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ABSTRACT 

Structural health monitoring (SHM) is a continuous nondestructive evaluation system 

used for both damage prognosis and diagnosis of civil structures. Acoustic emission (AE) 

technique is defined as a passive SHM method that enables the detection of any possible 

damage. AE technique has been exploited for condition assessment and long-term 

monitoring of civil infrastructure systems. AE sensors are sensitive to the micro-cracking 

stage of damage, therefore showed a great potential for early detection of different forms 

of deteriorations in reinforced concrete (RC) structures. The rate of deterioration in RC 

structures greatly increases due to reinforcing steel corrosion embedded in concrete. 

Corrosion results in both expansion and mass loss of steel, thus causing concrete cover 

cracking and delamination. Moreover, corrosion causes reduction of bond between 

concrete and steel, which reduces the overall strength of RC structures. The objectives of 

this research were to: a) utilize AE monitoring for early corrosion detection and concrete 

cover/steel damage quantification of small-scale RC specimens, b) evaluate and localize 

corrosion activity using distributed AE sensors in full-scale RC beams, c) attain an early 

detection of loss of bond between corroded steel and concrete at different corrosion 

levels, d) identify and assess bond degradation of corroded/un-corroded bars in both 

small- and full-scale RC beams, and e) develop relationships between the collected AE 

data and variable levels of corrosion, corrosion-induced cover crack growth, and bond 

deterioration in RC structures.  

Four extensive experimental investigations have been conducted both on small- and full-

scale RC elements to accomplish these aforementioned research objectives. AE 
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monitoring was implemented in these studies on RC elements including a total of 30 

prisms, 114 pull-out samples, and 10 beam anchorage specimens under accelerated 

corrosion, direct pull-out, and four-point load tests, respectively. The analysis of AE data 

obtained from these tests was performed and compared to the results of half-cell 

potentials (HCP) standard tests, visual detection of corrosion-induced cracks, crack width 

measurements, and overall bond behaviour of all tested pull-out samples/beams. The 

results showed that the analysis of AE signal parameters acquired during corrosion tests 

enabled the detection of both corrosion and cover crack onset earlier than HCP readings 

and prior to any visible cracking in both small- and full-scale RC beams, regardless of 

cover thickness or sensor location. Analyzing the AE signals attained from the pull-out 

tests permitted the characterization of two early stages of bond degradation (micro- and 

macro-cracking) in both corroded and un-corroded specimens at all values of bar 

diameter, corrosion level, cover thickness, and embedded length. The AE analysis also 

allowed an early identification of three stages of bond damage in full-scale corroded/un-

corroded RC beams namely; first crack, initial slip, and anchorage cracking, before their 

visual observation, irrespective of corrosion level, embedded length, or sensor location. 

The results of AE intensity analysis on AE signal strength data were exploited to develop 

damage classification charts to assess the extent of corrosion damage as well as to 

categorize different stages of bond deterioration in corroded/un-corroded small- and full-

scale RC samples. 
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1. Introduction 

1.1 Background and Research Motivation  

 

The majority of bridges, tunnels, dams, parking garages, oil platforms, and other 

components of civil infrastructure are made of reinforced concrete (RC). RC structures 

exposed to extreme environments are deteriorating at an alarming rate due to concrete 

durability problems. Corrosion of embedded reinforcing steel is the most critical factor 

affecting the durability of RC structures (Auyeung et al., 2000; ACI Committee 222, 

2001; Fang et al., 2006; Gjørv, 2009; Elfergani et al., 2011; Talakokula and Bhalla, 

2015). Concrete is naturally alkaline, which is significant because the alkaline nature of 

concrete provides embedded steel with corrosion protection. Unfortunately, chlorides 

from deicing salts, groundwater, or seawater reduce the concrete alkalinity after 

penetrating the concrete cover and reaching the reinforcing steel. Corrosion starts once 

the percentage of chloride around the steel bar exceeds the threshold needed for corrosion 

initiation. After corrosion initiation, corrosion progressively propagates through the 

reinforcing steel causing accumulation of rust products. This accumulation of rust 

products eventually leads to expansion of steel bars, cracking, and delamination of the 

concrete cover (Martin-Peréz et al., 1998; Auyeung et al., 2000; Hooton et al., 2002; 

Otieno et al., 2010; Kobayashi and Banthia, 2011). Several experimental and numerical 

studies have indicated that corrosion of reinforcing steel significantly reduces the bond 

strength of reinforced concrete structures. Reinforcement corrosion contributes to both 

the reduction of steel cross section and loss of its bond to surrounding concrete, thus 

minimizing the overall strength and serviceability of RC structures (Auyeung et al., 2000; 
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ACI Committee 222, 2001; Fang et al., 2006). Despite the design of concrete structures to 

ensure safe transfer of forces between steel and concrete, the existence of corrosion may 

weaken their bond and eventually cause sudden bond failures (ACI Committee 408, 

2003). 

Different nondestructive testing (NDT) techniques are successfully applied to identify and 

evaluate potential deterioration in RC structures (Maierhofer et al., 2010; Di Benedetti et 

al., 2014; Zaki et al., 2015). However, most of these methods are intrusive and require 

regular site visits for efficient condition assessment. Structural Health Monitoring (SHM) 

involves the continuous nondestructive evaluation method that allows both damage 

prognosis and diagnosis of concrete structures. For instance, SHM system for damage 

prognosis employs sensing technology to record, analyze, localize, and predict the 

deformation, cracking, and other types of damage of the monitored structure (Mufti et al., 

2007; Farhidzadeh et al., 2012). SHM eliminates the need for routine site visits for 

evaluation and inspection of major civil structures and provides an early warning for any 

potential damage. The SHM system is comprised of embedded or attached sensors, a data 

acquisition or signal processing system, and other electronics that periodically obtain data 

from the structure. These sensors can provide quantitative data about the overall health of 

structures including strains, deformations, corrosion, fracture, and cracks. Examples of 

monitored structures include bridges, tunnels, dams, ships, oil platforms, and pipelines 

(Mufti et al., 2007; Farhidzadeh et al., 2012).  

Acoustic Emission (AE) technique may be defined as a passive SHM method that allows 

the identification and localization of potential damage in civil structures. AE sensors are 

sensitive to the micro-cracking stage of damage, which enables the early detection of 
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different deterioration mechanisms in concrete structures in service (for example: Ohtsu, 

1996; Ohtsu et al., 2002; Grosse et al., 2003; Ziehl et al., 2008; Nair and Cai, 2010; 

Carpinteri et al., 2011; Salamone et al., 2012; Mpalaskas et al., 2014; Abdelrahman et al., 

2015). Micro-cracks resulting from any source of damage in RC structures eventually 

cause a release of strain energy, thus initiating elastic waves that can be collected by AE 

sensors. These sensors can be incorporated in SHM systems to capture any AE signal 

emitted from any form of stress, due to crack growth, and/or from other sources in a 

structure (Grosse et al., 2003; Nair and Cai, 2010). AE sensors can record a variety of 

signal parameters from different AE events when attached to the structure’s surface or 

embedded inside. Owing to the limited research involving AE monitoring of RC 

structures, further research is needed to optimize the application of AE sensors for 

corrosion monitoring and bond damage detection/assessment, while considering the 

effects of crack growth created by expansions of reinforcing steel as corrosion progresses. 

The objective of this study is to apply the AE technique for early detection and evaluation 

of the extent of damage in RC structures under corrosion attack. 

1.2 Research Objectives and Significance 

 

Although the literature contains AE studies dealing with RC structures, there are no 

available relationships between the degree of degradation caused by reinforcement 

corrosion and AE parameters. Further studies are needed to investigate the feasibility of 

applying AE technique for monitoring severe corrosion progression taking into account 

the influences of cover thickness, sensor location, and specimen size on AE parameters. 

Research is also required to apply the AE intensity analysis as well as to examine the 
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feasibility of using the b-value analysis to quantify cover crack growth in RC structures 

considering the variations in corrosion level, cover thickness, sensors density, and 

specimen size. Meanwhile, limited studies investigated the application of AE monitoring 

for the concrete-steel bond of RC structures. The available reported literature also lacks 

information about AE monitoring of bond deterioration in existing RC structures prone to 

reinforcing steel corrosion. 

The research project presented in this dissertation intended to use the AE data collected 

from a continuous SHM system to detect the early corrosion activity and to correlate 

these data to the degree of degradation (in terms of percentage of steel mass loss or crack 

width) due to corrosion. This research also aimed to implement the AE intensity analysis 

of signal strength for the identification of early stages of concrete-steel bond degradation 

and quantification of bond deterioration in corroded/un-corroded RC structures. The 

project also involved the development of damage classification charts that relate the 

extent of corrosion damage (in terms of steel mass loss, cover crack growth, and different 

stages of concrete-steel bond) to the AE parameters. Ultimately, the purpose of this 

research was to develop an effective AE based SHM system capable of maintaining the 

safety of new/existing RC structures. 

1.3 Scope of Research 

 

This research was conducted using a comprehensive experimental program consisted of 

four successive stages of tests on both small- and full-scale RC elements. The first and 

second stages of this research involved monitoring corrosion progression in RC samples 

via AE sensors. A total of 30 small-scale prism samples with various concrete cover 
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thicknesses and corrosion levels were examined in the first stage by means of accelerated 

corrosion tests. The analysis of AE data obtained from this preliminary stage was 

performed to achieve an early detection of corrosion activity in these samples before any 

visible damage. After corrosion propagation, the AE monitoring was continued in order to 

correlate the rate of cover crack growth resulting from corrosion to the collected AE 

signals. Accordingly, the second stage was implemented to verify the applicability of the 

results of the first stage to actual concrete structures. Five full-scale RC beams with two 

configurations were tested in the second stage under similar accelerated corrosion 

procedures to reach varied degrees of corrosion. The beams were monitored using 

distributed AE sensors to study the influence of sensor location on the ability of AE 

analysis to capture early corrosion occurrence as well as cover crack growth. 

The third and fourth stages of this experimental setup were focused on the evaluation of 

bond behaviour of corroded/un-corroded small- and full-scale RC specimens. The 

investigation of bond behaviour in these stages was done to quantify the expected impact 

of corrosion of steel on the bond integrity between concrete and steel. The third stage 

investigated the feasibility of AE monitoring for identifying the successive stages of bond 

deterioration between concrete and steel. A series of pull-out tests on 114 small-scale 

prism samples were completed in the third stage. The effects of changing the bar 

diameter, corrosion level, cover thickness, and embedded length on different AE signal 

parameters were considered in the third stage. The AE results from this stage were 

analyzed so as to achieve an early indication of bond damage and characterize the extent 

of bond degradation in small-scale samples. Eventually, ten full-scale RC beams were 

used in the fourth stage to confirm the effectiveness of the AE monitoring in sensing bond 
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deterioration of concrete structures. This last stage involved testing corroded/un-corroded 

RC beams with various bonded lengths, corrosion levels, and sensor locations under four-

point load setup. These beams were continuously monitored throughout the bond tests by 

multiple sensors to evaluate the effect of sensor position on the detection of bond damage. 

Following this extensive experimental program, the acquired AE data were undergone an 

intensity analysis of the AE signal strength from all tests. This analysis was utilized to 

generate additional AE parameters that can be correlated to all degrees of damage of the 

tested RC elements. The outcomes from this analysis were also exploited to develop 

damage classification charts for the purpose of quantification of damage resulting from 

corrosion of reinforcing steel and loss of bond between concrete and steel in concrete 

structures. 

1.4 Thesis Outline 

 

This thesis consists of eight chapters described as follows: 

Chapter 1 demonstrates the background, motivation, objectives, significance, and scope 

of research conducted in this thesis. 

Chapter 2 includes a review of the literature pertaining to the areas of SHM, corrosion of 

reinforcing steel, AE monitoring, and bond of reinforcement to concrete in RC structures. 

Chapter 3 contains the detailed experimental program including the materials, test 

matrix, and methodology of the four stages of the experimental testing program. 

Chapter 4 shows the discussions of the obtained results from the first stage of the 

experimental program regarding the corrosion detection and crack growth monitoring in 

small-scale RC samples. 
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Chapter 5 highlights the results and discussions of the findings of the second stage of the 

experimental testing about the corrosion detection and crack growth monitoring in full-

scale RC beams. 

Chapter 6 discusses the results of the third stage of tests dealing with the evaluation of 

concrete-steel bond behaviour of small-scale corroded/un-corroded RC samples. 

Chapter 7 involves the results and discussions of the final stage of the experimental 

research concerning the evaluation of concrete-steel bond behaviour of full-scale 

corroded/un-corroded RC beams. 

Chapter 8 presents the conclusions and recommendations from the completed research 

project.  
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2. Literature Review 

2.1 Structural Health Monitoring (SHM) of Concrete Structures 

Structural health monitoring (SHM) systems can be utilized to achieve real time non-

destructive evaluation of concrete structures (Mufti et al., 2007; Lovejoy, 2008; Boller et 

al., 2009; Farhidzadeh et al., 2012). SHM systems have the advantage of real-time 

monitoring of civil structures, which prevents unforeseen structural failures (Staszewski 

et al., 2004; Giurgiutiu, 2008; Farhidzadeh et al., 2012).  SHM of concrete structures has 

been implemented for the purpose of damage detection, quantification, and assessment of 

their remaining structural capacity. Examples of SHM sensors include; acoustic emission, 

chemical, electrochemical, and fiber optic sensors; guided waves; and strain 

gauges/displacement transducers. SHM systems were also employed for the aim of 

corrosion monitoring and detection of loss of bond in concrete structures, as explained in 

the following sections. 

2.1.1 Corrosion Monitoring 

A number of investigations applied SHM systems for the purpose of corrosion monitoring 

in RC structures. These studies developed different types of sensors and techniques 

capable of monitoring early stages of reinforcement corrosion. For instance, fibre optic 

strain sensors and electrical resistance gauges were utilized for monitoring the 

accumulation of corrosion by-products (Grattan et al., 2009). Nevertheless, strain based 

corrosion monitoring can only predict corrosion activity after corrosion starts, thus 

yielding higher costs of rehabilitation and retrofit. Another SHM technique for corrosion 
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detection exploited chemical sensors to measure chloride contents of concrete near the 

reinforcement surface (Lam et al., 2009). The results indicated the effectiveness and 

sensitivity of the proposed chloride sensors; however, there is a lack of information about 

the monitoring performance of such sensors when embedded into concrete. Recently, a 

novel nondestructive testing technique based on guided waves enabled the evaluation of 

the degree of rebar corrosion in aging concrete structures (Miller et al., 2012). However, 

this method cannot continuously predict the condition of bond between concrete and 

corroded steel. 

2.1.2 Detection of Loss of Bond between Concrete and Reinforcement 

One important application of SHM systems is the detection of bond deterioration between 

steel bars and concrete. A number of experimental studies aimed at the detection of 

delamination at the concrete-steel interface as well as internal defects in both corroded 

and un-corroded RC elements by means of guided waves (Jung et al., 2002; Na and 

Kundu, 2002; 2003; Na et al., 2002; 2003). More recently, different techniques have also 

been utilized to monitor de-bonding and/or bar slip in concrete structures (for instance: 

Wu and Chang 2006a; 2006b; Zhu et al., 2013; Ho et al., 2015; Wu et al., 2015). For 

example, Wu and Chang (2006a; 2006b) and Zhu et al. (2013) detected the de-bond 

damage between steel and concrete in beams/slabs by means of embedded piezoelectric 

sensors and actuators. The results of their investigation were then used to develop three 

indices to evaluate the bond loss. This technique, however, is considered an active SHM 

system that requires an external source for generating signals to be detected by sensors. In 
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addition, this method is not suitable for application in existing structures as it is based on 

embedded sensors (Zhu et al., 2013).  

Another technique deployed fiber Bragg grating-based strain sensors to characterize bond 

slip in prestressed concrete bridge girders (Ho et al., 2015). This technique evaluated the 

local strain developed at different stages of bond slip until failure. On the other hand, an 

active ultrasonic guided wave-based system was developed for bond integrity assessment 

in reinforced concrete structures under pull-out tests (Wu et al., 2015). This active SHM 

system consisted of piezoelectric actuators and sensors mounted on the embedded steel 

bar in concrete. This system allowed for the early detection of bond splitting failure in 

reinforced concrete structures. A similar system, based on ultrasonic wave propagation 

using piezoelectric transducers attached to reinforced concrete samples, was developed 

(Rucka and Wilde, 2013). This technique was successful in detecting micro-cracking and 

moment before the onset of splitting cracks. However, this technique was not suitable for 

assessing the size of crack zones in their tested specimens. Thus, further research is 

needed to quantify the damage resulting from splitting cracks in reinforced concrete. An 

active sensing approach was recently developed using smart aggregates to detect bond 

slip between steel-plate and concrete (Qin et al., 2015). 

2.2 Acoustic Emission (AE) Monitoring Technique 

2.2.1 Overview of AE Signal Parameters  

Different AE signal parameters have been considered for damage prognosis in concrete 

structures. These parameters include energy, amplitude, rise time, duration, and counts, as 

shown in Figure 2.1. In addition, other parameters of AE events such as signal strength 
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and number of detected hits can be used to describe the type of damage. Complete 

definitions of the AE signal parameters used in the nondestructive testing industry can be 

found elsewhere (ASTM E1316, 2014). Each parameter (or combination of parameters) 

can be assessed to identify and evaluate the level of damage occurring at the source of the 

recorded signal. The selection of the parameters to be monitored depends on the method 

of AE data analysis based on the type of application. One of the most important AE 

parameters is signal strength, which can be described as the measured area under the 

amplitude-time envelope, or the area below the envelope of the linear voltage time signal. 

Signal strength has units that are proportional to V-s (a constant specified by the AE 

instrument manufacturer) and usually includes the absolute area of both the positive and 

negative amplitude-time envelopes (ASTM E1316, 2014; ElBatanouny et al., 2014). 
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Figure 2.1 Typical AE signal parameters (Mistras Group, 2007) 
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2.2.2 Applications of AE Monitoring in Concrete Structures 

AE monitoring has the advantage of continuous acquisition of signals released due to 

local damage in materials under stress (Ohtsu et al., 2002; Grosse et al., 2003; Ziehl, 

2008; Ziehl et al., 2008; Benavent-Climent et al., 2009; Saboonchi and Ozevin, 2013). 

This technique was adopted in the literature and allowed the detection and identification 

of a wide variety of deteriorations in reinforced and prestressed concrete and masonry 

structures. Examples of these AE applications include: characterizing different sources of 

damage of RC beams tested under flexural loading (Yoon et al., 2000); evaluation of 

steel/CFRP bond (Matta et al., 2006); testing the flexural failure behaviour of RC beams 

with rebar corrosion (Okude et al., 2009); damage evaluation of RC exterior beam-

column under cyclic loading (Benavent-Climent et al., 2009); structural assessment of 

concrete reinforced with chemically bonded anchors (Rizzo et al., 2010); damage 

assessment of RC slabs subjected to seismic loads (Benavent-Climent et al., 2011); 

detection of initial yield and failure of post-tensioned concrete beams (Salamone et al., 

2012); evaluation of damage in RC bridge beams (Sagar et al., 2012); damage 

classification of RC beams (Aldahdooh and Bunnori, 2013; Shahidan et al., 2013); 

characterization of fracture mechanisms in concrete (Puri and Weiss, 2006; Mpalaskas et 

al., 2014); crack initiation detection in RC beams (Goszczyn´ska, 2014); identification of 

de-bonding in FRP-strengthened masonry (Ghiassi et al., 2014); corrosion damage 

detection of prestressed strands under tensile force (Ercolino et al., 2015); evaluation of 

strengthened reinforced concrete beams (Ridge and Ziehl, 2006); monitoring of alkali–

silica reaction in concrete (Abdelrahman et al., 2015); in-situ evaluation of RC slabs and 



 

13 

 

prestressed beams (Ziehl et al., 2008; Abdelrahman et al., 2014; Di Benedetti and Nanni, 

2014); and damage identification of CFRP-confined circular concrete-filled steel tubular 

columns (Li et al., 2015). The application of AE technology has also been extended to 

monitor corrosion in RC structures. Researchers tested the feasibility of using attached 

AE sensors to detect corrosion initiation in small-scale reinforced concrete samples 

(Ohtsu and Tomoda, 2008; Di Benedetti et al., 2013; 2014). The results from their 

experimental investigations showed that different analyses of AE parameters can be 

performed to detect the onset of corrosion. However, more tests are needed to validate the 

findings reported in their research and to develop relationships between the level of 

damage and AE signal parameters. More recently, AE-based SHM has been employed to 

identify the onset of corrosion in prestressed concrete bridge girders (ElBatanouny et al., 

2014). The practical application of AE technique in SHM of RC bridges has also been 

investigated to assess the condition of in-service highway bridge structures (Lovejoy, 

2008; Schumacher et al, 2011) and assess the residual strength of decommissioned 

concrete bridge beams with corroded pretensioned reinforcement (Rogers et al., 2012). 

The application of AE monitoring has also been extended to monitor real concrete and 

masonry buildings and multi-story reinforced concrete structures (Carpinteri et al., 2007; 

2011). 

2.2.3 Methods of AE Signal Analysis in Concrete Structures 

Researchers have employed the raw AE signal parameters collected from continuous 

SHM systems to detect, quantify, and localize variable types of structural damage. For 

instance, the average frequency (count/time) and RA value (rise time/maximum 
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amplitude) have been applied to classify different forms of cracks in concrete structures 

(Ohtsu, 2010). This analysis proves the ability of AE analysis to differentiate between 

tensile or shear cracks resulting from external loads on structures. On the other hand, the 

history of cumulative signal strength (CSS) versus elapsed time in accelerated corrosion 

test was applied to detect the corrosion in prestressed concrete structures (ElBatanouny et 

al., 2014). CSS was also used to indicate the AE activity in RC slabs under in-situ loads 

(Ziehl et al., 2008). Alternatively, the cumulative number of hits was exploited to identify 

corrosion activity in reinforced concrete under accelerated corrosion tests (Li et al., 1998; 

Ohtsu and Tomoda, 2008).  

Another analysis, called b-value analysis, was applied to represent the size distribution of 

AE sources and correlate it to the corrosion activity in reinforced concrete (Ohtsu and 

Tomoda, 2008). This analysis is a well-established method of analysis of AE data, which 

can assess the development of cracking in concrete structures. This analysis is based on 

seismic magnitude-frequency equations (Butt, 1996) and has been implemented on AE 

data collected from monitoring concrete structures (Colombo et al., 2003; Kurz et al., 

2006; Sagar and Prasad, 2013; ElBatanouny et al., 2014; Li et al., 2015; Behnia et al., 

2016). Yet, limited information is available in the literature about the utilization of the b-

value analysis for the evaluation of corrosion-induced cracking in RC structures. 

Further research was conducted to quantify damage in concrete structures using AE data 

by performing an intensity analysis (Degala et al., 2009; Mangual et al., 2013; Nair et al., 

2014), which was first applied in fibre-reinforced polymer (FRP) vessels. In this analysis, 

two parameters (historic index and severity) are calculated based on signal strength values 

and are employed to assess the level of damage occurring in structures. This analysis was 
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further employed for the assessment of damage in prestressed concrete beams subjected 

to cyclic loading, corrosion detection of prestressing strands in full-scale beams and piles, 

and in situ evaluation of reinforced concrete slabs (Di Benedetti et al., 2014; ElBatanouny 

et al., 2014; Vélez et al., 2015). Eventually, the results from the intensity analysis were 

utilized to develop intensity classification charts to evaluate corrosion levels and measure 

the reduction in capacity of prestressed concrete elements. However, it is suggested that 

more research is required to validate and confirm the classification areas of these intensity 

classification charts. In addition, similar intensity classification charts are needed for the 

assessment of RC structures subjected to reinforcing steel corrosion. 

2.3 AE Based Corrosion Monitoring of Reinforcing Steel in Concrete Structures 

As previously mentioned, AE technique has been applied to monitor corrosion in RC 

structures (Li et al., 1998; Idrissi and Limam, 2003; Assouli et al., 2005; Ing et al., 2005; 

Ohtsu et al., 2011; Di Benedetti et al., 2013; Kawasaki et al., 2013; Patil et al., 2014). 

These experimental investigations have examined the feasibility of using attached AE 

sensors to detect corrosion of steel in small-scale RC samples. The outcomes from these 

experimental studies showed that different AE signal parameters can be analyzed to 

achieve early corrosion detection when compared to traditional nondestructive testing 

methods. The application of AE has also been extended to detecting corrosion of 

prestressed concrete small-scale samples (Elfergani et al., 2011; Mangual et al., 2013a; 

2013b). The results obtained from these investigations showed the possibility of using AE 

signal parameters to characterize and quantify the extent of damage in prestressed 

concrete structures.  
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Fewer studies focused on utilizing AE monitoring of corrosion in full-scale concrete 

structures. Lu et al. (2013) exploited the AE monitoring using embedded cement-based 

piezoelectric sensors to assess the condition of RC beams under the coupled effect of 

corrosion and service loading. Nevertheless, this approach is not applicable in existing 

concrete structures owing to the utilization of embedded sensors. More recently, 

ElBatanouny et al. (2014) achieved an early detection of corrosion in both cracked/un-

cracked prestressed concrete girders by means of AE monitoring. Likewise, Vélez et al. 

(2015) applied AE monitoring to obtain early corrosion recognition in full-scale portions 

of prestressed concrete piles exposed to accelerated corrosion. Most of these studies 

utilized AE intensity analysis for both damage identification and quantification of 

prestressed concrete structures due to corrosion (Mangual et al., 2013a; 2013b; 

ElBatanouny et al., 2014; Vélez et al., 2015). Nonetheless, further AE intensity analysis is 

required to quantify the extent of severe corrosion stages/cover crack growth in concrete 

structures considering the effects of corrosion level and cover thickness. The literature 

also lacks information regarding corrosion monitoring of large-size RC beams using AE 

technique. Moreover, no available quantitative data about AE monitoring of corrosion 

damage progression in existing RC structures exposed to severe levels of corrosion 

(following corrosion onset). 

2.4 Concrete-Steel Bond Behaviour in Concrete Structures 

Reinforced concrete (RC) structures are designed and constructed to ensure that a perfect 

bond between concrete and steel is maintained throughout its service lifetime. This bond 

allows the transfer of longitudinal forces from steel to concrete and ensures the composite 
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action within RC elements (ACI Committee 408, 2003; Nilson et al., 2010). The 

concrete-steel bond strength depends on a number of parameters including material and 

structural factors. In addition, different requirements are specified in building codes in 

order to design concrete structures that avoid bond failures. However, the performance of 

this bond may be affected when RC structures are exposed to excessive repeated loading 

and/or severe environmental conditions. For instance, corrosion of embedded 

reinforcement can minimize the bond strength of RC structures, thus affecting 

serviceability and overall strength (Auyeung et al., 2000; ACI Committee 222, 2001; 

Fang et al., 2006). As a result, continuous monitoring of the integrity of the steel-to-

concrete bond is essential to prevent any sudden failure of concrete structures. 

Researchers mostly used the pull-out test specimens for evaluating bond behaviour of 

concrete structures due to the simplicity of fabricating those test specimens (ACI 

Committee 408, 2003; Gallego et al., 2015; Park et al. 2016). On the other hand, flexural 

bond tests similar to those performed by Ju and Oh (2015) can be adopted, which are 

considered to be more representative to the stress states of RC structures subjected to 

flexure (ACI Committee 408, 2003). Meanwhile, anchorage beam specimens are 

considered to represent realistic bond behaviour of full-size reinforced concrete structures 

(ACI Committee 408, 2003; Rilem-Fip-Ceb, 1973; Soudki et al., 2007). 

2.5 AE Monitoring of Concrete-Steel Bond in Concrete Structures 

It has been confirmed that AE monitoring is a strong tool to detect micro-cracking of 

materials and structures under stresses (Pollock, 1986; Fowler et al., 1989). Early stages 

of bond loss between concrete and steel are known to be associated with the initiation of 
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micro-cracking at the concrete-steel interface (CEB-FIP, 2000; Gallego et al., 2015). The 

initiation of micro-cracks and crack growth are both considered to be among the possible 

sources of emission of AE signals (Fowler et al., 1989; Fowler et al., 1998). For this 

reason, Iwaki et al. (2003) and Gallego et al. (2015) exploited this capability of AE 

monitoring to characterize the bond behaviour of RC samples cast with different concrete 

and reinforcement materials under pull-out tests. Iwaki et al. (2003) applied AE 

monitoring in reinforced concrete under pull-out tests to investigate the influence of 

concrete compaction on the bond behaviour of reinforced concrete elements. The results 

indicated the feasibility of analyzing AE activity (in terms of cumulative number of hits) 

to detect the locations of insufficient bond and slippage of steel bars. More recently, the 

bond behaviour of black and galvanized deformed steel in concrete subjected to pull-out 

tests was evaluated using AE monitoring (Gallego et al., 2015). The analysis of AE 

activities (cumulative number of hits) reflected different stages of bond degradation and 

differentiated between the behaviour of different types of steel (Gallego et al., 2015). It 

can be concluded that the effects of other factors, including bar diameter, bar 

confinement, cover thickness, and development length on different AE signal parameters, 

have not yet been investigated. Meanwhile, there is a lack of research dealing with the 

utilization of AE monitoring for the evaluation of bond behaviour of corroded 

reinforcement to concrete. Moreover, the implementation of AE monitoring for the 

evaluation of bond behaviour in full-scale RC structures has not yet been examined. 

It conclusion, this literature review indicated that AE monitoring is a useful tool for both 

damage detection and quantification in concrete structures under different damage 

mechanisms. However, some gaps in knowledge of AE technique still exist especially in 
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using AE monitoring for corrosion damage quantification and bond damage 

detection/evaluation. The work presented in this thesis aimed at addressing these gaps in 

the AE knowledge to eventually use AE monitoring as a feasible SHM tool.     
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3. Experimental Program 

3.1 Introduction 

 

The experimental program conducted in this research is described in detail in this chapter. 

This experimental program involved four consecutive stages of experiments, as will be 

explained in the following sections. 

3.2 Materials and Concrete Mixture Properties 

In all experimental investigations, small- and full-scale RC samples were constructed and 

tested. All samples were constructed using one normal concrete mixture and ordinary 

deformed reinforcing steel bars. This concrete mixture contained type GU Canadian 

Portland cement, similar to ASTM Type I (ASTM, 2012a), with a specific gravity of 

3.15. Natural sand and 10 mm maximum size stone were incorporated into the mixture as 

fine and coarse aggregates, respectively. Both coarse and fine aggregates had a specific 

gravity of 2.60 and water absorption of 1%. The 28-day compressive strength of concrete 

was obtained by testing six cylindrical samples as per ASTM C39 (ASTM, 2012b). 

Moreover, the splitting tensile strength of six additional cylindrical specimens was 

determined based on ASTM C496 (ASTM, 2011a), as seen in Table 3.1. Carbon steel 

bars with three variable diameters (10, 20, and 35 mm) were used in the tested samples. 

All reinforcing steel bars have an average yield stress of 480 MPa and tensile strength of 

725 MPa. The mixture properties and 28-day compressive/tensile strength results of the 

concrete mixture are shown in Table 3.1. 
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Table 3.1 Concrete mixture proportions and 28-day compressive/tensile strength 

Cement 

(kg/m
3
) 

10 mm stone 

(kg/m
3
) 

Sand 

(kg/m
3
) 

Water 

(kg/m
3
) 

28-day compressive 

strength (MPa) 

28-day splitting tensile 

strength (MPa) 

350 1168.27 778.84 140 fc = 36.93 fct = 3.79 

 

3.3 Experimental Study 1: Corrosion Detection and Crack Growth Monitoring 

Using AE Sensors in Small-Scale RC Samples 

In this study, 30 small-scale reinforced concrete prism samples were subjected to an 

accelerated corrosion test and the rate of corrosion was continuously monitored using AE 

sensors (Figure 3.1). The samples were exposed to corrosion using an impressed current 

accelerated corrosion test until reaching variable levels of damage. These different 

degrees of damage were estimated based on the theoretical mass loss of steel, including 

1%, 2%, 3%, 4%, and 5%. Two identical samples were tested at each degree of mass loss 

to confirm the repeatability of the test results. The selected levels of mass loss were 

presumed, based on reviewing the literature, to obtain the range of the critical corrosion 

degree that causes cover cracking in reinforced concrete structures. This literature review 

showed that a critical range of 0.8% to 5.6% of steel mass loss may induce cover cracking 

ranges between 10 mm and 50 mm (Oh et al., 2009; Otieno et al., 2010). The targeted 

values of the theoretical mass loss of steel in all tested samples were calculated by 

applying Faraday’s law (Equation 3.1). ܮ ݏݏܽܯ𝑜ݏݏ = 𝑡 .  𝑖 .  ெ𝑧 .  𝐹                                                  ( 3.1 )  

Where: ݐ = the time passed (s); 𝑖 = the current passed (Ampere); ܯ = atomic weight (for 

steel: 55.847 = ܯ g/mol); 𝑧 = ion charge (2 moles of electrons); and 𝐹 = Faraday’s 

constant (𝐹 = 96485 coulombs per mole (C/mol)). 
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3.3.1 Description of Test Specimens 

These prism samples were constructed with three different concrete covers (20, 30, 40 

mm) around one embedded steel bar at the centre of each prism. The dimensions of the 

prisms were as follows: 60 x 60 x 250 mm for the 20 mm cover, 80 x 80 x 250 mm for 

the 30 mm cover, and 100 x 100 x 250 mm for the 40 mm cover samples. The length of 

the steel rebar was varied: 210, 190, and 170 mm for 20, 30, and 40 mm cover samples, 

respectively, to keep a constant cover in all directions. On the other hand, the length of all 

samples was kept constant at 250 mm to facilitate the construction of multiple prisms 

using the same formwork. All samples were cured in water for a period of 28 days before 

the corrosion testing. The tested samples were designated according to the concrete cover 

(20, 30, 40 mm), percentage of steel mass loss (1%, 2%, 3%, 4%, and 5%), and replicate 

number (1, 2). For instance, the first replicate of the prism sample cast with concrete 

cover of 30 mm and exposed to 3% steel mass loss is identified as 30-3-1. 

3.3.2 Accelerated Corrosion Test Procedure 

All tested samples were subjected to an electrically accelerated corrosion test, as shown in 

Figure 3.1. A constant voltage (12 V) was applied to all tested samples during the test. 

The prism samples were partially submerged in a plastic container filled with a 5% NaCl 

water solution. The embedded steel bar in each sample was connected as an anode (+) in 

a direct current (DC) power supply, whereas a stainless steel mesh was placed underneath 

all samples to act as a cathode (–). The amount of the electric current passing in each 

sample was constantly monitored and recorded at one-minute intervals using a data-

acquisition system. Based on the recorded values of the electric current and passed time, 
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the predicted percentage of steel mass loss was calculated using Equation 3.1 until the 

target values were reached. The half-cell potential (HCP) difference between the 

embedded steel bar and a Cu/CuSO4 reference electrode (copper-copper sulfate reference 

cell electrode) was measured on a daily basis according to ASTM C876 standard test 

(ASTM, 1991) to determine the probability of corrosion activity. The location of the 

reference cell at the surface of the concrete was kept constant throughout all tests. The 

samples were also visually inspected on a daily basis to detect the concrete cover cracking 

and to measure the crack widths by means of a crack-width-measuring microscope. The 

test was ended for each sample after reaching the previously assumed degrees of steel 

mass loss (1 to 5%). The percentage of steel mass loss was verified at the end of the test 

by breaking the samples and weighing the steel bar to obtain the actual mass loss, as per 

ASTM G1 standard method (ASTM, 2011b). 
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(b)  

 

Figure 3.1 Accelerated corrosion test and AE monitoring setup: (a) schematic and 

(b) picture of typical experiment 

3.3.3 AE Monitoring Setup 

The acoustic emissions, resulting from the steel corrosion/cover crack growth in each 

sample during the accelerated corrosion test, were monitored using two piezoelectric AE 

sensors (Physical Acoustics, 2005) with integral preamplifier (R6I-AST). These sensors 

were selected due to their high sensitivity and low resonant frequency, which make them 

suitable for many applications, such as metal, FRP, and concrete structures in petroleum, 

refineries, chemical plants, and offshore platforms (Physical Acoustics, 2005). These 

sensors were utilized in some available studies from the literature dealing with corrosion 

of steel/prestressing tendons in concrete structures (Di Benedetti et al., 2013; Mangual et 

al., 2013a; 2013b; ElBatanouny et al., 2014; Vélez et al., 2015). These sensors were 
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mounted on each specimen on the top of the steel bar (Figure 3.1). The sensors were 

attached to the top of the specimen using an epoxy adhesive. It can be seen from Figure 

3.1 that the sensors were not exposed to direct contact with the chloride solution in the 

container. For field applications, it is therefore recommended to protect the sensors from 

different environmental exposures to obtain similar results. The reinforcing steel 

corrosion rate was continuously monitored for all tested samples using 4-channel AE data 

acquisition system and AEwin signal processing software (Mistras Group, 2007). An 

amplitude threshold value of 40 dB was used for the collected AE data. Any signal 

voltage exceeding this threshold value was recorded using the AE data acquisition system 

(Di Benedetti et al., 2013). Table 3.2 shows a summary of the specifications of the 

sensors along with the features and filters selected in the data acquisition hardware. 

Different AE signal parameters were selected to be collected during the test including 

amplitude, energy, counts, rise time, duration, signal strength, absolute energy, and 

frequency. In this study, only the results of signal strength are presented and subjected to 

further analysis. A similar procedure was successfully employed for corrosion monitoring 

in both reinforced and prestressed concrete structures (Di Benedetti et al., 2013; Mangual 

et al., 2013a; 2013b; ElBatanouny et al., 2014). 
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Table 3.2 AE sensors specifications and data acquisition system setup (Mistras 

Group, 2005; 2007) 

R6I-AST sensor specifications AE hardware setup 

Integral preamplifier 40 dB Threshold 40 dBAE 

Peak sensitivity, Ref V/(m/s) 117 dB Sample rate 1 MSPS 

Peak sensitivity, Ref V/μbar -23 dB Pre-trigger 256 μs 

Operating frequency range 40-100 kHz Length 1k points 

Resonant frequency, Ref V/(m/s) 55 kHz Preamp gain 40 dB 

Resonant frequency, Ref V/μbar 98 kHz Preamp voltage 28 

Directionality +/-1.5 dB Analog filter 1-50 kHz 

Temperature range -35 to 75ºC Digital filter 100-400 kHz 

Dimensions 29 mm 

diameter x 40 

mm height 

PDT 200 μs 

Case material Stainless 

steel 
HDT 800 μs 

Face material Ceramic HLT 1000 μs 

Weight 98 grams Maximum duration 1000 μs 

 

 

3.4 Experimental Study 2: Corrosion Detection and Crack Growth Monitoring 

Using AE Sensors in Full-Scale RC Beams 

The results obtained from the experimental study 1 proved the feasibility of AE 

monitoring technique to detect/assess corrosion damage and cover crack growth in small-

scale RC prism samples. The aim of this stage was to verify these results by testing full-

scale corroded RC beams, which can be more representative to actual concrete structures. 

3.4.1 Details of Corroded Beams 

Five RC full-scale beams were constructed with two configurations: 250 x 250 x 1500 

mm and 250 x 250 x 2440 mm were exposed to accelerated corrosion procedures to reach 

higher corrosion levels (5, 10, 20, and 30% of steel mass loss). These beams were also 
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used in bond testing in study 4, thus were designed to ensure bond failure. To promote 

bond failure, the anchorage lengths of all five beams were chosen as 200 mm to be less 

than the minimum development length as specified by the Canadian Standard Association 

(CSA) standard (Soudki et al., 2007; CSA, 2014). Each beam specimen was reinforced 

with two 20M steel bars as main reinforcement with 10M stirrups with the configuration 

presented in Figure 3.2. Two additional 10M bars were provided to hold the stirrups in 

each beam sample. The main reinforcement rebar were partially bonded in the anchorage 

zones by adding PVC pipe (bond breaker) in the middle part of each beam. The main 

reinforcement included two protruding parts to permit the measurement of the free end 

bar slip at the two beam ends (Figure 3.2). The dimensions of beams B1, B2, B3, and B4 

were identical (250 x 250 x 1500 mm) and were corroded to 5, 10, 20, and 30% of steel 

mass lass, respectively. Meanwhile, B5 was cast the same cross section (250 x 250 mm), 

but with an extended length (2440 mm) and were corroded to 30% of steel mass lass. 

Concrete was poured in wooden formwork with the main reinforcing bars are horizontally 

placed at the bottom of the formwork. The compaction of all beams was done by means 

of mechanical vibration. The beams specimens were de-molded after 24 hours of casting 

and then water-cured for a period of 28 days before corrosion exposure. 

3.4.2 Accelerated Corrosion Test Setup 

In this investigation, an electrically accelerated corrosion test was implemented so as to 

induce severe corrosion levels in a reasonable time frame. The test was performed using a 

constant electrical current (0.1 A) and varied corrosion period obtained by Faraday’s law 

(Equation 3.1) to reach variable degrees of steel mass loss. The beams were subjected to 
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corrosion at only one side along the bonded length (200 mm) of the two 20M main steel 

bars (Figure 3.2) to represent localized corrosion condition. As being upside down, one 

end of each beam was exposed to a 5% NaCl water solution by means of a hard foam tank 

attached to the top of the beam surface along the bonded length. Both the 20M steel bars 

in each beam were connected to two DC power supplies acting as anodes (+). In addition, 

a stainless steel mesh was positioned at the bottom of the foam tank to serve as cathodes 

(–). Throughout the corrosion tests, the half-cell potential (HCP) test was daily executed 

and visual inspection of corrosion cracking was daily monitored. The HCP test was 

performed in accordance with the ASTM standard test method (ASTM, 1999). As soon as 

the corrosion cracks were identified, the crack width measurements were also daily 

obtained by means of a crack measuring microscope. The final corrosion crack widths 

were recorded at the end of the corrosion tests for the aim of correlation with the AE data. 

Besides, the actual percentages of steel mass loss were verified following the bond testing 

after breaking all beams and weighing the corroded steel bars according to ASTM G1 

(ASTM, 2011b). 
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 (b) 

 

Figure 3.2 Accelerated corrosion test and AE monitoring setup: (a) schematic and 

(b) picture of the typical experiment of B5 
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3.4.3 AE Monitoring Setup 

In this study, each tested beam was monitored through the accelerated corrosion test via 

three AE sensors (Figure 3.2). These sensors were attached to the top side of the beam 

surface at the centre line of the beam cross section by a two-part epoxy adhesive (Figure 

3.2). These sensors were distributed at three varied distances from the corroded side of 

the beam. The configuration of the sensors was designed to examine the effect of sensor 

location on the ability of AE monitoring in detecting/assessing corrosion initiation, 

propagation, and cover crack growth in large-scale RC structures. The sensors used in this 

study, AE data acquisition system, and AE signal parameters had all exactly the same 

setup of that employed in study 1.  

3.5 Experimental Study 3: Evaluation of Concrete-Steel Bond Behaviour Using 

AE Sensors in Small-Scale Corroded/Un-Corroded RC Samples 

In this stage, the concrete-steel bond behaviour of a total of 114 small-scale RC prism 

samples was examined with AE monitoring during pull-out tests. These samples included 

60 previously corroded and 54 un-corroded samples with variable bar diameter, corrosion 

level, concrete cover thickness and embedded length. The description of these samples 

and tests setup are as follows: 

3.5.1 Details of Pull-out Prism Samples 

One reinforcing steel bar was partially embedded in each prism sample (corroded and un-

corroded) with one protruding end to enable the pull-out testing (Figure 3.3). These 

samples had three variable concrete cover thicknesses (20, 30, and 40 mm) around the 
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embedded steel bar. The clear concrete cover was maintained constant around the steel 

bar on all sides of each sample. The concrete dimensions of the samples were changed 

based on the value of the cover thickness. After mixing, concrete was poured in wooden 

formwork with the reinforcing bars in a horizontal casting position. Sufficient compaction 

of all formwork was achieved by using mechanical vibration. After 24 hours of mixing, 

the specimens were de-molded and then water-cured for a period of 28 days before 

corrosion exposure or pull-out testing. The bottom ends of all samples were filled with 

waterproof silicon to insulate the steel bar and avoid the direct connection to water in the 

accelerated corrosion period. This filling was removed from all samples at the end of 

corrosion exposure to allow the measurement of free end bar slippage in the pull-out test. 

Two identical samples were prepared from each specimen, at the same degree of steel 

mass loss, to ensure the repeatability of the results.  

3.5.1.1 Corroded Samples 

 

A total of 60 samples were exposed to an accelerated corrosion process (similar to that 

completed in study 1) until they reached five different degrees of theoretical steel mass 

loss: 1%, 2%, 3%, 4%, and 5% (Figure 3.3). The corroded prism samples were cast with 

20 mm diameter (20M) bars and two values of bonded length (50 and 200 mm). Each 

sample had two PVC pipes acting as bond breakers placed before and after the bonded 

length. The bonded length was changed from 200 to 100 or 50 mm by extending the 

length of the PVC pipe from the bottom end of the sample (Figure 3.3). The test matrix, 

complete dimensions, and results of accelerated corrosion tests of all corroded samples 

are presented in Table 3.3.  
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(b) 

 

Figure 3.3 Typical accelerated corrosion setup: (a) schematic and (b) picture of 

typical experiment 

Table 3.3 Corroded specimens details and accelerated corrosion results 

Sample 

number 

Sample 

designation 

Cover thickness 

(mm) 

Embedded 

length (mm) 

Theoretical steel 

mass loss (%) 

Dimensions (mm 

x mm x mm) 

1 20M20A1-1 20 50 1 60 x 60 x 260 

2 20M20A1-2 20 50 1 60 x 60 x 260 

3 20M20C1-1 20 200 1 60 x 60 x 260 

4 20M20C1-2 20 200 1 60 x 60 x 260 

5 20M20A2-1 20 50 2 60 x 60 x 260 

6 20M20A2-2 20 50 2 60 x 60 x 260 

7 20M20C2-1 20 200 2 60 x 60 x 260 

8 20M20C2-2 20 200 2 60 x 60 x 260 

9 20M20A3-1 20 50 3 60 x 60 x 260 

10 20M20A3-2 20 50 3 60 x 60 x 260 

11 20M20C3-1 20 200 3 60 x 60 x 260 

12 20M20C3-2 20 200 3 60 x 60 x 260 

13 20M20A4-1 20 50 4 60 x 60 x 260 
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14 20M20A4-2 20 50 4 60 x 60 x 260 

15 20M20C4-1 20 200 4 60 x 60 x 260 

16 20M20C4-2 20 200 4 60 x 60 x 260 

17 20M20A5-1 20 50 5 60 x 60 x 260 

18 20M20A5-2 20 50 5 60 x 60 x 260 

19 20M20C5-1 20 200 5 60 x 60 x 260 

20 20M20C5-2 20 200 5 60 x 60 x 260 

21 20M30A1-1 30 50 1 80 x 80 x 280 

22 20M30A1-2 30 50 1 80 x 80 x 280 

23 20M30C1-1 30 200 1 80 x 80 x 280 

24 20M30C1-2 30 200 1 80 x 80 x 280 

25 20M30A2-1 30 50 2 80 x 80 x 280 

26 20M30A2-2 30 50 2 80 x 80 x 280 

27 20M30C2-1 30 200 2 80 x 80 x 280 

28 20M30C2-2 30 200 2 80 x 80 x 280 

29 20M30A3-1 30 50 3 80 x 80 x 280 

30 20M30A3-2 30 50 3 80 x 80 x 280 

31 20M30C3-1 30 200 3 80 x 80 x 280 

32 20M30C3-2 30 200 3 80 x 80 x 280 

33 20M30A4-1 30 50 4 80 x 80 x 280 

34 20M30A4-2 30 50 4 80 x 80 x 280 

35 20M30C4-1 30 200 4 80 x 80 x 280 

36 20M30C4-2 30 200 4 80 x 80 x 280 

37 20M30A5-1 30 50 5 80 x 80 x 280 

38 20M30A5-2 30 50 5 80 x 80 x 280 

39 20M30C5-1 30 200 5 80 x 80 x 280 

40 20M30C5-2 30 200 5 80 x 80 x 280 

41 20M40A1-1 40 50 1 100 x 100 x 300 

42 20M40A1-2 40 50 1 100 x 100 x 300 

43 20M40C1-1 40 200 1 100 x 100 x 300 

44 20M40C1-2 40 200 1 100 x 100 x 300 

45 20M40A2-1 40 50 2 100 x 100 x 300 

46 20M40A2-2 40 50 2 100 x 100 x 300 

47 20M40C2-1 40 200 2 100 x 100 x 300 

48 20M40C2-2 40 200 2 100 x 100 x 300 

49 20M40A3-1 40 50 3 100 x 100 x 300 

50 20M40A3-2 40 50 3 100 x 100 x 300 

51 20M40C3-1 40 200 3 100 x 100 x 300 
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52 20M40C3-2 40 200 3 100 x 100 x 300 

53 20M40A4-1 40 50 4 100 x 100 x 300 

54 20M40A4-2 40 50 4 100 x 100 x 300 

55 20M40C4-1 40 200 4 100 x 100 x 300 

56 20M40C4-2 40 200 4 100 x 100 x 300 

57 20M40A5-1 40 50 5 100 x 100 x 300 

58 20M40A5-2 40 50 5 100 x 100 x 300 

59 20M40C5-1 40 200 5 100 x 100 x 300 

60 20M40C5-2 40 200 5 100 x 100 x 300 

 

3.5.1.2 Un-Corroded Samples 

 

As previously noted, 54 un-corroded samples were tested in this study in order to 

investigate the effects of bar diameter, concrete cover, and embedded length on the bond 

behaviour and resulting AE signals in the pull-out tests. The un-corroded samples were 

cast with three diameters of the reinforcing bars: 10 mm (10M), 20 mm (20M), and 35 

mm (35M) bars and three varied bonded lengths: 50, 100, and 200 mm. The detailed 

dimensions of all un-corroded prism samples are tabulated in Table 3.4. All samples 

(corroded and un-corroded) were designated according to bar diameter (10M, 20M, 35M), 

concrete cover (20, 30, and 40 mm), embedded length (A for 50 mm, B for 100 mm and 

C for 200 mm), percentage of theoretical steel mass loss (0%, 1%, 2%, 3%, 4%, and 5%), 

and replicate number (1, 2). For example, the first replicate of a sample cast with 20M 

bar, 30 mm cover, 200 mm embedded length, and corroded to 3% of steel mass loss is 

denoted as 20M30C3-1. 
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Table 3.4 Test matrix and un-corroded specimens dimensions 

Sample 

number 

Sample 

designation 

Bar diameter 

(mm) 

Cover thickness 

(mm) 

Embedded 

length (mm) 

Dimensions (mm 

x mm x mm) 

1 10M20A0-1 10 20 50 50 x 50 x 240 

2 10M20A0-2 10 20 50 50 x 50 x 240 

3 10M20B0-1 10 20 100 50 x 50 x 240 

4 10M20B0-2 10 20 100 50 x 50 x 240 

5 10M20C0-1 10 20 200 50 x 50 x 240 

6 10M20C0-2 10 20 200 50 x 50 x 240 

7 20M20A0-1 20 20 50 60 x 60 x 240 

8 20M20A0-2 20 20 50 60 x 60 x 240 

9 20M20B0-1 20 20 100 60 x 60 x 240 

10 20M20B0-2 20 20 100 60 x 60 x 240 

11 20M20C0-1 20 20 200 60 x 60 x 240 

12 20M20C0-2 20 20 200 60 x 60 x 240 

13 35M20A0-1 35 20 50 75 x 75 x 240 

14 35M20A0-2 35 20 50 75 x 75 x 240 

15 35M20B0-1 35 20 100 75 x 75 x 240 

16 35M20B0-2 35 20 100 75 x 75 x 240 

17 35M20C0-1 35 20 200 75 x 75 x 240 

18 35M20C0-2 35 20 200 75 x 75 x 240 

19 10M30A0-1 10 30 50 70 x 70 x 260 

20 10M30A0-2 10 30 50 70 x 70 x 260 

21 10M30B0-1 10 30 100 70 x 70 x 260 

22 10M30B0-2 10 30 100 70 x 70 x 260 

23 10M30C0-1 10 30 200 70 x 70 x 260 

24 10M30C0-2 10 30 200 70 x 70 x 260 

25 20M30A0-1 20 30 50 80 x 80 x 260 

26 20M30A0-2 20 30 50 80 x 80 x 260 

27 20M30B0-1 20 30 100 80 x 80 x 260 

28 20M30B0-2 20 30 100 80 x 80 x 260 

29 20M30C0-1 20 30 200 80 x 80 x 260 

30 20M30C0-2 20 30 200 80 x 80 x 260 

31 35M30A0-1 35 30 50 95 x 95 x 260 

32 35M30A0-2 35 30 50 95 x 95 x 260 

33 35M30B0-1 35 30 100 95 x 95 x 260 

34 35M30B0-2 35 30 100 95 x 95 x 260 

35 35M30C0-1 35 30 200 95 x 95 x 260 
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36 35M30C0-2 35 30 200 95 x 95 x 260 

37 10M40A0-1 10 40 50 90 x 90 x 280 

38 10M40A0-2 10 40 50 90 x 90 x 280 

39 10M40B0-1 10 40 100 90 x 90 x 280 

40 10M40B0-2 10 40 100 90 x 90 x 280 

41 10M40C0-1 10 40 200 90 x 90 x 280 

42 10M40C0-2 10 40 200 90 x 90 x 280 

43 20M40A0-1 20 40 50 100 x 100 x 280 

44 20M40A0-2 20 40 50 100 x 100 x 280 

45 20M40B0-1 20 40 100 100 x 100 x 280 

46 20M40B0-2 20 40 100 100 x 100 x 280 

47 20M40C0-1 20 40 200 100 x 100 x 280 

48 20M40C0-2 20 40 200 100 x 100 x 280 

49 35M40A0-1 35 40 50 115 x 115 x 280 

50 35M40A0-2 35 40 50 115 x 115 x 280 

51 35M40B0-1 35 40 100 115 x 115 x 280 

52 35M40B0-2 35 40 100 115 x 115 x 280 

53 35M40C0-1 35 40 200 115 x 115 x 280 

54 35M40C0-2 35 40 200 115 x 115 x 280 

 

3.5.2 Pull-out Test Setup 

All samples (corroded and un-corroded) were tested under direct pull-out tests in a 

universal testing machine, as described in Figure 3.4. These prism samples were loaded 

under an incrementally increasing monotonic loading condition until bond failure. The 

free end slip of the steel bar of each specimen was obtained using one linear variable 

differential transformer (LVDT) mounted at the top of each sample (Figure 3.4). The 

magnitude of loading and the corresponding free end slip measured using the LVDT in 

each sample were constantly acquired by a data-acquisition system.  
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3.5.3 AE Monitoring Setup 

Each tested sample was monitored during the pull-out test by two piezoelectric AE 

sensors, as shown in Figure 3.4. The AE sensors were attached, using a two-part epoxy 

adhesive, to one side of each sample’s surface located at the centre of the embedded steel 

bar. All AE signals emitted through the test were continuously recorded via a 4-channel 

AE data-acquisition system and AEwin signal processing software. The data-acquisition 

system was exactly set up as explained in studies 1 and 2. 
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(b) 

 

Figure 3.4 Pull-out test and AE monitoring setup: (a) schematic and (b) picture of 

typical experiment 
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3.6 Experimental Study 4: Evaluation of Concrete-Steel Bond Behaviour Using 

AE Sensors in Full-Scale Corroded/Un-Corroded RC Beams 

The outcomes attained from study 3 were verified by performing further experiments on 

corroded/un-corroded full-scale RC beams.  

3.6.1 Details of Tested Beams 

The five corroded beams obtained from study 2 (AE monitoring during corrosion) were 

tested under four-point vertical loading conditions, as described in Figure 3.5. Those five 

beams are corroded to 5% (B1), 10% (B2), 20% (B3), and 30% (B4 and B5) of steel mass 

loss at only one of the anchorage sides of the beams end. Those anchorage beam 

specimens were selected for this investigation to represent realistic bond behaviour of 

full-scale reinforced concrete structures (ACI Committee 408, 2003). In addition, this 

study involved testing additional five un-corroded beams under the same test setup 

(Figure 3.6) to examine the use of longer anchorage lengths. In all beams, concrete was 

cast in wooden formwork while the 20M reinforcing bars were horizontally placed at the 

bottom of the formwork. All beams were compacted through mechanical vibration. After 

24 hours of casting, the beam specimens were de-molded and then water-cured for a 

period of 28 days before being exposed to the accelerated corrosion or bond testing. 

3.6.1.1 Corroded Beams 

As previously mentioned, the five corroded beams tested in study 2 were further tested in 

this stage to evaluate their bond behaviour under four-point load tests. The anchorage 

lengths of all five corroded beams were chosen as 200 mm (less than the minimum 
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development length, as per CSA, 2014) and the shear span to depth ratio was kept 

constant to ensure bond failure in all beams. The AE monitoring was continued during 

these bond tests with the setup and configuration shown in Figure 3.5.   
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Figure 3.5 Four-point load test and AE monitoring setup of corroded beams 

3.6.1.2 Un-Corroded Beams 

For the comparison, this investigation involved testing additional five un-corroded beams. 

The anchorage length was varied in these un-corroded beams B6, B7, B8, B9, and B10 as 

follows: 100 mm, 200 mm, 300 mm, 400 mm, and 200 mm, respectively (Figure 3.6). 

This variable anchorage length is obtained by changing the length of the PVC pipes 

acting as the bond breaker. The dimensions of beams B6, B7, B8, and B9 are identical 

(250 x 250 x 1500 mm). On the other hand, B10 have the same cross section (250 x 250 

mm), but with longer span (2440 mm) to study the influence of sensor location on the 

bond behaviour. 
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Figure 3.6 Four-point load test and AE monitoring setup of un-corroded beams 
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3.6.2 Four-Point Load Test Setup 

All ten beams (five corroded and five un-corroded beams) were tested under four-point 

vertical loading conditions, as described in Figure 3.7. The vertical single load was 

applied through a manual hydraulic jack and then distributed into two-point loads by a 

steel plate/spreader beam. This loading was gradually applied at a constant loading rate 

for all tested beams up to failure. Four linear variable differential transformer (LVDT) 

were utilized to measure the free end slip of the protruding end of the steel bars at both 

beam’s end (LVDT1 and LVDT2 on the left side and LVDT3 and LVDT4 on the right 

side). Another LVDT was mounted at the mid-span of each beam to record the values of 

mid-span deflection (Figure 3.7). All LVDTs used in this investigation were DC-DC long 

stroke displacement transducers (Model JEC-AG DC-DC from Honeywell) with a stroke 

range of ± 12.7 to 76.2 mm and output accuracy of about ± 0.0002 mm. The magnitude of 

load and the corresponding free end slip and mid-span deflection in each beam were all 

recorded using a data-acquisition system. The load was stopped twice during the tests to 

allow the visual observation of first crack and the identification of first bar slip using the 

readings of LVDTs. During the test and after failure, the crack widths were measured by 

using a crack width measuring device.  
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(c) 

 

Figure 3.7 Four-point load test and AE monitoring typical setup: (a) short beam, (b) 

long beam, and (c) side view showing the LVDTs 

3.6.3 AE Monitoring Setup 

It is clear from Figure 3.7 that, each beam was monitored throughout the four-point load 

test with three AE sensors. All sensors were attached at the bottom side of each beam at 

the centre of the beam width at the locations described in Figures 3.5-3.6. The acquisition 

of acoustic emissions during these tests was performed by means of the AE data 

acquisition system with the same setup described in the previous studies.  
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4. Discussion of Results from Experimental Study 1: Corrosion 

Detection and Crack Growth Monitoring in Small-Scale RC 

Samples 

4.1 Introduction 

 

This chapter presents the results and discussions of the first experimental study completed 

in this research. The results obtained at the end of the accelerated corrosion test on all 

tested samples are shown in Table 4.1. These results include the test duration, time to 

detect cover cracking by visual inspection, both theoretical and actual percentages of steel 

mass loss, and crack widths at the end of the experiments. Table 4.1 shows that 

increasing the cover thickness from 20 to 40 mm resulted in longer test durations, longer 

time to first crack, and smaller crack widths at the same percentage of mass loss. The 

initiation of smaller crack widths with larger concrete cover may be attributed to the 

contribution of the confinement of the concrete cover, which increased by increasing the 

cover thickness. The table also shows that the actual degrees of steel mass loss were 

mostly in good agreement with the predicted percentage of steel mass loss results.  

All tested samples showed a similar cracking behaviour, as seen in Figure 4.1. It can be 

noticed from the figure that the samples, regardless of cover thickness, exhibited one 

crack along the length of the embedded bar on only one side of the specimen. The results 

in Table 4.1 will be used as a benchmark for the results obtained from AE monitoring in 

order to characterize the damage in the cover zone in terms of AE data.  
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Table 4.1 Results of all tested samples at the end of the accelerated corrosion tests 

Specimen 

Test 

duration 

(days) 

Theoretical 

mass loss 

of steel 

(%) 

Actual mass 

loss of steel 

(%) 

Time to 

first 

detected 

crack 

(days) 

Final 

crack 

width 

(mm) 

20-1-1 3 1 0.8 3 0.12 

20-1-2 3 1 0.8 3 0.1 

20-2-1 5 2 1.7 3 0.65 

20-2-2 5 2 1.9 3 0.76 

20-3-1 6 3 2.9 3 0.9 

20-3-2 6 3 2.8 3 0.85 

20-4-1 8 4 3.8 3 2.5 

20-4-2 8 4 4 3 2.2 

20-5-1 10 5 5.1 3 5 

20-5-2 10 5 5.4 3 4.88 

30-1-1 7 1 0.8 5 0.1 

30-1-2 7 1 0.9 5 0.1 

30-2-1 9 2 1.7 5 0.48 

30-2-2 9 2 1.9 5 0.53 

30-3-1 11 3 2.9 5 0.78 

30-3-2 11 3 2.8 5 0.82 

30-4-1 13 4 4 5 1.38 

30-4-2 13 4 3.9 5 1.24 

30-5-1 15 5 4.9 5 2.5 

30-5-2 15 5 4.8 5 2.3 

40-1-1 12 1 0.9 10 0.1 

40-1-2 12 1 0.8 10 0.08 

40-2-1 15 2 1.8 10 0.46 

40-2-2 15 2 1.8 10 0.48 

40-3-1 17 3 3 10 0.72 

40-3-2 17 3 2.8 10 0.8 

40-4-1 19 4 3.9 10 1.12 

40-4-2 19 4 4 10 1.23 

40-5-1 21 5 4.8 10 1.88 

40-5-2 21 5 4.9 10 1.95 
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(a) 

 
(b) 

 
(c) 

 

Figure 4.1 Typical cracking behaviour of tested samples: (a) 20-3-1, (b) 30-3-1, and 

(c) 40-3-1 

4.2 AE Waveform Parameters 

 

The results collected from AE sensors were subjected to a filtering process in order to 

minimize noise related signals or wave reflections. Amplitude-duration based filter (or 

Swansong II filter) similar to that adopted in similar research studies (Fowler et al., 1989; 

Abdelrahman et al., 2014; ElBatanouny et al., 2014; Vélez et al., 2015) was performed 

herein. After reviewing the collected waveform parameters, all signals characterized by 

low amplitude range (40-45 dB) were considered to be related to noise and therefore were 

all rejected. In addition, signals with higher amplitudes and relatively long durations were 

excluded based on the amplitude-duration ranges in Table 4.2. Figure 4.2 shows some 

examples of different rejected waveforms at all amplitude ranges based on the rejection 



 

50 

 

limits described in Table 4.2. It should be mentioned that the AE waveform signatures 

may vary from those occurring in natural corrosion mechanisms. Consequently, the limits 

of the filter presented herein may be modified in naturally occurring corrosion process to 

differentiate corrosion related AE signals. This target can be achieved by performing an 

extensive evaluation of different collected waveforms to generate suitable filter limits 

(Vélez et al., 2015).  

Table 4.2 Rejection limits for amplitude-duration filter (Vélez et al., 2015) 

Amplitude range 

(dB) 

Duration (μs) 
Lower Upper 

40<A<45*   — — 

45 ≤ A<54  0 1000 

54 ≤ A<60  100 1000 

60 ≤ A<65  300 1000 

A ≥ 65 500 1000 

*All signals were rejected regardless of the duration value 
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Figure 4.2 Examples of rejected waveforms with amplitude values of: (a) 43 dB, (b) 

47 dB, (c) 57 dB, (d) 63 dB, and (e) 66 dB 

After performing the above filtering criteria, the results of different waveform parameters 

of all samples were analyzed and evaluated. These parameters included signal strength, 

energy, absolute energy, amplitude, rise time, duration, counts, as well as frequency 

parameters. By studying the relationships of each of the aforementioned parameters with 

the elapsed time, it was found that all the parameters have a similar trend of variation. 

However, the AE signal strength was chosen in this study to evaluate the process of 

damage in all tested samples. It should be mentioned that, different researchers also 

applied signal strength analysis for a better assessment of concrete structures under 

corrosion (Di Benedetti et al., 2013; Mangual et al., 2013a; 2013b; ElBatanouny et al., 

2014; Vélez et al., 2015). In this study, cumulative signal strength (CSS) was calculated 

and analyzed for detecting both the onset and progression of the corrosion in all tested 

samples. This CSS is calculated as the integral of signal strength (voltage) over time of 

recorded AE hits until any period of time during the test. The variations in CSS with 

respect to time were monitored in order to differentiate between degrees of damage.  
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4.3 AE Intensity Analysis 

The results of signal strength were further analyzed to obtain more accurate indications of 

the levels of damage from corrosion and were also used to quantify this level in terms of 

steel mass loss and cover cracking. To this end, an intensity analysis was performed using 

the signal strength values of all acquired signals (hits) to calculate two parameters, 

historic index and severity. Historic index, or H (t), is a parameter that indicates any 

sudden changes of slope of CSS curve by comparing the average signal strength of the 

last K hits with the mean value of the signal strength of all acquired hits. This index can 

be calculated using Equation 4.1 and is used to represent the level of damage in concrete 

structures (Mangual et al., 2013a; 2013b; ElBatanouny et al., 2014; Vélez et al., 2015). 

𝐻ሺݐሻ =  ேே− ∑ 𝑆𝑜𝑖𝑁𝑖=𝐾+1∑ 𝑆𝑜𝑖𝑁𝑖=1                                                     ( 4.1 )                             

Where: N = the number of hits up to time (t); and Soi = signal strength of the i
th

 event 

(Golaski et al., 2002; Nair and Cai, 2010; ElBatanouny et al., 2014; Vélez et al., 2015). 

On the other hand, severity (Sr) may be described as the average signal strength of the J 

events with the maximum algebraic value of signal strength at any time and can be 

assessed by Equation 4.2 (Golaski et al., 2002; Nair and Cai, 2010; ElBatanouny et al., 

2014; Vélez et al., 2015). 𝑆𝑟 = ∑ 𝑆𝑜𝑖𝑖=1                                                                                                                ( 4.2 )                                                                                                                           

It is worth noting that, the values of the constants K in Equation 4.1 and J in Equation 

4.2 may vary based on the type of phenomenon, degradation mechanisms, and simulation 

method (For example; natural versus accelerated corrosion). Parametric analysis can be 

performed to better understand the influence of these constants on severity and historic 
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index based on the mechanism of damage (Vélez et al., 2015). The value of K can be 

calculated as a function of the number of hits based on the equations specified in some 

research studies (Golaski et al., 2002; Nair and Cai, 2010; ElBatanouny et al., 2014; 

Vélez et al., 2015). On the other hand, the value of J is taken as 50 in these reported 

papers (Golaski et al., 2002; Nair and Cai, 2010; ElBatanouny et al., 2014; Vélez et al., 

2015). Initially, the intensity analysis was performed on the values of signal strength by 

using the previously mentioned constants (Golaski et al., 2002; Nair and Cai, 2010; 

ElBatanouny et al., 2014; Vélez et al., 2015). Alternatively, the values of K and J were 

assumed as 25 and 35, respectively, based on the results of a parametric analysis 

performed in the literature to identify the optimum values of theses constants for 

corrosion detection in concrete structures (Vélez et al., 2015). By assuming these 

constants as K = 25 and J = 35, it was found that these values were more suitable to 

capture the variations in both values of H (t), and Sr corresponding to different levels of 

damage. The values of both historic index and severity were calculated for all samples 

using Equation 4.1 and 4.2 continuously throughout the tests. These values were then 

drawn versus time to detect the onset of early damage and are shown in Figure 4.3 (first 

24 hours of sample 20-5-1 as an example). 
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Figure 4.3 Values of CSS, H (t), and Sr for the first 24 hours of sample 20-5-1: (a) 

CSS versus time, (b) H (t) versus time, and (c) Sr versus time 

4.4 Corrosion Detection Using AE Analysis 

 

The curves showing variation in CSS for the 20 mm cover samples (as an example of all 

tested samples) can be seen in Figure 4.4. This figure shows that an overall increase in 

the CSS was recorded as a result of both corrosion initiation and micro-cracking resulting 

from the expansions due to the accumulation of corrosion products, in all tested samples. 

The change in CSS over time is monitored in order to identify corrosion onset. It has been 

reported that the points of sudden rise of the CSS curve can be used to detect any sudden 

damage in concrete (corrosion initiation in this case) (Ohtsu and Tomoda 2008; Di 

Benedetti et al., 2013). By applying such an approach, it can be identified in Figure 4.4 

that all CSS curves exhibited a sharp increase at approximately 22 hours (average time of 

all tested sample). At these points, sudden increases in the CSS can be located in the 

curve, which are associated with an average CSS value of 0.1 mV.s (Table 4.3). This first 

detected sudden rise is mostly related to the point of corrosion initiation when an increase 
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in AE events (in terms of CSS increase) are detected resulting from steel depassivation 

(accumulation of oxides at the steel-concrete interface). This point has been confirmed 

from the findings of similar research studies reported in the literature (Ohtsu and Tomoda 

2008; Di Benedetti et al., 2013; Mangual et al., 2013a; 2013b; ElBatanouny et al., 2014; 

Vélez et al., 2015). It should be mentioned that some samples exhibited a sudden rise in 

the CSS well before the 22-hour average of all tested samples (Figure 4.4). These points 

however, may not be correlated to corrosion initiation. This is because the corresponding 

values of the electrical current for these points were decreasing and the HCP readings for 

them were indicating no corrosion activity, as explained in Section 4.5 (Figure 4.5). 

Instead, those early detected AE activities may be attributed to the movement of chloride 

solution while penetrating the concrete cover (Di Benedetti et al., 2014). It is also clear 

from Figure 4.4 that the values of CSS showed significant variations at the same time of 

the test (even between replicates of identical samples). These results indicate that the CSS 

curves can only be utilized for damage identification rather than quantifying the extent of 

degradation. Furthermore, the use of impressed currents to accelerate corrosion may also 

influence the values of CSS when compared to those related to natural corrosion process.   

The results of CCS, historic index, and severity are shown in Figure 4.3 (showing the 

first 24 hours of sample 20-5-1 as an example). The intensity analysis curves (Figure 

4.3b, c) can be utilized to further confirm the detection of corrosion initiation. It is clear 

from these curves that a sudden AE activity occurred in both H (t) and Sr for sample 20-5-

1 (at the location of the first sudden increase in CSS curve). Historic index value of 1.61 

and severity of 0.56 x 10
6 

pV.s were clearly observed at that sudden AE activity (Figure 
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4.3b, c). The results of H (t) and Sr of the other 20 mm cover samples show a similar trend 

with average values of 1.41 and 0.52 x 10
6 
pV.s, respectively (Table 4.3). 

 

 

Figure 4.4 CSS versus test time for the 20 mm cover samples 

It can be noticed from Figure 4.4 that a second point of sudden increase of the CSS 

represents another significant intensity of AE events at an average time of 43.3 hours of 

all tested specimens. This AE activity may be associated with the onset of micro-

cracking, which could also be associated with the loss of steel-concrete bonding. The 

assumption that this point could be related to the occurrence of micro-cracking can 

somewhat be justified by the detection of cover cracking which was visually observed at 

72 hours in all tested samples. However, this assumption is not substantiated and cannot 

be correlated to AE signal strength parameters. Instead, Table 4.3 presents the values of 
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cover crack widths detected using visual inspection of all samples as well as the values of 

CSS, H (t), and Sr. It is obvious that an overall increase in the values of CSS, H (t), and Sr 

corresponding to the progression of corrosion (from corrosion initiation to visual cover 

cracking) in all specimens. However, the presented values of CSS, H (t), and Sr may 

depend on the range of tested variables and type of sensors used in this study. In addition, 

further validation of the presented results is needed to overcome the potential 

disadvantages in assessing corrosion by means of impressed currents (Poursaee and 

Hansson, 2009), prior to use it as a reliable monitoring tool in field applications.  

Table 4.3 Different AE parameters at different levels of damage for 20 mm cover 

samples 

Specimen 

First detected AE activity 

(Corrosion initiation) 

First detected cover crack using visual inspection 

detected at 72 h 

Values of different 

parameters after 

24 hours from first 

crack detection 

Time 

(h) 

CSS 

(mV.s) 
H (t) 

Sr x 

10
6
 

(pV.s) 

Crack 

Width 

(mm) 

CSS 

(mV.s) 

% 

Increase 

in CSS* 

H (t) 

% 

Increase 

in H (t)* 

Sr x 

10
6
 

(pV.s) 

% 

Increase 

in Sr * 

CSS 

(mV.s) 
H (t) 

Sr x 

10
6
 

(pV.s) 

20-1-1 23.61 0.02 1.18 0.43 0.10 0.04 100 5.02 325 1.59 270 NA NA NA 

20-1-2 20.53 0.04 1.29 0.69 0.12 0.05 25 6.04 368 1.89 174 NA NA NA 

20-2-1 21.77 0.05 1.54 0.57 0.20 0.12 300 5.18 236 1.67 193 0.12 5.57 1.79 

20-2-2 23.61 0.20 1.75 0.72 0.15 0.23 15 5.37 207 1.75 143 0.23 5.72 1.76 

20-3-1 23.06 0.04 1.10 0.38 0.24 0.12 200 5.48 398 1.79 371 0.12 5.98 2.11 

20-3-2 22.89 0.10 1.43 0.55 0.20 0.17 70 6.11 327 1.80 227 0.19 6.11 2.23 

20-4-1 20.97 0.16 1.35 0.35 0.25 0.19 19 6.23 361 1.61 360 0.19 6.65 1.69 

20-4-2 22.58 0.19 1.59 0.51 0.22 0.22 16 6.05 281 1.77 247 0.23 6.21 1.8 

20-5-1 22.79 0.25 1.61 0.56 0.15 0.28 12 5.70 254 1.54 175 0.29 6.19 1.63 

20-5-2 20.49 0.03 1.25 0.39 0.18 0.09 200 5.42 334 1.69 333 0.10 5.82 1.85 

Average 22.04 0.11 1.41 0.52 0.18 0.15 45 5.66 301 1.71 229 0.18 6.03 1.86 

*Percentage of increase from the first detected AE activity (corrosion initiation) 

4.5 Evaluation of Corrosion Detection Using Electrochemical Measurements 

The results obtained from both the HCP test and anodic passing currents throughout the 

test period for five selected samples (20 mm cover) are described in Table 4.4 and Figure 

4.5. The graphs in Figure 4.5 are used to detect the corrosion initiation times in order to 
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compare them with those obtained from the AE monitoring. It can be noticed from these 

curves that the values of the passing electrical current decreased at the first part of the 

curve reaching the lowest point of the curve, then started to increase until the end of the 

test. The lowest point in the current-time curve occurred at times ranging between 20 and 

40 hours. This point can be related to initiation of the corrosion activity (depassivation of 

steel) in the tested sample (Mangual et al., 2013a; 2013b; ElBatanouny et al., 2014). On 

the other hand, the HCP test indicates a 90% possibility of corrosion if the results are 

more negative than -350 mV (ASTM C876, 1991). Following this approach, the values of 

the HCP test for the tested samples exceeded -350 mV at a time ranging from 60 to 80 

hours (Figure 4.5). By checking the corrosion initiation times for all samples, it can be 

concluded that the corrosion initiation times detected by the electric currents (by locating 

the lowest point in the current-time curve (Mangual et al., 2013a; 2013b; ElBatanouny et 

al., 2014)) are similar to those obtained from AE analysis. Nonetheless, the results of 

HCP indicated the probability of corrosion onset at noticeably larger times than those 

identified by both current-time curve and AE results. This finding is also confirmed in 

similar research reported in the literature (Ohtsu and Tomoda 2008; Di Benedetti et al., 

2013; Mangual et al., 2013a; 2013b; ElBatanouny et al., 2014; Vélez et al., 2015). This 

can be attributed to the higher sensitivity of the AE technique, which can detect the stage 

of micro-damage. Moreover, the values of HCP were only measured on a daily basis 

throughout the test compared to the continuous monitoring of electrical current and 

acoustic emissions. Furthermore, the values of HCP can only be used for corrosion 

detection and are not applicable to quantify the degree of corrosion. This is especially true 
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as the HCP test results can only indicate the probability of corrosion and cannot be 

correlated to the actual degree of corrosion damage. 

Table 4.4 Typical results of currents and HCP readings 

Specimen Average anodic 

current (mA) 

HCP 

(mV) 

20-1-1 66 -355 

20-2-1 78 -385 

20-3-1 94 -423 

20-4-1 96 -448 

20-5-1 100 -590 
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Figure 4.5 Current versus HCP results for selected specimens: (a) 20-1-1, (b) 20-2-1, 

(c) 20-3-1, (d) 20-4-1, and (e) 20-5-1 

4.6 Evaluation of Damage Progression Using AE Analysis  

 

Following the stage of corrosion initiation and micro-cracking, the samples were severely 

corroded to reach specific levels of mass loss. Meanwhile, AE monitoring was continued 

during this stage to assess its ability to represent the actual degree of damage occurring in 

each sample. For this reason, the CSS values were calculated similarly along with the 

theoretical degree of mass loss each 24 hours for all 20 mm cover samples and presented 

in Figure 4.6. After a period of approximately 72 hours, the first visual crack was 

detected (by visual inspection) for all 20 mm cover samples. The samples generally 

showed only one longitudinal crack parallel to the steel bar (approximately at the centre 

of the embedded steel bar) at only one side of each sample (see Figure 4.1). The 

occurrence of visual cover cracks may be explained by the expansion of the embedded 

steel bars due to the accumulation of rust products. Upon the conclusion of the test, all 

specimens were broken and the actual percentages of mass loss of steel bars were 
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measured as seen in Figure 4.7. Table 4.1 also compares the theoretical to actual mass 

loss of steel which showed a well agreement between both values in all tested samples. 

It can be noticed from Figure 4.6 that all samples showed an overall increase in the CSS 

values as a result of increasing amounts of theoretical mass loss up to 5.3%. For instance, 

in sample 20-5-1, the recorded CSS was constantly increased from 0.26 to 0.33 mV.s, due 

to the increase of corrosion mass loss starting from 0.37 up to 5.3% mass loss. The other 

samples also confirmed a correlation between both mass loss with CSS throughout the 

tests. Thus, it can be concluded that the AE results (CSS) can be correlated to both the 

degree of mass loss caused by corrosion of steel in concrete. However, beyond the 

observation of first visual crack, both corrosion propagation (in terms of steel mass loss) 

and cover cracking may occur simultaneously. This can be explained by the increasing 

trend in the results of CSS due to the increase in the values of both steel mass loss and 

cover crack width. It should be noted that the rate of increase in CSS values was slower 

after the formation of visual cracks owing to the continuous opening of the crack width, 

which contributes to the wave attenuation that yields lower values of signal strength. This 

wave attenuation could be attributed to the reduction of signal amplitude of AE waves as 

a result of scattering and reflections (Ervin, 2007). It should also be noted that the 

absolute values of CSS exhibited variations between tested samples at similar degrees of 

damage (see Figure 4.6). Consequently, the analysis of CSS can only indicate the 

progression of damage and may not solely be used to quantify the degree of mass loss or 

cover cracking. Alternatively, further intensity analysis on the values of signal strength 

was performed for damage quantification of tested samples, as described in the following 

section. 
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Figure 4.6 CSS versus mass loss for 20 mm cover samples at 24-hour intervals 

 

 

Figure 4.7 Effects of different levels of mass loss in 20 mm cover samples 

4.7 Correlations between the Degree of Corrosion and AE Intensity Analysis 

Parameters   

 

As previously stated, the AE intensity analysis was recommended to quantify the extent 

of damage in the tested samples. Two parameters, historic index and severity, were 

estimated at different degrees of mass loss for the 20 mm cover samples and reported in 

Table 4.5. In addition, intensity classification chart (Figure 4.8) was developed to predict 
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the level of corrosion damage in reinforced concrete subjected to reinforcing steel 

corrosion based on the acquired AE data. Table 4.5 contains the results of H (t) and Sr for 

the 20 mm cover samples at five degrees of corrosion damage in terms of steel mass loss 

(1%, 2%, 3%, 4%, and 5%). These results were also used to develop the intensity analysis 

chart that can directly correlate the extent of damage (in term of mass loss) to the AE 

recorded signals (Figure 4.8). This chart can give a range within which the damage can 

be classified. For example, by knowing that the historic index is between 5.18 and 6.23 or 

the severity is between 1.54 and 1.89 x 10
6
 (pV.s), it can be concluded that the corrosion 

of the embedded steel has a 1% mass loss. Likewise, all other levels of damage can be 

identified by locating the values of H (t) and/or Sr into the intensity analysis chart and 

then comparing it to the corresponding ranges of each level. It is clear from the same 

chart that the values obtained from different tested samples at the same stage of corrosion 

exhibited insignificant variations. This shows that the intensity analysis can give a more 

accurate representation of damage than that obtained from the CSS. It is also obvious 

from the chart that the corrosion progression yielded an overall linear increase in both H 

(t) and Sr values at all degrees of damage from corrosion initiation until 5% steel mass 

loss. Based on the above results, AE monitoring can characterize the percentage of mass 

loss and eventually estimate the residual strength of concrete structures exposed to 

reinforcing steel corrosion. It is worth taking into consideration that this chart is based on 

the experimental results presented in the current study and more tests are required to 

validate and generalize these conclusions. These tests may induce corrosion without using 

impressed currents (for example, wet and dry tests) to capture any differences in the 

presented values of H (t) and Sr, if any. 
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Table 4.5 Results of intensity analysis at consequent degrees of damage for 20 mm 

cover samples 

Sample 

Mass loss 

1% 2% 3% 4% 5% 

H (t) 

Sr 

(x10
6
) 

pV.s 

H (t) 

% 

H 

(t) 

* 

Sr 

(x10
6
) 

pV.s 

% 

Sr * 
H (t) 

% 

H 

(t) 

* 

Sr 

(x10
6
) 

pV.s 

% 

Sr * 
H (t) 

% 

H 

(t) 

* 

Sr 

(x10
6
) 

pV.s 

% 

Sr * 
H (t) 

% 

H 

(t) * 

Sr 

(x10
6
) 

pV.s 

% 

Sr * 

20-1-1 5.02 1.59 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

20-1-2 6.04 1.89 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

20-2-1 5.18 1.67 6.15 19 1.75 5 NA NA NA NA NA NA NA NA NA NA NA NA 

20-2-2 5.37 1.75 6.31 18 1.88 7 NA NA NA NA NA NA NA NA NA NA NA NA 

20-3-1 5.48 1.79 6.41 17 2.17 21 7.40 35 2.37 32 NA NA NA NA NA NA NA NA 

20-3-2 6.11 1.80 6.55 7 2.23 24 7.15 17 2.44 36 NA NA NA NA NA NA NA NA 

20-4-1 6.23 1.61 6.86 10 1.86 16 7.12 14 2.21 37 8.15 31 2.28 42 NA NA NA NA 

20-4-2 6.05 1.77 6.25 3 1.81 2 6.89 14 2.08 18 7.91 31 2.19 24 NA NA NA NA 

20-5-1 5.70 1.54 6.6 16 1.97 28 7.28 28 2.17 41 8.70 53 2.36 53 9.40 65 2.57 67 

20-5-2 5.42 1.69 6.48 20 1.90 12 7.17 32 2.10 24 8.88 64 2.27 34 9.28 71 2.66 57 

Average 5.66 1.71 6.45 14 1.95 14 7.16 27 2.22 30 8.41 49 2.28 33 9.34 65 2.62 53 

*Percentage of increase from the values calculated at 1% of steel mass loss 

 

 

Figure 4.8 Intensity analysis chart for classifying degree of corrosion damage for 20 

mm cover samples 
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4.8 Effect of Cover Crack Growth on Different AE Parameters 

The results in Table 4.1 show that all tested samples exhibited an overall increase in the 

values of crack width with higher levels of corrosion (higher percentages of steel mass 

loss). Figures 4.9-4.11 show the impact of the increase in crack widths on different AE 

parameters in samples with different cover thickness corroded up to 3% of steel mass loss 

(20-3-1, 30-3-1, and 40-3-1), as an example. The figures show the variations of the 

number of hits (Figure 4.9), cumulative signal strength (CSS) (Figure 4.10), and 

cumulative energy (CE) (Figure 4.11) versus test time. It can be realized from the figures 

that the increase in crack width as a result of corrosion showed an overall increase in the 

results of number of hits, CSS, and CE in all tested samples regardless of the cover 

thickness. These figures, however, demonstrated an increase in number of hits, CSS, and 

CE before the detection of the first visual crack in these samples. This increase may be 

related to the movement of chlorides through the sample and further to the depassivation 

of steel and corrosion initiation. 

It is also clear that these graphs exhibited sudden increases at certain times of the test in 

all tested covers. For instance, the CSS versus time curve for 40-3-1 (Figure 4.10) has 

two points of sudden activity at nearly 120 hr and 205 hr. The first sudden change, at 

about 120 hr, is mostly related to the onset of steel corrosion, which also showed a 

significant increase in the number of hits and CE (Figures 4.9 and 4.11). On the other 

hand, the second point, at almost 205 hr, can be correlated to the inception of micro-

cracking resulting from the rebar expansions, which is due to the accumulation of 

corrosion products. This increased AE activity was further confirmed by the detection of 
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the first visual crack (width of 0.08 mm) in this sample (40-3-1) at 240 hr (Table 4.1). 

After these two points of the curve, the results of number of hits, CSS, and CE showed an 

almost linear increasing trend, indicating further opening of the crack. These detections of 

sudden changes in number of hits, CSS, and CE curves were used by other researchers to 

indicate different stages of corrosion of steel in concrete structures (Li et al., 1998; Idrissi 

and Limam, 2003; Assouli et al., 2005; Ing et al., 2005; Ohtsu and Tomoda, 2008; 

Ramadan et al., 2008; Di Benedetti et al., 2013; Kawasaki et al., 2013; 2014; Mangual et 

al., 2013a; 2013b; ElBatanouny et al., 2014; Vélez et al., 2015). It can also be noticed 

from Figures 4.9-4.11 that both CSS and CE followed a similar increasing trend in the 

three tested covers as a result of the cover crack growing. The results of number of hits, 

CSS, and CE at the end of the test for all tested samples are summarized in Table 4.6. 

The results presented in Table 4.6 also confirm that increasing cover crack widths (higher 

percentages of steel mass loss) yielded higher number of hits, CSS, and CE in all tested 

cover thicknesses. Although these relationships can give an indication of the crack growth 

by this continuously increasing trend of AE activity, it cannot be applied to quantify the 

amount of crack width. Instead, an intensity analysis should be performed to assess the 

extent of cover cracking due to corrosion of embedded steel. 
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Figure 4.9 Number of collected hits versus test times of samples: 20-3-1, 30-3-1, and 

40-3-1 

 

 

Figure 4.10 CSS versus test time of samples: 20-3-1, 30-3-1, and 40-3-1 
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Figure 4.11 CE versus test time of samples: 20-3-1, 30-3-1, and 40-3-1 

 

Table 4.6 Results of number of hits, CSS, CE, amplitude, and peak frequency of all 

tested samples at the end of tests 

Specimen 
Number 

of hits 

Cumulative 

energy (aJ) 

Cumulative signal 

strength (mVs) 

Amplitude 

* (dB) 

Peak 

frequency 

* (kHz) 

20-1-1 380 5480 0.035 81 102 

20-1-2 425 6201 0.051 80 103 

20-2-1 701 19797 0.126 83 104 

20-2-2 715 20185 0.215 85 106 

20-3-1 991 42369 0.268 83 105 

20-3-2 815 45068 0.218 82 102 

20-4-1 1178 37127 0.236 84 107 

20-4-2 1325 44582 0.277 83 105 

20-5-1 1599 46531 0.296 82 106 

20-5-2 1488 46112 0.282 81 110 

30-1-1 201 5104 0.032 82 102 

30-1-2 124 4717 0.029 84 109 

30-2-1 355 9025 0.054 80 104 

30-2-2 418 10619 0.067 81 106 

30-3-1 459 14790 0.093 84 111 

30-3-2 475 11077 0.071 79 104 

30-4-1 517 12881 0.079 81 103 
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30-4-2 599 13151 0.084 82 107 

30-5-1 628 17623 0.111 84 111 

30-5-2 654 14258 0.091 84 104 

40-1-1 117 5390 0.034 77 103 

40-1-2 97 3711 0.023 82 103 

40-2-1 154 6825 0.048 83 102 

40-2-2 223 6177 0.043 85 103 

40-3-1 397 8223 0.052 85 107 

40-3-2 356 7059 0.049 83 107 

40-4-1 510 9857 0.071 84 103 

40-4-2 490 8856 0.069 83 102 

40-5-1 538 10080 0.076 83 110 

40-5-2 597 11817 0.082 84 108 

* The values of amplitude and peak frequency represent the maximum value of all 

detected signals in each sample 

 

4.9 Effect of Cover Thickness on Different AE Parameters 

 

Figures 4.9-4.11 presented a comparison between number of hits, CSS, and CE of three 

samples with three varied clear concrete covers corroded up to 3% of steel mass loss 

throughout the test duration. In addition, Table 4.6 shows the amount of these AE 

parameters at the end of the tests for all remaining samples. Moreover, Figure 4.12 

contains the distribution of the amplitude of all detected AE signals in the same selected 

samples (samples 20-3-1, 30-3-1, and 40-3-1) during the test period. Table 4.6 also 

presents the value of the maximum amplitude and peak frequency in all tested samples 

recorded during the whole length of the tests. It is obvious from Figures 4.9-4.11 that 

increasing the cover thickness from 20 to 40 mm resulted in an overall reduction of the 

number of hits, CSS, and CE in these samples. This reduction was also confirmed at other 

degrees of steel mass loss in all tested samples, as shown in Table 4.6. It should be 
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mentioned that this reduction is mostly attributed to the higher crack widths in samples 

with 20 mm covers than their 30 and 40 mm counterparts, as seen in Table 4.1. 

On the other hand, Figure 4.12 indicates no significant variation in the amplitude values, 

which ranged from 45 to 85 dB, among all detected AE hits in these three samples. These 

results were also verified in all tested samples shown in Table 4.6, indicating that all 

samples showed similar values of maximum amplitude of all acquired AE signals. The 

results of the peak frequencies in all samples in Table 4.6 also confirmed no significant 

variations between different samples with the same cover thickness. The values of peak 

frequency of all signals of the tested samples showed a wide range from 19 to 111 kHz. It 

should be noted that increasing the cover thickness may contribute to the wave 

attenuation, thus affecting all AE signal parameters. However, this effect was not 

pronounced in the tested values of cover thickness (up to 40 mm) reported in this study. 

Further research should investigate the effect of higher values of cover thicknesses (> 40 

mm) on different AE signal parameters. 
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Figure 4.12 Amplitude of all hits acquired for samples: 20-3-1, 30-3-1, and 40-3-1 

4.10 Evaluation of Cover Crack Growth Using AE Intensity Analysis 

The signal strength values were further analyzed to quantify the cover crack growth in all 

tested samples of different cover thickness. Thus, an intensity analysis on the signal 

strength values of all acquired signals of each tested sample was completed to obtain two 

parameters (H (t) and Sr). The values of these parameters were calculated continuously 

throughout the test for all tested samples, as previously explained. For example, Figures 

4.13-4.14, respectively, compare the values of H (t) and Sr of samples 20-3-1, 30-3-1, and 

40-3-1 corresponding to the cover crack growing.  

4.10.1 Effect of Cover Crack Growth on H (t)/Sr 

 

The results in Figure 4.13 indicate that increasing the crack width (after being visually 

detected) yielded an almost linear increase in the values of H (t) in all samples regardless 
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of cover thickness. It can also be seen that the values of H (t) were only influenced by the 

cover crack width values and not by the cover thickness. It is also clear that the values of 

historic index did not significantly increase after the first crack detection. The values of 

historic index showed an increase of only 21%, 27%, and 35% due to the crack growth 

from 0.08 to 0.72 in sample 40-3-1, from 0.11 to 0.78 in sample 30-3-1, and from 0.15 to 

0.9 in sample 20-3-1. These results indicate that most of the recorded AE activity 

occurred at the stages of bar expansion due to corrosion products as well as the micro-

cracking of the surrounding concrete. This finding may also be attributed to the wave 

attenuation that may be due to the crack opening. 

Similarly, Figure 4.14 follows an overall increasing trend of the values of severity due to 

the increase in crack widths. For instance, samples 40-3-1, 30-3-1, and 20-3-1 witnessed 

an increase of 28%, 33%, and 32% of the original values recorded upon detection of the 

first visual crack. The results also confirmed that cover thickness has no significant 

impact on the values of severity. It can be seen from Figure 4.14 that different cover 

samples (20 mm, 30 mm, and 40 mm cover thickness) exhibited similar values of severity 

at the same values of crack width. It is also obvious that the values of severity did not see 

a sharp increase after the formation of the first visual cover crack. These results once 

more indicate that most of the acquired AE signals were related to the early stages of 

damage at the beginning of visual cover cracking. It is worth noting that other tested 

samples were corroded to different levels of steel mass loss and crack widths, yet they 

showed similar behaviour to the samples presented in Figures 4.13-4.14.  
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Figure 4.13 H (t) versus crack width in samples: 20-3-1, 30-3-1, and 40-3-1 

 

 

Figure 4.14 Sr versus crack width in samples: 20-3-1, 30-3-1, and 40-3-1 
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4.10.2 Effect of Cover Thickness on H (t)/Sr 

 

The results of the H (t) and Sr for all other tested samples at the end of testing are 

presented in Table 4.7. It can be seen from the table that increasing the steel mass loss 

from 1% to 5% increased the values of the H (t) and Sr in all tested samples with variable 

cover thickness. This progression in the percentage of steel mass loss resulted in a 

continuous growth in the values of cover crack widths. However, the samples with 20 mm 

cover exhibited higher crack widths than samples with 30 mm and 40 mm cover at all 

degrees of steel mass loss (see Table 4.1). Consequently, the samples with 20 mm cover 

had higher average values of H (t) and Sr than the average amounts of those samples with 

both 30 mm and 40 mm covers, as seen in Table 4.7. Nonetheless, by comparing the H (t) 

and Sr values obtained at a certain crack width, samples with different concrete covers 

were found to have similar values of H (t) and Sr.  

The results of crack widths and their corresponding values of H (t) and Sr for all tested 

specimens were used to develop an intensity classification chart (Figure 4.15). This chart 

is based on the results of cover cracking in reinforced concrete samples with variable 

cover thickness (20, 30, and 40 mm) due to corrosion of embedded steel. It can be utilized 

to correlate the different values of historic index and severity calculated based on 

collecting AE signal strength with the extent of damage in reinforced concrete. These 

kinds of damage classification charts can be suitable for the assessment of cover cracking 

in existing concrete structures. It should, however, be mentioned that further 

investigations are needed to validate the results in this chart using data collected from 
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actual existing structures, which are exposed to natural deterioration in the form of 

corrosion of reinforcing steel.  

Table 4.7 Results of the H (t) and Sr for all tested samples at the end of tests 

Sample H (t) 

Sr 

(x10
6
) 

pV.s 

Sample H (t) 

Sr 

(x10
6
) 

pV.s 

Sample H (t) 

Sr 

(x10
6
) 

pV.s 

20-1-1 6.04 1.89 30-1-1 5.11 1.72 40-1-1 5.25 1.87 

20-1-2 5.02 1.59 30-1-2 5.21 1.45 40-1-2 4.99 1.55 

20-2-1 6.15 1.75 30-2-1 5.71 1.74 40-2-1 5.22 1.67 

20-2-2 6.31 1.88 30-2-2 5.89 1.87 40-2-2 5.69 1.81 

20-3-1 7.4 2.37 30-3-1 6.61 2.21 40-3-1 6.34 2.15 

20-3-2 7.15 2.44 30-3-2 7.25 2.31 40-3-2 6.88 2.36 

20-4-1 8.15 2.28 30-4-1 7.47 2.28 40-4-1 7.04 2.25 

20-4-2 7.91 2.19 30-4-2 7.66 2.39 40-4-2 7.33 2.12 

20-5-1 9.4 2.57 30-5-1 8.17 2.48 40-5-1 7.07 2.37 

20-5-2 9.28 2.66 30-5-2 8.23 2.54 40-5-2 7.91 2.49 

Average 7.28 2.16 Average 6.73 2.09 Average 6.37 2.06 

 

 

Figure 4.15 Cover crack width classification chart based on the results of the H (t) 

and Sr for all tested samples 
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4.11 Assessment of Cover Crack Growth by b-value Analysis 

The AE data recorded from all tested samples during the accelerated corrosion tests were 

also utilized to perform a b-value analysis for the purpose of evaluating the cover crack 

growth resulting from corrosion. This analysis uses the amplitude/number of hits to 

develop additional parameter defined as b-value. The b-value can then be employed to 

represent the frequency-magnitude distribution of AE events to aid in evaluating the level 

of damage. The b-value was constantly calculated for all tested specimens throughout the 

tests using Equation 4.3 (Colombo et al., 2003; Kurz et al., 2006; Ohtsu and Tomoda, 

2008; Sagar and Prasad, 2013; ElBatanouny et al., 2014; Li et al., 2015; Behnia et al., 

2016). 𝑙𝑜𝑔 ܰ = ܽ − ܾ 𝑙𝑜𝑔 𝐴                                                                                                    ( 4.3 )                                                                                  

Where: N = the number of hits having amplitudes larger than A; A = the signal amplitude 

(dB); a = an empirically derived constant; and b = the b-value (Colombo et al., 2003; 

Kurz et al., 2006; Ohtsu and Tomoda, 2008; Sagar and Prasad, 2013; ElBatanouny et al., 

2014; Li et al., 2015; Behnia et al., 2016). 

It is worth noting that, the analysis of the b-value curve may exhibit some nonlinearities, 

owing to the practical limits of the sensor sensitivity on the low end and the value of 

maximum amplitude. Therefore, further analysis is recommended to identify and ignore 

these nonlinearities in the b-value calculation to enhance the accuracy of the results (Butt, 

1996). In addition, the use of b-value analysis was only used in this chapter for the 

purpose of comparison with the intensity analysis.   
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4.11.1 Effect of Cover Crack Growth on the b-value 

Figure 4.16 demonstrates the variations of the magnitudes of b-values throughout the 

tests for three selected samples with three variable concrete cover thicknesses corroded to 

3% of steel mass loss, as an example. Evaluating the changes in the trend of b-values has 

been used as an indication of the crack evolution in concrete structures (Colombo et al., 

2003; Kurz et al., 2006; Sagar and Prasad, 2013; ElBatanouny et al., 2014; Li et al., 2015; 

Behnia et al., 2016). It can be noticed from Figure 4.16 that the b-value exhibited a 

considerable fluctuation throughout the tests in all specimens. However, the three samples 

showed an overall decreasing trend of b-values until the end of the test, with two zones of 

sudden increases in b-values. It has been reported that the reduction in the b-values 

reflects increased AE activity, due to the increase in the number of hits with high 

amplitudes (Colombo et al., 2003; Kurz et al., 2006; Sagar and Prasad, 2013; 

ElBatanouny et al., 2014; Li et al., 2015; Behnia et al., 2016). Therefore, the decline of 

the b-values in these tested samples can be related to the corrosion propagation 

(depassivation, initiation, micro-cracking, and corrosion-induced crack growth). It is also 

obvious from Figure 4.16 that the magnitudes of b-values exhibited lower decline after 

the visual observation of first crack in all samples (highlighted on the figure) than that 

before visual cracking. This trend of b-values beyond the detection of visual cracks may 

be attributed to the attenuation of AE signals through the cracks (ElBatanouny et al., 

2014). This impact of signal attenuation was also warranted in other AE parameters 

considered in this investigation including CE, CSS, H (t), and Sr.  
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As previously indicated, the b-value curves shown in Figure 4.16 witnessed two locations 

of sudden increase in b-values. For example, these two points of sudden increase in the b-

values of 40-3-1 can be seen at approximately 120 hr and 205 hr, prior to first visual 

crack in this sample. Those points can be ascribed to both corrosion and micro-cracking 

onset, respectively, which were also associated with sudden change in the values of the 

number of hits and CSS. This finding indicates the effectiveness of the b-value analysis in 

the early identification of cover cracking (at the micro-cracking stage) prior to visual 

observation of cracks in all specimens. It is worth noting that, the points of large b-values 

(representing low AE activity) were contributed to the onset of corrosion and small cracks 

in a similar study (Ohtsu and Tomoda, 2008). On the contrary, the locations of low b-

values can be correlated to the nucleation of relatively large cracks resulting from the bar 

expansion owing to the accumulation of corrosion products leading to visible cover 

cracking (Ohtsu and Tomoda, 2008). It should be mentioned that all other tested samples 

(with varied corrosion levels and cover thicknesses) followed similar trend of variation in 

the b-values to those described in Figure 4.16. 
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Figure 4.16 b-value versus test time of samples: 20-3-1, 30-3-1, and 40-3-1 

4.11.2 Effect of Cover Thickness on the b-value 

As previously noted, the growth of cracks in the tested samples throughout the tests was 

associated with a general decline in the b-values reaching almost the minimum b-value at 

the end of the test periods (Figure 4.16). The b-values of all tested specimens obtained at 

the end of the tests and their corresponding values of corrosion-induced cover crack 

widths are demonstrated in Figure 4.17. It can be seen from Figure 4.17 that the increase 

of cover crack growth was seen to reduce the b-values at all values of cover thicknesses 

(20, 30, and 40 mm). These trends have been also confirmed in a number of 

investigations dealing with the b-value analysis of crack development in concrete 

structures (Colombo et al., 2003; Kurz et al., 2006; Sagar and Prasad, 2013; ElBatanouny 
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et al., 2014; Li et al., 2015; Behnia et al., 2016). It is also noticeable that the rate of 

decrease in the b-values was reduced after the formation of relatively large cracks (more 

than 1 mm) in all samples. It can also be seen that the samples with larger cover thickness 

yielded higher b-values at similar magnitudes of crack widths. These variations in the b-

values can be attributable to the differences in the test durations of the samples with 

different cover specimens to obtain similar values of final crack widths (Table 4.1). 

These results suggest that intensity analysis parameters (H (t) and Sr) were more sensitive 

than the b-values to the extent of crack growth irrespective of cover thickness. Therefore, 

the intensity analysis was solely used in the subsequent chapters to assess the extent of 

damage of all tested elements.  

    

 

Figure 4.17 b-value versus crack width in all tested samples: 20, 30, and 40 mm 
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5. Discussion of Results from Experimental Study 2: Corrosion 

Detection and Crack Growth Monitoring in Full-Scale RC Beams 

5.1 Introduction 

The tested beams in this investigation were subjected to four variable periods of 

accelerated corrosion process to reach four levels of corrosion in terms of steel mass loss 

(5%, 10%, 20%, and 30%). These levels of steel mass loss also yielded corrosion cover 

cracking at the exposed end of all beams, as can be seen from Table 5.1. All beams 

exhibited two cracks observed along the bonded length (subjected to chloride solution) of 

the two main bars (one crack at each beam side). Table 5.1 presents the maximum 

measured values of crack widths at the end of corrosion periods of all beams, which 

showed larger crack widths with higher percentage of steel mass lass. It can also be seen 

from Table 5.1 that the percentages of both the theoretical and actual steel mass loss 

indicated good agreement in all tested beams. 

Table 5.1 Results of the accelerated corrosion tests of all tested beams 

Beam 
Theoretical 

mass loss (%) 

Actual mass 

loss (%) 

Exposure 

time (days) 

Time to first 

crack (days) 

Maximum 

crack width 

(mm) 

B1 5 4.5 25 14 0.6 

B2 10 9.2 34 15 0.9 

B3 20 18.3 52 15 1.2 

B4 30 27.9 70 15 2.5 

B5 30 29.7 70 14 3.0 
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5.2 Identification of Corrosion Initiation in Full-Scale RC Beams Using AE 

Analysis and HCP Test 

The analysis of the AE data in this study including AE data filtering and intensity analysis 

were completed similar to that done in the previous chapter. As previously explained, the 

variations in the cumulative number of hits and CSS were analyzed throughout the tests to 

detect corrosion initiation in all tested beams. Besides, the intensity analysis parameters 

(H (t) and Sr) were also used to confirm this detection and to eventually assess the level of 

corrosion damage. Figure 5.1 represents the typical variations of these AE parameters for 

Sensor 2 of B1, as an example for all other tested beams. It can be seen from Figure 5.1a, 

b, and d that the values of cumulative number of hits, CSS, and Sr witnessed an overall 

increase until the end of corrosion period. This overall increase in these AE parameters 

can be attributed to both corrosion initiation and propagation in the exposed parts of the 

steel bars reaching 5% of mass loss and causing a maximum cover crack value of 0.6 mm 

(Table 5.1). The values of H (t), on the other hand, showed fluctuations throughout the 

test period with some specific points of noticeable peak values of H (t).  For example, the 

first peak point of H (t) with a value of 1.41 can be noticed from Figure 5.1c at nearly 9.8 

days. This point was also associated with a clear slope change in the curves of the 

cumulative number of hits, CSS, and Sr as shown in Figure 5.1a, b, and d. This point of 

sudden AE activity can be related to the occurrence of corrosion initiation, which is 

followed by the onset of micro-cracking at the concrete-to-steel interface. The 

identification of corrosion initiation by locating the points of sudden AE activity was also 

confirmed in a number of similar experimental studies (Ohtsu et al., 2011; Mangual et al., 

2013a, 2013b; Di Benedetti et al., 2013, 2014).   
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(c) 

 

(d) 

 

Figure 5.1 Typical variations of AE parameters versus test time of B1 recorded by 

Sensor 2: (a) cumulative number of hits, (b) CSS, (c) H (t), and (d) Sr 
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corrosion or cover cracks were noticed in any of the tested beams. It should be noted that, 

this detected corrosion activity was expected to be a distributed corrosion along the 

exposed part of the bar, which was confirmed from the subsequent corrosion propagation. 

The magnitudes of the previously defined AE parameters at the time of corrosion 

initiation of all tested beams are summarized in Table 5.2. To compare the AE detection 

of corrosion start in all tested beams, the half-cell potential (HCP) results were reviewed 

throuhout the test periods, as demonstrated in Figure 5.2. The HCP reading of more 

negative than -350 mV indicates more than 90% probability that reinforcing steel 

corrosion is occurring according to ASTM C876 (ASTM, 1999). Following this approach, 

the HCP tests detected corrosion initiation in all tested beams at 13-14 days from the 

beginning of test. These results manifested the capability of AE monitoring to detect 

corrosion initiation earlier than both the HCP method and visual observation of corroion-

induced cracks. It was also found that all the three sensors within the same beam enabled 

this early AE detection of corrosion start, with some variations in the absolute values of 

different AE parameters (Table 5.2) among the texted beams. This finding indicated that 

AE sensors have the ability to detect localized corrosion in RC beams within a range of 

damage location of 0.2 to 1.505 m. These finding confirmed the outcomes of the 

previously presented study on the small-scale RC samples (Chapter 4). However, the 

magnitudes of cumulative number of hits, CSS, and Sr at the time of corrosion detection 

showed to be affected by the specimen size, when compared with those obtained from the 

small-scale samples. These varied values of AE parameters may be related to the different 

number of the main reinforcing bars exposed to corrosion between small- and full-scale 

samples (one bar in small samples versus two bars in all beams). On the other hand, non-
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significant changes in the average values of H (t) associated with corrosion detection of 

the teseted beams in comparison to the those values reported in the previous chapter 

(Table 5.2). 

Table 5.2 Different AE parameters at corrosion detection in all tested beams 

Beam 

Cumulative number 

of hits 
CSS (mV.s) H (t) Sr  x 10

6
 (pV.s) 

Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

1 

Sensor 

2 

Sensor 

3 

B1 489 352 165 0.016 0.008 0.004 1.69 1.41 1.31 0.088 0.072 0.055 

B2 506 378 173 0.021 0.008 0.005 1.51 1.33 1.29 0.079 0.069 0.046 

B3 559 332 176 0.015 0.007 0.004 1.59 1.51 1.18 0.089 0.071 0.049 

B4 678 397 191 0.013 0.006 0.003 1.65 1.46 1.23 0.093 0.065 0.057 

B5 429 190 46 0.007 0.003 0.001 1.48 1.13 1.05 0.077 0.044 0.032 

 

 

Figure 5.2 HCP versus test time of all tested beams 
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5.3 Identification of Corrosion-Induced Cover Cracking in Full-Scale RC Beams 

Using AE Analysis 

After corrosion initiation, the analysis of the abovementioned AE parameters was 

continued to attain an early detection of cover cracking due to the expansive nature of 

corrosion products. The first visual crack was observed in all tested beams at 14-15 days 

from the beginning of the corrosion exposure in all tested beams (Table 5.1). A second 

peak in the values of H (t) reaching a value of 1.69 was noticed at nearly 12.5 days in B1, 

as shown in Figure 5.1c. At this location, a clear slope change in the curves of the 

cumulative number of hits, CSS, and Sr was also noticed, as demonstrated in Figure 5.1a, 

b, and d. The high AE activity is mostly ascribed to the growth of macro-cracking 

leading to cover cracks, which were visually later observed at the side of all tested beams. 

It is worth noting that the growth of both micro- and macro-cracking is considered one of 

the important sources of acoustic emission (Fowler et al., 1989). The identification of 

cover crack growth using the data from the three sensors in all tested beams was similarly 

performed and showed to occur at approximately 11.2-12.9 days. Table 5.3 reports the 

results of AE parameters used to identify the first crack in all tested beams including 

cumulative number of hits, CSS, H (t), and Sr. These results highlighted the effectiveness 

of the AE technique in the prognosis of corrosion crack growth earlier than their visual 

observation in all tested beams, regardless of sensor location. This ability of AE analysis 

to detect crack initiation was also accomplished using the same approach performed on 

small-scale RC samples (Chapter 4). Nonetheless, the values of AE parameters at the 

time first crack detection exhibited significant variations between both small- and full-

scale elements (Table 5.3). These changes may be attributed to the differences in both 
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patterns and widths of the corrosion-induced cracks observed between small- and full-

scale RC samples. 

Table 5.3 Different AE parameters at first crack detection in all tested beams 

Beam 

Cumulative number 

of hits 
CSS (mV.s) H (t) Sr  x 10

6
 (pV.s) 

Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

1 

Sensor 

2 

Sensor 

3 

B1 993 720 389 0.038 0.021 0.014 1.98 1.67 1.25 0.108 0.089 0.071 

B2 1066 803 512 0.045 0.019 0.011 1.83 1.51 1.18 0.096 0.076 0.058 

B3 963 752 403 0.042 0.021 0.016 2.02 1.63 1.31 0.107 0.078 0.066 

B4 1020 863 493 0.051 0.025 0.017 1.79 1.55 1.22 0.127 0.087 0.069 

B5 917 251 85 0.031 0.009 0.002 1.69 1.17 1.08 0.089 0.081 0.049 

 

5.4 Impact of Corrosion Damage Progression in Full-Scale RC Beams on AE 

Parameters 

The severe corrosion propagation stages were also monitored in all beams up to a 

maximum percentage of 30% of steel mass loss. This increase in the percentage of steel 

mass loss was also associated with an overall increase in the studied AE parameters 

(cumulative number of hits, CSS, H (t), and Sr). Table 5.4 highlights the results of these 

AE parameters at the end of the accelerated corrosion tests corresponding to the 

successive levels of damage of all beams. It can be noticed from Table 5.4 that an overall 

increase in the magnitudes of cumulative number of hits, CSS, H (t), and Sr was 

attributable to changing the corrosion level from 5% through 30% of steel mass loss. For 

instance, by comparing the data obtained from Sensor 2 of B1 and B4, the increase in 

corrosion exposure from 5 to 30% of steel mass loss yielded about 53%, 76%, 66%, and 

75% higher cumulative number of hits, CSS, H (t), and Sr. Similar increase in these 

parameters was also seen from varying corrosion level from 5 to 10%, 10 to 20%, and 20 
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to 30% from all sensors' data. This general increase in the AE parameters was attributed 

to both the accumulation of the expansive corrosion products and propagation of cover 

cracks along the bonded length of the exposed bars. This higher AE activity was also 

credited to the larger crack width of the corrosion cracks observed in beams with higher 

corrosion levels (Table 5.1). These outcomes proved the feasibility of AE analysis in 

evaluating the progression of corrosion (in terms of steel mass loss and corrosion-induced 

cover crack growth) in large-scale RC beams, irrespective of sensor position. It is worth 

noting that, even lower percentages of steel mass loss investigated in the previous study 

on small-scale samples (Chapter 4) warranted larger crack widths than those obtained 

from the tested beams in the current study (Table 5.1). The reduction of crack widths at 

higher percentages of steel mass loss in this investigation is ascribed to the confinement 

contribution of stirrups provided as well as larger concrete cover thickness used in full-

scale beams. Therefore, a general decline in the values of AE parameters (cumulative 

number of hits, CSS, H (t), and Sr) was noticed from increasing the specimen size (small- 

to full-scale samples, as seen in Table 5.4 compared to the small-scale data (Chapter 4). 

Table 5.4 Different AE parameters at the end of corrosion exposure in all tested 

beams 

Beam 

Cumulative number 

of hits 
CSS (mV.s) H (t) Sr  x 10

6
 (pV.s) 

Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

1 

Sensor 

2 

Sensor 

3 

B1 4972 3400 907 0.433 0.106 0.031 2.31 1.71 1.43 0.315 0.127 0.075 

B2 6252 4556 955 0.602 0.175 0.034 3.72 3.15 1.57 0.483 0.208 0.092 

B3 7364 5085 1218 2.12 0.214 0.046 4.97 4.79 1.61 0.536 0.387 0.103 

B4 13170 7194 3272 3.21 0.45 0.132 5.73 5.06 1.77 0.781 0.513 0.119 

B5 8174 2623 1296 0.702 0.124 0.058 5.66 1.64 1.42 0.638 0.091 0.062 
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5.5 Influence of Sensor Location on AE Parameters 

The results presented in Tables 5.2-5.4 indicated that the values of all AE parameters 

obtained from the three sensors in the same beam exhibited significant changes at all 

levels of damage. These changes were expected from varying the sensor location from the 

corrosion exposed side from 0.2 to 1.505 m. The increase in the sensor distance from the 

exposed bars showed to generally reduce the magnitudes of the cumulative number of 

hits, CSS, H (t), and Sr, in all beams subjected to variable levels of corrosion (corrosion 

initiation, cover cracking, and end of corrosion exposure). For example, increasing the 

sensor distance from 0.435 to 1.505 m in B5 at the end of corrosion period resulted in 

nearly 84%, 92%, 75%, and 90% lower values of the cumulative number of hits, CSS, H 

(t), and Sr. Similar reductions in the values of these parameters were also obtained from 

changing the sensor location in all other tested beams at all degrees of damage (Tables 

5.2-5.4). These overall minimized AE activities can be related to the wave attenuation, 

which is expected from the signal propagation in concrete due to scattering, reflections, 

and existence of cracks (Ervin, 2007). This reduced AE activity was also manifested by 

comparing the magnitudes of AE parameters at different stages of corrosion between 

small- and full-scale specimens due to increasing the specimen size (farther sensor 

locations) (Tables 5.2-5.4 compared to the preceding chapter).  

In the meantime, the values of the signal amplitudes showed to decrease by increasing the 

sensor location, thus reducing the signal strength, CSS, H (t), and Sr. Figure 5.3 

demonstrates the influence of sensor location on the amplitude of the signals detected at 

the time of corrosion initiation with the three sensors in all tested beams. It can be 
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observed from Figure 5.3 that the farther the sensor from the corroded bars, the lower the 

amplitude of the same signal detected by these sensors in each beam. For instance, by 

comparing the signal amplitudes recorded by Sensors 1 and 3 in B1, B2, B3, B4, and B5, 

it was found that increasing sensor distance led to approximately 6%, 7%, 5%, 6%, and 

13% lower amplitudes, respectively. These lower amplitudes resulted in a general decline 

trend in the values of the cumulative number of hits, CSS, H (t), and Sr (Tables 5.2-5.4). 

It was also noticed that B5 exhibited the maximum influence of sensor location on 

different AE parameters owing to the larger span of this beam compared to other beams. 

However, all sensors allowed the detection of all degrees of corrosion damage with a 

maximum sensor distance of 1.505 m from the source of damage investigated in this 

investigation.  
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Figure 5.3 Effect of sensor location on the amplitude of the signals detected at 

corrosion initiation 

5.6 Corrosion Damage Quantification in Full-Scale RC Beams Using AE Intensity 

Analysis 

The results of AE parameters analyzed in this study (cumulative number of hits, CSS, H 

(t), and Sr) showed that these parameters were sensitive to capture the different levels of 

corrosion degradation until obtaining 30% of steel mass loss. More specifically, the 

average results of H (t) and Sr acquired from the three sensors attached to each beam were 

calculated and graphed to classify the extent of corrosion propagation. Figure 5.4 

correlates the average H (t) and Sr with different stages of corrosion damage including 

corrosion initiation, first crack detection, 5%, 10%, 20%, and 30% of steel mass loss. 
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corresponding average values of H (t) and Sr, as described in Figure 5.5. This figure 

categorizes the maximum values of corrosion cover crack growth into four ranges (0.5-

0.6 mm, 0.7-0.9 mm, 1.0-2.4 mm, and 2.5-3.0 mm) according to the calculated values H 

(t) and Sr from all tested beams. Using these classification charts, the severity of corrosion 

level as well as corrosion-induced crack widths can be predicted using the AE data 

attained from continuous AE monitoring of corrosion in RC structures. It is worth noting 

that, further testing on larger number/size beams is required to tolerate the effects of 

specimen size/sensor location and number/configuration of main and secondary 

reinforcement. Eventually, these further tests (on larger number/size beams) are expected 

to improve the accuracy of the developed classification charts (Figure 5.4-5.5).  

 

 

Figure 5.4 Corrosion degree classification chart of full-scale RC beams 
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Figure 5.5 Cover crack growth classification chart of full-scale RC beams 
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6. Discussion of Results from Experimental Study 3: Evaluation of 

Concrete-Steel Bond Behaviour in Small-Scale Corroded/Un-

Corroded RC Samples 

6.1 Introduction 

Tables 6.1-6.2 summarize the results obtained from the pull-out tests performed on all 

tested samples (corroded and un-corroded). These results consist of the mode of failure, 

maximum load, bond strength (bond stress at the maximum recorded load), both the load 

and stress at the onset of micro-cracking detected using AE analysis, and values of free end 

slip at maximum load. The results presented in Tables 6.1-6.2 will be compared to the 

results acquired from AE monitoring to evaluate the bond behaviour in all tested samples.  

Table 6.1 Summary of pull-out tests results for all corroded tested samples 

Sample 

designation 
Failure mode 

Maximum 

load (kN) 

Bond 

strength 

(MPa) 

Free end slip 

at maximum 

load (mm) 

Micro-

cracking 

load  (kN) * 

Micro-

cracking stress 

(MPa) * 

20M20A1-1 Splitting cracks 24 7.64 0.17 18 5.73 

20M20A1-2 Splitting cracks 28 8.92 0.19 16 5.10 

20M20C1-1 Broken 61 4.86 0.52 45 3.58 

20M20C1-2 Broken 65 5.18 0.53 52 4.14 

20M20A2-1 Splitting cracks 16 5.10 0.14 12 3.82 

20M20A2-2 Splitting cracks 28 8.92 0.17 18 5.73 

20M20C2-1 Broken 60 4.78 0.54 48 3.82 

20M20C2-2 Broken 57 4.54 0.45 51 4.06 

20M20A3-1 Splitting cracks 22 7.01 0.15 16 5.10 

20M20A3-2 Splitting cracks 19 6.05 0.14 15 4.78 

20M20C3-1 Broken 45 3.58 0.38 40 3.18 

20M20C3-2 Broken 55 4.38 0.41 49 3.90 

20M20A4-1 Splitting cracks 22 7.01 0.13 16 5.10 

20M20A4-2 Splitting cracks 16 5.10 0.09 12 3.82 
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20M20C4-1 Broken 43 3.42 0.28 38 3.03 

20M20C4-2 Broken 47 3.74 0.33 40 3.18 

20M20A5-1 Splitting cracks 15 4.78 0.07 12 3.82 

20M20A5-2 Splitting cracks 18 5.73 0.08 14 4.46 

20M20C5-1 Splitting cracks 34 2.71 0.26 30 2.39 

20M20C5-2 Splitting cracks 36 2.87 0.27 33 2.63 

20M30A1-1 Splitting cracks 33 10.51 0.24 23 7.32 

20M30A1-2 Splitting cracks 32 10.19 0.22 21 6.69 

20M30C1-1 Broken 75 5.97 0.71 50 3.98 

20M30C1-2 Broken 72 5.73 0.65 46 3.66 

20M30A2-1 Splitting cracks 35 11.15 0.25 15 4.78 

20M30A2-2 Splitting cracks 25 7.96 0.19 16 5.10 

20M30C2-1 Broken 65 5.18 0.65 43 3.42 

20M30C2-2 Broken 70 5.57 0.62 39 3.11 

20M30A3-1 Splitting cracks 31 9.87 0.18 18 5.73 

20M30A3-2 Splitting cracks 23 7.32 0.16 15 4.78 

20M30C3-1 Broken 72 5.73 0.45 41 3.26 

20M30C3-2 Broken 71 5.65 0.47 49 3.90 

20M30A4-1 Splitting cracks 27 8.60 0.16 21 6.69 

20M30A4-2 Splitting cracks 24 7.64 0.13 14 4.46 

20M30C4-1 Broken 62 4.94 0.42 45 3.58 

20M30C4-2 Broken 79 6.29 0.46 53 4.22 

20M30A5-1 Splitting cracks 24 7.64 0.13 19 6.05 

20M30A5-2 Splitting cracks 26 8.28 0.14 18 5.73 

20M30C5-1 Broken 62 4.94 0.45 36 2.87 

20M30C5-2 Splitting cracks 31 2.47 0.33 28 2.23 

20M40A1-1 Splitting cracks 33 10.51 0.22 25 7.96 

20M40A1-2 Splitting cracks 35 11.15 0.21 24 7.64 

20M40C1-1 Broken 92 7.32 0.68 66 5.25 

20M40C1-2 Broken 90 7.17 0.63 62 4.94 

20M40A2-1 Splitting cracks 32 10.19 0.2 20 6.37 

20M40A2-2 Splitting cracks 32 10.19 0.19 22 7.01 

20M40C2-1 Broken 85 6.77 0.62 49 3.90 

20M40C2-2 Broken 81 6.45 0.56 43 3.42 

20M40A3-1 Splitting cracks 29 9.24 0.17 23 7.32 

20M40A3-2 Splitting cracks 34 10.83 0.22 15 4.78 

20M40C3-1 Broken 76 6.05 0.44 45 3.58 

20M40C3-2 Splitting cracks 78 6.21 0.61 47 3.74 
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20M40A4-1 Splitting cracks 31 9.87 0.16 17 5.41 

20M40A4-2 Splitting cracks 29 9.24 0.18 13 4.14 

20M40C4-1 Splitting cracks 69 5.49 0.48 53 4.22 

20M40C4-2 Splitting cracks 73 5.81 0.49 48 3.82 

20M40A5-1 Splitting cracks 39 9.42 0.17 19 6.05 

20M40A5-2 Splitting cracks 27 8.60 0.12 17 5.41 

20M40C5-1 Broken 68 5.41 0.47 43 3.42 

20M40C5-2 Splitting cracks 65 5.18 0.41 47 3.74 

* Detected at the beginning of micro-cracking using AE analysis 

Table 6.2 Summary of pull-out tests results for all un-corroded tested samples 

Sample 

designation 
Failure mode 

Maximum 

load (kN) 

Bond 

strength 

(MPa) 

Free end 

slip at 

maximum 

load (mm) 

Micro-

cracking 

load  (kN) * 

Micro-

cracking stress 

(MPa) * 

10M20A0-1 Splitting cracks 20 12.74 0.10 13 8.28 

10M20A0-2 Splitting cracks 22 14.01 0.18 14 8.92 

10M20B0-1 Splitting cracks 33 10.51 0.25 23 7.32 

10M20B0-2 Splitting cracks 35 11.15 0.26 24 7.64 

10M20C0-1 Broken 43 6.85 0.26 38 6.05 

10M20C0-2 Broken 44 7.01 0.26 29 4.62 

20M20A0-1 Splitting cracks 32 10.19 0.16 27 8.60 

20M20A0-2 Splitting cracks 34 10.83 0.22 24 7.64 

20M20B0-1 Splitting cracks 54 8.60 0.33 31 4.94 

20M20B0-2 Splitting cracks 48 7.64 0.26 30 4.78 

20M20C0-1 Broken 77 6.13 0.51 48 3.82 

20M20C0-2 Broken 77 6.13 0.51 61 4.86 

35M20A0-1 Splitting cracks 38 6.92 0.26 20 3.64 

35M20A0-2 Splitting cracks 36 6.55 0.17 20 3.64 

35M20B0-1 Splitting cracks 54 4.91 0.31 34 3.09 

35M20B0-2 Splitting cracks 57 5.19 0.53 36 3.28 

35M20C0-1 Broken 77 3.50 0.51 66 3.00 

35M20C0-2 Broken 98 4.46 0.51 85 3.87 

10M30A0-1 Splitting cracks 23 14.65 0.25 15 9.55 

10M30A0-2 Splitting cracks 24 15.29 0.12 14 8.92 

10M30B0-1 Bar yield 45 NA NA NA NA 

10M30B0-2 Bar yield 52 NA NA NA NA 

10M30C0-1 Bar yield 46 NA NA NA NA 
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10M30C0-2 Bar yield 40 NA NA NA NA 

20M30A0-1 Splitting cracks 35 11.15 0.36 15 4.78 

20M30A0-2 Splitting cracks 39 12.42 0.15 17 5.41 

20M30B0-1 Splitting cracks 57 9.08 0.37 37 5.89 

20M30B0-2 Splitting cracks 58 9.24 0.31 49 7.80 

20M30C0-1 Broken 77 6.13 0.76 52 4.14 

20M30C0-2 Broken 103 8.20 0.75 48 3.82 

35M30A0-1 Splitting cracks 51 9.28 0.25 36 6.55 

35M30A0-2 Splitting cracks 48 8.74 0.26 23 4.19 

35M30B0-1 Splitting cracks 88 8.01 0.76 51 4.64 

35M30B0-2 Splitting cracks 74 6.73 0.48 45 4.09 

35M30C0-1 Broken 87 3.96 0.78 68 3.09 

35M30C0-2 Broken 90 4.09 0.74 76 3.46 

10M40A0-1 Splitting cracks 25 15.92 0.19 15 9.55 

10M40A0-2 Splitting cracks 26 16.56 0.22 16 10.19 

10M40B0-1 Bar yield 40 NA NA NA NA 

10M40B0-2 Bar yield 42 NA NA NA NA 

10M40C0-1 Bar yield 41 NA NA NA NA 

10M40C0-2 Bar yield 44 NA NA NA NA 

20M40A0-1 Splitting cracks 38 12.10 0.24 21 6.69 

20M40A0-2 Splitting cracks 42 13.38 0.26 12 3.82 

20M40B0-1 Splitting cracks 60 9.55 0.27 46 7.32 

20M40B0-2 Splitting cracks 85 13.54 0.45 55 8.76 

20M40C0-1 Broken 124 9.87 0.78 89 7.09 

20M40C0-2 Broken 122 9.71 0.65 54 4.30 

35M40A0-1 Splitting cracks 64 11.65 0.47 31 5.64 

35M40A0-2 Splitting cracks 48 8.74 0.43 27 4.91 

35M40B0-1 Broken 107 9.74 0.69 51 4.64 

35M40B0-2 Broken 97 8.83 0.74 45 4.09 

35M40C0-1 Broken 134 6.10 0.75 74 3.37 

35M40C0-2 Broken 156 7.10 1.17 83 3.78 

* Detected at the beginning of micro-cracking using AE analysis 
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6.2 AE Data Filtering from Bond Tests 

The raw AE data recorded during all pull-out tests were filtered to reduce any noise-

related signals and/or irrelevant wave reflections within the sample’s boundaries. An 

amplitude-duration-based filter, or Swansong II filter (Fowler et al., 1989), was 

performed on the original AE results acquired from all tests. This filter has previously 

been implemented in a number of similar studies involving the application of AE 

monitoring in concrete structures (for example: ElBatanouny et al., 2014; Abdelrahman et 

al., 2015; Vélez et al., 2015). The concept of this filtering technique is derived from the 

assumption that real AE signals with high amplitudes are accompanied by long durations, 

and vice versa (Abdelrahman et al., 2015). Using this procedure, the acceptance criteria 

were established after the visual inspection of all recorded AE signals, as demonstrated in 

Table 6.3. By applying these criteria, all signals that did not meet these amplitude-

duration ranges were filtered and the remaining AE hits were then considered legitimate 

emissions generated from bond deterioration until failure. These final AE data were 

consequently analyzed and evaluated, as will be explained in the following sections. It is 

worth noting that, the characteristics of AE waveforms recorded in this investigation may 

vary from those anticipated in existing concrete structures. To overcome this issue, the 

acceptance limits of the filtering approach utilized in this study may require some minor 

modifications to take into account any possible difference in the AE waveform signatures 

obtained from monitoring actual concrete structures. This aim can be achieved by 

verifying the effectiveness of this filtering approach in filtering AE data acquired from 
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monitoring in-service concrete structures under similar conditions to enhance the 

sensitivity of the amplitude-duration limits of this filter. 

Table 6.3 Acceptance criteria for AE signals from bond tests 

Amplitude 

range (dB) 

Duration (μs) Amplitude 

range (dB) 

Duration (μs) 
Lower Upper Lower Upper 

40 ≤ A < 45 0 400 60 ≤ A < 65 300 1000 

45 ≤ A< 48 0 500 65 ≤ A< 70 500 2000 

48 ≤ A< 52 0 600 70 ≤ A< 80 1000 4000 

52 ≤ A< 56 0 700 80 ≤ A< 90 2000 7000 

56 ≤ A< 60 100 800 90 ≤ A< 100 3000 10000 

 

6.3 AE Intensity Analysis on the Data from Bond Tests 

AE intensity analysis similar to that introduced in the previous chapters was exploited to 

further develop AE parameters that can better identify and characterize the extent of bond 

damage in concrete structures. These parameters can then be employed to construct 

damage intensity classification charts based on the acquired AE signal strength data. 

Intensity analysis was first applied in fibre-reinforced polymer vessels (Fowler et al., 

1989) and has also been utilized for the evaluation of various damage mechanisms of 

concrete structures (Golaski et al., 2002; Nair and Cai, 2010; Rizzo et al., 2010; 

ElBatanouny et al., 2014; Abdelrahman et al., 2015; Vélez et al., 2015). The AE signal 

strength data recorded during the pull-out tests (after being filtered) were subjected to an 

intensity analysis to assess the bond behaviour of corroded/un-corroded reinforcement to 

concrete in all specimens. This analysis of AE signal strength yielded two additional AE 

parameters: historic index (H (t)) and severity (Sr). H (t) indicates any sudden variation in 

the slope of the cumulative signal strength (CSS) curve versus test time. The value of H 
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(t) was calculated using Equation 6.1 throughout the pull-out test period in all tested 

samples (Nair and Cai, 2010; ElBatanouny et al., 2014; Abdelrahman et al., 2015). 

𝐻ሺݐሻ =  ேே−  ∑ 𝑆𝑜𝑖𝑁𝑖=𝐾+1∑ 𝑆𝑜𝑖𝑁𝑖=1                                                ( 6.1 )                             

Where: N = the cumulative number of hits up to time (t) and Soi = signal strength of the i
th

 

event. 

In the meantime, Sr is based on the average signal strength of the J hits with the 

maximum algebraic value of signal strength, and was estimated using Equation 6.2 for 

all tested samples (Nair and Cai, 2010; ElBatanouny et al., 2014; Abdelrahman et al., 

2015). 𝑆𝑟 = ∑ 𝑆𝑜𝑖𝑖=1                                                                                                          ( 6.2 )                                                                                                                       

It is worth noting that the values of the constants K in Equation 6.1 and J in Equation 

6.2 may depend on the damage mechanism and type of structure (Vélez et al., 2015). 

Parametric analysis similar to that performed in a study on AE monitoring of prestressed 

concrete piles (Vélez et al., 2015) can be conducted to obtain the most suitable values of 

these constants according to the damage mechanism/type of structure. However, for the 

purpose of this preliminary study, the values of these constants (K and J) were chosen 

based on reviewing a number of investigations dealing with AE monitoring in concrete 

structures, such as references: (Nair and Cai, 2010; ElBatanouny et al., 2014; 

Abdelrahman et al., 2015). The selected values of K and J in this study are mostly used in 

the literature and proved their suitability for the application of AE intensity analysis in 

reinforced concrete structures (Nair and Cai, 2010). The value of K was assumed 

according to the cumulative number of hits, as follows: a) N/A: if N ≤ 50, b) K = N – 30: 
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if 51 ≤ N ≤ 200, c) K = 0.85N: if 201 ≤ N ≤ 500, and d) K = N – 75: if N ≥ 501. On the 

other hand, J was taken as a constant value of 50, irrespective of the cumulative number 

of hits (Nair and Cai, 2010; ElBatanouny et al., 2014; Abdelrahman et al., 2015). The 

magnitudes of both H (t) and Sr were calculated using Equation 6.1 and Equation 6.2 for 

all tested samples at all test intervals. 

6.4 Bond Behaviour of Corroded/Un-Corroded Samples 

It is obvious from Tables 6.1-6.2 that most samples (corroded/un-corroded) failed by 

bond splitting failure, which resulted in either splitting cracks along the bonded length at 

all four faces of the specimen or completely breaking the sample. For instance, the typical 

splitting failure of sample 20M30B0-1 is shown in Figure 6.1. However, fewer un-

corroded samples exhibited bar yield before any damage at the steel-concrete interface 

had occurred. For the purpose of evaluating the AE activities in subsequent discussions, 

those samples with yielded bars were utilized as a benchmark to other tested samples that 

failed by splitting cracking. On the other hand, all corroded samples failed by bond 

splitting failure regardless of corrosion level. These results may be attributed to existence 

of corrosion cover cracks in all corroded samples before being tested under pull-out tests. 

Table 6.4 demonstrates the values of corrosion exposure periods, average electric 

currents, corrosion cover crack widths, and compares the magnitudes of both actual and 

theoretical mass loss of steel in all corroded samples. 
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Figure 6.1 Typical bond splitting cracks at failure (example sample: 20M30B0-1) 

Table 6.4 Results of accelerated corrosion process of all corroded samples 

Sample 

designation 

Corrosion 

exposure 

(day) 

Average 

current 

(mA) 

Actual mass 

loss of steel 

(%) 

Crack width 

(mm) 

20M20A1-1 3 15 0.99 0.11 

20M20A1-2 3 17 1.13 0.12 

20M20C1-1 3 58 0.97 0.31 

20M20C1-2 3 65 1.08 0.34 

20M20A2-1 5 19 1.88 0.24 

20M20A2-2 5 21 2.07 0.34 

20M20C2-1 5 71 1.97 0.58 

20M20C2-2 5 69 1.91 0.45 

20M20A3-1 6 22 2.92 0.31 

20M20A3-2 6 24 2.98 0.32 

20M20C3-1 6 89 2.93 0.75 

20M20C3-2 6 91 2.89 0.82 

20M20A4-1 8 23 3.95 1.04 

20M20A4-2 8 22 3.86 0.85 

20M20C4-1 8 93 4.02 2.21 

20M20C4-2 8 90 3.79 1.85 

20M20A5-1 10 24 4.96 1.45 

20M20A5-2 10 23 4.69 1.16 

20M20C5-1 9 105 5.03 3.45 

20M20C5-2 9 98 4.88 2.55 

20M30A1-1 6 8 0.96 0.08 

20M30A1-2 6 7 0.93 0.06 

20M30C1-1 6 29 0.97 0.14 
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20M30C1-2 6 31 1.03 0.21 

20M30A2-1 8 13 2.01 0.28 

20M30A2-2 8 11 1.96 0.24 

20M30C2-1 8 46 1.95 0.48 

20M30C2-2 8 43 1.91 0.43 

20M30A3-1 10 14 2.88 0.32 

20M30A3-2 10 16 2.93 0.45 

20M30C3-1 10 55 3.02 0.58 

20M30C3-2 10 53 2.9 0.52 

20M30A4-1 12 16 3.59 0.49 

20M30A4-2 12 18 3.86 0.65 

20M30C4-1 12 64 3.99 1.08 

20M30C4-2 12 60 3.78 0.82 

20M30A5-1 13 18 4.87 0.89 

20M30A5-2 13 20 4.89 1.11 

20M30C5-1 15 60 4.99 1.12 

20M30C5-2 15 70 5.05 1.21 

20M40A1-1 15 5 0.69 0.05 

20M40A1-2 15 7 0.87 0.09 

20M40C1-1 15 15 0.75 0.24 

20M40C1-2 15 18 0.93 0.38 

20M40A2-1 16 8 1.89 0.21 

20M40A2-2 16 9 1.94 0.23 

20M40C2-1 16 19 1.76 0.28 

20M40C2-2 16 23 1.93 0.35 

20M40A3-1 17 10 2.95 0.31 

20M40A3-2 17 11 2.87 0.34 

20M40C3-1 17 31 2.92 0.48 

20M40C3-2 17 33 3.01 0.52 

20M40A4-1 18 12 3.76 0.44 

20M40A4-2 18 15 3.99 0.42 

20M40C4-1 18 43 4.05 0.91 

20M40C4-2 18 39 3.89 0.87 

20M40A5-1 19 13 4.87 0.96 

20M40A5-2 19 16 5.06 1.08 

20M40C5-1 19 47 4.86 1.13 

20M40C5-2 19 51 4.93 1.14 
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6.5 Detection of Micro- and Macro-cracking in Corroded/Un-Corroded Samples 

Using AE Analysis 

The analysis of the AE cumulative number of hits curves has previously been applied to 

evaluate the bond behaviour (Iwaki et al., 2003) and to detect the different stages of bond 

damage in reinforced concrete (Gallego et al., 2015). On the other hand, the use of signal 

strength parameters (CSS, H (t), and Sr) has been found to be more sensitive in detecting 

various damage mechanisms in concrete structures—for example: (Nair and Cai, 2010; 

Rizzo et al., 2010; ElBatanouny et al., 2014; Abdelrahman et al., 2015; Vélez et al., 

2015). To this end, the AE data (after being filtered) recorded throughout the pull-out test 

performed on sample 20M40A5-2 (as an example of all corroded samples) are graphed in 

Figure 6.2. The figure presents the variations in the values of AE cumulative number of 

hits, cumulative signal strength (CSS), historic index (H (t)), and severity (Sr) versus the 

elapsed time during the pull-out test on this specimen. Figure 6.2a indicates that the AE 

cumulative number of hits increased throughout the test until failure, with only one 

noticeable point of slope change at nearly 55 seconds after the beginning of the test. This 

increase in the AE cumulative number of hits can be related to the transfer of forces 

between steel and concrete by means of chemical adhesion and friction up to 55 seconds. 

After the slope change in this figure, the higher rise in the AE activity (cumulative 

number of hits) can be attributed to the onset of cover cracking, followed by de-bonding 

and bar slippage until bond splitting failure occurred in the sample.  

In contrast, Figure 6.2b shows three locations of slope change in the CSS versus test time 

at approximately 51, 64, and 89 seconds. These locations can also be noticed in the values 

of H (t) and Sr, as seen from Figure 6.2c and Figure 6.2d, respectively. These figures 
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manifest sudden increases in the values of H (t) and Sr at these three locations, which can 

be correlated to the successive stages of bond deterioration until failure. The first slope 

change in the CSS and Sr curves was associated with a clear increase in the value of H (t) 

reaching a value of 1.52. This point is mostly related to the initiation of the micro-

cracking at the concrete-steel interface, which was seen at a bond stress of 5.41 MPa. This 

bond stress represents 1.43 fct that is located in the range of 0.8–3.0 fct. It has been 

reported in the literature that this range of bond stress is normally accompanied by the 

presence of micro-cracking at the concrete-steel interface, which is followed by the 

initiation of bar slippage and macro-cracking of the concrete core (CEB-FIP, 2000; 

Gallego et al., 2015). The second slope change in the CSS and Sr curves was noted at the 

maximum detected value of H (t), which is 2.52, as shown in Figure 6.2c. This point can 

be attributed to the onset of macro-cracking in the concrete core surrounding the bar, 

which preceded the occurrence of bar slippage. The detection of macro-cracking was also 

confirmed by visual inspection of the sample during the test and observing the cover 

cracking starting at about 72 seconds. The observation of the first visual crack was 

carefully noticed in all tested samples during the execution of the pull-out experiments. 

The identification of splitting cracking was further confirmed by reviewing the recorded 

values of the applied load through each test, which exhibited a small drop in the load 

versus time curve at the time of first visual crack detection. 

The results of CSS and Sr continued to increase after the second slope change, 

corresponding to further cover cracking and bar slippage, until the results reached a third 

slope change at 89 seconds, as shown in Figure 6.2b and Figure 6.2d. This location 

showed the last significant increase in the value of H (t) (1.83) just before the sample 
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failed by bond splitting mode. This value of H (t) was lower than that obtained at the 

detection of macro-cracking (2.52). This reduction in the magnitude of H (t) before 

failure can be attributed to the wave attenuation resulting from the existence of splitting 

cracks in the concrete cover, which would lead to lower signal strength and H (t). 

Nonetheless, the results of AE cumulative number of hits, CSS, and Sr kept increasing 

until bond splitting failure occurred, as indicated by the horizontal part of the curves in 

Figure 6.2. It should be mentioned that all other tested samples (both corroded and un-

corroded) followed a similar trends in the curves of the cumulative number of hits, CSS, 

H (t), and Sr versus test time of sample 20M40A5-2 (but with different magnitudes of 

these AE parameters).  

Similarly, Figure 6.3 demonstrates the variations of the CSS and H (t) versus test time of 

two typical un-corroded samples (10M30B0-2 and 20M30B0-1). Sample 20M30B0-1 

represents un-corroded samples that failed by typical bond splitting failure, and sample 

10M30B0-2 represents bar yielded samples associated with no damage at the steel-

concrete interface. It can be seen from Figure 6.3a that sample 10M30B0-2’s CSS curve 

followed an almost linear increasing trend corresponding to the increase in loading until 

the bar yielded. Since no splitting failure occurred in sample 10M30B0-2, the increase in 

CSS of this sample may be attributed to the transfer of force between steel and concrete 

by means of chemical adhesion before the occurrence of micro-cracking. In contrast, 

Figure 6.3c indicates that the slope of the CSS curve witnessed two noticeable changes at 

nearly 220 s and 260 s from the beginning of the test. The first slope change in sample 

20M30B-1 was detected at a stress value of 5.89 MPa (Table 6.2). This stress value 

corresponds to approximately 1.55 fct, which lies in the range of 0.8–3.0 fct.  



 

110 

 

After the first slope change of sample 20M30B0-1, the CSS curve continued to increase 

due to further micro-cracking and growth of macro-cracking. The second slope change of 

the CSS curve, with further increase of loading, can be related to the formation of macro-

cracking (splitting cracks) as a result of the expected wedging action in small concrete 

cover thicknesses. The CSS curve also exhibited a slight rise after the second slope 

change until failure. This short rise in the CSS curve may be related to the increasing bar 

slippage values as well as widening of the splitting cracks until failure, which resulted in 

continuous AE activity. The initiation of micro- and macro-cracking stages was likewise 

distinguished by analyzing the H (t) curves in Figure 6.3b, d, which show that the values 

of H (t) fluctuated throughout the test period of sample 10M30B0-2 with no major 

variations (0.6–1.3). Conversely, as shown in Figure 6.3d, H (t) showed significant 

changes in the other sample (20M30B0-1). The first sudden increase in the values of H (t) 

for sample 20M30B-1 can be observed around 220 s (at the location of slope change in 

the CSS curve) with a value of 1.7. After this point, the values of H (t) continued to 

increase owing to the splitting cracks growth until reaching a maximum value of 6.05 at 

nearly 260 s. This maximum value also matched the point of the second slope change of 

the CSS curve (macro-cracking) a little before sample 20M30B0-1 underwent splitting 

failure. On the other hand, the variations in the curves of cumulative number of hits and 

Sr were found to be very similar to those observed in the CSS; therefore, only the CSS 

and H (t) curves were included in Figure 6.3.  

On this basis, the stage of micro-cracking in all corroded/un-corroded samples (except 

those ones with bar yield) was identified and the corresponding magnitudes of load and 

stress are reported in Tables 6.1-6.2. In addition, Tables 6.5-6.6 show the AE parameter 
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values—i.e., cumulative number of hits, CSS, H (t), and Sr—at both the micro- and 

macro-cracking stages for all corroded/un-corroded samples. The tables also include the 

amplitude values of the signals detected at these stages of bond damage. It can also be 

noticed that the variations in bar diameter, concrete cover thickness, corrosion level, and 

embedded length yielded significant changes in the results of bond behaviour among the 

tested samples, as will be explained in the following sections. It should be noted that, the 

identification of bond damage (micro- and macro-cracking) using the variations of CSS, 

H (t), and Sr presented in this study is based on the range of tested variables in this 

investigation. Further studies are needed to examine the effects of other factors exist in 

real concrete structures (such as varying the bar confinement, specimen size, and ambient 

conditions) on AE parameters in order to complement/confirm these results. 

The AE waveform parameters detected prior to micro- and macro-cracking were 

characterized by relatively low amplitude signals (average of 50 dB). Whilst, higher 

amplitude signals (average of 75 dB) were associated with the detection of both micro- 

and macro-cracking, with no clear differences observed between the amplitudes of these 

signals (Tables 6.5-6.6). Thus, the analysis of the amplitude values of the collected AE 

waves may be used for detecting the damage, but is not a feasible method for identifying 

different levels of bond damage. This was due to the non-significant changes of the 

amplitudes of the signals detected at both micro- and macro-cracking for all tested 

samples. It should be mentioned that all other AE signal parameters (duration, energy, 

rise time, average frequency, counts, and peak frequency) also showed non-significant 

variations between tested samples acquired both at micro-cracking initiation and macro-

cracking. Therefore, only the cumulative number of hits, CSS, H (t), and Sr parameters 
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(Tables 6.5-6.6) were considered in evaluating the effects of bar diameter, bonded length, 

corrosion level, and cover thickness on the bond behaviour, as will be explained in the 

following sections. 
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(c) 

 
(d) 

 

Figure 6.2 Variations of AE parameters versus test time for typical corroded sample 

(20M40A5-2): (a) cumulative number of hits, (b) CSS, (c) H (t), and (d) Sr 
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(c) 

 
(d) 

 

Figure 6.3 CSS and H (t) curves for typical un-corroded samples (10M30B0-2 and 

20M30B0-1): (a) CSS versus test time for sample 10M30B0-2, (b) H (t) versus test 

time for sample 10M30B0-2, (c) CSS versus test time for sample 20M30B0-1, and (d) 

H (t) versus test time for sample 20M30B0-1 
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Table 6.5 Different AE parameters at micro- and macro-cracking stages of all 

corroded samples 

Sample 

designation 

Cumulative 

number of hits 
CSS (pV.s) x 10

6
 Amplitude (dB) H (t) Sr (pV.s) x 10

4
 

Micro-

cracking 

Macro-

cracking 

Micro-

cracking  

Macro-

cracking 

Micro-

cracking 

Macro-

cracking 

Micro-

cracking  

Macro-

cracking 

Micro-

cracking 

Macro-

cracking  

20M20A1-1 509 763 13.15 81.38 71 69 1.44 2.83 6.49 14.12 

20M20A1-2 411 905 11.51 69.90 67 71 1.53 2.55 5.95 11.98 

20M20C1-1 1556 2364 81.04 121.73 70 68 1.55 5.06 15.33 84.54 

20M20C1-2 1731 2358 83.65 128.81 68 71 1.48 5.07 14.53 87.25 

20M20A2-1 401 735 11.81 71.49 66 69 1.40 2.40 4.64 11.55 

20M20A2-2 365 841 8.92 76.30 70 72 1.42 2.26 5.11 12.80 

20M20C2-1 1602 2059 83.20 116.09 74 75 1.55 4.04 15.06 88.04 

20M20C2-2 1321 1736 80.45 123.05 76 73 1.54 3.69 13.33 84.30 

20M20A3-1 399 726 9.52 63.58 70 70 1.45 2.21 4.46 10.29 

20M20A3-2 331 590 9.09 60.45 76 73 1.38 2.05 4.10 11.31 

20M20C3-1 1581 1884 81.18 111.32 73 71 1.40 3.44 12.07 84.68 

20M20C3-2 1370 1755 78.79 97.81 71 74 1.58 3.28 12.03 85.58 

20M20A4-1 308 595 8.00 55.27 68 70 1.38 2.01 4.60 10.12 

20M20A4-2 291 1603 9.56 52.74 67 76 1.45 2.02 4.84 10.06 

20M20C4-1 1267 1827 69.27 103.45 71 74 1.40 2.60 8.89 81.90 

20M20C4-2 1261 1649 78.40 97.04 67 71 1.44 3.01 10.61 82.38 

20M20A5-1 302 557 7.42 47.67 72 69 1.51 1.91 5.02 10.20 

20M20A5-2 264 538 6.78 43.84 68 71 1.31 1.81 3.53 9.30 

20M20C5-1 1101 1745 68.64 88.01 71 72 1.37 2.11 7.04 75.80 

20M20C5-2 1151 1482 68.80 91.36 77 73 1.60 1.95 9.51 80.60 

20M30A1-1 460 770 14.02 95.67 66 70 1.44 2.79 9.06 29.03 

20M30A1-2 473 695 12.06 84.37 77 66 1.38 3.05 9.13 37.99 

20M30C1-1 2015 2691 133.69 190.17 69 68 1.53 4.86 16.87 91.97 

20M30C1-2 2307 2436 128.36 171.15 73 71 1.55 4.67 14.89 80.99 

20M30A2-1 426 688 14.02 90.19 81 71 1.33 2.72 8.99 34.78 

20M30A2-2 441 773 10.36 79.87 66 69 1.29 2.63 8.63 30.69 

20M30C2-1 1839 2203 143.28 178.69 67 71 1.60 3.97 12.79 80.01 

20M30C2-2 2005 2421 116.30 154.13 69 70 1.48 4.02 15.08 89.45 

20M30A3-1 401 680 10.98 77.15 74 72 1.47 2.34 7.45 25.25 

20M30A3-2 423 641 11.08 80.39 73 80 1.36 2.49 8.16 36.07 

20M30C3-1 1907 2336 119.36 145.23 71 67 1.51 3.55 14.09 77.09 

20M30C3-2 1856 2103 106.97 139.66 69 68 1.46 3.43 13.01 73.97 
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20M30A4-1 351 590 9.69 70.36 66 70 1.60 2.46 7.22 31.02 

20M30A4-2 336 613 8.77 65.37 80 68 1.39 2.22 6.88 23.12 

20M30C4-1 1697 1987 109.04 137.14 66 73 1.61 3.04 12.36 69.19 

20M30C4-2 1783 2107 90.58 110.28 68 72 1.44 2.89 10.99 60.07 

20M30A5-1 310 567 7.82 52.19 75 76 1.42 2.39 7.15 29.20 

20M30A5-2 319 591 8.19 60.37 69 71 1.52 2.06 6.13 21.09 

20M30C5-1 1306 1882 90.16 112.71 75 76 1.42 2.32 10.69 53.40 

20M30C5-2 1508 2203 85.34 96.87 70 67 1.37 2.67 11.28 57.09 

20M40A1-1 669 908 12.77 78.09 70 68 1.37 2.99 7.66 28.36 

20M40A1-2 587 963 15.19 86.02 71 72 1.58 3.19 12.92 36.19 

20M40C1-1 2411 3652 161.23 199.63 67 70 1.46 5.97 18.66 96.24 

20M40C1-2 2569 4120 148.69 215.15 73 69 1.60 5.23 17.69 88.19 

20M40A2-1 539 798 12.02 74.87 69 69 1.42 3.05 10.69 32.21 

20M40A2-2 510 888 12.66 76.98 70 72 1.48 2.83 9.29 31.39 

20M40C2-1 2109 3098 119.39 177.98 80 70 1.39 5.01 18.04 89.63 

20M40C2-2 2262 3436 143.69 193.05 69 67 1.19 4.57 16.40 82.90 

20M40A3-1 493 819 10.38 68.12 67 80 1.51 3.02 10.08 32.90 

20M40A3-2 462 769 11.01 69.09 67 67 1.43 2.95 8.88 29.80 

20M40C3-1 2039 2769 106.12 129.69 69 66 1.37 3.87 14.12 71.39 

20M40C3-2 1966 2912 122.09 166.37 77 69 1.46 4.02 16.05 80.63 

20M40A4-1 402 802 9.88 66.19 76 74 1.28 2.49 9.55 30.13 

20M40A4-2 389 713 8.66 60.28 73 80 1.39 2.88 8.12 26.12 

20M40C4-1 1903 2697 103.78 147.98 75 68 1.71 3.69 14.97 73.88 

20M40C4-2 1706 2467 97.01 130.69 70 72 1.58 3.25 13.67 66.12 

20M40A5-1 427 654 6.05 64.01 68 70 1.39 2.64 8.87 29.64 

20M40A5-2 174 598 11.99 52.07 69 74 1.52 2.52 7.64 24.15 

20M40C5-1 1832 2558 94.02 122.36 74 79 1.46 2.67 11.29 64.30 

20M40C5-2 1603 2109 86.69 100.15 67 69 1.42 2.82 12.69 69.15 

 

 

Table 6.6 Different AE parameters at micro- and macro-cracking stages of all un-

corroded samples 

Sample 

designation 

Cumulative 

number of hits 
CSS (pV.s) x 10

6
 Amplitude (dB) H (t) Sr (pV.s) x 10

4
 

Micro-

cracking  

Macro-

cracking  

Micro-

cracking  

Macro-

cracking  

Micro-

cracking  

Macro-

cracking  

Micro-

cracking  

Macro-

cracking  

Micro-

cracking  

Macro-

cracking  

10M20A0-1 187 278 6.14 8.89 69 73 1.87 2.46 5.86 10.23 

10M20A0-2 342 775 11.47 17.18 72 73 1.87 2.98 6.53 14.54 
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10M20B0-1 669 816 16.33 23.64 78 76 1.83 3.69 7.68 24.37 

10M20B0-2 742 1104 17.04 19.59 72 86 1.77 4.19 11.95 30.71 

10M20C0-1 858 1341 20.30 25.14 72 78 1.98 3.86 14.50 31.37 

10M20C0-2 985 1551 19.57 26.36 69 80 1.94 4.44 16.00 31.06 

20M20A0-1 521 764 11.70 84.17 70 76 1.97 2.83 7.84 17.57 

20M20A0-2 810 945 14.23 91.17 77 75 2.05 2.89 6.18 12.92 

20M20B0-1 1196 2780 59.26 139.49 70 83 2.01 3.81 11.15 20.01 

20M20B0-2 1556 2387 72.38 122.98 73 79 2.17 3.97 10.89 30.00 

20M20C0-1 2261 3599 92.04 145.72 71 80 2.23 7.03 17.16 77.90 

20M20C0-2 1606 2525 86.56 130.68 70 80 1.91 5.51 15.09 101.17 

35M20A0-1 887 1180 16.32 54.79 69 78 1.93 2.79 8.38 55.12 

35M20A0-2 840 1184 12.88 39.74 71 79 1.91 2.78 8.13 35.65 

35M20B0-1 1297 1729 57.48 85.07 72 72 2.21 3.95 12.09 73.47 

35M20B0-2 1553 1889 72.42 89.91 80 71 2.07 5.13 11.22 89.94 

35M20C0-1 2415 3538 104.77 140.67 74 78 2.02 6.18 18.91 98.73 

35M20C0-2 2282 4059 125.26 140.75 74 72 1.74 6.45 13.26 110.60 

10M30A0-1 294 685 12.12 19.77 73 82 1.85 2.27 5.89 14.19 

10M30A0-2 353 558 12.30 16.17 72 74 2.01 3.28 7.39 17.54 

10M30B0-1 NA 1908 NA 56.09 NA 49 NA 0.87 NA 20.81 

10M30B0-2 NA 816 NA 25.03 NA 48 NA 0.81 NA 26.90 

10M30C0-1 NA 2401 NA 83.14 NA 50 NA 0.84 NA 35.13 

10M30C0-2 NA 2717 NA 86.12 NA 51 NA 0.84 NA 44.10 

20M30A0-1 346 762 11.98 42.88 70 78 2.12 3.57 11.36 48.15 

20M30A0-2 494 872 15.97 30.28 70 70 1.75 3.01 7.73 21.89 

20M30B0-1 1062 2111 32.51 94.08 73 75 1.60 4.19 13.78 85.14 

20M30B0-2 1421 1568 25.56 36.99 72 79 2.22 4.58 12.95 28.59 

20M30C0-1 3880 5039 174.35 243.20 80 84 2.11 5.93 20.09 138.29 

20M30C0-2 1471 2453 143.44 102.09 72 82 1.62 5.35 17.69 84.44 

35M30A0-1 587 1033 17.28 39.38 71 81 1.88 3.14 10.21 30.85 

35M30A0-2 585 1201 19.27 43.66 69 79 1.78 3.81 13.72 32.24 

35M30B0-1 1002 1884 65.37 131.53 77 84 2.08 4.45 18.45 144.11 

35M30B0-2 1967 2780 69.05 114.59 73 83 1.99 4.49 15.43 82.82 

35M30C0-1 2727 3532 197.22 219.45 78 81 2.03 6.34 17.89 165.83 

35M30C0-2 2671 3461 108.25 126.40 81 76 2.06 6.16 20.15 102.60 

10M40A0-1 NA 779 NA 17.70 NA 48 NA 0.87 NA 16.65 

10M40A0-2 352 788 13.78 18.99 72 73 1.92 3.17 8.28 16.24 

10M40B0-1 NA 1589 NA 46.28 NA 48 NA 0.84 NA 26.97 

10M40B0-2 NA 1766 NA 63.33 NA 49 NA 0.75 NA 36.64 

10M40C0-1 NA 2597 NA 90.69 NA 49 NA 1.10 NA 49.05 

10M40C0-2 NA 2273 NA 80.84 NA 52 NA 0.91 NA 43.66 
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20M40A0-1 628 992 22.16 33.27 71 73 1.99 3.11 16.83 26.41 

20M40A0-2 707 917 9.25 54.39 75 83 1.78 3.57 6.74 15.08 

20M40B0-1 1578 1761 44.74 54.00 71 77 1.86 4.96 17.18 32.48 

20M40B0-2 1728 2185 16.64 31.25 74 72 2.07 3.94 16.22 38.45 

20M40C0-1 2713 3477 145.54 207.23 72 83 2.20 9.40 19.86 104.58 

20M40C0-2 2497 4732 188.38 268.46 72 82 2.02 7.07 18.54 100.65 

35M40A0-1 714 1107 16.79 54.59 72 76 1.80 4.64 12.26 68.08 

35M40A0-2 817 1082 18.93 54.21 72 78 1.93 3.46 17.46 56.53 

35M40B0-1 1823 2662 38.14 62.61 76 73 2.07 5.17 22.04 78.19 

35M40B0-2 2135 3284 29.59 69.31 77 79 2.32 5.78 12.78 54.34 

35M40C0-1 2968 3812 192.26 256.48 73 77 2.22 5.68 25.02 83.82 

35M40C0-2 3145 4033 183.72 284.48 75 84 1.83 9.60 19.00 164.02 

 

6.6 Effect of Bar Diameter on Different AE Parameters 

It can be noted from Table 6.2 that larger bar diameters resulted in lower bond strength in 

all un-corroded samples, as expected. Table 6.6 indicates that increasing the bar diameter 

warranted higher average values of cumulative hits, CSS, and Sr, both at micro- and 

macro-cracking, for all cover thicknesses and bonded lengths. For example, the change of 

bar diameters from 10 to 20 mm in specimens 10M20A0-1 and 20M20A0-1 (with 

constant cover thickness and bonded length) resulted in nearly a 178%, 91%, and 34% 

increase in cumulative hits, CSS, and Sr at micro-cracking, respectively, and roughly a 

175%, 847%, and 72% increase in cumulative number of hits, CSS, and Sr at macro-

cracking, respectively. This increase may be correlated to the larger surface area of the 

steel-concrete interface, which resulted in higher friction and rib bearing resistance, thus 

emitting more AE activities. Nonetheless, the change in bar diameter showed no 

significant influence on the magnitude of H (t) at the micro-cracking stage. Furthermore, 

increasing the bar diameter at macro-cracking seemed to slightly increase the average 

value of H (t). For example, in specimens 10M20A0-1 and 20M20A0-1, which had equal 
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cover thickness and embedded length, this increase was approximately 15% as a 

consequence of increasing the bar diameter from 10 to 20 mm. It should be mentioned 

that the AE parameters considered (cumulative number of hits, CSS, H (t), and Sr) 

showed more correlation to the contact area of the steel-concrete interface than the bond 

strength. This correlation was also noticed when the embedded length of the bar 

increased, in which the AE activity increased while the bond strength decreased (Section 

6.9). In the meantime, no evident differences in the waveform parameters (amplitude, 

duration, energy, rise time, average frequency, counts, and peak frequency) were 

observed in all tested samples with different bar diameters at all stages of damage. 

6.7 Effect of Corrosion Level on Different AE Parameters 

 

Prior to the pull-out testing, 60 samples were previously exposed to different levels of 

corrosion ranging between 1 to 5% of steel mass loss. The increase in corrosion level 

from 0 to 5% resulted in an average reduction in the bond strength of 52%, 40%, and 38% 

in samples with cover thicknesses of 20 mm, 30 mm, and 40 mm, respectively (Tables 

6.1-6.2). This decrease in bond strength was also noticed by increasing the corrosion 

level, regardless of bar bonded length or cover thickness. The AE data corresponding to 

two stages of bond loss (micro- and macro-cracking) in the tested samples are presented 

in Tables 6.5-6.6 and were used as a basis for comparing samples exposed to different 

degrees of corrosion. The increase in corrosion level resulted in an overall decrease in the 

values of AE cumulative number of hits, CSS, and Sr, at both micro- and macro-cracking 

stages. On the other hand, by increasing the percentage of steel mass loss, the results of H 

(t) decreased at the macro-cracking stage only. For instance, by comparing samples 
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20M20A0-1 with 20M20A5-1 (same bonded length and cover thickness), it was found 

that increasing corrosion from 0 to 5% yielded lower cumulative number of hits (by 

42%), CSS (by 37%), and Sr (by 36%) at the micro-cracking stage. This general reduction 

in AE parameters at micro-cracking can be attributed to the lower contribution of 

chemical adhesion and friction between concrete and steel resulting from steel corrosion. 

The corrosion products that accumulate around the bar surface can significantly reduce 

the rebar-concrete adhesion, especially at high degrees of corrosion. In addition, 

increasing the accumulation of the corrosion product caused expansion of the bar volume 

and cover cracking, which reduced the rebar-concrete confinement and friction. This can 

be seen from Table 6.4, which denotes higher crack widths when the corrosion level 

increases from 1 to 5%. 

The decrease in AE parameters because of reinforcement corrosion was also obtained by 

comparing the same samples (20M20A0-1 versus 20M20A5-1) at the macro-cracking 

stage. For example, the increase in mass loss from 0 to 5% caused a general reduction in 

AE parameters: cumulative number of hits (by 27%), CSS (by 43%), H (t) (by 33%), and 

Sr (by 42%), at macro-cracking stage (Tables 6.5-6.6). This reduced AE activity can be 

related to the lower contribution of rib bearing in resisting additional forces due to its 

minimized size following corrosion propagation. This reduction can also be correlated to 

the presence of corrosion cover cracks, which may lead to less signal strength as a result 

of any possible signal attenuation. The latter can be justified by the slight decrease (6%) 

in the average amplitude of the signal detected in non-corroded samples when compared 

to the average amplitude of all corroded samples, as shown in Tables 6.5-6.6. It is worth 
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noting that these minimized AE parameters, owing to higher corrosion levels, were noted 

in all other tested samples with varied bonded length and cover thickness. 

6.8 Effect of Cover Thickness on Different AE Parameters 

 

The changes in the bar confinement (in terms of varied concrete cover thickness) yielded 

significant effects on both bond strength and AE parameters both in corroded and un-

corroded samples (Tables 6.1-6.2 and Tables 6.5-6.6). It can be seen from the tables that 

increasing the cover thickness (20 to 30 mm and 30 to 40 mm) led to both higher average 

bond strength and higher AE parameters at the micro-cracking stage (cumulative number 

of hits, CSS, and Sr). For example, the increase of cover thickness in samples 20M20A5-2 

and 20M30A5-2 (with the same bonded length and steel mass loss) resulted in higher AE 

cumulative number of hits (by 21%), CSS (by 21%), and Sr (by 74%) at the micro-

cracking stage. This increase in AE parameters at micro-cracking can be correlated to the 

higher loads resisted by those samples with larger cover thickness prior to the micro-

cracking initiation (leading to higher friction and AE activity). On the contrary, no clear 

variations in the magnitudes of H (t) can be seen at the micro-cracking stage of all tested 

samples regardless of cover thickness (Tables 6.5-6.6).  

On the other hand, it can be noticed that increasing the cover thickness from 20 to 30 mm 

and from 30 to 40 mm (Tables 6.5-6.6) increased overall the average values of AE 

cumulative number of hits, CSS, H (t), and Sr at the macro-cracking stage. For instance, 

the change in cover thickness from 20 to 30 mm in samples 20M20A5-2 and 20M30A5-2 

increased the AE cumulative number of hits (by 10%), CSS (by 38%), H (t) (by 14%), 

and Sr (by 127%). This higher AE activity can be related to the enhanced bond capacity of 



 

123 

 

the sample by using larger cover thicknesses. This increased AE activity can also be 

attributed to the lower widths of corrosion cracks obtained in samples with larger cover 

thickness and vice versa, as shown in Table 6.4. Another reason for increased AE 

parameters with higher concrete cover thickness is the growth of splitting cracks, which 

increased owing to larger cover thicknesses. These findings also highlight the correlation 

of AE parameters (cumulative number of hits, CSS, H (t), and Sr) to the size of splitting 

cracks associated with bond degradation in all corroded and un-corroded specimens. It 

should be mentioned that higher values of cover thickness were expected to contribute to 

the wave attenuation, resulting in AE signals with lower values of signal strength. 

However, this phenomenon was not pronounced in the results due to the use of relatively 

small values of cover thickness. 

6.9 Effect of Embedded Length on Different AE Parameters 

 

As previously noted, three embedded lengths were used to investigate the effect of 

embedded length on the cumulative number of hits, CSS, H (t), and Sr at all stages of 

bond deterioration. The increase in the bonded length from 50 to 200 mm resulted in 

lower values of bond strength for all tested samples regardless of bar diameter, cover 

thickness, or steel mass loss (Tables 6.1-6.2). Tables 6.5-6.6 indicate that increasing the 

embedded length from 50 to 100 mm and from 100 to 200 mm resulted in a higher 

average cumulative number of hits, CSS, and Sr in all tested samples (corroded and un-

corroded) at the micro-cracking stage. For example, by comparing two samples with the 

same bar diameter and cover thickness (10M20A0-1 versus 10M20B0-1), it was found 

that nearly 257% higher cumulative number of hits, 166% increase in CSS, and 57% 
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higher Sr were obtained after increasing embedded length from 50 to 100 mm. This 

increase in the cumulative number of hits, CSS, and Sr was also seen at all values of bar 

diameters, corrosion level, and cover thicknesses. This high AE activity can be attributed 

to the higher number of ribs included in the bonded length, which led to additional 

adhesion, friction, and rib-bearing forces. However, longer embedded lengths were found 

to have a non-significant effect on the values of H (t) corresponding to micro-cracking 

inception with an average value of H (t) of 1.97 in un-corroded samples. It is worth noting 

that the values of H (t) and Sr are not similar to those of cumulative number of hits and 

CSS, which are based on cumulative values rather than damage indices. This result 

indicates the effectiveness of H (t) and Sr to represent the damage extent at the steel-to-

concrete bond interface, regardless of the value of the embedded length.  

At the macro-cracking level, the results of all AE parameters increased by using longer 

bonded lengths in all tested specimens regardless of bar diameter, concrete cover, or 

corrosion degree (Tables 6.5-6.6). For instance, the values of cumulative number of hits, 

CSS, H (t), and Sr increased by about 194%, 166%, 50%, and 138%, respectively, after 

the bonded length was increased from 50 to 100 mm in samples 10M20A0-1 and 

10M20B0-1 (which had identical bar diameter and cover thickness). This overall rise in 

the magnitude of cumulative number of hits, CSS, H (t), and Sr at macro-cracking can be 

related to the fact that longer embedded length samples exhibited longer splitting cracks 

(i.e., larger crack sizes). This trend was also confirmed in all tested samples, including 

corroded and un-corroded, irrespective of the value of bar diameter, cover thickness, or 

percentage of steel mass loss (Tables 6.5-6.6). Owing to the cumulative nature of the 

cumulative number of hits and CSS, it may be more accurate to use H (t) and Sr to 
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identify the variable crack sizes. The results of visual inspection of samples with variable 

bonded length indicated that longer bonded length samples exhibited longer splitting 

cracks, which propagated almost through the same length as the bonded length. These 

results highlight the effectiveness of intensity analysis parameters in estimating the size of 

splitting cracks resulting from bond failure. 

6.10 Damage Quantification of Corroded/Un-Corroded Samples Using AE Intensity 

Analysis 

 

The preceding sections mentioned that the analysis of AE parameters enabled the 

detection of two early stages of bond deterioration before failure of all samples (micro- 

and macro-cracking stages). It was also noted that these AE parameters were well 

correlated with the bar diameter, bonded length, cover thickness, and degree of corrosion 

in all tested samples. More specifically, the results of intensity analysis on AE signal 

strength yielded two parameters (H (t) and Sr) that showed high sensitivity to the extent of 

bond damage in all specimens. These parameters have been exploited in a number of 

previous studies to represent different damage mechanisms in concrete structures (for 

example: Nair and Cai, 2010; Abdelrahman et al., 2015; ElBatanouny et al., 2014). The 

values of H (t) and Sr corresponding to the detection of both micro- and macro-cracking 

for all corroded and un-corroded specimens are plotted in Figures 6.4-6.5, respectively, 

to develop intensity classification charts.  

These charts can be utilized to distinguish between the micro- and macro-cracking stages 

of bond damage of corroded and un-corroded reinforcing bars. For instance, if the values 

of H (t) and Sr were located in the ranges of 1.19-1.71 and 3.53-18.66 x 10
4
 pV.s, 
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respectively, then micro-cracking is anticipated at the concrete-steel interface. On the 

other hand, the macro-cracking stage is expected, if the values of H (t) and Sr were 

located in the ranges of 1.81-5.97 and 9.30-96.24 x 104 pV.s, respectively, for corroded 

specimens (Figure 6.4). Similarly, if the values of H (t) and Sr range between 1.51-2.49 

and 5.15-29.89 x 10
4
 pV.s, respectively, micro-cracking of concrete is expected to be 

present at the steel-concrete interface. Beyond H (t) and Sr readings of 2.49 and 29.89x 

10
4
 pV.s, respectively, macro-cracking in the surrounding concrete core around the steel 

bar is anticipated in un-corroded samples (Figure 6.5). It can be noticed from the charts 

(Figures 6.4-6.5) that the magnitudes of H (t) and Sr at the stage of macro-cracking 

showed a wide range of increase following the micro-cracking region. These wide ranges 

were attributed to the large differences in the sizes of splitting cracks and the significant 

impact of using variable bar diameters, bonded lengths, cover thicknesses, and corrosion 

levels on the AE intensity analysis parameters. However, this chart may be especially 

beneficial for early detection of bond deterioration between concrete and steel at the 

micro-cracking stage. At this stage, no visible signs of cracking or bar slippage were 

detected in all tested samples. It is worth noting that the ranges presented in this chart are 

only based on the range of bar diameters (10-35 mm), bonded lengths (50-200 mm), 

cover thicknesses (20-40 mm), and percentages of steel mass loss (1-5%) obtained from 

the 114 samples tested herein. 

Moreover, the evaluation of H (t) results enabled the differentiation between un-corroded 

samples failed by bar yield from those subjected to bond splitting failure. For example, an 

average H (t) value of 0.87 was obtained from the samples that exhibited bar yield with 

no damage in the bond integrity (Table 6.6). This average value corresponds to the 
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maximum load recorded right before the bar yield (Table 6.2). These observations 

illustrate the accuracy of the H (t) in both detecting the onset of micro-cracking and 

representing mode of failure among the un-corroded tested specimens. It should also be 

noted that further verification of the results in this chart are needed to generalize those 

parameters based on testing full-scale reinforced concrete elements (Chapter 7). 

 

 

Figure 6.4 Classification chart for bond damage stages of corroded samples 
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Figure 6.5 Classification chart for bond damage stages of un-corroded samples 

Similar to the classification charts presented in Figures 6.4-6.5, other classification charts 

were also developed using the results of H (t) and Sr and their corresponding magnitude 

of free end slip (Tables 6.1-6.2) to identify the range of bar slip of corroded and un-

corroded bars, as shown in Figures 6.6-6.7, respectively. These charts can classify the 

value of the bar slippage into four successive ranges: 0 to 0.25 mm, 0.25 to 0.5 mm, 0.5 to 

0.75 mm, and 0.75 to 1.2 mm according to the values of H (t) and Sr obtained using AE 

monitoring of existing concrete structures. It can be seen from the chart that both values 

of H (t) and Sr were in a good correlation with the amount of bar slip in all tested samples. 

It is clear from the figure that lower values of bar slippage were associated with lower 

magnitudes of H (t) and Sr. This decrease in H (t) and Sr with lower slip values may be 

related to the reduction of bond strength in these samples, which was accompanied by 
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lower bar slippage (Tables 6.1-6.2). It should be mentioned that the variations in the 

values of H (t) and Sr within the same range of bar slip in Figures 6.6-6.7 can be 

attributed to the inclusion of samples with different bar diameters, bonded length, cover 

thickness, and percentage of steel mass loss in the same range. In addition, the values of 

H (t) and Sr in this chart were calculated based on the average of the AE signals recorded 

using two sensors in each tested sample. 

 

 

Figure 6.6 Free end slip intensity quantification chart for corroded samples 
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Figure 6.7 Free end slip intensity quantification chart for un-corroded samples 
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7. Discussion of Results from Experimental Study 4: Evaluation of 

Concrete-Steel Bond Behaviour in Full-Scale Corroded/Un-

Corroded RC Beams 

7.1 Introduction 

This chapter evaluates the bond behaviour of five corroded and five un-corroded full-

scale beams by using the analysis of AE data obtained from four-point load tests. The 

corroded beams were exposed to accelerated corrosion process before bond testing. 

7.2 Results of Corroded Beams after Corrosion Exposure 

Four levels of corrosion were targeted in this study including 5%, 10%, 20%, and 30% of 

steel mass loss. To this end, the corroded beams were subjected to four variable 

accelerated corrosion exposure periods, as previously explained in Chapter 5. The actual 

percentages of steel mass loss in the corroded parts of the bars were measured at the end 

of the four-point bond tests and a typical picture of these bars is demonstrated in Figure 

7.1. The values of both theoretical and actual steel mass loss were also compared in 

Table 5.1 (Chapter 5) that showed well agreement in all beams. 
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Figure 7.1 Typical picture of the corroded parts of the bars of all tested beams 

7.3 Overall Behaviour and Bond Strength of Tested Beams 

7.3.1 Corroded Beams 

The occurrence of visual cracks was carefully observed during the load application along 

the span of all beams. At nearly 25% of average maximum applied loads, all corroded 

beams exhibited one flexural crack almost at the mid-span. With further loading, three 

additional flexural cracks were noticed between the loading points of only B5 (long span 

beam). The increase of load up to approximately 60% of the average maximum applied 

loads was then found to initiate bar slippage, as detected by one of the LVDTs. The 

amount of bar slippage increased with continued load application. A typical load versus 

free end slip curve recorded using one of the left LVDTs (L2) is shown in Figure 7.2 

(taken from B3, as an example). Using the load-slip curves from all LVDTs, the initial 
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slippage was identified at the time of first significant increase of bar slip in these curves. 

The LVDT that first detected initial slip in all tested beams is identified in Table 7.1. 

Before failure, all beams (short and long) exhibited an additional diagonal crack at one of 

the anchorage zones. Also, as mentioned before, all corroded beams had horizontal cracks 

extending along the bonded length. The width of these cracks increased at the time of 

failure in all corroded beams. The pictures of a typical bond failure of tested beams can 

be seen in Figure 7.3 and the total number of cracks at failure is shown in Table 7.1. All 

corroded beams (B1 through B5) underwent anchorage failure at the corroded side, as 

expected. The amount of load at first crack and initial slip detection and maximum load 

resisted by the beam along, with its corresponding value of bar slippage and location of 

anchorage failure in corroded beams, are all presented in Table 7.1. The values of 

maximum load of each beam were utilized to calculate both steel stress and bond strength 

using the equations recommended by RILEM committee (Rilem-Fip-Ceb, 1973).  
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Figure 7.2 Typical load-slip curve for corroded beams (B3) 

  

Figure 7.3 Typical bond failure of corroded beams (Left: anchorage cracking; 

Right: bars slip) 
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Table 7.1 Results of four-point load tests of corroded beams 

Beam 

Load at 

first 

flexural 

crack 

(kN) 

Load 

at 

initial 

slip 

(kN) 

First 

LVDT 

detected 

slip 

Maximum 

load (kN) 

Free end 

slip at 

maximum 

load 

(mm) 

Number 

of cracks 

at failure 

Location 

of 

anchorage 

failure 

Calculated 

steel stress 

(MPa) 

Calculated 

bond 

strength 

(MPa) 

B1 26 62 L1 97 0.10 2 Left 242.47 11.88 

B2 29 50 L1 85 0.08 2 Left 212.88 10.43 

B3 24 43 L2 48 0.09 2 Left 120.62 5.91 

B4 22 28 L2 38 0.07 2 Left 94.70 4.64 

B5 20 29 L2 35 0.05 5 Left 88.17 4.32 

 

7.3.2 Un-Corroded Beams 

All un-corroded beams also exhibited one crack approximately at the mid-span within the 

constant moment region before reaching 25% of the maximum load. The amount of load 

recorded at the first crack of all un-corroded beams is reported in Table 7.2. After the 

detection of first crack, the increase of loading resulted in increasing widths of the first 

crack with no new visible cracks until the occurrence of bar slip in B6, B7, B8, and B9. In 

contrast, B10 showed an additional three cracks in the constant moment region prior to 

bar slippage. This could be attributed to the longer length of the constant moment zone in 

B10 compared to all other tested beams. It should be mentioned that the main purpose of 

this study was to detect bond failure not first cracking at beam mid-span. However, all 

tested beams showed mid-span (flexural) cracks before the occurrence of bond damage at 

one of the anchorage ends. The detection of the initial slip was achieved using the data 

obtained from the four LVDTs mounted on the bar ends. The LVDT that first identified 

the slip, magnitude of corresponding load, and location of the LVDT (left or right) in un-

corroded beams are all identified in Table 7.2.  
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By further increasing the load, the amount of bar slippage was increased and a new crack 

appeared in one of the anchorage zones of all un-corroded beams just before failure. It 

was found that all un-corroded beams also underwent bond failure after the formation of 

this anchorage crack, as expected. As can be seen from Table 7.2, both steel stress and 

bond strength were also calculated using the equations specified in the RILEM 

recommendation for obtaining the bond strength of beam specimens (Rilem-Fip-Ceb, 

1973). The number of cracks at failure, maximum vertical load resisted by all beams, and 

corresponding free end bar slip are also shown in Table 7.2. Meanwhile, a typical bond 

stress-slip curve of un-corroded beams (B6) is shown in Figure 7.4. It can be noticed 

from the curve that the amount of bar slip significantly increased after the point of 

maximum load due to the presence of anchorage crack. Nonetheless, the amounts of bar 

slip shown in Table 7.2 are taken at the location of maximum load. These values of bar 

slip showed to increase by increasing the bonded length (B6 through B9). This increasing 

trend can be correlated to the higher load resisted by those un-corroded beams associated 

with larger bonded length as seen in Table 7.2 This trend matched the results of similar 

experimental investigations available in the literature (For example: Mangat and Elgarf, 

1999; Craig and Soudki, 2005).   
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Table 7.2 Results of four-point load tests of un-corroded beams 

Beam 

Load 

at first 

visual 

crack 

(kN) 

Load 

at 

initial 

slip 

(kN) 

Maximum 

load (kN) 

Number 

of 

cracks 

at 

failure 

Calculated 

steel 

stress at 

maximum 

load 

(MPa) 

Calculated 

bond 

strength at 

maximum 

load (MPa) 

Bond 

slip 

location 

First 

LVDT 

detected 

slip 

Free end 

slip at 

maximum 

load (mm) 

B6 16 31 68 2 168.89 16.55 Left 1 0.07 

B7 21 55 121 2 303.50 14.87 Right 3 0.12 

B8 22 78 159 2 397.69 12.99 Left 2 0.29 

B9 25 93 166 2 413.91 10.14 Left 1 0.45 

B10 13 61 125 5 312.68 15.32 Right 4 0.15 

 

 

Figure 7.4  Typical load-slip curve for un-corroded beams (B6) 

7.4 Bond Damage Identification of Corroded/Un-Corroded Beams Using AE 

Analysis 

The raw AE data attained from the four-point load tests of all tested beams were filtered 
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signal strength results was also completed as previously explained in Chapter 6 to obtain 

the magnitudes of historic index (H (t)) and severity (Sr). In this study, the variations of 

AE number of hits, cumulative signal strength (CSS), H (t), and Sr versus test time were 

analyzed to achieve an early detection of damage in all beams. Figures 7.5-7.6 present 

the changes of these AE parameters through the test time of B3 and B9 obtained from 

Sensor 1 (as an example of corroded and un-corroded beams, respectively). It can be 

noticed that the AE number of hits, CSS, and Sr values obtained from the same sensor 

followed a very similar trend of variation within all tested beams. Multiple researchers 

have found that the locations of sudden changes in these AE parameters can be correlated 

to damage progression in concrete structures (Mangual et al., 2013a; 2013b; Di Benedetti 

and Nanni, 2014; ElBatanouny et al., 2014; Abdelrahman et al., 2015; Gallego et al., 

2015). On this basis, the analysis of these parameters was done in conjunction with the 

results of visual inspection of cracks and data recorded using LVDTs to attain an early 

identification of damage, as explained in the following subsections. It is worth noting 

that, in potential field application of AE monitoring, similar analysis of AE signal 

parameters should be implemented in order differentiate between the AE events related to 

bond damage from other AE sources.   
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(c) 

 

 
 

(d) 

 

Figure 7.5 Variations in AE parameters versus test time of B3 recorded by Sensor 1: 

(a) number of hits, (b) CSS, (c) H (t), and (d) Sr 
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(c) 

 

(d) 

 

Figure 7.6 Variations in AE parameters versus test time in B9 recorded by Sensor 1: 

(a) number of hits, (b) CSS, (c) H (t), and (d) Sr 
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7.4.1 Detection of First Crack  

The values of the number of hits, CSS, and Sr in Figure 7.5 witnessed an overall increase 

throughout the test time until bond failure of B3 occurred at 478 s. Sudden variations in 

the number of hits, CSS, and Sr graphs (slope change) can be noticed at certain locations 

throughout the test. These locations were also accompanied by sudden jumps in the 

values of H (t) as shown in Figure 7.5b. The first point of sudden change in the number 

of hits, CSS, H (t), and Sr values can be observed from Figure 7.5 at 74 s, which can be 

related to the growth of the first crack. This crack was visually observed during the test at 

approximately 84 s near the mid-span of all seven beams. The detection of this crack was 

also confirmed using the load versus time history, which indicated a small drop in the 

load at that time of first crack development. It is worth noting that both micro-cracking 

and crack growth are significant sources of acoustic emission in reinforced concrete 

(Fowler et al., 1998).  

Likewise, Figure 7.6a, b that the first noticeable increase (at the points of slope change) 

in the number of hits and CSS are located at nearly 31 seconds from the beginning of the 

test. Meanwhile, a sharp increase in the values of H (t) and Sr was also found at 31 

seconds (Figure 7.6c, d). This significant increase in AE activity can be correlated to the 

growth of first crack, which was visually detected during the test on B9 noted at 

approximately 38 seconds from the test beginning. It is worth noting that best efforts were 

done to allow the synchronization between visual observation of cracks and AE/LVDT 

data acquisition systems. This target was achieved by looking at the start time of 

recording data and correcting any shift between the starting times of all acquired data. 
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The identification of first crack using AE analysis was similarly conducted in all other 

beams (corroded and un-corroded) and enabled earlier detection than visual inspection. 

Table 7.3 demonstrates the values of AE parameters including signal amplitude, number 

of hits, CSS, H (t), and Sr at the time of detecting first crack in all corroded and un-

corroded beams (using the analysis of CSS and H (t)). It was also found that the AE 

signals recorded at the time of first crack in all beams were characterized by higher 

amplitudes (normally > 65 dB) than those recorded prior to first crack observation (Table 

7.3). It should be noted that both H (t) and Sr curves showed a clearer detection of the first 

crack than those of number of hits and CSS (Figures 7.5-7.6), which was confirmed in all 

beams. The values of AE parameters (acquired from the same sensor location in each 

beam) related to the detection of first crack show (in most of tested beams) relatively 

small variations among the tested beams (Table 7.3). However, some beams exhibited 

relatively larger variations between AE parameters recorded using the same sensor 

location. These relatively larger variations may be associated with the differences in both 

crack heights and widths and the distance from the crack to the attached sensors. 
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Table 7.3 Different AE parameters at the time of first crack identification for 

corroded/un-corroded beams 

Beam 
Amplitude (dB) Number of hits CSS (pV.s) x 10

7
 H (t) Sr  (pV.s) x 10

5
 

CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 

B1 78 81 71 164 305 167 1.85 2.87 1.71 1.81 1.95 1.84 2.95 3.50 2.26 

B2 74 79 73 82 157 56 2.69 3.11 2.46 1.61 2.33 1.56 1.59 3.43 2.48 

B3 71 73 70 309 326 237 2.57 2.91 1.43 2.14 2.67 1.61 3.09 3.21 2.07 

B4 75 76 66 143 337 149 2.08 2.88 2.47 1.53 2.12 1.68 1.93 3.07 1.75 

B5 73 76 71 69 295 65 1.48 2.72 2.22 1.68 1.89 1.74 1.91 2.76 2.43 

B6 82 82 82 192 222 167 1.25 1.81 1.23 4.55 4.59 3.65 2.19 3.21 2.17 

B7 73 75 75 89 219 97 1.45 1.99 1.81 2.47 2.68 2.27 2.73 3.52 3.29 

B8 77 84 73 242 272 189 0.76 1.10 0.61 4.53 4.72 2.06 1.09 1.75 0.79 

B9 75 79 73 68 131 131 0.69 1.28 0.64 2.09 2.66 2.27 1.35 2.38 1.12 

B10 72 78 72 105 211 110 0.39 1.5 1.36 2.12 3.64 2.53 1.77 2.53 1.63 

CH1 = data from Sensor 1, CH2 = data from Sensor 2, and CH3 = data from Sensor 3 

7.4.2 Detection of Rebar Slip and Bond Failure at the Anchorage Zone 

The analysis of AE data was also implemented to attain early detection of bar slip for all 

beams. Figure 7.5 indicates that there is a second point of sudden increase in H (t) at 169 

s, which also exhibited a second slope change in number of hits, CSS, and Sr curves for 

B3. Figure 7.6 also shows a second slope change followed by sharp increase in the values 

of number of hits, CSS, H (t), and Sr starting at nearly 125 seconds in B9. This increased 

AE activity may be attributed to the onset of micro-cracking at the concrete-steel 

interface. Moreover, it can be related to the ribs-to-concrete mechanical interlock that 

follows the breakage of chemical adhesion between concrete and steel. It should be 

mentioned that both micro-cracking and ribs-to-concrete mechanical interlock are 

considered sources of acoustic emission (Gallego et al., 2015). This high AE activity was 

associated with a value of the calculated steel stress of 3.7 MPa (from the load history 

data of B3). This value of stress is within the range of steel stress that causes micro-
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cracks at the concrete-steel interface (0.8–3.0 fct), which is typically followed by macro-

cracking and bar slip inception (CEB-FIP, 2000; Gallego et al., 2015). However, this 

detection of micro-cracking cannot be confirmed as it is not substantiated with any other 

evidence.  

Following this stage, the AE parameters in Figure 7.5 kept increasing with further 

loading until they reached a third point of sudden rise in H (t) at 329 s, with a higher slope 

change of the number of hits, CSS, and Sr curves at the same location. This point is 

attributable to bar slippage initiation of one of the main bars at one of the anchorage 

zones. This high AE activity represents the occurrence of macro-cracking in the concrete 

core around the bar preceding the onset of bar slip (CEB-FIP, 2000; Gallego et al., 2015). 

The detection of initial slip of B3 was alternatively confirmed using the data from LVDTs 

recorded during the test. For example, the initial slip in B3 was detected at nearly 338 s 

from the left LVDTs (L2). It can also be observed from Figure 7.6 that the third peak 

value of H (t) during the test period (4.41 at 207 seconds, Figure 7.6c) can be attributed 

to the initiation of bar slip. At this point, a noticeable change in the slope of the curves of 

number of hits, CSS, and Sr can also be seen from Figure 7.6a, b, d. This finding was 

further confirmed by the detection of bar slip at approximately 219 seconds using the 

readings of LVDT1 in B9. It should be mentioned that intensity analysis parameters (H (t) 

and Sr) enabled a better indication of bar slip (sudden rise in H (t) and sharper slope 

change of Sr) than the number of hits and CSS, as seen from Figures 7.5-7.6. The 

identification of initial slip was similarly performed in all other tested beams (corroded 

and un-corroded) and the corresponding values of different AE parameters are 

summarized in Table 7.4. The results of all tested beams proved the feasibility of AE 
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analysis in detecting early the initiation of bar slippage before its observation from the 

LVDTs readings. These results manifest the effectiveness of AE monitoring in identifying 

early stage bond deterioration of both corroded and un-corroded concrete structures prior 

to its visual detection. 

Table 7.4 Different AE parameters at the time of initial slip detection for 

corroded/un-corroded beams 

Beam 
Amplitude (dB) Number of hits CSS (pV.s) x 10

7
 H (t) Sr  (pV.s) x 10

5
 

CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 

B1 85 77 74 2033 1972 1447 20.01 15.16 17.10 3.69 2.68 2.29 18.40 13.90 11.89 

B2 75 73 71 1843 1664 849 17.62 13.35 8.52 3.43 3.06 2.01 15.51 12.55 10.60 

B3 72 72 70 1609 1479 893 14.10 11.60 6.93 3.22 2.69 1.96 14.70 13.10 9.72 

B4 80 75 74 1443 1311 912 9.89 7.43 5.23 2.79 2.39 2.05 13.31 11.72 9.15 

B5 85 77 72 997 815 562 8.64 6.44 4.55 2.88 2.24 2.04 10.39 7.37 2.88 

B6 81 80 72 1953 1257 1020 21.1 20.3 10.1 2.69 2.52 2.41 21.9 18.8 14.9 

B7 78 80 86 1670 2039 2630 12.2 22.7 25.9 2.77 2.79 3.8 16.8 18.4 22.1 

B8 84 83 81 2799 2443 1881 27.6 24.2 13.1 3.58 3.53 3.33 23.3 18.6 17.1 

B9 87 84 82 2903 2794 2329 29.5 28.3 19.3 4.71 4.45 3.42 23 21.6 18.4 

B10 66 71 78 1006 3346 3048 9.13 35.7 23.9 2.44 3.18 4.54 12.3 29.6 20.4 

CH1 = data from Sensor 1, CH2 = data from Sensor 2, and CH3 = data from Sensor 3 

Figures 7.5-7.6 demonstrate a continual increase in the number of hits, CSS, and Sr 

values after the detection of initial slippage until beams failure. This increase can be 

correlated to the increase in the amount of bar slippage, which eventually resulted in the 

formation of anchorage cracking and failure of all beams (an example can be seen in 

Figure 7.3). The bar slippage is also anticipated to be one of the sources of AE in 

reinforced concrete (Fowler et al., 1998; Iwaki et al., 2003). The bar slippage continued to 

increase and became visible, as seen from the picture of B9 as an example (Figure 7.3). 

In the meantime, a sudden increase (reaching its maximum value) in H (t) can be noticed 

from Figure 7.5b at 447 s. This increase in H (t) was also associated with a noticeable 
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slope change in the number of hits, CSS, and Sr charts, which can be related to the growth 

of the failure crack in the anchorage zone. This was confirmed in B3 by visual 

observation of a large crack at the anchorage zone just before the beam failed at 478 s. It 

is worth noting that all other beams (both corroded and un-corroded) behaved similarly to 

B3 in terms of correlation between AE parameters and different stages of damage until 

bond failure occurred. The values of these AE parameters of all beams at the stage of 

anchorage crack identification are reported in Table 7.5.  

 

 

Figure 7.7 Bar slippage in B9 after failure 
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Table 7.5 Different AE parameters at the time of anchorage cracking onset for 

corroded/un-corroded beams 

Beam 
Amplitude (dB) Number of hits CSS (pV.s) x 10

7
 H (t) Sr  (pV.s) x 10

5
 

CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 

B1 86 82 78 3771 3277 2691 28.22 22.37 19.12 5.34 4.41 3.89 23.91 19.10 17.22 

B2 86 83 77 3634 3462 2133 23.70 20.85 18.31 4.61 3.03 2.81 18.50 18.31 15.22 

B3 77 72 71 2829 2782 1881 22.00 20.09 14.33 4.09 3.05 2.85 17.20 15.41 14.33 

B4 83 82 74 2321 2009 1631 19.42 17.91 13.17 3.02 2.86 2.36 19.11 14.02 12.34 

B5 83 80 71 1990 1832 1266 15.43 12.95 9.12 2.89 2.61 2.35 16.74 13.22 11.23 

B1 83 81 78 3338 2375 2111 24.5 22.3 17.4 5.77 3.85 3.87 30.4 24.3 18.2 

B2 68 71 73 2935 3287 4012 19.8 26.1 30.6 4.09 4.43 5.92 19.3 22.3 34.5 

B3 75 74 72 4834 4477 3577 35.5 31.3 26.8 6.26 5.83 4.46 36.7 23.6 22.6 

B4 85 84 80 5725 5501 5331 67.9 51.8 48.3 8.04 5.37 5.07 41.4 36.6 29.5 

B5 71 81 82 5454 5707 5850 47.7 49.9 83.2 3.52 3.61 5.6 27.7 39.3 43.6 

CH1 = data from Sensor 1, CH2 = data from Sensor 2, and CH3 = data from Sensor 3 

7.5 Effect of Anchorage Length on Different AE Parameters 

The length of the bonded part of the rebar was varied in B6, B7, B8, and B9 from 100 to 

400 mm. This change had a significant impact on the force transfer between concrete and 

steel. Therefore, these beams showed variable load resistance and bar slippage, as 

described in Table 7.2. This was also the case for the effect of changing bonded length on 

AE parameters as soon as the bar slip was detected, as demonstrated in Tables 7.4-7.5 

and Figure 7.8. The use of longer bonded length resulted, in general, in higher average 

values of number of hits, CSS, H (t), and Sr. For example, varying the bonded length from 

100 to 400 mm (B6 versus B9) yielded nearly 90%, 50%, 65%, and 13% increase in the 

number of hits, CSS, H (t), and Sr, respectively, at the stage of bond slip detection (Table 

7.4 and Figure 7.8a). Similar increasing trends of these AE parameters from the increase 

in the bonded length were also obtained at maximum load stage carried by all beams 

(Table 7.5 and Figure 7.8b). For instance, increasing the bonded length from B1 to B4 
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caused an overall rise in number of hits, CSS, H (t), and Sr of about 112%, 162%, 37%, 

and 47%, respectively. These trends at both the detection of slip and maximum load were 

also present in all AE parameters due to increasing the bonded length from 100 to 200 

mm, 200 to 300 mm, and 300 to 400 mm (Tables 7.4-7.5 and Figure 7.8). On the 

contrary, no clear relationship was obtained between changing the bonded length and the 

resulting AE parameters at the stage of first crack detection (Table 7.3). For example, by 

comparing B6 versus B7 it was noticed that increasing the bonded length from 100 to 200 

mm did not seem to significantly increase or decrease the average AE parameters in those 

beams. These inconsistent trends of variation in AE parameters among the tested beams at 

the time of first crack detection can be attributable to the different crack patterns observed 

between all tested beams. 
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(b) 

 

Figure 7.8 Relationship between bonded length and AE parameters: (a) at bond slip 

detection and (b) at maximum load/slip 

7.6 Effect of Sensor Location on Different AE Parameters 

As previously explained, three sensors were located on each beam at different distances 

from the bonded length. The sensor location measured from the centre of the bonded 

length was also varied in the un-corroded beams owing to the increased bonded length 

(B6, B7, B8, and B9) and longer span of B10. These changes in the sensor position 

showed a notable effect on the individual AE signal parameters (especially signal 

amplitude) as well as other studied AE parameters (number of hits, CSS, H (t), and Sr) at 

all levels of damage (Tables 7.3-7.5). Figure 7.9 presents the relationship between sensor 

location and amplitude of the acquired signals at the time of detection of bar slippage, 

using AE analysis in all un-corroded beams. It can be seen that the farther the sensor 
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by the three sensors is in each beam. A linear trend of decline in the amplitude values in 

all beams can be noticed from Figure 7.9. For instance, the amplitude of signals detected 

in B10 decreased by approximately 15% when the sensor location changed from 435 to 

1505 mm (Figure 7.9). This percentage of reduction was the maximum value obtained 

from all tested beams (corroded and un-corroded) due to the longer span of B10 

compared to other beams. This slight decrease in the amplitude of these signals can be 

expected from the wave propagation through concrete, which led to wave attenuation and 

lower signal amplitudes. In addition, these lower amplitudes can be related to the 

existence of cracks in all these beams, which are considered one of the main sources of 

wave attenuation in concrete because of scattering and reflections (Ervin, 2007). It should 

be noted that the wave attenuation was more pronounced in B5 and B10 than in all other 

beams due to the longer span and the larger number of cracks. 

The influence of sensor location on the amplitude of the signals recorded at the maximum 

applied load prior to failure of beams followed a similar reduction trend (Table 7.5) to 

that associated with the initial slip detection. It can also be seen from both Table 7.4 and 

7.5 that the closer the sensor was to the side of bar slippage, the larger the values of other 

AE parameters were, including number of hits, CSS, H (t), and Sr. Meanwhile, the values 

of all AE parameters detected at the time of first crack using Sensor 2 (CH2) were slightly 

higher than those obtained from both Sensor 1 (CH1) and Sensor 3 (CH3). This can be 

seen from the values of amplitude, number of hits, CSS, H (t), and Sr associated, in all 

beams, with the detection of first crack (shown in Table 7.3). For example, the values of 

amplitude, number of hits, CSS, H (t), and Sr obtained from Sensor 2 were 8%, 48%, 9%, 

31%, and 37%, respectively, higher than those recorded using Sensor 3 in B10 (Table 
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7.3). This overall higher AE activity from CH2 can be attributed to the closer location of 

Sensor 2 to the first crack observed in all beams than both Sensor 1 and Sensor 3. It is 

worth noting that although the sensors’ position had an impact on the magnitudes of AE 

parameters, all sensors enabled the detection of different stages of bond damage in all 

beams. Nonetheless, these findings are only based on a maximum distance of 1505 mm 

from the slip location (furthermost sensor in B5 and B10). Larger distances between 

sensors should be investigated to verify the outcomes of this study.    

 

 

Figure 7.9 Amplitudes of signals recorded at bar slip detection versus sensor 

locations for un-corroded beams 

7.7 Effect of Corrosion Level on Different AE Parameters 

The exposure of beams to corrosion yielded a significant impact on the values of 
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7.1. Increased corrosion from 0% to 30% of steel mass loss resulted in larger corrosion 

crack widths, lower load resistance, and lower bond strength of the tested beams. This 

varied corrosion exposure also significantly affected the values of AE parameters 

(number of hits, CSS, H (t), and Sr) at both initial slip and anchorage cracking stages 

(Tables 7.4-7.5). However, at the stage of first crack detection no noticeable changes 

were observed in the average AE parameters (signal amplitude, number of hits, CSS, H 

(t), and Sr) between beams with varied corrosion levels (Table 7.3). These insignificant 

variations of AE parameters between all beams at first crack can be justified by the 

similar load values at the time of first crack detection among the tested beams with 

variable corrosion levels (Table7.1).  

Tables 7.4-7.5 also indicated that the average values of signal amplitude witnessed no 

evident changes between corroded/un-corroded beams or between corroded beams with 

variable exposure. On the other hand, higher corrosion degrees reduced the average 

values of number of hits, CSS, H (t), and Sr at both initial slip and anchorage cracking 

stages. For instance, changing the corrosion level from 0% to 30% (B10 versus B5) 

decreased the average values of number of hits, CSS, H (t), and Sr by nearly 68%, 71%, 

30%, and 67% at initial slip stage and by about 70%, 79%, 38%, and 63% at anchorage 

cracking stage. Similar trends of reduction in these AE parameters were also warranted by 

increasing corrosion from 0% to 30% in B7 and B4, respectively. In addition, increasing 

the percentage of steel mass loss from 5% to 10%, 10% to 20%, and 20% to 30% had a 

similar influence on the average values of number of hits, CSS, H (t), and Sr (Tables 7.4-

7.5). These overall reduced AE parameters were related to the contribution of corrosion in 

bar expansion causing cover cracking, thus reducing the load capacity of beams at both 
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initial slip and anchorage cracking stages. The results of corrosion presented in Chapter 

5 show that higher corrosion exposure yielded higher cover crack widths. These increased 

corrosion crack widths were expected to reduce the chemical adhesion, confinement, and 

friction between concrete and corroded bars. Moreover, these high corrosion levels led to 

a minimized contribution of rib bearing and consequently an overall lower load transfer 

between steel and concrete. As a result, lower AE activities (at initial slip and anchorage 

cracking stages) were anticipated due to the increase in corrosion level from 0% up to 

30% in all tested beams.       

7.8 Bond Damage Classification of Tested Beams Using AE Intensity Analysis 

The average values of H (t) and Sr obtained from the three sensors in all beams with 200 

mm bonded lengths (B1, B2, B3, B4, B5, B7, and B10) were calculated and used to 

develop a damage classification chart (Figure 7.10). The chart categorizes three stages of 

damage for all tested beams: first crack, initial slip, and anchorage cracking detection. 

The figure shows that the range of H (t) values (1.77-2.76) and Sr values (2.24-3.18 x 10
5
 

pV.s) were found to represent first crack onset. The initiation of bar slip can be 

anticipated if the magnitudes of H (t) and Sr ranged between 2.39-3.39 and 6.88-20.77 x 

10
5
 pV.s, respectively. Similarly, the occurrence of anchorage cracking can be predicted 

if the amounts of H (t) and Sr were within 2.61-4.81 and 13.65-36.87 x 10
5
 pV.s, 

respectively. It can be observed from the chart that the magnitudes of H (t) and Sr 

exhibited the largest variations between the tested beams at the stage of anchorage 

cracking. These large differences in the values of H (t) and Sr at this stage can be related 

to the notable changes across all beams in the size of anchorage cracks. Further testing is 
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needed to quantify the size of anchorage cracks and to relate it to the H (t) and Sr in order 

to refine the data presented in this chart.  

 

Figure 7.10 Damage classification chart for the 200 mm bonded length beams 
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8. Conclusions and Recommendations 

8.1 Conclusions 

The research program completed in this thesis consisted of four successive experimental 

studies involving the utilization of AE monitoring for both damage detection and 

assessment of concrete structures. These investigations aimed at the prognosis/diagnosis 

of steel corrosion, corrosion-induced cover crack growth detection/quantification, and 

identification/assessment of bond integrity between corroded/un-corroded steel and 

concrete in both small- and full-scale RC elements. The analysis of the AE data acquired 

from these extensive investigations and its comparison with all experimental 

measurements and visual observations attained from all tests led to the following 

conclusions:        

8.1.1 Corrosion Detection and Crack Growth Monitoring Using AE Sensors in 

Small-Scale RC Samples 

 It was confirmed that reviewing the history of CSS of all tested samples 

throughout the test could be feasible for detecting different stages of corrosion 

progression (corrosion initiation, cracking, and severe damage stages up to 5% of 

steel mass loss). These stages were found to occur at locations with a sudden 

increase of the CSS, H (t), and Sr versus time curves. However, the intensity 

analysis curves provided a clearer detection of corrosion initiation and 

propagation.  
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 The analysis of AE parameters (CSS, H (t), and Sr) showed superior performance 

in detecting the corrosion initiation earlier than the HCP standard test. In addition, 

the results of H (t), and Sr showed to be correlated well with the extent of damage 

resulting from corrosion progression.  

 CSS analysis can only be utilized for early detection of corrosion initiation and 

cannot be applied for estimating the degree of corrosion. The magnitude of CSS 

showed a considerable variation within the tested samples despite the similar 

increasing trend with higher degrees of damage. On the other hand, the values of 

H (t), and Sr exhibited non-significant variations between different tested samples 

at the same degree of corrosion.   

 The rate of increase in CSS, H (t), and Sr values versus time after the inception of 

cover cracking was found to be less than that found at earlier stages (corrosion 

initiation and cracking). This trend may be attributed to the continuous opening of 

cracks, which can lead to increased wave attenuation and result in lower values of 

signal strength. 

 The growth of corrosion-induced cover cracks due to corrosion propagation 

showed a significant impact on different AE parameters, which resulted in an 

overall increase in the results of number of hits, CSS, and CE and a general 

declining trend in the b-values in all tested samples regardless of the cover 

thickness and corrosion level. The variation of these parameters with respect to the 

test time showed a similar increasing trend in all tested samples. 
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 Increasing the cover thickness from 20 to 30 mm and from 30 to 40 mm resulted 

in an overall reduction of the number of hits, CSS, and CE and an increase in the 

b-values, at all degrees of steel mass loss in all tested samples. However, this 

reduction is mostly attributed to the higher crack widths in samples with 20 mm 

covers than their 30 and 40 mm counterparts. 

 No significant variations in the amplitude or peak frequencies of detected AE hits 

between all tested samples, regardless of cover thickness or percentage of steel 

mass loss. The values of amplitudes and peak frequencies in all tested samples 

ranged from 45 to 85 dB and from 19 to 111 kHz, respectively. 

 The analysis of the variations of the b-values throughout the tests enabled an early 

detection of micro-cracks, before the first visual crack was noticed in all tested 

specimens. The occurrence of these micro-cracks was identified at the locations of 

sudden rise in the b-value versus test time curves.   

 The intensity analysis parameters (H (t) and Sr) were not significantly affected by 

the increase in the cover thickness of all samples. In addition, both results of H (t) 

and Sr at the same crack widths showed very similar values at all percentages of 

steel mass loss in contrast with the b-values. 

 Damage classification charts were developed to correlate the degree of steel mass 

loss and crack width to the acquired AE signal strength data (H (t) and Sr). These 

charts categorized corrosion damage in steel into five degrees (1%, 2%, 3%, 4%, 

and 5%) of rebar mass loss. The charts also identified four groups of concrete 

cover crack widths (ranging from 0.08 to 5 mm) associated with the magnitudes of 
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H (t) and Sr from the intensity analysis. These charts may be especially beneficial 

for the corrosion damage assessment of existing concrete structures at subsequent 

stages after corrosion initiation as a function of the collected AE signal strengths. 

8.1.2 Corrosion Detection and Crack Growth Monitoring Using AE Sensors in 

Full-Scale RC Beams 

 Identifying the locations of slope change of the cumulative number of hits, CSS, 

and Sr curves and sudden jumps in H (t) values throughout the tests permitted the 

early detection of corrosion initiation and onset of corroion-induced cover crack 

growth prior to both the HCP tests and visual observation of cracks in all tested 

beams, irrespective of sensor location. This finding confirmed the outcomes of the 

previously implemented study and proved the feasibility of this approach for 

corrosion damage recognition, regardless of sample size. 

 Studying the severe corrosion levels (up to 30% of steel mass loss) indicated the 

effectiveness of AE analysis to assess the corrosion propagation (in terms of steel 

mass loss and corroion-induced cover crack growth) in full-scale RC beams at all 

values of sensor distances from the source of damage. It was found that increasing 

the percentages of steel mass loss and corrosion-induced cover crack widths were 

associated with an overall increase in the studied AE parameters (cumulative 

number of hits, CSS, H (t), and Sr).  

 The increase in the sensor distance from the source of damage resulted in a 

general decline in the values of the signal amplitude, cumulative number of hits, 

CSS, H (t), and Sr in all tested beams at all degrees of corrosion. This impact of 
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varying the sensor location was also highlighted as a result of using larger size 

beams (farther sensor distances from the source of damage) compared to the 

previous investigation. However, all sensors enabled the 

detection/characterization of all levels of corrosion damage in all tested beams 

with variable distances from the exposed bars ranged between 0.2 to 1.505 m. 

 The average magnitudes of H (t) and Sr recorded using the three sensors in each 

beam were exploited to generate damage classification charts. These charts can be 

utilized to categorize the extent of corrosion progression of all tested beams in 

terms of corrosion stage and percentage of steel mass loss as well as to predict the 

range of the corrosion-induced crack widths. 

8.1.3 Evaluation of Concrete-Steel Bond Behaviour Using AE Sensors in Small-

Scale Corroded/Un-Corroded RC Samples 

 The analysis of CSS, H (t), and Sr versus test time curves allowed the detection of 

two early stages of bond loss, including micro- and macro-cracking prior to the 

occurrence of bond splitting failure, in all corroded/un-corroded samples. These 

stages were noticed at the locations of slope change in CSS and Sr curves. 

Accordingly, any linearity in these curves indicates no bond deterioration in the 

tested specimen. The micro- and macro-cracking stages were also identified at the 

points with sudden increases in the values of H (t).  

 H (t) showed to be more numerically sensitive than all other AE parameters for 

early detection of the micro-cracking stage of bond damage. At this early stage, no 

visible cracking or bar slippage were noticed in any of the tested samples. 
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 The values of different AE parameters including cumulative number of hits, CSS, 

H (t), and Sr, were in a good correlation with the corrosion level in all tested 

samples. An overall reduction in all AE parameters (cumulative number of hits, 

CSS, H (t), and Sr) was noted from increasing the corrosion level from 0 to 5% at 

the macro-cracking stage. In contrast, only AE cumulative number of hits, CSS, 

and Sr were decreased, in samples with higher corrosion degrees, at the micro-

cracking stage. Moreover, a slight decline in the amplitude of the signals detected 

at both micro- and macro-cracking stages was warranted due to the presence of 

reinforcement corrosion. 

 The growth of splitting cracks following the micro-cracking stage were 

accompanied by an overall increasing trend in the results of cumulative number of 

hits, CSS, H (t), and Sr, in all corroded/un-corroded samples. In addition, these AE 

parameters were feasible in identifying the sizes of splitting cracks among the 

tested samples. An overall increase in these AE parameters was noticed from 

samples with larger splitting cracks at all bar diameters, cover thicknesses, and 

degrees of corrosion.   

 The use of longer bonded length and thicker concrete cover resulted in higher AE 

cumulative number of hits, CSS, and Sr at both micro- and macro-cracking stages, 

in all corroded/un-corroded samples. The values of H (t) also increased as a result 

of using longer bonded length and larger cover thickness at the macro-cracking 

stage. However, insignificant changes in H (t) were found between all tested 
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samples regardless of bar diameter, bonded length, cover thickness, or steel mass 

loss at the micro-cracking stage. 

 The AE signals associated with the detection of micro- and macro-cracking were 

characterized by higher amplitude values than that of the AE signals collected 

before the start of micro-cracking. Meanwhile, no explicit variations between 

waveform parameters (rise time, counts, cumulative number of hits, signal 

strength, energy, amplitude, duration, and frequency values) were observed at 

micro- and macro-cracking stages, in all corroded/un-corroded samples. In 

addition, the changes in bar diameter, cover thickness, corrosion level, and 

embedded length did not significantly affect the collected AE waveform 

signatures at all degrees of bond degradation.    

 Damage classification charts based on the results of H (t) and Sr were created to 

classify the stages of bond deterioration and quantify the amount of bar slippage 

of corroded/un-corroded bars embedded in concrete. These charts enable the 

characterization of the micro- and macro-cracking stages of bond damage and 

prediction of the range of bar slippage according to the detected AE signal 

strength data obtained from monitoring existing concrete structures. 

8.1.4 Evaluation of Concrete-Steel Bond Behaviour Using AE Sensors in Full-Scale 

Corroded/Un-Corroded RC Beams 

 All corroded beams exhibited bond failure at the corroded anchorage side after the 

formation of a large anchorage crack, as expected. Also, un-corroded beams 

followed a similar failure mode at one of the two anchorage ends of the beams. 
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 Studying the variations in AE number of hits, CSS, H (t), and Sr throughout the 

bond tests enabled earlier detection of first flexural crack, initial slip, and 

anchorage cracking than visual inspection, in all corroded/un-corroded beams. 

These successive stages of damage were pinpointed at the locations of sudden rise 

in H (t) and slope change of AE number of hits, CSS, and Sr curves throughout the 

tests and were confirmed using the test data and visual observation of cracks. 

However, the review of intensity analysis parameters (H (t) and Sr) versus time 

curves showed a more evident identification of the extent of damage (detection of 

first crack, micro-cracking, and initial bar slippage) than did number of hits and 

CSS in all beams. 

 Increasing corrosion level (5%-30%) yielded larger corrosion crack widths, lower 

load capacity, and lower bond strength, which also generally decreased the 

average AE parameters (number of hits, CSS, H (t), and Sr) at both initial slip and 

anchorage cracking stages. On the contrary, changing corrosion level had no 

evident effect on the average magnitudes of these AE parameters at the first crack 

detection stage. Furthermore, the average values of signal amplitude exhibited 

non-significant variations at all degrees of deterioration between corroded/un-

corroded beams or between corroded beams with variable corrosion levels. 

 After the identification of bar slip, the increase in the values of bar slippage was 

accompanied by an overall increase in the values of AE parameters, including 

number of hits, CSS, H (t), and Sr, until failure of all corroded/un-corroded beams. 
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This higher AE activity was correlated to the bond damage progression at the 

concrete-steel in terms of the increasing bar slippage. 

 Varying the bonded length of the bars resulted in significant changes to both the 

load resistance and consequent AE parameters (in terms of number of hits, CSS, H 

(t), and Sr) resulting from bond degradation in all tested beams. Increasing the 

bonded length of the bar (from 100 through 400 mm) increased the concrete-steel 

interaction and yielded higher values of the AE parameters, starting at the bond 

slip detection until failure. Conversely, the variable bonded length had no 

significant effect on the AE parameters recorded at the time of first crack of all 

beams. 

 Increasing the sensor distance from the source location of damage slightly reduced 

all AE parameters (signal amplitude, number of hits, CSS, H (t), and Sr) at all 

stages of damage in both corroded and un-corroded beams. Nevertheless, AE data 

from all sensors permitted the detection of first crack, slip initiation, and 

anchorage cracking up to a maximum sensor distance of 1505 mm from the source 

of bond damage.  

 The H (t) and Sr results of all tested beams were utilized to establish a damage 

classification chart. This chart classified the damage of all beams into three levels 

including first crack, initial slip, and anchorage cracking before the occurrence of 

bond failure. This chart can be useful in identifying early stages of bond damage 

of both new and existing RC structures based on the AE data collected from 

continuous SHM systems. 
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8.1.5 Observed Limitations of AE Monitoring as a SHM Technique  

 For the practical application of the findings of this thesis to aging concrete 

structures (which are already corroded to a certain degree of corrosion), the extent 

of corrosion damage may be determined by well-established non-destructive 

testing techniques, like guided wave based techniques. 

 Some potential variations may exist between the results of this thesis and that 

expected in real concrete structures (such as the changes of ambient conditions, 

size of tested samples and pre-stressing of the reinforcement). 

8.2 Recommendations for Future Research  

 Further investigations involving the application of natural corrosion mechanisms 

are required in order to validate the presented results obtained from the current 

accelerated corrosion studies. 

 Future studies are also needed to examine the effectiveness of AE monitoring in 

evaluating the condition of actual concrete structures exposed to variable ambient 

conditions (moisture and/or temperature variations) to complement/confirm the 

results of these investigations.  

 The effects of other variables existed in real concrete structures such as; variable 

specimen size, rebar confinement conditions, and pre-stressing of reinforcement 

on the AE data also require additional investigations. In addition, the distribution 

of AE sensors at larger distances than those covered in this research (> 1.505 m) 

from the source of damage requires further research to generalize the outcomes 

from this research. 
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 The investigation of the influence of type of loading (static or dynamic) on the 

resulting AE data obtained from similar bond tests to those conducted in this 

research is also recommended. Meanwhile, the effect of varying concrete type (in 

terms of density and composition) on the AE data demonstrated in this thesis 

requires further examination. 

 The effectiveness of AE monitoring for the evaluation of damage in RC structures 

exposed to combined corrosion and external loading acting simultaneously needs 

to be examined.   

 Comparing the absolute values of the AE parameters from SHM systems from 

monitoring in-service concrete structures to those presented in this thesis can 

enhance the reliability of these results and improve the precision of the developed 

damage classification charts. 

 The AE monitoring performed in this thesis was based on passive monitoring of 

AE signals generated during both destructive and non-destructive testing. Thus, 

investigating the feasibility of using an active AE monitoring system via 

ultrasonic or mechanical source as a non-destructive SHM tool for its practical 

application for testing real concrete structures is recommended for future work. 

 The results from the pull-out tests may be used as a basis of comparison with 

other tests in the literature in order to develop refined equations and charts for 

evaluating the bond behaviour of RC structures.  
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