
Planning an Interesting Path

by

c©Abdullah Ali Faruq

A thesis submitted to the School of Graduate Studies in partial fulfillment of the
requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

February 2017

St. John’s Newfoundland

To my beloved mother who inspired me in every step of my life.
She always wished for my success, but

couldn’t be with us to share the joy.

Abstract

Terrain aided navigation (TAN) is a well-studied method to localize an autonomous

underwater vehicle in the absence of GPS. Researchers have been exploring new im-

provements; in particular Bachmayer and Claus have been incorporating terrain based

navigation (glider TAN) into the Slocum gliders. To take full advantage of glider

TAN, the glider path should favour areas of the ocean with uneven depth and unique

features. This leads to a question of planning such an "interesting" path for the glider.

In this thesis, we present an offline path planning algorithm that optimizes the

distance under the maximum uncertainty constraint. A major part of our contribu-

tion is developing a rating technique for evaluating the usefulness of an area of the

ocean floor for reducing the uncertainty of the glider’s position. We include experi-

mental results showing how the generated path varies with the maximum allowable

uncertainty, based on the ocean elevation data of the Conception Bay near Holyrood,

Newfoundland.

Acknowledgements

I would like to thank all the people who contributed to this thesis with their help,

support and inspiration. First and foremost, I thank my thesis supervisor Dr. An-

tonina Kolokolova for her excellent guidance and understanding. Her vast knowledge

and experience helped me shape my work as a graduate student. I really appreciated

the freedom she gave me to explore so many research directions. I am grateful to have

the opportunity to work under her supervision.

I must thank my loving wife Shameema Anwar, who has always supported me and

stood beside me during my struggles. She gave me the strength I needed to cope with

the tragedies I faced in the past few years.

Last but not the least, I want to show gratitude to my parents for their uncon-

ditional love and support. I may have lost them, but their guidance will help me in

every step of my life.

i

Table of Contents

Abstract

Acknowledgments i

Table of Contents iv

List of Tables v

List of Figures vii

1 Introduction 1

1.1 Slocum underwater glider . 2

1.2 Localization . 2

1.3 Glider localization . 5

1.4 Problem statement . 6

1.5 Related work . 7

1.5.1 Path planning approaches in the literature 8

1.5.2 Addressing the safety and uncertainty in path planning 11

1.6 Thesis organization . 13

2 Background 14

2.1 Probabilities and distribution . 14

ii

2.1.1 Normal distribution . 17

2.2 Glider Navigation . 20

2.2.1 Dead Reckoning . 21

2.2.2 Terrain-Aided Navigation . 22

2.2.2.1 DEM: Digital Elevation Model 22

2.2.2.2 Particle filter . 23

2.2.3 Glider TAN algorithm . 26

3 Rating 29

3.1 Inspecting the contribution of depth variation 29

3.1.1 Effectiveness of rating: a point vs an area 33

3.2 Representing an area for rating . 36

3.3 Constructing the rating . 37

3.4 Implementation of the rating . 41

3.4.1 Rating computed on the Holyrood data 43

3.4.1.1 Rating map: a visual representation of depth variation 46

3.4.2 Comparing the result of rating using Holyrood data 49

3.4.2.1 Comparing rating with estimation from a particle filter 49

3.4.2.2 Comparing rating with the effectiveness of glider TAN 51

4 Interesting Path Planning 54

4.1 Shortest Path Problem . 55

4.1.1 Algorithm for shortest path problem 55

4.1.1.1 A* Algorithm for path planning 56

4.1.1.2 Heuristic admissibility 57

4.2 Interesting Path Problem . 57

4.2.1 Algorithm for interesting path planning 59

iii

4.3 Interesting path algorithm . 62

4.3.1 Intermediate graph G′ . 62

4.3.2 Computing path in G′ . 64

4.3.3 Proof of optimality . 65

4.4 Implementation . 70

4.4.1 Interesting path between a pair of waypoints 71

4.4.2 The impact of uncertainty constraint over interesting path . . 72

5 Conclusion 75

5.1 Summary . 75

5.2 Future work . 75

Bibliography 76

iv

List of Tables

3.1 Comparing the rating result in different areas of the ocean near Holy-

rood, NL using 99% confidence ellipse 45

3.2 Comparing the result of rating calculation for the same area with dif-

ferent initial distribution varying in size, shape and rotation 47

3.3 A comparison between the expected distribution from the rating pro-

cess and location estimation from particle filter simulation 51

4.1 The impact of different uncertainty constraint in the resulted paths

from the interesting path algorithm 74

v

List of Figures

1.1 Autonomous underwater vehicle: a Slocum glider [cF05] 3

2.1 Elevation of the ocean floor in Conception Bay near Holyrood, NL . . 24

3.1 The impact of depth variation on the particle cloud size 32

3.2 Comparing the effectiveness of rating of a location and an area 35

3.3 Comparing the rating result in different areas of the ocean near Holy-

rood, NL using 99% confidence ellipse 44

3.4 Comparing the result of rating calculation for the same area with dif-

ferent initial distribution varying in size, shape and rotation 46

3.5 A visual representation of the rating of the entire region of the ocean

shown in Figure 2.1 using rating maps 48

3.6 A comparison between the expected distribution from the rating pro-

cess and location estimation from particle filter simulation 50

3.7 Comparing the rating estimation as a bound on the size of particle

cloud in glider TAN algorithm . 53

4.1 The comparison of edge traversal on an arbitrary edge (u, v) ∈ E . . . 60

4.2 Greedy algorithms like Dijkstra’s algorithm and A* can produce sub-

optimal solution for interesting path problem 61

vi

4.3 The shortest path between the start and the goal locations bounded

by the uncertainty constraint tmax = 38 meters 71

4.4 Impact of different uncertainty constraints on the resulting paths from

the interesting path algorithm . 73

vii

Chapter 1

Introduction

With the advancement in robotics, Autonomous Underwater Vehicles (AUVs) have

gained rapid popularity in the past few decades. AUVs are capable of completing a

variety of tasks without any active human assistance. In recent years, their capabilities

and applications have grown significantly; specifically the Slocum glider is drawing

much attention in the research community. With a relatively slow speed, a glider can

travel a long distance due to its low power consumption. Its long range capability

along with economical value have encouraged its use in various underwater missions.

Like any other AUV, a glider can suffer from inaccurate localization. In the absence

of any GPS signal, a glider has to localize using information from the surrounding

environment. Significant studies have been done on this area and researchers have

developed many techniques to address the problem. But in an unpredictable and

dynamic environment like an ocean, these techniques are not always enough. Back

in 2013 a glider research team at Memorial University, lost a Slocum glider during

a field trial near Holyrood, Newfoundland [New13]. Localization techniques such as

terrain-aided navigation can help to improve glider localization, but to be able to

localize more precisely, a glider needs to follow an "interesting" path that favours

1

2

certain areas in the ocean which are suitable for the on-board localization. Here, we

are focusing our work on the quest of computing such interesting path for the glider.

Although the finding of our work can be applied to other AUVs, we are specially

interested in Slocum gliders.

1.1 Slocum underwater glider

Slocum gliders are relatively small AUVs with long range capabilities. These glid-

ers use variable buoyancy engine to glide in a saw-tooth pattern. In the absences of

an active propulsion system, they are comparatively slower than other AUVs. They

are usually equipped with a number of sensors to measure the surrounding environ-

ment. Here at the Autonomous Oceans Systems Lab of Memorial University, Dr. Ralf

Bachmayer and Dr. Brian Claus have been working with Slocum gliders. They have

performed multiple missions in the oceans near Newfoundland using these gliders.

The primary motivation of our work came from the path planning requirements of

those missions.

Despite their relatively slow speed, the gliders are well suited for a variety of

missions including ocean data sampling and surveillance. Like any other autonomous

vehicle, the mission success of a glider highly depends on its navigation capability, in

particular on its localization technique.

1.2 Localization

In robotics, the term navigation refers to the task of safely and efficiently taking the

robot from a given state to the desired state. In a simpler form, a state can be a

point on a plane. In more complex cases, state includes location, orientation and

other related information. The elements of a navigation system vary widely from one

3

Figure 1.1: Autonomous underwater vehicle: a Slocum glider [cF05]

design to another, but a fundamental part of most navigation is localization.

Localization is the process of acquiring knowledge about the current state of the

robot in relation with its environment; in other words, knowing where the robot is

actually located at a certain time. Usually it involves using a model of the environment

or a map. The map can be constructed during the mission or a previously constructed

map may be available during the localization. The environment is perceived through

a single or multiple sensors like a GPS, camera or range finder, each of which produces

some form of information. Most localization methods use these acquired information

to determine the current state of the robot relative to the map. This may sound

simple, but in reality, it can become very challenging to get the current state with

proper accuracy.

One major challenge of localization arises from the noise in sensor measurement.

Most sensors produce slightly deviated value from the actual value in the environment.

The magnitude of the deviation may vary depending on the type and quality of the

sensor, but such deviation can occur in all sensors. Even the most sophisticated

4

sensor can be erroneous to some extent. Some of these errors can be corrected by

calibrating the sensing device, but we can not eliminate the error completely. When

these measurements are used to generate a map of the environment, the map itself

becomes erroneous and thus leads to further errors in localization. In many cases, the

resulted state from localization is used as an input for the next iteration of localization.

Thus the error becomes cumulative and if not corrected properly can cause total failure

of the navigation system. Apart from the noise, the sensors are also limited by the

type of information they can extract from the environment. A single beam sonar can

measure the distance to an object, but to sense its color would require an additional

camera sensor. And attaching all kind of sensors to every robot is not a feasible

option.

Even if we had perfectly accurate sensors, the challenge of localization would

not end there. In the real world, the surrounding environment is dynamic and highly

unpredictable. The objects in the environment may not be static and other robots and

humans may become a part of the environment. On top of that, the actuators which

the robot uses to change its states introduce significant uncertainty. Considering all

these arguments, it is not surprising that localization has received so much attention

in the research community. A number of probabilistic localization methods [FHL+03]

have been fashioned using statistical estimators like Particle filter [DGA00,AMGC02,

Sim06] to address these challenges.

In the probabilistic localization approach, the current state is not represented

by an exact state; rather a probability distribution or belief is used instead. The

belief is the likelihood of a state being the actual current state. These localization

algorithms can be passive or active. In passive localization, the robot performs an

action and changes its state. Based on that action along with information acquired

through the sensor, the algorithm estimates the new state. Passive localization can be

5

implemented using statistical estimators such as particle filters. On the other hand,

active localization algorithms aim to produce a plan that helps to localize better by

reducing the uncertainty. In this work, we are only considering passive localization

techniques, with all the path planning precomputed offline.

1.3 Glider localization

At Autonomous Oceans Systems Lab, Brian Claus and Ralf Bachmayer have devel-

oped the gTAN algorithm for glider localization based on the terrain-aided naviga-

tion [CB15]. With the help of on-board sensors and a static depth map of the ocean

surface, a particle filter is applied to estimate the glider’s position.

Like any other AUVs, the glider suffers from the unavailability of GPS as GPS

signal cannot be received while underwater. As a result the glider has to rely on other

localization methods such as localizing using the information obtained from the ocean

terrain and surroundings. GPS is available when the AUV is at the surface, however

this is not applicable for missions in ice covered areas like the Arctic. Apart from

that, strong ocean current can drift the glider away from its desired path. For certain

tasks, a sufficiently accurate localization algorithm is required to navigate safely in

the ocean.

In gTAN, Claus and Bachmayer [CB15] have used a Digital Elevation Model

(DEM) which contains the elevation information of the ocean floor with some margin

of error (see Section 2.2.2.1 for details). A motion model based on Dead Reckoning

(DR) system estimates the next position of the glider (see Section 2.2.1 for details).

The DR keeps track of the glider location using glider velocity and traveling time.

Due to the unpredictable ocean current and the error in velocity calculation, DR

location estimation usually accumulates significant error and the uncertainty of the

6

glider’s location increases with time. A particle filter can reduce that uncertainty by

incorporating a depth measurement [CB15].

The glider is equipped with a single beam sonar altimeter and a pressure sensor.

The altimeter estimates the distance between the glider and the ocean floor. The

pressure sensor helps to calculate the distance between the glider and the ocean sur-

face. Using these two values, the depth measurement model estimates the depth of

the ocean floor at the gliders current location. The particle filter is applied to update

the estimate from DR by matching the associated depth from the DEM. Both the

gTAN algorithm and the particle filter are discussed in the next chapter.

Like any other terrain-aided navigation, the accuracy of gTAN largely depends on

the area where the localization is taking place. A terrain rich with unique features

can help to significantly reduce the uncertainty of the location estimation. On the

contrary, a flat terrain in the ocean has very little to offer. A glider, travelling mostly

on flat terrains, should have more uncertainty compared to the one travelling on

terrains with interesting features. Hence arises the necessity of planning an interesting

path; a path that favours interesting areas while optimizing the travel cost.

1.4 Problem statement

The goal of our work was to design an offline path planning method for AUVs that

precomputes a path in such a way that the on-board terrain-aided navigation can

localize better. We want to reduce localization uncertainty along the path, while at

the same time minimizing the travel cost of that path. To address both, we are aiming

to precompute the shortest path between two locations where the location uncertainty

is bounded by a user-defined uncertainty constraint. The problem originally came

from glider navigation using gTAN algorithm, but our methods are applicable to any

7

AUV that uses some form of terrain-aided navigation.

Given:

1. An elevation map of the ocean

2. A start and a goal location

3. A user-defined uncertainty constraint

Compute: A shortest path from start to goal such that the localization uncertainties

in that path never exceeds the constraint

1.5 Related work

The necessity of a suitable path planner exists in many areas and researchers have

designed a number of algorithms to meet those needs. However, the definition of the

path planning problem varies from one field to another. In most cases, the final goal

of these problems is to compute some "path" while optimizing some function for that

path; but the definition and the requirements of the path can create huge difference

among them. Though all of these problems are known as the path planning problem,

the underlying problems can be very different from one another and may require differ-

ent classes of algorithms to solve them. In some cases, an optimal solution is expected

and a discrete state representation is acceptable; for such problems graph traversal

algorithms are well-suited for efficient computation. But for some problems, the state

configuration space can become exponentially large and even an efficient algorithm

may not be a feasible option. In such cases, probabilistic or evolutionary algorithms

can compute an acceptable approximation of the optimal solution. Undoubtedly, path

planning is a broader term and the solution of a particular path planning problem

will depend on the definition of that problem. In the next sections, we are going to

8

briefly describe different approaches to solve path planning followed by a discussion

on how safety and uncertainty is addressed in these algorithms.

1.5.1 Path planning approaches in the literature

The typical solution for a path planning problem uses graph traversal algorithms.

Dijkstra’s algorithm [Dij59] can compute an optimal path by optimizing a cost func-

tion, where the cost can be modeled as distance, travel time or energy requirement.

The computation time of Dijkstra can be improved significantly by using a heuristic

algorithm such as A* [HNR68]. Although both of these algorithms compute optimal

solutions, a large number of variations have been presented in the literature to ad-

dress different aspect of the path planning problem. A Field D* algorithm proposed

in [FS06b] uses linear interpolation to eliminate unnecessary changes of direction from

the path computed by classic A*. In [NDKF07,DNKF10], the authors presented Any-

angle Theta* algorithm which improves the shortest path on a grid by relaxing the

angle restriction of the grid cells. Graph based path planning solutions serve well

in many applications, but most of them suffer from a discrete representation of the

environment. Specifically, in the presence of ocean current, path planning for AUVs

requires more attention to the surroundings. Path planning using a variable ocean cur-

rent model is presented in [FPCGHS+10], which can compute path in continuous space

and time. An iterative optimization technique is also used [IGHSFP+11,FPHSIG+11]

in glider path planning considering the ocean currents. In [KSBB07], bidirectional

flow in estuarine area is utilized in favour of the AUVs to minimize the energy expense.

The artificial potential field method has gained popularity in AUV path planning

for addressing the ocean current and obstacles. A path planning technique using such

a method is presented in [War90] to avoid paths getting too close to the obstacles.

Artificial potential fields are created around the obstacles and the goal location such

9

a way that the path is attracted to the goal and repulsed by the obstacles. Numerical

potential fields can also be used for that purpose [BLL92]. A two level path planning

approach is proposed in [SR94] where the high level planner (HLP) uses a priori

knowledge about the environment to optimize energy consumption and to produce

some intermediate points. Then a low level planner (LLP) follows the intermediate

points using potential field technique. A similar approach is taken in [YZF+13], which

uses geometric methods for global path planning and continues local path planning

with artificial potential fields. A modified version of the potential field technique is

presented in [Sou11].

In recent years, the fast marching (FM) algorithm has been getting much attention

in AUV path planning [PPPL05]. The fast marching algorithm is a special case of the

level set method [OS88] that aims to solve the boundary value problem of the eikonal

equation. Over the years, researchers have come up with new algorithms based on the

fast marching method for path planning. Clément Pêtrès et al. has proposed an FM*

algorithm [PPP+07] that produces continuous solution of AUV path planning based

on discrete representation of the environment. In [VGGGGBM13], the authors have

presented a comprehensive study on a number of variances of FM including FM2 and

FM2*. The FM2 algorithm follows the fast marching method while maintaining a safe

distance from the obstacles present in the environment. In addition to that, the FM2*

algorithm can improve the computation time by introducing a heuristic function.

Path planning in a large configuration state space can become computationally

expensive and computing an optimal solution may not be practical in those cases. A

probabilistic approach for path planning is more suitable in such scenarios. Probabilis-

tic roadmaps (PRM) is a sampling based path planning technique [KSLO96] aimed

towards high dimensional configuration spaces specifically for robots with many de-

gree of freedom. Usually path planning in PRM is attained in two phases; the learning

10

phase and query phase. In the learning phase, random free configurations are gener-

ated to construct a probabilistic roadmap and some form of local planner is utilized

to connect these configuration. Later, in the query phase, a path is computed be-

tween two free configurations using that roadmap. Many PRM based algorithms are

presented in the literature focusing on the computational efficiency at the expense

of optimality [MB12]. The authors in [KF11] presented the complexity analysis of

probabilistic path planning algorithms along with a optimal probabilistic roadmap

(PRM*) algorithm. A new probabilistic path planning concept was introduced by

Steven M. Lavalle [LaV98] as the rapidly-exploring randomly trees (RRT). Based

on this concept, Kuffner and LaValle proposed a randomized algorithm [KL00] by

constructing two rapidly-exploring random trees and connecting them using simple

greedy heuristic. Variants of RRT approach can be found in [LK01, FS06a, ZKB07].

A solution for AUV path planning using RRT is presented in [TSC05]. Compared

with other AUVs, the slow moving gliders are more impacted by ocean currents; Rao

et al. [RW09] have addressed this issue by providing an RRT based path planning

algorithm for gliders. In [KF11] the authors have presented similar algorithms such

as rapidly exploring random graph (RRG) and optimal RRT (RRT*) to compute opti-

mal path planning. Recently, another sampling based algorithm named fast marching

tree (FMT*) algorithm is proposed in [JSCP15] which can produce asymptotically

optimal path in less computational time with respect to probabilistic roadmaps and

rapidly-exploring random trees.

Apart from probabilistic approaches, evolutionary algorithms have also been em-

ployed in AUV path planning problems with large configuration state space. Sugihara

and Yuh have presented a genetic algorithm [SY97] for underwater path planning

that can adapt with environmental changes such as dynamic obstacles. In their work,

they have categorized the obstacles into solid and hazardous kind; where solid ob-

11

stacles are avoided all the time, but a path can go through hazardous obstacle for a

higher path cost. Another genetic algorithm based path planning for AUV is proposed

in [ACO04]. In [CFLC10], the authors fused genetic algorithm with dynamic program-

ming technique to achieve AUV path planning. Apart from genetic algorithm, path

planning using particle swarm optimization (PSO) and its variants are also present

in the literature. A stochastic particle swarm optimization (S-PSO) algorithm is pro-

posed in [CL06]. Recently, Zeng et al. presented a comparative study of popular AUV

path planning approaches in [ZSL+16], along with a path planner based on Quantum-

behaved particle swarm optimization (QPSO). Other evolutionary approaches include

ant colony optimization (ACO) [LD09], hybrid ACO with PSO [SBL08] and imperi-

alist competitive algorithm (ICA) [ZSL+15]. In [Agh12], the authors have presented

underwater path planning solutions using five different evolutionary algorithms.

Among the other approaches for path planning problems, Li and Guo utilized

neural network for planning paths in the estuary environment [LG12]. They have

accounted for different oceanic conditions including static and dynamic currents. Re-

cently, Yoo and Kim proposed an algorithm [YK15] using reinforcement learning to

compute a near optimal path in reasonable time.

1.5.2 Addressing the safety and uncertainty in path planning

The study of AUV path planning requires special attention to the impact of dynamic

ocean current present in the environment. Usually, AUV path planners ensure the

safety of the vehicles by the means of avoiding the obstacles or keeping a safe dis-

tance from them [War90,CMN+92,ACO04,VGGGGBM13,AYK15]. But in a highly

dynamic ocean environment, addressing only the obstacle avoidance is not enough.

Specially, for the slow moving AUVs such as the gliders, the situation can become

aggravated [RW09] and uncertain drift may happen from the actual path [YK15]. In

12

recent studies, the uncertainty of the ocean current is addressed while computing the

path [ZSL+15,HDS15,WLMHK16].

Though uncertainty of the travel cost has been discussed in the path planning

literature [DCZM12, NBK06, SS09], the uncertainty of the position seems to have

received less attention. Yet a major issue in path planning for AUVs is the likelihood

of them straying off the planned path. Pereira et al. have addressed the issue by

proposing a planner [PBJ+11, PBHS13] that minimizes the risk of surfacing at the

expense of a longer path. Most AUVs can not stay underwater forever and need

to surface periodically for transmitting data and receiving instructions. Surfacing

in an area of heavy marine traffic can be harmful for the AUV and such surfacing

attempt can cause collision with surface vehicles. In their work, Pereira et al. have

precomputed an optimized path for the AUV with low expected risk of collision while

surfacing by trading additional path cost. Although, they have considered the risk

of collision and the uncertain ocean current prediction in their planner, the chance

of the AUV getting lost is not addressed properly. In [BTAH02] Bellingham et al.

have accounted for the probability of getting lost in their path planner for unmanned

aerial vehicles (UAVs). Nonetheless, in the absence of ocean current consideration,

their approach may not be suitable for AUVs.

Though precomputing a safe path that favours the on-board localization technique

does no seem to be sufficiently addressed, there has been research addressing online

path planning. Dektor and Rock introduced an online localization method [DR12]

that helps to localize better in areas which are comparatively less suitable for terrain

based localization. Their method reduces the overconfidence and false fixes in unin-

formative terrain, thus addressing the uncertainty that results from the measurement

error in map information. In their work, a modified particle filter is used which esti-

mates the variance in terrain information and prioritises the measurement information

13

based on that variance. Notably, this approach focuses on improving localization in

uninformative areas rather than avoiding such areas in path planning.

The focus of our work was designing an offline path planner for AUVs, specially for

the gliders, that helps the online localization process by computing a path that favours

areas more informative for localization. A similar approach is presented in [Ber93],

which utilizes the relative measurement covariance matrices to identify useful areas

for better localization using multi-beam sonar. Unlike our approach, the expected

result of localization update is not addressed in this work and may not be applicable

for the localization technique such as gTAN that uses a single beam sonar.

1.6 Thesis organization

The remaining portion of the thesis is organized as follows:

• In Chapter 2, we briefly describe some preliminary concepts, along with gTAN

and related algorithms.

• In Chapter 3, we explain the rating technique to evaluate the usefulness of an

area in the ocean. The chapter includes some experimental results to compare

ratings performed on different areas in the map.

• In Chapter 4, we present an offline path planning algorithm that can produce

interesting path using the rating technique from the previous chapter. The

result of the algorithm is demonstrated with elevation data of the ocean near

Holyrood, Newfoundland.

• In Chapter 5, we summarize our work and discuss future work

Chapter 2

Background

The idea of reducing uncertainty in AUV localization is far from new. Almost every

localization algorithm is designed to accomplish this task. However, the story is a

little different when it comes to path planning of AUVs. Usually, path planning refers

to producing a list of intermediate states which will guide the AUV to reach the goal

state from an initial state while optimizing some sort of travel cost. The cost can

be distance, travel time or even the safety of the AUV. While many popular path

planning algorithms can produce the optimal solution, in many cases the uncertainty

associated with the path is ignored in the path planning. Before going into any further

details, first we need to revisit a few preliminary concepts.

2.1 Probabilities and distribution

Working with uncertainty requires the understanding of probability. The probability

of an event is the quantification of how likely that event can occur. To define probabil-

ity in a formal fashion, we need to revisit some elementary concepts like experiments,

events and sample spaces [Dek05]. An experiment is a process that produces some

output and can be repeated any number of times. In most cases, the outcome of

14

15

an experiment is random, but the possible outcomes are well defined for an exper-

iment. The set of all possible outcomes is known as the Sample space (Ω) of that

experiment. In other words, the outcome of an experiment is an element of Ω. Any

subset of sample space is known as an event. The occurrence of an event from a

certain experiment is determined by whether the outcome of the experiment belongs

to that event subset. Each event can be assigned a probability value that represents

its likelihood of occurring. Two events are called mutually exclusive or disjoint when

there is no common outcome between them.

Definition. The probability of an event A in a finite sample space Ω is a non-negative

number P (A) in [0,1] such that the total probability P (Ω) is one and the probability of

the union of any disjoint events is the same as the sum of the individual probabilities

of those events.

The probability of an event may change with additional knowledge about the

occurrence of other events. Such probabilities are known as conditional probability.

The conditional probability of an event A, given that event B has already occurred,

can be defined as,

P (A|B) =
P (A ∩B)

P (B)

An important rule in probability theory is the Bayes’ Rule. For disjoint events

A1, A2, . . . , Am with A1 ∪ A2 ∪ · · · ∪ Am = Ω, Bayes’ Rule can be generalized as,

P (Ai|B) =
P (B|Ai) · P (Ai)

P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|Am)P (Am)

The rule can also be represented in its traditional form as follows,

P (A|B) =
P (B|A) · P (A)

P (B)

16

In probability, a random variable can be either a discrete random variable or a con-

tinuous random variable. Each of these has significant usage and needs to be treated

separately. A discrete random variable can be defined as a function X : Ω→ R, where

Ω is the sample space and X can take on a finite number of values(a1, a2, . . . , an) or

an infinite number of values(a1, a2, . . . , an, . . .). The probability of a discrete random

variable X can be represented with the probability mass function of X.

Definition. For a discrete random variable X, the probability mass function is the

function p : R→ [0, 1] where p(a) = P (X = a) and −∞ < a <∞.

In many cases, storing and calculating all random variables is not practical, espe-

cially when the sample space Ω is quite large for computation. In such cases, we can

summarize a random variable X by its Expectation E[X]. In some sense, expectation

can be considered as the average of the distribution of that random variable. Thus

expectation of a random variable X can also be called the mean, µX . For a discrete

X, expectation is defined as

E[X] = µX =
∑

xip(xi)

where X = x1, x2, . . . and p is the probability mass function.

A continuous random variable does not have a probability mass function; instead,

we can make use of a probability density function (pdf) for that. Let us assume X is a

continuous random variable, therefore X has a probability density function f : R→ R

such that f satisfies the following three conditions:

P (a ≤ X ≤ b) =
∫ b

a
f(x)dx for any −∞ < a ≤ b <∞

f(x) ≥ 0

17

∫
∞

−∞

f(x)dx = 1

The expectation of a continuous random variable X is calculated a little differently

than its discrete counterpart. In continuous scenario, we can calculate expectation or

mean using the pdf of X,

E[X] = µX =
∫

∞

−∞

xf(x) dx

In addition to the expectation value, a variance of a distribution can help to

describe the characteristics of that distribution. In simple terms, a variance is a

measure of the spread of the random variable from its expectation. For a random

variable X, the variance can be described as,

V ar[X] = E[(X − E[([X])]

A standard deviation of a distribution can also be used instead of using the vari-

ance. A standard deviation is defined as
√

V ar[X] which makes it useful in practical

application as standard deviation has the same dimension as the expectation E[X].

2.1.1 Normal distribution

In this work, we are specially interested in the normal distribution of X. If X is a

normally distributed single continuous variable, we represent that as X ∼ N (µ, σ2)

where, µ is the expectation, σ2 is the variance and σ is the standard deviation. The

probability density function of such distribution is defined as

f(x) =
1

σ
√

2π
e−

1

2
(x−µ

σ
)2

for −∞ < x <∞

18

In theory, X can be distributed from −∞ to ∞, which is not suitable for many

practical applications. In such cases, a rule of thumb is that approximately 99.7%

values of X lie between 3 standard deviations (3σ) from the expectation of X. This

rule can be really useful in calculations and in many applications we can safely ignore

values outside of 3σ without having any significant difference in our result.

In our work, we want to estimate the probability distribution of the location of the

glider. A location consists of a longitude and a latitude and we need two correlated

variables to represent a location. The normal distribution we discussed above is an

univariate distribution and can not be used to represent that location. We need to

use a bivariate normal distribution for such configuration. It is worth mentioning

that both univariate and bivariate versions hold the same properties for a normal

distribution, but the form of representation is a bit different in the bivariate case.

Let X and Y be two continuous random variables which represent longitude and

latitude respectively. The variances of variables X and Y are defined as σ2
x and σ2

y

respectively. Also, X and Y are correlated and the correlation is defined by the factor

ρ. For simplicity, we are stating the random variables together as X = [XY]T . Now,

the expectation µX , the variance matrix ΣX and the probability density function

f(x, y) are defined as

µX =
∫

∞

−∞

∫
∞

−∞

[x
y] f(x, y) dxdy

ΣX =




σ2
x ρσxσy

ρσxσy σ2
y




f(x, y) =
1

2π
√
|Σ|

e−
1

2
([x

y]−µ)T
Σ

−1([x
y]−µ)

In a univariate normal distribution, we have used 3 standard deviations to repre-

19

sent 99.7% values of the random variable. Similarly, in the bivariate case we make use

of a 99% confidence ellipse of the random variable X ∼ N (µX , ΣX). The center of

the confidence ellipse will be the expectation µX and the semi-major and semi-minor

axis can be calculated from the covariance matrix ΣX . To do such calculation, we

can use the eigenvalues and eigenvectors of ΣX . The eigenvalue λ can be computed

by the following equation

det(ΣX − λI) = 0

det







σ2
x ρσxσy

ρσxσy σ2
y


− λ



1 0

0 1





 = 0

det






σ2

x − λ ρσxσy

ρσxσy σ2
y − λ





 = 0

(σ2
x − λ)(σ2

y − λ)− (ρσxσy)2 = 0

Solving the above quadratic equation will give us two eigenvalues λ1 and λ2. Us-

ing these eigenvalues in the following equation, we can determine the corresponding

eigenvectors v1 and v2.

(Σ− λiI)vi = 0

Each eigenvalue λi and corresponding eigenvector vi will define a semi-axis of the

confidence ellipse. The length of a semi-axis is a function of a eigenvalue (equation

2.1) and the angle of that semi-axis is the same as the direction of the corresponding

eigenvector.

ai =
√

cλi (2.1)

where, c is a constant factor determined by the level of confidence. For instance, in

20

case of a 99% confidence ellipse c = 9.210. As c is a constant factor for a particular

confidence level, the larger eigenvalue will represent the major-axis and the smaller

one will represent the minor-axis of the ellipse.

2.2 Glider Navigation

An electric Slocum glider is equipped with a ballast system at the front of its structure.

The system can change the buoyancy of the glider to provide the necessary propulsion

force. Usually the glider is adjusted in such a way that its buoyancy is neutral in ocean

water. The ballast system can change that to create continuous cycle of upward and

downward vertical motion of the glider. The vertical motion produces enough lift for

the attached wings to take the glider in the forward direction. This unique propulsion

technique makes the glider move in a sawtooth pattern.

In a typical mission, the glider is given a sequence of locations of interest, also

known as waypoints. The glider starts by heading towards the first waypoint with its

upward and downward cycles. Whenever the glider reaches the surface it can obtain

the correct position using GPS, however the GPS signal is not accessible while under

water and in some part of a mission when surfacing might not be possible. A dead

reckoning system is utilized to navigate in the absence of GPS, but dynamic ocean

currents can make dead reckoning unreliable. Due to the low horizontal velocity of the

glider, strong ocean current can displace it in the direction of the water velocity. In

general, the average displacement is about 10% of the distance travelled by the glider.

The navigation system tries to compensate for this displacement, but in reality the

water velocity can be very unpredictable and an adequate localization technique is

required to estimate the actual displacement of the glider. In addition to that, dead

reckoning displacement error is cumulative and if not corrected, can grow significantly

21

over time. To correct the state estimation from dead reckoning, the water depth at the

estimated location can be matched with a prior elevation map of the ocean floor. The

glider TAN algorithm (section 2.2.3) addresses this issue by implementing a particle

filter with a water depth measurement.

The depth measurement is computed primarily by combining the data obtained

from the on-board altimeter and pressure sensor. The altimeter is a narrow beam

sonar mounted in the nose of the glider. The mounting is done such a way that while

diving downwards the sonar points straight to the bottom of the ocean. A limitation

of such configuration is that the altimeter reading as well as the depth estimation is

only available during the downward motion of the glider. The glider TAN algorithm

relies on dead reckoning when depth estimation is not present.

2.2.1 Dead Reckoning

In real world application of robotics specifically in mobile robotics, dead reckoning is

a well known technique and often used in robot navigation system. Dead Reckoning

or DR is the process of estimating the robot’s current state based on previous state

and known change in state over time. In its simplest form, let xk is the last known

state or prior state and ∆x is the change in state for time ∆t. The current state or

posterior state xk+1 can be calculated as

xk+1 = xk + ∆x (2.2)

The above equation is a state update equation. The state change ∆x can be

calculated from a motion model based on the configuration of the robot. In some

cases, calculating ∆x accurately is very challenging due to the complexity of the

robot motion. In their work, Claus and Bachmayer used the on-board pressure sensor

22

and attitude sensor of the glider to calculate ∆x for time ∆t and the details can be

found in [CB15]. For our work, this calculation is not relevant as we are not focusing

on online path planning.

State estimation from the glider DR process works well with additional access of

GPS updates. But, in the absence of such GPS updates, DR estimation becomes

unreliable as the glider does not have any direct knowledge about its speed with

respect to the ground. In addition to that, variable water velocity can contribute

more errors in the estimation. As the errors from DR are cumulative, without any

corrective measure the estimation of horizontal location becomes unusable. Especially

in the highly dynamic areas, prediction of the water velocity does not match well

with the actual water velocity which results in additional error in DR estimation. A

proven technique to reduce DR error in glider navigation is known as Terrain-Aided

Navigation or TAN.

2.2.2 Terrain-Aided Navigation

In a broader sense, most TAN algorithms use an a priori terrain map along with some

form of measurement which can be used to match the glider location with the map.

The glider’s motion model is used to predict the current location and the measurement

is used as a corrective update to that prediction. A Digital Elevation Model (DEM)

containing the depth of the ocean floor can be used as the map. Many TAN algorithms

use statistical estimators; among which we are particularly interested in the sequential

importance sampling method or more commonly known particle filter.

2.2.2.1 DEM: Digital Elevation Model

The Digital Elevation Model (DEM) is an a priori map of the ocean terrain containing

the elevation of the region of interest. Claus and Bachmayer have prepared a DEM

23

using the ocean survey data from the Centre for Applied Ocean Technology at the

Marine Institute of Memorial University. In our work, we obtained data for the same

area for implementation and validation purpose.

The data is collected by “MV Atlantica” under the Conception Bay survey. The

survey was conducted near the Holyrood, Newfoundland and Labrador. We received

the data in ESRI ASCII format and produced a grid of water depth for the Holyrood

area. We are using the grid as the DEM and figure 2.1 is showing a portion of that

grid. The DEM can be accessed using the longitude and latitude of a location with

the resolution of 2 meters in both direction. We use bi-linear interpolation to access

any location that does not coincide with the grid points. The depth bias of the DEM

is defined [CB15] by its variance σ2
DEM and can be computed for an arbitrary depth

z.

σ2
DEM =

1
2

√
1 + (0.023z)2 (2.3)

2.2.2.2 Particle filter

Particle filter is a well studied Bayesian Estimator that can work with nonlinear

systems. The application of particle filters can be found in different areas of study. An

in depth explanation of the particle filter has been presented in [DGA00], [AMGC02]

and [Sim06]. In [FHL+03], a particle filter is implemented to estimate current location

from a initial uniform distribution. Due to its capability to represent nonlinear, non

Gaussian systems, particle filters are preferable for many applications.

In a particle filter based TAN algorithm, the probability of the glider location

is represented by a set of particles, also known as particle cloud. Each particle is

a possible location of the glider and more particles in a location indicate a higher

probability of the glider being at that location. During initialization, a fixed number

of particles is drawn using an importance density function. The function may vary

24

Figure 2.1: Elevation of the ocean floor in Conception Bay near Holyrood, NL

based on the particular application, but it must satisfy that more particles are drawn

from the important part of the sample space using all the previous locations of the

glider and all the previous measurements. Once the particles are drawn, the state

update equation is applied to each particle to replicate the change of glider’s state.

Each particle is then assigned a measurement value from the DEM based on the

particle’s location. These values are compared against the actual measurement of

the glider to evaluate a weight to the associated particle. The weighted mean of

the particles, or in other words, the sum of the product of individual particle is the

location estimate of the glider.

Choosing the right importance density function is particularly challenging while

implementing particle filter. In the classic version, all the states and measurements

25

are needed to construct the function which is not suitable in all scenarios. Instead

a suboptimal version of the importance density function can be used which requires

the prior state of the particles. Using this approach can led to particle degeneracy

where most of the probability mass is contained in few particles leaving the rest of

the particles with a negligible mass. To circumvent this problem, the particles are

resampled by disposing of low weighted particles and dividing high weighted ones

into multiple particles. The resampling technique solves degeneracy, but it may cause

particle collapse as the particle cloud becomes smaller over time and cannot correct

itself anymore. A jittering can be introduced [GSS93] by adding some process noise

with the particles and thus preventing the cloud to collapse.

In their work Claus and Bachmayer used a normally distributed jitter value rk

with 0 mean and σj standard deviation. At time k, {xi
k−1}N

i=1 is the prior particle

cloud and ∆xk is the change in state, where N is the number of particles and i is the

index. The state update Equation 2.2 has been modified to include jitter value as

xi
k = xi

k−1 + ∆xk + rk (2.4)

Using Equation 2.4, every particle’s state is updated. Then the water depth mea-

surement zk is estimated for the time k. The probability of this depth estimation

given the location of ith particle can be considered as the weight w̃i
k of that particle.

The weights are then normalized by the sum of all the weights sw. The normalized

weight of the ith particle is denoted by wi
k.

w̃i
k = P (zk|xi

k) (2.5)

26

sw =
N∑

i=1

w̃i
k

wi
k =

w̃i
k

sw

(2.6)

Finally, the particles are resampled proportionally to their weight and the location

estimate x̂k is calculated. The updated particle cloud {xi
k}N

i=1 is stored to be used as

the prior particle cloud in the next iteration.

x̂k =
1
N

N∑

i=1

xi
k

2.2.3 Glider TAN algorithm

A Slocum glider is equipped with all the required hardware modules to implement a

particle filter based TAN algorithm. In [CB15], glider TAN algorithm is presented

as an improvement of that particle filter based TAN. Although the glider has an on-

board altimeter, the altitude value is only available during the downward dive cycle

of the glider. This limitation demands some alteration of the base TAN algorithm.

Glider TAN uses a combination of dead reckoning and jittered particle filter.

The inputs of the glider TAN algorithm are the prior particle cloud {xi
k−1}N

i=1,

the prior location estimate x̂k−1 of the glider, the change in location ∆xk and depth

measurement zk. In the initialization stage of the algorithm, the longitude and latitude

are taken from GPS reading at the initial location of the glider. A local reference frame

named Local Mission Coordinate or LMC is created at this initial location. All the

particles are set to location (0,0) in LMC, assuming the jitter value will spread the

particles over time. After this initialization, the algorithm iterates for every time step

k and produces an updated particle cloud {xi
k}N

i=1 and glider’s location estimate x̂k

as the outputs of step k.

In step k, the algorithm first calculates the water depth zk at the glider’s current

27

location. The pressure sensor provides the glider’s depth from the surface and the

altimeter measures the glider’s altitude from the ocean floor. Using these two values

along with the tidal variation correction and the vertical separation of altimeter and

pressure sensor, water depth is calculated.

The next part of the algorithm works with particles in a similar way to what TAN

does with the exception of a dead-reckoning flag. The flag is set to true when any

of the particles gets in a undesirable location such as getting outside of the DEM

bound. In a way, the dead-reckoning flag governs how and when the particle filter

is used by the algorithm. If the flag is set to true, the algorithm skips applying the

filter and uses state update Equation 2.2. This way the location estimate x̂k only

uses dead-reckoning without using the jitter rk or the depth measurement zk. On

the other hand, when the flag is not set, the algorithm follows the usual steps of the

TAN algorithm. Every particle is updated using state update Equation 2.4 with a

normally distributed pseudo random jitter rk. The updated location of the particle

xi
k in LMC is then converted to longitude and latitude so that the associated water

depth zi
k can be interpolated from the DEM. This depth zi

k is compared with the actual

water depth estimation zk to compute the probability P (zk|xi
k) which is the weight

w̃i
k of that particle. The comparison is done by the probability density function of a

univariate normal distribution with variance σ2
DEM from equation 2.3. The weighting

function can be defined as,

w̃i
k = P (zk|xi

k) =
1

σ2
DEM,k

√
2π

e−(zk−zk,i)
2/2σ2

DEM,k (2.7)

Once all the weights are computed, Equation 2.6 is used to normalize them appro-

priately. Next, the resampling is performed on the particles and the location estimate

x̂k is computed using the newly resampled particle cloud. Finally, x̂k is converted to

28

longitude and latitude and the algorithm is ready for the next iteration.

Chapter 3

Rating

The glider TAN algorithm works well to navigate the glider to its destination, however

the quality of the location estimation varies depending on which path the glider takes

to its destination. For instance, in a path that goes over a flat terrain, the particle

cloud can spread over a large area which can make it difficult to converge. Intuitively,

a large particle cloud is more erroneous in location estimation than a smaller one.

Therefore, in a path where the particle cloud remains appropriately small, the glider

should localize better. The focus of this chapter is to design a method to rank locations

in such a way that the glider TAN algorithm is expected to produce a smaller particle

cloud in a well ranked location and hence the precision of location estimation will be

proportional to the ranking. Subsequently, in Chapter 4 we will utilize the ranking

to compute a safer path for the glider to reach its destination.

3.1 Inspecting the contribution of depth variation

In the previous chapter, we discussed the depth measurement in Glider TAN algo-

rithm. We are now interested in the relationship of depth measurement with the

resulting particle cloud. In the resampling step of the particle filter, low-weighted

29

30

particles are discarded and high-weighted particles are replicated. In that process,

when a small number of particles have higher weights, a large number of low-weighted

particles are discarded. In this way, the probability mass accumulates on only those

high-weighted particles which result in a smaller particle cloud. In contrast to that,

when a large number of particles have similar weights, resampling cannot discard

enough particles and the particle cloud becomes larger. Equation 2.7 shows that

weight calculation of the particles directly relies on the variation of depth of those

particles. To demonstrate the idea, let us consider the following case.

We want to compare the location estimation of the particle filter in two different

locations A and B. Location A has very similar depth compared to its neighbours

(Figure 3.1a) which simulates A has flat surface. On the other hand, location B has

significant uniqueness in depth compared to its neighbours (Figure 3.1b). Now, we

have assigned random particle clouds on both of these locations and their neighbours.

Both of the initial particle clouds are identical and randomly taken from a uniform

distribution (Figure 3.1c and 3.1d). Next, we have taken the depth measurements and

weighted the particles in both cases. The figures clearly shows that the lack of depth

variation in A has distributed the weights among a large number of particles (Figure

3.1e) whereas the weights are concentrated in case of B (Figure 3.1f). The similar

effect of depth variation is reflected in the resulting particle clouds. As expected,

after resampling step, particle filter produced a larger cloud in A (Figure 3.1g) and

a significantly smaller cloud in B (Figure 3.1h). This suggests that the variation in

depth should help the particle filter as well as the glider TAN algorithm to achieve a

better location estimation.

We want to quantify the contribution of depth variation such that this concept

can be utilized in path planning. We are naming such quantification rating and we are

going to construct a function to calculate the rating without requiring to run particle

31

Surface elevation of the ocean with the location of the glider

95

100

40 50

E
le

va
tio

n

105

40

Case A: flat surface

Y

30

X

20

110

20
10

0 0

surface elevation
glider's location

(a)

95

100

40 50
E

le
va

tio
n

105

40

Case B : variation in surface elevation

Y

30

X

20

110

20
10

0 0

surface elevation
glider's location

(b)

Initial particle cloud

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case A: particle cloud

particle cloud
glider's location

(c)

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case B : particle cloud

particle cloud
glider's location

(d)

32

Weighted particles, larger circle indicates higher weight

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case A: weights are distributed

weighted particles
glider's location

(e)

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case B : weights are concentrated

weighted particles
glider's location

(f)

Updated particle cloud which represents the location estimation

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case A: larger particle cloud

particle cloud
glider's location

(g)

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case B : smaller particle cloud

particle cloud
glider's location

(h)

Figure 3.1: The impact of depth variation on the particle cloud size

33

filter explicitly. To do so, first we need to decide what we should rate: a location or

an area in the map.

3.1.1 Effectiveness of rating: a point vs an area

From the glider TAN algorithm, we have learned that only one depth measurement

is taken in a given iteration and that depth is associated with the actual location of

the glider in that particular iteration. By design, the rating must be pre-computable

and the actual location of the glider will always be an unknown; therefore calculating

the rating using the glider’s actual location is not a feasible option. Although we

can compute the rating of an arbitrary location assuming the glider will be on that

location, this approach does not give a good guarantee to reduce uncertainty. For

instance, we can rate a location as good and expect the glider to visit and take a

measurement at that location, but in reality, there is a good possibility that the

glider may fail to reach that exact location and end up being on one of its neighbours.

Taking a measurement at that neighbour may not be as useful as the desired location

and the purpose of the rating function will be nullified in such cases.

To illustrate the above mentioned problem, we have run a particle filter twice on

the same area for a different location of the glider. In both cases, the glider was

expected to reach a location (denoted by the green diamond in Figure 3.2a) in the

area. In the first case, we assumed the glider was able to reach that location and

the resulting particle cloud has reduced adequately (Figure 3.2g). However, in the

second case we assumed the glider was slightly displaced by ocean current and took

a measurement at a neighbouring location (denoted by red diamond in Figure 3.2b).

In this case, the particle filter did not estimate as good as before and the resulting

particle cloud is larger (Figure 3.2h) than the one in previous case. We can also see

that estimated location closely matches the glider’s actual location in the first case,

34

Surface elevation with the desired and the actual location of the glider

95

100

40 50

E
le

va
tio

n

105

40

Case A: glider in desired location

Y

30

X

20

110

20
10

0 0

desired location
actual location

(a)

95

100

40 50

E
le

va
tio

n

105

40

Case B : glider off the desired location

Y

30

X

20

110

20
10

0 0

desired location
actual location

(b)

Initial particle cloud with desired and actual location

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case A: initial particle cloud

particle cloud
desired location
actual location

(c)

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case B : initial particle cloud

particle cloud
desired location
actual location

(d)

35

Weighted particles, larger circle indicates higher weight

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case A: weighted particles

weighted particles
desired location
actual location

(e)

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case B : weighted particles

weighted particles
desired location
actual location

(f)

Updated particle cloud with actual and estimated location

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case A: small estimation error

particle cloud
desired location
actual location
estimated location

(g)

0 5 10 15 20 25 30 35 40 45 50

X

0

5

10

15

20

25

30

35

40

45

50

Y

Case B : higher estimation error

particle cloud
desired location
actual location
estimated location

(h)

Figure 3.2: Comparing the effectiveness of rating of a location and an area

36

where as there is noticeable difference between them in the second one.

Considering the above example, we have reached the conclusion that computing

the rating for a single location is not well suited for real world implementation. Rather,

we have designed the rating function to rate a given area such that the rating value

represents the overall quality of locations in that area. We are representing such area

with a probability distribution and the following section describes more about that

distribution.

3.2 Representing an area for rating

In the preceding section, we have shown that rating a single location is not appropriate

for our real world application; a glider can attempt to reach a certain location and

may end up at that location or any other nearby location. Assuming, the probability

of the glider’s actual location is highest in the attempted location and the probability

decreases as we move further away from that location, we can use bivariate normal

distribution to represent the location probability of the glider. In our work, we are

using X ∼ N (µ, Σ) to represent such distribution. X is a two dimensional random

variable containing the longitude and latitude and can be defined as X = [XY]T ,

where X and Y are in global coordinate system and corresponds to the longitude

and latitude respectively. The variable µ denotes the mean of the distribution and

represents the location which the glider is attempting to reach. Σ is the covariance

matrix of the distribution, (µ, Σ) corresponds to the area which the glider is expected

to reach. We are assuming that the actual position of the glider will be anywhere

within this area with higher probability of being at location µ and lower probabilities

at distant locations from µ.

37

3.3 Constructing the rating

The purpose of the rating is to take the glider’s location distribution X ∼ N (µ, Σ)1

as input along with a digital elevation model and to produce the expected location

distribution X ′ ∼ N (µ′, Σ′) after the glider takes an depth measurement. We are

naming the digital elevation model as mapdepth.

Now, from Σ and µ, we can determine the probability of the glider being on an

arbitrary location. Let us call these locations cells and represent them using i, where

i ranges over all relevant cells. In our work, a cell is an arbitrary location near µ such

that probability of i is not negligible.

i =



ix

iy




The coordinate [ixiy]T of a cell i determines the probability of glider reaching that

cell when aiming for µ. As X ∼ N (µ, Σ) is normally distributed, we can show that

the probability of cell i depends on the distance between µ and the cell i. If we move

further away from µ the probability decreases. Similarly, the probability increases

if we move closer to µ and the highest probability is contained in the cell located

at µ. To calculate these probabilities, we need a probability density function. For

the bivariate normal distribution, the probability density function can be defined as

follows

P (i) =
1

2π
√
|Σ|

e−
1

2
(i−µ)T

Σ
−1(i−µ) (3.1)

where P (i) is the probability of cell i.

1It is important to have µ in the global coordinate system, but the rest of the calculation can be
done using local coordinates. To avoid unnecessary calculation, we work in a local coordinate system
that has the origin set to µ. This is not required for the rating process, but using local coordinates
eliminates unnecessary computation.

38

We can look up the depth measurement zi of cell i using mapdepth. This implies

that if the glider is on cell i and takes a measurement, it should measure zi. Using

the zi, we can formulate the probability of measuring an arbitrary z at cell i. Ideally,

this probability P (z|i) should simply be defined as

P (z|i) =





1, if z = zi

0, otherwise

But in a real application, the above definition of P (z|i) is not appropriate. The

depth information in mapdepth may contain some error. In addition to that, the depth

measurement of the glider can be contaminated with instrument noise. We cannot

correct the error contained in mapdepth, instead we can model this error and assign the

probability P (z|i) using that error model. We have used the error model (Equation

2.7) used in gTAN algorithm, defining P (z|i) as

P (z|i) =
1

σ2
DEM

√
2π

e−(z−zi)
2/2σ2

DEM (3.2)

where σ2
DEM is the depth variance in mapdepth, and can be calculated using Equation

2.3. The instrument noise can also be modeled and integrated here, but the model will

vary depending on the type and quality of instrument used to take the measurements.

For simplicity, we are assuming instrument noise to be zero.

Now, P (i) in equation 3.1 provides the probability of being on a cell i and P (z|i)

in equation 3.2 provides the probability of measuring z in that cell i. Combining these

two probabilities, we can determine the overall probability of measuring z

P (z) =
∑

i

P (i) · P (z|i) (3.3)

39

where P (z) is the probability of measuring z. By applying Bayes Rule with Equations

3.1, 3.2 and 3.3, we can obtain the following

P (i|z) = P (z|i) · P (i)/P (z) (3.4)

where P (i|z) is the probability of cell i after measuring z. Let us consider that at

a certain time the glider takes a depth measurement z and we are interested in the

impact of this measurement on the probability distribution of the location of the glider.

In other words, how the probability P (i) of cell i will change after measuring a depth

z and P (i|z) in equation 3.4 will give us that answer. Building on this concept, we

can combine P (i|z) for each cell near µ and collectively they will give us the expected

estimation of X ′ for an arbitrary measurement z,

µ′

z = E(X ′|z) =
∑

i

i · P (i|z) (3.5)

Here, E(X̄|z) is the expectation of the random variable X̄ denoting glider’s loca-

tion after measuring a depth z. Similarly, we can define the corresponding covariance

matrix Σ′

z to represent the probability distribution after measuring a depth z. There

are several ways to define a covariance matrix; we are defining Σ′

z as follows

Σ′

z = E((i− µ′

z)(i− µ′

z)T)

=
∑

i

(
[

ix

iy

]
−

[
µ̄x|z

µ̄y|z

]
) · P (i|z)

(3.6)

It is worth mentioning that the computation of a covariance matrix in floating point

arithmetic is not always numerically stable and can lead to catastrophic cancellations.

Here, we are not concerned about the numerical instability and it will be addressed

in the implementation.

40

It is clear that we can estimate the probability distribution after measuring a depth

z by using equations 3.5 and 3.6. However, as we have stated earlier, there is no way

of knowing the actual value of z beforehand with enough certainty. This does not

concern the online algorithms like gTAN as they have the freedom to access and use

the actual measurement and can act accordingly. On the contrary, we do not know on

which cell the glider will be and what measurement it will get. We need to overcome

this limitation such that the impacts of all possible measurements are covered. We

have devised a solution by combining the µ′

z and Σ′

z for all possible z values. In

this process, taking expectation should be ideal. Because we can easily utilize P (z)

to weight the values and a weighted average can suppress irrelevant values of z. The

calculation of the combining process is as follows

µ′ =
∫

∞

0
µ′

z · P (z) dz (3.7)

Σ′ =
∫

∞

0
Σ′

z · P (z) dz (3.8)

Here, µ′ is the expected mean that represents the possible location of the glider, and

Σ′ is the expected covariance matrix that represents the expected probability distri-

bution. Collectively, µ′ and Σ′ act as the expectation of the probability distribution

after taking any measurement and we can denote it as

µ′, Σ′ = Rating(µ, Σ)

An important remark about Σ′ is that it should not be considered equivalent

to the Updated probability distribution in the gTAN algorithm. In the gTAN algo-

rithm, the glider takes a single measurement and updates the probability distribution

based on that measurement. On the contrary, Σ′ is a expectation of all the Updated

41

probabilities for all possible measurements.

3.4 Implementation of the rating

The rating process we constructed in the previous section can estimate the usefulness

of taking a measurement in a certain area. But like many mathematical calculations,

implementing the rating in a computer using floating point arithmetic requires some

adjustment. In this section, we will present a few tweaking to eliminate unnecessary

calculation as well as to improve the efficiency of those calculations.

We want to start with the calculation of the initial probability of a cell, P (i). In

Equation 3.1, we are using the probability density function of a bivariate normal dis-

tribution to calculate P (i). In theory, every cell has some amount of the probability

mass, but some of them have very low probability and may not have any significant

contribution in the rating calculation. Some cells are so far away from µ that their

probability cannot even be stored using floating point arithmetic. In our implemen-

tation, we have found that excluding cells with negligible probability does not affect

the rating and improves the efficiency of the calculation. A good way of doing such

exclusion is using confidence ellipse [HR84] of the initial distribution. For a bivariate

normal distribution, we can use Chi-Squared (χ2) distribution with 2 degree of free-

dom [Sci17]. The semi-major axis a and semi-minor axis b of the confidence ellipse

can be defined as

a =
√

cλ1

b =
√

cλ2

where c is the constant factor from χ2 distribution, λ1 and λ2 are the eigenvalues

42

of the covariance matrix Σ. The respective eigenvectors will determine the angle

of the semi-major and semi minor axes. The value of c corresponds to the level of

confidence. For instance, c = 9.210 will give us 99% confidence ellipse [Sci17]. From

this point onwards, we are going to represent the distributions with the associated

99% confidence ellipse. Let us name the area inside such ellipse Ar. Now, we can

use Equation 3.1 only for those cells which are in Ar and ignore the other cells as

negligible. In addition to that, we need to normalize P (i) so that the sum of all

probabilities becomes one. We can define a normalization factor, η as below and use

η to normalize P (i).

η =
1

∑
i∈Ar P (i)

P (i) = η · P (i)

Another good candidate for implementation specific improvement is the integra-

tion used in Equations 3.7 and 3.8. In both cases, we are integrating with respect

to z in the interval [0,∞]. Ideally, we want to integrate in that interval to ensure

every possible value of z is evaluated. Fortunately in our case, we can determine all

possible z values in Ar from mapdepth and we can utilize this information to reduce

the interval. To do so, we can extract the minimum and maximum z values in Ar

and expand them using the standard deviation(σDEM) of mapdepth. Now, our reduced

interval for integration is [zmin, zmax] where,

zmin = min
∀i∈Ar

zi − 3 · σDEM

zmax = max
∀i∈Ar

zi + 3 · σDEM

Using the above mentioned improvement techniques, we have implemented our

43

rating function. We have chosen Matlab as our programming tool due to the well

known efficiency of Matlab in mathematical calculations and for compatibility with

existing software written by the Autonomous Oceans Systems Lab. In the following

sections, we present results obtained by running the rating algorithm on the map of

Conception Bay near Holyrood, Newfoundland.

3.4.1 Rating computed on the Holyrood data

In our first test case, we computed the rating in different areas of the ocean floor

of Conception Bay near Holyrood, NL. To compare the results, we have used the

same initial distribution Σ = [29.85 −0.86
−0.86 25.15] so that only the usefulness of those areas

can contribute in the resulted distribution Σ′. Figure 3.3 shows the result of rating

calculation for four different areas which were chosen by decreasing variation of surface

elevation.

To represent both the initial distribution Σ and expected distribution Σ′, we calcu-

lated the 99% confidence ellipse and plotted them in green and blue color respectively.

In Figure 3.3, area a has the highest variation in surface elevation where as area d

has the lowest one and area b and c lie in between them. As we can see, the resulted

expected distribution Σ′ increases with the decreasing variation of elevation. We can

conclude that with increasing variation in elevation, the expected distribution should

become smaller after taking a measurement in the area which complies with our rating

concept. Table 3.1 includes some details from running this test case.

In our next test case, we wanted to show the contribution of different initial dis-

tribution Σ in the rating process. We calculated the expected distribution Σ′ for the

same area a from the previous test case, but in each calculation we used different

arbitrary Σs. We chose four Σs such a way that each of them is different in size

or shape from the others. Figure 3.4 shows the result from this test case. Like the

44

(a) Rating result at (47◦23′28”,−53◦8′19.5”) (b) Rating result at 47◦23′28”,−53◦8′19.5”

(c) Rating result at 47◦23′28”,−53◦8′19.5” (d) Rating result at 47◦23′28”,−53◦8′19.5”

Figure 3.3: Comparing the rating result in different areas of the ocean near Holyrood,
NL using 99% confidence ellipse

45

Area Σ 99% ellipse (m2) Σ′ 99% ellipse (m2)

a




29.85 −0.86

−0.86 25.15


 868.02




24.28 −4.82

−4.82 4.25


 96.97

b




29.85 −0.86

−0.86 25.15


 868.02




23.58 −5.59

−5.59 7.37


 174.20

c




29.85 −0.86

−0.86 25.15


 868.02




17.63 −5.51

−5.51 18.38


 377.55

d




29.85 −0.86

−0.86 25.15


 868.02




25.18 −0.69

−0.69 21.05


 690.92

Table 3.1: Comparing the rating result in different areas of the ocean near Holyrood,
NL using 99% confidence ellipse

previous case, green ellipses represent initial distribution Σ and blue ellipses represent

expected distribution Σ′.

In figure 3.4a, we chose a circular initial distribution with Σ = [45.00 0.00
0.00 45.00]. The

resulted Σ′ is an ellipse with its semi-major axis aligned with the contour line of the

surface. In the second figure 3.4b, we chose an ellipse shaped initial distribution with

Σ = [43.66 −5.00
−5.00 26.34]. Similar to the previous one, the resulted Σ′ matches the contour line

as well. To examine the impact of the semi-major axis of the initial distribution, in

the next figure 3.4c we kept the size of the initial distribution same, but rotated that

by 90◦ with Σ = [26.34 5.00
5.00 43.66]. As expected, the resulted Σ′ matches the contour line,

but it also decreased in size. In the last figure 3.4d, we maintained the same shape

and rotation of the initial distribution while reducing the size with Σ = [15.67 2.50
2.50 24.33].

Just like the preceding three figures, the resulted Σ matched the contour line. All four

of the figures are consistent in aligning with the contour lines of the surface, which

46

(a) Σ is shaped as a circle (b) Σ is shaped as an ellipse

(c) Σ is rotated by 90◦ (d) A relatively smaller Σ

Figure 3.4: Comparing the result of rating calculation for the same area with different
initial distribution varying in size, shape and rotation

is expected as the depth is effectively same along those lines. Table 3.2 shows some

details from running this test case.

3.4.1.1 Rating map: a visual representation of depth variation

We designed the rating function to calculate the expected distribution after taking

a measurement, which can later be used in path planning. But rating can also be

47

Figure Σ 99% ellipse(m2) Σ′ 99% ellipse(m2)

3.4a




29.85 −0.86

−0.86 25.15


 1302.03




24.28 −4.82

−4.82 4.25


 106.23

3.4b




29.85 −0.86

−0.86 25.15


 1302.03




23.58 −5.59

−5.59 7.37


 95.42

3.4c




29.85 −0.86

−0.86 25.15


 1302.03




17.63 −5.51

−5.51 18.38


 105.62

3.4d




29.85 −0.86

−0.86 25.15


 723.35




25.18 −0.69

−0.69 21.05


 94.14

Table 3.2: Comparing the result of rating calculation for the same area with different
initial distribution varying in size, shape and rotation

utilized to visualize the variation in usefulness for the localization of an entire area of

the ocean. We can take an arbitrary initial distribution Σ and calculate rating for all

the areas in the given elevation map with that Σ. Thus we will have the corresponding

expected distribution Σ′s for those areas. Then we can plot the size of the Σ′s in the

associated position of a contour map and we named such map as a rating map of that

particular Σ. The current implementation of the rating process is efficient enough to

compute a rating map without taking a significant time.

Precomputed rating maps can be useful as a reference for path planning, but

creating rating maps for all possible Σ is neither an efficient nor a feasible solution.

But usually the ocean floor is smooth enough that similar values of Σ give similar

ratings. Thus, a rating map for some representative Σ is a good way to visually assess

the usefulness of a region in the ocean. Figure 3.5 shows the rating maps for four

different Σ values. The result of our rating process is a two dimensional distribution

48

(a) Rating map for Σ = [15 0
0 15] (b) Rating map for Σ = [20 0

0 20]

(c) Rating map for Σ = [25 0
0 25] (d) Rating map for Σ = [30 0

0 30]

Figure 3.5: A visual representation of the rating of the entire region of the ocean
shown in Figure 2.1 using rating maps

49

which is hard to plot visually for this purpose. So, we resorted to the 99% confidence

ellipse and Figure 3.5 is showing the total area covered by the confidence ellipses. This

representation of the rating maps is not useful for optimal path planning, however

they are a good way to understand which regions are more useful for glider TAN

algorithm to work better. Specially while manually planning a path by hand, the

rating maps can be really helpful.

3.4.2 Comparing the result of rating using Holyrood data

We want to validate the expected distribution which results from the rating process.

To do such validation, we have set up two experiments which will compare the ex-

pected distribution with the simulated distribution of the glider’s location estimate.

In the first experiment, we compare the expected distribution with the location esti-

mation of a particle filter and the second experiment does a similar comparison with

a simplified version of glider TAN algorithm.

3.4.2.1 Comparing rating with estimation from a particle filter

The goal of this experiment is to measure the accuracy of the expected distribution

from rating function with respect to the estimation of particle filter. We took several

arbitrary locations x1, x2, x3, . . . xk from the mapdepth and each location xi, is assigned

an initial random normal distribution X i ∼ N (xi, Σi). First we apply the rating

function to compute Σ′

i for each location xi and calculate the area (Arrating
i) of the

99% confidence ellipse of Σ′

i.

In Matlab we have implemented a particle filter similar to the one used in glider

TAN algorithm. We used this implementation to simulate the result of using the

particle filter for each xi. In the simulation process, we created a particle cloud by

taking particles from X i. Next, we randomly picked a particle in the particle cloud

50

to be the actual location of the glider. This step replicates the real world uncertainty

of gliders actual location. Then we ran the particle filter as usual and compute the

updated particle cloud. Lastly, we calculated the area (Arpf
i) of the smallest polygon

containing the updated particle cloud. This process was repeated n number of times

and the root mean square value Âr
pf

i was computed.

(8'17"/23'27") (8'21"/23'26") (8'20"/23'29") (8'15"/23'30") (8'18"/23'28") (8'11"/23'34")
Longitude / Latitude (-53°~ / 47°~)

0

100

200

300

400

500

600

700

800

A
re

a(
m

2
)

99% ellipse of Σ'
Particles

Figure 3.6: A comparison between the expected distribution from the rating process
and location estimation from particle filter simulation

We have plotted our result from the experiment in Figure 3.6. The plot shows that

the rating function complies with the RMS value from the particle filter simulation.

An observation of the plot is that Arrating
i tends to be a slight overestimation of

Âr
pf

i . We conclude that the rating function can estimate the expected distribution

which bounds the location estimate of particle filter, as intended. Some details of this

experiment can be found in Table 3.3.

51

Location Σ′ 99% ellipse(m2) Particle cloud(m2)

−53◦8′17”, 47◦23′27”




12.60 −7.10

−7.10 21.38


 428.1 419.3

−53◦8′21”, 47◦23′26”




3.19 −4.01

−4.01 23.60


 222.5 190.7

−53◦8′20”, 47◦23′29”




3.90 −4.13

−4.13 23.56


 250.2 228.9

−53◦8′15”, 47◦23′30”




25.57 −0.55

−0.55 23.99


 716.4 644.0

−53◦8′18”, 47◦23′28”




8.80 −5.45

−5.45 22.91


 379.3 365.5

−53◦8′11”, 47◦23′34”




24.84 −1.62

−1.62 23.82


 702.3 632.7

Table 3.3: A comparison between the expected distribution from the rating process
and location estimation from particle filter simulation

3.4.2.2 Comparing rating with the effectiveness of glider TAN

In our next experiment, we want to simulate a simplified version of the glider TAN

algorithm and compare the estimation from the simulation with the rating estimation.

We have simplified the depth calculation of glider TAN algorithm and extracted the

depth value from mapdepth with some noise. We also assumed that unlike the glider

TAN algorithm, the depth measurement is not affected by the orientation of the glider.

With this setup, we selected two arbitrary locations in mapdepth as the start and

52

goal location of the glider. Then we randomly selected some intermediate locations to

create a path P = xstart, x
p
1, . . . x

p
i . . . , xgoal that connects the start and goal locations.

Figure 3.7a shows the path along with the elevation map. Next we ran a simulation

of the simplified glider TAN algorithm on that path and recorded the size of parti-

cle clouds at each location where the glider took a depth measurement. Once the

simulation completed, we took the path and computed the rating for those recorded

locations. Figure 3.7b shows the result from both cases where red line represents

the glider TAN simulation and blue line shows the associated rating estimation. The

figure clearly shows that the rating estimation correctly follows the trend of particle

cloud in glider TAN algorithm. One key observation regarding the result of this ex-

periment is that the difference between the red and blue line has varied for different

locations of the path. However, the red line is always smaller than the blue one; which

is fine as we want the rating estimation to work as a bound for the particle cloud in

glider TAN algorithm.

53

(a) Elevation map and a randomly selected path from start to goal locations

(7'47"/23'36")(7'55"/23'31") (8'3"/23'27") (8'11"/23'30")(8'11"/23'35") (8'9"/23'39") (8'8"/23'44") (8'6"/23'49")
Longitude / Latitude (-53°~ / 47°~)

0

50

100

150

200

250

A
re

a(
m

2
)

Rating function

Simulation

(b) A comparison between the particle cloud in glider TAN simulation and the estimation
from the rating process

Figure 3.7: Comparing the rating estimation as a bound on the size of particle cloud
in glider TAN algorithm

Chapter 4

Interesting Path Planning

In a typical mission, the glider visits a number of waypoints in which it can collect a

wide range of data using the on-board sensors. A waypoint is a location of interest in

the area of the ocean where the mission is executed. In most cases, these waypoints

are set by the mission planner prior to the start of the mission. Usually two con-

secutive waypoints are connected by a straight path if there is no obstacles between

them. During the mission, the glider tries to follow that straight path to reach the

first waypoint. If a displacement is detected using the localization estimation, the

glider can correct that by compensating the displacement from the path. The glider

continues on that path until it reaches the first waypoint. Once the task at the first

waypoint is accomplished, the glider heads towards the second waypoint. The process

is repeated until all the waypoints are visited.

In the open ocean, the glider rarely faces a static obstacle like a land mass or an

underwater mountain. This allows the glider to travel in a straight line between two

consecutive waypoints which is also the shortest path between them. Although the

ocean current and dynamic obstacles are addressed in some path planning algorithms

for the glider, the likelihood of useful localization is not accounted in them. In our

54

55

path planning effort we are combining both aspects by computing the shortest path

for a user defined constraint that limits the localization uncertainty in that path.

4.1 Shortest Path Problem

The shortest path problem is one of the classic problems in graph theory. A number

of variations of this problem exist which can be classified using weighted, directed or

undirected graphs. In its most common form, the single pair shortest path problem

can be described as computing a path between two nodes in a graph in such a way

that the sum of edge weights in that path is minimized. Edge weight can be the

distance, travel time or the energy consumption during the travel between two nodes.

Irrespective of what the weight represents, the solution to the shortest path problem

aims to minimize that weight by producing an optimal path between the start node

and goal node. Apart from the single pair shortest path problem, the other major

variations include all pairs shortest path, single source shortest path and single goal

shortest path. We are limiting our discussion to the single pair shortest path problem

which is most relevant to our work.

4.1.1 Algorithm for shortest path problem

Dijkstra’s algorithm [Dij59] is a well known method for solving the single pair short-

est path problem. Although some variations of Dijkstra’s algorithm can solve single

source shortest path problem, the original Dijkstra’s algorithm finds the shortest path

between a source node and goal node in a directed weighted graph with no negative

edge weight. Dijkstra’s algorithm takes a greedy approach starting from the source

node and does relaxation on every edge until an optimal path is computed to the

goal node. Dijkstra’s algorithm ensures the resulted path is the optimal with the

56

complexity of O(m log n) on a graph with n vertices and m edges. Dijkstra’s algo-

rithm is an efficient algorithm, however many real world applications demand faster

computation time, and hence heuristic-based algorithm like A* are more common in

practice, especially when optimal paths are much shorter than the size of the graph.

4.1.1.1 A* Algorithm for path planning

The A* algorithm [HNR68] can be viewed as a Dijkstra’s algorithm with an inclusion

of a heuristic function. Whereas Dijkstra’s algorithm greedily selects the best node

based on the path cost, A* follows a similar approach with an addition of a heuristic

value of the nodes, prioritising nodes with lesser combined path cost and heuristic.

A common heuristic is an estimate of the path cost from any node to the goal node,

allowing the algorithm to progress more quickly towards the goal.

To compute the desired path, A* begins by computing partial paths from the

start node. Then, at each step, A* finds the best node to extend one of the previously

computed partial paths. The step is repeated until one of the partial paths reaches the

goal node, thus becoming a complete path from the start node to the goal node. To

determine the best node, A* combines the current cost of a node with the heuristic cost

of that node and selects the node with the minimum combined cost. Such selection

criterion ensures that a node closer to the goal will have more priority than others with

same partial path cost. This allows the algorithm to progress more quickly towards the

goal, producing faster solution. Although heuristics can increase the efficiency of the

algorithm in practice, poorly constructed heuristic function can affect the optimality

of the solution.

57

4.1.1.2 Heuristic admissibility

A* can compute an optimal solution to the shortest path problem only with a admis-

sible heuristic function. As we have mentioned before, a heuristic function estimates

the true path cost from an arbitrary node to the goal node. And a heuristic function

is considered admissible if and only if the estimation never exceeds the true path cost.

It is necessary to note that heuristic can underestimate the true cost and that will

not affect the optimality of the solution.

4.2 Interesting Path Problem

The problem of finding an interesting path is similar to the single pair shortest path

problem with the exception of an uncertainty constraint. In the interesting path

problem, we still want to minimize the path cost from the start location to the goal

location but with an additional restriction that the maximum uncertainty in that

path needs to be contained within a user defined constraint value. It is important

to understand that the problem we are trying to solve here is not a multivariate

optimization problem where two or more variables are needed to be optimized. On

the contrary, an interesting path does not require optimization of uncertainty, rather

we only consider paths which have uncertainty within a user defined threshold.

Given an elevation map of the ocean, an uncertainty constraint and a pair of

start and goal locations, we want to compute the shortest path for the glider, with

uncertainty bounded by a constraint. To define the problem, we construct a graph

G = (V, E), where V is the set of nodes representing locations (cells) and E is the set

of directed weighted edges between those locations. There is an edge (u, v) ∈ E if and

only if the glider can directly travel from location u to location v and the weight of

that edge is defined by the cost of that travel. To represent the uncertainty associated

58

with a node u, we use bivariate normal distribution X ∼ N (u, Σu). In our work, we

considered an arbitrary Σ to be bounded by the given constraint if the major axis of

the Σ’s confidence ellipse is less than or equal to the constraint. We can formalize

the interesting path problem as follows:

Given:

1. A graph G = (V, E) representing the ocean area

2. An elevation map for the associated area of the ocean

3. A starting location xstart and an initial uncertainty Σstart

4. A goal location xgoal

5. A user-defined uncertainty constraint tmax

Compute:

• The shortest path P = xstart, x1, x2, . . . xi, . . . xgoal such that every Σi in P

is less than or equal to tmax.

Naturally, the uncertainty associated with glider’s location increases over time de-

pending on the distance travelled and decreases after a measurement update. We are

assuming the glider’s on-board navigation system is based on Terrain-aided naviga-

tion and a depth measurement of the ocean is incorporated in the navigation. The

growth of the location uncertainty may vary in different glider navigation systems, but

uncertainty increases with the distance travelled by the glider between measurement

updates. In our work, we are naming the increment of the uncertainty Displace-

ment Error. We are assuming that a function Displacement-Error() computes the

59

displacement error of the glider for the associated navigation system. In general,

the displacement error grows linearly with the distance in the direction of the ocean

current [CB15]. Our work does not depend on the way the Displacement-Error()

is defined and should work with any Displacement-Error() function that correctly

reflects the growth of the uncertainty of the glider’s location, such as dead reckoning.

4.2.1 Algorithm for interesting path planning

Path planning algorithms like Dijkstra and A* are not suitable for solving the inter-

esting path problem, although these algorithms can efficiently compute an optimal

solution for the shortest path problem. In the shortest path problem, a traversal be-

tween two adjacent vertices depends only on the edge that connects those two vertices.

In our case, a traversal in the interesting path problem also depends on the associated

uncertainty distributions in both of those vertices. In addition to this, the uncertainty

distribution can vary based on previous locations and distributions, which makes it

very likely that different paths will reach the same vertex with different distribution

and cost. The available path planning algorithms are not designed to address these

challenges. Here, we are presenting some cases to elaborate them.

“Edge traversal in interesting path is not guaranteed for all edge (u, v) ∈ E” :

Usually traversal on an edge in a weighted graph is predefined. If a path reaches an

arbitrary vertex, that path can be extended to reach any of the adjacent vertices.

Let us assume that a path reached a vertex u (Figure 4.1) with path cost δu and u

has an adjacent vertex v connected by an edge (u, v) of weight du,v. In case of the

shortest path problem (Figure 4.1a), it is certain that vertex v can be reached with

a path cost of at most δu + du,v. On the other hand, the same assertion can not be

made for the interesting path problem. Figure 4.1b shows a similar scenario with an

60

u

δu

v

≤ δu + du,v
. . .

. . .

. . .

. . .
du,v

(a) Edge traversal in shortest path problem

u

δu

Σu

v

Σv

. . .

. . .

. . .

. . .
du,v

(b) Edge traversal in interesting path problem

Figure 4.1: The comparison of edge traversal on an arbitrary edge (u, v) ∈ E

inclusion of uncertainty Σu associated with the path ending at vertex u. Using the

Displacement-Error() function, we can compute the uncertainty Σv at vertex v for

the same path. Now, v can only be reached through that path if Σv ≤ tmax; thus

making that edge traversal dependent on Σu. It is necessary to understand that the

uncertainty Σv depends on Σu as well as on every previous Σ in the current path.

This may result in every path having different Σ values for the same vertex.

“Greedy selection can produce sub-optimal solutions for the interesting path prob-

lem” : By design, both Dijkstra’s algorithm and A* are greedy algorithms. A* uses a

heuristic function to compute faster towards the goal, but underneath the algorithm

follows a greedy approach. Greedy algorithms only keep track of the best path to

reach a vertex, which works perfectly for the shortest path problem as edge traversal

is guaranteed in such case, and we only need the best path to reach the goal. In the

61

u1

δu

u2

δ′
u

v

Σv ≤ tmax

Σ′
v ≤ tmax

. . .

. . .

goal

Σg > tmax

Σ′
g ≤ tmax

P

P ′

P

P ′

Figure 4.2: Greedy algorithms like Dijkstra’s algorithm and A* can produce sub-
optimal solution for interesting path problem

case of interesting path problem, an optimal path to an intermediate vertex may not

reach the goal all the time, but a sub-optimal path to that intermediate vertex can

lead to an optimal path to the goal. To illustrate the scenario, let us assume that

two paths P and P ′ reached an intermediate vertex v through nodes u1 and u2 with

uncertainties Σv and Σ′

v, respectively (Figure 4.2). We also assume that P < P ′ and

Σ′
v < Σv ≤ tmax. As both paths can reach the vertex v, naturally P is the optimal

path for v and greedy approach will ignore P ′. This should not pose any problem,

unless the path P exceeds the uncertainty constraint and cannot reach the goal, but

P ′ can. This can happen when P ′ reaches v with a longer path but with a lower

uncertainty. Thus, P ′ can become a sub-optimal path for v, but an optimal path for

the goal. This raises the question of keeping track of all previous sub-optimal paths

which contradicts the concept of greedy approach.

“Traditional path planning algorithms rarely account for the actual travel path in

real world” : Path planning algorithms, specially the graph traversal ones can compute

an optimal path and it is expected that following the optimal path should result in an

optimal travel. In real world applications of path planning, such an expectation is hard

to fulfill as environmental disturbances and faulty instruments can cause deviation

from the optimal path. Thus, trying to follow an optimal path may result a sub-

optimal travel. A similar challenge is present in the interesting path problem. For

62

instance, let us assume that we computed a path P for the glider and x is a location

in P . We can also assume that x is very helpful for glider localization and the glider

is expected to take a measurement at x. But, there is not enough guarantee that

the glider will actually reach that location and the glider may end up at one of its

neighbour x′, which might not be as helpful for glider localization. Therefore, to

compute a path with reduced uncertainty, we need to address the usefulness of a

location as well as that of its neighbours.

4.3 Interesting path algorithm

We are proposing our Interesting Path Algorithm that can produce an optimal path

while addressing the uncertainty involved in the interesting path problem. The al-

gorithm builds upon A* algorithm and utilizes the rating technique we presented in

Chapter 3. We combined the location of the glider and the associated uncertainty

in the graph definition to allow the algorithm to compute the optimal shortest path

within the user defined uncertainty constraint. As we have stated earlier, A* al-

gorithm or its variants can not be applied directly to the given graph G = (V, E).

Instead, we define an intermediate graph G′ = (V ′, E ′) based on the given G in such

a way that an optimal path in G′ also serves as an optimal path in G.

4.3.1 Intermediate graph G′

To account for both the location in graph G and uncertainty of that location, we

combined them in the intermediate graph G′ = (V ′, E ′), where V ′ is the set of vertices

and E ′ is the set of edges between them. Each vertex v ∈ V ′ consist of a location

xv ∈ V and a location uncertainty Σv, thus the vertex v represents that the glider

reached that location xv with uncertainty Σv. There is an edge (u, v) ∈ E ′ whenever

63

it is possible to travel directly from vertex u to vertex v without a measurement, and

with uncertainty not exceeding the constraint tmax. In other words, if the glider can

start from location xu with uncertainty Σu and reach location xv with uncertainty

Σv ≤ tmax, then there exists an edge between vertex u and v of cost distance(xu, xv).

We will only allow measurement update in the vertices and no depth measurement

will take place in the edges. Such construction of G′ ensures that if there is a path in

G′, then the glider can make that travel in G with the tmax bound.

For instance, let say we have a vertex u = [xu

Σu
] ∈ V ′ and we want to construct

its neighbouring vertex v and the edge (u, v) ∈ E ′ that connects them. First we

compute the rating with distribution Xu ∼ N (xu, Σu) to estimate the result of the

measurement update at vertex u. Then we apply the Displacement-Error() function

using the edge distance of (xu, xv) ∈ E from the given graph G. By combining the

rating estimation and the displacement error, we can compute Σv for any vertex v.

If Σv ≤ tmax, then we can add edge (u, v) in E ′, otherwise there is no edge between

these two vertices. The weight of an edge in G′ will be the same as the corresponding

edge in G, so that the path cost will remain same in both of the graphs.

Such construction of the intermediate graph G′ implies that there will be multiple

copies of each vertex of the given graph G along with a large number of edges between

them. In theory, any combination of location and uncertainty can become a vertex in

G′ and therefore the number of vertices in G′ can be infinite. Producing and storing

the entire G′ graph is not a feasible option. To address this issue, in our algorithm

we are dynamically generating a finite subset of the vertices in G′ which are only

reachable from xstart with initial uncertainty Σstart through some path bounded by

tmax.

64

4.3.2 Computing path in G′

Once the intermediate graph G′ is defined, we can apply our variant of A* algorithm

to compute an optimal path. The algorithm is initialized with two empty sets of

vertices Setopen and Setvisited. Then we create the first vertex [xstart

Σstart
] by combining

the given starting location xstart and initial uncertainty Σstart. The distance of the

vertex is set to 0 and the vertex is added to the Setopen. Next the algorithm enters its

iterative phase. In each iteration, the best vertex is selected from the Setopen based

on the current distance of the vertex combined with its heuristic value. It is worth

mentioning that the heuristic function considers only the location part of the vertex

and the associated uncertainty does not have any impact on the heuristic value. The

selected vertex, or as we call it the current vertex, is removed the Setopen and added

to the Setvisited.

Next, we apply the rating function to estimate the expected uncertainty, Σ′ of

the current vertex. Using Σ′ we dynamically determine the neighbouring vertices of

the current vertex. To be an eligible neighbour, a vertex needs to be reachable from

the current vertex without exceeding the uncertainty constraint tmax and without any

additional measurement update except for the one taken at current vertex. Once the

neighbours are determined, we consider the following cases. First, the neighbours

which exist in the Setvisited are ignored. Second, we identify and ignore those neigh-

bours for which at least one better vertex exists in the Setopen. A vertex is considered

better if the vertex has the same location part as the neighbour, the distance of the

vertex is smaller than that of the neighbour and the uncertainty of the vertex is

smaller or equal to that of the neighbour1. Third, we find the vertices in the Setopen

which are worse than any of the neighbours. A vertex is considered worse if the vertex

1We compare two uncertainties Σ1 and Σ2, by checking whether the confidence ellipse of one is
entirely inside the confidence ellipse of other. If so, we consider Σ1 ≤ Σ2. If not, we consider Σ1

and Σ2 to be incomparable

65

has the same location part as the neighbour, the distance of the vertex is equal or

larger than that of the neighbour and the uncertainty of the vertex is larger than that

of the neighbour. Finally, we add the remaining neighbours to the Setopen.

The process is repeated until a vertex with xgoal as a location is selected as the best

vertex from the Setopen or no vertex is left in the Setopen to select from. If no vertex

is left in the Setopen, then the algorithm terminates without a path; which indicates

there is no path which is bounded by the user defined tmax value. Otherwise, the

algorithm returns the path that reached the goal. A pseudo code of the interesting

path algorithm is presented in Algorithm 1. Although the algorithm returns a path

which is computed in G′, it can be proven that the resulted path is also an optimal

shortest path in G bounded by given tmax.

4.3.3 Proof of optimality

In the illustration of the algorithm in Section 4.3, we have stated that the interesting

path algorithm utilizes an intermediate graph G′ = (V ′, E ′) from the given graph

G = (V, E), and subsequently applies a variant of A* algorithm on graph G′ to

compute an optimal solution for the given problem. In order to prove the optimality

of our algorithm, first we need to establish that the optimality of A* holds for G′.

The intermediate graph G′ can be considered as an ordinary graph where each

vertex is a combination of a location and an uncertainty. We have defined the edges

of G′ using the uncertainties of the vertices and the user-defined constraint. Once the

edges are defined, the uncertainty of a vertex does not contribute explicitly to the path

cost and the edge weight as well as the heuristic function depend only on the location

of the vertex. Although we are not producing all possible vertices and edges of graph

G′, all vertices and edges reachable from [xstart

Σstart
] can be generated when required.

Therefore, if there exists an optimal path from location xstart to xgoal starting with

66

Algorithm 1 Interesting Path Algorithm
Require: G = (V, E), xstart, Σstart, xgoal, tMax

1: Define the intermediate graph G′ = (V ′, E ′)
2: Setvisited ← φ
3: Setopen ← φ
4: vstart ← [xstart

Σstart
]

5: dist[vstart]← 0
6: while Setopen 6= φ do

7: find u ∈ Setopen where dist[u] + heuristic[u] is minimum
8: Setvisited ← Setvisited ∪ {u}
9: if u is xgoal then

10: return RecoverPath()
11: end if

12: Setopen ← Setopen − {u}
13: Estimate u.Σ′ ← Rating(u.x, u.Σ)
14: neighbours← {v : v ∈ V ′ & (u, v) ∈ E ′}
15: for all v ∈ neighbours do

16: if v ∈ Setvisited then

17: ignore v and continue
18: end if

19: dist[v]← dist[u] + distance(u, v)
20: if ∃v′ ∈ Setopen : v′.x = v.x & dist[v′] < dist[v] & v′.Σ ≤ v.Σ then

21: ignore v and continue
22: else if ∃v′ ∈ Setopen : v′.x = v.x & dist[v′] ≥ dist[v] & v′.Σ > v.Σ then

23: Setopen ← (Setopen − {v′}) ∪ {v}
24: else

25: Setopen ← Setopen ∪ {v}
26: end if

27: end for

28: end while

67

uncertainty Σstart and bounded by tmax, that path will be included in the produced

subset of the G′. Considering the above mentioned arguments, our variant of A* is

similar to the original A* except for the fact that our variant ignores some vertices

by comparing their uncertainties. We need to prove that no such vertex is a part of

the optimal path and ignoring them will not cost the optimality of the algorithm.

Lemma 4.3.1. For any two co-located vertices [u
Σ] , [u

Σ′] ∈ V ′ with shortest distance

from start dist [u
Σ] and dist [u

Σ′] respectively, if Σ ≤ Σ′ and dist [u
Σ] < dist [u

Σ′], then

[u
Σ′] cannot be a part of an optimal path.

Proof. Let us assume that [u0

Σ0
] and

[
u0

Σ′
0

]
are two co-located vertices in intermediate

graph G′ where Σ0 ≤ Σ′
0. Both of the vertices are reachable from the starting location

with distance dist [u0

Σ0
] and dist

[
u0

Σ′
0

]
respectively, where

dist [u0

Σ0
] < dist

[
u0

Σ′
0

]
(4.1)

Let us also assume that vertex
[

u0

Σ′
0

]
is a part of an optimal path P , where P =

[xstart

Σstart
] , . . . , [u0

Σ′] ,
[

u1

Σ′
1

]
,
[

u2

Σ′
2

]
,
[

u3

Σ′
3

]
, . . . , ,

[xgoal

Σ′
goal

]
. Now, the next vertex in the path is

[
u1

Σ′
1

]
and there must exist a co-located vertex [u1

Σ1
] which is adjacent to vertex [u0

Σ0
].

As we have mentioned earlier, the edge weight depends only on location; therefore,

the distance between [u0

Σ0
] and [u1

Σ1
] will be the equal to the same between

[
u0

Σ′
0

]
and

[
u1

Σ′
1

]
. Let that distance be du0,u1

and using Equation 4.1 we can write

dist [u0

Σ0
] + du0,u1

< dist
[

u0

Σ′
0

]
+ du0,u1

dist [u1

Σ1
] < dist

[
u1

Σ′
1

]
(4.2)

The uncertainty will also grow similarly with distance travelled in both cases and

it is safe to say that Σ1 ≤ Σ′
1 ≤ tmax. We can repeat the above step to show that

68

dist
[

xgoal

Σgoal

]
< dist

[xgoal

Σ′
goal

]

Σgoal ≤ Σ′

goal ≤ tmax

(4.3)

Clearly, Equation 4.3 shows the existence of a shorter and valid path to location

xgoal that does not go through vertex
[

u0

Σ′
0

]
, which contradicts the optimality of P .

Therefore, such vertex
[

u0

Σ′
0

]
cannot be a part of an optimal path.

The above mentioned Lemma 4.3.1 shows that the exclusion of vertices we do in

our algorithm does not affect the optimality and the optimality proof of A* [HNR68]

still holds for computing a path in the intermediate graph G′. Using that proof of

optimality, the following two corollaries can be proved for intermediate graph G′

Corollary 4.3.1. At any time, if a vertex is selected from the Setopen as the minimum

vertex with combined distance and heuristic value, then all the vertices in G′ with

smaller combined distance and heuristic values are already explored and added to the

Setvisited.

Corollary 4.3.2. If a computed path P reaches a vertex [
xgoal

Σ] in the intermediate

graph G′, then P will be the shortest path to reach xgoal with final uncertainty Σ in

G′.

We designed the Interesting Path Algorithm in such a way that when the goal is

reachable, the algorithm terminates with the first path that reaches the goal location.

The Corollary 4.3.2 tells us that the resulting path is optimal only for that particular

Σ in graph G′ and does not guarantee optimality in the given graph G as other shorter

path ending with different Σ may exist. We need to prove that the first path that

reaches the goal location in G′, has equal or shorter distance compare to the other

paths which reach the goal later.

69

Lemma 4.3.2. The first path P reaching a vertex [
xgoal

Σ] for an arbitrary Σ, has less

or equal path distance compared to that of any other path P ′ reaching vertex
[

xgoal

Σ′

]

for any Σ′.

Proof. Let P be the first path to reach vertex [
xgoal

Σ] at time t in the intermediate

graph G′, where xgoal is the goal location. Let us assume that there exists a shorter

path P ′ that will reach vertex
[

xgoal

Σ′

]
at a later time. As the heuristic function does

not account for the uncertainty, the heuristic of both vertices [
xgoal

Σ] and
[

xgoal

Σ′

]
should

equal to 0 and we can represent the assumption as

dist
[

xgoal

Σ′

]
< dist [

xgoal

Σ] (4.4)

Now, consider the last node in P ′ before reaching the goal location is [v
Σ′′]. At

time t, vertex [v
Σ′′] can be present in Setvisited or in Setopen or not being explored yet.

For all of these cases, according to Corollary 4.3.1 the vertex [v
Σ′′] must have equal or

larger combined distance and heuristic compare to that of vertex [
xgoal

Σ]. Therefore,

dist [v
Σ′′] + heuristic [v

Σ′′] ≥ dist [
xgoal

Σ]

As heuristic must underestimate for optimality, heuristic [v
Σ′′] can be at most dv,g,

which is the distance between [v
Σ′′] and

[
xgoal

Σ′

]
. By substituting this value in the above

inequality, we can have the following.

dist [v
Σ′′] + dv,g ≥ dist [

xgoal

Σ]

dist
[

xgoal

Σ′

]
≥ dist [

xgoal

Σ]

(4.5)

Here, Equation 4.5 is a direct contradiction of our assumption in Equation 4.4.

Therefore, the first path in G′ that reaches a vertex located at the goal location is the

70

shortest one among all the paths which can reach the goal location.

By construction, the intermediate graph G′ allows only those paths which have

uncertainty within the user defined constraint tmax. And G′ includes all the possible

traversals in the given graph G which start at location xstart with initial uncertainty

Σstart. Therefore, based on Lemma 4.3.2, we can say that the interesting path algo-

rithm can compute the optimal shortest path from xstart to xgoal in given graph G

within the uncertainty constraint tmax.

4.4 Implementation

We have implemented the interesting path algorithm using MATLAB. Ideally, priority

queue should be used as the data structure for the algorithm, but in our experience

we have found that a dynamic hybrid array structure works best in MATLAB en-

vironment. Some tweaking may be necessary for memory management in such data

structure, but MATLAB can compute very efficiently in a vectorized array. Using the

elevation data described in section 2.2.2.1, we ran the algorithm to compute interest-

ing path between two given waypoints.

The data we received from the Centre for Applied Ocean Technology is gridded in

longitude and latitude with 2 meters resolution in both direction. Based on the data,

we created the input graph G = (V, E) as a grid, but the algorithm should work with

any regular directed weighted graph as well. The vertices in V are the locations in the

ocean and the weight of an edge in E is defined by the distance between the adjacent

vertices connected by that edge. Two meters distance between adjacent vertices can be

too restrictive for glider maneuvering and the mission planner of the glider should set

a suitable minimum distance between the vertices. In our experiment, we decreased

the resolution of the given map and the vertices in V became at least 10 meters apart

71

from each other.

4.4.1 Interesting path between a pair of waypoints

In the first experiment, we took the graph G and marked two vertices as waypoints,

where the first vertex is the starting location and the second one is the goal location.

Then we ran the interesting path algorithm to compute the shortest path with tmax =

38 meters. The resulted path from the algorithm is plotted in figure 4.3 along with

the confidence ellipses in that path.

Figure 4.3: The shortest path between the start and the goal locations bounded by
the uncertainty constraint tmax = 38 meters

We chose the starting and goal locations in this experiment such a way that the

usual shortest path (without any constraint) goes through a large flat area. The

72

yellow colored area in Figure 4.3 represents that flat area. We have already shown in

chapter 3, that such flat areas are not good for reducing uncertainty and should be

avoided where necessary. In Figure 4.3, we can see that the resulted path took a slight

detour and crossed the flat surface through a narrow area compare to that of the usual

shortest path. This detour helped the resulting path to keep the uncertainty below

the given constraint. Another observation of result is that there exists a narrower

crossing in the map with lesser flat area but larger path distance. The resulted path

did not go through that area which indicates the algorithm only optimizes the distance

within the given threshold and does not sacrifice distance for unnecessary reduction

of uncertainty.

4.4.2 The impact of uncertainty constraint over interesting

path

The interesting path algorithm is designed to facilitate shortest path within the given

uncertainty constraint, thus allowing a balance between the safety and the travel

cost. A flexible constraint value will produce a path similar to the shortest path of a

traditional path planning problem, where as a restrictive constraint value can result

in a longer path. In our next experiment, we want to demonstrate the impact of the

constraint to the generated path from the interesting path algorithm. We took a pair

of waypoints and ran the algorithm with different values of the tmax, starting with a

flexible tmax and making it more restrictive in each run. Figure 4.4 shows the results

of the experiment.

In the first run, we set tmax = 48 meters, which is a very flexible constraint, and

the resulted path is almost a straight line from the start to goal location (Figure

4.4a). A large portion of the path went through the flat surface where the uncertainty

became large, but that is acceptable as the constraint was large as well. In the

73

(a) tmax = 48 meters (b) tmax = 44 meters

(c) tmax = 40 meters (d) tmax = 38 meters

(e) tmax = 36 meters (f) tmax = 34 meters

Figure 4.4: Impact of different uncertainty constraints on the resulting paths from
the interesting path algorithm

74

next two run, we restrict the constraint with tmax = 44 meters (figure 4.4b) and

tmax = 40 meters (Figure 4.4c), the resulted paths started to bend away from the flat

area. With tmax = 38 meters in Figure 4.4d, the constraint is restrictive enough to

generate a path that has only a small portion in the flat area. We push the constraint

further in figure 4.4e with tmax = 36 meters and the resulted path become even

longer so that it can avoid the flat surface with many detours. In the last run, we

set tmax = 34 meters and the algorithm couldn’t find a path indicating no travel is

guaranteed without exceeding the given tmax value. Some details about the resulted

paths from this experiment can be found in Table 4.1.

Path tmax in meters # of intermediate vertices Length (meters)

4.4a 48 55 909.35

4.4b 44 79 983.77

4.4c 40 90 1089.89

4.4d 38 94 1091.02

4.4e 36 137 1459.28

4.4f 34 − ∞

Table 4.1: The impact of different uncertainty constraint in the resulted paths from
the interesting path algorithm

Chapter 5

Conclusion

5.1 Summary

We have addressed a specific problem in glider path planning which affects the safety

of the gliders during their missions. We have approached the problem from a new

direction and our experiments show satisfactory results. We intend to use the paths

generated by our algorithm in field trials and we are hopeful that this will help the

glider’s on-board navigation system to localize better.

The proposed rating function and our path planning algorithm are primarily de-

signed for the gliders. However, our work is applicable to any autonomous vehicle

that utilizes depth measurement for localization. We believe that the technique we

introduced in this work can be adapted to many scenarios and there is scope for

further improvements.

5.2 Future work

The technique we presented here can be a stepping stone for future research. Several

directions of research can be possible which will benefit the underwater navigation. We

75

76

are planning to extend this work by incorporating the ocean currents while computing

the interesting path. Including ocean currents in path planning is challenging in the

presence of location uncertainty, but addressing the ocean current will improve the

robustness of the interesting path algorithm.

We also considered planning an interesting path that visits a sequence of way-

points. In this variant of interesting path problem, we want to find the shortest path

that goes through a given sequence of waypoints while maintaining the uncertainty

below the user defined constraint. Computing interesting path for a sequence of way-

points can be advantageous for glider missions, specially for the ones which take place

under the arctic ice. We believe that this can be addressed by running a dynamic

programming algorithm as an outer loop, which would select a sequence of points

for which our algorithm produces the best total path; implementing this is work in

progress. Note that this problem should not be confused with Traveling Salesman

Problem, where the sequence of waypoints is unknown and needs to be computed.

Another possible direction is to produce a smoother interesting path that accounts

for the dynamics of the AUV. For instance, a glider has a limited maneuverability

and can not make a sharp turn in the ocean. The interesting path algorithm can be

modified, so that the resulted path does not include such sharp turns and the glider

can easily follow that path.

Bibliography

[ACO04] Alberto Alvarez, Andrea Caiti, and Reiner Onken. Evolutionary

path planning for autonomous underwater vehicles in a variable

ocean. IEEE Journal of Oceanic Engineering, 29(2):418–429, 2004.

[Agh12] Mohammad Pourmahmood Aghababa. 3D path planning for under-

water vehicles using five evolutionary optimization algorithms avoid-

ing static and energetic obstacles. Applied Ocean Research, 38:48–62,

2012.

[AMGC02] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim

Clapp. A tutorial on particle filters for online nonlinear/non-

Gaussian Bayesian tracking. IEEE Transactions on Signal Process-

ing, 50(2):174–188, Feb 2002.

[AYK15] Mansour Ataei and Aghil Yousefi-Koma. Three-dimensional optimal

path planning for waypoint guidance of an autonomous underwater

vehicle. Robotics and Autonomous Systems, 67:23–32, 2015.

[Ber93] Oddbjørn Bergem. Bathymetric navigation of autonomous underwa-

ter vehicle using a multibeam sonar and a kalman filter with relative

measurement covariance matrices. PhD thesis, University of Trond-

heim, Trondheim, Norway, 1993.

77

78

[BLL92] Jerome Barraquand, Bruno Langlois, and J-C Latombe. Numerical

potential field techniques for robot path planning. IEEE Transac-

tions on Systems, Man, and Cybernetics, 22(2):224–241, 1992.

[BTAH02] John S Bellingham, Michael Tillerson, Mehdi Alighanbari, and

Jonathan P How. Cooperative path planning for multiple UAVs

in dynamic and uncertain environments. In Decision and Control,

2002, Proceedings of the 41st IEEE Conference on, volume 3, pages

2816–2822. IEEE, 2002.

[CB15] Brian Claus and Ralf Bachmayer. Terrain-aided Navigation for an

Underwater Glider. Journal of Field Robotics, 32(7):935–951, oct

2015.

[cF05] c©Freezingmariner. (https://commons.wikimedia.org/wiki/file:

Ru02_flying_in_sargasso_sea.jpg) CC BY-SA 3.0, 2005.

[CFLC10] Chi-Tsun Cheng, Kia Fallahi, Henry Leung, and K Tse Chi. An

AUVs path planner using genetic algorithms with a deterministic

crossover operator. In Robotics and Automation (ICRA), 2010 IEEE

International Conference on, pages 2995–3000. IEEE, 2010.

[CL06] Xin Chen and Yangmin Li. Smooth path planning of a mobile

robot using stochastic particle swarm optimization. In 2006 Inter-

national Conference on Mechatronics and Automation, pages 1722–

1727. IEEE, 2006.

[CMN+92] Kevin P Carroll, Stephen R McClaran, Eric L Nelson, David M Bar-

nett, Donald K Friesen, and GN William. AUV path planning: an

A* approach to path planning with consideration of variable vehicle

79

speeds and multiple, overlapping, time-dependent exclusion zones.

In Autonomous Underwater Vehicle Technology, 1992. AUV’92.,

Proceedings of the 1992 Symposium on, pages 79–84. IEEE, 1992.

[DCZM12] Yong Deng, Yuxin Chen, Yajuan Zhang, and Sankaran Mahadevan.

Fuzzy dijkstra algorithm for shortest path problem under uncertain

environment. Applied Soft Computing, 12(3):1231–1237, 2012.

[Dek05] Frederik Michel Dekking. A Modern Introduction to Probability and

Statistics: Understanding why and how. Springer Science & Business

Media, 2005.

[DGA00] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequen-

tial Monte Carlo sampling methods for Bayesian filtering. Statistics

and Computing, 10(3):197–208, 2000.

[Dij59] Edsger W Dijkstra. A note on two problems in connexion with

graphs. Numerische mathematik, 1(1):269–271, 1959.

[DNKF10] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*:

Any-angle path planning on grids. Journal of Artificial Intelligence

Research, 39:533–579, 2010.

[DR12] Shandor Dektor and Stephen Rock. Improving robustness of terrain-

relative navigation for AUVs in regions with flat terrain. In 2012

IEEE/OES Autonomous Underwater Vehicles (AUV), pages 1–7.

IEEE, sep 2012.

[FHL+03] V. Fox, J. Hightower, Lin Liao, D. Schulz, and G. Borriello.

Bayesian filtering for location estimation. IEEE Pervasive Com-

puting, 2(3):24–33, July 2003.

80

[FPCGHS+10] Enrique Fernández-Perdomo, Jorge Cabrera-Gámez, Daniel

Hernández-Sosa, Josep Isern-González, Antonio C Domínguez-

Brito, Alex Redondo, Josep Coca, Antonio G Ramos, Enrique Ál-

varez Fanjul, and Marcos García. Path planning for gliders using

Regional Ocean Models: Application of pinzón path planner with

the ESEOAT model and the RU27 trans-Atlantic flight data. In

OCEANS 2010 IEEE-Sydney, pages 1–10. IEEE, 2010.

[FPHSIG+11] Enrique Fernández-Perdomo, Daniel Hernández-Sosa, Josep Isern-

González, Jorge Cabrera-Gámez, Antonio C Dominguez-Brito, and

Víctor Prieto-Marañón. Single and multiple glider path planning

using an optimization-based approach. In OCEANS 2011 IEEE-

Spain, pages 1–10. IEEE, 2011.

[FS06a] Dave Ferguson and Anthony Stentz. Anytime RRTs. In 2006

IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, pages 5369–5375. IEEE, 2006.

[FS06b] Dave Ferguson and Anthony Stentz. Using interpolation to improve

path planning: The Field D* algorithm. Journal of Field Robotics,

23(2):79–101, 2006.

[GSS93] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to

nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings

F (Radar and Signal Processing), 140:107–113(6), April 1993.

[HDS15] Van T Huynh, Matthew Dunbabin, and Ryan N Smith. Predictive

motion planning for AUVs subject to strong time-varying currents

and forecasting uncertainties. In 2015 IEEE International Confer-

81

ence on Robotics and Automation (ICRA), pages 1144–1151. IEEE,

2015.

[HNR68] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis

for the heuristic determination of minimum cost paths. IEEE trans-

actions on Systems Science and Cybernetics, 4(2):100–107, 1968.

[HR84] Wayne E Hoover and MD Rockville. Algorithms for confidence cir-

cles and ellipses. Technical report, NOAA, 1984.

[IGHSFP+11] Josep Isern-González, Daniel Hernández-Sosa, Enrique Fernández-

Perdomo, Jorge Cabrera-Gámez, Antonio C Domínguez-Brito, and

Víctor Prieto-Marañón. Path planning for underwater gliders using

iterative optimization. In Robotics and Automation (ICRA), 2011

IEEE International Conference on, pages 1538–1543. IEEE, 2011.

[JSCP15] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco

Pavone. Fast marching tree: A fast marching sampling-based

method for optimal motion planning in many dimensions. The Inter-

national journal of robotics research, page 0278364915577958, 2015.

[KF11] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms

for optimal motion planning. The International Journal of Robotics

Research, 30(7):846–894, 2011.

[KL00] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient

approach to single-query path planning. In Robotics and Automa-

tion, 2000. Proceedings. ICRA’00. IEEE International Conference

on, volume 2, pages 995–1001. IEEE, 2000.

82

[KSBB07] Dov Kruger, Rustam Stolkin, Aaron Blum, and Joseph Briganti.

Optimal AUV path planning for extended missions in complex, fast-

flowing estuarine environments. In Proceedings 2007 IEEE Inter-

national Conference on Robotics and Automation, pages 4265–4270.

IEEE, 2007.

[KSLO96] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Over-

mars. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE transactions on Robotics and Automa-

tion, 12(4):566–580, 1996.

[LaV98] Steven M LaValle. Rapidly-exploring random trees: A new tool for

path planning. 1998.

[LD09] Liqiang Liu and Yuntao Dai. 3D space path planning of complex

environmental underwater vehicle. In Computational Sciences and

Optimization, 2009. CSO 2009. International Joint Conference on,

volume 2, pages 204–209. IEEE, 2009.

[LG12] Shuai Li and Yi Guo. Neural-network based AUV path planning

in estuary environments. In Intelligent Control and Automation

(WCICA), 2012 10th World Congress on, pages 3724–3730. IEEE,

2012.

[LK01] Steven M LaValle and James J Kuffner. Randomized kinody-

namic planning. The International Journal of Robotics Research,

20(5):378–400, 2001.

83

[MB12] James D Marble and Kostas E Bekris. Towards small asymptotically

near-optimal roadmaps. In Robotics and Automation (ICRA), 2012

IEEE International Conference on, pages 2557–2562. IEEE, 2012.

[NBK06] Evdokia Nikolova, Matthew Brand, and David R Karger. Optimal

route planning under uncertainty. In ICAPS, volume 6, pages 131–

141, 2006.

[NDKF07] Alex Nash, Kenny Daniel, Sven Koenig, and Ariel Felner. Theta*:

Any-Angle Path Planning on Grids. In Proceedings of the national

conference on artificial intelligence, volume 22, page 1177. Menlo

Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,

2007.

[New13] CBC News. www.cbc.ca/news/canada/newfoundland-

labrador/yellow-robot-lost-off-coast-of-newfoundland-1.1381444,

2013.

[OS88] Stanley Osher and James A Sethian. Fronts propagating with

curvature-dependent speed: algorithms based on Hamilton-Jacobi

formulations. Journal of computational physics, 79(1):12–49, 1988.

[PBHS13] Arvind A Pereira, Jonathan Binney, Geoffrey A Hollinger, and Gau-

rav S Sukhatme. Risk-aware path planning for autonomous underwa-

ter vehicles using predictive ocean models. Journal of Field Robotics,

30(5):741–762, 2013.

[PBJ+11] Arvind A Pereira, Jonathan Binney, Burton H Jones, Matthew Ra-

gan, and Gaurav S Sukhatme. Toward risk aware mission planning

84

for autonomous underwater vehicles. In 2011 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 3147–

3153. IEEE, 2011.

[PPP+07] Clment Petres, Yan Pailhas, Pedro Patron, Yvan Petillot, Jonathan

Evans, and David Lane. Path planning for autonomous underwater

vehicles. IEEE Transactions on Robotics, 23(2):331–341, 2007.

[PPPL05] Clément Pêtrès, Yan Pailhas, Yvan Petillot, and Dave Lane. Un-

derwater path planing using fast marching algorithms. In Europe

Oceans 2005, volume 2, pages 814–819. IEEE, 2005.

[RW09] Dushyant Rao and Stefan B Williams. Large-scale path planning for

underwater gliders in ocean currents. In Australasian Conference on

Robotics and Automation (ACRA), Sydney, 2009.

[SBL08] Chunxue Shi, Yingyong Bu, and Jianghui Liu. Mobile robot path

planning in three-dimensional environment based on ACO-PSO hy-

brid algorithm. In 2008 IEEE/ASME International Conference on

Advanced Intelligent Mechatronics, pages 252–256. IEEE, 2008.

[Sci17] Eberly College Of Science. https://onlinecourses.science.psu.edu/

stat414/node/147, 2017.

[Sim06] Dan Simon. The particle filter, pages 461–483. John Wiley & Sons,

Inc., 2006.

[Sou11] Michael Soulignac. Feasible and optimal path planning in strong

current fields. IEEE Transactions on Robotics, 27(1):89–98, 2011.

85

[SR94] Joao Sequeira and Maria Isabel Ribeiro. A two level approach for

underwater path planning. In OCEANS’94.’Oceans Engineering for

Today’s Technology and Tomorrow’s Preservation.’Proceedings, vol-

ume 2, pages II–87. IEEE, 1994.

[SS09] Gabor Szucs and Gyula Sallai. Route planning with uncertain infor-

mation using dempster-shafer theory. In Management and Service

Science, 2009. MASS’09. International Conference on, pages 1–4.

IEEE, 2009.

[SY97] Kazuo Sugihara and Junku Yuh. GA-based motion planning for un-

derwater robotic vehicles. In International Symposium on Unmanned

Untethered Submersible Technology, pages 406–415. Citeseer, 1997.

[TSC05] Chiew Seon Tan, Robert Sutton, and John Chudley. Quasi-random,

manoeuvre-based motion planning algorithm for autonomous under-

water vehicles. IFAC Proceedings Volumes, 38(1):103–108, 2005.

[VGGGGBM13] Alberto Valero-Gomez, Javier Victorio Gómez González, Luis San-

tiago Garrido Bullón, and Luis Moreno. The path to efficiency: fast

marching method for safer, more efficient mobile robot trajectories.

2013.

[War90] Charles W Warren. A technique for autonomous underwater vehicle

route planning. IEEE Journal of Oceanic Engineering, 15(3):199–

204, 1990.

[WLMHK16] Tong Wang, Olivier P Le Maître, Ibrahim Hoteit, and Omar M Knio.

Path planning in uncertain flow fields using ensemble method. Ocean

Dynamics, 66(10):1231–1251, 2016.

86

[YK15] Byunghyun Yoo and Jinwhan Kim. Path optimization for marine

vehicles in ocean currents using reinforcement learning. Journal of

Marine Science and Technology, pages 1–10, 2015.

[YZF+13] Gao Yun, Wei Zhiqiang, Gong Feixiang, Yin Bo, and Ji Xiaopeng.

Dynamic path planning for underwater vehicles based on modified

artificial potential field method. In Digital Manufacturing and Au-

tomation (ICDMA), 2013 Fourth International Conference on, pages

518–521. IEEE, 2013.

[ZKB07] Matt Zucker, James Kuffner, and Michael Branicky. Multipartite

RRTs for rapid replanning in dynamic environments. In Proceedings

2007 IEEE International Conference on Robotics and Automation,

pages 1603–1609. IEEE, 2007.

[ZSL+15] Zheng Zeng, Karl Sammut, Andrew Lammas, Fangpo He, and

Youhong Tang. Imperialist Competitive Algorithm for AUV Path

Planning in a Variable Ocean. Applied Artificial Intelligence,

29(4):402–420, 2015.

[ZSL+16] Zheng Zeng, Karl Sammut, Lian Lian, Fangpo He, Andrew Lammas,

and Youhong Tang. A comparison of optimization techniques for

AUV path planning in environments with ocean currents. Robotics

and Autonomous Systems, 82:61–72, 2016.

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Slocum underwater glider
	Localization
	Glider localization
	Problem statement
	Related work
	Path planning approaches in the literature
	Addressing the safety and uncertainty in path planning

	Thesis organization

	Background
	Probabilities and distribution
	Normal distribution

	Glider Navigation
	Dead Reckoning
	Terrain-Aided Navigation
	DEM: Digital Elevation Model
	Particle filter

	Glider TAN algorithm

	Rating
	Inspecting the contribution of depth variation
	Effectiveness of rating: a point vs an area

	Representing an area for rating
	Constructing the rating
	Implementation of the rating
	Rating computed on the Holyrood data
	Rating map: a visual representation of depth variation

	Comparing the result of rating using Holyrood data
	Comparing rating with estimation from a particle filter
	Comparing rating with the effectiveness of glider TAN

	Interesting Path Planning
	Shortest Path Problem
	Algorithm for shortest path problem
	A* Algorithm for path planning
	Heuristic admissibility

	Interesting Path Problem
	Algorithm for interesting path planning

	Interesting path algorithm
	Intermediate graph G'
	Computing path in G'
	Proof of optimality

	Implementation
	Interesting path between a pair of waypoints
	The impact of uncertainty constraint over interesting path

	Conclusion
	Summary
	Future work

	Bibliography

