (Scenario One) 

The same load increase disturbance is applied to Scenario Two system. In a modern 

power system, it is a common practice to add sufficient controllers for a generation 

plant to maintain effective operation. The system responses obtained from time 

domain simulation are presented in Figure 4.5 and 4.6. It is shown that under the 

given disturbance, the rotor angles and rotor speeds of all generators can be stable at a 
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new equilibrium point after a period of oscillations. It indicates that the system is 

stable. With the additional controllers for the generation plants, the system small 

signal stability is enhanced. 

 

Figure 4.5 Responses of Rotor Angles When Load Increase is Applied (Scenario Two) 

 

Figure 4.6 Responses of Rotor Speeds When Load Increase is Applied (Scenario Two) 

This subsection presents small signal stability analysis using time domain simulation. 

The power system small signal stability condition is determined by observing the 
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system responses to a specific disturbance. The two main limitations for time domain 

simulation are that the observed system responses are restricted to one specific 

disturbance at one specific location and it cannot reveal relations between the system 

instability and system states. 

 

4.2.2 Eigenvalue Analysis 

Eigenvalue analysis takes advantage of the small disturbance in small signal stability 

problem to linearize the power system around the equilibrium point.  

A power system can be described by state space representation, shown in equations 

(4.7) and (4.8) [13].  

ሶݔ = ݂ሺݔ, ,ݖ  ሻ                          (4.7)ݑ

0 = ݃ሺݔ, ,ݖ  ሻ                          (4.8)ݑ

Where 

 represents the ݑ ,represents the algebraic variable ݖ ,represents the state variable ݔ

input variable and ݐ represents the time. 

The system can be linearized when subjected to a small disturbance. The linearized 

equations are shown in the general form in (4.9) and (4.10) [20]. 

ሶݔ∆ = ݔ∆ܣ + ݖ∆ܤ +  (4.9)                      ݑ∆ܥ

0 = ݔ∆ܦ + ݖ∆ܧ +  (4.10)                      ݑ∆ܨ
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Where 
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The state matrix ܣ௦௬௦ can be calculated by (4.11). 

௦௬௦ܣ = ܣ −  (4.11)                      ܦଵିܧܤ

The matrix ܣ௦௬௦  is called state matrix, which characterizes the stability of the 

linearized system. The values of ߣ satisfying (4.12) is the eigenvalues of matrix 

 .௦௬௦ܣ

ܫߣ൫ݐ݁݀ − ௦௬௦൯ܣ = 0                     (4.12) 

The stability of the system can be determined by the eigenvalues. The negative real 

eigenvalues correspond to decaying non-oscillation modes while positive real 

eigenvalues correspond to aperiodic instability modes. The complex eigenvalues with 

negative real parts correspond to damped oscillation modes while complex 

eigenvalues with positive real parts correspond to increasing oscillation modes. For 

eigenvalues with zero real parts, it is difficult to decide its stability in general, which 

are not given attention in this thesis.  

For an eigenvalue ߣ, the right eigenvector Φ and left eigenvector Ψ of matrix 

 .௦௬௦ associated with it are presented in (4.13) and (4.14)ܣ
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௦௬௦Φܣ =  Φ                       (4.13)ߣ

Ψܣ௦௬௦ =  Ψ                       (4.14)ߣ

The participation factor is defined in equation (4.15). 

 = ߰߶                        (4.15) 

Where 

  represents the participation factor, ߶ is the ݇௧ entry of the right eigenvector

Φ and ߰ is the ݇௧ entry of the left eigenvector Ψ. 

The participation factor determines the relative participation of certain state variable 

in a certain mode, and vice versa [13]. It gives information on how much a state 

variable is involved in a specific mode and the most related state variable in a mode 

can be found by comparing the values of participation factors. This gives eigenvalue 

analysis method a great advantage over the time domain simulation method in small 

signal stability analysis. In time domain simulation, it is difficult to find out the source 

of certain instabilities. 

 

4.2.2.1 Case Study: Eigenvalue Analysis for Small Signal Stability Analysis 

In this section, eigenvalue analysis method is used for analyzing the small signal 

stability of the Two Area system. The same two scenarios are also considered for 

small signal stability analysis of Two Area system using eigenvalue analysis. 
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Figure 4.7 shows the eigenvalues in the complex plane for Scenario One. It shows that 

there are two eigenvalues on the right side of the complex plane, which indicates the 

system is unstable.  

 

Figure 4.7 Eigenvalues on Complex plane of Two Area Power System (Scenario One) 

The two real positive eigenvalues are given in Table 4.1. One of the eigenvalues is 

0.50337 with the most associated state from synchronous generator 2 while the other 

one is 0.01977 which is most related to synchronous generator 3. The positive real 

eigenvalues correspond to aperiodic unstable modes which match with the one 

obtained from time domain simulation.  
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Table 4.1 Instable Modes of Two Area Power System (Scenario One) 

Mode Eigenvalue Most Associated States 

ଶܧ ଵଽ 0.50337ߣ
ᇱ  

ଷܧ ଶଶ 0.01977ߣ
ᇱ  

 

Table 4.2 gives the oscillation modes under scenario one. It shows the frequency and 

damping ratio of an oscillation mode and the participation factors of most associated 

states. The mode of ߣଽ  and ߣଵ  having a frequency of 1.0446 Hz is a local 

oscillation mode in area one. The mode of ߣଵଵ and ߣଵଶ having a frequency of 

1.0679 Hz is a local oscillation mode in area two. The mode of ߣଵଷ and ߣଵସ having 

a frequency of 0.654 Hz is an inter area oscillation mode between area one and two. 

All the oscillation modes have a low damping as the system is not equipped with any 

generation controllers.  
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Table 4.2 Oscillation Modes of Two Area Power System (Scenario One) 

 

Figure 4.8 and Table 4.3 give eigenvalues in complex plane and oscillation modes of 

Scenario Two of the Two Area power system with AVRs and PSSs. It is shown in 

Figure 4.8 that all the system eigenvalues are on the left side of complex plane, which 

indicate that the system is stable. With employing the AVRs and PSSs, the two 

unstable modes in Scenario One are eliminated. By adding AVRs and PSSs, the power 

system small signal stability is enhanced. This conclusion also matches with the one 

obtained from the observation of time domain simulation. 

Mode Eigenvalue Frequency (HZ) 
Damping 

Ratio 
Participation Factors of 
Most Associated States 

 ଵ -0.57158±j 6.5632 1.0446 0.0868ߣ ,ଽߣ
 ଵ=߱ଵ=16.865%ߜ

 ଶ=߱ଶ=20.633%ߜ

 ଵଶ -0.58148±j 6.7099 1.0679 0.0863ߣ ,ଵଵߣ
 ଷ=߱ଷ=17.795%ߜ

 ସ=߱ସ=19.956%ߜ

 ଵସ -0.26224 ±j3.3208 0.5285 0.0787ߣ ,ଵଷߣ
 ଵ=߱ଵ=15.792%ߜ

 ଷ=߱ଷ=10.506%ߜ
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Figure 4.8 Eigenvalues on Complex Plane of Two Area Power System (Scenario Two) 

From Table 4.3, there are totally 9 oscillation modes containing 8 local modes and 1 

inter area mode. Comparing the damping ratios between Table 4.1 and 4.2, the 

damping values of power system oscillations in Scenario Two are generally higher 

than in Scenario One. The system small signal stability is enhanced by adding the 

controllers. 
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Table 4.3 Oscillation Modes of Two Area Power System (Scenario Two) 

 

This section introduces two common methods for analyzing power system small 

signal stability. Case studies are presented on Two Area power system and two 

Mode Eigenvalue 
Frequency 

(HZ) 
Damping 

Ratio 
Participation Factors of Most 

Associated States 

 ଵ -6.7026±j26.6642 4.2437 0.2438ߣ ,ଽߣ
ସܧ

ᇱ =18.653% 

ସܧ
ᇱᇱ =14.396% 

 ଵଶ -9.81±j20.5769 3.2749 0.4303ߣ ,ଵଵߣ

ଵܧ
ᇱ =15.864% 

ଶܧ
ᇱ =15.628% 

 ଵ଼ -30.2395±j0.09673 0.0154 1.0ߣ ,ଵߣ
ଶܸ_௦௦ଷ=19.42% 

ଶܸ_௦௦ଵ=20.872% 

 ଶଶ -9.8255±j13.3165 2.1194 0.5937ߣ ,ଶଵߣ

ଵܧ
ᇱ =14.465% 

ଶܧ
ᇱ =11.803% 

 ଶସ -9.676±j13.2867 2.1146 0.5887ߣ ,ଶଷߣ
ଷܧ

ᇱ =14.872% 

ସܧ
ᇱ =11.314% 

 ଶ -3.1115±j5.983 0.9522 0.4614ߣ ,ଶହߣ
 ଶ=11.882%ߜ

߱ଶ=10.625% 

 ଶ଼ -3.3777±j6.0761 0.9670 0.4859ߣ ,ଶߣ
 ସ=11.424%ߜ

߱ସ=10.32% 

 ଷ -0.28649± j3.6675 0.5837 0.0779ߣ ,ଶଽߣ
 ଵ=14.559%ߜ

߱ଵ=12.852% 

 ଷଶ -4.6326± j0.06785 0.0108 0.9999ߣ ,ଷଵߣ
ௗଶܧ

ᇱ =37.944% 

ௗସܧ
ᇱ =30.086% 
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scenarios are considered. Through these two scenarios, it is shown that power system 

stability is enhanced by adding AVRs and PSSs, which is widely adopted controllers 

in modern power systems. By comparing these two methods, it is found that time 

domain simulation has limitations, while eigenvalue analysis is a more effective 

method for small signal stability analysis. Time domain simulation gives the system 

responses to a certain disturbance and cannot indicate the relation between system 

oscillations and system states. Eigenvalue analysis gives overall system modes to 

assess stability and provides the information on the most associated states to a certain 

mode. Eigenvalue analysis is a more effective way for investigating power system 

small signal stability.  

 

4.3 Small Signal Stability of a Large System 

As shown in the comparison in the previous section, eigenvalue analysis is a more 

effective way for analyzing power system small signal stability. In this section, the 

eigenvalue analysis method is applied to the small signal stability analysis of the 

10-Machine New England power system. The objective of this section is to 

demonstrate how eigenvalue analysis is applied to a practical large power system. 
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4.3.1 Case Study: Small Signal Stability Analysis of New England Power System 

The one line diagram of the New England power system is shown in Figure 4.9 [24]. 

The system data is provided in Appendix D. All generators are equipped with AVRs 

and PSSs to enhance the system stability.  

 

Figure 4.9 One Line Diagram of New England Power System [24] 

Figure 4.10 shows the eigenvalues of New England power system in complex plane. 

All the eigenvalues are on the left side of the panel indicating the system is stable. As 

this is a relatively large system, more states are involved in the eigenvalue analysis. 
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Figure 4.10 Eigenvalues on Complex Plane of New England Power System 

All the oscillation modes in New England power system are presented in Table 4.4. 

The lowest damping ratio is 0.03, which is under the mode of ߣସସ, ߣସହ and the most 

associated states are the rotor angle and speed of synchronous generator 4. The 

damping can be improved by putting more control over the rotor. From Table 4.4, it 

can be found that most of the inter-area oscillations are well damped while the local 

oscillations have lower damping ratios. 

Table 4.4 Oscillation Modes 0f the New England Power System 

Mode Eigenvalue Frequency (HZ) Damping Ratio Most Associated States 

λ22, λ23 -2.30±7.29j 1.22 0.30 ଷܸ௦௦ି, ଶܸ௦௦ି 

λ25, λ26 -0.64±5.57j 0.89 0.11 ߜଶ, ߱ଶ 

λ27, λ28 -0.60±4.69j 0.75 0.13 ଼ߜ, ଼߱ 
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λ29, λ30 -0.44±4.40j 0.7 0.10 ߜହ, ߱ହ 

λ31, λ32 -0.33±4.17j 0.67 0.08 ߜଷ, ߱ଷ 

λ33, λ34 -0.16±4.00j 0.63 0.04 ߜଵ, ߱ଵ 

λ36, λ37 -0.27±3.39j 0.54 0.08 ߜ, ߱ 

λ38, λ39 -1.31±2.87j 0.50 0.42 ଷܸ௦௦ି଼, ଶܸ௦௦ି଼ 

λ40, λ41 -0.23±3.08j 0.49 0.07 ߜଽ, ߱ଽ 

λ42, λ43 -0.21±2.92j 0.47 0.07 ଷܸ௦௦ିହ, ଶܸ௦௦ିହ 

λ44, λ45 -0.09±2.67j 0.43 0.03 ߜସ, ߱ସ 

λ46, λ47 -3.25±0.04j 0.52 1.00 ܧସ
ᇱ ଷܧ ,

ᇱ  

λ49, λ50 -0.44±2.17j 0.35 0.20 ଷܸ௦௦ିଽ, ଶܸ௦௦ିଽ 

λ51, λ52 -0.21±2.12j 0.34 0.10 ଷܸ௦௦ି, ଶܸ௦௦ି 

λ53, λ54 -0.23±2.16j 0.34 0.11 ଷܸ௦௦ିଷ, ଶܸ௦௦ିଷ 

λ56, λ57 -0.11±1.57j 0.25 0.07 ଶܸ௦௦ିଵ, ଷܸ௦௦ିଵ 

λ58, λ59 -0.11±1.47j 0.24 0.07 ଷܸ௦௦ିସ, ߱ଵ 

λ60, λ61 -0.09±1.37j 0.22 0.07 ଷܸ௦௦ିସ, ଶܸ௦௦ିସ 

λ63, λ64 -0.41±1.22j 0.21 0.32 ଷܸ௦௦ିଵ, ଶܸ௦௦ିଵ 

λ65, λ66 -1.83±0.09j 0.29 1.00 ܸଷ
ᇱ ଼ܧ ,

ᇱ  

λ67, λ68 -1.73±0.35j 0.28 0.98 ܸଽ
ᇱ ଽܧ ,

ᇱ  

λ69, λ70 -1.69±0.41j 0.28 0.97 ܸ
ᇱ ܧ ,

ᇱ  

λ71, λ72 -1.48±0.66j 0.26 0.91 ܸଵ
ᇱ ଵܧ ,

ᇱ  

λ74, λ75 -1.35±0.74j 0.24 0.88 ܸଵ
ᇱ ଵܧ ,

ᇱ  

λ76, λ77 -0.28±0.59j 0.10 0.43 ܸଶ
ᇱ ଶܧ ,

ᇱ  

λ78, λ79 -1.10±0.75j 0.21 0.83 ଼ܸ
ᇱ ܧ ,

ᇱ  
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λ80, λ81 -1.29±0.76j 0.24 0.86 ܸସ
ᇱ ଷܧ ,

ᇱ  

λ82, λ83 -1.23±0.78j 0.23 0.84 ܸ
ᇱ ହܧ ,

ᇱ  

 

Illustrations of time domain simulation are given in Figure 4.11 and 4.12, which show 

the rotor speed and angle responses to 20% load increase from 1s to 1.1s respectively. 

It is shown that the magnitudes of oscillations are all generally decreased under this 

disturbance, indicating the system is stable. 

 

Figure 4.11 Rotor Speed of New England Power System 
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Figure 4.12 Rotor Angle of New England Power System 

This section performs eigenvalue analysis on New England power system and the 

results are presented. It gives a more comprehensive demonstration on the 

effectiveness of eigenvalue analysis in power system small signal stability analysis. 

 

4.4 Summary 

This chapter introduces the conventional power system small signal stability analysis. 

Basic concepts related to small signal stability are introduced. Two analysis methods 

are presented and compared on the Two Area power system. The results agree with 

previous works that eigenvalue analysis is a more effective method for analyzing 

small signal stability compared with time domain simulation. A case study on the 

large 10-Machine New England power system is also presented to give a more 

comprehensive analysis.  
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Chapter 5 

Power System Small Signal Stability Analysis 

with Wind Energy Integrations 

 

 

 

5.0 Introduction 

This chapter investigates how power system small signal stability is affected when 

wind energy is integrated into the system. Section 5.1 presents small signal stability 

analysis on two single machine infinite bus (SMIB) systems with a synchronous 

generator and a doubly fed induction generator (DFIG). Section 5.2 presents small 

signal stability analysis with wind energy integrations using Power System Analysis 

Toolbox (PSAT). A summary is given in section 5.3. 

 

5.1 Small Signal Stability Analysis of SMIB Systems 

A SMIB system is frequently used in electrical power system engineering to reveal 

concepts and perform analysis in an easy-to-understand way. In this section, small 

signal stability analysis is performed on two SMIB systems. One SMIB system 
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containing a traditional synchronous generator connected to an infinite bus is 

presented first in 5.1.1. Then, the other SMIB system with a DFIG connected to an 

infinite bus is analyzed in 5.1.2.  

This section presents the basic procedures of eigenvalue analysis and gives an insight 

into the small signal stability of traditional synchronous generators and DFIGs. This 

section aims to give a detail description of small signal stability with a DFIG 

connected to an infinite bus and compare with the synchronous generator.  

 

5.1.1 Small Signal Stability Analysis of a SMIB System with a Synchronous 

Generator  

Synchronous generators are the dominant generators in modern power systems. 

Depending on the requirements for calculation time and accuracy, different models of 

a synchronous generator have been proposed [13, 25, 26]. The Two-Axis model is 

studied here. 

Eigenvalue analysis is performed on a SMIB system with a synchronous generator. 

The SMIB system is shown in Figure 5.1. A synchronous generator is connected to an 

infinite bus through a transmission line. The synchronous generator is represented by 

the Two-Axis model, the transmission line is represented by a reactance for simplicity 

and the infinite bus is the bus with fixed voltage and angle.  
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Figure 5.1 SMIB System with a Synchronous Generator Connected to an Infinite Bus 

The generation units can be described by differential equations while the outside 

networks form the algebraic equations. The system in Figure 5.1 can be modelled by 

differential algebraic equations (DAEs) in the form of (4.7) and (4.8). The dynamic 

Two-Axis generator model used here is given in equations (5.1) - (5.4) [16, 25]. 

  
ௗఋ

ௗ௧
= ߱ − ߱௦                         (5.1) 

ௗఠೝ

ௗ௧
=

ఠೞ

ଶு
ሺ ܶ − ܶሻ                      (5.2) 

ௗா
ᇲ

ௗ௧
=

ଵ

்బ
ᇲ ܧ−ൣ

ᇱ − ሺܺௗ − ܺௗ
ᇱ ሻܫௗ +  ௗ൧             (5.3)ܧ

ௗா
ᇲ

ௗ௧
=

ଵ

்బ
ᇲ ௗܧ−ൣ

ᇱ + ൫ܺ − ܺ
ᇱ ൯ܫ൧                (5.4) 

Where  

ܶ = ௗܧ
ᇱ ௗܫ + ܧ

ᇱ ܫ + ൫ܺ
ᇱ − ܺௗ

ᇱ ൯ܫௗܫ is the electromagnetic torque, ߜ represents rotor 

angle, ߱ represents rotor speed, ܧ
ᇱ  and ܧௗ

ᇱ  are equivalent internal voltage source 

in d-q frame, ܫ and ܫௗ are stator currents, ܺ and ܺௗ are steady-state reactance, 

ܺ
ᇱ  and ܺௗ

ᇱ  are transient reactance, ܶ
ᇱ  and ௗܶ

ᇱ  are transient time constants, ܪ is 

inertia constant, ܶ is the mechanical torque and ܧௗ is field voltage. 
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The exciter and governor models are not considered here. The mechanical torque ܶ 

and the field voltage ܧௗ are kept constant. 

The interactions between the synchronous generator and the transmission line form 

the network algebraic equations, shown in (5.5) - (5.8) [25]. 

−൫ܺ
ᇱ + ܺ௧൯ܫ − ௗܧ

ᇱ + ܧ sin ߜ = 0                (5.5) 

ሺܺௗ
ᇱ + ܺ௧ሻܫௗ − ܧ

ᇱ + ܧ cos ߜ = 0                (5.6) 

−ܺ௧ܫ + ܧ sin ߜ = ௗܸ                     (5.7) 

ܺ௧ܫௗ + ܧ cos ߜ = ܸ                     (5.8) 

Where 

  . represents the infinite bus voltage and ܺ௧ is the transmission line reactanceܧ

In this system, ߜ , ߱ ܧ ,
ᇱ  and ܧௗ

ᇱ  are state variables. ܸ , ௗܸ ܫ ,  and ܫௗ  are 

algebraic variables. ܶ and ܧௗ are input variables.  

Equations (5.5) and (5.6) describe the transmission between the generator internal 

voltages and the infinite bus through the internal reactance and transmission line. 

Equations (5.7) and (5.8) describe the algebraic relations between the generator 

internal voltages and the generator terminal bus through the internal reactance. 

Setting all the derivative terms to 0 in (5.1) - (5.4) and combining with (5.5) - (5.8), 

the initial values of variables can be obtained. 

Linearizing (5.1) - (5.4) gives (5.9) - (5.12). 
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ሶߜ∆ = ∆߱                            (5.9) 

∆߱ሶ =
ఠೞ

ଶு
ௗܧ∆ௗܫ−ൣ

ᇱ − ܧ∆ܫ
ᇱ − ൫ܧௗ

ᇱ + ൫ܺ
ᇱ − ܺௗ

ᇱ ൯ܫ൯∆ܫௗ − ൫ܧ
ᇱ + ൫ܺ

ᇱ −

ܺௗ
ᇱ ൯ܫௗ൯∆ܫ + ∆ ܶ൧                     (5.10) 

ܧ∆
ᇱሶ =

ଵ

்బ
ᇲ ܧ∆−ൣ

ᇱ − ሺܺௗ − ܺௗ
ᇱ ሻ∆ܫௗ +  ௗ൧            (5.11)ܧ∆

ௗܧ∆
ᇱሶ =

ଵ

்బ
ᇲ ௗܧ∆−ൣ

ᇱ + ൫ܺ − ܺ
ᇱ ൯∆ܫ൧              (5.12) 

Representing (5.9)- (5.12) in the matrix form results in (5.13).  

ۏ
ێ
ێ
ێ
ۍ ሶߜ∆
∆߱ሶ
ܧ∆

ᇱሶ

ௗܧ∆
ᇱሶ ے

ۑ
ۑ
ۑ
ې

=

ۏ
ێ
ێ
ێ
ێ
ۍ
0 1 0 0
0 0 −

ఠೞ

ଶு
ܫ −

ఠೞ

ଶு
ௗܫ

0 0 −
ଵ

்బ
ᇲ 0

0 0 0 −
ଵ

்బ
ᇲ ے

ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ۍ

ߜ∆
∆߱

ܧ∆
ᇱ

ௗܧ∆
ᇱ ے

ۑ
ۑ
ې

+

ۏ
ێ
ێ
ێ
ێ
ۍ
0 0 0 0
0 0 −

ఠೞ

ଶு
ܧൣ

ᇱ + ൫ܺ
ᇱ − ܺௗ

ᇱ ൯ܫௗ൧ −
ఠೞ

ଶு
ௗܧൣ

ᇱ + ൫ܺ
ᇱ − ܺௗ

ᇱ ൯ܫ൧

0 0 0 −
ି

ᇲ

்బ
ᇲ

0 0
ି

ᇲ

்బ
ᇲ 0

ے
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ۍ
∆ ܸ

∆ ௗܸ
ܫ∆

ௗܫ∆ ے
ۑ
ۑ
ې

+

ۏ
ێ
ێ
ێ
ۍ

0 0
ఠೞ

ଶு
0

0
ଵ

்బ
ᇲ

0 0 ے
ۑ
ۑ
ۑ
ې


∆ ܶ
ௗܧ∆

൨                                                  (5.13) 

Linearizing (5.5) - (5.8) gives (5.14) - (5.17). 

−൫ܺ
ᇱ + ܺ௧൯∆ܫ − ௗܧ∆

ᇱ + ܧ cos ߜ∆ߜ = 0                (5.14) 

ሺܺௗ
ᇱ + ܺ௧ሻ∆ܫௗ − ܧ∆

ᇱ − ܧ sin ∆δߜ = 0                (5.15) 

−ܺ௧∆ܫ + ܧ cos ߜ∆ߜ − ∆ ௗܸ = 0                   (5.16) 

ܺ௧∆ܫௗ − ܧ sin ∆δߜ − ∆ ܸ = 0                   (5.17) 
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Arranging (5.14)- (5.17) into the matrix form results in (5.18).  

0 = ൦

ܧ cos ߜ 0 0 −1
ܧ− sin ߜ 0 −1 0
ܧ cos ߜ 0 0 0

ܧ− sin ߜ 0 0 0

൪

ۏ
ێ
ێ
ۍ

ߜ∆
∆߱

ܧ∆
ᇱ

ௗܧ∆
ᇱ ے

ۑ
ۑ
ې

+

ۏ
ێ
ێ
ۍ

0 0 −ܺ
ᇱ − ܺ௧ 0

0 0 0 ܺௗ
ᇱ + ܺ௧

0 −1 −ܺ௧ 0
−1 0 0 ܺ௧ ے

ۑ
ۑ
ې

ۏ
ێ
ێ
ۍ
∆ ܸ

∆ ௗܸ
ܫ∆

ௗܫ∆ ے
ۑ
ۑ
ې

+

൦

0 0
0 0
0 0
0 0

൪ 
∆ ܶ
ௗܧ∆

൨                                                    (5.18) 

From the above equations, the four differential equations describe the dynamic 

performances of a synchronous generator and the four algebraic equations represent 

connecting the synchronous generator to the outside network. In a system containing 

more than two generators, the interactions between generators are dependent on the 

algebraic equations. Combining (5.13) and (5.18) gives the small signal DAEs 

representing the SMIB system with a synchronous generator. Equations (5.13) and 

(5.18) give the matrix form as shown in (4.9) and (4.10) and the state matrix ܣ௦௬௦ 

can be calculated.  

The system eigenvalues are calculated and plotted in Figure 5.2. All the parameters 

used for the calculation are given in Appendix E. There are totally four eigenvalues as 

the state matrix ܣ௦௬௦ is a 4*4 matrix. It is shown that all the eigenvalues are on the 

left side of the complex plane, which indicates the system is stable for small 

disturbances.  
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Figure 5.2 Eigenvalues on Complex Plane of SMIB System with a Synchronous 

Generator  

The eigenvalues of the system and the corresponding frequency and damping are 

provided in Table 5.1. Two eigenvalues are negative real values representing the 

decaying non-oscillation modes. Eigenvalues ߣଷ and ߣସ are the damped oscillation 

mode with damping of 0.1369 N/(m/s). 

Table 5.1 Eigenvalues of SMIB System with a Synchronous Generator 

Mode Eigenvalues Frequency Damping 

 ଵ -4.8632 0 1ߣ

 ଶ -0.2524 0 1ߣ

 ସ -1.0213 ± j7.3883 1.1759 0.1369ߣ ,ଷߣ

 

The participation factors calculated for each eigenvalue are given in Table 5.2. This 

table gives all the participation factors between each state variable and mode which 
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reveals the relative participation between the state variable and the mode. It is shown 

that non-oscillation modes ߣଵ and ߣଶ are most related to ܧௗ
ᇱ  and ܧ

ᇱ  respectively. 

The oscillation modes ߣଵ and ߣଶ are most related to the rotor angle ߜ and ߱. This 

gives valuable information that the system oscillations can be better damped by 

adding controllers for the rotor dynamics. 

Table 5.2 Participation Factors of SMIB System with a Synchronous Generator 

 ସߣ ଷߣ ଶߣ ଵߣ 

 j0.0487 0.5418+j0.0487-0.5418 0.0042- 0.0794- ߜ

߱ -0.0794 -0.0042 0.5418-j0.0487 0.5418+j0.0487 

ܧ
ᇱ  0.0307 0.9507 0.0093+j0.0372 0.0093-j0.0372 

ௗܧ
ᇱ  1.1281 0.0576 -0.0928+j0.0602 -0.0928-j0.0602 

 

The transmission line reactance ܺ௧ can be changed to simulate the synchronous 

generator connected to different grids. Normally, the longer the transmission line, the 

larger the transmission line reactance ܺ௧. A long transmission line means a weak grid 

connection for the generation units. The movement of the eigenvalues are shown in 

Figure 5.3 when ܺ௧ varies from 0.1 pu (strong grid) to 1.0 pu (weak grid). The point 

‘*’ represents the starting (0.1 pu) and the triangle points mean the end (1.0 pu). It is 

shown that the eigenvalues move to right when ܺ௧ increases. From Figure 5.3, it is 

shown that a strong grid can enhance the system small signal stability. 
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Figure 5.3 Eigenvalues of SMIB System with a Synchronous Generator 

Corresponding to Different ܺ௧ 

In subsection 5.1.1, the small signal stability analysis of a SMIB system with a 

synchronous generator is presented. It gives an insight into the issue of small signal 

stability analysis and serves as an entry for understanding small signal stability of the 

SMIB system with a DFIG. 

 

5.1.2 Small Signal Stability Analysis of a SMIB System with a DFIG  

Doubly Fed Induction Generators (DFIGs) have been introduced and discussed in 

Chapter 2. Many models have been proposed while some models are too detailed 

which is not suitable for power system dynamic study. The small signal stability 

analysis of a DFIG connected to an infinite bus is presented in [27]. The SMIB system 

with a DFIG used here is shown in Figure 5.4. A DFIG is connected to an infinite bus 

through a transmission line. 
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Figure 5.4 SMIB System with a DFIG connected to an Infinite Bus 

The differential equations of a doubly fed induction generator are present in (5.19)- 

(5.23). It is the same model as introduced in Chapter 2 and repeated here. 

ೞ
ᇲ

ఠೞ

ௗூೞ

ௗ௧
= ௗܸ௦ − ቀܴ௦ +

ೞିೞ
ᇲ

బ்
ᇲ ቁ ௗ௦ܫ −

ఠೝ

ఠೞ
ௗܧ

ᇱ −


ೝೝ
ௗܸ +

ଵ

బ்
ᇲ ܧ

ᇱ + ܺ௦
ᇱܫ௦   (5.19) 

ೞ
ᇲ

ఠೞ

ௗூೞ

ௗ௧
= ܸ௦ − ቀܴ௦ +

ೞିೞ
ᇲ

బ்
ᇲ ቁ ௦ܫ −

ఠೝ

ఠೞ
ܧ

ᇱ −


ೝೝ
ܸ −

ଵ

బ்
ᇲ ௗܧ

ᇱ − ܺ௦
ᇱܫௗ௦   (5.20) 

ௗா
ᇲ

ௗ௧
= ሺ߱௦ − ߱ሻܧ

ᇱ −
ఠೞ

ೝೝ
ܸ −

ఠೞ

బ்
ᇲ ௗܧൣ

ᇱ − ሺܺ௦ − ܺ௦
ᇱሻܫ௦൧      (5.21) 

ௗா
ᇲ

ௗ௧
= −ሺ߱௦ − ߱ሻܧௗ

ᇱ +
ఠೞ

ೝೝ
ௗܸ −

ఠೞ

బ்
ᇲ ܧൣ

ᇱ + ሺܺ௦ − ܺ௦
ᇱሻܫௗ௦൧     (5.22) 

ௗఠೝ

ௗ௧
=

ଵ

ଶு
൫ ܶ − ௗܧ

ᇱ ௗ௦ܫ − ܧ
ᇱ  ௦൯               (5.23)ܫ

The algebraic equations can be formed by using power balance, given in (5.24) and 

(5.25). 

ܲ௨௧ = ௦ܲ + ܲ                       (5.24) 

ܳ௨௧ = ܳ௦ + ܳ                      (5.25) 

Where  

ܲ௨௧ and ܳ௨௧ are real and reactive power output of a DFIG transferred through the 
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transmission line. ௦ܲ and ܳ௦ are real and reactive power from the stator. ܲ is the 

real power from the rotor and ܳ is the reactive power from the rotor. The rotor side 

power ܲ and ܳ are transferred through the rotor side and grid side converters to 

the grid. The grid side converter is normally controlled to operate at unity power 

factor. Then, the reactive power from the rotor ܳ equals to zero. 

From the basic equations (2.15) and (2.16), the rotor side currents can be represented 

by (5.26) and (5.27). 

ௗܫ =
ா

ᇲ


−



ೝೝ
 ௗ௦                       (5.26)ܫ

ܫ = −
ா

ᇲ


−



ೝೝ
 ௦                      (5.27)ܫ

The algebraic equations for the SMIB system with a DFIG are given in (5.28) and 

(5.29) using the power balancing equations. 

ௗܸ௦ܫௗ௦ + ܸ௦ܫ௦ + ௗܸ ቀ
ா

ᇲ


−



ೝೝ
ௗ௦ቁܫ + ܸ ቀ−

ா
ᇲ


−



ೝೝ
௦ቁܫ −

ටೞ
మ ାೞ

మ ா್ ୱ୧୬൬୲ୟ୬షభ൬
ೇೞ
ೇೞ

൰൰


= 0                 (5.28) 

ܸ௦ܫௗ௦ − ௗܸ௦ܫ௦ +
൫ೞ

మ ାೞ
మ ൯ିටೞ

మ ାೞ
మ ா್ ୡ୭ୱ൬୲ୟ୬షభ൬

ೇೞ
ೇೞ

൰൰


= 0      (5.29) 

In this system, ܫௗ௦, ܫ௦, ܧௗ
ᇱ  and ܧ

ᇱ  are state variables, ௗܸ௦ and ܸ௦ are algebraic 

variables and ܶ, ௗܸ and ܸ are input variables. 

Linearizing (5.19) - (5.23), (5.30) - (5.34) can be obtained. 

ௗ௦ሶܫ∆ =
ఠೞ

ೞ
ᇲ ቂ∆ ௗܸ௦ − ቀܴ௦ +

ೞିೞ
ᇲ

బ்
ቁ ௗ௦ܫ∆ −

ாబ
ᇲ

ఠೞ
∆߱ −

ఠೝబ

ఠೞ
ௗܧ∆

ᇱ −


ೝೝ
∆ ௗܸ +

ଵ

బ்
ܧ∆

ᇱ +
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ܺ௦
ᇱ∆ܫ௦ቃ                           (5.30) 

௦ሶܫ∆ =
ఠೞ

ೞ
ᇲ ∆ ܸ௦ − ቀܴ௦ +

ೞିೞ
ᇲ

బ்
ቁ ௦ܫ∆ −

ாబ
ᇲ

ఠೞ
∆߱ −

ఠೝబ

ఠೞ
ܧ∆

ᇱ −


ೝೝ
∆ ܸ −

ଵ

బ்
ௗܧ∆

ᇱ −

ܺ௦
ᇱ∆ܫௗ௦൨                            (5.31) 

ௗܧ∆
ᇱሶ = ሺ߱௦ − ߱ሻ∆ܧ

ᇱ − ܧ
ᇱ ∆߱ −

ఠೞ

బ்
൫∆ܧௗ

ᇱ + ሺܺ௦ − ܺ௦
ᇱሻ∆ܫ௦൯ −

ఠೞ

ೝೝ
∆ ܸ (5.32) 

ܧ∆
ᇱሶ = −ሺ߱௦ − ߱ሻ∆ܧௗ

ᇱ + ௗܧ
ᇱ ∆߱ −

ఠೞ

బ்
൫∆ܧ

ᇱ + ሺܺ௦ − ܺ௦
ᇱሻ∆ܫௗ௦൯ +

ఠೞ

ೝೝ
∆ ௗܸ (5.33) 

∆߱ሶ =
ଵ

ଶு
൫∆ ܶ − ௗܧ

ᇱ ௗ௦ܫ∆ − ௗܧ∆ௗ௦ܫ
ᇱ − ܧ

ᇱ ௦ܫ∆ − ܧ∆௦ܫ
ᇱ ൯         (5.34) 

Putting (5.30) - (5.34) into the matrix form gives (5.35). 
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ێ
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                        (5.35) 

Linearizing (5.28) and (5.29), (5.36) and (5.37) can be obtained. 
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ቀ ௗܸ௦ −
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ௗܸቁ ௗ௦ܫ∆ + ቀ ܸ௦ −



ೝೝ
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ೝ
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ாబ
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ೝೝ
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(5.36) 

ܸ௦∆ܫௗ௦ − ௗܸ௦∆ܫ௦ + ൫−ܫ௦ + ∆൯ܥ ௗܸ௦ + ሺܫௗ௦ + ∆ሻܦ ܸ௦ = 0      (5.37) 

Putting (5.36) and (5.37) into the matrix form gives (5.38). 
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Where 
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With matrices (5.35) and (5.38), the SMIB system state matrix can be obtained and 

the eigenvalues of the system can be found. The system parameters for simulation are 

given in Appendix F. The eigenvalues of the SMIB system with a DFIG is presented 

in Figure 5.5. Four of the eigenvalues of the system are on the left side of the plane, 

while one eigenvalue is on the zero point. There are two damped oscillation modes in 

the system. The zero point brings uncertainty to system stability evaluation.  

 

Figure 5.5 Eigenvalues on Complex Plane of SMIB System with A DFIG 

Table 5.3 shows the eigenvalues and the frequency and damping of each mode. There 

are two oscillation modes in this system. The first mode has high frequency and not 

well damped, while the second mode has lower frequency with better damping. 
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Table 5.3 Eigenvalues of SMIB System with A DFIG 

Mode Eigenvalues Frequency Damping 

 ଶ -10.15±j497.64 79.2019 0.0204ߣ ,ଵߣ

 ସ -4.06±j11.25 1.7905 0.3395ߣ ,ଷߣ

 ହ 0 N/A N/Aߣ

 

The participation factors calculated for the SMIB system with a DFIG are given in 

Table 5.4. The first oscillation mode of ߣଵ and ߣଶ has the highest participation 

factors with the stator currents ܫௗ௦ and ܫ௦. This can be referred to as ‘stator mode’. 

The second low frequency better damped oscillation mode of ߣଷ and ߣସ is most 

related to the internal voltages ܧௗ
ᇱ  and ܧ

ᇱ , which can be considered as ‘electrical 

mode’. The zero-point mode is most related to the rotor speed ߱. 

Table 5.4 Participation Factors of SMIB System with A DFIG 

 ହߣ ସߣ ଷߣ ଶߣ ଵߣ 

 ௗ௦ 0.5003-j0.0082 0.5003+j0.0082 -0.0003+j0.0039 -0.0003-j0.0039 0ܫ

 ௦ 0.4999+j0.0162 0.4999-j0.0162 0.0001+j0.004 0.0001-j0.004 -0.0001ܫ

ௗܧ
ᇱ  -0.0001-j0.004 -0.0001+j0.004 0.498-j0.0041 0.498+j0.0041 0.0042 

ܧ
ᇱ  -0.0001-j0.004 -0.0001+j0.004 0.5-j0.0033 0.5+j0.0033 0.0002 

߱ 0 0 0.0022-j0.0006 0.0022+j0.006 0.9956 

 

Figure 5.6 shows the eigenvalue movement when the transmission line parameter ܺ௧ 

increases from 0.1 pu to 1.0 pu. The point ‘*’ represents the starting (0.1 pu) and the 

triangle points represent the end (1.0 pu). The low value of ܺ௧ represents the DFIG 
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connected to a strong grid. It is shown in Figure 5.6 that the eigenvalues of ‘stator 

mode’ move to left while the eigenvalues of ‘electrical mode’ move to right in the 

complex plane. Both the imaginary and real part of ‘stator mode’ are decreasing 

which is difficult to determine the change of the damping value from the plot. The 

real part of ‘electrical mode’ increases more obviously, which indicates the damping is 

reducing. 

 

Figure 5.6 Eigenvalues of SMIB System with A DFIG Corresponding to Different ܺ௧ 

The damping values of the system oscillation modes for different ܺ௧ are given in 

Table 5.5. It is shown that the damping value of ‘stator mode’ is decreasing when ܺ௧ 

increases from 0.1 pu to 0.5 pu. The damping value of ‘stator mode’ starts to increase 

after 0.5 pu while the damping keeps at relatively low value for this mode. The 

‘electrical mode’ keeps decreasing when ܺ௧ increases from 0.1 pu to 1.0 pu. In 

general, the system small signal stability is reduced when the DFIG is connected to a 

weak grid. 
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Table 5.5 Eigenvalues of SMIB System with A DFIG Corresponding to Different ܺ௧ 

ܺ௧ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Damping 0.02
04 

0.19
1 

0.01
82 

0.01
77 

0.01
75 

0.01
77 

0.01
82 

0.01
92 

0.02
1 

0.02
44 

0.33
95 

0.28
06 

0.23
77 

0.20
49 

0.17
89 

0.15
78 

0.14
02 

0.12
53 

0.11
26 

0.10
16 

 

In this section, the analysis of the SMIB systems with a synchronous generator and a 

DFIG are presented and compared. The detailed calculations of the eigenvalues are 

given. The participation factors and the movement of the eigenvalues with respect to 

the transmission line reactance are discussed. It is found that both the synchronous 

generators and DFIGs should be connected to a strong grid in order to enhance the 

small signal stability.   

 

5.2 Small Signal Stability Analysis with Wind Energy Integrations using PSAT 

Building the DAEs and forming the state matrix gives a good insight into the small 

signal stability as shown in the previous section.  

In this section, the studies are done on the Two Area and New England power systems 

when wind energy is integrated using PSAT. It makes modeling and simulation easier 

with the pre-defined models and user friendly interface in PSAT. 

A DFIG based wind farm is integrated into the Two Area power system to replace one 
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of the synchronous generators. The effects of introducing the wind energy into the 

system are presented. The different connection locations are compared and the 

movements of eigenvalue are provided to demonstrate how it influences the power 

system small signal stability. A DFIG based wind farm is then connected into a larger 

10-Machine New England power system to show the wind energy impacts on a large 

system. 

 

5.2.1 Small Signal Stability Analysis of Two Area Power System with Wind 

Energy Integrations 

The conventional small signal stability analysis of the Two Area power system is 

presented in Chapter 4. In this section, a DFIG based wind farm is connected to the 

Two Area power system and the comparison of eigenvalue movement is presented. 

The Two Area power system without and with automatic voltage regulators (AVRs) 

and power system stabilizers (PSSs) are both considered. As presented in Chapter 4, 

the Two Area power system without AVRs and PSSs has two real eigenvalues on right 

side of the complex plane, while all the eigenvalues of the Two Area system with AVR 

and PSS are on the left side of the complex panel.  

The complete results are given in Appendix G. The complex and positive real 

eigenvalues are included while the negative real eigenvalues representing the 

decaying stable modes and the zero eigenvalues are not included. 

In the Two Area power system without AVRs and PSSs, the synchronous generator at 
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Bus 1 is replaced by a DFIG based wind farm with the same capacity. The complex 

eigenvalues representing the oscillation modes of the system with and without a wind 

farm are shown in Figure 5.7. It is shown that the eigenvalues move to right and an 

oscillation mode is induced when wind energy is connected into the system. However, 

it should be noted that the two negative real eigenvalues representing instability 

modes reduced to one as shown in Table G.1 in Appendix G. It can be assumed that 

the undamped unstable mode converts to a damped oscillation mode by introducing 

the wind energy into the system. It could be concluded that the system small signal 

stability is enhanced. 

 

Figure 5.7 Comparisons of the Two Area System without Wind Energy Integrations 

and with DFIG connected to Bus 1 

The damping values of oscillations are presented in Table 5.6 for the above 

eigenvalues. The integration of wind energy increases the damping of two existing 

oscillation mode and it converts one of the unstable modes into a well damped 
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oscillation mode. In general, the small signal stability of the system is increased when 

wind energy is introduced to the system. 

Table 5.6 Comparisons of the Two Area System without Wind Energy Integrations and 

with DFIG connected to Bus 1 

System Damping of Oscillation 

1 2 3 4 

With Wind 0.0887 0.0445 0.1432 0.9973 

No Wind 0.0876 0.0873 0.0502 N/A 

 

The locations of wind farm can have an impact on the system small signal stability. 

Figure 5.8 compares the complex eigenvalues of a DFIG replacing a synchronous at 

different buses. It shows that the locations do have an influence on the system 

eigenvalues. From Figure 5.8, when the DFIG replaces the synchronous generator at 

Bus 3, it has the complex eigenvalues that are closest to the y axis. 
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Figure 5.8 Effects of Different Wind Farm Locations on the Two Area Power System 

Table 5.7 presents the damping of each wind farm connection. It is shown that the 

system with a DFIG based wind farm replacing generator at Bus 3 produces the 

oscillation mode with the highest damping. The location of the DFIG has an impact 

on the system small signal stability. Connecting the DFIG base wind farming to 

certain locations can have better damping effects on the oscillations. 

Table 5.7 Comparisons of Damping of Different Wind Farm Locations in the Two 

Area Power System 

System Damping of Oscillation 

1 2 3 4 

Bus 1 0.0445 0.0887 0.1432 0.0997 

Bus 2 0.0751 0.0895 0.1006 0.0863 

Bus 3 0.0111 0.0849 0.1711 0.0867 

Bus 4 0.0619 0.0878 0.0967 0.0756 
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The wind energy impacts on small signal stability of the Two Area system without 

AVRs and PSSs are provided above. As presented in Chapter 4, negative real 

eigenvalues are eliminated when AVRs and PSSs are used. The DFIG base wind 

farms replacing synchronous generators equipped with AVRs and PSSs is discussed 

below. 

Five situations are considered, namely the base case with only synchronous generators, 

and four cases with a DFIG based wind farm replacing synchronous generators at 

different buses. The results of the eigenvalue analysis are given in Table G.2 in 

Appendix G. The complex eigenvalues of the Two Area system with AVRs and PSSs 

for different situations are shown in Figure 5.9. From Figure 5.9, it is shown that there 

are complex eigenvalues with positive real parts, which means the system is unstable 

when a DFIG based wind farm replaces a synchronous generator at certain bus. 

 

Figure 5.9 Comparisons of the Two Area Power System with AVRs and PSSs with 

DFIGs connected to Different Locations 
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For each situation, the complex eigenvalues with the lowest damping are shown in 

Figure 5.10. From Figure 5.10, when a DFIG based wind farm replaces the 

synchronous generator at Bus 1 or 2, the system has eigenvalues with positive real 

parts indicating the system is unstable. In general, the complex eigenvalues with the 

lowest damping move to the right when wind energy is introduced into the system. 

The values of the lowest damping are shown in Table 5.9. It is shown that the base 

case has the highest damping value. The wind energy integration has a negative 

influence on the system small signal stability. When the DFIG based wind farm 

replaces the synchronous generator at Bus 1 or 2, the lowest damping becomes a 

negative value. However, the connection at Bus 3 or 4 shows a positive damping 

value. A suitable location should be found to integrate wind energy into the system in 

order to avoid system insatiability.  

 

Figure 5.10 Comparisons of the Lowest Damping of the Two Area System with AVR 

and PSS 
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Table 5.9 Comparisons of the Lowest Damping of the Two Area System with AVR and 

PSS 

Base Case Bus 1 Bus 2 Bus 3 Bus 4 

0.0779 -0.0573 -0.0179 0.0245 0.0407 

 

In 5.2.1, eigenvalue analysis is used for small signal stability analysis of the Two Area 

systems without and with AVRs and PSSs when wind energy is integrated. The DFIG 

based wind farm in the Two Area system without AVRs and PSSs shows a positive 

effect while it shows a negative effect with the inclusion of AVRs and PSSs. 

 

5.2.2 Small Signal Stability Analysis of New England Power System with Wind 

Energy Integrations 

The small signal stability analysis of New England power system without wind 

energy integration was presented in Chapter 4. All generators in New England power 

system are equipped with AVRs and PSSs. In this section, the wind energy is 

introduced into New England power system. 

To investigate how wind energy integrations influence the small signal stability of 

New England power system, the synchronous generator at Bus 32 is replaced by a 

DFIG based wind farm with the same capacity. The complex eigenvalues are 

calculated for both without and with wind energy by PSAT and plotted in Figure 5.11. 
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All eigenvalues of both situations are on the left side. It is shown in Figure 5.11 that 

the complex eigenvalues of the case without wind energy integration move to right 

when the synchronous generator at Bus 32 is replaced by a wind farm. The system 

small signal stability is decreased. However, the system is still stable as the New 

England system is a large system with 10 machines and 39 buses. The effects of 

replacing a single synchronous generator with a DFIG based wind farm are 

diminished in a large system. 

 

Figure 5.11 Comparisons of New England Power System without Wind Energy 

Integrations and with DFIGs connected to Bus 32 

The eigenvalues with the lowest damping of both situations are compared in Table 

5.10. It is shown that the lowest damping is smaller when the wind farm replaces the 

synchronous generator. The system small signal stability is reduced by the integration 

of the DFIG based wind farm. 
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Table 5.10 Comparisons of the Lowest Damping of New England Power System 

without Wind Energy Integration and with DFIG connected to Bus 32 

System Mode Frequency Damping 

Without Wind Energy -0.1475±j4.3329 0.6896 0.034 

With Wind Energy -0.0007±j0.27 0.043 0.0026 

 

The rotor speed and rotor angle responses of New England power system with the 

wind farm replacement are shown in Figure 5.12 and 5.13 respectively. The 

disturbance applied to the system is 20% load increase from 1s to 1.1s. The responses 

show the system is stable under this disturbance. 

 

Figure 5.12 Rotor Speed of New England Power System with Wind Energy 
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Figure 5.13 Rotor Angle of New England Power System with Wind Energy 

 

5.4 Summary 

This chapter discusses the impacts of wind energy integrations on power system small 

signal stability. The detailed analysis of the SMIB systems with a synchronous 

generator and a DFIG are given and compared. It gives an insight into the small signal 

stability problem. It is shown that both the integrations of synchronous generators and 

DFIGs require a strong grid to maintain small signal stability.  

Two examples are given to investigate the influences of DFIG based wind farms 

replacement on Two Area and New England power systems. The analysis software is 

PSAT and the model of the DFIG based wind farm is the PSAT built-in model. The 

conclusions are summarized below. 
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 It is found that there are beneficial effects on small signal stability when a 

synchronous generator is replaced by a DFIG based wind farm in Two Area 

system without AVRs and PSSs. DFIGs equipped with power electronic 

converters have better dynamic performances than synchronous generators 

without suitable controllers.  

 In Two Area system, the DFIG replacements have negative impacts on the 

system small signal stability as all the replaced synchronous generators are 

equipped with AVRs and PSSs. The replacement of synchronous generators 

with DFIGs generally has a negative impact on power system small signal 

stability as sophisticated controllers are normally included in the generation 

units in a modern power system.  

 In New England power system, the wind energy integration also shows a 

detrimental effect as all the synchronous generators are equipped with AVRs 

and PSSs. However, the negative effect is smaller as the system is larger and 

the relative wind energy integration scale is lower. 

 More advanced dynamic control systems should be developed to facilitate the 

integration of DFIGs.  
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Chapter 6 

Conventional Transient Stability Analysis 

 

 

 

6.0 Introduction 

Transient stability of a power system should be maintained for secure and reliable 

operation. This chapter focuses on the conventional transient stability analysis of 

power systems. In section 6.1, the equal area criterion method is presented for 

demonstrating and explaining the transient stability phenomenon and the importance 

of critical fault clearing time. Then, more complex systems are presented in 6.2 for 

performing transient stability analysis on multimachine power systems using 

PowerWorld simulator. A summary is given in section 6.3.  

 

6.1 Power System Transient Stability Analysis  

Since maintaining the transient stability of a power system is of great importance, 

appropriate analysis methods have been developed to assess power system transient 

stability. Numerical, direct, pattern recognition, probabilistic, probabilistic, neural 
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network and expert system methods have been used for power system transient 

stability analysis. The detailed descriptions of these six methods are presented in [28]. 

At present, the most practical available method for transient stability analysis is time 

domain simulation where the nonlinear differential equations are solved using 

step-by-step numerical integration techniques [13]. The time domain simulation for 

systems without wind energy integrations is presented in this chapter.  

Time domain simulation is a widely-used method for power system transient stability 

analysis. This method requires the solution of the differential algebraic equations 

(DAEs) formed by the generation units and power system networks. Many specialized 

simulation software have been developed incorporating the time domain simulation, 

such as PowerWorld [14]. The models in the software are determined by the balance 

of accuracy and simulation time. 

  

6.1.1 Equal Area Criterion 

An easy-to-understand way of introducing the transient stability is equal area criterion, 

which can illustrate the system stability visually and determine the critical fault 

clearing time using the energy balance. However, it is not suitable for multimachine 

transient stability analysis. 

The swing equation in (4.5) can be transformed into (6.1). 

ቀ
ௗఋ

ௗ௧
ቁ

ଶ
= 

ఠೞሺିሻ

ு
 (6.1)                     ߜ݀



104 

 

The term 
ௗఋ

ௗ௧
 should be zero before the disturbance. For stable system, it should 

remain zero after the disturbance. After the disturbance, (6.2) can be obtained from 

(6.1). 

 ሺ ܲ − ܲሻ݀ߜ
ఋ

ఋబ
= 0                   (6.2) 

Where 

 . is the maximum rotor angleߜ  is the initial rotor angle andߜ

It can be interpreted from the energy balance aspect. Assuming that ߜଵ is the angle 

when the fault is cleared, the rotor energy gain is presented in (6.3) and the energy 

loss is presented in (6.4). 

ܧ =  ሺ ܲ − ܲሻ݀ߜ
ఋభ

ఋబ
=  ଵ                  (6.3)ܣ

௦௧ܧ =  ሺ ܲ − ܲሻ݀ߜ
ఋ

ఋభ
=  ଶ                  (6.4)ܣ

Figure 6.1 shows the relationships between power transfer curves and the rotor energy 

[13]. 

 

Figure 6.1 Relationship of Power Transfer Curve and Energy [13] 



105 

 

For a stable condition, area ܣଵ should be equal to ܣଶ. If area ܣଵ is larger than ܣଶ, 

it is an unstable condition. It can be interpreted as the energy gained is more than the 

energy lost, causing the rotor angle increase and making the system unstable. The 

pre-fault condition is at point a in Figure 6.1 where the mechanical power is equal to 

the electrical power transferred. During the fault, the power transfer curve changes 

and the mechanical power is larger than the electrical power transferred. The excess 

mechanical power causes the rotor angle to increase. The fault clearing angle ߜଵ 

determines the energy gain area ܣଵ. After the fault, the electrical power transferred is 

larger than the mechanical power which consumes the energy gained during the fault. 

The lost part of energy is area ܣଶ. If ߜଵ is too large, area ܣଶ cannot be equal to ܣଵ. 

The energy gained cannot be consumed, resulting in system instability. 

 

6.1.2 Case Study: Equal Area Criterion 

This case study is aimed demonstrating how to use equal area criterion for 

determining the critical fault clearing time. It gives the system tolerance for a specific 

large disturbance. The results are verified by numerical analysis using Matlab [29]. 

Figure 6.2 presents a simplified system of a synchronous generator connected to a 

large system through transmission lines. All the values of the parameters are shown in 

the figure. A three-phase fault occurs at Bus 3 of this system. It is assumed that the 

internal voltage of the synchronous generator does not change and the infinite bus 

voltage remains constant. Before the fault, the real power supplied to the infinite bus 
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is 1 pu at 0.95 power factor lagging. The fault is cleared by opening the circuit 

breakers at the end of Line 1-3 and 2-3. These circuit breakers then remain open. 

 

Figure 6.2 Simplified System 

The basic power transfer function through a transmission line is shown in (6.5). 

ܲ =
ாᇲா್


sin  (6.5)                           ߜ

Where 

  is the infinite bus voltage, ܺ௧ܧ ,ᇱ is the internal voltage of synchronous generatorܧ

is the equivalent reactance of the transmission line between synchronous generator 

internal voltage and infinite bus and ܲ  is the real power transferred from the 

synchronous generator to the infinite bus. 

The initial condition can be found from the steady state analysis. The internal voltage  

  is 0.4179ߜ ᇱ is 1.2812 pu and it is assumed constant. The initial rotor angleܧ

radians. Before the disturbance, ܺ௧ is calculated as (6.6). 

ܺ௧
 = ܺௗ

ᇱ + ்ܺோ +
భమሺభయାమయሻ

భమାభయାమయ
= 0.52 pu              (6.6) 

During the three-phase fault at Bus 3, Bus 3 is grounded and the system equivalent 



107 

 

circuit is shown in Figure 6.3 [16]. Using Thevenin equivalent theory, the equivalent 

reactance and voltage are calculated in (6.7) and (6.8) respectively. 

 

Figure 6.3 Simplified System Equivalent Circuit during Fault [16] 

ܺ௧
ௗ௨ = ܺௗ

ᇱ + ்ܺோ +
భమభయ

భమାభయ
= 0.4667 pu               (6.7) 

ܧ
 = ܧ

భయ

భయାభమ
= 0.3333 pu                    (6.8) 

To clear the fault, Line 1-3 and 2-3 are opened and the equivalent reactance between 

synchronous generator internal voltage and infinite bus becomes ்ܺ
௧, as shown in 

(6.9). 

ܺ௧
௧ = ܺௗ

ᇱ + ்ܺோ + ܺଵଶ = 0.6 pu                  (6.9) 

According to the variation of the equivalent reactance and voltage connected to the 

internal voltage of synchronous generator, the power transfer equations before, during 

and after fault are calculated below in (6.10) - (6.12). 

ܲ = 2.4638 sin  (6.10)                      ߜ

ௗܲ௨ = 0.9152 sin  (6.11)                    ߜ

ܲ௧ = 2.1353 sin  (6.12)                     ߜ
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The rotor mechanical power input ܲ is assumed constant as 1 pu. The equations 

used to calculate ܣଵ and ܣଶ are given in (6.13) and (6.14). 

ଵܣ = ଵߜ + 0.9152 cos ଵߜ − ሺߜ + 0.9152 cos  ሻ          (6.13)ߜ

ଶܣ = −2.1353 cos ߜ − ߜ + 2.1353 cos ଵߜ +  ଵ         (6.14)ߜ

Critical clearing angle can be calculated by making ܣଵ equals to ܣଶ. The critical 

clearing angle here is 1.9812 radians. Then, the critical clearing time can be obtained 

from the swing equation (4.5) as 0.3934 seconds.  

The numerical analysis is performed in Matlab to verify the calculated critical fault 

clearing time. Setting the clearing time to 0.34 seconds, the plot of rotor angle is 

shown in Figure 6.4, which is stable. Increasing the clearing time to 0.4 seconds, the 

plot of rotor angle is shown in Figure 6.5, which is unstable. It is shown that fault 

clearing time is critical for transient stability. Reducing the clearing time can enhance 

the system transient stability. 

 

Figure 6.4 Generator Rotor Angle when Fault Clearing Time is 0.34 seconds 
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Figure 6.5 Generator Rotor Angle when Fault Clearing Time is 0.4 seconds 

Equal area criterion serves as an introduction to the analysis of power system transient 

stability. A case study is given in this section to use the equal area criterion to 

determine the critical fault clearing time. The critical fault clearing time is verified by 

numerical analysis. It is shown that fault clearing time is critical for maintaining 

transient stability of power systems. 

 

6.2 Transient Stability Analysis using PowerWorld 

When a power system contains more than one generator, equal area criterion is not 

suitable to solve the problem. Time domain simulation should be employed for 

transient stability analysis of multimachine systems. PowerWorld simulator provides 

time domain simulation for power system transient stability analysis. The detailed 

implementation of time domain simulation will be presented in the next chapter. In 
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this section, two case studies are provided using PowerWorld for transient stability 

analysis. 

 

6.2.1 Case Study: Transient Stability Analysis of Five-Bus Two-Machine Power 

System 

The Five-Bus Two-Machine power system used for this case study is shown in Figure 

6.6. This system contains two generators, one generator connected to Bus One and the 

other generator connected to Three. Loads are connected at Bus Two and Bus Three. 

The machine models for representing the dynamics of synchronous generators are 

included. The system parameters are given in Appendix H. 

 

Figure 6.6 Five-Bus Two-Machine Power System 

A three-phase fault occurs at Bus 4 at 0 s and cleared at 0.05 s. The rotor angles of the 

two generators from time domain simulation are shown in Figure 6.7. The solid line 

represents the rotor angle of generator at Bus One, while the dash line represents the 

rotor angle of generator at Bus Three. It is shown that the magnitudes of both 
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oscillations are decreasing. Under the fault clearing time of 0.05 seconds the rotor 

angle oscillations are damped indicating the system is stable. The damping effect is 

not very effective in this case as the synchronous generators are only represented by 

simple machine models in PowerWorld. 

 

Figure 6.7 Generator Rotor Angles when Fault Clearing Time is 0.05 seconds of the 

Five-Bus Two-Machine System 

The rotor angles of the two generators are shown in Figure 6.8 when fault clearing 

time increases to 2.5 seconds. The system is unstable under this condition as the rotor 

angles continue to increase. Fault clearing time is critical for maintaining system 

transient stability. By trying different fault clearing time, the critical fault clearing 

time is found at around 2 s.  
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.  

Figure 6.8 Generator Rotor Angles when Fault Clearing Time is 2.5 seconds in the  

Five-Bus Two-Machine System 

In this case study, time domain simulation for multimachine power system transient 

stability analysis is discussed. It presents how to determine the stability condition and 

the critical fault clearing time using time domain simulation. The fault clearing time is 

crucial for ensuring system transient stability. 

 

6.2.2 Case Study: Transient Stability Analysis of New England Power System 

In this case study, the transient stability of the 10-machine New 

England power system is investigated. The one line diagram of the New England 

power system is given in Figure 4.9. The machine models and exciter models are 

included in the representation of the synchronous generators. This will be used as base 

case in 7.5.3 in the following chapter. A three-phase fault is applied at Bus 16 

occurring at 0.5 s and it is cleared after 0.05 second. 
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The rotor angles of generators at Bus 30 and Bus 34 are chosen within New England 

power system. The results from time domain simulation of generator rotor angles at 

Bus 30 and  Bus 34 are shown in Figure 6.9 and 6.10 respectively. With a fault 

clearing time of 0.05 seconds, the system is stable as the oscillations are damped.  

 

Figure 6.9 Generator Rotor Angle at Bus 30 of the New England Power System 
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Figure 6.10 Generator Rotor Angle at Bus 34 of the New England Power System 

The rotor angle responses of the generators at Bus 30 and Bus 34 are shown in Figure 

6.11 and 6.12 respectively, when the fault clearing time is increased from 0.05 second 

to 0.2 second. The rotor angles of both generators are increasing. The system is 

unstable when the fault clearing time is increased. 

 



115 

 

 

Figure 6.11 Generator Rotor Angle at Bus 30 of the New England Power System 

(Increased Fault Clearing Time) 

 

Figure 6.12 Generator Rotor Angle at Bus 34 of the New England Power System 

(Increased Fault Clearing Time) 

This section presented two case studies to demonstrate time domain simulation for 
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power system transient stability analysis using PowerWorld. 

 

6.3 Summary 

This chapter introduces the conventional power system transient stability analysis 

without wind energy integrations. The equal area criterion is presented first and a case 

study is also given. It is shown that the equal area criterion can be used to determine 

the critical fault clearing time for a simple system. Then, time domain simulation is 

performed on multimachine systems with more machines and buses. Case Studies 

show the importance of faulting clearing time in maintaining power system transient 

stability and the time domain simulation application in transient stability analysis. 
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Chapter 7 

Power System Transient Stability Analysis with 

Wind Energy Integrations 

 

 

 

7.0 Introduction 

This chapter presents how power system transient stability is affected when wind 

energy is integrated into a power system. The computational method of time domain 

simulation is presented in 7.1. The time domain simulation application on the SMIB 

with a synchronous generator is discussed in 7.2. The time domain simulations of 5th 

and 3rd order models of DFIGs are compared in 7.3. A mathematical model of a DFIG 

based wind generator system is built in Simulink and its transient behaviors are 

presented in 7.4. For transient stability analysis of large systems with wind energy 

integrations, PowerWorld simulator is used. Two case studies using PowerWorld are 

presented in 7.5. A summary is given in 7.6. 
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7.1 Time Domain Simulation for Transient Stability Analysis 

Unlike small signal stability analysis where the set of system equations can be 

linearized and the stability information is obtained from eigenvalue analysis, the 

differential algebraic equations (DAEs) are solved in transient stability analysis and 

the stability condition is observed from the system responses. It is not possible to 

solve DAEs analytically. Numerical analysis method is applied. 

Time domain simulation uses numerical analysis to get the system responses with 

respect to time. As mentioned in the previous chapters, the system dynamic behaviors 

can be described by DAEs, as shown in (7.1) and (7.2). 

ሶݔ = ݂ሺݔ, ,ݖ  ሻ                         (7.1)ݑ

0 = ݃ሺݔ, ,ݖ  ሻ                         (7.2)ݑ

The method of numerical integration is to get the next values of state variables from 

the current values by solving differential equations. The algebraic variables can then 

be obtained from the algebraic equations. The values of state and algebraic variables 

are updated step by step. 

The technique of numerical integration includes Euler method, Modified Euler 

method, Runge-Kutta (R-K) method and implicit integration method [13, 16]. Euler 

method is explained in detail here to illustrate how numerical method is applied to 

solve differential equations. 

Considering a differential equation in (7.3). 
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ௗ௫

ௗ௧
= ݂ሺݔሻ                       (7.3) 

At beginning, ݔ =  ,ଵ, calculating the slope at this pointݔ
ௗ௫భ

ௗ௧
= ݂ሺݔଵሻ. During a 

small interval ∆ݐ, it is assumed that the slope is constant. Then, the next state variable 

can be calculated by (7.4). 

ଶݔ = ଵݔ + ݔ∆ = ଵݔ +
ௗ௫భ

ௗ௧
 (7.4)                ݐ∆

The slope at ݔ = ݔ ଶ then can be calculated. The searching for next point ofݔ =  ଷݔ

is same as above steps.  

Euler method is a relatively simple method which requires a small interval ∆ݐ for 

accuracy [16]. In multimachine stability, the numerical integration is applied to solve 

the differential equations in (7.1) while the algebraic equations in (7.2) are solved by 

the power flow equations. 

The ode15s solver in Matlab is employed in this chapter to solve the DAEs. 

 

7.2 Time Domain Simulation Application on Synchronous Generators 

This section presents the application of time domain simulation on transient stability 

analysis and gives an insight into how the system DAEs are formed and solved using 

practical examples. The same system in 6.1.2 is used here. The system diagram is 

shown in Figure 6.3. Instead of using equal area criterion to determine the critical 

fault clearing time, the system is solved using time domain simulation. Two types of 
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synchronous generator models are applied in subsection 7.2.1 and 7.2.2 respectively. 

The system is solved by Matlab ode15s solver and verified by PowerWorld.  

 

7.2.1 Time Domain Simulation of Classical Model of Synchronous Generators 

The classical model is the most simplified model for a synchronous generator. The 

classical model of a synchronous generator is represented by a constant internal 

voltage ܧᇱ behind its direct axis transient reactance ܺௗ
ᇱ . Only the dynamics of the 

rotor are expressed. The differential equations of the classical model are presented in 

(7.5) and (7.6). 

ௗఋ

ௗ௧
= ߱ − ߱௦                          (7.5) 

ௗఠೝ

ௗ௧
=

ଵ

ଶு
ሾ ܶ − ܶሿ                       (7.6) 

The algebraic equation is formed by the power balance in (7.8) 

ܲ =
ாᇲா್


sin  (7.8)                        ߜ

In the per unit system, ܲ and ܶ are equal. Substituting (7.8) into (7.6) gives (7.9). 

ௗఠೝ

ௗ௧
=

ଵ

ଶு
ቂ ܶ −

ாᇲா್


sin  ቃ                  (7.9)ߜ

The values of ܧ and ܺ௧ in the above equation depend on the network condition as 

discussed in Chapter 6. Before the fault at Bus 3 in Figure 6.3, ܧ and ܺ௧ are 1 pu 

and 0.52 pu respectively. Then, a three-phase fault occurs at Bus 3 resulting in the 

equivalent ܧ and ܺ௧ change to 0.3333 pu and 0.4667 pu respectively. The fault is 
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cleared by opening Line 1-3 and 2-3 which results in new values of ܧ and ܺ௧ at 1 

pu and 0.6 pu respectively. 

The mechanical torque ܶ is assumed to be constant at 1 pu.  

The system in Figure 6.3 with the classical model of synchronous generators is solved 

in Matlab using ode15s solver and the same system is simulated in PowerWorld using 

the same classical model. The comparisons of the generator rotor angle and speed are 

shown in Figure 7.1 and 7.2. 

In Figure 7.1, the rotor angle oscillations from both Matlab and PowerWorld are 

decreasing with time. The system is stable under this disturbance. It is shown that the 

rotor angle and speed results from Matlab ode15s and PowerWorld are the same from 

0 second to 1.5 second. After 1.5 second, the results become different and this 

difference increases. This is because the ode15s solver and PowerWorld use different 

methods for solving the differential equations numerically. As described in 7.1, there 

are many techniques for performing the time domain simulation. There will be certain 

differences by using different solvers and the size of the difference depends on the 

type of solver, step size and error tolerance. 
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Figure 7.1 Comparisons of Rotor Angles from Matlab and PowerWorld of the 

Classical Model 

 

Figure 7.2 Comparisons of Generator Speeds from Matlab and PowerWorld of the 

Classical Model 

This section applies the classical model of synchronous generators in time domain 

simulation using Matlab and compared the results with PowerWorld. It gives the basic 
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understanding of performing time domain simulation for transient stability analysis 

with the simplest example and illustrates the differences caused by different numerical 

solvers. 

 

7.2.2 Time Domain Simulation of Two-Axis Model of Synchronous Generators 

The classical model provides the simplest way for representing the synchronous 

generators in dynamic analysis. It is only appropriate for the most basic studies [16]. 

A more realistic Two-axis model is presented here.  

The internal voltage of the synchronous generator is not represented by a constant 

voltage ܧᇱ in the Two-axis model. It is represented by the dynamic internal voltages 

in d-q reference frame, ܧ
ᇱ  and ܧௗ

ᇱ . The dynamics of ܧ
ᇱ  and ܧௗ

ᇱ  are given in the 

differential equations (7.10) and (7.11). As shown in (7.10), the dynamic of ܧ
ᇱ  is 

related to the excitation voltage, ܧௗ, which is used for connecting the exciter model. 

However, the excitation system is not considered here and ܧௗ is assumed to be 

constant during the period of interest. 

ௗா
ᇲ

ௗ௧
=

ଵ

்బ
ᇲ ܧ−ൣ

ᇱ − ሺܺௗ − ܺௗ
ᇱ ሻܫௗ +  ௗ൧             (7.10)ܧ

ௗா
ᇲ

ௗ௧
=

ଵ

்బ
ᇲ ௗܧ−ൣ

ᇱ + ൫ܺ − ܺ
ᇱ ൯ܫ൧                (7.11) 

Combining the above two equations with (7.5) and (7.6) gives the fourth order model 

for the synchronous generator. The dynamic model of the Two-axis model is the same 

as the one used for small signal stability analysis, given in (5.5)- (5.9). 
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The algebraic equations follow the reference [16] in order to be comparable with the 

results from PowerWorld. The algebraic equations that connect the internal voltages 

with the terminal bus voltage are shown in (7.12) and (7.13). 

ܧ
ᇱ = ܸ + ܺௗ

ᇱ  ௗ                        (7.12)ܫ

ௗܧ
ᇱ = ௗܸ − ܺ

ᇱ                          (7.13)ܫ

Equations (7.14) and (7.15) give the conversions of voltages and currents from in          

rotating d-q frame to in stationary network frame. These conversions connect the 

generator quantities with the network quantities.  

 ܸ

ܸ
൨ = ቂ sin ߜ cos ߜ

− cos ߜ sin ߜ
ቃ  ௗܸ

ܸ
൨                  (7.14) 


ܫ
ܫ

൨ = ቂ sin ߜ cos ߜ
− cos ߜ sin ߜ

ቃ 
ௗܫ
ܫ

൨                  (7.15) 

The algebraic equations representing the generator terminal and the infinite bus are 

given in (7.16) and (7.17).  

ܸ = −ܺ௧ܫ +                        (7.16)ܧ

ܸ = ܺ௧ܫ                         (7.17) 

This model is also applied to the same system in Figure 6.3 and the same disturbance 

is employed as used in the subsection 7.2.1. The system responses obtained from 

Matlab ode15s solver and PowerWorld are given in Figure 7.3 - 7.6.  

It is shown that the results from Matlab and PowerWorld basically match. The 

responses of the generator rotor angle and speed are shown in Figure 7.3 and 7.4. 
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Both oscillations are damped, indicating the system is stable. The fault clearing 

scheme works well to maintain the system transient stability. Comparing the results 

from ode15s solver and PowerWorld, the oscillation magnitudes are smaller in 

PowerWorld of both rotor angle and speed after 0.5 second. As mentioned before, the 

DAEs solver in PowerWorld is different from the one used in Matlab ode15s solver. 

 

Figure 7.3 Comparisons of Rotor Angles from Matlab and PowerWorld of  

the Two-Axis Model 
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Figure 7.4 Comparisons of Generator Speeds from Matlab and PowerWorld of the 

Two-Axis Model 

Figure 7.5 and 7.6 present the responses of the synchronous generator internal voltage 

in q and d axis. The variations of these two quantities come from (7.10) and (7.11), 

while the internal voltage is assumed constant in the classical model. The results from 

Matlab and PowerWorld are very close. 

 

Figure 7.5 Comparisons of Internal Voltage ܧ
ᇱ  from Matlab and PowerWorld of the 

Two-Axis Model 
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Figure 7.6 Comparison of Internal Voltage ܧௗ
ᇱ  from Matlab and PowerWorld of the 

Two-Axis Model 

This section presented the time domain simulation for transient stability analysis of a 

SMIB system with a synchronous generator. Classical and Two-axis models are 

adopted for representing the synchronous machine. The DAEs are formed for the 

studied system and solved using Matlab ode15s solver. The results from ode15s solver 

are compared with the results from PowerWorld. 

 

7.3 Analysis and Simulation of DFIGs  

The transient stability performances of a DFIG based wind generation system are 

presented in this section. This section introduces simulation of DFIGs using the 

ode15s solver and Simulink model. The 5th and 3rd order models of DFIGs are first 
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compared in subsection 7.3.1. A DFIG based system is implemented in Simulink and 

its transient behaviors during different disturbances are presented in subsection 7.3.2. 

 

7.3.1 Comparison of 5th and 3rd Order DFIG Models 

To analyze the impacts of DFIGs on power system transient stability, the DFIGs 

should be understood and appropriately modeled. This section performs analysis and 

simulation on a SMIB system with a DFIG. For modelling of DFIGs, choosing 

between 5th or 3rd order models are considered in power system analysis [30]. This 

section compares the 5th order and the 3rd order models. The DAEs formed are solved 

by ode15s solver. 

The 5th order model has been given in (5.19) - (5.23) and repeated here in (7.18) - 

(7.22). This model includes the stator flux transients, which includes the differential 

equations for stator currents ܫௗ௦ and ܫ௦. 

ೞ
ᇲ

ఠೞ

ௗூೞ

ௗ௧
= ௗܸ௦ − ቀܴ௦ +

ೞିೞ
ᇲ

బ்
ᇲ ቁ ௗ௦ܫ −

ఠೝ

ఠೞ
ௗܧ

ᇱ −


ೝೝ
ௗܸ +

ଵ

బ்
ᇲ ܧ

ᇱ + ܺ௦
ᇱܫ௦   (7.18) 

ೞ
ᇲ

ఠೞ

ௗூೞ

ௗ௧
= ܸ௦ − ቀܴ௦ +

ೞିೞ
ᇲ

బ்
ᇲ ቁ ௦ܫ −

ఠೝ

ఠೞ
ܧ

ᇱ −


ೝೝ
ܸ −

ଵ

బ்
ᇲ ௗܧ

ᇱ − ܺ௦
ᇱܫௗ௦   (7.19) 

ௗா
ᇲ

ௗ௧
= ሺ߱௦ − ߱ሻܧ

ᇱ −
ఠೞ

ೝೝ
ܸ −

ఠೞ

బ்
ᇲ ௗܧൣ

ᇱ − ሺܺ௦ − ܺ௦
ᇱሻܫ௦൧      (7.20) 

ௗா
ᇲ

ௗ௧
= −ሺ߱௦ − ߱ሻܧௗ

ᇱ +
ఠೞ

ೝೝ
ௗܸ −

ఠೞ

బ்
ᇲ ܧൣ

ᇱ + ሺܺ௦ − ܺ௦
ᇱሻܫௗ௦൧     (7.21) 

ௗఠೝ

ௗ௧
=

ଵ

ଶு
൫ ܶ − ௗܧ

ᇱ ௗ௦ܫ − ܧ
ᇱ  ௦൯                (7.22)ܫ

As presented in 5.1.2, the 5th order model of the DFIG has a high frequency low 
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damping mode from the eigenvalue analysis. This mode is referred to as ‘stator mode’ 

as it has the highest participation factor with stator currents ܫௗ௦ and ܫ௦. As the focus 

of power system transient stability is on the low frequency oscillations, such high 

frequency oscillation is not of interest. The 3rd order model eliminates the differential 

equations for the stator currents to simplify the model.  

In this 3rd order model, the stator flux transients are neglected in the basic equations. 

Thus, the differential terms of stator currents are eliminated and (7.8) and (7.9) 

become the algebraic equations, as given in (7.23) and (7.24). 

−ܴ௦ܫௗ௦ + ܺ௦
ᇱܫ௦ + ௗܧ

ᇱ − ௗܸ௦ = 0               (7.23) 

−ܴ௦ܫ௦ − ܺ௦
ᇱܫௗ௦ + ܧ

ᇱ − ܸ௦ = 0               (7.24) 

The rotor voltages are assumed constant during the transient period when the focus is 

on the dynamics of the generator itself rather than the control schemes that are applied 

to it. 

The DFIG is connected to an infinite bus through a transmission line as shown in 

Figure 5.4. The algebraic equations are the same as the one for small signal stability 

analysis in (5.28) and (5.29). The algebraic equations are repeated here in (7.25) and 

(7.26).  
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= 0       (7.26) 

A transmission line switch disturbance is applied here, causing the transmission line 

reactance ܺ௧ to drop from 0.55 pu to 0.192 pu. The above equations are solved in 

Matlab using ode15s solver. The system responses of the two models are plotted in 

Figure 7.7-7.10. All the plots stabilized at the new values, indicating the system is 

stable. 

The electromagnetic torques and terminal bus voltage magnitudes are shown in Figure 

7.7 and 7.8 respectively. 

 

Figure 7.7 Comparisons of Electromagnetic Torques of 5th Order and 3rd Order 

Models of a DFIG 
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Figure 7.8 Comparisons of Generator Terminal Voltages of 5th Order and 3rd Order 

Models of a DFIG 

The inner voltages ܧௗ
ᇱ  and stator currents ܫௗ௦ of the two models are shown and 

compared in 7.9 and 7.10.  

 

Figure 7.9 Comparisons of Generator Inner Voltages of 5th Order and 3rd Order 

Models of a DFIG (ܧௗ
ᇱ ) 
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Figure 7.10 Comparisons of Generator Stator Currents of 5th Order and 3rd Order 

Models of a DFIG (ܫௗ௦) 

As shown in the simulation results, extra high frequency oscillations are included in 

the 5th order model. The results match with the results of eigenvalues analysis. The 

high frequency oscillation is mostly related to the stator current as shown in Figure 

7.10, while it does not affect the internal voltage shown in Figure 7.9. However, the 

trend for low frequency oscillation is the same. In the 5th order model, more accurate 

simulation results are obtained with the inclusion of the stator flux transients. In the 

3rd order model, the stability can be determined from the low frequency oscillation 

and computational burden can be reduced with the exclusion of the stator flux 

transients. As the main concern of power system stability is the low frequency 

oscillation, it is practical to use the 3rd order model. Choosing between these two 

models depends on the balancing between simulation accuracy and computation time.   
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7.3.2 Simulation and Analysis of a DFIG based Wind Generation System and its 

Transient Behaviors 

A DFIG based wind generation system is discussed here and its mathematical model 

is implemented in Simulink. Two disturbances are applied to it to investigate its 

transient behaviors.  

The overall DFIG based wind generation system block diagram is shown in Figure 

7.11. The DFIG is modeled as the 3rd order model which only gives out the low 

frequency oscillations of the system dynamics. The rotor is modeled as a two-mass 

model and the wind turbine is also included. The rotor side converter provides the 

decoupled control to the rotor. The grid side converter is not considered in this model, 

which is not necessary for power system low frequency oscillation studies. It can be 

assumed the grid side converter manages to keep DC capacitor voltage constant and 

supply power at unity power factor. 
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Figure 7.11 DFIG based Wind Generation System Block Diagram 

The simulated system implemented in Simulink is shown in Figure 7.12. 

 

Figure 7.12 Model Implemented in Simulink  

The 3rd order model of a DFIG is given above in (7.20), (7.21), (7.23) and (7.24) 
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while the two-mass model introduced in Chapter 2 in (2.5) - (2.7) is used to replace 

the one-mass model in (7.22). 

The wind turbine mechanical model has been discussed in Chapter 2 in 2.6.2.1. The 

control aim is to operate at the optimal point to extract maximum power from the 

wind under the rated wind speed. In this model, only the speed below the rated wind 

speed is considered. 

The variation of the mechanical torque with respect to the rotor speed under different 

wind speeds from 6 m/s to 14 m/s is plotted in Figure 7.31 using (2.1). It is shown that 

for a specific wind speed, there is a peak mechanical torque. Under the rated wind 

speed, the control goal is to get the maximum mechanical power. This is achieved by 

forming an optimal curve to find the optimal point for each wind speed and feeding to 

the torque controller as the reference torque [31]. The maximum points for each wind 

speed is found and connected by the red line in Figure 7.13. The optimal power curve 

is found using these maximum points and is plotted in the dash line in Figure 7.13. 

Equation (7.27) is used as the optimal curve for torque control to extract the 

maximum power from the wind under the rated wind speed.  

ܶ௧ = 0.2821߱
ଷ + 0.3241߱

ଶ + 0.4386߱ − 0.0992         (7.27) 
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Figure 7.13 Mechanical Torque vs Rotor Speed 

The decoupled control of the rotor side converter has been discussed in 2.6.2.4. As 

shown in (2.36) and (2.35), the electromagnetic torque ܶ and stator reactive power 

ܳ௦ determine the rotor currents ܫ and ܫௗ. The rotor currents then determine the 

rotor voltages ܸ and ௗܸ. A two stage PI controller is applied for electromagnetic 

torque ܶ and stator reactive power ܳ௦ control respectively, as shown in Figure 7.14 

and 7.15. 

 

Figure 7.14 Torque Controller for Rotor Side Converter 
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Figure 7.15 Reactive Power Controller for Rotor Side Converter 

The common disturbances for a wind generation system are the variations of wind 

speed and terminal bus voltage. Two disturbances are applied to the above system. 

One is the wind speed changing from 12 m/s to 13 m/s at 20 seconds and the other 

one is the terminal voltage dropping from 1 pu to 0.5 pu at 40 seconds. These two are 

the most common and significant disturbances that a wind generator encounters in the 

real world. The system responses are shown in Figure 7.16-7.24.  

The mechanical torque from the wind turbine increases at 20 s in Figure 7.16. As 

shown in Figure 7.17 and 7.18, the rotor speed and the turbine speed are all increased 

due to the increase of the wind speed. The calculated reference torque for 

electromagnetic torque in Figure 7.19 also increases and the electromagnetic torque in 

Figure 7.20 follows. The active power and reactive power from the stator are shown 

in Figure 7.21 and 7.22. As the wind speed increases, the active power also increases 

while the reactive power is kept at zero. The rotor currents ܫௗ and ܫ are shown in 

Figure 7.23 and 7.24 respectively. At 20 s, ܫௗ increases to maintain the reactive 

power at zero and ܫ is kept constant. Active power and reactive power from a 
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DFIG is controlled by ܫ and ܫௗ separately. With the power electronic devices, 

DFIGs do not participate in power system oscillation. 

The voltage drop disturbance does not affect the wind turbine mechanical torque in 

Figure 7.16. The rotor speed and turbine speed experience small oscillations as the 

electromagnetic torque is affected as shown in Figure 7.20. The voltage drop brings 

oscillations to active and reactive power. However, they stabilize at the same values as 

the values before the voltage drop. This is accomplished by the adjustments of 

currents injected into the rotor as shown in Figure 7.23 and 7.24. The rotor currents 

have a dramatic change after the voltage drop as the rotor currents are very sensitive 

to the terminal voltage change. ܫௗ increases from 1.2 pu to 2.3 pu. In this model, no 

limitation is implemented on the rotor currents. However, the rotor currents are 

limited by the power electronic converter capacity in an actual DFIG system. Thus, 

the low voltage ride through (LVRT) is a critical problem for DFIG based wind 

generators. Due to the limitations of power electronic converter capacity, the reactive 

power supplied from DFIGs is restricted and its effects on power systems are 

discussed in Chapter 3. 
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Figure 7.16 Mechanical Torque Response of the DFIG System 

 

Figure 7.17 Rotor Speed Response of the DFIG System 
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Figure 7.18 Turbine Speed Response of the DFIG System 

 

Figure 7.19 Reference Torque Response of the DFIG System 
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Figure 7.20 Electromagnetic Torque Response of the DFIG System 

 

Figure 7.21 Active Power Response of the DFIG System 
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Figure 7.22 Reactive Power Response of the DFIG System 

 

Figure 7.23 ܫௗ Response of the DFIG System 
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Figure 7.24 ܫ Response of the DFIG System 

The 5th and 3rd order models of DFIGs are compared and it is shown that the higher 

order model includes a high frequency oscillation. A comprehensive DFIG base wind 

generator is implemented in Simulink with the decoupled control method. The 

transient behaviors of a DFIG during different disturbances are shown. The critical 

problem of LVRT is discussed. This section gives an investigation on the transient 

behaviors of a single DFIG based generation system. 

 

7.4 Transient Stability Analysis with Wind Energy Integrations using 

PowerWorld 

For analyzing the transient stability of larger power systems, PowerWorld simulator is 

used. The generic GE dynamic model of wind generators included in PowerWorld is 



144 

 

used. For wind generators in PowerWorld, wind electrical machine model is 

represented by machine model, wind generator controller model is represented by 

exciter model and wind turbine mechanical model is represented by governor model.  

The impacts of wind generators on power system transient stability have been 

explored by several papers [8, 32- 36]. Two simple systems are used in [32] and [33] 

for analyzing the impacts of DFIGs integration, which demonstrate certain beneficial 

effects. Analysis on a large system is presented in [8], which shows both beneficial 

and detrimental effect on power system dynamics under different scenarios. Besides 

on simulations, different transient stability indices are used for quantifying the effect 

of DFIGs integration [34]. More insights into the mechanisms that cause the 

influences are given [35] and [36]. This section aims to combine transient stability 

index and time domain simulation to analyze a simple and a complex system to obtain 

general conclusions. 

 

7.4.1 Transient Stability Evaluation Index 

Time domain simulation gives the system responses for a specific disturbance. Other 

general ways of expressing the system transient stability are needed. Two transient 

stability evaluation indices are introduced here, which are used for giving a general 

assessment of the overall system transient stability. 

Critical fault clearing time is an important transient stability evaluation index. It gives 

the system tolerance for a specific large disturbance. Critical fault clearing times from 
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systems with and without wind energy integration of the same fault are used to reveal 

the impact that wind energy has on the power system transient stability. 

Another transient stability evaluation index is transient stability index (TSI), defined 

in (7.39) [8]. 

ܫܵܶ =
ଷିఋೌೣ

ଷାఋೌೣ
                     (7.39) 

 ௫ is the largest rotor angle separation between two generators in the systemߜ

during the fault. When TSI is larger than zero, the system is stable. When TSI is 

smaller than zero, the system is unstable. Its value indicates the stability level of the 

system. TSI will also be used in this research to give additional index for assessing 

transient stability of power systems. 

 

7.4.2 Case Study: Transient Stability Analysis of 9 Bus Power System with Wind 

Energy Integrations 

This section uses a 9 Bus power system with three generators to discuss how the 

integration of a DFIG based wind farm can influence the system transient stability. 

The one line diagram of the 9 Bus power system is shown in Figure 7.25 [14]. The 

system data is given in Appendix L. In the base case system, all three generators are 

synchronous generators with machine, exciter and governor models. To see how the 

wind energy integration affects the system transient stability, the synchronous 

generator at Bus 3 is replaced by a DFIG based wind farm with the same capacity.  
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Figure 7.25 One Line Diagram of the 9 Bus Power System 

The models used for generators at Bus 3 in PowerWorld are given in Table 7.1.  

Table 7.1 Models Used in PowerWorld for Generator at Bus 3 

Model DFIG Synchronous 

Machine GEWTG GENROU 

Exciter/Electrical EXWTGE IEEET1 

Governor/Mechanical WNDTGE TGOV1 

 

A three-phase fault is applied to Bus 4- 9 and the critical fault clearing times of base 

case and wind energy case are recorded in Table 7.2. It is shown that replacing the 

synchronous generator with a DFIG based wind farm increases the critical fault 

clearing time for faults at Bus 4- 6 while it decreases the critical fault clearing time for 

faults at Bus 7- 9. For different disturbances, DFIGs replacement has either positive 

or negative impact on the system transient stability.   
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Table 7.2 Critical Fault Clearing Time Comparison 

Critical Fault Clearing Time Base Case Wind Energy 

Bus 4 0.25625 0.29 

Bus 5 0.30625 0.3175 

Bus 6 0.34125 0.47 

Bus 7 0.18125 0.174 

Bus 8 0.2475 0.2 

Bus 9 0.20625 0.2 

 

In Table 7.2, the largest increase in critical fault clearing time is when a three-phase 

fault is applied to Bus 6. The critical fault clearing time increases by 0.12875 seconds. 

The rotor angle responses of generators at Bus 1 and Bus 2 for the base case and wind 

energy case are shown in Figure 7.26 and 7.27 respectively when the fault clearing 

time is 0.1 seconds. It is shown that the magnitudes of the oscillations of generators at 

Bus 1 and Bus 2 are all reduced when a DFIG based wind farm replaces the 

synchronous generator at Bus 3. For the base case, the largest rotor angle separation 

between generators at Bus 1 and 2 is 74.0473o and the TSI equals to 65.8805%. For 

the wind energy case, the largest rotor angle separation is 67.2995o and the TSI equals 

to 68.5001%. With the DFIG base wind farm replacing the synchronous generator at 

Bus 3, the largest rotor angle separation between generators at Bus 1 and 2 decreases 

by 6.7478o and the TSI increases by 2.6196%. It indicates that DFIGs replacement 

enhances the system rotor angle transient stability for three-phase fault at Bus 6. 
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Figure 7.26 Rotor Angle Responses of Generator at Bus 1 (Fault at Bus 6) 

 

Figure 7.27 Rotor Angle Responses of Generator at Bus 2 (Fault at Bus 6) 

The comparison of voltages at Bus 3 is shown in Figure 7.28 when a fault occurs at 

Bus 6 and cleared after 0.1 second. During the fault, the bus voltage drops to a lower 

value when a DFIG based wind farm replaces the synchronous generator at Bus 3. 

The reactive power output from the synchronous generator and the DFIG based wind 

farm are compared in Figure 7.29. It is shown that the synchronous generator can 
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provide more reactive power to support the bus voltage during the fault. The 

capability of DFIG voltage control cannot match that of a synchronous generator 

since its power converters have a limited capacity [35]. Due to this difficulty, many 

research efforts have been devoted to better control the DFIG for supporting the 

system during the fault [35, 37].  

 

Figure 7.28 Comparison of Bus 3 Voltage (Fault at Bus 6) 

 

Figure 7.29 Comparison of Reactive Power Output (Fault at Bus 6) 
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In Table 7.2, the largest decrease in critical fault clearing time is when a three-phase 

fault is applied to Bus 8. The critical fault clearing time decreases by 0.0475 seconds. 

The rotor angle responses are shown in Figure 7.30 and 7.31 respectively when the 

fault clearing time is 0.1 second. It is shown in Figure 7.30 that even though the 

critical fault clearing time increases in the wind energy case, it still has certain 

damping effects on the generators rotor angle oscillation at Bus 1. This is because 

wind turbines of DFIGs do not participate in electromechanical oscillations which 

reduce the number of synchronous generators engaged in power system oscillation. 

However, the beneficial effect on the rotor angle oscillation is reduced when 

compared to the fault at Bus 6. The rotor angle oscillations of generator at Bus 2 are 

basically the same as shown in Figure 7.31. In the base case, the largest rotor angle 

separation between generators at Bus 1 and 2 is 85.4257o and the TSI is 61.64% when 

a three-phase fault occurs at Bus 8. The largest rotor angle separation is 80.1102o and 

the TSI is 63.60% in the wind energy case. Comparing these quantities with those 

obtained from previous fault at Bus 6, the beneficial effect is reduced. 
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Figure 7.30 Rotor Angle Responses of Generator at Bus 1 (Fault at Bus 8) 

 

Figure 7.31 Rotor Angle Responses of Generator at Bus 2 (Fault at Bus 8) 

When applying a fault at Bus 8 and cleared after 0.2475 second. The rotor angles of 

the base case are shown in Figure 7.32 and the rotor angles of the wind energy case 

are shown in Figure 7.33. Under this fault, the system is stable for the base case while 

unstable for the wind energy case. Considering this, the system transient stability is 

reduced with the wind energy integration. 
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Figure 7.32 Rotor Angle Responses of Base Case System 

 

Figure 7.33 Rotor Responses of Wind Energy Case 

This case study presents the impacts that DFIGs have on the power system transient 

stability using a small power system with 9 buses and 3 generators. It is hard to give a 

definitive conclusion on the impacts of large scale wind energy integrations. The 

impact of wind energy integrations on power system transient stability is a 

complicated problem and it can have either positive or positive impact under different 
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considerations. The power electronic devices decouple the mechanical parts of the 

DFIGs from the electrical parts connecting to the grid. It reduces the number of 

synchronous generators participating in the oscillations which could reduce rotor 

angle oscillations of synchronous generators in some cases. However, with the 

limitation of the capacity of the power electronic converters, the reactive power 

supplied from the DFIGs are providing insufficient support to terminal bus voltage. 

Advanced technique should be developed to diminish the negative impacts of large 

scale wind energy integrations. 

 

7.4.3 Case Study: Transient Stability Analysis of New England Power System 

The New England power system with 39 buses and 10 machines is used in this second 

case study. The one line diagram of the New England power system is shown in 

Figure 4.9 and the system data are given in Appendix D. Three cases are considered 

here. The first case is the base case New England power system while the other two 

cases are generator at Bus 32 and Bus 36 replaced by a DFIG based wind farm 

respectively. A three-phase fault is applied to Bus 16 at 0.5 s and cleared after 0.05 

seconds. All generators used in this case study only contain the machine models and 

excitation models. 

There are totally 39 buses within the New England power system and two buses are 

picked for analysis. The comparisons of the rotor angles at Bus 30 and 34 are given in 

Figure 7.34 and 7.35 respectively. It can be observed that the impact from the wind 
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farm replacement on rotor angle responses is smaller as the system is larger. The 

relative wind energy penetration is lower in a large system.  

From Figure 7.34 and 7.35, it is shown that DFIGs replacement at Bus 32 has a 

negative effect on damping the rotor angle oscillation, while the DFIGs replacement 

at Bus 36 offers improvement to the rotor angle stability. As the wind generators do 

not participate in oscillations and cannot provide damping torques, if they replace 

synchronous generators with significant damping effects in the system, they will 

produce detrimental effects on the power system transient stability. It shows that many 

factors are included in wind energy integrations and it is hard to get a universal 

conclusion. The results come from the balancing between the positive and negative 

factors. 

 

Figure 7.34 Generator 30 Rotor Angle Responses of the New England Power System 
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Figure 7.35 Generator 34 Rotor Angle Responses of the New England Power System 

The comparisons of reactive power and bus voltage of Bus 32 from the base case and 

the case with DFIGs at Bus 32 are shown in Figure 7.36 and 7.37. It shows the similar 

features as in the previous 9 Bus power system case study. The reactive power from 

the DFIG based wind farm is limited and cannot provide sufficient support for the bus 

voltage, which drops to a lower value during the fault. 
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Figure 7.36 Reactive Power Output Comparison at Bus 32 of the New England Power 

System 

 

Figure 7.37 Bus Voltage Comparison at Bus 32 of the New England Power System 

The New England power system is used in this case study. The effects of the DFIGs 

integration become smaller as the system gets larger and the penetration of wind 

energy decrease relatively. Replacing a synchronous generator at different buses will 
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either decrease or increase the transient stability, depending on the damping effect of 

the replaced synchronous generator provided to the system and the damping effect of 

the DFIG base wind farm. 

It should be noted that the output variations of the wind farms are not considered in 

the above two case studies in section 7.4 and 7.5. The impact of wind farms 

unpredictable outputs on power system operations are discussed in Chapter 3. This 

chapter focuses on the effects that DFIGs have on the power system transient stability. 

If the unpredictable feature of the wind farms power outputs is considered, it might 

have further negative effects on the transient stability. 

 

7.5 Summary 

This chapter focuses on the power system transient stability analysis with wind energy 

integrations.  

 Time domain simulation is first applied to a SMIB system with a synchronous 

generator. Two models of the synchronous generator are considered. The 

formed DAEs are solved in Matlab and verified by PowerWorld. It gives the 

basic understanding of conducting time domain simulation.  

 5th and 3rd order models of DFIGs are compared using time domain simulation. 

It is found that the 5th order model includes the high frequency oscillation with 

the inclusion of the stator flux transients. The 3rd order model reveals only the 
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low frequency oscillation, which can reduce the computational burden in 

power system analysis. 

 A mathematical model of DFIG based wind generator with decoupled control 

is implemented in Simulink. The wind speed increase and terminal voltage 

drop disturbances are applied to the system. It is shown that the DFIG 

generation system generates more power when wind speed increases and the 

rotor currents are largely affected by low terminal voltage variations. With the 

power electronic devices, DFIGs do not participate in the power system 

oscillation and the reactive power supplied from a DFIG is limited by the 

capacity of power electronic converter. 

 In the 9 Bus system, it is found that the DFIGs replacement increases and 

decreases critical fault clearing time for different faults. The integration of the 

DFIG based wind farm improves the rotor angle stability while it decreases the 

voltage profiles.  

 From the New England power system, the DFIGs replacement shows different 

effects as it depends on whether the damping effect provided by DFIG can be 

higher than the replaced synchronous generator. Careful consideration is 

required when replacing a synchronous generator with dedicated controllers 

and significant damping on the system.  

 Many factors are influencing the power system transient stability with wind 

energy integrations. It is difficult to give an overall definitive conclusion. The 

effects of wind energy integration in power systems are better determined on a 
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case by case basis.  
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Chapter 8 

Conclusions and Future Work 

 

 

 

8.1 Conclusions 

The desire for integrating more wind farms into power systems to reduce the 

environmental pollutions from fossil fuel and tackle the energy crisis is on the 

increase. However, the integrations of large scale wind energy have presented great 

challenges to power system operation. These challenges should be understood in order 

to maintain the reliable and secure operation of a power system. Doubly Fed 

Induction Generator (DFIG), the most popular type of wind generators, and its effects 

on power system operation are discussed in this thesis. The effects of the DFIG 

integration on power system steady state, small signal stability and transient stability 

are the focus of this thesis.  

The wind energy developments and technologies were introduced and the details of 

DFIGs are discussed. Power system steady state operation with wind energy 

integrations is presented. Both power system small signal stability and transient 

stability analysis with DFIGs are discussed in detail. Case studies are given for each 
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of the analysis. 

The following conclusions are made from the studies presented in this thesis. 

 A DFIG based wind farm is represented by a PV bus generator with fixed real 

power and limited reactive power capability in steady state operation while a 

DFIG is basically an induction machine with rotor voltage not equal to zero in 

dynamic simulations. 

 Wind generators with power electronic devices have a better performance in 

power system steady state operation. The location and connection scheme of a 

wind farm should be carefully planned to optimize the overall system 

performances. The intermittency of the wind farm power output is its largest 

drawback, which causes system voltage drops and insecurity. 

 The integration of DFIGs has certain positive effects on damping the low 

frequency oscillations when a synchronous generator without controller is 

replaced by a wind farm as shown in Chapter 5. However, the negative 

impacts are shown when a synchronous generator with appropriate controllers 

is replaced. In modern power systems, synchronous generators are normally 

equipped with suitable controllers. The DFIGs replacement will cause a 

reduction on the small signal stability. Some factors can be optimized, such as 

connecting to a strong grid and different connection locations to minimize the 

negative effect.  

 The DFIGs improve the rotor angle stability in some cases because the 
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mechanical and electrical components are decoupled by the power electronic 

converters. DFIGs decrease the voltage profiles during the fault as the reactive 

power supplied from the DFIGs is limited. It has detrimental effects on the 

system transient stability when a synchronous generator with significant 

damping effects is replaced by a DFIG based wind farm. 

 From the steady state and dynamic analysis, the practical energy storage 

technologies and advanced dynamic controllers are required to further enlarge 

the sharing of wind energy in electricity generation market. 

 There are no clear conclusions for the effects brought by wind energy 

integrations. It should be determined case by case using appropriate analysis 

methods. It depends on the balancing of beneficial effects of the integrated 

DFIGs and the replaced synchronous generators in the studies system. 

 

8.2 Future Work 

Some suggestions are listed below for future work as an extension of this thesis. 

 Besides DFIGs, other types of wind generators can be used to investigate their 

effects on power system operation and compare the performances with each 

other. 

 For steady state analysis, the contingency analysis may be extended to N-2. 

The optimization of the system with wind energy integrations may be included 



163 

 

depending on local government policies. 

 For the dynamic analysis, more complex wind generator models may be used 

and the control of the DFIGs may be investigated to minimize the negative 

effects. 

 In this thesis, the largest system used is the New England system with 39 

buses and 10 machines. A larger and complex system can be used for further 

analysis. 
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Appendix A: 7 Bus Power System  

Appendix A contains the data of 7 Bus power system [16] discussed in the thesis. The 

generation schedule and load demand are presented in Table A.1 and A.2 respectively 

Table A.1 Generation Schedule and Generator Limits of 7 Bus Power System 

 

 

 

 

 

 

 

 

 

     

  

 

 

 

 

 

 

Bus 
Real Power 

Generation (MW) 
Maximum Real Power 

 Generation (MW) 

Minimum Real 
Power  

Generation (MW) 

1 103.1 400 0 

2 164.37 500 100 

4 100 (wind) N/A N/A 

6 200.17 500 150 

7 200.11 600 0 
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Table A.2 Load Demand of 7 Bus Power System 

Bus 
Real Power Load 

 (MW) 

Reactive Power Load  
(Mvar) 

2 40 20 

3 110 40 

4 80 30 

5 130 40 

6 200 0 

7 200 0 
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Appendix B: IEC Power System  

Appendix B contains the data of IEC power system [16] discussed in the thesis. The 

generation schedule and load demand are presented in Table B.1 and B.2 respectively. 

Table B.1 Generation Schedule and Generator Limits of IEC Power System 

Bus 
Real Power 

 Generation (MW) 

Maximum Real 
Power 

 Generation (MW) 

Minimum Real 
Power  

Generation (MW) 

1-Piper345 495.09 1350 0 

2-Condor345 1120 1300 300 

23-Eagle345 505 700 0 

31-Pheasant161 300 450 0 

35-Hen345 800 800 300 

42-Cardinal161 350 350 0 

 

Table B.2 Load Demand of IEC Power System 

Bus 
Real Power 

 Load (MW) 
Reactive Power 
 Load (Mvar) 

5-Ostrich161 60 15 

6-Crow161 55 15 

10-Bluebird345 268 128 

11-Dove161 130 30 

12-Sparrow161 175 30 

13-Oriole161 140 32 

14-Hawk161 176.25 15 

16-Mallard161 165 29.8 
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17-Owl161 132 15 

19-Eagle161 110 20 

24-Bluebird161 115 25 

25-Robin161 160 35 

29-Parrot161 112 40 

30-Rook161 200 60 

31-Pheasant161 95 23 

32-Woodpecker161 75 15 

33-Flamingo161 198 35 

34-Canary161 87 19 

36-Heron161 160.57 21 

37-Lark161 135 10 

38-Peacock161 88.35 11 

39-Kiwi161 130 45 

40-Hen161 140 20 

41-Finch161 128.38 27.57 

42-Cardinal161 150 50 

43-Turkey161 150 39 
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Appendix C: Two Area Power System  

Appendix C contains the data of Two Area power system [13] discussed in the thesis. 

The steady state and dynamic data are presented in Table C.1 and C.2 respectively. 

Table C.1 Steady State Data of Two Area Power System 

Bus Type Voltage (pu) Gen MW Load MW Load Mvar 

1 Slack 1.03 700 0 0 

2 PV 1.01 700 0 0 

3 PV 1.03 719 0 0 

4 PV 1.01 700 0 0 

7 PQ - - 967 -100 

9 PQ - - 1767 -250 

 

Table C.2 Dynamic Data of Two Area Power System 

Bus H ܴ ܺௗ ܺௗ
ᇱ  ܺௗ

ᇱᇱ ܺ ܺ
ᇱ  ܺ

ᇱᇱ ܺ ௗܶ
ᇱ  ௗܶ

ᇱᇱ  ܶ
ᇱ  ܶ

ᇱᇱ  

1 6.5 0.0025 1.8 0.3 0.25 1.7 0.55 0.25 0.2 8 0.03 0.4 0.05 

2 6.5 0.0025 1.8 0.3 0.25 1.7 0.55 0.25 0.2 8 0.03 0.4 0.05 

3 6.175 0.0025 1.8 0.3 0.25 1.7 0.55 0.25 0.2 8 0.03 0.4 0.05 

4 6.175 0.0025 1.8 0.3 0.25 1.7 0.55 0.25 0.2 8 0.03 0.4 0.05 
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Appendix D: New England Power System 

Appendix D contains data of New England power system [24] discussed in this thesis. 

The steady state and dynamic data are presented in Table D.1 and D.2 respectively. 

Table D.1 Steady State Data of New England Power System  

Bus # Type Voltage (PU) Gen MW Load MW Load Mvar 

1 PQ - 0 0 0 

2 PQ - 0 0 0 

3 PQ - 0 322 2.4 

4 PQ - 0 500 184 

5 PQ - 0 0 0 

6 PQ - 0 0 0 

7 PQ - 0 233.8 84 

8 PQ - 0 522 176 

9 PQ - 0 0 0 

10 PQ - 0 0 0 

11 PQ - 0 0 0 

12 PQ - 0 7.5 88 

13 PQ - 0 0 0 

14 PQ - 0 0 0 

15 PQ - 0 320 153 

16 PQ - 0 329 32.3 

17 PQ - 0 0 0 

18 PQ - 0 158 30 

19 PQ - 0 0 0 

20 PQ - 0 628 103 
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21 PQ - 0 274 115 

22 PQ - 0 0 0 

23 PQ - 0 274.5 84.6 

24 PQ - 0 308.6 -92 

25 PQ - 0 224 47.2 

26 PQ - 0 139 17 

27 PQ - 0 281 75.5 

28 PQ - 0 206 27.6 

29 PQ - 0 283.5 26.9 

30 PV 1.0475 250 0 0 

31 Slack 0.982 - 9.2 4.6 

32 PV 0.9831 650 0 0 

33 PV 0.9972 632 0 0 

34 PV 1.0123 508 0 0 

35 PV 1.0493 650 0 0 

36 PV 1.0635 560 0 0 

37 PV 1.0278 540 0 0 

38 PV 1.0265 830 0 0 

39 PV 1.03 1000 1104 250 
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Table D.2 Dynamic Data of New England Power System  

Unit # H Rୟ Xୢ Xୢ
ᇱ  X୯ X୯

ᇱ  Tୢ 
ᇱ  T୯

ᇱ  X୪ 

1 500 0 0.02 0.006 0.019 0.008 7 0.7 0.003 

2 30.3 0 0.295 0.0697 0.282 0.17 6.56 1.5 0.035 

3 35.8 0 0.2495 0.0531 0.237 0.0876 5.7 1.5 0.0304 

4 28.6 0 0.262 0.0436 0.258 0.166 5.69 1.5 0.0295 

5 26 0 0.67 0.132 0.62 0.166 5.4 0.44 0.054 

6 34.8 0 0.254 0.05 0.241 0.0814 7.3 0.4 0.0224 

7 26.4 0 0.295 0.049 0.292 0.186 5.66 1.5 0.0322 

8 24.3 0 0.29 0.057 0.28 0.0911 6.7 0.41 0.028 

9 34.5 0 0.2106 0.057 0.205 0.0587 4.79 1.96 0.0298 

10 42 0 0.1 0.031 0.069 0.008 10.2 0 0.0125 
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Appendix E: Single Machine Infinite Bus System with A Synchronous Generator 

Appendix E contains the data of single machine infinite bus system with A 

Synchronous Generator discussed in this thesis.  

The system parameters are given below [16] and all in per units. 

=1, ܺௗ=2.2, ܺ=1.76, ܺௗܧ
ᇱ =0.2, ܺ

ᇱ =0.2, ௗܶ
ᇱ =8, ܶ

ᇱ =1, H=10. 
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Appendix F: Single Machine Infinite Bus System with A DFIG 

Appendix F contains data of single machine infinite bus system with A DFIG 

discussed in this thesis. 

The system parameters are given below. 

ܧ =1, ܴ௦ =0.00706, ܴ ௦௦ܮ ,0.005= ܮ ,3.071= ܮ ,3.056= =2.9, ܺ௦ =3.071, 

ܺ௦
ᇱ=0.319, ܶ

ᇱ=
ೝೝ

ோೝ
. 
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Appendix G: Eigenvalues Comparison of Two Area Power System 

Appendix G presents the complex eigenvalues of Two Area Power System without 

and with AVRs and PSSs. 

Table G.1 Eigenvalues of Two Area Power System without AVRs and PSSs 

Base Case Bus 1 Bus 2 Bus 3 Bus 4 

-0.5716±j6.5632 -0.5939±j6.6688 -0.5971±j6.643 -0.5620±j6.5951 -0.5784±j6.5645 

-0.5815±j6.7099 -0.2156±j4.8401 -0.2815±j3.7406 -0.6455±j3.7161 -0.3814±j3.9234 

-0.2622±j3.3208 -2.1752±j0.1588 -2.3725±j1.3906 -2.1355±j1.2251 -1.7663±j1.5299 

0.5034 -0.1570±j1.0853 -0.1240±j1.2264 -0.0173±j1.5528 -0.0907±j1.4618 

0.0198 0.70175 0.80269 0.56715 0.55288 

 

Table G.2 Eigenvalues of Two Area Power System with AVRs and PSSs 

Base Case Bus 1 Bus 2 Bus 3 Bus 4 

-6.7026±j26.6642 -6.3183±j27.535 -5.8017±j27.4323 -4.6607±j28.785 -3.9911±j30.5263 

-9.81±j20.5769 -10.0934±j19.5166 -9.892±j19.1872 -9.6461±j20.4889 -9.9722±j20.0022 

-30.2395±j0.0967 -9.6118±j13.3514 -30.4622±j0.1604 -9.881±j13.238 -9.9045±j13.2554 

-9.8255±j13.3165 -3.3375±j6.0841 -24.2731±j0.6577 -3.165±j5.9773 -3.1353±j5.9787 

-9.676±j13.2867 -0.7298±j4.7914 -9.6376±j13.3734 -0.4579±j4.2877 -0.4365±j4.2651 

-3.1115±j5.983 0.0981±j1.7097 -3.3033±j6.0846 -0.0385±j1.5714 -0.0584±j1.4321 

-3.3777±j6.0761 -4.8454±j0.1494 -0.5020±j4.4807  -0.7308±j0.0041 

-0.2865±j3.6675  0.0311±j1.7373   

-4.6326±j0.0679  -4.7441±j0.1581   
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Appendix H: Five-Bus Two-Machine Power System 

Appendix H contains the data of Five-Bus Two-Machine power system [16] in the 

thesis. The steady state data are presented in Table H.1. 

Table H.1 Steady State Data of Five-Bus Two-Machine System 

Bus Type Voltage (pu) 

Real Power 

Generation 

(MW) 

Load (MVA) 

1 Slack 1.00 - 0 

2 PQ - 0 800 

3 PV 1.05 520 80 

4 PQ - 0 0 

5 PQ - 0 0 
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Appendix L: 9 Bus Power System 

Appendix L contains the data of 9 Bus power system [14] in the thesis. The 

generations and loads are presented in Table L.1 and L.2 respectively.  

Table L.1 Generation Schedule and Generator Limits of 9 Bus Power System 

Bus 
Real Power 

Generation (MW) 

Maximum Real 
Power 

 Generation (MW) 

Minimum Real 
Power  

Generation (MW) 

1 72 450 0 

2 163 240 0 

3 85 90 0 

 

Table L.2 Load Demand of 9 Bus Power System 

Bus Real Power Load (MW) 
Reactive Power Load  

(Mvar) 

5 125 50 

6 90 30 

8 100 35 

 

 

 

 

 

 

 

 


