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Abstract

This thesis presents the design, implementation, and validation of a novel leader-

assisted localization framework for a heterogeneous multi-robot system (MRS) with

sensing and communication range constraints. It is assumed that the given hetero-

geneous MRS has a more powerful robot (or group of robots) with accurate self-

localization capabilities (leader robots) while the rest of the team (child robots), i.e.

less powerful robots, is localized with the assistance of leader robots and inter-robot

observation between teammates. This will eventually pose a condition that the child

robots should be operated within the sensing and communication range of leader

robots. The bounded navigation space therefore may require added algorithms to

avoid inter-robot collisions and limit robots’ maneuverability. To address this limita-

tion, first, the thesis introduces a novel distributed graph search and global pose com-

position algorithm to virtually enhance the leader robots’ sensing and communication

range while avoiding possible double counting of common information. This allows

child robots to navigate beyond the sensing and communication range of the leader

robot, yet receive localization services from the leader robots. A time-delayed mea-

surement update algorithm and a memory optimization approach are then integrated

into the proposed localization framework. This eventually improves the robustness

of the algorithm against the unknown processing and communication time-delays as-

sociated with the inter-robot data exchange network. Finally, a novel hierarchical
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sensor fusion architecture is introduced so that the proposed localization scheme can

be implemented using inter-robot relative range and bearing measurements.

The performance of the proposed localization framework is evaluated through a se-

ries of indoor experiments, a publicly available multi-robot localization and mapping

data-set and a set of numerical simulations. The results illustrate that the proposed

leader-assisted localization framework is capable of establishing accurate and non-

overconfident localization for the child robots even when the child robots operate

beyond the sensing and communication boundaries of the leader robots.
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Chapter 1

Introduction

Autonomous mobile robots are becoming one of the commonly available industrial

tools for a variety of applications ranging from floor cleaning [1] to planetary explo-

ration [2]. Traditional autonomous mobile robot-based implementations relied on a

single robot equipped with various perceptive sensors [3]. In the past few decades,

multi-robotic systems (MRSs) have been preferred over single robot-based systems.

Some of the advantages of MRSs compared with single robot systems are the robust-

ness to an individual failures, the shorter time for the completion of set missions, the

improved productivity by enabling parallel tasks, the better coverage of an environ-

ment and the utilization of resources; and the enhanced flexibility to achieve a high

quality of service [4, 5]. Available MRSs can be categorized into two groups: homo-

geneous MRSs and heterogeneous MRSs. The studies related to homogeneous MRSs

focus on the MRSs with the agents of identical characteristics [6, 7]. In contrast, the

studies related to the latter focus on the robots unifying from different domains of

operation such as the ground and air, different perception and processing capabili-

ties, and a variety of sizes in a single framework [8–10]. The complementary unique

characteristics of agents in a heterogeneous MRS can be integrated to enhance their
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relative capabilities and to overcome limitations of stand-alone systems [8].

Accurate estimation of position and orientation (pose)1 is a key requirement for suc-

cessful implementation of any mission using autonomous MRSs. Self-localization of a

given robot can be empowered with either basic localization algorithms, such as dead-

reckoning or with complex localization approaches, such as simultaneous localization

and mapping (SLAM). Dead-reckoning-based self-localization approaches generally

demonstrate unbounded drifting of pose estimations, limiting their applicability to a

short-period of time. In contrast, SLAM is capable of generating more accurate pose

estimation for agents in MRSs, when they navigate in a feature rich environment.

Successful implementation of SLAM entails high sensor payload, fast computational

resources and larger memory space. These requirements limit its applicability for

resource constrained robotic systems such as micro aerial vehicles (MAVs) and micro

unmanned ground vehicles (MUGVs).

In general, agents in a heterogeneous MRS host different proprioceptive and exterocep-

tive sensory systems. This results in a significant variation in the self-localization ca-

pability of teammates. Inter-robot observations and flow of information between team-

mates can establish a sensor sharing technique so that the localization accuracy of each

member improves over the localization approaches that solely depend on the robot’s

onboard sensors. These techniques are termed collaborative localization [9, 11–13].

When each robot can sense and communicate with its teammates at all times, then

every member of the MRS has less uncertainty about its pose than the robot with

the best result of localization with self-localization [12]. There are various meth-

ods that have been studied to implement multi-robot collaborative localization for

MRSs: centralized/multi-centralized cooperative localization approaches [11, 14–19],

distributed cooperative localization approaches [12, 20], decentralized cooperative lo-
1Note that, in this thesis, the terms pose and robot’s state vector are used interchangeably to

represent robot position and orientation.
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calization approaches [13, 21–24], relative localization approaches [9, 25] and leader-

assisted localization [9, 25,26].

In order to implement a leader-assisted navigation technique, the MRS should have a

minimum of one robot with higher sensor payload, higher processing power, and larger

memory capacity. This robot can then execute complex localization algorithms such

as SLAM and can host advanced localization sensors such as laser scanners, cameras,

global positioning system/differential global positioning system (GPS/DGPS) units,

compass and accurate wheel odometers leading to more accurate self-localization.

Robots with these capabilities are termed leader robots. The rest of the agents in

the MRS are termed child robots. As the leader robots have the means of accurate

localization, the objective of the leader-assisted localization is to establish localization

for the child robots using the pose estimations of the leader robots and the inter-

robot observations among the teammates [25, 26]. This thesis proposes novel sensor

fusion architectures for leader-assisted localization in which child robots are allowed

to navigate beyond the sensing and the communication range of leader robots yet

guarantee the bounded estimation error for the child robots. Additionally, a novel

distributed cooperative localization framework is also presented in this thesis.

1.1 Multi-Robot Localization Strategies

The initial formulation of multi-robot collaborative localization was inspired by SLAM

where mobile agents are used as dynamic portable landmarks in an environment to

assist navigation of multiple robots [11]. This initial implementation splits the mobile

robots in MRS into two groups. When one group navigates, the other group remains

stationary. The agents in the stationary group act as static landmarks to assist the

localization and navigation of the agents in the moving group. After a few time steps,
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the two groups exchange their roles and this process continues until all agents have

approached the goal location. This “leap-frogging” motion pattern-based framework

was later improved by several other researchers [14, 15, 17]. The key limitation of

leap-frogging motion-based cooperative localization strategies is that only one robot

or a portion of the MRS is allowed to navigate at a given time step, resulting in longer

mission completion time. There are numerous multi-robot collaborative localization

frameworks which have been developed since the work of Kurazume et al. in 1994.

These implementations can be categorized into six main groups: (1) centralized co-

operative localization, (2) multi-centralized cooperative localization, (3) distributed

cooperative localization, (4) decentralized cooperative localization, (5) relative local-

ization, and (6) leader-assisted localization. Figure 1.1 graphically illustrates these

multi-robot localization configurations.

Centralized cooperative localization approaches have a central processing unit

to perform the sensor fusion task [11, 14–19]. Each robot in the MRS acquires

its ego-motion sensory data (odometry), and relative range/bearing measure-

ments for its neighbours and transmit them to a central processing unit (Figure

1.1 (a)). This central processing unit can be either a server computer or one

of the agents in the MRS. The central processing unit augments each robot’s

pose into a single state vector and maintains the joint-state and the associated

dense covariance matrix in order to accurately represent the correlation with

the teammates’ pose estimations. Therefore, these approaches are known to

generate an optimum solution for the cooperative localization problem at the

expense of high computational complexity, i.e. O(N4) where N is the number

of robots in the team. Besides the high computational complexity, centralized

cooperative localization approaches generally require a communication network

to have high data bandwidth to accommodate the high-frequency ego-centric
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Figure 1.1: Overview of multi-robot localization strategies. (a) Centralized coop-
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cooperative localization, (d) Decentralized cooperative localization, (e) Relative lo-
calization, (f) Leader-assisted localization. Note that the communication links with
two arrowheads represent bidirectional communications and the communication links
with single arrowhead represent unidirectional communications.

measurements to the central processing unit.

Multi-Centralized cooperative localization approaches have been introduced to
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improve the robustness of the traditional centralized cooperative localization

methods against the single point of failure. In these multi-centralized methods,

the team state estimation task is duplicated for each member of the team [19,

27]. Therefore, each robot exchanges its local sensor reading with every other

member of the team as shown in Figure 1.1(b). Since now each robot has an

independent team state estimate, these approaches are robust against the single

point of failure. However, the per measurement communication cost of multi-

centralized cooperative localization approaches is relatively higher, i.e. O(N),

as compared to O(1) in centralized approaches.

Distributed cooperative localization schemes have been proposed to address the

communication bandwidth limitations associated with the centralized and multi-

centralized cooperative localization strategies. In the distributed cooperative lo-

calization approaches, each robot runs a local filter to fuse odometer data while

inter-robot observations are fused at a central processor [12, 20]. As a result,

high-frequency ego-centric measurements are no longer required to be transmit-

ted either to a central processing unit or among teammates. This reduces the

communication bandwidth demand considerably. However, the measurement

update step is still performed in a centralized manner. Therefore, each robot

communicates its local estimates and inter-robot relative measurement (IRRM)

data to the central processor at each IRRM event2. The central processing unit

performs the sensor fusion and the updated decomposed state estimations are

sent back to each robot to ensure the continuity of the accurate time propaga-

tion. Figure 1.1 (c) shows the overview of this localization strategy.
2Each robot hosts a sensory system to measure relative pose, range, or bearing to neighbouring

robots. These sensors are synchronized and acquire measurements periodically. The process of each
robot synchronously acquires relative measurements for neighbours is defined as IRRM event.
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Decentralized cooperative localization algorithms are proposed to address the

computational and communication limitations associated with centralized, multi-

centralized and distributed architectures. In decentralized cooperative localiza-

tion, each robot maintains a local estimator, such as an extended Kalman filter

(EKF) or a particle filter, to estimate its own pose in a pre-defined coordinate

frame. Each robot exchanges information only with the robots that operate

within its sensing range (Figure 1.1 (d)) reducing the bandwidth requirement

for data exchange. Since there is no state augmentation at the state propagation

or at the measurement update step, the per IRRM computational complexity

becomes independent of the number of robots in the network, i.e. O(1). Overall

computational cost increases linearly with the number of robots, O(N). Decen-

tralized cooperative localization approaches generally do not track the possible

interdependencies among robots’ local pose estimates, leaving the same infor-

mation to propagate forward and backward within the communication network.

This may results in generating overconfident state estimations3 for agents in the

MRS [21,22,28,29].

Relative localization algorithms are inspired by the target tracking applications.

The key objective of relative localization is to detect and track one or a set of

moving agents on the body-fixed coordinate frame of another moving agent(s)

in the team [30, 31]. Most of the relative localization implementations assume

that the mobile agents which run tracking filters, have ego-motion sensory in-

formation of neighbouring robots. Therefore, robots are required to exchange

high-frequency ego-centric data with the tracking robot (Figure 1.1 (e)) causing

the bandwidth requirement of the communication link to increase. It is possible
3If the estimated uncertainty is lesser than the estimation error, the estimation is said to be

overconfident.
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to implement relative localization without exchanging ego-motion data. Then,

it is required for tracking filter to estimate velocities of the target. This en-

tails relatively longer time for tracking filter to converge compared the relative

localization implemented with known ego-motion data of target robot.

Leader-assisted localization is introduced to establish the localization for child

robots (less capable robots) with the help of leader robots (more capable robots)

while using the inter-robots’ observation among teammates. These localization

algorithms assume that the leader robots in the team implement an advanced

localization approach, such as SLAM, and are capable of acquiring relative pose

measurements for child robots. The acquired relative pose measurements are

then converted into a reference coordinate frame and sent to child robots. Child

robots fuse these global pose measurements with their local estimations and

improve the accuracy of their localization. The overview of this localization

strategy is shown in Figure 1.1 (f).

1.1.1 Issues Associated with Multi-Robot Localization

Each multi-robot localization approach outlined in the previous section has its own

strengths and weaknesses. Some of the demerits are common across multiple multi-

robot localization strategies. A brief insight into these weaknesses is summarized

below:

Scalability : Scalability of a given multi-robot collaborative localization approach

is governed by two parameters: computational complexity of the algorithm

and communicative complexity of the communication network. Centralized,

multi-centralized and distributed cooperative localization algorithms are scaled

in O(N4) where N is the number of robots in the network. Therefore, these
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algorithms scale poorly in terms of the number of members in the team. The

computational complexity of the decentralized cooperative localization, leader-

assisted localization and relative localization schemes increase linearly with the

number of robots in the team, and is considerably lower than other three multi-

robot localization approaches; thus, these algorithms are scalable in terms of

the number of robots in the team. Centralized cooperative localization, multi-

centralized cooperative localization approaches and general relative localization

algorithms require teammates to exchange high-frequency ego-centric data with

one another or with central processing systems. A higher number of robots in

the team entails a greater bandwidth requirement imposing an upper bound

for the size of the robot team. Distributed and decentralized cooperative local-

ization and leader-assisted localization techniques do not require teammates to

exchange high-frequency ego-motion data, resulting in reduced communicative

complexity.

Communication range limitations : To generate a pose estimation with bounded

estimation error, centralized cooperative localization, multi-centralized coopera-

tive localization, leader-assisted localization and relative localization approaches

imposes the condition that teammates navigate within communication bound-

aries of each other or within the communication boundaries of the central pro-

cessing unit. This constraint limits the teammates’ maneuvering room, reduces

the area covered by the robots, and demands a complex algorithm to avoid

inter-robot collisions.

Sensing range limitation : In general, measurement uncertainty of any IRRM sys-

tem increases when the distance between the IRRM sensor and the target is

increased. Therefore, the accuracy of the relative measurement may degener-
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ate with the increase of the distance between observer and target. Once the

distance between two robots exceeds a certain threshold value, the acquired

measurement may become more erroneous. This upper threshold is known as

the sensing range for the particular IRRM system. For the localization ap-

proaches that rely on direct observation between robots (i.e. leader-assisted

localization and relative localization), the pose estimations tend to diverge if

the observed robots (child robots or target robots) navigate beyond the sensing

range of the observing robot (leader robot or tracking robot). In order to have

a bounded estimation error, the observed robots are required to navigate within

the sensing range boundaries of the observing robot. This constraint also limits

the teammates’ maneuverability, reduces the area covered by the robots, and

demands a complex algorithm to avoid inter-robot collisions.

Over-confident state estimations : This limitation mainly exists with the decen-

tralized cooperative localization approaches. General decentralized cooperative

localization approaches neglect the possible interactions among teammates’ lo-

cal pose estimations, and each pose measurement sent by the neighbours is

considered as independent information. This drawback would allow the same

information to propagate back and forth in the communication network causing

overconfident state estimations.

Dynamic lag measurement update : Relative observations between teammates

and flow of information among the teammates are the two key elements that

form multi-robot collaborative localization. Pre-processing the acquired raw

sensory data and exchange of these measurements between robots introduce

unknown dynamic time lags between the actual observation and information

available at the observed robot. The majority of available implementations
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neglect this time delay and assume that the information is available for the

observed robot instantly.

Out-of-sequence-measurement (OOSM) update : The behaviour of the com-

munication networks is complex and may be effected by several environmental

factors. Further, propagation time between two robots varies with the prop-

agation path length between robots. Additionally, the processing time for a

given estimation problem may vary depending on the types of processor used in

the robot computer. Due to these three factors, the observations made by any

observing robot may arrive at the observed robot or central processing center

with some random time delays. As a result, the received information may not

be in the same sequence as the measurements are taken. The majority of the

available implementations assume the availability of a fully connected reliable

network for data communication between robots and assume that the measure-

ments are received in the same order as they are sent. In regards to practical

implementation, these assumptions are not realistic.

Sensor fusion and system nonlinearity: Robots’ motion models and IRRM are

often nonlinear with respect to system states. In the paradigm of Bayesian fil-

tering with Gaussian approximation, the EKF remains the popular sub-optimal

nonlinear filtering approach for sensor fusion. However, hard linearization steps

associated with the EKF potentially introduce bias and lead to an inconsistent

representation of estimation uncertainty [10, 32]. This causes filter estimation

to diverge. In other words, an EKF does not guarantee convergence [33]. In

contrast to the EKF, an unscented Kalman filter (UKF) [34, 35] demonstrates

better performance in terms of estimation accuracy and estimation uncertainty

representation. Additionally, it preserves the second-order information of the
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linearized system (motion or measurement) while the EKF preserves only the

first-order information. However, a UKF-computed covariance matrix is not

always guaranteed to be positive definite [36]. This eventually causes the filter

to halt its operation. Heuristic solutions, such as fudging the covariance matrix

artificially and the use of scaled unscented transformation have been proposed

to overcome the non-positive definiteness of the covariance matrix [37–39]. The

Cubature Kalman filter (CKF) is a recently developed sub-optimal nonlinear fil-

ter which uses the spherical-radial cubature rule to solve the multi-dimensional

integral that is associated with the Bayesian filter under the Gaussian approxi-

mation [36]. CKF is a Jacobian-free approach that guarantees a positive definite

covariance matrix and demonstrates superior performance compared with the

celebrated EKF and the UKF [40–42].

Stability : Stability of the estimator is defined as the ability of an estimator to gen-

erate an estimation with a bounded uncertainty. Under certain conditions, each

estimator (filter) could produce stable estimations. As an example, for the EKF,

the estimation error remains bounded in a mean square if the system satisfies the

nonlinear observability rank condition, the initial estimation error as well as the

disturbing noise terms are small and the nonlinearities are not discontinuous.

It is important to identify these conditions and select the appropriate filtering

approach for sensor fusion in order to avoid the possible divergence (instability).

Data correspondence : When an observing robot acquires IRRM for multiple ob-

served robots it is essential to accurately register each IRRM with the associ-

ated observed robot. Several approaches have been applied to solve the data

correspondence problem (sensor registration problem) such as the nearest neigh-

bour approach [43], maximum likelihood-based approach [44], joint compatibil-
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ity branch and bounce approach [45], iterative closest point method [46], mul-

tiple hypothesis tracking approach [47] and joint probability data association

method [48]. Each method has its own strength and weaknesses. Physical

tagging is the commonly applied sensor registration method in cooperative lo-

calization in which colour or bar-codes are used to distinguish robots from one

another [49].

1.2 Problem Statement
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This research study proposes an innovative leader-assisted localization framework in

order to address the multi-robot collaborative localization problem of a heterogeneous

MRS. Figure 1.2 shows the localization and control architecture for a leader-assisted

localization based heterogeneous MRS. This MRS consists of a minimum of one leader

robot and one or multiple child robots. Cooperative SLAM (C-SLAM) integrated

with advanced localization sensors can be implemented for leader robots to provide

better (more accurate) localization. Key modules of this architecture are the “Leader-

assisted localization module”, “IRRM sensors” and “C-SLAM” module. Research

presented in this thesis mainly focuses on the “Leader-assisted localization” module

and addresses a number of key limitations as discussed below.

1.2.1 Problem I: Finite-Range Sensing

Availability of relative pose measurements from leader to child is essential for the suc-

cessful implementation of leader-assisted localization techniques. It is known that the

uncertainty of the relative measurements obtained from the majority of the IRRMs de-

generates when the gap between the sensor and the target is increased [50]. Therefore,

the majority of available IRRM systems are incapable of generating relative measure-

ments when the separation between the two robots exceeds a certain threshold value,

imposing a sensing range limitation on the measurement system. Therefore, global

pose measurements for child robots are not practical when the child robots operate

beyond the sensing range of the leaders. The simple solution for this problem is to re-

strict the child robot’s navigation to be within the sensing range of the leader robots.

However, this constraint may limit the maneuverability of the MRS and may reduce

the area covered by the robots. Additionally, this constraint requires higher process-

ing power to execute a robust inter-robot collision avoidance algorithm specially when

the team is contains relatively a large number of child robots as robots operate so
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closely to one another. This additional processing power requirement can be elim-

inated by reducing the number of child robots in the MRS which indirectly adds a

scalability issue to the leader-assisted localization framework. Therefore, developing a

localization scheme for a heterogeneous MRS, allowing child robots to operate beyond

the sensing range of the leader robot while ensuring bounded estimation error, has

been identified as a requirement for implementing a leader-assisted localization-based

collaborative mission.

This thesis investigates the feasibility of virtually expanding the leader robots’ sensing

range by enabling relative pose sensing capabilities in child robots . The initial study

considers an MRS with single leader robot, which is later extended to more general

scenarios where the MRSs can be formed with more than one leader robot. Priority

is given to obtain non-overconfident pose estimations with bounded estimation error

for each child robot by incorporating a graph search algorithm to avoid the problem

of double-counting4.

1.2.2 Problem II: Finite-Range Communication

Ability to communicate the calculated global pose measurement from the leader robot

to a child robot is a key requirement for a heterogeneous MRS that relies on leader-

assisted localization. The majority of the robots’ onboard communication modules

have a communication range limit constraint. The default communication range can

be slightly enhanced by allocating more power for the transmitter unit causing the

onboard power source to drain faster than at its usual rate. Then the heterogeneous

MRS-based mission has to pause until batteries are re-charged, causing frequent in-
4This is also known as a data incest problem, a problem of mutual information, a circular update

problem or a cyclic update problem. The double-counting problem arises when common information
is shared by the local state estimate and state observation. Additionally, this can occur when the
same measurement is used for a measurement update more than once.

15



terruptions to the mission. An alternative solution for this problem is to restrict the

child robots’ navigation within the communication boundaries of the leader robots.

This constraint limits the maneuverability of the MRS, reduces the area covered by

the robots, adds a scalability issue to the MRS, and may demand higher processing

power to execute the state-of-the-art collision avoidance algorithm to avoid inter-robot

collisions when the team is empowered with a large number of child robots. Some im-

plementations assume that a robot can exchange information with the robots outside

its communication range by instantaneously relaying information through another

robot [51, ch. 2]. An instantaneous information relay through other robots is practi-

cally challenging and may not be possible. Therefore, development of an information

exchange strategy that accounts for the time delay of information exchange between

two robots is identified as a requirement to enable child robots’ navigation beyond

the communication range of the leader robot.

This thesis initially evaluates the instantaneous communication model in the context

of leader-assisted localization incorporating a novel distributed graph search algo-

rithm to avoid the double-counting problem. Priority is then given to extending the

instantaneous communication model to a time-delayed communication model and de-

veloping algorithms to optimize memory usage and detect the best time step to apply

the Markov property.

1.2.3 Problem III: IRRM Sensors

Available IRRM systems for multi-robot collaborative localization can be categorized

into four major groups: relative range only [52,53], relative bearing only [54–58], rel-

ative range and bearing (or relative position) [9, 10] and relative range and mutual

bearing (or relative pose) [12,59]. Most of these relative measurement approaches are

applicable to the traditional leader-assisted framework wherein the leader robot pro-

16



vides localization information only for the child robots operating within the sensing

and communication range of the leader. As the intention of my study is to develop a

localization framework allowing child robots to navigate beyond the sensing and com-

munication boundaries of the leaders while maintaining a bounded estimation error

and a bounded estimation uncertainty, IRRM sensors with full relative pose sensing

capability become a system requirement. Therefore, development of an algorithm in

order to partially or fully eliminate this IRRM sensor type constraint is identified as a

requirement to enhance the applicability of the proposed leader-assisted localization

framework.

This thesis evaluates the applicability of a target tracking method in order to realize

the proposed leader-assisted localization scheme using a relative range and bearing

measurement system. To this end, the thesis implements a hierarchical filtering ap-

proach in which each robot runs local tracking filters to estimate the relative pose of

neighbours using a general range-and-bearing based relative observation system. It

is assumed that this sensory system is also has the sensing range constraint. These

tracks (relative pose estimations) then pass through the leader-assisted localization

module implementing the proposed localization scheme.

1.2.4 Problem IV: Scalability and Consistency of Coopera-

tive Localization

When the robots in the MRS have long rage sensing and communication capabili-

ties so that child robots are always connected to a measurement and communication

network which has a minimum of one leader robot, then cooperative localization ap-

proaches become more viable compared with leader-assisted localization approaches.

As outlined in previous sections, both centralized and multi-centralized cooperative

localization approaches have the computational complexity of O(N4) with respect
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to the number of robots in the team (N). The computational complexity of the

distributed cooperative localization approaches which use optimal fusion algorithms

varies from O(N4) to O(N2) [59]. Thus, the centralized cooperative localization

approaches, multi-centralized cooperative localization approaches and distributed co-

operative localization approaches limit the scalability of the team. Additionally, these

three architectures demand high communication bandwidth, and eventually limiting

the number of robots in the MRS. Alternatively, decentralized cooperative localiza-

tion approaches demonstrate linear computational cost with respect to the number

of robots in the team. Moreover, the communication bandwidth requirement is also

considerably lower as only neighbouring robots need to exchange information with

one another. Further, decentralized cooperative localization approaches are robust

against the single point of failure. However, most of the decentralized localization

strategies neglect possible interdependencies between robots’ predictive poses; thus,

leading to the problem of double-counting. As a result, estimated poses using decen-

tralized cooperative localization approaches are generally inconsistent with the true

statistics of the estimation error. Therefore, developing a scalable and consistent coop-

erative localization strategy is identified as another key requirement for implementing

a leader-assisted localization based heterogeneous MRS.

This thesis investigates a scalable cooperative localization approach which is capable

of accurately representing the interaction between teammates’ local pose estimations

resulting in non-overconfident state estimations for each robot in the team.

1.3 Objectives and Expected Contributions

In order to achieve the proposed research goals, the following key objectives have been

identified.
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Objective 1 To develop a novel algorithm to virtually enhance leader robots’ sensing

range.

• Contribution 1: An algorithm to generate a centralized equivalent obser-

vation for each leader robot in an MRS.

• Contribution 2: A method to synthesize missing IRRMs between leader

robots and child robots that operate beyond the sensing range of the lead-

ers.

• Contribution 3: An algorithm to avoid the possible double counting of

common information.

Objective 2 To extend the proposed distributed leader-assisted localization algo-

rithm to address the finite-range communication problem.

• Contribution 4: An algorithm to virtually enhance leader robots’ commu-

nication range.

• Contribution 5: A distributed global pose composition and graph search

algorithm to synthesise the missing global pose measurements between the

leader robots and the child robots while avoiding the problem of double-

counting.

• Contribution 6: An algorithm to support time delayed state updates.

• Contribution 7: Theoretical analysis and a decentralized algorithm to de-

fine the length of a local Markov chain, and to define the optimal time step

to marginalize the local Markov chain as well as discard the history of the

measurements and state estimations.

Objective 3 To enable the implementation of the proposed distributed leader-assisted

localization framework using general relative range and bearing measurement
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systems.

• Contribution 8: Evaluation of the fast convergence filtering approach to

estimate the relative pose of neighbouring robots using inter-robot range

and bearing measurements.

• Contribution 9: Observability analysis for pseudo-linear measurement-based

relative localization framework.

• Contribution 10: A hierarchical filtering approach implementing the pro-

posed leader-assisted localization framework using inter-robot range and

bearing measurements.

Objective 4 To design a scalable cooperative localization algorithm.

• Contribution 11: A decentralized cooperative localization approach that is

capable of accurately representing independencies and interdependencies

of each robot’s local pose estimations.

1.4 Organization of the Thesis

Chapter 1 - Introduction : This chapter presents an overview of the research area,

highlights the research statement, and outlines the objectives and the associated

contributions of this study.

Chapter 2 - Background : This chapter presents the literature review in the area

of multi-robot collaborative localization.

Chapter 3 - Distributed leader-assisting localization with sensing range

constraint : This chapter relates to objective 1 of the thesis. The chapter
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presents the mathematical formulation of the proposed decentralized leader-

assisted localization framework addressing the limited-range sensing problem.

Simulations and experimental results will be presented to validate the proposed

localization architecture.

Chapter 4 - Distributed leader-assisting localization with sensing and com-

munication range constraint : This chapter relates to objective 2 of the the-

sis. The chapter extends the work presented in Chapter 3 by incorporating the

mathematical formulation to address the limited range communication problem.

It concludes with presenting a series of simulation and experimental results to

validate the proposed sensor fusion architecture.

Chapter 5 - Distributed leader-assisting localization with relative range

and bearing measurements : This chapter relates to objective 3 of the the-

sis. The chapter integrates a hierarchical filtering architecture with the proposed

decentralized leader-assisted localization framework enabling its usability over

the inter-robot relative range and bearing measurement systems. The perfor-

mance of the proposed hierarchical filtering approach is evaluated in a series of

simulations and experiments.

Chapter 6 - Decentralized cooperative localization for a heterogeneous

MRS : This chapter relates to objective 4 of the thesis. The chapter extends

the general CKF to a split-covariance intersection (Split-CI)-based multi-sensor

data fusion paradigm in order to develop a scalable, consistent decentralized

cooperative localization framework. Simulation and experimental results will

be presented to validate the proposed localization architecture.

Chapter 7 - Summary and Future Research : This chapter concludes the thesis
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presenting the applicability of the proposed localization framework, its limita-

tions and future directions for this research work.
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Chapter 2

Background

2.1 Multi-robots Collaborative Localization

2.1.1 Leap-frogging Motion Pattern

The initial formulation of the multi-robot collaborative localization framework is re-

ported in the works of Kurazume et al. [11]. In this initial formulation, an MRS

is divided into two groups: landmark group and moving group. The localization of

robots in the moving group is established through the pose information of the robots

in the landmark group and relative observation between agents in the two groups.

To this end, the robots in the landmark group remain stationary and act as portable

landmarks while the robots in the moving group navigate. After a few iterations, the

roles of the two groups are exchanged and this process continues until all agents have

approached the goal location. This localization algorithm produces a “leap-frogging”

motion pattern and is also known as the “dance algorithm” and was later adapted

by several other researchers [14, 15]. The key limitation of the initial version of the

cooperative positioning system, (CPS-I), [11], apart from the leap-frogging motion

strategy, was that it neglects the measurement noise associated with the exteroceptive
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sensory system. The second version of the cooperative positioning system, CPS-II,

was introduced in 1996, and accounts for the noise associated with the exteroceptive

sensory system [16, 60]. The final version of the cooperative positioning system was

proposed in 1998 and is known as the CPS-III [61,62]. This work studied the optimal

motion strategies that teammates can follow so that pose estimation uncertainty can

be minimized. The performance of the CPS-III was evaluated experimentally with

UGVs that navigate in large open terrains and terrains which are cluttered with large

numbers of obstacles. Several other researchers [17, 18] also searched for the optimal

motion strategy and showed that there are multiple optimal trajectories that exist

for reducing the estimation uncertainty, compared to the equilateral triangle formu-

lation proposed by [61]. Recently, the cooperative positioning system has employed

laser-based geometrical modeling of large-scale architectural structures [63, 64]. In

this implementation, the cooperative positioning system was integrated with multi-

robot SLAM and an interactive closest point algorithm to generate an accurate model

of large-scale architectural structures. The key limitations of the leap-frogging-based

cooperative localization strategies are:(a) at a given time step, only one robot or a

portion of an MRS is allowed to navigate, increasing total mission completion time;

(b) members in a moving team must maintain the line-of-sight (LOS) for a minimum

of three stationary robots at all times; and (c) all implementations are essentially

centralized systems where all the processing is done with a single processing system.

Numerous multi-robot collaborative localization frameworks have been developed

since 1994. These implementations can be categorized into six main groups: (1) Cen-

tralized cooperative localization, (2) Multi-centralized cooperative localization, (3) Dis-

tributed cooperative localization, (4) Decentralized cooperative localization, (5) Rel-

ative localization and (6) Leader-assisted localization.
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2.1.2 Centralized Cooperative Localization

All centralized cooperative localization algorithms augment each robot’s pose into a

single state vector and perform the state estimation (group localization) task at a

single processor which is referred to as the relative pose measurements for all robots

in the team, then a maximum of O(N2), relative pose measurements will be acquired

at an IRRM event. As the computational complexity for processing a single rela-

tive pose measurement equals O(N2), all centralized cooperative localization schemes

have the overall computational complexity of O(N4), per time step. Besides the high

computational complexity, each robot needs to send both the proprioceptive and ex-

teroceptive sensor readings to the central processor, demanding high data bandwidth

for communication channels. These two limitations eventually introduce a scalability

constraint for the MRS in terms of number of robots in the team. The require-

ment of an uninterrupted communication channel between the central processor and

each agent in the team poses another condition where each robot should be operated

within the communication range of the central processing unit. The bounded naviga-

tion space therefore may require added algorithms to avoid inter-robot collisions and

may limit robots’ maneuverability. In addition to these key limitations, all centralized

cooperative localization algorithms are susceptible to the single point of failure. The

recent advancement of centralized cooperative localization demonstrated that local-

ization and moving object tracking are mutually beneficial [65]. This implementation

augments the robots’ pose, position of static landmarks, and position of the mov-

ing objects into a single state vector in order to maintain pairwise cross-correlation

between robots and moving objects.
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2.1.3 Multi-centralized Cooperative Localization

Multi-centralized approaches are proposed to improve the robustness of the gen-

eral centralized cooperative localization approach against the single point of failure

wherein the group state estimation process is duplicated on a few or all of the robots

in the team [19, 27]. Although such duplication can improve the robustness against

the single point of failure, these algorithms entail increased communicative complexity

as compared to general centralized cooperative localization schemes. In general, the

communicative complexity of the multi-centralized cooperative localization approach

increases linearly with the number of robots (or processors). Hence, it demands even

more bandwidth for data communication channels, unlike the general centralized co-

operative localization approaches. Besides the increased communicative complexity,

each robot is required to operate within the communication range of the others. The

bounded navigation space therefore may require added algorithms to avoid inter-

robot collisions and the limiting of robots’ maneuverability. Work presented in [66]

addressed the finite-range communication problem and proposed an innovative cooper-

ative localization scheme for a sparsely-communicating robot network. The proposed

architecture enables each robot to produce a delayed estimation of the team poses

at a higher demand of communication bandwidth and memory usage. Although the

proposed method is robust against the single point of failure and can perform the

group localization task with an asynchronous communication network, practical ap-

plicability of this architecture is still questionable due to the large amount of data

that need to be relayed within the network.
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2.1.4 Distributed Cooperative Localization Approaches

The distributed cooperative localization algorithm is introduced to reduce the high

bandwidth requirement associated with centralized and multi-centralized coopera-

tive localization schemes. To this end, in the distributed cooperative localization

algorithm, each robot runs a local filter to fuse ego-centric data while inter-robot

observations are fused at a central processor. Therefore, high frequency ego-centric

measurements are not required to communicate with the central processing unit which

reduces the bandwidth requirement for the communication network. However, com-

putational complexity shall remains at O(N4) because the measurement update still

performs in a centralized manner. The work presented in [12, 20] develops mathe-

matical formulations to factorize the dense covariance matrix and then it propagates

this factorized matrix using local sensory data of each robot. The key challenge of

this implementation is that the failure of a single robot leads to the failure of the

entire team pose estimation task. This initial formulation assumed the availability

of relative pose measurements among teammates which is later relaxed by extend-

ing the algorithm for exteroceptive sensory systems that measure relative bearing,

relative distance and relative orientation among robots [67]. A maximum a posteri-

ori estimator-based distributed cooperative localization algorithm is presented in [68]

which improves the robustness of the distributed localization algorithm against the

single point of failure while reducing the computational cost to O(N2). However,

this implementation also demands a fully connected synchronous network throughout

the mission. An extended information filter-based optimal decentralized cooperative

localization algorithm is reported in [69,70]. This algorithm maintains the history of

the IRRM in order to produce consistent state estimations. As a result, the algorithm

possesses an increased computational cost with every new inter-robot observation.
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2.1.5 Decentralized Cooperative Localization Approaches

The key objective of decentralized cooperative localization approaches is to reduce

the computational complexity associated with the three multi-robot collaborative lo-

calization schemes outlined in the previous sections. Using decentralized cooperative

localization, each robot locally runs an estimator (filter), such as an EKF or particle

filter, to estimate its own pose. Each robot hosts an exteroceptive sensory system to

acquire the IRRM of its neighbours. At an inter-robot measurement event, a robot

taking inter-robot relative measurements for an arbitrary robot is termed the observ-

ing robot and the robot that came into the sensing range of the observing robot is

called the observed robot. Robots exchange their current pose estimation and IRRMs

with neighbours in order to perform the measurement update steps independently.

Although this approach is computationally less complex and demands less memory

space, it neglects the possible correlation between the pose estimates between team-

mates. This simplification allows common past information to flow backwards-and-

forwards within the team, generating overconfident pose estimations for teammates.

The first Monte-Carlo decentralized cooperative localization algorithm was introduced

in 2000 by Fox et al. [21]. This was later adapted by several other researchers [28].

This algorithm demands larger particle sets in order to avoid the depletion of par-

ticles. Prorok et al. [22] introduced a novel sampling algorithm, named a reciprocal

sampling algorithm, in order to reduce the size of the particle set. In this method,

the observed robots re-sample particles from two probability distributions; (a) from

their own belief with the probability of (1−α), and (b) from reciprocal robot observa-

tion with a probability of α; where α is defined as reciprocal proportion. The overall

complexity of the reciprocal sampling algorithm is further reduced using a particle

clustering algorithm [29]. All these algorithms neglect cross-correlation between each

team member’s local pose estimation, leading to an overconfident state update.
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Several works have been reported to improve the consistency of the decentralized co-

operative localization algorithms. A hierarchical filtering approach is presented in [71]

in which the MRS is divided into several subgroups. Each group has a leader robot

which produces a pose estimation for members in the corresponding subgroup. Leader

robots themselves form a subgroup. However, this algorithm also neglected possible

interactions between subgroups, causing inconsistent state updates. The state ex-

change approach is presented in [72,73], wherein only the independent information is

allowed to be exchanged between teammates after an inter-robot observation. Since

only the independent information is exchanged, this implementation does not suffer

from the overconfident state generation problem. However, it has two other limita-

tions, i.e., a vehicle cannot benefit from the vehicles beyond its sensing range and

needs to maintain a bank of estimators similar to [74], leading to higher memory

and processing requirements. Work presented in [75] uses a dependency-tree to track

the recent interaction of robots. However, this approach maintains only the recent

interdependencies of the robot pose estimate; it tends to be overconfident. An in-

terlaced EKF-based sub-optimal filtering approach is presented in [23, 74] to avoid

the possibility of generating an overconfident state estimation. This approach re-

quires each robot in the MRS to maintain a bank of EKFs representing the interac-

tion among teammates. Although it produces a non-overconfident state estimation,

this book-keeping approach is unscalable, as the number of EKF runs on a single

robot increases exponentially with the number of robots in the MRS. A sub-optimal

filtering approach called channel filtering is presented in [76] which requires a com-

munication network without loops as the algorithm does not include a mechanism to

identify double counting of common information. However, a communication network

without loops is an unrealistic assumption for practical implementation of cooper-

ative localization. Covariance-intersection (CI)-based approaches are also reported
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for decentralized cooperative localization [59]. However, the general CI algorithm

neglects possible independencies between local estimates. This may lead to a more

conservative state estimation and may produce an estimation error covariance which

is larger than that of the best unfused estimate [77]. A common past-invariant en-

semble Kalman filter-based optimal decentralized cooperative localization algorithm

is proposed in [78]. This implementation uses 10,000 ensembles to represent robot

pose estimation and develop mathematical formulas for generating optimal state esti-

mation without maintaining cross-correlation information for the vehicles’ predictive

densities. However, larger number of ensembles are undesirable for robotic systems

as they have limited processing power and memory space.

2.1.6 Relative Localization and Leader-Assisted Localization

Relative localization attempts to detect and track one or more robots in another mov-

ing robot body-fixed coordinate frame [30, 31]. The estimation of relative positions

within an MRS is important for many collective operations, such as inter-robot col-

lision avoidance [79], pattern generation [80, 81], self-configuration [82], flocking [83]

and chain formation [84]. In the absence of a common global reference frame and

associated inter-robot pose estimates, an MRS encounters difficulty in performing

effective coordination and executing a collaborative mission. When the robots’ self-

localization becomes erroneous, the sharing of sensory and other information between

robots becomes less valuable.

Relative localization has been developed as a viable solution for effective and accurate

execution of multi-robot collaborative missions [85,86]. Moreover, relative localization

has been identified as a feasible localization solution for a heterogeneous MRS wherein

the localization of child robots is established with the help of leader robots [9, 87]

. Available literature widely studied about various filtering approaches [9, 88–90],
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IRRM systems [9, 50, 91], and algorithms to handle measurement anonymity [92–

95] for implementing relative localization for multi-agent systems. Candidate indoor

positioning systems are also reported for the purpose of relative localization in ground

aerial robot teams. Some of these implementations could not achieve the acceptable

level of accuracy [96] while the others are laboratory level implementations [97, 98]

which may not directly applicable for real-world applications.

Leader-assisted localization is mainly implemented to assist the navigation of less

capable robots (child robots) using inter robot observation between the less capable

robots and more capable robots (leader robots) [25]. Although relative localization

approaches also attempt to establish accurate localization for child robots with the

help of leader robots [9,87], these algorithms estimate the pose of the child robots on

the body-fixed coordinate system of the leader robots. In contrast, leader-assisted lo-

calization attempts to establish the accurate localization for child robots in a reference

coordinate frame. Apart from this key difference, both the localization algorithms are

based on the same principle, that the system has a leader robot(s) and child robots

wherein the child robots’ navigation is assisted by the leader robots. This will eventu-

ally imposes a condition that the child robots should be operated within the sensing

and communication range of leader robots. The bounded navigation space therefore

may require added algorithms to avoid inter-robot collisions and may limit the robots’

maneuverability. However, if this constraint can be relaxed it will allow the robots

to operate within a larger space, giving MRS a larger volume of coverage. Any algo-

rithm that attempts to relax this constraint should address the finite-range sensing

and communication problem associated with leader-assisted localization.
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2.2 Communication Bandwidth Constraints in

Multi-robot Collaborative Localization

Communication bandwidth constraints associated with general cooperative localiza-

tion algorithms have drawn some attention from the robotic research community. An

optimal sensor scheduling method for a resource-constrained MRS is presented in [99].

The method limits the number of measurements processed at each time step so that

the available bandwidth is sufficient to transmit the selected measurement set. The

proposed method is sub-optimal as only the subset of available data is processed for

state estimation. Additionally, the method is not scalable as the IRRM frequency

inevitably decreases with an increase in team size. The limited range communica-

tion problem is addressed by Leung et al. [66]. Although this implementation is

capable of generating a centralized equivalent form of cooperative localization, it de-

mands considerably larger communication bandwidth. Nerurkar et al. [68] extended

the work presented in [66] and attempted to solve the bandwidth requirement prob-

lem associated with decentralized cooperative localization. This study proposed two

information-transformation schemes, where each robot communicates: (i) only the

measurements acquired by its local sensors, but from the beginning of the mission,

and (ii) all available measurements, which include local sensory data as well as mea-

surement data collected from teammates, for past q time steps. The problem of

multi-centralized cooperative localization under server communication constraints is

studied in [100]. This study adopted the sign-of-innovation Kalman filter (SOI-KF)

for sensor fusion and considered server communication constraints where each robot

can communicate only a single bit per time step. The general formulation of the SOI-

KF does not allow the use of the quantized version of the egocentric reading for state

estimation. Work presented in [100] addressed this limitation and proposed a hybrid
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estimation framework that allows both local sensory data as well as information sent

from neighbours to be fused together in order to compute the posterior density of the

robot’s state. This work was later extended to allow robots to communicate more than

a single bit per time [101]. The major limitation of all the approaches that studied

communication constraints is that they are essentially multi-centralized approaches

which have a computational cost of O(N4). Thus, all these algorithms are poorly

scalable with the number of robots in the team.

2.3 Performance Evaluation of Multi-robot Col-

laborative Localization

Apart from the numerous implementations and sensor fusion architectures, the an-

alytical evaluation of the performance of multi-robot collaborative localization has

received limited attention from the robotics community. Work presented in [102]

evaluated the effect of various relative measurement approaches on the accuracy of

cooperative localization. Additionally, it evaluated how the accuracy of the localiza-

tion is affected by the number of robots in the team. This study revealed that the

full relative-pose measurement always1 generates a more accurate estimation com-

pared with range-only, bearing-only, and range-and-bearing measurement systems.

The lowest estimation accuracy was found with the bearing-only measurement sys-

tem. Additionally, it was found that increasing the number of robots in an MRS has

a positive impact on the estimation accuracy. Later it was discovered that there is

a diminishing advantage in regards to uncertainty reduction as the size of the team

increases [103]. The study presented in [104] demonstrated that the most important
1Under the assumption that each robot operate one another sensing and communication bound-

aries.
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factors for estimation accuracy are not the number of robots in the team or number of

IRRMs between teammates but the availability of an accurate proprioceptive sensory

system and the means of accurate orientation estimates.

2.4 Out-of-Sequence Measurement Update

The observation produced by an observing robot or multiple observing robots may

reach the corresponding observed robot with an unknown time delay due to the delays

in communication channels and pre-processing delay. The challenge is how to utilize

the older measurement to update the current pose estimation. This problem has

received minor attention from the robotics community. Work presented in [66] and [70]

are the known cooperative localization implementations that can handle an out-of-

sequence-measurement (OOSM) update problem. These implementations maintain a

history of IRRM as well as temporarily storing the ego-motion sensor reading. Thus,

these algorithms can use older measurements to update a current pose estimation.

The OOSM update is a widely discussed topic in multi-sensor target tracking ap-

plications. A number of optimal algorithms [105–109] as well as suboptimal algo-

rithms [105, 110, 111] have been proposed to perform one-lag [105] as well as multi-

lag [106, 107, 110, 111] OOSM updates. Both the optimal and suboptimal one-lag

OOSM update algorithms demand a nonsingular state transition matrix. The op-

timal multi-lag OOSM update algorithms generally use augmented state smoothing

approaches [106, 107]. The studies presented in [105, 110] suggested that the only

way to incorporate OOSM to produce an optimal solution for a given state estima-

tion problem is to sequentially reprocess all available measurements. Work presented

in [112, 113] combines the data association problem and OOSM update problem to

implement a multi-sensor multi-target tracking application.
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Chapter 3

Distributed Leader-Assisted

Localization with Sensing Range

Constraints

This chapter, introduces the study of distributed leader-assisted localization with sens-

ing range constraints by assuming an unbounded communication range for each robot

in a heterogeneous-MRS1. This assumption allows a focus on developing a mathemat-

ical framework in order to virtually expand the sensing range of each leader robot in

the heterogeneous-MRS.

3.1 Mathematical Preliminaries

To facilitate the mathematical formulation, superscript or subscript ‘l’ is used to

represent variables or parameters that are related to leader robots, while the super-
1The work in this chapter is published in IEEE transaction on automation science and engineering

* T. R. Wanasinghe, G. K. I. Mann and R. G. Gosine, “Distributed Leader-Assistive Localization
Method for a Heterogeneous Multi-robotic System,” in IEEE Transactions on Automation Science
and Engineering, vol. 12, no. 3, pp. 795-809, July 2015.
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script or subscript ‘c’ is used to represent variables or parameters that are related

to child robots. For an MRS, let C represent the set that contains the unique iden-

tification indices of all the child robots. The cardinality of the set C, i.e. |C|, gives

the total number of child robots in the MRS. These child robots are represented by

{Rc1 , Rc2 , · · · , Rc|C|}. Similarly, let L represent the set that contains the unique

identification indices of all leader robots. The cardinality of the set L, i.e. |L|, gives

the total number of leader robots in the MRS. The leader robots in the MRS are rep-

resented by {Rl1 , Rl2 , · · · , Rl|L|}. Let S represent the set that contains the unique

identification indices of all robots in the MRS; i.e., S is the union of set C and set L.

This study assumes that each robot navigates on flat terrain and is equipped with

a communication device in order to exchange information with leader robots. Two

sensory systems are hosted by each robot in the MRS: (a) a wheel encoder to obtain

odometry, and (b) a light-weight exteroceptive sensory system to measure the relative

pose of neighbours. It is assumed that the exteroceptive sensory system is capable

of uniquely identifying neighbours. In other words, it is assumed that the data asso-

ciation problem has been solved by the exteroceptive sensory system. This sensory

system acquires relative pose measurements periodically. Besides these two sensory

systems, leader robots host additional sensors, such as the DGPS and compass, re-

sulting in higher pose estimation accuracy compared to the child robots.

3.1.1 Robots’ Motion Model

Robots’ navigation in a 2D space is modelled by the general three degrees of freedom

(3-DOF) discrete-time kinematic model for the ground robots in the MRS
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xq,k = g(xq,k−1, ūq,k−1) ∀q ∈ S
x

y

φ


q,k

=


x

y

φ


q,k−1

+ δt


v̄x cos(φ)− v̄y sin(φ)

v̄x sin(φ) + v̄y cos(φ)

ω̄z


q,k−1

(3.1)

where, xq,k ∈ R3 is the robot’s pose at discrete time k and g(·) represents the nonlinear

state propagation function. δt is the sampling time interval. ūq,k ∈ R3 is the system

input and ūq,k = uq,k + νq,k; where, uq,k = [vx vy ωz]. vx and vy are nominal linear

velocities in x-, and y-directions, respectively. ωz is the nominal angular velocity. νq,k

represents the additive white Gaussian noise term with covariance Q ∈ R3×3. For

nonholonomic robotic systems, terms associated with linear velocities in y-direction,

i.e. v̄y sin(φ) and v̄y cos(φ), are set to zero.

3.1.2 Inter-Robot Relative Measurement Model

Relative pose measurement capability is assumed for each member in the MRS. Con-

sider a scenario where robot Rq measures the relative pose of robot Rr. This relative

pose measurement can be modeled as

yr,qq,k = h(xq,k,xr,k) + nr,qq,k ∀q ∈ S,

∀r ∈ Sq,k, dr,qq,k ≤ dm
δx

δy

δφ



r,q

q,k

= ΓT
xq,k

(xr,k − xq,k) + nr,qq,k

(3.2)
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with

Γxq,k
=

C(φq,k) 02×1

01×2 1



C(φq,k) =

cos(φq,k) − sin(φq,k)

sin(φq,k) cos(φq,k)


where yr,qq,k ∈ R3 is the relative pose of robot Rr as measured by Rq; i.e. yr,qq,k =[
δxr,qq,k δyr,qq,k δφr,qq,k

]T
where δx, δy and δφ are x-position, y-position and the orien-

tation of robot Rr with respect to local coordinate frame of robot Rq. This pose

measurement is on the body-fixed coordinate system of robot Rq. The nonlinear

measurement function is represented by h(·). The measurement noise covariance,

nr,qq,k, is assumed to be an additive white Gaussian noise with covariance Rr,q
q,k ∈ R3×3.

Parameters dr,qq,k and dm represent the distance between two robots and the sensing

range of robot Rq, respectively. Sq,k represents the set that contains unique identifi-

cation indices of robots that are within the sensing range of robot Rq at the discrete

time k. The matrix transpose operation is represented by T .

For a given inter-robot relative measurement event, a given robot in the MRS may

acquire relative pose measurements for multiple neighbours. Let

Yq,k = {p(zr,qq,k)|r ∈ Sq,k, d
r,q
q,k ≤ dm} (3.3)

represent all relative pose measurements acquired by robot Rq at time step k; where

p(zr,qq,k) = N (yr,qq,k,R
r,q
q,k). A subset of the measurement set Yq,k contains relative mea-

surements for neighbouring child robots. This subset is represented by

Yc,qq,k = {p(zr,qq,k)|r ∈ Scq,k, d
r,q
q,k ≤ dm}. (3.4)

38



where Scq,k represents the set that contains unique identification indices of child robots

that are within the sensing range of robot Rq at the discrete time k.

3.1.3 Child Robots’ Pose Measurement

The leader robot’s pose estimation density (belief) is defined as p(xl,k) = N (x̂l,k, P̂l,k),

where N (x̂l,k, P̂l,k) represents that the pose estimation follows a Gaussian distribution

with mean pose estimation of x̂l,k and covariance of P̂l,k. According to equation (3.4),

Yc,ll,k contains relative pose measurement densities for child robots that operate within

the sensing range of the leader robot. The leader robot combines its current pose

estimation p(xl,k) with the measurement densities in Yc,ll,k, to generate global pose

measurements for child robots. Let

Yc,∗l,k = {p(yc,∗l,k )|l ∈ L, c ∈ Sl,k} (3.5)

represent the set of global pose measurement densities for child robots that are gen-

erated by a given leader robot at time k; where p(zc,∗l,k ) = N (yc,∗l,k ,R
c,∗
l,k ) represents

the pose measurement density of a child robot as computed by a leader robot and

p(yci,∗
l,k ) = p(xl,k) ⊕ p(zci,l

l,k ); ∀ci ∈ Scl,k. Operator ⊕ is the pose composition op-

erator [13, 114, 115]. This pose composition is analogous to Cartesian-to-Cartesian

coordinate conversion2. A superscript asterisk (∗) indicates that the parameter (vec-

tor or matrix) associated with the asterisk mark is in the reference (global) coordinate

frame.
2Cartesian-to-Cartesian coordinate conversion will be discussed in detail in Section 6.3.2
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3.2 Relative Pose Measurement in an MRS

In the proposed localization algorithm, it is important for the leader robots to have

complete knowledge of the instantaneous relative pose measurement data and the

relative pose measurement topology in order to ensure that: (a) all the child robots

that are connected with the measurement network receive localization data from the

leader robots even when the child robots operate beyond the sensing range of the

leader robots; and (b) the problem of double-counting does not occur.

3.2.1 Relative Pose Measurement Graph (RPMG)

A relative pose measurement graph (RPMG) is a directed graph GS , {ζ, ϑ}, where

ζ is the node set that represents robots in the MRS and ϑ ⊂ {ζ × ζ} = p(zi,jj,k), i ∈ S,

j ∈ S and i 6= j is the edges set representing the available relative pose measurements

between robots. The RPMG for a given MRS can be presented in two perspectives:

a global perspective and a local perspective. In the global perspective, the available

relative pose measurements between robots are examined from the perspective of an

outside observer. This contains all robots (nodes) in the MRS and all the available

measurements between robots (edges) in a single graph. From the perspective of

a given robot, it awares of the robots operating within its sensing range. This is

known as the local perspective of the RPMG. A sample robot configuration and the

associated RPMGs are illustrated in Fig. 3.1 and Fig. 3.2, respectively.

3.2.2 Hierarchical-RPMG

A hierarchical-RPMG is a directed graph GL , {ζ̄ , ϑ̄}, where ζ̄ ⊆ ζ and ϑ̄ ⊆ ϑ,

without symmetric pairs of directed edges and without loops between two nodes. The

root-node of the hierarchical-RPMG represents a given leader robot and all other
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nodes (head-nodes) represent child robots. The hierarchical-RPMG that corresponds

to the sparse robot configuration given in Fig. 3.1 is illustrated in Fig. 3.3.

Rc1

Rc2

Rc3

Rc4

Rl1

Rc5

Figure 3.1: Sparse configuration of a robot team. A shaded area with a solid outline
represents an individual robot’s sensing range.

Rc1
Rc2

Rc3

Rc4

Rl1
µc1l1

µc4l1µl1c4

µc2l1

µc3c2µl1c1 µl1c2

µc2c3

(a) Global perspective

Rc2

Rc3Rl1

µc2l1 µc2c3

(b) Local perspective of robot
Rc2

Figure 3.2: Relative pose measurement graph (RPMG). The nodes represent a robot’s
pose and the edge represents pose measurements. µij = p(zj,ii,k)

Rl1

Rc1
Rc4

Rc2

Rc3

µl1c1

µl1c4

µl1c2

µc2c3

Figure 3.3: Hierarchical relative pose measurement graph for the sparse robot config-
uration given in Fig. 3.1. µij = p(zj,ii,k)
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3.3 MRS with a Single Leader Robot and Multiple

Child Robots

At each relative pose measurement event, each robot communicates unique identifi-

cation indices of robots within its sensing range along with the corresponding relative

pose measurements, i.e., set Sq,k and set Yq,k, to the leader robot. When the leader

robot has received this information its knowledge set becomes the union of its own

information set and the information sent by the teammates:

S+
l,k = Sl,k

⋃
∀q ∈ S

Sq,k = S (3.6)

Y+
l,k = Yl,k

⋃
∀q ∈ S

Yq,k = Yk (3.7)

where

Yk = {p(zr,qq,k)|p(z
r,q
q,k) ∈

⋃
∀q∈S
Yq,k}

represents the set of relative pose measurement densities that corresponds to the

relative pose measurements acquired by all the members of the MRS at time step k.

The leader can then construct the RPMG in the global perspective. Let vl
∃(path)a

b−−−−−→ vcj

represent a path between leader node (vl) and an arbitrary child node (vcj
), where

a is the number of paths available between the vl and vcj
, and b is the number of

edges in the shortest path. In the global perspective, child robots in the MRS can be

classified into four groups:

• G1 = {cj|vl
∃(path)1

1−−−−−→ vcj
}; where vl

∃(path)1
1−−−−−→ vcj

represents that there exists only

a single path from the leader robot to child robot Rcj
. Furthermore, this path

consists of a single edge.

42



• G2 = {cj|vl
∃(path)1

>1−−−−−→ vcj
}; where vl

∃(path)1
>1−−−−−→ vcj

represents that there exists a

single path from the leader to child robot Rcj
. However, the number of edges

in this path is greater than one.

• G3 = {cj|vl
∃(path)>1

≥1−−−−−→ vcj
}; where vl

∃(path)>1
≥1−−−−−→ vcj

represents that there exist mul-

tiple paths from leader robot to child robot Rcj
. The number of edges in the

shortest path can be greater than or equal to one.

• G4 = {cj|vl
@(path)−−−−→ vcj

}; where vl
@(path)−−−−→ vcj

represents that no path exists from

the leader robot to child robot Rcj
.

3.3.1 Search for the Best Path to a Child Robot

Child robots in the group G3 have multiple paths from the leader robot. If the

leader robot composes and provides global pose measurements for a single child robot

through all available paths then the pose estimation of the child robot tends to be

overconfident. This can be attributed to the double-counting of the leader robot’s

pose information through multiple paths. In order to overcome this issue, it is es-

sential to select a single path based on some optimization criteria. To this end, this

study uses a breadth-first graph search algorithm to obtain the shortest path while

discarding all other paths between the leader robot and a given child robot, construct-

ing the hierarchical-RPMG for the current relative pose measurement event. As the

hierarchical-RPMG does not include symmetric pairs of directed edges and loops be-

tween two nodes, child robots in an MRS can be classified into three groups with

respect to the associated hierarchical-RPMG:

• Gh1 = {cj|vl
∃(path)1

1−−−−−→ vcj
};

• Gh2 = {cj|vl
∃(path)1

>1−−−−−→ vcj
}; and
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• Gh3 = {cj|vl
@(path)−−−−→ vcj

}.

Equation (3.5) can be instantly exploited to construct the global pose measurement

for child robots in the group Gh1. Although a given robot in the group Gh2 has a path

from the leader robot, no direct relative pose measurement from the leader robot to

the child robot exists. Therefore, pre-processing is required in order to construct the

missing relative pose measurement between the leader robot and the child robots. This

will be discussed in the next section (Section 3.3.2). Since there is no path available

between the leader robot and the child robots in the group Gh3, no measurement

update will occur on any robot in Gh3.

3.3.2 Enhancing Local Perspective of the Leader Robot

Consider a sample branch of a hierarchical-RPMG shown in Fig. 3.4.

. . . . . .

Rl

Rc1
Rcj

Rc(j+1) Rc̺

Figure 3.4: A sample branch of a hierarchical-RPMG

The leftmost node, Rl, is the root-node (or top-node) of this hierarchical-RPMG

while the rightmost node, Rc% , is the end-node (or bottom-node) of this branch.

Assume that the relative pose measurement for the child robot Rcj
is available in the

measurement space of the leader robot, i.e. ycj ,l
l,k ∈ Y

c,l
l,k. Additionally, the relative

pose measurement from child robot Rcj
to child robot Rc(j+1) is also available with

the leader robot, i.e. yc(j+1),cj

cj ,k
∈ Y+

l,k. Then the following pose composition gives the

relative pose measurement for child robot Rc(j+1) as measured by the leader robot,

where gr(·) is the nonlinear relative coordinate frame transformation function.
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yc(j+1),l

l,k = gr(ycj ,l
l,k ,y

c(j+1),cj

cj ,k
) = ycj ,l

l,k ⊕ yc(j+1),cj

cj ,k
, (3.8)

Once this operation is performed, the relative pose measurement and the associated

measurement covariance for child robot Rcj+1 become available in the leader robot’s

measurement space. This implies that set Scl,k and set Ycl,k are updated as (3.9) and

(3.10), respectively.

Scl,k = Scl,k ∪ {cj+1} (3.9)

Ycl,k = Ycl,k ∪ {(y
c(j+1),l

l,k ,Rc(j+1),l

l,k )} (3.10)

The leader robot sequentially performs this coordinate transformation until it reaches

all the end nodes of the hierarchical-RPMG. This operation virtually enhances the

sensing range of the leader robot.

Lemma 3.3.1. For an MRS with a single leader robot and one or more child robots,

p(zcj ,∗
l1,k) exists if and only if a path exists from the leader robot to the child robot on

GS , (cj ∈ C).

Proof. First, assume that the p(zcj ,∗
l1,k) exists. From equation (3.5), the relative pose

measurement for the child robot Rcj
, p(zcj ,l1

l1,k ) must exist in order to construct the

child robot’s pose measurement density p(zcj ,∗
l1,k). p(zcj ,l1

l1,k ) exists only if there exists a

path from the leader robot to the child robot Rcj
, (cj ∈ C).

Now assume that at least one path exists from the leader robot to child robot Rcj

on GS , (cj ∈ C). This implies that the child robot Rcj
is a node on GL and a

member of either group Gh1 or Gh2. When there exists a path from the leader robot to

child robot Rcj
on GL, then relative pose measurement and associated measurement

error covariance for the child robot exists, i.e. p(zcj ,l1
l1,k ) exists. If p(zcj ,l1

l1,k ) exists, from
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equation (3.5) p(zcj ,∗
l1,k) also exists.

Theorem 3.3.1. For an MRS with a single leader robot and one or more child robots,

the given child robot’s (say Rcj
) pose is corrected at a relative pose measurement event

if and only if a path exists from the leader robot to the child robot on GS , (cj ∈ C).

Proof. First assume that the child robot’s pose is corrected at the relative pose mea-

surement event. This implies that p(zcj ,∗
l1,k) exists in the child robot’s measurement

space. The child robot receives p(zcj ,∗
l1,k) from the leader robot. This implies that

p(zcj ,∗
l1,k) exists in the leader robot’s measurement space. If p(zcj ,∗

l1,k) exists, from Lemma

3.3.1 there exists a path from the leader robot to child robot Rcj
, (cj ∈ C).

Now assume that a path from the leader robot to child robot Rcj
, (cj ∈ C), exists.

From Lemma 3.3.1, there exists p(zcj ,∗
l1,k) in the measurement space of the leader

robot. Under the assumption of availability of a reliable communication channel, the

child robot’s pose measurement density p(zcj ,∗
l1,k) becomes available in the child robot’s

measurement space as soon as it is computed by the leader robot. Once p(zcj ,∗
l1,k) is

available in the child robot’s measurement space, the child robot can fuse it with its

current belief in order to correct its pose estimation.

3.4 MRS with Multiple Leader Robots and Mul-

tiple Child Robots

For an MRS with multiple leader robots, a multi-centralized graph search algorithm

is proposed to ensure that: (a) a given leader robot generates only a single pose

measurement, p(zcj ,∗
l1,k), for a given child robot, Rcj

, at a given time step k; (b) two

or more leader robots do not use the same relative measurement3 to synthesize the
3Use of the same relative pose measurement by multiple leader robots leads to an overconfident

state estimation.
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missing relative pose measurements between the leaders and the child robots; and (c)

the mathematical formulation that handles the double-counting problem will meet

the requirement for practical (realtime) implementation.

The proposed graph search algorithm is termed multi-root breadth-first search algo-

rithm and is summarized in Algorithm 3.14.

Algorithm 3.1 : Graph-based search algorithm for multi-leader system
1: Create an empty set E
2: for i = 1 : 1 : |L| do
3: Create an empty queue Qi
4: Create an empty queue Q̄i
5: Create an empty vector Vi

6: Add li to Vi

7: Enqueue li onto Q̄i
8: Create an empty hierarchical-RPMG Gli

9: end for
10: while all Q̄i are not empty do
11: for i = 1 : 1 : |L| do
12: if Q̄i is not empty then
13: Copy the queue Q̄i to the Qi
14: Dequeue all elements of the queue Q̄i
15: while Qi is not empty do
16: t← Qi.dequeue()
17: while all x {x|x ∈ Sct,k} are considered do
18: if x /∈ Vi and (t, x) /∈ E then
19: Add x to Vi

20: Enqueue x onto Q̄i
21: Add (t, x) to E
22: Add {t, (t, x)} to Gli

23: end if
24: end while
25: end while
26: end if
27: end for
28: end while

It is essential for leader robots to possess the global perspective of the current rela-
4Video: https://youtu.be/KHCNW_ftSKE
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tive pose measurement topology. This can be enabled through information exchange

among robots. Initialization of the proposed multi-root breadth-first search algorithm

has two parts:

1. First, the algorithm creates an empty set (E) to hold relative pose measurements

that are already considered by any of the leader robots in the MRS. [line 1]

2. Second, for each leader robot, the algorithm creates two first-in-first-out (FIFO)

queues (Qi and Q̄i), an empty vector (Vi), and an empty hierarchical-RPMG

(Gli). Vector Vi stores the unique indices of the child robots that are members

of ith leader robot’s (Rli) hierarchical-RPMG. The initial value for queue Q̄i is

the unique identification index of the leader robot, i.e. li. [lines 2-9]

Subsequent operations of Algorithm 3.1 consists of 6 additional steps:

3. Dequeue all elements from Q̄i and enqueue these elements onto queue Qi [lines

13-14];

4. Dequeue an element from queue Qi [line 16];

5. Examine the successor of the dequeued element, if it has not been considered

by this leader robot and the relative measurement from the dequeued element

and its successor is not considered by any leader robot [line 18]:

• Add the successor to vector (Vi) [line 19];

• Enqueue the successor onto queue Q̄i [line 20];

• Relative measurement between the dequeued robot and the successor robot

as measured by the dequeued robot is added to the set E [line 21];

• Update hierarchical-RPMG with the newly added successor and associated

relative pose measurement [line 22];
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6. Repeat step 5 until all child successors of the dequeued element have been

considered [line 17];

7. Repeat steps 4, 5 and 6 until queue Qi is empty [line 15];

8. Repeat steps 3, 4, 5, 6 and 7 until each Q̄i is empty [line 10-12].

This algorithm constructs a hierarchical-RPMG for each leader robot. When hierarchical-

RPMGs are constructed, each leader robot can exploit the approach discussed in

Section 3.3.2 in order to virtually enhance its local perspective.

Lemma 3.4.1. For an MRS with multiple leaders and one or more child robots,

p(zcj ,∗
li,k

) exists if and only if an independent path5 exists from leader robot Rli to child

robot Rcj
on GS ; (cj ∈ C) and (li ∈ L).

Proof. First, assume that p(zcj ,∗
li,k

) exists. This implies that child robot Rcj
receives a

pose measurement from the leader robot Rli at time step k. Therefore, p(zcj ,∗
li,k

) exists

in the leader robot’s measurement space. The measurement p(zcj ,∗
li,k

) is constructed by

composing p(zcj ,li
li,k

) and p(zli,k) as given in (3.5). This implies that p(zcj ,li
li,k

) is a member

of Ycj ,li
li,k

. Hence, cj is a node of the hierarchical-RPMG of li, i.e., cj is a node of Gli .

A child node in a hierarchical-RPMG possesses only a single path from the leader

robot to the child robot. In accordance with Algorithm 3.1, hierarchical-RPMGs

corresponding to multiple leaders are independent and do not share a common relative

pose measurement (edge). Therefore, in order for Rcj
to become a member of the

hierarchical-RPMG of Rli there must be an independent path from li to cj on GS .

Now assume that there exists an independent path from li to cj on GS . In accordance

with Algorithm 3.1, cj then becomes a member of the hierarchical-RPMG of Rli ,
5An independent path is the shortest path between the leader and the child robot when none of

the edges in this path are shared with other leader robots while calculating the hierarchical-RPMG
of an individual leader robot.
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i.e., cj is a node of Gli . This implies that child robot Rcj
is a member of either group

Gh1 or Gh2 with respect to Rli . Hence, the p(z
cj ,li
li,k

) is a member of set Ycli,k. If p(z
cj ,li
li,k

)

exists, from equation (3.5), p(zcj ,∗
l1,k) will also exist.

Theorem 3.4.1. For a MRS, if |Y∗cj ,k
| > 1 then the MRS has more than one leader

robot; where (cj ∈ C) and Y∗cj ,k
= {p(zcj ,∗

li,k
)|i ⊆ (1, · · · , |L|)}.

Proof. Assume that the cardinality of the set Y∗cj
at time k is greater than one,

i.e., |Y∗cj ,k
| > 1. This implies that child robot Rcj

receives more than one pose

measurement at time step k. In other words, |Y∗cj ,k
| > 1 implies that there exists

more than one p(zcj ,∗
li,k

); where, li ∈ L. From Lemma 3.4.1, p(zcj ,∗
li,k

) exists if and only

if an independent path from Rli to Rcj
exists. To have multiple measurements, there

should be multiple independent measurement paths. Each independent measurement

path originates from a leader robot. This implies that the system has more than one

leader robot. Therefore, the inequality |Y∗cj ,k
| > 1 is possible if the MRS has multiple

leader robots.

Theorem 3.4.2. For an MRS with multiple leader robots and one or more child

robots, if |Y∗cj ,k
| = m then the |L| ≥ m; where (cj ∈ C) and Y∗cj ,k

= {p(zcj ,∗
li,k

)|i ⊆

(1, · · · , |L|)}.

Proof. For child robot Rcj
, assume that |Y∗cj ,k

| = m. This implies that Rcj
receives

m pose measurements at time step k. In order to have m pose measurements, there

should be m independent relative pose measurement paths; hence, m leader robots

(see Theorem 3.4.1 for further details). In accordance with Algorithm 3.1, when

the shortest paths from two or more leader robots to a given child robot share a

common relative pose measurement (common edges on GS) only one leader robot is

allowed to use this information. The remaining leader robots will not then provide

pose measurements for the child robot. As a result, the number of leaders can be
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greater than m. Therefore, when the cardinality of the set Y∗cj ,k
is equivalent to m,

then the MRS has a minimum of m leader robots, i.e., |L| ≥ m.

Theorem 3.4.3. For an MRS with multiple leader robots and one or more child

robots, if a subset of nodes can be disjoint from the global RPMG by breaking an edge

between two nodes while maintaining the following properties:

• disjointed subset contains only the nodes representing set of child robots, or

• disjointed subset contains a single leader node and multiple child nodes such that

the leader node is the interface where the disjoint is made,

then the child robots in this subset receive the pose measurement from only one leader

robot.

Proof. Consider the global RPMG shown in Fig. 3.5. Node R1 can either be a leader

robot or a child robot. Similarly, node R2 can either be a leader robot or a child

robot. The left hand side network may consist of one or more child robots as well as

one or more leader robots. However, the right hand side network contains only the

child robots.

Network
contains

one or more
leader robots

and one or more
child robots

R1
Network
contains

one or more
child robots

R2

Figure 3.5: Divide global RPMG into two sub graphs by disjointing edges between
two nodes.

First consider that R2 is a child robot. All leaders in the left hand side network

then have relative pose measurement paths to all child robots in the right hand side

network through the edge between R1 and R2. After applying Algorithm 3.1, only
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one leader has an opportunity to use this edge to reach child robots in the right

hand side network. Thus, child robots in the right hand side network receive pose

measurements from only one leader robot in the left hand side network.

Now consider R2 as a leader robot. After applying Algorithm 3.1, none of the

leaders in the left hand side network has an independent measurement path to the

child robots in the right hand side network, as the interface to right hand side is a

leader robot. Only R2 provides pose measurements to the child robots in the right

hand side network.

Therefore, if a subset of nodes can be disjointed from the global RPMG by breaking an

edge between two nodes while holding the two properties mentioned in this theorem,

then the child robots in this subset receive pose measurements from only one leader

robot.

3.4.1 Leader Robot Competition

Consider a relative pose measurement event at time step k where independent paths

from n leader robots (n ≤ |L|) to a given child robot (say Rcj
) have an equal number

of edges. Additionally, assume that the child robot Rcj+1 operates within the sensing

range of the child robot Rcj
as illustrated in Fig. 3.6.

· · ·

· · ·

· · ·

··
·

··
·

··
·

Rl1

Rl2

Rln

Rc11
Rc1(j−1)

Rc21

Rcn1

Rc2(j−1)

Rcn(j−1)

Rcj Rcj+1

p(z)
cj+1,cj
cj ,k

Figure 3.6: Global-RPMG that potentially leads to a competition between leader
robots for a single relative pose measurement.

In accordance with Algorithm 3.1, only one leader can use p(zcj+1,cj

cj ,k
). Therefore,

52



a competition between leader robots arises to use this relative pose measurement.

In order to resolve this competition, the priorities can be assigned to each leader

robot. To account for the dynamic nature of the robot network, this study examines

the uncertainty distribution of each leader robot’s pose estimation. The leader robot

with the lowest pose estimation uncertainty gets the highest priority in the network.

This can be evaluated by computing either the trace or the determinant of the leader

robots’ pose estimation covariance matrices. The leader robot with the lowest trace

(determinant) receives the highest priority for the current time step.

3.5 Distributed Leader-Assisted Localization Al-

gorithm

It was assumed that each robot initially knows its pose with respect to a given refer-

ence coordinate frame. In the proposed algorithm, each agent in the heterogeneous-

MRS locally runs a CKF6 for sensor fusion. Fig. 3.7 graphically illustrates the pro-

posed localization algorithm which incorporates two independent algorithms where

one algorithm establishes the localization for the leader robots and the second algo-

rithm establishes localization for the child robots.

3.5.1 Leader Robot’s Localization

Algorithm 3.2 outlines the recursive state estimation steps for leader robot localiza-

tion. This algorithm is implemented on each leader robot and iterates at each discrete

time step. The leader robot reads its ego-motion sensor at each time step and pre-

dicts its current pose using prior state estimation densities and acquired odometry

measurements (lines 3-4). Different sensory systems, such as laser range finders and
6Please refer to [36,90] and their references for more details on CKF.
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Figure 3.7: Sensor fusion architecture of the proposed distributed leader-assisted co-
operative localization scheme

cameras, and different localization algorithms, such as SLAM and cooperative local-

ization, can be exploited to establish the localization of leader robots. For simplicity,

the current study assumed the availability of a DGPS sensor and a compass for each

leader robot. When the DGPS/compass measurements are available, then the mea-

surements are validated through an ellipsoidal measurement gate [116] (lines 5-6). If

the measurements satisfy the measurement gating condition, the leader robot fuses

these measurements with its current state estimation in order to improve its local-

ization (line 7). Otherwise the predictive density is directly assigned to the posterior

density of the state estimation (lines 8-9). In this way, any outlier can be identified

and dismissed. When there is no DGPS/compass measurement, then the predictive

density is directly assigned to the posterior density of the state estimation (lines

11-12). At a relative pose measurement event, the leader robot measures the rela-

tive pose of its neighbours (line 15) and communicates these measurements to other

leader robots in the MRS (line 16). Simultaneously it collects relative pose measure-
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ments from all teammates through the communication network (line 17). All available

relative pose measurements are then examined in Algorithm 3.1 which constructs

the hierarchical-RPMG (line 21). Prior to constructing the hierarchical-RPMG it is

important to have the knowledge of the leaders’ priority in the dynamic network.

Algorithm 3.2 : Distributed leader-assisted localization - Leader’s perspective
1: Initialize with Xlq ,◦ and Plq ,◦
2: for k ∈ (1, · · · ,∞) do
3: Read ego-motion sensor: ūlq ,k
4: Estimate predictive density p(xlq ,k|k−1) using prior density p(xlq ,k−1) and odom-

etry reading ūlq ,k−1
5: if DGPS/Compass measurement is available then
6: if measurement gate validated then
7: Compute posterior density p(xlq ,k) using predictive density p(xlq ,k|k−1),

DGPS measurement p(zDGPSk ), and/or Compass measurement p(zCompk )
8: else
9: p(xlq ,k)← p(xlq ,k|k−1)
10: end if
11: else
12: p(xlq ,k)← p(xlq ,k|k−1)
13: end if
14: if relative pose measurement event then
15: Read relative pose measurement sensor: Ylq ,k
16: Communicate Slq ,k and Ylq ,k
17: Collect relative pose measurement from other leaders and child robots:

Y+
lq ,k

= Ylq ,k
⋃

∀i∈(1,··· ,|L|),i 6=q
Yli,k

⋃
∀j∈(1,··· ,|C|)

Ycj ,k;

S+
lq ,k

= Slq ,k
⋃

∀i∈(1,··· ,|L|),i 6=q
Sli,k

⋃
∀j∈(1,··· ,|C|)

Slj ,k

18: Calculate trace of self-localization covariance matrix: tlq ,k ← trace(Plq ,k)
19: Collect trace values of other leaders:

Tr = tlq ,k
⋃

∀i∈(1,··· ,|L|),i 6=q
tli,k

20: Construct leader priority (Section 3.4.1)
21: Construct hierarchical-RPMG: (Algorithm 1)
22: Update Sclq ,k and Yclq ,k: (eqs. (3.9) and (3.10) in Section 3.3.2)
23: Update Y∗lq ,k: (eq. (3.5))
24: Communicate p(zcj ,∗

lq ,k
) ∀cj ∈ Sclq ,k

25: end if
26: end for
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To accomplish this requirement, each leader robot calculates the trace of its pose

estimation covariance matrix (line 18) and collects the trace of the pose estimation

covariance matrixes of other leader robots (line 19). Each leader robot then constructs

the priorities of the leaders based on the trace values (line 20). Construction of the

hierarchical-RPMG is followed by synthesizing missing relative pose measurements

between the leader robot and the child robots that operate beyond the sensing range

of the leader robot (line 22). Finally, the leader robot generates pose measurements

for child robots and communicates these measurements to the corresponding child

robots (lines 23-24).

3.5.2 Child Robot’s Localization

Algorithm 3.3 : Distributed leader-assisted localization - Child’s perspective
1: Initialize with Xcr,◦ and Pcr,◦
2: for k ∈ (1, · · · ,∞) do
3: Read ego-motion sensor: ūcr,k

4: Estimate predictive density p(xcr,k|k−1) using prior density p(xcr,k−1) and
odometry reading ūcr,k−1

5: if relative pose measurement event then
6: Read relative pose measurement sensor: Ycr,k

7: Communicate Scr,k and Ycr,k

8: end if
9: if pose measurement available from leaders then
10: if measurement gate validated then
11: Compute posterior density p(xcr,k) using predictive density p(xcr,k|k−1)

and received pose measurement Ycr,∗
li,k

, i ⊆ (1, · · · , |L|)
12: else
13: p(xcr,k)← p(xcr,k|k−1)
14: end if
15: else
16: p(xcr,k)← p(xcr,k|k−1)
17: end if
18: end for

Algorithm 3.3 outlines the recursive state estimation steps of child robot localiza-
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tion. This algorithm is implemented on each child robot and iterates at each discrete

time step. Each child robot reads its ego-motion sensor at each time step and predicts

its current pose using prior state estimation densities and acquired odometry measure-

ments (lines 3-4). At a relative pose measurement event, each child robot acquires the

relative pose measurements of neighbours and transmits these measurements to leader

robots (lines 5-8). Upon an arrival of pose measurements from leader robots, mea-

surements are first evaluated through an ellipsoidal validating gate in order to remove

outliers (lines 9-10). If the measurements satisfy the measurement gating condition,

the child robot fuses these measurements with its current state estimation in order

to improve its localization accuracy (line 11). Otherwise, the predictive density is

directly assigned to the posterior density of the state estimation (line 13). When no

pose measurements are received from leaders, the child robot assigns its predictive

density to the posterior density (line 16).

3.6 Evaluations

The proposed leader-assisted localization algorithm was evaluated in a series of nu-

merical simulations. Two simulation configurations were considered.

1. Heterogeneous-MRS with a single leader robot

2. Heterogeneous-MRS with multiple leader robots
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3.6.1 Heterogeneous-MRS with a single leader robot

3.6.1.1 Setup

Simulations were performed for a group of communicating robots navigating in a

2D arena7. Known data correspondence was assumed for relative pose measurements.

Simulation parameters and the characteristics of each sensory systems are summarized

in Table 3.1 and Table 3.2, respectively. It was assumed that the DGPS and compass

sensors are available only for the leader robots.

Table 3.1: Simulation parameters

Symbol Parameter Description Value
|L| Number of leader robots 1
|C| Number of child robots 4
simt Number of simulation time steps 90000
dt Width of a single time step 0.01 sec
dm Sensing range limits 10 m
W × L Size of the simulation arena 20 m × 25 m
NMC Number of Monte-Carlo runs 20

Table 3.2: Characteristics of odometry, absolute positioning and heading sensors

Sensor type Measure Frequency Noise σ
Odometry Linear velocity 100 Hz 5%v

Angular velocity 100 Hz 5 deg/sec
Relative pose x-position 10 Hz 0.05 m

y-position 10 Hz 0.05 m
Relative orientation 10 Hz 1 deg

DGPS x-position 10 Hz 0.1 m
y-position 10 Hz 0.1 m

Compass Orientation (heading) 10 Hz 0.5 deg

Linear and angular velocities of the leader robot were set to zero. The trajectories of
7Video: https://youtu.be/Ixoa34k2G1c

58



child robots were then set so that:

• the first child robot (Rc1) always operated within the sensing range of the leader

robot; thus, it always had the first degree observation8;

• the second and the third child robots (Rc2 and Rc3) intermittently appeared

within the sensing range of the leader robot; thus, they had the first-, the

second- and the third-degree observations intermittently;

• the fourth child robot (Rc4) never appeared within the sensing range of the

leader robot; thus, it always had the second- or higher-degree observation.

3.6.1.2 Results

The average state estimation error and associated 3-σ error boundaries of the child

robot Rc4 are shown in Fig. 3.8. It can be seen that the average estimation error

of x- and y-position estimations and φ-orientation estimation always stay inside the

associated 3-σ error boundaries. This implies that the proposed localization scheme

is capable of generating a consistent state estimation for child robots even when the

child robots operate beyond the sensing range of the leader robot.

When the proposed algorithm is not applied, child robot Rc4 does not receive pose

measurements from the leader robot and relies only on the odometry reading. There-

fore, without the proposed algorithm Rc4 performs dead reckoning-based localization.

Fig. 3.9 compares the root-mean-squared-error (RMSE) of child robot, Rc4 pose esti-

mation, with and without the proposed localization algorithm. These results verified

that the proposed algorithm is capable of establishing the localization for child robots

with high accuracy even when the child robots navigate beyond the sensing range of
8For a given hierarchical-RPMG, the number of edges between the leader robot node (root-node)

to a child robot node is termed the degree of observation of the child robot with respect to the leader
robot.
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Figure 3.8: Mean estimation error of child robot Rc4 for 20 Monte-Carlo simulations.
Red solid line indicates a mean estimation error while the black solid lines indicate
double-sided 3-σ error boundaries
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the leader robots. Statistical comparison of the child robots’ pose estimation, with

and without the proposed localization algorithm, is illustrated in Fig. 3.10. In both

the cases (with and without the proposed algorithm), the mean and the standard

deviation of the RMSE of child robot Rc1 ’s pose estimation are identical to one an-

other as shown in Fig. 3.10(a). This is the expected result, as child robot Rc1 has

operated within the sensing range of the leader robot. Child robots Rc2 and Rc3

appeared in the sensing range of the leader robot intermittently. As a result, these

robots recovered their localization to some extent even without the proposed local-

ization algorithm (Fig. 3.10(b) and Fig. 3.10(c)). However, it could be seen that

the proposed algorithm slightly improved the localization accuracy of child robots

Rc2 and Rc3 compared with a generic leader-assisted localization approach. A no-

ticeable improvement of localization was achieved for child robot Rc4 by using the

proposed algorithm (Fig. 3.10(d)). Since child robot Rc4 never appeared within the

sensing range of the leader robot, the general leader-assisted localization algorithm

was incapable of establishing localization.

3.6.1.3 Estimation accuracy vs. characteristic of relative pose measure-

ment sensory system

To evaluate the impact of noise level and update rate of the relative pose measurement

sensory system on the estimation accuracy, two noise configurations and update rates

were considered. These noise levels and update rates are summarized in Table 3.3.

Table 3.4 presents a comparison of the mean of the RMSE and the corresponding

standard deviation values of the child robotRc4 pose estimation. These results suggest

that the estimation error for child robots increases with the increase of the uncertainty

of the relative pose measurement sensory system. Further, estimation error increases

with a decrease in the update rate of the relative pose measurement sensory system.

61



0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Simulation time (s)

R
M

SE
 (

m
)

Proposed

Without proposed

(a) x-position

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Simulation time (s)

R
M

SE
 (

m
) 

Proposed

Without proposed

(b) y-position

0 100 200 300 400 500 600 700 800 900
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Simulation time (s)

R
M

SE
 (

ra
d)

 

Proposed

Without proposed

(c) φ-orientation

Figure 3.9: Comparison of the estimation error of child robot Rc4 for 20 Monte-
Carlo simulations. Without the proposed method, child robot Rc4 relies only on the
odometry reading as it operates beyond the sensing range of the leader robot
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Figure 3.10: RMSE of pose estimation of each child robot. Box plots show median
values (red solid horizontal line inside the box), 25th percentile value and 75th per-
centile value (box outline), ±2.7σ values (whiskers), and outlier values (horizontal red
lines). [P]: proposed localization algorithm, [WP]: without the proposed localization
algorithm (i.e. general leader-assisted localization algorithm)

Table 3.3: Characteristics of relative pose measurement sensor

Noise [σx, σy, σφ] Frequency
Case (1) [0.05 m, 0.05 m, 1 deg] 10 Hz
Case (2) [0.05 m, 0.05 m, 1 deg] 1 Hz
Case (3) [0.15 m, 0.15 m, 3 deg] 10 Hz
Case (4) [0.15 m, 0.15 m, 3 deg] 1 Hz

From these results, it is possible to conclude that the noise level of an exteroceptive

sensory system is the most critical factor that governs the accuracy of the estimation.
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Table 3.4: Comparison of the pose estimation error of child robot Rc4 . The format of
the listed estimation errors is (mean±standard deviation)

x-position y-position φ-orientation
Case estimation (cm) estimation (cm) estimation (rad)

Case (1) 0.54±0.34 1.66±0.86 0.0032±0.0017
Case (2) 3.41±1.89 5.45±2.90 0.0107±0.0058
Case (3) 6.61±3.77 11.44±6.56 0.0195±0.0116
Case (4) 8.19±4.70 19.86±9.44 0.0336±0.0160

3.6.2 Heterogeneous-MRS with multiple leader robots

3.6.2.1 Setup

A publicly available multi-robot localization and mapping data-set [49] was used to

evaluate the proposed localization algorithm for a multiple leader scenario 9. This

robot team consists of five mobile robots. Two of them are assumed to be leader

robots (R̄l1 , R̄l2) and the remaining three robots are assumed to be child robots

(R̄c1 , R̄c2 , R̄c3). This simulation study used only the odometry measurements and

ground truth measurements from the data-set. Relative pose measurements between

robots, compass measurements and DGPS measurements for the leader robots were

generated using the ground truth data. Additionally, the maximum sensing range

was set to 4 m. The noise level and the update rate of the relative pose measurement

sensors were set to
[
σx = 0.05m σy = 0.05m σφ = 1deg

]
and 5Hz, respectively. Two

measurement noise configurations and two update rates were assumed for the absolute

pose measurement sensor and are summarized in Table 3.5.

3.6.2.2 Results

Fig. 3.11 illustrates the mean estimation error along with the associated 3-σ double

sided error boundaries for child robot R̄c1 . These results correspond to the noise
9Video: https://youtu.be/6HAR0w7bvjA
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Figure 3.11: Mean estimation error of child robot R̄c1 . Red solid line indicates mean
estimation error while the black solid lines indicate double-sided 3-σ error boundaries.
Shaded regions represent time windows with no measurement updates
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Table 3.5: Characteristics of absolute pose measurement sensor

Noise-DGPS Noise-Compass Frequency
[σ̄x, σ̄y] [σ̄φ]

Case (5) [0.1 m, 0.1 m] [0.5 deg] 5 Hz
Case (6) [0.1 m, 0.1 m] [0.5 deg] 1 Hz
Case (7) [0.3 m, 0.3 m] [1.5 deg] 5 Hz
Case (8) [0.3 m, 0.3 m] [1.5 deg] 1 Hz

level and the update rate of absolute pose measurement sensors given in Case (5).

It can be seen that the estimation errors always stay inside the associated 3-σ error

boundaries. This implies that the proposed leader-assisted localization algorithm is

consistent. During the time windows 118.8s - 187.8s and 701.8s - 709.6s child robot

R̄c1 did not receive pose measurements from either leader robot (shaded regions in

Fig. 3.11). During these time windows child robot R̄c1 was disconnected from the

measurement network. In other words, during these two time windows robot R̄c1 was

not within the sensing range of any of the teammates. This implies that the robot is

a member of group Gh3 with respect to the both leader robots. Since the robot does

not receive pose measurements from the leaders during these time windows, its pose

estimation diverges from its true pose.

Table 3.6 summarizes the time averaged RMSE and the associated standard deviation

of Rc1 pose estimation for different characteristics of the absolute positioning sensor

as listed in Table 3.5. Two sets of statistics have been presented for each case: (a) the

time averaged RMSE and the associated standard deviation values of Rc1 pose esti-

mation neglecting the time windows 118.8s - 187.8s and 701.8s - 709.6s; (b) the time

averaged RMSE and the associated standard deviation values of Rc1 pose estimation

for the entire experiment period.

The results show that the estimation error increases with the increase of noise level

of the absolute positioning sensor system. Further, estimation error increases with
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Table 3.6: Comparison of the pose estimation error of child robot Rc1 for cases 5-8.
The format of the listed estimation errors is mean±standard deviation

x position
estimation (cm)

y-position
estimation (cm)

φ-orientation
estimation (rad)

Case (5) (a)
(b)

4.11±3.42
7.36±17.15

5.36±3.88
6.88±8.76

0.0207±0.0306
0.0363±0.0826

Case (6) (a)
(b)

5.29±4.03
8.85±18.07

6.27±4.34
7.75±9.14

0.0334±0.0420
0.0483±0.0862

Case (7) (a)
(b)

8.31±6.67
11.89±19.11

10.62±7.54
12.21±10.54

0.0301±0.0341
0.0450±0.0795

Case (8) (a)
(b)

11.92±8.65
15.38±19.69

15.34±9.64
16.15±11.70

0.0452±0.0456
0.0583±0.0817

a decrease in the update rate of the absolute positioning sensor system. Addition-

ally, it can be seen that higher accuracy can be achieved by ensuring the continuous

connectivity with the measurement network. However, disconnecting from the mea-

surement network for a short period of time (< 1 minute) will not greatly diverge

the child robots’ pose estimation. In addition, a rapid convergence could be achieved

soon after the reconnecting with the measurement network. This result demonstrates

the applicability of the proposed method for a real-world application where temporal

occlusion by an obstacle is present.

3.7 Consistency and Complexity

When stochastic filters are exploited for sensor fusion, these filters estimate two in-

formation namely state vector and state estimation uncertainty (covariance matrix).

It is important to evaluate whether estimated uncertainty accurately represent the

estimation error. If the estimated uncertainty is too smaller than the estimation er-

ror, the estimator is said to be overconfident, and if the estimated uncertainty is too

bigger than the estimation error, the estimator is said to be conservative. Otherwise,
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estimator is said to be consistent. There are several approaches to evaluate the con-

sistency of an estimator. In this research work, I used normalized estimation error

squared (NEES) test and normalized innovation squared (NIS) test to evaluate the

consistency of the proposed sensor fusion architecture and the proposed global pose

composition algorithm.

3.7.1 Normalized Estimation Error Squared (NEES)

To examine the consistency of the proposed distributed leader-assisted cooperative

localization scheme, NEES values of the child robots’ pose estimations for a multi-

leader scenario were computed using

εci,k = ξci,k
TP−1

ci,k
ξci,k

i ∈ (1, 2, 3) (3.11)

where, ε is the computed NEES and is a scalar. ξ is the pose estimation error at

time step k and P represents the estimated error covariance matrix. For a single run,

estimation is consistent if the computed NEES is such that the following inequality

holds:

εci,k ≤ χ2
nx,δ (3.12)

where χ2
nx,δ represents the Chi-square distribution with nx DOF and δ is the signif-

icance level [117]. The upper-bound of the 95% acceptance region for the 3-DOF

stochastic process is given by χ2
3,0.95 and is equal to 7.8147. For the noise charac-

teristics given in Table 3.3 Case (1) and Table 3.5 Case (5), the NEES of the pose

estimation of the child robot R̄c1 is shown in Fig. 3.12(a). The percentage of the

NEES values falling outside the 95% acceptance region are summarized in Table 3.7.

It can be seen that fewer than 10% of values fall outside the 95% region, which is

acceptable [23].
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Figure 3.12: Consistency analysis results for child robot R̄c1 . Blue solid lines represent
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the Chi-square upper bounds
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3.7.2 Normalized Innovation Squared (NIS)

To examine the consistency between the measurements and predicted observations,

NIS values of the child robot pose estimation for the multi-leader scenario are com-

puted using

εci,k = ηci,k
TS−1

ci,k
ηci,k

i ∈ (1, 2, 3) (3.13)

where ε is the computed NIS value and is a scalar. η is the difference between the pose

measurement sent from a leader robot and the predicted pose measurement. S is the

innovation covariance matrix. This also follows the Chi-square distribution with nz

DOF [117]. When a child robot receives multiple pose measurements at a single time

step these measurements are independent from one another. As a result, a sequential

update can be performed at the filter update resulting in reduced computational

complexity for child robots [118]. For the noise characteristics given in Table 3.6 Case

(5), NIS values corresponding to two leader robots can be computed independently

and are shown in Fig. 3.12(b) and Fig. 3.12(c). During the highlighted time windows

(Fig. 3.12(b) and Fig. 3.12(c)) child robot R̄c1 did not receive pose measurements

from the corresponding leader robot. This is due to one of the following reasons: (a)

child robot R̄c1 has disconnected from the relative pose measurement network; (b)

the leader robot has disconnected from the relative pose measurement network; or

(c) it was possible to disconnect child robot R̄c1 from the relative pose measurement

network by disjoining a single edge on the global-RPMG (seeTheorem 3.4.3 for more

information). There is no NIS value associated with these time windows. The pose

measurement sent by a leader robot consists of x- and y-positions and φ-orientation.

This measurement has 3-DOF leading to the Chi-square upper bound of χ2
3,0.95 and is

equal to 7.8147. The percentage of the NIS values falling outside the 95% acceptance

region are summarized in Table 3.7. It can be seen that fewer than 10% of values fall
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outside the 95% region, which is acceptable [119].

Table 3.7: Percentage of NEES and NIS values that fall outside the Chi-square upper-
bound

Robot NEES NIS NIS
(leader 1) (leader 2)

R̄c1 8.03% 1.35% 2.56%
R̄c2 3.81% 1.61% 2.67%
R̄c3 9.82% 1.42% 2.03%

3.7.3 Complexity

3.7.3.1 Computational and Time Complexity

As the pose estimation task is decentralized and pose measurements sent by dif-

ferent leaders are independent from one another, for a given child robot, the per-

measurement computational complexity remains constant O(1). The computational

complexity of the leader robot pose estimation depends on the sensory system and lo-

calization algorithm that the leader robots execute. In this study, an absolute position

measuring capabilities and availability of a compass for the leader robot’s localiza-

tion are assumed. Thus, this algorithm also has constant computational complexity

per measurement O(1). However, if the leader robots execute a complex SLAM al-

gorithm in order to establish their localization, the computational complexity will

increase. The breadth-first search algorithm has the worst case time complexity of

O(|ζ|+|ϑ|) (Please refer to Section 3.2.1 for notations.). This time complexity linearly

increases with the number of leader robots in the MRS.
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3.7.3.2 Communication Complexity

None of the robots are required to communicate their high-frequency ego-centric mea-

surements with one another or with the leader robots. This decreases the bandwidth

requirement of the data network. Each robot needs to communicate its relative pose

measurement to the leader robots. Thus, the communication cost per relative pose

measurement increases linearly with the number of leader robots in the MRS, i.e., the

per relative pose measurement communication cost is in the order of O(|L|).

3.8 Summary

This chapter presented a novel localization framework addressing the finite-range sens-

ing problem of leader-assisted localization. This framework consists of (1) a method

to virtually enhance the leader robots’ sensing range allowing child robots to navi-

gate beyond the sensing range of leader robots while maintaining bounded error and

uncertainty, and (2) a novel graph search algorithm to address the double counting

problem. The performance of the proposed framework is evaluated in a series of

numerical simulations and a publicly available multi-robot localization and mapping

data-set. The results confirmed that the proposed distributed leader-assisted localiza-

tion framework is capable of establishing consistent localization for the child robots

with bounded uncertainty even when they operate beyond the sensing range of the

leader robots. From the perspective of child robots, per-measurement communication

cost of the proposed method is constant O(1) while the per-measurement communi-

cation cost linearly increases with the increases of the number of the leader robots

in the MRS, i.e., per-measurement communication cost is O(|L|) per-relative pose

measurement, where |L| represents the number of leader robots in the MRS. Overall

communication cost if the system, potential maximum value, is O(|C2||L|).
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Chapter 4

Distributed Leader-Assisted

Localization with Sensing and

Communication Range Constraints

In the previous chapter, the solution that is presented for the sensing range constraint

is formulated with the assumption of an unbounded communication range. However,

this assumption may not valid for practical applications, because most of the available

wireless communication infrastructures have a bounded communication range. There-

fore, in this chapter, this study is extended in order to address both the sensing and

the communication range constraints and these boundaries are virtually expanded1.

In general, the communication range limit, dcom, of a wireless communication network

is greater than the sensing range limit, dm, of any exteroceptive sensory system at-

tached to the robots. Robots that operate beyond the leader robots’ communication

boundaries can send and receive information to/from a leader robot through one or
1The work in this chapter is to be submitted for Journal of Autonomous Robots.

* T. R. Wanasinghe, G. K. I. Mann and R. G. Gosine, “Leader-Assistive Localization Framework for
Multi-robot Systems with Communication and Sensing Range Constraints,” submitted for Journal
of Autonomous Robots (Under review)
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a set of intermediate robots. This eventually leads to a high bandwidth requirement

for the communication channel between leader robot and the child robots that are

within the leader robot’s communication range. Therefore, this chapter formulates a

hierarchical communication architecture that does not require child robots to commu-

nicate their local measurements to the leaders. In the proposed method, the exchange

of information occurs between the robots, that can measure the relative pose of each

other. Therefore, it is reasonable to assume dcom = dm.

4.1 Inter-robot Measurements and Communications

in an MRS

4.1.1 Inter-Robot Measurement and Communication Graph

(IRMCG)

An inter-robot measurement and communication graph (IRMCG) is a directed graph

GS , {ζ, ϑ}, where ζ is the node-set representing the agents in the MRS and ϑ ∈

{ζ × ζ} is the edge set that represents the availability of a communication link and

relative pose measurements from agent Ri to agent Rj. In the global perspective,

available relative pose measurements between robots are viewed as external observers,

whereas in the local perspective, each robot can measure the relative pose of robots

that operate within its sensing range. Fig. 4.1 gives a sample robot configuration and

the associated global-IRMCG and local-IRMCG are illustrated in Fig. 4.2(a) and Fig.

4.2(b).

74



Rl

Rc1

Rc2
Rc3

Rc4
Rc5

Rc6

Rc7

Figure 4.1: Sample heterogeneous MRS. Each shaded area with a solid outline repre-
sents the communication and sensing range of corresponding robot.

Rl

Rc1

Rc2

Rc3

Rc4
Rc5

Rc6

Rc7

(a) Global perspective (b) Local perspective
of robot Rc5

Rc4
Rc5

Rc6

Rc7

Figure 4.2: Inter-robot measurement and communication graph (IRMCG). Nodes
represent robots and edges represent availability of communication link and relative
pose measurement between two robots. Bi-directional arrow indicates that robots can
measure relative pose of each other and send and receive data to/from their neighbours

4.1.2 Hierarchical-IRMCG

A Hierarchical-IRMCG is a directed graph GL , {ζ̄ , ϑ̄}, where ζ̄ ⊆ ζ and ϑ̄ ⊆ ϑ,

without a symmetrical pair of directed edges and without a loop between two nodes.

This graph has a single leader robot and one or multiple child robots. The leader

robot is the root-node and the child robots are the head-nodes. Fig. 4.3(a) illustrates

the hierarchical-IRMCG that corresponds to the robot configuration given in Fig. 4.1.

4.1.3 Local-Hierarchical-IRMCG

A local-hierarchical-IRMCG is a directed graph GC , {ζ, ϑ}, where ζ ⊆ ζ̄ and ϑ ⊆ ϑ̄.

This is defined with respect to a child robot. For a given child robot, the local-
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hierarchical-IRMCG gives the shortest communication and measurement path to the

child robot from a given leader robot. Further, this graph includes immediate suc-

cessors of the child robots. Fig. 4.3(b) illustrates the local-hierarchical-IRMCG with

respect to robot Rc1 for the robot configuration illustrated in Fig. 4.1.

Rl Rc1 Rc2

Rc3 Rc4

Rc5

Rc6

Rc7 Rl Rc1

Rc3 Rc4 Rc5

(a) Hierarchical-IRMCG for the robot
configuration given in Fig 1

(b) Local-Hierarchical-IRMCG
with respect to robot Rc4

Successors
of Rc4

Predecessors
of Rc4

Figure 4.3: Hierarchical inter-robot communication graph (Hierarchical-IRMCG).
The hierarchy goes from left to right. The leader robot is the root-node and child
robots are the head nodes. Arrow direction indicates the information flow direction.

4.1.4 Communication Modes

Two types of communication modes are assumed: an instantaneous communication

mode and a time-delayed communication mode. An instantaneous communication

mode assumes that the information originating from a member of the MRS can com-

municate with any member of the global-IRMCG within the current sample time

step. In contrast, a time-delayed communication mode assumes that a single time

step is required for information hopping between two robots. Therefore, if a path of

a hierarchical-IRMCG has n edges from the leader robot to a child robot, then the

child robot will receive information originating from the leader robot with a delayed

(n− 1) sample time step.
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4.2 MRS with an Instantaneous Communication

Mode

4.2.1 Single Leader Robot Scenario

When the MRS has only one leader robot, each child robot connected to a global

IRMCG should use a single global measurement from the leader at each inter-robot

observation event. As child robots in group Gli,3 (refer to section 3.3 for notation)

receive the same information originating from the leader through multiple neighbours,

they use the first valid measurement for sensor fusion and discard all the subsequent

global measurements that are associated with the current inter-robot observation

event.

4.2.2 Multiple Leader Robots Scenario

For an MRS with multiple leader robots, a technique is required to ensure that: (a)

a child robot will receive only a single global pose measurement from a given leader

robot, and (b) a relative pose measurement will not be used more than once2 to synthe-

size the global pose measurements for child robots. If all the available measurements

can be collected in a central processing system, then the breadth-first graph search

algorithm would be the best option to avoid double counting; i.e., find the shortest

measurement and communication path from the leader robot to an arbitrary child

robot. The proposed localization scheme is a distributed algorithm and there is no

central processor available. Therefore, a novel distributed graph search algorithm is

proposed to detect and discard the double counting of information.

Leader robots are the head nodes for any hierarchical-IRMCG. At each relative ob-
2Use of a given relative pose measurement more than once may lead to an overconfident state

estimation.
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Algorithm 4.1 Distributed graph search and global pose composition: Leader robots’
perspective
1: Create an empty local-hierarchical-IRMCG Gli

li
2: for each member of Scli do
3: Compute p(zcq ,∗

li,k
) where cq ∈ Scli : p(y

cq ,∗
li,k

)
4: Initialize a graph for sending to child successor:

Gli
li,cq

= {(li, cq), (li − cq)}
5: Send {p(zcq ,∗

li,k
),Gli

li,cq
} to Rcq

6: Update: Glili ← Glili ∪ {cq, (li − cq)}
7: end for

servation event, each leader robot computes global pose measurement, the associated

noise covariance matrix, and initial entries of the hierarchical-IRMCG of each child

robot operating within the leader robot’s sensing and communication range. This

information is then communicated to the corresponding child robot. Simultaneously,

each leader robot constructs its local-hierarchical-IRMCG. These steps are summa-

rized in Algorithm 4.1.

As the leader robots are the root node for each hierarchical-IRMCG they only need

to send data (measurements/graph) to child successors. However, an arbitrary child

robot may receive data from a leader or child predecessors and send data to child

successors. Therefore, the distributed graph search algorithm that runs on the child

robots’ local processors differs from the algorithm that runs on the leader robots.

Algorithm 4.2 outlines the distributed graph search and global pose composition

approach with the perspective of child robots.

Step 1 - Initialization (lines 1-4)

When an inter-robot relative measurement event occurs, each child robot creates

an empty local-hierarchical-IRMCG per leader robots in the MRS. Additionally, an

empty set i.e., set M , is created to hold the identification indices of the neighbouring

child robots that have already received global pose measurements from the child robot
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Algorithm 4.2 Distributed graph search and global pose composition: Child robots’
perspective
1: Create an empty set M
2: for i = 1 : 1 : |L| do
3: Create an empty local-hierarchical-IRMCG Gli

cq

4: end for
5: while current sample time step elapsed do
6: Listening
7: if data {Ycq ,∗

li,k
, Gli

p,cq
} received from Rp, Rp ∈ S then

8: if Gli
cq
6= ∅ then

9: Send Ack = 0 to Rp
10: else
11: Send Ack = 1 to Rp
12: Assign: Gli

cq
← Gli

p,cq

13: Update: Ycq ,∗
l,k ← Y

cq ,∗
l,k ∪ Y

cq ,∗
li,k

14: if |M| < |Sccq
| then

15: Find potential successors:

D =
((
Sccq
∩ {p}

)′
∩M

)′
16: for each member of D do
17: Compute global pose for Rcr : Y

cr,∗
li,k

18: Compute graph to communicate:
Gli
cq ,cr

= Gli
p,cq
∪ {cr, (cq − cr)}

19: Send {Ycr,∗
li,k

, Gli
cq ,cr

} to Rcr

20: if received Ack = 1 then
21: Update: M←M ∪ {cr}
22: Update: Glicq

← Glicq
∪ {cr, (cq − cr)}

23: end if
24: end for
25: end if
26: end if
27: end if
28: end while

which runs the algorithm.

Step 2 - Check the applicability of the received global pose measurements

(lines 7-11)

When a child robot receives a global pose measurement from a neighbouring robot,

the child robot analyzes the received information in order to detect and discard the
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information originating from the same leader robot. If the received information is not

an independent measurement, the child robot notifies the predecessor that the mea-

surement has been discarded. This acknowledgement is important, since it allows the

predecessor to re-use the relative observation between these two robots in subsequent

steps of the graph search algorithm.

Step 3 - Update local knowledge set and find potential immediate succes-

sors (lines 12-15)

If the received measurement is an independent measurement then the local measure-

ment set and the sensing and the corresponding local-hierarchical-IRMCG of the child

robot are updated. The received independent global pose measurement can then be

integrated with the relative pose measurements for neighbouring robots (immediate

successors) to generate global pose measurements for them. To avoid the use of a sin-

gle relative-pose measurement more than once, the algorithm selects the neighbouring

child robot with following characteristics as the potential immediate successor: (i) it

operates within the sensing and communication range of the current child node, (ii)

it is not the predecessor of the current global pose measurement, and (iii) it has not

received a pose measurement from the current child node for the current inter-robot

relative pose measurement event.

Step 4 - Compute and communicate global pose measurements and asso-

ciated graph for potential immediate successors (lines 16-22)

For each potential immediate successor, a child robot computes the global pose mea-

surement, the associated noise covariance matrix and local-hierarchical-IRMCG. The

computed information is then communicated to the corresponding child robot. How-

ever, the neighbouring child robot may have already received global pose information
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originating from the same leader robot through another sensing and communication

path. Therefore, set M and local-hierarchical-IRMCG of the current child robot is

updated only if the neighbouring robot acknowledges that the measurement has been

selected as an independent measurement.

Rl1

Rl1

Rl1

Rl1

Rl1

Rl1

(a)

Rl1

Rl2

Rc1

Rc4

Rc2

Rc3

1 2

2
3

1

2

2

3

(b)

Figure 4.4: Sample multi leader scenario. (a) Multi leader global IRMCG, (b) Infor-
mation propagation on the global IRMCG where solid arrows (or red arrows) indicate
the information propagation steps of leader Rl1 , dot-dashed arrows (or blue arrows)
indicates the information propagation steps of leader Rl2 , and the circled numbers on
the lines indicate the order of the communication steps

For the global IRMCG presented in Fig. 4.4(a), the data (measurements and graph)

propagation sequence that was obtained from the proposed distributed graph search

algorithm is shown in Fig. 4.4(b). In the first communication step, leader Rl1 sends

data to child Rc1 and leader Rl2 sends data to child Rc4 . When Rc1 receives data

from its predecessor, the received data is combined with onboard measurements and

generates global pose measurements and associated communication graphs for Rc2

and Rc4 . These constructed data is communicated to Rc2 and Rc4 at the second com-

munication step. Similarly, Rc4 extends the information received from Rl2 and sends

data to Rc1 and Rc3 during the second communication step. As Rc1 and Rc4 have

already used all available relative pose measurements for neighbouring child robots,

no information can be hopped through these robots in subsequent communication

steps. At the third communication step, Rc2 extends and relays data initialized from
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Rl1 to Rc3 while Rc3 extends and relays data initialized from Rl2 to Rc2 . This will

be the last communication step as there is no room to extend available data without

double counting any information. Table 4.1 summarizes the communications steps

and Table 4.2 summarizes local-hierarchical IRMCGs that have been constructed on

individual child robot local processors.

Table 4.1: The communication steps and associated data for the robot configuration
given in Fig. 4.4(a)

Step From To Data (measurement and graph) Re:

1
Rl1 Rc1 p(zc1,∗

l1,k ); Gl1
l1,c1 : l1 → c1 E

Rl2 Rc4 p(zc4,∗
l2,k ); Gl2

l2,c4 : l2 → c4 E

2

Rc1 Rc2 p(zc2,∗
l1,k ); Gl1

c1,c2 : l1 → c1 → c2 E

Rc1 Rc4 p(zc4,∗
l1,k ); Gl1

c1,c4 : l1 → c1 → c4 T

Rc4 Rc1 p(zc1,∗
l2,k ); Gl2

c4,c1 : l2 → c4 → c1 T

Rc4 Rc3 p(zc3,∗
l2,k ); Gl2

c4,c3 : l2 → c4 → c3 E

3
Rc2 Rc3 p(zc3,∗

l1,k ); Gl1
c2,c3 : l1 → c1 → c2 → c3 T

Rc3 Rc2 p(zc2,∗
l2,k ); Gl2

c3,c2 : l2 → c4 → c3 → c2 T

Re:remarks, E:extendable, T:terminate

Table 4.2: Local hierarchical-IRMCG for communication steps shown in Fig. 4.4(b)
and Table 4.1
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4.3 MRS with a Delayed Communication Mode

When a child robot receives global pose measurements from a leader robot, the child

robot needs to examine the potential child successors, compose global pose measure-

ments and associated noise covariance for the potential child successors and extend

the received communication graph by adding new nodes and edge. Data cannot be

communicated to the immediate child successors until these processing steps are com-

pleted. This adds some time delay to the communication network. Additionally, there

exists a propagation path delay in each information exchange. Because of these de-

lays, an instantaneous communication mode assumption may become invalid for some

MRSs. Therefore, this section extends the mathematical formulation of the proposed

leader-assisting localization scheme for a time-delayed communication network. The

time-delayed communication mode presented in this study assumes that a single sam-

ple time step is required for hopping information between two robots. Consider the

path from Rl1 to Rc4 in the hierarchical IRMCG presented in Fig. 4.3 (a). The cor-

responding information flows in the time-delayed communication network are shown

in Fig. 4.5.

In this inter-robot relative pose measurement event, the measurements are taken at

time t◦. In the initial time step, the leader robot computes the global pose mea-

surement and the communication graph for Rc1 and sends them to Rc1 . Once Rc1

receives a global pose measurement from the leader, the robot combines the received

pose measurement with the relative pose measurement for Rc3 . This global pose mea-

surement and the associated communication graph are communicated to Rc3 at time

(t◦ + T ). This implies that Rc3 receives information with a single time step delay.

However, this measurement should be used to update the pose estimation at time t◦

instead of time (t◦ + T ). This can be achieved if the pose prediction at time t◦ is

available. Therefore, this study keeps the history of state prediction and odometry
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Rl1

Rc1

Rc3

Rc4

[p(zc1,∗l1,k
),Gl1

l1,c1
]

[p(zc3,∗l1,k
),Gl1

c1,c3 ]

[p(zc4,∗l1,k
),Gl1

c3,c4 ]

t◦ t◦ + T t◦ + 2T t◦ + 3T
time(s)

Figure 4.5: Sample information hopping for delayed communication network. The
dotted-line arrows represent time propagation, dashed-line arrows indicate the infor-
mation flow in the network, bi-directional solid arrows represent inter-robot observa-
tions (relative pose measurements)

measurements from the inter-robot relative pose measurement event to global pose

receiving event. Once the global pose is received, the robot first updates its pose at

time t◦ using the received measurement. This measurement update is followed by a

series of time updates using the saved odometry measurements. In addition to the

pose update, Rc3 composes a global pose for Rc4 by combining the received global

pose measurement with the relative pose measurement for Rc4 which is acquired at

time t◦. This global pose measurement and the associated communication graph are

sent to Rc4 at time (t◦ + 2T ). This implies that Rc3 needs to keep its inter-robot

relative pose measurement until time t◦+ 2T and may discard it (clear memory) once

the measurements have been used. Robot Rc4 receives a global pose measurement at

time (t◦ + 2T ). This measurement corresponds to time t◦ and is used to update the

pose estimation at time t◦. This update is followed by the update of state propaga-

tion from t◦ to (t◦ + 2T ) using the stored odometry measurements. Note that the

leader robot initialize the communication and uses all its available data at time step

t◦. Therefor the leader does not require to maintain history and apply Markov rule

at each time step without any delay.
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The key challenge of this implementation is that a robot cannot exploit the Markov

property at each time step as the previous state estimations and measurements are be-

ing used for sensor fusion at future time steps. This implies that each child robot has

to keep old measurements and state estimations for future usage, causing the onboard

memory space requirement to increase. To reduce the information storage require-

ment, the Markov property need to be applied so that each child robot that connects

to the global IRMCG receives its optimum number of global pose measurements. For

this purpose, a liberate-point is defined as follows:

Definition 4.3.1. A liberate-point, Lj(km, klp), is an event that occurs at liberate-

point time klp, in which child robot Rcj
receives a maximum number of possible delayed

global pose measurements from leaders. These global pose measurements correspond

to the inter-robot relative pose measurement event that occurred at time km (≤ klp).

At the liberate-point, the corresponding child robot:

1. updates its pose at time step km using the received global pose measurements;

2. re-evaluates state propagation from km to kn and computes new predictive density

for the time step kn+1; and

3. clears memory u(km : kn), x(km : kn), P(km : kn).

In the next time step, the child robot:

1. transmits newly calculated global pose measurements for corresponding child suc-

cessors; and

2. clears memory z(km : kn).

Consider Fig. 4.5 as an example, when an inter-robot relative pose measurement has

occurred at time t◦. For this measurement event, for each child robot km equals t◦.
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As the first child robot receives global pose measurements instantly it does not need

to store odometry or previous pose estimations. Therefore, its liberate-point time is

t◦. In other words, the liberate-point of the child Rc1 is Lc1(t◦, t◦). This child robot

will clear the stored inter-robot relative pose measurements at time (t◦ + T ), i.e. a

single time step after the liberate-point time. The liberate-point for Rc3 and Rc4 are

Lc3(t◦, t◦ + T ) and Lc4(t◦, t◦ + 2T ), respectively.

Lemma 4.3.1. If a given child robot is an edge robot of the global-IRMCG it will

receive maximally one global pose measurement per an inter-robot relative pose mea-

surement event, i.e. if |Yq,k| = 1 then |Ycq ,∗
li,k
| = 1, li ∈ L.

Proof. The edge robot has only one neighbour (leader or child). Algorithm 4.2

ensures that the single inter-robot relative pose measurement can be used only once

for a global pose measurement computing task. Since a single relative pose measure-

ment can be used only once, the edge robot can receive maximally one global pose

measurement for time step k.

Theorem 4.3.1. If a given child robot is an edge robot of the global IRMCG, liberate-

point time klp is the time that the robot receives the first global pose measurement for

the inter-robot relative pose measurement event that occurred at time km.

Proof. According to Lemma 4.3.1, an edge robot receives only one global pose mea-

surements for a given inter-robot relative pose measurement event. This implies that

the maximum number of global pose measurements for this child robot equals one.

According to definition 4.3.1, the liberate-point occurred at the time where the child

robot has received its maximum number of delayed global pose measurements from

leaders. As the edge robot can receive only one global pose measurement, the liberate-

point time klp for any edge robot is the time that the robot receives the first global

pose measurement for the current inter-robot relative pose measurement event.
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Lemma 4.3.2. For a given child node, if there exists no robot within the sensing and

communication range of the child robot at an inter-robot measurement event, then the

child robot will not receive any global pose measurement for this measurement event,

i.e., if Yq,k = ∅, q ∈ C then |Ycq ,∗
li,k
| = 0, li ∈ L.

Proof. If Yq,k = ∅ then the child robot Rcq belongs to group Gli,4, ∀i ∈ L. This

implies that there is no path existing from any leader robot to child robot Rcq in

the global-IRMCG. Therefore, global pose compositions initiated at any leader robot

cannot be propagated to child robot Rcq . Hence, no global pose measurement will be

available for this child robot, i.e., |Ycq ,∗
li,k
| = 0, li ∈ L.

Lemma 4.3.3. If a given child robot has n neighbours, i.e., |Yq,k| = n, and a team has

N leader robots, i.e., |L| = N , then the maximum number of global pose measurements

that the child robot may receive is:

|Ycq ,∗
l,k |max =


n, if n ≤ N

N, otherwise

Proof. According to Algorithm 4.2, each leader robot can provide a single global

pose measurement for a given child robot at an inter-robot relative pose measurement

event. Therefore, if an MRS has N leader robots, i.e. |L| = N , the maximum number

of independent global pose measurements for each child robot equals N .

On the other hand, Algorithm 4.2 does not allow the use of a single edge (single

inter-robot relative pose measurement) more than once for the process of global pose

composition. This implies that the neighbours of a given child robot can provide only

one global pose measurement for the child robot. Hence, the child robot can receive

maximally n independent global pose measurements as |Yq,k| = n, q ∈ C.

Integrating these two conditions, it is clear that |Ycq ,∗
l,k |max = min(n,N).
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Theorem 4.3.2. If a given child robot has n neighbours, i.e., |Yq,k| = n, and a team

has N leader robots, i.e. |L| = N , the liberate-point time klp for this child robot

is the time that the robot receives n̄ independent global pose measurements, where

n̄ = min(n,N), for the inter-robot relative pose measurement event that occurred at

time km.

Proof. According to Lemma 4.3.1, when a child robot has n neighbours and the MRS

has N leader robots, the maximum number of independent global pose measurements

that the child robot may receive is equal to min(n,N), i.e., |Ycq ,∗
l,k |max = min(n,N).

Definition 4.3.1 states that the liberate-point occurs at the time when the child

robot has received its maximum number of delayed global pose measurements from

the leaders. Therefore, when |Yq,k| = n and |L| = N , the liberate-point time klp

is the time that the robot receives n̄ independent global pose measurements where

n̄ = min(n,N).

There can be an IRMCG configuration such that the algorithm used for avoiding dou-

ble counting causes one or more child robot to receive fewer global pose measurements

than the expected maximum number of measurements as given by Lemma 4.3.3.

For example, consider the global IRMCG shown in Fig. 4.6.

Rl1

Rl2

Rc1 Rc2

Rc3

Rc4

Figure 4.6: Sample robot configuration that causes a child robot to receive fewer
global pose measurements than its expected maximum number of measurements

In this example, Rc2 has three neighbours and the MRS has two leader robots. There-

fore, |Yc2,k| = 3 and |L| = 2. From Lemma 4.3.3, Rc2 is able to receive maximally
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two independent global pose measurements, i.e., n̄ = min(n,N) = min(2, 3) = 2.

However, Algorithm 4.2 allows only one leader robot to exploit relative pose mea-

surements from Rc1 to Rc2 for computation of a global pose measurement. Therefore,

the second leader robot will not provide a global pose measurement for Rc2 causing

Rc2 receives only one global pose measurement for this IRRM event. This is less

than its expected maximum number of independent measurements. It is important

to identify such conditions and apply the Markov property to optimize the memory

usage. For this purpose, a max-delay point is defined as follows:

Definition 4.3.2. A max-delay point,Mj(km, kmd), is an event that occurs at max-

delay point time kmd, in which child robot Rcj
exceeds maximum waiting time to receive

delayed global pose measurements from leader robots. This global pose measurement(s)

corresponds to the inter-robot relative pose measurement event that occurs at time

km. At the max-delay point, the corresponding child robot clears the history of the

measurements and estimations u(km : kn), x(km : kn), P(km : kn), and Ycj ,km.

Lemma 4.3.4. For an MRS with |L| leader robots and |C| child robots, if the child

robot within the leader robot’s communication range receives a global pose measurement

instantly and subsequent information hopping needs one time step per information hop

between two robots, then the maximum time delay is equal to (|C| − 1)T , where T is

the sample time.

Proof. For an MRS with |L| leader robots and |C| child robots, the maximum delay

network configuration occurs when one child robot operates within the sensing and

communication range of a leader robot (or group of leader robots) while others connect

so that the hierarchical-IRMCG has a single branch, i.e., inter robot observation and

communication of child robots form a chain-like formation as shown in Fig. 4.7.

The first child robot of the chain receives the global pose measurement instantly,

i.e. at t◦. The second child robot receives the measurements with a single time step

89



· · ·L
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t◦ + T

t◦ + 2T

t◦ + 3T

t◦ + (|C|
− 2)T

t◦ + (|C|
− 1)T

· · ·

Figure 4.7: Chain-like IRMCG

delayed, i.e. at t◦ + T . The third child robot receives a measurement with two time

steps delay, i.e. at t◦+ 2T . The fourth child robot receives a measurement with three

time steps delayed, i.e. at t◦ + 3T . This patten suggests that the child robots in

a chain-like formation receive measurements with one time step less than its order

(position) in the network. Therefore, (|C| − 1)th child robot and |C|th child robot

receive pose measurements with (|C| − 2) and (|C| − 1) time steps delayed, i.e. at

t◦ + (|C| − 2)T and t◦ + (|C| − 1)T , respectively. Rc|C| is the last node (edge robot)

of the network. This robot receives measurements with (|C| − 1) time step delayed.

Therefore, the maximum time delay for this network is equal to (|C| − 1)T , where T

is the sample time step.

Theorem 4.3.3. Consider an MRS with |L| leader robots and |C| child robots. If a

given child robot of the MRS has n child neighbours then the maximum time delay for

this child robot equals (|C| − n)T , where T is the sample time.

Proof. According to Lemma 4.3.4, the maximum delay for the MRS with |L| leaders

and |C| child is (|C|−1)T . In other words, maximum delay is equal to the (number of

child robots in the chain formation-1)T. If a given child robot has n child neighbours,

and the IRMCG has a chain-like formation, then (n − 1) child robot will not be

predecessors for this child robot (refer Fig. 4.8). Therefore, the maximum delay is

reduced by (n− 1)T . This implies that the maximum delay for the child robot with

n child neighbours equals (|C| − 1)T − (n− 1)T = (|C| − n)T .
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L
Leaders Rc1 Rc2 Rc3 Rc4 Rc5

Rc6

Rc7

Rc8
t◦

t◦ + T
t◦ + 2T

t◦ + 3T

t◦ + 4T

Figure 4.8: Sample robot configuration for Lemma 4.3.3. In this configuration
|C| = 8. Consider Rc5 . It has 4 neighbouring child robots, i.e. {Rc4 , Rc6 , Rc7 , Rc8}.
Therefore n = 4 and maximum delay for Rc5 is (|C| − n)T = (8 − 4)T = 4T , i.e.,
information is delayed by four sample time steps.

Theorem 4.3.4. Consider a child robot, Rci
, in an MRS. If the neighbouring child

robots of Rci
have applied the Markov rule, i.e., the robot clears the history of state

estimation, odometry data, and inter-robot relative measurements at time tk, then Rci

can apply the Markov rule at time step tk+1.

Proof. If all neighbours have applied the Markov rule at time tk, the child robot Rci

will not receive global pose measurements for current inter-robot observations in sub-

sequent time steps. As a result, child robot Rci
will not update its past estimation

and will not generate any global pose measurement for its neighbours after time step

tk. Therefore, holding the past information such as previous state estimations, odom-

etry data and inter-robot relative pose measurements becomes redundant. Clearing

redundant information improves the memory utilization. Hence, the child robot Rci

can apply the Markov rule at time step tk+1.

4.4 Distributed Leader-Assisting Localization Al-

gorithm

This study assumes that each robot in the MRS knows its initial pose with respect to

a given reference coordinate system and exploits the CKF for sensor fusion. Sensor

fusion architecture can be divided into two parts: (i) leader robot localization, and
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(ii) child robot localization.

4.4.1 Leader Robot Localization

Fig. 4.9 illustrates the sensor fusion architecture for leader robots. The recursive state

estimation steps of this sensor fusion architecture are summarized in Algorithm 4.3.

This algorithm is implemented on each leader robot and iterates at each sample time

step. The algorithm is initialized with known initial conditions and performs three

main tasks: state prediction, state correction, and pose formation.

Prediction

nonlinear
system
model

(lines 3-4)

Correction

measurement
models

(lines 5-13)

DGPS/
Compass

Predicted
state

Updated
state

Pose Formation

Distributed graph
search and global
pose composition

(lines 14-17)

Updated
state

Odometry Relative pose
measuring

sensor

Global pose and
graph for child

neighbours

Figure 4.9: Sensor fusion architecture for leader robots. Arrows with solid-line repre-
sent measurement acquisition from sensors, arrows with dashed-line represent internal
information flow of the robot, and arrow with dotted-line represents information com-
munication with neighbours

Step 1 - State prediction (lines 2-4)

At each time step, the leader robot reads its odometry and predicts the current pose

using the acquired velocity measurements and prior state estimation.

Step 2 - State correction (lines 5-13)

To establish an accurate localization for leader robots, this study assumes the avail-

ability of a DGPS sensor and compass for each leader robot. Prior to using the
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Algorithm 4.3 : Distributed leader-assisted localization - Leader’s perspective
1: Initialize with Xlq ,◦ and Plq ,◦
2: for k ∈ (1, · · · ,∞) do
3: Read ego-motion sensor: ulq ,k
4: Estimate predictive density p(xlq ,k|k−1) using prior density p(xlq ,k−1) and odom-

etry reading ulq ,k−1
5: if DGPS/Compass measurement is available then
6: if measurement gate validated then
7: Compute posterior density p(xlq ,k) using predictive density p(xlq ,k|k−1),

DGPS measurement p(zDGPSlq ,k ), and/or Compass measurement p(zComplq ,k
)

8: else
9: p(xlq ,k)← p(xlq ,k|k−1)
10: end if
11: else
12: p(xlq ,k)← p(xlq ,k|k−1)
13: end if
14: if relative pose measurement event then
15: Read relative pose measurement sensor: Ylq ,k
16: Distributed graph search and global pose composition: Algorithm 4.1
17: end if
18: end for

available DGPS/compass measurements for sensor fusion, it is important to identify

and discard outliers. Therefore, measured DGPS/compass measurements are eval-

uated through an ellipsoidal measurement validation gate [116]. Any measurement

that violates the validation gate condition is considered an outlier and will not be

used for the state estimation process. If the valid DGPS/compass measurement is

acquired it will be fused with the predictive state estimate. When the available DG-

PS/compass measurement is an outlier or there is no DGPS/compass measurement,

then the predictive density is directly assigned to the posterior density of the state

estimation.
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Step 3 - Pose formation (lines 14-17)

When an inter-robot relative pose measurement event occurs, each leader robot ac-

quires the relative pose of its neighbouring robot and evaluates these measurements

in Algorithm 4.1 in order to compose a global pose, the associated noise covariance

matrix and the local-hierarchical-IRMCG for neighbouring child robots.

4.4.2 Child Robot Localization

The sensor fusion architecture for child robots’ localization is twofold:

I) sensor fusion architecture for instantaneous communication mode, and

II) sensor fusion architecture for delayed communication mode

I) Sensor Fusion Architecture for Instantaneous Communication Mode:

When the MRS has instantaneous communication capabilities, the recursive state

estimation steps for a child robot are outlined in Algorithm 4.4 and graphically

illustrated in Fig. 4.10. This algorithm is implemented on each child robot and iterates

at each sample time step. The algorithm is initialized with known initial conditions

and performs three main tasks: state prediction, pose formation and measurement

update.

Step 1 - State prediction (lines 3-5)

Each child robot reads its ego-motion sensor at each sample time step and predicts

its current pose using prior state estimation densities and acquired odometry mea-

surements. To enable recursive filtering, the predicted density is directly assigned to

the posterior density.
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Figure 4.10: Sensor fusion architecture for child robots for instantaneous communi-
cation mode. Arrows with solid-line represent measurement acquisition from sensors,
arrows with dashed-line represent internal information flow of the robot and arrows
with dotted-line represent information communication

Algorithm 4.4 : Distributed leader-assisted localization with instantaneous commu-
nication mode - Child’s perspective
1: Initialize with Xcr,◦ and Pcr,◦
2: for k ∈ (1, · · · ,∞) do
3: Read ego-motion sensor: ūcr,k

4: Estimate predictive density p(xcr,k|k−1) using prior density p(xcr,k−1) and
odometry reading ūcr,k−1

5: Set p(xcr,k)← p(xcr,k|k−1)
6: if relative pose measurement event then
7: Read relative pose measurement sensor: Ycr,k

8: Run distributed graph search and global pose composition algorithm: Al-
gorithm 4.2

9: if Ycr,∗
l,k 6= ∅ then

10: for ∀p(zcr,∗
l,k ) ∈ Ycr,∗

l,k do
11: if measurement gate validated then
12: Update the posterior density p(xcr,k) using the current posterior

density p(xcr,k) and the global pose measurements in Ycr,∗
l,k

13: end if
14: end for
15: end if
16: end if
17: end for

Step 2 - Pose formation (lines 6-8)

When an inter-robot relative pose measurement event occurs, each child robot mea-

sures the relative pose of neighbours. This measurement acquisition is followed by95



the evaluation of the distributed graph search and global pose composition algorithm

(Algorithm 4.2) to compute and communicate global pose measurements and asso-

ciated sensing and measurement graphs for neighbours.

Step 3 - Measurement update (lines 9-15)

When a child robot receives an independent measurement, it is fused with the child

robot’s local estimate. Prior to performing this sensor fusion, each child robot evalu-

ates each received global pose measurement on an ellipsoidal measurement validation

gate to detect and discard outliers.

II) Sensor Fusion Architecture for Delayed Communication Mode:

Fig. 4.11 illustrates the sensor fusion architecture for child robots for a delayed com-

munication mode. The recursive state estimation steps of this sensor fusion archi-

tecture are summarized in Algorithm 4.5. This algorithm is implemented on each

child robot and iterates at each discrete time step. The algorithm is initialized with

known initial conditions and performs four main tasks: state prediction, pose forma-

tion initialization, pose composition, history maintenance and measurement update.

Step 1 - State prediction (lines 5-7)

Each child robot reads its ego-motion sensor at each sample time step and predicts

its current pose using prior state estimation densities and acquired odometry mea-

surements. To enable recursive filtering, the predicted density is directly assigned to

the posterior density.
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Algorithm 4.5 : Distributed leader-assisted localization with time-delayed commu-
nication mode - Child’s perspective
1: Initialize with Xcr,◦ and Pcr,◦
2: Create empty set Ucr to store odometry data
3: Create empty set Ycr to store relative pose measurement densities
4: for k ∈ (1, · · · ,∞) do
5: Read ego-motion sensor: ūcr,k

6: Estimate predictive density p(xcr,k|k−1) using prior density p(xcr,k−1) and odometry
reading ūcr,k−1

7: p(xcr,k)← p(xcr,k|k−1)
8: if relative pose measurement event then
9: Read relative pose measurement sensor: Ycr,k

10: Set delay time cont to zero: tdc = 0
11: Save current odometry reading: Ucr = Ucr ∪ ucr,k

12: Save relative pose measurements for child neighbours: Ycr = Yc,cr

cr,k

13: Initialize the distributed graph search and global pose composition algorithm:
Lines 1-4 of Algorithm 4.2

14: Compute the max-delay point time tmd
15: Set liberate-point time tlp equal to max-delay point time: tlp = tmd
16: Compute maximum number of the possible independent global pose measure-

ments, |Ycr |max
17: else
18: if Ucr 6= ∅ then
19: Save current odometry reading:

Ucr = Ucr ∪ ucr,k

20: end if
21: end if
22: if (k × T ) ≤ (tlp + T ) and (k × T ) ≤ (tmd) then
23: if |Ycr | == |Ycr |max then
24: Set tlp = (k × T )
25: end if
26: Perform distributed graph search and global pose composition for neighbours:

Line 5-28 of Algorithm 4.2
27: Increment the delay count by one time step: tdc = tdc + 1
28: else
29: if Ycr,∗

l,k−tdc
6= ∅ then

30: for ∀p(zcr,∗
l,k−tdc

) ∈ Ycr,∗
l,k−tdc

do
31: if measurement gate validated then
32: Compute new posterior density p(xcr,k−tdc

) using current posterior
density p(xcr,k−tdc

) and the global pose measurements in Ycr,∗
l,k−tdc

33: end if
34: end for
35: Update time propagation from sample time (k − tdc) to k using posterior

density p(xcr,k−tdc
) and odometry measurements ucr,k−tdc:k
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36: else
37: p(xcr,k)← p(xcr,k|k−1)
38: end if
39: Apply Markov property
40: end if
41: end for
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Figure 4.11: Sensor fusion architecture for child robots for delayed communication
mode. Arrows with solid-line represent measurement acquisition from sensors, arrows
with dashed-line represent internal information flow of the robot, and arrow with
dotted-line represents information communication

Step 2 - Pose formation initialization (lines 8-16)

When an inter-robot relative pose measurement event occurs, each child robot mea-

sures the relative pose of neighbours. These relative pose measurements and odometry

readings may be used in a future time step as the communication mode is assumed

to be time delayed. Therefore, both relative pose measurements and odometry mea-

surements are temporarily stored. Then a set of parameters, such as max-delay point

time (tmd), liberate-point time (tlp), delay time count (tdc), and maximum number

of potential independent measurements (|Ycr |max), need to be calculated and set to
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appropriate values in order to facilitate the time delayed measurement update. How-

ever, tlp cannot be calculated directly, because the liberation point occurs when a

child robot receives the maximum number of independent global measurements for

the current inter-robot observation event. It is known that tlp ≤ tmd. Using this

property, the initial value for tlp is set to tmd. When |Ycr | = |Ycr |max, the value of tlp

is reset to the current sample time. Once all the parameters are computed, each child

robot initiates the distributed graph search and global pose composition algorithm

(Algorithm 4.2).

Step 3 - Pose composition and history maintenance (lines 17-28)

When the delay routine is running, each child robot keeps storing its local odometry

data and evaluating lines 5-28 of the distributed graph search and global pose com-

position algorithm (Algorithm 4.2) while incrementing the delay count by a sample

time step at each iteration. During this waiting time, if the number of the received in-

dependent global pose measurements becomes equal to the expected maximum value,

then the child robot resets its liberate point time.

Step 4 - Measurement update (lines 29-39)

Once the child robot has received its maximum number of independent global pose

measurements or the delay count exceeds the maximum waiting time, the child robot

proceeds to the measurement update phase. Each available global pose measurement

is independently fused with the state estimation at sample time step (k − tdc). Prior

to performing this sensor fusion, each child robot evaluates each received global pose

measurement on an ellipsoidal measurement validation gate to detect and discard

outliers. This measurement update is followed by the re-evaluation of the time prop-

agation from sample time step (k − tdc) to k using the updated pose at sample time
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step (k− tdc) and the odometry measurements are saved in the local memory. Finally,

the Markov property is applied and the robot clears the saved odometry and relative

pose measurements in order to optimize the memory usage.

4.5 Evaluation

Two simulation configurations were used to evaluate the proposed decentralized leader-

assisted localization approach, i.e., heterogeneous-MRS with a single leader robot and

heterogeneous-MRS with multiple leader robots.

4.5.1 Heterogeneous-MRS with a Single Leader Robot

4.5.1.1 Setup

Monte-Carlo simulation is performed for a heterogeneous MRS with a single leader

robot and four child robots. The leader robot remained stationary. The first child

robot, i.e., Rc1 , always operated within the sensing and communication boundaries of

the leader robot while the fourth child robot, i.e., Rc4 , always operated beyond the

sensing and communication boundaries of the leader robots. The remaining two child

robots, i.e., Rc2 and Rc3 , intermittently appeared within the sensing and communi-

cating range of the leader robot. Simulation parameters and the characteristics of

each sensory system are summarized in Table 3.1 and Table 3.2, respectively. It was

assumed that the DGPS and compass sensors are available only for the leader robots.

4.5.1.2 Results

Average state estimation errors and the associated 3σ error boundaries of child robot

Rc4 for the proposed leader-assisted navigation are shown in Fig. 4.12 and Fig. 4.13,

respectively. The former is related to the instantaneous communication mode while
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the latter is related to the delayed communication mode. These results demonstrate

that the estimation error of child robot Rc4 always stays within the associated 3σ

error boundaries. This observation implies that the proposed localization algorithm

is capable of generating non-overconfident state estimations for child robots. This

achievement can be attributed to the graph search and global pose composition al-

gorithms, i.e., Algorithm 4.1 and Algorithm 4.2, that are implemented to detect

and discard all possible double counting of the same information when it propagates

through the communication network.

Fig. 4.14 shows the comparison of the pose estimation error of child robot Rc4 using

three different sensor fusion architectures: (1) the proposed leader-assisted localization

technique with instantaneous communication mode, (2) the proposed leader-assisted

localization technique with delayed communication mode, and (3) the leader-assisted

localization without incorporating the proposed sensor fusion techniques. It can be

seen that the localization error of the proposed leader-assisted localization algorithm

is bounded even when the child robots navigate beyond the sensing and communi-

cation range of the leader robots. Additionally, these results illustrate that without

the proposed sensor fusion architectures, localization of the child robots that operate

beyond the sensing and communication range of the leader robots tends to diverge.

In the traditional leader-assisted localization, dead reckoning is the key localization

method available for child robots which operate beyond the sensing and communi-

cation range of leader robots. Dead-reckoning is known to be divergent. Hence, the

traditional leader-assisted localization method is incapable of establishing an accu-

rate localization for child robots that operate beyond the sensing and communication

range of the leader robots (see Fig. 4.14).
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Figure 4.12: Mean estimation error of child robot Rc4 for 20 Monte-Carlo simulations
with instantaneous communication mode. Red solid line indicates mean estimation
error while the black solid lines indicate double-sided 3-σ error boundaries
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Figure 4.13: Mean estimation error of child robot Rc4 for 20 Monte-Carlo simulations
with time-delayed communication mode. Red solid line indicates mean estimation
error while the black solid lines indicate double-sided 3-σ error boundaries
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Figure 4.14: Comparison of the estimation error of child robot Rc4 for 20 Monte-
Carlo simulations. Without the proposed method, child robot Rc4 relies only on the
odometry reading as it operates beyond the sensing range of the leader robot
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4.5.2 Heterogeneous-MRS with Multiple Leader Robots

4.5.2.1 Setup

The performance of the proposed leader-assisted localization scheme for a multi-leader

scenario was evaluated using a publicly available multi-robot localization and mapping

data-set [49]. The data-set consists of odometry data, inter-robot range and bearing

measurements, and ground truth measurements for a team of five robots navigating

in an indoor environment (2D arena). For the evaluation purpose, it was assumed

that two of the robots are leader robots (R̄l1 , R̄l2) and the remaining three robots

are child robots (R̄c1 , R̄c2 , R̄c3). This study exploited only the odometry data and

ground truth measurements from the data-set while the relative pose measurements,

DGPS measurements and compass measurements were synthesized using the ground

truth measurements. The noise levels for the relative pose measurement sensor, DGPS

sensor and compass were kept at the same values given in Table 3.2 while their update

rates were set to 5 Hz. In addition to this modification, the sensing and communication

ranges of the teammates were set to 4 m.

4.5.2.2 Results

Fig. 4.15 shows how the network connectivity of child robotRc1 varies throughout the

experimental time period. It can be seen that the degrees of observation (DOO)3 of

child robot Rc1 with respect to either leader robot vary from zero to three. The zero

degree observations (shaded regions in Fig. 4.15) are related to the time period where

child robot Rc1 is a member of group Gli,4, where i = {1, 2}. From these results, it is

found that Rc1 has a zero degree observation with respect to both the leader robots

during the time intervals 118.5s − 188.2s, 701.2s − 709.9s, and 1415.2s − 1457.3s.
3For a given hierarchical-IRMCG, number of edges between the leader robot node (root-node)

to a child robot node is termed as the degree of observation of the child robot with respect to the
leader robot.
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Figure 4.15: Order of network connectivity for child robot Rc1 . Zero DOO implies
that the robot is disconnected from the network, first order observation implies that
the child robot is within the corresponding leader robot’s sensing and communication
boundaries. The higher order observations represent that the child robot is beyond
the sensing and communication range of the corresponding leader but a member of
the network with second or third order connectivity

During these time intervals, the child robot may not operate within the sensing and

communication range of any teammates, or leader robots are disconnected from the

sensing and communication network. As a result, Rc1 did not receive a global pose

measurement from any of the leaders during these time windows and solely depended

on its ego-motion sensor reading for localization.

Fig. 4.16 and Fig. 4.17 show the mean estimation error and the associated 3σ

error boundaries for child robot Rc1 . The former is related to the instantaneous

communication mode and the latter is associated with the delayed communication

mode. For both the communication modes, mean estimation error always stayed inside

the associated 3σ error boundaries. This implies that the proposed leader-assisted
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localization method is capable of establishing non-overconfident state estimations for

child robots, i.e. the 3− σ value of the estimated uncertainty always larger than the

estimation error. During the time windows where no global pose measurements were

received, the mean estimation error was gradually increased as the robot’s localization

solely depended on its odometry measurement. However, a rapid convergence was

achieved soon after reconnection with the measurement network.

4.5.3 Memory Optimization

To evaluate the performance of the memory optimization approach that incorporates

the proposed time delayed sensor fusion architecture, a simulation study was per-

formed on an MRS with 15 robots. Two of the teammates were considered leader

robots while the rest of the team was considered child robots. Each robot navigation

was set so that the formation shown in the Fig. 4.18 was always maintained.

Table 4.3 summarizes the results of the memory optimization study. It was assumed

that each member knows the number of leader robots and child robots in the MRS.

At an inter robot observation event, each robot acquires global pose measurements for

neighbours. Based on the number of unique relative pose measurements, each child

robot becomes aware of how many neighbours it has. It can be seen that Rc13 has no

neighbours. This implies that Rc13 is a member of group Gli,4, where i = {1, 2}, with

respect to each leader robot. When a given child robot has no neighbours then the

information cannot be propagated from leader robots to that particular robot. Hence,

there is no necessity of maintaining the history of measurements. Child robot Rc7 and

Rc11 have one neighbour. Accordingly, these robots can be edge robots for the global

IRMCG. For a given inter robot observation event, edge robots can receive only one

global pose measurement (Lemma 4.3.1). Therefore, soon after these robots receive

the first global pose measurement for the current measurement event, they can apply
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Figure 4.16: Mean estimation error of child robot R̄c1 with the instantaneous com-
munication mode. Red solid line indicates mean estimation error while the black
solid lines indicate double-sided 3-σ error boundaries. Shaded regions represent time
windows with no measurement updates
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Figure 4.17: Mean estimation error of child robot R̄c1 with the time-delayed com-
munication mode. Red solid line indicates mean estimation error while the black
solid lines indicate double-sided 3-σ error boundaries. Shaded regions represent time
windows with no measurement updates
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Figure 4.18: Sample robot formation for memory optimization study

the Markov property and clear the history. Rc7 has the third DOO with respect toRl2 ;

thus, this child robot receives global pose measurement from leader Rl2 and applies

the Markov property three time steps after the inter robot observation event. Rc11

has the sixth DOO with respect to Rl1 ; thus, this child robot receives a global pose

measurement from leaderRl1 and applies the Markov property six time steps after the

inter robot observation event. Child robots Rci
, where i = {1, 2, 3, 4, 5, 6, 8, 9, 11, 12},

have two or more neighbours. The team has two leader robots. Therefore, the max-

imum number of global pose measurements that these robots may receive is equal

to two (Lemma 4.3.3). Simulation results illustrated that child robots Rcj
, where

j = {1, 2, 3, 4, 5, 6, 8, 9}, received two measurements while Rc10 and Rc12 received only

one global pose measurement. When the number of received measurements is equal to

the expected maximum number of measurements, the Markov property applies at n1

time steps delayed; where n1 = max(DOO fromRli), ∀li ∈ L. Note that this delay is

less than the expected maximum delay. When the number of received measurements

is fewer than the expected maximum number of measurements, the Markov property

applies at n2 time steps delayed; where n2 equals Expected maximum delay.
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4.6 Summary

This chapter presented an innovative multi-robot localization framework addressing

the finite-range sensing and communication problems of leader-assisted localization.

This framework consists of (1) a method to virtually enhance the leader robots’ sens-

ing and communication ranges allowing child robots to navigate beyond the sensing

and communication range of leader robots while maintaining bounded error and un-

certainty, (2) a novel distributed graph search algorithm to effectively avoid the double

counting problem, (3) a state estimation algorithm to enable the time-delayed mea-

surement update for child robots, and (4) a memory optimization algorithm to detect

the best time for applying the Markov property. The performance of the proposed

framework is evaluated on the series of numerical simulations and on a publicly avail-

able multi-robot localization and mapping data-set. The results confirm that the

proposed distributed leader-assisted localization framework is capable of establishing

consistent localization for the child robots with bounded uncertainty even when they

operate beyond the sensing and communication range of the leader robots.
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Table 4.3: Results of the memory optimization study

Description Rc1 Rc2 Rc3 Rc4 Rc5 Rc6 Rc7 Rc8 Rc9 Rc10 Rc11 Rc12 Rc13

Ex
tr
ac
te
d
da

ta
fro

m

m
ea
su
re
m
en
ts

an
d
th
eo
rie

s

Number of neighbours 2 4 3 2 3 3 1 3 3 2 1 2 0

Number of child neighbours 2 3 2 2 3 3 1 3 3 2 1 2 0

Edge-robot 7 7 7 7 7 7 3 7 7 7 3 7 7

Expected maximum delay

(sample time steps)
11 10 11 11 10 10 12 10 11 11 12 11 0

Expected maximum global

pose measurements
2 2 2 2 2 2 1 2 2 2 1 2 0

R
es
ul
ts

Number of global pose

measurements received
2 2 2 2 2 2 1 2 2 1 1 1 0

Memory cleared

after (time steps)
7 2 2 6 5 5 3 4 4 11 6 11 0

DOO from Rl1 2 1 2 3 2 5 0 3 4 4 6 5 0

DOO from Rl2 7 2 1 6 5 2 3 4 3 0 0 0 0
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Chapter 5

Distributed Leader-Assisted

Localization with Relative Range

and Bearing Measurements

The distributed leader-assisted localization scheme developed in the previous chap-

ters assumed the availability of an IRRM system which is capable of measuring the

relative pose of neighbouring robots. However, range and bearing between a pair of

robots is the widely available relative sensory system for the MRS. Therefore, it is

important to relax the assumption on the IRRM sensor so that the proposed leader-

assisted localization scheme can be implemented using inter-robot range and bearing

measurements. To this end, this chapter1 develops a hierarchical filtering approach

where each robot runs local tracking filters to estimate the relative pose of neighbours
1The work in this chapter was presented at International Conference on Advanced Robotics and

Journal of Intelligent & Robotic Systems
* T. R. Wanasinghe, G. K. I. Mann and R. G. Gosine, “Pseudo-linear measurement approach for
heterogeneous multi-robot relative localization", in International Conference on Advanced Robotics
(ICAR), 2013.
* T. R. Wanasinghe, G. K. I. Mann and R. G. Gosine, “Relative localization approach for combined
aerial and ground robotic system", Journal of Intelligent & Robotic Systems, 2016, vol. 77, no. 1,
pp. 113-133, Jan 2015.
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using a general range and bearing measurement based relative observation system.

The updated localization and control architecture of a leader and a child implement-

ing a hierarchical leader-assisted localization based heterogeneous MRS is illustrated

in Figure 5.1. Note that the updated localization and control architecture has a new

module named “Tracking filter” inserted between the “IRRM sensor” and “Leader-

assisted localization module”.
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and controller
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Figure 5.1: The localization and control architecture of the proposed heterogeneous
MRS with range and bearing measuring system

The extended Kalman filter (EKF) has been the widely applied sub-optimal nonlinear

estimator for implementing tracking filters [9,67,120]. The poor initialization of EKF
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generally causes instability [9], leading to failure in the gating validation, and causing

singularity in the innovation covariances. Additionally, unknown initialization causes

a wider settling time2 for estimating relative pose of neighbours. These limitations

may result in erroneous interpretation of one robot’s observation in another robot’s

body-fixed coordinate frame. This erroneous interpretation can lead to unpredictable

behaviour and failure in collaborative missions. In order to overcome these issues,

in the majority of past work, it is either assumed that there is a known transfor-

mation between any two robots at the initial encounter [121], or it is assumed that

reliable range and bearing measurements are present in order to realize accurate initial

transformation between robots. In this chapter, a pseudo-linear measurement-based

relative localization scheme is proposed, which can be initialized with an arbitrary ini-

tial pose and which demonstrates faster convergence than the traditional EKF-based

relative localization schemes.

5.1 Problem Formulation

Relative localization approaches are widely used in a heterogeneous MRS with both

aerial and ground robots [9, 122]. Although this thesis mainly focuses on an MRS

of ground robots, for the relative localization problem, MRSs with both aerial and

ground robots was considered, so that the research outcomes of this chapter can be

directly exploited for general relative localization applications. Consider a heteroge-

neous MRS with both aerial and ground robots. It is assumed that the ground robots

navigate on flat surfaces and that the aerial robots obey the hovering conditions. A

hovering condition is a valid assumption for MAVs as they possess a sufficiently accu-

rate low-level controller loop to stabilize the pitch and roll angles during low velocity
2Time taken to reach acceptable error level is termed settling time.
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maneuvers [9]. Each member of the team is capable of measuring its linear and angu-

lar velocities and measuring range and bearing to its neighbours. These measurements

are exploited to detect and track neighbours’ relative poses.

5.1.1 Relative State Propagation Model

A robot navigating in three-dimensional space is generally described in a 6-DOF

kinematic model [123]. However, when ground robots navigate on a flat surface and

aerial robots obey hovering conditions, the standard 6-DOF kinematic model can

be simplified to a 4-DOF kinematic model which consists of position x, y, z, and

orientation3 φ. Then the relative pose of robot Ri as estimated by robot Rj is given

by xi,jj,k where x = [x y z φ]T . As the general relative localization problem is presented,

hereafter, superscripts and subscripts of the relative pose vector will be omitted from

the system equation. This will simplify the notation and improve the clarity of the

presentation.

The relative state propagation can then be modelled by

ẋ = f(x,uj,ui) + νx

ẋ

ẏ

ż

φ̇


=



ux,i cosφ− uy,i sinφ− ux,j + yωz,j

uy,i cosφ+ ux,i sinφ− uy,j − xωz,j

uz,i − uz,j

ωz,i − ωz,j


+ νx

(5.1)

where x ∈ Rn is the relative state vector; uj ∈ Rnj is the control input vector of the

observing robot Rj, i.e. uj =
[
ux,j uy,j uz,j ωz,j

]T
where, ux,j, uy,j, uz,j and ωz,j

represent linear and angular body-fixed velocities of robot Rj; ui ∈ Rni is the control
3This is the yaw angle of the robot as the pitch and roll angles are assumed to be fixed for low

velocity maneuvers
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input vector of the observed robot Ri, i.e. ui =
[
ux,i uy,i uz,i ωz,i

]T
where ux,i,

uy,i, uz,i and ωz,i represent linear and angular body-fixed velocities of an observed

robot Ri; and νx is a zero mean, additive white Gaussian noise term that accounts

unmodelled system dynamics and system modeling inaccuracies. For the modified

relative state propagation model, dimensional variables n, nj and ni are equal to four

(i.e. n = nj = ni = 4).

5.1.2 Inter-Robot Observation Model

Each robot in the MRS is equipped with an exteroceptive sensory system to measure

3D ranging and bearing for the neighbours. It is assumed that the local coordinate

frame of this sensor coincides with the robot’s body-fixed coordinate frame. The

inter-robot observation model is then given by

ypco = g(x) + νpco
r

θ

α

 =



√
x2 + y2 + z2

arctan
(
y

x

)
arctan

(
z√

x2 + y2

)

+


νr

νθ

να


(5.2)

where r, θ and α are relative range, relative azimuth angle, and relative elevation

angle, respectively. x, y and z are relative positions of an observed robot. Parameters

νr, νθ and να are zero mean, additive white Gaussian noise terms for measurements

and are defined as follows:

νr ∼ N (0, σ2
r) νθ ∼ N (0, σ2

θ) να ∼ N (0, σ2
α).

Traditional EKF approaches directly linearize this nonlinear measurements model,
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and the linearized measurement model are then applied for sensor fusion. Explicit lin-

earization of measurement introduces a bias problem and loss of information [124,125].

To overcome these issues, in this study, nonlinear observations are algebraically trans-

formed and a new series of relative measurements, called pseudo-linear measure-

ments [126], is constructed. The inter-robot observation model is then given by

ypmo = ḡ(x) = Hpmox + νpm(x, νx)
y1

y2

y3

 ,


r

0

0

 =


cθcα sθcα sα 0

−sθ cθ 0 0

−cθsα −sθsα cα 0

x + νpm(x, νx)
(5.3)

where cθ = cos θ, cα = cosα, sθ = sin θ, sα = sinα. Note that the first pseudo-

linear measurement y1, is equivalent to the noisy relative range measurement r while

the second and the third pseudo-linear measurements y2 and y3 are equivalent to

zero. Therefore, [r 0 0]T is used as the measured parameters while the corresponding

predicted measurement values are obtained from (5.3). The resulting pseudo-linear

measurements (y1, y2, y3) are linear with respect to system states. On the other hand,

their measurement coefficient matrix, Hpmo, becomes a nonlinear function of true mea-

surements (r, θ, α). The noise covariance matrix of the pseudo-linear measurement,

i.e. Rpmo, can be calculated as follows:

Rpmo = JT


σ2
r 0 0

0 σ2
θ 0

0 0 σ2
α

J (5.4)

J is the Jacobian of the pseudo-linear measurement in (5.3) with respect to range and

bearing measurements, i.e.
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J = ∂(ypmo)
∂(r,θ,α)

∣∣∣∣
r=r̄, θ=θ̄, α=ᾱ

(5.5)

where r̄, θ̄, and ᾱ are noisy relative measurements. The state dependent pseudo-linear

noise covariance matrix can be simplified to a temporally uncorrelated pseudo-linear

measurement noise covariance matrix and is given in (5.6) [127].

Rpmo =


σ2
r 0 0

0 (x2 + y2)σ2
θ 0

0 0 (x2 + y2 + z2)σ2
α

 (5.6)

Note that the true states are not available and estimated states are utilized to calculate

the measurement covariance matrix.

5.1.3 Sensor Fusion

The EKF is employed for sensor fusion. The prediction and the correction structures

of the EKF are summarized in (5.7) and (5.8), respectively. The proposed pseudo-

linear measurements are used at the measurement update step of the sensor fusion

instead of nonlinear range and bearing measurements.

Prediction
˙̂x− = f(x̂,ul,uc)

F = ∂
∂xf(x̂,ul,uc)

∣∣∣∣
x=x̂

P− = FPFT + Q

(5.7)
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Correction
ŷ = ḡ(x̂)

K = PHT
pmo(HpmoPHT

pmo + Rpmo)−1

x̂+ = x̂− + K(z− ŷ)

P = P− −KHpmoP−

(5.8)

ŷ represents the predicted pseudo-linear measurements using noisy bearing measure-

ments as given in (5.3). Measurement matrix Hpmo is constructed as shown in (5.3),

and the corresponding measurement covariance Rpmo is obtained from (5.6). z is the

noisy pseudo-linear measurement vector and is given by [r 0 0]T ; where r is the noisy

range measurement.

5.2 Observability Analysis

The conversion of the nonlinear inter-robot relative measurements into a pseudo-linear

format may affect the system observability. Hence, it is essential to evaluate the sys-

tem observability for pseudo-linear relative measurements. Although the inter-robot

observation model given in (5.3) is linear with respect to the state variables, the 4-DOF

relative motion model given in (5.1) is nonlinear with respect to the state variables.

Therefore, the rank of Gramian matrix [128] or the Popov-Belevitch-Hautus test [129]

are not applicable for evaluating the system observability as these methods are de-

signed for linear time-invariant systems. Graph-based nonlinear observability analysis

has been recently introduced and applied to evaluate the observability of the bearing

only cooperative localization [54,130]. The observability rank condition test based on

the Lie derivatives [123,131–133] is the well established and widely employed method

for nonlinear observability analysis. Therefore, this study employs the observability

rank condition based on the Lie derivatives to perform the observability analysis of
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the proposed pseudo-linear measurement-based relative localization scheme.

5.2.1 Nonlinear Observability

For a nonlinear system, local observability is more sought as global observability is

typically difficult to achieve [132]. For a given continuous-time nonlinear system as

described in (5.9), the corresponding control affine form can be written as (5.10).


ẋ = f(x,u)

y = h(x)
(5.9)


ẋ = f◦(x) +

∑
∀i=1:q

fi(x)ui

y = h(x)
(5.10)

where x ∈ Rn is the state vector, u = [u1 · · ·uq]T ∈ Rq is the control input vector,

y = [y1 · · · ym]T ∈ Rm is the measurement vector and f◦(x) characterizes system

dynamics at zero input conditions. fi(x) characterizes system dynamics for the ith

input, i.e. ui, and can be given as fi(x) = [fi1(x) fi2(x) · · · fin(x)]T . The

observability matrix is then defined as the matrix of zero-order through (n− 1) order

of Lie-derivatives. In other words, a matrix with rows as given in (5.11) is defined as

the observability matrix.

O , {∇Lqfi···fj
hp(x)|i, j = 0, · · · , q; p = 1, · · · ,m; q ∈ N} (5.11)

where L represents the Lie-derivative, q represents the order of the Lie-derivative

and ∇ represents the gradient operator. The measurement model may consists of m

number of measurements. An introduction to the Lie-derivatives can be found in [123,

VII-A.]. Definition 5.2.1 and Theorem 5.2.1 which are adopted from [133, Th.

3.1] are employed to evaluate the observability of a nonlinear system.

Definition 5.2.1. A nonlinear system satisfies the observability rank condition when

the observability matrix defined in (5.11) is full rank.
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Theorem 5.2.1. If a nonlinear system satisfies the observability rank condition then

the nonlinear system is locally weakly observable. This is known as the sufficient

condition for observability.

5.2.2 Continuous-Time Relative Motion Model

The control affine form of the continuous-time relative state propagation model given

in (5.1) can be written as

ṗ
φ̇


︸︷︷ ︸

ẋ

=

−I3

01×3


︸ ︷︷ ︸

f1

vj +

 C

01×3


︸ ︷︷ ︸

f2

vi +


⌊
p× [0 0 1]T

⌋
−1


︸ ︷︷ ︸

f3

ωz,j

+

03×1

1


︸ ︷︷ ︸

f4

ωz,i (5.12)

where I3 is the 3× 3 identity matrix, C is the rotational matrix around z-axis which

is given in (5.13), p is the relative position vector, and vj and vi are the body-fixed

linear velocities of the observing robot and observed robot, respectively, and ωz,j and

ωz,i are the body-fixed yaw rates of the observing and observed robot, respectively.

C =


cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

 (5.13)

5.2.3 Observability of the Proposed Relative Localization Scheme

When an exteroceptive sensory system is capable of measuring the 3D range and

bearing for an observed robot, then the corresponding pseudo-linear measurement
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model is illustrated in (5.3). The pseudo-linear relative measurement function, h(x),

can then be expressed as below:

h(x) =


xc(θ)c(α) + ys(θ)c(α) + zs(α)

−xs(θ) + yc(θ)

−xc(θ)s(α)− ys(θ)s(α) + zc(α)

 (5.14)

• Zero-order Lie derivatives (L◦h)

The function itself becomes the zero-order Lie derivative of a function [123].

L◦h = h(x) (5.15)

The gradient of the (5.15) is as follows:

∇L◦h =


c(θ)c(α) s(θ)s(α) s(α) 0

−s(θ) c(θ) 0 0

−c(θ)s(α) −s(θ)s(α) c(α) 0

 =
[
hpmo 03×1

]
(5.16)

• First-order Lie derivatives (L1
f2h)

L1
f2h = ∇L◦y.f2

=
[
hpmo 03×1

]
.

 C

01×3

 = hpmo.C (5.17)

This contains only relative orientation components. Hence, take the gradient of

L1
f2h with respect to φ. Note that columns of (5.17) are stacked to form a 9×1

vector prior to computing the gradient of L1
f2h with respect to φ.
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∇φL
1
f2h =



c(φ)s(α)s(θ)− s(φ)c(α)c(θ)

c(φ)c(θ) + s(φ)s(θ)

s(φ)s(α)c(θ)− c(φ)s(α)s(θ)

−c(φ)c(α)c(θ)− s(φ)s(α)s(θ)

c(φ)s(θ)− s(φ)c(θ)

c(φ)s(α)c(θ) + s(φ)s(α)s(θ)

0

0

0



(5.18)

Lemma 5.2.1. : Given the 3D range and bearing measurements, a sufficient con-

dition for the system given in (5.12) and (5.14) to be locally weakly observable is

vi 6= 0

Proof. : Given the 3D range and bearing measurements, the observability matrix for

the system expressed in (5.12) and (5.14) can be constructed using (5.16) and (5.18)

and is given as follows:

O1 =

∇L◦h
∇L1

f2h

 =

hpmo 03×1

09×3 ∇φL
1
f2h

 (5.19)

It is sufficient to show that the hpmo and ∇φL
1
f2h are full rank in order to prove that

the O1 retains full column rank condition.

det(hpmo) = c(α)2c(θ)2 + c(α)s(α)s(θ)2

+s(α)2c(θ)2 + s(α)2s(θ2) 6= 0 (5.20)
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det
(
(∇φL

1
f2h)T (∇φL

1
f2h)

)
= 2s(α)2s(θ)2

−s(θ)2 + 2 6= 0 (5.21)

According to (5.20) and (5.21), hpmo and ∇φL
1
f2h are full rank. Hence, O1 has full

column rank; thus, the observability rank condition is satisfied. Therefore, from

Theorem 1, a system is locally weakly observable when vi 6= 0. In other words,

the pseudo-linear measurement based relative localization scheme that is described in

(5.12) and (5.14) is locally weakly observable when observed robot’s linear velocities

are not equal to zero.

To preserve the completeness of the observability study, the observability analysis for a

bearing only measurement system and range only measurement system are presented

in Appendix B.

5.3 Evaluation - Relative Localization Scheme

5.3.1 Simulation Results

The performance of the proposed relative localization scheme was evaluated in a series

of numerical simulations. This simulation was set up with a single leader robot and

four child robots as illustrated in Fig. 5.2. A 10 m × 20 m × 3 m 3D arena was

selected as the robots’ navigation space.

For all simulation schemes, robot modeling inaccuracies and unmodelled internal and

external disturbances are encapsulated within the low acceleration variance. The

noise variances for relative range and bearing measurements are adapted from [9] and

set to 0.007 m and 0.0036 rad, respectively. The frequency of the inter-robot relative
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Figure 5.2: Simulation configuration

observations is set to 10 Hz and the kinematic model is set to operate at 100 Hz.

Twenty Monte Carlo simulation were performed and the results indicate the average

values of all the variables.

The initial simulation configuration assumed a team of mobile robots with the fol-

lowing characteristics: Total number of robots: 5, Number of observing robots: 1,

Number of observed robots: 4. This simulation configuration is illustrated in Fig.

5.2. The navigation plane of the observing robot’s sensor nodes is considered as the

zero elevation level, and navigation planes for the first aerial, the second aerial, the

first ground and the second ground observed robots were elevated to 2 m, 1.5 m, -0.1

m, and -0.2 m, respectively. Fig. 5.3 illustrates the estimation errors and 3σ error

boundaries for the first aerial observed robot. It can be seen that error is always

within the 3σ error boundaries indicating that no overconfident estimation occurs

during the estimation process. This observation was identical for all other observed

robots. Estimation errors for all four observed robots are depicted in Fig. 5.4 and

demonstrate that the proposed relative localization (RL) scheme is capable of per-

forming relative localization with 5∼10 cm positional accuracy and 0.075∼0.1 rad

orientational accuracy.
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Figure 5.3: Average estimation error of aerial observed robot 1 for 20 Monte Carlo
simulations. Blue solid line indicates error while cyan solid lines indicate double-sided
3σ error boundaries
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Figure 5.4: Average estimation error of all four observed robots for 20 Monte Carlo
simulations. Solid blue line: aerial observed robot 1; solid red line: aerial observed
robot 2; solid cyan line: ground observed robot 1; solid black line: ground observed
robot 2
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5.3.1.1 Performance Comparison Against Traditional EKF Approach

The performance of the proposed method over a traditional EKF approach for ar-

bitrary initialization is evaluated in the second simulation setup. This simulation

configuration comprises an observing robot and an aerial observed robot. The nav-

igation plane of the observed robot is elevated at 2 m above that of the observing

robot’s sensor nodes. All the presented results are the average of 20 Monte Carlo

simulations. Four main cases are studied:

Case 1: The initial relative pose of the observed robot is accurately known.

Case 2: Only the initial relative position of the observed robot is known and the

orientation is completely unknown.

Case 3: The initial relative orientation of the observed robot is known and the initial

relative position is set as random.

Case 4: The initial relative pose of the observed robot is completely unknown and

set as random. In this case, 13 arbitrary initial poses have been simulated.

These 13 arbitrary points are spatially distributed within the observing robot’s

field of view.

All the cases given above have been compared to the traditional EKF-based RL ap-

proach. For case 1, both the proposed method and traditional EKF approach exhibit

a similar performance, as shown in Fig. 5.5.

Maximum RMSE for each state estimation when relative localization is performed

with a known initial condition (i.e. maximum RMSE of case 1) is increased by 5%, as

defined in (5.22), and used as an upper bound for performance evaluation for arbitrary

filter initializations.
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Table 5.1: Number of measurement updates required for RL to converge to an ac-
ceptable accuracy level for the cases of inaccurate filter initialization

Relative Case 2 Case 3 Case 4
state PLKF TEKF PLKF TEKF PLKF TEKF

x-position 1 2 1 34 1 37
y-position 1 1 1 5 1 31
z-position 1 1 1 5 1 6

φ-orientation 5 12 4 141 12 263

PLKF: proposed pseudo-linear Kalman filter based approach
TEKF: traditional EKF approach

xth , max(XRMSEknown initial pose
)× 1.05

yth , max(YRMSEknown initial pose
)× 1.05

zth , max(ZRMSEknown initial pose
)× 1.05

φth , max(φRMSEknown initial pose
)× 1.05

(5.22)
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Fig. 5.6 illustrates sample simulation outcomes for an arbitrary filter initialization

that were obtained in case 4. These results confirms that the proposed method has

faster convergence capability than the traditional EKF-based approach. A significant

improvement has been achieved in relative orientation tracking.
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Figure 5.6: Comparison of the proposed method with the traditional EKF approach
for arbitrary filter initialization.

Table 5.1 summarizes the number of measurement updates required for state estima-

tion to converge to an acceptable accuracy level when the filter is initialized with an

arbitrary pose. Results presented for case 4 are the average result of 13 arbitrary

initializations.

These results demonstrate that when the tracking is performed with arbitrary ini-

tialization, the proposed method is able to achieve both positional and orientational
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accuracy within 12 iterations, whereas the traditional methods require more than 250

iterations to achieve the same accuracy. As a result, settling time of the relative pose

estimation is considerably smaller in the proposed method than with the traditional

EKF-based approach.

5.3.2 Experimental Results

An experimental validation of the proposed method for an unknown filter initialization

was performed using a team of two Pioneer P3AT robots, as shown in Fig. 5.7. One

Pioneer robot was treated as an observing robot while the other was treated as an

observed robot. Both robots were provided with a map of the environment where

the experiment was performed. The robots obtained the range and the bearing for

nearby static and dynamic objects using SICK LMS 200 laser scanners. Each robot

performed state-of-the-art map-based localization; this localization data served as the

ground truth data for the experiment’s evaluations.

Observing robot

(robot 1)

Observed robot

(robot 2)

Figure 5.7: Experiment test bed which includes two pioneer P3AT robots
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Figure 5.8: System architecture of the experiment setup to validate the proposed RL
scheme

5.3.2.1 Inter Robot Relative Measurements

Instead of implementing an exteroceptive sensory system that directly measures range

and bearing for neighbouring robots, as presented in [9], the behaviour of an exte-

roceptive sensory system was simulated by analytically computing the relative range

and bearing data from the ground truth data via (5.2), as suggested in [134]. This

provided the freedom to select the accuracy level of the exteroceptive sensory data

and controlled its update rates. Such flexibility is required in order to evaluate the ro-

bustness of the proposed method for changing sensor noise levels and updating rates,

as they are the parameters that potentially affect the estimation accuracy [12, 41].

Two measurement noise configurations and two update rates for exteroceptive sen-

sory systems (as given in Table 5.2) were studied.
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Table 5.2: Characteristics of exteroceptive sensory systems

Noise levels for Measurement
Case exteroceptive sensory update

system frequencies
Case (1) σr=0.0068m4, 10 Hz

σθ=0.0036 rad5 [9]6
Case (2) σr=0.1466m, 10 Hz

σθ=0.1 rad [51]
Case (3) σr=0.0068m, 1 Hz

σθ=0.0036 rad [9]
Case (4) σr=0.1466m, 1 Hz

σθ=0.1 rad [51]

5.3.2.2 System Architecture

The system architecture of the experiment setup is illustrated in Fig. 5.8. Each robot

acquired its egocentric (odometry) data and laser scan data. Scan matching-based

localization is then performed by each robot. These localization data and odometry

readings are then transmitted to a host computer through a TCP/IP interface. The

ground truth data preparations, noisy relative range and bearing measurement con-

struction, pseudo-linear measurement and corresponding measurement error variance

matrix formation and observed robot tracking were performed at the host computer.

The estimated relative pose of the observed robot was then compared with the ground

truth data. Note that the experiment setup was limited to 2D space; hence it was

assumed that the observed robot’s navigation plane was two metres above its actual

navigation plane.

5.3.2.3 Results

For the noise level and update rate given in Case (1), Fig. 5.9 illustrates the RMSE

of the observed robot’s pose estimation. It was assumed that the filter was initialized

with a completely unknown initial pose. The results are congruent with the simulation
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results, showing that the proposed method is capable of establishing the relative pose

for the observed robots with 5∼10 cm positional accuracy and 0.075∼0.1 rad orienta-

tional accuracy. Additionally, the proposed method demonstrates a fast convergence

property even though the filter is arbitrarily initialized.
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Figure 5.9: Relative localization accuracy of the proposed method for arbitrary filter
initialization (Experiment results)

Table 5.3 presents the comparison of the mean of the steady state RMSE and cor-

responding standard deviations (Std-RMSE) of the proposed relative localization

scheme for all four scenarios given in Table 5.2. These results can be summarized

as follows:

• The mean of the RMSE and corresponding standard deviations increase with

the increase of the uncertainty of the exteroceptive sensory system.

• The mean of the RMSE and corresponding standard deviations increase with

the decrease of the update rate of the exteroceptive sensory system.
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Case φ (rad) x (m) y (m) z (m)
Case (1) 0.0313±0.0341 0.0098±0.0028 0.0131±0.0038 0.0123±0.0032
Case (2) 0.0962±0.0447 0.0925±0.0210 0.1264±0.0304 0.0849±0.0201
Case (3) 0.0443±0.0820 0.0266±0.0227 0.0357±0.0463 0.0135±0.0042
Case (4) 0.1836±0.1431 0.1510±0.0380 0.2246±0.0629 0.1439±0.0353

Table 5.3: Comparison of relative pose estimation error for the observed robot at
different IRRM update rates and different noise levels of exteroceptive sensory system

• When an observing robot is equipped with a highly accurate sensory system

(e.g. [9]), then the proposed relative localization scheme is capable of estab-

lishing relative localization with 0∼8 cm positional accuracy and 0∼0.13 rad

orientational accuracy for both 10 Hz and 1 Hz exteroceptive measurement up-

date rates.

• When the exteroceptive sensory system has high measurement uncertainty, then

the proposed relative localization scheme is capable of establishing relative local-

ization with 0∼16 cm positional accuracy and 0∼0.15 rad orientational accuracy

for the 10 Hz exteroceptive measurement update rate, and with 0∼27 cm posi-

tional accuracy and 0∼0.33 rad orientational accuracy for the 1 Hz exteroceptive

measurement update rate.

5.3.3 Consistency Analysis

5.3.3.1 Normalized Estimation Error Squared (NEES) Test

To assess the consistency of the proposed RL scheme, the NEES is computed, as given

in (3.11). A 95% acceptable region for 4-DOF (x, y, z, φ) is upper bounded by χ2
4,0.95,

which is equal to 9.4877. Fig. 5.10 presents the NEES test results for Case (1) of

Table 5.2.

Table 5.4 summarizes the results obtained from the NEES analysis.
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Figure 5.10: NEES values for the proposed method. Horizontal black line indicates
the Chi-square upper bound

Case % of NEES values beyond
the upper boundary

Case (1) 0.0625%
Case (2) 2.9375%
Case (3) 4.6875%
Case (4) 9.25%

Table 5.4: Percentage of NEES values beyond the Chi-square upper bound

For the proposed method, fewer than 10% of the values fall outside of the 95% region,

as listed in Table. 5.4, which is acceptable [23,119].

5.3.3.2 Normalized Innovation Squared (NIS) Test

The consistency of predicted measurements compared to actual measurements is eval-

uated using NIS as defined in (3.13). A 95% acceptable region for 3-DOF (y1, y2, y3

given in (5.3)) is upper bounded by χ2
3,0.95 which is equal to 7.8147. Fig. 5.11 presents

the NIS test results for Case (1) of Table 5.2.

It can be seen that all the NIS values are within the acceptable region. This obser-

vation was identical for all other scenarios given in Table 5.2. Hence, pseudo-linear
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Figure 5.11: NIS values for the proposed method. Horizontal black line indicates the
Chi-square upper bound

measurements are consistent.

5.3.3.3 Covariance Conditioning

As measurements are transformed into pseudo-linear format the corresponding mea-

surement covariances become a function of the estimated states (ref. (5.6)). The

error covariance R then becomes time dependent compared to the constant measure-

ment covariance in traditional EKF approaches. This dynamic nature may lead to

ill-conditioning of the matrix R; and therefore, for matrix S and the matrix P. A

covariance conditioning test, as proposed in [117], has been performed to evaluate

the ill-conditioning nature of each covariance matrix. The condition value Cx for the

given matrix is defined as (5.23).

Cx = log10

(
λmax
λmin

)
(5.23)

where λmin and λmax are the minimum and the maximum eigenvalues of correspond-

ing covariance matrices. The upper bound that represents good conditioning is set to

6, as given in [117]. Fig. 5.12 illustrates that the covariance conditioning values for
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Figure 5.12: Covariance conditioning values for four test scenarios given in Table 5.2

P, R, and S for all four test scenarios are below the conditioning bound (Cx = 6), in-

dicating that the simplified, zero-mean temporally uncorrelated pseudo-measurement

covariance matrix does not lead to ill-conditioning of any of the estimated covariances.

5.4 Evaluation - Leader-Assisted Localization

Scheme

5.4.1 Sensor Fusion Algorithms

The localization and control architecture illustrated in Figure 5.1 includes a new mod-

ule, named “Tracking filter”, added to the original localization architecture presented
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in Figure 1.2. This modification eventually introduces a set of new processing steps

into the sensor fusion algorithms presented in Chapter 4, i.e. Algorithms 4.3, 4.4,

and 4.5. To perform relative state propagation as given in (5.1), the observing robot

must possess the odometry data of both the observing and the observed robot. This

can be achieved by enabling the odometry information exchange between the neigh-

bouring robots. The newly introduced “Tracking filter” performs five main tasks:

1. Acquires relative measurements: Each robot acquires relative range and bearing

measurements for neighbours.

2. Initializes tracks: Each robot maintains a single tracking filter for each neigh-

bour. For each new robot appearing within the sensing and communication

boundaries of the observing robot, a new track needs to be initialized.

3. Maintains tracks: Acquired relative range and bearing measurements are fused

with the local tracks in order to improve the estimation accuracy and reduce

the uncertainty of the existing tracks.

4. Deletes tracks: When a neighbour (or a set of neighbours) navigates beyond

the sensing and communication boundaries, then maintaining the tracks related

to these robots become redundant, because, without the measurements and

communication between the pair of robots, the associated tracks diverge.

5. Extracts relative pose of neighbours: In general, tracking filters are initialized

with larger error and larger estimation uncertainty. It is important to wait until

the tracking uncertainty reduces below a pre-defined threshold level prior to

exploiting it for the leader-assisted localization. Each track that has less un-

certainty than the pre-defined threshold is considered as a valid relative pose

measurement and employed for implementing the proposed leader-assisted lo-

calization scheme.
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To this end, Algorithms 4.3, 4.4, and 4.5 are modified by incorporating above five

steps.

5.4.2 Setup

Consider an MRS with single leader robot, Rl and two child robots, Rc1 and Rc2 .

Navigation trajectories for two child robots were set so that Rc1 always operated

within the sensing and communication boundaries of the leader robot, whileRc2 never

appeared within the sensing and communication boundaries of the leader robot. The

hierarchical sensor fusion architecture that integrates the pseudo-linear measurement-

based tracking filter and the leader-assisted localization filters are then exploited to

establish localization for the child robots in the team.

5.4.3 Results

For 20 Monte Carlo simulations, the mean state estimation error and the associated

3σ error boundaries of child robot Rc2 are shown in Figure 5.13. It can be seen that

the mean state estimation error of child robot Rc2 is bounded although it operates

beyond the sensing and communication boundaries of the leader robot. Additionally,

it can be seen that the mean state estimation error is always within the estimated 3σ

error boundaries. These two observations imply that the proposed hierarchical sensor

fusion framework is capable of establishing accurate localization for child robots using

a general range and bearing measurements-based exteroceptive sensory system.

5.5 Summary

This chapter presented a novel sensor fusion architecture addressing the exteroceptive

sensor type limitation associated with leader-assisted localization. This framework
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Figure 5.13: Mean estimation error of child robot Rc2 for 20 Monte Carlo simulations.
Red solid line indicates mean estimation error while the black solid lines indicate
double-sided 3− σ error boundaries
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consists of (1) a fast converging relative localization approach that generates relative

pose estimations for neighbouring robots through relative range and bearing measure-

ments between the teammates and (2) a hierarchical sensor fusion architecture that

integrates the pseudo-linear measurement-based relative localization scheme with the

proposed leader-assisted localization. The proposed pseudo-linear measurement-based

relative localization approach is more robust against unknown filter initialization and

shows faster convergence for an arbitrary filter initialization than the traditional EKF-

based relative localization scheme. The observability analysis confirmed that the state

vector of the pseudo-linear measurement-based relative localization scheme is fully ob-

servable as long as the observed robots have non-zero linear velocity.
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Chapter 6

Decentralized Cooperative

Localization for a Heterogeneous

MRS

The previous chapters presented a framework for establishing localization for child

robots even when they operate beyond the sensing and communication range of the

leader robots. If it is possible to ensure that the child robots are always connected

with a measurement network which has a minimum of one leader robot, then a de-

centralized cooperative localization approach can be exploited to establish the lo-

calization for child robotss in a heterogeneous MRS. The majority of the available

decentralized cooperative localization approaches are known to generate inconsistent

(overconfident) pose estimations for agents in the team. This chapter1 presents a scal-
1The work in this chapter was presented at Canadian Conference on Computer and Robot Vision

2014 and in the Journal of Robotics, Hindawi Publishing Corporation
* T. R. Wanasinghe, G. K. I. Mann and R. G. Gosine, “Decentralized Cooperative Localization for
Heterogeneous Multi-robot System Using Split Covariance Intersection Filter", in Canadian Confer-
ence on Computer and Robot Vision (CRV), 2014, pp. 167-174.
* T. R. Wanasinghe, G. K. I. Mann and R. G. Gosine, “Decentralized Cooperative Localization
Approach for Autonomous Multi-Robot Systems", Journal of Robotics, Hindawi Publishing Corpo-
ration, 2016, 18 pages
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able decentralized cooperative localization (DCL) approach for heterogeneous MRSs

which guarantees a non-overconfident pose estimate with the bounded estimation er-

ror. The proposed DCL approach incorporates a split covariance intersection (Split-

CI) algorithm proposed by Julier et al. [135] to accurately track independencies and

interdependencies among teammates’ local pose estimates.

6.1 Split Covariance Intersection Algorithm

Consider the pair of state estimates {x̂j,Pj}, where j = {1, 2}, x̂j ∈ Rn represents

estimated state vector, Pj ∈ Rn×n is the associate error covariance matrix, and n is

the dimension of the state vector, i.e., degrees of freedom of the system model. If these

two estimates are consistent and independent, then the general Kalman filter-based

information fusion which is given in (6.1) will result in consistent state updates.

P =
(
P−1

1 + P−1
2

)−1

x̂ = P
(
P−1

1 x̂1 + P−1
2 x̂2

) (6.1)

where x̂ and P are the resulting state and associate error covariance matrix of the

fusion, respectively. However, this traditional Kalman filter-based information fu-

sion tends to generate overconfident state estimations when there exists an unknown

correlation between two input state estimates. Julier et al., [136], proposes the CI

algorithm in order to fuse two correlated pieces information. The algorithm uses the

convex combination of the mean and covariance of the input estimates, as given in

(6.2), in order to avoid possible double counting of common information.

P =
[
ωP−1

1 + (1− ω)P−1
2

]−1

x̂ = P
[
ωP−1

1 x̂1 + (1− ω)P−1
2 x̂2

] (6.2)
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where coefficient ω belongs to the interval [0, 1], and can be determined such that

the trace or determinant of the resulting covariance matrix, i.e. P, is minimized.

However, the general CI algorithm neglects possible independencies between local

estimates. This may lead to a more conservative state estimation and may produce an

estimation error covariance which is larger than that of the best unfused estimate [77].

A Split-CI algorithm is later introduced to address the limitations associated with

the general CI algorithm [135] wherein the independent and interdependent parts

of the covariance matrix are separately calculated and maintained. A theoretical

analysis and the simulation-based validation for the consistency of the split-CI-based

information fusion is presented in [137].

Consider the pair of state estimates {x̂j,Pji + Pjd}, where j = {1, 2}, x̂j ∈ Rn

represents the estimated state vector, and covariance components Pjd ∈ Rn×n and

Pji ∈ Rn×n represent possible correlated components of two estimations and pos-

sible independent components of two estimations, respectively. The posterior state

estimation structure (steps) is then given by (6.3).

P1 = P1d/ω + P1i

P2 = P2d/(1− ω) + P2i

P =
(
P−1

1 + P−1
2

)−1

x̂ = P
(
P−1

1 x̂1 + P−1
2 x̂2

)
Pi = P

(
P−1

1 P1iP−1
1 + P−1

2 P2iP−1
2

)
P

Pd = P−Pi

(6.3)

6.2 Preliminaries

Robot motion in a 2D arena is modelled by the 3-DOF discreet-time kinematic model

as outlined in Section 3.1.1. Additionally, it is assumed that each agent in the MRS
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hosts an exteroceptive sensory system to measure the relative pose of neighbours. The

mathematical model of this relative pose measurement system is presented in Section

3.1.2. For an MRS with |S| mobile robots, the maximum number of robots that can

operate within an arbitrary robot’s, i.e., Rq, where q ∈ S, sensing and communication

boundaries is one robot less that the total number of robots in the MRS.

⇒ 0 ≤ |Sq,k| ≤ |S| − 1 ⇒ 0 ≤ |Yqq,k| ≤ |S| − 1, ∀k = 1, 2, · · · ,∞, q ∈ S

6.3 Decentralized Cooperative Localization Algo-

rithm

6.3.1 State Propagation

The objective of the state propagation step is to predict the current pose and associ-

ated estimation uncertainties of a given robot using both the robot’s posterior state

density and the odometry reading at the previous time step. In order to avoid cyclic

update, each robot maintains two covariance matrices: total covariance and indepen-

dent covariance. Once the total and independent covariances are known, dependent

covariance can be calculated as

Pqd,k = Pq,k − Pqi,k (6.4)

where Pq,k, Pqi,k and Pqd,k are total covariance, independent covariance and dependent

covariance of Rq’s pose estimation at time step k, respectively.

This study employs CKF for sensor fusion. In this study, robot pose and odometry

vectors are augmented into a single state vector leading to n = nx + nc, where nx is

the size of the pose vector and nc is the size of the odometry vector. Standard CKF
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formulation computes only the total error covariance of the estimated parameters.

However, in order to apply the split-CI-based sensor fusion, independent and inter-

dependent covariance matrixes also need to be computed and maintained. Therefore,

this study extends the standard CKF algorithm presented in [36] by incorporating

independent and dependent covariance calculation and maintaining capabilities.

The proposed state propagation approach is summarized in Algorithm 6.1. This

algorithm is implemented on each robot’s local processor and iterates at each time

step. The algorithm initializes with known prior density p(xq,k+) = N (x̂q,k+ ,Pq,k+),

independent covariance matrix Pqi,k+ , and odometry reading ūq,k at the previous time

step (say, time step k). The algorithm predicts the robot pose for the next time step

along with the associated total and independent covariances. First, the algorithm

augments the estimated pose vector x̂q,k+ with the odometry vector at time k. The

associated covariance matrix is then computed by block-diagonalization of the estima-

tion and the process covariance matrices. In the CKF, a set of the cubature points is

used to represent the current estimated pose and associated estimation uncertainties.

To generate these cubature points, the square-root factor of the covariance matrix is

required. Any matrix decomposition approach that preserves the equality given in

(6.7) can be exploited to compute the square-root factor of the covariance matrix.

The cubature points that represent current state and odometry measurements are

evaluated with the nonlinear state propagation function, which generates the cuba-

ture point distribution for a predicted state. The predicted pose (or state) of the

robot is the average of the propagated cubature points. Total predictive covariance is

then computed from (6.11). Once the total predictive covariance is calculated, a new

block-diagonalized covariance matrix, i.e., Pi,k+ , is generated using the independent

covariance matrix of time k, i.e., Pqi,k+ , and process covariance matrix, i.e., Q. After

computing Pi,k+ , its square-root factor is computed; then a set of cubature points is
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Algorithm 6.1 State propagation
Data: Assume at time k posterior density function of robot’s pose estimation p(xq,k+) =
N (x̂q,k+ ,Pq,k+), independent covariance matrix Pqi,k+ , and odometry reading ūq,k are
known.
Result: Predictive density function of robot’s pose estimation p(xq,(k+1)−) =
N (x̂q,(k+1)− ,Pq,(k+1)−) and associated independent covariance matrix Pqi,(k+1)− .

1: Augment state end odometry reading into single vector:

x̂k+ =
[
x̂Tq,k+

ūTq,k
]T

(6.5)

2: Compute the corresponding covariance matrix:

Pk+ =
[

Pq,k+ 0nx×nc

0nc×nx Q

]
(6.6)

3: Factorize:
Pk− = Sk+STk+ (6.7)

4: Generate cubature points (j = 1, 2, · · · ,m):

Xj,k+ = Sk+ξj + x̂k+ (6.8)

where m = 2(nx + nc)
5: Propagate each set of cubature points through nonlinear state propagation function

given in (3.1) (j = 1, 2, · · · ,m):

Xj,(k+1)− = g(Xj(1:nx),k+ , Xj(nx+1:nx+nc),k+) (6.9)

6: Predict next state:
x̂q,(k+1)− = 1

m

m∑
j=1
Xj,(k+1)− (6.10)

7: Estimate the predictive error covariance:

Pq,(k+1)− = 1
m

m∑
j=1
Xj,(k+1)−X

T
j,(k+1)− − x̂q,(k+1)− x̂Tq,(k+1)− (6.11)

8: To calculate independent covariance, construct new block diagonalize covariance matrix
as follows:

Pi,k+ =
[

Pqi,k+ 0nx×nc

0nc×nx Q

]
(6.12)

9: Factorize Pi,k+ , then generate a new set of cubature points, and propagate this new
cubature point set through the nonlinear state propagation function (3.1) (refer to lines
3, 4, and 5 for equations)
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10: Predict new state using independent covariance:

x̂qi,(k+1)− = 1
m

m∑
j=1
Xj,(k+1)− (6.13)

11: Estimate the independent predictive error covariance:

Pqi,(k+1)− = 1
m

m∑
j=1
Xj,(k+1)−X T

j,(k+1)− − x̂qi,(k+1)−x̂Tqi,(k+1)− (6.14)

nx: size of robot’s pose vector,
nc: size of robot’s odometry vector,
0a×b: matrix with a rows and b columns and all entries are zeros,
k+: represents k|k, (k + 1)−: represents (k + 1)|k.

generated using the new square-root factor; and finally, the newly generated cubature

points are propagated through the nonlinear state propagation function. These steps

are followed by the computation of prediction for an independent propagated state

and the associated covariance matrix.

6.3.2 Compute Pose of Neighbours

The measured relative pose measurements are in the local coordinate system of the

observing robot and are required to be transformed to the reference coordinate sys-

tem prior to executing the sensor fusion at the neighbouring robot’s local processor.

Assume that, at time (k + 1), robot Rq measures the relative pose of robot Rr. This

nonlinear coordinate transformation can be modeled as

yr,∗q,k+1 = f(x̂q,(k+1)− , yr,qq,k+1)

= x̂q,(k+1)− ⊕ yr,kq,k+1

= x̂q,(k+1)− + Γxq,(k+1)−
yr,kq,k+1

(6.15)
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where ⊕ is known as the pose composition operator and yr,∗q,k+1 is the global pose of Rr

on the reference coordinate frame, as measured by Rq. The superscript asterisk ‘∗’ is

used to indicate that the measurement is on the reference coordinate system. Symbol

Γxq,(k+1)−
has the same meaning as in (3.1). Since this Cartesian-to-Cartesian transfor-

mation is nonlinear, a cubature point-based approach, as summarized in Algorithm

6.2, is employed to achieve consistent and unbiased coordinate transformation (see

Appendix A).

The algorithm is initialized with a known predictive density of the pose estimation

of the observing robot along with the predictive independent covariances. At an

inter-robot-relative-pose measurement event, the observing robot augments its pre-

dictive pose and relative pose measurement into a single state vector (Line 1). The

associated covariance matrix is obtained by block-diagonalization of the predictive

total covariance (Pq,k+1−) and noise covariance of the relative pose measurement (Rq)

(Line 2). This block-diagonalized covariance matrix is then factorized and exploited

for generating a set of cubature points to represent the state vector (Lines 3 and 4).

The generated cubature points are evaluated on the nonlinear Cartesian-to-Cartesian

coordinate transformation function, i.e. (6.15), in order to compute the coordinate

transformed cubature points (Line 5). This step is followed by the computation of

the observed robot pose in the reference coordinate system (Line 6) and associated

total noise (error) covariance matrix (Line 7). Once the total noise covariance is cal-

culated, the algorithm constructs a new block-diagonalized covariance matrix, R̄i,k+1,

using the predictive independent covariance matrix and the relative pose measurement

noise covariance matrix (Line 8). After computing the R̄i,k+1, its square-root factor is

computed as in line 3; then a set of cubature points is generated using the new square-

root factor (as in line 4); and finally, newly generated cubature points are transformed

from the local coordinate system into the global coordinate system (as in line 5) (line
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Algorithm 6.2 Relative-to-global conversion
Data: Assume at time k the predictive density function of a robot’s (say Rq) pose
estimation p(xq,(k+1)−) = N (x̂q,(k+1)− , Pq,(k+1)−), independent covariance matrix
Pqi,(k+1)− , and relative pose measurement of a neighbour (say Rr) are available.
Result: Global pose measurement of Rr, i.e. yr,∗q,k+1, and associated independent and
dependent measurement covariances, i.e., R∗qi,k+1 and R∗qd,k+1.

1: Augment the predictive state and relative pose into single vector:

yk+1 =
[
xTq,(k+1) (yr,∗q,(k+1))

T
]

(6.16)

2: Construct corresponding covariance matrix:

R̄k+1 =
[
Pq,(k+1)− 0nx×nx

0nx×nx Rq

]
(6.17)

3: Factorize:
R̄k+1 = S̄k+1S̄Tk+1 (6.18)

4: Generate set of cubature points (j = 1, 2, · · · ,m):

Yr,qj,k+1 = S̄k+1ξj + yk+1 (6.19)

where m = 2 ∗ nx
5: Perform coordinate transform for each set of cubature points (j = 1, 2, · · · ,m):

Yr,∗j,k+1 = f(Yr,qj(1:nx),k+1 , Y
r,q
j(nx+1:2nx),k+1) (6.20)

6: Compute global pose of neighbour:

yr,∗q,k+1 = 1
m

m∑
j=1
Yr,∗j,k+1 (6.21)

7: Compute total noise (error) covariance:

Rr,∗
q,k+1 = 1

m

m∑
j=1

(
Yr,∗j,k+1

) (
Yr,∗j,k+1

)T
−
(
yr,∗q,k+1

) (
yr,∗q,k+1

)T
(6.22)

8: Construct a block-diagonalized matrix using independent predictive covariance and mea-
surement noise covariance:

R̄i,k+1 =
[
Pqi,(k+1)− 0nx×nx

0nx×nx Rq

]
(6.23)

9: Factorize R̄i,k+1, then generate a new set of cubature points followed by the coordination
transformation for each cubature point (refer to lines 3, 4, and 5 for equations).
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10: Compute coordinate transformed measurement using independent covariance:

yr,∗qi,k+1 = 1
m

m∑
j=1
Yr,∗j,k+1 (6.24)

11: Estimate independent covariance for the pose measurement:

Rr,∗
qi,k+1 = 1

m

m∑
j=1

(
Yr,∗j,k+1

) (
Yr,∗j,k+1

)T
−
(
yr,∗qi,k+1

) (
yr,∗qi,k+1

)T
(6.25)

12: Estimate dependent covariance for the pose measurement:

Rr,∗
qd,k+1 = Rr,∗

q,k+1 −Rr,∗
qi,k+1 (6.26)

9). These steps are followed by computing the coordinate transformed measurement

and associated independent noise covariance matrix (lines 10 and 11). Finally, the

dependent covariance of the coordinate transformed measurement is calculated as the

difference between total and independent covariances (Line 12).

6.3.3 Update Local Pose Estimation Using the Pose Sent by

Neighbours

In order to perform split-CI-based sensor fusion, both the independent and dependent

covariance matrices of input state estimates must be available. However, the proposed

state propagation algorithm (Algorithm 6.1) maintains only the total and indepen-

dent error covariance of the estimated pose. Therefore, dependent error covariance of

the estimated pose needs to be calculated prior to fusing the received measurement

with the local estimation. Once the independent and dependant covariances of the lo-

cal estimate and received measurements are known, the weighted predicted covariance

and the weighted measurement covariance can be calculated as given in (6.28) and

(6.29), respectively. Coefficient α belongs to the interval [0, 1] and can be determined

so that the trace or determinant of the updated total covariance is minimized. The
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Algorithm 6.3 State update with the measurement sent by neighbours
Data: Assume predictive density of robot pose estimation p(xr,(k+1)− =
N (x̂r,(k+1)− , Pr,(k+1)−)), the associated independent covariance matrix Pqi,(k+1)− and
pose measurements from a neighbour yr,∗q,k+1 along with the associated independent and
dependent covariances are available.
Result: Posterior density of time k+ 1, i.e p(xr,(k+1)+) = N (x̂r,(k+1)+ , Pr,(k+1)+) and
the associated independent covariance matrix Pri,(k+1)+

1: Calculate the predictive dependant covariance:

Pqd,(k+1)− = Pq,(k+1)− −Pqi,(k+1)− (6.27)

2: Compute the weighted predictive covariance:

P1 =
Pqd,(k+1)−

α
+ Pqi,(k+1)− (6.28)

3: Compute the weighted measurement covariance:

P2 =
Rr,∗
qd,k+1

1− α + Rr,∗
qi,k+1 (6.29)

4: if measurement gate validated then
5: Compute Kalman gain:

K = P1 (P1 + P2)−1 (6.30)

6: Update robot pose:

x̂r,(k+1)+ = x̂r,(k+1)− + K
(
yr,∗q,k+1 − x̂r,(k+1)−

)
(6.31)

7: Update total covariance:

Pr,(k+1)+ = (Inx −K)P1 (6.32)

8: Update independent covariance:

Pri,(k+1)+ = (Inx −K)Pri,(k+1)−(Inx −K)T + KRr,∗
qi,k+1KT (6.33)

9: else
10: Assign predictive state and covariances into posterior state and covariances:

x̂r,(k+1)+ ← x̂r,(k+1)−

Pr,(k+1)+ ← Pr,(k+1)−

Pri,(k+1)+ ← Pri,(k+1)−

(6.34)

11: end if

Inx : identity matrix of (nx × nx)
α: weighting coefficient and belongs to the interval [0,1]
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detection and elimination of outliers are important for preventing the divergence of

the state estimation. This requirement can be fulfilled by employing an ellipsoidal

measurement validating gate [116]. As the pose measurements from the neighbours

are in the reference coordinate frame, the measurement model of this sensor fusion

becomes linear. Therefore, the linear Kalman filter can be exploited for sensor fusion.

In this measurement update, the measurement matrix H of the traditional Kalman

filter becomes an identity matrix, (Inx), of nx×nx. Using the multiplicative property

of the identity matrix (i.e. ImA = AIn = A where A is m × n) the Kalman gains,

the updated robot pose and the associated total and independent covariance matrices

can be computed from (6.30), (6.31), (6.32), and (6.33), respectively. For outliers,

measurements are discarded and the predictive pose and the associated total and in-

dependent covariance matrices are directly assigned to the corresponding posterior

quantities so that the recursion of the algorithm is preserved. These measurement

update steps are summarized in Algorithm 6.3.

6.3.4 Update Local Pose Estimation Using the Measurement

Acquired by the Absolute Positioning System

It is assumed that some of the robots in the MRS host a DGPS sensor in order to

measure global position information. This position measurement at time k + 1 is

modeled as

yAq,k+1 = HA
q,k+1xq,k+1 + νAK+1, (6.35)

where HA
q,k+1 =

[
I2 02×1

]
is the measurement matrix and νAK+1 is the additive white

Gaussian noise term with covariance RA ∈ R2×2. This measurement is linear and

independent from the robot’s pose estimate. Thus, this measurement can be fused

with the current state estimation using the general linear Kalman filter measurement
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update steps followed by

Pqi,(k+1)+ = (I−KHA
q,k+1)Pqi,(k+1)−(I−KHA

q,k+1)T + KRAKT . (6.36)

This equation computes the updated independent covariance matrix at the event of

the DGPS measurement update.

6.3.5 Sensor Fusion Architecture

This study assumes that each agent in the MRS initially knows its pose with respect

to a given reference coordinate frame. The recursive state estimation framework of the

proposed decentralized cooperative localization algorithm is outlined in Algorithm

6.4 and is graphically illustrated in Figure 6.1.

The algorithm has four main steps:

Step 1: Propagate state (lines 4-5)

At each time step, the robot acquires its ego-motion sensor reading (odometry).

This measurement is fused with the previous time step’s posterior estimate in

order to compute the predicted pose and the associated total and independent

error covariance matrices as detailed in Algorithm 6.1.

Step 2: Measure neighbours’ pose (lines 6-12)

At an inter-robot relative pose measurement event, first, the robot reads its ex-

teroceptive sensors and collects the relative poses of its neighbours. Then, each

relative pose measurement is transformed into the reference coordinate frame

as outlined in Algorithm 6.2. Finally, the transformed global pose measure-

ments and the associated independent and dependent covariance matrices are

transmitted to the corresponding neighbouring robots.
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Algorithm 6.4 Split-CI based cooperative localization algorithm
1: Initialize with known xq,◦ and Pq,◦
2: Set initial independent covariance: Pqi,◦ ← P◦
3: for k ∈ (1, · · · ,∞) do
4: Read ego-motion sensor ūq,k
5: Propagate state: Algorithm 6.1
6: if |Yqq,k+1| > 0 then
7: for ∀r ∈ Nq,k+1 do
8: Read yr,qq,k+1
9: Transform relative pose measurement to reference coordinate frame: Algo-

rithm 6.2
10: Transmit (yr,∗q,k+1, Rr,∗

qi,k+1, Rr,∗
qd

)
11: end for
12: end if
13: if pose measurement is received from neighbours then
14: for ∀r ∈ Nq,k+1 do
15: Collect (yq,∗r,k+1, Rq,∗

ri,k+1, Rq,∗
rd

) from Rr
16: Perform Split-CI-based measurement update: Algorithm 6.3
17: Enable recursive update

x̂q,(k+1)− ← x̂q,(k+1)+

Pq,(k+1)− ← Pq,(k+1)+

Pqi,(k+1)− ← Pqi,(k+1)+

(6.37)

18: end for
19: Set independent covariance to zero:Pqi,(k+1)− ← [03×3]
20: end if
21: if DGPS measurement available then
22: Read yAq,k+1
23: if measurement gate validated then
24: Compute x̂q,(k+1)+ , Pq,(k+1)+ , and Pqi,(k+1)+ as detailed in section 6.3.4.
25: else
26: Assign predictive quantities to corresponding posterior quantities

x̂q,(k+1)+ ← x̂q,(k+1)−

Pq,(k+1)+ ← Pq,(k+1)−

Pqi,(k+1)+ ← Pqi,(k+1)−

(6.38)

27: end if
28: else
29: Assign predictive quantities to corresponding posterior quantities: (6.38)
30: end if
31: end for

Nq,k+1 is the set containing unique identification indices of robots that communicate global
pose measurements to Rq at time k + 1.
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Step 3: Update with pose measurements sent by neighbours (lines 13-20)

At a given time step, a robot may receive pose measurements from one (or

more) neighbour(s). First, the received pose measurement is fused with the

local estimation using the Split-CI measurement update structure that is de-

tailed in Algorithm 6.3. In order to enable the recursion for available pose

measurements from multiple neighbours, the updated pose and associated total

and independent covariances are assigned back to the corresponding predictive

parameter (Line 17). The recursion is then continued until all the received

pose measurements are considered. Work presented in [137] provides a com-

plete theoretical analysis and simulation-based validation for the consistency of

the Split-CI-based filtering. However, the simulation study presented in [138]

demonstrated that the estimated states using the Split-CI based decentralized

cooperative localization algorithm sometimes diverge. This may occur because

the resulting pose estimation might be correlated partially or fully to subse-

quent pose measurements received from neighbours. To overcome this issue, the

proposed algorithm directly assigns the known-independent covariance compo-

nent to the correlated component (line 19). In other words, this study set the

independent covariance component to zero after every inter-robot measurement

update event, which is not included in the standard Split-CIF algorithm de-

scribed in [135].

Step 4: Update with absolute position measurement (lines 21-30)

The final step of this algorithm is to update the robot’s local pose with the po-

sition measurement acquired from an absolute positioning system. When a new

position measurement is available, it is evaluated through an ellipsoidal valida-

tion gate to identify whether the acquired measurement is a valid measurement

or an outlier (line 23). If it is a valid measurement then the measurement is
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fused with the local estimation (Line 24). Otherwise, the predictive quantities

are directly assigned to the corresponding posterior quantities (Line 26). For

the time steps where no absolute position measurements are available, the pre-

dictive quantities are directly assigned to the corresponding posterior quantities

(Line 29).

Prediction

(Algorithm 1)

Propagate state
and error covariances

Ego-motion
sensor

Relative to Global

Transformation
Tranform relative pose

measurement and noise covariance
into the reference frame

(Algorithm 2)

Relative pose
measurement

sensor

Correction: Step 1

Split-CI based
measurement update

(Algorithm 3)

Global pose measurements
from neighbours

Correcion: Step 2

Linear Kalman filter

followed by (37) to
fuse DGPS readings

DGPS
sensor

Recursion
foll all

available
global pose

measurements

Predicted
pose

Updated pose

Global pose
measurements
to neighbours

Sensor readings Information flow within the robot Inter-robot communication

Figure 6.1: Sensor fusion architecture of the proposed decentralized multi-robot co-
operative localization scheme

6.4 Simulation Results

6.4.1 Setup

The performance of the proposed decentralized cooperative localization algorithm

was evaluated using a publicly available multi-robot localization and mapping data-

set [49]. This 2D indoor data-set was generated from five robots (designated as

158



R1, R2, R3, R4, and R5) that navigated in a 15m × 8m indoor space. Although

this data set consists of odometry readings, ground truth measurements and range

and bearing measurements to neighbours and landmarks, only the odometry read-

ings and ground truth measurements of each robot were used in order to evaluate

the proposed decentralized cooperative localization algorithm. This simulation study

assumed that all five robots would be equipped with light-weight sensory systems to

uniquely identify and measure the relative poses of their neighbours. Further, it was

assumed that only two members of the robot team (i.e., R1 and R2) were capable

of acquiring DGPS measurements periodically. Inter-robot measurements and DGPS

measurements were synthesized from the ground truth data. Simulation parameters

and sensor characteristics related to this simulation setup are summarized in Table

6.1 and Table 6.2, respectively.

Table 6.1: Simulation parameters

Symbol Parameter Description Value
|N | Number of robots in the team 5
t Total time period of the data-set 1500 s
dm Maximum sensing range 10 m
d× l Size of the navigation arena 15 m × 8 m
MC Number of Monte Carlo runs 20

6.4.2 Results

Figure 6.2 illustrates the mean estimation error and the associated 3−σ error bound-

aries for R1, i.e. a robot with absolute position measuring capability, while Figure

6.3 illustrates the mean estimation error and the associated 3 − σ error boundaries

for R3, i.e. a robot without absolute position measuring capability. All the results

that are shown here is an average result of 20 Monte Carlo simulations. From these
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Table 6.2: Sensor characteristics

Sensor type Measure Update Noise σ
rate

Odometry Linear velocity 50Hz
√

5.075v̄xq ,k

Angular velocity 50Hz
√

0.345 rads−1

Relative pose Relative x-position 10Hz 0.1 m
Relative y-position 10Hz 0.1 m
Relative orientation 10Hz 1 deg

DGPS Global x-position 10Hz 0.1 m
Global y-position 10Hz 0.1 m

Noise parameters for velocities were extracted from [51]

results, it can be seen that the estimation errors of the proposed decentralized cooper-

ative localization algorithm are always inside the corresponding 3-σ error boundaries.

This observation verifies that the proposed decentralized cooperative localization al-

gorithm is capable of avoiding the cyclic update and generating non-overconfident

state estimations. Additionally, it is clear that robots with absolute position mea-

suring capabilities can achieve a more accurate pose estimation than robots without

such capabilities (Note that the y axes of Figure 6.2 and Figure 6.3 are presented in

two different scales.). Further, the results confirm that the estimation error of the

proposed decentralized cooperative localization algorithm is bounded.

6.4.3 Comparison

The estimation accuracy of the proposed decentralized cooperative localization al-

gorithm is compared with the estimation accuracies that were obtained from the

following localization schemes:

1. Single-Robot Localization (SL) Method: Each robot continually integrates its

odometry readings in a given coordinate frame in order to estimate its pose.
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Figure 6.2: Mean estimation error of R1 for 20 Monte-Carlo simulations (a robot
with absolute position measuring capabilities). In each graph, the solid red line indi-
cates mean estimation error while the solid black lines indicate double-sided 3-σ error
boundaries
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Figure 6.3: Mean estimation error of R5 (a robot that does not have absolute position
measuring capabilities) for 20 Monte Carlo simulations. In each graph, the solid red
line indicates mean estimation error while the solid black lines indicate double-sided
3-σ error boundaries
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This method is also known as dead-reckoning. Robots with DGPS measuring

capability fuse their DGPS sensor readings with the local estimate in order to

improve pose estimation accuracy.

2. DCL Using Naive Block-diagonal (NB) Method: In this method, the pose mea-

surements sent by neighbours are treated as independent information and are

fused directly with the local estimate. In other words, possible correlations

between the local estimate and pose measurements sent by neighbours are ne-

glected at the sensor fusion step.

3. DCL Using Ellipsoidal Intersection (EI) Algorithm: The EI algorithm always

assumes that there exist unknown correlations between each robot’s local pose

estimations and uses a set of explicit expressions to calculate these unknown

correlations, i.e. mutual-mean and mutual-covariance. When a robot receives a

pose measurement(s) from its neighbour(s) the EI algorithm first calculates these

unknown correlations. In order to obtain the updated estimation the calculated

mutual-mean and mutual-covariance are fused with the robot’s local estimates

and the pose measurements received from the robot’s neighbours [139].

4. DCL Using Covariance Intersection (CI) Algorithm: Each robot runs a local

estimator to estimate its pose using onboard sensors and the pose measurements

from neighbours. When a robot receives pose measurements from its neighbours,

the covariance intersection algorithm is used to fuse these pose measurements

with the robot’s local estimate [59].

5. Centralized Cooperative Localization (CCL) Approach: The pose of each robot

is augmented into a single state vector. The ego-centric measurements of robots

and inter-robot observations are fused using an EKF. This is a centralized ap-

proach which can accurately track the correlations between robots’ pose estima-
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tions. Therefore, the results of this approach will serve as the benchmark for the

performance evaluation of the proposed decentralized cooperative localization

algorithm.

20 Monte Carlo simulations for each localization algorithm were performed. Then

the RMSE of position and orientation estimation for 20 Monte Carlo simulations

were computed. Finally, the time averaged RMSE values and associated standard

deviations were calculated to compare the different localization schemes.
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Figure 6.4: Comparison of estimation error of different cooperative localization algo-
rithms. This result is for robot R5 (one of the robots without the DGPS measuring
capabilities)

Consider robots without DGPS measuring capabilities (i.e. R3, R4 and R5). The

pose estimation of these robots relies entirely on the odometry readings and the inter-

robot observations. Therefore, the time averaged RMSE and the associated standard

deviation values of the pose estimation of these robots provide insight into the perfor-

mance of each localization algorithm. The time averaged RMSE and the associated

standard deviation of the localization of R5 using the single-robot localization scheme

was found to be 3.1762 ± 2.3680 m in x-direction, 5.0073 ± 2.3339 m in y-direction,
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Figure 6.5: Estimation error comparison between the proposed Split-CI based ap-
proach and the centralized cooperative localization approach
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and 1.1776± 0.9015 rad in the orientation estimation2. The time averaged RMSE of

the localization of R5 using any of the cooperative localization algorithms (NB, EI,

CI, Split-CI, and CCL) was less than 10 cm in both x- and y-directions, and less than

0.1 rad in the orientation estimation. These observations imply that the cooperative

localization approaches can significantly improve the accuracy of pose estimation of

agents in an MRS.

Time averaged RMSE and the associated standard deviation values of x-position,

y-position and φ-orientation estimates of R5 using different cooperative localization

schemes are compared in Figure 6.4. This comparison shows that the centralized

cooperative localization algorithm outperforms all other approaches. This was the

expected result, as the centralized estimator maintained the joint-state and the asso-

ciated dense covariance matrix in order to accurately represent the correlation between

teammates’ pose estimates. Although the estimated pose using the proposed Split-CI

based decentralized cooperative localization algorithm is less accurate than that of

the centralized cooperative localization algorithm, it demonstrates better accuracy

than all other decentralized cooperative localization approaches that were evaluated

in this article.

Figure 6.5 illustrates the estimation error comparison between the proposed Split-CI

based decentralized cooperative localization algorithm and the centralized cooperative

localization algorithm. It indicates that the centralized approach has better accuracy;

however, the estimation accuracy obtained from the proposed decentralized coopera-

tive localization algorithm is comparable with the estimation accuracy obtained from

the centralized approach.
2The format of the listed estimation errors is (mean ± standard deviation)
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6.5 Experimental Results

6.5.1 Setup

Figure 6.6: Experimental Setup

The proposed decentralized cooperative localization algorithm was experimentally

evaluated on a team of three robots (see Figure 6.6): one SeekurJr (designated as

platform A) and two Pioneer robots (named platforms B and C). Each robot was

equipped with wheel encoders for odometry. Additionally, SICK laser scanners were

attached to periodically acquire range and bearing measurements for objects around

the robot. Robots were navigated in an indoor environment while maintaining a

triangular formation among them.

6.5.2 System Architecture

Figure 6.7 illustrates the system architecture of the experimental setup. Each robot

acquires its odometry measurements and laser-scan readings periodically. The ac-

quired measurements are transmitted to a host computer through a TCP/IP inter-

face. Platform A was provided with the map of the navigation space and it performed

scan-matching-based localization using this map. The position estimations of this
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Figure 6.7: System architecture of the experiment setup to validate the proposed de-
centralized cooperative localization scheme. Note that the map-based (scan-matching-
based) localization information is available only for Platform A

scan-matching-based localization for platform A were considered as absolute position

measurements for cooperative localization schemes and were transmitted to the host

computer that executed the localization for platform A.

In the host computer, odometry readings were used for state propagation and the

global pose measurements and the associated noise covariances from the neighbours

were used to correct the predicted pose. Note that the pose measurements from neigh-

bours were first evaluated through an ellipsoidal measurement validation gate in order

to detect and discard outliers. Only platform A used scan-matching-based position

calculation data at the sensor fusion. At each host processing unit, the received laser

scan data were first converted to the Cartesian coordinate frame from the polar coordi-

nate system. This gives a set of points that represents the relative positions of objects

around the corresponding robot. A laser-scan-based feature extraction algorithm was

then employed to detect and measure the relative pose of neighbouring robots. The
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data correspondence problem was addressed using the nearest neighbour data associ-

ation technique. These relative pose measurements were then converted to a global

(reference) coordinate frame and next were communicated to the corresponding host.

6.5.3 Results

Figure 6.8 illustrates the comparison of pose estimates for platform B that were ob-

tained from three different sensor fusion approaches: the centralized cooperative lo-

calization method, the proposed Split-CI based decentralized cooperative localization

algorithm, and the single robot localization (dead-reckoning) method. The estimates

obtained from the centralized cooperative localization approach serve as the bench-

mark for evaluating the proposed decentralized cooperative localization algorithm.

On the other hand, the estimates obtained from the single robot localization rep-

resent the worst case pose estimates for each time step. These results suggest that

the proposed Split-CI based decentralized cooperative localization algorithm and the

centralized cooperative localization algorithm generate approximately the same pose

estimates for platform B. Although the two estimates are not identical, the differ-

ence between the two estimates did not exceed the double-sided 3-σ error boundary,

i.e. the gray coloured region of Figure 6.8, of the proposed decentralized cooperative

localization algorithm. Pose estimates generated from dead-reckoning diverged from

the true state (or the state obtained from the centralized approach) with the increase

of the experimental time period.

Figure 6.9 illustrates the comparison of pose uncertainty for three different sensor fu-

sion approaches: the centralized cooperative localization method, the proposed split-

CI based decentralized cooperative localization algorithm, and the single robot local-

ization method. These results verify that the cooperative localization approaches have

bounded pose estimation uncertainty while the pose estimation uncertainty of the sin-
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Figure 6.8: Pose estimation comparison of platform B
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gle robot localization approach increases unboundedly. The lowest pose uncertainty

is recorded in the centralized approach (see Figure 6.9 (c)). The pose uncertainty

found in the proposed Split-CI based decentralized cooperative localization algorithm

is slightly greater than that of the centralized approach. This is the expected result

as the centralized estimator maintained the joint-state and associated dense covari-

ance matrix in order to accurately represent the correlation between teammates’ pose

estimates.

6.6 Complexity

6.6.1 Computational Complexity

As the pose estimation of the proposed algorithm is decentralized, the computational

complexity of the proposed decentralized cooperative localization algorithm increases

linearly with the increase of number of neighbouring robots. In other words, the

computational complexity of the proposed decentralized cooperative localization al-

gorithm is O(|N̄q|), where |N̄q| is the number of neighbours, per robot per time step.

This remains true for all the decentralized cooperative localization algorithms while

the computational complexity increases O(|N |4) for the centralized cooperative local-

ization where |N | is the number of robots in the MRS.

6.6.2 Communicative Complexity

The proposed decentralized cooperative localization algorithm does not require robots

to communicate their high-frequency proprioceptive sensory data to one another or to

the central processing unit. Only the inter-robot measurements are required to be ex-

changed between neighbouring robots. These two properties considerably reduce the

bandwidth requirement for the communication network between robots. In general,
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communication complexity of the proposed algorithm remains O(|N̄q|) per robot, per

inter-robot observation event.

6.7 Summary

This chapter presented an innovative decentralized cooperative localization framework

addressing the overconfident state generation issue associated with general decentral-

ized cooperative localization schemes. This framework consists of (1) a method to

integrate the split-CI-algorithm with the standard CKF, (2) a scalable sensor fusion

architecture for multi-robot collaborative localization with a constant per measure-

ment computational and communicative complexity, i.e. O(1) and (3) a consistent

and unbiased approach to convert information between two Cartesian coordinate sys-

tems. Although the work presented in [138] showed that the general formulation of

the Split-CI algorithm sometimes leads to an inconsistent state update, both the sim-

ulation and experimental results of this study verified that the proposed decentralized

cooperative localization scheme is consistent. This can be attributed to the modifica-

tion added at line 19 in Algorithm 6.4. Additionally to this improvement, both the

simulation and experiment results demonstrate that the estimation accuracy of the

proposed method is comparable with centralized cooperative localization.
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Chapter 7

Summary and Future Research

7.1 Summary

For heterogeneous MRSs, a sensor sharing technique can be established to enable

robots with accurate self-localization capabilities (leader robots) to assist less power-

ful robots (child robots) in a team for localization. In general, leader-assisted localiza-

tion frameworks pose a condition that the child robots should be operated within the

sensing and communication boundaries of the leader robots. The bonded navigation

space therefore require an added algorithm to avoid inter-robot collisions and limit

robots’ maneuverability and the coverage of the environment. This thesis has devel-

oped a innovative leader-assisted localization framework for heterogeneous MRSs that

allows child robots to navigate beyond the sensing and communication boundaries of

the leader robots while accurately estimating their own poses. The research study is

based on four primary objectives:

1. to design a leader-assisted localization framework addressing the finite-range

sensing problem;

2. to design a leader-assisted localization framework addressing the finite-range
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communication problem;

3. to design a hierarchical sensor fusion architecture to implement the leader-

assisted localization scheme using a relative range and bearing measurement

system; and

4. to implement a scalable and consistent decentralized cooperative localization

scheme.

7.1.1 Research Summary Based on Objective 1

Initially, it was assumed that the MRS had an unbounded communication range. With

this assumption, the main focus was to address the finite-range sensing problem. The

first modification this study added to the MRS was to equip the child robots with

a light-weight and low-power exteroceptive sensory system to measure the relative

pose of neighbours. Eventually, exteroceptive sensing capabilities for child robots

form a relative pose measurement sensor network. An arbitrary leader robot in the

team can then find a relative pose measurement path to an arbitrary child robot

as long as both the robots are connected within a single relative pose measurement

network. An external observer can see which robots are within one another’s sensing

range; i.e. the global perspective of the relative pose measurement graph. However,

each robot in the team is only aware of its neighbours. Therefore, a bi-directional

communication capability was then added to each member of the MRS allowing leader

robots to collect all the available relative pose measurements from team members for

any inter-robot observation event. The leader robots exploit this collected data to

obtain the global pose measurement graph and to compose global pose measurements

for child robots. When composing the global pose for child robots, it was important

to detect and avoid the possible double counting of the same information, because
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double counting information generaly lead to an overconfident state estimation. For

the MRS with a single leader robot, the standard breadth first graph search algorithm

was exploited to avoid the double counting problem. An innovative graph search

algorithm, named the multi-root breadth first graph search algorithm, was developed

to ensure the independency of each global pose measurement for each child robot in

the MRS.

7.1.2 Research Summary Based on Objective 2

The second phase of the research integrated new algorithms and sensor fusion archi-

tectures into the first phase of the study so that both the sensing and communica-

tion range issues associated with leader-assisted localization were addressed. In the

proposed method, only the robots with one another’s sensing range are required to

exchange information between them. Therefore, despite the fact that the communi-

cation range dcom is generally greater than the sensing range dm, it is reasonable to

assume dcom = dm. When dcom is less than dm, which is more unlikely, to ensure the

connectivity of measurement network maximum displacement between pair of robots

should set to dcom. As robots can communicate only with the robots operate within

their communication boundaries, it is sufficient to calculate global pose for these neigh-

bours upon an arrival of information from leader. The thesis considered two types

of communication modes: instantaneous communication mode and time-delayed com-

munication mode. The former assumes that the information which originates from

a member of the MRS can communicate with any member of the measurement and

communication network within the current sample time step. In contrast, the lat-

ter assumes that a single time step is required for information hopping between two

robots. In order to reduce the communication overhead, this phase of the study does

not entail collecting all available measurements in the leader robots’ local processor
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and does not execute a centralized multi-root breadth first graph search algorithm. In

fact, an innovative distributed graph search algorithm was introduced to avoid dou-

ble counting of common information, which can be viewed as a distributed multi-root

breadth first graph search algorithm. The key challenge of the time-delayed commu-

nication mode was that robots cannot exploit the Markov property at each time step

as the previous state estimations and measurements are being used for sensor fusion

at future time steps. A set of theoretical concepts was introduced to determine the

best time step for each robot to apply the Markov property. This theoretical analysis

offered an effective way to reduce the onboard memory requirement for maintaining

state estimation and measurement history while optimizing the child robots’ pose

estimation approach.

7.1.3 Research Summary Based on Objective 3

The first two phases of the study assumed the availability of a sensory system for

measuring the relative pose of neighbours. However, range and bearing between a

pair of robots are widely available inter-robot sensory systems for MRS. Additionally,

it is possible to fabricate a light-weight and low-power inter-robot range and bearing

measurement system at a low cost [50]. Therefore, it was important to relax the

assumption on the exteroceptive sensory system so that the proposed leader-assisted

localization scheme can be implemented using inter-robot range and bearing measure-

ments. To this end, the third phase of the research developed a hierarchical sensor

fusion architecture. The proposed hierarchical sensor fusion architecture employed a

tracking filter to generate the relative pose of neighbours using inter-robot range and

bearing measurements. This tracking filter works as a bridge between range/bearing

measurements and the proposed leader-assisted localization scheme. The main focus

was to develop a fast converging filter approach for relative localization. Therefore,
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this research converted general range bearing measurements to a pseudo-linear for-

mat prior to performing sensor fusion. The simulation results demonstrated that the

pseudo-linear measurement-based relative localization scheme can be initialized with

an arbitrary initial pose and that it rapidly converges to the steady state level. This

is a significant improvement when compared with traditional EKF-based relative lo-

calization schemes. As the conversion of the measurement model from a nonlinear

model to a pseudo-linear model potentially affects system observability, this study

mathematically evaluated the observability conditions for relative localization using

pseudo-linear measurements. The findings of this mathematical analysis are summa-

rized in the following table:

Table 7.1: Summary of observability study

Measurement System Necessary condition for locally weakly observability
range and bearing linear velocity of the observed robot should not equal

zero
bearing only observed robot linear velocities and the observing robot

angular velocities should not equal zero.
range only traditional nonlinear measurement-based approaches

must be used for sensor fusion, as pseudo-linear measure-
ments cannot be made using only relative range measure-
ments.

7.1.4 Research Summary Based on Objective 4

Finally, the thesis developed a fully decentralized cooperative localization scheme for

the MRS. The objective was to develop a scalable and non-overconfident multi-robot

collaborative localization scheme for MRS. Decentralized sensor fusion architectures

are generally scalable, as the per-measurement computational and communicative

complexity of these approaches remain constant regardless of the number of agents
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in the team. However, the majority of available decentralized cooperative localiza-

tion approaches neglect possible interaction between teammates’ local pose estima-

tions resulting in an overconfident state estimation for each member of the team.

Split-covariance intersection-based sensor fusion architecture was introduced and the

required mathematical expressions to calculate and maintain both the independent

and dependent information using a cubature Kalman filter (CKF) were derived. The

proposed method demonstrated non-overconfident pose estimation with improved ac-

curacy. In the literature, it is reported that a minimum of one agent in a cooperative

localization team should possess absolute positioning capability in order to have a

bounded estimation error and uncertainty using cooperative localization [12]. There-

fore, this approach is suitable for MRSs with long-range sensing and communication

capabilities, or for MRSs where the connectivity of the measurement network can al-

ways be guaranteed. However, the decentralized cooperative localization scheme that

was developed can be exploited to improve the localization accuracy of the leader

robots.

7.2 Significant Contributions

To summarize, this thesis made the following key contributions in leader-assisted

localization of a heterogeneous MRS, fulfilling all of the outlined research objectives.

1. A centralized equivalent observation framework for MRS:

Under the first objectives, the thesis developed algorithms to synthesise the miss-

ing IRRMs among leader robots and child robots that operate beyond the sens-

ing range boundaries of the leader robots. Additionally to the virtually expand-

ing the sensing range boundaries of leader robots, the localization framework

developed in this thesis is capable of avoiding the double counting of common in-
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formation. Any multi-robot localization approaches that suffer from finite-range

sensing problem, such as relative localization, centralized, multi-centralized, and

distributed cooperative localization approaches, can easily adapt the proposed

algorithms and virtually enhance any observing robot’s sensing range bound-

aries.

2. A centralized equivalent communication framework for MRS:

Under the second objectives, the thesis developed algorithms to virtually ex-

pand communicate boundaries of the leader robots. Additionally to the virtu-

ally expanding the communication boundaries of leader robots, the localization

framework developed in this thesis is capable of avoiding the double counting

of common information, is robust against the time delays associated with the

practical communication channels, and is capable of optimizing memory usage.

Any multi-robot localization approaches that suffer from finite-range commu-

nication problem, such as relative localization, centralized, multi-centralized,

and distributed cooperative localization approaches, can easily adapt the pro-

posed algorithms and virtually enhance any observing robot’s communication

boundaries.

3. Leader-assisted localization scheme using inter-robot range and bearing mea-

surements:

Under the third objective, the thesis enhanced the applicability of the proposed

leader-assisted localization scheme, introducing a hierarchical filtering architec-

ture. This runs tracking filters on top of the proposed leader-assisted localiza-

tion scheme for estimating relative pose of neighbours using range and bearing

measurements. The tracking filters were implemented using pseudo-linear mea-

surements in order to obtained the fast convergence than the traditional relative
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localization schemes.

4. Scalable and consistent cooperative localization architecture for MRS:

Under the last objective, a decentralized cooperative localization approach that

is capable of accurately representing independencies and interdependencies of

each robot’s local pose estimations was designed, implemented, and tested.

7.3 Note to Practitioners

Accurate localization is a critical factor that governs the success of autonomous mo-

bile robots-based missions. In order to improve the accuracy of localization, robots

can be equipped with advanced sensory systems which would increase the cost of the

system. Additionally, robots can execute advanced localization algorithms to generate

an accurate localization which entails extensive processing capability and on-board

memory requirements. Most robotic systems do not possess sufficient resources to

host advanced sensory systems and execute advanced localization algorithms. The

proposed leader-assisted localization scheme is useful for such robotic systems. For

example, consider the application of indoor WiFi heat map generation using an MRS.

If it is possible to acquire more data points the accuracy of the map will be improved.

However, acquiring a dense data set using one robot entails a longer time for comple-

tion of the mission. On the other hand, using a homogeneous MRS for this application

will increase the operational cost. The use of a heterogeneous MRS then becomes the

trade-off between mission completion time and the operational cost when a group of

child robot acts as dynamic sensor nodes for a leader robot. Each child robot acquires

WiFi signal strength measurements and logs these measurements along with the es-

timated pose information. The localization of the child robot can be assisted by the

leader robot. The entire team can then move as a single flock and the formation of

181



the team can adaptively change in response to the spatial variations of the naviga-

tion space. In this application, the proposed leader-assisted localization scheme can be

viewed as an observer for the controller. This method is appropriate for various appli-

cations such as multi-robot pattern generations, explorations, formation control-based

applications, thermal heat map generation of industrial sites, and boundary tracking

applications to detect the boundaries of toxic gas leakage and highly radioactive re-

gions. A simulation-based study for multi-robot pattern generation and formation

control was performed using the proposed leader-assisted localization scheme as the

observer for controllers. The results of these simulation studies can be found in the

following two videos:

• multi-robot pattern generation: Link: https://youtu.be/blbhos6yrL0

• multi-robot formation control: Link: https://youtu.be/WJwX0_4bnMI

7.4 Directions for Future Work

There are a number of potential extensions that can be added to the work presented

in this thesis. These future developments will be studied for more practical issues to

exploit the proposed localization scheme for real-world applications.

The mute robot : The final framework of the proposed leader-assisted localization

scheme relies on the ability of teammates to propagate the information from

one robot to another, forming a hierarchical inter-robot sensing and commu-

nication graph. If one or more robots in the team stop transmitting and/or

receiving data, which is referred to as to as mute robot, a group of robots may

not receive global pose measurements from leader robots. As observed from

the experimental and simulation results, child robots’ pose estimations tend to
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diverge when they do not receive pose measurements from the leaders. There-

fore, it is important to identify mute robots in the team and reconfigure the

team formation so that the negative effect introduced by the mute robot(s) can

be eliminated. Mute robot behaviour may be a temporary effect introduced

by various environmental factors or the stochastic nature of the communication

channels. These mute robots may reassume an exchange of information with

their neighbours after being a mute robot for several time steps. Therefore, it

is important to ensure that mute robots do not leave the robot team; in fact,

these robots should identify themselves as mute robots and run a local controller

so that they will always operate within a sensing and communication range of

one or a few other members of the MRS. To this end, future research can be

established to effectively identify and handle the mute robots in the MRS.

Connectivity of sensing and communication network : The experimental and

simulation results of the proposed leader-assisted localization scheme illustrated

that each child robot must be a member of a sensing and communication graph

which consists of a minimum of one leader robot. Otherwise, the child robots’

localization tends to diverge, as their localization then completely relies on their

odometric measurements. Therefore, the connectivity to a sensing and commu-

nication network with a minimum of one leader robot is one of the key require-

ments for the proposed leader-assisted localization scheme. Therefore, a control

algorithm such as a rigidity maintenance controller [140–144] can be integrated

with the proposed localization scheme so that the network connectivity is al-

ways ensured. As the child robots are resource constraint robots, decentralized

control architecture is desired to ensure the connectivity of the sensing and

measurement network. If there exists more than one sensing and communicat-

ing path from the leader robot to a child robot, the proposed algorithms will
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become more robust against the single point of failure. For example, assume

there exist two sensing and communication paths between a leader robot and

a child robot in the MRS. If an intermediate robot in the shortest sensing and

communication path suddenly becomes a mute robot, the child robot will not

receive pose measurements through this shortest path. However, it is possible

for pose measurements to propagate through the second measurement path as

no pose measurement is propagated through the first measurement path. This

eventually increases the robustness of the proposed localization scheme against

the single point of failure. To this end, future studies can be undertaken to

integrate a decentralized control architecture to ensure the connectivity of the

sensing and communication network, so that more than one sensing and com-

munication path between an arbitrary leader robot and an arbitrary child robot

in the MRS exists.

Uneven terrains : The localization framework and theoretical development of this

thesis were developed targeting indoor applications. Therefore, a flat navigation

surface was assumed for each robot, which is a valid assumption for an indoor en-

vironment, and the 3DOF kinematic model was used to represent the robot navi-

gation. This is an overly simplified assumption for outdoor applications, because

outdoor navigation terrains are usually uneven. For these applications, the full

SE(3) formulation of the proposed localization scheme needs to be considered,

which will enable the proposed localization scheme, not only for outdoor appli-

cations but also for collaborative missions using both aerial and ground robots.

This will be a significant achievement, as the integration of the complementary

characteristics of aerial robots and ground robots can enhance the accessibil-

ity of cluttered indoor and outdoor environments. For outdoor applications,

accurate knowledge about the terrain forces and the parameters are important
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factors to generate the command velocities for ground robots. However, this

information is generally unavailable and must be estimated. Similar limitations

exist with aerial robot systems, wherein wind-disturbance parameters are not

generally available and need to be estimated for better control performances.

Therefore, the parameter estimation capabilities should be integrated with the

full SE(3) formulation when extending the proposed leader-assisted localiza-

tion scheme to outdoor applications. To this end, a future research study could

expand the proposed localization scheme for the SE(3) domain while incorpo-

rating the terrain and wind parameter estimation capabilities for each member

in the MRS.

Boundedness of Split-CI based decentralized cooperative localization : The

proposed decentralized cooperative localization scheme was developed using the

Split-CI algorithm. The theoretical analysis and simulation based verification

for the consistency of the Split-CI based sensor fusion is reported in [137]. How-

ever, the estimation error boundedness of the Split-CI filter based decentralized

cooperative localization is yet to be mathematically derived. Future research

could perform rigorous mathematical analysis of the stability of Split-CI filter

based decentralized cooperative localization.
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Appendix A

Consistent and Debiased Method

for Cartesian-to-Cartesian

Conversion

Converting a relative pose measurement to a global pose measurement can be defined

as the converting of uncertain information from one Cartesian coordinate frame to

another Cartesian coordinate frame.

Assume x is a random variable with mean x̄ and covariance Px. Additionally, assume

there is an another random variable y which relates to x as follows:

y = f(x)

where f(·) represents a nonlinear function. If the objective is to calculate the mean ȳ

and covariance Py of y, given the x̄, Px, and f(·), the transformed statistics are said

to be consistent if the inequality

Py − E
[
{y− ȳ}{y− ȳ}T

]
≥ 0 (A.1)
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Figure A.1: Comparison of estimated covariance matrixes

holds [145]. Work presented in this study applies a cubature-point based approach

to perform Cartesian-to-Cartesian coordinate transformation. Herein, a simulation

study is presented to verify that the Cartesian-to-Cartesian conversion algorithm used

in Algorithm 6.2 remains above inequality.

Consider a robot team with two robots,R1, andR2. The global poses ofR1 andR2 are[
5 3 0.6981

]T
and

[
8 6 0.3491

]T
, respectively1. The objective is to find the global

pose of R2 given the global pose of R1, the relative pose of R2 with respect to R1 and

their uncertainties. The statistics obtained from Algorithm 6.2 were compared with
1The format of the pose vector is

[
x y φ

]T where x and y coordinates are given in m while
the orientation φ is given in rad.
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those calculated by a Monte Carlo simulation which used 10,000 samples. Table A.1

and Figure A.1 illustrate the comparison of the statistics calculated from these two

methods. It can be seen that the mean values obtained from the proposed algorithm

approximately overlap those calculated by a Monte Carlo simulation which used 10,000

samples. Therefore, the conversion is unbiased. Further, it can be seen that the

covariance ellipses of the cubature-point-based approach are always larger than those

of the Monte Carlo simulation. This implies that the proposed Cartesian-to-Cartesian

transformation holds the inequality given in (A.1). Additionally, principal axes of the

covariance ellipse of the proposed approach approximately overlap those of the Monte-

Carlo localization. Therefore the proposed coordinate transformation algorithm is

consistent.

Table A.1: Comparison of mean global pose

True pose

Mean from
Monte Carlo

simulation with
10,000 samples

Mean from
cubature-points

based transforation

x(m) 8 8.0127 8.0112
y(m) 6 5.9410 5.9375
φ(rad) 0.3491 0.3240 0.3250
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Appendix B

Observability of the Pseudo-Linear

Measurement-based Relative

Localization Scheme for Different

Relative Observation Models

Case 1: Both the range and bearing measurements are available

The observability analysis for this measurement model is presented in Section 5.2.3.

Case 2: Only the bearing measurements are available

When a system is empowered only with inter-robot relative bearing measurement

capabilities, the corresponding pseudo-linear measurement function h(x) is given in

(B.1).

h2(x) =

 −xs(θ) + yc(θ)

−xc(θ)s(α)− ys(θ)s(α) + zc(α)

 (B.1)
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• Zero-order Lie derivatives (L◦h2)

L◦h2 = h2(x) (B.2)

Its gradient is as follows:

∇L◦h2 =

 −s(θ) c(θ) 0 0

−c(θ)s(α) −s(θ)s(α) c(α) 0

 =
[
h◦pmo2 02×1

]
(B.3)

• First-order Lie derivatives (L1
f2h2 and L1

f3h2)

L1
f2h2 = ∇L◦h2 · f2

=

 s(φ− θ) c(φ− θ) 0

−c(φ− θ)s(α) s(φ− θ)s(α) c(α)


(B.4)

This contains only the relative orientation component. Hence, take the gradient

of L1
f2h2 with respect to φ.

∇φL
1
f2h2 =



c(φ− θ)

s(φ− θ)s(α)

−s(φ− θ)

c(φ− θ)s(α)

0

0



(B.5)
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L1
f3h2 = ∇L◦h2 · f3

=

 −xc(θ)− ys(θ)

xs(α)s(θ)− ys(α)c(θ)


(B.6)

Its gradient is as follows:

∇L1
f3h2 =

 −c(θ) −s(θ) 0 0

s(α)s(θ) −s(α)c(θ) 0 0

 =
[
h1
pmo2 02×1

]
(B.7)

Lemma B.0.1. Given the 3D bearing measurements, a sufficient condition for the

system given in (5.12) and (B.1) to be locally weakly observable is 1) vi 6= 0 and 2)

ωz,j 6= 0.

Proof. Given the 3D bearing measurements, the observability matrix for the system

expressed in (5.12) and (B.1) can be constructed using (B.3), (B.5) and (B.7) and is

given as follows:

O2 =



∇L◦h2

∇L1
f3h2

∇L1
f2h2


=



h◦pmo2 02×1

h1
pmo2 02×1

06×3 ∇φL
1
f2h2


(B.8)

It is sufficient to show that both

h◦pmo2

h1
pmo2

 and ∇φL
1
f2h2 are full rank in order to prove

that the O2 retains full column rank condition.

det


h◦pmo2

h1
pmo2


T h

◦
pmo2

h1
pmo2


 = 1− s(α)4 6= 0 if α 6= π/2 (B.9)
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det
(
(∇φL

1
f2h2)T (∇φL

1
f2h2)

)
= 1 + s(α)2 6= 0 (B.10)

According to (B.9) and (B.10),

h
◦
pmo2

h1
pmo2

 and ∇φL
1
f2h2 are full rank. Hence, O2 has

full column rank; thus, the observability rank condition is satisfied. Therefore, from

Theorem 1, the system is locally weakly observable when 1) vi 6= 0 and 2) ωz,j 6= 0.

In other words, the pseudo-linear bearing measurement based relative localization

scheme that is described in (5.12) and (B.1) is locally weakly observable when the

observed robot linear velocities and the observing robot angular velocities are not

equal to zero.

It is important to note that vi 6= 0 and vj 6= 0 are not sufficient conditions, as shown

below, to guarantee the observability when bearing measurements are given in pseudo-

linear format, although they are sufficient conditions for the system observability

when considering the nonlinear bearing measurements in the Cartesian coordinate

system [123].

Consider an exteroceptive sensory system which is capable of measuring only the

relative bearing for observed robots as given in (B.1). Furthermore, assume zero-

order Lie derivatives ((B.2)-(B.3)) and first-order Lie derivatives ((B.4)-(B.5)) are

available.

• Compute the first order Lie derivative L1
f1h2

L1
f1h2 = ∇L◦h2 · f1

=

 s(θ) −c(θ) 0

s(α)c(θ) s(α)s(θ) −c(α)


(B.11)
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This is independent from the system states; thus, the resulting gradient matrix

is as follows:

∇L1
f1h2 = 06×4 (B.12)

The observability matrix then can be defined as (B.13).

O3 =



∇L◦h2

∇L1
f1h2

∇L1
f2h2


=



h◦pmo2 02×1

06×3 06×1

06×3 ∇φL
1
f2h2


(B.13)

The rank of the observability matrix O3 is three (rank(O3) = 3). This is less than

the number of the state variables (DOF) in the state vector given in (5.1). Hence,

vc 6= 0 and vl 6= 0 are not sufficient conditions to guarantee the observability when

the bearing measurements are given in pseudo-linear format.

Case 3: Only the range measurements are available

The bearing measurements are required in order to construct a pseudo-linear measure-

ment model as expressed in (5.3). Hence, no pseudo-linear format exists for a range

only exteroceptive sensory system. Thus, the nonlinear range measurement has to be

employed with direct linearization for sensor fusion. Then the sufficient condition for

the system to be locally weakly observable is 1) vi 6= 0 and 2) vj 6= 0 [123].
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