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Abstract

In this thesis, a hybrid genetic programming approach is proposed for decision
making system in the complex multi-agent domain of RoboCup Soccer Simulation.
In the past, genetic programming was rarely used to evolve agents in this domain
due to the difficulties and restrictions of the soccer simulation domain. The proposed
approach consists of two phases, each of which tries to cover the other’s restrictions
and limitations. The first phase will produce some evolved individuals based on a GP
algorithm with an off-game evaluation system and the second phase will use the best
individuals of the first phase as input to run another GP algorithm to evolve players
in the simulated game environment where evaluations are done during real-time runs
of the simulator. It is observed that the individuals evolved after the second phase
are able to outperform the same team with a decision making system which is not

evolved.
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Chapter 1

Introduction

A multi-agent system is a system in which there are multiple interacting intelligent
agents within an environment [10]. These systems can be used in different domains
for solving problems where a single agent is unable to achieve the defined goal or
reaching it might be time consuming and inefficient. The problem of decision making
in multi-agent systems is a complex one. Each agent in a multi-agent system needs to
have an independent decision making system in order to be able to interact with other
agents and also the environment. This communication between agents is limited in
each environment and the amount of information that they can give or receive from
each other has a limit per each cycle depending on the environment type.

Each agent has different functions and skills that it can execute in each cycle or
a period of time. In order to execute the best action for reaching the goal of the
system, there are two main problems. First, the functions and skills of an agent need
to be optimized to reach the best possible outcome. Second, when all functions and

skills are available, a good decision making system is required so that the skills and



functions are used at the right time so the goal can be reached in an efficient manner.
The problem of generating a good decision making system when we have the functions
and skills available is the problem that is considered for this thesis. For this purpose,
a hybrid genetic programming based approach is proposed for improving the outcome
of an agent’s actions.

Genetic Programming (GP) is one of the research areas within the field of Evo-
lutionary Computation (EC) [5], which generates programs and algorithms through
simulated evolution. In Genetic Programming, computer programs are evolved dur-
ing the generations that the algorithm is running. Each computer program in GP is
commonly represented as a tree which is defined using a set of terminals and functions
depending on the problem definition. Crossover and mutation operators are used for
evolving individuals through generations. Evaluation of trees in GP is done by re-
cursively traversing the corresponding tree in the evaluation method that is defined
depending on the problem statement.

Soccer 2D Simulation is one of the main leagues of the official RoboCup compe-
titions that many researchers from around the world participate in. It is also one of
the oldest leagues of the competitions, running since 1997, the first year of the offi-
cial RoboCup competitions. The Soccer 2D Simulation Server (RCSSServer) [22] is
the software in the Soccer 2D Simulation league that provides a complex multi-agent
system allowing groups to develop their own soccer teams of 11 individual agents and
play against another team. Intelligent soccer teams of agents developed by differ-
ent groups of researchers can play against each other using the RCSSServer in order
to test the intelligence of their agents and their strategies. This domain offers an

integrated research task covering broad areas of Al and robotics such as: real-time



sensor fusion, multi-agent systems, strategy acquisition, machine learning, real-time
planning, pattern recognition, vision, strategic decision-making, motor control and
intelligent robot control.

RCSSServer is the domain used for testing our proposed method of decision mak-
ing. This thesis and the implementations done for testing the proposed method are
based on the code of the award winning team named MarliK [29]. I was a member of
this team from when it was founded in 2005 and I was acting as leader of the group
from 2008 [29]. MarliK was placed 3rd in the world two times in official events of
RoboCup 2011 in Istanbul, Turkey [9] and RoboCup 2012 in Mexico City, Mexico [8].
MarliK was also placed 1st in many international RoboCup Open competitions in the
Netherlands and Iran during the years 2009-2014. The motivation for the proposed
method for decision making is that MarliK has really good quality high-level skills
for its agents such as shoot, pass, dribble, block and mark, but lacks a stable decision
making system, which was always felt a deficit during the past years. With the use of
an optimized static decision making system, we won the award in the Drop-in Player
Challenge of RoboCup 2013 in Eindhoven, Netherlands [20]. In the Drop-in Player
Challenge, a random number of agents from each team were placed in a “super team”
which consisted of different players from different teams in the competitions. They
played against other randomly chosen players and the challenge was for the agents
of each team to be able to co-operate well with their new unknown teammates. Our
agents managed to get the highest scores and placed first in this challenge. A detailed
analysis of the results and performance of agents from each team is available in [20].

My teammates and I were always struggling to find an efficient way of getting the

best out of the available skills in our team’s code in order to improve the gameplay



stability and to be able to score more goals and also suffer less goals from opponent
teams. During several competitions and through discussions with other teams it was
found that this is one of the main problems of many teams participating in these
competitions. I am proposing this new method which uses genetic programming and
I am hoping to be able to improve agent behavior in the soccer simulator domain
using evolution. Because of the similarity of the domain of soccer simulation with
other real or simulated environments and the flexibility of the proposed method, it is
expected that it can be modified to be used in other domains as well.

In this thesis, background information about the RoboCup Simulation environ-
ment and Genetic Programming is provided in Chapter 2. Chapter 3 provides infor-
mation about related work using Evolutionary Algorithms in the soccer simulation
framework. Chapter 4 explains the hybrid GP method for decision making in our
simulated soccer agents. Chapter 5 details implementation of the proposed method.
Chapter 6 shows the results of this research and compares results in different scenar-

ios. Finally, conclusions and future suggested work are discussed in Chapter 7.



Chapter 2

Background

This chapter will provide background information on the problem domain and the
proposed approach in the next chapters. RoboCup and the Soccer Simulation Server
are detailed first, then an introduction to genetic programming and its configurations

and operators are discussed.

2.1 RoboCup Soccer Simulation

RoboCup (Robot World Cup) is held every year by the official RoboCup federation,
with the objective of promoting robotics and research in the area of Artificial In-
telligence (AI). The mission of this competition, set in the first year of the event
in 1997, is to build a team of robots that will be able to play and win against the
human soccer champion team of the Soccer World Cup by year 2050 [15]. In order to
achieve this mission, researchers are focusing on different parts of building a robot,
in different leagues of the RoboCup competitions, which is held each year since 1997.

RoboCup also expanded into other relevant application domains in order to help ful-



fil the needs of our society. The main divisions of RoboCup competitions, each of
which including different leagues, are: RoboCup Soccer, RoboCup Rescue, RoboCup
@Home, RoboCup Junior.

RoboCup soccer is divided into two main subdivisions which are (i) physical
leagues and (ii) simulation leagues. In the physical leagues of RoboCup soccer, indi-
viduals or teams of robots play against each other in a real environment under the
rules of the league. As of 2016, the physical leagues of RoboCup soccer include Stan-
dard Platform League (formerly known as Four Legged League), Small Size League,
Middle Size League, Humanoid League (including kid size, teen size, and adult size
robots). Soccer Simulation leagues are divided into 2 sub-leagues, known as 2D and
3D. Soccer 2D Simulation is one of the oldest leagues of the competition in place
from the first year of the event in 1997. In this league, two teams of eleven au-
tonomous software programs known as agents play soccer against each other in a
two-dimensional virtual environment called Soccer Server. The framework used in
this thesis for implementing and testing the proposed approach is RoboCup Soccer
Simulation Server (RCSSServer) from Soccer 2D Simulation league that is detailed
in the following sections.

The RoboCup Soccer Simulator consists of three main parts which are:

e Soccer Server
e Soccer Monitor

e Logplayer

Soccer Server is the main software which is designed to model the simulated soc-

cer environment. The project is open source and it is available for download on



rcssmonitor 15.1.1

MarliK 1:0 HELIOS base play on 186

Figure 2.1: RoboCup Soccer Monitor

SourceForge.net!. All of the information related to sensors, actors, noise-generating
algorithms, and the patterns used for communication between agents are created, pro-
cessed and sent to agents by soccer server. The soccer simulation system includes two
types of monitors that communicate with the soccer server and allow to visualize the
information received from the server offline or online. Online communication with the
server is done by the soccer monitor which visualizes the soccer games while they are
being played on the server. An example of a game running on the soccer server and
shown on the soccer monitor is presented in Figure 2.1. Everything that happens in
the simulated environment caused by server and agents can be visualized and shown

to users on the soccer monitor at the same time. Logplayer is used for analyzing a

Thttps:/ /sourceforge.net/projects/sserver /files/



game in order to study behavior of agents after the game is over. Users will have
the option of watching the game and applying controls such as pausing, reversing,
and speeding up the game, in order to extract needed information from Logplayer.
Figure 2.2 shows a sample screen of Logplayer. Here, details of the soccer server will
be discussed, as well as rules of the simulated environment and the simulated field’s

properties.

20160725124629-MarliK_1-vs-HELIOS_base_0.rcq - rcsslogplayer
W L4 a> e > e ¥

MarliK 1:8 HELIOS_base

(-54.77,-39.37)

Figure 2.2: RoboCup Soccer Logplayer

Soccer Simulation Server is a software that allows 11 agents of two different teams
to play against each other in a simulated soccer field. The framework creates a rich
multi-agent environments that can be used for many different areas of research, such

as Artificial Intelligence (Al) or Evolutionary Algorithms (EA). Each agent connects



to the server as a separate process and interacts with it as a client. The server
provides the soccer field and simulates movement of ball and agents in the field.
Connection between each agent and server is established via UDP/IP protocol and
any programming language that supports UDP/IP can be used to talk to server from
client side. Each team can use up to 11 player clients connected to the server. Each of
these 11 processes is able to act as the “brain” of one agent and can only talk to other
agents through the server. This makes the soccer simulator a standard multi-agent
environment.

The server uses some parameters to simulate the environment so that it is more
similar to the real world. Getting to know some of these parameters will help to

understand the system better. A list of important parameters of the server is listed

in Table 2.1.

2.1.1 Rules

Rules in Soccer Simulation fall into two main categories. The first category are rules
that can be automatically recognized by calculations of the server. The second type
are the rules that the system cannot recognize which are controlled by a human referee

(members of technical committee of each competition).

2.1.1.1 Server Rules

The rules which can be controlled through mathematical or logical calculations are
controlled by the server. Mathematically recognizable rules include: offside, keeping
9.15m distance from opposing players when a team is taking a free kick, and con-

trolling the timing of the game, such as handling half times and extra time. Logical



Table 2.1: Some important parameters of soccer simulation server

Parameter Name

Value in current

version of server

Description

version
goal_width

ball size
ball_decay
ball_speed_max
ball_accel_max
player_size

player_decay

player_speed _max

player_accel_max

stamina_max

stamina_inc_max

max_dash_power

max_dash_angle
maxneckang
visible_angle
port
say_msg_size
simulator_step

half_time

15.3.0

14.02 (m)
0.085 (m)
0.94

3.0 (m/cycle)
2.7 (m/cycle)
0.3 (m)

0.4

1.05 (m/cycle)
1.0 (m/cycle)
8000.0

45.0

100.0

180 (degrees)
90 (degrees)
90 (degrees)
6000

10 (bytes)
100 (msec)

300 (sec)

Current version of server

Width of each goal in the field

Size of the ball

Decrease rate in speed of ball after each cycle
Maximum speed of ball

Maximum acceleration of ball

Size of each player

Player speed decrease rate for each cycle
Maximum speed of each player

Maximum acceleration of each player
Maximum amount of stamina for each player
Maximum increase of stamina per each cycle
Maximum speed of dash for players
Maximum angle of dash for players
Maximum angle that player’s neck can turn
Maximum angle player can see each cycle
Port number that players should connect to
Size of string player can say

time step of each cycle

Length of each half time of game

10




rules include different game modes such as: goal kicks, kick ins, corner kicks, and
play on. The server can be considered a deterministic finite automaton that handles

recognizable possible faults in the game.

2.1.1.2 Human Rules

These types of rules do not interfere with the first type of rules and are not recog-
nizable by the server. Often, they are against the fair play rules and will be handled
by a human referee. These rules include: surrounding the ball with lots of players,
lining up lots of players in front of the goal, blocking opponent players intentionally
when they don’t have the ball, bombarding the network with more commands than

allowed, and some more.

2.1.2 Features of the Soccer Field

The simulated soccer field is a two dimensional flat area with dimensions of 68 x 105
meters. The width of each goal is 14.02 meters, almost twice the size of a real
goal. Agents and ball are modeled as circles in the simulation and all of the relative
distances and angles are calculated using the center of these circles. The center of the
field is considered as the coordinate origin. The X-axis has a range of -52.5 to 52.5
and the Y-axis from -34 to 34. There are 59 flags placed throughout and around the
field with pre-defined fixed locations that help agents find their position in the field.

All of the flags are shown in the Figure 2.3.

11



(flag t 1 50) (flag t130) (flagt110) (flagt0) (flagtr10) (flag t r 30) (flag tr 50)
— & & & & &
(flag t 1 40) (flag t120) (flag tr 40)
® 9
flag | (flagrt)
(flag 1130) @ (Faglt) (lmct)/
/(lincl) (line rl\
(Maglt20) @ ——————@ (flagply) (flag pr)@——m
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(flagg1b) (flag g rb)
(flag b 10)@
(flag 1 b 20)@ ——————@ (flagplb) (flag prbp———
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(flag 1 b) \ (flagrb)
L *
(flag b 1 40) (flag b 120) (flag br40)
L L L L < L @
(flag b 1 50) (flag b130) (flagb110) (flagb0) (flagbr10) (flag b r 30) (flag br 50)

Physical boundary

Figure 2.3: Location of all of the flags of the soccer simulation server [7]

2.1.3 Sensor, Movement, and Action Models

(flag r130)

(flag rt 20)

(flagrt 10)

(flag r 0)

(flagrb 10)

(flag rb 20)

(flag r b 30)

An agent in the simulated framework needs to have a two-way communication with

the server so that it can act similar as in the real world. In other words, an agent

should be able to receive useful information that can be a motivator for making

decisions to act in the field, as a response to the events of the environment. Creating

this two-way interaction between client and server should be supported by the server.

In the following sections, some of the models for creating this interaction are reviewed.

12



2.1.3.1 Sensor Models in Server

The soccer simulator uses three sensor models in order to transfer information from
the environment to an agent so that it will be aware of everything happening around
it during the game. These three models cover visual sensors, aural sensors, and body

sensors. In this section, each of these sensor models are briefly discussed.

e Visual Sensors: Information visible on the field is transmitted to a player
through visual sensors. This information refers to all of the moving and fixed
objects visible in the field, including other players of the same team and of
the opponent team, the ball, and all of the flags. This information is received
relative to the current position of an agent so that it will not receive its exact
location in the field. In order to calculate an accurate approximation of its

location, the player must use the flags in the field.

Each player has a limited visual field and can see within an angle and a distance
according to its current neck angle and view mode. A player is able to sense
objects which are out of its sight in a small radius as well. Visual information
is sent from the server in a time step (between 1 and 3 cycles) depending on the
view mode of the agent. An agent has three different view mode options that it
can select depending on the situation of the game. There are three parameters
that change depending on the view mode the agent is using: view quality, time
to receive visual information, and view angle. The three view modes are called
narrow, normal, and wide, and their view angles are 90, 120, and 180 degrees.
The noise level of the information received from server will increase as the view

angle gets wider. The furthest object that a player can see is 60 meters away.

13



Figure 2.4 shows visual model of agents in more detail. As depicted in Fig-
ure 2.4, agents A, E, and G are using the narrow view mode in this specific
cycle of the game. Agents C, D, F, H, and [ are using the normal view mode
and agents B and J are using the wide view mode. More details of the view
model are shown for agent A demonstrating that in this cycle it can only receive
visual information of the ball object and agents C, D, and FE because these are
the only objects within its view angle. The visible angle of agent A v and d
is the small distance around the agent within which it can perceive all objects

regardless of its visible angle.

Figure 2.4: Visual model of a soccer agent

e Aural Sensors: The soccer server simulates a busy environment with a low

14



bandwidth where all agents are able to communicate directly with each other
only through one way of communication [7]. In this environment, each agent
is able to receive and process the information shared through the server from
all other agents. This information is collected by the server and then broadcast
with no delay to all agents not further away than audio_cut_dist. A message
sent by an agent is in the form of a string not longer than a pre-defined length

named say_msg_size.

Body Sensors: The body sensor model of the soccer server includes all physical
information of agents such as speed, stamina, body angle, and neck angle. Body
information is received from the server in time steps of sense_body_step. The

body sensor report is sent by the server in the following format:

(sense_body Time

(view_mode ViewQuality ViewWidth)
(stamina Stamina Effort)

(speed AmountOfSpeed DirectionOfSpeed)
(neck_angle NeckDirection)

(kick KickCount)

(dash DashCount)

(turn TurnCount)

(say SayCount)

(turn_neck TurnNeckCunt)

15



(catch CatchCount)
(move MoveCount)

(change_view ChangeViewCount)

where:

Time = The number of cycle that this message was transmitted.
ViewQuality = {high, low}

ViewWidth = {narrow, normal, wide}

Stamina = A positive integer between 0 and stamina_maz.

Effort = An integer between effort_min and effort_maz.
AmountOfSpeed = An approximation of speed of the agent.
DirectionOfSpeed = An approximation of the angle of agent’s speed.
NeckDirection = Direction of agent’s neck relative to its body.

Count variables = All the variables that have a Count show the total

number of that action that was executed by server for this agent so far.

2.1.3.2 Movement Model

For each simulation cycle, each agent’s position as well as the ball position are cal-
culated using their last cycle’s position and the body action that was sent by each
client to the server. In the following calculation, the position of an object in cycle
t is written as (pf,p),) and the velocity of an object in cycle ¢ is written as (v}, v}).

Acceleration of objects is expressed with (a, @Z), the move vector of objects for each

16



t

y); and decay is either equal to player_decay or ball_decay

cycle is written as (ul,u
depending on the type of object. The parameter decay is applied for calculation of
velocity of the objects. For example, if velocity of the ball is 3.0 in one cycle and

ball_decay is 0.94, velocity of the ball will be 2.82 in the next cycle if it is not kicked

by an agent.

(utx“,utyﬂ) = (v;,v;) + (al,, aty) - accelerate (2.1)
@S o) = 0k, py) + (ult uytt) = move (2.2)
(vt UZH) = decay x (ul™, u;“l) : decay speed (2.3)
(ait,alth) = (0,0) : reset acceleration (2.4)

Acceleration of an object is updated with the actions from the previous cycle.
Acceleration is created and changed by the dash action for agents and by the kick
action for the ball object. If two objects collide, they will be pushed back in the
direction that they approached each other and their speed will be reduced to 10%
of their previous speed. A list of server parameters used for the movement model is

provided in Table 2.2.

2.1.3.3 Action Model

The action model includes all of the actions that an agent is allowed to perform in the
simulated soccer environment. In each cycle, an agent is allowed to choose from one of
the main actions catch, dash, kick, move, or tackle, as well as one optional command
for each action say, turn, turn_neck, and change_view. A few of the important actions

are detailed below:

17



Table 2.2: Movement parameters of soccer server and their values

Parameter Name Value Description

ball_decay 0.94 Decay of the ball object
player_decay 0.4 Decay of the player object
ball_weight 0.2 Weight of the ball object
player_weight 60.0 Weight of the player object

1. catch: This action is only allowed for the goalie agent of each team and is exe-
cuted only when the game is in play_on mode. The catchable area of the goalie
is slightly bigger than the kickable area as shown in Figure 2.5. After each time
that a goalie performs a catch action, there is a time period of catch_ban_cycle
during which the server will not allow the goalie to execute a catch action again.
This parameter is to simulate the actual catch action of goalies in a real game:
After performing a dive, the goalie needs some time to get up and try to perform
another one. In the current version of the simulator catch_ban_cycle is set to 5

and catchable_area is 1.2 meters.

2. dash: This is the action that allows players to accelerate and move in a certain
direction in the soccer field. In earlier versions of the soccer simulator, an agent
was only allowed to perform dash and accelerate in its body direction to the
front or back. Since 2009, the dash model has changed and one parameter was
added allowing players to dash in different angles relative to their bodies. dash
is the only action that reduces an agent’s stamina. An agent’s stamina recovers

in each cycle that the agent does not perform a powerful dash. The format of a
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Ul(ickable Area

Figure 2.5: Catch area of goalie agent in soccer simulator

dash command is as follows:

(dash dash_power dash_angle) (2.5)

dash_power specifies the power of the desired dash action. In the current version
of the simulator, minimum and maximum power of a dash command are -100
and 100.

dash_angle specifies the angle of desired dash action. It is a number between

-180 and 180 degrees in the current version.

. kick: The action that allows agents to send the ball in the desired direction
with the desired speed. This command is sent to the simulator in the following

format:

(kick kick_power kick_dir) (2.6)
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kick_power is the power of the shot that the agent is performing and is between
minpower and mazrpower which for current server version have values of -100
and 100.

kick_dir is the direction that the agent is willing to send the ball and should be a
number between minmoment and marmoment which are -180 and 180 degrees

for the current simulator version.

Each agent has to be close enough to the ball object so that the kick action
can be performed. This distance is called kickable area and it has a slightly
different value around 1 meter depending on the player type of the agent that

is set either by the server or the coach of that team before the match begins.

. move: This action has a very restricted use and moves an agent directly to a
specific desired position in the soccer field. It is only available for use in certain
play modes such as before_kick_off, goal_l and goal_r to enable players of both
teams move to a certain position to form the team and start the game either
at the beginning or after a goal is scored. The goalie agent of each team is
also allowed to use mowve after a catch of the ball, in order to be able to move
to a certain position in the team’s penalty area to pass the ball to a desired
teammate. Since there is no third dimension to allow goalie to send the ball

with a low risk to the center of the field, this is a feasible approach.

. tackle: This command was added to the soccer simulator in 2008 and allows
players to tackle the ball even if it is not in their kickable area. It can be
used both for defense or attack purposes. The player who wants to perform a

tackle can calculate the chance of tackle being successful and the probability of

20



committing a foul (with some noise), prior to performing the action using the
information provided by the server so that, depending on the situation of the
game, it can decide if the risk of performing a tackle is worth it. The tackle
area of an agent is a rectangle in front of an agent’s body. If the ball is nearer
to the center of an agent’s body, the chance of a successful tackle also increases.
Figure 2.6 shows the tackle area in front of an agent’s body from the soccer
logplayer software. The success probability of a tackle for the case shown in

Figure 2.6 is 0.6.

Figure 2.6: Tackle area of an agent in soccer simulator

6. say: Allows an agent to broadcast a message to other players in the field in
the form of a string with a size of no more than say_msg_size. This message
is sent by the simulator to players of both teams with a distance less than

audio_cut_dist with no delay.
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7. turn: This command allows an agent to turn its body towards a desired angle.
As kick and dash commands, the server applies a noise model when executing
it in the field, so the actual turn angle might be slightly different from the angle
that was asked for. The noise applied considers current acceleration speed and

angle of the agent to align the simulation with the real world.

8. turn_neck: This command acts almost as the same as the turn command and
changes the neck direction of the agent instead of its body direction. Unlike
turn that can not be executed at the same time with dash, kick, tackle or mowve,
one turn_neck command is allowed to be sent to the server in each cycle so the

player can see different directions of the field while moving.

9. change_view: Allows agents to change their view width and quality depending

on their need. It has to be sent to the server in the following format:

(change_view view_width view_quality) (2.7)

view_width can be narrow, normal or wide.

view_quality can be either high or low.

Depending on how the agent chooses the parameters of this command, frequency
and quality of the received visual information will be affected. For example, if
it changes the quality from low to high, the frequency gets halved and the time

between two see sensor readings is doubled [7].
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2.2 Genetic Programming

Genetic Programming (GP) is a type of Evolutionary Algorithm that is inspired by
biological evolution for handling complex problems. The most common type of GP
is tree-based GP which is used in this thesis. Each computer program (individual)
in a tree-based GP system is represented as a tree and each tree consists of a set
of functions and terminals. There is a population of individuals that reproduce with
each other in each generation. During the evolution process in GP, a predefined fitness
function evaluates how well individuals perform toward a user defined goal [6]. The
algorithm uses multiple generations of individuals in order to generate fitter solutions.

Each computer program in GP is represented as a tree and consists of some nodes
chosen from a set of functions or a set of terminals. Each function has one or more
children, depending on its type, and the child nodes of the function are the arguments
of that function. While functions form the internal nodes of the tree, terminal nodes
are the leaf nodes and have no children and usually are inputs to the program. Each
terminal may be a variable or a constant with a value either preset or randomly
generated [24]. Figure 2.7 shows the representation of the (mp%") function as a genome
of a tree-based GP where m, n, and p are terminals, and the functions are + and /.

The GP algorithm starts by generating an initial population formed by a number
of individuals. This initial population is generated randomly using the predefined
function and terminal set of the problem. In the next step, each of these individuals
are evaluated with the fitness function which specifies quality and performance of
each genome. Genomes that perform better are more likely to survive into the next

generation. The selection method for this step of the algorithm which is repeated for
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Functions = {+, /}

Terminals = {m,n,p} 0

(m+n)

Figure 2.7: Representation of the function in a tree-based GP system

all of the generations, varies depending on the parameters of that specific run.
Before implementing a GP system for a problem, there are some things that

need to be considered such as determining the best function and terminal set for the

problem, choosing a selection method, defining a termination criterion, specifying GP

parameters, and the most important one, designing a fitness function.

2.2.1 Preparing a Problem for GP

The first step in preparing a problem is to define the terminal and function sets that
will be used for defining genomes in each generation.

Terminals are inputs to the algorithm and each terminal can be a variable, con-
stant, random value, etc., and they often take the form of a named variable such as
z or y. A function with no argument also resides in the terminal set (e.g., rand(),
dist_from_goal(), dribble_to_goal()). Functions vary from arithmetic functions such as
PLUS, DIVIDE, etc. to logical expressions such as AND, OR, etc. Depending on the
type of the problem, we may also have some problem-specific functions and operators

as well [3].
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A termination criterion is necessary so that GP knows when to stop since in most
complex problems it is time-consuming and very hard, if not impossible to find the
desired best fitness value. After the termination criterion is met, the best fit individual
is considered as the solution to the problem.

Finding and defining the fitness function is one of the most important parts of
every GP system and varies from problem to problem. This function is the key factor
of the GP that drives genomes toward the solution that we are looking for. Each
genome has a fitness value that shows how well this genome performs toward the
desired objective. Fitness can be measured in many ways. For example, with an
error-based fitness function, a genome’s fitness value is calculated as the sum of the
absolute value of the differences between actual output of the program and the output
given by the training set (the error) [6]. So the larger the fitness value of a genome
in GP with an error-based fitness function, the less probable it is that this genome
will survive to the next generation.

The final step of preparing a problem for GP is to define the GP parameters.
There are about 20 parameters that need to be specified before running a GP system.
The most important one is population size. Other parameters include maximum
depth of trees, selection method, initial population creation method, probability of
performing the genetic operators, etc. Setting these parameters heavily depends on
the application and it is almost impossible to know which option is the best one,
but some options are more common. For example, it is common to use the ramped
half-and-half method for an creating initial population. This method creates half of
the initial trees using the grow method and the other half using the full method with

a depth of no more than 10.
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2.2.2 GP Operators

After the first population is created with the use of random genetic operators, genomes
will have the chance to evolve and become more fit in order to survive more genera-

tions. The main genetic operators are Crossover and Mutation.

2.2.2.1 Crossover

The crossover operator in tree-based GP swaps two subtrees from two genomes that
are selected as parents. Combining genetic material of two genomes creates two new
genomes that each have some parts of each of their parents. The most common
type of crossover operation in tree-based GP is one-point crossover which works by
selecting a crossover point (node) from parent trees and then swaps the corresponding

subtrees [24].

2.2.2.2 Mutation

There are a few types of mutation used for tree-based GP. In this research, the subtree
mutation method is used. In subtree mutation, if a genome is selected for mutation,
one randomly-chosen point (node) of the tree is chosen and the subtree below that
node will be replaced by a new subtree created using the same method as creation of

initial population [6].
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Chapter 3

Related Work

Genetic programming has been applied to multi-agent coordination before. Andre
in [1] evolved communication between agents with different skills. In his research,
agents were multi-part computer programs that communicated through a shared
memory. Both the programs and the representation scheme were evolved using genetic
programming. An illustrative problem of ’gold’ collection was used to demonstrate
the approach in which one part of a program made a map of the world and stored it in
memory, and the other part used this map to find the gold. The results of his research
indicated that the approach can evolve programs that store simple representations of
their environments and use these representations to produce simple plans [1].
Qureshi in [25] evolved agent-based communication in a cooperative avoidance do-
main. They showed that genetic programming can be used to automatically program
agents which communicate and interact to solve problems. The programs evolved
simultaneously to define when and what to communicate, and how to use the com-

municated information to solve the given problem. Raik and Durnota in [26] used
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GP to evolve cooperative sporting strategies. Luke and Spector in [19], Haynes et al.
in [12] used GP to develop cooperation in predator-prey environments. Iba in [14] ap-
plied a similar approach to cooperative behavior in the TileWorld domain. These were
some of the early related work done before Sean Luke applied Genetic Programming
to a very difficult problem domain, RoboCup Soccer 2D Simulation.

The RoboCup soccer server is said to be not a good match for GP. The soccer
server domain is very complex and there are many options and controls with lots
of special cases and boundary conditions that are very important for each decision
or action to make it hard for GP to get integrated. Another difficulty is the time
factor. The soccer server runs in real-time and all players are connected separately
via UDP sockets to the server. Each game takes ten minutes to play and there is
an enforced 10ms delay between world model updates which makes the whole game
about 10 minutes (equal to 6000 of 10ms cycles) [18].

In 1997, Sean Luke proposed using Genetic Programming for producing a team
of competitive agents for the RoboCup97 official competition [17, 21]. The soccer
simulation environment is very difficult, real-time, noisy, and highly dynamic. For
many different reasons which will be addressed later in this research, the agents in
the soccer simulation environment are very difficult to evolve. The objective that
Luke and his teammates set for their team was fairly modest. Their goal at first was
to produce a team of agents able to play the whole game [17, 18]. They managed to
produce agents that were able to decide how to disperse throughout the field, pass,
kick to the goal, defend the goal, and coordinate with and defer to other teammates.
By the time their team participated in RoboCup97, all other teams were hand-crafted

human code algorithms and their team was the only team with intelligent players
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using an Al approach. They finally managed to win their first two games in the
competition but lost others. They won the RoboCup97 scientific challenge award for
their valuable research [17].

One of the reasons which makes it challenging to evolve a computer program to
work successfully in this domain is that it would likely require a very large number
of evaluations. In this case it would mean that each evaluation is equal to a run of a
game in the simulator. In one of their previous results in a simpler domain, Luke and
Spector found that GP will probably require about 100,000 evaluations in order to
find a reasonable solution [19]. In a more complex domain like soccer server it is likely
that more evaluations were necessary to find a reasonable solution. If we consider
each evaluation in the soccer simulation server run to take 5 minutes, it would take
up to a full year to do 100,000 evaluations. The challenge of cutting down this time
from years to a few weeks or months while still being able to produce a relatively
good-playing soccer team from only a small number of evolutionary runs was one
of the main problems they faced. They managed to take on this problem in several

ways [17]:

e They used brute force in order to speed up the process, running 32 parallel
games and also cutting down time for each evaluation from a full game of 10
minutes to limited periods of games of between 20 seconds and one minute

duration.
e They cut down population size and number of generations.

e They developed an additional layer of software to simplify the domain in order

to eliminate many boundary conditions the GP programs would have to account

29



for. They also spent much time designing a function set and evaluation criteria

to promote better evolution in the soccer simulation domain.

e They did parallel runs with different genome structures to have more options

when they were close to the competition.
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Figure 3.1: Point mutation operator in Luke’s research [18]
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Figure 3.2: Subtree crossover operator in Luke’s research [18]

In Luke’s research, they predefined the low level skills of agents, such as dashing,
kicking, and moving. They added evolvability to the high level skills of agents, such as
pass, dribble, and shoot. They made some changes to the traditional GP genome, and
instead of having one tree for each agent, they had two trees. One was the with-ball
decision tree and the other one was the without-ball decision tree (one for moving the
player and one for kicking the ball when ball is owned). A basic state-rule was set to

determine which tree to call in each cycle of the game. If a player was close enough
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to kick the ball, the kick tree would be called and if a player could see the ball but
it was not reachable, the move tree would be called. Also, if the player wasn’t able
to see the ball, a simple turn body command would run until the player was able to
see the ball [17]. Two examples of evolving trees from their research are shown in
Figure 3.1 and Figure 3.2 which demonstrate how the point mutation and crossover
operators act during evolution.

The fitness function in this work was based only on the number of goals that
a team scored in a game. In order to prevent premature convergence (a problem
because of their small population size) they used a high mutation rate of 30% [17, 3].

They also implemented both homogeneous and pseudo-heterogeneous approaches
for their teams but because of the limited time and excessive size of pseudo-heterogeneous
genomes, their pseudo-heterogeneous teams could not outperform their homogeneous
team before the competitions.

After Luke’s team pioneered GP in the soccer simulation domain in RoboCup97, a
team named Darwin United used GP to evolve their agents in RoboCup98 [2]. Darwin
United used a different method than Luke’s team for evolving their players and they
employed an optional coach agent -which receives noiseless data from the server but
has very limited communication with agents- for storing data and coordinating the
decision for rewarding players after each command execution [23].

After Luke and Darwin United, J. Aronsson in [3] also used GP to teach soft-
ware robots to play soccer. He focused more on designing a better fitness function.
Aronsson also made several compromises to limit the duration of the evolution pro-
cess because of the excessive run times needed for evaluating each population due to

complex nature of the soccer simulation framework.
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Aronsson used a similar approach as Luke for implementing kick and move trees in
his GP system. The population consists of several individuals, each of which having
one move and one kick tree. Figure 3.3 demonstrates the structure of a decision tree
in Aronsson’s research. Each leaf node is always an action and all other nodes are

predicates in his experiments.

ololcloRlo ™S
OO

Figure 3.3: The structure of a decision tree in Aronsson’s research [3]

One main difference in the decision making of Aronsson’s agents compared to
previous approaches was that players that believed to have an obvious chance of
scoring a goal would attempt to score without considering the evolved kick tree’s
decision. This “action overriding” was expected to make agents concentrate more
on team coordination and positioning and improving the quality of their decision
making. It was concluded in his result that it worked as expected.

The fitness measure used in Aronsson’s research was based on each player’s per-

formance during a game, or on the average of its performance if that player played

33



multiple games during the evaluation process. The fitness value was calculated as

weighted sum of the parameters that are shown in Table 3.1

Table 3.1: Fitness assessments of Aronsson’s GP implementation

Assessment Value
Won 1 if the player’s team own the game and 0 otherwise.
Team score The number of goals made by the team.

Opponent score | The number of goals made by the opponent team.

Score The number of goals made by the player.

Attempts The number of shoots on goal made by the player.

Kicks The number of times the player kicked the ball.

Passes The number of passes made by the player.

Active 1 if the player kicked the ball during a game and 0 otherwise
Ball close 2 if the average distance to ball is less than 15, otherwise 1

if this distance is less than 20 or 0 if this distance is greater

than 20.
Average y The player’s average y during a game.
Time free The time the player was free during a game, measured in the

percentage of total time. A player is free when no other player

is closer than a distance of 10.

Time offensive The time player spent on the opposite half of the field, mea-

sured in the percentage of total time.

Aronsson made two experiments, different only in the team set-up. In the first
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experiment, the players learned to chase and kick the ball towards the goal or pass it to
a teammate, but in the second one players converged and did not develop further than
the first experiment. Also it was concluded that players from the first experiment were
developing towards team coordination slowly. He mentioned some possible reasons

for the agents not developing further [3]:

e Premature convergence: A larger population size was needed for a problem
of this complexity in order to prevent premature convergence. Due to the nature
of soccer simulation framework, evaluating individuals in the simulator is very
time consuming and each game is limited to a small number of agents that

forced them to use a small population size.

e Limited search space: The predicate and action sets that were defined would
provide a limited search space for the experiments that would result in being

unable to find significantly improved solutions.

e Functions: Action functions are controlling agents in the field. Skill functions
that were used in his study did not have a good quality. For example, their

agents had problems intercepting a pass.

e Credit assignment: Defining a fitness function that can express the actual
desired behavior is one of the main complexities of this problem. Their main

challenge was to determine which individuals to credit for a team’s success.

e Overfitness: Each individual was only tested for a limited number of situations
due to evaluations being very time-consuming. If more evaluations were done,

it would minimize the fitness deviation and give a more accurate measurement.
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e Computational resources: Each evaluation is computationally expensive.
Their experiments were done in about one month and there were lots of com-
promises made in order to reduce evaluation time resulting in weaker players

eventually.

Aronsson’s conclusion was that software robots are able to learn to play simulated
soccer but he believed that the strategies that the robots developed were most likely
inferior to human-coded algorithms, though better than initially random strategies [3].

Stone and Veloso in [27] presented layered learning, a hierarchical machine learn-
ing paradigm. Layered learning applies to tasks for which learning a direct mapping
from inputs to outputs is intractable with existing learning algorithms. Given a hi-
erarchical task decomposition into subtasks, layered learning seamlessly integrates
separate learning at each subtask layer. The learning of each subtask directly fa-
cilitates the learning of the next higher subtask layer by determining at least one
of three of its components: (i) the set of training examples; (ii) the input represen-
tation; and/or (iii) the output representation. They introduced layered learning in
its domain-independent general form and then presented full implementation in a
complex domain, namely simulated robotic soccer [27].

Hsu and Gustafson in [13] presented an adaptation of the standard genetic pro-
gram (GP) to hierarchically decomposable, multi-agent learning problems. To break
down a problem that requires cooperation of multiple agents, they used the team
objective function to derive a simpler, intermediate objective function for pairs of
cooperating agents. They applied GP to optimize first for the intermediate, then for

the team objective function, using the final population from the earlier GP as the
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initial seed population for the next. Their layered learning approach facilitated the
discovery of primitive behaviors that can be reused and adapted towards complex
objectives based on a shared team goal [13].

After these works, GP was rarely used in the domain of soccer simulation. Lichocki
et al. in [16] evolved team compositions by agent swapping. Agik and Akin in [4]
also used genetic algorithms for solving multi-agent decision problems. Sullivan and
Luke in [28] presented a novel hierarchical learning from demonstration system which
can be used to train both single-agent and scalable cooperative multiagent behaviors.
The methodology applies manual task decomposition to break the complex training
problem into simpler parts, then solves the problem by iteratively training each part.
They discussed application of their method to multiagent problems in the humanoid
RoboCup competition, and applied the technique to the keepaway soccer problem in

the RoboCup Soccer Simulator [28].
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Chapter 4

Method

In this chapter, we will discuss our proposed approach to improve decision making
for a multi-agent system of the RoboCup soccer simulation. First, we will summarize
the problems and challenges faced in previous works in this area. Then, we will
explain the proposed method and justify how this method addresses the mentioned

challenges.

4.1 Challenges

Some works in the area of decision making system for multi-robot systems were men-
tioned in the last chapter. Luke, Aronsson, and the Darwin United team used GP
for evolving soccer agents in the soccer 2D simulation framework. Some important

aspects and challenges of research done by Luke’s team are as follows;

1. In his research, all agents were evolved only during the actual run of the soccer

simulator and there is no learning for agents except inside the matches.
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2. For evaluating individuals during a game, each agent can execute a decision
tree so that it will be evaluated by its decisions. Due to the limited number
of players (11 per team) in each game and the long run times for each game,

having a large population size is almost impossible.

3. Since it was the first year of the competition, skills developed for agents (such

as pass, dribble, shoot, etc.) were very simple and not as mature as today.

4. Opponents that the GP evolved agents were tested against in that year’s com-
petitions were all teams crafted by hand by experts. Today we have the option
to test GP evolved agents against very powerful teams which are developed

using many different AI methods.

Aronsson also used GP in the soccer simulator framework. Here are some problems

and challenges he faced during his research:

1. All agents were evaluated during actual runs of the simulator. Evaluating indi-
viduals during running a game was very time-consuming so he had to limit the

evaluation times and that resulted in weaker agents.

2. The agents that were evolved in his research had difficulties with basic skills
such as ball interception. Even when GP found a very good individual, these
basic skills might have resulted in bad performance and receiving a low fitness

value ultimately leading to the elimination of that individual.

3. Due to the nature of the soccer simulator, he was forced to use a small popu-
lation size that limited the search space and had a substantial impact on the

final result.
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4. His team wasn’t competitive enough to play against teams that were partici-

pating in that year’s RoboCup competition.

4.2 The Hybrid GP method

In this thesis, the goal is to use GP with a newly proposed evaluation method to
generate decision trees for soccer agents, followed by another GP algorithm with a
different setup and evaluation method which uses the best individuals of the first GP
as input of the algorithm instead of a random initial population.

In the first phase of the approach, a GP algorithm with a random initial popula-
tion and a large population size will create decision trees for agents. For evaluating
individuals of each generation, some pre-defined situations from real games with a set
of desired outputs will be used, each of which with a pre-defined score for different
actions performed. The data used for evaluating individuals in order to train our
agents will be generated using actions of agents from top teams of the world from the
latest RoboCup competition. Individuals will be scored by the decisions they made
for the specific situations using a fitness function that evaluates their decision. The
selection method will be tournament selection for this phase of the method, crossover
and mutation will be used for evolving trees with the sub-tree replacement method.
Function and terminal sets are player skills (such as pass, dribble, etc.) and predicates
from the environment needed for making decisions (such as inOppField, opplsClose,
etc.).

In the second phase of the proposed method, the best individuals resulting from

the first phase will be used as material to seed the initial population in the second
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phase. This phase is also using a genetic programming method for evolving decision
tree of agents. Differences between the GP method used in second phase and first

phase of the approach are:

(A) In the first phase, first generation’s individuals are initialized randomly using
the ramped half-and-half method and there will be lots of random trees at the
beginning. In the second phase, the best individuals of the first phase will be
used as first generation individuals. So in the second phase, those fit individuals
that showed good behavior in the pre-defined scenarios of real games, will be
evolved by taking part in real games and getting feedback from their actions
in the real run of a soccer game against intelligent opponents with different

strategies.

(B) Individuals of the first GP will be evaluated using some pre-defined situations
and also a pre-defined scoring system as the fitness function. In the second
phase, evaluating each individual will be done in a real run of a simulated
soccer game, mostly by the feedback for each action of agents. For instance, if
an agent decides to pass a ball to a teammate and that action results in losing
the ball in a short period of time, or it decides to dribble with the ball when
it is not safe to do so, it will be considered a bad decision and will negatively
affect its fitness value compared to other individuals. The total result of the

game also affects all team members’ fitness values.

(C) In the second phase, the population size is much smaller due to the long run
time of each game needed for evaluating an individual (about 5 ~ 10 minutes

per run) as well as the limited number of agents that are able to be tested in
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the field (one individual per agent, so no more than 10 evaluations in each game

excluding the goalkeeper).

An overview of the proposed hybrid method and the main characteristics of both

GP systems used in two phases of the method is presented in Figure 4.1.

First Phase Second Phase Final Solution

Large population size Small population size
More generations Few generations
Short run times Long run times

Figure 4.1: An overview of the proposed hybrid method

4.2.1 Addressing Challenges

This hybrid GP method will address some of the main challenges that were faced in
previous works using GP in the soccer simulation environment such as:

4.2.1.1 Small Population Size

Because each evaluation was done previously during a partial run of a game in the

simulator, the limit of evaluating 10 individuals per game prevented researchers from
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having a large population size for each generation of the GP run. Using the first GP
with a fitness function that can evaluate individuals without the need for running a
game makes it possible to execute millions of evaluations in a much shorter period of

time.

4.2.1.2 Time-consuming Evaluations

Each run of a full game in the soccer simulator takes about 10 minutes. If an individual
is to be evaluated during one game, it takes 10 minutes to evaluate. The most number
of evaluations that can be done in a game is 10 as we have 10 players excluding the
goalkeeper agent. In order to achieve a desired number of evaluations we would need
months and years of evaluations. The first GP in this hybrid method helps finding
some intelligent agents so that we don’t have to start with a random population
when doing the time-consuming evaluations in the second GP and there will be more

chances of early improvements in behavior of agents during the run of second GP.

4.2.1.3 High Level Skills of Agents

This research is being done using source code and skills of the MarliK team that is
an internationally recognized team in the RoboCup soccer 2D simulation league and
was placed third in the world in 2011 and 2012, and also first in some international
competitions such as DutchOpen and IranOpen from 2009 to 2013. In the related
works mentioned in this thesis, the agents that were used to evolve had very basic skill
functions such as intercepting, passing, and shooting skills but in this research, the
high level skills of the MarliK team are used which will lower the chance of eliminating

good individuals during the evolution process due to errors that were caused by basic
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skill functions, as it happened in previous research.
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Chapter 5

Implementation

In this thesis, I have implemented both GP algorithms using the GPC++ library that
will be introduced in the following section [11]. For the first GP, the GPC++ library
was modified in order to be able to match our problem domain. Different functions
and methods were implemented that will be discussed further. For the second GP,
another modified version of GPC++ was used which was very similar to the first GP
with the main difference being the fitness function and initial population. C++ is
used for all of the implementations done in this thesis.

The proposed method is implemented here for evolving the kick tree of agents to
help them decide what to do when they own the ball. In MarliK, the kick tree of
agents has the responsibility of choosing between the pass, dribble, or clear skills to
execute in each cycle of the game. Like most of the RoboCup teams, the shoot skill
(kicking the ball towards the goal) is always checked first before executing the kick
tree when an agent owns the ball. If the shoot skill predicts that a shoot is available

for scoring the goal taking into account opponent players and their goalie, it will
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execute this action, otherwise the kick tree will be executed to decide what to do.

5.1 The GPC++ Library

The GPC++ library (GP kernel), is a C++ class library that can be used for applying
genetic programming techniques to all kinds of problems. It was developed mainly
between 1993 and 1997 by Adam Fraser and then Thomas Weinbrenner. The software
package comes as a library and defines several classes with a certain hierarchy [11].

Here are some features of this library:

Automatically defined functions (ADFs)

e Tournament and fitness proportionate selection

Demetic grouping, independent of the selection type

Optional steady state Genetic Programming kernel

Subtree crossover

Swap and shrink mutation

Possibility of multiple populations

Changeable system parameters without the need of recompilation

Loading and saving of a population

This software makes use of the object oriented programming scheme and the class

hierarchy of the system can be viewed in Figure 5.1.
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Figure 5.1: Class hierarchy of the GPC++ library [11].

5.1.1 Using the GP Kernel

For using the GP kernel and to solve our problem, we have to inherit and implement
three main classes: GP, GPGene, and GPPopulation. During the process of creat-
ing populations, the kernel functions use some virtual functions to create genes and
genetic programs, enabling us to overwrite those functions and create objects that
belong to the inherited classes [11]. These are the main functions that have to be

defined for this purpose:
o GPGene::createChild()
o GP::createGene()

e GPPopulation::createGP()
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The above mentioned functions allocate an object of the class and return it.

The most difficult part of this implementation is to define a fitness function for
our individuals. Function GP::evaluate() must be defined in order to implement the
fitness evaluation method of the GP algorithm. As output it has to store the evaluated
fitness value in the class variable stdFitness. Function GPGene::evaluate() shall be
defined too, in order to parse the tree thus evaluating the fitness.

Function printOn() is also rewritten to redefine the way a population, gene, or an
individual within the population is printed as output. In order to access a genetic
program within a population, a tree within the genetic program, or a child within
the gene class, functions such as MyGene::NthMyGene() can be defined for executing
type conversion from type GPObject returned by GPContainer::Nth() to the type of
the inherited class [11].

For loading or saving the whole population or an individual, the functions isA(),
load(), save(), and createObject() as well as a parameterless constructor have to be
defined in the class MyGene.

There are a few samples available in the library that show how to use the GP
kernel and how to customize it for problems such as “Santa Fe Trail” and “Lawn
Mower” problems. There is also a file named skeleton.cc available in the library that
is a complete skeleton for all three classes that need to be inherited and their functions

to be redefined.
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5.2 First Phase

5.2.1 Terminals and Functions

The structure of a tree in our tree-based GP is very similar to what Aronsson used
in his research, shown in Figure 3.3. Each of the trees consist of some leaf nodes that
represent skills of agents to be executed in the soccer field, while other (inner) nodes
of the tree are predicates which contain information about the environment around
the agent for deciding what to do.

Recall that the terminal set consists of skill functions from the MarliK team, such
as pass, dribble, and clear. When called, each of these skill functions decides how to
execute that action and then generates the corresponding command that needs to be
parsed. Finally it sends that command to the soccer server so that it can be executed
in the field. For example, according to MarliK’s code structure, if the pass skill is
chosen to be executed, a function named execute() from the class Bhv_MarliKPass
will be called in order to decide the receiver agent and the type of the pass to execute.
It might end up sending a direct pass, through pass, leading pass, or a cross due to
the nature of the implemented pass skill.

Function nodes of our trees are chosen from the function set which includes pred-
icates that reflect important parameters of the simulated soccer field. All of these
predicates are Boolean variables and their value is either true or false. Typically, if
the value of a predicate is true, then the first child node will be evaluated. If its value

is false, then the second child node will be evaluated.
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5.2.1.1 Function Set

The following list shows members of function set in our GP:

e nearGoal is true only if the agent’s distance to the opponent’s goal is less than

25m.

e nearOwnGoal returns true only if the agent’s distance to their own goal is

less than 25m.

e inOppField is true only if the agent’s = coordinate is greater than 0, which

means the agent is currently in the opponent’s field.
e opplsFar is true only if both of the following conditions are met:

— The agent has seen at least one opponent within the last 5 cycles.

— Distance of nearest opponent from agent is more than 20m.
e opplsClose is true only if both of the following conditions are met:

— The agent has seen at least one opponent within the last 5 cycles.

— Distance of nearest opponent from agent is less than 10m.
e opplsVeryClose is true only if both of the following conditions are met:

— The agent has seen at least one opponent within the last 5 cycles.

— Distance of nearest opponent from agent is less than 5m.

e weAreWinning is true only if the agent’s team scored at least two goals more

than the opponent team (ourGoals - OppGoals > 1).
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e weAreDefending is true only if all of the following conditions are met:

— The agent has seen at least 5 teammates within the last 5 cycles.
— At least 5 teammates’ z coordinate is less than -25m.

— The agent’s x coordinate is less than -25m.

e weAreAttacking is true only if all of the following conditions are met:

— The agent has seen at least 5 teammates within the last 5 cycles.
— At least 5 teammates’ x coordinate is greater than 10m.

— Agent’s z coordinate is greater than 10m.

e tmmAvailable is true only if all of the following conditions are met:

— The agent has seen at least one teammate within the last 5 cycles.

— A teammate’s distance from the agent is greater than bm and less than

30m.

— There is no opponent with less than 10m distance from the same teammate.

e pathClear is true only if there is no opponent with a x coordinate greater than

the agent and distance is less than 15m from the agent.

e balllnDangerArea is true only if ball is in the agent team’s penalty area.

e alone is true only if there is no teammate or opponent with a distance of less

than 25 from the agent.
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5.2.1.2 Terminal Set

The terminal set of our GP includes:
e PASS: Execute a direct, through, leading, or cross pass to the best teammate
depending on the situation of the game.

e DRIBBLE: Dribble with the ball in order to get closer to the opponent’s goal.

e CLEAR: Clear the ball to a safe point which can be either outside of the soccer
field (causing a corner or a kick in for opponent team), or a point that is far

from opponents.

5.2.2 Implementation of C++ Classes

The implementation consists of various C++ classes that control our GP system.

5.2.2.1 GPContainer Class

This class holds objects of type GPObject or of an inherited class. It helps handling
objects and works as a base class for almost all other classes because they are all con-
tainers. Each container manages the objects it owns by allocating an array of pointers
that point to these objects [11]. This array has a fixed length. The GPContainer

class was implemented in the GP kernel and is used in the classes that we inherited.

5.2.2.2 MyGene Class

This class inherits from GPGene. MyGene class represents the tree structure and
serves as our base class. These are the functions that we needed to implement in this

class so that it can create and evaluate our desired GP algorithm:
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e MyGene constructor function.

e duplicate function to make copies of members whenever needed. It is a virtual

function from the GPContainer class that GPGene class is derived from.

e evaluate function for tree evaluation. This function evaluates the fitness of a
genetic tree and works in cooperation with the evaluate function from MyGP
class. It returns the desired result to MyGP::evaluate() to put the final fitness

value in the class member stdFitness.

NthMyChild function for accessing children.

5.2.2.3 MyGP Class

Class MyGP inherits from GP class. Class GP also inherits from the GPContainer
class and contains the root gene of each tree. After defining MyGP class, some

functions had to be implemented as they were needed by the GP class:

e MyGP constructor function.

e duplicate function which is a virtual function of class GPContainer that has

to be defined for every inherited class for making copies of members.

e createGene function for creation of own class objects.

e evaluate function for tree evaluation. This function evaluates the fitness of a

genetic program and saves it into the class variable stdFitness.

e NthMyGene function for accessing trees.
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5.2.2.4 MyPopulation Class

This class is inherited from the GPPopulation class. GPPopulation is a container that
contains all of the genetic programs of a population. After defining MyPopulation
class and inheriting it from GPPopulation class, some of its functions had to be

redefined with the desired arguments matching our problem such as:

MyPopulation constructor that gets GP parameters as input so that our GP

is created as desired.

e duplicate function which duplicates members of population which is needed

for creating next generations.

e createGP function for creation of own class objects.

e NthMyGP function for accessing different genetic programs within a popula-

tion.

5.2.3 Fitness

Each individual in our tree-based GP is evaluated by the actions it takes in some
predefined simulated situations that were derived from real games. These simulated
situations are extracted using the decisions that are made by agents of the strongest
teams from the RoboCup 2016 competition. Each of these situations is called a
“snapshot” and it contains information about the field, such as position of teammates
and opponents in that specific cycle of the game. Each snapshot is associated with

a reward system for each action that could be made in that situation. A decision in

o4



a snapshot is classified as being one of the following options and there is a number

associated with each of them that increases as the action gets worse;

e perfect: If an action is the best possible action in that snapshot and it is
undoubtedly the best that could be executed in that cycle. An example is
choosing the dribble action when an agent is in a one-on-one situation in front
of the opponent’s goal and there is no teammate available to pass the ball
to. Choosing dribble in this situation is classified as perfect because the agent
should get as close as possible to the goal so that the opportunity to shoot and

score a goal is created.

e good: If an action is good to be executed and there is not much risk included

in the action in that situation of the game.

e bad: If an action is not a good choice and might result in losing possession
of the ball or an opportunity, and there is at least one better option to choose

from.

e veryBad: If an action is a very bad choice and it is very risky for that cycle of

the game.

e worst: If an action is an obvious bad choice and will immediately result in losing
a great opportunity or losing possession of the ball. For example, choosing to
clear the ball in an attacking one-on-one situation against the opponent’s goal

is classified as worst.

Figure 5.2 shows a snapshot of the RoboCup 2016 final game between the He-

1i0s2016 and Glider2016 teams that was used in our fitness function. In this situation,
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player number 9 of the attacking team has a great opportunity to score a goal and
decided to dribble with the ball towards the goal to create more chance for scoring.

The associated values with this snapshot of the game is presented in Table 5.1.

20160703124626-HELIOS2016_1-vs-Gliders2016_2.rcg.gz - rcsslogplayer

w L4 Ol > e 0 o

{rg";; & M R g
N KERIXZ

7
N 2

HELI0S2016 0:0 Gliders2016 play on 3410

(-36.34, -5.41)

Figure 5.2: A snapshot of the RoboCup 2016 final game

Figure 5.3 shows another snapshot from the RoboCup 2016 third place game
between the Ri-one and CSU_Yunlu teams. Player number 6 of the defending team is
in a dangerous position inside their own penalty area and there is an opponent close
to him trying to get the ball. In this situation, the player decided to pass the ball to

teammate number 7. Values of parameters from this snapshot of the game are shown
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in Table 5.1.

20160703114746-Ri-one_3-vs-CSU_Yunlu_0.rcg.gz - rcsslogplayer
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Ri-one 2:0 CSU Yunlu play on 3581

(-3.47,-18.45)

Figure 5.3: A snapshot of the RoboCup 2016 third place game

Each individual from a population that is being evaluated will be tested against
100 snapshots of real games and the average performance of the corresponding tree

will be the fitness output.
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Table 5.1: Values associated with each snapshot from Figure 5.2 and Figure 5.3

Parameter Name Value in Figure 5.2 | Value in Figure 5.3
nearGoal true false
nearOwnGoal false true
inOppField true false
opplsFar false false
opplsClose true true
opplsVeryClose false true
weAreWinning false true
weAreDefending false true
weAreAttacking true false
tmmAvailable false true
pathClear false false
balllnDangerArea | false true
alone false false
pass bad perfect
dribble perfect veryBad
clear worst good
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5.2.4 GP Parameters

The GP parameter configuration we used for this phase of the method is presented

in Table 5.2.
Table 5.2: GP parameters of the first phase of our method
Parameter Name Value
Population Size 1000
Number of Generations 100
Creation Type Ramped half-and-half
Crossover Probability 98%
Mutation Probability 2%
Maximum Depth for Crossover 17
Maximum Depth for Creation 6
Selection Type Tournament selection
Tournament Size 10
Demetic Grouping false
Add Best To New Population true
Steady State true

5.3 Second Phase

After running the implemented GP of the first phase, the top 10 fittest individuals of

the latest population are used as initial population for the GP that is implemented
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in the second phase of the proposed method. Evaluation of individuals in this phase
of the algorithm will be done using the actual runs of the soccer server against the

Agent2D team which is the open source base code for most of the RoboCup teams.

5.3.1 Terminals and Functions

For this phase of the method, the same set of functions and terminals as the first

phase is used:

e Functions = {nearGoal, nearOwnGoal, inOppField, opplsFar, opplIsClose,
opplsVeryClose, weAreWinning, weAreDefending, weAreAttacking, tmmAvail-

able, pathClear, balllnDangerArea}

e Terminals = {PASS, DRIBBLE, CLEAR}

5.3.2 Fitness

Due to the complexity and nature of the soccer simulator, evaluation of individuals in
this phase of the algorithm is very time consuming compared to the previous phase.
Each run of a full game in the soccer simulator takes about 10 minutes (6000 cycles)
and a maximum of 10 individuals can be evaluated in each game since the goalie
agent is completely different from the other 10 players.

The fitness function for this phase of the algorithm is reward-based and each
individual will get a reward based on the action that it took in each cycle of the game.
Evaluation of these actions is achieved using a combination of some parameters from

consequences of the actions taken by agents and some basic rules that are mostly
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common sense, such as not clearing the ball when you are in an attack situation in
front of the opponent’s goal.

Each population is evaluated during one full game run in the soccer simulator. We
have followed a homogeneous approach for this phase of the algorithm. We evolved
and used the same decision tree for all agents of a team, without considering their
specific role. An individual is randomly assigned to a player before beginning of each
match and the fitness value of that individual will be the average reward that it
received from all the actions that it took during each game.

A list of events that affect fitness values of individuals of each population:

If ball possession is lost to the opponent team in the following 20 cycles after

the agent executed an action.
e If a goal is scored in the next 100 cycles.

e If ball object’s z coordinate is increased or decreased (an increase means ball is

moved toward the opponent’s goal).
e [f the player is not a defender and cleared the ball while in opponent’s field.
e [f opponent team scored a goal in the next 50 cycles.

o [f the player decided to dribble with the ball while teammate goalie agent is

very close (chance of giving a back pass fault to opponent).

Each of the above mentioned events will positively or negatively affect the fitness
value of individuals in the population, depending on the effectiveness or severity of
the event on the whole team’s gameplay. Each of these events have a value range of

-40 to 40. As the action gets worse, the number added to fitness value will be higher.
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5.3.3 GP Parameters

The GP parameter configuration that we used for this phase of the method is shown

in Table 5.3.

Table 5.3: GP parameters of the second phase of our method

Parameter Name Value

Population Size 10

Number of Generations 20

Creation Type Top individuals of previous phase
Crossover Probability 98%

Mutation Probability 2%

Maximum Depth for Crossover 17

Maximum Depth for Creation 6

Selection Type Tournament selection
Tournament Size 10

Demetic Grouping false

Add Best To New Population true

Steady State true
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Chapter 6

Results

As mentioned in Chapter 5, we implemented the proposed method using C++ in
Linux. First phase was implemented using the GPC++ library as a base code and
second phase was implemented using the MarliK soccer 2D simulation team’s code in
combination with the code implemented from first phase and a script that connected
these two parts. The hardware and software specifications used for the experiments

are as follows:

Intel Core 2 Quad CPU Q6700 @ 2.66GHz x 4

e 4 GB Memory

Ubuntu 16.04 LTS 64-bits

RoboCup Soccer Simulation Server (RCSSServer) Version 15.3.0
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6.1 Runs of the First Phase

We performed 10 runs with different random seeds for the first phase of the method.
The statistics of the average of these runs as well as the best run is presented and
discussed in this section.

During the runs of the first phase of the method, as it was expected, initial indi-
viduals made good progress toward reaching the target fitness. Smaller fitness values
for an individual means that it performed better actions in more snapshots of the
game. For example if an individual makes the perfect decision in 75 out of a total of
100 snapshots, and makes 15 good, 6 bad, 2 veryBad, and 2 worst decisions, it will end
up with a fitness value of 510. The scores associated with each of these parameters

are shown in Table 6.1.

Table 6.1: Scoring system of individuals

Parameter Value
perfect 0
good 10
bad 20
veryBad 40
worst 80

The best individual after 100 generations had a fitness value of 180 which means
it had a very good performance in the simulated snapshots of the game and it chose

the perfect decision in at least 82 snapshots out of 100 snapshots.
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Figure 6.1 shows the development of the fitness of the best and worst individual of
each population as well as the average fitness of individuals in each generation during
evolution of the first phase. The data shown in Figure 6.1 is the average of 10 runs

that were performed during our experiment. Smaller fitness value represents a better

performance.
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Figure 6.1: Evolution of best, average, and worst fitness in runs of the first phase

Figure 6.2 shows error bars on the average fitness of individuals over generations in
the runs of the first phase using standard deviation of individuals in each generation
indicating where majority of each population are.

The fitness of the best, worst, and average of population from the best run of the

first phase is also demonstrated in Figure 6.3. It can be observed that in all runs
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Figure 6.2: Error bars indicating (one) standard deviation of individuals in runs of

the first phase

of the first phase, major progress of individuals is made in the first 20 generations
and no improvement was observed in the best fitness after generation 83. Destructive
mutation and crossover operators are the main reasons that cause significant changes
in the fitness of worst individual over generations.

Figure 6.4 illustrates standard deviation of individuals in the best run of the
first phase using error bars on the average fitness graph over generations. It can
be observed that the population seems to converge repeatedly in certain generation,
just to later break out again. This seems to happen when the worst individual of
population has a better fitness and it seems to break when a significant increase in
worst population happens due to a destructive mutation or crossover as it happened

in generations 36 and 52.
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Figure 6.3: Evolution of best, average, and worst fitness in the best run of the first

phase over generations

6.2 Second Phase

The top 10 individuals of the first phase of running GP were used as the initial
population of the GP in our second phase in order to be evolved during real runs
of the soccer simulator. A significant improvement in best fitness was not expected
since the initial population was not randomly generated and individuals were already
evolved during the first phase. This also demonstrates that the off-game evolution
using snapshots was useful as guidance in real-time games of this phase.

The individuals that were evolved during the first phase of the algorithm were only
tested against 100 specific snapshots from real games. The fitness function of this

phase is designed in a way that the individuals can be tested even more and they will
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Figure 6.4: Error bars indicating standard deviation of individuals in the best run of

the first phase

be judged by the consequences of what they choose to do during real games, against
a real opponent. For example, an individual could decide to dribble in one of the
snapshots during the first phase, and this could result in getting a good fitness value
for that snapshot, but this decision might actually result in loosing the ball possession
after a short time of making this decision in a real game. The fitness function of
the second phase of the algorithm evolves the individuals during real games where
they could get actual feedback of their behavior to ensure the decisions made from
simulated snapshots actually work well during real games as well. As expected, a
smaller improvement in fitness values and behavior of agents was observed during the
runs of GP in this phase of the method for 25 generations.

Figure 6.5 illustrates evolution of the best, worst, and average fitness in each
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generation for this phase of the algorithm. Elitist selection is used in both phases of
the method and the best individual will always survive to the next generation. The
reason for a worsening best fitness value in some consecutive generations is the fact
that roles of individuals are assigned to players randomly in each generation. For
example, the best individual of generation 4 was the one that was assigned randomly
to a defender role during the evaluation run and it received a fitness value of 150.
The same individual was assigned to an attacker role during the next generation and
its fitness value worsened as it did not make good decisions as an attacker during the
second time that it was being tested. As it was explained, this process makes sure
that during the evolutionary process, the best individuals are the ones that are most

likely to perform well in all different roles.
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Figure 6.5: Fitness evolution in second phase over generations
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Looking at the average fitness values in the run of this phase, we can see that in
the first generation all individuals of the population had good fitness since they were
the best ones from the previous phase of the method. However, in the course of 25
generations, some changes took place that made some individuals perform better and
some worse than at the outset. The significant changes in average fitness of different
generations compared to first phase can be explained by the small population size for
this phase of the algorithm.

For the same reason, the worst fitness of the first generation is significantly lower
than most of the next generations as shown in Figure 6.5. Destructive crossover
and mutation operators are the main reasons for the significant changes of the worst
individual’s fitness in each generation.

Figure 6.6 shows the distribution of individuals in each generation using one stan-

dard deviation of the individuals in each population.

6.3 Performance Analysis

Multiple experiments have been performed after both phases of the proposed method
have been completed. Results of these experiments using individuals the from final

generation of the second phase of the method are discussed in this section.

6.3.1 Hybrid GP Method vs. MarliK’s Old Decision Making

System

The final version of MarliK without the new decision making system built by the

Hybrid GP method was tested in 25 games against the Agent2D, Helios, and Gliders
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phase

teams. Then, the new decision making system which consists of the best individual
from the last generation of the second phase of the method was added to MarliK for
all of the agents and tested against same teams.

Agent2D is an open-source base code that most of the teams in soccer 2D simu-
lation league, as well as MarliK, are currently using, and Gliders and Helios are also
the most powerful teams from latest (2016) RoboCup competition.

Table 6.2 shows the results of these experiments. Data from each row of table
represents results of 25 games. Average number of goals scored and conceded per
game as well as win percentages of each version of MarliK that was used is shown in

the table.
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Table 6.2: Performance of Hybrid GP method compared to MarliK with old decision

making system

Opponent | Tested team Avg. goals scored | Avg. goals con- | Percentage
team (Standard  devia- | ceded (Standard | of wins
tion) deviation)

Agent2D Hybrid method | 6.12 (2.27) 0.40 (0.57) 100%

Old MarliK 4.36 (1.81) 0.44 (0.50) 92%
Helios Hybrid method | 1.00 (0.89) 1.56 (1.20) 20%

Old MarliK 0.72 (0.78) 1.96 (1.31) 8%
Gliders Hybrid method | 2.08 (1.81) 1.12 (0.77) 40%

Old MarliK 1.84 (1.41) 1.12 (0.99) 40%

We observe that the Hybrid GP method of decision making outperformed Mar-

liK’s previous static decision making system in most cases, leading to better overall

results. Looking at the results of Table 6.2, it can be concluded that the attack-

ing power of the team was more positively influenced than the defending power of

the team. An explanation for this fact is that the Hybrid GP method is here only

used for with-ball decision making of agents. Power of defense in a soccer team is

more influenced by skills such as block, mark, and intercept which are executed in the

without-ball decision making of players.
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6.3.2 Phase 1 GP vs. Phase 2 GP vs. Hybrid GP Method

In order to make sure that the Hybrid GP method works better than either phase of
the method separately, two other versions of decision making systems were examined
as well.

First, the top individual from the last generation of the first phase was chosen
as the decision tree of all players in Team A. Then, the second GP of the Hybrid
method which had a small population size and used time-consuming runs of the
soccer simulator for evaluating individuals was executed again, but instead of using
the best individuals from the first GP as initial population, a randomly generated
initial population was used and individuals were evolved for 25 generations (same as
it was done in second phase of the Hybrid GP method). The best individual from
the last generation was used as decision tree of all players in Team B.

Table 6.3 compares the performance of the Hybrid GP method with Team A and
Team B. Each row of data shows the average performance of each team in 25 games.
From the results of this experiment, we can observe that the Hybrid GP method
outperforms both Team A and Team B in all aspects. The main reason for the poor
performance of Team B compared to the other two teams is that the fitness function
for the second GP was specifically designed to help the best individuals of the first

GP evolve even further than they had already evolved.

6.3.3 Homogeneous vs. Heterogeneous Approach

In this research, we have followed the homogeneous approach meaning that we evolved /used

the same decision tree for all agents of a team, without considering their specific role.
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Table 6.3: Performance of Hybrid GP method compared to each phase of the method

separately
Opponent | Tested team Avg. goals scored | Avg. goals con- | Percentage
team (Standard Devia- | ceded (Standard | of wins
tion) Deviation)

Agent2D Hybrid method | 6.12 (2.27) 0.40 (0.57) 100%
Team A 4.76 (1.39) 0.48 (0.50) 88%
Team B 0.44 (0.50) 1.00 (1.02) 12%

Helios Hybrid method | 1.00 (0.89) 1.56 (1.20) 20%
Team A 0.64 (0.79) 2.20 (1.10) 8%
Team B 0.00 (0.00) 7.48 (2.17) 0%

Gliders Hybrid method | 2.08 (1.81) 1.12 (0.77) 40%
Team A 2.12 (1.56) 1.20 (0.85) 32%
Team B 0.00 (0.00) 5.52 (1.98) 0%
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A heterogeneous approach is also possible to follow which means to evolve separate
decision trees for each player, or for different groups of players with similar roles
(defender, midfielder, and attacker).

Whether to have the same decision tree for all players or separate decision trees for
different player roles (defenders, midfielders, and attackers) is one of the big challenges
for RoboCup teams. Here we try to answer this question by comparing outcomes for
these two approaches to our method.

For answering the question of whether a homogeneous or a heterogeneous approach
works better for our method, we ran a parallel experiment with the second phase of
the algorithm where agents were divided into the 3 main categories of defenders, mid-
fielders, and attackers. Each of these categories had a separate (evolving) population
and the experiment was done using the same GP configuration as the second phase of
our method before. The best individuals from the latest population of the first phase
GP were used as initial population for both teams.

Table 6.4 compares performance of these two approaches of our method. We ob-
serve that the heterogeneous team slightly outperforms the homogeneous against one
opponent. From these results and the experiments from previously discussed research,
we expect that over more generations, the heterogeneous approach has more chance
of evolving better individuals compared to the homogeneous approach. Specializing
in one behavioral role showed slightly better performance, in particular against the

Gliders team.
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Table 6.4: Performance of homogeneous approach compared to heterogeneous ap-

proach on our method

Opponent | Tested team Avg. goals scored | Avg. goals con- | Percentage
team (Standard  Devia- | ceded (Standard | of wins
tion) Deviation)

Agent2D | Homogeneous 6.12 (2.27) 0.40 (0.57) 100%
Heterogeneous | 5.72 (1.82) 0.36 (0.56) 100%

Helios Homogeneous 1.00 (0.89) 1.56 (1.20) 20%
Heterogeneous | 0.92 (0.89) 1.32 (1.05) 16%

Gliders Homogeneous 2.08 (1.81) 1.12 (0.77) 40%
Heterogeneous | 2.48 (1.70) 1.16 (1.08) 52%

6.3.4 Hybrid GP Method vs. Base Algorithms

In previous sections, the hybrid GP team was tested against 3 different teams and

the results were compared to the results of each of the base algorithms against those

teams. Testing against different teams with different strategies, as we did, is the

normal procedure used by RoboCup teams in order to have a better understanding

of their team’s overall performance, instead of testing their team against a previous

version of their own team.

Here we also tested the hybrid GP team in face-to-face matches against previous

version of MarliK with the old decision making system, Team A (the team from top

individuals from the first phase of the method), and Team B (the team from evolving

random initial population in second phase of the method). Results of running 25
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games between each of these teams against the hybrid GP team are shown in Table 6.5.

Table 6.5: Performance of Hybrid GP method against base algorithms

Opponent | Tested team Avg. goals scored | Avg. goals con- | Percentage

team (Standard Devia- | ceded (Standard | of wins
tion) Deviation)

Team A Hybrid method | 1.64 (1.16) 1.44 (0.94) 64%

Team B Hybrid method | 5.36 (2.04) 0.00 (0.00) 100%

Old MarliK | Hybrid method | 1.68 (1.43) 1.56 (1.44) 56%

The results from Table 6.5 support our previous experiments and ensure better

performance of our method’s final solution against each of the base algorithms.
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Chapter 7

Conclusion and Future Work

In this research, we proposed and implemented a new hybrid GP method to improve
the decision making system of soccer simulation teams. The proposed approach con-
sists of two phases each of which tries to cover the other’s restrictions and limitations.
The first phase produces some evolved individuals based on a GP algorithm with an
off-game evaluation system and the second phase uses the best individuals of the
first phase as input to run another GP algorithm to evolve players in the real game
environment where evaluations are done during real-time runs of the simulator.

To test the method’s performance, we implemented it on the MarliK team which
had a basic decision making system. Our hybrid GP method helped to improve
the performance of agents as well as the whole team against 3 different teams with
different strategies. T'wo of these teams are top teams from the latest (2016) RoboCup
competition and the third team is the base code that is used by most of the RoboCup
teams as a benchmark. Comparing to previous work that used an approach similar to

our second GP, which had a small population size and a low number of generations,
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it was observed that adding the first GP with a different type of fitness function
that didn’t require runs of the soccer simulator for testing each individual, improved
overall performance of final solutions substantially.

Since evaluations in the second phase of our method are very time-consuming,
we only implemented the method for the kick decision tree of agents, their decision
tree for only when they have the ball. In future work, the move tree can also be
implemented using the same method. It can then be examined if the hybrid GP
method can also help soccer agents decide what to do when they don’t have the ball.

Another important factor in this research that will affect the results is the op-
ponent team which the individuals are being evaluated against in the second phase.
Here we used Agent2D as opponent, which is the most widely used base code used
in soccer 2D simulations. Depending on the behavior and power of the opponent
team, the process of evolution for individuals might be different. This can also be
investigated in future work to see how this factor might influence the final solutions.

Because of the nature of the pass skill function in MarliK, we only included one
pass function in the terminal set of our GP and let MarliK’s pass function decide
whether to perform a direct pass, a leading pass, a through pass, or a cross pass.
Depending on the implementation type for pass skills, each type of these passes can
also be used in the function set of both GPs. Moreover, other predicates might be
considered for adding to the function set of both GPs that will directly affect the

evolving decision trees.
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Appendix A

Best Individuals of Populations

Best individuals from first and second phase of the method are shown below.
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