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ABSTRACT

? The propagating and amplitude attentuating features’of

gravity waves in ice covered water has)'during the last ,
Qecase, been given a fairly extensive theoretical treatment.
Usually the wave charactéristics have been estimated by
modelling the ice cover as a continuous linear elastic of T
linear vijo elastic platé of uniform thickness on an €lastic.

foundation . » ’

In drder to determine the validity of itk theuretlcally

derived dispersion relationships for the propagation and . e

attenuation of gravity vaves entering an ice field a labor-

atory study, was conducted. concmuous'sem’i-innnite'

artificial ice sheets based on polypropylene pellet’and wax
Combinations were used and the wavelengtlis and wave, anplitudes 1
were measured. Theoretical values fof the wavelengths were.
obtained by ;olv}inq the wave dxsper'gibn equation using_ Padé

with the ally obtdined 4 .

coefficients and
values. The- wlve amplitudeg\in the ice covered reqLcn were

calculated Erolu the wave energy . by ‘A
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1. INTRODUCTION - - .

The increase in offshore activities in ice infested
waters during the last decades has :esulted in a gemand for
better understanding of the p:opertles of vater vaves'in ice

covered seas. N

From an engineering viewpoint it 1is of mpo:tance' to
be able to predict the vave motion” at any location and at any
L time inside an ice cover, both to evaluate structures located,
in the ice fleld and to estimate the possibilities for ice A
break up' due to .wave motion'. Also if any kind of refraction
analysis is to be carried out the dispersion-equation for .waves
. within the ice cover has to be known.

" Publishea 1

e on the ical modelling of

; the interaction of gravity waves with floating sheets of ice
thelude such work ad Wadhans ' (1973) where the ice sheet is
treated as an elastic plate floating with fero sibmexgence on

. an 1ncompressible ‘fluid of infinite depth. This work was ex-

tended by Carter (1978)to iniclude the finife water depth case.

Bateés and Shapiro (19804, 1980b), however, analyzed the problem

by treating the £1uld to be compressible and the ice sheet to

be an elastic laterally compreésed_ plate floating with zero

submergence on a fluid of finite depth. Squire and Allan (1590)

and Bates and shapiro (1881) treated the ice as a visco

elastic plate floating on'a perfect fluid. These studies involve

the solution'of a vave dispersion equation to obtain the wave

characteristics of the flexural gravity waves. -




obeys the scaling laws as summarized by Michel,

| - .
N )
.
1
Fd i : '
Field data as well as laboratory data to verify the
vavé characteristics “inside an ice sheet predicted from the'

various theories are very 11m1téd. As far as the author kx;ows -

the only existing field data cn\the wave characteristies in a
continuous ice cover is-due to the fiela work done by Squire

and Allan, (1980), near Twillingate-off the northevrn coast of

NewEoundland. . ;

N

work done by Ofuya and Réynolds.in 1967.

The ‘only laboratory datal ortlitesprobies ske ‘from the
2s|a modelling material
they used thin polyethylene sheets to simulatie an wrbioken ice
cover. Unfortunately thx; elastic modulus for this material is ‘o
close to 1.1.GPa w}dch corresponds to the range of valuesodf
elastic modulus, E, reported for sea icé, while the sheet thick-

nesses.and input wave characteristics con-espond more to a.

scale in the range of 1:100. No Laboratory work ‘Has'up tormowtin. .

been reported on this problem using model material for ice that

(1978).

The amplitude on inside a 10k

ice cover
has been given a fairly extensive theoretical treatment by
Wadhans, for. the deep water® region while Carter,

(1973, 1983)

(1978), ‘has extended this work to include the finite vater depth.

region. ‘Unfortunately no-field data on the wave amplitude
attenuating effect of a continuous ice cover 'ex}st to verify the

proposed theory.
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THEORETICAL CONSIDERATIONS

. Consider an ice cover idealized as shown on.Fig. 1.

" This semi-infinite plate of uniform thickness 2h, bghaves

elastically and has a modulus of elasticity E, Poisson's ratio \
v and-1is floating with zero submergence in water of constant

depth d.” Furthermore it is assumed that small amplitude wave
‘theofy for monochromatic waves can be used, that the waves are
incident 'n}:xmily on-the straight leading edge of thé ice cover,
that the excess hydrodynamic pressure 8p beneath the ice cover

. can be determined using the linearized form of Bernoulli's

ion and ‘that’the : of motion of the ice sheet can
be expressed using small defomauon plate theory. In addition
the vacer is assumed to be\inviscid and incompressible while
2 the ,flow is assumed to be.jrrotational. A vexocn.y potantial N

¢, satisfying Laplace's eqlation, will then exist in each of

/ the regions shown on Fig. 1. y

vie = 0. n=1,2 (2.1)

Eq. 2.1 is subjected to the boundary conditions: . I

: a0, . .
; g =0 at z = -d ' (2.2) 0
L é
awW_ .30
SE-aph0 At

0 s (2.3)
& 2 »
where x and z are horizontal and vertical coordinates,-t,is
time, W is the free surface elevation apove still water level

in regions 1 and 2 and d is the still water depth.

T ———




In region 1 the linearized Bernoulli's equation at

the free surface is given as: -

= C10) .
qT*W =0 - at z =0 (2.4)

A solution satisfying equations 2.1 to 2.4'Ms}

Y e.ikxi' R oikx) cosh k(ztd) glut @2
wheze k ia the wave numbsr, o is the circular wave frequency
[P| s the potential amplitudé df the incident vave: and |R|
is the potential amplitude of the wave reflected normally
from the ice edge. .

In region 2'_ the equation of motion of the plate is

given as:

.

i P o 2% .
2h Py 3 D S5k + 6? B (2.6)

sk by is the ice density and D is the plate rigidity,.
defined as:

2.7

The excess hydrodynamic pressure beneath the ice plate is
obtaihed from the linearized Bernoulli’s.equation as:

- 1%

8p = = g0y - PyTTE

(2.8)
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A solution for & can be chosen as a sym of potentials as’

given in eq. 2.

-ik.x  cosh k(z+d) >
§ 3 -iot
! —<osw T 12.9)

Combination of equations 2.1 to 2.3 and 2.6, 2.8 and 2.9

o: = 2l ety
]

yields the dispersion equation in the ice covered region as:

5, AR TR ,
D‘tanh(kjd?kjiﬂ:anh(kjd) (qu thim )kj N0} =0 (2.10)

g i ‘
where j takes values from 1 to 5..

As a quintic polynomial equation with real coefficients, it
will‘have one real and fouf complex rogts, where two complex

- roots are the complex conjugate of the two others. Further-
more two of the"complex roots are unrealistic since they lead
to potentials that .increase indefinitely with depth. The

three feasible roots are:

% Ko = kg
- k) = -atib . ' L (2:11)
)(2 = -a-ib % e X

The Teal wave number, k_, represent’ the flexural-

o
gravity wave, and its characteristics were obtained by solving
| the dispersion equation 2.10 by use of a simple iteration
loop and by a numerical procedure using Padé coefficients as

described b;

runachalam et al (1983).
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i ©'  The velocity potential, ¢}, represented by the complex

wave ntmbers; %k, and -kz,ucan,- as shown.in Appendix 1, be
. 'expanded and written as: : :
s

= (28, (1) Yeos (ax-0) e TPk (a ) -B,) ge™ (PKFHIaX) jmdut (5 4
AT B

where T and #°is given as

cosh (az+ad+i (bz+bd) )

The first term in eg. 2.12 is a standing wave with

exponential decay with respect to the x-coordinate, and the

nodes are defined by:

& (1-Q)
ax-arctan T+

= (2m-1)7 'm=0,1,2... (2.14)
The second term in eq. 2.12 represents an. exponent—

ially decaying progressive wave.

For the special case, d+=, eq. 2.12 reduces to the

T = TEosh(adnibd) . RERNCERED
_ cosh (az+ad-1 (5z+bd)) | [
cpsh(ad-ibd) As s (2:13b)
I
i(1-0) i o
xctan v (2.130)-

o

" velocity, potential for infinite water depth as given by Wadhams '

B

(1953‘?: .

ol = kzszcos(ax+b=)+ml—az)e‘“““”,’le"b"'“’e'““: "(2.45)

.15 it is seen that the decaying progressive

From eq:
wave x‘epx‘esents wave energy that propagates diagonally upwards

£from the bounda:y plane ‘between region 1-and reqion 2, ‘and give:

to the ice cover 'as ipcreased kinetic energy near the ‘ice edge.{




2. ; Damping of Waves at the Ice Edge

In open water the wave energy is-transported in the
water column while in ice covered water the wave.energy trans-
port is shared betwgen the ice and the water. This difference
in energy transport results in an instantaneous rediction of

o i.at—.
can be found in terms

the open water wave .amplitudef A wave ampli.tude

B the ice edge. The wave amplitud

o
o of A, by requiring that the average rate of energy transmission, .

»
in ‘the propagation direction of the wave, per unit width across
the wavefront is thé same in the open water region as in the
ice covered region. By applying this approach A, will,

according to Carter (1978), be given as shown in Eq. 2.16.

A Dk} v @

o , . w2 _ U o -

. 5 % ( Ai) =5 (1*———'J ) v (2.16)
&

¥ . o w g e
where U is the group velocity .of the flexux‘al gravity wave,

U, is the group velocity in open water and g is the acceleration

. due to gravity. ) *

2.2 Wave Attenuation within an Ice Cover’

Due %5 the cyclic stresses induced in an ice cover by

propagating flexural gravity waves the visco-elastic nature
of the material ;.ce results in an energy loss due to creep.
The amplitude decay as a function of penetrated distange, x, .
into the ice cover can then be estimated by assuming that the
creep energy loss is the major energy loss and can be derived’

£rom Nyes £low law. Wadhams (1973) has shown that by applying




o2 : 1 : .
this theory the amplitude at any given distance into the ice

.. cover can be calculated from eqg. 2.17 or 2.18:

x) i % Bl
B PR TS RS or o> (2:17)
. £ (g-1) 5 x+(a,) (D By
s & g 2 .
- or i
Ay(x) = Ay e v for g=l  (2.18),

[
\ " where A, 1is given by eq. 2.16, g is ‘the flow law exponent
: nd §ilen zather complex Suncticn oF fcs cover thickness and
| 3 the visco-elastic p.zop_er,u.es'o,f ice and of the wave character-
istics of the propagating waves. Details of this function can_
. be found in Carter (1978) and Wadhams (1973, 1983) and in thé

nomenclature. . Y : ‘




3. SCALING LAWS )

In order to scale from model to pto?;type,'the laws of
dynamic, gedmetric and kinematic similitude must be satisfied.
Complete similitude is always the goal in physical modelling,
but in practice it is very seldom obtained. But by making
sure that the effect of factors that are not‘properlhy‘ scaled
are of secondary Lm;ortanc_e in model as well as in prototype
we can obtain a reasomably good model without having complete .

similitude.

In the present model the commonly used a!lunption'thgt‘rfor
free surface flow gravitational and tiisEEls ¥eroed i oi"'&mr
importance while viscous forces are a} _secondary importance is -
applied. Dynamic similltude'is then cbtained by holding the
ratio of gravity ﬂ{;ceq to inertia forces constant. This
results in what is known as Froude number acaung,a defined as:

v B valt
= (3.1)

'mm 9 Tp.

where V vand L are a chnracteris_tic velocity and length, g is
accsleration dus to gravity, and m and p.denote model and proto-
type values_rsspectlvaly. Eq. 31 yiel:is the following ‘scaling
fiutors Debwan protocye il model values as long as the '

gravitational field is the same in model as in prototype.. |




10

g 5 &
Geometric similitude (Geometric scaling): £ =n (3.2a)
. - i :
; : Yp=n} (3.2m)
Kinematic similitude (Time scaling) : VE .
' 7 s ) L "
) F, e
Dynamic similitude.(Force scaling) f @ = (3.20)
. n

1
To model flexural forces properly as is required for this

* problem the Cauchy number has to.be the same:in model and in

prototype. . This yields: - 5

\ (3.3)

This implies that the rigidity, D, of the model ice cover is
scaled according to the g:amecnc scale.. To study the breakup
of a continuous sheet the flexural force }b at fracture must
be scaled. According to Michel ('19.73) this force can be ex-,

préessed as: '

=g, B8, v - 3.5)

wheré a, b sfna‘ c are representative lengths, £.is the char-
acteristic length given by eq. 3.14, v is Poisson's ratio, h
is proporticnal to the sheet thickness, of. is the"bending
strength and C.is a constant. By applying the scaling require-

ments derived in eq. 3.2a to c we obtain




a,

ﬂ_fg @ (3.6)
fm %
ana $ '
EE .
= (3.7)
llﬂ ‘

* The significance of a correctly scaled characteristic

length is that all pieces broken by flexure in the model are

scaled according to the gecmetric scaling factor. 2 .

3.1 “Model Ice ) o 4
Simulation of the ice cover. in the present experimental
program was accomplished using a polypropylene pellet, wax
and oil mixture. This model ice, originally developed by
ACRES Consulting Services Limited, has been found to reproduce
some Of the scaled mechanical properties of saline ice. The
3 mm diameter polypropylene pellets essentially control the
thickness of the model ice, while the wax/oil mixture provides
.cohesion and strength to the material. Hence, by suitably

adjusting the smount of pellets, wax and oil, an artificial ice

sheet of the desired mechanical properties was obtained.

3.2 Ice growth

" The ice cover was formed by applying a uniform layer of
polypropylene pellets to the water surface. This layer was
then sprayed with a warm liguid mixture of parowax and oil

using a standard steel canister garden sprayer.  This process




, atidn, having uniform properties and Bfliaving as a perfect .

\ . 12 . ’ W

ﬁé/m;le.?:ea until the desired thickness was obtained. For
exampley to obtain an ice thickness of 11'and 18 mm, 3 and 6
N

ldyers of pellets were respectively used.
\

3d cha%actenzauon tests

a s%c of experiments to determine the modulus of elast-
icity, E, and the bending strength, c;f, as.a function of the
amount of pelleéts, wax and oil used was done by producing
several sheets of size 0.5 m x (L.2-1. 6) m it ditferent thick-
nesses. The sheets were cut into beams of approximately 0.1 m
vidth and|1.2 - 1.6 m length. The beams were loaded to failure

by applyinq a concentrated strip load at one of the ends. The

thicknsss,,‘ 2h, and width, b, of the beams as well as the length, I
s |

s Of the|broken pieces and applied loads, P, were measured.

By treating the beams as semi- infinite beams on elastic found-

elastic nbatgrial the failure of the beams will bé located at

. 1 A
“the puint of maximum bending moment.

From the theoretical bending moment distrib\.\tion as given

by Hetényi (1946), the breaking length, 1,,'can be related to

the beam's ﬁqha:acteristic lengths, & c1’ as given in eq. 3.8.
e X
i h ’

1y l.cl . $ (3.8)

=2
7

V(3.9

and I is the moment of inertia per unit width.

where lcl is; given as:




* 13

Eq. 3.8 ana 3.9 in combination with the bending moment

distribution’yields expressions 3.10 and 3.11 that were used”

in'calculating the modulus of elasticity,’E, and the bending. - =

-strength, og. / i * X '

3p_g(1-v?) 5
= (4 )t v 5 " e .
E = (71) (3.10)
6P1, (1-v?) i
b -1 T
b —E—— ¢ sinf 13.11)
The experimental results are summarized-in Figures 2 and 3.
d .

During the main’ experiments thé bending. strength, O
and modulus of- elasticity, E, were determined using a different
technigue. The bending strength was determined by loading

cantilever beams cut in the ice-sheet to failure, Fig. 4. By

‘neglecting the buoyancy effect the bending strength was calcu-

lated using eg. 3.12 as recommended by Schwartz et al (1981).

3pl e

. O¢ = ZpRT 2 (3.12)

where P = applied load; 1 = length of the beam, b = bean width
-
and b id'half the beam thickness.

By monitoring the deflection, §, of the ice sheet at a

" known distance, x £rom the theoretical point of loading where b

the deadweights were(applied, the modulus of elasticity was

‘determined from eq. .3.13, after Timco 1981, using an 1te:ative

process.
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14
bl PEE R f(3.13)
EIENCE L (3.13),
where kei is a Kelvin function and "C, is the cM‘tacterist&g

length for a plate ‘given by eq. 3.14

" :
E 2ER? :
L, [m; ; ) (3.14)

The density of the model ice was obtained by taking the ratio

between the weight and the volume of “the ice-sheets, Appendix 2.° |

* 3.4 Model ice properties

Rep““ngae—h;; values for the Bendinq strength, ct,'an;l
_the modulus of elasticity, E, ,were.respactively taken as
20 kPa-and 20 MPa. The model ice density was £ound to ‘be about
530 kg/m’. ' 53 ' ’
. Values reported by Schwartz et a1A(1977),_ on the static
Soduls, of STAIBIEY, ;. S5 SATIHE {06 FRikE L L 755:1
GPa, depending on the brine volume. With the chosen geomet¥ic
scale, 1:100, our model will represent saline ice in the lower
end of this range. = : =
For coyrect scaling of the flexural strength §h§: model
bending strength should have been in the range of 0.3-0.7 wea.
This indicatés -that the bending strength.in our experiments is

approximately 3-7 times higher than it should have been

according to the geometric scaling factor.
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4. . EXPERIMENTAL TECHNIQUES z
The experiments were carried out in the main wave tank at
+ Memorial University. The tank, as shown on Fig. 6, is about
58 m'long, 4.5 m wide and has a maximum operating depth of
,1.9m. This tank is equipped with an TS p.iston type wave
Ve . generator which, for this experimert, was used to generate
régular waves. :
The width of the tank was divided up into three compart-
nents over a total length of 4.9 m, Fig. 7 and 8. This was
.done mainly to: reduce the production time and costs for an ice
sheet. .
\ W The dividing walls were made up:from standard sheets of
plywood of size 1220 '2440%20 mm and were hunig in between the’
tank's two catwalks. Necessary stiffness of this construction
in both the longitudinal and transverse direction were obtained
by running a 2"x4" beam alony the whole length of the wall.
Furthermore the dividing walls were braced against each other
and against the wave tank's concrete walls. To overcome the
_buoyancy effect, lead was bolted to the bottom of each dividing
wall. The final construction, was then exposed to very large
waves compared with the wavés used in the experiments so that
any vibration of the walls could be detected.
The water depth for, the present study was kept constant
at 0.44 m. Waves with heights up to 2 cm and pariod‘? up_to
1.0 s were generated in ‘the tank. Uaing the chosen Tcale factor,
the water depth will correspond to a prototype depthlof 44 m,
the sheet thickness from 1.1 m to 1.B m, the wave periods from

4.85 to 10 s and the wave heights from 1 to 2 m.. "




© /"0 4.1 Instrumentation * )
Free surface waves were measured at four different
. locations using staidard twin wire linear resistance wave
probes. Two wave probes were }ﬂocatgﬂ at the extension of the ©
ice sheet's centre line with one probe immediately in front
of the sheet and one positioned immediately behind the ice
Sheet. The remaining two wave probes were positioned along
the Centre line of .either of the two side channels, Fig. 7.’
This made it possible to measure both the incident and trans- =
mitted waveheight. ! In addition to that an estimatefof:the
natural vave decay due to viscous and frictional effects over
the entire length of the ice shest could be obtained. The
. , measured open water wavelengths, truly represent the open water -
dispersion relation (nugl';e_xmge et al., 1980). ¢ ‘ A
i HHe Wave WOLGH WLthIGi the 160 ahebt Was meusuzed sing
five linear rotary potentiometers positioned as shown in Figs.
7 and 8. One.end of a string (softewire) was Eixed to thé ice . ¢ ;
_surface by wax séiled with epoxy glue, while the other end was .
| wrapped around a ‘low friction pulley fixed to the rotary

potentiometer's shaft and then attached to a small counter-

| weight, 15 g, that kept. thé string in tension at all times,
Fig. 9. @ E ot . ki
During all -the tests, there was no evidence of surface drift
of the continuous place. :

Thé time series from the four wave probes and five

potentiometers were recorded on tape using two Hewlett Packard

elg 1 on tdpe .




4.2 Calibratioh
* Inmediately prior to each experiment the wave probes were
calibrated by taking a reading for each centimeter over a
section of sevencentimeters. For control a calibration test
was occasionally done after an experiment. No change in
calibration before and after an experiment was ever found.
The sensitivity of each wave probe was assumed to be better
than 0.01 V which corresponds for the least sensitive probe
to about 0.025 mm. The linearity of all the probes could-
‘alvays be expressed by a correlation coefficient better than
0.99. 3 S
The £ive potentiometers were calibrated both before and
nflter.the experimental progrim. No':ﬁ‘ange in calibration was
detected, except for potentiometer 41 where a 6% change was
observed. The calibration was carried out over the potentiometer's
entire,range with a reading for each 2.5 mm, using a micrometer
with a resolution of 0.025 mm. During the calibration tests the
sensitivity of the potentiometers was always better than 0.003 V,
which corresponds to 0.098 mm. The linearity of the potentiometers

over their entire range could always be expressed by a correlation

| coefficient better than 0.999.
The static éam;xatmu tests reported above were found to
be BuEEiciant, ainte the frequendy GF the input wave Ls mioh less
than the/frequency response of the rotary potentiometers and the

k3
- associated signal processing equipment.




4.3 Data analysis .-
. The calibrated recorded signal X;(t) at each station and
the horizontal distance between the stations are sufficient to
determine the wavelength inside the ice cover. Let kju) and
X3,1(€) betime-series recorded at stations j and 441, then the

transfer function, H(u), betwéen signal j and j+1 is given as:
N ;

i) g L (i0) . (.1
e B
where X(w) is the Fourier transforn of X(t), A is the magnitude s

H(w)

ratio between signal j+1 and j and (é2-¢1) is the phase
difference between the two signals. The wavelength, A, inside

the ice cover is then given as:

)

(4.2)

where Ax is the horizontal distance between the two stations
J and j+l. y X
The amplitude at any station, j, inside the ice cover for
zeqnlu; waves was obtained from the energy, E, in the one-sided
power spectrum Sp., as:
A = ey ’ (4.3)
In eq.. 4.3, Ey is the integral of the components of the
single sided power spectrum. The case of & regular sinusoidal
wave is handled by integrating it only e the ‘positive domain
of the signal and the result then added up for the negative

portion of the signal.




19
LA

5. RESUI:TS AND DISCUSSION i

In Fig. 11 the ratio between the wavelength inside
the ice.sheets dater;ninéd from experiments, and the open &
water wavelength is shown for the various wave periods used
in the exper‘lments. Theoretical curves for the flemral
gravity wave, obtained from solving eqg. 2.10 for the various
sheet thicknesses, are also shown on the same figure usinga *
value for the modulus of elasticity of 20 kPa and Poisson's
ratio of 0.3. Good agreement exists for sheet thicknesses of
11 and 18 mn wnile for the 15 mm sheet the wavelengths inside
the ice cover are consistently Towae “thas tHosscolibited.

In using the phase shift informations to calculate the.
wavelength inside the lce cover as given in eq. 4.2, it was
observed that the phage, shift over the distance between
potentioneters one and two, see Fig. 7, gave vavelengths far
less than that predicted by eq. 2.10. -However, the wavelength
calculated using the phase shift between the potentiometer 2
and 3 or 2 and 4 or 3 and 4 or other downstream potentiometers
as shown in Fig. 11 are in good agreement with that theoretically
predicted by eq. 2.10. By closely watching the ice-edge during
an experiment it was observed that the incident gravity waye did
ot become a pure sinusoidal flexural gravity wave once if
entered the ice cover. Especially with the interaction of‘gteeper
waves 'with the thinner ice sheets it appeared as though the ’
leading edge of the plate moved up and down as a rigid body hinged

at some distance into the ice cover. This may be explained by the
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existence of evanescent vaves near the ice edge. in additim
tq, tl"ne two waves local to the ice edge as given by ‘eg. 2.12,
there must, as pointed out by Wadhams (1983), be other waves
present. With the solution for ®, and ¢, as given in eg. 2.5
and 2.9 only surface fitting of the velocity potentials at the
region 1/region 2 boundary plane is possible. However, no
unique method to deternine these additional poteptials exists,

which implies that the energy transmission process at the

! leading ice edge is not fully known,

The ratios between measured values of incident wave
amplitude and that in the ice at different distacés into the
ice sheet for the three different sheet thicknesses used, are
shown in Figs. 13, 13 ‘and 14. The genéral s BAE e
rate of attenuation indreases with decreasing wave perigds for
all ice sheets, and that the rate of attenuation closely’ fits
an exponential decay. This agrees well with the earlil
laboratory studies reported by Ofuya and Reynolds (1967) -
They did, however, use polyethylene sheets to simulate contin-
wous ice fields, whose elastic modulus was about 1.1 GPa

which correspond to the range of values of Young's modulus, E,

of sea ice. F the on rate can be seen to

be a function of the sheet thickness, with increasing atten-

vation rate for The A wave amplitudes
inside the ice cover are for contfinuous sheets before the init-—

iation of visible cracks.




Dug to he Llack of fleld data no comparisom 3t the
amplitude attenuating effect of a contimwous ice cover cam be .
made with our laboratory data: However, as stated in section
.2 it .is commonly assumed that fhe major energy loss inside

a continuous ice cover is dué to creep. In an attempt to

R4

verify this an energy b‘alance was set up as given in Appendix
3. The total energy loss is here assumed to consist of the
three components Eys Ej and B, Where E, s e energy ‘dis- =
sipation in waves in &'yiscous £luid, E) is the energy dissip-
ation“in"waves due to shear at the icafatar bomdary and e
is the energy loss within the ice sheet due to creep. By
applying this approach to the' laboratory data, it was found
as shown in Appendix.3, that the energy loss due to ‘creep ‘aiways g
contributed to nore’ than 998 of the fotal enerdy “Loss. 3
e vglues of the Labor- N\
atory data vith field data from 4 pack ice £ield was rade. The
"field data’of Squire and Moore (1980) and Wadhams (1978) vere
within the ext.rapolate‘d values of wave periods, but the ice
‘thickness and Water depth were very:different from the values
used in the present experiments. Fig. 15 the field data of
Wadhans (1975) and the extrapolated values of the laboratory
data is shown. FHere again it is not completely possible to make
a direct comparison because Wadhams' data is obtained from a

b¥oken ice field with an ice coverage of only up to 408 for

daistances of 10 km £rom the leadingice edge. In order thatihis ¢
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data would- simlate a 100 ice coverage he calculated an effective

* lengthf X, into the ice cover by decreasing the real distance

m:cordj.nq to the P The rate
for an ice field extrapolated from the liboratory data is
about one order of sagnituls Higher than ;hn given by _the
£161a data of Wadhams (1975). This discrepancy can be attributed
to many factors,. the main one being the fact that in a continuous
ice cover the min energy dissipation is due to creep while in
an open pack ice field multiple scattering botween the ice Floes .
1s tHe mijor tnergy dissipating mechanism: ' tuffhermore, in the
fleld there is always added energy to the ice/water system £rom
the atmosphere, which also Wadhams' (1975) data pc;ints séem to
indicate. Besides, the flow law exponent, g, which in effect
described the wave amplitude decay inside the ice bove;) is equal *
to 3 f‘er sea ice, .while the results of the present model study
sndicate an exponential decay with g equal 1 for ‘this model ice.
Besides, as pointed out during the discussion of scun{g laws,
the model is properly scaled for its elastic propertie { while the
viscous properties are not scaled exactly. Thus, the model tends
to be viscoelastic rather than. Glen type £low law material.

tia Lresk up process Of i ide shaet as’ ahwn Gi'Fig.
10, tock place'dn, either of twowys;: For waves of iarge
amplitude; ' the first wave propagating through the ice sheet
wuuié break the sheet over its entire lengthnto strips of
fairly equal lanf_h and with width equal to the width of the
ice sheet. As waves continued to px:opaqate chxnuqh this
broken ice £1eld, the floes closest to the leading ice  edge
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would break into sqiare floes. Then the next strip would

break into smaller floes of approximately square form. This

process would continue until the entire ice field consisted

|

of floes of more or less square form and with increasing floe
|

size with distance into the ice field. For waves with smaller- '

amplitude only a front strip would break off, this piece would
then be.broken' into. several square floes before the next strip
broke off. This process would continue until the entire ice
sheet was broken up. However, as the distance into the ice
sheet increased the strips' would maintain their strip shape .
and aid not easily rotate and break into square shaped floss.
For waves with higher energy the former break up process
took place, while the latter.break up process was particularly
evident for low energy waves:entering the thicker ice covers.
It is possible that the flexural gravity wave by itself had

a sufficient amplitude to bresk Off the ‘first strip, but not
the second one due to the high attenuation rates for short
period waves in thick ice covers. An alternate hypothesis

is that the flexural gravity wave in itself did not have the
necessary energy to fracture the sheet, but with the added
energy from the propagating wave local to the ice edge the
total energy was sufficient to break off the first strip.

When this first strip was broken into square floes there would

-be a new leading ice edge for the continuous ice cover and

the same process would be repeated.
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Estimates for the stress at fracture were caloulated
assuming elastic sinusoidal deformation of the ice sheet and
using the experimentally GetarRinen HEVSTEAGERS. & Blgh
estimate for the stress at fracture is 39 kPa, while 25 kPa |
is a low estimate. This agrees fairly well with the exper-
imentally determined Bending strength of the model ice.

The natural frequency of each ice sheet" was estimated g
by treating the sheets as elastic plates on elastic foundation.
The natural fyequency of the first mode for the thinnest
plate is about 6.5 Hz and 5.1 Hz for the thickest plate. These

frequencies are about three times above wave frequencies

used in the exper: ~3nd ‘hence no were . .’
observed. :

Due partly to the teéious processes invoived and the
time required in casting an. ice plate, the number of individual

experiments carried out is not large. However, multiple exper-—

. iments were carried out'for that part of the experimental program
“

dealing with the estimation of the strength properties of ice,

as can be seen in Appendix 2.




25

6. - SUMMARY AND CONCLUSIONS

’ A lsboratory stdy of fhe interaction between &
continuous ice cover and. gravity waves has been carried out
using recently developed artificial ice” A Comparison of
the measured experimental data on the wave characteristics
with that of computed values indicated that this model ice
can be used for similation of wave propagation in ice covered
séas. The wave atten:xaticn of flexural-gravity waves prop-
agating through a contimuous. ice cover has also been measured
and compared with field data. Qualitative agreement between
field and experimental data exists. ! ’

The energy loss due to creep in a continuous ice cover
is shown to contribute to more than 99% of the total energy
loss inside the ice cover.

Furthermote it can be concluded that the break up
process of a continuous ice cover can be studied in the labor-

atory using this model' ice. C
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Fig. 10. Break up process of ice sheet
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To obtain eg. 2.12, we proceed from eg. 2.9 which is

xewritten as

. 5 s cosh k,(z+d)
o= jx‘ [Aje"‘j‘ + sje'“‘j‘l —sse— ¢t an

Neglecting the terms corresponding to the flexural-
gravity wave, and the terms arising from the two tomplex wave
numbers which have positive real part (since they lead to
potentials that are increasing indefinitely with depth) and <
Bxpanding of eg. Al in terms of a's and b's yields then: -

0, = (ule-(bﬂu)x % B,e“’“‘“] co:l‘:.(-a::hl(ﬂd)

(b+ia)x -(b-ia)x, cosh (-a-ib)(z+d) Co-
+ [Bge ke | = Coeht=a- ]
I S )

The two terms B, and A, are physically undefined since
they are exponentially unbounded at x = =, Eq. A2 can then

be reduced to:

0. [A,e'“’”"‘lcouh(-u—zndmu)+cnn(-anmdubz)1

+ Bza—“"““

(cosh(-az-2ad-ibz)+cosh(-az-2ibd~ibz}]]
I
o-lut

O TR TTTTTY § (A3)
. 2|cosh(-a+ib)d|

SEARL L
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Separation of real and imaginary partsyields:

0, = [(A,+8,) (™82 28005 (bz-ax) +e37*22%cos (~bz-ax)
+ e *%cos(bz+2bd-ax) + e®Zcos(-bz-2bd-ax)]

<
+ (A)-B,)[(e7227289y gin(bz-ax)+e27*289) gin(-px-az)

+ e™®%i sin(bz+2bd-ax) + e®%i sin(-bz-2bd-ax)]]
o-tut

TR I | (n4)
4|cosh(-at+ib)d| g

Eq. A4 can now be written in terms of a standing and a
propagating wave as: ~%

»
az+2ad

0, = [zszle-az-hd coshi (bz-ax) + e coshi(~bz-ax)

‘+ e ®%coshi (bz+2bd+ax) + e*Zcoshi(-bz-2bd-ax) ]’

+ (Ag-B,) [e~8%-2ad 1 (bz-ax)  az+2ad i(~bx-ax)

o-az i(bz+2bd-ax) , az,i(-bz-2bd-ax)]]

+
~iwt ~bx
;_2 (a5)
4|cosh(-a+ib)d| ¢
or
b, - [Bz[e-lax(e—a:-Zad*lbz',eaﬂzud—ib:)

+ e~lax o -az+i(bz+2bd) Mu-l(bnzbd)) + elax(g-az-2ad-ibz

+ 8%+2ad+ibz, . olax(g-az-i(bz+2bd) qaz+l(bz+2db)

°
+ (ay-By) [e”18 (g2 +200-1bE, az-2ad¢1bz
-iax  az-i(bz+2bd) ~az+i(bz+2bd) e~lut o-bx
+ e (e + e 1)

4|cosh(-a+ib)a}

(A6)




o . This can now be written as:

0y = [mzte"“cuuh(uﬂd-i(bnba))cosh(udﬂw)n‘“

cosh(az+ad+i(bz+bd))cosh(ad-ibd)] + 4(A;-B,) e %

® lnt ~bx
cosh(az+ad-i(bd+bz))cosh(ad+ibd)] ——=—— (x
. 4|cosh(-a+ib)d|

- Which yields the result: , 3
cosh(az+ad-i(bztbd) ,. cosh(azsad+i(batbd
" [p,(co8hiazrad-Libaibd) ; cosh(aziadel (barbd))cos ax
¥ “caun(uzudu(hnbd) - coah(uud-l(bnbﬁ))nn ax]
A oanTad BT =
B o -ax .| cosh(az+ad-i(bz+bd)) | g-Lut -bx
s + e (a-my) R tadtdT 1 ®
(a8)
Definet
. o = Coshlaztad=i (batbd)) (a9)
CQBH(BE"XEH
, ‘
and
i = Soshlaztad+i(batbd)) (A10)
" “cosh(ad+IBAT

The final expression for 9,' can then be written as:

bx —(bx+iax) !e-lur.

0,0 = [28,(80) /2 cos(ax-6) e + (A-B,) ge

(a11)

where o = arctan [_l%:!%ﬂ)] . (a12)




Por de;p water, d + =, H and 0 reduce tot
B = olatib)z (a13)
a, = elaniblz
And eq. (A11) simplifies to the deep water velocity
potenti_u} given by Wadhams (1983).

¢,' = (28, cos(axtbz)+(A;-B,) e™1(ax*bz))o=(bx-az)

eriet (A
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APPENDIX 2 .
PROPERTIES OF MODEL ICE SHEET -
L
i |
-
|
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B N l“n
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———-
SIZE THYICKNESS BENDING STRENGTH ELASTIC MODULUS DENSI_'I'Y LAYERS
SHEET WIDTH| LENGTH 2h| s o s E s 0y PELLETS
* (m) (m) (mm)| (mm) (kPa) (kPa) (MPa) IHPI)\ (kg/m*)|
T
: 3 2.‘03 4.87 14.6 | 0.46 23 15 32 10 527 4
3 2.03 | 4.87 11.4 [0.50 [ 17 8.6 - - 508 3
] 2.03 | 4.87 17.6 [1.16 | 23 5.2 39 12 547 5
5 2.00 | 4.87 10.8 [0.69 | 20 g5 28 20 543 3
6 2.00 4.87 15.2 (0.82 21 8.7 31 22 514 4
7 2.00 4.87 18.2 |1.35 26 14 - - 539 - |
. * s = standard deviation i
.
g

8y

e e g




r

APPENDIX 3

ENERGY LOSSES IN A CONTINUOUS ICE SHEET

DUE TO WAVE MOTION




"S- To model the propagation of flexural gravity waves in
a continuous ice sheet. three scaling ‘laws have to be satis-

fied simultaneously, and they are:

1. Froude number scaling to simulate ;ndy effects

2. Cauchy number scaling to simulate flexural effects

3. Reynolds number scaling to simulate viscous effects
Unfortunately, it is almost impossible toigjisfy ;11

three scaling requirements'simultaneously. Hovever, for large

Reynolds numbers the viscous effecta are small compared with

the gravitational effect in free surface flow problems. In

- this experiment the fluid Reynolds number based on the average

orbital particle velocity at the plate-fluid interface was

10° > Re > 10%. In this range of Reynolds numbers, the

viscous effects are most likely to be of secondary importance,

and therefore a scaling satisfying the first two criteria,

as stated in chapter 3, is valid.

To obtain a quantitative description of the energy loss .

in a continuous ice sheet the energy loss balance equation’

Bl vas assumed to be applicable.




where E

fluid, E

(B1)

~Eo7Fy

is the energy dissipated in waves in a viscous

is the énergy dissipated in waves due to shear at

the ice/water boundary, E__ is the energy loss due to creep

'er

and E, is the total energy loss. ALl the energy losses aré

_per wnit surface area and time. Expressions for E_ and E, "

for a slightly viscous fluid are given by Ofuya and Reynolds

L ¥
" (1967) as:
; By, = 2iA%k’c? Te2)
{
‘ E 3"('&: (83) -
N 1 J’ KR
7 .
where 1 is the dynamic viscosity, A is the wave amplitude,
k is the wave number, c is_the wave celerity and Re .ts'.a
Reynolds number, here defined as: '
Re = VCE . ; (B4)
where v is the kinematic viscosity.
’ % The total energy loss, E,, is estimated from the
measured wave amplitudes, Ay at stations i=1 to 5
. ; -
_5_ -a?
7 ax MM aa) (B3}
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betweer station i and i+l and Q

g whére Ax is the distance
is a function as defined'in the nomenclature. : ;
The calculated ratio between the estimated energy

loss due to creep and the measured total energy loss is shown

in table T1.
Wave Sheet
period j{:ickness E/Eer
Between stations Between stations
(s) (mm) 1 and 2 2 and 4
» 3
0.5 11 0.998 0.999 '
. 0.48 11 0.9999 0.9996
) 1.00 15 0.9994 0.9982
] : '
I 076 15 0.9992 + -
1.00 18 0.9999 0.9996 :
0.48 18 0.9999 0.9997
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