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ABSTRACT 

St. Pauls Inlet is a fjordal estuary in Gros Morne National Park, Canada. During the 

summers of 2009 and 2010 four sites within the inlet were sampled for zooplankton as 

part of Memorial University’s Community-University Research for Recovery Alliance 

(CURRA) project. Objectives were: 

 Determine patterns in zooplankton species composition 

o Compare to species data from previous survey 

o Relate to observed longitudinal salinity gradients  

o Compare composition with that of estuaries regionally  

 Estimate zooplankton abundance  

o Compare with abundances seen in estuaries globally 

 

Zooplankton species were primarily marine cyclopoida and calanoida, with some 

brackish-water cladocerans. Cluster Analysis and NMDS showed no strong longitudinal 

patterns in species assemblages in either season. Only 10 % faunal similarity was 

observed with estuarine Lake Melville in Labrador, Canada. St. Pauls Inlet does not 

appear to be a highly productive system, based on low zooplankton abundance (< 4 

inds/l), compared with other global sites. 
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Chapter 1  

Estuaries as important coastal environments 

1.1 Estuaries 

St. Pauls Inlet is an estuarine system in western Newfoundland that opens out into the 

Gulf of St. Lawrence. The potential contribution of St. Pauls Inlet to the larger Gulf 

marine ecosystem was assessed as part of Memorial University’s CURRA project 

focused on fisheries and fishing communities in western Newfoundland. A previous six 

week survey of the inlet led Carter and MacGregor (1979) to conclude that St. Pauls Inlet 

was likely representative of other restricted and largely nutrient-poor fjords occurring on 

the west coast of Newfoundland and should be subject to further scientific investigations, 

particularly to quantify populations of organisms within the inlet.  

Many types of coastal water bodies are broadly estuarine in nature (Knox 1986; Marques 

et al. 2007). Such estuaries or tidal inlets are aquatic coastal regions that can be of great 

importance to a variety of species (Kennish 1986). Many estuaries are quite productive 

and can be the location for many types of fisheries as well as feeding grounds for a 

multitude of species of birds and mammals (McLusky 1989). Some of the larger estuarine 

systems in the world include the Amazon River in South America, Chesapeake Bay in the 

United States, the Thames Estuary in Great Britain, and the Gulf of St. Lawrence in 

Canada. A more rigorous definition of an estuary is a semi-enclosed coastal body of 

water which has a permanent or periodically open connection with the sea and within 

which sea water is measurably diluted with fresh water derived from land drainage 

(Pritchard 1967; Day 1980). Estuaries are dynamic systems, with temporal and spatial 
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changes in salinity, temperature, oxygen and turbidity which arise from both tidal 

influences and freshwater inflow (Marques et al. 2007; Almeida et al. 2012).   

 

Estuaries in Atlantic Canada tend to be smaller and protected, rather than the larger 

estuaries typical of Canada’s west coast. An Environment Canada (1990) report  

“A Profile of Important Estuaries in Atlantic Canada”, indicated that while most of the 

estuaries in the Maritimes could be characterized as drowned river valleys, 

Newfoundland and Labrador's coastal zones are characterized more by large fjords. This 

fjordal characterization is due to the inland termination of the coastal plain which then 

rises to form the beginnings of the Long Range Mountains. Within this mountain range 

there are glacial valleys that run in an east to west direction with some valleys reaching 

the sea (O'Sullivan 1976). Drainage of rivers in insular Newfoundland averages about 

1.22 x1011 m3 per year, with much larger drainages coming from the large rivers in 

Labrador such as the Eagle and Churchill, the latter draining into the estuarine Lake 

Melville. 

 

1.1.1 Salinity in Estuaries 

 St. Pauls Inlet (SPI), situated at the northern end of Gros Morne National Park, receives 

salt water from the sea and has a permanent connection with the sea through an 80 m 

wide opening (Carter & MacGregor 1979). The neritic feature of the Gulf of St. 

Lawrence closest to St. Pauls Inlet is called the Esquiman Channel and has a salinity 

concentration ranging from 32 – 36 ‰ (Galbraith 2006). As well, the inlet receives fresh 
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water input from highland lakes, rivers, precipitation, and snowmelt. Inlets are a smaller 

portion of water off a larger body of water with a narrowed entrance between the two 

(Barnes 1994) and can be a type of estuary.  

 

Estuaries often exhibit a broad longitudinal salinity gradient with high mean salinity at 

the mouth (seaward, or near the ocean) and low mean salinity at the head (landward, or 

the furthest point from the ocean). As an estuary has neither a completely fresh nor a 

completely marine salinity it can be classified as a brackish water environment. Fresh 

water typically has salinity concentrations of about 0 to 0.5 ‰ (parts per thousand (ppt) 

by volume), while the average salinity of the ocean is in the range of 33-37 ‰; a 

concentration in between 0.5 to 30 ‰ is considered to be brackish (Remane & Schlieper 

1971; Thurman & Trujillo 2010). The Venice System for the Classification of Marine 

Waters According to Salinity (1958) details three primary zones of classification: a 

polyhaline zone (18 ‰ < surface salinity < 30.0 ‰), a mesohaline zone (5.0 ‰ <surface 

salinity < 18.0 ‰), and an oligohaline zone (surface salinity < 5.0 ‰). Longitudinal 

salinity gradients found within an estuary can be of high importance to the fish and 

planktonic organisms living in the water column (McLusky 1989). The interactions of 

fresh water with salt water create a region of increased mixing and water circulation due 

to the differences in both the temperature and salinity (and subsequent density) of the 

water masses. The influx of sea water due to tides can also displace substantial volumes 

of water which can result in the horizontal and vertical transport of sediments and 

nutrients (Kennish 1986). During the year, overall salinity in brackish water systems can 
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fluctuate due to variation in precipitation and freshwater inflow which act to decrease 

estuarine salinity, in addition to evaporation and saltwater inflow which act to increase 

estuarine salinity (Heerebout 1970).  

 

Depending on water column depth and water column mixing, there may be a halocline 

(salinity stratification by depth) within the estuarine water column, with heavier salt 

water lying underneath less dense fresh water. Density of water also increases with 

decreasing temperature, allowing for warmer, less dense water to lie on top of colder, 

denser water. Typically in high latitude areas such as Newfoundland, density changes due 

to temperature are more pronounced in the summer allowing for development of a 

thermocline as surface waters heat up. Pycnoclines, or zones of depth within which 

seawater density changes rapidly, correspond with haloclines and thermoclines because 

salinity and temperature both influence water density. These layers can separate the 

estuarine water column into upper water and deep-water masses. When there is layering, 

a mixed surface layer often occurs due to the surface currents, tides, and waves. The 

colder, more saline water is found in the deep-water areas. These layers often dictate how 

the estuarine water masses interact with the adjacent ocean.    

 

Table 1.1 Estuarine Classification Systems (adapted from Day 1980 & Pritchard 1967) 

Estuarine Classification Systems 

Geomorphology Circulation Patterns Stratification Sedimentation 

Fjordal-type Positive Salt Wedge Positive Filled 

Lagoon-type Inverse (or Negative) Strongly Stratified Inverse Filled 

Tectonically Produced Neutral (or Low In-Flow) Weakly Stratified Neutral Filled 

Drowned River Valley 
 

Vertically Mixed 
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1.2 Classification Systems of Estuaries 

A number of classification systems have been put forward to identify different types of 

estuaries (Table 1.1), based primarily on physical and chemical factors such as i) basin 

geomorphology, ii) circulation patterns within the estuary,  

iii) stratification of the estuarine water column, and iv) basin sedimentation. 

 

St. Pauls Inlet would be classified as a positive fjordal-type inlet (Table 1.1) with a 

tectonic overprint from glacial isostatic rebound (Sella et al. 2007). The inlet is longer 

than it is wide and contains a shallow sill at the entry which is derived from a terminal 

moraine, a feature which marks the maximum advance of glaciation during the most 

recent ice age. It has characteristic steep side walls with relatively shallow outer portions 

exiting out into a low-lying coastal plain (O’Sullivan 1976).  

 

 Fjordal type estuaries like St. Pauls Inlet are common in coastal Newfoundland and 

Labrador, and are typically located in high latitude coastal areas that have been strongly 

eroded by glaciers. Due to such erosion the estuarine basins are often deep, with steep 

rocky sides and a shallow underwater sill at the connection to the sea. The height of the 

sill determines the extent of deep water exchange with the coastal ocean (Day 1981; 

Kennish 1986). St. Pauls Inlet has a stronger surface outflow than near-bottom inflow due 

to the freshwater influx into the system as well as a shallow sill less than 6 m deep at the 

entry (Carter & MacGregor 1979). Systems in which the fresh water influx from 

incoming streams exceeds the fresh water loss to the ocean have circulation patterns that 

are considered positive and exhibit a longitudinal density gradient within the estuary. 
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This gradient causes an outflow of the fresher water to the ocean with a smaller inflow of 

sea water on the near-bottom (Day 1981; Valle-Levinson 2010). As a consequence of this 

gradient the head of the estuary is less saline and the mouth is more saline (Kennish 

1986; Thurman & Trujillo 2010).   

 

Based on Table 1.1, St. Pauls Inlet may also be characterized as a vertically mixed estuary 

(Pritchard 1967; Kennish 1986; Valle-Levinson 2010). Salinity profiles in this type of 

estuary are nearly uniform with minimal vertical stratification and the flows are 

unidirectional with depth. At any given vertical point in the inlet the salinity is relatively 

uniform however the salinity does change on a longitudinal basis from the head to the 

mouth of the estuary (Kennish 1986; Thurman & Trujillo 2010). In addition, as with most 

fjordal-type basins, St. Pauls Inlet can be considered neutral filled with respect to 

sedimentation (Dyer 1979) with little river-transported sediment (positive filled) or 

nearshore ocean deposition (negative filled) observed by Carter and MacGregor (1979). 

 

1.3 Biological Productivity in Estuarine Basins 

Estuaries are essential to nutrient cycling at the land-sea boundary (Day 1981). River 

inflow supplies organic matter and nutrients (Nielsen & Andersen 2002) and occasionally 

freshwater zooplankton from upstream (Campbell 2002) to the estuarine system. Organic 

matter and nutrients brought into the estuary augment the organic matter resulting from 

the excretion and decomposition of estuarine organisms (Knox 1986). Hence, the 

concentrations of dissolved solids are more variable than in the ocean (Kennish 1986).  
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Some estuaries can be highly productive, associated with some of the highest primary 

productivity on the planet, up to 1500 g m-2 yr-1 (dry matter) (Correll 1978; Almeida et al. 

2012). These high levels of productivity, which can be up to 3.4 % of the total marine 

primary production, are due to a bountiful supply of nutrients which support the primary 

production within these estuaries (Burrell 1988). The particulate organic matter produced 

from the primary production undergoes bacterial decomposition which then provides a 

nourishing food supply for consumer animals, such as zooplankton and fish (McLusky 

1989; Pinckney et al. 2001). The level of fresh water influx from rivers and other sources 

can modify the estuarine system by altering estuarine circulation patterns, water column 

stratification, and nutrient mixing, leading to increased primary and secondary 

productivity (Day 1981; Nielsen & Andersen 2002). This primary production is supplied 

by three main groups of autotrophs in estuaries: phytoplankton, benthic algae, and 

vascular plants. Phytoplankton and vascular plants, such as Zostera (eelgrass, also known 

as goosegrass), comprise the main primary producers found in the estuary itself (Alongi 

1998). As seen in Table 1.2, phytoplankton production can be limited by light, nutrients, 

water temperature, mixing processes and grazing. Not all estuaries are affected equally by 

any limiting factor and nutrient limitation may partially result from nutrient-poor 

watershed runoff (Pinckney et al. 2001) as well as low nutrient marine inputs. 
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Table 1.2: Limiting factors for phytoplankton production in estuaries (adapted from 

Kennish 1986) 

Limiting factors 

Light Nutrients 
Water 

Temperatures 

Mixing 

Processes 
Grazing 

High 

Turbidity 

reduces light 

penetration 

and 

decreases 

the depth of 

the photic 

zone 

Limited 

nitrogen 

availability 

Often species 

have limited 

temperature 

ranges for 

production. 

High rates of 

flushing in the 

estuary will 

remove 

standing 

populations of 

phytoplankton 

Zooplankton 

and benthos 

grazing can 

restrict 

population 

rates 

 

1.4 Zooplankton and Larval Fish in Estuaries 

Zooplankton are organisms that drift or weakly swim in the water column because they 

are too small and too weak to swim independently of water currents. They are the most 

abundant component of marine and brackish water systems and provide a vital trophic 

link between phytoplankton primary producers and higher trophic levels such as fish 

(Calliari et al. 2006; Kibirige et al. 2006; Johnson et al. 2011; Almeida et al. 2012). 

Zooplankton are often the main food for small or juvenile fishes (Chew & Chong 2011) 

and there can be seasonality in the abundance and species diversity of zooplankton which 

correlates with the introduction of juvenile fish into the system (Judkins 1979; Limburg 

et al. 1997). Anadromous fish, such as Arctic Char (Salvelinus alpinus) and Brook Trout 

(Salvelinus fontinalis), develop in the fresh water or brackish water systems of estuaries 

and feed on the zooplankton. Studies on Striped Bass (Morone saxatilis) indicated that 

the nutritional condition of the juvenile fish within estuaries depends on the abundance of 

certain copepods and cladocerans (Limburg et al.1997). 
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This animal portion of the plankton (the zooplankton) consists of two major groups – the 

holoplankton and the meroplankton. Holoplankton are planktonic throughout their entire 

life cycle, and include microcrustaceans such as copepods, cladocerans and krill, as well 

as gelatinous zooplankton (jellyfish, ctenophores, salps, and larvaceans) and arrow 

worms. Meroplankton, on the other hand, typically spend only their larval or early stages 

of their lifecycle as part of the plankton. Many organisms such as lobsters, crabs, oysters, 

and some fish have a planktonic larval and/or juvenile life stage (Thurman & Trujillo 

2010).     

 

The diversity of zooplankton taxa found within estuaries is dependent on a variety of 

physical constraints although many taxa in the higher latitudes are euryhaline, able to 

tolerate a wide range of salinities, and eurythermic, able to tolerate a wide range of 

temperatures (Sautour & Castel 1995). One of the main variables influencing the 

distribution of zooplankton in estuarine environments is salinity (Williams 1984; Uriarte 

& Villate 2005). Four categories of holoplanktonic copepods have been differentiated on 

the basis of salinity tolerance (Table 1.3). Common genera in the North Atlantic include 

Calanus sp., Oithona sp., Acartia sp., Paracalanus sp. and Pseudocalanus sp. Within the 

species there are ranges of size, as well as tolerances for salinity and/or temperature 

differences.   

Plankton in estuarine embayments can be physically isolated from more offshore 

populations and may retain distinct estuarine assemblages (Milligan et al. 2011).  
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Table 1.3: Classification system for the salinity tolerance of copepods (Johnson & Allen 

2005; Uriarte & Villate 2005; Thurman & Trujillo 2010) 

Copepod 

Classification 

Salinity Levels/Tolerance 

True Estuarine 
Organisms that can tolerate only estuarine salinities (0.5-30 ‰) 

 

Estuarine and 

Marine 

Organisms that can tolerate estuarine (0.5-30 ‰) and marine 

salinities (30 ‰+). 

 

Euryhaline 

marine 

Organisms that are found in predominantly marine environments 

however have a high tolerance for a large range of salinity 

conditions 

 

Stenohaline 

marine 

Organisms that are found in marine environments and can only 

tolerate a small range of salinity change 

 

Estuarine regions are important in the life stages of many marine organisms including 

zooplankton and larval fish (Johnston & Morse 1987; Boehlert & Mundy 1988; Bulger et 

al. 1993). As these organisms have little ability to control where they are within the water 

column it is important that they are not exported out of the estuary. This can be a 

significant recruitment problem and many species of fish or invertebrates have dealt with 

that dilemma by producing large demersal eggs or by having brief larval stages (Boehlert 

& Mundy 1988). When either the demersal eggs or larval stages of fish or invertebrates 

are located at a deep location the marine water from the sea penetrates landward and 

keeps the organisms within the estuary. Although planktonic organisms cannot move 

against currents in the water column they can exhibit strong vertical migration within the 

column (e.g. copepods: Kimmerer et al. 2002). As such, they occupy the landward flow 

when the circulation pattern allows and in some cases once they reach their limit for 

salinity/temperature or another factor they will move up towards the surface and be 

carried towards the sea, only to repeat a migration towards the bottom and be carried 
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back in towards land (Rogers 1940; Pearcy & Richards 1962; Fortier & Leggett 1982). 

Additionally, estuarine environments that have low flushing rates benefit the plankton’s 

ability to remain in that habitat.   

 

Numerous species of fish move into the estuary as larvae and make up part of the 

meroplankton (Deegan 1993). Brackish ponds and fjordal systems often are locations in 

which fish (such as anadromous salmonids) move from a juvenile life stage in the 

freshwater environment to a mature life stage within the ocean environment. These 

estuarine environments are the transition areas in which they move (Kennish 1986). 

Unfortunately it is unknown if all estuaries in a locale contribute equally to maintaining 

stocks or if one or a few of them are the primary contributors (Gillanders 2002). Estuaries 

with low nutrient input and resultant low phytoplankton biomass might be expected to 

have less primary production available for higher trophic levels such as zooplankton and 

fish (Knox 1986; Mallin and Paerl 1994; Pinckney et al. 2001).  

 

1.5 Purpose of Study 

This study serves as a preliminary step towards assessing the biological contribution of 

St. Pauls Inlet to the western Newfoundland regional marine ecosystem. By providing a 

quantifiable assessment of zooplankton populations in St. Pauls Inlet, further studies may 

be done to determine how St. Pauls Inlet compares regionally in terms of plankton 

production and diversity. Specifically this study considers zooplankton organisms which 

belong to the family Crustacea and are of the size range of 3 mm for Calanus 
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finmarchicus down to 0.4 mm for Evadne nordmanni; collectively these types of species 

are classified as microcrustaceans. Attempts were also made to collect larger 

zooplankton, including larval fish.  

 

An initial inventory of the inlet carried out by Carter and MacGregor (1979) during the 

planning stages for Gros Morne National Park provided information on the presence of 

zooplankton species but no quantitative abundance data. The limited nutrient 

measurements that were taken also suggested that nutrient concentrations in the inlet 

were very low (below detectability of field kits in some cases) and related to the low 

concentrations of nitrate, ammonia and phosphate observed by O’Sullivan (1976) in a 

freshwater inflow to the inlet. 

 

The purpose of the current study, detailed in Chapter 2, is first to determine the existing 

zooplankton species composition and to compare this with the species composition found 

in the previous 1979 study, with the hypothesis being that there was no overall change in 

community composition over time (hypothesis 1). Secondly, species composition 

throughout the zooplankton taxa in St. Pauls Inlet will not vary in relation to the salinity 

(hypothesis 2). In addition to comparing the inlet to past conditions, I will be looking at 

how zooplankton species composition in the inlet compares regionally with similar 

estuarine systems. As there are few data sets on estuarine zooplankton from 

Newfoundland and Labrador, specific comparisons will be made with Lake Melville in 

Labrador (Figure 1.1) for which zooplankton data were available. Zooplankton were 
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collected similarly by tow net as in this present study. Zooplankton composition will not 

be largely different between St. Pauls Inlet and Lake Melville (hypothesis 3). In Chapter 

3, the abundance/density of zooplankton within the inlet will be compared with other 

estuarine systems worldwide to place St. Pauls Inlet into a broader context. Biological 

productivity of the inlet, estimated by zooplankton density (Avila et al 2012), is 

hypothesized to be low given its likely low nutrient levels and nutrient-poor watershed 

(hypothesis 4). 

 

The comparison site of Lake Melville (Figure 1.1) can also be classified as a fjord-type 

estuary as it has a lower salinity than the inner Labrador Shelf and because of a shallow 

sill in the Narrows at the entrance of the fjord that limits seawater input (Bakus 1951; 

Vilks & Mudie 1983). This sill has become shallower since glaciation ended 

approximately 12,000 years ago, and does not allow the more saline inner shelf bottom 

water to enter Lake Melville (Vilks & Mudie 1983). Both result from glacial action, 

where the weight of the glacial ice causes the earth's crust to warp downward and post-

glacial rebound, where the earth's crust uplifts towards isostatic equilibrium (Sella et al. 

2007). Lake Melville receives a large amount of freshwater inflow through the Churchill 

River. Together, the Churchill and Eagle Rivers in Labrador have a combined drainage 

area of 140,600 km2 and an annual average river discharge of 1,740 m3sec-1 

(Environment Canada 1990). 
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Through the larger multidisciplinary CURRA project that involved social and natural 

sciences, researchers sought to link research and local ecological knowledge to develop 

and implement recovery strategies for fisheries and fishing communities in the west coast 

region. The aim of my study was to contribute to a better understanding of the biological 

components of St. Pauls Inlet, particularly the zooplankton, as a preliminary step towards 

assessing the potential contribution of St. Pauls Inlet to the wider western Newfoundland 

marine ecosystem. This study was carried out simultaneously with other CURRA projects 

on St. Pauls Inlet relating to the history and sustainability of the town of St. Paul’s 

(Kukac 2009; Kukac et al. 2009, Murphy 2009), and the ecology of nearshore fish 

populations within the inlet (Melanson & Campbell 2012).  

 

Data analysis in the thesis consists of two chapters: Chapter 2 looks at zooplankton 

species composition within St. Pauls Inlet and in comparison to Lake Melville, while 

Chapter 3 looks at zooplankton abundance in the inlet on a larger global basis, as well as 

presenting general conclusions.  

 

(Note while the inlet is officially designated as St. Pauls, the town is listed as St. Paul’s). 
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Figure 1.1: Location of St. Pauls Inlet (49.50058° N, 57.47514° W) & Lake Melville (53.6822° N, 59.7486° W) in 

Newfoundland and Labrador (Adapted from The Geological Survey Division 2014)
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Chapter 2:  

Zooplankton composition in St. Pauls Inlet: a regional comparison of sites 

2.1 Introduction 

Within estuarine systems like St. Pauls Inlet, fluctuations in salinity and temperature can 

result in significant physiological stress for many organisms as well as limit overall 

species diversity. Varying salinities in particular can impose osmoregulatory challenges 

for estuarine organisms (Levinton 2014). As well, other chemical and physical gradients 

within a water body can influence plankton species presence and abundance (Lillick 

1937; Heath & Lough 2007). Plankton are aquatic organisms that, due to small size and 

the inability to swim against water currents, drift within the water column (Green 1968). 

The plankton community, made up of phytoplankton and zooplankton, is an essential part 

of the aquatic food web. As phytoplankton are the primary producers within the water 

column they sustain the zooplankton which in turn sustain larval fish populations. 

Zooplankton, as the consumer base of the marine food-web, are key players in the food 

web, transferring energy from the microbial food web and primary producers up to higher 

trophic levels (Pepin et al. 2011; Richoux 2011). The stress resulting from the many 

hydrological variations in estuaries strongly influences the composition of the 

zooplankton communities that develop within such ecosystems. Although estuarine 

environments often have fewer species and thus lower biodiversity compared with marine 

or freshwater regions, those estuarine organisms that are able to tolerate the demands are 

often higher in population density and support higher levels of tertiary productivity. 

Therefore, it is important to understand what type of zooplankton community is present 
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within the inlet (Richoux 2011). Numerous studies have indicated that there is a 

relationship between plankton abundance and survival of larval and juvenile fish 

(Beaugrand et al. 2003; Heath & Lough 2007). Many species of fish, such as Gadus 

morhua, are planktivorous during their larval and juvenile state. Knowing the taxonomic 

and functional diversity of the zooplankton will allow for understanding of how changes 

within the system may propagate up the food chains in such environments (Duffy & 

Stachowicz 2006).     

 

Holoplanktonic copepods are one of the most abundant and most important zooplankton 

groups throughout aquatic systems and can dominate the coastal plankton biomass 

(Rochet & Grainger 1988; Neilsen & Andersen 2002; Marques et al. 2007). The 

abundance and diversity of zooplankton has been used in past studies to evaluate how 

mature and ecologically stable an area is. According to Aube et al. (2003), a mature and 

stable aquatic ecosystem should have a plankton community with an annual cycle that is 

relatively predictable, an ecological community that is suited to the hydrogeographic 

status of the region and is not influenced or driven by opportunistic or invasive taxa, and 

lastly should sustain native fish species either as a nursery for larvae or habitat for other 

life stages. Zooplankton abundances may directly coincide with the appearances or 

abundances of various larval and juvenile fish stages (Carter & Dadswell 1983). 

Zooplankton, a primary fish food source, may become more abundant in the times of 

year, such as spring, when primary production peaks partially due to higher nutrient 

availability resulting from increased freshwater flow as well as increased light. 
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2.2 Objective of Study 

The primary objective of this study is to characterize the zooplankton composition of St. 

Pauls Inlet. St. Pauls Inlet was previously examined during the summer (July to August) 

of 1977 as well as the spring (May) of 1978 by Carter and MacGregor (1979), following 

the establishment of Gros Morne National Park in 1973; however, only species 

composition with qualitative abundance data was determined (abundances were recorded 

as infrequent, common, or abundant). There have been no other biological studies on the 

inlet’s plankton since that time. My study examines the zooplankton species composition 

within the inlet and compares the composition with that reported in the 1979 study 

(Hypothesis 1: There is no overall change in zooplankton community composition over 

both decadal or seasonal time). Genera such as Calanus, Pseudocalanus, Paracalanus, 

Acartia, Oithona, and Temora would be found in marine or brackish systems and are 

typically the most abundant types in such environments. Carter and MacGregor (1979) 

suggested that a longitudinal salinity gradient may be present in the inlet during portions 

of the year. As the freshwater input is greatest during the spring due to the snow melt, the 

longitudinal salinity gradient would be greatest at that time, decreasing as the season 

progresses and the freshwater input decreases. Presence vs. absence data of zooplankton 

species composition of St. Pauls Inlet in the present relative to St. Pauls Inlet from 1979 

will be used to infer changes in the inlet over time. This will also allow a comparison of 

the biodiversity of the inlet to other regional estuaries such as Lake Melville in Labrador 

(Hypothesis 3: Zooplankton composition will not be largely different between St. Pauls 

Inlet and Lake Melville). 
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Lake Melville, the largest estuary in the province of Newfoundland and Labrador, has a 

surface area of 3,069 km2 and maximum depth of 256 m (World Lake Database 2014). 

The lake is a westward continuation of the Hamilton Inlet, which is a fjord-like inlet. It is 

geographically similar to St. Pauls Inlet although much larger. Both are considered 

brackish bodies of water that are fjordal inlets with a sill at the entrance and have been 

formed by glacial erosion (Grant 1975). The marine ecology of both locations is 

influenced by the adjacent Labrador Sea.  

 

The second objective of this study was to determine if any longitudinal patterns of 

zooplankton species composition and distributions existed in St. Pauls Inlet from the end 

of the inlet to the mouth into St. Pauls Bay, and if such patterns related to environmental 

gradients, such as salinity (Hypothesis 2: Species composition throughout the 

zooplankton taxa in St. Pauls Inlet will not vary in relation to salinity). 

 

St. Pauls Inlet is the only fjordal estuarine environment within the boundaries of Gros 

Morne National Park (Carter & MacGregor 1979). In relation to regional estuaries, St. 

Pauls Inlet might be considered representative of other similar fjordal-type systems such 

as Parsons Pond and Portland Creek, both further north along Newfoundland’s west 

coast, and part of a larger group of Atlantic estuarine systems that includes Lake Melville 

in southern Labrador.   
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2.3 Methods 

2.3.1 Sampling Locations for St. Pauls Inlet 

The study area, (inlet) is located at the northern end of Gros Morne National Park (see 

Figure 2.1) and is 11 km long, and 6 km wide at the widest point. The surface area of the 

inlet is 30 km2 with the maximum depth in the center of the glacial channel/inlet at 36 m 

(Carter & MacGregor 1979). 

 

The opening from the inlet to St. Pauls Bay is only 80 m wide, which allows sea water to 

enter the inlet. Due to the restricted size of this entrance, a natural feature, there can be 

significant tidal velocity of 2 to 8 knots at the mouth of the inlet with estimated tidal 

amplitude of 0.6 to 0.9 m (Carter & MacGregor 1979). However, tidal amplitude 

decreases rapidly further into the inlet meaning that most of the water body is essentially 

non-tidal (Carter & MacGregor 1979). The freshwater input is from a total of 24 

tributaries, with St. Pauls River (aka Bottom Brook), located at the eastern end of the 

inlet, being the largest inflow (O’Sullivan 1976; Melanson & Campbell 2012). 

 

Consultation on sampling sites, as well as use of boat transport, was provided by 

community members from the town of St. Paul's. Sampling took place from spring to 

summer (June to August) in 2009 and in 2010 in St. Pauls Inlet.  At the outset of the 

initial field season in June 2009, three sampling sites were used for weekly sampling. 

About two weeks into the sampling, an additional site was selected for a total of four sites 

(Figure 2.2). Sites were selected based upon the location compared to freshwater and 
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saltwater sources, as well as on accessibility by small boat. These locations were chosen 

to represent a potential range in salinity as well as bottom substrate type. If a longitudinal 

salinity gradient exists in the inlet, then the sites chosen should adequately represent it. 

 

The sites chosen were: (Figure 2.2) 

 Charles Cove Point (CCP) - close to the inlet mouth opening to the Gulf of St. 

Lawrence (49.512020N 57.464295W). 

 Western Island (WI) - part way up the Inlet but without much direct freshwater 

input although has a shallow depth (49.493034N 57.464295W). 

 Between the Falls (BTF) - approximately halfway up the Inlet with direct fresh 

water input (49.49684N 57.414223W). 

 Bottom Brook (BB) - the farthest from the entrance to the Gulf and with the 

largest freshwater input (49.493345N 57.394903W). 

 

Bottom Brook is near the head of the inlet, close (100 – 200 m) to the freshwater stream 

called Bottom Brook. The second site has been labelled Between the Falls, and as the 

name suggests it is located close (25-50 m) to two waterfalls coming down the cliffs of 

the fjord. The third site, Western Island, is situated at the buoy near Western Island, 

which is about halfway between the far end of the inlet and the entrance to St. Pauls Bay. 

The last point, closest to the salt marshes in St. Pauls Bay and the opening to the ocean, is 

Charles Cove Point. 
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Figure 2.1: St. Pauls Inlet in relation to Gros Morne National Park, NL, Canada. (St. Pauls Inlet Latitude and Longitude 

49.50058N 57.45.514W; map data from ESRI 2015)
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Figure 2.2. Sampling Sites for ( ) the 2009 and 2010 Present Study and (#) the 1977 and 1978 Carter & MacGregor Study in 

St. Pauls Inlet, GMNP, NL, Canada. (Map data from ESRI 2015)
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In addition to the reasons listed previously, the sites were chosen to reflect similar sites to 

the 1979 study. Carter and MacGregor chose 5 sites to sample for plankton (Figure 2.2). 

One site was located at the entrance to Bottom Brook another site was at the deepest part 

of the inlet which is a bit offshore from the present Between The Falls, the third site was 

located at the entrance to Eastern Brook, one was located approximately halfway between 

the mouth and end of the inlet, and the last point they sampled was at Charles Cove Point.  

 

2.3.2 Sampling Methods for St. Pauls Inlet 

Sampling was conducted from a local resident's fishing dory, dependent on the weather 

and ability to safely access the inlet. As St. Pauls Inlet has limited tidal influence it was 

not necessary to sample with respect to the tidal cycle (Carter & MacGregor 1979). For 

each sampling excursion, at each site, salinity (‰) and temperature (oC) were measured 

at 1 m depth intervals, from surface to bottom, using a portable YSI® 85 Probe, which 

was calibrated using the 10 mS cm-1 conductivity standard for brackish water (YSI 

Incorporated). Bottom depth at each site was determined with a Speedtech sonar gun. 

During August of the 2010 season additional sampling for nearshore fish was undertaken 

utilizing seine nets and minnow traps (Melanson & Campbell 2012).  

 

Zooplankton sampling was carried out at Bottom Brook, Between the Falls, Western 

Island, and Charles Cove Point once per week for seven consecutive weeks between June 

16 and August 26 2009 and for fourteen consecutive weeks between  

June 2 and August 11 2010. Unfortunately, due to weather problems, not all sites were 
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accessible each time. There was significant wind shear when the winds became greater 

than 20 km/h, causing much higher swells than the dory could safely navigate. At such 

times sampling was suspended and sites were missed. This difficulty in reaching all the 

sites all of the time also influenced Carter and MacGregor’s ability to sample on 

occasion. The end result was 237 samples collected over both summer seasons (Table 

2.1). See Appendix 1 for full list.  

Table 2.1 Sampling Effort per Site for 2009 and 2010 St. Pauls Inlet Seasons (all tows) 

2009 Sampling Amounts per Site 2010 Sampling Amounts per Site 

Bottom Brook 11 Bottom Brook 43 

Between the Falls 21 Between the Falls 39 

Western Island 19 Western Island 42 

Charles Cove Point 21 Charles Cove Point 41 

 Total Sampling Effort 72 Total Sampling Effort 165 

 

Zooplankton samples were taken using horizontal and vertical tows. Vertical tows were 

used to collect the organisms at a sample site throughout the site water column from a 

specific depth to the surface; whereas the horizontal tows were used to collect a 

composite sample of the water column near the surface. Composite sampling is valuable 

as it can provide more representative estimates of mean concentrations. . Two horizontal 

tows were taken per site with either a small-mesh conical net (63 µm mesh net, 300 mm 

mouth diameter, and 1.0 m length) or a large-mesh conical net (500 µm mesh net, 300 

mm mouth diameter, and 1.0 m length); see Appendix 1 for all tows and sites. A 

calibrated General Oceanics® flow meter was attached to both the 500 µm and 63 µm net 

to allow estimation of the volume of water filtered (Smith et al. 1968). The horizontal 

tows were carried out for 2 minutes at just below the water surface in 2009. Oblique tows 



31 
 

were taken in 2010 for the same time frame and number of replicates. The sampling 

method moved from the horizontal tows in 2009 to the oblique as the horizontal tows 

samples were either empty of any plankton or completely full of only phytoplankton. As I 

wanted a representative sample of the water column I opted to do oblique tows (Frolander 

et al. 1973; Judkins et al. 1979; Huntley et al. 1983; Shih et al. 1988). Vertical tows were 

also done at each site and taken from a moored fishing dory, with a conical net (80 µm 

mesh net, 200 mm mouth diameter, and 0.5 m length). Filtering efficiency was assumed 

to be 100 % for the vertical tows in that they never clogged. Two depth of tows were 

taken per site, one close to 1 meter above the bottom and one down to half of the 

maximum depth of the sampling site, with two tows per depth range. The net was raised 

to the surface at approx. 1 m sec-1. Due to the uncertainty of how well mixed the water 

column was throughout the inlet there was the necessity of replicate tows at differing 

depths (Pace 1992; Mouny 2002). The mesh sizes of the horizontal tow nets, as well as 

the vertical tow net, differed in order to collect a range in size of organisms. Although 

there was no clogging in the tows, the reason for the differing mesh sizes is that the 

smaller mesh openings can clog more than the larger ones, but small organisms would 

pass through the larger mesh. Larger mesh results in less of a bow wave in front of the 

net and hence can catch larger more mobile plankton (De Bernardi 1984; Downing & 

Rigler 1995). Specifically, it was hoped that the larger mesh size of 500 µm would allow 

for collection of larval fish, while the smaller mesh would capture mainly zooplankton, as 

based on other studies (Winkler et al. 2003). However, there was little success in catching 

larval fish.   
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2.3.3 Sample Processing for St. Pauls Inlet 

Zooplankton samples were pooled for the replicated tows (2 tows at full depth were 

pooled and the 2 tows at 1/2 depth were pooled) and then were taken to the field station, 

located at the St. Paul’s residence, concentrated through a 25 µm filter, and then 

preserved within 4 hours in 70 % ethanol (Black & Dodson 2003) in sterile scintillation 

vials. Samples were well-mixed and diluted to a known volume (20ml) within the vial, 

then a 1-ml subsample was removed with a graduated pipette. Zooplankton were 

enumerated under a circular, rotating Plexiglass counting chamber at 250-500x 

magnification using a dissecting microscope. A minimum of 200 individuals was counted 

in the samples.  In some samples it was not possible to get 200 individuals in the 1-ml 

subset so additional subsamples were performed until either 200 individuals were reached 

or the full sample was counted. Quantitative zooplankton density was determined as 

number of individuals m-3; net volumes were based on either measured velocity (m/s) 

through flow meters (for horizontal and oblique tows) or on depth of tow. For vertical 

tows the following equation was used: 

Volume (m3) = π * (Radius of net2) * Distance towed (m) 

Contents of the vials were identified to the lowest taxonomic group possible using a 

variety of sources and dichotomous keys (Katona 1971; Della Croce 1974; Bradford 

1976; Frost 1989; Busch & Brenning 1992; Barnes 1994; Pollock 1998; Bradford-Grieve 

1999; Gerber 2000; Taylor et al. 2002; Johnson & Allen 2005; Campbell & Knoechel 

2008; Walter & Boxshall 2014). The major microcrustacean groups that were identified 
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down to the species level were Calanoids and Cladocerans.  

 

2.3.4 Sampling Methods for 1979 Study 

The plankton study by Carter and MacGregor was based on samples from July 5 - August 

3, 1977 and May 19-26, 1978. Sampling was carried out with a Birge style tow net that 

was 17 cm in diameter and 108 cm long (mesh size unknown) as well as with Niskin 

bottles for specific depth sampling that was then sieved through Millipore filters. In 

addition, a tow net with 80 µm mesh was used for surface tows. During the summer of 

1977, sampling was carried out in the afternoon at 5 m intervals from approximately 15-

20 m to the surface. During the spring sampling in 1978 only surface tows were 

conducted, lasting 5 minutes at 3 knots. The qualitative zooplankton abundances for 1977 

and 1978 were determined by examining the settled volumes of samples in vials.  

 

2.3.5 Regional Comparison Site and Sampling Methods 

Lake Melville was chosen as a regional comparison to St. Pauls as it can be defined as a 

fjord-type estuarine environment in a similar geologic region of the Canadian Pre-

Cambrian Shield (Duthie 1974). Comparable zooplankton samples were obtained from 

Dr. R. Anderson, Department of Fisheries and Oceans, who collected the Lake Melville 

zooplankton samples in 2007. Lake Melville is a brackish water lake which stretches 150 

km inland from the Hamilton Inlet (Grant 1975; Vilks & Mudie 1983). The Narrows, the 

connection between the inlet and the lake, is about 30 km long and ranges from 50 m to 

28 m deep at the sill. Fresh water enters the lake mainly through the Churchill River at 
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approximately 58 km3 yr-1. This discharge, and very slow mixing, results in the surface 

layer of the estuary having a salinity of 10 ‰ extending almost the length of the lake to 

the sill. During the summer months the outflow of surface water prevents the saline water 

from the bay from entering over the sill into Lake Melville (Vilks & Mudie 1983). In 

fjord-type estuaries the bottom water salinity is determined by the salt content of the 

water entering from over the sill and the frequency of input. In the case of Lake Melville, 

there is a very sharp halocline at 25 m with the salinity being 25 ‰ and then at 100 m it 

increases again to 28 ‰ (Grant 1975; Vilks & Mudie 1983). This shows that the 

freshwater influx does have some impact on the bottom salinity since the surface salinity 

of the Narrows is 15 ‰ at the sill and is 31 ‰ at the head of Hamilton Inlet, whereas the 

bottom salinity is 25 ‰ at the sill and 33 ‰ at the head of Hamilton Inlet. The surface 

salinity is anywhere from 2 ‰ to 10 ‰ lower than the bottom salinity. These readings 

indicate that the surface water outflow from Lake Melville decreases the amount of the 

more saline water from the inlet and bay entering the lake. In addition to the lake having 

a less saline environment than the Labrador shelf, which ranges for 28.6 ‰ to 34.8 ‰, it 

also has warmer waters (Vilks & Mudie 1983). These warmer surface waters, 15 oC 

compared with 5 oC of the shelf, are due to the freshwater runoff and the sill preventing 

the colder waters from entering the lake (Vilks & Deonarine 1987).   

 

 

Lake Melville was sampled over the course of four days in October 2007 by Department 

of Fisheries and Oceans personnel. As shown in Table 2.2 and Figure 2.3, there were four 
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locations sampled at 3 depths: just below the surface, 5-8 m depth (just below the 

pycnocline if present), and approximately 1 m from the bottom with a 202 µm mesh net. 

Most of the sites chosen were at the head of the lake near the Churchill River with sites 

14 and 18 further out into the body of the lake. The areas sampled were a subset of the 

whole Lake Melville system and strongly influenced by river input. Zooplankton samples 

were processed the same way as for the 2009-2010 St. Pauls samples.  

 

Table 2.2: 2007 Sampling Data for Lake Melville, Labrador, Canada 

Site 
Salinity 

(‰) 
Day Month 

Depth 

(m) 
Site Description 

1 20.31 12 10 25 Goose Bay 1.9 km North Rabbit 

Island 

53.41679N 60.15797W 

3 8.71 12 10 5 

5 1.12 12 10 1 

9 19.60 12 10 15 Goose Bay 1.6 km S R.Is, Churchill 

mouth 

53.38413N 60.14192W 

7 11.60 12 10 8 

11 1.00 12 10 1.5 

15 18.30 13 10 7 Cove mouth Kenamu River 

53.49416N 59.92350W 16 6.50 11 10 0.5 

14 13.38 13 10 2.5 12.5 km from NW point 

53.58099N 59.91738W 18 16.81 13 10 7 
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Figure 2.3: Lake Melville, NL (53.41679° N, 60.15797° W) Sampling Sites by DFO in 2007 (map data from ESRI 2015)
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2.4 Stream Discharge 

To ascertain freshwater inputs and impact on salinity in St. Pauls Inlet, stream discharge 

rates were measured for the four main freshwater sources (Eastern Brook, Black Duck 

Brook, Bottom Brook, and Alex Brook; Figure 2.4). These sites were chosen as the main 

sources due to visual observation, local knowledge, and reference to the Carter and 

MacGregor 1979 study.   

 

Each stream site was measured once a month (June, July, and August) with 

approximately 20-30 days difference between sampling dates. Stream discharge rates 

were calculated by measuring the volume of water moving down a river or stream per set 

unit of time (m3 sec-1). This was typically measured by averaging the determination of the 

depth with a Speedtech sonar gun at 2 separate rectangular cross-sections of the stream 

(stream width measured) and then also obtaining the water velocity by a hand-held flow 

meter (Speedtech Flowatch®). Velocity was measured with the flow meter for 2 minutes 

at each location. As the substrate was a mix of sandy and rocky terrain, the correlation 

factor used was 0.85 (Wetzel & Likens 1991). The equation used was: 

 

DISCHARGE (m3sec-1) = Velocity (m sec-1) x Width (m) x Depth (m) x Correction 

Factor for Sandy/Rocky substrate 
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Figure 2.4: The four sites monitored in 2010 for stream discharge into St. Pauls Inlet (adapted from Melanson 2012 and ESRI 

2015) 
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2.5 Statistical Analysis  

2.5.1 Zooplankton 

To determine if there were spatial patterns in zooplankton species composition within the 

2009 and 2010 sampling, as well as in comparison with the 1979 Carter & MacGregor 

study and Lake Melville, I employed two types of multivariate analysis (one based on 

classification into groups, one based on looking at spatial patterns of species along 

ordination axes). Cluster Analysis was used so that similarity among the zooplankton 

samples could be defined statistically by grouping samples according to their species 

composition (presence/absence data) (Krebs 1989). Similarity of species composition was 

calculated using Jaccard’s similarity coefficient SJ 

SJ =  a 

a+b+c 

  

 

a, b, c = number of species in both samples A & B; in sample B only; in sample A only 

 

 

Jaccard’s is ecologically relevant when using presence/absence data (Legendre & 

Legendre 1998). Similarity calculated using Bray-Curtis coefficients on abundance data 

yielded analogous results. I preferentially used Jaccard’s since my comparisons of 

similarity were based on presence/absence data which were available for all sites and 

years. Jaccard’s coefficient is used to determine similarity among samples or sites – the 

coefficient is based upon the presence and absence of species between a sample pair; 0 

indicates no similarity and 1 indicates full similarity (Omori & Ikeda 1984). Using this 

similarity coefficient, a cluster analysis was performed. The program NTSYS (Rohlf 



40 
 

2009) was used to do a sequential, agglomerative, hierarchical and non-overlapping 

(SAHN) classification which would assign each sample or site into a group and then 

arrange those groups into a hierarchical dendrograms. This allowed for any relationships 

between sites to be visible and to see how they are classified. The method used was the 

unweighted pair group method with arithmetic averaging (UPGMA) as this is the 

hierarchical clustering technique recommended when there is no specific reason to 

choose any other technique (Gauch 1982). Methven et al. (2001), Wroblewski et al. 

(2007), and Melanson and Campbell (2012) used similar cluster analysis to classify 

species composition of fishes in estuarine systems in Newfoundland and Labrador. This 

technique allows all objects in the analysis to receive equal weight in the computation. It 

assumes that objects in the groups are representative of the larger population under study 

which works well with the simple random sampling design (Legendre & Legendre 1998).  

Site sampling in the inlet was considered random. 

 

The other multivariate analysis used was Non-metric Multi-dimensional Scaling 

(NMDS), an ordination method that graphically represents relationships between objects 

in multi-dimensional space. Ordination arranges samples so that similar samples are close 

together and dissimilar samples are far apart, along a number of axes (Krebs 1989). 

NMDS may be better than cluster analysis when the samples are arranged continuously 

along environmental gradients (such as salinity, temperature, and depth). It uses distance-

based measures like Bray-Curtis or Jaccard’s in its analyses and makes few assumptions 

about the nature of the data (Holland 2008). As with the cluster analysis, 
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presence/absence data per site were used and similarity between sites assessed with 

Jaccard’s coefficient of similarity. The NMDS ordination was performed on the similarity 

matrix. Kruskal stress coefficient values, a type of goodness of fit that reflects how well 

the ordination summarizes observed distances among the samples (Holland 2008), were 

examined to determine if the stress level is adequate. Stress values that are low (i.e. 0.02 

vs. 0.12) generally indicate a very good fit of the objects being tested on the dimension. 

The level of dimension (number of axes) was identified to be the point at which any 

additional dimensions did not lower the stress value. In addition, a higher number of 

dimensions can make the interpretation of the ordination difficult (Kruskal & Wish 

1978). NMDS analysis was carried out using NTSYSpc statistical software (version 2.2, 

Rohlf 2009) based on 100 iterations, the stress was Type 2 and the 3D plot was chosen. 

This dimensionality was chosen for ease of examination as well as having an acceptable 

stress value associated with it. An examination of the correlations of the axis values with 

the environmental factors (salinity, temperature, etc.) was done to determine what the 3D 

axes might represent. Comparison of past to recent NMDS correlations for St. Pauls Inlet 

and correlations for the inlet vs. Lake Melville could elucidate any shifts in 

environmental controls of species richness both in time and in space.  

 

Such analysis may help to determine if there is a spatiotemporal variation in zooplankton 

species and the extent of any co-variation with the environmental factors reported 

(analyses similar to Marques et al. (2007) for Mondego estuary in Portugal)... Both the 

cluster analysis and NMDS ordination were performed to determine what levels of 
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zooplankton species assemblages’ similarity/dissimilarity occur among sites within the 

inlet over the course of the seasons (i.e. longitudinal variation; hypothesis 2), and among 

years (1979 vs. 2009/2010, i.e. temporal variation; hypothesis 1). As well, both statistical 

methods were performed to evaluate similarity between the zooplankton assemblages 

observed in St. Pauls Inlet and Lake Melville (i.e. regional variation; hypothesis 3).  

 

2.6 Results 

2.6.1 Stream Discharge 

Stream discharge was evaluated to extrapolate the approximate amount of freshwater 

input to St. Pauls Inlet during the study period, and to determine if the freshwater input 

had an effect on the species composition of St. Pauls Inlet. Discharge was measured only 

in once per month in 2010 although the study covered the two summer seasons of 2009 

and 2010. Each stream was measured at two locations, the mouth of the stream and just in 

from the first tributary or as far in as we could access.  As expected, the average seasonal 

stream discharge rate (m3sec-1) varied by location with the largest freshwater stream, 

Bottom Brook, having the highest rate of 8.23 m3sec-1. Eastern Arm Brook had the 

second highest freshwater input with a rate of 4.06 m3sec-1. Discharge rate in Black 

Brook was recorded at 3.02 m3sec-1 followed by Alex Brook with 0.37 m3sec-1. The mean 

discharge differed significantly among the streams (ANOVA F3,16 = 5.06, p=0.003).   
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Figure 2.5: Monthly Mean Discharge Rates for 4 Primary Discharge Streams in St. Pauls 

Inlet for 2010 

 

There was generally a higher discharge rate in June than in the rest of the season, except 

for Black Brook (Figure 2.5). This is most likely indicative of a spring snowmelt 

resulting in higher freshwater inflow into the inlet which was also seen in the 1979 Carter 

and McGregor study. Mean discharge by month (June to August) per stream was 4.40 

m3sec-1in June, 3.82 m3sec-1in July, and 2.3 m3sec-1in August, with a mean total discharge 

of 15.22 m3sec-1for the entire 3 month period. Mean annual discharge draining from the 

24 sources into the inlet was previously estimated at 13 m3sec-1 (Carter & MacGregor 

1979). The highest flow into the inlet would be in spring with the lowest in 

February/March similar to the Upper Humber River watershed near the park boundary. 

Carter & MacGregor assumed that St. Pauls River and drainage basin would show similar 

flow velocities, with over 47 cm sec-1 flow in May but only 5cm sec-1 in February. 

However the flow does vary from season to season and comprehensive winter data for 
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1979 were unavailable due to ice cover (Carter & MacGregor 1979). According to the 

Government of Canada's Weather Station in Cow Head the total snowfall levels for the 

months leading up to the sampling seasons were 471.0 cm for September 2008 - May 

2009 and 257.0 cm for September 2009 - April 2010. The maximum accumulation of 

snow in either the 2009 or the 2010 season was found on February 15-27, 2009 with 

100.0 cm. This maximum was reduced to 0.0 cm on the ground by April 4, 2009. This 

very high snow volume in February translates to high stream discharge in the spring 

following snow melt. In the following winter the maximum snow was reduced by almost 

half to 55.0 cm on February 27, 2010. This was reduced to 0.0 cm by March 16, 2010. 

These figures are for a low lying weather station near the town of Cow Head which is in 

the coastal plains. It is expected that the snow fall amounts and length of the spring 

snowmelt would be higher in the elevations surrounding the inlet. The higher snow 

volume in 2009 vs. 2010 would be expected to cause the stream discharge rate in 2009 to 

be more than in 2010.  

 

2.6.2 Temperature 

Based on temperature profiles observed at all four sites during both years (Figures 2.6-

2.9), thermocline development was variable between sites. At Bottom Brook there was a 

thermocline in 2009 which was not as pronounced in 2010 (Figure 2.6). Between the 

Falls (Figure 2.7) shows a thermocline in both of the years whereas Western Island 

(Figure 2.8), as expected due to the shallowness and well-mixed water column at the 

location, does not show any indication of a thermocline. Lastly, Charles Cove Point 



45 
 

(Figure 2.9) shows only a slight thermocline during the first sampling of June in both 

years. Overall temperatures were determined by averaging the temperatures at each 

location by season and depth. These seasonal (spring + summer) temperatures ranged 

from a minimum of 3.80 °C at Charles Cove Point to a maximum of 22.60 °C at Bottom 

Brook.  Surface waters (0 to 2.0 m) ranged from 9.6 °C at Charles Cove Point to 22.60 °C 

at Bottom Brook. Bottom temperatures (2.0 m up from the bottom) ranged from 3.80 °C 

at Charles Cove Point to 20.70 °C at Western Island for bottom waters. Boxplots of 

temperature (surface and bottom) over both seasons (Figure 2.10a) showed little 

difference between sites. However, Between the Falls did exhibit more variability in 

temperature range.  
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Figure 2.6: Temperature Profiles: Bottom Brook 2009 and 2010 
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Figure 2.7: Temperature Profiles: Between the Falls 2009 and 2010 
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Figure 2.8: Temperature Profiles: Western Island 2009 and 2010 
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Figure 2.9: Temperature Profiles: Charles Cove Point 2009 and 2010 
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Figure 2.10: a) Boxplots of 2009 & 2010 Surface and Bottom Temperatures (TS & TB) 

by site; b) Boxplots of 2009 & 2010 Surface and Bottom Salinities (SS & SB) by site. 

Ends of each box indicate 1st and 3rd quartiles, horizontal line inside box indicates the 

median, and the ends of the whiskers indicate maximum and minimum values within the 

upper or lower limit. Outliers shown by *
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 2.6.3 Salinity 

Salinity ranged from a minimum of 4.6 ‰ recorded for Bottom Brook surface water to a 

maximum of 29.9 ‰ recorded for Charles Cove Point bottom water (see Appendix 2). 

The mean average salinity sampled from the surface and at depth, was 21.62 ‰ at 

Bottom Brook, 22.69 ‰ at Between the Falls, 21.07 ‰ at Western Island, and 24.14 ‰ 

at Charles Cove Point. Bottom Brook and Between the Falls showed higher variability in 

measured salinities, while there was less freshwater influence at Western Island and 

Charles Cove Point (Figure 2.10b) . Boxplots of salinity (surface = top 2 meters sampled 

and bottom = lowest 2 meters sampled) averaged over both seasons showed little 

difference in median salinities (Figure 2.11). 

 
Figure 2.11: Boxplots of Averaged 2009 & 2010 Salinity by Site. Ends of each box  

Ends of each box indicate 1st and 3rd quartiles, horizontal line inside box indicates the 

median, and the ends of the whiskers indicate maximum and minimum values within the 

upper or lower. Outliers shown by *
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Compared with the 1979 study which showed a vertical salinity gradient, data for 2009 

and 2010 show higher salinity water at the bottom of the inlet indicating some 

stratification; however, it was not pronounced nor was it present at all sites. As seen in 

Figure 2.11 the overall salinity did not vary greatly among sites. Figures 2.12 and 2.13 

show the two sites, Bottom Brook and Between the Falls, where there was some vertical 

stratification in salinity (i.e. a halocline). Of the other two sites, Charles Cove Point 

showed slight early summer stratification (Figure 2.15) while Western Island 

(Figure2.14), did not exhibit any stratification either year. The salinity gradient in June 

was as to be expected with the lowest overall salt content being at Bottom Brook and the 

most saline being Charles Cove Point. This may occur only in June due to the effects of 

the last of the spring snow melt and thus the peak freshwater influx into the inlet.   



53 
 

   

Figure 2.12: Salinity Profiles: Bottom Brook 2009 and 2010 
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Figure 2.13: Salinity Profiles: Between the Falls 2009 and 2010 
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Figure 2.14: Salinity Profiles: Western Island 2009 and 2010 
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Figure 2.15: Salinity Profiles: Charles Cove Point 2009 and 2010
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2.6.4 Zooplankton 

A total of 18 zooplankton taxa were identified from St. Pauls Inlet in 1977/1978, whereas 

only 12 were identified in 2009/2010 (Table 2.3). The 18 taxa listed in 1979 were: 

Copepods Acartia hudsonica, Calanus finmarchicus, Eurytemora affinis, Harpacticus 

chelifer, Oithona similis, Temora longicornis, Oncaea venusta, Pseudocalanus elongatus, 

Centropages typicus, Macrosetella gracilis, Metridia longa, Metridia sp., Cladoceran 

Evadne nordmanni and Others: Aurelia aurita, Brachyura (Crab) Zoea, Mysis mixta, 

Parasagitta elegans and fish larvae. The taxa listed in the present study were: Copepods 

Acartia hudsonica, Calanus finmarchicus, Oithona similis, Temora longicornis, 

Microsetella norvegica, Cladocerans Evadne nordmanni and Podon leuckarti, and 

Others: Aurelia aurita, Brachyura (Crab) Zoea, Mysis stenolepis, Parasagitta elegans and 

fish larvae. Only the microcrustacean species (copepods + cladocerans) were used as 

comparison in this study.  

 
Figure 2.16: Copepods (left) (Acartia hudsonica & Temora longicornis 30X 

magnification shots of vertical tow BTF for Aug 11/2010) and (right) Mysis 

stenolepsis.(10X magnification for 500 µm horizontal tow July 15 2009) 
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In the 30 year period since the 1979 study by Carter and MacGregor there has been much 

research on copepod systematics and a number of species have been re-designated (see 

Gerber 2000; Walter & Boxshall 2014). These re-designations have resulted in the 

following species for St. Pauls Inlet being revised between studies: Acartia clausi (listed 

by Carter & MacGregor 1979) revised to A. hudsonica Pinhey, 1926; and Eurytemora 

hirundoides (listed by Carter & MacGregor) revised to E. affinis (Poppe 1880). Also, 

Pseudocalanus elongatus is not likely a valid species according to Frost (1989). Table 2.3 

shows an overlap of species between the 2 sampling periods. Additional taxonomic 

changes have resulted in the chaetognath Sagitta elegans now being designated 

Parasagitta elegans (Verill 1873) (Gerber 2000; Katona 1971; Thuesen, 2014). Species 

designations were upgraded for the St. Pauls Inlet 1977/78 data prior to comparisons with 

St. Pauls Inlet 2009/2010 data. 

 

The species richness of microcrustacean zooplankton seen in 2009/2010 in St. Pauls Inlet 

was low with 5 species of copepods and 2 species of cladocerans. Species rarefaction 

curves were computed (using www2.biology.ualberta.ca/jbrzusto/rarefact.php) to 

estimate number of species expected in a random collection of individuals.  

 

Curves interpolated from total number of individual microcrustaceans collected 

separately in 2009 and 2010 converged to asymptotes for both years (Figures 2.17a & b); 

this suggests that total sample size was likely sufficient to account for most species. 

However, the sampling effort may still have missed some rare species. Consistent with 
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measured salinities, many of the more common species of microcrustaceans found in St. 

Pauls Inlet in 2009/2010 are species typically found in estuaries or coastal/estuarine 

waters. Johnson and Allen (2005) list Acartia hudsonica and Temora longicornis as two 

of the species most commonly found in Atlantic coastal waters, being estuarine in nature. 

As in the 1979 study, Mysis were abundant in areas of sandy bottoms with a freshwater 

 

 
Figures 2.17: a) 2009 and b) 2010 Species Rarefaction Curves for total microcrustaceans 

0

1

2

3

4

5

6

7

0 2000 4000 6000 8000 10000

Es
ti

m
at

e
d

 n
u

im
b

e
r 

o
f 

sp
e

ci
e

s

Number of organisms in sample

0

1

2

3

4

5

6

7

8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Es
ti

m
at

e
d

 n
u

m
b

e
r 

o
f 

sp
e

ci
e

s

Number of organisms in sample

2.17a 

2.17b 



60 
 

influence, usually near Bottom Brook. Of the two species of opossum shrimps, Mysis 

mixta is a less common open-water relative of Mysis stenolepsis (Johnson & Allen 2005). 

M. stenolepsis (identified in the present study) occupies the intertidal and shallow 

subtidal area (Wigley & Burns 1971), and is seen in many estuaries of northeastern North 

America including the St. Lawrence (Winkler et al. 2007) so it is possible that Carter and 

MacGregor may have misidentified M. mixta.  

 

2.6.4.1 Cluster Analysis 

A comparison of the 2009 and 2010 study period based on cluster analysis of the 

microcrustacea (Figures 2.18 & 2.19) indicates no distinct seasonal clustering of sites in 

either year. There is no strong and obvious grouping of species related to a particular site 

or to a particular month. The zooplankton taxa are not separated by longitudinal salinity 

gradients in the inlet.  There was no distinct clustering across the five St. Pauls Inlet sites 

sampled in 1979 (Figure 2.20). 

 

Species composition differences were noted over the 30 year period. In Figure 2.21, two 

distinct clusters separate out at approximately 30 % similarity. The top cluster includes 

the aggregated presence/absence data from my study (2009 and 2010) whereas the 

bottom cluster includes the 1979 data set. Although there are still many of the same 

species found within the current day inlet as in the past there are a few species that were 

not found (Table 2.3). Species that were absent from my sampling were: Centropages 

typicus, Eurytemora affinis, Harpacticus chelifer, Macrosetella gracilis, Metridia sp., 

Oncaea sp., and Pseudocalanus sp.  
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Figure 2.18: Cluster dendograms for 2009 Season for all sites in St. Pauls Inlet, NL. 

(Codes: CCP = Charles Cove Point, WI = Western Island, BTF = Between the Falls, BB 

= Bottom Brook; 06, 07, 08 are June, July, and August respectively) 

   
Figure 2.19: Cluster dendograms for 2010 Season for all sites in St. Pauls Inlet, NL. 

(Codes: CCP = Charles Cove Point, WI = Western Island, BTF = Between the Falls, BB 

= Bottom Brook; 06, 07, 08 are June, July, and August respectively) 
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Although C. finmarchicus was present in 2009/2010 and is included in all of the cluster 

and NMDS diagrams, only one specimen was found during the entire study. This is much 

different from the “common to abundant at all locations and depths” description of Carter 

and MacGregor (1979). Species composition in Lake Melville differed somewhat 

compared to St. Pauls Inlet (Table 2.3). There were some overlapping species; however, 

there were more distinctly marine or distinctly freshwater zooplankton in Lake Melville 

that were not in St. Pauls Inlet. Additionally, the clustering of species in the Lake 

Melville data reflects the discrete depth sampling method used. Microcrustacean taxa 

identified in Lake Melville include Acartia hudsonica, Calanus finmarchicus, 

Centropages hamatus, Chydorus sphaericus, Daphnia longiremis, Eubosmina longispina, 

Eurytemora affinis, Harpacticus chelifer, Metridia sp. (probably M. lucens Boeck, 1864)¸ 

Oithona similis, Pseudocalanus minutus, Pseudocalanus newmani, and Temora 

longicornis. 
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Table 2.3: Zooplankton Species Identified across Three Studies. St. Pauls Inlet = SPI and 

Lake Melville= LM. Species marked with * were used in cluster dendograms and NMDS 

Species Phylum Class Salinity 

Range 

SPI 

1979 

SPI 

2009/10 

LM 

2007 

Chydorus 

sphaericus  Müller 

O.F., 1776* 

Arthropoda Branchiopoda Marine/ 

Brackish /  

Fresh 

    X 

Daphnia 

longiremis Sars, 

1861* 

Arthropoda Branchiopoda Fresh     X 

Eubosmina 

longispina 

(Leydig, 1860)* 

Arthropoda Branchiopoda Fresh     X 

Evadne nordmanni 

Lovén, 1836* 

Arthropoda Branchiopoda Marine X X   

Podon leuckarti 

(Sars, 1862)* 

Arthropoda Branchiopoda Marine   X   

Acartia hudsonica 

Pinhey, 1926* 

Arthropoda Copepoda Marine X X X 

Calanus 

finmarchicus 

(Gunnerus, 1770)* 

Arthropoda Copepoda Marine X X X 

Centropages 

hamatus  

(Liljeborg, 1853)* 

Arthropoda Copepoda Marine     X 

Centropages 

typicus (Kröyer, 

1849)* 

Arthropoda Copepoda Marine X     

Eurytemora affinis 

(Poppe, 1880)* 

Arthropoda Copepoda Marine X   X 

Harpacticus 

chelifer (Muller 

O.F., 1776)* 

Arthropoda Copepoda Marine X   X 

Macrosetella 

gracilis (Dana, 

1847)* 

Arthropoda Copepoda Marine X     

Metridia longa 

(Lubbock, 1854)* 

Arthropoda Copepoda Marine X     

Metridia lucens 

Boeck, 1865* 

  Copepoda       X 

Copepod Nauplii / 

copepodites 

Arthropoda     X X X 
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Species Phylum Class Salinity 

Range 

SPI 

1979 

SPI 

2009/10 

LM 

2007 

Microsetella 

norvegica (Boeck, 

1865)* 

Arthropoda Copepoda Marine   X   

Oithona similis 

Claus, 1866* 

Arthropoda Copepoda Marine/ 

Brackish /  

Fresh 

X X X 

Oncaea venusta 

Philippi, 1843* 

Arthropoda Copepoda Marine X     

Pseudocalanus 

elongatus (Boeck, 

1865)* 

Arthropoda Copepoda Marine X     

Pseudocalanus 

minutus (Kröyer, 

1845)* 

Arthropoda Copepoda Marine     X 

Pseudocalanus 

newmani Frost, 

1989* 

Arthropoda Copepoda Marine     X 

Temora 

longicornis 

(Müller O.F., 

1785)* 

Arthropoda Copepoda Marine X X X 

Brachyura (Crab) 

Zoea 

Arthropoda Malacostraca   X X   

Mysis mixta 

Lilljeborg, 1852 

Arthropoda Malacostraca Marine X     

Mysis stenolepis 

S.I. Smith, 1873 

Arthropoda Malacostraca Marine X X   

Parasagitta 

elegans (Verrill, 

1873) 

Chaeto-

gnatha 

Sagittoidea Marine X X X 

Aurelia aurita 

(Linnaeus, 1758) 

Cnidaria Scyphozoans > 6 ‰ X X   

Fish Larvae Chordata Osteichthyes   X X   
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Figure 2.20: Cluster dendogram for 1979 SPI indicating no distinct clustering across 

sites. 

 
 

Figure 2.21: Cluster dendogram for SPI Comparison. Comparison of Carter & 

MacGregor 1979 study and 2009/2010 study by site locations, both in St. Pauls Inlet, NL. 

(Codes: CCP = Charles Cove Point, WI = Western Island, BTF = Between the Falls, BB 

= Bottom Brook, ABB = 1979 Bottom Brook, BMI = 1979 Between the Falls, CCI = 

1979 Central Inlet, DEB= 1979 Eastern Brook, ECCP = 1979 Charles Cove Point). See 

previous Figure 2.2 for spatial reference. 
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As seen in Table 2.4, average salinity in Lake Melville appears to be even lower than in 

the St. Pauls Inlet Overall Salinity per site. However this is due to a very low salinity at 

the surface resulting from the freshwater influx from the Churchill River. There is a more 

distinct halocline, with the heavier more saline water towards the bottom and the 

freshwater floating on the surface. 

 

Table 2.4: Salinity Data for Lake Melville, Labrador, Canada 

Site Salinity (‰) Day Month Depth (m) 
Average 

Salinity(‰) 

1 20.31 12 10 25 

10.05 3 8.71 12 10 5 

5 1.12 12 10 1 

9 19.60 12 10 15 

10.07 7 11.60 12 10 8 

11 1.00 12 10 1.5 

15 18.30 13 10 7 
12.4 

16 6.50 11 10 0.5 

14 13.38 13 10 2.5 
15.10 

18 16.81 13 10 7 

 

Cluster analysis comparison of microcrustaceans between Lake Melville and St. Pauls 

Inlet (2009/10) indicated 2 distinct clusters, with 10 % similarity (Figure 2.22). Several 

species of cladocerans caused this clustering. Only in Lake Melville Chydorus 

sphaericus, Daphnia longiremis, and Eubosmina longispina were found, all freshwater 

species (Campbell & Knoechel 2008). However, only the primarily marine/brackish 

water cladocerans Evadne nordmanni and Podon leuckarti (Johnson & Allen 2005) were 

found in St. Pauls Inlet.  
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Furthermore, in St. Pauls Inlet, there was only one additional species that was not found 

in Lake Melville, the harpacticoid copepod Microsetella norvegica; whereas in Lake 

Melville there were 4 additional marine species that were not seen in St. Pauls Inlet: 

Eurytemora affinis, Harpacticus chelifer, Pseudocalanus minutus, and Pseudocalanus 

newmani. Carter (1965) identified a bimodally sized population of Pseudocalanus 

minutus in Tessiarsuk, a coastal brackish water fjord in northern Labrador. Based on the 

taxonomic revision of the genus by Frost (1989), it is quite likely that these were the 

same two species as found in Lake Melville: the larger P. newmani and the smaller P. 

minutus. (This would not affect my statistical analysis as I did not directly compare St. 

Pauls Inlet 1979 with Lake Melville data, and Pseudocalanus were not found in St. Pauls 

Inlet 2009/2010).  

 

Figure 2.22: Cluster analysis of zooplankton species composition comparing St. Pauls 

Inlet to Lake Melville (LM). The St. Pauls Inlet (2009/2010) sites cluster together, 

indicated by the circle. (BTF = Between the Falls, BB = Bottom Brook, WI = Western 

Island, CCP – Charles Cove Point 
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Species-salinity relationships are reflected in the cluster patterns for the Lake Melville 

sites (Table 2.3, Figure 2.22). LM3 and LM5 clustered together – these were surface sites 

nearest to the river output, and with low salinity (< 9 ‰). As well, sites LM1 and LM15 – 

the deeper and more saline sites (> 18 ‰) tended to cluster together.  

 

2.6.4.2 Non-metric Multi-dimensional Scaling 

NMDS analysis showed similar results to groupings observed in the previous cluster 

dendograms. As stated earlier the goal when performing NMDS analysis is to produce 

correlation results with a stress value as close to zero as possible with the smallest 

number of dimensions. A scree plot (Figure 2.23) shows that for the comparisons of St. 

Pauls Inlet (present study) to the 1979 Carter and MacGregor St. Pauls Inlet study the 

near zero stress level that is found with the 3 dimensions. The 4 dimension solution is 

also close to zero in stress value; however, the addition of the extra dimension would 

complicate the results without significantly lowering the stress from a 3 dimension 

analysis. For that reason, all NMDS results are reported for the 3 dimension solution.  See 

Appendix 4 for 2-D Matrix plots. 
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Figure 2.23: Dimensionality and Stress Values for NDMS Parameters for St. Pauls Inlet 

2009/2010 (SPI) vs. St. Pauls Inlet 1979 (SPI1979) and St. Pauls Inlet 2009/2010 (SPI) 

vs. Lake Melville (LM) 

 

NMDS ordinations for 2009 and 2010 separately (Figures 2.24 & 2.25) showed no 

distinct groupings of sites for either year. Correlations of environmental factors with axes 

also showed no noticeable patterns between the years (Tables 2.5 and 2.6). In the 2009 

season, Axis I was significantly and negatively correlated both with bottom salinity and 

overall salinity, Axis II was positively correlated with surface temperature, and Axis III 

exhibited no significant correlations with the tested environmental factors. In the 2010 

season, Axis I was negatively correlated with surface temperature, Axis II exhibited no 

significant correlations, and Axis III was positively correlated with surface, bottom, and 

overall temperature. See Appendix 4 for 2-D matrix plots between axes. No Bonferroni 

correction was used because the analyses are intended to be exploratory rather than for 

hypothesis testing.  
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Table 2.5: 2009 Season correlations (all sites) between environmental characteristic and 

NMDS axes 

E
n

v
ir

o
n

m
en

ta
l 

C
h

a
ra

ct
er

is
ti

cs
 

 NMDS Axes 

Axis I Axis II Axis III 

Surface Salinity 
-0.556 0.515 0.179 

0.076 0.105 0.618 
    

Bottom Salinity 
-0.687 0.591 0.494 

0.020 0.056 0.122 
    

Overall Salinity 
-0.660 0.587 0.354 

-0.027 0.058 0.286 
    

Surface Temp 
-0.486 0.702 0.183 

0.129 0.016 0.591 
    

Bottom Temp 
-0.436 0.120 -0.102 

0.180 0.725 0.766 
    

Overall Temp 
-0.519 0.432 0.029 

0.102 0.184 0.931 
    

Depth 
-0.142 0.591 0.348 

0.677 0.560 0.294 

Cell Contents: Pearson Correlation P-Value (Bold values significant at p<0.05)
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Figure 2.24: 3-D NMDS for SPI 2009 Season. (Codes: CCP = Charles Cove Point, WI = Western Island, BTF = Between the 

Falls, BB = Bottom Brook; 06 = June, 07 = July, 08 = August)
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Figure 2.25: 3-D NMDS for SPI 2010 Season. (Codes: CCP = Charles Cove Point, WI = Western Island, BTF = Between the 

Falls, BB = Bottom Brook; 06 = June, 07 = July, 08 = August)
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Table 2.6: 2010 Season correlations (all sites) between environmental characteristic and 

NMDS axes 

E
n

v
ir

o
n

m
en

ta
l 

C
h

a
r
a
ct

er
is

ti
cs

 
 NMDS Axes 

Axis I Axis II Axis III 

Surface Salinity 
0.056 0.199 -0.198 

0.864 0.535 0.538 
    

Bottom Salinity 
-0.510 0.124 -0.037 

0.086 0.701 -0.910 
    

Overall Salinity 
-0.299 0.241 -0.181 

0.346 0.451 0.573 
    

Surface Temp 
-0.705 0.284 0.757 

0.010 0.371 0.004 
    

Bottom Temp 
-0.568 0.064 0.704 

0.054 0.843 0.011 
    

Overall Temp 
0.011 0.187 0.809 

0.989 0.560 0.001 
    

Depth 
-0.004 0.223 -0.178 

0.989 0.485 0.581 

   Cell Contents: Pearson Correlation 

       P-Value (Bold values significant at p < 0.05) 

 

NMDS ordinations (Figure: 2.26) for St. Pauls Inlet 1979 and St. Pauls Inlet 2009/2010 

showed a distinct grouping separating the two time series. Correlations between the 

environmental variables and the 3 axes for St. Pauls Inlet data (both study periods) were 

calculated (Table 2.7). Axes I and 2 were significantly correlated with Overall, Bottom 

and Surface Temperature, while Axis III was positively correlated with temperature and 

negatively correlated with Bottom Salinity and Depth. See Appendix 4 for 2-D matrix 

plots between axes.    
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Figure 2.26: 3-D NMDS for SPI 2009/2010 Comparison sites to sites from 1979 SPI. (Codes: CCP = Charles Cove Point, WI = 

Western Island, BTF = Between the Falls, BB = Bottom Brook, ABB = 1979 Bottom Brook, BMI = 1979 Between the Falls, 

CCI = 1979 Central Inlet, DEB= 1979 Eastern Brook, ECCP = 1979 Charles Cove Point) Circle shows the SPI 2009/2010 

grouping
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Table 2.7: Correlations between environmental variables and the axes for NMDS on St. 

Pauls Inlet 1979 vs. St. Pauls Inlet 2009/2010 

E
n

v
ir

o
n

m
en

ta
l 

C
h

a
ra

ct
er

is
ti

cs
 

 NMDS Axes 

Axis I Axis II Axis III 

Surface Salinity 
0.093 0.369 0.409 

0.773 0.238 0.187 
    

Bottom Salinity 
-0.277 -0.510 -0.675 

0.383 0.910 0.016 
    

Overall Salinity 
-0.008 0.136 0.091 

0.980 0.672 0.779 
    

Surface Temp 
0.663 0.860 0.876 

0.027 0.000 0.000 
    

Bottom Temp 
0.665 0.883 0.928 

0.018 0.000 0.000 
    

Overall Temp 
0.637 0.892 0.913 

0.017 0.000 0.000 
    

Depth 
-0.441 -0.672 -0.774 

0.151 0.029 0.003 

   Cell Contents: Pearson Correlation 

       P-Value (Bold values significant at p < 0.05) 
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Table 2.8: Correlations between environmental characteristics and NMDS axes for Lake 

Melville vs. St. Pauls Inlet 2009/2010 NMDS Comparison 

E
n

v
ir

o
n

m
en

ta
l 

C
h

a
ra

ct
er

is
ti

cs
 

 NMDS Axes 

Axis I Axis II Axis III 

Surface Salinity 
0.008 0.309 -0.310 

0.985 0.457 0.455 
    

Bottom Salinity 
0.199 0.350 -0.440 

0.637 0.395 0.275 
    

Overall Salinity 
0.603 0.698 0.523 

0.008 0.001 0.026 
    

Surface Temp 
0.377 -0.531 -0.750 

0.357 0.176 0.032 
    

Bottom Temp 
-0.052 0.003 0.059 

0.902 0.994 0.889 
    

Overall Temp 
0.246 0.277 -0.437 

0.558 0.507 0.279 
    

Depth 
0.202 0.056 -0.299 

0.421 0.824 0.227 

   Cell Contents: Pearson Correlation 

       P-Value (Bold values significant at p < 0.05) 

 

NMDS ordination showed strong differentiation between St. Pauls Inlet and Lake 

Melville samples (Figure 2.27). All axes were significantly and positively correlated with 

overall salinity (Table 2.8), with Axis 3 also negatively correlated with surface 

temperature. The more saline sites in Lake Melville (LM1, LM15, and LM18) were 

located closest to the St. Pauls Sites along Axis 2. See Appendix 4 for 2-D matrix plots 

between axes.  



77 
 

 
Figure 2.27: 3-D NMDS SPI Comparison to Lake Melville. Comparison is between the sites in SPI from 2009/10 and LM 

from 2007. (Codes: CCP = Charles Cove Point, WI = Western Island, BTF = Between the Falls, BB = Bottom Brook; 09 = 

2009, 10 = 2010); Lake Melville sampling sites designated LM. Circle is showing SPI sampling sites for 2009 and 2010. (# is 

overlapping points of BB10, WI10, and CCP10; ## is overlapping points of WI09 & BTF10)
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Table 2.9: Yearly Average Air Temperature and Total Precipitation for the years of the 

two studies of St. Pauls Inlet. (Data from Government of Canada Climate website) 

 Year 
Average Temp 

(°C) 

Total Precipitation 

(mm) 

Daniels Harbour 

Station 

1976 2.7 1176.9 

1977 3.5 1116.4 

1978 2.6 1231.4 

 2009 2.3 728.0 

 2010 3.1 843.5 
    

Cow Head Station 
2009 3.23 1127.2 

2010 1.33 616.7 

 

2.7 Discussion 

Based on its physical and chemical features as well as its zooplankton species 

composition, St. Pauls Inlet has all the indications of an estuarine system; it cannot be 

classified as simply a marine or freshwater system. In terms of geomorphology and 

circulation patterns (Chapter 1), St. Pauls Inlet can be characterized as a weakly-stratified 

fjordal estuary with only a small exchange of salt water with the Gulf of St. Lawrence 

due to a shallow sill and narrow entrance (Carter & MacGregor 1979). As a consequence 

of this small exchange, Carter and MacGregor determined that a limited amount of 

mixing resulted in spring stratification of the inlet, with the water on the surface of the 

Inlet approximately half of the salinity of the water at the bottom of the inlet (at least in 

May). In the current study there was some evidence of a halocline only in the two sites 

(Bottom Brook and Between the Falls) nearest freshwater inflow. This lack of observed 

stratification throughout the inlet may indicate either that the physiochemical features of 

the inlet have changed in the decades between studies or that stratification is brief and 

occurs only in early spring (a period not sampled in the present study). While there are no 
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long-term data for inflows into St. Pauls Inlet, historical data are available from Portland 

Creek Pond, a restricted coastal waterbody approximately 40 km north of St. Pauls Inlet, 

which show a similar long-term pattern (1984-2014) of higher stream flow in May 

(Environment Canada https://wateroffice.ec.gc.ca/report).  

 

It is also possible that recent, and potentially ongoing, prevailing weather patterns may 

have prevented the development of stratification due to the increased occurrence of high 

energy wind events. Carter and MacGregor postulated that observed stratification was 

due mainly to very cold and salty marine water entering the Inlet during winter and 

sinking to the bottom. Local ecological knowledge indicates that during the year prior to 

and during the years of the current study the inlet did not freeze over during the winter 

months as is thought to be typical. This accords with physical oceanographic data from 

the Gulf of St. Lawrence in 2009/2010 that showed numerous above normal near-surface 

water temperatures and shorter than normal duration of sea-ice (Galbraith et al. 2010; 

2011). An extended open-water period in the inlet could result in cooler surface waters 

with more exposure of the water column to wind energy, thus more mixing. However, 

average land-based temperatures between the study years show some overlap (Table 2.9). 

Precipitation in 2009-2010 was almost half that of previous years (Table 2.9); this 

decreased freshwater input to the inlet could potentially weaken early spring 

stratification, but it remains unclear why stratification was stronger in 2010 rather than 

2009. The historical station for 1977-1979 was Daniels Harbour, which is approximately 

50 km north of St. Pauls along the coast. Data for the 2009-2010 years were available 
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from Daniels Harbour as well as from the Cow Head weather station, approximately 10 

km from St. Pauls also along the coast.  

 

Contrary to hypothesis 1, that there was no overall change in community composition 

over time (hypothesis 1), St. Pauls Inlet may have seen some changes in the last 30 years 

in species composition of microcrustacean zooplankton. The large marine copepod 

Calanus finmarchicus was common to abundant at all stations and depths during the 

summer sampling in 1977/78 but was collected only once during my sampling, on July 

20, 2010 at the Between the Falls location. The microcrustaceans sampled in both periods 

and listed as common or abundant, such as Acartia clausi/hudsonica, Oithona similis and 

Temora longicornis, indicate that the inlet contains coastal or brackish water species 

(Johnson & Allen 2005). The only other species that was found during both studies was 

Evadne nordmanni; however it was listed as infrequent in summer 1977 through the outer 

reaches of the inlet (Carter & MacGregor 1979) unlike the 2009/2010 study where it was 

quite abundant throughout the inlet. While there was a halocline present briefly at Bottom 

Brook, on June 2, 2010, no freshwater organisms were found in the upper freshwater 

layer. The Charles Cove Point location had the highest overall salinity of the sites but did 

not have salinity over 31 ‰. Salinities in the outer Gulf of St. Lawrence typically range 

from 29 - 31‰ in the southwest extremity to 33 ‰ in the Strait of Bell Isle (Galbraith 

2010). In agreement with hypothesis 2, the cluster analyses may show no distinct 

grouping among sites, Figures 2.18 & 2.19, because the sites contain species with 

tolerance to some fluctuation in salinity which can survive throughout the brackish inlet.  
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Several factors were quite different between the sampling of 1977/1978 and 2009/2010. 

These sampling differences, such as the type of gear, time of day, and even frequency of 

sampling, may have resulted in the significant differences between the 1979 inlet study 

and the present day study in terms of the diversity of species found. The 2009/2010 study 

attempted to align sampling as much as possible to the 1979 study; sampling months that 

overlapped with Carter and MacGregor’s study were for part of July and August 1977 

(summer). Carter and MacGregor sampled infrequently over this period, and also 

sampled for a one-week period in May 1978 (spring). The copepod Eurytemora was 

abundant in the 1978 May samples; I did not sample in May which may explain the lack 

of this species in the 2009/2010 survey. Variations in mesh sizes among all three studies 

(St. Pauls Inlet 2009/2010, St. Pauls Inlet 1979, and Lake Melville) may have influenced 

the species collected; however Makabe et al. (2012) suggested this is less problematic 

when only presence/absence data are considered. 

 

Carter and MacGregor (1979) found both a strong halocline and thermocline in May, a 

month not sampled during my study. Such vertical stratification was less pronounced in 

July than in June (this study) or May (Carter & MacGregor 1978 study). The 

environmental correlations that seemed to affect the NMDS axes in the 2009/2010 

comparison, Figures 2.24 & 2.25, and then the 2009/2010 to 1979, Figure 2.26, study was 

most related to temperature. This is in line with other studies that have found that 

estuarine zooplankton species composition are influenced by the temperature more so 

than by salinity or stratification patterns (Marques et al. 2007; Menéndez et al. 2012). 
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In disagreement with hypothesis 3, St. Pauls Inlet is also different in species composition 

compared with Lake Melville. Although the two water bodies share similar physical 

features, Lake Melville has a distinct species composition of zooplankton, as indicated by 

both the cluster dendograms, Figure 2.22, and the NMDS graphs. These differences are 

due to a noticeable presence of strictly freshwater species, as well as some predominantly 

marine species as opposed to the more estuarine species typical of St. Pauls Inlet. Due to 

the large rivers in its catchment, there is a larger freshwater drainage into Lake Melville - 

the Churchill River provides 58 km3 yr-1 freshwater inflow or 90% of the input, which is 

substantially higher than the estimated 0.41 km3 yr-1 (13 m3sec-1) coming into St. Pauls 

Inlet from Bottom Brook (Carter & MacGregor 1979; Vilks & Mudie 1983). Many of the 

samples from Lake Melville were taken close to the mouth of the Churchill River, as seen 

in Figure 2.3, this sampling is not a representation of all of Lake Melville. Both cluster 

analysis and the NMDS ordination show two distinct groupings – one being the species 

composition of St. Pauls Inlet and the other being the species found in Lake Melville. 

Four microcrustacean species occurred at both sampling sites; these were the copepods A. 

hudsonica, C. finmarchicus, O. similis, and T. longicornis. Not surprisingly due to the 

location of the sampling, Lake Melville had distinctly freshwater species as well, such as 

the cladocerans Daphnia longiremis, Chydorus sphaericus and Eubosmina longispina. 

Presence of these species might suggest downstream drift of zooplankton via the 

Churchill River, similar to that found by Campbell (2002) in a Newfoundland stream. 

Differences in salinity have been correlated with differences in zooplankton faunal 

compositions in other estuaries and bays (Harvey et al. 2001; Marques et al. 2007). 
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Overall salinity was correlated with the different clusters between Lake Melville and St. 

Pauls Inlet. Another complicating factor related to differences in species composition was 

seasonal differences as Lake Melville samples were available only for October.  

 

In addition, Lake Melville appears to be more strongly stratified, with fresh water at the 

surface lying on deeper marine water. Surface salinities in Lake Melville in October 2007 

ranged from 1 to 6.5 ‰, with deeper water salinities ranging from 9 to 20 ‰ (Table 2.4), 

while St. Pauls Inlet, as seen in Appendix 2, showed a range in surface salinity between 

4.6 ‰ – 25.6 ‰ and a minimum salinity for bottom waters being 13.3 ‰ and maximum 

being 29.9 ‰ . (Ranges of 8 to 25 ‰ for surface, and 25 to 31 ‰ for bottom waters > 24 

m, were observed by Carter and MacGregor in 1977/78). Lake Melville is also quite a bit 

deeper than St. Pauls Inlet (maximum depths 256 m vs. 36 m).  

 

Salinity and temperature are often cited as factors affecting zooplankton species 

composition clustering and spatial patterning within estuaries (e.g. Vieria et al. 2003; 

Menéndez et al. 2012; Sutherland et al. 2013). Based on NMDS analysis, Almeida et al. 

(2012) found two distinct groups of copepod species in a Brazilian estuary – one 

coastal/neritic group associated with salinity ~ 34 ‰, and one coastal/estuarine associated 

with salinity ~ 24 ‰. However, observed gradients in either salinity or temperature were 

seemingly not strong enough within St. Pauls Inlet to result in noticeable clustering in 

zooplankton spatial distribution. A temperature effect may be detectable more with 

ordination than with binary clustering data. 
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A lack of consistent spatial or seasonal patterns in zooplankton community structure has 

been observed in other estuaries (e.g. Mallin 1991; Gómez-Erache et al. 2000; Primo et 

al. 2009; Paul et al. 2016). General factors leading to the absence of any longitudinal or 

marked vertical patterns in zooplankton species composition are i) little freshwater input 

(Primo et al. 2009; Paul et al. 2016) and ii) well-mixed water column due to wind and 

currents (Mallin 1991; Gómez-Erache 2000). The absence of observed longitudinal 

patterns in zooplankton composition in St. Pauls Inlet in either 2009 or 2010 then is not 

overly surprising. Its relatively shallow depth, coupled with the observed high winds and 

a wind-exposed broad basin, likely renders the inlet well-mixed both vertically and 

horizontally. Any longitudinal salinity gradient would appear to occur briefly after the 

spring melt, after which freshwater discharge may be much decreased leading to 

destratification and resulting in a horizontally and vertically homogenous water body in 

terms of temperature and salinity.  
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Chapter 3 

Zooplankton abundance in St. Pauls Inlet: a global comparison 

3.1 Introduction 

Estuarine environments are important transition zones between river and marine 

ecosystems. They can be characterized by high productivity, as well as by environmental 

fluctuations resulting from marine and freshwater influxes bringing nutrients, organic 

matter, and inorganic sediments from adjacent rivers, oceans, and land (Almeida et al. 

2012; Menéndez et al. 2012). The classical definition of an estuary is a semi-enclosed and 

coastal body of water with free communication to the ocean and within which ocean 

water is diluted by freshwater derived from land (Pritchard 1967; Valle-Levinson 2010). 

Temperature, salinity, and nutrient concentrations in estuaries can vary highly both 

spatially and temporally (Knox 1986; Almeida et al. 2012). There is often a longitudinal 

gradient throughout the estuary with zones of differing salinity. Sea water that enters the 

estuarine environment contains calcium, magnesium, sulphur, potassium, and other trace 

elements that can be used by the primary producers. Many estuaries receive sizeable 

amounts of the nutrients phosphorus and nitrogen from freshwater runoff (Correll 1978). 

The variability of the estuarine environment will often influence the composition, 

abundance, and size structure of higher trophic levels such as zooplankton, as well as fish 

and bird species (Methven et al. 2001).   

 

Estuaries are some of the most productive ecosystems on earth with mean primary 

production globally of 1,500 g m-2 yr-1 (dry matter) (Correll 1978). The next most 
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productive ecosystem is cultivated land with 650 g m-2 yr-1 (dry matter) and the other 

aquatic ecosystems come in far below with 125 g m-2 yr-1 (dry matter) for the open ocean, 

360 g m-2 yr-1 (dry matter) for continental shelf waters, and 400 g m-2 yr-1 (dry matter) for 

lakes and streams (Correll 1978). Several processes that can enhance estuarine 

productivity include: i) input of nutrients from inflowing freshwater rivers, as well as 

marine inputs, ii) circulation patterns within estuaries that can lead to the system acting as 

a nutrient trap, iii) tidal and other mixing leading to recirculation of nutrients from 

bottom sediments, and iv) retention of nutrients in associated tidal marshes, mud flats, 

and vascular plants (Knox 1986). Due to such productivity, many estuaries can be 

nurseries or spawning grounds and transition zones for anadromous fish such as salmon 

as well as feeding grounds for other organisms (Day 1981; Beck 2001). However, it 

should not be assumed a priori that an estuary is a highly productive system, as nutrient 

input from river inflows and tidal mixing can vary widely among systems. The estuarine 

St. Pauls Inlet, for example, may be representative of other restricted and largely nutrient-

poor fjords occurring on the west coast of Newfoundland (Carter and MacGregor 1979). 

 

Zooplankton can be abundant in brackish estuarine systems and flourish in locations that 

have high food concentrations (Bradford-Grieve 1999). Zooplankton are an important 

link between the photosynthetic energy fixed by phytoplankton and the higher trophic 

level consumption of fish and crustacean species (Miller 1983). Based on diet, 

zooplankton abundance in estuaries can be related to two main food sources – 

phytoplankton and detritus/bacteria (Knox 1986). Hence, zooplankton productivity 
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reflects both photosynthetic productivity of phytoplankton and heterotrophic activity 

associated with bacterial breakdown of detritus. The abundance or density of zooplankton 

can therefore be assessed as a general correlate of overall biological production in an 

estuary (Avila et al. 2012). As a preliminary step towards assessing the potential 

contribution of St. Pauls Inlet to the wider western Newfoundland and Labrador marine 

ecosystem, I examined zooplankton abundance over 2 open water periods in the inlet, a 

brackish pond/estuary located in insular Newfoundland. The Inlet opens through a narrow 

mouth into St. Pauls Bay and the Gulf of St. Lawrence. The biological productivity of St. 

Pauls Inlet, estimated by zooplankton abundance, is hypothesized to be low compared 

with other temperate estuaries (Hypothesis 4).  This study examines the microcrustacean 

zooplankton assemblage in St. Pauls Inlet with a view to assessing: 

1. How this estuarine system of likely low nutrient levels and nutrient-poor 

watershed compares on a global scale with other temperate estuaries in terms of 

mean zooplankton abundance. 

2. How proportion of dominant taxa, such as copepods, in the inlet compares with 

that seen in estuaries with higher biological productivity 

 

3.2 Methods 

The primary study site, as seen in Figures 2.1 & 2.2, was St. Pauls Inlet, Newfoundland. 

The specific study sites and methods are detailed extensively in Chapter 2. Samples were 

taken roughly biweekly from June to August 2009 and June to August 2010 from 4 sites 

(Figure 2.2). Zooplankton were identified to the lowest taxonomic group possible using a 
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variety of sources and dichotomous keys (Katona 1971; Della Croce 1974; Bradford 

1976; Frost 1989; Busch & Brenning 1992; Barnes 1994; Pollock 1998; Bradford-Grieve 

1999; Gerber 2000; Johnson & Allen 2005; Campbell & Knoechel 2008).   

Zooplankton abundance was determined as population density (inds m-3) with sampled 

volumes determined by either measured flow through flow meters (for horizontal and 

oblique net tows) or extrapolated from depth of vertical tow as follows: 

Volume (m3) = π * (Radius of net2) * Distance towed (m) 

Mean microcrustacean abundance data for each of the two seasons, 2009 and 2010 

separately, were plotted and examined visually on normal probability plots which show 

ordered response values graphed against statistical means. Since the data met the 

assumptions of parametric testing (i.e. normality and even distribution of the residuals), 

two-way analyses of variance (ANOVA) were used to determine if there were differences 

in the mean abundances between months and between sites.  ANOVAs were carried out 

using MINITAB 16. 

 

Zooplankton abundance data from another 23 estuaries were obtained from 9 studies in 

the literature for comparison; see Appendix 3 and Figure 3.1 for locations. Particular 

focus was given to estuaries that were similar to the St. Pauls Inlet study in terms of: 

1. Location – temperate region, both North and South (Figure 3.3)  

2. Zooplankton sampling methodology  

3. Zooplankton numbers recorded as inds-m-3
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Figure 3.1: St. Pauls Inlet and comparison site locations, all in temperate areas (Adapted from Johomaps 2014). Site 1: St. 

Pauls Inlet; Site 2: St. Lawrence Estuary, CA (Winkler et al. 2003); Site 3: Hereford Inlet, NJ, USA (Herman & D'Apolito 

1985); Site 4: Bahia Blanca, AR (Menéndez et al. 2012); Sites 5 & 6:Ems & Westerschelde, Netherlands; Site 7: Gironde 

Estuary, FR (Sautour & Castel 1995); Site 8: Mondego Estuary, PT (Uriarbe & Villate 2005); Site 9: Chikugo Estuary, JP 

(Islam et al 2006); Sites 10 & 11: Goukou, Breede Heuringnes, Great Berg, Oilfants, Klein, Bot, Lourents, & Diep Estuaries, 

ZA (Montoya-Maya & Strydom 2009); Site 12: Yarra, Maribyrnong, Werribee, & Patterson Rivers, AU (Neale & Bayley 

1974)
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Inevitably, the studies did show some differences in terms of mesh size of sampling 

device, depth and seasonality of sampling, all of which can influence zooplankton 

abundance estimates (Kennish 1986; Riccardi 201; Makabe et a. 2012). I attempted to 

minimize these differences by selecting studies that used roughly similar mesh size to 

that used in the St. Pauls Inlet research, and sampled most of the water column. As well, 

seasonalilty was partially addressed by focussing mainly on studies that encompassed an 

entire year or more, or at least focussed on spring and summer as in St. Pauls Inlet. 

Nevertheless, it is important to emphasize that the overall zooplankton abundances 

generated are likely only rough estimates of the biological productivity of the different 

estuaries.  

 

3.3 Results 

3.3.1 St. Pauls Inlet, Newfoundland, Canada 

The predominant species found in St. Pauls Inlet were copepods, totaling 84 % of total 

zooplankton enumerated (all microcrustaceans) (see Figure 3.2), with Acartia hudsonica 

at 57 % of the total abundance and Temora longicornis at 25 %. The next two highest 

abundances were the cladocerans Evadne nordmanni and Podon leuckarti with 8.5 % and 

5.9 % respectively. Oithona similis was present in the estuary with about 1.4 % of the 

total abundance (Table 3.1). The salinity and temperatures for all sites are listed in detail 

in Chapter 2. Mean microcrustacean abundance did not differ significantly either among 

sites (Location) or among the summer months sampled, for either of the two seasons 

(Table 3.2).
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Figure 3.2: Total species abundances (individuals / m3) in St. Pauls Inlet of the most common species found, from all samples. 
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Table 3.1: Estuarine comparison studies & associated zooplankton densities (inds m-3, for 

total zooplankton, microcrustacea only, & copepod only). Values given are overall means 

for each study if available, otherwise ranges. Percent Copepod refers to mean % out of 

total zooplankton. Bracketed numbers are maximum values used in computation of 

means, or maximum values listed by authors. Data not available in all cases; listed as n/a 

Study Site 

Mesh 

Size 

(µm) 

Total 

Zooplankton 

Micro-

crustacean 
Copepod 

% 

Copepod 

-St. Pauls Inlet, NL, CA 

(present study) 

 

63,80, 

& 500 
3,798 3,495 

3190 (max 

482,735) 
84 

-St. Lawrence Estuary, CA 

(Winkler et al. 2003) 

 

63 & 

500 
16,402 15,018 14,853 88 

-Hereford Inlet, NJ, USA 

(Herman & D' Apolito 1985) 

 

203 9,244 8,559 
7923 (max 

26,883) 
89 

-Bahia Blanca, AR (Menéndez  

et al. 2012) 

 

200 1,786 1,538 
1577 (max 

5,923) 
86 

-Ems & Westerschelde, NL 

(Sautour & Castel 1995) 

 

200 n/a n/a 
(max 

38,800) 
n/a 

-Gironde Estuary, FR (Sautour 

& Castel 1995) 

 

200 n/a n/a 
(max 

19,400) 
n/a 

-Mondego Estuary, PT (Uriarte 

& Villate 2005) 

 

63 & 

125 
22,426 17,225 17,210 76 

-Chikugo Estuary, JP (Islam et 

al 2006) 
100 n/a n/a 

range 

7,900-

32,600 

80+ 

-Goukou, Breede, Heuringnes, 

Great Berg, Oilfants, Klein, 

Bot, Lourents, & Diep 

Estuaries, ZA (Montoya-Maya 

& Strydom 2009) 

200 6,872 6049 n/a 87 

-Yarra, Maribyrnong, 

Werribee, & Patterson Rivers, 

AU (Neale & Bayley 1974) 

158 16,000 n/a 
5980 (max 

12,960) 
81 
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Table 3.2. Two-Way ANOVA Results for Microcrustacean Abundance 2009 & 2010 

Year Mean Abundance (inds m-3 )   p 

2009 
By Month (June 5170.9, July 5250.6, August 6553.0) F2,5 = 0.31 0.75 

By Location (CCP 2005.7, WI 9465.3, BTF 4453.1, BB 7477.4) F3,5 = 5.47 0.06 

2010 
By Month  (June 1375.3, July 4484.8, August 27190.8) F2,6 = 2.36 0.18 

By Location (CCP 4819.1, WI 3519.0, BTF 7389.6, BB 29340.2) F3,6 = 1.21 0.38 

 

3.3.2 Comparison Sites 

In the St. Lawrence Estuary 88 % of total zooplankton species found were copepods with 

Ectinosoma curticorne (now Halectinosoma curticorne) and Eurytemora affinis being the 

most abundant (Table 3.1). Samples from the Hereford Inlet consisted of 89 % copepods 

with four species (Oithona similis, Temora longicornis, Acartia tonsa, and 

Pseudocalanus minutus) making up the largest portions of the 89 %. In the Bahia Blanca 

Estuary there were two species Acartia tonsa and Eurytemora americana made up       

40-97% of the mesozooplankton. The zooplankton in the Bahia Blanca Estuary was 

comprised of 86 % copepods. Copepods made up 76% of the samples from the Mondego 

Estuary in Portugal (Table 3.1).  

 

The most abundant copepods found in the Mondego Estuary system were Oithona nana, 

Acartia tonsa, Acartia clausi, Euterpina acutifrons, Oithona similis, Temora longicornis, 

Clausocalanus arcuicornis, Paracalanus parusus, and Acartia bilfosia var. inermis. 

Islam et al. (2006) listed 6 copepod species that made up 80+ % of all the copepods 

collected from the Chikugo Estuary in Japan. Two of these copepods were identified by 

the authors as true estuarine (Sinocalanus sinensis and Pseudodiaptomus inopinus) while 
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the other four (Acartia omori, Oithona davisae, Paracalanus parvus, and 

Pseudodiaptomus marinus) were considered more marine species. In the South African 

estuaries of Goukou, Breede, Heuringnes, Great Berg, Olifants, Klein, Bot, Lourents, and 

Diep copepods comprised 87 % of the zooplankton sampled. The two dominant species 

were Pseudodiaptomus hessei (51 %) and Acartia africana (12 %). Finally in the Yarra, 

Maribyrnong, Werribee, and Patterson Rivers in Australia 13 species of copepods made 

up 81 % of the total zooplankton densities.  

 

The abundance data for St. Pauls Inlet shows that the plankton concentration is generally 

lower than most of the other studies examined. Bahia Blanca showed a lower abundance 

during their winter sampling as well as during the high and low tides.  During their 

summer months they showed much higher numbers that coincided with peak current 

velocities in the inner zone of the estuary (Menendez et al 2012). The mean abundance of 

3,495 adult microcrustacean individuals m-3 was lower than most of the other estuarine 

systems (Table 3.2) and was comprised of 84 % copepods which is in the same 

percentage range for all the studies (between 75-90 %). The comparison studies were 

predominantly comprised of mostly marine species with a few truly estuarine or an 

occasional freshwater species. Copepods were the dominant component of the 

zooplankton in all sites except the Patterson Estuary which experienced severe flooding 

during sampling and is prone to flooding, and thus had larger numbers of freshwater 

cladocerans (Neale & Bayley 1974).    
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3.4 Discussion 

Mean values of zooplankton abundance in estuaries can be quite wide-ranging, as a 

reflection of often large environmental fluctuations. For example, Mallin (1991) 

compared 6 estuaries in the southeast US and found total zooplankton densities to vary 

from 4,000 to 34,530 inds m-3. Similarly, Turner (1982) observed a range of 1,320–

52,500 inds m-3 for 6 estuaries, over 10 studies, in the northeast United States. A high 

relative abundance of copepods is typical of most estuaries, including St. Pauls Inlet. 

Most of the studies used for this comparison had similar sampling techniques in that they 

did a combination of horizontal, vertical, and oblique tows as were done in St. Pauls 

Inlet. One of the primary differences between the comparison and St. Pauls Inlet studies 

was in the mesh size of the plankton nets. Other than the sampling done by Winkler et al.  

(2003) and the present one, the mesh sizes ranged from 100 - 200 µm. Turner (1982) 

noted that a mesh that is too coarse would not sample many meroplankters or immature 

holoplankters. Most of the comparison studies used only a single mesh size and would 

have underestimated the numbers of small adults and the developmental forms such as 

nauplii (Herman & D'Apolito 1985; Riccardi 2010; Makabe et al. 2012). According to 

Gallienne & Robins (2001), larger sizes of mesh (200 µm) are likely only to catch 7 % of 

the total zooplankters that are between 200 µm and 20 µm in dimension; Riccardi (2010) 

found that the percentage was closer to 11 % of the total; Makabe et al. (2012) found that 

a 330 µm net produced a collection efficiency of 2.0 - 5.6%. Gallienne & Robbins (2001) 

also suggested that an 80 µm net will collect 90 % of total zooplankton abundance and 

that finer mesh nets may result in reduced estimates of larger taxa. The present study in 
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St. Pauls used both a coarse (500 µm) and fine (63 µm) mesh oblique tow nets, as well as 

80 µm vertical tow nets. Even though the finer mesh size was used in this study, I had 

similar or lower abundances than the comparative studies that used only the coarser mesh 

size. It is acceptable to postulate, that if my study had utilized just the coarser mesh, the 

abundances would have been even lower due to the underestimation of small organisms 

such as nauplii. 

  

Many of the study sites were different from St. Pauls Inlet in that the sites studied were 

often heavily influenced by freshwater or tides whereas St. Pauls Inlet has little influence 

of tidal mixing as Carter and MacGregor (1979) indicated and as was shown by my 

salinity readings. The St. Lawrence Estuary has a great tidal influence (Winkler et al. 

2003), whereas the Chikugo Estuary has a very large catchment from numerous rivers 

(Islam et al. 2006). The Hereford Inlet has no freshwater input and is very shallow which 

results in a high salinity from the incoming tides. It also has no endemic community; the 

source of the zooplankton is the coastal waters (Herman & D’Apolito 1985). 

 

Tidal mixing in estuaries leads to recirculation of bottom sediments and is one of the 

dominant variables that determine salinity distribution. However, when there is little to 

no tidal forcing, such as in St. Pauls Inlet, there is little occurrence of deep water 

exchange with the coastal ocean (Day 1981; Kennish 1986). The restricted entrance to the 

inlet may allow sea water to enter only during high tide (Carter & MacGregor 1979). 

Additionally, the sea water entering from the Gulf of St. Lawrence and Esquiman 
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Channel area off the west coast of Newfoundland also has low primary production and 

nutrient concentrations compared to other regions of the Gulf (Carter & MacGregor 

1979; Dunbar 1972; Savenkoff et al. 2001). Measurements of nutrients in surface waters 

of Bonne Bay, a nearby marine body of water that is deeper and more stratified than St. 

Pauls Inlet, indicated low concentrations of nitrate, ammonia and phosphate (see Table 

3.3). This suggests similarly low nutrient input to St. Pauls Inlet from marine sources.  

 

Table 3.3: Nutrient Concentrations for St. Pauls River and Gros Morne National Park 

surface fresh waters and for marine Bonne Bay surface waters. (adapted from O'Sullivan 

1976; Tables 2 & 3 Carter & McGregor, 1979, maxima for GMNP and Bonne Bay) 

Location 

Nutrient Concentrations 

Nitrate  

(ppm N) 

Ammonia  

(ppm N) 

Phosphate  

(ppm P) 

St. Paul's River 0.07 0.07 0.01 
    

Gros Morne Park  

 

Bonne Bay 

0.3 

 

0.32 

0.1 

 

0.02 

0.04 

 

0.04 

 

The steep portions of St. Pauls Inlet are mostly surrounded by metamorphic rocks, gneiss, 

and quartzite, while the broader gently sloping terrain around the inlet is surrounded by 

Paleozoic limestone and siltstones (Daley 1992). Metamorphic rock are resistant to 

weathering and thus do not contribute a large sediment load into the inlet via the rivers 

(O'Sullivan 1976; Carter & MacGregor 1979). Since St. Pauls inlet does not have 

significant sedimentary deposit from rivers or the nearshore ocean therefore it would be 

considered a neutral filled basin and thus is nutrient poor (Thurman & Trujillo 2010). The 

rivers providing the freshwater influx also have very low levels of nutrients (O'Sullivan 

1976), see Table 3.3. Additionally, there is low tidal input (Carter & MacGregor 1979). 
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Western Brook Pond, a lake close to St. Pauls Inlet, has been classified as ultra-

oligotrophic with low levels of phosphorus (1.7 – 2.1 µg l-1; Kerekes 1978), and low 

phytoplankton chlorophyll a (0.43 µg l-1; Wells 2001). Western Brook Pond is a fjordal 

system similar to St. Pauls Inlet; however, it is no longer connected to the sea and hence 

is entirely fresh water. Mean copepod abundances in Western Brook Pond were recorded 

as 7,983 inds m-3(more than twice the abundance recorded in St. Pauls Inlet 2009-2010), 

with microcrustacean abundance of 8,650 inds m-3 (Wells 2001). Both Western Brook 

Pond and St. Pauls Inlet are similar in having relatively small drainage area per water 

body size, with steep sides typical of fjords. It can therefore be surmised that input of 

nutrients from fresh water is similarly limiting in St. Pauls Inlet.  

 

Zooplankton abundance n St. Pauls Inlet is demonstrably lower than many other 

estuaries. The observation of the low zooplankton abundances in light of the limiting 

factors listed in the studies raises the question of whether St. Pauls Inlet has sufficient 

primary and secondary production to support higher trophic levels. Many juvenile and 

larval fish use locations such as the eel grass beds located just outside the inlet in St. 

Pauls Bay as nurseries because these locations typically have high levels of primary and 

secondary production (Beck 2001). As discussed in Chapter 2 although the inlet was 

sampled for larval fish there were none in the samples. The vertical and horizontal tows 

performed during the 2009 and 2010 sampling period may have not been adequate to 

accurately sample for larval fish although similar sampling techniques were used in 

studies of the St. Lawrence Estuary (Winkler 2009). Many studies, such as Campfield & 
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Houde (2011) performed oblique tows for 5-20 minutes with nets that had a much larger 

opening; others used beam or otter trawls for similar time intervals (Bakus 1951; Krygier 

1986). Thus the mesh sizes used in this study may not have been able to sample 

adequately for larval fish. Focusing on adults, Melanson and Campbell (2012) were able 

to identify 15 species of nearshore fish (representing 9 families) within St. Pauls Inlet 

using beach seines, minnow traps and gillnets. Six of the 15 species accounted for 98 % 

of the total fish sampled: 60 % Pungitius pungitius (Ninespine stickleback), 18 % 

Gasterosteus aculeatus (Threespine stickleback), 7 % Gasterosteus wheatlandi 

(Blackspotted stickleback), 7 % Apeltes quadracus (Fourspine stickleback), 4 % 

Tautogolabrus adspersus (Cunner), and 2 % Myoxocephalus octodecimspinosus 

(Longhorn sculpin). In order to estimate higher trophic level productivity then, future 

studies should be done to estimate juvenile and larval fish abundance within the inlet as 

well as to further sample just outside the inlet in St. Pauls Bay and salt marshes.  

 

In conclusion, changes in zooplankton species composition over time were observed in 

St. Pauls Inlet (Chapter 2) meaning that null hypothesis 1 was not supported.  However 

null hypothesis 2 (did species composition throughout the inlet show lack of variation 

with longitudinal salinity) was supported (Chapter 2).  Lastly, in Chapter 3, the data did 

indicate that zooplankton abundance in St. Pauls Inlet was lower than in other estuarine 

systems worldwide, thus disproving hypothesis 3.  It is interesting then that the temporal 

variability over decades seems more important than the spatial variability across 

kilometers in this estuarine system.  
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Appendix 1: Sample Dates, Site Locations, and Tows for all samples in St. Pauls Inlet 2009 and 2010. BB – Bottom Brook, 

BTF – Between the Falls, WI – Western Island, CCP – Charles Cove Pt. V80 - Vertical Tow 80um,  

H63 - Horizontal/Oblique Tow 63 µm, H500 – Horizontal/Oblique Tow 500 µm      111 

Sample Date Site Location 

16/06/2009 BTF V80 

16/06/2009 BTF V80 

16/06/2009 CCP V80 

16/06/2009 CCP V80 

16/06/2009 WI V80 

15/07/2009 CCP H500 

17/07/2009 BTF V80 

17/07/2009 BTF V80 

17/07/2009 CCP V80 

17/07/2009 CCP V80 

17/07/2009 WI V80 

17/07/2009 WI V80 

20/07/2009 BTF V80 

20/07/2009 BTF V80 

20/07/2009 CCP H63 

22/07/2009 BTF V80 

22/07/2009 BTF V80 

22/07/2009 BB H63 

22/07/2009 CCP V80 

22/07/2009 CCP V80 

22/07/2009 WI H63 

22/07/2009 WI V80 

22/07/2009 WI V80 

30/07/2009 BTF V80 

 

Sample Date Site Location 

30/07/2009 BTF H63 & H500 

30/07/2009 BB H63 

30/07/2009 BB V80 

30/07/2009 CCP V80 

30/07/2009 CCP V80 

30/07/2009 WI H63 

30/07/2009 WI V80 

30/07/2009 WI V80 

07/08/2009 BTF V80 

07/08/2009 BTF H63 

07/08/2009 CCP H63 

07/08/2009 CCP V80 

07/08/2009 CCP V80 

07/08/2009 WI H63 

07/08/2009 WI V80 

07/08/2009 WI V80 

11/08/2009 BTF V80 

11/08/2009 BTF V80 

11/08/2009 BTF H63 

11/08/2009 BB H63 

11/08/2009 BB V80 

11/08/2009 BB V80 

11/08/2009 CCP H63 

11/08/2009 CCP V80 

 

Sample Date Site Location 

11/08/2009 CCP V80 

11/08/2009 WI H63 

11/08/2009 WI V80 

17/08/2009 BTF V80 

19/08/2009 BTF V80 

19/08/2009 BTF V80 

19/08/2009 BTF H63 

19/08/2009 BB H63 

19/08/2009 BB V80 

19/08/2009 BB V80 

19/08/2009 CCP H63 

19/08/2009 CCP V80 

19/08/2009 CCP V80 

19/08/2009 WI H63 

19/08/2009 WI V80 

19/08/2009 WI V80 

26/08/2009 BTF V80 

26/08/2009 BTF V80 

26/08/2009 BB V80 

26/08/2009 BB V80 

26/08/2009 CCP V80 

26/08/2009 CCP V80 

26/08/2009 WI V80 

26/08/2009 WI V80 
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Sample Date Site Location 

02/06/2010 BTF H63 

02/06/2010 BTF H500 

02/06/2010 BTF V80 

02/06/2010 BTF V80 

02/06/2010 BB H63 

02/06/2010 BB H500 

02/06/2010 BB V80 

02/06/2010 BB V80 

02/06/2010 CCP H63 

02/06/2010 CCP H500 

02/06/2010 CCP V80 

02/06/2010 CCP V80 

02/06/2010 WI H63 

02/06/2010 WI H500 

02/06/2010 WI V80 

02/06/2010 WI V80 

09/06/2010 BTF H63 

09/06/2010 BTF V80 

09/06/2010 BTF V80 

09/06/2010 BB H63 

09/06/2010 BB H500 

09/06/2010 BB V80 

09/06/2010 BB V80 

09/06/2010 CCP H63 

09/06/2010 CCP V80 

09/06/2010 CCP V80 

Sample Date Site Location 

09/06/2010 WI H63 

09/06/2010 WI V80 

09/06/2010 WI V80 

17/06/2010 BTF H63 

17/06/2010 BTF H500 

17/06/2010 BTF V80 

17/06/2010 BTF V80 

17/06/2010 BB H63 

17/06/2010 BB H500 

17/06/2010 BB V80 

17/06/2010 CCP H63 

17/06/2010 CCP H500 

17/06/2010 CCP V80 

17/06/2010 CCP V80 

17/06/2010 WI H63 

17/06/2010 WI H500 

17/06/2010 WI V80 

17/06/2010 WI V80 

22/06/2010 BB H63 

22/06/2010 BB H500 

22/06/2010 BB V80 

22/06/2010 BB V80 

22/06/2010 CCP H63 

22/06/2010 CCP H500 

22/06/2010 CCP V80 

22/06/2010 CCP V80 

Sample Date Site Location 

22/06/2010 WI H63 

22/06/2010 WI H500 

22/06/2010 WI V80 

22/06/2010 WI V80 

01/07/2010 BTF H63 

01/07/2010 BTF H500 

01/07/2010 BTF V80 

01/07/2010 BTF V80 

01/07/2010 BB H63 

01/07/2010 BB H500 

01/07/2010 BB V80 

01/07/2010 BB V80 

01/07/2010 CCP H63 

01/07/2010 CCP H500 

01/07/2010 CCP V80 

01/07/2010 CCP V80 

01/07/2010 WI H63 

01/07/2010 WI H500 

01/07/2010 WI V80 

01/07/2010 WI V80 

07/07/2010 BTF H63 

07/07/2010 BTF H500 

07/07/2010 BTF V80 

07/07/2010 BTF V80 

07/07/2010 BB H63 

07/07/2010 BB H500 
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Sample Date Site Location 

07/07/2010 BB V80 

07/07/2010 BB V80 

07/07/2010 CCP H500 

07/07/2010 CCP V80 

07/07/2010 CCP V80 

07/07/2010 WI H63 

07/07/2010 WI H500 

07/07/2010 WI V80 

07/07/2010 WI V80 

12/07/2010 BTF H63 

12/07/2010 BTF H500 

12/07/2010 BTF V80 

12/07/2010 BTF V80 

12/07/2010 BB H63 

12/07/2010 BB H500 

12/07/2010 BB V80 

12/07/2010 BB V80 

12/07/2010 CCP H63 

12/07/2010 CCP H500 

12/07/2010 CCP V80 

12/07/2010 CCP V80 

12/07/2010 WI H63 

12/07/2010 WI H500 

12/07/2010 WI V80 

12/07/2010 WI V80 

21/07/2010 BTF H63 

Sample Date Site Location 

21/07/2010 BTF H500 

21/07/2010 BTF V80 

21/07/2010 BTF V80 

21/07/2010 BB H63 

21/07/2010 BB H500 

21/07/2010 BB V80 

21/07/2010 BB V80 

21/07/2010 CCP H63 

21/07/2010 CCP V80 

21/07/2010 CCP V80 

21/07/2010 WI H63 

21/07/2010 WI V80 

21/07/2010 WI V80 

21/07/2010 BTF H63 

30/07/2010 BTF H500 

30/07/2010 BTF V80 

30/07/2010 BTF V80 

30/07/2010 BB H63 

30/07/2010 BB H500 

30/07/2010 BB V80 

30/07/2010 BB V80 

30/07/2010 CCP H63 

30/07/2010 CCP H500 

30/07/2010 CCP V80 

30/07/2010 CCP V80 

30/07/2010 WI H63 

Sample Date Site Location 

30/07/2010 WI H500 

30/07/2010 WI V80 

30/07/2010 WI V80 

30/07/2010 BTF H63 

02/08/2010 BTF H500 

02/08/2010 BTF V80 

02/08/2010 BTF V80 

02/08/2010 BB H63 

02/08/2010 BB H500 

02/08/2010 BB V80 

02/08/2010 BB V80 

02/08/2010 CCP H63 

02/08/2010 CCP H500 

02/08/2010 CCP V80 

02/08/2010 CCP V80 

02/08/2010 WI H63 

02/08/2010 WI H500 

02/08/2010 WI V80 

02/08/2010 WI V80 

02/08/2010 BTF H63 

11/08/2010 BTF H500 

11/08/2010 BTF V80 

11/08/2010 BTF V80 

11/08/2010 BB H63 

11/08/2010 BB H500 

11/08/2010 BB V80 
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Sample Date Site Location 

11/08/2010 BB V80 

11/08/2010 CCP H63 

11/08/2010 CCP H500 

11/08/2010 CCP V80 

11/08/2010 CCP V80 

11/08/2010 WI H63 

11/08/2010 WI H500 

11/08/2010 WI V80 

11/08/2010 WI V80 
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Appendix 2: 2009 & 2010 Combined Salinity & Temp. data for all four sites in SPI.   

Variable Location Name Mean Minimum Maximum 

Overall Salinity (ppt) Bottom Brook 21.62 4.60 25.7 

 Between the Falls 22.69 8.40 28.80 

 Western Island 21.07 14.70 24.50 

 Charles Cove Point 24.14 16.70 29.90 

Surface Salinity (ppt) Bottom Brook 15.42 4.60 23.80 

 Between the Falls 18.76 8.40 24.30 

 Western Island 20.68 14.70 23.70 

 Charles Cove Point 20.97 16.70 24.40 

Bottom Salinity (ppt) Bottom Brook 22.74 13.30 25.4 

 Between the Falls 23.77 15.50 28.00 

 Western Island 21.33 16.30 24.40 

 Charles Cove Point 24.57 18.20 29.90 

Overall Temp. (° C) Bottom Brook 15.80 6.40 22.60 

 Between the Falls 13.99 4.30 21.70 

 Western Island 16.43 9.90 21.80 

 Charles Cove Point 16.16 3.80 21.10 

Surface Temp. (° C) Bottom Brook 16.82 9.7 22.60 

 Between the Falls 13.99 10.40 21.70 

 Western Island 16.58 9.90 21.80 

 Charles Cove Point 16.28 9.60 19.90 

Bottom Temp. (° C) Bottom Brook 12.68 6.60 17.70 

 Between the Falls 10.30 4.30 20.40 

 Western Island 15.93 10.00 20.70 

 Charles Cove Point 14.88 3.80 19.70 
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Appendix 3: Estuaries used as comparisons for zooplankton abundance: an outline 

of sampling methods and salinity ranges. 

 
Location Zooplankton Sampling Salinity range 

North & South America 

St. Pauls Inlet, NL 

(present study)  

 

 

St. Lawrence Estuary 

(Winkler et al. 2003) 

 

 

Hereford Inlet, NJ, USA 

(Herman & D'Apolito 

1985) 

 

Bahia Blanca, Argentina 

(Menéndez et al. 2012) 

 

Europe & Asia 

Ems &Westerschelde, 

Netherlands  

(Sautour & Castel 1995) 

 

Gironde estuary, France 

(Sautour & Castel 1995) 

 

 

Mondego estuary, 

Portugal  

(Uriarte & Villate 2005) 

 

Chikugo estuary, Japan 

(Islam et al. 2006) 

 

Africa & Oceania 

Goukou, Breede, Bot, 

Diep, Heuringnes, Great 

Berg, Olifants, Klein, 

Laurens, South Africa 

(Montoya-Maya & 

Strydom 2009) 

 

Yarra, Maribyrnong, 

Werribee, Patterson 

River, Australia 

(Neale & Bayley 1974) 

Vertical and horizontal tows 

Tow net (v) 20 cm diameter, 80 µm mesh 

Tow net (h) 30 cm diameter, 63 µm mesh 

June – August 2009, June – August 2010 

 

Horizontal tows, surface, mid-depth, 

bottom 

Trawl, 0.03 m2 opening, 63 & 500 µm 

mesh  

June 2003 and June 2004 

 

Horizontal tows, surface 

Tow net 50 cm diameter, 203 µm mesh 

May 1973-April 1974 

 

Horizontal pumps, surface and bottom 

Tow nets, 200 µm mesh 

December 2004 – April 2006 

 

Oblique tows 

Tow net 50 cm diameter, 200 µm mesh 

March – June 1992 

 

Oblique tows 

Tow net 50 cm diameter, 200 µm mesh 

March – June 1992 

 

Horizontal tows 

2 tow nets, 63 and 125 µm mesh 

July 1999 – June 2000 

 

Oblique tows 

Tow net 45 cm diameter, 100 µm mesh 

April 2004 – March 2005 

 

Horizontal surface tows 

Tow net 57 cm diameter, 200 µm mesh 

June 2003 – March 2004 

 

 

 

Oblique tows 

Tow net 12.89 cm diameter, 158 µm mesh 

February-July 1971 

 

 

4-30 ppt 

 

 

 

0 – 6 PSU 

 

 

28 – 31 ppt 

 

 

 

28 – 37 ppt 

 

 

 

0-30 PSU 

 

 

 

0-30 PSU 

 

 

 

9.5 – 32 ppt 

 

 

 

 

1- 31 ppt 

 

 

 

0-36 PSU 

 

 

 

 

 

6-30 ppt 
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Appendix 4:  2-D NMDS Matrices 

 

Figure A-1: 2-D NMDS for SPI 2009 Season.  Axis I vs. Axis II and Axis I vs. Axis III. 

Codes: CCP = Charles Cove Point, WI = Western Island, BTF = Between the Falls, BB = 

Bottom Brook; 06 = June, 07 = July, 08 = August) 
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Figure A-2: 2-D NMDS Plot for SPI 2010 Season. Axis I vs. Axis II and Axis I vs. Axis 

III. (Codes: CCP = Charles Cove Point, WI = Western Island, BTF = Between the Falls, 

BB = Bottom Brook; 06 = June, 07 = July, 08 = August) 
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Figure A-3: 2-D NMDS for SPI 2009/2010 Comparison sites to sites from 1979 SPI. 

Axis I vs. Axis II and Axis I vs. Axis III. (Codes: CCP = Charles Cove Point, WI = 

Western Island, BTF = Between the Falls, BB = Bottom Brook, ABB = 1979 Bottom 

Brook, BMI = 1979 Between the Falls, CCI = 1979 Central Inlet, DEB= 1979 Eastern 

Brook, ECCP = 1979 Charles Cove Point) Circles show the SPI 2009/2010 groupings. 
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Figure A-4: 2-D NMDS SPI Comparison to Lake Melville. Comparison is between the 

sites in SPI from 2009/10 and LM from 2007. (Codes: CCP = Charles Cove Point, WI = 

Western Island, BTF = Between the Falls, BB = Bottom Brook; 09 = 2009, 10 = 2010); 

Lake Melville sampling sites designated LM. Circles are showing SPI sampling sites for 

2009 and 2010.  


