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ABSTRACT 

 

Corrosion under insulation (CUI) is a serious problem in many industries both on 

and offshore. When operations are conducted in marine environments the 

opportunity for CUI is increased due to the harsh environment created by salt 

water.  CUI can damage equipment and piping systems leading to loss of product 

containment which puts personnel and production in jeopardy.  This research 

determines the current understanding of CUI, methods available for determining 

corrosion rates and develops a simplified electrochemical noise method to 

determine and predict CUI through laboratory and field operations.   

From the high level CUI literature review two areas for further investigation were 

determined.  Pitting corrosion was identified as a significant area of study and as 

it is as a key mechanism of pipe failure in offshore operations.  Electrochemical 

noise was found to be a promising technique for monitoring CUI due to its ability 

to identify corrosion mechanism as well as corrosion rate. 

Two objectives for research were identified: 

1. To generate corrosion under insulation data  

2. To develop a continuous monitoring technique for assets under insulation  

To satisfy the objective of CUI data generation a comprehensive experimental plan 

was developed.  This plan develops a field test procedure to study corrosion under 

insulation (CUI) in marine environments that ensures that data collected is 
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representative of CUI developed in the offshore industry.  The experimental design 

was completed and the facilities and equipment installed with monitoring and 

analysis of the ongoing experiment will be completed over the next three years. 

This research developed, verified and applied a simplified EPN method to monitor 

corrosion.  This method can be used to recognise different corrosion mechanisms 

(localized/uniform) and to estimate corrosion rates.  A relationship between 

isolated electrode EPN, mass loss and corrosion rate was established. The 

simplified method aided in determining that there is increased corrosion activity 

under insulation due to retained moisture at the pipe surface. 

The completion of this research expanded the understanding of how and when 

CUI occurs, developed new and developed a new simplified electrochemical noise 

method for online monitoring of CUI.  These successes will ultimately improve 

offshore operations; both improving safety and production.   
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1.0 Introduction and Overview 

Corrosion under insulation (CUI) is a serious problem in many industries both 

inland and offshore (Frudge & Bishop , 2008; Simpson, 2007; Fitzgerald et al, 

2003).   CUI occurs in the space between the metallic component surfaces the 

insulation when moisture penetrates the system to reach the surface.  When 

operations are conducted in marine environments the opportunity for CUI is 

increased due to the harsh environment created by high moisture and chlorides in 

salt water.  CUI can damage equipment leading to loss of product containment 

which puts personnel and production in jeopardy.   

Insulation is important to offshore operations and is used to regulate operational 

temperatures and to protect personnel from injury from extreme temperature 

components (Delahunt, 2003). Insulation can vary in size and composition and 

each couple (component and insulation) are designed for the specific application.  

Insulated components such as pipes are designed to reduce heat losses and to 

protect asset surfaces from moisture however this is not always possible in all 

operations. The application of insulation can cause operational issues when 

corrosion occurs under the insulation.   There are many reasons for incomplete 

protection of pipes; Insulation can be installed incorrectly, difficult geometry can 

make complete protection impossible, and use and wear of insulation can cause 

inconsistent protection.  All these issues and more can allow for moisture to reach 

surfaces creating opportunity for CUI.  Figure 1 shows the annular space that 
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insulation can create around the pipe surface that can entrap moisture and create 

corrosion conditions.  

 

Figure 1: Pipe under insulation demonstrating annular space 

If moisture is able to reach the surface in marine environments, chlorides can lead 

to severe corrosion of steel components.  CUI can take many forms in marine 

environments including localized corrosion, uniform corrosion, and stress 

corrosion cracking.  Uniform corrosion and localized corrosion are the likely 

corrosion mechanisms of steel piping under insulation and pitting corrosion is 

thought to be the most common type of localized corrosion (Roberge P. R., 2008) 

and along with uniform corrosion is included in this research. 

CUI is more difficult to detect than other forms of corrosion because insulation 

prevents direct observation of the surface.  This makes identifying and controlling 

CUI difficult.  Most operations employ non-destructive evaluation techniques in 

their maintenance plans to seek out areas of CUI.  As there are significant portions 

of operations under insulation, evaluation of all systems is not always possible due 

to time and economic considerations.  Due to these constrains, it is possible for 

corrosion to continue without being identified until loss of containment is reached.   



3 
 

Understanding CUI is important to improving offshore operations. To do this a 

thorough review of current practises in combating CUI was completed that lead to 

a focus on pitting corrosion.  This analysis led to a comprehensive experimental 

plan to systematically evaluate CUI in both laboratory and field experiments.  This 

experimental design highlighted gaps in monitoring techniques for CUI.  A 

simplified method for monitoring CUI using electrochemical potential noise was 

developed and verified through laboratory testing.  This method was incorporated 

into field testing and will lead to a real time monitoring method for CUI. 

1.1 CUI Literature review 

A literature review of CUI was conducted to understand the current state of 

knowledge of the phenomenon.  A general review of CUI was followed by an in-

depth review of pitting corrosion.   A review of Electrochemical noise techniques 

as potential technique for corrosion monitoring was also undertaken 

1.1.1 Corrosion under insulation 

Current understanding of CUI is generally limited to standards, recommended 

practises and guidelines that deal with how to combat and predict CUI.  

These standards include: 

 API 579-1/ASME FFS-1(2007). Fitness-for-service.   

 API RP 580 (2009), API recommended practice 580: Risk-based inspection. 
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 API RP 581 (2008), API recommended practice 581: Risk-based inspection 

technology. 

 ASTM Standard G189, A. (2007), Laboratory Simulation of Corrosion Under 

Insulation. 

 DNV-RP-G101(2002), Recommended practice, Risk based inspection of 

offshore topsides static mechanical equipment. 

 NACE SP0198 (2010), Control of Corrosion Under Thermal Insulation and 

Fireproofing Materials. 

 Winnik, S (Ed.)(2008). Corrosion-Under-Insulation (CUI) Guidelines 

Standard inspection techniques and recommended practices that can be applied 

to CUI are detailed in industry standards. These standards detail how to use non-

destructive methods to inspect for corrosion and NACE standard practice “Control 

of Corrosion Under Thermal Insulation and Fireproofing Materials” describes 

inspection and maintenance planning to combat CUI (NACE SP0198, 2010).  Risk 

based inspections (RBI) are also commonly used in industry to develop inspection 

plans to detect CUI (DNV RP-G101, 2002) (API RP 580, 2009), (API RP 581, 

2008). Another resource for combating CUI is the European Federation of 

Corrosion Publications number 55 edited by S. Winnik, “Corrosion-Under-

Insulation (CUI) Guidelines” (Winnik 2008).   

An experimental design to study CUI in harsh marine environments is the most 

practical way forward to recognise and study the unknowns.  The study includes a 
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thorough literature review of current CUI understanding and found no published 

works that evaluate CUI in harsh marine conditions outside of a laboratory. It was 

found that rates used to evaluate CUI in marine environments are based on short 

term laboratory testing (Klassen & Roberge, 2003, Engelhardt, Urquidi-Macdonald, 

& Macdonald, 1997, Engelhardt & Macdonald, 2004). It was also found that the 

conventional power model (C(t)=A tB) for corrosion loss (Roberge P. R., 2008) does 

not account for corrosion mechanism changes over time and should not be used 

for long term corrosion evaluation. Melcher (2003, 2004, 2008) demonstrated a 

phenomenological model that allows for changes in corrosion rate due to changes 

in mechanism.  His model is applicable to pitting corrosion in marine immersion 

and may be applicable to CUI investigation.    

Review of current CUI understanding is also included.  This review found that 

beyond standards there is limited work completed to specifically study CUI or 

methods to predict future corrosion behaviour of assets under insulation.  This 

review included current asset integrity, fitness for service and risk based inspection 

methods that included corrosion with little or no mention of CUI.   

1.1.1.1 CUI Literature Review Outcome 

The review of CUI found that there is no commonly used method to assess CUI 

and limited experimental data available for analysis.  There is no widely accepted 

method for determining long-term corrosion rates. Methods to assess corrosion 

without insulation were reviewed for their applicability to CUI study.   
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Review of asset integrity and fitness for service found that while there are methods 

available there is limited information available for the corrosion rates used in these 

methods.  These methods intend for independent corrosion rate development by 

users.    

 

There are well established procedures for risk based inspection however there is 

limited information on probability modeling for corrosion and less specifically for 

corrosion under insulation.   

 

From the high level CUI literature review pitting corrosion was identified as a 

significant area of study and as it is as a key mechanism of asset failure in offshore 

operations.   

1.1.2 Pitting Corrosion 

Pitting corrosion was found to be the most common and most insidious form of 

corrosion likely under insulation.  When reviewing the current understanding of 

pitting corrosion in Marine Environments six (6) categories were reviewed.  These 

categories were: 

1. Identification of pitting 

2. Experimental Methods 

3. Mechanism of pitting 

4. Modeling of pitting corrosion rates 
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5. Remaining life assessment model  

6. Risked Based Inspection  

Each category was reviewed and analysed for depth and breadth of knowledge 

available.  The review found that the largest knowledge gap in understanding 

Pitting corrosion is the mechanism of pitting corrosion (category 3) and the 

prediction of pitting corrosion rates (category 4). 

1.1.2.1 Pitting Corrosion Literature Review Outcome 

There are models available that may predict the failure rate of insulated assets 

once a precise model of CUI corrosion rate is known (DNV RP-G101, 2002; API 

579, 2007; BS 7910; FITNET, 2006; Hodges, et al., 2010; Thodi, Khan, & 

Haddara, 2009; Race, Dawson, Stanley, & Kariyawasam, 2007; Akmar Mokh & 

Ismail, 2011). 

 There are models of corrosion rate available for many environments (Svintradze 

& Pidaparti, 2010; Engelhardt, Urquidi-MacDonald, & MacDonald, A Simplified 

Method for Estimating Corrosion, 1997; Valor, Caleyo, Alfonso, Rivas, & Hallen, 

2007; Provan & Rodrı´guez III, 1989; Melchers & Jeffrey, 2008; Melchers, 2003) 

such as buried pipelines (Caleyo, Velázquez, Valor, & Hallen, 2009).  These 

models indicate the importance of different variables that play a critical role in 

CUI modeling and thus can be used in failure model development.   

The review found that there is no standardised method to determine pitting rates, 

that there is limited agreement between long term pitting behaviour and current 
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accelerated laboratory testing, and that corrosion rate modeling is needed to 

improve fitness for service and risk based inspection applications. 

 

Electrochemical noise was found to be a promising technique for monitoring CUI 

due to its ability to identify corrosion mechanism including pitting as well as 

corrosion rate.   

1.1.3 Electrochemical noise 

Electrochemical noise (EN) is a passive method of corrosion monitoring where no 

applied current or potential is required (Frankel, 2008).  This method records 

deviation from the naturally occurring electrochemical potential and current 

(Reiner & Bavarian, 2007; Huet, 2006) indicating when corrosion occurs.  Pitting 

and other forms of localised corrosion have been detected using this method with 

good correlation (Estupiñán-Lópezst al. 2011).     EN is a technique used primarily 

in laboratory work to evaluate corrosion rates and identify corrosion mechanism.  

EN was first discussed by Iverson (1968) and has been explored and developed 

since that time.   When corrosion occurs, measurable changes in free corrosion 

current and potential can be measured.  This technique evaluates naturally 

occurring corrosion without external inputs that could affect the results.    

EN is evaluated by analysing either (or both) voltage and current noise on a 

corroding system.  EN methods have been widely researched and developed for 
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corrosion evaluation and study.  A comprehensive review of EN methods is 

presented in chapter4 of this thesis. 

EN can be a useful tool in determining corrosion rates and in determining 

corrosion mechanism such as pitting.  Naing, Wong, & Tan (2006) developed a 

new technique to evaluate CUI that applies EN to determine moisture penetration 

under insulation using Wire Beam Electrode (WBE) methods.  These methods 

measure potential change against a Saturated Calomel Electrode (SCE) 

reference electrode.  They determined that a WBE sensor could be used to 

monitor moisture penetration through different types of simulated insulation using 

noise signature analysis. 

1.1.3.1 Electrochemical Noise Literature Review Outcome 

Electrochemical noise techniques can be used to determine both corrosion rate 

and corrosion mechanism.  However, they are difficult to apply outside of a 

controlled laboratory.  Current methods use sophisticated and sometimes 

expensive equipment that require specially trained personnel for interpretation.  

Measurement of current (A) was found to be especially difficult in field applications.   

1.2 Motivation 

The motivation of the research work presented in this thesis was to identify the 

knowledge gaps and develop a potential way forward in understanding the effects 

of insulation on assets in offshore operations.  These knowledge gaps were 
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identified through a thorough review and analysis of corrosion under insulation, 

pitting corrosion, and electrochemical noise techniques.  The knowledge gaps 

were identified as follows: 

1. There is limited long-term data available to study CUI.  This 

information is needed to develop methods for predicting the long 

term behaviour of assets under insulation.   

2. Current accelerated testing does not accurately reflect in-situ, long 

term corrosion data. 

3. There is no reliable, simple, affordable, on-line continuous direct 

monitoring of assets under insulation. 

These knowledge gaps were used to define the scope of the research work. 

1.3 Scope and Objectives  

The scope of this research to address identified knowledge gaps that includes 

the design of experiments for field and laboratory tests, the experimental design 

for field and laboratory work and the development and verification of a simplified 

electrochemical potential noise method.  

This thesis considers the following research questions: 

i. Can reliable long-term CUI data be captured in a field setting? 

ii. Can an accelerated test be developed with strong correlation to long term 

field data? 
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iii. Can an electrochemical noise monitoring technique be adapted to record 

field data? 

iv. Can traditional electrochemical noise techniques be modified to create a 

monitoring technique that can estimate corrosion rate and corrosion 

mechanism? 

v. Can electrochemical noise be used to determine if corrosion is intensified 

when an asset is under insulation? 

Considering these research questions, this work identified two significant 

objectives: 

1. To generate corrosion under insulation data: A comprehensive 

experimental plan was developed.  Chapter 3 develops a plan to generate 

long-term CUI data from field experiments, characterize CUI through 

laboratory work and lays out a method to develop an accelerated test to 

generate long term CUI data using a laboratory set-up.   

2. To develop a continuous monitoring technique for assets under insulation: 

A simplified electrochemical potential noise method was developed in 

Chapter 4 and applied to piping under insulation in Chapter 5. 

The monitoring and analysis of the field test data is beyond the scope of this 

work.  This will be carried out by others within the research group.  Also beyond 

the scope of this work is the set-up and completion of the accelerated testing 
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method experimental plan.  This work requires completion of the field test and will 

be completed by the research group. 

1.4 Contribution and Novelty 

Corrosion of assets under insulation is a significant issue and no consensus is 

available on how to best recognise, combat, prevent or predict it is available.  This 

research identifies this need and seeks to lessen the knowledge gap to further 

understand CUI.  To do this, an experimental plan for field testing was developed, 

this plan built on existing atmospheric testing and laboratory standards to design 

a plan that would result in long term CUI data that includes both physical corrosion 

results (mass loss, visual inspection) and electrochemical data to determine 

corrosion rate and mechanism.   

Electrochemical noise techniques are available that can predict corrosion rate and 

help determine corrosion mechanism.  There are many issues with current 

techniques that make them incompatible in-situ monitoring of assets under 

insulation including the cost of specialised equipment, difficult data analysis, and 

electrode similarity constraints.  The development of the simplified electrochemical 

noise technique makes long-term continuous monitoring of assets possible and 

includes steps to disconnect the traditional coupled potential information to allow 

for analysis of individual components under investigation.  The ability to study 

individual components (electrodes) using the simplified method can potentially 
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remove the electrode similarity constraint and further increase the applicability of 

this method to different assets in industrial operations. 

1.5 Organization of thesis 

This thesis is written in manuscript format and includes 4 individual papers.  The 

format for this thesis is illustrated in Figure 2. 

Chapter 1 includes an overview of the thesis work and a summary of the 

literature review.  The high level literature review of CUI identified pitting 

corrosion, as a key area for further study.   

Chapter 2 reviews and analyses the current understanding of pitting corrosion 

under insulation.  Six (6) categories were reviewed to fully understand the current 

knowledge of pitting.  The study identifies pitting mechanism and pitting corrosion 

rate prediction as two categories that require further study and identifies the lack 

of long term corrosion data for CUI as an ongoing issue to develop new methods 

to predict long-term behaviour.  This chapter was published in the Journal of Loss 

Prevention in the Process Industries 2013: Vol 26, Issue 6, pg 1466-1483. 
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Figure 2: Structure of the thesis 

Chapter 3 describes the development of long term testing to study CUI in both 

laboratory and field experiments to begin to fill the knowledge gap identified in 

Chapter 2.  Three stages of experimentation are developed and include a three 

year field test, laboratory testing to characterise CUI and the development of an 

accelerated testing plan to generate long term corrosion rates. The need for a 
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continuous monitoring technique was also identified in this work.  This chapter 

was published in the Journal of Loss Prevention in the Process Industries 2015: 

Vol 33, pg  39-51. 

Chapter 4 describes the development of a simplified electrochemical potential 

noise (EPN) technique that uses a three identical electrode set-up and isolates 

individual electrode EPN to predict corrosion rate (Caines et al. 2016). This 

technique is needed to characterise corrosion behaviour in long term field testing 

(Caines et al. 2016). This chapter was submitted for publication to the Journal of 

Loss Prevention in the Process Industries. Peer feedback received, paper is 

revised and resubmitted, awaiting final decision (as of October 2016). 

Chapter 5 applies the simplified EPN method developed in Chapter 4 to 

demonstrate the increased corrosion activity observed in pipes under insulation.  

This work highlights the differences in corrosion behaviour under insulation and 

further validates the applicability of the simplified EPN method for use in field and 

industrial applications.  This chapter is currently in peer review process in the 

Journal of Loss Prevention in the Process Industries. 

Chapter 6 summarises the findings of the thesis and reports the main 

conclusions form all work.  Recommendations for future work are also included in 

this chapter.   
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2.0 Analysis of Pitting Corrosion of Steel Under Insulation in Marine 

Environments 
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A version of this paper was published in in the Journal of Loss Prevention in the 
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contributed in, reviewing and revising the manuscript.  Dr. Shirokoff contributed 

through support in the development and assisted in reviewing and revising the 

manuscript.  Minor editing of the published paper was completed to conform to 

formatting and to correct errors. 

Abstract 

Corrosion under insulation (CUI) is an important issue in marine environments. 

Pitting corrosion is a significant contributor to this issue.  The ability to understand 

and model pitting behavior is integral to designing and maintaining assets in 

marine environments to decrease costs and increase safety and productivity.  This 

paper reviews and analyses six categories of pitting knowledge to assess the 
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current depth and breadth of understanding and to identify knowledge gaps in each 

category.  The categories investigated are: identification of pitting, experimental 

methods, mechanism of pitting, modeling of pitting corrosion rates, remaining life 

assessment modeling, and risked based inspections.  This analysis finds that the 

depth of knowledge on pitting corrosion rate modeling and pitting mechanism is 

limited and requires further detailed study. The outcome of such study will 

strengthen pitting corrosion rate modeling, the accuracy of fitness for service 

assessments and risk-based inspection strategies.  

Keywords 

Pitting corrosion, corrosion under insulation, safety assessment, fitness-for-service 

assessment, risk-based inspection 

Abbreviations 

AE   Acoustic emission 

ASM   American Society for Metals  

ASTM  American Society for Testing and Materials 

AUV  Autonomous Underwater Vehicles 

CF  Consequence of failure  

CLSM  Confocal Laser Scanning Microscopy  

CUI   Corrosion Under Insulation 

DNV  Det Norske Veritas 

EN  Electrochemical noise 

FFS  Fitness-for-service 
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JIS  Japanese Industrial Standard 

MAWP Maximum allowable working pressure 

NDT  Non-destructive techniques  

PPR  Pit propagation rate 

PF  Probability of failure  

QRA  Quantitative risk analysis  

RAM  Risk assessment methods 

RBI  Risk-based Assessment 

ROV  Remote operated vehicles 

RP  Recommended practice  

SCC   Stress corrosion cracking  

TOW  Time of wetness  

2.1 Introduction 

 

Corrosion under insulation (CUI) is a serious issue in marine environments.  This 

type of damage can have catastrophic effects on production losses, health and 

safety, and the environment in the offshore industry if it is not identified before it 

degrades to a level where containment is threatened. CUI can take many forms in 

marine environments including pitting, uniform corrosion, and stress corrosion 

cracking. CUI can occur when moisture penetrates the insulation and helps to 

create a corrosion cell.  This can occur in many ways including insulation damage 

or wicking, atmospheric wetness, or poor installation.  If the component has a 

protective coating, breaks or holidays in the protective layer are also needed to 
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expose the underlying metal to moisture.  Pitting corrosion is thought to be the 

most common type of localized corrosion (Roberge P. R., 2008) and is the focus 

of this review.   

 

Pitting is a form of corrosion observed in some metals where corrosion is localized 

to small areas of degradation.  It can lead to catastrophic consequences in marine 

applications.  Small pits can progress through wall thickness and lead to a lack of 

containment of process materials or act as initiation site for stress corrosion cracks 

that can also lead to lack of containment.  Brittle fracture of components is an issue.  

If pitting develops such that the strength of the member is affected, brittle failure 

can occur.  This type of failure can be catastrophic and lead to a complete lack of 

containment or structural integrity of components. 

The ability to predict pitting behaviour is key to designing and maintaining assets 

in marine environments.  If realistic models are not available, conservative 

corrosion rates are used and can lead to increased costs and decreased 

productivity. 

Numerous studies and scholarly works have been done on the pitting behaviour in 

steel for marine applications.  The work varies from understanding how to identify 

pitting to predicting the likelihood of pitting and how it affects the service life of 

components.   Studies on failure under insulation due to pitting in petrochemical 

applications have been conducted (Suresh Kumar, Sujata, Venkataswamy, & 
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Bhaumik, 2008); however, no specific information on pitting under insulation in 

marine environments was found.  Available literature was reviewed to determine 

the current state of understanding of pitting corrosion. 

When reviewing the current understanding of pitting corrosion, the study was 

divided into 6 categories and the depth and breadth of available work analysed to 

identify knowledge gaps in each category.  The categories are: 

1. Identification of pitting 

 Inspection techniques 

 Non- destructive evaluation 

2. Experimental Methods 

 Simulating pitting behaviour 

3. Mechanism of pitting 

 Phases of pitting 

 Causes of pitting 

 Factors effecting pitting potential 

4. Modeling of pitting corrosion rates 

 Models to predict corrosion rate 

5. Remaining life assessment model  
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6. Risked Based Inspection  

 Predicting inspection/maintenance based on severity and 

susceptibility to pitting corrosion 

2.1.1 Rating System for Depth and Breadth of Pitting Knowledge 

A qualitative rating system was developed to characterise the literature in terms of 

understanding and application of monitoring, predicting, preventing, and 

controlling pitting in marine environments.  Table 1 below illustrates the rating 

system. 

Table 1: Rating system for Depth and Breadth of Knowledge 

Score Nil = 0 Low = 1-3 Mid = 4-6 High = 7-9 Complete=10 

Depth No 
understanding of 
topic 

High Level 
(shallow) 
understanding of 
topic.  General 
concept is 
understood 

Topic is understood.  
Competing theories by 
subject matter experts.   

Consensus between 
subject matter experts 
on topic.   

Complete 
understanding of 
topic. 

Breadth No 
demonstration of 
broad application 
of theory 

Limited 
application across 
fields 

Increasing application of 
knowledge across 
environments/industries 

Demonstrated 
application across 
environments/industries 

Complete 
demonstration of 
broad application of 
theory 

 

The six designated categories of pitting in marine environments are summarised 

in the following sections.  Each section includes an overview of current 

understanding and the depth and breadth of knowledge is identified.   
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2.2 Categorized Review and Analysis 

The six categories of pitting are reviewed, analysed, and summarised in the 

following sections.   

2.2.1 Identification of pitting 

The first step in understanding pitting in steel is to correctly identify the 

phenomenon.  Pitting corrosion is characterised by small blemishes in the surface 

of a material.  Figure 3 illustrates pits on stainless steel in a simulated marine 

environment.  

 

Figure 3: Pits on 304 stainless steel after exposure to simulated marine environment (3.5g of NaCl per litre H2O) 
(Caines, 2013) 

Pits can form in many different shapes and sizes.  Figure 4 shows some typical 

cross sections of pits.  The danger in pitting is that the size of the pit opening at 

the surface is not always indicative of the amount of sub-surface corrosion.  This 

can lead to structural instabilities in components that may appear to have little 

surface damage.   
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Figure 4: Typical cross-sectional shapes of corrosion pits (Roberge P. R., 2008) (Phull, 2003). 

While shallow pits are easier to examine and are unlikely to affect the structural 

integrity of the component, they can act as stress concentrators and initiate stress 

corrosion cracking (SCC).  SCC is another corrosion mechanism seen under 

insulation in marine environments.  Its contribution to CUI is also explored in this 

work.   

There are many techniques that can identify the presence of pitting.  This part of 

pitting corrosion is well understood and well documented by (Davies & Scott, 

2003), (McIntyre & Vogelsang, 2009), (Roberge P. R., Corrosion Inspection and 

Monitoring, 2007), and (Phull, 2003). The main techniques identified in the 

American Society for Metals (ASM) Handbook (Phull, 2003) to identify pitting are 

as follows: 

1. Visual inspection 

2. Metallographic examination 

3. Mass loss 
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4. Pit depth measurement 

5. Non-destructive Inspection 

2.2.1.1 Visual inspection 

The American Society for Testing and Materials (ASTM) Standard G46 “Standard 

Guide for Examination and Evaluation of Pitting Corrosion“ (ASTM G46, 2005) 

describes visual inspections as inspection that can be done in ambient light to 

determine location and severity of pitting.  Pictures are often used to document the 

difference in appearance of pits before and after removal of corrosion products.   

This technique is the easiest to employ, requires no specialised equipment and is 

relatively inexpensive. More detailed descriptions of visual inspections are well 

documented in (Roberge P. R., Corrosion Inspection and Monitoring, 2007), 

(Byars, 1999), (Visual Inspection, Nondestructive Evaluation and Quality Control, 

1989), and (Heidersbach, 2011).  

More complex visual inspection techniques are used to evaluate areas that are 

difficult or dangerous for personnel to access.  These visual inspections are 

facilitated through use of video and robotics; both remotely operated and 

autonomous.    

Remote operated vehicles (ROVs) attempt to replace human visual inspections to 

increase safety, reduce cost, and increase efficiency (Terribile, Schiavon, Rossi, & 

Zampato, 2007). These vehicles use video to allow inspectors to guide and inspect 
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areas that are difficult to reach and/or are dangerous.   ROVs can detect external 

corrosion, damage, and anode wear in deep water pipelines ( Kros, 2011). 

Work is being conducted to adapt Autonomous Underwater Vehicles (AUVs) to 

perform visual inspections in underwater structures and pipelines (Courbot, Nasr, 

Gilmour, & Biedermann, 2013) (Yu & Ura, 2002) (Mcleod, Jacobson, & Tangirala, 

2012). These inspections would include high resolution photographs of the length 

of the pipe, real-time image processing, and location tagging for future inspection. 

2.2.1.2 Metallographic Examination 

Metallographic Examination is an investigative technique that can be used to 

determine the size, shape, and density of corrosion pits.  It is one of the most 

important examination techniques as it can yield quantitate information on pitting 

corrosion.  This technique is also used to verify true pits versus metal dropout from 

other corrosion mechanisms or to investigate corrosion rate correlation to 

inclusions and microstructure (ASTM G46, 2005).  Figure 5 shows a cross section 

of a corrosion pit on 316L Stainless steel.  Measurements for maximum pit depth 

(C) and pit width (B) may be recorded as indicated. 
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Figure 5: Cross-section of pitting corrosion on 316L stainless steel. A: Original surface, B: Pit with, C: Pit depth 
(Snow & Shirokoff, 2008) 

 

Metallographic Examination is typically a destructive analysis technique as the 

specimen must be cut from the component and examined with a microscope.  In-

situ metallography can be used when removal of the component is not feasible.  

This type of metallography uses surface replication and does not produce the 

same quality micrographs as traditional destructive techniques (Jana, 1995).  

Simultaneous in-situ optical and electrochemical methods for identifying and 

measuring pitting corrosion have also been reviewed and measured (Power & 

Shirokoff, 2012) (Power & Shirokoff 2013). This approach was used to measure 

corrosion in 316L stainless steel subject to simulated seawater conditions and in 

industrial sulfuric acid environment simulating hydrometallurgical recovery of 

metals from nickel sulfide ores.  Power and Shirokoff found that this innovative 

approach to studying the surface microstructural changes in real time could 

successfully correlate to the electrochemical response at the surface under 

aerated and deaerated conditions. The technique is a low cost and practical 
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method to investigate samples under constant temperature conditions in a custom 

built corrosion cell attached to an electrochemical probe, potentiostat-galvanostat, 

optical microscope, digital camera, and VHS-VCR-DVD recording system. 

Proper surface preparation of samples is important; poor preparation can lead to 

inaccurate measurements, observation and even destruction of the sample.   

Sample preparation includes cutting a sample (sectioning), mounting of small 

samples if needed, cleaning of a surface, and polishing (ASTM E3, 2011), (ASTM 

G1, 2011).  All of these steps must be conducted carefully and appropriately for 

the material and environmental conditions.  Proper care must be taken to ensure 

the preparation methods do not affect the important surface.  

Examples and details of metallography are widely discussed, a few important 

sources are (Vander Voort, 1999), (Vander Voort, 2004), (ASTM E3, 2011), (ASTM 

G1, 2011), (Gale & Totemeier, 2004), and (Reardon, 2011).  

2.2.1.3 Mass loss 

Mass loss techniques are used to determine the amount of material lost due to 

corrosion.  This is accomplished by a systematic measurement of the mass loss 

over a specific period of time.   

The application of mass loss studies to pit evaluation is limited.  Mass loss due to 

this type of localized corrosion can be too small to allow for identification through 

this method.  Some standards for pitting evaluation include mass loss as a possible 

technique includes (ASTM G46, 2005) and (Phull, 2003).  This technique may be 
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useful if pitting is the predominant corrosion mechanism and the amount of general 

corrosion in minimal.  Other sources do not include mass loss as a viable technique 

for pitting identification (Heidersbach, 2011), (Jones, 1996), and (Baboian, 2005). 

This method is most useful in evaluation of uniform corrosion, corrosion that affects 

the total surface area of a component.  A standard methodology for preparing 

samples for mass loss evaluation such as ASTM G1:The Standard Practice for 

Preparing, Cleaning, and Evaluating Corrosion Test Specimens, are used (ASTM 

G1, 2011).    

2.2.1.4 Pit Depth Measurement 

Pit depth measurement is a key technique in pit identification and evaluation 

(ASTM G46, 2005), (Phull, 2003).    ASTM G46 (2005) describes different methods 

to evaluate pit depth.  Metallography can be used to evaluate a vertically sectioned 

pit (ASTM G46, 2005).  The depth of the pit can then be measured with a calibrated 

eyepiece.  The limitation of this method is that the deepest pit may not be selected 

for evaluation.  Machining is another method discussed by the standard.  This 

method involves systematic machining of a pitted surface and subsequent 

thickness measurement to determine pit depth.  This method can be used to find 

the maximum pit depth and to determine the number of pits with specific depths.  

These two methods are destructive and cannot be used in service.  Alternatively, 

a depth gage may be used in service to determine pit depth.  This method uses a 

calibrated depth inserted into a pit.  This method is limited to pits that are large 
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enough at the base to allow full penetration of the gage and that have not 

experienced undercutting or a direction change (ASTM G46, 2005).     

Jasiczek et al. (Jasiczek, Kaczorowski, Kosieniak, & Innocenti, 2012) have 

identified a new non-destructive method to evaluate pit depth using Confocal Laser 

Scanning Microscopy (CLSM) that has shown potential to further the ability to 

measure pit depth.   CLSM creates a three dimensional image of a material surface 

(Clarke & Eberhardt, 2002) that can be analysed to determine pit depth.  The 

authors showed that this technique can reliably measure pit depth and had the 

potential to evaluate additional pit characteristics such as diameter and volume.   

2.2.1.5 Non-destructive Testing 

Non- destructive testing (NDT) is a key technique used in industry to evaluate the 

current state of components and equipment in service and to aide in maintenance 

planning.  NDT is used to identify, monitor and qualify many types of issues in 

industry during operations and during short operational shut-downs.  Removal of 

components from a working facility is not practical so NDT becomes more 

important for defect evaluation.   

ASTM Standard G46 (ASTM G46, 2005) describes NDT applicable to identifying 

pitting corrosion.  NDT is well established; however, these techniques are not as 

effective at characterizing pitting as destructive methods.  NDT also requires 

specialized training to ensure realistic results. Many references are available that 

describe different types and applications of NDT for pit identification (Roberge P. 
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R., 2011), (Roberge P. R., Corrosion Inspection and Monitoring, 2007), 

(Heidersbach, 2011), (Shreir, Jarman, & Burstein, 1994).  A brief description of 

each NDT is presented below.  

2.2.1.6 Radiography 

Pitting is readily detected by radiography and this technique is routinely applied in 

service identify and monitor corrosion (Heidersbach, 2011).  In this technique, 

radiation/X-rays passes through the component under investigation and the 

intensity of the exit rays indicates changes in thickness.  To successfully identify 

pits, the depth must be larger than 0.5% of the metal thickness (ASTM G46, 2005). 

This technique can quickly identify corrosion issues however, only small areas are 

inspected at a time, the 2D image gives no depth information and access to both 

sides of a component is required (Heidersbach, 2011).   

When a component is insulated, the insulation has traditionally been removed for 

inspection and identification of pitting.  This is a time consuming and costly 

operation.  Pachacek (2003) introduced a new method for inspecting insulated 

vessels using profiler portable real-time radiography (PPRTR) (Pachacek, 2003). 

This technique can quickly identify areas of concern, both gradual loss, indicating 

general corrosion and abrupt wall thickness changes indicated localized (pitting) 

corrosion.  This method allows for more thorough coverage of long insulated pipe 

lengths and can identify areas that require further NDT to determine action.   
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2.2.1.7 Electromagnetic 

This type of evaluation technique includes eddy current, magnetic particle, and 

microwave techniques (Rao, Jayakumar, & Raj, 2007).  These techniques are 

used on electrically conducting materials and use induced magnetic fields to detect 

defects (ASTM G46, 2005). The discontinuities in the material are identified by 

their effect on electrical conductivity or magnetic permeability or dielectric 

permittivity.  

2.2.1.8 Sonics 

This technique uses sound energy to find the size and location of pits.   

Pellegrino et al. (Pellegrino & Nugent, 2012) investigated remote visual inspection 

(RVI) with 3D phase measurement to size pits in compressor blades and the 

characterization of pipe wall pitting with phase-array ultrasonic testing (PAUT) with 

dual transducer.  They report that new 3D phase measurement technology can 

measure pits with diameters as small as 0.1 mm and depths as shallow as 0.025 

mm.  They indicate that these measurements are accurate and can be conducted 

quickly.  Traditional ultrasonic transducers have difficulty accurately measuring 

and identifying pits. These limitations are due to limited inspection area.   PAUT 

was developed to increase the accuracy through the use of multiple receiver 

elements.  This increases the area inspected and the likelihood of identifying and 

measuring the deepest pits.   
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Jirarungsatian et al. (2010) in their paper discuss acoustic emission (AE) as a 

method for detecting both pitting and uniform corrosion (Jirarungsatian & 

Prateepasen, 2010).  This in-service method detects transient waves from energy 

released from localized material sources to directly measure corrosion failure 

mechanisms.  They indicate that ambient noise has been the main issue 

preventing field use of this detection method.    

2.2.1.9 Penetrants 

Penetrant examination is a non-destructive technique that identifies surface 

defects on a non-porous surface.  Because pitting occurs at the surface, this 

method is widely used to find and classify pits (Borucki, 1989).  This method 

detects surface pits through the application of a liquid penetrating material; the 

liquid must penetrate defects through capillary action over the dwell time (Raman, 

2007).    Intensity of the color and the rate of bleed out both indicate the size of the 

defect (ASTM G46, 2005), (ASTM E1417, 2013). 

There are two types of penetrants, florescent and visible.  The appropriate type of 

penetrant is chosen based on many factors including type of flaw detected, surface 

condition, and sensitivity required (Borucki, 1989).  Fluorescent penetrant is more 

reliable and sensitive than visible penetrants and are used more often.  Visual 

penetrants are usually red and must be viewed under white light while fluorescent 

penetrants are typically green and glow under ultraviolet light.  
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2.2.1.10 Electrochemical Identification 

Another method to evaluate pitting corrosion is through the use of electrochemical 

methods.  ASTM has several standards that describe these techniques (ASTM 

F746, 2009), (ASTM G61, ASTM G61 Standard Test Method for Conducting Cyclic 

Potentiodynamic Polarization Measurements for Localized Corrosion 

Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys, 2009), and (ASTM G150, 

2010).  These techniques use applied current or potential to establish the relative 

performance of materials in an environment.  These techniques are usually applied 

in laboratory testing.  Use of these techniques for on-line monitoring is limited due 

to the high applied potentials that permanently effect components under evaluation 

(Phull, 2003).   

One newer method of electrochemical monitoring of corrosion that has the 

potential to be used on-line for the detection of pitting corrosion is electrochemical 

noise (EN) measurement techniques. EN technique is a passive method of 

corrosion monitoring as no applied current is required (Frankel G. , 2008). This 

method measures deviation from the naturally occurring electrochemical potential 

(Reiner & Bavarian, 2007). This variation is due to corrosion and can be measured.  

This technique has shown good correlation in detecting the formation of localized 

corrosion (Estupiñán-López, Martínez-Villafañe, Uruchurtu Ch, & Gaona-Tiburcio, 

2011).  A single electrode monitoring probe has been successfully used in 

applications where the structure can be used as a current return path (Eden & 

Kane, 2005). It is expected that this method can be used to indicate when corrosion 
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is occurring; however the challenge with electrochemical monitoring is to directly 

determine corrosion rate in non-immersed applications (Klassen & Roberge, 

2003). 

2.2.1.11 Innovative Techniques 

While there are many standards and related scholarly works describing well 

established pitting identification methods, new and improved techniques are also 

being investigated. 

Papavinasam et al. (2012) investigated five non-intrusive inspection techniques on 

test pipes with artificially implanted pits over 12 years (Papavinasam, Doiron, 

Attard, Demoz, & Rahimi, 2012).  Their work established the reliability of each of 

the techniques based on a number of criteria.  Table 2 summarizes their findings 

as follows. 

Table 2: Summary of findings by Papavinasam et al. (2012) 

Technique Reliability User-
friendly 

Sensing 
Element 

Area/Sen
sor Ratio. 

Remote 
Monitor

-ing 

Boundary 
and 

Limitations 

Conclusions 

Ultrasonic-
handheld 

Can detect 
location of 
defect or pit.  
Reliable to 
error of ± 
0.25mm 

Low set-up 
time, Portable, 
applicable for 
Hazardous field 
conditions 

Piezoelectric 
crystal to 
mechanical 
energy.  
Determines  
thickness 
without 
accessing the 
internal pipe 
surface 

manual 
scanning 

No Remote 
Monitoring, 
onsite data 
collection 
by 
technician 

Requires: 
physical contact 
& couplant. 
Shape 
influences 
results.  Results 
dependant on 
experience and 
skill. 

most ideal, 

current, non-

intrusive 

technique 
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Ultrasonic-fixed Cannot 
detect 
location of 
defect or pit 
(fixed 
location).  
Reliable to 
error of ± 
0.25mm.  
Cannot be 
calibrated; 
long-term 
reliability not 
ensured 

Longer set-up 
time. Can be 
used in 
hazardous field 
conditions. Not 
portable  

Piezoelectric 
crystal to 
mechanical 
energy.  
Determines  
thickness 
without 
accessing the 
internal pipe 
surface 

N/A.  Fixed 
Location 

Theoreticall
y suitable 
for remote 
monitoring 

Requires: 
physical contact 
& couplant. 
Measurements 
only at 
locations where 
sensors 
installed (2.5 
cm).  Results 
independent of 
experience and 
skill after 
installation. 

Development of 

liquid couplant: 

Not dry over time 

and long term 

adherence to 

substrate 

Electrical probe Reliability 
dependant on 
: number of  
pins, distance 
between 
pins, contact 
resistance, 
applied 
current, and 
accuracy of 
resistance 
measurement 
instrument 

Two (2) options. 
1. Permanently 
spot welded to 
structure: Low 
contact 
resistance, 
restricted use in 
some 
applications 
and 
jurisdictions.  2. 
spot-welded 
onto pipe 
section and 
clamped to 
structure.  
Portable with 
higher contact 
resistance  

Based on 
Ohm`s Law 
where 
resistance is 
inversely 
proportional 
to wall 
thickness. 2 
pins to apply 
current, 2 
pins to 
measure 
potential. 

Dependant 
on number of 
pins.  
Increased 
distance 
between 
pins, 
measured 
area 
increases, 
sensitivity to 
wall loss 
decreases. 

Appropriat
e for 
remote 
monitoring.  

Difficulties due 
to defect 
geometry. 
Impractical for 
large surfaces.  
Relies heavily 
on operator 
skill and 
experience. No 
testing or 
evaluation by 
regulatory or by 
standards 
making body 

Establishment of 

a relationship 

between 

geometry of pins, 

wall thickness, 

and resistance 

measurement 

needed 

Hydrogen 
permeation 

indicates  
cannot be 
reliably used 
to measure 
pitting 
corrosion 
rates 

Can be moved.  
No welding, 
machining or 
use of epoxies.  
Surface is not 
modified.   

Measures 
pressure 
increase or 
hydrogen gas.   

very small 
area / sensor 

Not 
suitable for 
remote 
monitoring 

Does not 
directly 
measure wall 
thickness.  Not 
capable of 
detecting 
defect location.  
Provides a 
corrosion rate 
for a general 
area 

Suitable 

applications 

required 

Fibre-optic No 
correlation  
established 
between 
measurement
s to physical 
measurement 
of pit depths 

Easy 
attachment.  
Very fragile.  
Difficult to 
remove once 
attached. 

Cable is both 
sensor and 
communicato
r.  
Macrostrain 
of cable 
measured to 
determine 
wall 
thickness. 

Area covered 
is  
proportional 
to length of 
cable 

suitable for 
remote 
monitoring 

Very new and 
needs to be 
proven. Fiber 
very fragile. No 
operator 
training 
available 

Fragile fibers 

limiting 

advancement 
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Another technique described by Holme et al. (2007) describes pit characterization 

using White Light Interferometry and software analysis (Holme & Lunder, 2007).  

The program analyses low resolution images to locate and direct the white light 

interferometer to capture high resolution images that are analysed to find depth, 

volume and maximum width of pits.  This technique is limited to pits that do not 

experience undercutting and is best utilised to pit initiation and early propagation.  

This technique generates 3-D experimental data of pits. 

2.2.1.12 Analysis of Pit Identification Knowledge 

The effectiveness of these non-destructive evaluations is important to operations 

in harsh marine environments and needs to be understood.  These techniques will 

be used in the design of components to select the best material, manufacturing, 

and installation practices, and in operations to plan inspection and maintenance 

scheduling, and in developing models for predicting asset lifecycles (Heerings, 

Trimborn, & den Herder, 2007). 

The referenced work summarized above with respect to pit identification indicates 

that there is significant information on pit identification techniques available and 

that they are well understood.  New techniques that improve accuracy and reduce 

human errors are currently in development and will lead to increased confidence 

in pit identification. The depth of understanding of pit identification can be 

considered at a ranking of 8. Techniques are available to quantify pitting depth and 

severity in many marine applications.  Further study is ongoing to improve on-line 
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monitoring of pitting corrosion and to further understand correlation between 

measured values and pit depth.   The breadth understanding of pit identification is 

determined to be in the mid-range (6). While information is available to assess 

pitting from many different approaches including laboratory, field and on-line 

monitoring, there remain many instances where timely, cost effective pit 

identification techniques are unavailable.   

2.2.2 Experimental Methods 

The evaluation of pitting behavior is required to fully understand and predict the 

phenomenon.  Determining relationships between many factors including 

composition, temperature, and environmental conditions is conducted through 

experiments. Pitting rates determined through experimental methods are generally 

used in prediction models.  Because these rates are used to conduct remaining 

life assessments, experimental methods need to be conducted such that the 

results can be extrapolated over longer periods of time.   

Many different methods can be used to collect the data required to further 

understand pitting corrosion.  Information can be gained from in-service 

observation and experimentation, field testing, and laboratory experiments.  For 

many situations, there are standard methods available however; much work has 

been conducted using generalized corrosion test planning methods that are 

specific to the situation under review.  The method described by Cramer et al. 

(2005) includes the general 5 step design ( Cramer & Jones, 2005): 
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1. Goal and Objective definition 

2. Corrosion Test Design 

3. Protocol development 

4. Test Engineering 

5. Test Modification 

These five general steps are used to adapt current standards to unique situation 

while ensuring the results are recorded, evaluated, and reported in a systematic, 

repeatable manner. 

2.2.2.1 Standards  

Standards are available to evaluate pitting susceptibility of various materials and 

environments (ASTM G48, 2011), (ASTM G150, 2010), (ASTM F746, 2009), and 

(ASTM G61, ASTM G61 Standard Test Method for Conducting Cyclic 

Potentiodynamic Polarization Measurements for Localized Corrosion 

Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys, 2009).  These standards 

can be used as a comparative tool to determine the likelihood of pitting in specific 

circumstances and cannot indicate behavior of materials in service. 

 

ASTM G48, “Standard Test Methods for Pitting and Crevice Corrosion Resistance 

of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution”, 
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describes 6 test methods to determine relative pitting and crevice corrosion 

resistance of stainless steels (ASTM G48, 2011). Methods A, C, and E of this 

standard deal specifically with pitting corrosion.  Method A is a Ferric Chloride 

Pitting Test and C and E rank materials based on critical pitting temperature (CPT).  

For this standard, CPT is the temperature at which pitting of a depth of at least 

0.025 mm is expected.  The results of these methods are used for comparison and 

ranking of materials in chloride environments.  These tests are accelerated and 

the rate and extent of pitting are not representative of expected field results.     

ASTM G-150, the “Standard Test Method for Electrochemical Critical Pitting 

Temperature Testing of Stainless Steels” (ASTM G150, 2010), includes 

procedures for determining the potential independent critical pitting temperature 

(CPT) of stainless steels using electrochemical methods.  For this test, CPT is 

found when the measured current rapidly increases. The onset of pitting above this 

CPT is visually verified after the test.  Again, the standard procedure accelerates 

corrosion in a way that does not represent any actual service environment.   

ASTM G-61, “Standard Test Method for Conducting Cyclic Potentiodynamic 

Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel, 

or Cobalt-Based Alloys” (ASTM G61, 2009), is used to determine the relative 

susceptibility of a material to pitting.  This is recorded as the potential at which the 

anodic current increases rapidly.   Higher potentials (more noble) are an indication 

of increased resistance to pitting. This procedure induces corrosion and the results 

are not intended to indicate the rate of pitting expected in service.  
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These methods are used to further the understanding of pitting behavior and to 

assist in determining the effects of change on the resistance of a material to pitting.  

Siow et al. (2001) used a method similar to ASTM G61 to evaluate the complex 

effect of alloying and microstructure on pitting (Siow, Song, & Qiu, 2001).  They 

found that the effect of alloying is complex and that the alloying elements may 

increase or decrease the effects of other alloying elements.   They also report that 

pits started at the ferrite-austenite border and then spread into the austenite and 

ferrite phases. 

It should be noted that there are standardized tests for accelerated corrosion 

including ASTM B117, “Standard Practice for Operating Salt Spray (Fog) 

Apparatus” (ASTM B117-11, 2011)and ASTM G85, “Standard Practice for 

Modified Salt Spray (Fog) Testing” (ASTM G85-11, 2011).  Both of these standards 

allow for increased severity of a corrosive environment to accelerate corrosion.  

The results from these tests can indicate pitting however; there is limited 

correlation between field results and these accelerated tests (Acevedo-Hurtado, et 

al., 2008) .   

2.2.2.2 Non-Standard 

Experimental methods can also be developed to simulate and evaluate pitting 

behavior in specific situations and to evaluate pitting resistance changes due to 

controlled factors.   Researchers can adapt accepted standards to tailor methods 

to these situations.   
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Studies use accelerated testing to rank materials in terms of their pitting resistance 

rather than to determine corrosion rates (De-Abreu, Helander, Suarez, Manko, & 

Clark, 2012).  Researchers (Moran, Frankel, & Kim, 2011) and  (Lothongkum, 

Vongbandit, & Nongluck, 2006) have used modified cyclic potentiodynamic 

polarization to evaluate pitting corrosion resistance and Krakowiak et al. (2002) 

developed their own methodology to determine the effect of temperature rate 

change on the critical pitting corrosion temperature (Krakowiak & Darowicki, 2002).  

They used three electrode measurement vessels with controlled temperature 

change and determined that the CPT does not depend on temperature change 

rate in their experimental range. 

Researchers from Kushiro National College of Technology and Kitami Institute of 

Technology in Japan developed an experimental procedure to study the effect of 

a freeze thaw cycle on pitting of welded austenitic stainless steel (Takahashi, 

Shibano, Ishitsuka, & Kobayashi, 2012).  This procedure was developed to help 

evaluate structures in coastal regions with severe chloride containing 

environments.  The researchers incorporated the Japanese Industrial Standard 

(JIS) G 0578 “Method of ferric chloride tests for stainless steels” (JIS G 0578, 2000) 

and modified the test solution composition and temperature because the 

environment under investigation was not comparable to standardized tests. The 

study concluded that pitting corrosion was more severe in the freeze-thaw 

specimens than in the constant thaw specimens as determined by increased mass 
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loss.  Also, they determined that tensile residual stress is related to accelerated 

pitting corrosion. 

Electrochemical impedance spectroscopy (EIS) is another method that uses 

applied current to study pitting corrosion.  Sorg & Ladwein (2009) used this method 

to determine the susceptibility of a material to pitting corrosion in the presence of 

low conductivity electrolytes. They found that EIS allowed for polarization 

resistance analysis in low conductivity fluids (Sorg & Ladwein, 2009).  Jai et al. 

(2010) used staircase EIS to evaluate pitting in 316 L stainless steel.  They found 

that passive film breakdown was the most likely cause of pitting corrosion ( Jia, 

Du, Li, Yi, & Li, 2011). 

2.2.2.3 Field Testing 

Field testing is an important method to gather long term information about 

corrosion in a natural environment.  To study pitting in real situations, field testing 

has been conducted by researchers (Chaves & Melchers, 2012), (Melchers , 

2004), and (Phull, 2003).  Field testing had helped to demonstrate that while short 

term testing and accelerated testing are valuable in understanding corrosion, they 

can be misleading in predicting pitting behavior over the long-term (Chaves & 

Melchers, 2012) (Acevedo-Hurtado, et al., 2008).   

Atmospheric tests are another important method of gathering information and 

evaluating pitting corrosion in marine environments.  ASTM has many relevant 

standards that can be used in pitting corrosion field testing including (ASTM G33, 
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2010), (ASTM G50, 2010), and (ASTM B826, 2009). While these standards are 

not specific to pitting, if the mechanism of corrosion of the material being studied 

in the tested atmosphere is pitting, they can be used in pitting corrosion studies.  

2.2.2.4 Analysis of Experimental Methods Knowledge 

Experimental methods to compare pitting resistance of materials are well 

established and can be successfully modified to accommodate different corrosive 

environments.  This is useful in identifying likely candidates for service applications 

through relative resistance to a specific environment.  Standard laboratory 

methods for pit evaluation have not been developed to attempt to determine 

corrosion rates of pitting that can be translated to real life situations.  Accelerated 

corrosion testing is not valid to determine pitting rates in service.  Field data has 

shown that short term testing cannot be relied on to predict long term corrosion 

behaviour. For these reasons, the experimental methods category is classified as 

a mid-range depth with a score of 4 and a wide breadth score of 8 due to the prolific 

application of testing across industries, material types, and corrosive 

environments. 

2.2.3 Pitting Mechanism 

One application of experimental methods is to aide in determining the mechanisms 

involved in pitting behaviour.  In marine applications, pitting usually occurs in 

coated or naturally protected materials.  Corrosion resistance in stainless steel is 

partially due to a naturally occurring passive oxide layer that forms over the surface 
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of the material.  For other types of steel, such as carbon steel, corrosion protection 

is sometimes due to an applied protective coating.  Although these protective 

layers prevent corrosion over the bulk of an asset, it is where the layer fails or is 

inconsistent that localized pitting corrosion can occur.   

Pitting capitalizes on breaks in the protective layer.  A breakdown in the protective 

layer, either natural or applied, provides a nucleation point for the formation of pits 

in the presence of an electrolyte containing an aggressive anion (Szklarska-

Smialowska, 2005).  For marine operations, this ion (Cl-) is readily available in 

seawater and marine atmospheres. 

According to Schumacher, (Schumacher, 1979) some metals exposed to a 

corrosive environment will develop pits due to salt particles or other contaminants.  

Other factors that contribute to pitting including: 

 Inclusions 

 Discontinuities in protective coating (both natural and applied) 

 Surface defects 

The mechanism of pitting is not fully understood however most theories look at 

pitting as a combination of stages.  Pitting corrosion damage is identified by 

Engelhardt et al. (2004) as a three stage event including (Engelhardt & Macdonald, 

2004):  

Stage 1: Nucleation: in this stage, pits are initiated (nucleated) 
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Stage 2: Propagation: here, some pits begin to grow  

Stage 3: Repassivation: this stage includes pits that cease to continue to grow. 

These stages can occur simultaneously leading to large variation in the location, 

depth, severity, and density of pitting.  This contributes to the complexity of 

predicting pitting rates and to the current view of pitting corrosion as a random 

process.   

2.2.3.1 Nucleation 

The nucleation of pits is influenced by surface defects that may be due to 

manufacturing issues, installation problems, maintenance procedures, and /or 

environment changes (Baboian, 2005) (Heidersbach, 2011). 

The sight of pit initiation (nucleation) can be caused by many different factors:   

 Damage to protective oxide layer (chemical or mechanical) 

 Environmental factors causing protective layer breakdown 

o Acidity, low dissolved oxygen 

o High chloride concentration 

 Damage to applied protective coating  

 Poor application of protective coating 

 Material structure non uniformity 
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All of these factors lead to adjacent anode and cathode sites available for corrosion 

if an electrolyte is present.   Pit nucleation sites can be categorized in two different 

combinations (Roberge P. R., 2008): 

Combination 1:  Abnormal anodic site surrounded by normal cathodic surface 

where the anodic sites will corrode. 

Combination 2: Abnormal cathodic site surrounded by normal anodic surface 

where pitting corrosion will occur. 

Figure 6 illustrates these two combinations.  Combination 1 indicates a higher 

expected corrosion rate and more severe pits.  This is expected due to the 

difference in surface area of the anode and cathode.  The cathode (normal surface) 

has a much larger surface area than the anode and will corrode the smaller anode 

quickly and produce deeper pits.  This is expected in materials with an applied 

coating.   

 

(a)          (b) 

Figure 6: Pit Nucleation Site Combination.  (a) Combination 1, abnormal anode, normal cathode. (b) Combination 2, 
normal anode, abnormal cathode. 
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Combination 2 can lead to more extensive overall pitting of the surface however 

this can be a benefit when the abnormal cathodic area is much smaller than the 

surrounding anodic (normal) surface as pits in this combination tend to be shallow 

and less likely to extend through the wall thickness.   Pits can be seen over the 

bulk of the metal with only a small area of unaffected local cathode.  Roberge 

(2008) considers this combination to be the most common (Roberge P. R., 2008).   

Passive film breakdown 

In stainless steel, the breakdown of the passive film provides the site for pit 

nucleation.  These breakdown sites are susceptible to corrosion.  Predicting this 

breakdown is difficult and no generally accepted model has been identified.  

Further discussion on modeling of pitting can be found in the sections that follow. 

Passive films are present on the surface of stainless steels in the presence of 

oxygen.  At low temperatures, a true oxide layer is not formed but a thin passive 

film is formed and acts as a barrier and provides corrosion resistance (Grubb, 

DeBold, & Fritz, 2005).  This film should be continuous, nonporous, insoluble, and 

self-healing to fully protect against corrosion.  Alloying elements and environmental 

conditions determine the success of this protection.   

In marine applications, hydroxide ions help form the passive film and chloride ions 

attack the film, causing openings for pit formation.  The tug of war between these 

reactions limits pit initiation (Novak, 2007).  If formation of the passive film is the 
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stronger reaction, the opportunities for pit initiation is reduce; if the breakdown 

reaction dominates, pitting is encouraged.    

The pitting potentios (Epit) is a generally accepted indication of resistance to pitting 

however there remains uncertainty due to experimental scatter, the dependence 

of Epit on experimental parameters, and experimental evidence of pit initiation 

below Epit (Frankel G. , 1998). 

Electrochemical studies using cyclic anodic polarization indicate that pits form at a 

potential above a characteristic potential Epit (Jones, 1996). This has been shown 

to be valid for both electrically and chemically induced potentials. 

 

The susceptibility of metals and alloys to pitting corrosion can be estimated using 

polarization curves (Szklarska-Smialowska, 2005) and can be developed through 

standardized methods discussed in Section 2.2.2.1 (ASTM G61, ASTM G61 

Standard Test Method for Conducting Cyclic Potentiodynamic Polarization 

Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-

Based Alloys, 2009).  The curves are used to find pitting potential (Epit) and re-

passivation potential (ER). A schematic can be seen in Figure 7: 
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Figure 7: Schematic of anodic polarization curves for a metal immersed in a solution containing aggressive ions. 
(Szklarska-Smialowska, 2005) (Jones, 1996) (Frankel G. , 2008) 

 

Higher (positive) Epit for a material in a given environment indicates greater 

resistance to pitting (Szklarska-Smialowska, 2005) (Jones, 1996). If the potential 

is reduced below Epit, the surface may re-passivate and pit growth can stop.  If the 

potential is between Epit and ER, pitting is expected (Craig, 1991). 

2.2.3.2 Propagation 

This stage of pitting is where pits grow and have the potential to increase beyond 

wall thicknesses and lead to leaks.   

For pits to propagate, certain conditions must be met:  

1. Epit must be exceeded and remain above ER 

2. An aggressive ion must be present 

3. Localized breakdown of passive or applied film 
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Pits are thought to initiate when the potential of the cell exceeds the pitting potential 

(Epit) of the material in a given environment and grow (propagate) if the potential 

remains above the repassivation potential, ER (Frankel G. , 1998).   

There are many theories for the mechanism of pit growth.  Jones (1996), in his text 

book “Principles and Prevention of Corrosion (Jones, 1996) describes pit growth 

as an autocatalytic process. Within a pit, Fe2+ ions attract negative ions (Cl- in 

marine applications) and through hydrolysis create a porous Fe(OH)2 cap over the 

pit.  This creates a self-propagating system where the increased acidity in the pit 

cavity increases corrosion of the steel walls of the pit.  Cl- ions migrate through the 

cap into the pit and Fe2+ migrates out.  

2.2.3.3 Repassivation 

Pits that continue to grow in stage 2 are the pits that will eventually threaten the 

integrity of an asset; however, all pits that are initiated (stage 1) and propagate 

(stage 2) do not always continue to grow.  Pits can repassivate and stop growing.  

This is common in materials that have a naturally produced passive layer such as 

some stainless steels.  In steels that are protected by an applied coating pitting 

may be stopped by reapplication of a coating.  Repassivation can be thought to 

occur below the ER. 
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Work by Novak (Novak, 2007) suggests increased internal resistance of the local 

cell within the pit is the reason for pit death (repassivation).  The author suggests 

that the increase in resistance may be due to: 

1. The pit filling with corrosion products 

2. Filming of the cathode that limits reaction. 

3. Drying out of the surface  (if rewetted, pits may reinitiate and continue 

to grow) 

2.2.3.4 Analysis of Pitting Mechanism knowledge 

The above review of work done to understand the mechanism of corrosion 

illustrates the need for continued study.  It is generally accepted that there are 

three stages to pitting however there is much disagreement in the phenomenon 

behind each stage. Pits can be initiated in many different ways and the growth of 

pits can be attributed to different phenomenon.  The reasons for pit repassivation 

are also not well understood.  For these reasons, pit mechanism had been 

assigned a depth score of 3 and a breadth of 3. 

2.2.4  Modeling of pitting corrosion rates 

The rate of corrosion of pits is an integral part of predicting pitting behaviour and 

assessing remaining life of assets susceptible to pitting corrosion.  The following 

summarizes the current understanding of pitting corrosion rates observed in the 

literature. 
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2.2.4.1 Modeling Pitting Rates in Piping Under Insulation 

Developing a model to predict CUI behavior in marine environments is needed to 

reduce failures, optimize maintenance and inspection schedules and aid in 

material selection for such applications.  Pitting is a key degradation mechanism 

found in the field and a method for modeling the rate of pitting under insulation is 

needed. 

Recommended Practice by Det Norske Veritas, DNV-RP-G101 (DNV RP-G101, 

2002) uses degradation modeling to plan risk-based inspections. This method will 

be discussed in Section 2.2.2.6.  The recommended practice includes a model for 

corrosion rate of carbon steel under insulation.  It describes the rate as normally 

distributed and is a function of temperature.   Table 3 summarises this rate.  

This model assumes that if the insulation is wetted by salt water, these rates will 

apply and if insulation is not wet, there will be no CUI.  This model is not specific 

to pitting and is a general corrosion rate model for CUI in carbon steel.  This 

recommended practice does not include a corrosion rate model for stainless steel 

under insulation; the effects of CUI for stainless steel are accounted for using a 

probability of failure (PF) model that is included in Section 2.2.2.5. 

 

 

 



56 
 

Table 3: Corrosion rate (CR) determination for carbon steel under insulation from DNV-RP-G101 (2002) 

Temperature 
(T) 

Mean CR 
(mm/yr) 

Standard 
Deviation (mm/y) 

Comment 

< -5°C     Probability of failure = 
10-5 

 -5°C to 20°C Same as 20°C 0.286 May overestimate 
rate, failures found at 

low temperatures 

 20°C to 
150°C 

0.0067 x T+0.3 0.286   

 >150°C     Refer to a specialist 

 

Pitting is an issue under insulation however, no other information was found to 

indicate studies in this specific situation.  As no information was found, the models 

for pitting corrosion in other situations summarized below may be used as a guide 

towards the development of a model for pitting rates of assets under insulation.   

2.2.4.2 Predicting Pitting Rates 

In operation, the depth of pitting is the most important characteristic that needs to 

be modeled.  It is the depth of a pit that will effect containment and structural 

integrity of pipes and other components in marine environments.   

A validated deterministic model for predicting pitting rates has not been found due 

to the complexity of the contributing factors and the apparently random nature of 

the process.   
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One study (Svintradze & Pidaparti, 2010) developed a governing equation for 

corrosion degradation due to pitting.  This model was derived from solid state 

physics and attempted to model pit radius over time.  This model included 

parameters that the authors were not able to determine and they recommended 

that further experimental work be conducted to validate their model.   

Engelhardt et al. (1997) proposed a method that calculates damage functions for 

different types of localized corrosion types (pitting, crevice and stress corrosion 

cracking) (Engelhardt, Urquidi-MacDonald, & MacDonald, A Simplified Method for 

Estimating Corrosion, 1997).  This method is the only one found that allows for 

environmental conditions that change with time (corrosion potential, temperature, 

electrolyte composition, etc.).  Using the damage function they suggest 

extrapolating short term experimental data to service life using extreme value 

statistics.  They also argued that damage function analysis is an effective method 

for predicting future corrosion damage and indicate that updating the model with 

inspection data will improve the model.   

The model depends on understanding four independent functions, the rate of 

defect nucleation, growth rate of the defect, rate of transition of one kind of defect 

to another, and the transition of an active pit into a passive pit or the transition of a 

pit into a crack. 

To determine the rate of pit nucleation the point defect model can be used.  This 

model includes external conditions of temperature, pH, metal potential, and halide 
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ion activity to determine pit nucleation rate.  To determine pit growth rate, they use 

an interpolation equation rather than the simple power law equation
BAtL   

(Engelhardt, Urquidi-MacDonald, & MacDonald, 1997)  

Valor et al.(2007) proposed a stochastic model to simulate pitting corrosion by 

combining pit initiation (Weibull function) and pit growth (non-homogeneous 

Markov process) (Valor, Caleyo, Alfonso, Rivas, & Hallen, 2007).  They used 

extreme value statistics (Gumbel distribution) to determine maximum pit depth for 

extended periods of time.  The authors validated their model using published data 

however; their method has been called into question by the original publisher of 

the data.  Melchers (Melchers, 2007) argued that the model is not appropriate for 

extrapolation from short term experimental data to long term exposure because of 

its dependence on the power function for pit depth.   

Stochastic models most commonly use extreme value distributions as maximum 

pit depth to be conservative and prevent leaking. 

The Markov chain approach has been used to model pitting corrosion under the 

assumption that pitting damage is memory-less and current state alone determines 

future behaviour (Caleyo, Velázquez, Valor, & Hallen, 2009).  

Provan et al. (1989) developed a Markov stochastic process to model pit growth 

with time (Provan & Rodrıguez III, 1989).  The system was modeled by a discrete-

space, continuous-parameter Markov process. They applied Extreme value 

statistics to predict the deepest pit and found that if the maximum pit on an area is 



59 
 

in one state (j-1) at time t, then during a time interval (t + Δt), the pit grow to the 

next state (j) with probability  

  t
t

t
j

k










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




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1

1
1

  where λ, k are corrosion system dependant and are based on 

short term experimental data.   

Caleyo et al.(2009) used a continuous-time, non-homogenous linear growth 

Markov process to model external pitting corrosion in underground pipelines 

(Caleyo, Velázquez, Valor, & Hallen, 2009).   

In other work, Melchers has developed a model for corrosion in marine 

environments (immersion and atmospheric) that shows distinct phases, each with 

different corrosion rates based on the driving corrosion mechanism (Melchers, 

2003) (Melchers, 2004)  (Melchers, 2008) ( Melchers & Jeffrey, 2008).    Figure 8 

illustrates this model.   

This model suggests that the conventional model for corrosion loss, C(t)=A tB , is 

not applicable for the life of the component.  The conventional model is based on 

diffusion of oxygen through increasingly thick corrosion layers and does not take 

into account changes in corrosion mechanisms with time (Roberge P. R., 2008). 
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Figure 8: General schematic of model for corrosion loss showing the changing behaviour of the corrosion process as 
a series of sequential phases adapted from (Melchers, 2003) 

 

Melcher has demonstrated through experimentation that this phenomenological 

model is applicable to pitting corrosion in marine immersion.  His model shows five 

distinct stages, each with different pitting rate (pit depth/time) based on the driving 

corrosion mechanism (Melchers, 2004).  

In Figure 8, stage 0 is due to water velocity and surface finish, stage 1 is kinetic 

phase limited by oxygen diffusion through adjacent water, stage 2 is controlled by 

the rate of oxygen through corrosion product, stage 3 is rapid corrosion under 

anaerobic conditions, and stage 4 approximates steady state corrosion under 

anaerobic conditions.  Parameters for this model were determined from long-term 

experimental field data.   
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2.2.4.3 Analysis of Pitting Rate Prediction Knowledge 

As discussed above, there is little agreement on modeling of pitting corrosion 

behavior in marine applications.  Pit depth had been identified by most as the key 

parameter to describe the rate of pitting and there have been many attempts to 

model this behavior. The causes of pitting corrosion can affect the rate of corrosion 

as seen in Figure 8, the more traditional power law model is still used that does 

not take into consideration fundamental changes in the driving force of corrosion 

over the long term.  Due to this lack of consensus, correlation and validation, the 

score for pit modeling is low for both depth and breadth at 2. 

2.2.5 Prediction of Asset Life (Fitness of Service) under Pitting Attack 

Corrosion rates for a particular material in a specific environment can be used to 

make predictions about the life of an asset.  The likelihood that an asset will 

continue to perform its function can be assessed in a variety of methods.  Fitness-

for-service (FFS) assessments are a common method to make these 

assessments.  Evaluation of asset life can be made before a component is put into 

service to assess manufacturing or after to assess in-service damage (Holtam, 

Baxter, Ashcroft, & Thomson, 2011).      

Many studies have predicted asset life or remaining life of components.  In this 

work, we are primarily concerned with prediction of asset life under pitting corrosion 

attack. In the literature, pit density and maximum pit depth are the most important 

characteristics needed for assessment of component remaining life.   



62 
 

2.2.5.1 Standards and Recommended Practices  

Holtam et al. (2011) surveyed FFS trends in industry to understand the application 

of FFS across industries (Holtam, Baxter, Ashcroft, & Thomson, 2011).  The survey 

found that API 579-1/ASME FFS-1 standard, “Fitness-for –Service” (API 579, 

2007) was the most frequently used standard and that corrosion and erosion 

damage mechanisms were the most frequent procedures used within any 

standard. 

API 579-1/ASME FFS-1 standard, Fitness-for -Service, outlines the method to 

assess the remaining life of components.  For this work, part 6 of this 

recommended practice is discussed for its applicability to pitting.   

Part 6, Assessment of pitting corrosion, gives a step by step method to qualify an 

asset for continued service based on known pitting damage.  The assessment is 

used to determine the course of action for the component in terms of; rerate, repair, 

or replace.   

There are three levels of assessment and each has conditions that govern their 

applicability.  Generally, level 1 assessment is carried out on the simplest 

components and as complexity increases, more detailed assessments are 

required (level 2 and level 3).  The assessments may also be completed 

sequentially if a lower level does not produce satisfactory results. 

All assessment levels require equipment design data, maintenance and operation 

history, and material properties.   
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For level 1 assessment, pit damage is classified by pitting charts to determine the 

grade of pitting (1-8) and for level 2 a representative site is chosen for assessment 

with a minimum of 10 pit-couples included.   

The level 1 assessment uses maximum pit depth to determine a remaining strength 

factor that is used to determine if the asset is fit for continued service.  If the asset 

does not pass level 1 assessment, the component can be directly repaired or 

replaced, or a level 2 or 3 assessment needs to be conducted.   

Level 2 assessments determine if there is remaining strength in the component in 

both the circumferential and longitudinal stress directions.  If the component does 

not pass a level 2 assessment, again the options are to repair, replace or conduct 

a level 3 assessments. 

Level 3 uses numerical methods to assess complex components and indicates if 

a component is fit for continued service, needs to be replaced, or repaired.   

The remaining life of the component can also be estimated using this standard 

following a maximum allowable working pressure of the undamaged component 

(MAWP) approach.  This assessment uses a pit propagation rate (PPR) to estimate 

future damage and to estimate MAWP as damage progresses with time.  PPR is 

not specified in the standard but indicates that “… a Pit Propagation Rate should 

be determined based on the environmental and operating conditions (API 579, 

2007, pp. 6-12) 
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There are other recommended practices to assess fitness for service and asset 

life available that are not summarized in this work.  Some of these standards are 

summarized in Table 4. This table also includes an assessment of how these 

standards specifically address pitting corrosion. 

Table 4: Select Recommended Practices for FFS assessments including specific methods for addressing pitting 
corrosion. 

Standard/Recommended Practice Specific Pitting 
corrosion 
assessment 
procedure included 

Method for 
determining  
pitting rate 
included 

API 579-1/ASME FFS-1: Fitness-for -Service  (API 579, 
2007) 

YES NO 

BS 7910 : Guide to methods for assessing the 
acceptability of flaws in metallic structures (BS 7910, 
2005) 

NO NO 

FITNET: European fitness for service network (FITNET, 
2006) 

NO NO 

ASME B31.G : Manual for determining the remaining 
strength of corroded pipelines (ASME B31.G, 2012) 
 

NO NO 

 

API 579-1/ASME FFS-1 is the only reviewed standard that specifically addresses 

pitting corrosion and no standard was found that includes a method for determining 

the rate of pitting. 

Recommended Practice DNV-RP-G101 (DNV RP-G101, 2002) uses degradation 

modeling to plan inspections. This method is discussed in Section 2.2.6.  To predict 

asset life this recommended practice uses a probability of failure (PF) per unit wall 

thickness as a function of temperature for local corrosion and stress corrosion 

cracking.  Figure 9 illustrates the method included in DNV-RP-G101 to find the PF 

for local corrosion under insulation. 
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Figure 9: Schematic adapted from DNV-RP-G101 PF for local corrosion of stainless steel under insulation as a 
function of temperature (DNV RP-G101, 2002). 

In addition to the standards discussed above, there are many scholarly works that 

attempt to predict asset life of a component.  As discussed in earlier sections, there 

is no consensus on modeling of pitting rate.  For this reason, statistical models that 

predict the probability of failure of a component have been developed to minimise 

the effect of this issue.   

Hodges et al (2010) developed an internal system to assess corrosion risk that 

overcomes the lack of information available in practice.  Their method incorporates 

data from many sources including engineering judgement.  This method can then 

be used to plan monitoring systems and inspection schedules.  The result of their 

work is a semi-quantitative risk assessment that they have shown to be useful to 

different assets and industries. 

Others attempt to understand asset integrity modeling using uncertainty modeling 

(Thodi, Khan, & Haddara, 2009), (Race, Dawson, Stanley, & Kariyawasam, 2007), 

and (Akmar Mokh & Ismail, 2011).  They found that pitting corrosion was most 
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closely modeled using type1 extreme value and 3P-Weibull distributions.  These 

models are then updated using Bayes theorem to assess risk to assets in service.  

They also incorporated inspection data into this model; this allows for the asset 

risk to be updated with new information and will lead to more realistic assessments 

of remaining asset life.   

Other applications of asset integrity modeling for components susceptible to pitting 

may be useful to understanding CUI in marine applications.   

Race et al. (2007) have developed a corrosion scoring model based on corrosion 

susceptibility and severity (Race, Dawson, Stanley, & Kariyawasam, 2007).  They 

have developed this method considering three failure modes: 

Probability of: 

1. Coating failure  

2. Cathodic protection failure 

3. Corrosion of unprotected pipe in soil environment  

The model is developed by finding the probability of failure for each failure mode 

where: 

Probability of failure (PF) = Susceptibility factor x Severity factor 

1. Coating failure PF = COATPF  

2. Cathodic protection failure PF = CPPF 



67 
 

3. Corrosion of unprotected pipe in soil environment PF = SOILPF  

These probability scores were determined through assessment of published data 

and engineering judgment.   Combining all probability of failure scores led to a total 

failure score (TFS) for the system: 

3

SOILPFCPPFCOATPF
TFS




 

The TFS is then fit to known data to determine a corrosion rate based on this score. 

For this study (Race, Dawson, Stanley, & Kariyawasam, 2007) the authors found: 

Maximum corrosion rate (mm/y) = 1.58 x 10-4 TFS 

In another study (Akmar Mokh & Ismail, 2011) the authors used the thinning failure 

function proposed by Khan et al (Khan, Haddara, & Bhattacharya, 2006) to assess 

failure of insulated piping.   In this analysis, the variables are again assumed to be 

random, however, their distribution is assumed to be normal and the mean and 

standard deviation known. The failure probability is found using the following 

equation 

nnn dxdxxfxfpf ....)()...( 111  

where )( 11 xf is the probability density function of each variable.   

Using FORM to determine a reliability index β that satisfies the failure function and 

leads to a simplified function for failure probability for each defect.  The probability 
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of failure of the pipeline system can be found using projection operations as 

follows.   

)1(1)(   ipfpipelinepf  

The authors assume the defects are mutually exclusive.  As this analysis has 

shown, the behaviour of defects (pits) is complex and interaction and dependence 

of pits can be reasonably assured making this assumption by the authors 

questionable.   

A case study was used to demonstrate usefulness of the function in assessing 

asset integrity using a corrosion rate that is assumed to be constant in time.  The 

work by Melcher, (Melchers, 2004), (Melchers, 2008), (Melchers, 2007), 

(Melchers, 2003), and (Melchers & Jeffrey, 2008), has shown that corrosion 

behavior can vary significantly depending on the corrosion driving mechanism and 

that a constant corrosion rate is not always appropriate.   

2.2.5.2 Analysis of Asset Life Prediction Knowledge Considering 

Pitting Corrosion 

Asset integrity and fitness for service assessments are readily available and many 

additional procedures have been developed for specific industries and 

components.  The analysis has shown that there is limited information on corrosion 

rates included in these methods.  It is expected that corrosion rates are developed 

independently and then used in the analysis.  As discussed in previous sections, 
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there is currently no method for determining reliable long-term corrosion rates.  For 

the purpose of this analysis, the depth of knowledge for this category is considered 

to be mid-level and is assigned a score of 6.  This is due to the variety of different 

methods found indicating a lack of consensus and the lack of information on 

corrosion rates.  The breadth of this category is considered high and given a score 

of 8.  Fitness for service methods has been well demonstrated to be valid over 

many industries. 

2.2.6 Risk-Based Inspection 

Risk-Based Inspection (RBI) is a methodology that develops inspection and 

maintenance plans based on risk.  Risk is defined through analysis of the 

probability of an incident occurring and the severity of the consequences if an 

incident does occur.  Using a risk-based inspection helps to focus inspection 

resources on key areas, evaluate the system wide risk against an operator set risk 

acceptance criteria, and develop optimal methods for inspection and monitoring 

(DNV RP-G101, 2002). 

2.2.6.1 Standard and Recommended Practices for RBI  

The American Petroleum Institute (API) developed two recommended practices 

(RP) to address RBI: 

1. API Recommended Practice 580: Risk-Based Inspection (API RP580, 

2009) 
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2. API Recommended Practice 581: Risk-Based Inspection Technology 

(API RP 581, 2008) 

API 580 deals with defining RBI and instructing users on how to implement and 

sustain an RBI program.  API 581 gives more specific procedures to develop an 

RBI program and to provide quantitative methods to assess overall plant risk.  

These two methods are intended to be used together and will be discussed 

together for this work.   

API 580 defines terms and explains the basic concept of developing an RBI 

including overview of risk analysis, key elements of RBI programs, establishing 

boundaries, and data and information collection.  It also introduces damage 

mechanisms and failure modes.  These include corrosion, cracking, and 

metallurgical damage.  Section 9.1.1 of API 580 lists general steps for identifying 

possible damage mechanisms.  Once possible mechanisms are identified, section 

9.3 of API 580 describes how to assign an associated failure mode.  These failure 

modes can include modes such as pinhole leaks, large leaks, or brittle fracture.   

This information is used to complete a probability analysis. A general method for 

assessing probability of failure (PF) is discussed including qualitative and 

quantitative methods.   Qualitative assessments are based on engineering 

judgement and then a description (high, medium, low or 0.1 to 0.01 times per year) 

is assigned.  There are numerous quantitative approaches to PF indicated.  Using 
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probability shown as a distribution is one option; using manufacturer failure data is 

another.   

To determine PF, API 580 lists the two main considerations; damage mechanism 

and rates, and the effectiveness of the inspection program.  The steps to analyse 

these effects on PF are listed in the RP and summarized here (API RP580, 2009): 

1. Identify active/credible damage 

2. Find damage susceptibility and rate 

3. Qualify inspection effectiveness 

4. Determine probability that the damage tolerance will be overcome. 

Methods for determining these steps are generally discussed in API 580 and more 

in-depth in API 581 (API RP 581, 2008). API 581 instructs a user on the 

calculations required to determine a PF for a component or system under study.  

API assesses PF as a combination of a generic failure frequency, a damage factor, 

and a management system factor.   

The generic failure frequency is the basis of this assessment.  It was set for 

different component types based on representative values from industry failure 

data.  This failure rate is a baseline value before any damage occurs.  The damage 

factor is applied to this baseline for each specific component and the management 

system factor is applied to all equipment.   
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Damage factors are determined by specific damage mechanisms.  API 581 

includes methods for determining damage factors for: 

 Thinning (both general and local) 

 Component Linings 

 External Damage  

 Internal Stress Corrosion Cracking  

 High Temperature Hydrogen Attack 

 Mechanical Fatigue (Piping Only) 

 Brittle Fracture 

The consequence of failure (CF) is then described and techniques for assessing 

introduced in RP API 580 (API RP580, 2009).  These consequences are 

categorized as: safety and health impacts, environmental impacts, or economic 

impacts.  Quantitative and qualitative techniques are introduced and can be 

measured in terms of safety or cost.  API 581 includes methodologies for two levels 

of analysis. Level 1 analysis is a simplified method of evaluating the consequence 

of release of a limited number of fluids.  This method includes determination of 

important system characteristics such as release rate, release hole size selection 

and flammable and explosive consequences.   
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Level 2 CF assessment provides a more detailed procedure for calculation.  This 

analysis is used when the assumptions of the simplified Level 1 assessment are 

not valid.  An example of this situation given in the RP is when stored fluid is close 

to its critical point and the ideal gas assumption is invalid.   

API 580 next generally discusses the risk assessment and management 

techniques.  This section combines PF and CF to determine the risk.   Risk = 

Probability (PF) x Consequence (CF). 

API 580 gives information on prioritizing and evaluating acceptable risk and, using 

examples, demonstrates risk calculations and risk rankings.  Once a risk tolerance 

is developed, the RP gives guidance on how to manage risks that are above the 

tolerance.  Methods such as decommissioning, condition monitoring, and 

probability mitigation are discussed as ways to manage and reduce risk.   

API 580 also gives information on reducing uncertainty in risk assessments 

through inspections.  If damage mechanisms and rates of damage are assessed 

through inspection and then acted on, these methods can reduce PF and thus 

reduce overall risk.   

API 581 again gives more detail and includes procedures for calculating risk.  The 

RP includes equations for both area based risk and financial based risk.   

The results of the risk assessment serve as a basis for developing the inspection 

plan.  API 580 advises that the following be included in inspection procedure 

development: 
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 Risk criteria and ranking 

 Risk drivers 

 Asset history 

 Number and results of inspections 

 Type and effectiveness of inspections 

 Equipment in similar service and remaining life 

The type of inspection also plays a key role determining risk.  Both API 580 (API 

RP580, 2009) and 581 (API RP 581, 2008) indicate that there are many factors 

that affect the risk.  Some of these are; frequency of inspection, coverage of 

inspection, tools and techniques, procedures and practices, and inspection type 

(internal, on-stream, or external).   

API 581 includes specific information on different types of components that may 

be included in RBI and gives specific advice on following the procedure for each.  

These components are: pressure vessels and piping, atmospheric storage tanks, 

pressure relief devices, and heat exchanger tube bundles.   

API 580 and 581 do not contain specific sections on pitting corrosion.  Pitting is 

mentioned throughout as a damage mechanism and API 581 indicates that 

damage rates are increased over general corrosion rates due to pitting for many 

situations. 
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 “These rates are 10 times the general corrosion rates to account for 

localized pitting corrosion” (API RP 581, 2008, pp. 2.B-13)  

 ” As a rule of thumb for carbon steel, the pitting rate is a factor of 5 to 10 

times the coupon general corrosion rate,  (calculated by weight loss).” (API 

RP 581, 2008, pp. 2.B-98) 

DNV-RP_G101 “Risk Based Inspection of Offshore Topsides Static Mechanical 

Equipment” (DNV RP-G101, 2002) is another example of RBI recommended 

practice (RP).  It describes the methodology for developing a RBI in an offshore 

production facility.  This RP begins with a risk screening to categorize equipment 

into high, medium, or low risk.  The second part of the process is a detailed 

quantitative assessment of higher risk areas.   

The RP includes a guide to the screening process and recommends that this 

qualitative analysis be carried out by qualified knowledgeable personnel.   This 

guide allows the assessment team to use engineering judgement to identify the 

consequence and probability (and thus the risk) as high or low for each component 

or system (DNV RP-G101, 2002).   Those components/systems that include a high 

rating for consequence and probability are further assessed in the detailed 

analysis.  The RP indicates that if there is any question to the rating (high or low) 

the component/system should be included for further detailed study.  Items that 

are found to have low or medium risk are followed up with maintenance activities 

and not considered further in the RBI methodology.   
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The detailed analysis calculates inspection schedules and techniques based on 

identified degradation mechanisms and current state of damage.  This analysis 

aims to ensure that risk levels do not exceed a pre-determined acceptable risk 

limit.   

This RP gives methods for determining the probability of failure (PF) and 

consequence of failure (CF) and illustrates the methods for combining to determine 

risk.  Consequence modeling can be based on other analysis (quantitative risk 

analysis (QRA) or risk assessment methods (RAM)) but the RP also includes 

simplified methods to assess consequences.  Event trees are recommended to 

identify possible consequence and to determine the CF.  The practice separates 

consequence modeling into ignited and un-ignited consequences and outlines 

each in terms of personal safety, economic consequences, and environmental 

consequences.   

Probability of failure modeling assesses the likelihood degradation mechanisms, 

the current PF and determines the PF as it changes with time.  This PF will 

establish inspection intervals.  The PF limit is determined from the acceptable risk 

limit and the CF.   

Degradation mechanisms are identified as either an insignificant model, a 

susceptibility model, or a rate model.  An insignificant model is used on specific 

material/fluid combinations and is considered to be fixed at PF = 10-5 /year.  

Inspection is considered irrelevant for this model (DNV RP-G101, 2002).  The 
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susceptibility model determines PF based on operating conditions.  This model is 

considered to be constant over time for given conditions.  Inspection can be used 

to monitor process parameters.  Rate models indicate that damage increases with 

time.  Appendix C of DNV RP G101 includes typical material/fluid combinations 

and gives methods for determining PF for these situations.  Two CUI models were 

discussed in sections 2.2.4.2.and 2.2.5.1. Other models described include CO2 

model, microbial corrosion, corrosion based on water characteristics, and 

atmospheric corrosion.  More detailed modeling of damage rates is suggested and 

probabilistic methods are suggested to obtain more accurate results. 

Results from all analysis are combined and inspection is carried out to keep the 

risk of failure below the risk tolerance limit.  

 

The above summarised recommended practices have been used as a guide or 

adapted by many researchers (Khan, Haddara, & Bhattacharya, 2006), (Khalifa, 

Khan, & Haddara, 2012)].  These works build on established procedure to improve 

these practices, increase safety and reduce cost.  

Two state functions were developed by Khan et al. (Khan, Haddara, & 

Bhattacharya, 2006) to describe material degradation.  The first is for thinning of 

carbon steel and copper piping that measures the resistance of the material to 

applied stress.  
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where 

S= Material Strength 

C = corrosion rate 

Δt = time increment 

d = material thickness 

P = operating pressure 

D = diameter of the component, 

A state function for stress corrosion cracking was also developed based on Paris's 

crack growth law (Khan, Haddara, & Bhattacharya, 2006).   
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where  

KIC = material fracture toughness,  

Y =dimensionless geometric factor,  

S = residual stress, 
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Ccr = crack growth rate 

Rl/a= crack to length to-depth ratio 

The variables in the above models (S, C, P, KIC, Y, P, A) have uncertainty and are 

considered to be random, making the material degradation process stochastic.  

These random variables are assumed to be independent and exponentially 

distributed leading to a gamma distributed process (Khan, Haddara, & 

Bhattacharya, 2006).  Corrosion rate for the thinning model is assumed to be a 

linear function with time allowing the shape parameter (α) of the gamma 

distribution to become αot .  This leads to a failure distribution function for 

cumulative material degradation. 

𝑓𝑋(𝑡)(𝑥) =
𝛽𝛼𝑜𝑡

Γ(𝛼𝑜𝑡)
(𝑥)𝛼𝑜𝑡−1𝑒−𝛽𝑥   for x > 0. 

This function is then used for inspection updating using new inspection data and 

Bayesian updating (Khan, Haddara, & Bhattacharya, 2006).   

Datla et al. (2008) introduced a probabilistic model of steam generator tube pitting 

corrosion based on inspection data from a nuclear generating station (Datla, 

Jyrkama, & Pandey, 2008).  A stochastic non-homogeneous Poisson process with 

pit size as a random variable was used.  Their model was based on inspection 

data of pits that were greater than 50% of thickness.   

Intensity function (Non-homogenous Poisson process):  

λ(t) = αtβ−1 
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Expected number of pits (Poisson process):   

E[N(t)] =Λ(t) = 






t

 α = scale parameter, β = shape parameter 

Pit depth distribution (Generalized Pareto Distribution):  

 







1

11 






 


x
xFx

 σ = scale parameter, ζ = shape parameter 

Extreme pit depth distribution using extreme value theory: 

  ))(exp( tzF zY   

Inspection data was used to estimate parameters (α, β, λ, ξ, σ, μ) 

 

In other works, Khalifa et al. (2012)  describe a methodology used to develop a 

prediction tool to estimate the inspection sample size needed to determine the 

maximum localized corrosion depth of a process population (Khalifa, Khan, & 

Haddara, 2012).   As inspection of all component area is not feasible, inspecting  

limited number of sites may be necessary.  To ensure the data collected from 

limited inspections represents the behavior of the entire system, the correct 

number of samples needs to be inspected.  They developed a new method to 

determine the required sample size to assess localized corrosion.  This method 

assumes that collected data is independent, has negligible measurement error, 
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and follows the Grumbel extreme value distribution (Khalifa, Khan, & Haddara, 

2012).   

The method first divides the process under investigation into corrosion circuits.  

Each circuit includes components of the same material that are subjected to the 

same environment.  The expectation is that areas in each corrosion circuit will 

experience the same degradation mechanisms.   

The new equation to determine sample size needed to find the maximum localized 

corrosion was then demonstrated through a case study.  Inspection data was used 

and a sample size determined using the methodology.  This sample size was 

similar to that predicted by the proposed equation.   

2.2.6.2 Analysis of RBI using pitting corrosion rate modeling 

knowledge 

Risk-based inspection is well documented and is becoming more and more 

standard practice in industry.  Methodologies are available to guide users through 

probability and consequence modeling.  The recommended practices examined 

here indicate a well-established procedure for RBI.  The RP reviewed include 

simplified methods for probability and consequence modeling.  A need for precise 

modeling has been identified and the above papers indicate that this work is 

ongoing.  There remains little information on probability modeling for pitting 

corrosion in general and less for pitting corrosion under insulation.   
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The depth of understanding of RBI is considered high at 7 as the RBI procedures 

are well established and standards exist to guide in RBI development.  It is the PF 

elements needed for RBIs that need to be further studied to increase accuracy.  

Pitting corrosion needs to be incorporated more directly and specifically.   The 

breadth of understanding of this is considered mid-range at 6 as there are many 

standards used by different industries and there is limited consensus on these 

methods. 

2.3 Analysis and Discussion 

2.3.1 Current State of Pitting Corrosion Knowledge 

Earlier sections show that while we do understand a lot about pitting corrosion, 

there are still many aspects of this degradation that are relatively unknown or less 

known.   Figure 10 summarises the assigned depth and breadth rating for the 

understanding of pitting corrosion in marine applications.   

 

Figure 10:  Relative Depth and Breadth of Knowledge: Pitting Corrosion in Marine Applications 
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This graph clearly shows that the categories that need the most work to enhance 

our understanding of pitting corrosion are i) the mechanism of pitting and ii) the 

prediction of pitting corrosion 

The depth of knowledge of pitting corrosion modeling is significantly smaller than 

the other pitting categories analysed.  This lack of knowledge is limiting because 

as shown in sections 2.2.5 and 2.2.6, pitting rate modeling is key to making 

accurate and reliable assessments.  This is essential to improve safety and lower 

costs through FFS and RBI inspections.   

Understanding the mechanism of pitting is also important as increased 

understanding of the phenomenon will make modeling more realistic.  The 

methods described in section 2.2.2 can be adapted along with the identification 

techniques described in section 2.2.1 to allow for more research and data 

collection that will ultimately strengthen our understanding of all categories.  These 

relationships are illustrated in Figure 11 below.  

This figure illustrates the interdependence of the six analysed categories.  Pitting 

identification and experimental methods to study pitting are used to further 

understand and define pitting mechanism.   
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Figure 11: Relationship between pitting corrosion categories 

All three of these categories are needed to develop a pitting rate model.  This 

model will then be incorporated into FFS and RBI analysis to improve safety and 

reduce costs in marine operations. 

2.3.2 Pitting Under Insulation 

Review of current models available for pipe failure due to corrosion and for 

corrosion rate has shown that there is no model available that to help model 

corrosion rates for piping systems under insulation in marine environments. 

There are models available that may predict the failure rate of insulated pipes once 

a precise model of CUI corrosion rate is known.   

There are models of corrosion rate available for other environments.  These 

models indicate the importance of different variables that play a critical role in CUI 

modeling and thus will be used in failure model development.   
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2.3.3 Future Direction 

The development of a corrosion rate model for CUI in offshore environments can 

only be developed when the variables that affect this type of corrosion are 

understood and the interactions between variables determined.  The following fault 

tree shown in Figure 12 is used to help identify the base causes of CUI to begin 

modeling corrosion type for the purpose of fitness for service, RBI and failure 

modelling.  

 

Figure 12: Fault tree of CUI of Steel in Marine Environments (NOTE: Atm. = Atmosphere) 

Some of the important causes of CUI in marine environments that need to be 

studied for their effect on corrosion rates have been identified.  These include:   

1. Predicting moisture penetration under insulation including: 
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 Wicking properties of insulation 

 Degradation of insulation over time 

 Installation issues (Human Factors) 

2. Effect of the moisture capturing:  

 Time of wetness (TOW) 

 Chloride concentration [Cl] 

 Sulfur dioxide concentration [SO2] 

 Rainfall amount 

3. Effects of cyclic temperatures 

4. Stress induced on stainless steel components. 

Bacterial corrosion as a factor for long term corrosion in marine atmospheres was 

introduced by Melcher in (Melchers, 2004) and (Melchers & Jeffrey, 2008).  

Bacterial corrosion is sometimes called microbiological influenced corrosion (MIB).  

No published research is found that investigates this specific corrosion type under 

insulation.  Further study is needed to determine if MIB is a factor along with pitting, 

uniform and stress corrosion cracking for CUI.   
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Further research and testing is needed to determine interactions of different 

parameters and to develop a corrosion rate model for CUI that can be used to 

predict reliability and fitness-for-service in marine environments. 

2.3.4 Research Direction 

To begin developing a model for CUI that includes pitting corrosion new field 

experiment set-up is to be developed. This is important to better understand 

mechanisms of pitting under insulation and to link this data to engineering design 

and analysis.  

Long term, periodic data collection is needed to determine corrosion rates under 

insulation.  This data is not available from in-situ monitoring in industry due to 

issues with insulation removal, inspection techniques, and available resources.  No 

field studies have been conducted to attempt to evaluate CUI in marine 

atmospheric conditions outside of a laboratory.   

Most corrosion rates currently used in predictive models are based on short term 

laboratory corrosion data and no physical justification for the typical power function 

relationship is known (Melchers, 2004) (Engelhardt & Macdonald, 2004). 

 

To generate long term data, field testing is suggested.  This would allow the 

collection of relevant environmental data and understanding of degradation 
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mechanisms and corrosion rates.  This would also create an opportunity to develop 

new inspection techniques to help determine pitting rates from on-line monitoring.  

Field data could also be used to develop accelerated lab scale testing to further 

understand the long term phenomenon and to simulate long term exposure at 

specific environments and develop a pitting rate model.   

2.4 Conclusion 

This paper has summarised six categories of pitting corrosion and determined the 

state of understanding for each.  It was found that the depth of knowledge of pitting 

corrosion rate modeling and pitting mechanism are significantly less than the other 

pitting categories analysed. 

From this work the following conclusions indicating the current state of knowledge 

can be made: 

 There is significant information available on pit identification techniques and 

that these techniques are well understood. 

 Well established experimental methods are available to compare pitting 

resistance of materials. 

 It is generally accepted that there are three stages to pitting.  

 Pits can be initiated in many different ways and the growth of pits can be 

attributed to different phenomenon.   
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 Pit depth has been identified as the key parameter to describe pitting rate.   

 Asset integrity and fitness for service (FFS) assessments are readily 

available and many additional procedures have been developed for specific 

industries and components. 

 Risk-based inspection (RBI) is well documented and is becoming standard 

practice in industry. 

 Reviewed RBI recommended practices include simplified methods for 

probability and consequence modeling. 

Through this analysis, the following conclusions indicating the need for further 

study can be made: 

 Standard laboratory methods that accurately determine pitting rate are not 

available. 

 Field data has shown that short term testing cannot be relied on to predict 

long term corrosion. 

 There is no consensus in the phenomenon of each of the three stages of 

pitting.  

 The reasons for pit repassivation are also not well understood.   

 There is little agreement on modeling of pitting corrosion rate. 

 No FFS Assessment found includes a method for determining pitting rate.   
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 Little information on probability modeling for pitting corrosion in general is 

available; less for pitting corrosion under insulation 

 Categories that need the most work to complete understanding of pitting 

corrosion are the mechanism of pitting and the prediction of pitting 

corrosion.   

 Pitting models are needed for more accurate FFS and RBI assessments 

 New experimental methods are needed to develop additional information on 

pitting. 

 New inspection techniques could help determine pitting rates from on-line 

monitoring 
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3.0 Experimental Design to study Corrosion Under Insulation in Harsh 

Marine Environments 

Preface 
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and prepared the first draft of the manuscript.   The co-author Faisal Khan helped 

in developing the concept, the experimental setup, and contributed in preparing, 

reviewing and revising the manuscript. The co-authors Dr. John Shirokoff, and Dr. 

Wei Qiu contributed through support in the development and improvement of the 

design and assisted in reviewing and revising the manuscript. 

Minor editing of the published paper was completed to conform to formatting and 

to correct errors. 

Abstract 

Corrosion Under Insulation (CUI) is a serious issue in harsh marine environments. 

Corrosion damage can have catastrophic effects on health and safety, asset 

integrity, the environment, and productivity if it is not detected and managed early.  

Limited information is available for CUI in marine environments.  To overcome this 

issue, three types of corrosion tests are proposed: Determination of the effect of 

environmental factors on CUI using laboratory simulation, field testing, and 
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accelerated marine atmosphere testing for CUI.  This paper describes the 

methodology for developing statistically significant data to evaluate CUI in harsh 

marine field conditions, develop an accelerated laboratory test procedure to 

simulate CUI, develop a model of CUI rate, and develop risk-based remaining life 

assessment model for assets under CUI attack.   

3.1 Introduction 

Corrosion under insulation (CUI) is a serious issue in harsh northern marine 

environments.  This type of damage can have catastrophic effects on asset 

integrity, production losses, health and safety, and the environment in the offshore 

industry.  

CUI is an issue in chemical and petroleum industries and work has been done to 

understand and combat this issue in onshore operations (Frudge, 2008; Simpson, 

2007; Fitzgerald et al, 2003). ExxonMobil Chemical presented a study to European 

Federation of Corrosion in September 2003 indicating that the highest incidence 

of leaks in the refining and chemical industries are due to CUI (Winnik, 2003).  

Between 40% and 60% of piping maintenance costs are related to CUI (Winnik, 

2003). This issue becomes more severe in marine operations.   While there has 

been work done to try and understand the causes of CUI onshore, there has not 

been as much work done on understanding the issue in offshore environments.  

CUI was identified by industry experts as the number one issue of corrosion at the 

Corrosion Workshop held in St. John's, NL (Marine Corrosion Workshop, 2012). 
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Insulation of pipes in the offshore industry is necessary to control processes, 

conserve energy, and to protect personnel. This insulation is required; however its 

increased use has contributed to the ongoing and costly problem of CUI (Delahunt, 

2003). Insulation over pipes creates spaces and crevices where moisture collects 

and can remain in contact with the pipe.  Figure 13  illustrates this situation. It is in 

this annular space that corrosion is expected to occur.    

 

Figure 13: Illustration of annular space between pipe surface and insulation where corrosion is anticipated. 

Due to restrictive access, CUI is difficult to monitor and degradation can continue 

until failure. Operating insulated systems in harsh marine environments is 

expected to lead to an increase in corrosion failure if effective inspection and 

maintenance plans are not implemented.  CUI is difficult to detect because 

corrosion occurs under the insulation, preventing detailed inspection without the 

costly and time consuming task of insulation removal.  There are non-destructive 

testing and evaluation methods available that can indicate issues without the 

removal of pipe insulation and include ultrasonic and radiographic techniques.  

These methods can indicate pipe wall thickness change however they cannot be 

relied upon to give detailed or definitive corrosion loss data.  Standard inspection 
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techniques and recommended practices are detailed in industry standards such as 

ASTM Standard G46 (ASTM G46, 2005) that detail how to use non-destructive 

methods to inspect for pitting corrosion and  NACE  standard practice “Control of 

Corrosion Under Thermal Insulation and Fireproofing Materials—A Systems 

Approach” describes inspection and maintenance planning to combat CUI (NACE 

International, 2010).  Risk based inspections (RBI) are also commonly used in 

industry to develop inspection plans to detect CUI (DNV RP-G101, 2002) (API RP 

580, 2009), (API RP 581, 2008). Another resource for combating CUI is the 

European Federation of Corrosion Publications number 55 edited by S. Winnik, 

“Corrosion-Under-Insulation (CUI) Guidelines” (Winnik 2008). 

Short term, periodic data collection is needed to determine corrosion rates under 

insulation.  This data is not available from in-situ monitoring in industry due to the 

cost of insulation removal.  No studies have been conducted to attempt to evaluate 

CUI in harsh marine conditions outside of a laboratory.  Corrosion rates currently 

used in predictive models are based on short term laboratory corrosion data 

(Klassen & Roberge, 2003, Engelhardt, Urquidi-Macdonald, & Macdonald, 1997, 

Engelhardt & Macdonald, 2004). In addition, there is no effort made to update 

corrosion rates based on the inspection data. A recent review by Caines et al. 

(2013) illustrates this point (Caines, Khan & Shirokoff, 2013).  The authors found 

that there is no standardised method to determine pitting rates, that there is limited 

agreement between long term pitting behaviour and current accelerated laboratory 
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testing, and that corrosion rate modeling is needed to improve fitness for service 

and risk based inspection applications. 

An understanding of the contributing factors of CUI and how these factors are 

associated can make the expected behaviour predictable.  Developing a model to 

predict CUI behaviour in marine environments is needed to reduce failure 

probabilities, optimize maintenance and inspection schedules and aid in material 

selection for this type of application.  

A review of available models for pipe failure due to corrosion and for corrosion rate 

has shown that there is no model available that predicts corrosion rates for piping 

systems under insulation in marine environments.  Only one failure model that 

attempts to predict failure probability of a pipe system due to CUI was found 

(Mokhtar & Ismail, 2011). It utilises a corrosion rate that is assumed to be constant 

with time.  Work by Melcher (2003, 2004) has shown that corrosion behaviour can 

vary significantly depending on the driving corrosion mechanism and is not linear 

with time (Melchers, 2003, Melchers, 2004).  If a more accurate corrosion rate 

model is developed for CUI in marine applications, it is possible that a failure model 

could be developed to predict the probability of CUI, which would assist in 

developing effective inspection and maintenance plans. 

Preliminary research has highlighted a gap in knowledge for predicting CUI in 

harsh marine environments.  This paper proposes research tasks that attempt to 

fill this gap and lead to better models for predicting CUI in offshore applications.  
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To do this, three stages of experimental work are needed on the typical offshore 

steel/insulation couple of low temperature carbon steel (LTCS) under thermal 

insulation.  

Stage 1. A field test to capture long term data on CUI in harsh marine 

environments.  This stage of experimentation is conducted in a natural 

environment on the coast of Newfoundland.   

Stage 2. A laboratory test to characterise CUI to determine factor interaction 

and affects. 

Stage 3.   A laboratory test to simulate and accelerate CUI using data collected 

during the first year of experimentation in the natural setting (Stage 1). 

 From this three stage method, unique data is generated using inspection, mass 

loss and electrochemical noise measurements.  The data is used to develop a CUI 

prediction model, damage function, and improved fitness for service and risk 

assessment methodologies.  

Similar methodology has been proposed by Srinivasan et al. (2013) to develop a 

predictive methodology to combat the effects of wet insulation on CUI (Srinivasan 

et al., 2013).  They proposed a two-step plan similar to Stages 2 and 3 to first 

characterize the CUI behaviour followed by a more detailed laboratory study.  To 

develop these test procedures and to generate statistically significant results, the 

design of experimental methodology was implemented for each test regime.  The 

results of this study are presented here. 
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3.2 Expectations 

It is expected that CUI develops over time during these experiments. The type or 

mechanism of corrosion under insulation is not always known and as such many 

types of corrosion are possible for LTCS in a marine environment.    Uniform 

Corrosion, Pitting Corrosion, Chloride Stress Corrosion Cracking (CSCC), and 

Microbial Influenced Corrosion (MIC) are the most common types of corrosion 

expected. Information regarding these mechanisms is well covered in literature 

and briefly summarized below. 

Uniform Corrosion 

Uniform corrosion is the degradation of a metal over all areas exposed to the 

environment.  It is a continuous reaction between anodes and cathodes over the 

exposed surface that leads to the relatively uniform loss of metal at the exposed 

surface (Davis, 2000).  Uniform corrosion is generally more predictable because 

the corrosion occurs over the entire area and is easier to measure (Buschow, et 

al., 2011) and predict. Materials, such as carbon steel, that do not form a natural 

passivation layer are more susceptible to this type of corrosion.  Protective 

coatings are often used to combat uniform corrosion.  This method can 

successfully protect assets from uniform corrosion; however, any break in the 

protective coating can increase the likelihood of localized corrosion like pitting, 

leading to unexpected catastrophic failure of process components. 

Pitting Corrosion 
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Pitting is the most common type of localized corrosion (Roberge, 2008).  It is a 

form of corrosion where the degradation of the material is localized to small areas 

rather than over the entire surface uniformly. According to Schumacher (1979) 

some metals exposed to a corrosive environment will develop pits due to salt 

particles or other contaminants.  Other factors can contribute to pitting including: 

 Inclusions 

 Discontinuities in protective coating (both natural and applied) 

 Surface defects 

Materials most likely to develop pits are generally coated or naturally protected. 

Pitting capitalizes on breaks in the materials protective layer where an 

electrochemical cell can be formed and pits are initiated.  In marine applications, 

pitting can be seen in stainless steel and on coated carbon steels.   

 

 

 

Stress corrosion cracking 

Stress corrosion cracking is an issue in many industries and environments.  All 

forms of SCC depend on the presence of three factors as shown in Figure 15 : 

1. A susceptible material  
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2. Residual or applied tensile stress 

3. A corrosive environment  

 

 

 

 

Figure 14: Requirements for SCC 

 

There are many theories to explain the causes of crack growth in SCC.  Two 

theories discussed in literature that describe the controlling factor of crack growth 

are: 

1. Stress intensification at base (fracture mechanics) (Wei, 2010) 

2. Enhanced electrochemical conditions. (Shehata et al., 2007) 

SCC under insulation is an issue in marine environments ((Delahunt, 2003) ((Ed) 

Winnik, 2008)).  Babakr & Al-Subai (2006) discuss two case studies involving SCC 

under insulation in process piping.  They found that accumulation of chloride on 

offshore piping with time contributes to the creation of a SCC susceptible 

environment (Babakr & Al-Subai, 2006). 

Microbial Influenced Corrosion (MIC) 

Susceptible Material

Applied or Residual 

Tensile Stress

Corrosive environment

SCC
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Microorganisms including bacteria are found in sea water and these organisms 

can contribute to material degradation.  This degradation mechanism is termed 

Microbial Influenced Corrosion (MIC).  Biofilms can form on the surface of marine 

structures and can influence corrosion rates, initiate corrosion, or change the mode 

of corrosion (Duan et al., 2008).  The formation of a biofilm does not guarantee 

any effect on corrosion or on CUI particularly, however, in the marine environment; 

it is a possible mechanism that must be monitored.    

3.3 Methodology 

The goal of this work is to understand what effect time, temperature (internal and 

external pipe), chloride content, time of wetness (TOW1) and possible re-insulation 

have on the corrosion behaviour of low temperature carbon steel (LTCS) under 

insulation.  Low temperature carbon steels are used in applications that require 

sustained toughness at temperatures as low as -50 °C (Brady, 2002). 

This experiment will help determine the time to corrosion, corrosion rates, and 

types of corrosion. This combination is typical in harsh environment operations.   A 

typical coating system is included as a factor in the experimental design allowing 

for comparison of protected and unprotected systems.  This coating is chosen 

through consultation with industry experts to ensure the best representative 

coating is used. 

                                                           
1 Time of wetness (Relative humidity): TOW is determined when relative humidity is greater than 80 percent at a 
temperature greater than 0°C (Roberge, 2008).  

 



111 
 

Another goal of this work is to determine if a similar phenomenological model for 

corrosion can be seen for CUI corresponding to the work conducted by Melchers 

(Melchers, 2003; Melchers, 2004; Melchers, 2008).  He developed a model for 

corrosion in marine environments (immersion and atmospheric) that shows distinct 

phases, each with different corrosion rates based on the different driving 

mechanism.  Figure 15 illustrates this general trend.   

 

 

Figure 15: Overall model by Melcher for corrosion loss showing the changing behaviour of the corrosion process as 
a series of phases (Melchers, 2003; Melchers, 2004; Melchers, 2008) 

 

This model suggests that the conventional model for corrosion loss, C(t) = A tB , is 

not applicable for the life of the component.  The conventional model is based on 

diffusion of oxygen through increasingly thick corrosion layers.  It does not take 

into account changes in corrosion mechanisms with time (Roberge, 2008). 
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Environmental information and resulting corrosion are collected and analysed 

through laboratory and field testing (fully described in section 3.4 and 3.5).  This 

data is used to first develop a probabilistic model to estimate CUI rate and depth.  

Corrosion under insulation is best represented as an isolated discrete non-uniform 

degradation therefore it is modeled using an extreme value probabilistic approach. 

The developed model is tested and validated to the experimental data developed 

through this study.  The CUI corrosion rate model is then incorporated into a 

damage function model for use in fitness for service and risk-based asset integrity 

evaluations.  The damage function model includes many failure modes for an asset 

under study; the CUI rate model is one important failure mode.  This damage 

function is expanded for use in fitness for service and risk based evaluations. 

These evaluations include recommended practices and standards such as the 

American Petroleum Institute’s (API) Recommended Practice 581: Risk-Based 

Inspection Technology ( (API RP 581, 2008), Standard, “Fitness-for –Service” (API 

579, 2007)  and Det Norske Veritas’ (DNV) Recommended practice, Risk based 

inspection of offshore topsides static mechanical equipment (DNV RP-G101, 

2002). Other more novel approaches (Khan, Haddara, & Bhattacharya, 2006) 

(Datla, Jyrkama, & Pandey, 2008) are also explored to incorporate the new 

damage function to improve assessments.  

3.4 Design of Experiments for CUI Study  

Design of Experiments (DOE) is a systematic strategy to generate information in 

an efficient manner that captures all the relevant interaction between experimental 
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factors.   This information is acquired such that it contributes to model development 

in a statistically significant way. 

This experimental design follows the three stage design loop detailed in the text 

as  Designing, Planning, and Preparing Corrosion Tests (Roberge, 2003); 

1. Statistical design 

2. Data Analysis of Results 

3. Model development 

The statistical design portion of this process is the focus of this paper.  Following 

a statistical design methodology allows for identification of important factors and 

mechanism of interactions with the smallest number of experimental treatments 

(Wang & Chang, 2001). This results in a streamlined test regime that minimizes 

costs and time. 

 

 

Determination of response variable 

DOE is used for all parts of this experimental research.  Experiments to determine 

interactions between factors are first designed using DOE, then the field test and 

accelerated tests were developed in a similar manner. Experimental data from 

laboratory and field testing is then used to model CUI rates and develop risk-based 
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remaining life assessment model for assets under CUI attack.  To develop these 

rates, the corrosion mechanism, initiation time, and rate of corrosion propagation 

are measured.  These are the response variables for all experimental work. 

3.4.1 Determination of the effect of environmental factors on CUI using 

laboratory simulation 

Many environmental factors have shown in scholarly work to influence corrosion 

rate and mechanism.  No information was found analysing the combination of 

these factors.  Table 5 lists these important factors that these scholarly work 

indicate as influencing corrosion rate. 

Table 5: Environmental Factors Effecting Corrosion Rate 

Environmental Factor Published Work 
Coating Race, Dawson, Stanley & Kariyawasam, 2007 
Temperature Melchers & Jeffrey, 2008 and DNV RP-G101, 2002 
Chloride Griffin, 2006 and Corvo, Minotas, Delgado & Arroyave (2005) 
Microbial Melchers, 2003, 2008 
Time of Wetness Griffin, 2006 and Corvo, Minotas, Delgado & Arroyave (2005) 

 

The factors listed are used to determine their effect on CUI rate in marine 

environments and to investigate the interactions between these factors.  A factorial 

design of experiments is used to do this evaluation. Factorial experimental plans 

help identify the effects of a factor at several levels leading to conclusions that are 

valid over a range of experimental conditions (Montgomery, 2008). 
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3.4.1.1 Experimental factor determination 

There are four factors under consideration for this experimental plan.  These four 

factors are: 

1. Coating 

2. Operating Temperature (Internal pipe temperature) 

3. Chloride Concentration 

4. TOW 

Although microbial content was observed by Melchers (2003, 2008) as contributing 

to corrosion rate, the content of microbial is recorded from the local sea water 

solution and not considered a controlled experimental factor.  This factor 

elimination is due to the consistency of the local concentration and the use of 

natural seawater proposed for field testing.  This allows further comparison of 

simulation data to field data. 

The levels for each factor are determined from maximum and minimum operational 

in-situ conditions expected.  Factors have at least 2 levels for this work.  These 

levels are listed in Table 6.     

Table 6 Factor Levels for Characterization Laboratory Testing 

Factor Level 1 Level 2 Level 3 Level 4 
Coating Coated Non-Coated   
Operating Temperature 50°C 90°C   
Chloride Concentration 3.2% 3.6%   
Time of Wetness 1 day 7 days 14 days 28 days 
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Figure 16 illustrates the controllable and uncontrollable factors of the experiment.   

 

Figure 16 : Experimental Parameters for CUI Characterization Laboratory Test  

3.4.1.2 Number of Samples 

Design of experiments (DOE) is used to ensure that the effects of all variables are 

captured along with their interactions using the least number of experimental runs.  

One method of DOE is factorial design.  Using a factorial DOE for three factors at 

2 levels yields 8 experimental treatments exposed for 4 different TOW lengths 

requiring 32 total treatments.   

Replication is an important consideration for design of experiments.  Replication is 

used to estimate experimental error and to find a precise estimate of a mean value 

(Montgomery, Design and Analysis of Experiments (7th Edition), 2008).The cost 

must be considered against the value of the information gained.  Six samples are 

considered at each treatment level resulting in 192 total samples.    
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3.4.2 Field Test  

The purpose of this field test is to evaluate how corrosion rate and the mechanism 

of corrosion of LTCS under insulation vary with time under natural environmental 

conditions at the coast of the North Atlantic.   

Field testing is considered an uncontrolled experiment.  The environmental 

conditions cannot be controlled or limited as they occur naturally.  Uncontrolled 

experiments must take into account all possible interaction of the uncontrolled 

variables or covariates (Baboian, 2005).  Covariate values are not affected by 

experimental factors however they may influence the response and must be 

included in analysis (Mason, Gunst, & Hess, 2003). 

3.4.2.1 Experimental factor determination 

The natural environment and exposure time are the factors that need to be 

considered in the field test.  The time of exposure is the only parameter that can 

be controlled.  The temperature of the internal pipe is controlled and held steady.  

Environmental conditions are uncontrollable and are considered covariant for this 

work.   

To evaluate CUI in field conditions, the following uncontrolled variables are 

measured: 

 External pipe temperature  

 Amount of Precipitation 
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 Chloride content of precipitation 

 Time of wetness (TOW) 

o Atmospheric temperature 

o Relative Humidity  

The controlled variables in this field test are: 

 Internal pipe temperature  

 Time of exposure 

 Coating  

The responses (dependant variables) in this field test are corrosion rate and 

corrosion mechanism.  Figure 17 illustrates the experimental parameters of the 

field test.  This field test measures and records both controllable and uncontrollable 

factors along with the corrosion response.   
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Figure 17: Experimental Parameters for Field Test 

3.4.2.2 Number of Samples 

For this field test, the principle purpose is to determine how corrosion rates vary 

under insulation in a natural environment.   The American Society for Testing 

Materials (ASTM) standard ASTM G50 (2010) “Standard Practice for Conducting 

Atmospheric Corrosion Tests on Metals” is used as a guide to determine the 

number of samples (ASTM G50, 2010). This experiment requires removal of 

insulation, visual inspection, and possibly removal of a sample from the test site at 

periodic times throughout the field test.   Based on field testing of CUI in work done 

by Williams and Evans (2010) that indicates a 4 month inspection period and 

ASTM G50  that suggests a yearly inspection period, an interval of 6 months has 

been chosen for this experiment (Williams & Evans, 2010) (ASTM G50, 2010).   To 

ensure reliable results, three specimens are available for inspection at each time 

interval.   
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To gather long term data, a three year field test experiment is planned.  Forty-two 

insulated samples are exposed at the beginning of the test with 12 un-insulated 

control samples for a total of fifty-four samples.  Half of all samples are protected 

with an industry approved coating.  Six insulated samples and two un-insulated 

control sample are inspected at each of the 6 intervals.  The inspected specimens 

are returned to the test if possible to gather information on the effect of re-insulation 

on corrosion rates.   

3.4.3 Accelerated Marine Atmosphere Testing for CUI 

The development of a more accurate accelerated CUI test is needed to determine 

CUI rates for different applications.  This allows for rate determination of different 

test couples (insulation and pipe material), alternative coatings, and different 

environmental conditions without the long term commitment of expensive field 

tests.   

 

3.4.4 Experimental factor determination 

The accelerated CUI test uses data collected during the field test in the natural 

setting to accelerate CUI in the laboratory.  Conditions are controlled to simulate 

the natural environment found in the first year of field testing (one cycle).  This 

natural cycle is accelerated and repeated to simulate longer exposure time.   
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This repetition of the environmental cycle is the factor under consideration for this 

experiment.  Ten levels of this factor are used to simulate five years of exposure.  

The first six levels correspond to the inspection intervals of field testing and the 

remaining 4 levels indicating an additional 2 years of exposure.  Figure 18 shows 

the experimental parameters for the acceleration test.  

 

Figure 18: Experimental Parameters for Accelerated CUI Testing 

 

3.4.4.1 Number of Samples 

The standard test set up in ASTM G189, Standard Guide for Laboratory Simulation 

of Corrosion Under Insulation (ASTM G189, 2007) allows for two sets of three 

specimens to be evaluated for each experimental treatment.   Table 7 illustrates 

each treatment.   

Table 7: Laboratory Simulation Design of Experiments Part 1, Accelerated Marine atmosphere testing 
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Factor Level Description Simulated 
time 
(Years) 

Number of 
Samples 

1 First half of environmental cycle conditions 0.5 6 
2 1.0 cycle of environmental conditions 1.0 6 
3 1.5 cycles of environmental conditions 1.5 6 
4 2.0 cycles of environmental conditions 2.0 6 
5 2.5 cycles of environmental conditions 2.5 6 
6 3.0 cycles of environmental conditions 3.0 6 
7 3.5 cycles of environmental conditions 3.5 6 
8 4.0 cycles of environmental conditions 4.0 6 
9 4.5 cycles of environmental conditions 4.5 6 

10 5.0 cycles of environmental conditions 5 6 

 

A total of 60 samples are used in part 1 of the laboratory simulation and 

acceleration experiments.  The factor levels are applied in random order to reduce 

possible bias.    

3.4.5 Interaction 

Understanding the interaction between different factors is important to developing 

a predictive model of CUI rate.  These experimental plans investigate these 

interactions.  Individually, the Table 8 indicates the expected reaction of corrosion 

rate (CR) or corrosion mechanism of the four controlled factors. 

Table 8: Expected reaction of experimental factors on corrosion rate and corrosion mechanism 

Factor Expected Reaction 
Coating Decrease in general corrosion, possible increase in localized 

corrosion 
Operating Temperature Increase CR with increased temperature 
Chloride Concentration Increase CR with increased concentration 
Time of Wetness Increase CR with increased TOW 
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3.5 Experimental Design  

To conduct the experimental plans developed in section 3.4.4, experimental 

designs of each test plan were developed.  These designs are developed from well 

recognised standard practices and are adapted where possible to satisfy the 

unique demands of each. 

3.5.1 Laboratory Testing 

The laboratory tests are based on ASTM G189-07 Standard Guide for Laboratory 

Simulation of Corrosion Under Insulation (ASTM G189, 2007).  This simulation 

allows for many critical factors for CUI simulation including: 

 Control of annular space between pipe and insulation 

 Internal heating to produce hot pipe surfaces 

 Controlled introduction of electrolyte 

A representative schematic of the ASTM G189-07 test setup is included in Figure 

19 and Figure 20.  
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Figure 19: Schematic of CUI simulation Cell (ASTM G189, 2007) 

 

Figure 20: CUI Laboratory test cell. A: Model of complete cell including insulation. B: Model of cell with insulation 
removed. C. Model of cross section of full cell. D: Cell without insulation. E: Cell without insulation showing 

spacers, samples, and dam.  (ASTM G189, 2007) 
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The laboratory tests are based on ASTM G189-07 “Standard Guide for Laboratory 

Simulation of Corrosion Under Insulation” (ASTM G189, 2007). The test procedure 

in the standard is adapted to simulate the conditions of the field test.  The same 

pipe, insulation, coating, and solution observed in field testing are evaluated in the 

laboratory simulation.  Kane & Chauviere (2008) also adapted this standard to 

evaluate thermal spray aluminum coating on steel under insulation and determine 

corrosion rates under different insulation types (Kane & Chauviere, 2008).   

One important variation from the standard is the electrochemical measurement 

technique.  ASTM G189-07 specifies is Potentiodynamic Polarization Resistance 

(PPR) to determine corrosion rates.  While this method is useful for determining 

corrosion rates is in laboratory testing, PPR calls for the inducement of controlled 

potential and is thus limited in determining the naturally occurring corrosion 

expected in field testing where the inducement would alter the measured current.  

To combat this issue, electrochemical noise (EN) techniques are used in both lab 

and field testing.  EN is a passive method of corrosion monitoring where no applied 

current or potential is required (Frankel, 2008).  This method records deviation 

from the naturally occurring electrochemical potential and current (Reiner & 

Bavarian, 2007; Huet, 2006) indicating when corrosion occurs.  Pitting and other 

forms of localised corrosion have been detected using this method with good 

correlation (Estupiñán-Lópezst al. 2011).  Eden and Kane (2005) applied this 

method using a single electrode monitoring probe where the structure was used 

as a current return path.    This is a novel application and there are challenges to 
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overcome to adapt the technology to this application.  External noise can interfere 

with EN measurements including (Huet, 2006): 

 Vibrations 

 electromagnetic  

 Surface changes 

 Electrolyte velocity 

Determining wetted surface area and ensuring surface coverage are additional 

issues for investigation.  This technique will help determine corrosion rate and 

mechanism however, the main purpose is to investigate EN as a technique to 

indicate corrosion activity for in-situ monitoring as a means to improve inspection 

scheduling.   

3.5.1.1 Characterization Laboratory Testing 

Characterization tests are run to determine the effects of key variables on corrosion 

rate and mechanism.  The effects of coating, operating temperature, chloride 

concentration, and time of wetness are assessed and possible interactions 

analysed. 
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3.5.1.2 Accelerated laboratory testing 

Accelerated laboratory tests are conducted after accumulation of one year of data 

from field testing.   

Acceleration is accomplished by reducing the yearly cycle by removing the time 

elapsed where no corrosion is indicated in the field test.  This time is determined 

from a proposed online electrochemical monitoring system and TOW data 

collected during the first year of field testing.  Cyclic wetting and drying of the pipe 

surface is expected with no corrosion expected during the dry periods.  This dry 

period is minimized, allowing for accelerated simulation of the field test.  

From the field test the following factors are determined and controlled in the 

laboratory: 

     • Pattern of TOW at pipe surface 

     • Chloride concentration 

     • Temperature difference  

The test is run to simulate 3 years of service and validated with subsequent years 

of field test data.  

3.5.1.3 Field Testing  

In field tests, environmental conditions and electrochemical noise measurements 

are recorded and analyzed to understand how corrosion rates and types of 
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corrosion are affected by the environment.  The test location is at the shoreline in 

Argentia, Newfoundland and runs for 3 years to collect and analyze CUI in a marine 

setting under different environmental loading.  Figure 21 shows the location of the 

test site.  Argentia, NL was chosen to most closely replicate conditions offshore.  

As the location is on a small peninsula in a large bay, it is reasonable to consider 

the majority of prevailing winds to simulate offshore conditions.   

 

Figure 21: Field test location.  Island of Newfoundland, Argentia location (Google, n.d) 

 

The goal of this Field test is to understand what effect time, temperature, chloride 

content, time of wetness (TOW), internal and external temperature and possible 

re-insulation have on the corrosion behaviour of LTCS under insulation.  There is 

no standard field test procedure to study CUI in field conditions. To measure and 

control these factors; an experimental test fixture is designed to satisfy the 

following requirements: 
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 Fifty two test cells, available for periodic removal from test sight 

 Internal pipe temperature >60 °C (operating temperatures up to 90°C with 

outliers above 100°C) 

Design of this field test is based on the requirements determined through the DOE, 

ASTM standards for field testing and CUI assessment, and a field test conducted 

in an industrial environment to compare the effects of insulation type on CUI.   

A study (Williams & Evans, 2010) conducted in Northborough, MA used an outdoor 

test fixture to evaluate CUI.  Figure 22 illustrates the field test set-up used.  This 

study was conducted in an industrial environment to determine changes in 

corrosion under different types of insulation.      

 

Figure 22: Sketch of Industrial test set up (Williams & Evans, 2010) 

The test fixture for the CUI field test is similar in design.  The supporting structure 

is constructed from pressure treated lumber to ensure no interaction with test 

samples.   
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An initial design of the experimental set-up is shown in Figure 23.  

 

Figure 23: Proposed Field Test Fixture 

Each test rack includes thirteen test cells.  To accommodate the required fifty two 

samples, four test fixtures are needed.   Each test cell is created in the same 

manner with the same materials, creating base homogeneous experimental unit 

for experimentation.  The test cell is shown in the drawing below (Figure 24). 
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Figure 24: Field Test Cell 

Each cell is a self-contained experimental unit and includes: 

 LTCS Pipe section 

o 16 in. total length  

o 4” nominal diameter 

o National Pipe Thread (NPT) threads 
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 Thermal insulation 

o Two piece system with silicone at seam 

 Oil immersion heater  

o 500W 

 Thermocouple for heater control 

3.5.2 Data Acquisition 

Different measurement techniques are used to evaluate corrosion rate and 

mechanism.  Controlled and uncontrolled variables are also measured and 

recorded.   

3.5.2.1 Controlled and Uncontrolled Variables  

These experiments require many data acquisition techniques to capture the 

variable conditions of the controlled and uncontrolled variables needed to 

understand and predict CUI.  These measurements are summarised below in 

Table 9. 
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Table 9: Summary of Variable Data Acquisition 

Variable Description Lab Field Note 

Internal pipe 
temperature 

Measured and controlled using 
an immersion thermocouple 

√ √  Controlled and recorded for all 
experiments 

External pipe 
temperature  

Measured with a thermocouple 
mounted between the pipe and  
insulation on each test cell 

√ √ Measured and recorded for all 
experiments 

Atmospheric 
temperature 

Monitored using a Portable 
Temperature Relative Humidity 
Data Logger 

√ X Measured and recorded for all 
Field experiments 

Atmospheric 
TOW  

Monitored using a Portable 
Temperature Relative Humidity 
Data Logger placed at the test 
site 

√ X Measured and recorded for all 
Field experiments 

Test Cell TOW  Measured at the pipe surface 
using methods adapted from 
ASTM Standard G84 – 89 
“Standard Practice for 
Measurement of Time-of-
Wetness on Surfaces Exposed 
to Wetting Conditions as in 
Atmospheric Corrosion Testing” 

√ √ Measured at the pipe surface 
using methods adapted from 
ASTM Standard G84 – 89 
“Standard Practice for 
Measurement of Time-of-
Wetness on Surfaces Exposed 
to Wetting Conditions as in 
Atmospheric Corrosion Testing” 

Chloride content  Collected using local area data 
collected by third party and 
local site sampling.  

√ √ ASTM  G140 “Standard Test 
Method for Determining 
Atmospheric Chloride 
Deposition Rate by Wet Candle 
Method” can be used to 
indicate deposition of Cl and to 
classify severity of the 
environment 

Microbial 
Content  

Microbial Content  √ √ Measured and recorded for all 
experiments 

Precipitation 
amount 

Manually collected and 
compared with local published 
data 

√ X Measured and recorded for all 
Field experiments 

Electrochemical 
Noise 

Measured using a three 
identical electrode 
methodology 

√ √ Measurement technique based 
on ASTM G199-09 "Standard 
Guide for Electrochemical Noise 
Measurement" and "An 
alternative to the use of a zero 
resistance ammeter for 
electrochemical noise 
measurement: Theoretical 
analysis, experimental 
validation and evaluation of 
electrode asymmetry" by 
Curioni, Balaskas & Thompson 
(2013) 
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 A schematic of the data acquisition plan is included in Figure 25 below. 

 

Figure 25: Field test data acquisition preliminary block diagram 

3.5.2.2 Response Variables 

Corrosion rate and mechanism are evaluated and quantified for each experiment 

using inspection and electrochemical measurements. Inspections are conducted 

after each experimental run for laboratory testing and at each 6 month interval for 

field testing.  These inspections include visual inspection, mass loss evaluations, 

and non-destructive evaluations including liquid penetrant inspection (LPI).  

Further evaluation will be performed if required to confirm rate and mechanism 

using destructive evaluations including optical microscope and scanning electron 

microscope (SEM).  Electrochemical noise (EN) measurements are continuously 

recorded to determine corrosion ranges, corrosion rate, and corrosion mechanism.  
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Inspection and EN information is compared to determine rates and mechanism of 

CUI. 

Field test samples that require destructive evaluations are not returned to the test 

site. Figure 26Figure  illustrates the field test cycle.  

 

Figure 26: Inspection Cycle 



136 
 

3.6 Data Analysis 

3.6.1 Laboratory testing 

Data collected in both laboratory experiments is analysed to determine the effect 

on corrosion rate and mechanism.  Direct and indirect relationships are explored 

and factor integration graphs used to identify and interpret interactions 

(Montgomery, 2008). 

3.6.2 Field testing 

As discussed in section 3.4.2, the nature of field testing is difficult to analyse.  The 

uncontrolled variables (covariates) have the potential to dramatically affect the rate 

and mechanism of corrosion.  A covariate is an uncontrollable variable that can 

affect the response but is not affected by the controlled experimental factors.  The 

effects of these variables are found through analysis of covariance (ANCOVA) 

(Montgomery, 2008; Mason et al., 2003).  This procedure is used to understand 

the effect of environmental conditions on corrosion in field testing.   

For the field test, there are three controlled factors and five covariates.  General 

regression techniques are used to determine the significance of all factors and to 

develop a model to predict corrosion rate (Hicks & Turner, 1999).  Table 10 below 

illustrates the input that is used to determine a mathematical model. 
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Table 10: Field Test Analysis 

Field 
Test 

Controlled Covariate Response 

Observation 
Number 

Time  
(months) 

C                          I                     T          
(x1 j) 

P      
(x2 j) 

[CL]            
(x3 j) 

TOW            
(x4 j) 

MC            
(x4 j) 

CR                            
(y1 j) 

1 6 1 1 x1 1 x2 1 x3 1 x4 1 x5 1 Y1 1 

2 6 1 1 x1 2 x2 2 x3 2 x4 2 x5 2 Y1 2 

3 6 1 1 x1 3 x2 3 x3 3 x4 3 x5 3 Y1 3 

4 6 0 1 x1 4 x2 4 x3 4 x4 4 x5 4 Y1 4 

5 6 0 1 x1 5 x2 5 x3 5 x4 5 x5 5 Y1 5 

6 6 0 1 x1 6 x2 6 x3 6 x4 6 x5 6 Y1 6 

7 6 1 0 x1 7 x2 7 x3 7 x4 7 x5 7 Y1 7 

8 6 0 0 x1 8 x2 8 x3 8 x4 8 x5 8 Y1 8 

n 36 C  I  x1 n x2 n x3 n x4 n x5 n Y1 n 

C= Coating, I = insulation, 1= yes, 0 = No, T = Temperature, P = Precipitation, TOW= time of wetness, MC = Microbial 

content, CR = Corrosion rate 

 

Due to the length of study and unexpected effects of the harsh test site 

conditions on sensor equipment, the collection and analysis of this data is not 

included in this thesis. 

3.7 Future work 

The relationships discovered and data collected will be analyzed to develop a 

predictive model for corrosion rates under insulation.  Experimental data from 

laboratory and field tests will first develop a probabilistic model to estimate CUI 

defect rate and defect depth.  Corrosion under insulation is best represented as an 

isolated discrete non-uniform degradation therefore; it is modeled using an 

extreme value probabilistic approach. The developed model will be tested and 

validated against the experimental data developed through this study.  The CUI 

corrosion rate model will then be incorporated into a damage function to be used 
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in fitness for service and risk-based asset integrity evaluations.  The damage 

function will include many failure modes for an asset under study; the CUI rate 

model is one important failure mode.  This damage function will then be expanded 

for use in fitness for service and risk based evaluations. These evaluations include 

recommended practices and standards such as API Recommended Practice 581: 

Risk-Based Inspection Technology ((API RP 581, 2008), API standard, “Fitness-

for–Service” (API 579, 2007) and DNVs Recommended practice, Risk based 

inspection of offshore topsides static mechanical equipment (DNV RP-G101, 

2002). Other more novel approaches (Khan, Haddara, & Bhattacharya, 2006) 

(Datla, Jyrkama, & Pandey, 2008) will be explored to incorporate the new damage 

function to improve assessments. The validated model and improved method will 

be unique to the condition observe in the region. It will serve as an important tool 

to assess fitness for service, estimate remaining life, plan inspection and 

maintenance intervals.  

3.8 Conclusions  

This paper illustrates that careful evaluation of field and laboratory experimental 

data makes a significant contribution towards understanding and preventing the 

detrimental effects of CUI in the offshore industry.  This work: 

 Develops a field test procedure to study corrosion under insulation (CUI) in 

marine environments that ensures that data collected is representative of 

CUI developed in the offshore industry.  The field test site is designed to 
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capture CUI development as seen in industry.  The site is flexible in design 

to accommodate future study of CUI issues in the industry.    

 Determines a method to capture the mechanism and rate of CUI 

development in harsh marine environments to further understand CUI and 

aid in damage prediction. 

 Creates a method to evaluate electrochemical noise measurement as a tool 

for on-line corrosion monitoring.  The ability to economically monitor piping 

systems for CUI can further reduce risk and increase safety.   

 Develops a program to simulate and accelerate CUI in a laboratory to 

realistically predict long term service life by understanding CUI in a natural 

setting.  From long term testing in marine environment, an environmental 

cycle that can be accelerated in a laboratory test is determined.  This cycle 

can be used to simulate long term corrosion rates for other 

material/insulation configurations and to further understand CUI 

mechanisms. 
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Abstract 

Corrosion is a costly and dangerous issue in most industries causing breakdown 

of equipment, increased downtime and potential risk to personnel. Corrosion under 
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insulation (CUI) is a significant contributor to these issues.  As CUI is difficult to 

detect, real time monitoring is an important part of identifying, controlling and 

preventing this serious issue. Electrochemical noise (EN) is a promising technique 

that can be applied to components under insulation.  Issues with traditional EN 

techniques when applied to field conditions necessitate the need for simplified 

methods to incorporate the benefits of EN monitoring to in-situ application. By 

using three identical electrodes made of the same materials as the bulk materials 

in production to simulate the corrosion behavior, this research introduces a 

simplified methodology using measured electrochemical potential noise (EPN) to 

predict the corrosion rate of individual electrodes and demonstrates its application 

through short term testing.  A relationship between isolated electrode EPN, mass 

loss and corrosion rate was found for electrodes undergoing corrosion.  The 

relatively high impact of retained corrosion product in short term tests for 

electrodes undergoing localized corrosion was found to contribute to the reduced 

correlation in the EPN-mass loss relationship.  The relationship between EPN and 

corrosion rate was found to be dependent on immersion times with longer 

immersion times demonstrating higher correlation than shorter immersion time 

tests.   

Keywords: Corrosion, electrochemical potential, online monitoring, 

electrochemical noise, corrosion under insulation 



145 
 

4.1 Introduction 

Corrosion is a significant issue in industries around the world with an estimated 

$170 billion spent throughout all industries in the United States (Adesanya A.O., 

Nwaokocha C.N., & Akinyemi O.O., 2012).  The recent NACE IMPACT study 

(2016)  updates the global cost of corrosion to US$ 2.5 trillion. This cost is 

significant and is of particular interest to operators in the Oil and Gas Industry.   

The impact of corrosion on the oil and gas industry was estimated by Kermani and 

Harrop (1996) as 25% of all failures.  These failures have a direct impact on safety, 

production and profit.  One significant cost due to corrosion is due to repairs and 

replacements.  Improvement of maintenance planning and inspection procedures 

is one way to begin reducing costs and improving safe operations throughout the 

industry.  Within the offshore oil and gas industry one significant issue is corrosion 

under insulation (CUI).   

CUI is a widespread issue in industrial operations.  Offshore oil and gas production 

facilities routinely use insulation to regulate process temperatures and protect 

personnel.  If corrosion occurs under insulation, limited visual access can permit 

this degradation to continue unchecked until discovered through inspection and 

maintenance programs or by component failure.   

Insulation is designed to limit, reduce, and in some cases eliminate moisture 

penetration to the pipe surface however; CUI remains an issue as there are still 

opportunities for moisture to penetrate insulation barriers and create corrosion 

conditions.  Maintenance and use, improper installation, wear and tear, difficult 
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geometries and extreme conditions are a few possible causes of corrosion 

condition development under insulation.  As operations move further into extreme 

environments, the use of insulation will likely increase and the probability of CUI 

will also increases.    

As CUI is difficult to detect (Caines, Khan, & Shirokoff, 2013) and is the primary 

cause of pipeline failures (Nicola, Carreto, Mentzer, & Mannan, 2013). Continuing 

work is needed to improve both inspection techniques and planning and real-time 

monitoring.  An integrated sensor network using two impedance measurements 

strategies and a modified Radio-frequency identification (RFID) tag strategy was 

examined by Ayello, Hill, Marion, and Sridhar (Ayello, Hill, Marion, & Sridhar, 

2011).  They found that while impedance can be used to detect CUI, it may require 

significant investment in the number of sensors.  They also noted that RFID tag 

sensors are potential solutions however there were issues with data recording.    

One recent work by Funahashi  (2014) describes a “CUI warning system” to 

indicate when corrosion conditions are present.  This system uses titanium and 

aluminum wires in fiberglass tape that produce a potential difference when 

moisture is present indicating corrosion conditions.   This method uses potential 

difference to detect corrosion conditions while other techniques use similar 

principles to detect and determine corrosion and its rate.  Other techniques that 

use electrochemical phenomenon to monitor and quantify corrosion are techniques 

like electrical resistance (ER), Linear Polarization resistance (LPR) and 

Electrochemical noise (EN).  These techniques use the inherent properties of 
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corrosion to qualify and quantify corrosion behaviour.   Birketveit & Stipanicev 

(2016) identified these methods for monitoring corrosion in side-stream units 

however their review of case studies did not identify any studies using EN as a 

monitoring technique. 

Ongoing work by the authors includes a comprehensive research plan to 

investigate CUI through laboratory and field testing.  The work aims to understand 

the rates and mechanisms of CUI develop monitoring techniques leading to 

improved prediction and risk assessment techniques (Caines, Khan, Shirokoff, & 

Qiu, 2015). This work identified Electrochemical Noise (EN) as a promising tool for 

field evaluations of CUI.  During this study, initial research and laboratory testing 

highlighted the difficulty in using EN measurements in the field.  This is partially 

due to the high number of samples and length of testing required as well as the 

difficulty in controlling environmental noise that can affect the measurements.  To 

combat these issues, a simplified EN method was developed that uses 

Electrochemical Potential Noise (EPN) measurement data to indicate when 

corrosion may be occurring and to predict a likely rate of mass loss for the system.  

This method is demonstrated using three identical electrodes made of the same 

materials as the bulk materials in production to simulate corrosion behavior.   This 

work is a continuation of research by the authors and is the next step in validating 

the simplified EN method for ongoing CUI field work.  
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4.1.1 Electrochemical noise (EN) 

Electrochemical noise (EN) is a passive technique used primarily in laboratory 

work to evaluate corrosion rates and identify corrosion mechanism.  EN was first 

discussed by Iverson (1968) and has been explored and developed since that time.   

When corrosion occurs, measurable changes in free corrosion current and 

potential can be measured.  This technique evaluates naturally occurring corrosion 

without external inputs that could affect the results.    

EN is evaluated by analysing either (or both) voltage and current noise on a 

corroding system.  EN methods have been widely researched and developed for 

corrosion evaluation and study.  Electrochemical noise methodologies such as 

those outlined in ASTM G199 (ASTM G1, 2003 (2011)) and in the works of Bihade, 

Patil, & Khobragade (2013), Cottis (2001), and Girija et al (2005) .  These works 

and many others (Bertocci, Huet, & Nogueira, 2003; Brusamarello, Lago, & 

Franco, 2000; R. Cottis, 2006; De Cristofaro, Luperi, Miceli, Conde, & Williams, 

2001; Naing, Wong, & Tan, 2006) illustrate how EN can be a useful tool in 

determining corrosion rates and in determining corrosion mechanism such as 

pitting.  Naing, Wong, & Tan (2006) developed a new technique to evaluate CUI 

that applies EN to determine moisture penetration under insulation using wire 

beam electrode (WBE) methods.  These methods measure potential change 

against a SCE reference electrode.  They determined that a WBE sensor could be 

used to monitor moisture penetration through different types of simulated insulation 

using noise signature analysis. 
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4.1.1.1 Traditional EN techniques 

Traditional EN techniques measure both the potential and current of a corroding 

system and records the naturally occurring changes (noise) to determine both 

corrosion rates and corrosion mechanisms.  A traditional set-up for electrochemical 

noise is a three electrode system including a working (WE), auxiliary (or counter) 

(AE) and reference (RE) electrode.  Current (A) between the WE and AE is usually 

measured through a zero resistance ammeter (ZRA) and the potential (V) is 

measured between the WE and AE pair and the RE through a voltmeter as 

illustrated in Figure 27.   

 

Figure 27: Schematic of a typical EN measurement set-up 

The WE is the corroding metal and the AE can be a low reaction metal or an 

electrode nominally identical to the WE. The RE can be a standard reference 

electrode or a third nominally identical electrode.   

The use of standard reference electrodes in field applications is difficult and a three 

identical electrode system is more practical for field experiments and in-situ 
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monitoring (Bertocci et al., 2003).  This type of three identical electrode set-up is 

the focus of this work.   

4.1.1.2 Three identical electrode EN technique 

In a three identical electrode EN measurement system as shown in Figure 28, all 

electrodes (working, auxiliary and reference) are nominally identical.  Unlike with 

the use of a noiseless RE, the third identical reference electrode generates noise.  

For general corrosion it is more likely that the noise generated by all electrodes is 

similar. By wiring three identical electrodes together, this system may simulate the 

actual corrosion behaviour of large bulk items used in practice, which are made of 

the same material as the electrodes.   

 

Figure 28: Schematic of a three identical electrode system 

4.1.1.3 Issues with Current EN Techniques 

Both of the methods shown in Figure 27 and Figure 28 are difficult to apply in field 

conditions with the measurement of corrosion current being especially difficult.  

Current measurements for corrosion are very small, in the range of picoamp to 

microamp.  This measurement can be affected by non-corrosion related noises 
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that overshadow the corrosion current.  These non-corrosion noises are magnified 

in the field and are impossible to control or eliminate.  To combat this, specialized 

equipment is needed (Zero resistance ammeter or picoammeter). The issue with 

this type of equipment is that it is generally expensive and can be used for only 

one channel of measurement.  This equipment is excellent for laboratory 

evaluation however does not lend itself to field application where multiple systems 

need to be monitored and the cost and complexity would be unreasonably high.   

4.1.2 Analysis of Electrochemical Noise Measurements 

Electrochemical Current Noise (ECN) and Electrochemical Potential Noise (EPN) 

time records are analysed in varying degrees of complexity to determine 

information about corrosion behaviour.    

When a metal corrodes, there are measureable changes in the potential and 

current due to the corrosion.  These changes (noise) can be interpreted to 

determine corrosion mechanisms and corrosion rates (Eden, Meng, Mendez, & 

Yunovich, 2011). 

Corrosion information can be found most simply by examination of the time record 

(current or potential) to look for trends and qualitatively determine corrosion 

mechanism (general, pitting) and to estimate corrosion rates, (ASTM G1, 2003 

(2011)).   
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4.1.2.1 Corrosion Mechanism Determination 

Changes in the geometry of both EPN and ECN time records can indicate the type 

of corrosion occurring.  The illustration in Figure 29 demonstrates how these 

differences in the time record can be interpreted as an indication of corrosion 

mechanism.   

 

Figure 29: Illustration of time records indicating possible corrosion mechanism. Representative images are not based 

on collected data.  A. General corrosion. B. Localized corrosion 

This type of analysis is used along with other more complex methods to aid in 

determining corrosion type (Al-Mazeedi & Cottis, 2004; Eden et al., 2011; Girija et 

al., 2005; Rios, Zimer, Pereira, & Mascaro, 2014).   

Jian et al (2013) use typical features from EN time records as training for neural 

networks to assist in corrosion mechanism type identification.  They indicate peaks 

as seen in Figure 29B are indicative of pitting and irregular oscillation as an 

indication of general corrosion.    

A B 
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Beyond examination of the EN time records, Cottis (2006) indicates that 

impedance spectrum analysis may be able to provide information on corrosion type 

with continued study.  This work also indicates that there is a need for a simplified 

method to determine information about corrosion from unprocessed data.   

4.1.2.2 Corrosion Rate Determination 

Current techniques and methodologies aim to interpret EN data to determine a 

corrosion rate.  These methods generally employ complex filters and data analysis 

methods.  Table 11 lists a few sources and their data interpretation methods for 

reference and further reading.  

Table 11: Electrochemical Noise Data interpretation methods 

Analysis 

Method 

Relationship Description Reference 

Electrochemical 

Noise Resistance 

Rn 

𝑅𝑛 =
𝜎𝐸𝐴

𝜎𝐼

 
Rn can be substituted for Polarization 

Resistance (Rp) and Corrosion Rate (CR) 

calculated through traditional methods 

(ASTM G1, 2003 

(2011); ASTM 

G102, 2010) 

 

Localization Index 

(LI) 
𝐿𝐼 =

𝜎(𝐼)

𝑟𝑚𝑠(𝐼)
 

Index values can indicate localized 

corrosion 

(ASTM G1, 2003 

(2011); Ochoa et 

al., 2001) 

 

Electrochemical 

Noise Impedance 

(NI) 

𝑁𝐼 = √
𝜑𝐸

𝜑𝐼

 

NI is based on power spectra density (y) of 

Potential and current and can be related to 

corrosion rate 

(R. A. Cottis, 

2001) 

 

When using these interpretation methods both EPN and ECN are used to 

determine information about corrosion rates and mechanisms. 



154 
 

These methods are difficult to employ in operational environments as they involve 

sophisticated and sometimes expensive equipment and specially trained 

personnel for interpretation.  A simpler method that could predict when corrosion 

is occurring in in-situ components without the use of externally applied forces and 

provide an indication of corrosion amounts would be ideal for ongoing CUI field 

work.   To work towards this goal, a simplified methodology and interpretation 

scheme was developed.  This research is the first step in developing an on-line 

monitoring system for ongoing CUI field testing and for components (insulated and 

non-insulated) used in industry.  

4.2 Proposed Method 

Most field applications involve EN probes placed within the environment of interest 

recorded data is used to make judgements about the state of the system 

components (Tan, 2009).  Using the components themselves as part of the 

monitoring scheme would lead to more direct evaluation of system corrosion 

issues.  The following proposed method is the first step in determining the 

feasibility of this type of condition monitoring for ongoing CUI field work and 

subsequent application to production components.   

As ECN is difficult to measure in the field, a process that employs EPN data alone 

to make assessment and prediction of corrosion behaviour was developed.   One 

digital multi-meter (DMM) can be used to record multiple sets of EPN information 

where most ZRAs allow for only one ECN measurement at a time.  To build on 
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this, a simplified data acquisition and analysis method shown in Figure 30 is tested 

to determine if a reliable correlation between EPN and corrosion rate exists and 

can be applied in ongoing CUI field applications. 

 

Figure 30: Proposed simplified method to determine corrosion rate from multi-channel electrochemical potential 
noise measurement. 

The first step in this method is to identify three electrodes for monitoring.  These 

three electrodes must be electrically isolated to allow for the measurement of 

potential difference (V) between electrode couples as illustrated in Figure 28.     

In this method a multi-channel DMM is required to facilitate multiple measurements 

required for Step 2.  This allows each electrode to act as the working electrode and 

specific information about each electrode can be measured.   Traditional 

methodologies measure only one coupled potential and analysis is based on the 

assumption that three identical electrodes act the same and potential readings are 

a combination of two equal voltages.  For a coupled reading V12 the assumption is 

that V1 = V2 = V and thus electrode potential (V): 

 (V)  =
𝑉12(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

√2
⁄   (Chen & Gopal, 1999).   (1) 

Each voltage measurement (Vij) measures the potential difference between 

electrodes i and j and a reference electrode k by short circuiting each couple 
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through internal switching.  The three time records of each electrode couple are 

recorded and analysed further in Step 3. 

To isolate each electrode for specific EPN information, the measured potentials 

(V12, V13, V23) are modified to develop a potential time record of each electrode 

(V1, V2, and V3).  

For a three identical electrode system in same environment: 

𝑉𝑖𝑗 = (𝑉𝑖
2 + 𝑉𝑗

2)
0.5

  (Chen & Gopal, 1999)    (2) 

Applying this to each of the measured electrode couples we have: 

𝑉12 = (𝑉1
2 + 𝑉2

2)0.5         (3) 

𝑉13 = (𝑉1
2 + 𝑉3

2)0.5         (4) 

𝑉23 = (𝑉2
2 + 𝑉3

2)0.5         (5) 

Solving for each isolated electrode (V1, V2, and V3) leads to equations 6-8.  These 

equations are then used to isolate each electrode and generate a new time record 

for each individual electrode.   

𝑉1 = (
𝑉12

2 −𝑉23
2 +𝑉13

2

2
)

0.5

         (6) 

𝑉2 = (
𝑉12

2 −𝑉13
2 +𝑉23

2

2
)

0.5

         (7) 

𝑉3 = (
𝑉23

2 +𝑉13
2 −𝑉12

2

2
)

0.5

         (8) 
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The final step (Step 4) of the proposed method is to determine the corrosion rate 

of each electrode based on the isolated EPN (V1, V2, and V3) found in step 3.   

 EPN and Corrosion rate are related as follows:    

Current and potential are related through ohms law  

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡(𝐼) × 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑅)      (9) 

For corroding systems  

𝐼𝑐𝑜𝑟𝑟 =
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒
   (Kutz, 2005)  so     (10) 

𝐼𝑐𝑜𝑟𝑟 ∝ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (∆𝑉)       (11) 

To account for surface area of the corroding electrode, corrosion current density 

(icorr) is related to Icorr as: 

  𝑖𝑐𝑜𝑟𝑟 =
𝐼𝑐𝑜𝑟𝑟

𝐴𝑟𝑒𝑎
          (12) 

Therefore Potential difference can be related to corrosion current density  

𝑖𝑐𝑜𝑟𝑟 ∝
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (∆𝑉)

𝐴
       (13) 

Corrosion current density is then related to corrosion rate (MR)  

𝑀𝑅 = 8.954 × 10−3(𝑖𝑐𝑜𝑟𝑟) × 𝐸𝑊       (14) 
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where MR is the mass loss rate (
𝑔

𝑚2 ∙ 𝑑⁄ ) and EW is the equivalent weight of the 

corroding material.   Similar relations can be performed for other variations of 

corrosion rate such as penetration rate (CR) (ASTM G102, 2010) 

𝐶𝑅 = 3.27 × 10−3 (
𝑖𝑐𝑜𝑟𝑟

𝜌
) 𝐸𝑊       (15) 

where CR is reported in mm/y. 

From the equations above it can be seen that since 

𝑀𝑅 ∝ 𝐶𝑅 ∝ 𝑖𝑐𝑜𝑟𝑟 ∝
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (∆𝑉)

𝐴
      (16) 

and  

𝐶𝑅 ∝
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (∆𝑉)

𝐴
        (17) 

It is clear there is a theoretical relationship between EPN and corrosion rate 

however to fully understand this relationship significant experimental work is 

needed.  To evaluate this simplified method for application in ongoing CUI field 

testing, a three electrode experimental cell and test plan were completed to verify 

the EPN/CR relationship.  

4.2.1 Experimental  

To validate the relationship outlined in step 3 of the simplified method a three 

nominally identical system was designed and tests completed.  The purpose of this 

experiment is to determine a correlation between isolated electrode potential and 
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corrosion rate to complete Step 4 of the proposed method shown in Figure 30.  To 

verify the proposed method an expanded process was developed and shown in 

Figure 31.   

 

Figure 31: Experimental application of simplified EPN method to predict corrosion rate 

Step 1: Set-up three electrode test  

The set-up for this experiment consists of three nominally identical electrodes each 

connected to a positive and negative channel of a Keithley 3700 multi-meter.  Built 

in software was used to program an acquisition pattern to record the coupled 
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potential of each pair at a measurement rate of 2 seconds.  Each voltage 

measurement (Vij) measures the potential difference between electrodes i and j 

and a reference electrode k.  For the three identical electrode set-up, three voltage 

measurements are taken, V12, V13, V23. Figure 32 shows the measurement 

scheme.   

 

 

 

Figure 32: Data acquisition for three electrode system.  a) V12 b) V13, c) V23 

To measure the set-up shown in Figure 32 on the same three electrodes, a wiring 

plan was developed to allow for near simultaneous measurements.  The electrode 

connection set-up is illustrated in Figure 33A.  The channel pattern shown in Figure 

33B for each coupled reading (V12, V13, and V23) records the voltage difference 

between each short circuited couple (closed positive pair) and the third reference 

electrode (closed negative). 

A B 

C 
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Figure 33: Electrode electrical connection plan for Simplified Method. B. Chanel pattern for recording coupled EPN 
time records 

Three nominally identical plain carbon steel electrodes were prepared according 

to ASTM G1 (2003 (2011)) with dimensional and mass information recorded.   Two 

factors were used for the experimental plan.  Three electrolytes and two time 

cycles were used with an average exposed surface area of 2068 mm2.  Table 12 

outlines each treatment.   

Table 12: Experimental plan for testing 

Test Run Treatment Exposure Time (min) 
1 Distilled Water 60 
2 Distilled Water 180 
3 3.5% NaCl 60 
4 3.5% NaCl 180 
5 15% NaCl 60 
6 15% NaCl 180 

 

All experiments were completed by a single person following the following general procedure 

for each separate test run: 

1. Prepare appropriate electrolyte solution using calibrated balance and cylinder 

2. Measure, weigh and label each electrode 
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3. Connect individual electrode to DMM 

4. Secure electrodes to lift device 

5. Begin recording data 

6. After 5 10 minutes, place electrodes in electrolyte 

7. Remove electrode from electrolyte after test exposure time 

8. Photograph electrodes 

9. Wipe electrodes with acetone 

10. Wipe any corrosion product from surface 

11. Weigh sample 

Details on the completion of laboratory testing is tabulates in Table 13. 

Table 13: Experimental details 

Test Run Date Repeat date Completed by 
1 Jan 11, 2016 Feb 4, 2016 S. Caines 
2 Jan 11, 2016 Feb 4, 2016 S. Caines 
3 Jan. 13, 2016 Apr. 28, 2016 S. Caines 
4 Jan. 20, 2016 Apr. 28, 2016 S. Caines 
5 Jan 13, 2016 Aug 30, 2016 S. Caines 
6 Jan 11, 2016 Aug 30, 2016 S. Caines 

 

Step 2: Record three electrode couple EPNs  

With this new method, all coupled voltages are recorded and analysed (in Step 3 

and 4).   

Testing indicates that 4 of the 6 test runs demonstrated similar potential profiles.  

The two test runs (R3, R4 using 3.5% NaCl solution) that did not follow this pattern 

will be discussed in a later section.   

Test runs in 15% NaCl (R5, R6) yielded the highest potential profile and mass loss.  

These test runs were duplicated to develop additional data and are designated 

R5B and R6B. 
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Typical results of distilled water and 15% NaCl tests (R1, R2, R5, R5B, R6 and 

R6B) demonstrating apparent symmetry in 2 electrode couples are seen in Figure 

34. Symmetrical behaviour is noted in V12 and V13 for test 1 (R1) and V13 and V23 

for test 6 (R6).    

  

A         B 

Figure 34: Typical EPN-time record data. A: Test 1, B: Test 6. 

 

 

Step 3: Isolate electrode EPN 

To isolate individual electrodes the time records were calibrated to a net zero 

potential to allow for further comparisons between test runs and individual 

electrodes. When analysing the area under potential curve (V·s) it can be seen in 

Figure 35 that the areas are not equal about zero potential.  
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Figure 35: Dissimilar area under voltage curve for test run 1 (R1). 

Step 3.2A 

To facilitate analysis and electrode comparison the midline between the two 

symmetrical electrode pair profiles was found and the potential record shifted from 

the midline to zero potential.   Figure 36 shows the calculated midline in step 3.2A 

used to perform the potential shift. 

 

Figure 36: Calculated shift to midline for test run 1 (R1) 

As recorded data was then adjusted by shifting from the midline to zero potential 

resulting in profiles similar to that seen in Figure 37. 



165 
 

 

Figure 37: As recorded data adjusted to zero potential midline for test run 1 (R1) 

The shift to a zero potential midline allows for easier identification of similar 

potential area as demonstrated in Figure 38.  

 

Figure 38: Potential shifted to zero with common area identified for test run 1 (R1). 

Step 3.2B 

For the 15% NaCl, 3 hour test (R6), symmetry is observed in Figure 39 however 

application of the midline shift decreased the similarity in potential area (A13 and 

A23).  Table 14 includes these calculated values. 
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Figure 39: Near zero midline with no shift required 

Table 14: Calculated area under the EPN curve values with and without midline shift. 

Coupled EPN 

(R6) 

Area under curve:(V·s) No 

shift in midline 

Area under curve:(V·s) 

Shift in midline 

V13 97.3 101.2 

V23 94.4 90.4 

 

The non-shifted areas for R6 are closer in value and will be used for further 

analysis.  The recorded data for distilled water, 3 hour test (R2) required no 

adjustment.   

Figure 40 illustrates the near zero midline for the as recorded data of test 2. 
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A13 = 53.3 Vs  A23 = 53.2 Vs 

Figure 40:  Recorded data with no midline shift required. 

The coupled potential area (A) for each test run is summarised in Table 15.  Test 

runs marked with (*) indicate test results for test runs 3 (R3) and 4 (R4) that are 

discussed in a separate section. 

Table 15: Summarized calculated area under coupled electrode values.  

Test Run A12 

(V · s) 
A13 

(V · s) 
A23 

(V · s) 
1 17.1 17.1 12.8 

2 29.1 53.3 53.2 

3* 52.1 41.1 38.2 

4* 30.8 37.3 23.0 

5 14.2 44.7 44.9 

5B 12.3 12.0 7.8 

6 23.3 97.3 94.4 

6B 123.1 137.8 78.6 

Step 3.3 

The assessment of individual electrodes in step 3.3 of the proposed method 

determines the contribution of each electrode to the coupled potential 

measurement and explains inconsistencies such as those observed in Table 14.   

The symmetrical behaviour seen in test runs 1, 2, 5, 5B, 6 and 6B may indicate 

that: 

1. Two of the electrodes are corroding in a similar manner  

2. One of the electrodes is corroding preferentially over the other two 

electrodes.   

3. Combination of 1 and 2 
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Recorded potential is the potential between the working pair and the reference 

electrode.  To further assess the behaviour of the electrodes and compare 

electrochemical readings to measured mass loss, information about individual 

electrodes is needed.   

For both distilled water tests and the 1 hour 15% NaCl test (R1, R2, R5, R5B) two 

of the isolated electrode potentials are very closely aligned with the third electrode 

showing higher potential.   Absolute values of the 1 hour distilled water test (R1) 

are plotted in Figure 41.  Plots of test 2 (R2) and test run 5 (R5 and R5B) 

demonstrate similar behaviour.   

 

Figure 41: Isolated electrode potential for Test 1 

This indicates that one electrode is preferentially corroding over the other two 

electrodes.  As expected, Test 6 (Figure 39 and Figure 42) shows similarity in two 

electrodes however does not correlate as closely as those in test runs 1, 2, and 5.  

Similar electrode time records were observed for the second test 6 run (R6B) 

Higher corrosion 

indicated in electrode 1 
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Figure 42: Isolated electrode potential for Test 6 

Step 3.4 

To quantify the isolated electrode potential, the area under each curve was 

calculated and is tabulated in Table 16. 

. 

Table 16: Summary of preferentially corroding electrode indicated from isolated electrode EPN area.   

Test 
Run 

Electrode 
1  (V·s) 

Electrode 
2  (V·s) 

Electrode 
3  (V·s) 

Preferentially 
Corroding Electron 

1 14.5 9.1 9.0 Electrode 1 

2 20.8 20.4 48.2 Electrode 3 

5 42.2 10.3 10.2 Electrode 1 

5B 11.2 5.9 5.3 Electrode 1 

6 29.8 24.5 95.2 Electrode 3 

6B 118.5 37.2 67.7 Electrode 1 

 

To understand the significance of the potential readings, corrosion rates for each 

electrode are needed. 

Step 4: Calculate Corrosion rate 

Higher corrosion 

indicated in electrode 3 
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To calculate corrosion rate for comparison with isolated EPN readings mass loss 

data was generated using standard practises (ASTM G1, 2003 (2011); NACE, 

2005).  In general terms the mass loss data of test runs 1, 2, 5, 5B, 6 and 6B 

agreed with what was indicated by the isolated electrode graphs (Figure 43).  

 

Figure 43 Mass loss expectations for test run 2 (R2) 

Mass loss of each electrode was compared to the calculated area under the 

isolated electrode EPN curve. Figure 44 illustrates the results.  

 

Figure 44: Isolated electrode potential area versus mass loss for R1, R2, R5, R5B, R6 and R6B.  

 

Highest mass loss 

expected in Electrode V3 

Similar mass loss expected 

in electrodes V1 and V2 
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A general linear trend demonstrating increased mass loss with increased potential 

area can be seen in Figure 44.  This is a clear indicator that assumptions of 

equation 16 are valid. 

To complete step 4 of the proposed method, mass loss data is converted to 

corrosion rate following recommended practice RP0775-2005 (NACE, 2005).   

𝐶𝑅 =
3.65 × 105𝑊

𝐴 ∙ 𝑇 ∙ 𝐷
 

where  

CR= average corrosion rate in mm/y 

W= mass loss in g 

A = Exposed surface area of electrode in mm2 

T = exposure time in days 

D = density of electrode metal in g/cm2 

The relationship between electrode potential area and calculated average 

corrosion rate for all distilled water and 15% NaCl test runs (R1, R2, R5, R5B, R6, 

and R6B) is graphed in Figure 45.  A single  relationship was not indicated.    



172 
 

 

Figure 45: Calculated corrosion rate comparison to potential area for test runs R1, R2, R5, R5B, R6 and R6B isolated 
electrodes.  

Further analysis comparing corrosion rate to mass loss data indicates the source 

of the undefined relationship.  Figure 46 shows a comparison between mass loss 

and corrosion rate. Again, no single relationship exists for all data. 

 

Figure 46: Mass loss compared to corrosion rate for R1, R2, R5, R5B, R6 and R6B isolated electrodes. 

When all data was considered together no trend was found however two separate 

trends were observed.  Figure 47 shows separate trend lines for 1 hour immersion 

tests (R1, R5 and R5B) and 3 hour immersion tests (R2, R6 and R6B).   
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Figure 47: Mass loss compared to corrosion rate for R1, R2, R5, R5B, R6 and R6B isolated electrodes.  Trends for 1 
hour test electrodes and 3 hour test electrodes identified.   

When viewed separately good correlation (R2 =0.9982) is found for the three hour 

tests with less clear trend (R2=0.6634) for the shorter duration tests.   

Re-examination of Figure 45 for separate trends for 1 hour and 3 hour immersion 

times show correlated relationships between potential area and corrosion rate.  

These trends are shown in Figure 48.   

 

Figure 48: Calculated corrosion rate comparison to potential area for R1, R2, R5, R5B, R6 and R6B isolated 
electrodes.  Trends for 1 hour test electrodes and 3 hour test electrodes identified.  
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4.2.1.1 Application of proposed Method to Test Runs 3 and 4 (3.5% 

NaCl) 

Tests R3 and R4 (3.5% NaCl) did not closely follow the pattern of other tests (R1, 

R2, R5, R5B, R6 and R6B) and did not indicate a clear symmetrical profile. 

Due to this inconsistency, duplicate runs (R3B and R4B) with 3.5% NaCl were run 

to determine if unexpected results were due to experimental error or a fundamental 

difference in behaviour at 3.5% NaCl.  The second run at 3.5% NaCl (R3B and 

R4B) were also not consistent with the pattern of the distilled water and 15% NaCl 

tests (R1, R2, R5, R5B, R6 and R6B) however they did demonstrate similar 

patterns as the first 3.5% NaCl tests.  Typical coupled time data (V12, V13, V23) for 

3.5 % NaCl tests are shown in Figure 49 

  

Figure 49: Typical coupled potential for 3.5% NaCl tests 

The coupled EPN were isolated using the equations in Step 3 (equations 6-8) and 

the results presented in Figure 50. 
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.      

 

Figure 50: Isolated electrode potential of R3, R3-B, R4, and R4-B 

In general all electrodes involved in the 3.5% NaCl solution demonstrate increased 

fluctuations in the potential time record compared to the other solutions (distilled 

water and 15% NaCl).   

Electrode mass loss was compared to area under the isolated electrode area for 

all 3.5% NaCl tests and the results tabulated in Table 17 and graphed in Figure 

51. 

Table 17: Isolated electrode mass loss data for 3.5 % NaCl, initial runs = R3 and R4, Re-Run = R3B and R4B 

Electrode Mass 

Loss       

(g/ m^2) 

Area under 

Potential 

Curve  (V·s) 

R3-1 *3.59 11.36 

R3-2 0.749 16.68 

R3-3 0.60 13.52 

R3B-1 0.48 38.18 

R3B-2 0.48 41.11 

R3B-3 0.34 52.08 

R4-1 *-86.17 44.95 

R4-2 0.69 80.63 

R4-3 0.59 41.51 
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R4B-1 0.19 37.01 

R4B-2 0.00 26.74 

R4B-3 0.34 26.06 

 

From the information presented in Table 17 two results are identified as possible 

outliers, Electrode 1 from the initial Run 3 (R3-1) and electrode 1 from initial Run 

4 (R4-1).  There are two suspect values so the Grubbs test is applied  (AMCTB No 

69, 2015). 

𝐺 =
(𝑥𝑛−𝑥1)

𝑠
          (18) 

For this sample set 

 𝐺 =
(3.588−(−86.1702))

24.0347
= 3.7345       (19) 

The high value of G considering both data points clearly indicates both data points 

as outliers and are not included moving forward. 

 

Figure 51: Graph of mass loss vs potential area for 3.5% NaCl Tests R3, R3B, R4, R4B with outliers removed 
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With the two outliers removed, Figure 51 does not indicate a clear linear 

relationship as that observed in the distilled water and 15% NaCl tests.   

While the 3.5% NaCl tests (R3, R3B, R4 and R4B) did not show strong correlation, 

the difference in behaviour from all other tests (R1, R2, R5, R5B, R6, R6B) indicate 

there are likely different mechanisms involved.  Examination of surface corrosion 

indicates possible localized corrosion with 3.5% NaCl.  Representative surfaces 

are shown in Figure 52. 

  

A     B 

Figure 52: Surface condition of electrodes after testing.  A. Electrode from Initial 3.5% NaCl Test run 4 (R4-3) B. 
Electrode 3 from 15% NaCl test run 8 (R8-3) 

When the second 3.5% NaCl test data is included in the mass loss correlation 

graph with all other tests (R1, R2, R5, R5B, R6, R6B) a linear trend can still be 

seen in Figure 53.  This indicates that while there appears to be an unknown 

phenomenon affecting corrosion behaviour at 3.5 % NaCl, the underlying theory of 

this work is still applicable.   

General corrosion 

indicated 

Localized corrosion 

indicated 
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Figure 53: Complete test run data (R1, R2, R3B, R4B, R5, R5B, R6, R6B) indicating linear trend.  

Inclusion of the 3.5% NaCl test runs R3B and R4B when comparing corrosion rate 

and potential area for each immersion time (Figure 54) shows a stronger 

correlation for longer immersion times than shorter immersion times.   

 

Figure 54:  Corrosion rate comparison to potential area for R1, R2, R3B, R4B, R5, R5B, R6, and R6B isolated 
electrodes.  Trends for 1 hour test electrodes and 3 hour test electrodes identified.   
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4.3 Discussion 

4.3.1 Mass Loss Data: 

The noted inconsistencies with mass loss data can be explained by the inherent 

issues with short term corrosion testing.  With short term testing the mass loss 

experienced is very small and any issue with the cleaning process can result in 

inconsistent data that can greatly influence correlation.  The presence of localized 

corrosion may explain the lower than expected mass loss in some electrodes as 

corrosion product of localized corrosion is more difficult to remove.  As the mass 

loss expected is small, even little retained corrosion product can have a significant 

impact on total mass loss recorded.  One way to combat this issue is to increase 

the immersion times to increase the overall mass loss and reduce the impact of 

any issues with sample cleaning.   

4.3.2 3.5% NaCl : 

The unexpected results from the 3.5% NaCl tests can be explained by changes in 

the corrosion mechanism from uniform to localized corrosion.   Examination of the 

time records of the 3.5% NaCl test runs in  

Figure 50 indicate that these electrodes experienced greater variation in potential.  

To further explore this, one electrode from each of the three hour test runs (R2, 

R4B, R6) were analysed further.  Electrodes with the highest cumulative potential 
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readings were chosen and a comparison of these individual electrodes is shown 

in Figure 55.  

 

Figure 55: Isolated electrode comparison for three hour immersion tests. Electrode with the maximum cumulative 
potential selected for comparison,  

This figure illustrates the overall trend for the 3.5% NaCl test electrode (R4B-E1) 

is lower than the potential curves for distilled and 15% NaCl tests, however the 

electrode potential shows more variation.  Increased variation in the potential/time 

record can indicate localized corrosion as introduced in Figure 29. 

To quantify this variation, the standard deviation of each electrode was found for a 

moving sample size of 100.  Figure 56 shows the standard deviation of the selected 

isolated electrodes. 

 

Figure 56: Standard deviation of isolated electrode potential for select electrodes in three hour test runs R2, R4B, 
and R6 
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Higher variation in the 3.5% NaCl electrode (R4B-E1) can be easily seen and 

further confirms the likelihood of localized corrosion in the 3.5% NaCl tests.  

4.3.3 Corrosion Rate and Immersion Time 

Corrosion rate based on mass loss data is an average corrosion rate and assumes 

stability over time.  This is not the case in practice.  Many works demonstrate that 

corrosion rate changes with time and that while corrosion loss (mass loss) 

increases with time; the rate of loss (corrosion rate) decreases (Melchers & Jeffrey, 

2008; Oparaodu & Okpokwasili, 2014; Winston Revie (ed), 2011). For this 

experiment this phenomenon can be seen in Figure 47.  For shorter immersion 

times, mass loss is low with a high corrosion rate where the longer immersion time 

electrodes show higher mass loss with lower corrosion rates.   

4.3.4 Overall method 

The four step method introduced in Figure 30 was successfully applied to short run 

tests and a relationship between isolated electrode EPN and both mass loss and 

corrosion rate were established. The ability to make direct predictions about 

individual electrodes rather than an electrode pair allows for dissimilar corrosion 

behaviour in the electrodes to be examined and indicates that the requirement for 

identical electrodes may be avoided for field work.  Application of Step 3 to 

dissimilar electrodes can allow for the expansion of this method to in-service 

components where the identical electrode restriction is not possible.    
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This new simplified method uses measured potential alone in Step 4 to calculate 

the likely corrosion rate of a component.  The agreement of both distilled water 

tests and 15% NaCl tests indicate that this method can be applied directly without 

full knowledge of the corrosion conditions.  Application of this method in 

uncontrolled field conditions requires this relationship to allow for unknown 

concentrations in the corrosion environment. 

The results of this study indicate that the simplified method can be used to indicate 

CUI rate and mechanism in field applications. The simplified method will be applied 

to the long term data generated from the authors concurrent CUI field studies 

(Caines et al., 2015). 

4.3.5 Next Steps 

To fully develop this simplified method for expanded application additional testing 

is required to characterize the relationship between isolated electrodes and their 

EPN. Future work includes: 

 Longer term testing: required to characterise the EPN / CR relationship.  

Issues with the impact of retained corrosion product can be reduced with 

longer term testing where increased mass loss is expected.   

 Dissimilar electrodes test: Required to validate the application of the 

method for non-identical electrodes.  This will expand the application of the 

simplified method to the field applications 
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 Apply to CUI: Application of this method to lab scale CUI tests needed to 

both quantify the increased corrosion observed in components under 

insulation and to further develop the simplified method for field applications.  

 Determine accuracy and reliability of the proposed method through 

evaluation of environmental disturbation. 

𝐸𝑟𝑟 = √
(𝑉1 − 𝑉2)2 + (𝑉2 − 𝑉3)2 + (𝑉1 − 𝑉3)2

3
 

4.4 Conclusions 

This new simplified method uses a multichannel digital multi-meter to record near 

simultaneous potential couple measurements to allow for the isolation of individual 

electrode potential- time profiles.  The method uses these isolated electrode EPN 

records to predict corrosion rate of each individual component.  A relationship 

between isolated electrode EPN, mass loss and corrosion rate was established 

and the method demonstrated as a promising way to monitor corrosion with further 

development.  Key conclusions for this work include: 

 New methodology allows for individual comparison of electrode potential, 

mass loss, and corrosion rate. 

o Traditional techniques analyse couple potential and assume identical 

behaviour of coupled electrodes.   
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o Results from testing indicate individual electrodes do not behave 

identically. 

 Distilled water and 15% NaCl solution tests showed a relationship between 

individual electrode potential area and mass loss. 

o Longer term testing should be conducted to confirm relationship and 

determine probability relationship. 

 Distilled water and 15% NaCl solution tests showed a relationship between 

individual electrode potential area and corrosion rate. 

o Corrosion rate relationship is time dependant and correlation found 

when similar immersion time were analysed together. 

 EPN for 3.5% NaCl test run electrodes did not correlate as well as the other 

tests solutions.   

o These electrodes likely experienced localized corrosion as indicated 

by increased variation in the EPN readings. 

o  Low overall mass loss increased the impact of retained corrosion 

product and explains the unexpected apparent inconstant behaviour 

of these tests. 

 Longer immersion times showed better correlation. 
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This research validates that a relationship between isolated EPN and corrosion 

rate exists and demonstrates the simplified method can be used to collect data on 

multiple electrodes.  This method will be applied to the long term data generated 

from the authors concurrent CUI field studies and should be pursued as a potential 

monitoring technique for in-situ applications. 

Index of Terms 

A Current 

AE Axillary electrode 

CR Corrosion Rate 

CUI Corrosion Under Insulation 

DMM Digital multi-meter 

ECN Electrochemical Current Noise 

ER Electrical resistance  

EN Electrochemical noise 

EPN Electrochemical Potential Noise 

EW Equivalent weight 

LPR Linear Polarization resistance  

MR Mass loss rate 



186 
 

RE Reference Electrode 

RFID Radio-frequency identification 

SCE Saturated calomel electrode 

V Potential 

WBE wire beam electrode 

WE Working Electrode 

ZRA Zero resistance ammeter 
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5.0 Demonstration of increased corrosion activity for insulated pipe 

systems using a simplified electrochemical potential noise method 

 

Preface 

A version of this paper is currently in the peer review process in the Journal of Loss 

Prevention in the Process Industries (as of November 2016). Susan Caines is the 

primary author for this work.  Co-authors for this manuscript include Dr. Faisal 

Khan and Dr. John Shirokoff.  The primary author developed the conceptual model, 

the design of experiments, experimental design, completed experiments, results 

and analysis and prepared the first draft of the manuscript.   The co-author Faisal 

helped in developing the concept, experimental setup and testing of the concepts, 

reviewed and corrected the models and results, and contributed in preparing, 

reviewing and revising the manuscript. Co-author Dr. John Shirokoff contributed 

through support in the development and improvement of the design and assisted 

in reviewing and revising the manuscript. 

 

Abstract 

Corrosion under insulation (CUI) is a significant issue in industry.  When a 

component is insulated, moisture could become trapped at pipe surfaces and lead 

to corrosion.  The severity of corrosion under insulation could be considered 

greater than a component without insulation in a similar environment.  This belief 
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has not yet been demonstrated or reported in the literature.   To understand CUI 

the difference in systems under insulation and systems without insulation must be 

determined to confirm the anecdotally held understanding that corrosion can be 

more severe under insulation. Experiments were conducted to demonstrate the 

difference in corrosion severity of pipe surfaces exposed to insulation and surfaces 

without insulation.   Increased mass loss and corrosion rates were found for 

electrodes under insulation over electrodes without insulation. The increase in 

corrosion was found using a simplified electrochemical potential noise (EPN) 

method and confirmed through visual observation and mass loss data.    

5.1 Introduction 

Corrosion under insulation (CUI) is a difficult and persistent problem that affects 

many operations.  CUI occurs on the surface of a component that is covered by 

insulation.  Insulation is used for many different reasons, most commonly to protect 

personnel from extreme surface temperatures and to regulate process 

temperatures.  Insulation is integral to the safe and economical operation of 

industrial components and use cannot be eliminated. 

Because the surface is covered from view, detecting CUI is difficult and costly.  

Visual inspections are only possible through expensive removal of insulation and 

in most operations the amount of insulation installed makes this prohibitively 

expensive for routine maintenance plans (Caines, Khan, & Shirokoff, 2013).  

Alternative non-destructive evaluation methods are available however, again the 
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volume of insulated pipes and components make inspection of all prohibitively 

expensive.  In the offshore industry, standards and recommended practices (API 

579-1/ASME FFS-1, 2007; ASME B31.G, 2012; BS 7910, 2005; DNV-RP-G101, 

2002; FITNET, 2006) are used to predict and plan inspection and maintenance 

schedules.  While theses methodologies are comprehensive and widely used in 

the offshore industry, they do not fully specify corrosion rates under insulation and 

the user is required to provide specific corrosion rates when following the 

recommended practises and guide lines (Caines et al., 2013). 

Corrosion on surfaces exposed to harsh marine environments (non-insulated) is 

not completely understood as the mechanisms and causes for corrosion initiation 

and propagation are stochastic and as such cannot be predicted with certainty 

(Caines et al., 2013; Davis, 2000; European Federation, Institute, Winnik, & 

Institute, 2008; Roberge, 2008).  There are rates and methods for predicting 

behaviour of exposed pipe surfaces that allow operators to choose proper 

materials for components and plan inspection and maintenance schedules (DNV-

RP-G101, 2002; Melchers, 2003; Melchers & Jeffrey, 2008; Roberge, 2008; 

Svintradze & Pidaparti, 2010).  The question becomes are these rates of corrosion 

and predictive measures developed for non-insulated assets applicable to 

components under insulation?   

The first step in understanding and predicting the behaviour of CUI is to understand 

the effect of insulation on the corrosion behaviour.  Rates and methods developed 

for uninsulated materials cannot be directly applied to insulated pipeline without 
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study as the environmental set-up is different and conditions for corrosion are 

significantly different.  Insulation is designed to keep moisture away from the 

surface however if moisture does penetrate the system, this design feature limits 

any opportunity for the moisture to escape.  The reason for moisture introduction 

in the annular space is a complicated issue that is beyond the scope of this work 

but this issue is vital to understanding CUI and to developing future preventative 

strategies.   

If a non-insulated pipe becomes wet from rain or the like, there is limited 

opportunity for the moisture to become trapped and create corrosion conditions at 

the surface.  Ideally, insulated pipe surfaces are protected from moisture however 

this is not always possible in practice.  Once moisture is introduced under the 

insulation, the moisture can become trapped as demonstrated in Figure 57. 

 

Figure 57: Demonstration of differences in insulated and uninsulated pipe 

 

To assess the corrosion behaviour in these different configurations traditional 

mass loss evaluation alone is not sufficient to characterise the effects of insulation.  
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Electrochemical methods are available to assess the corrosion behaviour of 

materials.  Linear polarization resistance (LPR), electrical resistance (ER), and 

electrochemical noise (EN) can be used in corrosion assessments.   Linear 

polarization uses an input potential and measures the resulting current between 

corroding electrodes.  This relationship, Rp, is inversely proportional to the rate of 

corrosion (Yang, 2008).  Electrical resistance measures the change in electrical 

resistance due to surface changes from corrosion damage.  This method is 

generally used as ER probes to monitor likely corrosion in an environment 

(Bertocci, Huet, & Nogueira, 2003; Naing, Wong, & Yong-Jun Tan, 2006). These 

probes are placed in the environment of interest and the ER rates of the probe 

material are translated into corrosion rates for the components themselves.   

Electrochemical noise methods monitor the naturally occurring fluctuations in 

current and potential.  This is a passive technique that does not require the external 

input required for LPR and ER.   

To evaluate the naturally occurring CUI in piping systems EN methods are 

desirable over LPN as EN methods do not apply any outward disturbance to the 

system under study allowing for direct measurement of corrosion.  ER Probes may 

create changes in geometry of the annular space between the pipe surface and 

insulation possibly leading to increased corrosion around probe site where EN 

methods can be applied directly to the pipe surface.   

As part of an overarching research plan to study CUI in laboratory and field 

conditions (Caines, Khan, Shirokoff, & Qiu, 2015), the authors developed a 
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simplified electrochemical noise method to record changes in the naturally 

occurring potential difference (EPN) between two electrodes (Caines, Khan, 

Zhang, & Shirokoff, 2016).  This simplified method uses a traditional three 

nominally identical electrode set-up.  Unlike traditional three electrode systems that 

measure the EPN between two of the three electrodes, the simplified method 

measures the EPN of all electrode pairs to allow for isolation of each electrode.  

With this simplified method the potential of each individual electrode was found 

from the coupled time records and it was demonstrated that the relationship 

between mass loss rate (corrosion rate (CR)) and EPN is proportional.  Figure 58 

outlines the steps developed by Caines et al (2016) for the simplified method of 

using EPN to estimate corrosion rate. 

 

Figure 58: Simplified EPN method (Caines et al., 2016) to evaluate isolated electrode potential for evaluation of the 

effect of insulation on the corrosion behaviour of pipe surfaces. 

This method modifies a traditional three nominally identical electrode set-up (step 

1) to measure coupled EPN data for all electrodes (step 2).  Figure 59 illustrates 

this set-up for measuring the coupled EPN (Vij) for one electrode pair  (Ei & Ej) 
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against the third electrode (Ek) acting as a reference electrode.  This measurement 

is duplicated for all electrode pairs (Ei & Ek and Ej & Ek) to measure the 

corresponding coupled EPN (Vik and Vjk). 

 

Figure 59: Electrode set up measuring coupled EPN for Caines et al (2016) Simplified EPN Method. 

After all coupled electrode EPN is recorded, this data is then separated into 

individual EPN data for each individual electrode (step 3).  This step uses 

equations 20-22 developed by Caines et al (2016) to isolate EPN information for 

each individual electrode. 
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where i, j, and k represent individual electrodes in a three electrode system.    

In step 4 the corrosion rate of each electrode is estimated by the individual EPN 

data for each electrode.  The relationship between EPN and corrosion rate was 

verified by Caines et al (2016) through comparison to individual electrode mass 
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loss data.  Ongoing work is needed to determine precise relationships to complete 

this step and provide a direct link between recorded individual EPN and a reliable 

corrosion rate.  

To better understand, predict and quantify the differences in insulated and non-

insulated components, a side by side comparison experimental plan was 

developed.  This paper outlines the methodology and results of this study.  Through 

application of the simplified electrochemical method the differences in these 

situations can be quantified and an increased understanding of the potential risks 

associated with the application of insulation can have on operations. This work will 

also further demonstrate the usefulness of the simplified electrochemical noise 

methodology proposed by Caines et al (2016). 

5.2 Experimental set-up 

To study the effects of insulation on piping systems, an experimental set-up was 

designed and constructed.  This set-up allows for direct comparison of the 

corrosion on pipe surfaces of both insulated and non-insulated systems.   The set-

up for both systems (insulated and non-insulated) is based on the ASTM standard 

G186 Standard Guide for Laboratory Simulation of Corrosion under Insulation 

(2013).  This standard recommends the use of either or both mass loss data and 

linear polarization resistance (LPR) methods to assess CUI.  Based on this 

standard, a six electrode system was designed.  LPR methods were replaced by 

the new simplified EPN method created by Caines et al (2016) to take advantage 
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of the passive nature of the technique. Each unit includes two separate three 

electrode systems (sides A and B seen in Figure 60).   The potential of each 

electrode pair was measured using a Keithley 3700A digital multi-meter (DMM).  

This measuring scheme can be seen in Figure 60 and Table 18. 

 

 

Figure 60: Experimental set-up for evaluation of the effects of insulation on piping systems. 

Each electrode is connected to the DMM and switching is used to measure the 

potential between each coupled (short circuited) pair and the third electrode acting 

as a reference. 
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Table 18: Measurement scheme of electrode couples. X indicated electrode pairs 

  Coupled EPN (Measured) 

  Insulated Non-Insulated 

  Side A Side B Side C Side D 

 Electrode V12 V13 V23 V45 V46 V56 V78 V79 V89 V1011 V1012 V1112 

In
su

la
te

d
 

E1 X X           

E2 X  X          

E3  X X          

E4    X X        

E5    X  X       

E6     X X       

N
o

n
-I

n
su

la
te

d
 E7       X X     

E8       X  X    

E9        X X    

E10          X X  

E11          X  X 

E12           X X 

 

For the insulated set-up (Figure 61), insulation is fitted around each side of the unit 

and sealed to allow electrolyte entrapment in the annular space created by the 

insulation.  Liquid inlet and outlets are installed to provide access for electrolyte. 

 

Figure 61: Insulated experimental set-up (Schematic and Actual) 
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For the un-insulated set-up, the unit is fitted with a custom designed trough to allow 

for controlled wetting of the pipe surface similar to that introduced under insulation.  

For the non-insulated set-up, liquid is introduced to the trough with a funnel and 

removed through outlet piping at the bottom of the trough.  In this set-up there is 

no opportunity for liquid entrapment as the electrolyte is drained from the trough 

and be visually confirmed during testing (Figure 62).   

 

Figure 62: Un-insulated experimental set-up (Schematic and Actual) 

 

Together these experimental set-ups allow for direct comparison of the effect of 

insulation on the corrosion of the pipe surface.   

5.3 Experimental plan 

An experimental plan was designed to examine the effects of insulation on pipe 

surface corrosion.  The cyclic nature of moisture at pipe surfaces is included in the 

experimental plan.  Each test includes three cycles of wettings of the pipe surface 

followed by timed dry periods.   
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The experimental plan includes three factors (insulation, dry time and electrolyte) 

each at two levels.  This plan requires the eight experimental treatments shown in 

Table 19.   

Table 19: Experimental plan 

Test Treatment Insulation Dry time Electrolyte 

1 A Y 1 hr Distilled water 

B N 1 hr Distilled water 

2 C Y 1 hr Seawater 

D N 1 hr Seawater 

3 E Y 8 hr Distilled water 

F N 8 hr Distilled water 

4 G Y 8 hr Seawater 

H N 8 hr Seawater 

 

Each treatment (A-H) is repeated during each test with two separate experimental 

units.  These repeats can be seen in Figure 61. Two treatments are included in 

each test shown in Table 19. For each test, one insulated unit and one non-

insulated unit are included.   

 

Figure 63: Experimental plan including repeats and treatments. 
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To complete the experimental plan, 16 separate groups of data were collected. 

Treatment A includes insulation with distilled water electrolyte and a 1 hour drying 

time.  For this treatment, six (6) individual data sets are recorded.  For side A 

(repeat 1) three coupled EPN values are recorded (V12, V13, V23).  For side B 

(repeat 2) three additional EPN values are recorded (V45, V46, V56).  Table 20 

demonstrates the data groups collected for all tests and treatments. 

Table 20: Data groups for experimental plan 

Test Treatment Data recorded 

1 A Side A V12, V13, V23 

Side B V45, V46, V56 

B Side C V78, V79, V89 

Side D V1011, V1012, V1112 

2 C Side A V12, V13, V23 

Side B V45, V46, V56 

D Side C V78, V79, V89 

Side D V1011, V1012, V1112 

3 E Side A V12, V13, V23 

Side B V45, V46, V56 

F Side C V78, V79, V89 

Side D V1011, V1012, V1112 

4 G Side A V12, V13, V23 

Side B V45, V46, V56 

H Side C V78, V79, V89 

Side D V1011, V1012, V1112 

 

To complete the experimental plan the procedure shown Figure 64 in was 

completed for all tests. 
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The initial baseline EPN for all electrode couples is recorded in step 1 (Figure 58).  

EPN is recorded for approximately 5 minutes to determine the potential of each 

couple in non-corrosion conditions (baseline).  In step 2 the electrolyte was 

introduced to each experimental unit (Insulated and Non-insulated) with care taken 

to avoid wetting the electrical connection of the electrodes.  The electrolyte remains 

at the pipe surface for 20 minutes (step 3).  After the wet period the electrolyte is 

drained from the system and discarded in step 4.  The non-insulated set-up allows 

for visual conformation that the electrolyte is drained form the experimental unit.  

Because of the nature of insulation this confirmation is not possible in the insulated 

set-up.  For this reason air is briefly injected under the insulation to ensure 

maximum draining.   
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Figure 64: Experimental procedure for determination of effect of insulation on surface corrosion of pipe systems 

   

5.4 Results and Analysis 

To identify the differences in corrosion behavior of pipe systems with and without 

insulation three comparison methods were used.  A visual inspection of the pipe 

electrodes was conducted to determine if differences in corrosion activity could be 

observed, a mass loss comparison was conducted to quantify corrosion 

differences and an electrochemical noise study conducted using the simplified 

EPN methodology developed by the Caines et al. (2016). 
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5.4.1 Visual Observation Comparison 

Visual inspection of the electrodes was done throughout each test run.  Non-

Insulated electrodes were observed during the test cycle.  It was not possible to 

observe the surface of insulated electrodes during testing due to the insulation.   

Table 21 lists the visual observational data. 

Table 21: Visual observational data for electrode surface comparison. 

Test Treatment Visual observation during 

test 

Visual observation after test 

Test 1 Insulated Leak in side B insulation. Insulation interior surface moist to touch.  

Electrode surface covered with corrosion 

product. 

Non-

Insulated 

Leak in side D trough.  Surface 

appears dry quickly after electrolyte 

drained.  No observable corrosion 

product in electrolyte. 

Minimal corrosion product observed.  

Surface appears dry.  

Test 2 Insulated Minor leaks on both sides.  

Discolored electrolyte when drained. 

Side B retained more moisture (drops seen 

on removal of insulation) Side A wet to 

touch but no drops.  Side A not as tight fit 

to pipe surface. 

Non-

Insulated 

Visible corrosion on electrolyte 

surface.  No discoloration of 

electrolyte observed. 

Increased corrosion product with each 

cycle. 

Test 3 Insulated Minor leaks on both sides.  

Discolored electrolyte when drained. 

Insulation surface wet on removal.  Surface 

corrosion appears complete on exposed 

surfaces. 

Non-

Insulated 

Surface appears dry after electrolyte 

drained.  

Minimal corrosion product on surface. 

Test 4 Insulated No leaks observed.  Drained 

electrolyte appears discolored. 

Surface wet after insulation removal.  

Surface corrosion on approximately 95% of 

exposed surface. 

Non-

Insulated 

Visible corrosion on electrolyte 

surface.  No discoloration of 

electrolyte observed.  Likely 

penetration of electrolyte to 

electrical connection during wet 

cycle 3 and 4 (Electrodes 7-9).  

Corrosion product observed on 

approximately 90% of exposed surface.  

Less product observed at bottom of pipe 

surface. 
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Visual observation data indicates that there is increased corrosion product on the 

surface of insulated electrodes over non-insulated electrodes.   Figure 65 shows 

the visible difference in electrode surfaces after testing. 

 

A       B 

 

C       D 

Figure 65: Electrode surface after testing A. Insulated electrodes after Test 1. B. Non-Insulated electrodes after Test 

1. C. Insulated electrodes after Test 2. D. Non-Insulated electrodes after Test 2. 

Figure 65A and Figure 65B show the electrode surfaces after Test 1 (distilled water 

electrolyte, 1 hour drying time).  Figure 65A shows the surface of insulated 

electrodes after completion of test 1 and Figure 65B is the surface of the non-

insulated electrodes after test 1.  The insulated electrodes show significantly more 
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surface corrosion than the non-insulated electrodes.  Figure 65C and Figure 65D 

show the surfaces of electrodes after Test 2 (Seawater electrolyte, 1 hour drying 

time).  The insulated electrode (Figure 65C) shows increased surface corrosion 

over the non-insulated electrode (Figure 65D). 

5.4.2 Mass Loss Comparison 

Mass loss measurements were completed for all electrodes following NACE 

recommended practise 0775 (NACE, 2005). All electrodes were weighed before 

testing and re-weighed after cleaning.  Electrodes were cleaned using a 15% 

hydrochloric acid solution inhibited with 10g/L Dibutylthourea following NACE 

RP0775 (2005).   

An increase in mass loss was recorded for electrodes under insulation over 

electrodes without insulation for all tests.   

Corrosion rates (CR) were developed following NACE recommended practise 

0775 (NACE, 2005) using the measured mass loss data in equation 23. 

𝐶𝑅 =
3.65 ×105𝑊

𝐴∙𝑇∙𝐷
         (23) 

where: CR= average corrosion rate in mm/y, W= mass loss in g, A = Exposed 

surface area of electrode in mm2, T = exposure time in days, and D = density of 

electrode metal in g/cm2. 

The statistical significance of the mass loss difference between insulated and non-

insulated electrodes was determined using the unequal variance t-test (Ellison, 
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2009; Ruxton, 2006) with a significance level (α) level of 0.05 and can be seen in 

Table 22. 

Table 22: Average mass loss, corrosion rate and statistical significance findings for α = 0.05 

Test Treatment Average 

Mass Loss 

(g/m2) 

Average CR 

(mm/y) 

Significance 

Test 1                                
Distilled Water,                   

1 hour drying 

time cycle 

Insulated 5.67 192.03 Difference in 

Mean (g/m2) 

3.67 

Non-Insulated 2.01 67.95 Statistically 

Significant  

Yes 

t=4.62, df=9, 

p>0.05) 

Test 2                                                                        
Sea Water,           

1 hour drying 

time cycle 

Insulated 16.68 450.49 Difference in 

Mean (g/m2) 

8.76 

Non-Insulated 7.92 213.89 Statistically 

Significant  

Yes 

t=6.62, df=8, 

p>0.05) 

Test 3                                                
Distilled Water,                  

8 hour drying 

time cycle 

Insulated 5.90 24.27 Difference in 

Mean (g/m2) 

3.89 

Non-Insulated 2.01 8.26 Statistically 

Significant  

Yes 

t=2.47, df=5, 

p>0.05) 

Test 4                                               
Sea Water,                         

8 hour drying 

time cycle 

Insulated 11.88 44.90 Difference in 

Mean (g/m2) 

2.96 

Non-Insulated 8.92 33.72 Statistically 

Significant  

Yes 

t=6.10, df=7, 

p>0.05) 

t= t-s, df = degrees of freedom, p = probability 

For all tests both the average mass loss per area and the average corrosion rate 

was increased for electrodes under insulation over non-insulated electrodes. The 

difference in corrosion rate is statistically significant for all tests at a 95% level.   
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5.4.3 Electrochemical Comparison 

To quantify the difference in corrosion behavior between insulated and non-

insulated pipe a simplified EPN method was used that allows for examination of 

individual electrodes rather than traditional electrode pairs.  For each test, four 

separate electrochemical cells were used, two for each set-up.  Sides A and B 

were insulated and sides C and D were not insulated (Figure 63).  

Time data for all coupled electrode pairs was analysed using the simplified EPN 

method (Caines et al, 2016) to isolate individual EPN for each electrode using the 

equations from the Caines et al (2016) methodology (Equations 1-3).  To quantify 

non-corrosion conditions for the electrodes, a baseline potential was established 

for each electrode from potential measurements during the time before any 

electrolyte was introduced to the electrodes.  This baseline potential is needed to 

quantify the measurement noise due to the open circuit condition when no 

electrolyte is present.  Without the presence of electrolyte as seen in Figure 66A, 

there is no complete circuit and the potential measurement between two points 

should be zero V.  A closed circuit as seen in Figure 66B is only possible when an 

electrolyte is present.   
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Figure 66: Theoretical explanation of baseline EPN  

If the measured EPN is below the baseline reading, the circuit is considered 

incomplete and no corrosion is occurring.  If the EPN reading is above the baseline, 

corrosion conditions are present and corrosion is indicated.  Baseline 

measurements for all tests are listed in Table 23 . 

 

Table 23: Baseline EPN for initial dry, non-corrosion condition 

Test Treatment Baseline Potential 

(average µV) 

Test 1 Insulated 0.25 

Non-Insulated 0.18 

Test 2 Insulated 0.14 

Non-Insulated 0.14 

Test 3 Insulated 0.23 

Non-Insulated 0.28 

Test 4 Insulated 0.24 

Non-Insulated 0.87 

 

Measured EPN less than the baseline is considered non-active where no corrosion 

is indicated. Based on Table 23 values the baseline value is set to 1µV.  Any 
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measurement above 1 µV is considered active and corrosion is indicated during 

these periods.  All electrode data was analysed to determine the amount of time 

during each test that active corrosion was indicated.  Table 24 lists the portion of 

the total test time that the electrode EPN measurements indicated active and non-

active conditions.   Column 3 (Wet) of Table 24 indicates the portion of total test 

time where the electrolyte was introduced and held at the pipe surface before 

draining.  For all tests the total wet period for the complete experiment was one 1 

hour.  This is approximately 20 % of the total test time of tests 1 and 2 (1 hour 

drying time) and less than 5% of tests 3 and 4(8 hour drying time).  

Table 24: Proportional average time of wet and dry periods 

  Wet                                             

% of Total test 

time 

Dry                                                 

% of Total test 

time 

Active                                           

% of Total test 

time 

Non-active                     

% of Total test 

time 

Test 1 Insulated 20 80 97 3 

Non-Insulated 18 82 20 80 

Test 2 Insulated 23 77 67 33 

Non-Insulated 27 73 26 74 

Test 3 Insulated 4 96 98 2 

Non-Insulated 4 96 4 96 

Test 4 Insulated 3 97 69 31 

Non-Insulated 3 97 13 87 

 

The active and non-active times indicated in columns 5 and 6 in Table 24. These 

values indicate the portion of time where the measured EPN is above the 1 µV 

baseline.    
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For non-insulated electrodes the active portion of the test is similar to the amount 

of time of electrode wetting.  This indicates that when the electrolyte is drained, 

corrosion does not continue for non-insulated electrodes.   

For insulated electrodes, all tests indicated an increase in active time over the time 

the electrodes are wetted.  Electrolyte was introduced under insulation for less than 

25% of the total test time for tests 1 and 2 however the amount of time indicating 

active corrosion is significantly higher; 97% and 67% respectively.  For tests 3 and 

4 the electrolyte was introduced for less than 5% of the total test and the amount 

of time of active corrosion is significantly higher at 98% and 69% respectively.  This 

indicates that there is more opportunity for corrosion to occur under insulation than 

in non-insulated pipes. 

A sample of the isolated electrode data for insulated electrodes and non - insulated 

electrodes from Test 1 is shown in Figure 67. Periods of Wet and Dry are identified 

and differences in behavior can be observed.  Wet periods are the times when the 

electrolyte is introduced and held at the pipe surface.  Dry periods are when the 

electrolyte is drained from the pipe surface until the introduction of the next wet 

cycle.   
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Figure 67: Test 1 (distilled water, 1 hour cycle) Isolated electrode potential 

Figure 67 demonstrates the three cycles included for each test.  Similar behaviour 

can be seen for all electrodes during the wet periods of the test.  Differences in 

behaviour between insulated and non-insulated electrodes can be seen during dry 

periods.  To further highlight these differences the first wet and dry periods of Test 

1 are shown in Figure 68.   

 

Figure 68: Wet period 1 and dry period 1 for Test 1 Isolated electrode potential. 
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To highlight the difference in behaviour between insulated and non-insulated 

electrodes all insulated electrodes are shown as solid lines and all non-insulated 

electrodes are shown as dashed lines in Figure 68.  Similar behaviour can be seen 

during the wet period and the differences in behaviour during the dry period 

become more obvious.    

Closer examination of dry period 1 is shown in Figure 69.   

 

Figure 69: Test 1 Isolated electrode potential, CYCLE 1- Dry 

Figure 69 shows a significant difference in the electrochemical behaviour of the 

insulated electrodes and non-insulated electrodes.  The insulated electrodes show 

continued electrochemical activity during the dry period and the non-insulated 

electrodes do not demonstrate any electrochemical activity during dry period 1. 

To begin to quantify this observed increase in corrosion activity, the EPN of each 

electrode was examined.  An increase in EPN above the baseline level is 

considered an active period where conditions are favorable for corrosion.   
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The EPN data was segregated into wet and dry periods for each electrode.  The 

mean of EPN for each period was calculated.  The mean EPN for all periods is 

shown in Table 25 to illustrate the effect of insulation on corrosion behaviour of 

pipes. The dry period mean EPN for the non-insulated electrodes indicate a return 

to non-corrosion conditions when these averages are examined in comparison to 

the baseline potential.   

Table 25: Mean EPN by cycle period 

Test Treatment Baseline  

Mean 

EPN             

(µV) 

Wet 1 

Mean 

EPN             

(µV) 

Dry 1               

Mean 

EPN                 

(µV) 

Wet 2 

Mean 

EPN                           

(µV) 

Dry 2       

Mean 

EPN                            

(µV) 

Wet 3 

Mean 

EPN                 

(µV) 

Dry 3                 

Mean 

EPN                      

(µV) 

Test 1      
distilled, 

1 h dry 

time 

Insulated 0.2 3220.7 320.3 3304.8 139.4 2506.4 36.2 

Non-Insulated 0.2 3355.6 0.6 548.2 0.3 429.7 0.2 

Test 2            
Sea, 1 h 

dry time 

Insulated 0.1 16323.1 2489.4 19111.7 1675.4 13986.9 20.4 

Non-Insulated 0.1 4874.3 0.2 3984.9 0.2 1716.2 0.3 

Test 3      
distilled, 

8 h dry 

time 

Insulated 0.2 9265.8 1033.6 4676.0 1345.8 4896.5 581.2 

Non-Insulated 0.3 8823.3 1.0 6145.0 0.3 2010.6 0.2 

Test 4            
Sea, 8 h 

dry time 

Insulated 0.2 15562.2 1125.9 10191.2 2335.8 5418.6 1241.8 

Non-Insulated 0.9 4996.8 0.5 6517.2 0.2 7719.8 370.0 

 

All average dry potential are less than 1 µV except for dry periods 2 and 3 for Test 

4.  One side of the experimental set-up for Test 4 was observed to allow the 

electrolyte to come in contact with the electrical connection of each electrode.  This 

contact may cause corrosion between the connection wire and the electrode and 

result in elevated EPN readings that do not correspond to bulk electrode corrosion.  
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If these readings are excluded from analysis, the mean dry period EPN reduces to 

0.2 µV and 1.2 µV respectively. 

The mean dry period EPN for the insulated electrodes show a reduction from the 

wet period mean EPN however it does not return to non-corrosion potential of the 

baseline (<1 µV).   This indicates that wetness continues under insulation allowing 

for the continued circuit connections for corrosion to continue.   

The statistical significance of the average potential difference between insulated 

and non-insulated electrodes was determined using the unequal variance t-test 

(Ellison, 2009; Ruxton, 2006) after outlier removal using the Peirce method (Ross, 

2003) with a significance level (α) level of 0.05.   

A single tail analysis was used to test the null hypothesis (Ho) that Corrosion 

activity is not increased by the application of insulation to pipe systems after an 

electrolyte is introduced to the pipe surface versus the research hypothesis (HR) 

that corrosion activity is increased by the application of insulation to pipe systems 

after an electrolyte is introduced to the pipe surface. 

Ho: µI=µN   HR: µI>µN 

Table 26 lists the findings of this analysis.  This analysis found that the increase in 

the EPN mean for  insulated electrodes over non insulated electrodes are all 

statistically significant at 95% confidence except for two of the dry period (Dry cycle 

1 for Test 1 and Dry cycle 2 for Test 4).  When the significance level is lowered to 

94%, the difference becomes statistically significant in all periods.   This analysis 
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allows for the acceptance of the research hypothesis that corrosion activity is 

increased when insulation is applied to pipes. 

Table 26: Statistical significance of EPN mean for insulates versus non insulated electrodes, α = 0.05 

Test Significance Dry 1  Dry 2 Dry 3 

Test 1 Difference in Mean 

(mV) 

0.320 0.139 0.036 

Statistically 

Significant 

No Yes Yes 
t=1.88, df=5, 

p>0.05) 

t=2.38, 

df=5, 

p>0.05) 

t=10.84, 

df=4, 

p>0.05) 

Test 2 Difference in Mean 

(mV) 

2.48913 1.67525 0.02006 

Statistically 

Significant 

Yes Yes Yes 

t=2.20, 

df=5, 

p>0.05) 

t=2.20, 

df=5, 

p>0.05) 

t=2.46, 

df=5, 

p>0.05) 

Test 3 Difference in Mean 

(mV) 

1.033 1.345 0.581 

Statistically 

Significant 

Yes Yes Yes 

t=11.384.22, 

df=4, 

p>0.05) 

t=4.39, 

df=5, 

p>0.05) 

t=2.26, 

df=5, 

p>0.05) 

Test 4 Difference in Mean 

(mV) 

1.125 2.329 0.871 

Statistically 

Significant 

Yes No Yes 

t=2.03, 

df=5, 

p>0.05) 

t=2.01, 

df=5, 

p>0.05) 

t=5.00, 

df=5, 

p>0.05) 

 

 

5.5 Discussion 

The results of this study clearly indicate that there is increased corrosion on 

surfaces of insulated pipes than uninsulated pipes.  All three comparison methods, 
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observational, mass loss, and EPN, indicate an increase in corrosion for pipes 

under insulation.   

5.5.1 Visual Observation 

For all tests a visual difference was observed in the surface condition of the 

electrodes after testing.  An increase in visible surface corrosion was seen when 

insulation was removed over the amount of visible corrosion to the non-insulated 

surfaces.  This difference was most clear in Tests 1 and 3, the distilled water tests 

as the non-insulated electrodes showed very little visible surface corrosion. The 

surface of all electrodes exposed to seawater (insulated and non-insulated) 

showed significant corrosion product however increased corrosion product on 

insulated electrodes was still apparent.  Based on visual observation, there is 

increased corrosion for electrodes under insulation than electrodes without 

insulation.  This increase in corrosion product visible on the surface of insulated 

samples is likely due to the moisture retained by the insulation.  When removing 

the insulation, moisture was observed on the inside surface of the insulation and 

the sample surface appeared damp.  This prolonged exposure to an electrolyte 

increases the opportunity for corrosion and increases the severity of corrosion. 

5.5.1.1 Observed Experimental issues  

Issues with experiments are possible and can affect the outcome.  The most 

significant issue observed was occasional leaking near the electrode connection 

(Figure 70). This was observed in Test 3 and Test 4.   
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Figure 70: Electrode electrical connection 

Leaking near the electrode connection can cause recording of EPN for corrosion 

between the wire connection and the electrode rather than the corrosion occurring 

in the bulk of the electrode.  This was observed during the dry periods for test 4 on 

some non-insulated electrodes.  This caused higher than expected EPN 

measurements that indicted continued corrosion of non-insulated electrodes after 

the electrolyte was removed from the surface.     

5.5.2 Mass Loss 

Mass loss measurements indicate a clear increase in mass loss and average 

corrosion rate in electrodes under insulation.    For each test, increased mass loss 

and corrosion rate was found for insulated electrodes over non-insulated 

electrodes.  These increases were found to be statistically significant at 95%.  The 

cause of this increase is attributed to the moisture retained by the insulation 



220 
 

allowing increased corrosion time and therefore increased overall mass loss in 

insulated samples over non-insulated samples.    

Previous work by the Caines et al. (2016) indicates that there is a relationship 

between EPN and corrosion rate.  In this work the authors found that there was a 

correlation between EPN area (V·s) and the corrosion rate developed from mass 

loss data.    

For this study, the average corrosion rate from the mass loss studies somewhat 

correlates with the EPN area. Figure 71 shows the trend for increased corrosion 

rate with increased EPN area measurements.  For the 1 hour tests (Tests 1 and 2) 

this relationship is somewhat strong at an R2 value of 0.78 however the 8 hour 

drying time tests (Tests 3 and 4) show limited correlation ( R2 = 0.40) between EPN 

area  and CR.   

 

 

Figure 71: Relationship between EPN and corrosion rate for all tests 
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Examination of the 8 hour drying tests individually shown in Figure 72 indicate that 

each test individually demonstrates a correlated relationship but do not 

demonstrate a relationship when viewed together.  

 

Figure 72: Relationship between EPN and corrosion rate for 8 hour dry time cycle tests 3 and 4. 

Mass loss measurements initially introduced in the work by the authors (Caines et 

al 2016), longer term testing is needed to fully capture the relationship between 

recorded EPN and corrosion rate.  These results also indicate that the cyclic nature 

of CUI may require additional study to determine the effect on recorded EPN over 

the long term.   

5.5.3 Electrochemical Comparison 

The simplified EPN measurements showed similar magnitude of readings for all 

electrodes during the wet period.  This indicates that corrosion is comparable for 
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both insulated and non-insulated pipes when under direct contact with an 

electrolyte and differences in total corrosion of electrodes can be attributed to the 

differences in the dry periods.  This study also demonstrates the significant 

corrosion activity during dry periods for insulated electrodes.  During the dry period 

significant differences in electrochemical potential was found.  Increased EPN was 

found for insulated electrodes indicating higher corrosion activity under insulation 

when the electrolyte is removed.  The non-insulated electrodes showed very little 

electrochemical activity during the dry period while the insulated electrodes 

demonstrated ongoing electrochemical activity.  This continued activity is therefore 

the consequence of insulation.   

Insulation increases drying time of the pipe surface allowing additional corrosion. 

After each test, the surface of the insulation was found to retain some electrolyte. 

Non-insulated pipes are exposed to natural airflow to aid in the speed of drying as 

there is no mechanism present to retain electrolyte at the pipe surface.  

Observation of the non-insulated electrode surfaces showed quick drying after the 

electrolyte was drained.    Cyclic observation of the insulated electrode surface 

was not possible however after testing moisture was observed on the internal 

surface of the insulation when removed from the pipe. Figure 73 illustrates this 

retained electrolyte.  The insulation is essentially a closed system that retains 

moisture at the pipe surface even when the electrolyte is drained.    
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Figure 73: Typical retained moisture under insulation after testing. 

The additional time needed for the insulated pipe electrode surface to dry can be 

determined from the experimental set-up.  As the surface dries, the electrode EPN 

will return to the baseline potential (<1 µV) indicating there is no longer an 

electrolyte available to create corrosion conditions and complete the circuit.    To 

demonstrate this application, an additional test using distilled water and natural 

sea water was completed on insulated electrodes and data recorded for one wet 

and dry cycle with measurements taken until readings returned to the <1 µV range 

indicating an open circuit and therefore dry surface.     The complete cycle is shown 

in Figure 74.  The drying time for distilled water was approximately 12.9 days and 

the drying time for natural salt water was approximately 14.7 days.   
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Figure 74: Wet and dry cycle to determine drying time for electrodes under insulation with distilled water and 

natural sea water. 

Closer examination of days 12-15 of the test is shown in Figure 75.  This illustrates 

the reduction in EPN to below 1 µV for both distilled and seawater electrolytes and 

highlights the EPN readings that indicate the surface is dry. 

 

 

Figure 75: Dry times for distilled and seawater 
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Drying times for Non-Insulated electrodes were found from the original study 

measurements as all test data indicates drying time within the first minute after 

electrolyte was drained. No additional testing was required. 

Drying times are specific to the situation; insulation type, amount of electrolyte 

introduced and the operational conditions of the system.  For example smaller 

amounts of electrolyte penetration to the pipe surface at elevated operational 

temperatures would likely have a reduced drying time however this time is 

expected to remain longer than the time for a non-insulated pipe under the same 

conditions.     

5.6 Conclusions 

 

This work supports the long held belief that corrosion of insulated components is 

more severe than corrosion on uninsulated pipe systems under similar conditions.  

Significantly more corrosion was found for electrodes under insulation than 

electrodes without insulation.  This difference was confirmed with visual 

inspections, mass loss data, and electrochemical noise measurements.  

Visual inspection of the electrode surfaces showed more visible corrosion on 

insulated electrodes than non-insulated electrodes. 
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Increased mass loss and corrosion rates were found for insulated electrodes over 

non-insulated electrodes.  These increases were statistically significant at a 95% 

level. 

Analysis of EPN data shows that active conditions for corrosion continue during 

the dry period for insulated electrodes and not for non-insulated electrodes. The 

percentage of total test time with active corrosion conditions was increased from 

20% to 98% for non-insulated electrodes and to 67% for insulated electrodes with 

a 1 hour drying cycle.  The percentage for the 8 hour drying cycle was increased 

from less than 13% for non-insulated electrodes to over 69% for insulated samples. 

The difference in EPN mean for insulated and non-insulated electrodes was found 

to be statistically significant (at 94%) resulting in the acceptance of the research 

hypothesis that insulation increases corrosion on pipe surfaces. 

For tests with a one hour drying cycle a relationship between the EPN area and 

the corrosion rate was found with an R2 value of 0.78.  

For tests with an 8-hour drying cycle no relationship (R2 = 0.40) was found between 

the EPN area and the corrosion rate.   

When analysed separately, the 8-hour drying cycle tests demonstrated a 

correlated relationship.  The distilled water test had a correlation of R2 = 0.69 and 

the seawater test had a correlation of R2 = 0.84. 
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The increase in corrosion activity under insulation is due to retained moisture at 

the pipe surface by the insulation.  The closed system of insulation reduces 

evaporation and allows for continued corrosion. Insulation increases drying time of 

the pipe surface allowing additional corrosion: 

 Drying times for non-insulated electrodes were all recorded as less than 1 

minute. 

 Drying time for insulated electrodes with one 20-minute wet cycle with 

distilled water was 12.9 days.  

 Drying time for insulated electrodes with one 20-minute wet cycle with sea 

water was 14.7 days.  

 Drying times are specific to a situation; insulation type, amount of electrolyte 

introduced and the operational conditions of the system will all impact the 

drying time for surfaces under insulation. 

If moisture penetrates pipe insulation and can reach the pipe surface this work 

shows there is a prolonged opportunity for corrosion activity due to retained 

moisture under the insulation.  The reasons for moisture penetration to the pipe 

surface of insulated components are beyond the scope of this work, however, 

methods and design options to limit the introduction of moisture to the pipe surface 

of insulated pipes must be developed and predictive methods for the likelihood of 

corrosion conditions occurring must be discovered.  
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In addition, these results indicate that the removal of insulation would decrease the 

opportunity for corrosion and increase safe, continuous operations.  The increase 

in corrosion for insulated pipes demonstrated in this research indicate that care 

should be taken when adding insulation to components to ensure insulation is only 

used where required. 

The simplified method (Caines et al, 2016) was successfully applied to study CUI.  

This success justifies the need for expanded application of this simplified method 

to: 

 Laboratory testing to further the understanding of the relationship of EPN to 

corrosion rate. 

 Field testing to generate real time data of surface corrosion under insulation.   

 Develop corrosion rate prediction models for asset corrosion under 

insulation. 
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6.0 Conclusions and Recommendations 

6.1 Conclusions 

The aim of this research was to further the understanding of asset corrosion under 

insulation.  The study was planned with two distinct objectives to fill knowledge 

gaps.  The following sections will summarise the findings of this research as they 

contribute to the achievement of these objectives. 

6.1.1 Corrosion Under Insulation Data Generation 

Through the systematic analysis of six categories of pitting corrosion the state of 

understanding for each was determined.  Depth of knowledge of pitting corrosion 

rate modeling and pitting mechanism were found to be significantly lower than 

other pitting categories. These findings indicated the need for long term data.  To 

generate the required information a comprehensive experimental plan was 

developed.  This plan develops a field test procedure to study corrosion under 

insulation (CUI) in marine environments that ensures that data collected is 

representative of CUI developed in the offshore industry.  Also included in the plan 

is the development of a laboratory test to realistically predict long term asset 

corrosion.  The experimental design was completed and the facilities and 

equipment installed.  The monitoring and analysis of the ongoing experiment will 

be completed over the next three years by the C-RISE research group.   Beyond 

the field, characterization, and accelerated testing developed in Chapter 3 for this 

work, additional laboratory tests were developed and completed to contribute to 
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data generation for the study of CUI.  These tests yielded a controlled comparable 

data for future analysis and aided in the development of a simplified method for 

data generation.   

6.1.2 Continuous Monitoring technique development 

In addition to the development of field and laboratory testing for characterization 

and acceleration, the completed study and analysis of pitting corrosion indicated a 

need for a new technique to determine corrosion rates and mechanism from on-

line monitoring.  This research developed, verified and applied a simplified EPN 

method to monitor corrosion.  This method can be used to recognise different 

corrosion mechanisms (localized/uniform) and to estimate corrosion rates. 

This simplified method uses isolated electrode EPN records to predict corrosion 

rate of each individual component.  A relationship between isolated electrode EPN, 

mass loss and corrosion rate was established. This confirms EPN as a promising 

way to monitor corrosion. 

This research also validated the relationship between isolated EPN and corrosion 

rate and that this simplified method can distinguish between different types of 

corrosion.   

The simplified method aided in determining that there is increased corrosion 

activity under insulation due to retained moisture at the pipe surface.  If moisture 

penetrates the insulation and can reach the surface this work shows the 

opportunity for corrosion activity due to retained moisture under the insulation can 
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be captured and analysed using the simplified EPN method.  The Caines et al 

(2016) simplified method was successfully applied to study CUI.  This success in 

laboratory testing allows for the expansion of the technique to intensified laboratory 

and field applications to further validate the methodology and develop predictive 

models.  This is a significant step to create a continuous monitoring technique to 

help reduce the impact of corrosion on assets under insulation.  

6.2 Recommendations 

6.2.1 Corrosion Under Insulation Data Generation   

Further research is needed to continue to the work of this thesis.  Understanding 

the effects of corrosion on assets under insulation is important to controlling and 

preventing this issue.   A corrosion rate model for CUI in offshore environments 

must be developed.  This can only be developed when the variables that affect 

this type of corrosion are understood and the interactions between variables 

determined.   The CUI information gathered through the field testing designed in 

this thesis will characterise the phenomenon and open new strategies for 

prevention.  Once this is completed, additional information should be created to 

further develop the model to increase accuracy and reliability.  This additional 

information includes: 

 How and why moisture penetrates insulation: This information is needed to 

improve design and to fully develop risk assessments on the installation of 

insulation on assets.   
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 The effect of retained moisture under insulation in terms of composition: 

When an asset is subjected to cyclic wetting there is an opportunity for ion 

build-up on the surface which may impact the concentration of subsequent 

moisture allowed to reach the surface.   

 The effect of temperature fluctuations on corrosion behaviour under 

insulation: Process temperatures in offshore operations are varied and 

temperature has a known effect on corrosion.    

 The effect of microbiological influenced corrosion under insulation:  With 

retained moisture at the surface of insulated assets the effect of trapped 

microbials must be assessed. 

6.2.2 Continuous Monitoring Technique Development 

To develop a continuous monitoring technique for asset under insulation in 

offshore operations, the simplified EPN methodology developed in this thesis 

should be expanded and development continued.   

To fully develop this simplified method for expanded application, additional testing 

is required to characterize the relationship between isolated electrodes and their 

EPN. Future work includes: 

 Longer term testing: Required to characterise the EPN / CR relationship 

 Dissimilar electrodes test: Required to validate the application of the 

method for non-identical electrodes.   

 Develop relation model between EPN and corrosion rate 
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The simplified method will be applied to the field test plan and this additional 

information will further validate the use of this methodology to in-situ operations.  

To develop this methodology for offshore operations, research is needed in how to 

directly apply this technology to assets in-situ.  The equipment changes to adapt 

to an operational setting must be evaluated and the inclusion or adaption of a three 

electrode system must be developed.   
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