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ABSTRACT 
Limit equilibrium (LE) methods are widely used to analyze the stability of earthen slopes. In the 

LE methods, resistance along the critical failure plane is compared against the sum of the driving 

forces resulted from different sources such as gravity and earthquake. The ratio between the 

resistance and driving force is expressed as factor of safety (Fs). The Fs does not provide any 

information about deformation behaviour although it could be a design criteria. The mechanism 

of failure and deformation behaviour can be better modeled using recently advanced numerical 

techniques such as finite element (FE) methods. Although FE modeling techniques have been 

improved significantly over the last few decades, most of the current FE methods have been 

developed for small strain analysis in Lagrangian framework. However, in large-scale landslides, 

significant shear displacement occurs along the failure plane that cannot be modeled using the 

conventional Lagrangian-based FE techniques because of numerical issues resulting from 

significant mesh distortion. 

In the present study, the Coupled Eulerian-Lagrangian (CEL) approach in Abaqus is used to 

simulate large deformation behaviour of slope failure. Analyses are also performed using the 

limit equilibrium methods in SLOPE/W software. The present study focuses on two critical 

factors: earthquake loading and retrogression in sensitive clay slopes. Comparison of different 

methods of analysis shows that Abaqus CEL can successfully simulate the failure process from 

small- to large-deformation levels. Based on a comprehensive parametric study, different types 

of failure as reported in the literature from post-failure investigations could be simulated, which 

cannot be done using the LE method or Lagrangian-based FE technique. 
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Chapter 1 

Introduction 
 

1.1  General 

Slope stability is one of the most challenging branches in geotechnical engineering. Slope 

instability is a geodynamic process that naturally shapes the geomorphology of the earth. 

However, there are major concerns when unstable slopes might possibly have an effect on the 

safety of people and properties. Concerns with slope stability have driven some of the most 

important advances in our understanding of the complex behaviour of soils.  

Traditionally, limit equilibrium (LE) methods are widely used and have been accepted by many 

practical engineers for slope stability analysis because of its simplicity and availability of 

computer program such as SLOPE/W, analytical tools and design charts. In the LE methods, the 

resistance along a potential failure plane is compared with driving force on it and the ratio 

between these two (i.e. resistance  driving force) is defined as Factor of Safety (Fs). However, 

most of the large-scale landslides involve the displacement of a number of soil blocks instead of 

only one block as used in LE methods (e.g. Fig. 1.1). The failure of soil blocks does not occur at 

the same time because the failure planes develop progressively with redistribution of load from 

highly stressed zones. In addition, the calculated Fs using the LE methods does not provide any 

information about the displacement of the failed soil mass. 
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Fig. 1.1: The 1989 landslide at Saint-Liguori, Québec, Canada (after Locat et al., 2011)  

In recent years, finite element (FE) analysis has gained popularity in slope stability analysis as it 

can handle more complex problems with better modeling of stress–strain behaviour. Most of the 

FE modeling techniques have been developed in Lagrangian framework. Mesh distortion and 

convergence of the solutions are the common problems in Lagrangian –based FE modeling of 

slopes (Griffiths and Lane, 1999; Swan and Seo, 1999; Zheng et al., 2005). In fact, the non-

convergence of the solution due to significant mesh distortion is considered one of the conditions 

of the onset of failure in some studies (Dawson et al., 1999; Griffiths and Lane, 1999). 

Therefore, FE modeling techniques that can handle large deformation would provide better 

simulation results. 
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In recent years, measures have been made to simulate large deformation behaviour during slope 

failure. For example, Gauer et al. (2005) used a computational fluid dynamics approach to model 

retrogressive failure of offshore slopes. Wang et al. (2013) used remeshing and interpolation 

technique with small strain (RITSS) to simulate run-out of offshore landslides. Mohammadi and 

Taiebat (2013, 2014) used FE analysis based on adaptive mesh refinement algorithm using an 

updated Lagrangian formulation. Dey et al. (2015) used the coupled Eulerian Lagrangian (CEL) 

approach in Abaqus to simulate large deformation behaviour as observed in offshore and onshore 

landslides. 

1.2  Scope of the work 

Landslides represent a major geohazard and threat to human life, properties, infrastructure and 

environment. The simplified methods used in practical engineering for slope stability analysis 

cannot explain the mechanisms involved in large-scale landslides. The process becomes more 

complex when it involves earthquake loading, large deformation and strain-softening behaviour 

of soil. In Eastern Canada and Scandinavian countries, many large-scale landslides occurred in 

sensitive clay slopes near the river bank. Most of them are reported to be triggered by toe erosion 

or small slides near the toe. Therefore, it is necessary to investigate how small slides near the toe 

could cause such large-scale retrogressive landslides. For safety and design requirements, it is 

also necessary to know the extent of the failure zone (runout and retrogression distance). 
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1.3  Objectives 

The main objective of this study is to develop numerical modeling techniques to simulate clay 

slope failure due to gravity and earthquake loads. Large deformation, strain-softening behaviour 

of clay and progressive failure are the main focus of this study. The following steps are taken to 

achieve the objectives: 

i) Develop large deformation FE models using Abaqus CEL; 

ii) Implement appropriate soil models, including strain-softening behaviour of clay; 

iii) Conduct limit equilibrium analysis using SLOPE/W; 

iv) Implement earthquake load in Abaqus FE program; 

v) Conduct FE analysis for sensitive clay slope failure near river bank; and 

vi) Identify types of failure and its extent in sensitive clay slope.  

 

1.4  Organization of Thesis 

This thesis consists of six chapters and has been arranged as follows: 

 In Chapter 1, the objectives and backgrounds of the study are presented. 

 In Chapter 2, a comprehensive literature review related to slope stability analysis is 

presented. The review covers the studies mainly related to the stability of clay slopes for 

undrained loading conditions, which is the focus of the present study. 

 In Chapter 3, the slope stability analysis using a large deformation FE modeling 

technique is presented. 
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 In Chapter 4, FE simulations of earthquake effects on stability of clay slopes are 

presented.  

 In Chapter 5, the modeling of large-scale landslides in sensitive clay slopes are presented. 

 Finally, Chapter 6 presents the conclusions of the study and some  recommendations for 

future studies. 

 

1.5  Contributions 

The following are the main contributions of this research: 

(i) Development of a large deformation finite element (LDFE) modeling technique for slope 

stability analysis and show the advantages of LDFE over traditional limit equilibrium 

(LE) method. 

(ii)  Development of numerical modeling technique to incorporate earthquake effects in 

LDFE modeling of slope stability.  

(iii)  Investigation of the mechanisms involved in large-scale landslides in sensitive clay and 

identification of the key factors and the extent to which these factors affect the failure 

processes. 
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Chapter 2 

Literature Review 
 

2.1  Introduction 

The severity of earth slopes failure can vary widely —some of them are small where only one 

soil block dislocates from the parent soil, while some are very large such as large-scale 

landslides. Failure could be initiated by different triggering factors such as gravity load, toe 

erosion, earthquake, human activities or reduction of the shear strength of soil. Landslides occur 

in different types of soil such as sand and clay. The failure of clay slopes might occur in both 

drained and undrained loading conditions. Moreover, some clays (e.g. sensitive clay) show 

strain-softening behaviour during shearing in undrained loading conditions. 

The present study focuses on large–scale landslides in clay slopes (with or without strain-

softening) due to strength reduction, toe erosion and earthquake loading in undrained conditions. 

The literature review presented in the following sections mainly covers previous studies related 

to these focus areas. However, a limited number of other research works relevant to the present 

study, such as numerical modeling techniques used for sand slope modeling that could be 

applicable to clay slope modeling, are also included in this literature review for thoroughness. 

2.2 Limit equilibrium methods 

The limit equilibrium (LE) methods are the most popular approach in practical engineering for 

slope stability analysis. These methods have been developed from force and/or moment 

equilibrium conditions as shown in Table 2.1.  
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Table 2.1: Limit equilibrium methods for slope stability analysis (modified from Duncan,1996) 

Author Name of the Method Shape of 
failure 
surface 

Remarks 

Force eq. Moment 
eq. (M*) Hori. 

(H*) 
Ver.
(V*) 

Fellenius (1927) Ordinary method of Slices Circular N N Y 

Bishop (1955) Bishop’s modified method Circular N Y Y 

Lowe and Karafiath 
(1960) 

Force equilibrium method Any 
shape 

Y Y N 

Morgenstern and Price 
(1965) 

Morgenstern and Price’s 
method 

Any 
shape 

Y Y Y 

Spencer (1967) Spencer's method Any 
shape 

Y Y Y 

Janbu (1968) Janbu’s generalized 
procedure of slices 

Any 
shape 

Y Y Y 

Janbu (1968) Slope stability charts  - - - - 

U.S. Army Corps of 
Engineers (1970)  

Force equilibrium methods Any 
shape 

Y Y N 

Sarma (1973) Sarma (1973) method - Y Y Y 

Sarma (1979) Sarma (1979) method - Y Y Y 

Duncan et al. (1987) Slope stability charts - - - - 

H*=Horizontal force equilibrium; V*=Vertical force equilibrium; M*=Moment equilibrium 

N*= Not satisfied; Y*=Satisfied; - = Not available 
 

Significantly large number of studies have also been performed for further advancement of the 

limit equilibrium methods and their applicability to various conditions. Table 2.2 provides a 

summary of these studies, although it is not exhaustive.  
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Table 2.2: Two-dimensional limit equilibrium analyses 

References Method Type of slopes Remarks 
 

Fredlund and Krahn 
(1977) 

Methods of slices using 
SLOPE program 

Simple slope Compared results in terms of Fs for various methods for slope 
stability analysis. 

Pham and Fredlund 
(2003) 

Methods of slices using 
SLOPE/W program 

Homogeneous and 
non-homogenous 
slopes 

Compared conventional limit equilibrium of methods of slices. 

Han and 
Leshchinsky (2004) 

Bishop’s method in LE 
analysis 

Geosynthetic 
reinforced slopes 

Verified limit equilibrium analysis with continuum mechanics-
based finite difference analysis using FLAC 2D. 

Zhu et al. (2005) Morgenstern-Price 
method 

Simple slopes Proposed a modified algorithm to compute Fs using 
Morgenstern-Price method. 

Zolfaghari et al. 
(2005) 

Morgenstern-Price with 
SlopeSGA program 

Homogeneous 
slopes 

Proposed a simple genetic algorithm to search the critical non-
circular failure surface and used to solve the Morgenstern–Price 
method to find the factor of safety. 

Cheng et al. (2007) Morgenstern-Price 
method 

Homogeneous 
slope 

Examined the performance of strength reduction method. 

Steward et al.  
(2011) 

Morgenstern-Price 
using SLOPE/W 

Homogeneous 
slope 

Proposed design charts to obtain safety factor for different types 
of critical slip circle. 

Ho (2014) Bishop’s method using 
SLOPE/W 

Homogeneous and 
non-homogeneous 
slopes 

Compared Fs obtained from different LE methods with SRF for  
different geometric conditions.  

Leschinsky  and 
Ambauen (2015) 

Spencer and 
Morgenstern-Price 
method 

Complex slopes  Proposed a new method to compare Fs and location of slip 
critical surface obtained from LE methods. 

Note: LE-Limit Equilibrium method; Fs-Factor of safety; SRF-Strength reduction factor 
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Although LE methods are very simple for practical engineering and provide reasonable results 

for many real life scenarios, it cannot explain the complex mechanisms of many large-scale 

landslides. In addition, it does not also provide any information about deformation of soil mass 

which is important in many engineering applications.   

2.3 Finite element methods 

A number of commercially available FE software packages can be used for slope stability 

analysis (e.g. Abaqus, Plaxis). One of the main advantages of FE modeling is that, unlike LE 

methods, a priori definition of failure plane is not required. The computer program automatically 

identifies the critical locations of failure. It also calculates the deformation of the soil mass. 

 

2.3.1 Small strain FE program for modeling of slope 

Most of the FE programs have been developed in Lagrangian framework. These programs have 

been used in earlier studies for slope stability analysis. A summary of FE analyses of clay slopes 

is presented in Table 2.3. 
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Table 2.3 : Finite element analyses in Lagrangian framework 

References Method & FE 
software 

Constitutive  
Model  

Type of 
Slopes 

Remarks 

Matsui and 
San (1992) 

FE, strength 
reduction 
technique 

Hyperbolic 
nonlinear 
elastic soil  

Embankment 
and excavation 
slopes 

Presented failure of slopes in terms of total shear strain and shear 
strain increment as contour map. FE results compared well with 
field data. 

Ugai and 
Leshchinsky
(1995) 

FE, strength 
reduction 
technique 

Mohr-Coulomb 
failure criteria 

Homogeneous 
slope as 
vertical cut 

Compared Fs and location of slip surface with LE method. Failure 
is shown by maximum shear strain distribution.  

Griffiths and 
Kidger 
(1995) 

FE method Elasto-plastic, 
von Mises 
failure criteria 

Purely 
cohesive soil 

Conducted slope stability analysis in Lagrangian framework. 
Location of failure is shown by deformed mesh as a result.  

Griffiths and 
Lane (1999) 

Strength reduction 
technique  

Mohr-Coulomb 
failure criteria  

Clay (layered) 
slopes  

Used Lagrangian based investigated slope stability analysis of 
slopes and dam in Lagrangian framework. Program terminates as 
abrupt increase of nodal displacement occurs and solution does 
not converge. Lack of convergence of the solution is considered 
as failure criteria. The results are presented as deformed shape or 
tangled mesh of the slope. 

Dawson et 
al. (1999) 

Strength reduction 
technique 

Elasto-plastic 
Mohr-Coulomb  

Homogeneous 
embankment 

Conducted stability analysis of embankment in Lagrangian 
framework. Computed Fs and stability number obtained from 
limit analysis matches well. 

Swan and 
Seo (1999) 

Finite difference , 
gravity induced & 
Strength reduction  

Drucker-Prager  
 

Earthen clay 
slope 
 

Presented stability in Lagrangian framework. Significant mesh 
distortion occurs at failure.   

Chang and 
Huang 
(2005) 

Modified Smith & 
Griffiths (1998) 
FE program 

Elastic-plastic  
Drucker-Prager 

Homogeneous 
slope 

Investigated slope failure in Lagrangian framework. When yield 
zones of plastic strain spreads entire slip surface with SRF is 
equal to Fs. Significant mesh distortion occurs at failure. 

Zheng et al. 
(2005) 

Strength reduction 
technique 

Elasto-plastic  
Mohr-Coulomb 

Homogeneous 
embankment 
slope 

Computed Fs and location of critical plane using Lagrangian-
based FE program. Failure surfaces are shown by plastic strain 
contour. 
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References Method & FE 
software 

Constitutive  
Model  

Type of 
Slopes 

Remarks 

Cheng et al. 
(2007) 

FLAC, Phase & 
PLAXIS  
 

Elasto-plastic  
Mohr-Coulomb 
 

Homogeneous 
slope 

Compared Fs and location of critical failure surface for various 
slopes. 
 

Griffiths and 
Marquez 
(2007) 

FE, strength 
reduction 
technique 

Elasto-plastic 
Mohr-Coulomb  
 

3D slopes Conducted slope stability analyses in Lagrangian framework. 
Failure is considered when significant nodal displacement occurs 
and numerical solution does not converge. Significant 
deformation at failure. 

Nian et al. 
(2012) 

Abaqus FE, 
strength reduction 

Elasto-plastic 
Mohr-Coulomb  

3D geometric 
slopes 

Presented slope stability analyses in Lagrangian framework. Slope 
failure is considered when sudden increase in nodal displacement 
occurs and solution cannot converge. 

Zhang et al. 
(2013) 

FLAC, strength 
reduction 
 

Elasto-plastic 
Mohr-Coulomb  

3D slope  
 

Conducted slope stability analysis using Lagrangian-based FE 
program. Nodal unbalanced force selected as convergence criteria. 
Significant mesh distortion occurs around failure plane as shown 
in deformed shape. 

Qian et al. 
(2014) 

FD limit analysis Undrained 
shear strength   

Layered clay 
slopes  

Developed stability charts and compared with LE methods. 
Failure mechanisms are shown using plastic shear strain contours.  

Ho (2014) Abaqus FE, 
strength reduction  
 

Elasto-plastic 
Mohr-Coulomb  

Layered clay 
slope  

Compared Fs with SRF obtained from FE analysis in Lagrangian 
framework. Failure is considered when sudden increase of 
displacement occurs and solution terminates due to significant 
mesh distortion. Failure of slope is shown using plastic shear 
strain plot and deformed shape due to mesh distortion.  

Note: FE-Finite Element method; FD-Finite difference method; SRF-Strength reduction factor 

Table 2.3 (contd.): Finite element analyses in Lagrangian framework 
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Slope stability analysis using Lagrangian-based FE methods could overcome some of the 

inherent limitations of traditional LE methods. However, it cannot be used for large deformation 

problems because of significant mesh distortion around the failure plane that causes numerical 

instability.  

2.3.2 Large strain FE modeling of slope 

Many large-scale landslides occurred in sensitive clay in Eastern Canada and Scandinavia 

involve a significantly large strain along the failure planes as a result of large deformation of the 

failed soil blocks. Due to post-peak softening behaviour of sensitive clay, the failure planes 

generally develop progressively (Locat et al., 2011). Post-peak reduction of shear strength is one 

of the main causes of strain localization and formation of shear bands. Post-peak strength 

reduction could occur in various geomaterials such as sensitive clays, dense sand and 

overconsolidated clays. FE modeling of slopes with strain-softening behaviour of soil is a very 

challenging task for the following reasons. Firstly, the failure surfaces develop progressively. 

Secondly, strain localization along the shear band could cause numerical issues. Finally, the 

solutions are expected to be mesh size dependent, as soon as strain-softening occurs. Attempts 

have been taken in the past to overcome these issues using advanced FE modeling techniques. 

Table 2.4 shows the FE modeling of slopes with strain-softening behaviour of soil. 
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Table 2.4 : Large strain FE modeling with strain-softening behaviour   

Reference Method  Constitute Model Remarks 

Pietruszczak and MrÓz 
(1981) 

FE analysis Elasto-plastic 
strain-softening 

Investigated formation of shear band in a specified thickness. Force–
displacement curve for element tests found to be mesh independent. 

Dounias et al. (1988) Imperial 
college FE 
program 
(ICFEP) 

Elasto-plastic 
strain-softening 

Simulated the strength of a soil block containing undulating shear zones. 

Potts et al. (1990) FE analysis Elasto-plastic 
strain-softening 

Propagation of shear band has been identified as one of factor for 
progressive failure. 

Wiberg et al. (1990) FE analysis Elasto-plastic 
material and weak 
zone strain-
softening material 

Conducted FE analysis to explain shear band formation due to external 
disturbance. The proposed model is formulated in 1D model to explain 
progressive failure behaviour. 

de Borst et al. (1993) FE analysis Drucker-Prager 
viscoplastic model 

Showed mesh dependency occurs due to the presence of strain-softening 
material. 

Andresen and Jostad 
(2002, 2007) 

FE analysis Elasto-plastic soil 
model with NGI-
ANISOFT 

Investigated propagation of shear band in saturated sensitive clay 
incorporating finite thickness interface elements for progressive failure.  

Thakur et al. (2006) PLAXIS Strain-softening 
soil 

Modelled progressive failure through development of shear bands in 
narrow zones in undrained condition. Mesh independent shear band has 
been obtained through regularization technique.  

Gylland et al. (2010) FE analysis  
BIFURC 

Nonlinear stress–
strain behaviour 

Conducted slope stability analyses to model the propagation of shear band 
using interface element of finite thickness in progressive failure.  

Locat et al. (2013) FE analysis 
PLAXIS 2D 
& BIFURC 

Strain-softening Investigated initiation and formation of a quasi-horizontal shear band in 
idealized section of river bank slope to model progressive failure.    



  

14 

 

Reference Method  Constitute Model Remarks 

Wang et al. (2013) Abaqus 
based 
RITSS 
approach 

Strain-softening 
rate dependent 
Tresca model 

Proposed new technique that improves the mesh regeneration and element 
addition to simulate large deformation. 

Mohammadi and 
Taiebat (2013, 2014) 

FE Updated 
Eulerian 
formulation 

Extended Mohr-
Coulomb with 
strain-softening  

Conducted numerical analysis based on adaptive remeshing technique to 
model progressive failure. It can better explain failure mechanism than 
Lagrangian formulation for limited deformation. 
 

Dey et al. (2015) Abaqus 
CEL 

Strain-softening  Simulated large deformation failure of sensitive clay slopes where strain 
localization occurs in shear bands without numerical issues. 

Table 2.4 (contd.): Large strain FE modeling with strain-softening behaviour 
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2.4 Earthquake effects on slope stability 

The effects of earthquake could be implemented in slope stability analysis in two different ways: 

(i) dynamic analysis, and (ii) pesudostatic analysis.   

2.4.1 Dynamic analysis 

In a dynamic analysis, acceleration–time history of an earthquake is typically applied at the 

bottom of  the FE model. In general, dynamic analysis models the earthquake's effects better than 

the pseudostatic approach (Kramer, 1996). However, dynamic analysis presents challenges 

because of following reasons: appropriate soil model—damping, strain–strain behaviour during 

loading and unloading—needs to be implemented and suitable boundary conditions those 

minimize wave reflection should be incorporated. A number of earlier studies used the 

Lagrangian-based FE modeling approach to simulate earthquake induced slope failure (e.g. 

Sarma and Ambraseys, 1967; Azizian and Popescu, 2006; Bhandari et al., 2016; Chen et al., 

2013; Chen et al., 2001; Ghosh and Madabhushi, 2003; Kourkoulis et al., 2010; Leynaud et al., 

2004; Nichol et al., 2002; Park and Kutter, 2012; Loria and Kaynia, 2007; Taiebat and Kaynia, 

2010; Wang et al., 2009). As dynamic analysis is not performed in the present study, further 

discussion on these studies is not provided. 

2.4.2 Pseudostatic analysis 

Because of its simplicity, the pseudostatic approach is commonly used in the industry. In this 

approach, a horizontal pseudostatic force is added to the gravitational driving force and then 

static analysis is performed using limit equilibrium or FE methods. 
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2.4.2.1 Pseudostatic LE methods 

The pseudostatic horizontal force is calculated multiplying the bulk weight of soil above 

the failure plane (W) by a seismic horizontal coefficient (kx). A number of empirical approaches 

have been proposed in the past for estimation of kx as a function of earthquake magnitude, the 

peak ground acceleration, and the distance from the epicentre (Jibson, 2011). The pseudostatic 

force is incorporated in equilibrium equations and then solved as typical slope stability analysis 

based on method of slices (Aryal, 2006; Bray and Rathje, 1998; Han and Leshchinsky, 2004; 

Kramer, 1996; Leynaud et al., 2004; Ling et al., 1997; Sarma, 1973; Terzaghi, 1950). 

2.4.2.2 Pseudostatic FE analysis 

Pseudostatic force has also been implemented in FE analysis for earthquake induced slope 

stability analysis. In this type of FE analysis, the horizontal component of the body force is 

increased gradually. Pseudostatic FE analyses provide deformation of soil mass which cannot be 

obtained from pseudostatic limit equilibrium analysis. Table 2.5 shows a summary of earlier 

studies with pseudostatic FE analysis. Most of the pseudostatic FE analyses have been performed 

using Lagrangian-based FE techniques. Due to significant mesh distortion and numerical 

instabilities, the complete failure mechanisms cannot be explained using this method. 
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Table 2.5: Pseudostatic finite element analyses 

Reference Method & 
FE Software  

Soil Constitute 
Model 

Remarks 

Woodward and 
Griffiths (1996) 

FE analysis Cohesionless soil 
Mohr-Coulomb 
failure criteria 

Conducted pseudostatic stability analyses incorporating horizontal earthquake 
loading as a constant horizontal acceleration in Lagrangian framework. Peak 
ground acceleration (PGA) is converted to inertia force and then applied 
incrementally. Significant mesh distortion occurs around failure plane and 
only limited displacement simulated. 

Loukidis et al. 
(2003) 

Abaqus FE  Elasto-plastic 
Mohr-Coulomb  

Conducted pseudostatic slope stability analysis in Lagrangian framework 
using horizontal body force applied in a small increment. Calculated collapse 
load. Failure of slope is presented through displacement contour in the 
collapse zone for limited deformation. 

Aryal (2006) FE analysis in 
PLAXIS 

Elasto-plastic 
Mohr-Coulomb 
failure criterion 

Conducted pseudostatic slope stability analysis with seismic force is modelled 
as acceleration coefficient and incorporated as a fraction of gravity (g) in 
horizontal direction.  

Tan and Sarma 
(2008) 

Imperial College 
FE Program  

Elastic-plastic 
Mohr-Coulomb  

Conducted pseudostatic seismic slope stability analysis applying horizontal 
acceleration gradually applied until slope failure occurs. 

Khosravi et al. 
(2013) 

Abaqus FE Elasto-plastic 
Mohr-Coulomb 

Conducted pseudostatic slope stability analysis in Lagrangian framework 
where earthquake force is modelled as horizontal body force for limited 
deformation. Failure of slope is shown in contour plots of maximum plastic 
shear strain that matches well with corresponding LE analyses. 
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2.5 Modeling of sensitive clay slopes 

Many landslides in sensitive clay occurred in eastern Canada and Scandinavian countries. Post-

peak softening behaviour of sensitive clay is attributed to the progressive failure in large-scale 

landslides in these regions.  Most of the landslides are reported to have occurred in the river 

bank. Different triggering factors such as excavation, erosion and small slides near the toe of the 

slope are reported to be main triggering factors (Demers et al., 2014; Locat et al., 2008; Locat 

and Lee, 2004; Quinn et al., 2012). The initiation and propagation of shear bands governs by the 

development of progressive failure which usually occurs very rapidly in undrained conditions 

(Locat et al., 2013). Depending upon geometry and soil conditions, various types of landslides 

have been observed, which include single rotational slide, multiple retrogressive slides or 

earthflow, translational progressive landslides and spreads (Karlsrud et al., 1984; Tavenas 1984).  

Locat et al. (2011) classified sensitive clay landslides mainly into three categories: flow, 

translational progressive landslides and spreads. Conventional LE methods cannot explain the 

failure mechanisms associated with these types of failure because the failure surfaces develop 

progressively due to strain-softening behaviour of sensitive clay. Various researchers in the past 

have tried to model this behaviour using FE modeling technique (Locat et al., 2013; 2015). 

Recently, Dey et al. (2015) used an advanced numerical modeling technique—the coupled 

Eulerian Lagrangian (CEL) approach in Abaqus—for modeling the formation of horsts and 

grabens in spread type failure in sensitive clay slopes. The main advantage of Abaqus CEL is 

that soil can flow through the mesh without any mesh distortion.  
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2.6 Retrogressive failure in sensitive clay slopes 

Many researchers studied retrogressive failure of sensitive clay slopes both analytically and 

numerically. In Canadian sensitive clay slopes, failure is most often triggered by erosion or small 

slide near the toe (Lebuis et al., 1983); however, many of the largest landslides have been 

triggered by earthquake shaking (Aylsworth et al., 2003; Desjardins, 1980). Based on post-

failure observation, conceptual models have been proposed by some researchers, which have 

been further refined or validated in some recent studies. Table 2.6 shows a summary of modeling 

retrogressive landslides. 
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Table 2.6 : Summary of retrogressive failure analyses 

Reference Methods Remarks 

Odenstad (1951) Conceptual model Proposed conceptual model for retrogressive failure mechanism of sensitive slopes 
in undrained condition. Failure mechanism involves translation and rotational 
sliding. 

Bjerrum (1955) Analytical method Proposed a simplified model to demonstrate a series of rotational slumps. 

Hutchinson (1969) Analytical method Presented conceptual model for retrogressive failure mechanisms. 

Eden et al. (1971) Post landslide 
investigation 

Identified the factors affect the of South Nation River.  

Mitchell and 
Markell (1974) 

Analytical method Presented a simplified theory for flowsliding in sensitive soil in undrained condition. 
A general relationship is proposed between stability number and retrogression 
distance.  

Carson (1977) Analytical method Proposed a model based on Odenstad (1951) for the development of classic ribbed 
flow-bowl. Mathematical basis for the observed development of horsts and grabens 
within the slide has been explained. 

Haug et al. (1977) Limiting equilibrium 
analysis 

Performed slope stability using the University of Saskatchewan slope program to 
explain retrogressive failure mechanisms. 

Varnes (1978) Classification of 
Landslides 

Mentioned and classified various kinds of landslides 

Mitchell and 
Klugman (1979)  

Conceptual model Suggested a model with distinct stages, including initial slips at the free face 
followed by rotational flowsliding, and then extrusion flow. 

Stimpson et al.  
(1987) 

Limit Equilibrium 
method 

Predict multiple block plane shear failure in the form of successive failure blocks. It 
is shown that retrogressive movement influence slope stability.  
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Reference Methods Remarks 

Evans et al. (1994) Case histories and 
field investigations  

Investigated earthflow in sensitive sediments triggered by erosion. 

Aylsworth et al. 
(2003) 

Historical & field 
investigation, back 
analysis of case 
histories 

Conducted detailed analysis of complex earthflow failure that retrogressive in nature 
in sensitive marine clay. The failure pattern described as bowl shaped scarps in 
valley side and thumbprint whorl pattern in the ridge side. Irregular surface 
subsidence, lateral spreading and sediment deformation also observed. 

Azizian et al. (2005) Numerical analysis Presented numerical analysis of retrogressive failure mechanism in submarine slope. 
It is shown that the failure mechanism involves retrogressive failure occurs due to 
failure of initial slide and removal of support.  

Gauer et al. (2005) Computational fluid 
dynamics (CFD) 

Investigated retrogressive landslides in offshore slope using CFD method. 

Quinn et al. (2007; 
2011) 

Numerical analysis Used linear elastic fracture mechanics for modeling retrogressive landslides in 
sensitive clay. It is suggested that a complete failure surface develops then 
significant movement occurs in the form of translation, subsidence and disruption of 
a monolithic slide mass. 

Perret et al. 
(2011;2013) 

Case study  & field 
investigation  

Earthquake induced large-scale landslides as flowslides in Quebec. Triggering 
factors, soil conditions, location of failure and failure types have been investigated.  

Thakur and Degago 
(2014) 

Landslides in 
sensitive clay 

Influence of several parameters —topology, stability number, rapidity number, 
liquidity index, remoulded shear strength —on extent of landslide investigated. 

Demers et al. (2014) Inventory of 
landslides 

A total of 108 historical landslides, where flowslides and spreads occurs, have been 
re-examined. 

Table 2.6 (contd.): Summary of retrogressive failure analyses 
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2.7 Summary 

Post-slide investigations show that many large-scale landslides involve the failure of a number of 

soil blocks through the progressive development of failure planes. The failed soil blocks displace 

over a large distance. Post-slide investigations also show that different types of failure could 

occur, depending upon the geometry of the slope, soil properties and loading conditions. These 

types of large landslides cannot be explained using traditional limit equilibrium methods for 

slope stability analysis. Typical Lagrangian-based FE method also cannot simulate this type of 

large deformation. Therefore, a large deformation FE modeling technique is used in the present 

study to simulate this behaviour. 
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Chapter 3 

Slope Stability Analysis using a Large Deformation FE modeling technique 
 

3.1  General 

The limit equilibrium (LE) methods are generally used by geotechnical engineers for stability 

analysis of slopes. It is also widely accepted that the finite element (FE) methods provide more 

accurate and refined solutions than the LE methods. Significantly large deformation occurs 

around the failure plane if the slope is brought to the verge of global failure. Large deformation 

FE analyses are performed in this study. The shear strength reduction technique is used to bring 

the slope to the state of failure. Analyses are performed for undrained condition. Based on FE 

simulation, the formation of shear bands and their propagation leading to failure are presented. It 

is shown that the shear strength does not mobilize at the same time along the entire length of the 

potential failure plane during its formation. Depending upon the undrained shear strength of the 

layered soil, other shear zones might develop in addition to the failure plane through which 

global failure occurs. This chapter has been published as Saha et al. (2014).  

3.2  Introduction 

The analysis of the stability of slopes is an important aspect of geotechnical engineering. 

Traditionally, the limit equilibrium (LE) method is widely used and accepted by engineers and 

researchers for slope stability analysis because of its simplicity and availability of computer 

program such as SLOPE/W or analytical tools and charts. However, the finite element analysis 

(FE) has gained popularity in recent years in slope stability analysis as it could handle more 
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complex problems with better modeling of deformation behaviour. Duncan (1996) reviewed the 

available LE and FE methods and discussed the advantages and limitations of FE methods for 

slope stability analysis. The main advantages of FE method over LE method are that in FE 

analysis: (i) no need to define the shape and location of the failure plane as LE method, (ii) no 

need to define the interslice forces based on some assumptions, (iii) realistic stress-strain 

behaviour can be incorporated, and (iv) the initiation of local shear failure leading to global 

failure could be simulated. A number of previous studies used the FE methods (Griffiths, 1989; 

Kovacevic et al., 2013; Matsui and San, 1992; Potts et al., 1990), and showed that FE modeling 

could be a better approach for slope stability analysis. The comparison between LE and FE 

analysis has also been performed in the past for various loading conditions, geometry and soil 

properties (e.g. Griffiths and Lane, 1999; Loukidis et al., 2003; Tan and Sarma, 2008). Two 

techniques are generally used to bring the slope to failure condition: (i) the gravity induced 

method (e.g. Khosravi et al., 2013; Li et al., 2009) and (ii) shear strength reduction technique 

(Cheng et al., 2007; Griffiths and Lane, 1999; Griffiths and Marquez, 2007). These studies show 

that many aspects involved in slope stability could be simulated using FE methods. However, 

one of the major issues in FE modeling is the mesh distortion around the failure plane. It is 

recognized that large inelastic shear strains concentrate in critical locations and form shear 

bands, which propagate further with loading and/or reduction of shear strength that might lead to 

formation of a complete failure plane for global failure of the slope. Significant deformation 

occurs around this area and therefore convergence of the solution becomes a major issue in 

numerical analysis. Griffiths and Lane (1999) considered the non-convergence of the solution as 

an indicator of failure. 
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In the present study, large deformation FE modeling is performed for slope stability analysis. 

The FE analyses are performed using the Coupled Eulerian Lagrangian (CEL) approach 

available in Abaqus FE software. The soil flows though the fixed mesh and therefore a very large 

deformation could be simulated without any numerical issues related to mesh distortion. 

3.3  Problem definition 

The geometry of the slope used in the present FE modelling is shown in Fig. 3.1. A 10 m high 

river bank having 2H:1V slope is considered in this study. The ground surface to the right side of 

the crest is horizontal. The groundwater table is assumed at the ground surface. Two layers of 

clay, named as top and bottom layer, are involved in the potential failure of the slope. The 

thickness of both top and bottom clay layers is 10 m. Below the bottom clay layer, there exists a 

strong base layer. 

 

 
 

  

 

 

 

Fig. 3.1: Geometry of the slope used in finite element modeling 

 

The failure of a slope could occur in drained or undrained conditions. However, the main focus 

of the present study is to model the failure of the slope in the undrained condition. The shear 
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strength reduction technique is used in the FE analysis. The analysis starts with a high initial 

undrained shear strength (su(in)) and then the shear strength is gradually decreased until the failure 

of the slope initiates. The factored undrained shear strength su is calculated as: 

SRF
s

s inu
u

)(
                                                                                               (1) 

where SRF is the strength reduction factor. 

The following cases are analyzed in this study. 

Case-1: In this case, analyses are performed for uniform undrained shear strength of soil. 

Constant su(in)=60 kPa is assigned to both top and bottom clay layers (Fig. 3.1). The slope is 

stable with this undrained shear strength under gravity load. The undrained shear strength is then 

gradually decreased by increasing the value of SRF with time as Eq. (1). 

Case-2: In this case, analyses are performed for layered soil. The variation of undrained shear 

strength in the bottom (su2) and top (su1) soil layer is defined by a strength ratio R=su2/su1. 

Analyses are performed for R=0.6, 1.5 and 3.0, keeping the initial average value (su1+su2)/2=60 

kPa, which is same as Case-1, as shown in Table 3.1. The undrained shear strength is then 

gradually reduced with time by increasing SRF (Eq. 1) while maintaining the same value of R. 

The initial and final values of su in the top and bottom clay layers are shown in Table 3.1. 
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Table 3.1: Initial and final values of su for Case-2 

 

The values of undrained shear strength used in this study are similar to previous studies (e.g. 

Griffiths and Lane, 1999). 

 

3.4  Finite Element Modeling 

3.4.1 Numerical Technique 

Abaqus 6.10 EF-1 is used in this study. The FE model consists of two parts: (i) soil and (ii) void 

space to accommodate the displaced soil mass. The soil is modeled as Eulerian material using 

EC3D8R elements, which are 8-noded linear brick, multi-material, reduced integration elements 

with hourglass control. In Abaqus CEL, the Eulerian material (soil) can flow through the fixed 

mesh. A detailed discussion on mathematical formulation CEL is available in Abaqus 6.10 

R  Initial(kPa) Final(kPa) 

0.6 
su1 75 40 

su2 45 24 

1.5 
su1 48 19.2 

su2 72 28.8 

3.0 
su1 30 15 

su2 90 45 
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Analysis User's Manual. Therefore, numerical issues related to mesh distortion or mesh tangling, 

even at very large deformation, could be avoided. 

A void space is created above the soil as shown in Fig. 3.1. The soil and void spaces are created 

in Eulerian domain using the Eulerian Volume Fraction (EVF) tool available in Abaqus. For void 

space EVF=0 (i.e. no soil) and for clay EVF=1 which means these elements are filled with 

Eulerian material (soil). 

Zero velocity boundary conditions are applied normal to the bottom and all the vertical faces 

(Fig. 3.1) to make sure that the Eulerian material remains within the domain. Therefore, the 

bottom of the model shown in Fig. 3.1 is restrained from any movement in the vertical direction, 

while the vertical sides are restrained from any lateral movement. No boundary condition is 

applied at the soil-void interface (MFGQ in Fig. 3.1). 

Uniform mesh of 0.375 m × 0.375 m is used. Analyses are also conducted using different mesh 

sizes (0.25m x 0.25m) and (0.5m x 0.5m). Only three-dimensional models can be generated in 

Abaqus CEL. In the present study, the analyses are performed with only one element (0.375 m) 

length in the out of plane direction to simulate plane strain condition. 

The numerical analysis is performed in two steps. In the first step, geostatic load is applied to 

bring the soil to in-situ conditions with the initial undrained shear strength. The slope is stable at 

the end of the geostatic step. In the second step, the undrained shear strength is reduced gradually 

increasing the value of SRF with time. 

 
3.4.2 Modeling of Soil 

The soil is considered as linear elastic perfectly plastic material. In addition to undrained shear 

strength properties as discussed before, the following soil properties are used: undrained 
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Young’s modulus, Eu=10,000 kPa, Poisson’s ratio, u=0.495, and saturated unit weight of soil, 

sat=20 kN/m3. In addition, the Von Mises yield criterion is adopted.   

 

3.5 Finite Element results of large deformation technique 

As mentioned before, the slope is stable under gravity load with the initial undrained shear 

strength.  Therefore, in the following sections the formation of the shear bands with reduction of 

shear strength (or increase in SRF) is shown from plastic shear strain (PEEQVAVG= 3/p ), 

instant velocity vectors and deformed shape.  

3.5.1  Case-1 

Figure 3.2(a) shows no plastic shear strain, meaning that the slope is stable both globally and 

locally, at the end of geostatic step for su(in)=60 kPa. When SRF is increased to 1.4 (Fig. 3.2b), 

very small plastic shear strain is developed around point A in the bottom layer just above the 

strong base and below the middle of the slope. With a further increase in SRF, the shear band 

propagates horizontally and then curves upward mainly in the left side and the shear band AB is 

formed at SRF=1.9. When SRF=2.31, the shear band reaches the surface at point D (Fig. 3.2c). 

The velocity vectors of soil elements at SRF=2.31 are shown in Fig. 3.2(d). The velocity of the 

soil elements near the shear band (Fig. 3.2c) is higher than that of other elements. When SRF is 

increased further the shear band further propagates to the right from point A. The extent of the 

shear band and velocity vectors of soil elements at SRF=2.45 are shown in Figs. 3.2(e) and 

3.2(f), respectively. At this stage another shear band BF is also starting to form from the toe of 

the slope (Fig. 3.2e). The shear band reaches the ground surface at point H when SRF=2.55 and a 
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complete failure surface is developed (Fig. 3.2g). Significant amount of plastic shear strain 

accumulation occurs near point A (PEEQVAVG=120% at SRF=2.55). The velocity vectors at 

SRF=2.55 are shown in Fig. 3.2(h). With a further increase in SRF, the failed soil mass slides on 

the failure plane DBAH as shown in Figs. 3.2(i) and 3.2(j)  for SRF=3.0. 

 

 

Fig. 3.2: Formation of shear bands and failure planes in uniform soil 
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Fig. 3.2(contd.): Formation of shear bands and failure planes in uniform soil 
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Fig. 3.2(contd.): Formation of shear bands and failure planes in uniform soil 
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Limit equilibrium (LE) analysis of the same slope is also performed using SLOPE/W software 

(SLOPE/W 2007). Uniform undrained shear strength of 60 kPa is assigned. The location of the 

critical circle is shown by the dashed line in Fig. 3.2(e). The location of the shear band obtained 

from the present FE analysis matches well with the critical circle of SLOPE/W analysis.  

The limit equilibrium method does not give any information about the deformation of soil. 

However, the deformation of soil can be found from the FE analysis. As shown in Figs. 3.2(g) to 

3.2(j) that a significant settlement of the ground surface has occurred near the crest of the slope 

once the failure is initiated. Similarly, considerable heave has occurred near the toe of the slope. 

When the shear strength is reduced significantly (e.g. SRF=3.0) the deformed shape of the slope 

is very different from the original one. 

Figure 3.3 shows the magnitude of lateral (to left) and vertical (up) displacements with an 

increase in SRF. The displacement of the toe is almost zero until SRF=2.3. As shown in Figs. 

3.2(a)-3.2(f) that the complete failure surface is not developed when SRF is less than 2.31. 

Moreover, the developed shear band length for SRF2.3 is not sufficient enough to create a 

noticeable displacement of the toe of the slope. 

When SRF≥2.5, significant displacement of the toe is occurred. In this particular case, the 

magnitude of both lateral and vertical displacements are the same until SRF=2.75. However, at a 

very large SRF (e.g. SRF=3.0) the lateral displacement is higher than the vertical displacement. 
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Lateral disp. 
Vertical disp. 

 

 

 

 

 

 

 

 

Fig. 3.3: Toe displacement with increase in SRF 

Based on the above analysis it can be concluded that Abaqus CEL can successfully model the 

failure of a slope. The main advantage of CEL over conventional FE methods is that CEL does 

not have any mesh distortion issues even at large deformation. Moreover, it provides the 

information about deformation, which cannot be obtained from the limit equilibrium methods. 

 

 

 

 



  

35 

 

3.5.2  Case-2 

The FE results for a two layered soil system are presented in this section. For R=0.6, the shear 

strength is low in the bottom clay layer (su2=45 kPa). Therefore, small plastic shear strain 

(≤4.6%) is developed along a horizontal plane near point A at the end of geostatic step (Fig. 

3.4a). This local plastic shear deformation however does not cause any significant movement of 

the whole slope or global failure. This means that the slope is stable globally at the end of 

geostatic step. Similar to Fig. 3.2, the length of shear band increases with SRF, initially mainly in 

the left side and then to the right. When SRF=1.74, the shear band reaches to point D (Fig. 3.4b). 

A complete failure surface is developed when SRF=1.875 (i.e. su1=40 kPa and su2=24 kPa), as 

shown in Fig. 3.4(d). The velocity vectors at these conditions are shown in Figs. 3.4(c) and 

3.4(e), respectively. The formation of shear bands and the failure plane is very similar to Fig. 3.2 

with uniform undrained shear strength. 

 

 

Fig. 3.4: Formation of shear band and failure plane in layered soil 
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Fig. 3.4 (contd.): Formation of shear band and failure plane in layered soil 
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Fig. 3.4 (contd.): Formation of shear band and failure plane in layered soil 
 

For R=1.5, similar to Case-1, there is no plastic shear strain at the end of geostatic step with the 

initial values of undrained shear strength (su1=48 kPa and su2=72 kPa). The plastic shear strain 

starts to develop at the bottom of the clay layer near the point A at SRF=1.26. When the value of 

SRF is increased to 2.34, the shear band FI starts to form from the toe of the slope. Both shear 

bands propagate further with an increase in SRF as shown in Fig. 3.4(g). The shear band formed 

from point A propagates at a faster rate than the one formed from the toe and reached to the 

ground surface at point H at SRF=2.4. Once the complete failure surface DBAH is formed, the 

soil mass mainly slides over this plane without any further increase in the length of the shear 
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band FI. If we consider the LE method, DBAH is the potential failure plane although a 

significant amount of plastic shear strain is accumulated in the shear band FI. 

Figure 3.4(h) shows the velocity vector of the soil elements at SRF=2.4. The velocity of the soil 

particles near the shear bands FI and DBAH is higher than that of other elements outside these 

zones. Figures 3.4(i) and 3.4(j) show the FE results for R=3.0. As the undrained shear strength of 

the bottom clay layer is significantly higher than that of the top layer (initial values are su1= 30 

kPa and su2=90 kPa), the shear band does not form in the bottom clay layer as in previous cases. 

Instead, a shear band FJ starts to form from the toe of the slope at SRF=1.18 and propagates 

upward with an increase in SRF and reaches the ground surface at point J when SRF=1.63. The 

distance GJ=7.5 m (Fig. 3.4i) is significantly less than GH=20.98 m for R=0.6 (Fig. 3.4d) and 

19.11 m for R=1.5 (Fig. 3.4g). That means a small toe failure has occurred in this case which is 

different from the deep-seated failure for R=0.6 or 1.5. The instant velocity vectors at SRF=1.63 

are shown in Fig. 3.4(j). 

 

3.6 Comparison with previous analysis 

Griffiths and Lane (1999) presented a series of FE analyses of slopes. The conventional FE 

modeling technique in a Lagrangian framework is used in their analysis. In one set of their 

analyses they performed FE analyses varying the undrained shear strength of the top and bottom 

clay layer as discussed before. Although the process of formation of the shear band was not 

shown, the deformed shapes at their defined condition of failure for R=0.6, 1.5 and 2.0 were 

presented, which are shown in Fig. 3.5. Deep-seated base failure mechanisms are observed for 

R=0.6 and 1.5 (Figs. 3.5(a) and 3.5(b)). Moreover, for R=1.5, another shear zone from the toe of 
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the slope is observed (Fig. 3.5b). This observation is very similar to the present FE analyses 

presented in Fig. 3.4 (compare with Figs. 3.4 (f) and 3.4(h)). For R=2.0, a shallow toe failure 

mechanism governs the behaviour. This is very similar to the present FE analysis shown in Figs. 

3.4(i) and 3.4(j). 

Figure 3.5 shows that significant mesh distortion has occurred along the failure plane. Significant 

mesh distortion is also shown in other FE modeling (e.g. Swan and Seo, 1999; Wanstreet, 2007). 

Some researchers (e.g. Griffiths and Lane, 1999) considered non-convergence of the solution as 

a criterion of slope failure. However, in the present study, mesh distortion is not an issue as the 

soil can flow through the fixed mesh. Therefore, the present FE model is far more robust than the 

available FE models in Lagrangian framework for large deformation analysis of slopes. 
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(a) 

(b) 

(c) 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
Fig. 3.5: Deformed mesh at failure: (a) R=0.6, (b) R=1.5, (c) R=2.0 (after Griffiths and Lane, 

1999). 
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3.7  Conclusion 

The finite element analysis presented in this paper shows that Abaqus CEL can successfully 

model the slope failure mechanism even at large deformation. As the soil flows through the fixed 

mesh, the numerical issues related to mesh distortion can be avoided. It is shown that the failure 

surface is generated by development of shear bands with a decrease in shear strength. Once the 

complete failure surface is developed, the failed soil mass might displace significantly if the 

shear strength is reduced further. Using the present FE model, the deformation of the soil mass 

could be calculated which cannot be done using the traditional limit equilibrium methods. The 

FE analyses of layered soil shows that two types of failures can occur depending upon the ratio 

(R) of undrained shear strength of the bottom and top clay layers. For lower values of R, deep-

seated failure is occurred. However, for R=1.5, in addition to the deep-seated failure surface, a 

shear band from the toe of the slope is generated. For higher value of R (=3.0) small toe failures 

occur. 
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Chapter 4 

 
Modeling of Clay Slope Failure due to Earthquake 

 

4.1 Introduction 

The effects of earthquake load on stability analysis of slopes are important aspect of earthquake 

geotechnical engineering. Slope failure occurs very short duration of time and can be devastating 

in nature in case of earthquake induced landslides. To investigate the complex failure mechanism 

due to earthquake, analyses are carried out using both LE methods and large deformation FE 

analyses. Earthquake loading is implemented in FE and LE analyses using the pseudostatic 

approach. In this approach, the earthquake load is defined as a pseudostatic coefficient (k). 

Seismic excitation will have at least two effects e.g. short-term stability and long-term stability 

on slope. As earthquake occurs in a short time and also the time required for post-earthquake 

failure is very small. The generated pore pressure cannot dissipate during the failure of a slope 

due to earthquake loading. Therefore, all the analyses presented in this chapter are based on 

undrained behaviour of clay. 

 

The main objective of this chapter is to investigate the mechanism involved in failure of clay 

slope subjected to earthquake loading using Abaqus CEL. However, simulations have been also 

performed using LE method in order to show the advantages of CEL over LE especially when 

large deformation occurs.  
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4.2  Problem definition 

The geometry of the slope used in the present FE modeling is shown in Fig. 4.1. A 10 m high 

river bank having 2H:1V slope is considered. The ground surface to the right side of the crest is 

horizontal. The groundwater table is assumed at the ground surface. Two clay layers as top and 

bottom clay layer, both are 10 m thickness are involved in the potential failure of the slope. 

Below the bottom clay layer there is a 3 m thick base layer of strong soil. 

Fig. 4.1: Geometry of the slope used in finite element modeling 

 

4.3 Implementation of earthquake loading 

Two approaches are commonly used to implement earthquake loading in slope stability 

analysis—pseudostatic approach and complete dynamic approach. In the former one, the 

dynamic effect is lumped in pseudostatic coefficient, while in the later one the complete 

acceleration–time history is applied at the base of the model. Although a complete dynamic 

modeling might provide further insights, the pseudostatic approach is commonly used in 
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practical engineering. In the present study, large deformation finite element analyses are 

performed using the pseudostatic approach. 

 

In general both vertical and horizontal forces increase during earthquake loading. However, the 

vertical component increases the stability of the slope, while the horizontal force decreases the 

factor of safety (Fs) of the slope (Kramer, 1996). In numerical analysis, earthquake induced 

horizontal force is calculated by multiplying the weight of soil above the failure plane (W in Fig. 

4.2) by a horizontal seismic coefficient (kx). Analysis is then performed simply for static 

condition considering the both earthquake and gravity load. 

 

Fig. 4.2: Schematic diagram of pseudo-static analysis approach (after Melo et al., 2004). 

 

While pseudostatic analysis is simple and has been implemented in many slope stability analysis 

programs (e.g. Slope/W) although an appropriate value of kx needs to be considered. Table 4.1 

shows a summary of the recommended values of kx (Melo et al., 2004).  
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Table 4.1: Recommended values for horizontal seismic coefficient (kh) 

Designation/Specification Horizontal Seismic Coefficient (kh) 

In U.S. 0.05-0.15 

In Japan 0.12-0.25 

Terzaghi  

(1950) 

“severe” earthquakes  0.1 

“violent, destructive” earthquakes 0.2 

“catastrophic” earthquakes 0.5 

Seed (1979) Fs>=1.5 0.1-0.2 

Corps of 

Engineers 

(1982) 

Major Earthquake, Fs> 1.0 0.1 

Great Earthquake, Fs> 1.0  0.15 

Marcuson (1983), Fs> 1.0 1/2 -1/3 of PHA 

Hynes-Griffin (1984), Fs> 1.0 1/2 of PHA 

Fs= Factor of safety. PHA= Peak horizontal acceleration, in g's 

 

4.4 Finite Element Modeling 

4.4.1  Numerical Technique 

Abaqus 6.10 EF-1 is used in this study. The FE model consists of two parts: (i) soil and (ii) void 

space to accommodate the displaced soil mass. The soil is modeled as Eulerian material using 

EC3D8R elements, which are 8-noded linear brick, multi-material, reduced integration elements 

with hourglass control. In Abaqus CEL, the Eulerian material (soil) can flow through the fixed 
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mesh. Therefore, numerical issues related to mesh distortion or mesh tangling, even at very large 

deformation, could be avoided. 

A void space is created above the soil as shown in Fig. 4.1. The soil and void spaces are created 

in Eulerian domain using the Eulerian Volume Fraction (EVF) tool available in Abaqus. For void 

space EVF=0 (i.e. no soil) and for clay EVF=1 which means these elements are filled with 

Eulerian material (soil). 

Zero velocity boundary conditions are applied normal to the bottom and all the vertical faces 

(Fig. 4.1) to make sure that the Eulerian material remains within the domain. Therefore, the 

bottom of the model shown in Fig. 4.1 is restrained from any movement in the vertical direction, 

while the vertical sides are restrained from any lateral movement. No boundary condition is 

applied at the soil-void interface (MFGQ in Fig. 4.1). 

Uniform mesh of 0.375 m × 0.375 m is used. Analyses are also conducted using different mesh 

sizes (0.25m x 0.25m) and (0.5m x 0.5m). Only three-dimensional models can be generated in 

Abaqus CEL. In the present study, the analyses are performed with only one element (0.375 m) 

length in the out of plane direction. 

The numerical analysis is performed in two steps. In the first step, geostatic load is applied to 

bring the soil to in-situ conditions with the initial undrained shear strength. The slope is stable at 

the end of the geostatic step. In the second step, pseudostatic horizontal acceleration kx is applied 

in a very small increment to the targeted value of kx (Loukidis et al., 2003; Tan and Sarma, 2008) 

which creates horizontal body force Fb (=kx) per unit volume of soil, where  is the unit weight 

of soil. 
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4.4.2  Modeling of Soil 

The soil is considered as linear elastic perfectly plastic material. In addition to undrained shear 

strength properties, the following soil properties are used: undrained Young’s modulus, 

Eu=10,000 kPa, Poisson’s ratio, u=0.495, and saturated unit weight of soil, sat=20 kN/m3. The 

Von Mises yield criterion is adopted. 

4.5 Results of Pseudostatic Seismic Analyses 

In addition to FE analyses, pseudostatic slope stability analyses are also performed using the 

SLOPE/W software which is based on limit equilibrium approach. 

4.5.1  Limit Equilibrium Analysis Results 

Figure 4.3(a) shows the critical circle (minimum Fs) for the case without any earthquake load 

(i.e. kh=0). The slope is stable under gravity load (Fs=1.37). When kh is increased to 0.05 and 

0.084 the factor of safety reduces to 1.15 and 1.0, respectively (Figs 4.3a & b). The size of the 

failed soil mass above the failure plane also increases with kh. When kh=0.1, the factor of safety 

is  0.9 (i.e.<1.0) (Fig. 4.3c), which implies that the slope will fail at this stage. 

The analyses are presented in Fig. 4.3 simply provide the value of Fs. However, this type of limit 

equilibrium analysis does not give the following important information. 

(i) It does not provide any information about the gradual (progressive) formation of failure 

planes with increase in earthquake load (kh).  

(ii) It does not give any information about the displacement of the failed soil block.  
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(iii)  It also does not provide any information whether the displacement of the failed soil 

block could trigger the failure of another block as the support is reduced. Note that, in the 

field, it is commonly observed that earthquake induced slope failure involves 

displacement of a number of soil blocks instead of failure of only one block as shown in 

Fig. 4.2. 

 

 

 

 

 
Fig. 4.3: LE analysis with SLOPE/W for different pseudostatic coefficient 
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In order to overcome the above mentioned limitations, large deformation FE simulations are 

performed in this study and presented in the following sections. 

4.5.2   Finite Element Simulation Results 

Figure 4.4 shows the FE simulation results. Similar to limit equilibrium analysis horizontal 

pseudostatic coefficient kh is increased gradually. Figure 4.4(a) shows that, at the end of gravity 

step without any earthquake load (kh=0), very small plastic shear strain develops around point A 

which is below the midpoint of the slope and at the interface between the clay and base layer. 

However, the developed plastic shear strain is very small and the slope is globally stable. 

One of the main advantages of FE modeling is that progressive development of failure planes 

could be simulated. In order to show the progressive formation of failure planes, simulation 

results for a number of values of kh are shown in Figs. 4.4 (a–o). 

With increase in kh, the length of horizontal shear band—the zone where PEEQVAG develops—

increases as shown in Figs. 4.4(b) and 4.4(c), for kh=0.025 and 0.0275, respectively. At kh=0.031, 

another inclined shear band in the left side of horizontal shear band forms from point B and  

reaches point D at the ground surface as shown in Fig. 4.4(d). At the same time, the propagation 

of the horizontal shear band AE continues to the right. The length of the horizontal shear band 

increases further with kh (Fig. 4.4e) and at kh=0.06 another inclined upward shear band starts to 

form point C (Fig. 4.4f). The length of this inclined shear band gradually increases (Fig. 4.4g) 

and at kh=0.082 it reaches the ground surface at point H. At this value of kh a complete failure 

plane DBACH develops for global failure of a soil block (Block-I) occurs (Fig. 4.4h). In 

addition, a long horizontal shear band of 103 m forms at the interface between clay layer and 

base layer. 
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The instantaneous velocity vector of the soil elements at kh=0.082 is shown in Fig. 4.4(i). The 

velocity of the soil elements near the failure plane is higher than that of other elements, which 

indicates a rotational failure of the Block-I. For comparison with the limit equilibrium analysis 

using SLOPE/W, the critical circle for kh=0.084 is shown in Fig. 4.4 (j).While the size of the 

failed soil mass obtained from SLOPE/W and FE analysis are comparable, the present FE 

analysis gives the progressive formation of the failure planes. In addition to the global failure 

plane DBACH, other failure planes (e.g. BF and ACE) form, which cannot be obtained using 

SLOPE/W.  

The value of kh gradually increased further (Figs. 4.4 k–o). Figure 4.4(m) shows that, at 

kh=0.095, another inclined upward shear band starts to form point G. The soil mass above the 

failure plane DBACH displaces to a significantly large distance to the left that reduces the 

support on remaining soil in the right side of failure plane ACH, which causes the formation of 

this shear band. The process of shear band formation continues and at kh=0.0975 another soil 

block (Block-II) failed. The failure of additional soil block (Block-II) cannot be modeled using 

SLOPE/W. 

Extremely large shear strains develop along the failure planes. For example, Fig. 4.4(n) shows 

that the plastic shear strain (PEEQVAVG) in the shear band near point A is between 300% and 

385%. Such a large shear strain cannot be modeled using the typical FE program developed in 

Lagrangian framework because of large mesh distortion. However, as the Coupled Eulerian 

Lagrangian approach is used in the present study, large deformation behaviour is successfully 

simulated without any numerical issues related to mesh distortion. 
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Figure 4.4(o) shows the instantaneous velocity vector of the soil elements. Higher velocity of the 

soil elements in the left side of the failed soil mass indicates that the Block-I displaces at higher 

velocity than the Block-II, which is a necessary condition for this earthflow type of slope failure 

(Haug et al., 1977). In Block-II, higher velocity near the failure plane indicates that block rotates 

in clockwise direction in addition to downslope displacement during failure. 
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Fig. 4.4 : FE simulation results with increase in horizontal pseudostatic coefficient 
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Fig. 4.4 (contd.): FE simulation results with increase in horizontal pseudostatic coefficient 
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Fig. 4.4 (contd.): FE simulation results with increase in horizontal pseudostatic coefficient 
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4.6 Conclusion 

In this chapter, stability analyses of a clay slope subjected to earthquake loading are performed 

using two numerical approaches: (i) limit equilibrium analysis using SLOPE/W and (ii) large 

deformation finite element analysis using Abaqus CEL. Earthquake load is incorporated in the 

analysis using the horizontal pseudostatic coefficient (kh). In SLOPE/W, kh can be given directly 

as an input parameter. However, Abaqus CEL does not have such option and therefore kh is 

implemented in the FE analysis by horizontal body force. A comparison between the simulation 

results of SLOPE/W and Abaqus CEL shows that the later one has a number of advantages.  

-Abaqus CEL can simulate large deformation as observed in large-scale landslides. 

-It can simulate the progressive development of failure planes. 

-It also provides information about the displacement of soil mass after failure. 

-It can simulate retrogressive failure of slopes, which is one of the common phenomena in 

large-scale landslides during earthquake. 

The present study has some limitations although it can simulate a number of additional features 

that cannot be modeled by the limit equilibrium methods as commonly used in practical 

geotechnical engineering and also by typical FE approach developed for small strains. The 

analysis is performed using the pseudostatic coefficient for undrained loading condition without 

considering any degradation of undrained shear strength due to earthquake loading. A detailed 

dynamic analysis together with reduction of undrained shear strength with dynamic loading 

might provide a better insight into the failure mechanisms. However, it will increase additional 

complexity in the analysis, such as stress–strain behavior of soil, boundary and loading 

conditions, and therefore it is left for future study. 
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Chapter 5 

 
Large-Scale Landslide in Sensitive Clays 

 
5.1 Introduction 

One of the most common geohazards in Eastern Canada and Scandinavian countries is the 

landslides in sensitive clays. Most of the landslides occurs in the field are reported to be initiated 

from the toe of the slope of the river bank. Many triggering factors could initiate the failure. 

Among them toe erosion near the river bank is considered one of the major triggering factors. 

Because of strain-softening behaviour of sensitive clays, once the failure is initiated, a number of 

additional failures might occur leading to a large landslide where a number of failed soil blocks 

displaces over a large distance. The following four types of landslides are commonly observed in 

the sensitive clays in eastern Canada and Scandinavia (Karlsrud et al., 1984; Tavenas 1984). 

 i)  Single rotational slides 

 ii) Multiple retrogressive slides or earthflows or flows 

 iii) Translational progressive landslides, and 

 iv) Spreads 

In a large-scale landslide, the failure pattern can be classified as one of the above type or could 

be combination of a number of them. For example, Geertsema et al. (2006) reported that, in the 

Mink Creek landslide in British Columbia, all four types landslides occurred in one event. In 

large landslides in sensitive clays, the failure pattern could be different depending upon the 

geometry, soil conditions, topography and stress history of soil. Locat et al. (2011) classified the 
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landslides in sensitive clays into following three categories: (a) Flow, (b) Translational 

progressive landslide, and (c) Spread. 

 

Fig. 5.1. Three types of retrogressive landslide in sensitive clays: (a) flow, (b) translational 
progressive landslide, and (c) spread (modified after Locat et al., 2011) 

 
 
5.2 Retrogression in sensitive clay slope failure 

As shown in Fig. 5.1, retrogressive failure of the slope is a common phenomenon in large-scale 

landslide in sensitive clays. Retrogression distance (LR)—the horizontal distance between the 

furthest point from the slope where the last failure surface intersects the ground surface to the 

crest or toe of the slope—is one of the main concerns in modeling of landslide effects (Fig. 5.2a). 
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In this study, LR is measured as the distance from crest of the slope. Unfortunately, the 

retrogression process is not well-understood because many factors involve in this process. In 

addition, large deformation and shear band formation due to strain-softening behaviour of soil 

makes this process further complicated. Demers et al. (2014) summarized 108 case histories 

from Québec and showed that LR=38–1340 m (average 225 m) for flowslides and LR=30–560 m 

(average 145 m) in spreads. 

Empirical equations have been proposed in the past for estimation of LR as a function of stability 

number Ns=H/su, where  is the unit weight of the soil, H is the height of the slope and su is the 

initial undrained shear strength  (Mitchell, 1978; Mitchell and Markel, 1974; Quinn et al., 2011). 

Figure 5.2(b) shows the comparison between empirical models and field data (Demers et al., 

2014) . Demers et al. (2014) also showed that calculated LR using the method proposed by Quinn 

et al. (2011) could be differ by a factor of 10 from case records. Such a wide variation between 

model prediction and field records warrants further studies in this area. 

The main objective of this chapter is to investigate some factors that could affect retrogression 

distance using a large deformation finite element modeling technique. If the key factors are 

known, the retrogressive failure could be better explained. 
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Fig. 5.2: (a) Retrogression in sensitive clay slope failure (modified from Thakur and Degago, 

2014); (b) Comparison between empirical model and case histories (after Demers et al., 2014). 
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5.3 Numerical modeling 

Although the limit equilibrium method has been widely used for slope stability analysis, these 

large-scale landslides cannot be explained using the limit equilibrium method because the failure 

surfaces develop progressively due to strain-softening of sensitive clay. Limited number of 

studies focused on FE modeling of sensitive clay slope failure (Locat et al., 2013, 2015; Quinn et 

al., 2007; 2011, 2012). Most of these studies used FE approach based on Lagrangian framework, 

together with some improvements in some cases (e.g. assumption of finite or zero thickness 

shear band, use of updated Lagrangian or extended FE modeling techniques). However, these 

approaches cannot simulate some of the key features of sensitive clay slope failure—for 

example,  retrogression and runout distance—as reported from post-failure investigations. 

Some of the major issues related FE modeling of the sensitive clay slopes are listed  below: (i) 

Selection of an appropriate model for post-peak strain-softening behaviour of sensitive clays in 

undrained conditions; (ii) Modeling of significantly large strain concentration at the failure 

planes; (iii) Modeling of formation of failure planes without a priori definition of their location. 

In a recent study, Dey et al. (2015) used an advanced numerical modeling technique to simulate 

the failure of sensitive clay slopes. The analyses have been conducted using Abaqus CEL, in 

which soil flow through the fixed mesh and therefore mesh distortion is not expected. They 

successfully simulated the formation of horsts and grabens in spread type of failure. Note that 

this type of large deformation FE modeling of slope is computationally very expensive. 

Depending upon the size of the problem, each analysis takes 5 hours to more than a day with a 

3.2-GHz Intel Core i5 processor and 8 GB RAM. Therefore, the analyses have been performed 

for a limited number of geometry and soil conditions. In this chapter, a comprehensive 
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parametric study is performed to investigate how the geometry and soil property could change 

the failure pattern including the post-failure deformation of the soil. Note that the post-failure 

movements it is equally important as it might affect many structures located in the upslope and 

downslope areas. For upslope structures, retrogression distance, while for downslope structures 

runout distance of the failed soil mass is important as shown schematically in Fig. 5.2 (a). 

 
5.4 Problem definition 

An idealized sensitive clay slope near the riverbank analyzed in this study is shown in Fig. 5.3. 

The slope has three layers of soil: a crust of over consolidated clay near the ground surface and 

face of the slope, a sensitive clay layer beneath the crust, and a stiff base layer at the bottom of 

the slope. The thicknesses of the soil layers are denoted as Hc, Hs and Hb, as shown in Fig. 5.3. 

The slope of the river bank () equal to 30. Erosion and/or excavation near the toe of the slope 

is considered as the triggering factor of slope failure. The height of the erosion/excavation is Heb. 

In order to simulate the erosion, a soil block referred as “erosion block” is set at the toe of the 

slope (hatched zone in Fig. 5.3). The erosion block is moved leftward horizontally (displacement 

is referred as ) during the simulation. For simplicity, the water table is assumed at the ground 

surface and river is full. Analyses are performed for undrained condition because the failure of 

the slope may occur in a very short period or undrained condition (Locat et al., 2013). 
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Fig. 5.3: Geometry of the sensitive clay slope used in finite element modeling (modified after 

Dey et al., 2015) 
 

The effects of the following factors on stability and failure patterns of the slope are examined: (i) 

shear strength of the crust (suc); ii) sensitivity of clay (St); iii) thickness of crust and sensitive clay 

layer (Hc+Hs); iv) slope angle (); v) post-peak strength degradation parameter (δ95);vi) at rest 

earth pressure coefficient (K0) and vii) height of erosion block (Heb). Further details of the 

geometry and some soil parameters used in these analyses are shown in Table 5.1. 
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Table 5.1: Geometry and soil parameters used in parametric study 

Case 
# 

suc 

(kPa) 
St Heb 

(m) 
Hc 

(m) 

Hs 
(m) 

Hb 
(m) 

β 
(deg) 

δ95 
(m) 

K0 

1 20,40,60,80 5 10 3 16 3 30 0.03 1.0 

2 60 3,5,7,10 10 3 16 3 30 0.03 1.0 

3 60 5 10 9,5,3,1 10,14,16,18 3 30 0.03 1.0 

4 60 5 10 3 16 3 15,25,30 0.03 1.0 

5 60 5 10 3 16 3 30 0.045,0.06,0.15 1.0 

6 60 5 10 3 16 5 30 0.03 0.70,0.90,0.93&0.95 

7 60 5 5&10 3 16 5 30 0.03 1.0 

8 60 5 10 3 19 5 30 0.03 1.0 
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5.5 Finite Element Modeling 

5.5.1  Numerical Technique 

Abaqus 6.10 EF1 software is used in this study for numerical analysis. The retrogressive failure 

simulated in this study is fundamentally a large deformation problem. As discussed earlier 

conventional FE modeling techniques developed in Lagrangian framework cannot model such 

large deformation problems properly because significant mesh distortion occurs. In order to 

overcome these issues, the Coupled Eulerian-Lagrangian (CEL) technique currently available in 

Abaqus FE software is used. The performance of Abaqus CEL in modeling sensitive clay slopes 

have been discussed in previous studies (Dey et al., 2014; 2015). In Abaqus CEL, the Eulerian 

material (soil) can flow through the fixed mesh. Therefore, there is no numerical issue of mesh 

distortion or mesh tangling even at large strains in the zone around the failure plane.  

The FE model consists of three parts: (i) soil, (ii) the erosion block and (iii) void space (i.e. space 

abcdefa in Fig. 5.3) to accommodate the displaced soil mass. The soil is modeled as Eulerian 

material using EC3D8R elements, which are 8-noded linear brick elements. The erosion block is 

modeled in Lagrangian framework as a rigid body, which makes the model computationally 

efficient. Soil and void spaces are created in Eulerian domain using Eulerian Volume Fraction 

(EVF) tool. For void space EVF is zero (i.e. no soil). On the other hand, EVF is unity inside the 

slope geometry, which means these elements are filled with Eulerian materials of three different 

types of soil.  

Only three-dimensional model can be generated in Abaqus CEL. In the present study, the model 

is only one element thick in the out of plane direction. The movement of soil perpendicular to the 
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x-y plane in Fig. 5.3 is restricted by applying zero velocity boundary condition in order to mimic 

plane strain condition. On the bottom of the model all velocity components are zero. In addition, 

zero velocity boundary condition is applied at the right side of the model. The failed soil might 

move leftward a very long distance. Hence, a free boundary is set at the left side of the Eulerian 

domain such that the soil can move out of the domain from the left boundary such that there is no 

accumulation of soil behind this boundary.  

The numerical analysis mainly consists of two steps of loading. In the first step geostatic load is 

applied to bring the soil in in-situ condition. In the second step, the erosion block is displaced 

leftward to simulate erosion/excavation at the toe.  

5.5.2 Modeling of Soil 

Laboratory tests (e.g. Bernander 2000; Bjerrum and Landva 1966; Tavenas et al., 1983) show 

that the undrained shear strength of sensitive clay decreases with plastic shear strain. The post-

peak softening behaviour of sensitive clay is implemented in the present FE modeling. The shear 

strain could be localized in a very small zone along the shear band. The thickness of shear band 

is very difficult to estimate in laboratory experiments or in the field. Hence, shear displacement 

is used to define the post-peak softening curve while the shear strain is used in the pre-peak 

elastic region, which has been also recommended by other researchers (e.g. Quinn et al., 2011).  

Linear variation of su with plastic shear displacement has been used by some previous 

researchers for modeling strain-softening behaviour of sensitive clays (e.g. Locat et al., 2013, 

2015, Quinn et al., 2011, 2012). However, the following exponential relationship of shear 
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strength degradation, as a function of plastic shear displacement, represents better the post-peak 

softening behaviour as observed in laboratory tests (Dey et al., 2012;2013; 2015).  

su = [1+(St-1)exp(-3δ/δ95)]suR                                               (2) 
 

where, su is the mobilized undrained shear strength at displacement δ; St is the sensitivity of the 

soil; δ =δtotal-δp where δp is the displacement required to attain the peak undrained shear strength 

(sup); and δ95 is the value of δ at which the undrained shear strength of the soil is reduced by 95% 

of (sup-suR). Equation (2) is a modified form of strength degradation equation proposed by Einav 

and Randolph (2005) but in terms of displacement. In this study, Eq. (2) is used to simulate the 

strain-softening behaviour. Figure 5.4 shows the relationship between the shear strength and 

shear displacement. Line oa defines the linear elastic pre-peak behaviour. The peak undrained 

shear strength (sup) is mobilized at point a and remains constant up to point b for a displacement 

of δpc. The curve bcd is defined by Eq. (2). After the soil reaches its residual shear strength (suR), 

the mobilized shear strength will reduce slowly with shear displacement. The reduction of su in 

this zone is defined by a linear line de, which shows that the shear strength reduces to a small 

value suld at large displacement ld. The shear strength after this displacement remains constant at 

suld.  

Adopting the von-Mises yield criterion, the degradation of undrained shear strength of sensitive 

clay is given as an input in the FE model by varying yield strength (=2su) as a function of plastic 

shear strain (γp), in which γp is calculated as γp=δ/t assuming simple shear condition, where t is 

the thickness of the shear band. In this study, t=tFE is used, where tFE is the thickness of the 

cubical EC3D8R finite element. The other soil parameters of the crust and sensitive clay used in 
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FE modeling for the ‘base case’ are shown in Table 5.2. The base layer is assumed to be very 

stiff and simulated as elastic material with Young’s modulus E=200 MPa. In parametric study, 

only one parameter is varied (Table 5.1) while the other parameters are kept constant as Table 

5.2. 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 5.4: Stress–displacement behaviour of sensitive clay (modified after Dey et al., 2015).  
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Table 5.2: Geometry and soil parameters used for base case FE analyses 

Geometry 

Thickness of crust, Hc (m) 

Thickness of sensitive clay, Hs (m) 

Thickness of base layer, Hb (m) 

Slope angle  () 

 

3 

16 

3 

30 

Crust properties 

Undrained Young’s modulus, Eu (MPa) 

Poisson’s ratio, νu 

Undrained shear strength, su (kPa) 

Submerged unit weight of soil, γ' (kN/m3) 

 

10 

0.495 

60 

9.0 

Sensitive clay properties 

Undrained Young’s modulus, Eu (MPa) 

Poisson’s ratio, νu 

Peak undrained shear strength, sup (kPa) 

Residual shear strength, suR (kPa) 

Large displacement undrained shear strength, suld(kPa) 

Submerged unit weight of soil, γ' (kN/m3) 

Plastic shear displacement for 95% degradation of soil strength, δ95 (mm) 

Plastic shear displacement for initiation of softening, δpc  (mm) 

Plastic shear displacement for large displacement undrained shear strength, 
sld  (mm) 

 

7.5 

0.495 

37.5 

7.5 

2.0 

8.0 

30 

4 

2000 
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5.6 Finite Element Results of Sensitive Clay Slopes 

5.6.1  Base Case: 

The formation and propagation of shear bands for the base case are shown in Fig. 5.5 for 

different values of the displacement of the eroded block (denoted by ).The base case analysis is 

similar to Dey et al. (2015); however, it is presented here for the purpose of comparison of the 

results in parametric study. 

At the end of the gravity step, there is no plastic strain in the slope (Fig. 5.5a), which indicates 

the slope is globally stable at this stage. With increase in displacement of the eroded block, the 

plastic strain accumulates in a narrow zone and forms the horizontal shear band f1 at =0.5 m 

(Fig. 5.5b). The plastic shear strain in the shear band f1 decreases gradually with distance from 

the eroded block. When =0.65 m, a curved shear band f2 develops at point P1 and the horizontal 

shear band propagates 89 m from the eroded block (Fig. 5.5c). As the displacement of the eroded 

block increases the shear band f2` propagates further and reaches the ground surface at ∆=0.75 m, 

which causes global failure of soil mass M1(Fig. 5.5d). With the increase of the displacement of 

the eroded block, the plastic strain concentrates along the failure plane formed by f1 & f2 and the 

soil mass M1 slides and rotates in downward direction as shown in Figs. 5.5(e) to Fig. 5.5(g). As 

the lateral displacement of M1 increases, settlement occurs near the crest shear band f2 (i.e. point 

P2). At ∆=2.4 m, multiple internal high plastic shear surfaces develop within the failed soil mass 

M1. 
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At ∆=4.5 m, another shear band f3 starts from point P2 (Fig. 5.5f) and propagates down and 

intersects f1 at ∆=5.95 m (Fig. 5.5g). At this condition another soil mass M2 is formed by the 

shear bands f1,  f2 and f3, which is known as horst.  

As the displacement continues, another shear band f4 starts to form point P3 which reaches the 

ground surface at P4 at displacement of ∆=12.2 m (Fig. 5.5i). The soil mass M3 bounded by 

shear bands f3 and f4 is known as grabens. The formation of horsts grabens continues with 

displacement of eroded block (Figs. 5.5j–k) until a strong or less sensitive soil layers are 

encountered in the right direction and/or movement of the soil mass M1 is obstructed in 

downslope direction or the length of the shear band f1 is not sufficient for formation of another 

horst. 
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Fig. 5.5 : FE simulation results for the base case (similar to Dey et al., 2015). 
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Fig. 5.5 (contd.) : FE simulation results for the base case (similar to Dey et al., 2015). 

 

5.6.2 Shear Strength of Crust (suc) 

In the base case analysis, suc=60 kPa is used (Fig. 5.5). In order to show the effects of suc, 

analyses are also performed for suc=40 and 80 kPa.  
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5.6.2.1 Analysis for suc=40 kPa 

Similar to the base case analysis presented in Fig. 5.5, a horizontal shear band f1 and then a 

curved shear band f2 form with displacement of eroded block. At ∆=0.75 m, global failure of a 

soil mass M1 occurs (Fig. 5.6b). With increase in ∆, even up to ∆=30.75 m, only the soil mass 

M1 displaces with the eroded block (Fig. 5.6 c–g) instead of formation of horsts and grabens as 

shown in Fig. 5.5. 

 

 

 

Fig 5.6: FE simulation results for suc=40 kPa 
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Fig. 5.6 (contd.): FE simulation results for suc=40 kPa 

5.6.2.2   Analysis for suc=80 kPa 

In the analysis with suc=80 kPa, the formation of first horizontal shear band (f1) and subsequent 

shear bands f2 and f3 are very similar to the base case results presented in Fig. 5.5. Similar to the 

base case, two soil blocks M1 and M2 forms by f1, f2 and f3. However, with increase in 

displacement of the eroded block, instead of formation of multiple horsts and grabens as in the 

base case, a number shear bands f4, f5 and f6 form only in the sensitive clay layer. Settlement 

occurs above these shear bands because of movement of soil blocks M1–M2, however, a 

complete failure surface through the strong crust could not develop. 
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Fig. 5.7: FE simulation results for suc=80 kPa 
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5.6.3  Sensitivity (St) 

Analyses has been performed for three different sensitivities, St=3, 5 and 10, which represent 

low, medium and high sensitivity, respectively (Holtz & Kovacs, 1981).  FE simulation results 

for St=5 is presented in Fig. 5.5. 

5.6.3.1 Analysis for St=3 

For the low sensitivity case (St=3), only a horizontal shear band f1 forms with displacement of the 

eroded block (Fig. 5.8 a-f). The degradation of undrained shear strength of the soil above this 

shear band is not sufficient to create inclined shear band as in the base case (Fig. 5.5). Therefore, 

global failure of the slope does not occur. The eroded block separates from the soil at large  

(>0.75 m). 
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Fig. 5.8: FE simulation results for St=3 
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5.6.3.1 Analysis for St=10 

For St=10, a long horizontal shear band f1 forms with displacement of the eroded block (≤0.75 

m) (Figs. 5.9 a–c). After that a curved upward shear band f2 forms, which then propagates to the 

ground surface leading to a global failure of a clay block M1 (Figs. 5.9 d–e). With further 

displacement, even at a very large , only the clay block M1 displaces with the eroded block 

without formation of additional shear bands as in the base case (Fig. 5.9f). 

 

 

 

 

Fig. 5.9: FE simulation results for St=10 
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Fig. 5.9 (contd.): FE simulation results for St=10 

5.6.4  Thickness of crust and sensitive clay layer 

In this case, analyses are performed by varying crust thickness (Hc) and sensitive clay layer 

thickness (Hs) maintaining the same height of the slope Hc+Hs=19.0 m. Note that in the base case 

analysis Hc =3.0 m and Hs=16.0 m (Fig. 5.5). 

5.6.4.1 Analysis for Hs=10 m and Hc=9 m 

In this case, only a horizontal shear band f1 develops with displacement of the eroded block (Fig. 

5.10). Thicker crust and thinner sensitive clay layer than the base case gives a relatively stronger 

material in this case. Therefore, global failure of the slope does not occur. The eroded block 

separates from the clay at large displacements (Fig. 5.10 f & g).  
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Fig 5.10: FE simulation results for Hs=10 m and Hc=9 m 
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Fig 5.10 (contd.): FE simulation results for Hs=10 m and Hc=9 m 

 

5.6.4.2 Analysis for Hs=14 m and Hc=5 m 

Compared to previous case (Fig. 5.10), the overall shear strength of the soil is reduced because 

of increase in sensitive clay layer thickness and reduction of crust thickness. Therefore, the shear 

bands propagates in the soil above the shear band f1 (Fig. 5.11). For this case, the formation of 

shear band is very similar to the base case (Fig. 5.5). However, because of higher overall shear 

strength in this case than that of base case (Hc and Hs are different), shear band propagation is 

smaller than the base case (compare Figs. 5.5(20.55 m) & 5.11(20.55m)). Moreover, because of 

thicker crust, the shear band f5 forms under the crust and also f6 initiates from the bottom of the 

curst. 
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Fig. 5.11: FE simulation results for Hs=14 m and Hc=5 m 
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Fig. 5.11(contd.): FE simulation results for Hs=14 m and Hc=5 m 
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Fig. 5.11(contd.): FE simulation results for Hs=14 m and Hc=5 m 

5.6.4.3 Analysis for Hs=18 m and Hc=1 m 

This analysis is performed for a very thin crust of 1.0 m. A horizontal shear band f1forms at small 

displacements of the eroded block, <0.5 m (Fig. 5.12 a–d). After that a curved shear band f2 

forms and results in global failure of a soil block M1 (Fig. 5.12 e–g). With further displacement 

of the eroded block, only the failed soil mass M1 moves behind it without formation of 

additional shear bands or horsts and grabens as the base case (Fig. 5.5) 

 

 

Fig. 5.12: FE simulation results for Hs=18 m and Hc=1 m 
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Fig. 5.12(contd.): FE simulation results for Hs=18 m and Hc=1 m 
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Fig. 5.12(contd.): FE simulation results for Hs=18 m and Hc=1 m 

5.6.5  Effect of Slope Angle (β) 

The geometry of the slope plays vital role in progressive failure. Steep slopes might be more 

susceptible to progressive failure (Lo and Lee, 1973; Locat et al., 2013).To investigate the 

influence of slope angle, analyses are performed for three different slope angles, =15°, 25° and 

30°, with same thickness of the crust of 5 m. The maximum depth of excavation is same in all 

cases (10 m), and therefore the size of the eroded block is the largest for smallest  (=15°). 
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5.6.5.1 Analysis for =15° 

Figure 5.13 shows that a horizontal shear band f1 forms with displacement of the eroded block. 

Compared with the base case (Fig. 5.5), the shear stress in the slopped zone is low because of 

mild slope angle. Therefore, curved upward shear bands do not form that could cause global 

failure of a soil mass. The eroded block separates from the soil in the right side leaving a 91 m 

long horizontal shear band at large s (Fig. 5.13f). 

 

 

 

 

Fig. 5.13: FE simulation results for β=15 
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Fig. 5.13(contd.): FE simulation results for β=15 

 

5.6.5.2 Analysis for =25° 

Similar to =15° case, a horizontal shear band f1 forms with displacement of the eroded block 

(Fig. 5.14). Also, at large displacements, the eroded block separates from the soil in its right side. 

The shear stress in soil elements under the slope is higher than that of =15° case. Therefore, 

there is an indication of formation of a curved shear band from point A where some plastic shear 

strain accumulation occurs (Fig. 5.14f). 
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Fig. 5.14 : FE simulation results for β=25 
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5.6.6 Effect of post-peak strength degradation parameter (95) 

Equation (2) shows that, if the value of 95 is reduced, the post-peak degradation of undrained 

shear strength occurs quickly (i.e. increase in brittleness). Previous studies suggested that highly 

brittle soil is more susceptible to devastating landslides (Locat et al., 2013). In order to show the 

effects of brittleness, analyses are performed for 95=0.03 m (base case), 0.045 m, 0.060 m and 

0.15 m. 

5.6.6.1 Analysis for 95=0.045 m 

The formation and propagation of the horizontal shear band is similar to base case studies (Fig. 

5.5). With increase in displacement of the erosion block, a horizontal shear  band forms and then 

curved upward towards ground surface as in base case (Figs. 5.15 a–f).  Horsts and grabens are 

formed with further displacement of the eroded block (Fig. 5.15 g–k). However, as the δ95 is 

higher than the base case, the shear band propagation is slower in this case.  

 

Fig. 5.15: FE simulation results for δ95=0.045 m 
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Fig. 5.15 (contd.): FE simulation results for δ95=0.045 m 
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Fig. 5.15 (contd.): FE simulation results for δ95=0.045 m 
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5.6.6.2 Analysis for 95=0.060 m 

In this case, strength degradation occurs at slower rate than previous cases. The formation and 

propagation of shear bands and development of global failure planes leading to spread failure in 

the form of horsts and grabens are shown in Fig. 5.16 (a–m). Shear band propagation is slow in 

this case as compared to the base case (Fig. 5.5) and 95=0.045 m case (Fig. 5.15). 

 

 

Fig. 5.16 : FE simulation results for δ95=0.060 m 
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Fig. 5.16 (contd.): FE simulation results for δ95=0.060 m 
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Fig. 5.16 (contd.): FE simulation results for δ95=0.060 m 
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5.6.6.3 Analysis for 95=0.150 m 

The post-peak degradation is slow and small in this case as compared to previous cases. The 

formation and propagation of shear bands for this case is shown in Fig. 5.17 (a–o). In this case, 

with increase of displacement of erosion block, a long horizontal shear band does not form rather 

it curved upward from the tip at =0.21 m and reaches the ground surface at =0.75 m causing 

global failure of soil block M1. The failed soil mass then disintegrates into several small soil 

blocks due to internal shear deformation. 

 

 

 

 

Fig. 5.17: FE simulation results for δ95=0.150 m 
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Fig. 5.17 (contd.): FE simulation results for δ95=0.150 m 
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Fig. 5.17 (contd.): FE simulation results for δ95=0.150 m 

In summary, the decrease in δ95 (i.e. increase in brittleness) causes quick formation of shear 

bands. High brittleness of sensitive clay is essential for formation of horsts and grabens. From 

the above analysis it can be concluded that the soil with high brittleness are more susceptible to 

progressive failure and formation of horsts and grabens.  The simulated trend of formation of 

horsts and grabens is similar to Locat et al. (2013) where they showed that brittle soils are more 

prone to progressive failure. 
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5.6.7 Effect of earth pressure coefficient at rest (K0) 

Analyses are performed for K0=0.7, 0.9, 0.93 and 0.95, in order to check the effects of earth 

pressure coefficient K0. A user subroutine is developed in FORTRAN to implement K0. 

5.6.7.1 Analysis for K0=0.7 

Figure 5.18 shows the simulation results for K0 =0.70. As can be seen from Fig. 5.18(a), after the 

geostatic step, the Mises stress in the slope increases with the depth from the ground surface 

because K01.0. However, no plastic shear strain develops for this stress state (Fig. 5.18b). As 

shown in Figs. 5.18(c) and 5.18(d), with displacement of the erosion block, a shear band 

develops from the toe. However, different from the base case (Fig. 5.5), the shear band does not 

propagate horizontally but a curved upward failure surface develops. Figures 5.18(e) shows that 

a global failure of a soil mass M1 occurs when the shear band f1 propagates up to the ground 

surface. Figure 5.18(f) shows the instantaneous velocity vectors, which indicate that the failed 

soil mass displaces along the slide surface. At large , only the soil mass M1 follows the eroded 

block (Figs. 5.18g & h). When the failed soil mass M1 moves sufficiently large distance, the 

lateral support to the soil behind the scrap is reduced. However, this reduction is not sufficient to 

cause the formation of another failure planes as the base case analysis (Fig. 5.5). 
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Fig. 5.18: FE simulation results for K0=0.7 
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Fig. 5.18 (contd.): FE simulation results for K0=0.7 
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5.6.7.2 Analysis for K0=0.90 

Figure 5.19 shows the progressive failure of the slope for K0=0.90. Unlike the simulation for 

K0=0.70 (Fig. 5.18), the shear band first propagates horizontally when the erosion block moves 

leftward (Fig. 5.19a). Figure 5.19(b) shows that, with displacement of the erosion block, the 

shear band propagates 20.5 m horizontally and then upward to the ground surface, forming a 

curved slide surface. The failed soil mass slides downward with Δ. Because of stiff base layer, 

the failed soil mass cannot rotate but slide laterally, and finally breaks into several soil blocks as 

shown in Fig. 5.19(c). Similar to the analysis for K0=0.70 (Fig. 5.18), only one soil block fails in 

this case instead of formation of a number of a number of sliding surfaces as the base case (Fig. 

5.5). 

 

 

Fig. 5.19: FE simulation results for K0=0.9 
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Fig. 5.19 (contd.): FE simulation results for K0=0.9 

 

5.6.7.3   Analysis for K0=0.93 

Simulation results for K0=0.93 is shown in Fig. 5.20. A comparison of Figs. 5.19 and 5.20 shows 

that, for a small change in K0 from 0.90 to 0.93, the failure pattern changes from single rotational 

slide to spread. Figure 5.20(a) shows that before the first rotational slide, the shear band 

propagates horizontally 69.5 m which is shorter than that of in base case (110 m) for K0=1.0 (Fig. 

5.5). Then, the first slide occurs in front of the slope (see Fig. 5.20e). Compared to base case, the 

failed soil mass M1 displaces further when the first horst forms. Because of lower K0 value, the 

reduction of lateral support from the failed soil mass is small in Fig. 5.20 as compared to Fig. 

5.5. Figures 5.20(g–h) show the formation of subsequent horsts and grabens with displacement 

of the erosion block.  
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Fig. 5.20: FE simulation results for K0=0.93 

 



  

105 

 

 

 

 

 

Fig. 5.20 (contd.): FE simulation results for K0=0.93 
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5.6.7.4 Analysis for K0=0.95 

As the failure mechanisms change significantly at this range of K0, another simulation is 

performed with a slight increase in K0. Figure 5.21 shows the simulation results for K0=0.95. The 

formation of shear bands and horst and graben is very similar to K0=0.93.  However, the 

propagation of the horizontal shear band is 76 m before the formation of first curved failure 

surface. 

 

 

 

 

Fig. 5.21: FE simulation results for K0=0.95 
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Fig. 5.21(contd.): FE simulation results for K0=0.95 
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Comparing the simulation results presented in Fig. 5.5 and Figs. 5.18–5.21, it can be concluded 

that K0 has a significant influence on failure pattern and extent of failure. The propagation of the 

horizontal shear band increases with K0. The extent of failure due to toe erosion (retrogression 

distance) also increases with K0.  

 

5.6.8 Effect of toe erosion (Heb) 

The height of the slope (H) and eroded block (Heb) might also influence the failure pattern. In 

order to investigate this, three analyses are performed for the following conditions: 

i. Erosion block height 5 m and slope height 19 m, 

ii. Erosion block height 10 m and slope height 19 m, and 

iii. Erosion block height 5 m and slope height for 22 m. 

5.6.8.1 Analysis for Heb= 5 m and H=19 m 

Figure 5.22 shows that, due to displacement of a small eroded block of Heb=5 m, only a 

horizontal shear band of 106 m shown in Fig. 5.22(d) length forms. Comparing the simulation 

results with the base case analysis, where Heb=10 m (Fig. 5.5), it can be concluded that 

sufficiently large amount of toe erosion is required for formation of horsts and grabens. 

 

Fig. 5.22: FE simulation results for Heb=5 m and H=19 m 
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Fig. 5.22(contd.): FE simulation results for Heb= 5 m and H=19 m 

5.6.8.2 Analysis for Heb=10 m and H=19 m   

Figure 5.5 shows that, due to displacement of a 10 m eroded block (i.e. Heb=10 m), a horizontal 

shear band forms and then global failure occurs by formation of a number of horsts and grabens 

which is referred as the base case in this study. Due to large amount of erosion, spread failure 

occurs as discussed in detail in Section 5.6.1. 
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5.6.8.3 Analysis for Heb=5 m and H=22 m 

Not only the amount of toe erosion (Heb) but also the height of the slope influences the failure. In 

this case, although Heb= 5 m as in Fig. 5.22, global failure occurs because of increase in slope 

height (Fig. 5.23). A horizontal shear band propagates initially and then curved upward causing 

global failure of a soil mass (Fig. 5.23b). With further displacement of the erosion block, the 

failed soil mass disintegrates into smaller blocks with formation of multiple internal shearing 

planes (Fig. 5.23 c). 

 

 

 

 

Fig. 5.23: FE simulation results for Heb=5.0 m and H=22 m 

 

Compared to the base case analysis, it can be concluded that sufficiently large amount of toe 

erosion is required for formation of horsts and grabens. Small amount of erosion with increasing 

slope height could cause global failure. 
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5.7 Retrogression distance 

As mentioned in Section 5.2 that retrogression distance (LR) is one of the key concerns in 

sensitive clay slope failure. The value of LR obtained from FE analysis is shown in Table 5.3. 

The failure pattern is summarized in the last two columns of Table 5.3. Note that, in Table 5.3, 

global failure represents the formation of a complete failure surface that could cause the 

displacement of a soil mass such as M1—M3 in Fig. 5.5, while the local failure represents the 

formation of a failure plane that does not reach the ground surface (e.g.  f1 in Figs. 5.8; 5.10; 

5.13; 5.14; 5.22). The retrogression distance is measured at ∆=30.75 m, although it is understood 

that retrogression might continue in some cases with further displacement of the eroded block. 

However, as CEL analysis is computationally very expensive, analysis has been stopped at 

∆=30.75 m. It is also assumed that, in a practical situation, the displacement of the eroded block 

might be opposed/stopped by the other bank of the river. 

Table 5.3: Retrogression distance obtained from FE analyses 

Soil or 
geometrical 
parameters 

Parameter’s 
value 

Retrogression 
distance (LR) 

Type of slides Local (L) or 
global (G) failure 

suc 

20 kPa 14 m Single rotational slide L & G 

40 kPa 17 m Single rotational slide L & G 

60 kPa 73 m Spread with horsts & grabens L & G 

80 kPa 48 m Spread with horsts & grabens L & G 
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Soil or 
geometrical 
parameters 

Parameter’s 
value 

Retrogression 
distance (LR) 

Type of slides Local (L) or 
global (G) failure 

100 kPa 58 m Spread with horsts & grabens L & G 

 

St 

3 0 m Horizontal shear band L 

5 73 m Spread with horsts & grabens L & G 

7 77 m Spread with horsts & grabens L & G 

10 33 m Spread with horsts & grabens L & G  

Hs 

10 m 0 m Horizontal shear band L 

12 m 52 m Spread with horsts & grabens L & G 

14 m 63 m Spread with horsts & grabens L & G 

16 m 73 m  Spread with horsts & grabens L & G 

18 m 16 m Single rotational slide L & G 

β 
150 0 m Horizontal shear band L 
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Soil or 
geometrical 
parameters 

Parameter’s 
value 

Retrogression 
distance (LR) 

Type of slides Local (L) or 
global (G) failure 

250 0 m Horizontal shear band L 

300 73 m Spread with horsts & grabens L & G 

δ95 

0.03 m 73 m Spread with horsts & grabens L & G 

0.045 m 72 m Spread with horsts & grabens L & G 

0.06 m 45 m Spread with horsts & grabens L & G 

0.15m 37 m Multiple rotational slide L & G 

K0 

0.70 9 m Single rotational slide G 

0.90 41 m Spread with horsts and graben L & G 

0.93 43 m Spread with horsts and graben L & G 

0.95 45 m Spread with horsts and graben L & G 

1.0 73 m Spread with horsts and graben L & G 
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Soil or 
geometrical 
parameters 

Parameter’s 
value 

Retrogression 
distance (LR) 

Type of slides Local (L) or 
global (G) failure 

Heb 

5 m 
 (Hs=19 m ) 

0m Horizontal shear band L 

5 m  

(Hs=22 m ) 

28m Multiple rotational slide  L & G 

10 m 
(Hs=19 m ) 

73 m Spread with horsts and graben L & G 

  

5.8 Summary 

In this chapter, the failure of sensitive clay slopes near the riverbank is simulated using Abaqus 

CEL as the limit equilibrium methods cannot explain gradual formation of slip surfaces 

associated with progressive failure. The formation and propagation of shear bands and large 

displacement of the failed soil mass during the process of retrogressive failure are successfully 

simulated. The parametric study shows that toe erosion does not always form horsts and grabens 

rather their formation depends on soil properties and geometry. Broadly, three types of failure 

are observed for the cases analyzed in this study: (i) formation of a long horizontal shear band, 

(ii) rotational failure of a single soil block, and (iii) retrogressive failure with formation of a 

number of horsts and grabens. The former one represents local failure, while the latter two 

represent global failures. 
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDIES 
 

6.1  Conclusions 

The use of large deformation finite element (FE) modeling technique is getting significant 

attention due to its robustness and availability in commercial FE software packages for analyzing 

complex geotechnical problems involved in large deformation, such as large-scale landslides. 

The available limit equilibrium (LE) methods cannot simulate the complex failure mechanism 

involve in large deformation. Moreover, the available traditional FE methods developed in 

Lagrangian framework suffer from numerical issues due to mesh distortion resulting in non-

convergence of solution. The recently advanced large deformation FE techniques can be used to 

overcome these limitations for successful simulation of initiation of slope failure together with 

modeling of deformation including post-slides large deformation. In the present study, large 

deformation FE analyses are performed using the Coupled Eulerian Lagrangian (CEL) approach 

available in Abaqus FE software. The LE analyses are performed using the Slope/W software. 

In the first part of the thesis (Chapter-3), the large deformation FE analyses are performed for 

clay slopes of uniform and layered soils for different undrained shear strength profiles. In the 

second part (Chapter-4), Abaqus CEL is used to model earthquake induced landslides. Finally, in 

the third part of the study (Chapter-5), large deformation FE analyses are performed for sensitive 

clay slopes. The main focus of Chapter-5 is to examine progressive failure of the slope by 

modeling shear band formation and retrogression distance which is a major concern in sensitive 

clay slopes failure. 
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In Chapters-3 and -4, clay is modeled as elastic-perfectly plastic material without any 

degradation of strength with strain or cyclic loading. The strength reduction technique is used to 

bring the stable slopes to the condition of failure in order to compare the results with factor of 

safety (Fs) obtained from traditional LE methods. In the earthquake induced slope stability 

analyses, pseudostatic earthquake coefficient is implemented in Abaqus through body force in 

the horizontal direction. Finally, in Chapter-5, a post-peak strength degradation model—as a 

function of plastic deformation/strain—is implemented in Abaqus CEL to simulate progressive 

failure of sensitive clay slopes because the progressive failure cannot be explained by LE 

methods. 

The following conclusions can be drawn from the present study. 

Chapter-3: 

i. Abaqus CEL can successfully simulate the slope failure, even at large deformation. As 

the soil flows through the fixed mesh, the numerical issues related to mesh distortion can 

be avoided.  

ii. Failure surfaces generate progressively through strain concentration in the shear bands. 

When a complete failure surface is developed, the failed soil mass might displace 

significantly if the shear strength is reduced further.  

iii. The present FE model can simulate large deformation of the soil mass, which cannot be 

done using the traditional LE methods.  

iv. The FE analyses for two layered soils show that two types of failures can occur, 

depending upon the ratio of undrained shear strength of the bottom and top clay layers 
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(R). For lower values of R, deep-seated failure occurs. However, for R=1.5, in addition to 

a deep-seated failure surface, a shear band forms from the toe of the slope. For higher 

values of R (=3.0), small toe failures occur. 

v. From the analysis using LE methods, no information about soil deformation can be 

obtained; as a results it cannot be used to explained large deformation landslides, which 

are typically progressive in nature.  

Chapter-4: 

i. Abaqus CEL can simulate earthquake induced slope failure if the pseudostatic horizontal 

seismic coefficient (kh) is implemented as body force. FE simulated shear band at the 

yield coefficient (ky)—the value of kh at which complete failure plane develops—

compares well with the critical circle obtained from LE analysis. However, in FE 

analysis, additional local shear bands form which cannot be obtained from LE analysis. 

ii. For kh>ky, the failure of additional soil blocks can be simulated using the present FE 

modeling technique; however, it cannot be simulated using the LE method, instead it 

simply gives only a lower Fs (<1.0). 

iii. Abaqus CEL provides the information about the deformation of soil elements, which 

cannot be obtained using LE methods. 

Chapter-5: 



  

118 

 

i. The strength of the crust layer affects the formation of horsts and grabens in sensitive 

clay slope. Horsts and grabens will form if the crust strength is sufficiently high. For low 

crust strengths, rotational failure of a single block occurs. Retrogression distance 

increases with increase in crust strength. The Retrogression distance increases with a 

decrease in shear strength of the crust layer. 

ii. For a low sensitivity of clay layer, only a horizontal shear band forms. For a medium 

sensitivity, horsts and grabens form. However, for a high sensitivity, a rotational failure 

of only one clay block occurs. The Retrogression distance increases with a reduction of 

sensitivity.  

iii. Thickness of the crust plays a significant role in the formation of the different types of 

failure planes. For a thick crust with respect to sensitive clay layer, only a horizontal 

shear band forms. When the thickness of the crust is reduced, horsts and grabens type of 

failure occurs. For a thin crust, the failure pattern changes from horsts and grabens type 

failure to single rotational failure. The retrogression distance decreases with an increase 

in crust thickness.   

iv. For small slope angles, only a horizontal shear band forms. With an increase in slope 

angle, a global failure occurs, which could also cause retrogressive failure by formation 

of horsts and grabens. The Retrogression distance increases with slope angle. 

v. The post-peak degradation parameters that causes a quick reduction of shear strength are 

essential for formation of horsts and grabens in sensitive clay slopes. Highly brittle soils 

are more susceptible to progressive failure and formation of horsts and grabens. 
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vi. The earth pressure coefficient at-rest (K0) plays a major role in slope stability. For a small 

K0, the rotational failure of a single clay block is found. A retrogressive failure is found 

for K0 between 0.93 and 1.0, for the cases analyzed in this study. The retrogression 

distance increases with K0.  

vii. In case of a small volume of erosion or excavation, only a local failure occurs in the slope 

in the form of horizontal shear band. With an increase in volume of erosion or exaction, 

the slope becomes unstable, and in some cases, retrogressive failure occur. 

6.2  Recommendation for future studies 

The current study presents large deformation FE modeling of clay slopes. Where possible, the FE 

results are compared with limit equilibrium methods. It is shown that the present FE modeling 

has number of advantages and can explain some additional features, such as deformation and 

progressive failure, which cannot be explained using LE methods. However, the present study 

has some limitations. The following are some recommendations for future studies. 

-All the simulation presented in this study are for undrained loading conditions, which is 

applicable for short-term conditions. Analysis for long-term conditions implementing drained or 

partially drained behaviour of clay (coupled with pore water pressure dissipation) is required. 

-Pseudostatic coefficient is used for earthquake loading. A comprehensive dynamic analysis 

could be performed applying appropriate acceleration–time history together with implementation 

of advanced stress–strain behaviour of clay. 
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-Development of appropriate laboratory test is required to investigate strength degradation of 

sensitive clays. 

-Shear strain rate generally influences undrained shear strength of clay. The effects of shearing 

rate on slope stability could be investigated. 
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