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Abstract

The observed response of a crystalline and brittle material to stress is the result of
various micromechanical activities inside the material at the grain, or, at the con-
stituent clement scale. These activities include microcracking, pore formation and
collapse, grain-boundary sliding, and phase change. In this thesis, such microstruc-
tural changes, and their effect on the response of viscoelastic materials are presented
with reference to the hehaviour of ice during its interaction with a structure.

During ice-structure interaction, zones of high pressure are formed at the struc-
ture interface. Extensi king and other mi changes such as
recrystallization in the ice occur in these zones. When the cracks coalesce, cavities are
formed between junctions of weakly connected grains. This finely crushed material
is finally extruded from the structure interface. The behaviour of ice and its damage
depend on the rate of loading, the degree of confinement, the density of mlcrocrar_ks,
grain boundaries, cavities and other mi To further und in
this area, triaxial tests were carried out on ice at different initial microstructure.

The process of material modelling is guided by the framework of thermodynam-
ics. The internal variable approach provides a powerful method of incorporating the
microstructures into a continuum theory. The changes in microstructures such as
cracks and grain boundaries are modelled by a generalized J-integral, while change in
the porosity is modelled by an approximate solution for creeping solids. To describe
the various changes in the material two theories are developed. In the first theory,
solutions for nonlincar elastic media are extended to nonlinear viscoelastic media us-
ing a correspondence principle. The second theory for viscoelastic behaviour is based
on a mechanical model with nonlinear elements. Three components of deformation,
i.c., the elastic, she delayed elastic, and the viscous creep are separately identified,
and their changes with the extent of damage are modelled. The first theory is more
systematic and requires fewer parameters. Both of these heories provided good pre-
dictions for strength tests. The dilatation of the cracking polycrystalline ice and the
porous crushed ice is also modelled by the mechanical model.

A series of plane-strain extrusion tests were analyzed to understand the flow prop-
erties of crushed ice. A closed-form solution is presented for the nonlinear and vis-
cous flow of crushed ice, and a finite element solution is also presented for the flow
of crushed ice that is also undergoing compaction. These analyses provided a good
agreement to the extrusion tests.
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Chapter 1

Introduction

A theory of the deformation and flow of viscoclas

e materials is essential in the
understanding of a wide range of technical and scientific problems in areas such as
soil and rock mechanics, powder and mineral processing, geophysics, and offshore

engincering. Such problems include soil deformation, microcracking of rock, conerete,

and flow of ice and snow avalanches. These examples may appear to be very disparate
in nature involving different materials and phases, but the nature of microstructures
and their mutual interaction is evident in all the problems.

In polycrystalline materials such as metals and ice in the undamaged state, erys-
tals are packed together in a solid structure without visible pores or voids. Under
deformation there is a little change in the density of the material. In materials with
changing microstructures such as brittle and porous materials, density or porosity is
sensitive to external loads or deformations. For example, for a given confining pres-
sure, a loose material be.  ues compressed and its stiffness increases, while a dense
material dilates and its stiffness degrades during axial loading (sce Figure 1.1). Most,
of these materials never return to their initial state and show some time-dependent

behaviour upon unloading. In materials at high homologous temperatures, e.g., ice
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IMigure 1.1: A typical deformation behaviour of particulate materials under cyclic

loading,

and snow, the deformation at both loading and unloading is history-dependent.
Modelling of thesc aspects in a structured-continuum is a major task if the model

parameters are required Lo be physically sound. In the present work, investigations are

carried out in this direction. [n this chapter, after outlining the objectives, material

behaviour is reviewed in detail. A summary of the analysis procedure is presented,

and finally the organization of the thesis is discussed.

1.1 Objective

In cold regions ice forces may form the most severe load case for ships and marine
structures. During the process of ice-structure interaction, ice fails in brittle manner
by continuous crushing and non-simultaneous failure by splitting, spalling and busk-
ling. Polycrystalline ice near a structure undergoes extensive damage and crystals

are broken into discrete pieces. The spalling of ice results in the formation of high
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Figure 1.2 lee-Structure Interaction.

pressure zones from which crushing and extzusion occur. The crushed particles form
an interfacial layer between the intact ice mass and the structure (Fignre 1.2). The
thickness of this layer may vary spatially depending on the structure stillness, ice

inhomogeneity and velocity of the interaction, and it is associated with the

and their variation (Jordaan and Timco, 1988; Singh et al., 1990).
Ice is a viscoelastic material, and Lhe change in its microstructures such as crack-

ing in polycrystalline ice, and sintering in snow and crushed ice, is history dependent.

Similar behaviour cun be observed in cracking of rocks, concrete, and porons mate-
rials such as clay and mineral powders. The behaviour of such materials depends
on the current state of their microstructures and their change during the deforma-

tion. The objective of this thesis is Lo present a physically based model to

changes during the deformation in the microstructures such as cracks and pores, in

the framework of continuum mechanics.
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1.2 Review of Material Behaviour

1.2.1 Brittle Materials

In polycrystalline materials cach grain is nearly perfect and meets its neighbors at
grain boundarics. It may contain some flaws such as pores and microcracks (Fig-
ure 1.3). Such flaws weaken the material. When the material is stressed, some energy
is stored duc to the elasticity of material and in new surfaces, usually created at the
llaws due to stress concentrations, while most of it dissipates due to friction at crack

faces and in other inelastic deformations (Jordaan and McK 1989, 1991). In a

ductile material, these flaws increase the ductility of the material; whereas in a brittle
material, brittleness is increased.

In tension, growth of a critical flaw is unstable. Under compression, cracks are
initially less prone to propagate and the growth is stable. Many ductile and brittle
materials such as copper and mild steel can fail in compression by the formation ol
tensile cracks normal to the direction of applied compression (Nemat-Nasser, 1989;
Ashby and Hallam, 1986; Schulson, 1990). This is because of development of wing-

cracks on pre-existing flaws in the material. At advanced stages of cracking, the
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Figure 1.4: TFailure in compression of a brittle material at (a) low and (b) high
confining pressures.

loading rate and other environmental factors influence this proce:

At low confining pressures, the crack growth is usually along the major principal

axis (Figure L.4a). Sometimes it may be localized along the maximum shear stress

plane, while at high pressures such localization is suppressed, and

King is uni-

cked

formly distributed throughout the malerial (Figure 1.4b). Such uniformly cr;

material under high pressure is essentially an isotropic and homogencons ductile ma-

terial. With an increase in the confining pressure, the strength and ductility of the
material increases while the dilatation decrcases (Figure 1.5a). In a rale-sensitive
material, strength increases and the ductility decreases with an increase in the rate
of loading (Figure 1.5b).

Elliott and Brov:n (1985) studied a highly porous limestone under confining pres-
.ures up to 30 MPa and observed similar changes in the material behaviour. At low
confining pressures the failure was brittle and the material showed dilatation, which

changed to ductile compaction by continuous pore collapse for high confinement.
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Pigure 1.5: Effect of (a) confining pressure and (b) the rate of loading on the material
hehaviour.

1.2.2 Particulate Materials

Lade (1988) reviewed i ies of frictional ials, and obse: ved that

stress and strain-rate are not co-axial at low stress levels. He also observed the tran-
sition to coincidence of strain-rate and stress axes at high stress levels. This suggests
that frictional matzrials may behave like metals at high stresses. The inelastic defor-

mation of [rictional ials is on the stress-path and its initial fabric.

Oda (1972) and Oda et al. (1980) studied initial fabric and its change during the
deformation of sand. The word fabric denotes the local granular structure, defined
as the spatial arrangement and contact areas of solid particles and associated voids.
The original distribution of fabric tends towards the direction of maximum principal
stress. Rowe (1962) studied rigid spherical particles in contact and observed that
strength and dilatancy behaviour of such an assemblage when sheared, depends on
inter-particle friction, and the geometrical angle of packing that forms the initial fab-

ric in the material. The path-d d

is more d at high stress levels,



Figure 1.

Sintering of grains

where inclastic strains e relatively large.

In materials at high homologous temperatires such as suow and ice, the densifica
tion rate is largely iruenced by the temperature apart from the prossure dependency
(Abele and Gow, 1975; Fukue, 1979). lce grains or blocks stick together by neck

growth while in contact (sce Figure 1.6) and form a matrix of s

al.

gregated mate
The driving mechanism for this process is the surface energy available; this energy is
larger for smaller grain size. The neck growth reduces the surface arca, and thus the

surface energy, and causes the material to compact. The process of sintering incre

with the duration of loading and the amourt of applied hydrostatic pressure (Macto
and Ebinuma, 1983). The ambicnt temperature and the rate of loading also have a

significant influence on such deformations. Under low rates the rheological prope

of the material become important.

Gale et al. (1987) performed triaxial lests on particulate ice, which was isotropi-

cally compressed for a few hours, and observed a bi-lincar deviatoric stress-strain he-
haviour. The initial branch rises rapidly and suddenly a break-over stress is reached
followed by a hardening ductile phase. The break-over stress is highly dependent
on the sustained confining prassure. Such brittle break-over is associated with the
breaking of sintered bonds and cannol. be interpreted as the yield stress of the bulk

material. Gale et al. also compared the hehaviour of crushed ice and loose sand.
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Figure 1.7: Compressible behaviour for materials of (a) low and (b) high porositics.

Both materials displayed broad similarity except for the break-over process. Steel et
al. (1991) studied the effect of the rate of loading, temperature, and the confinement

ial Lests on spray ice, and observed that the ductility of the material increascs

in tria
fi and d with the r..te of load-

with an increase in and
ing (Figure 1.5). Under high confining pressures sand also shows decrease in [riction
with increase in pressure (Vesic and Clough, 1968).

The volumetric behaviour of materials of various porosities is shown in Figure 1.7.
I low porosity materials where the porosity is mainly due to microcracks, the loading

and unloading curve is strongly nonlinear, and the deformation is largely recoverable

(Johnson and Green, 1976). For materials of high porosities, pores first collapse and
microcracks form at the grain-boundaries. These materials often show two peaks in
strength tests.

Under very large confining pressure, particulate ice is expected to lose its discrete
nature. and behave as polycrystalline ice. The grain size distribution also has sig-

nificant effect on the failure mode. In a gap-graded particulate material, crushing of

the grains occurs, while in a well-graded material, the behaviour is ductile at high



pressures (Feda, 1982). The reduction in grain size increases the amonnt of surface

cnergy. which in turn increases sintering.

1.3 Approach

During ice-structure interaction large local stresses may develop. In medium-seale
indentation tests (Frederking ct al., 1990), local stresses as high as 50 MPa were
observed. These stresses develop near the centre of the critical zones (Figure 1.2),
and are the result of large confinement. ‘This zonc is produced by extensive cracking
and [ragmentation of ice. The material in this zone is fine-grained, contains pores
and its density is less than that of the parent polycrystalline ice. Outside this zone,
confining stresses arc small and tensile stresses may develop becanse of the geometry

of ice and structure, and non-simultancous failure (spalfing) may occur. “Though

spalling may result in the reduction of ice forces in the spalling region, the total foree

on the structure is largely regulated by the flow of crushed ice from the critical zones,

and the crushing near it. This is because most of the load is carried by these zones.

To investigate the crushing process in i

-structure interaction, triaxial strength

and creep tests were conducted on polycrystalline and crushed ice. T

ts were also

conducted on pre-damaged samples. All samples were made in the laboratory from
fresh-water. The confining pressures were up to 20 MPa and strain-rates were up Lo

2 x 107?/s at —10° C room temperature.

The viscoelastic response of material with cracks and pores is presented using two

theories: first, a theory based on the modified superposition method, and s

mechanical method. In the modified superposition method, th in the mi-

¢ change

crostructures, “internal variables,” are modelled first for a nonlinear clastic material

then the problem is transformed into the viscotlastic domain using i
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i

principles. In the | model cach i is identified sep ly, and the

material is presented by combination of nonlincar springs and dashpots. This method
provided more flexibility and the change in the internal variable affected various con-

parately, Both of these theories are developed based on ther

stituents

foundations and the material is assumed to be statistically isotropic through the de-
formation process, i.c., the optical-axis, the graiu-boundaries and cracks are randomly

oriented in space.

1.4 Organization of the Thesis

“'his thesis is divided into eight chapters. In Chapter L, the problem is identified with

a brief int to the ! propertics of particulate materials. A detailed
review of the material behaviour and relevant constitutive theories to describe them
is presented in Chapter 2. This includes the mechanical behaviour of elastic and
viscoelastic continua with changing microstructure. The description includes a brief
discnssion on phenomenological and microstructural continuum theories. Finally,
these theories are again discussed in particular for composite materials, damaging
materials and porous materials.

In Chapler 3, the details of triaxial test-setup and procedure for crushed ice and
polycrystalline icc are presented. The results of these tests are presented in Chapter 4,
and the material behaviour and microstructural features are discussed.

In Chapter 5, a continuum theory to describe a material with growing damage due

to mi king is l. The effect of individual mi ks and their growth

is studied by averaging at a scale that is much larger than size of microstructures.
For nonlinear viscoclastic problems, a method due to Schapery (1991) and based on

modified superposition method is reformulated and validated for polycrystalline ice.



il

A mechanical method based on the reduced time characterization due to Sehapery
(1969) and Jordaan et al. (1992) is also presented. The developed theories are
compared with the triaxial tests results.

In Chapter 6. a theory to describe the mechanical behaviour of crushed ice under

high pressure s presented. A closod-form solution for elastic materials containing

voids and obeying a power-law is also presented. The clastic results are then extended
to predict the viscoelastic response of crushed ice.

rain extrusion con

In Chapter 7, the flow properties of crushed ice under plane-

ditions are examined. Finite clement analyse:

are conducted to compare the test

results and the theorctical developments. A closed-form solution is also presented for

the plane strain extrusion of viscous material following power-law nonlinearity.

Finally, the results of earlier chapters are summarized in Chapter 8, and recom

mendations are made for future study.



Chapter 2

Theory of Materials with

Microstructure

2.1 Introduction

In this chapter, a thermodynamic theory for elastic and viscoelastic continua with
changing microstructure is described. The description includes a brief discussion on
phenomenological and microstructural continuum theories for elastic and viscoelastic
materials. Many viscoelastic problems can be solved by analogy to elastic solutions.

d GO}

The cor are d for such an analogy. Finally, particular

aspects of composite materials, and the effect of microcracking and pore collapse on

the stiffness of polycrystalline materials are discussed.

2.2 Equivalent Homogeneity

A constitutive theory for particulate materials can be based on phenomenological or

microstructural ipl

From the pt logical viewpoint, these materials
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exhibit dilatancy, and are sensitive to hydrostatic stress. Since these characteris-
tics are due to their microstructure, the microstructural definition is of fundamental
importance. The microstructural approach is based on the interaction between funda-
mental constitutive units of the material. The geonetric measure of the local granular
structure is incorporated into the continuum theory. A constitutive relation for de-

formation of an assemblage of grains or crystals is developed, and the total behaviour

is d in terms of vol ged quantiti

The elastic properties of i ials are d dent on “he elaat i proper-

ties and the volume [ractions of the matrix and the particulate phas

ie

The geome
features of the microstructure can be the crystal grain structure in polycrystalline ma-
Lerials, where each grain is anisotropic and different grains have different orientation,

or, ellipsoidal-shaped inclusi bedded in a continuous matrix phase as in compos-

ites. The mi ks can be i as cllipsoidal inclusions where one d

is very small. In porous materials, the inclusion phase lacks stiffness.

The presence of mi creates inh in the material. To use the
theory of elasticity, which is developed for | erials, state variables
such as stress and strain need to be redefined. The scale of ink ity is assumed

to be orders of magnitude smaller than the characteristic dimensions of the problem

of interest, such that there exists an int di Ji over which

can be legitimately performed. Figure 2.1 shows such representative volume with
microstructures.

The validity of the phenomenological models is limited to the cases where the
minimum dimensions of the sample are several times larger than the maximum di-
mensions of grains. The resulting homogencous state of strain should be achieved
during testing of the material. In fact, all tests on granular materials indicate the

heterogeneous nature of the strain (Oda et al., 1980, Fukue, 1979). This makes phe-
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Figure 2.1: Volumetric averaging.

nomenological continuum theories dubious (Cowin, 1978), unless such heterogeneity
is properly addressed.
2.3 Thermodynamic Constitutive Theory

The response of many materiais depends to a large extent on their history. The

inclastic deformation of metals, polymers, and frictional materials exhibit history-

lependent behaviour, though with dissimilar patterns. In theories using internal
variables, dependence on the history is represented by the variables describing the
structure of the material elements. Some examples are changes in the crack and
averaged micro-crack geometry, void ratio and dislocation arrangements.

In a thermodynamic system, the internal energy and forces are state functions of
state variables such as temperature, and some measure of deformation, e.g., strain.
‘The state variables serve to define the system, but are often insufficient to do so by

themselves. In a reversible system the state is explicitly defined by external variables,
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but in an irreversible system some additional variables not available for macroscopic
observations must be introduced to account for the loss of energy (Bridgman, 1950).
These additional variables are referred as internal variables. The internal variable
approach (Bridgman, 1950; Biot, 1954: Coleman and Gurtin, 1967: Schapery, 1969)
is based on non-equilibrium thermodynamics. In this theory a free energy function
is assumed to exist that is a function of all external and internal variables. Another
approach in internal variable theory is duc to Kestin and Rice (1970) and Rice (1971),

who postulated that it is always possible to determine a finite set of internal variables

s0 that their number is adequate to render the state under consid

tion sufficiently close to a ined state of the thermody ic equilibrinm. Both

internal variable theories give the same result,

Rice (1971, 1975) formulated a thermodynamic theory based on microstructural
features for crystalline slip, diffusion, and Griffith cracks. [lansen and Brown (1986,
1988) extended Rice’s theory to granular snow, and identified the state variables

at the granular level rather than the crystalline level in the Rice's work. Schapery

(1990) presented the internal variable fc lation for the defe ion of i

elastic media with changes in mi such as mi k growth, healing

and transformations. This theory is reviewed in this section.

2.3.1 Strain Energy

A basic assumption for all the process of interest is that a strain encrgy function W
exists, The strain energy is a function of all external variables, e.g., strain ¢, and

independent internal variables Sy,

W = W(ci, Sm)- (21)



The stress is defined as
aij = IW/dci;. (2:2)

'm may define changes in microstructure, such as microcrack geome-

@n

The parame
try, void volume and grain boundary sliding. When the Sy, are constant the material
is hyperelastic (Malvern, 1969), and the definition is not limited to linear elastic ma-
terials, For non-isothermal processes W is the Helmholtz free cnergy and is also a
function of temperature. In the present developments only isothermal processes are
considered. The free encrgy also contains surface energy (Rice, 1978) Wie = 29m Am,
where 4,, is the surfacc energy per nnit area of mth crack with the surface area of

Aw. The surface energy is reversible, and often negligible.

2.3.2 Work

“The strain energy defined in Equation 2.1 is the work done when all Sy, are constant.
"The work done in a real process in which Sn are not constant, is partially irreversible.
‘T'he energy is irreversible due to the dissipative nature of friction, and the microc-
racking where the energy is dissipated in processes such as creep and plastic flow.

T total work 1n a real process, and associated with i; and ; is
Wr= / oijdes, (23)

where the repeated indices follow the summation convention.
The strain energy and total work are interrelated. For an infinitesimal change in
«j the change in strain cnergy from Equation 2.1 is,
oW aw
dw = mdé;, + mds‘m = 0ijdei; ~ fmdSm, (24)

whete Equation 2.2 is used and [y, are thermodynamic forces defined as

fn = —0W/8Sp. (2.5)
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The thermodynamic forces [, produce changes in the microstructural parameters
Spn. For a cracking material if Sy, is surface arca of a crack, the thermodynamic force

is the energy release rate for crack propagation. Il surface ener

y i also considered

apart from other microstructural changes in the material during deformation, and

crack growth is locally self-similar, then the increase in the sur

¢ energy due to

crack growth is proportional to the amount of new free su

Here the free energy

is W + W, and the thermodynamic force responsible for eracking is

S = G = OWie/OAR,

where Gy is the cnergy release rate and A, is the surface arca,

The change of Lotal work is obtained by integrating Equation 2.1 from any

trary state | with strain energy W' to the current state,
AW =W = W'+ [ fdSa, (27)
\

where Equation 2.3 is used. Thus the total work done is sc

cparated inlo strain cnergy,

which is reversible, and an irreversible energy W, = W, (8, ), which can serve Lo define

the evolution law
S = OW,[DS,. (2.8)

For a process starting from the roference state at L = 0 where W = W, =0,

Wr =W + W, + W, (2.9)

2.3.3 Thermodynamics

Materials should satisfy the second law of thermodynamics, besides Lh

equations and the constitutive assumptions. This law postulates

the exigtence

entropy as a state function of all state variables including non-observable internal
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variables Sn, (Malvern, 1969). The second part of this law states that the rate of
entropy production per unit mass s of the universe is always positive. It is zero for

reversible processes. Thus for all processes,

Si+si >0, (2.10)

where s; is entropy of the system under consideration, and s;; is entropy of the
surroundings. Now the system is brought in contact with a heat reservoir that is
large enough to maintain the system at constant temperature T If Q is rate of heat
transferred from the system to the reservoir, using the definition of entropy from the

first part of sccond law si = Q/T, Equation 2.10 becomes,

Q

i=si+ 720 (2.11)

From the first law of thermodynamics, the rate of work done Wr = gyci; and
the raie of change in internal energy U of the system are related to the rate of heat
transfer Q as

U =06~ Q (2.12)

Using the definition of strain energy W = U — T's;, the second law (Equation 2.11)
becomes

Té = ayycij— W 0. (2.13)
Biot, (1954) used this form of sccond law to derive the theory of viscoelasticity. This
work is reviewed in Scction 2.3.

Using Equation 2.4, Equation 2.13 can be presented as

Té = fnSn 2 0. (2.14)
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Figure 2.2: Stress-strain curve
2.3.4 Force-Based Formulation

In the formulation of the last section, strain was taken as an independent state vari-

able. Material propertics are often cvaluated in such a way by constant strain-rate

tests. In force-controlled processes, which arc common in hard solids such as metals,

the flexibility of test frames makes strain-controlled deformations difficult, an alterna-
tive approach where the stress is the independent state variable may be more suitable.
For this case the constitutive cquation can be formulated in terms of complementary

strain energy W’ (see Figure 2.2) defined as,
W =ayc, - W (2.15)
The differential of W' is obtained by using Equation 2.4 as,
dW' = ciydoy; + [ndSm (2.16)
Thus, the functional form for W’ is,

W' = W/(0,,5m). (217)
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‘The strain ¢; and the thermodynamic force f, is defined by Equation 2.16 as,

< = OW'[day;,

S = OW'[8S,,
or, in the functional form as,

€ij = €5(9i5,Sm)s

Jm = fn(9i3, 5m)-
Using Equation 2.8 and 2.19,

OW'[0Sm = OW, [0S

"The Lotal complementary work Wr. is defined as,

Wr =oye; = Wr,

(2.18)

(2.19)

(2:20)

(2:21)

(2.22)

(2.23)

and can be separated into complementary strain energy W’ and the irreversible energy

W, as,
Wy=W'+W,

The incremental form of Equation 2.20 is

dei; Je;
dei; = =—2doi; + =—=>dSm.
= Gy 200 g5, %
Using Equation 2.18 and 2.19,
a,
deij = Dijudown + #dsm
ij

where Djji is the compliance tensor given by

*w'

Diju = oij0ou

(2.24)

(225)

(2.26)

(2.27)



At constant temperature and at current value of Sy, and when the load is removed,
i.e., 0ij=0, the remaining strain is inelastic strain associated with a state $,. The
strain increment can be divided into an elastic or recoverable part de;”, and an
irrecoverable part de;;? as,

deiy = deij™ + de”

where
deiy™ = Dijudoy

2
Ty A5

deif?

Rice (1971) related the irreversible strain increment (0 a plastic flow potential as in
the theory of plasticity. This review is restricted to elastic and viscoclastic theories.

The selection of suitable internal variables representing the microstructure is very
important, and should be based on experimental observations. The number of in-
ternal variables should be large cnough (within the limit of practical applicability)
to represent the material behaviour under desired conditions. Simultancously, they
should have physical significance so that they can be measured direetly or indirectly.
At least one internal variable is desired to prosent history dependence in the material,

but more may be needed for non-lincar response characterization.

2.4 Viscoelastic Theory

In this section viscoelastic theories for material with microstructure is discussed.

First, linear viscoelastic theory based on irreversible thermodynamics is presented
in brief. This is followed by a review of nonlincar viscoclastic theories. Finally
correspondence principles are described Lo obtain viscoclastic solutions from solutions

for elastic materials.



2.4.1 Linear Theory

For lincar viscoclastic materials stress oy,(t) can be expressed in most general form

using the Boltzmann superposition principle as

du‘u(T)d

Gis(t) —/ Diju(t = 7)—=— (2.29)

where Diju(t) is creep compliance and  is any arbitrary time between 0 and ¢. The
creep compliance is defined as the creep strain resulting from the application of unit
stress. This is also a memory function that describes the stress-history dependency
of Lhe strain,

Biot (1954) derived the evolution Equation 2.29 using the thermodynamics de-
scribed in Section 2.3.3. The theory was presented in generalized coordinates. The
generalized forces, Q;, j = 1,2,..n include external forces Q;, j = 1,2,..k, and
thermodynamic forces Q,, j = k + 1,k + 2,..n. The corresponding generalized dis-
placements, g,, j = 1,2,..n include external displacements g;, j = 1,2,.k, and
hidden displacements (internal variables) gj, j = k + 1,k +2,..n. Equation 2.13 can
be written as

Té=X;4; 20 (2.30)

where the coefficients X, are functions of all quantities affecting irreversibility of the

process and are defined as
_ow
dg;’

If the phenomenological laws connecting X; and the velocity g; are linear so that

(2.31)

X;j = bjidi, (2.32)
the evolution Equation 2.30 can be written as

Ts = bijigi > 0. (2.33)
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The coefficients b;; are viscosity terms, and are symmetric (b;, = b;;) duc to the

Onsager’s principle (Fung, 1963). Substituting Equation 2

2 in Equation , the
governing equation of equilibrium is

aw
—+by6i=Qp 2.3
g, + i = Qs (2:34)
The strain energy is expanded in quadratic form
W= L 2.5
= 3% (2.35)

where the cocfficients a;; are symmetric and are defined as

2.36)

Thus, Equation 2.34 can be put in the form
aijqi + bijdi = Q. (2.37)

The solution of this equation was obtained by eliminating hidden displacements; this
was accomplished by using the fact that all thermodynamic forces vanish for all indices
correspor: ling to hidden displacements. The influences of the internal variables are

to reveal the hereditary character of the material. The solution of Equation

237 is
analogous to a mechanical model made of several Maxwell type materials plus a spring
and a dashpot all in parallel (see Figure 2.3a). This mechanical model is theoretically
equivalent to the generalized Voigt model as shown in Figure 2.3b.
The solution of the mechanical model described in Figure 2.3 for uniaxial creep
test is
Dty = -+ 30— et 4 (2:38)
B S '
where £§ = n;/ E; is i** retardation time. The three different terms in Equation 2.38 are

the elastic, the delayed elastic and the steady state flow compliances. Equation 2.38 is



Figure 2.3 (a) Mechanical model suggested by Biot (1954). (b) Generalized Voigt
model.

most general form of time-dependence that is physically possible. In practice a chain
of Maxwell or Kelvin units is needed, which is represented by the summation term in
Equation 2.38. This leads to a large number of parameters that must be evaluated.
For many viscoelustic materials, the summation term can be approximated into a

power-law term. In such cases the compliance is
D(t) = Do + Dut* + Dyt, (2.39)

where Do, Dy, D; and b that is 0 < b < 1 are material constants. It should be noted
the unlike Equation 2.38, which is unbounded in time scale, Equation 2.39 is valid
for a limited (often large) time.

“The inverse of Equation 2.29 in terms of relaxation moduli Cy;x are

deu(

ou) = [/ Cute )24y, (2.40)

‘The relaxation moduli and creep compliances as in Equation 2.29 and 2.40 are com-



ponents of fourth-order tensors. These tensors are symmetric due to the Onsager's
principle. Since creep and relaxation phenomena are two aspects of the same vis-
coelastic behaviour of materials. they should be related. Such relation is obtained by
applying the Laplace transform to Equations 2.29 and 2.10. The result in terms of

the transformed variable s is:

&y(s) = s Dijua(8)u(s), (2.41)

Fij(s) ki (8)in(s), (2.12)

where ¢j; represents Laplace transform of the quantity ¢;;. From Equations 2.11 and

2.42
aii(s) _ A 1
28] _ sCiu(8) = s 2.4
Zu(s) = O = 5 (2:44)
or
Diyua(3)Cismals) (2.44)
Applying the inverse Laplace transform to Equation 2.44 yields
.
L Diju(t — 7)Cyul(r)dr (2.45)

Equation 2.45 defines the relationship between the creep compliances Diju and the
relaxation moduli Cij for linear clastic materials.
‘The form of Equations 2.41 and 2.42 is analogous lo llooke’s law. A solution using

this analogy is presented in Section 2.4.5.

2.4.2 Multiple-Integral Representations

For large strains most viscoclastic materials exhibit nonlincar behaviour. A gen-
eralization of linear viscoelastic theory for such cases is possible by using multiple

integrals (Green and Rivlin, 1957). The stress rclaxation was formulated in terms of



Figure 2.4: Creep response to multiple step of stress

a tensor functional of strain history based on invariants. The current stress at a point

is not only a function of current d ion, but also the ion gradients at

all previous Lim.ss. A simple explanation as given by Findley et al. (1976) is presented
here.

A nonlinear viscoclastic material is subjected to a constant stress Agp at time
L =0 and Agy is additionally applied at time ¢ = ¢, as shown in Figure 2.4. The

time-dependent strain resulting from this stress is presented in polynomial form

() = (Ago)Dy(t) + (Aoo)* Daft, ) +
F(A0)Di(t — 1) + (A01) Dot = iyt =) +
+2(A00)(A01) Da(t,t — t1), (2.46)

where the D, are time-dependent material functions. Only second order terms are
considered in this equation. The time function Dy(t), Da(t,t) are the same in this
equation. The first two terms in the right hand side in Equation 2.46 are duc to stress
Ay, the next two due to stress Aoy and the last term comes from the interaction of

the two stresses. If N load steps are applied in this manner, the response is

()= jv:(Aa.)D,(t —L)+ fj %(Aa;)(Au,-)D;(l —liyt =)+ e (2.47)
1=0 i=0 j=0



For arbitrary varying stress history, Fquation 2.7 can be presented in the form
. -
() = /D Dy(t = m)é(m)dn, +A /“ Da(t = 71ut = 126 (r)8(ra)dridrs F o (248)

For generality, this theory requires several functions with higher order stress terms

to describe creep behaviour satisfactorily. This representation is suitable for all class

of materials and can be approximated to the desired degree of nonlinea

v. The ex-
perimental determination of kernel functions D, is most difficult in this method, and
requires a large sct of creep data. For strong nonlinear cases it becomes impractical

to use this approach.

2.4.3 Characterization Using Reduced Time

Schapery (1969) derived a simple method to account for nonlinearity using the ther-
modynamics of irreversible processes (sce Section 2.3). The lincar law of Equation 2.32

was replaced by a nonlincar law:

s (2.49)
where

by = aubis. (2.50)
The function ay is non-negative. The coefficients by are still a constant matrix cor-
responding to the linear response in the noighborhood of the reference equilibrinm

state. Thus the governing Equation 2.34 becomes

aw dgi 5
Ty o g = Qe (251)
The “reduced time” 1(2) is an implicit. function of state variables such as stress

in the creep formulation, and is defined as

L dr
v "/u adlo (O]
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Figure 2.5: A mechanical model for reduced time characterization.

‘The resulting theory is similar to Equation 2.29. The shift factor can be a function

of other nonlincar effects, e.g., temperature and aging. The integral form for uniaxial
stress-state is

@)= [ iy () 5 La. 259)

Jordaan and McKenna (1988) have successfully employed this theory in the creep

prediction of ice. The [unction a4 was considered as a stress-dependent viscosity. For

a power law creep material, é = (/00)"o, the shift factor is given as,

(2.34)

where oo and ¢ are reference stress and strain-rate respectively. This model can
be presented mechanically as in Figure 2.5. This theory is general for nonlinear

viscoelastic materials without changes in the mit during the def

2.4.4 Modified Superposition Principle

Another generalization of the linear theory for nonlinear materials is the “modified

superposition principle” (MSP) (Findley et al., 1976). For uniaxial stress-state,
€ —/ L(a,l—?)dF(d'T)d

where F and L are empirical functions of time and stress. MSP is an approxi-

(2.55)

mate method, which uses the kernel function determined from one step creep test to



describe nonlinear creep behaviour under arbitrary stress-history. The accuracy of
description depends on the material and type of stress history. This theory is not
general enough to describe all materials with memory, but it is simple to use for some
nonlinear materials under quasi-static loading.

Schapery (1981, 1991) has used a form of Equation 2.55, where the function [, is
independent of stress and is a lincar creep compliance L = D(f) in Equation 2.29,
and reflects creep behaviour over some uscful stress range. All non-linearity of the
material was addressed by the stress function (a,t),

dF(a,1)
dr

& fn' Dt -1) 7, (2:56)

where F'(0) = 0. Mechanically, Schapery’s model can be presented as in Figure 2.3,
with F(o) replacing o, all other components remain same and deseribe the lincar
compliance D of Equation 2.56. The springs and dashpots are lincar, unlike the model
presented in Figure 2.3. For example, for a power-law viscous material (¢ = [),0"),
F(c) = ¢ and D(t) = Dyt, which is lincar.

The modified superposition principle provides a simple method for predicting vis-
coelastic response from elastic solutions, when generalized Lo three-dimensional load-
ing. Following Schapery (1981), the modified superposition method as presented in
Equation 2.56 can be extended to include changes in the microstructure. ‘The non-

linear function F(c) is also a function of randomly distributed and time-d I

microstructural parameters (Sm,m = 1,2,..). The uniaxial constitutive relation is
t (o,
«t) = En / A G (2.57)
o dr
where the quantity ¢ is referred Lo as pseudo-strain and is explicit function of stress,
spatial coordinates and time. The coefficient £p is a free constant and 15 termed the

reference modulus and introduced to give ¢ the unit of strain. For an clastic material

with constant §,Egp = 1/D and ¢ = ¢*. Thus ¢ is the strain that exists in an
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elastic material with the same set of microstructural parameter S, as the viscoelastic
material,

Prediction of material hehaviour using this method requires determination of the
quantity ¢ that is a function of the stress-field and microstructural parameters .
For many cases one structural parameter s often sufficient, but when there are com-
plex changes in the microstructure, more than one microstructural parameter may be
required for different physically identified characteristics. For a material like crushed
ice, one measure of micrastructure may be for densification due to pressure, while the
uther may include grain boundary sliding under shear. These features are discussed in
detail in Chapters 5 and 6. The form of the function ¢° can be obtained by inverting
Fquation 2,57:

“W=g / - 'h“)dr, (2.58)
where C(2) is the relaxation modulus.

If ¢ = o/ kip, lincar viscoelastic theory is recovered. As the function D(z) is
independent of state variables and the value Eg is a constant, the theory expressed
in Equation 2.57 imposes a qualification that Poisson’s ratio is constant during the
process. The representation of nonlinearity and damage in a single function € im-
poses some restrictions on the material type represented. If a power-law is used for

malerial rej ion, all of creep i i.e., elastic, anclastic

and steady-state creep, should follow same p law. In ice, elastic behaviour is

linear, while delayed-clastic and creep terms follow separate type of power-laws in
time and stress; the applicability of single power law based model cannot cover all
these features. However, in some cases where creep component may be dominant and

clastic component may be negligible, this theory is expected to provide good results.



For multiaxial behaviour the constitutive law is.

‘ 4 owe
= E,,/“ D= 7). (2.39)

where W* is complementary pscudo-cnergy, which defines pseudo-strain <,

awe

i wid
1= Doy

2.4.5 Correspondence Principles

For many viscoelastic problems, the time variable can be removed by taking the
Laplace transform of the governing ficld and boundary equations with respect. Lo time,

thus reducing them to mathematically equivalent

astic problems. This analogy is

called the correspondence principle, and implics that elastic analysis methods can be

used to derive the referred viscoclastic problem (Lec, 19

et al., 1976).

5

i Christensen, 19715 Findley

The relationship between shear stress 7 and shear strain v in lincar clasticity, and
shear strain-rate ¥ in Stokes' flow laws are given by

=Gy (2.61)

=1y (2.62)

where G and 7 are the shear modulus and the coefficient of viscosity, respectively.
An analogy between these equations exits, and viscous solutions can be obtained by

replacing shear strain in an clastic solution with the shear ~train-rate. In a similar

way an analogy between steady-state creep and nonlinear elasticity can be established.

Let the nonlinearity be expressed by power law, elastic cquation is

7= to(/o0)", (2.63)



and the steady-state creep be defined by
i = do(r/70)", (2.64)

where @y, (o, iy and n are material constants. Comparing Equations 2.63 and 2.6, if

a nonlincar clastic solution for ¢o, n and 7 is available, these can be switched to éo, n

and 4% to obtain the solution for creep. Equation 2.61 and 2.62 are special cases of
Iiquations 2.63 and 2.64 when the power n is 1.
Linear Viscoelastic Stress Analysis

Lel (L) and ¢;;() be the stress and the strain tensor, and u;(¢) be the displacement

vector in the material at the position = and time , the equations of equilibrium are
ai,(0),;+F.(1) = 0. (2.65)

where I are the hody forces. The notation oi,.; denotes the partial derivative of o

with respect to the position vector zj. The strain-displacement relations are
W) = %[u.»u),, +u,(t).]. (2.66)

"Mlese: strains satisfy the compatibility relations
€ijakt (1) + Chtij (1) = €t (1) = €j0,ik (£) = 0 (2.67)

Lot the boundary § is divided into a region Sr and a complementary region S, =

§ = 8. On Sy, external loading T} are prescribed as

i(t)n; = Ti(t). (2.68)
On 8, the surface displacement U; is prescribed ay

w(t) = Ui). (2.69)

These field equations together with the constitutive Equations 2.29, or, 2.40 form a

complete set for linear viscoclastic stress analysis.
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Using Corr d Principle

The Laplace transforms of Equations

iy(8)y +F3(8) =0 (2.70)

ii(s),) +it (). ]«

€ (8) okt F0(8)uij = Cir ()t = ()i = 0

Gy(edny = Tils) (2.73)

(s (274)

ii(s) = (

The Laplace transform of the constitutive Fquation 2,10 is presented in Fouation 2.1

These transformed equations are similar Lo elasticity equations, where elastic con-

stants sCij(s), body forces F,(s), external forces 7i(s) on S and external di

ments (s) on S, are functions of the t Alter the associated

clastic problem is solved for &;(s) and i

(

time-dependent solutions for ,;(x, ) and wi(z,1). A clo

) the inverse Laplace ransform gives the

d-form inverse transform is

not always possible, and one has Lo resort to approximate and numerical solutions.

This analogy often provides an casy tool for lincar viscoelastic materials, In
this approach of solution, some limitations on the boundary conditions apply. The
boundaries at which stresses and displacements are prescribed should be independent

clves can be time: (Findley el

of time. However these lition th

al. 1976). Furthermore the correspondence principles are limited Lo quasi-static

considerations, where the inertia terms in the equation of mation are neglected,

Nonlinear Viscoelastic Materials

The analogy between elastic theory and viscoelastic theory provides an easy tool for

lasti fol. |

linear while for linea ials some re

jons apply.
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For nonlincar problems, time and space dependence of prescribed functions should

appear as separate factors as in Section 2.4.4. Schapery (1981) has presented cor-

respandence principles for the analysis of viscoelastic cracked bodies. An analogy
between nonlinear clastic and viscoelastic media with stationary and growing crack
was derived. In the equivalent elastic state, the strain is replaced by pseudo-strain
using Fquation 2.57. The principle is shown in Figure 2.6.

From Schapery (1981), a reference clastic solution of}, ¢ff and uf! are stress, strain

and displacement tensors corresponding to the case in which 1/ D(t-7) = E(L— 1) =

Fp (see, Section 2.4.4). These solutions follow the field Equations 2.70 Lo 2.72 and
boundary conditions as given in Equations 2.73 and 2.74.

When the prescribed surface traction T; = o;n; on surface S and body forces I}
on volume V be specified functions of time and position, the nonlinear viscoelastic

solutions based on Equation 2.57 are

o= oy, (2.75)

R
G E,,/' D(t— r)‘idr (2.76)
wi=En _/ D(t— r)"';.h (2.1

When displacements U/ = uft and traction T; = g;;"n; are prescribed on the bound-

ary S, and Sy respectively, and body forces F; on volume V, the nonlinear solutions

are
aij =i, (2.78)

6= ER/ Dt — r)d‘" (2.79)

=Ep / oe-ngh “‘ g, (2.80)

[larper (1986) and Jordaan et al. (1992) havc validated this theory of deformation of

ice.
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2.5 Particular Aspects

The generalized theory discussed earlier in this chapter is applicable to a variety of

problem involving changes in microstructures. The internal state variable in the the-
ory 11 sy serve Lo define microcracking by the geometry of cracks and their orientation,
pore-fraction and its variation, crystallineslip. grain size and its distribution, diffusion
andl phase changes. In this section, particular aspects of some of these microstructural

features are discussed.

2.5.1 Composite Materials

Composite material consists of Lo or more different materials, which are usually
firmly bonded together. There are many materials in this class, such as: concrete,

alloys, porous and cracked media, polycrystalline materials, reinforced rubber, fibrous

composites. The behaviour could be anisotropic because of ali of some phases

in certain direction. [lowever in the present work only isotropic composites-more

specifically statistically isotropic-are considered. Some examples in this class are:
maltrix containing spherical or randomly oriented and elongated particles, polycrys-
alline composites, porous materials, and matrix with randomly oriented cracks.

Following Christensen (1979), average stress and strain are
~ 1
a5 =3 [, oulz)av, (2.81)
g 1
=3 [tz (2.82)

where r, is the location in the body V. The effective behaviour of the heterogeneous

media can be defined using linear moduli Ciji.

i = Ciju€nt (2.83)
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To perform the averaging as in Equations 2.81 and 2.82, exact solutions for the field

variables are required. This averaging is general and does not imply re

riction on
the geometry of the inclusion.
Let the superscript / represent the inclusion and M represent the matrix phase.

The isotropic relationship for the inclusion and the matrix is

7= Chycain [ (2.81)
oy = Clle in [ (2.85)

where Cly; and C3, arc elastic constants for inclusion and matrix. If there ar

inclusions of volume V}, V4, ...V, in the representative volume V, the

1

T

1 N
; - 6
7 oo 7+ ;/Vnn., . (2.86)

in matrix in inclusion

Using Equations 2.83 Lo 2.85, Equation 2.86 can be manipulated to provide
9 L Y
Cimta = Cllucu + 37 3 J, (5 = Cilacuav. (287)

The first term of Equation 2.87 shows conditions in matrix due Lo externally applied
averaged stresses &;;, while the second term shows the conditions within the inclusions
with some unknown state o;; and ¢j. If the conditions within inclusions can be
obtained, the moduli of the composite Ciju can be estimated.

A review of various micromechanical models is presented in Christensen (1979,
1990), Mura (1982) and Iashin (1983). ‘These arc the equivalent inclusion method
(Eshelby, 1957), composite-sphere method (Hashin, 1962), the self-consistent meth-
ods (Budiansky, 1965; Hill, 1965), the generalized self-consistent mothod (Christensen
and Lo, 1979) and equivalent inclusion methods (Eshelby, 1957; Mura, 1982). For

dilute composites, these methods give similar results; while for high concentration
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the lized self- i method gives best performance. For di-

lutely porous materials, such as compacted crushed ice, any of these methods is

expected to provide good results.

Equivalent Inclusion Method

"The equivalent inclusion method is based on Eshelby’s (1957) solution for a uniformly
stressed infinite continuum containing an ellipsoidal inclusion. The stress disturbance
in the applied stress due to the inclusion is obtained by solving an equivalent homo-
gencous problem. For the problem of a composite material in which the particulate
phases are surrounded by a homogeneous matrix, cach particulate phase is considered

to be an isolated cllipsoidal inclusion. The i ion of inclusions is neglected in

this approach. This method is presented in detail in Appendix B.

Self-Consistent Methods

The sell-consistent methods (Budiansky, 1965; Hill, 1965) provide an approximate
but reliable estimate of bulk and shear moduli in polycrystalline materials. In the
problem of a composite material in which the particulate phases are surrounded by
an cffective and homogeneous matrix, each particulate phase is considered to be an
isolated ellipsoidal inclusion. The inclusion is assigned the properties and orientation
of the particulate phase and the matrix properties coincides with that of the compos-
ite material (Figure 2.7a). Such mapping of the composite material is possible as the
mean stress and displacements at its boundary are equal to those at the boundary of

the equivalent idealized i The i dition refers to unch d

density and displacement at the outer boundary. This results in a condition from
which the isotropic effective properties can be obtained by solving coupled equations.

This method is good when the inclusion concentration is dilute. At higher concentra-
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Figure 2.7: (a) Sell-consistent and (b) the lized self-consistent, methods.
tions results are only useful when the moduli of the matrix and the inclusion pha

are nearly identical (Christensen, 1982).

Christensen and Lo (1979) fc lated a problem for ites in which the
inclusion is embedded in a matrix shell that is embedded in the effective medium

(Figure 2.7b). This three-phase problem is also called the generalized sclf-cos nt,

method, and the drawback of classical self- istent method.

2.5.2 Microcracking and Loss of Stiffness

In the last section, cracks with other microstructures were considered as inclusion in
the material, to determine its elastic response. Here some theories for cracking solid
are reviewed in general. Due to presence of these cracks the stiffness of the material is
reduced significantly. Brittle materials such as concrete, rock, ceramics, and ice when

loaded develop k system and new ks could be nucleated. When the

damage growth is stable, the density of cracks increases, and the elastic stiffness of the
material degrades. Krajcinovic (1989) has presented a review of damage mechanics.

A simple elastic damaging material was presented by Dougill (1976). For uniaxial



loading, Young’s modulus £ in Hooke's law, o = Foe was presented as
E = Eo(1 - \g), (2.88)

where Ag is a damage parameter. The two extreme value of Mg were defined as:
A4 = 0, material lacks damage, while A4 = 1 represents total failure of stiffness in
the matorial. As Ag varics with the progress of damage, Hooke’s law is presented in
the rate form, and an evolution cquation for the growth of damage is needed. This
simple model does not account for any permanent deformation, thus, when unloaded
strain vanishes.

Budianski and O’Connell (1976) have d a self- i ion to

1 1

include Planar and penny-shaped cracks were analysed as ellipsoidal

inclusions in a homogeneous isotropic medium. This work has set the tone for great
advancements in this area. Horii and Nemat-Nasser (1983) rederived this problem
using fracture mechanics equations (Rice, 1968) of velocity field at the crack tip.
They also included friction at the crack interface. Ashby and Hallam (1986) have
presented a damage theory based on fracture mechanics and a beam theory by con-
sidering cracks in compression as wing cracks. Laws and Brockenbrough (1987) have

presented solutions for the loss of stiffness in cracking solids for various cracks geome-

tries. Often, the application of these models is icted to the dilute

for microcracks. For large lations of mi k lations based on the gen-

cralized self-consistent methods are appropriate. Schapery (1990a) has presented the

response of cracking ites using this d The larity of these models

is attributed to their clarity and efficiency in considering microcracks, and relating
the response of the material to microstructures.

Chen and Orgon (1979) extended solution for linear elastic materials to obtain

1

the resp of I alloys following p creep, using an incremen-
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tal method. Ac each increment of stress, lincar theory was employed to determine
stress-strain relationships. Nonlinear viscoclast, - materials also can be prosented by
identifying various mechanisms in the material during deformation. Then a mechani-
cal model can be presented. Jordaan and MaKenna (1991) and Jordaan et al. (1992)
extended Schapery’s reduced time formulation for nonlinear viscoelastic materials to

include damage in ice using Budianski and O'Conell's (1976) isotropic erack density

as a measure of damage. The elastic components in Figure 2.5 followed the damage
theory, and the effective viscosities of the viscous components were enhanced based
on experimental observation of Stone et al. (1989).

Based on the observation that the first grain-facet s

e eracks form in a poly-

crystalline material when the average grain-boundary sliding displacement. reaches a

critical value, Sinha (1989) formulated a kinetic equation for damage with the cracks
density as its measure. The viscous component was then enhanced linearly with the
number of cracks according to Weertman’s (1969) formulation. Strong dependence of
damage and the grain-size was observed.

A rational of kinetic jons for

can be presented

using J-integi al (Schapery, 1984, 1986). This formulation generalized the J-in of

discrete fracturing solids (Rice, 1968), and a distributed damage model was presented
in the framework of the thermodynamic theory presented carlier in this chapter. The

details of this theory are presented in Chapter 5.

2.5.3 Porous Materials

Porous materials are highly inelastic. With both hydrostatic and shear loading they

undergo volumetric deformations, inelastically. These properties were reviewed in

Chapter 1 in detail. Here various constitutive models that account for pores mi-

crostructuraly are reviewed. Some examples of porous materials arc granular materi-
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als such as sand, and crystalline materials where pores arc created during the process
of sintering and failure. Feda (1982), Mréz (1980) and Johnson and Green (1976)
have presented reviews of various models for porous materials.

‘The theory of plasticity has been used extensively in most phenomenological mod-
cls of porous materials. Generally, the material is assumed to be elastic until a yield
point is reached, as described by a yicld surface in stress space. Then, further defor-
mation is prescribed by a flow rule, and is a combination of elastic and plastic strains.
As porons materials are sensitive Lo hydrostatic pressure and exhibit work-hardening
or softening, and dilatation upon shear, the yield surface and the hardening rule de-
pend on porosity, pressure and shear (Mréz, 1980). A model, which accounts for these
features, the “cam-clay” model (Schofield and Wroth, 1968) and its variant the “cap
model” (DiMaggio and Sandler, 1971), is widely used in soil mechanics.

The theory of plasticity provides solutions for many metals and geomaterials,
but the phenomenological nature of this theory created need for more direct models
with better understanding of micromechanics. By the virtual work principle, for a

granular bl Christoffe at al. (1981) established a

vigid and

general representation for the macroscopic stress in terms of the volume average of

the product of contact forces and the vectors connecting the centroid of contacting

grains, Mchrabadi and Nemal-N (1983) d on the fabric and its rela-

tion to applied stresses. They included statistical distribution of the contact forces

(e

Nemat-N and Mehrabadi

and branches in Chri ’s material d

(1981) used ki ics of crystalline ials to model the d of granular

materials.
A set, of micromechanical models for porous materials can be obtained by consid-
ering pores as inclusions in the material, and the theories discussed in Appendix B

can directly be used by setting the stiffness of the inclusion zero. Cracks can be
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considered as one population of pores, and were reviewed iu the last seetion. Other

population of pores consists of nearly spherical por

Mackenzie (1950) has pro-
sented a self-consistent estimate of clastic modulus for spherical pores. Carroll and

Holt (1972) have extended this model for clastic-plastic materials.

The response of viscous materials can be obtained from the elastic response

insome

cases using correspondence principles. Budianski ot al. (1982), Duva aud Hutchinson

(1984) and Cocks (1989) have presented solutions for nonlinear viscous mater

L The

extension of this work for nonlincar viscoelastic materials

s presented in Chaptoer G,

2.6 Summary

In this chapter, a review of elastic and viscoelastic materials with changing wicrostruc
ture was presented with special attention given to cracking materials and porous ma-
terials. A thermodynamic theory based on internal variable approach was presented
in detail. This theory provided a systematic framework for the analysis of male-
rials with changing microstructure. Lincar viscoelastic theory based on irreversible

thermodynamics was presented. For nonlinear viscoelastic materials a single in

formulation is based on modified superposition method was presented, and correspon-
dence principles were presented. Finally, particular aspecis of microcracking and pore

collapse on the stiffness of polycrystalline materials were discusscrl.



Chapter 3

Triaxial Tests

3.1 Introduction

docted

‘Iriaxial tests were loi igate the mechanical properties of fresh-water
ice in various damage states. During ice-structure interaction, zones of high pressure
as mentioned in Section 1.3 are formed. The ice in these zones is subjected to high
confining pressure as well as inlense shear. This resulted in modifications in the
microstructure. The triaxial tests were designed to investigate this process. The

changes in the microstructure were determined from thin sections before and after

tests. The b of ice can be i igs in laboratory itions by

loading an initially intact polycrystalline ice specimen, and then subjecting it to an
appropriate stress-strain history. This method suitable is for peak stress evaluation.
At advanced damage states failure occurs due to the instability created by sudden
propagation of critical cracks. This problem was resolved by testing samples prepared
from crushed ice by moulding.

The basic principle of the Lriaxial test is that a cylindrical sample is compressed

axially while the hydrostatically applied lateral stress is held constant, or varied

A4
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Figure 3.1: Test Apparalus,

depending on the stress path. In the present setup independent zontrol of axial stress

and pressure was possible.

3.2 Tast Setup

The outline of the test apparatus is shown in Figure 3.1 and the details of sample
instrumentation inside the cell are shown in Figure 3.2.  The test frame has a
capacity of 500 kN and the triaxial cell has a capacity of 70 MPa. The axial actuator

and the confining pressure intensifier were ly through a digital

controller. This control allowed independent variation of axial and lateral st

The complete test system except for the control center was located in a cold room in
the Thermal Laboratory at the Faculty of Engineering, Memorial University.

Axial force was measured by a 500 kN capacity load ccll mounted between the
piston and the cross-head. The axial stress was deduced by dividing the axial force

by the actual cross section area obtained from the radial displacement. The confining
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Figure 3.2: Triaxial Test Setup.

pressure intensifier was instrumented with a linear variable displacement transducer
(LVDT) at its piston and a pressure transducer. These transducers were used to
measure Lhe triaxial pressure and the sample volume change.

‘'wo LVDTs of 12.5 mm range were mounted diagonally at the top and the bottom
platens of the specimen. The signals from LVDTs were amplified separately and an
averaging circuit was used to obtain an average axial displacement. This procedure
reduced the error caused due to tilting of the top platen during the deformation.

Axial strain was defined using logarithmic law as,
€ = In(h/ho) (3.1)

where, ho and h are initial and current length of the sample. Details of other mea-

describied

and ch istics of the triaxial are in the following

sub-sections.



3.2.1 Triaxial Cell

The cell was made of nickel-plated high-strength alloy steel. This was the modified

version of Rockeell Model 10 triaxial cell. The modifications were made to adapt

the cell to the test frame and to increase safety. The bottom of the cell rests on the

actuator and the top was screwed on it after installing the sample. All transducers in
the cell were wired through high pressure connections. The piston is not attached to

the top platen of the sample, but through a hall-sacket arrangement (sce Figure

This provided freedom for rotation in the sample, To handle the cell that weighed
about 110 kg, the cross-head of the test frame was wsed as a . Figure 3.3 shows
this arrangement.

A silicon fluid with a viscosity of 20 ¢s and a specific gravity of 0.919 at 26°C, was
used to pressurize the triaxial cell through the confining pressure intensifier (C1).
The triaxial cell had a fluid capacity of about 18 litres, and it took about 20 minutes

to fill it, through an air driven pump from the external reservoir.

3.2.2 Volumetric Strain Measurement

The volumetric strain of ice is an important parameter in ice- structure interaction.

For crushed ice, where large volumetric deformation occurs due Lo pore collapse under

high pressure, this has an added In these tests, volumetric

strains were deduced by either the fluid displacement method or the r «fial displac

ment method.

Fluid Displacement Method

The volumetric strain is often determined from the volume of the fluid displaced

from the triaxial cell. For this purpose an LVD'T, which was built into the confining



Figure 3.3: Triaxial Cell
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pressure intensifier was used. The LVD'T was calibrated to provide the voinme of luid

in the intensifier. The fluid displacement method requires complete nderstanding

of the response of the confining fluid and the tria

ial coll under variable pressure.
The problem could be further complicated by presence of air in the triaxial cell and

the pressure intensifier, and inhomogencous deformation in the sample. Thus, this

method is more useful for tests in which confining pressure is constaut. For variable

.

confining pressure tests, the radial displacement method was prefe

‘The volumetric strain is obtained as,
o =In(V/V), (3.2)

where V5 is the initial volume and V is the current volume of the sample. V was
obtained from the intensifier volume change AV;, and the displacement. of the piston

(cross-sectional area, /) of the triaxial cell AL, as,
V=W-AVi+AAL.

Radial Displacement Method

The radial strains were recorded by specially designed radial strain transducers (RST).
The RSTs were double cantilever beams mounted with strain gauges. ‘The gauge
length of these transducers could be varied to apply a gentle pressure on the: sample
for mounting. They were further sccured on the sample by rubber bands. A change

in the sample diameter caused a change in the curvature that was measured in the

local strain gauges.

RSTs were mounted at three places, at 1/6, 1/2 and 5/6 height of the sample. An
average value was used to obtain the radial strain. The radial strain is defined using
logarithmic law as,

¢ = In(d/dy) (3.3)



50

where dg and d are the initial and the deformed diameter of the sample. The volu-

metric strain as defined in equation 3.2 is,

6 =a+2. (3.4)

3.2.3 Test Control and Data Acquisition

Data from all transducers were conditioned before passing through the MTS digital
controller. The controller also had conditioning circuits for system transducers, i.e.,
the load cell, the pressure transducer and LVDTs in the actuator and the pressure
intensifier. The LVDTs and radial transducers mounted on the sample had external
conditioning circuits. In total, nine channels of data were recorded, including a time
channel. The sampling frequency varied from 10 Hz to 50 Hz for different tests and the
stage in the test. For creep tests, the level-crossing method was used with the axial
displacement in the sample as the master channel. In the level-crossing method, data.
are recorded only when the reading of the master channel changes by a pre-defined
amount. This reduced greatly the amount of data while preserving all important

characteristics.

3.2.4 Lubricated End Platen

Conventionally, in the triaxial tests, the sample contacts the end platens directly. In
this arrangement the friction at the platens restricts the lateral deformation in the
sample, especially near the ends. This leads to the violation of the basic assumption
of uniform and homogeneous deformation in the sample. This can be largely overcome
by lubricated end platens. This provides a homogeneous deformation in the sample
(Raju ct al., 1972). For the present tests on crushed ice, a thin layer of high vacuum

silicon grease was applied on the steel platens. The grease was covered by a 0.3 mm
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thick latex disk. This method reduced the end friction such that the deformation in
the sample was nearly homogeneous. The bottom platen contained a vent-hole that
was used to apply vacuum in the sample after its preparation.

As the axial deformations were measured between the platens, a bedding error is
created by compression of the latex disks. The amount of error depends on the applicd
pressure. Kolymbas and Wu (1990) have reported compression of latex disks to about
30% for normal stress up to 5 MPa. At higher stresses it is nearly incompressible. In
present tests, during shearing, the axial stress was higher than 5 MPa; thus the elfect

of the bedding error on the sample deformation was neglected.

3.3 Specimen Preparation

3.3.1 Crushed Ice Samples

Crushed ice was produced by crushing ice made from deacrated distilled water. The
material below 1.0 mm and above 2.0 mm was rejected. This provided a nearly
uniform grain size. The samples of 70 mm diameter and 75 mm length were prepared

in a specially designed split mould. Thin latex disks were placed on the silicon-greased

lubricated platens. A latex membrane was placed inside the mould. A vacuum was
applied between the mould and the membrane to keep it tight during the formation of
the sample. The crushed ice was then placed in the mould in four lifts, and compacted
by tamping mildly with a steel rod of 38 mm diameter, to reach the target density
of 550 kg/m® To control the density, the correct mass corresponding to the volume
of the mould was measured and used in the preparation of the sample. The top
platen was placed on the mould and the membrane was secured on both platens by
O-rings. A vacuum of 5 mm mercury was applied, through the vent in the bottom

platen, before removing of the mould. This was necessary for the stability of the



52

sample. The vacuum was maintained until the triaxial cell was completely assembled
for filling with the confining fluid. The complete process of sample preparation was
carried out insitu, on the lower platen of the triaxial cell, mounted on the test frame
in the cold room.

In ficld tests, densities of the order of 750 kg/m? are expected, but such high
values are unlikely for single-grain material obtained by compaction without breaking
or creeping the grains. In the tests the density increased to the level of field tests by

application of hydrostatic pressure.

3.3.2 Polycrystalline Ice Samples

"To prepare polycrystalline ice samples, the method outlined in Stone et al.(1989) was
followed. The seed ice, i.c., crushed ice, was prepared as discussed in the last section.
"This ice was placed in an air-sealed acrylic mould and was subjected to vacuum of
200 Pa for 2 hours. The mould was then floaded from the bottom with deaerated
distilled water cooled at 0°C. After 3 days, the ice was removed from the mould and
machined into samples of 71 mm diameter and 96 mm length. Again the lubricated
end platens were used. The sample was covered with a latex membrane and secured

on both platens by O-rings.

3.4 Test Procedure

"ests were conducted at strain rates in the range 1 x 10~%/s to 2 x 10~2? /s and
confining pressure up to 20 MPa. All tests were conducted at -10°C. The sample
was instrumented with a pair of axial LVDTs radially placed across the end platen,
and the RSTs at 1/, 1/2 and 5/6 height of the sample as shown in Figure 3.4.
The LVDTSs were mounted on the platen by a collar assembly. The averaged output
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from these LVDTs provided sample displacement, and was sometimes used to control

the servo-valve. The confining pressure at the intensifier, the axial force, the axial

fispl the radial displ the axial stroke and the amount, of displaced
fluid were recorded. These values were also displayed on the computer, and provided
a clear picturc of the state of sample during the test.

The top of the cell was lowered and screwed on the bottom. The high pressure
hoses from the pressure intensifier were attached to the triaxial coll and the cell was
filled with the confining fluid. Care was taken to expel air from the triaxial cell and the
pressure intensifier. In most tests the confining pressure was applied first and then,
depending on the stress path, axial compression was applicd after 20-30 s. In strain

control triaxial tests, a firm contact of the piston on the top platen of the sample is

very important. For a compacting material such as crushed ice, this aspect is cruc

The desired confinement was first applicd and then the actuator was slowly positioned
until a change in the sample height was observed. The average time duration hetween

the sample preparation and testing was about 45 minutes.

3.4.1 Stress Paths and Test Matrix

The effect of stress-path was examined. This is important especially at high stresses

when the material ceases to behave as a granular medium. ‘Tests on crushed ice

were conducted for hydrostati fon (11C), conventional triaial compression

(CTC) and simple shear (SS) paths. For polycrystalline ice only CTC and uni

al

tests were done. The test matrix of the program is shown in Table 3.1.






Table 3.1: Test Matrix

Test  Material Path [ 73 Comments
/s (MPa)
T Tce  CIC Ix 10 20 no volumetric measurements
2 Ice CTC  1x10°? 10 no volumetric measurements
3 le CIC 5x10-9 10
4 C.lee CTC 5x 1073 20 loss of control
5 C.lee CIC 5x 103 20
6 C.lee CTC 2x10-? 20 data partially good
7 C.lee CTC 5x 107 5
8 Clee 1IC varied  triangular pulses @ | MPa/s
9 C.lee HC varied 20 MPa @ 5 MPa/s loading
10 C.lee  SS mean 20 load control loading/unload
11 C.lee  SS§ mean 20 load control loading/unloading
12 C.lee  SS mean 5 load control loading/unlo
13 C.lee CIC 2x 1072 5
14 C.lee HC varied 10 MPa @ | MPa/s loading
15 C.lee  CTC  2x10°? data partially good
16 ke CTC 5x107* 0 sample failure
17 e CTC 1Ix10™ 0 sample failure by splitting
18 C.lee CTC 5x107 20,10 load/unlond
Data were also available for the following tests
DT030892  Iee  CTC  1x107* 0,10 2% uniaxial, creep tests
DT110393 e  CTC  1x 107" 20
DI190393 e CTC _ 1x10~* 10

ClTee = Crushed Tce




3.4.2 Example Measurements

A sample of measured quantities, for Test 5, i.c. stroke, averaged axial and three
radial displacements, axial force, confining stress and displaced fluid volume is shown
in Figure 3.5. In this test 20 MPa confining stress was applied and this was followed
by axial loading of the sample in stroke control. The soft sample of crushed ice
underwent, large axial and radial deformation under hydrostatic compression. This
caused loss of contact between the sample and the piston. Contact was made during
the subsequent axial loading. During this period fluid was displaced from the triaxial
call while keeping the cell pressure constant. Finally a quick unloading in about 0.01 s

was done by bringing the stroke down and releasing the confinement.

3.4.3 Volumetric Strains

‘T'wo methods of measuring volumetric deformations, i.c., first from the radial and the
axial displacements in the sample, and the second, using the fluid displacement from
the pressurc intensificr are discussed in Section 3.2.2. For Tests 3 and 5 the volumetric
strains from these methods are presented in Figure 3.6 for comparison. The sign
convention for +alumetric strain is that the compaction is positive in Figure 3.6 a: d
in all future references. Both methods have captured the trend in the volumetric
deformation for loading in these CTC tests, but the quick unloading was shown only
by the first method. The volumetric strain in this thesis is evaluated from radial and
axial displacements unless otherwise stated. The delay in fluid response to sudden

piston made the fluid displ: method liable in those diti

this method was used as a backup measurement.
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Figure 3.5: Details of measured quantitics for test 5.
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3.5 Microstructural Observations

In this section a method of characterizing the structure of the tested materia

1 i
discussed. The micro-structures were observed in thin sections before and after the
tests. Thin sections were prepared by sectioning and microtoming al -10°C. The

sample was sectioned and frozen on a glass plate using cold water drops. The surfa

"
was shaved until it was smooth. The section was then scraped and refrozen upside
down on another glass plate for final shaving until the thickness was about 0.2 .
A thin section of polycrystalline ice before a test is shown in Figure 3.7, Using the

line counting method, average grain size is 2.5 mm.

3.5.1 Crushed Ice

Due to the weakness of inter-granular bond between crushed ice particles, especially
when the material is not compressed at high pressure, sectioning of the sample is
not feasible, Some filler liquid is required Lo strengthen the structure, The general
requirement for the filler is that it should be water-insoluble liquid, supercooled a few
degrees below the matrix (ice) melting point. and melt, above laboratory Lemperabire
(Perla, 1982). Diethyl phthalate, a coloutless liquid, melting point, -3°C, which may

be supercooled more than 5 degree, satisfies these requirements.

The cold room temperature was set at -10°C. The ice specimen was placed in a

tray and the liquid filler (: led at the cold 1 wure) was poured into

the tray. When the specimenis fully saturated, the cold room temperature is reduced
to -20°C. The filler hardened when nucleated with some frozen scrap particles of the
filler liquid. The sample solidified in less than two hours. First time, high degree of
supercooling was required Lo freeze the filler, ‘This was achicved by placing the tray

in liquid nitrogen.



Figure 3.7: Thin sections before a test of (top) pol alline ice observed through
cross polaroids, and (bottom) crushed ice observed in direct light.
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The sectioning and microtoming was done in the cold room at temperature of
about -15°C. The sample was sectioned and frozen on a glass plate. The surface of
the section was shaved for smooth appearance and polished gently with a high quality
lens cleaning tissuc. This was left undisturbed at laboratory temperature for abont

10 minutes so that the sublimation of the ice etches an observable boundary around

the ice filler interface. The gentle polishing is an essential step for removing surface
asperities for the enhanced contrast.
The contrast for photomicrography of the polished surface was improved by gently

painting through a water insoluble marker pen. The surface is gently polished again

with a lens tissue. This process causes trapping of ink in the crevices al the ice-filler

boundaty, thus increasing the contrast. A thin section prepared by this method for

crushed ice before test is shown in Figure 3.7. The as

age grain size of 0.6 mm was

obtained by the line counting method.

3.6 Summary

Triaxial strength and creep tests were conducted on fresh water polyerystalline ice

and crushed ice. These two materials represent various states in ice failure and flow
during ice-structure interaction. The axial force, the axial and radial deformations in
the sample, the confining pressure, and the flow of fluid from the pressure intensifier

were measured. Specially designed ond-platens were used Lo

sure homogencons
deformation in the sample. The crushed ice samples were prepared in a split mould,

while polycrystalline ice samples were prepared by machining. Tests were conducled

ctions were

at confining pressure up to 40 MPa and strain rate up to 2 % 1072, This

made from samples before and after tests.



Chapter 4

Results of Triaxial Tests

4.1 Introduction

In this chapter, the results of the triaxial tests described in the last chapter are
presented. First, homogeneous and isotropic conditions in the sample during testing
are examined. This is followed by triatial test results and basic interpretations of
the material responses of crushed ice, polycrystalline ice and damaged polyerystalline
ice. Thin sections from various samples after tests are also presented. Compressive
stresses and strains are taken as positive. The axial strains are positive and the radial
strains are negative. The positive volumetric strains show compaction. The stress

diflerence is difference between the axial stress oy and the confining pressure o3.

4.2 Homogeneity and Isotropy

In the present test program, special care was taken to ensure homogeneous deforma-
tion in the sample. The success of the test set-up can be observed by the measured

quantities during the test and final sample dimensions. The axial and three radial

62
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Table 4.1: Sample dimensions alter tests (in mm)

Tast 5 Tost 3
Tnitial dimensions:

Length 75 96
Diameter 70 7l
Final dimensions:

Length 61.5, 6 4.1
Diameter at 1/6 603, 1T, THB, T
Diameter at 1/2  60.5, 58.8, 60.5 717, 7.7, 7.7
Diameter at 5/6 616, 50.6, 60.0 718, 71.8, 71.8

strains are presented in Figure 4.1 for a crushed ice test and a polyerystalling ice Lest.

"The three radial strains were nearly identical for the crushed This conlivms

the homogeneous and the isotropic deformation in the sample. In the polycrystalline
ice sample, the latex disk on the platen scems to cause al the ends. This was eritical
in uniaxial tests where at high strains samples failed by splitting.

After the test, sample dimensions were measured at about 120° apart, for length
and three diameters (1/6, 1/2 and 5/6 of length from top). The result presented in
Table 4.1 show homogeneous deformation. Other test samples also deformed homo-

gencously. Photographs of samples after a test are presented in Appendix A,

4.3 Crushed Ice

The triaxial tests on crushed ice were conducted at hydrostatic ¢ ion, conven-

tional triaxial compression, and simple shear stress-paths. In this section, the results

of these Lests are presented and the material behaviour in general is discussed.
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Figure .1: The axial and radial responses of crushed ice and polycrystalline ice.



3.1 Hydrostatic Compression

The low density of crushed ice (350 kg/m?) makes it very sensitive to hydrostatic
compression. The response of the material to hydrostatic loading is presented in
Figure 1.2, In this test triangular pressure pulses of 20 5 duration interval were applied
on the sample at 200 seconds interval. The loading rate was 1 MPa/s. and was followed
by unloading in 0.01 sec. Figure 4.2 shows pressure volumetric response and break-

up of this response in the axial and the radial strains obtained from the measured

displacements. At initial crush-up strength o about 0.5 MPa, large deformati

ns
occur in the sample. This is because of fracture of pre-existing sintered bonds in the

material, This crush-up behaviour is ly observed in sintered-y s maderia

such as sandstone aud metals (Johnson and Green, 1976).

Although the loading path is hydrostatic compression (I1C), i.c.

axial strain is not equal to the radial strain, especially at low pressures. ‘This initial
anisotropy is due to the method of sample preparation. The crushed ice is stiffer in
the axial direction than in the radial direction. Similar results have been reported for
loose sand (Oda, 1972; Kolymbas and Wu, 1990). At higher pressures, the sample
deformation is nearly isotropic. The pressure-volume relation is highly non-lincar,

where the bulk modulus also increases with compaction.

Figure 4.2 also shows vol ic rel after unloading, ‘This shows that the

deformation also has some component of delayed

¢ deformation, | astic
and irrecoverable deformations. Figure 4.3 shows time-dependent volumetric defor-
mation obtained from hydrostatic compression for various trinxial tests. The samples
were hydrostatically compressed at certain loading rates and then the pressure was

held constant. This figure also shows good repeatability in present tests.

A thin-section of test 8 after loading is shown in IFigure 4.4, Due to extensive

crushing, the average grain size has reduced greatly from the original size of 1 mm,
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pressures are shown inset.

Response of crushed ice due to hydrostatic loading (Test 8). The applied
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Figure 4.3: Response of crushed ice due to hydrostatic loading. The applied pressures
are shown on at the bottom.

except in some islands of original grains. An enlarged section is also shown in this

figure. It seems tat the larger grains are protected by finc grains that were created

by crushing of critical grains. The pores are entrapped at the Lriple points of some

larger grains and at their grain-boundaries. These thin-sections are very similar to

those obtained from medium-scale indentation tests (Standler et al., 1993).

4.3.2 Conventional Triaxial Compression

In a conventional triaxial compression (CTC) test, hydrostatic stress is applied first
and held constant throughout the test. The sample is then axially deformed, or
stressed. In the present tests, samples were axially deformed at a constant, strain rate

starting 30 seconds after the desired hydrostatic pressure had been reached, This

allowed minimization of voluinetric creep in the sample without excessive sintering of

grains.



Figure 4.4: Thin-section of crushed ice sample after a hydrostati

enlarged section (bottom) of a ty; triple junction showing po: The average
grain size has reduced from the original size of 1 mm.
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The responses of crushed ice for CTC tests are shown in Figures

T for various
confinements and strain rates.  In the slower tests the material undergoes large
compaction during axial loading, while in the faster test, the effect of compaction is
reduced by dilatation caused by brittleness in the material. The rate effect is clearly

visible for low strains. The material behaviour is highly nonlincar. The Young's

modulus at loading is about 4.54 GPa for 20 MPa tests and .3 for § MPa tests.
Test 18 and test 5 were conducted at the same strain rate and confinement, but at

different, time at which axial load was applicd. In est 18 axial load was applied after

20 minutes compared to 30 seconds in test 5 and other tests. More sintering resulled

in a strong material, with the strengths comparable to that of polyer

lline ice,

4.3.3 Tests in Octahedral Plane

In CTC tests, as discussed in the last section, the confining pressure is held constant.

 while the axial stress is increased. This leads to an increase in mean stress, p =
(61 +205)/3 on the sample. The material is subjected to both shear and a change
in pressure. For a time-dependent pressure-sensitive material like crushed ice, GTC
tests are complex tests for theoretical modelling, o isolate the shear responsc, simple
shear (SS) tests are suitable, These Lests are in the octahedral plane. The hydrostatic
pressure (o1+203)/3 is maintained constant. ‘The sample is loaded by increasing axial
stress by 6o, while the lateral stress is reduced by /2.

Figure 4.8 shows a strength test and Figure 1.9 show creep Lests in this plane.

Again as in CTC tests, the volumetric response Lo shear is compaction. ‘This is duc
to the porous nature of the material; shear leads to better packing of grains, At

unloading the material shows delayed-elastic rel jon. The relaxation is larger in

test 12 than in test 11, Due tolarger mean pressure in Lest 11 and shear stresses, grains

were crushed into fine powder, and the deformation had a large viscous component.
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Figure 4.5: Stress-strain response of crushed ice to conventional triaxial compression
(Test 5: strain rate 0.005/s, 03=20 MPa, Test 6: strain rate 0.02/s, 63=20 MPa, and
‘Test 15: strain rate 0.02/s, 03=10 MPa).
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Figure 4.6: Stress-strain response of crushed ice to conventional triaxial compression
Test 7: strain rate 0.005/s, o3=5 MPa, and ‘Test 13: strain rate 0.02/s, o3=5 MI
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Irigure 4.7: Stress-strain response of crushed ice to conventional triaxial compression
at strain rate 0.005/s, and confining pressures 20 MPa and 10 MPa.
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Figure 4.8: Stress-strain response of crushed ice at simple shear path with the mean
pressure of 20 MPa.
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This can be observed from the thin-sections of these tests as shown in Figure 4,10,
The calculated volumetric-strains from Figure 4.9 for test 11 are presented in
Figure 4.11. The compaction increases with the application of shear stross, thongh
the mean pressure is constant. Similar observation can made from Figure 4.8 These
results show that the prossure volume relationship depends on the stress-path. Tn
other words, the volumetric response depends on the shear stresses applied on the

sample apart from hydrostatic stresses.

4.3.4 Strength of Crushed Ice

Based on the CTC tests, the strength profile for various confining pressures can

be constructed. Figure 4.12 shows the peak deviatoric sf

s and mean pressure
relationship for (wo strain rates. In the test range, the strength is indepondent of
rate of deformation of the sample. The strength is strongly pressure-dependent for
pressures lower than 10 MPa. This is consistent with other frictional materials. For

higher pressures, the strength is pressurc independent as in metals.

4.4 Polycrystalline Ice

Uniaxial and triaxial strength tests of polycrystalline ice at constant, strain rale are
presented in Figures 4.13 and 4.14 respectively. The material first, compresses due
to an increase in hydrostatic pressure caused by increase in axial stresses. When
shear stress is large, cracks are formed, which lead to dilatation. Based on the initial
loading, the elastic modulus is 9.7 GPa and Poisson’s ratio 0.33.

In Figure 4.15, the creep response of polycrystalline ice for 10 MPa and 20 MPa

confining pressure is shown. It should be noted that the stresses are not very high,

and changes in the microstructure of polycrystalline ice are suppressed by large con-



Thin-sections of samples after test 11 (top) and test 12 (bottom). Large

and st 11 caused crushing of ice into fine grains

similar to those observed in field.
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Figure 4.14: Stress-strain response of polycrystalline ice under triaxial loading (Test 3:

4

10 MPa, strain-rate 0.005/s, Test DT190393: o3=10 MPa, strain-rate 1 x 10~1/s,

and Test DT110393: 03=20 MPa, strain-rate 1 x 1074/s).
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Figure 4.15: Creep response of polycrystalline ice at 10 MPa and 20 MPa confining

pressure. The applicd stresses are shown inset.

fining pressures. This can be verified from the radial strains that are alwags less than
half the axial strains. The clastic response, as expected, does not change with the
confinement, but the crecp strains increase with increasing confinement. This is com-
pletely opposite to triaxial creep behaviour of other materials such as steel and rocks

(McCormick and Ruoff, 1971), which shows decrease in creep strains with increase in

the confinement. This behaviour in these materials is attributed to a decrease in the

grain boundary sliding with increase in the confinement.

imed to follow

s often as

The minimum creep rate for material under pressure
the equation

Emin & exp[—(Qu + pVa) /KT (1.1)

tivation

where Qq is the activation encrgy, p is the hydrostatic pressure, Vi is the
volume, k is Boltzmann’s constant, and 1" is absolute temperature. This equation can

estimate creep under pressure for many geological materials and metals, for which
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under normal working conditions, the activation energy and volume do not vary
greatly with temperature and pressure. Such materials include limestone. rock salt,
tin and zinc (McCormick and Ruoff, 1971).

The major difference between ice and other materials is that ice is normally at
high homologous temperature. In the present work, and often in the field, the ambient
temperature is about 0.96 times the melting temperature in Kelvin. High pressures
result in large activation energies, and a decrease in the activation volume. Jones
and Chew (1983) have estimated these physical parameters for ice for pressures up
Lo 60 MPa. Such change causes an increase in both the grain-boundary sliding and
intra-granular deformation in crystals. As pressure is applied, there is a transient
increase in the temperature of ice (Gagnon and Sinha, 1991). This may increase
creep strains, but cannot solely explain the increase in creep strains.

Rigsby (1958) studied the effect of confining pressure on the creep behaviour of
single crystals, and observed that the creep strain-rate increased with pressure. He
attributed this change to the reduction of melting point at high confining pressure.
Polycrystalline ice samples have also shown similar behaviour (Haefeli et al., 1968,
as reported by Jones, 1982). Jones and Chew (1983) observed that minimum strain
rate decreases slightly as hydrostatic pressure is increased from 0 to 15 MPa, then
increases more rapidly from 30 to 60 MPa. These high pressure creep observations
were done for secondary creep, and not for primary creep which is of main concern
here. A confining pressure of 20 MPa decreases the melting point only by 1.5°C. At
some critical locations, e.g., where there are large stress concentrations, large changes
to the melting temperature may occur.

Creep tests were also conducted on pre-damaged ice samples, where pre-damaging
was done uniaxially at a constant strain-rate by applying 2% strain at the strain rate

of 1 x 1074/s. The result of this test is presented in Figure 4.16. Dilatation of about
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Figure 4.16: Creep response of pre-damaged ice at 10 MPa confining pressure. The
applied stresses are shown inset, (Test DT030892.)

3% was observed during the predamaging process. Upon the application of confining
g BINg P! i L

pressure, closing of cracks was not inst but rather time-d ! When

axial stresses were applied the rate of densification and axial creep strain-rate were
enhanced. This behaviour is similar to that of crushed ice.

Thin sections of ice after tests DT030892 and 3 is presented is Figure 4.17 and
4.18. The appearance of the damaged ice resembles o that of crushed ice sample after
test. Here again islands of big grains are surrounded by fincly-crushed grains that
were recrystallized by pressure-sintering. Cracks ate formed al critical inhomogencity

such as grain-boundaries. This can be observed from these thin

tions, though
sections are taken after axial strain of about 4%.

Under uniaxial stresses, ice is very brittle. The high rate of damage results in
lower strength of ice. Cracks are open and aligned to the maximum principle stress-

direction by extending several grains. The cracked material is highly anisotropic at



Figure 4.17: Horizontal thin-sections after test DT030892 (top). The enlarged section
(bottom) shows cracking and micro-crushing between crack surfaces.




Figure 4.18: Vertical thin-sections after test 3. Because of damaging in triaxial state,
there are fewer cracks than Figure 4.17 with no preferred orientation.



85

large strains, Failure is usually by axial splitting in the sample due to extension of
one or many critical cracks.

When confining pressure is also applied, cracks are arrested in regions of higher
fracture toughness, or, lower stress. Cracks are distributed uniformly (Figure 4.18),
and the material behaviour is nearly isotropic. The average length of crack is of the
order of the grain size. Further damage is more stable than uniaxial case. After
certain confinement, the strength curve seems independent of confinement, e.g., at
the strain-rate of 1 x 10~ test DT110393 and DT190393 show similar response, but
different from the uniaxial response in Figure 4.13. The difference is in dilatation

that was suppressed by larger confinement.

4.5 Summary

‘I'his compaction of crushed ice is time-dependent, and is enhanced several fold when
shear stresses are applied. In the slower tests, material undergoes large compaction
duting axial loading, while in the faster test, the effect of compaction is reduced by
dilatation caused by brittleness in the material. The rate effect is clearly visible for
low strains. The strength is strongly pressure-dependent for pressures lower than
10 MPa. For higher pressures, the strength is pressure-independent as in metals.

Under uniaxial stresses, polycrystalline ice is very brittle. Cracks are open and

aligned to the maximum principle stress-direction by ding several grains. Fail-
ure is usually by axial splitting in the sample due to extension of one or many critical
cracks. When confining pressure is applied, cracks are arrested at natural boundaries
such as triple junctions. This resulted in an increase in strength, Cracks are dis-
tributed uniformly, and the material behaviour is nearly isotropic. Further damage

is more stable than in the uniaxial case. For confining presenre more than 10 MPa,



the strength s independent of confinement.

Thin-section studies of samples after tests show that due to extensi

e crushing,

the average grain size has reduced greatly from the original size. The larger grains

are protected by fine grains that were created by crushing of critical grains,



Chapter &

Theory of Growing Damage

5.1 Introduction

In this chapter, a continuum theory to describe a material with growing damage
due to microstructural changes in presented using generalized J-iitegral. The cffect
of individual microstructures and their growth is studied by averaging at a scale
thai is much larger than the size of microstructures such as grai.s and microcracks
themselves. In viscoclastic materials damage can be nearly time-independent when
loading is fast, but at slow loading it is dependent on time (Leckic, 1978; Schapery,
1981; Cocks and Leckie 1987). For nonlinear viscoelastic problems, a method due
to Schapery {1991) and based on a modified superposition method is validated for
polycrystalline ice. A mechanical method based on the reduced time characterization

due to Schapery (1969) and Jordaan ct al. (1991) is also presented.



- Failure Zone

Figure 3.1: Geometry of a microcrack,

5.2 Growth of Microcracks

A theory of material with distributed cracks can be obtained by modelling growth of
microcracks (Schapery, 1981). igh stresses cause damage and failure of the material
at the crack tip. To model this process, the highly damaged material at the erack
tip need not to be modelled explicitly, but emphasis can be laid on the continnum

surrounding the crack tip, the conditions of which can predict. s and deformation

at the crack tip.

5.2.1 Generalized J-Integral

For linear elastic and clastoplastic fracturing solids, .J-integral theory (Rice, 1968) has

been successfully applied Lo initiation of crack growth. The J-integral is a basic erack-
growth controlling parameter, and accunts for the geometry of cracks and applicd
load. Schapery (1984, 1986) has presented a parameter analogous to the J-integral
for crrck growth in nonlinear clastic and nonlincar viscoclastic materials.

An idealized crack geometry is shown in Figure 5.1. In the nunstrained state, the

crack surfaces near the tip are assurned to be planar and coincide with the local =y
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plane, & plane perpendicular to the page. [t is further assumed that the crack tip P

is straight and parallel to the x5 axis, i.e., it is in plane strain state. If the tractions

7, on the surface S shown in Figure 5.1, and body forces per unit volume F} produce

the displacement, response w; in a body, the equilibrium equations are

Doy
o, THi=0 (5.1)

where stresses ai; and surface Lraction T3 are related through the unit normals n; by

(5:2)

A potertial function W and a body force potential Wi are assumed to exist with

the property that

oy = OW/Bui; (5.3)

Fy = - 0Wp/du;. (5.)

To meet the requirements of continuum theory, the material enclosed within the
arbitrary surface S of Figure 5.1 should not contain any cracks. To achieve a path-
independent integral that is useful in fracture analysis, the body is assumed homo-
geneous with respect to local z; axis. Multiplying Equation 5.1 by —du;/da, and

integrating over volume V, the result is

Q

E/V [H%(W+ Wr) = d%, ( au;)} dV. (5.5)

}
Changing the volume integral to surface integral over the surface S, and using Equa-

tion 5.2, the resulting cquation is

- Ou;
d= /s [(w +We)m = Tig | dS. (5.6)

Lot the erack tip P (the leading edge of the highly damaged mass) be straight and

parallel to ry axis for a short distance ls. The contribution of potential energy from



o

the crack surface other than zones in contact is zero, thus the energy contribution of

any surface of length fy outside the damaged zone is equal to the value

J

u/mL [[H'«{—l\]‘-)n. = :;l s,

where Sy is the portion of S not included along the lailu

zone over Lhe length £y,

In the region of cracks, highly damaged material may be present. Tractions may

be on crack surfaces as friction, or it may be open. Tl

s unlike Rice's J-integral

where crack surfaces were assumed Lo be traction [ree, reduces o Rice's

J-integral by omitting body forces.

5.2.2 Power-Law Materials

Power-law nonlincarity of stress and strain often represents realistic behavionr in some

materials, The complementary energy per uit volume for a power-law material is

W(o'si5)

W), (5.)

where o' and r are constants. The linear theory results with r = 1. The s o8 7,
in this cquation are for a reference state o' = 1. Stresses in other states are oblained

as

thus, by the definition, strains arc

Aoy’

ign(o")lo'I

€y

These equations are also valid for cracking solids. When tractions on
are not, zero they must vary with o’ in the same way as the stress distribution, e.g.,

friction force should be proportional to normal foree.
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For power-law miaterials., Schapery (1986) derived an equation for quasi-static
crack growth as

=k, (5.12)

where k is a positive constant and J; reflects the propertics of the crack-tip material.
The J-integral is equal to the strain cnergy relcase rate:

aw .
J==5 (5.13)

where A is area of the crack surface. Using the definition of the complementary
energy, W' = ayci;, = W, J can be presented as

i
i @;— (5.14)

8 and 5.14, 5.12 is written as
da %
‘_ = floEeen (’7 V' ) . (5.15)

For penny-shaped crack of radius a. OW'/04 = fa, where f; is a constant. The

Using Equatio

integration of Equation 5.15 yiclds
)
Akt = (L= R [ flo e, (5.16)
i

where ag is the initial crack radius. If & > 1,a — oo at time ¢ = ¢/ (failure time),
then

o l)f" = 7 Al (5.17)

Using this equation, the failure time ¢; of a crack can be found implicitly.

In a polycrystalline material, microcracks are arrested at a length equal to the
grain size. This causes a sudden decrease in the growth rate when the crack tip
reaches a grain that lics across the crack plane. Though Equation 5.17 does not

reflect the arrest, no assumpt.ons are needed regarding the crack geometry. This is
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because the propagation of crack occurs at high-speed. and the time spent in the
propagation is negligible compared to the failure time t4.

The left side of Equation 5.17 may vary from crack 10 crack, thus producing
different failure times. For ith crack. let the loft side is denoted by S, and the

resulting failure time by {; as

t
5.=/ Ao+ ar
o

Schapery (1991) has described the

acking pro using Equation 5.18. A crack is

assumed to have no cffect until it has reached its arrested size, then sudden softening

in the material occurs. To account for the effect of microcra

king, complementary

energy is also function of §;, i.e.. W' = W/(a,,,5). The increase in IV inereases

with the increase in 5; as shown in Figurc There are so many closely spaced

microcracks that the curve in Figure 5.2 may be smoothened out, and S, ¢

n he

taken as a smooth function S, as
.
§= / Jilo'|"dr, (5.19)
y

where g = k(r + 1).

Instead of using the mechanism of crack growth as deseribed hy Equation

Equation 5.19 can be derived for a general state of damage. Let the phenomenologi
law for the mth change in microstructure be

“ﬂ

= filo'" Fulan), (5.20)

where F,, is function of am, which represents any microstructural parameter,

size of a cavity, number of cracks or broken bonds, that accounts for failure. From

/ I:’(L:m) [: Sl

which is same as Equation 5.19.

Equation 5.20
(5.21)
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Figure 5.2: Effect of sudden growth and arrest of microcracks on the complementary
density.

5.2.3 Material Under Axial Deformation and Pressure

Following Schapery (1990a), the theory developed in the last section can be specialized
for a prismatic cylindrical specimen subjected to confining pressure o3 and axial strain
¢. Here it is desirable to define the strain energy in terms of the volumetric strain €,
and axial strain €. If ¢, is the dilatation and Sn(m = 1,2,..) are damage parameters,
the von Mises stress s = (3/2s;;s;;)'/? can be defined, as in Chapter 2 by the strain
cnergy W = W(e, &, Sm) 25

g (5.22a)

and the mean stress p as

(5.22b)

Let a dual energy density Wy = Wy(e, p, Sm) be defined as

Wy =W + pe,. (5.23)
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This definition of the dual energy is useful in extending the results from proportional
loading such as uniaxial tests to triaxial tests wher the all-around pressure oy remains
constant. Equation 5.23 can be differentiated . s

aw, Wy Wy aw oW W
R S g dSm = —— e Sm vt cudp, (524
D% de + P dp + OS,,.'S'" P de + a(vds,,+ (‘)S,,.d m 4 pdey + cudp, (5.21)

and the axial stress and dilatation can defined in terms of the dual energy by com-

paring Equations 5.22 and 5.24 as

W, -
e .20
¢’ (5.250)
and
oWy
&= 5.25h)
o (5.25b)
In this theory dilatation is related to the arca under the strain-strain curve. ‘Ihis

can be shown by differentiating Equation 5.25a with respect Lo p and Equation 5.25h

with respect Lo ¢ and cquating them to yield

95 _ de, —
"= (5.26)
or,
_9r 6
o= 6,1]0 sde. (5.27)

As pointed out by Schapery (1990a), the applicability of Equation 5.27 for predicting
dilatation depends on the existence of the potential Wy exactly, regardless of the
number of structural parameters.

In some materials the effect of large confinement. is to reduce damage. lIce is one
such material (see Chapter 4). Here the J-integral of Equation 5.13 for penny-shaped
cracks of radius a is proportional to fya, where fy is also a function of the confining
pressure apart from the properties of the crack tip material. Following the procedure

of the last section, a relation for the damage function § can be obtained as

5=  folo'lidr. (5.28)
b



The function fy is determined experimentally.

5.3 Viscoelastic Media

Using the correspondence principle described in Chapter 2, a theory for polycrys-
talline ice can be developed. The change of microstructure due to cracking, as formu-
lated in the last section for nonlincar-elastic materials, is equally valid for viscoelastic

malerials when strains in the reference elastic problem are

1t de;;
o /n =) ldr, (5.29)

where C/(1) s the relaxation modulus and is related to the creep function D(t) of
the virgin material through Laplace transform. The reference strains ¢;°, which are
also denoted as pseudo-strains depend on material properties and are defined by the

complementary pseudo-cnergy W as,

(5.30)

Stresses in reference clastic problem and viscoelastic problem are the same. The

inverse of Equation 29 is
o [t deij®
G= 1,,;/n Dt - )T, (5.31)
The material nonlinearity and damage both enter in Equation 5.29 via the pseudo-
strain ¢§; while the creep compliance D(1) is assumed to be lincar over uscful stress
range. This analysis is based on Schapery’s (1981) modified superposition principle

(MsP).

For proportional loading and p law cracking the pseudo-strain follows the
power-law relationship in stress and a measure of damage g(S). For the uniaxial
loadings

¢ = sigao)| [ o(5), (532)
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where o = o(t) is the axial stress and oy is a positive constant. “The microstructural

parameter S is the same as that described in Equation 5.19 and is written as

5:/07.(%)",11

where g = k(r + 1), and s, is a positive constant. The parameter f; accounts for

3)

complexities at crack tips such as changes in temperature and hardening. For many
brittle failure cases fy can be taken as unity. The lincar clastic relationships are

tecovered when r=1, g(S)=1 and D = 1/Ep. When r

, but () # | the nonlin-
carity is introduced by the damage function. For r # I, the representation of elastic
behaviour by Equation 5.2 is nonlincar.

Equations 5.31 to 5.33 can be used to predict strain or stress in terms of the obher

variable. In the following scctions various material parameters required in Lhis theory

are obtained using experimental data presented in Chapter 4.

5.4 Polycrystalline Ice

Polycrystalline ice is brittle and exhibits nonlinear viscoclastic deformation for a
wide range of engincering applications. When this material is stressed, some encrgy
is stored due to elasticity in the material and new suifaces created by microcracking,
while most of it is dissipated in inelastic deformations. Microcracks of grain size
are formed initially along the grain boundary when loaded. For sustained loadings
the density of cracks increases, and they are also observed across the grain. This
microstructural process increases the material compliance. The theory described in
this section and used for predicting the behaviour of polycrystalline ice is due to

Schapery (1991).
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5.4.1 Creep Compliance and Nonlinearity

The viscoelastic response of polycrystalline ice without damage can be written in

terms of three the elastic the delayed elastic component,

and the steady state creep component. For creep of ice a widely used formulation is

due Lo Sinha (1979), and is presented as follows.
=T L (TN () gty y n 5
dy =7+ 2 (F) 0=y 4 ooy (5.34)

where o is the uniaxial creep stress, £ is the modulus of elasticity, a is the grain size,

ag and ¢ are functions of temperature, and ¢, b,00 and n are constants. The grain
size in the present tests is 2.5 mm, and og = 1. Other material constants used are the
same as given by Sinha. The first term in this equation is linear elastic strain. The
second lerm is the delayed clastic strain, which is associated with grain boundary

sliding. This is responsible for time-depend laxation in ice. The

third is viscous flow caused by dislocation movements and ceystalline slip.

Iiquation 5.34 is not in the framework of the viscoelasticity theory as presented

in Chapter 2. This is due to the caused by the tants b and n, The
material behaviour is highly nonlinear for sustained long-term loads, although for
high-rate tests, which are of primary concern in this analysis, nonlinearity is not

expected to be a major factor. The creep compliance of the form
D(t) = Do+ Dy(t/to)® + Da(t/to), (5.35)

is used in the viscoelastic theory of ice described earlier. In Equation 5.35, Do is
inverse of clastic modulus of ice, a4 Dy, D, and b are positive constants. The term
to is used here for dimensional purposes. The creep compliance D(t) can be deter-
mined by constant-stress tests on ice. As this component does not contain the effect

of damage, tests should be conducted at stresses low enough to avoid microcracking
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in the material. In the present analy

is D(t) is determined by fitting Equation 5.35
in Equation .34, which is well cstablished for the uniasial creep response of poly-
crystalline ice, and the parameters defining D(t) are obtained as Dy = 1/9500/MDa,
Dy =2 1073/MPa, b= 0.28 and Dy = 2 x 1076/MPa, The short-torm creep of ive
is independent of the state of stress.

The nonlinearity parameter r of Equation 532 can be obtained by fitting Fqua-
tion 5.35 in 5.34 for some uscful stress ranges. Its value is highly dependent on stress
range and the time of loading and varics from one, i.c., lincar, for time < 20 5 to three
for long term loadings. Thus, if the short-term response is of main concern, e.g., peak
stress in constant strain rate tests, r can be taken as unity. 1t should be noted that
r =1 does not mean that the material response is linear. Nonlincarity can still be
introduced by the damage function, which indirectly is nonlincar function of stress

(see the theory presented in the last section).

5.4.2 The Damage Function

The final stage in the modelling is to determine the damage function g(S) in Equa-
tion 5.32 and the constants s, and ¢ to describe the microstructural parameter S
defined in Equation 5.33. Schapery (1991) has presented a procedure to determine of
these values. Creep tests can again be used to determine this function using 1qua-

tions 5.32 and 533, but here the damage parameter also should change; in other

words tests should be conducted a high stresses. Another approach is Lo use results
of constant strain-rate tests.

If the strain history is known, Equation 5.32 can be inverted Lo give the st

history for uniaxial tests as

G

o =sign() 2

(5.6)
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Now differentiating Equation 5.33 and substituting o from Equation 5.36, the result

is

dS _ (ao\7 ()" .
ke (;‘-) —-gw 5 (5.37)
or,
S q gt
/SD gdS = (;'—:’) /ﬂ (e)ldr = 5., (5.38)

where So s initial damage in the material, For an initially undatnaged material So =
0. The parameter S, replaces § as the microstructural parameter. The corresponding

value of the damage function g,(S.) is obtained from Equation 5.36 as
ge=g7 = Z () (5.39)
a

For constant strain-rate ¢, Equation 5.20 and Equation 5.38 become

& =il (5.40)
5= (EYe'"/’hz‘ (5.41)
81
where by and by are given as
m=-1[‘cwa 5

= ‘u}/‘. (t)dt (5.422)

.
hy = / Wt (5.42b)

o

The parameters ¢’ and Eg are taken as unity. The relaxation modulus C(t) was
obtained numerically by the deconvolution of D(t).

Using test results, the function g.(S.) from Equation 5.39 and S, from Equa-
tion 541 can be evaluated. Al least two tests at different rates are required for

evaluation of the damage function. From Equation 5.41

o\
log S, = log [(3—) é"”] +log h. (5.43)
'
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Since g, is function of S, the value of g, for tests at different speed will be same.
Thus. a curve of log g. verses log ha, for cach strain rate. will differ from another by
a horizontal translation equal to the first term on right hand side of Equation 5.13.
For a curve, if s; is selected such that the term in the square bracket is unity, then
other curves can be brought on this curve by moving them by a horizontal distance

—log ()", An iterative method is then used to obtain the quantity .

5.4.3 Uniaxial Tests

For a general representation, the function g(S) is needed to be explicitly defined. An

exponential function of the form

g = MFHS), (5.44)

where ) is a positive constant and So is Uhe initial damage, is considered for predic-
tion. This function is simple to use, and reflects softening due to damage, Using

Equations 5.38 and 5.39, g. can br obtained as
-t
g = [%S + u"ﬁv"/'] : (5.45)

For constant-strain rate tests, stresses are oblaincd using Equations 5.39 and 5.40

o = aogelih)'" (5.16)
The predicted stress-strain response of uniaxial teats at two strain rates is presented
in Figure 5.3 along with the measured responses. The value of the parameters used
in this analysis are presented in Table 5.1. From Figure 5.3, it can be seen that, the

theory can model the material behaviour in the strength tests.



101

= STRAIN RATE 0.0001/3
£ STRAIN RATE 0.0000¢ s
g i
g b
@ )
t ... TEST DATA
— THEORY
0
o 0.5 1 15 2 25 3 a5 4
STRAIN %
Figure The measured and predicted uniaxial response of polycrystalline ice in

constant strain-ratc tests.

Table 5.1: Material constants for polycrystalline ice to he used with the modified
superposition method.

Ep=1; =1
A=12x10"5 So=0;

For uniaxial Tests:
Dy = 1/9500/MPa; Dy =2x1075/MPa; D=2 x 107°/MPa; b=.28;
For triaxial Tests:

Dy =1/9500/MPa; Dy =5 x 1073/MPa; Dy =5 x 10%/MPa; b=.28;
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5.4.4 Triaxial Tests

The triaxial response of polyerystalline ice is different from that wnder wniasial condi-
tions. This diffcrence is mainly caused by cracking-induced anisotropy under wniagial
stross states, AL low confinement, cracks are oriented along the maxinum principal
stress. In some cases the cracking may be localized along the masimum shear stress
plane. Further, in uniaxial tests, large dilatation occurs in the post-peak regime.

The cffect of dilatation is to increase compliance in the material. Under

arge tri-
axial stresscs, localization of cracks is suppressed and cracks are wniformly oriented

in all directions, overall damage is less, and the material is

ly isotropic and
hormogeneous.

In Figure 5.4, the creep response compiled from Figure .15 of polyerystalline ice

for 10 MPaand 20 MPa confining pressure is shown with the predicted response based
on Equation 5.34. For uniaxial response, Sinha’s equation for creep, which is com-
prehensively established for polycrystalline ice is also presented. 1L should be noted

that the applied creep stresses are not very high, and changes in the microstructure

of polycrystalline ice is suppressed by large confining pressures. The ¢

lic response,
as expected, does nol change with the confinement, bul the creep strains incroase
with increasing confinement (also sce Chapler 4). For the present, work, the ereep
coefficients as raquired in Equation 535 under triaxial conditions arc obtained as
Do = 1/9500/MPa, Dy = 5 x 1075 /MPa, Dy =5 x 107"/MPa and b = 0.28.

The nonlinearity parameter r in Equation 5.32 can be estimated by ¢ tests

on virgin or predamaged ice (predamaging of ice was done by loading it uniaxially at
a constant strain rate of 1 x 10~ /s to 2% axial strain). Again the stresses should
be low enough so that the damage state in the material does not change during the
creep process. Figure 5.5 shows strains from triaxial creep response (adopted from

Figure 4.16) at 10 MPa confining pressurc on a pre-damaged icesample. Asin uniaxial
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Figure 5.4: Creep behaviour of polycrystalline ice at various confining pressure, and
prediction based on Equation 5.34. The applied creep stresses are shown for each set.
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Figure 5.5: Creep behariour of pre-damaged polycrystalline ice at 10 MPa confining
pressure. The applied creep stresses are shown.



tests, the nonlinearity may vary with stress and duration of a test. From Figur

ard 5.5 and the creep compliance of Equation 5,33, the parameter r can be found,

For present analysis r is

aken as unity. Itis noted that the presented ereep tests are
short-term tests, do not present highly nonlincar behaviour of polyerystalline ice. In
long-term creep tests, microstructural changes such as void formation along the grain

boundaries and recrystallization occurs, thus creep and damage are inseparable.

In Scction 5.2.3 a theory for a material undergoing axial deformation while sub-

jected to confining pressure was |

Let the pressure-dependence of the pa-

rameter f3 in Equation 5.28 be represented as

Jilpa/as)", (5.47)

where p, is the atmospherie preseure and ry is

constant. When @y = p,, Faquac

tion 5.47 reduces to the uniaxial relation. For triaxial tests, the lower valie of fy

L is

results in less damage in the material. The predicted behaviour for a triaxial te:
presented in Figure 5.6 along with the test results. As it can be seen from Figure 5.6,

the theory is in good agreement with the experimental data.

5.5 A Mechanical Model

ed,

In this section an alternative theory to characterize polycrystalline ice is prese
‘This theory is due to Schapery (1969) and Jordaan and McKenna (1988), and is
derived using the thermodynamics of irreversible processes (sce Section 2.5.3). The

nonlincarity is contained in a “reduced time” (), which is an implicit function of

stress in the creep formulation, The resulting theory is similar to linear viscoclastic

theory. The shift factor can be function of other nonlinear effects, .., temperature
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Figure 5.6: The measured and predicted triaxial response of polycrystalline ice. The
applicd strain rates and the confining pressures are shown for all tests.

and aging. The integral form for uniaxial stress-state is

da(r)

()= / D(t) - (7)) (5.48)

The reduced time is defined as

¢ dr
t)= —_— 5.49'

o= o

The function ag is a shift factor and can be considered as a stress-dependent viscosity.

The variation of this function is shown in Figure 5.7. For a power-law creep material,

i = (a/00)"éo, the shift factor is given as.

1= (o) = ai_vlm (5.50)

where o, and & are reference stress and strain-rate respectively.

An i hanical model of ice beh as given in Equation 5.34 can

be presented in the Burgers model of Figure 5.8. which is combination of Maxwell unit
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Figure 5.8: A mechanical model.
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and Kelvin unit in series (Jordaan and McKenna, 1988). Note that the nonlinearity
is preserved by making viscosity of the dashpot stress-dependent as in Equation 5.50.
The spring elements are linear in this model. The delayed elastic terms in Equa-
tion 5.34 is shown by the Kelvin unit in Figure 5.8. The total strain from this model
can be presented as summation of three components as

=+l 46 (5.51)
where the three components are instantaneous elastic ¢, delayed elastic ¢ and
steady-state creep ¢ terms respectively.

Il the mechanical model is subjected to a creep stress o applied at t=0, and stress

in the dashpot in the Kelvin unit is o4, the resulting strain € in the Kelvin unit is

u.u)=§:[1— ;

k -
dt 5.52
o mk(0a) )} ' we2)
where ni(oy) is defined by Equation 5.50 with o4 = 0.

For triaxial stress-states, Equation 5.48 can be presented in terms of shear and

hydrostatic components as,

= / Jolib(t) - w(r)]a’”dr (5.53)

a= [ v - wrrn-‘aﬂdr (353b)

where J;p and Jy are shear and bulk creep function respectively. The stress and strain
are di 4 in devi ic and 1 i as

oij = sij + %6.,17;(;; (5.54a)

6 =eij+ %ﬂ,eu (5:54b)

In Equation 5.53, ¢ is obtained by Equation 5.49, where the uniaxial stress o is

replaced by von Mises stress s defined as

(5.553)
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Similarity equivalent shear strain is defined as
2 I
e= (3c;,c.,) . (5.55h)
von Mises stress and equivalent shear strain reduce to axial stress and shear strain
for uniaxial stress-state. For proportional loadings, the deviatoric stresses and strains

are related through von Mises stress and cquivalent strain as

(5.56)

5.5.1 Damage Model

Each strain component in Equation 5.51 is influenced by the presence of microcracks.

The elastic and delayed elastic strains dominate the carly stage of damage during

rapid loading, while for the long-term events the leformations d
The basic assumption of the damage model is that the material is homogencons and

isotropic, and remains so throughout the damaging process.

Elastic Strain

Budiansky and 0’Connell (1976) have derived the moduli of the damaged material

using a self-consistent method, in terms of the crack density. The material is assumed

to contain a lation of randomly-oriented penny-shaped cracks. Cracking leads to
degradation in the modulus of the material. Let an internal state variable A; represent
the accumulation of damage; the Young's modulus £ of the damaged material is given
by,

E = Eo(1 = M) (5.67)

where Eo is the Young's modulus of the virgin material.
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The damage parameter Ay is related to the degraded Poisson’s ratio v and a crack

density parameter Ay through

-2 -
MO, i

An approximate relation between Poisson’s ratio of the damaged material, and that
of virgin material, v is

v & w(l -‘9—6,\‘), (5.59)
Once v is evaluated from Equation 5.59, the damage parameter A4 can be obtained
from Equation 5.58, and the Young's modulus of the damaged material can be esti-
mated. The corresponding relation of Equation 5.57 for the bulk modulus K of the
cracked material is

K _16(1 -

?) &
e 1 (=) Aty (5.60)

where Ko is the bulk modulus of the vicgin material. The crack density parameter

A, is related to the number of cracks ¥V and the average crack length a as
A =Nd®. (5.61)
The crack density parameter ), is a state variable and can be described by exter-
nal variables such as stress and strain. In Chapter 4, it was observed that changes
in microstructure at large strains are due to breaking of grains into fine grains. This
continuous crushing process results in an enhanced inelastic activity and there is no
significant change in clastic stiffness of the material. The crack density in a sample
can be estimated for small strains, especially for pre-peak behaviour by direct obser-
vation, but for advanced damage processes, the crack and grain-boundary densities
are inscparable. Here a state variable more general in nature than crack density is
needed. For the present analysis, the state variable A, is considered as a measure
of damage whose change causes change in the material stiffness according to Equa-

tions 5.57-5.59.
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An expression similar to that of the damage parameter defined in Eq

fon 5,28

can be assumed for change in )\, as

Si=1s (‘_“)u (3.62)

where fi,q and s, are constants and s is cquivalent shear stress. Bquation 5.62
assumes that crack density increases at any stress. This may be (rue to for a predam-

aged material. In polycrystalline ice a threshold value of stress s, is needed ta i

e

cracks. When stresses are lower than s, deformation does not contain cont. dutions

from damage. Further, test results presented in Chapter 4 show that strength of the
material increases with an increase in hydrostatic pressure. Fquation 5.62 can be

modified to account for hydrostatic pressure and the threshold stress as

a
) L oS>,

where parameter J3 is a function of hydrostatic pressure p. The threshold stress

A= fa(p) (’:_l

depends on grain size and the degree of confinement, Based on experimental data,

Kalifa et al. (1989) observed that s is related to the confining pressure oy as

5S¢ = 24T+ 040y (5.61)

Equations 5.57 and 5.60 are derived for interacting tensi

acks are

assumed to be open; this is not so in mode I cracks with friction at their surfac

under compressive stresses. However, as the cracking cvents are directly associated
with the dilatation, the assumption of an open crack is not far from the reality. Nemat-

cracks due

Nasser (1989) has noted that ductile materials develop extensive tensile

to wing cracking even in the absence of any overall tensile loads.
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Delayed-Elastic Strain

The cquivalent, delayed-elastic strain rate for the nonlinear Kelvin unit as presented
by Jordaan and McKenna (1991) is given by
'

= mj.s“) exp(BiAa), (5.65)

where the viscosity 7 is function of the internal stress s? as defined by Equation 5.50
by substituting s¢ for . The internal stress depends on the accumulated delayed-
clastic strain e? = [j ¢?dL. The creep rate is enhanced exponentially by the product
of a constant B¢ and the damage parameter Ag. This enhancement is the result of
increase in the grain-boundary density due to damage. If the stiffness of the spring

in the Kelvin unit is £, the internal stress can be obtained as

st =5 — Bred. (5.66)
The stiffness [ is the degraded stiffness and is related to the spring stiffness in the
Kelvin unit of the virgin ice according to Equations 3.57 as B = Eyo(l — Aa).
Secondary Creep

Cracking enhances secondary creep, the third component in Equation 5.51. Experi-
mental results of Stone et al. (1989) suggest that creep increases exponentially with
damage, and can be presented by power law relation between shear stress and shear

strain-rate. The multiaxial relation is
5 o A=Y
Gomily (U_n) sijexp(Bida), (5.67)

where 8, is a creep enhancement parameter.
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Dilatation

Volumetric deformation due to cracking is the volume occupied by cracks. After
cracking as the material undergoes large inelastic deformation. the cffect of dilatation
in ice is nearly irreversible. Only a fraction of volumetric change is recovered due to
elasticity. The confining pressure, if present, tends to suppress opening of cracks, and
thus the dilatation. 5

The dilatation can be obtained by the procedure described in Section 5.2.3, where
it was presented as a function of the mean stress, shear stresses and damage pa-
rameters (Equation 5.27). Total volumetric strain is assumed to be the sum of the

dilatation due to inelastic deformations and the bulk clastic compaction ¢, as
fa g . "
. _p_/a sde® ~ ¢, (5.68)

where f; is a constant, and €” is inclastic strain. Equation 5.3 assumes that a work
potential exists for inclastic deformations. The second term in Equation 5.68 produces

compaction while the first term causes dilatation.

5.5.2 Prediction of Test Results

The predicted results for uniaxial tests are shown in Figure 5.9. The value of the
constants used in this analysis are presented in Table 5.2. For a triaxial test the
predicted and measured response of polycrystalline ice is presented in Figure 5.10. A
good correlation of both the shear and the volumetric response can be obscrved for the
uniaxial test. In the triaxial test (Figure 5.10), the model is able to capture the trend
in the behaviour. The difference is in the initial compaction part. The dilatation
model was based on the flow deformation, which develops after peak strength, The
ability to predict dilatation shows that a work potential exists approximately during

damage in ice.
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Iigure 5.9: Response of polycrystalline ice obtained from the mechanical model when
loaded uniaxially at constant strain-rate of 1 x 10~*, The compaction is positive.
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Figure 5.10: Response of polycrystalline ice obtained from the mechanical model and
subjected to 0.005 /s strain-rate and 10 MPa confining pressure. The compaction is
positive.




Table 5.2: Modcl Parameters
Elastic Modulus Ly 9500 MPa
Poisson’s Ration v 0.3
Elastic Modulus in Kelvin Spring  Exo  0.8Eo
Reference Stress 80 1 MPa
Damage parameters q 2

fs 15x107%/p

Grain size a 2.5 mm
Secondary Creep Reference Rate  éy 1.76 x 10~7
Primary Creep Reference Rate o 15 xéo
Creep Exponent n 3
Creep Enhancement Constant 1 By 40
Creep Enhancement Constant 2 8, 20
Dilatation constant fi 035

5.6 Summary

In this chapter, two theories Lo describe the damage in viscoelastic materials were
presented. In the first theory, the damage was described by generalized J-integral

for nonlincar clastic media, which was extended to nonlinear viscoelastic media using

Schapery's correspondence principle. The second theory was based on a mechanical
model, which is a Burgers viscoelastic model with nonlinear elements. These theories
compared well with the measured response of polycrystalline ice. The first theory
is more systematic, has a rigorous basis, and requires fewer parameters. The main
disadvantage of this theory is the universality of the nonlinearity. This shortcoming

is addressed by the second theory, the mechanical model, which gives a physical

description of various components.



Chapter 6

Theory of Crushed Ice

6.1 Introduction

The behaviour of crushed ice is different from that of the parent ice mass due to the

larger degree of freedom at the grain boundary and the prosence of poros. ‘The discrete

nature of the material results in large contact pressures al grain boundaries thal in

turn may lead to phase change and further crushing of grains. The r strength

of this material is largely d dent on the degree of i Al low pre

sures,
crushed ice is similar in behaviour to snow, and can be modeled as a frictional material

(Finn et al. 1989; Sayed and Frederking, 1992 tick

. Like snow, crushed ice grains s

together by neck growth while in contact with each other and form a matrix.

Under large confinement, the particulate ice looses its discrete and granular nature.

Large pressures cause pore collapse and reduced localized shearing deformation due
to sintering of the grains. This results in deformation in the grain itself besidey grain
boundary sliding, and the behaviour of the material is similar Lo Uhat of polycrystalline

ice. The isotropic behaviour of crushed ice can be idealized into a material where

uniformly distributed pores and grain boundaries are embedded in an isotropic matrix
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FFigure 6.1: The microstructure of crushed ice. The pores and the grain-boundaries
are distributed in 3-D space.
as shown in Figure 6.1. The geometry of pores is idealized as spherical, and grain-
boundaries are idealized as thin circular disks. It is further assumed that the pores
and the grain boundaries do not interact with cach other. This condition is applicable
for dilute concentrations of pores and grain boundaries.

In Chapter 4, it was observed that under large confinement crushed ice behaviour

changes from the friction-dominant deformation to a pressure-independent behaviour,

where [riction does not play any role at the level. A
model is more realistic lo describe the strength and the deformation behaviour of
crushed ice at high pressures.

In the present chapter, a theory to describe the mechanical behaviour of crushed
ice under high pressure is presented. A linear-elastic solution based on the equiva-

lent inclusion method is derived. A closed-form solution for nonli lasti ial

containing voids and obeying a power-law is also Using the
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principles discussed in Chapter 2. clasti

solutions are extended to the viscovrlastic
response of crushed ice. The viscoclastic response is also presented using the mechan-
ical model and results are compared to the material response presented in Chapters 1.

"The pressure sintering behaviour of crushed ice is also studicd.

6.2 Elastic Materials with Pores

A porous material can be treated as a composite material, where the pores are in-
clusions. Micromechanical models such as the equivalent inchision method and the

is for

self-consistent method can be used for solving this problen. A general analy

composite material is presented in Apper

dix B. Ilere a solution for dilute pores in
a homogencous and isotropic matrix based on Iishelby (1957) and Mura (1982) is

presented.

Let the applied stress 6;; and the resulting strain ¢ be related through Hooke's
law, i.c.,

Cikt€ijs (6.1)

where Clju is the stiffness of the material to be determined. D to presence of pore

astress disturbance oi; and corresponding strain c;, is canused. ‘The applicd stress and

Lalive

strain are also the averaged total stress &y, -0y, and strain ¢, ¢, in the repe

volume, and is presented as

|
=y /V(rzu + 7)Y,
and
| . y
- VL("" +a)dV. (6.2h)

The strain c;, is related to the averaged strain ¢, by Eshelby’s tensor S, as

Sujka(in + car).

Gy
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The quantities S,yx are dependent on the geometry of the pore. Substituting e, in
Jquation 6.2, and using pore-fraction ¢, which is the ratio of the volume of pore to
the representative volume of the material, the result is

ay = (1=, (6.4a)

- ek M
i (= , R
& Fb =T +(1-0)g; (6.1b)

M
iy

where o}l and € arc averaged stress and strain in the matrix M, and are related by

Hook aw as

M o
i = Cliufid s (6.5)
where ¢} is the known stiffness of the matrix. Eliminating &/ and & from Equa-

tion 6.4 by using Equations 6.5 and 6.1, the stiffness of the porous media is
Cijul
Clla

For isotropic materials, Equation 6.6 can be presented in terms of the bulk mod-

Sirbjic

: 6.6
it — Sijur (6)

ulus A" and the shear modulus G as

K

=l (6.7a)

c
=180
c

G =~ Toasy Mthi=kij=l (6.7b)

25

whes

. K™ and GM are the bulk and the shear moduli of the matrix. For spherical
pores a closed-rom solution for Eshelby’s tensor S is given by Mura (1982) and is
presented in Appendix B, This provides

4 =5

T Whi=kLs=t (6.82)

Sijur =

(6.8b)

Substituting these values in 6.7, and making use of the relation between the elastic
constants, v = M= the elastic moduli for porous material are written as
K 3RM

7 =(=9 - 1z (6.92)
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(6.9b)

In the absence of pores ¢ = 0, K = K™ and G = (M. Equation 6.9b prediets, as

observed in Chapter 1, a coupling of shear and hydrostatic responses,

6.3 Nonlinear-Elastic Materials with Pores

as described in last section can be

The solutions for a lincar clastic material with pores

extended to nonlinear elastic materials using an incremental method, where at cach

increment of stress, lincar theory is employed to determine stress-strain relationship,

by ing an i v lincar

haviour for all phases. In this

on, a

closed-form solution for materials following power-law nonline:

s presented. This
analysis is bascd on the works of Budiansky et al. (1982), and Duva and Hutehinson
(1984).

ive.

The pores in the material arc assumed Lo be spherical, isolated and non-intora
Consider a spherical pore of radius a that is surromnded by the matrix material of
radius R (Figurc 6.2). Magnitudes of these radii are such that the void volume fraction

¢ of this spherical shell and the porous material is same, i.c.,

(a/ R)* (6.10)

The matrix is assumed to be isotropic and incompressible. Under uniaxial condi-

tions, stress and strain are assumed to he related by a power-law equation

sign(o)colo/aol", (6.11)

where ¢y and oy are reference strain and stress ial stresses

spectively. For multia

Equation 6.11 can be generalized to yicld

= sign(s) Seals/ 70l 5, /70 (6.12)
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Figure 6.2: A model for the porous material.

where s;; is deviatoric stress tensor, and s is von Mises stress. The complementary

energy function W for the power-law material can be obtained as

€000

where the definition of strain ¢;; in terms of W’ as

aw'
o (6.14)

was used. When diluie voids are introduced in this material, the potential of the

system is increased. Let the Lotal potential be given by
Wy =W'+ fi(eW,, (6.15)

where W, defines the change in complementary energy caused by an isolated spherical
pore in an infinite matrix, which is subjected to remote stress oy;, and fi(c) is a
function of the pore-volume fraction ¢ and maps the infinite matrix into the finite

domain. Equation 6.15 is of the form of Equation A.1 of Schapery (1984).
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6.3.1 Hydrostatic Solution

For materials following power-law nonlincarity, a closed-form solution is possible when
the loading is hydrostatic. Let the spherical shell be subjected to o hydrostatic
pressure p as shown in Figure 6.2. The boundary value problem is solved in spherical
coordinates (r,0,8). Due to the symmetry of loading Lhis problem is essentially
one-dimensional. Let u, be the radial displacement duc to load p, then the strain

components are

= S 6.16)
o= (6.16
@ =t =u/r (6.17)
The incompressibility condition is
=%, (6.18)
or
du, 2
Zu = 6.19
e Zu =0 (6.19)

This equation implies ti.at the most general form of displacement u, is

=5 (6.:20)
The equilibrium equation is
do, 2 -
ot ol — ) =0. (6.21)
The constitutive Equation 6.12 can be written as
€ = sign(o, — 1)col(ar = 70)/00]", (6.22)

Using Equations 6.22 and 6.20, the value of o, — g5 can be obtained. Substitute this
value in the equilibrium Equation 6.21, the result is

dlor|
dr

. 2 (=2A\'"
+slgn(ﬂ,);a‘,($) -0 (6.23)



"T'his equation should satisfy the following boundary conditions

al r=e, o,=0

andat r=R, o, =p. (6.24)
Thus,
—2A)
Iol = 518"(]’)—'70( ) "R g a7, (6.25)
A=sign() 2 (Lipjon)) 11 - e, (6.26)
A relation for change in pore volume ratio can be obtained from Equation 6.10 as
%6 ["—" - %] (6.27)

"The quantities da/a and dR/R in this equation can be vbtained from Equation 6.20.

The result is

de =3cA [% - %] ! (6.28)
or,
e = sign(p 20 =9 (L)1 - (6:29)

The dilatation and the void volume fraction are related as
de = (1 - c)de,. (6.30)

Wilkinson and Ashby (1975) and Budiansky et al. (1982) have presented a similar
formulation for power-law creeping solids unlike power-law nonlinear elastic material
in the present analysis.

While sintering pores, which are filled with air, become isolated. Further sintering
leads to increase in the pressure in the pores. The effect of this internal pressure is

1o slow down the sintering process. The internal pressure is given as

= (E 0= (o =
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where ao and co are average radius and void fraction at the moment when pores close,
and p, is the atmospheric pressure. In such cases effective pressure (p— p;) should be

used in Equation 6.2

6.3.2 Solutions for General Triaxial States

For power-law creep, Budiansky ct al. (1982) obtained a solution for W/ using the
Rayleigh-Ritz method based on minimum principles applied to the velocity field. A

numerical solution is required for the exact analysis. Approximate solutions were also

given for high triaxial states when hydrostatic stresses are larger than shea
Another approximate solution applicable for wide range of triaxial states and pore
fractions was given by Cocks (1989). The clastic solutions for the materials following

a power-law relationship can be deduced from their solution using correspondence

principles. As the objective of the present work is to extend the resulting elastic soln-
tions to the viscoelastic solutions for ice, only the approximate solution is considered
for simplicity.

Like W', W} is also a homogeneous function of order n + 1. TFollowing Duva

and Hutchinson (1984), this can be written in terms of von Mises stress s, and the

hydrostatic pressure p, as

W = oo ( (-‘:;)"“ Hain) (6:32)

where
3
a=3,

and f(a,n) is a dimensionless function.

The dilatation can be obtained as

p— (C)Qalp; = file)eo ( s )n o (633)

g0/ da’
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where [y is a function of ¢. For high triaxiality, a > 1, Budiansky at al. (1982) have

presented an approximate expression for dilatation as
L3 s\* [ Iof .
& =sign(@)3/i(e)eo (Z) ('—"—l - G) . (6.34)

where
(= L)fn + glsign(a))]

n?

G (6.35)

with g(1) = 0.4319 and g(—1) = 0.4031. For dilute concentrations, the function
Sile)=c.

For n = 1 Equation 6.34 reduces to the exact results. For higher values of n Equa-

lion 6.34 predicts strong coupling of hydrostatic pressures anc’ the shearing stresses
on dilatation. It is also noted that this equation can predict dilatation even in the
absence of the hydrostatic pressure. The high-triaxiality approximation gives good
results for o > 3, and about 30% crror for a = 1.5.

By Lquations 6.33 and 6.34, the function [ is obtained as

-
f(n.n)=n:‘Ll (L‘;—‘—G) . (6.36)

Using LEquation 6.36 in 6.32, total complementary energy for a porous material can

be obtained from Equation 6.15 as

) _ G0 (s\™ lel _ G\
Wi = 2% (du) L (Z-6) |, (6.37)
and the strain components as
o s\ [3s; la| " _3nGsij 1. )
= (ﬂn) [ = +c( < -c (“_23 + gsign(eds)| (6.38)
For nonlinear ials, the licability of the dilute ion results is

restrictive. Under hydrostatic loading, where the exact solution exists, a comparison

can be made. A pore [raction of ¢ = 0.001 increases the dilatation-rate by 30%
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above the predicted value when n=3. For large pore-fraction, the interaction of pores
must be considered. Cocks (1989) has presented a semi-cmpirical solution for porous
materials that covers the practical range of pore fractions. In ice-structure interaction
problems, the pore fraction may be as high as 20%. This solution was obtained by
interpolating the results for dilute solution and a concentrated solution. Iere the
complementary energy of the porous media is not a lincar combination of the energies

of the matrix material and the pores, but a coupled function of the pore-fraction and

is given as
, _ @oo(l —c) 5 m = 5
Wi = G n-\anz3) (6.39)
where
- 2 2na? ' )
s—a[l+c(§+m)} . (6.10)

The strain components can be obtained as
3 5 "y cn (p)( Ber ) N
g (—) (e (2) (5t
G 2"’(a.,(1—c)) [.s1’+(n+1)(l+g) AR (A1)

6.4 Grain Boundaries and Fracture

Grain-t daries are i fections in a | material. They are also weak

structures, and are subjected to high stress jons. When the material is

loaded, sintered bonds are broken and large viscoclastic deformation occurs in a thin
layer adjacent to the interacting surfaces. There is also dissipation of energy duc Lo
friction. The mechanical properties of this thin layer are different from that of the

grain material, and they may be

d as disk-shaped inclusi In Chapter 5,
cracks were treated in this fashion showing the similarity between grain boundaries
and cracks. Using the solutions of composite materials (Appendix B) the clastic

moduli of a material with grain-boundary can be estimated.
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The inelastic and anisotropic nature of the ice crystal—creep along the basal plane
of ice is about two orders higher than along non-basal planes (Duval et al., 1983)—
plays a very important role in the deformation. When loaded, this anisotropy leads
to development of large internal stresses in unfavourably oriented grains and their
crushing. After crushing stresses are shifted to the neighbouring grains to continue
the process of crushing. The result is an increase in grain-boundary density and
viscous behaviour of the material. During slower deformations and in a material
at high temperature such as ice, new crystals can nucleate and grow at high stress
concentration points. This process is called recrystallization. The requirement of
the nucleus is that its boundary be mobile (McLean, 1957). When large confining
pressures are also applied, which is the case in the "critical zones” in ice-structure
interaction, the mobility of grain boundaries may change in unfavourably oriented
grains due to pressure melting.

Deformation in a granular material is the result of both sliding and rotation of
grains. The change in the grain size causes increases in the freedom of movement at
the grain-boundaries and cnables the rotation of grains. In this process grains with
larger surface area, i.c., elongated grains, are broken. This can be observed from the
thin sections of crushed ice prepared before and after a test as presented in Chapters 3
and 4. After tests, the grain size is reduced and they are round. At large deformations
grain-boundaries and cracks are indistinguishable. In the present analysis there is no
scparate treatment of grain-boundaries in particular. The mobile grain-boundaries
and their changes are presented by the theory of generalized J-integral of damaging

material as presented in Chapter 5.



6.5 Pressure Sintering

In this section sintering of crushed ice under high pressure is examined. The material
is assumed to follow power-law creep, é = ig(0/a0)", where éy is the reference ereep
rate. The solution of this problem can be obtained by the results presented in See-
tion 6.3 for clastic materials with pores and using the analogy between clastic and
viscous solutions, i.e., strain is replaced by tle strain-rate. The resulting equation for

the sintering of crushed ice based on Equation 6.29 is

Jéoc

= sign(p = )2 (o= pifeol) 11 -

(6.42)

where p; is pore pressure and is given by Equation 6.31. It is noted that the model
of sintering presented in Equation 6.42 is valid only when pores are isolated, which is
best representative of the final stage of sintering.

Maneo and Ebinuma {1983) studied the densification of snow and observed that
pores isolate at the pore-fraction of 0.1. For pore-fractions higher than 0.1 and below
0.4, a cylindrical model of pore is appropriate. The solution for a cylindrical pore is

similar to that of the spherical pores, and the final equation can be written as
. : (2 i 1/n)-n ;
& =sige(p = p)2oc (21(p = pi/oal) [1 = ™, (6.43)

For the compaction of crushed ice, the simulated behaviour is presented in Fig-
ure 6.3 with the test data. Using the values of ¢ = 8.8 x 107° thal is 500 times
that of polycrystalline ice, the power-law cxponent n=3.2, and the constant my=1,

analysis was performed. The theory and the test data compare well. It should be

noted that at the begi of ion, large d are due to fracture of

the sintered bonds. In Figure 6.4 the simulated results are verified for test 8, where
pressure pulses were applied on the specimen. The initial pulse is not modelled as

the present theory does not cover compaction due to fracturing.
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Figure 6.3: Compaction of crushed ice subjected to various hydrostatic pressures.

The applied pressure is shown in inset.
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Figure 6.4: Model verification for cyclic compaction of the material.
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6.6 Modified Superposition Method

As in Chapter 5, the modified superposition method can be used to obtain the vis-
caelastic response with pores and grain-boundaries. For a non-lincar viscoclastic

material
(In 500,35
-/ Dt - " ' ) (6.0
where €;;° is a pscudo-strain and is function of the effective shear stress s, the hydro-

static pressure p, and the microstructural parameters Sg, k = 1,2, ... All non-lineari

in the material is addressed by ¢;)®. The time-d dent structural parameters Sy
account for the dilatation and cracking of sintered crushed ice.

The response of crushed ice has two basic components, the collapse of pores and
the breaking of sintered bonds when subjected Lo shearing stresses. 'The total com-
plementary energy of crushed ice is combinalion of the complementary encrgy of the
cracking solid, and increase in the complementary energy due Lo voids, The treatment
of cracked solids due to distributed microstructure was presented in Chapter 5, and
is due to Schapery (1981). The increase in the complementary energy due to voids in

a power-lav/ nonlinear material was presented in Equation f.41. Using these theories,

the pseudo-strain ¢;;¢ for crushed ice can be written as

ol (=) (S (2) (5= 2 )] s s
i ‘2"’(.:.,(1-:)) [;2 T (.a)(ﬁ” a“’)}-"'s)’ (6:45)

where g(S) is a damage function, and § is a damage parameter, which is function of
the loading history. Equation 6.45 reduces to the damage theory based on MSP of

Chapter 5 when the pore fraction ¢ =

Equation 6.45 has two microstructural parameters: the damage measure .S, and
the pore fraction c. As the response of crushed ice is result of changes in both

parameters, kinetic equations are defined for these changes. The damage parameter
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§ can be defined by an equation similar to that in Chapter 5, as

5=/ “F (”—")1 dr (6.16)

where ¢ and ) are positive constants. The parameter J3 is function of all-around

ure oy as

Js = hi(pa/aa)", (6.47)
where f; and ry are constants and p, is the atmospheric pressure. Unlike polyerys-
Lalline ice, crushed ice lacks strength at o3 = p, unless it is sintered; Equation 6.47

represents the material behaviour for high

When shearing stress is also present, the compaction of a creeping solid can be
described by Equation 6.38 by replacing strain with strain-rate. The volumetric creep

relation is

X Inc 5 )
o T (m,(l —c)) (B)as) o)

and can be used Lo obtain the new value of the pore fraction ¢ from
&= (- (649)
1t is noted that Equations 6.15 and 6.48 are derived for an incompressible matrix.

Fquations 6.46 and 6.49 are two desired kinetic equations for crushed ice.

6.6.1 Creep Compliance and Nonlinearity

The ereep li D(t) can be d ined by tant-stress tests on ice. As this
component does not contain the effect of the microstructures and their changes, the
constants of the compliance can be obtained from the creep tesis on polycrystallineice
as in Chapter 5. Crushed ice has much higher nonlinearity compared to polycrystalline
ice. This is due to weak intragranular bonding. As the elasticity of crushed ice, as

in polycrystalline ice, is linear, inclusion of an elastic term in the creep compliance,
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which is to be used in Equation 6.4, will

present. the material hehaviour, In
this analysis only the delayed elastic and permanent creep terms are considered in
the form

D(t) = Dy(t/to)* + Da(t/lu), (6.50)

where Dy, Dy, band to are positive constants,

The linearity n can be estima

whed iee,

Theoretically it should be possible to get this parameter from int: but, the

strong nonlincarity that develops in crushed ice due to ereep-dominant, deformation
is not reflected in intact ice. Under confining pressures, crushed ice undergoes a large
degree of compaction (sce Lest, results in Chapter 4), thus the change of microstructure

is also reflected in the creep tests. Iere the nonli

ity and the compaction constants

should be determined simultancously. Using the creep data in Figure 6.5, n was 1.9

for 5 MPa mean pressure tests, and 2.1 for 20 MPa tests. A mean value 2 iy used in
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Figure 6.
constant

the lollowing analysis.

6.6.2 Prediction of Test Results

For the prediction of triaxial test results, the damage function and damage parameter

S are assumed to be related exponentially as
g =SS (6.51)

where A is a constant and So is the initial damage. For a virgin material, the damage
functivn g is unity. The predicted results for triaxial tests are shown in Figure 6.6.
“The value of the constants used in this analysis are presented in Table 6.1. The initial

density of crushed ice at the time of the application of axial force is 0.8 kg/m® for

5 MPa tests and 0.85 kg/m? for 20 MPa tests. The model captures the principal fea-

tures of the results, although some di ies exist, ially for tests conducted
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Table 6.1: Model parameters required for the modified superposition method for
crushed ice.

Delayed Elastic Constant Dy 3 x 107%/MPa
Delayed Flastic Exponent & 0.28
Secondary Creep Constant D | x 10

Nonlinearity Parameter n 2
Reference Stress o | MPa
Reference Strain w |
Reference Strain-Rate @ Ix107s
Damage Constants A l2xi0m?
Ji 100
n 2

1
Initial Damage (5 MPa) So 122 x 10°
Initial Damage (10 MPa) S, 0
Damage Exponent q A5

at low confining pressures.

6.7 Mechanical Model

In this section the mechanical model developed in Chapter 5 for the damaging material
is extended for crushed ice. As discussed in Section 6.4, grain boundaries of crushed
ice are treated as penny-shaped inclusions that arc weaker in strength than the grain
material, and have features of cracks. The effect of the porosity of crushed ice on the
mechanical properties, as described in Section 6.2, is also added to the mechanical
model.

Each strain component, the elastic, the delayed clastic, and the sccondary creep is
influenced by the pores and the grain-boundaries in crushed ice. As ‘n polycrystalline
ice, elastic strains are linear, while delayed clastic and creep strains are nonlincar.

Because of the softness of the material, the permanent creep is dominant. The clastic
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and delayed elastic strains are of prime significance during rapid loadings.

6.7.1 Elastic Strain

The elastic propertics of crushed-ice can be obtained from that of polycrystallineice by
damaging and introducing pores in it. The elastic moduli are given by Equations 6.92
and 6.9b. The damage state in the grain boundaries of crushed ice is similar to that
of compression cracks in polycrystalline ice. In crushed ice the number of grain-
boundaries increases due Lo further crushing of grains, while in polycrystalline ice
the number of cracks increases due to damage. The difference lies in the rate of
change in the microstructure. As the deformation in crushed ice is largely controlled
by its creep behaviour, the rate of change of the grain size is smaller than the rate
of change in number of cracks in virgin polycrystalline ice where initially the elastic

and delayed elastic defc ions are domi A ic measure of damage

seems appropriale for crushed ice. One such measure was described in Section 5.2.
‘The bulk modulus of crushed ice is assumed to change with porosity only, and not
due to damage. The Young’s modulus £ of crushed ice can be written in terms of

the Young's modulus E; of the porous matrix material, as
E=E,/g(S), (6.52)

where g(5) is a damage function, and S is a damage parameter given by Equation 6.46.
The damage function and damage parameter S are assumed to be related expo-
nentially as in Equation 6.51. The variation of the Young’s modulus of crushed ice

with respect to the damare parameter S is shown in Figure 6.7.
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6.7.2 Delayed-Elastic Strain

The equivalent delayed elastic strain rate for the nonlinear Kelvin unit is given by

i = g en(ig), (6.5%)

where the viscosity 7 is function of the internal stress 57 that depends on the accumu-

lated delayed-elastic strain, e? = fj ¢%dt. In this cquation the creep rate is enhanced
by an exponential form of the product of a constant, A, and the damage parameter
g. If the stiffness of the spring in the Kelvin unit is ns, the internal stress can be
obtained as

4 =5 — Eyel, (6.54)
The stiffness, £y, is related to the spring stiffness in the Kelvin unit in the virgin ice
according to Equations 6.9b, 6.92 and 6.52.

The viscosity 7 is nonlinear function of the internal stress, and is obtained by

d

equating Newtonian flow &

s/, and the power law flow, ¢t = (s4/ag)"éo. It is
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given as,

a5 =3
m(s?) = ﬁ (6.33)

where o and ¢ are reference stress and strain-rate respectively.

6.7.3 Secondary Creep

"The weaker grain-boundarics in crushed ice enhance the secondary creep. A relation
for a porous and viscous material following power-law nonlinearity can be obtained
from a correspondence hetween the elastic solution of Equation 6.41 to a viscous

solution by replacing strain with strain-rate, and can be presented as

=3 (i) [ 55+ e () (- 2s) o). (o0

6.7.4 Dilatation

“The results of triaxial tests on crushed ice as presented in Chapter 4 show that the
volumetric responsc of crushed ice due to shear is always compaction. The major cause
of this trend is presence of high porosity in crushed ice, which is undergoing volumetric
creep due to hydrostatic and shear stresses. Other causes of volume change, e.g.,
cracking, which is the dominant mechanism of dilatation in polycrystalline ice, are
negligible for this material.

In Section 6.5 it was shown that the compaction of crushed ice can be successfully
described by a creeping material with pores. When shearing stress is also present,
the compaction of a creeping solid can be described by Equation 6.48. The total
volumetric strain is sum of the clastic strain obtained from the bulk modulus of
Equation 6.9a and the contribution of the dilatation of the porous material following

the power-law creep as given by Equation 6.48.



Table 6.2: Model parameters for crushed ice.
Young's Modulus of Tcc 9500 MPa
Poisson’s Ration 03
Elastic Modulus in Kelvin Spring E 7600 MPa
Damage Constant A L2x 10-%
Damage Exponent H

q
Secondary Creep Reference Rate (20 MPa) dp 352X 1077/s
Secondary Creep Reference Rate (5 MPa) o 1A x 1070/s
Primary Creep Reference Rate Qo 10X /s

3

Creep Exponent n

6.7.5 Prediction of Test Results

In Figure 6.8 the simulated responses of crushed ice in simple shear stress path are
shown. The predicted results for the triaxial strength-tests are shown in Figures 6.9

and 6.10. The value of the constants used in this analysis are presented in Table 6.2

Comparison with test data shows that the mechanical model can prediet the material

response, the shear and the volumetric, very well. TFor Le

s at high strain rate, dil

tion due to opening of cracks reduces the effect of compaction, and an improvement
in prediction can be made by including this effect. If long-term response is of main
concern, better performance from this model can be obtained by sacrificing elasticily

of the material.

6.8 Summary

Crushed ice can be described as a porous material with weak intragranular houds.
The response of crushed ice can be described by introducing porosity in the polycrys-
talline ice. To describe the behavionr of crushed ice, two models based on continuum
mechanics were presented. The first model was based on the modified superposition

principles, while the second model is mechanical. In both models, the porous mi-
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Iigure 6.8: Creep and relaxation response of crushed ice as obtained from the me-
chanical model.



STRESS DIFFERENCE (MPa)

—— THEORY
- TEST DATA

AXIAL STRAIN (%)

7 0

VOLUMETRIC STRAIN (%)
&

AXIAL STRAIN (72)

110

Figure 6.9: Stress-strain response of crushed ice obtained from the mechanical model
subjected to constant strain-rate of 0.005/s (TEST 7) and 0.02/s (TEST 13) with

the confining pressure of 5 MPa.
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and its variation was included. Another microstructural variable, the grain bound-
ary sliding effect, was also included by considering these as weak structures in the
material. The performance of both models is good.



Chapter 7

Application to Extrusion Analysis

7.1 Introduction

During the process of ice-structure interaction ice particles are broken into discrete
picces due Lo crushing. These crushed particles form a distinct interfacial layer be-
tween the intact ice mass and the structure (Frederking et al., 1990). The thickness
of this layer may vary spatially depending on the structure stiffness, ice inhomogene-
ity and the velocity of the interaction. The crushed material from the interface is
extruded as ice moves towards the structure. The process of crushing and extrusion
is cyclic and load on the structure is characterized by the deformation and flow of the
crushed material.

In this Chapler, the flow properties of crushed ice under plane-strain extrusion

conditions arc examined. These tests were with industry
The details of the test setup and some results are presented in Spencer et al. (1992)

and Singh ct al. (1993). For compl a brief description of test-setup is pre-

sented here. ‘This is fcllowed by discussion of test results and evaluation of various

constitutive theories applicable to crushed ice extrusion problem. Finally, connections
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Flow
Direction

Figure 7.1: Ciecometry of extrusion Lests. Flow in z-dircction was prevented 1o obtain
plane strain condition.

are made to the theories described in previous Chaplers, and finite clement analy-

ses are conducted to compare the test results and the theore

cal developments. A
closed-form solution is also presented for the plane strain extrusion of viscous material

following power-law nonlincarity.

7.2 Setup of Extrusion Tests

A schematic diagram of the test geometry is shown in Figure 7.1, T'he materizi vas
loaded at constant velocity in the y-direction. The flow of crushed ice was in the x-
direction, The channel shape of the hottom platen prevented flow in the zdirection.
The top platen was instrumented with cight pressure cells to meazure the pressure
distribution. Two potentiometers were mounted across upper and lower platen for

displacement measurements.
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A closed loop servo-controlled system was used, where averaged displacement
across the platen was the feedback signal. Mean pressure was also measured at the
actuator. The system as used here could apply load close to 4 MN, with servo-control
feedback. Although the apparatus functioned cxtremely well, the high loads and
loading rates, and the vibrations experienced during the tests constituted demanding
conditions. For example, it was not possible to maintain perfectly the nominal loading
rate duzing the vibrationz. The crushed ice layer of 100 mm thickness and density of
0.55 g/cm® was squeezed between rigid parallel plates at various speeds ranging from

2.5 mm/s to 160 mm/s at -10°C.

7.3 Test Results and Discussion

During the initial stages of the extrusion, the mean platen pressure increased mono-
tonically. AL high pressures a sawtooth pattern developed in some tests. The extru-
sion of the crushed ice was nearly continuous for the slower tests (2.5 mm/s), while
with the increase in the speed the dynamic activities became dominant. Again at the
highest speed (160mm/s) extrusion was smooth. This transition from the dynamic
process to a nearly static process at high speeds is typical in ice-structure interaction
(Singh et al., 1990). Mean pressure and the displacement time-series for typical extru-
sion tosts are presented in Figure 7.2. The dominant frequency of pressure variation
changed with speed. As the layer thickness reduces during the test, a larger pressure
is needed for the extrusion and the dominant frequency decreases. Sudden changes
of pressures during extrusion cycles and a large pressure gradient along the extrusion
plane resulted in vibrations in the platen for some tests. Post test inspection revealed

a solid mass of fused ice in the central zone.
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Figure 7.2: Mean pressure and the platen displacement for typical extrusion tesls at,
speeds (a) 2.5 mm/s, (b) 25 mm/s, (c) 60 mm/s and (d) 160 mm/s.
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Figure 7.3: Pressure variation as recorded from varicus sensors with Lime for a typical
test at 160 mm/s. The sensor locations are shown in inseL.

7.3.1 Pressure Distributions

The pressure i d by different il varied greatly depending upon
their location in the extrusion channel. A typical pr cord from all pressure
cells is shown in Figure 7.3. The pressure distributions along the z-axis (seusors 8,

13, 15 and 16) are nearly uniform and verify that a plane strain condition existed

during extrusion. On the other hand, the pressure along the x-axis, the cxtrusion
axis (sensors 8, 9, 10, 11 and 12), varicd greatly. The largest pressure along the
extrusion axis was recorded at the centre of the platen, while near the exit, pressure
was negligible.

During the initial stage of the extrusion, pressure along the extrusion axis varied

exponentially with the peak at the center. As higher pressure developed, the pressure

distribution flattened out to a bell shape. In Figure 7.4, the change of the pressure
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distribution along the extrusion axis is presented for two tests. During the initial
stage of extrusion, i.c., at the low-pressure stage, the load was generally carried by
a narrow central zone of the platen. As the pressures began to rise, the pressure

di

ribution usually flattened out to a parabolic shape, and the load carrying zone
generally widened. Similar changes in the pressure distribution were observed during
individual dynamic events. For a typical event in test X991 this change is presented
in Figure 7.4b. The high-pressure fused zone carrying most of the load is denoted the
“critical zone.”

In the present tests, rapid decrease in mean pressure was associated with failure in
ice. This failure was not simultaneous throughout the channel, but started just outside
the critical zone. It is noted that in the failure zone, the pressure gradient is highest.
As shear stress is proportional to the pressure gradient, high shear stresses occur in
the failure zone. In Figure 7.5 the pressure variation during a typical dynamic cycle
is presented. At points 1, the pressure distribution is -onvex in the critical zone and
increases both in magnitude and area when the mean pressure increases. A drop in
pressure outside the critical zone, i.e., about 150 mm from the centre, can be observed
at point 2. The [ailure has been initiated at this moment, and moves towards the
centre. AL point 3, pressure in the critical zone, and at a distance of about 75 mm
from centre, drops as failure progresses. This also causes a sudden pressure increase
at the centre, and momentarily the pressure distribution becomes concave. The high-
pressure gradient near the centre forces the ice in this area outwards towards the low
pressure zones, and the pressure distribution again becomes convex in the critical

sone as at point 4. This process is repeated for the next cycle.
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Figure 7.4: Pressure distribution transforming from friction-hill at the beginning
of extrusion to a flatter parabolic shape at high pressure stage of extrusion for (a)

160 mm/s and (b) 25 mm/s speed test.



1

045 0455 046 0465

time (8)

Pressure (MPs)

10

s

° 30 100 50 200 250 30
Distance from ceater ()

IMigure 7.5: Variation in pressure distribution during a typical dynamic cycle of mean
pressure for a test at 125 mm/s.

7.3.2 Effect of Speed on the Flow

‘The mean platen pressure changes with the crushed layer thickness as shown in Fig-
ure 7.6 for different speeds. For clarity, the dynamic activities are not shown in the
figure. The results from a compaction test at speed of 2.5 mm/s, in which the ice was
prevented from extruding, is also superimposed on the figure. As the platen speed in-
creased, a lower final thickness was achieved for same mean pressure. From Figure 7.6
it can be seen that large deformations in crushed ice are associated with compaction,
ceven in the absence of extrusion. For a given layer thickness, a much larger load
was found in the slower tests. Tlie formation of fused material in the critical zone is
associated with the compaction process. For slower tests, the critical zone forms at
an carlier stage in the test. For faster tests, rapid extrusion of material caused less

compaction at earlier stages of the tests. The results illustrated in Figure 7.6 make
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Compaction

Mean Pressure (MPa)
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Figure 7.6: Change in the mean pressure with the crushed layer thickness for different
speed tests.

an analysis of the effect of rate of loading difficult.

7.4 Analysis and Interpretation

As the flow behaviour of granular geomaterials is well represented by the Mohr-
Coulomb [ailure criterion, it has been proposed for crushed ice (Iallam and Pick-
ering, 1988; Sayed and Frederking, 1992). On the other hand, as solid ice exhibits
viscoelastic behaviour, models for flow of crushed ice based on viscous flow have also
been proposed (Kurdyumov and Kheisin, 1976, for extrusion during drop ball tests,
and Jordaan and Timco, 1988, and Jordaan et al., 1991, for upswing during saw-
tooth dynamics). The viscous flow theory exhibits a dependence of force on velocity,

ies are

whereas the Mohr-Coulomb flow theory does not. In this scction, these

evaluated for crushed ice. Physical changes in the material are also examined.



12 . T v v
] 1
i =8
= -
& osf /— 5=3 -
g §=5
.5 04 R
3
Z 02f q
o . . i
02 04 0.6 0.8 1

Nondimesional Distance from Center
Iigure 7.7: Pressure distribution predicted by t.:e Mohr-Coulomb flow theory. The
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For plane-strain extrusion, the material models based on Mohr-Coulomb flow and
viscous flow behaviour predict different pressure distribution along the extrusion chan-
nel. The Mohr-Coulomb flow model predicts an exponentially increasing pressure
distribution moving from the exit to a sharp peak at the platen center (Figure 7.7),

while the viscous flow model predicts a convex pressure distribution (Figure 7.8).

7.4.1 Physical Changes in Crushed Ice and Formation of
Critical Zone

The deformation of crushed ice at early stages of loading is dominated by granular flow

and ion. During the high-p stage of extrusion, a cycle of solidification
and breaking occurs. In the critical zone within the crushed layer, groups of particles

stick together under higher pressures, forming a fused mass of crushed ice, Doting
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Figure 7.8: Pressure distribution predicted by the viscous flow theory. The value 'n’
is the power-law nonlinearity cocfficient.

this period, the pressure rises rapidly, and slow solid extrusion from the central region
occu  The process of sintering is closely related to pressure melting. During loading
the local pressure at the particle contacts may be large enough to canse melting,
Other important mechanisms for sintering at high temperature are due Lo diffusion.
These could be dominant for slow extrusion processes. It is suggested here that, the
material behaviour could well be viscous on the ‘upswings’ of the dynamic process.
Clearly the failure process leading to drops in load is not likely to result. from viscous
flow alone, although it may be aided by factors such as pressure melting,

As noted, after the tests, a solid mass of fused ice in the center of the platens
was observed. This was also observed by Sayed and Frederking (1992). The density
of this solid mass approached that of the polycrystalline ice, while outside this fused
zone the density remained close to the initial value (Figure 7.9). With loading this

fused zone expands from the centre of the platen. The boundary hetween the fused
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zone and granular zone was distinct. The measured density after a particular test
is shown in Figure 7.9, which also illustrates growth of the fused zone. Outside this
zone, crushed ice is still granular.

‘The appearance of the fused ice was similar to that found in the layer adjacent
to the indentor in field tests. Ilere, the ice undergoes a breakdown in structure to a

fine-grained material characteristic of the layer. Thus, besides cracking, 1

structure was degraded. There are therelore two kinds of damage: cracking and
breakdown of structure. Both lead to increased compliance, and in particular, a
substantial increase in the viscous response. The presence of high shearing stresses
enhances the damage proress. Such a stress state would exist near the edges of the

critical zone, leading to breakdown into the fine particles.

7.4.2 Crushed Ice as a Mohr-Coulomb Material

In Figure 7.7, the pressure distribution based on a Mohr-Coulomb (M-() flow theory
(Savage et al., 1992, without the effect of gravity) was presented. For the veloc:
ity range of these tests, the effect of gravity is neglected, Comparing the pressure
distributions shown in Figures 7.4 and 7.7 suggest that M-C model can predict the
pressure near the exit for all cases. This model can also gives good estimates of the
pressure at the central zone only during the carly stages of the tests. “This can be

seen in Figure 7.10, where the predicted pressures from this model are presented for

the early stages of extrusion. The value of the material cohesion is | kPa with a
friction angle of 25 degrees, whereas a [riction angle of 7 degrees between the ice and
platen was used for M-C theory. Attempts to fit the M-C flow model with constant
properties at advanced stages of extrusion were fruitless, as the pressure distribution
was no longer concave near the centre.

Sayed and Frederking (1992) d d similar plane-strain extrusion tests for
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Iigure 7.10: Comparison of measured pressure distributions of a test at early stages of
extrusion to the Mohr-Coulomb flow theory. Test results form Sayed and Frederking
(1992) are also presented.
crushed ice. In Figure 7.10, the pressure distribution from their test (test 12) is also
shown in non-dimensional form, with one of the present test, and the M-C solution.
The broken line shows an alternative interpretation of the pressure distribution corre-
sponding Lo the early growth of a critical zone. It should be noted that in Sayed and
Frederking’s test-setup, the next sensor is at a distance of one fourth of half platen
length from the central sensor; while in the present test-setup it is one fifth. It may
be possible that the convex part of the pressure distribution in not always observed.
‘The response of crushed ice in the plane-strain condition is complex because of
sintering of ice, the extent of damage in the material, and the dynamic characteristics,

all of which change during a test. This lexity is enh i by di ial com-

paction in the material. In the triaxial tests on crushed ice as presented in Chapters 3

and 4, the confining pressures in triaxial tests were varied from 5 MPa to 20 MPa
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Figure 7.11: Frictional behaviour of crushed ice,

in various tests. This is in the range of the obscrved pressures near centre of the
platen in the extrusion tests. For triaxial Lests below 10 MPa confining pressure, the
friction angle based on peak stresses was about 14 degrees (Figure 1.12), whoreas for
tests higher than 10 MPa, a friction angle close Lo zero degrees was observed. 'This
shows that the material behavior has changed from Mohr-Coulomb flow, which is

d 1

)
P toap

material, where friction does not. play
any role at macro-structural level. This change of material behaviour is illustrated in

Figure 7.11. This change of behaviour is also possible with regard Lo friction hetw

o
crushed ice and the steel platen. A small change in the value of friction, as also noted
by Savage et al. (1992), will result in an order-ol-magnitude difference in pressure
prediction. Thus, any attempt to model crushed ice flow under high pressures must

include the change in friction during tf  process.
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Figure 7.12: Mean central pressure variation with the displacement of the platen for
a 25mm/s lest.

7.4.3 Crushed Ice as a Viscous Material

For crushing events, the mean stiffness per unit area of ice increases with compaction.
This stiffness is mainly due to the consolidated zone at the centre of the platen. The
mean central pressure (averaged in central 300 mm of the platen) for a typical test

at 25 mm/s is | for cor ding platen displ;

in Figure 7.12. The
stiflness for the marked event is 4200 MPa/m. Other lests showing dynamics also
provide similar results with some dependence on speed. Slopes of the mean pressure-
time trace from individual dynamic activities are shown in Figure 7.13 for various
tests. This slope increases with speed until the speed of 60 mm/s. The decrease
of slope at high speed may be due to change of the driving mechanics of low from

quasi-static to inertia.
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Figure 7.13: Variation of the ratc of the mean pressure change for individual dynamic
cvents with the velocity of loading. The vertical bar is one standard deviation,

To investigate the elastic behaviour of crushed ice, appropriate boundary value

problems were solved using the finite element method. Only the central consolidated

zone (sce Figure 7.9) of 300 mm length was considered, The finite eloment. mesh used

in this analysis is shown in Figure 7.14. The contact between the material and the
top platen is rigid, while symmetric boundary conditions were used along xz and yz-
planes. The measured pressure distribution at the Lop surface and a lateral pressure
as measured at 150 mm from the center was applied. These values of pressures and
the averaged displacement of top surface nodes are compared to measured values
presented in Figure 7.12. The best fit was obtained when the modulus of elasticity of
crushed ice is 45 MPa. This value is more than two orders less than the modulus of
the polycrystalline ice (about 8 GPa), suggesting that deformation mechanisms other
than elastic are dominant.

Jordaan and Timco (1988) presented a clov-l-form solution of Newlonian viscons
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\ 1

\ Mesh Used for F.E. Analysis

Figure 7.14: F.E. mesh used in the analysis.

flow for the planc-strain extrusion. Extending their work, we present here a solution
for nonlinear flow. The geometry of flow is shown in Figure 7.15. The material was
assumed Lo be incompressible and isotropic. The problem is further simplified by using
the lubrication theory. In this, it is assumed that the crushed layer is thin (h < L),
and the flow in x-direction greatly exceeds that in y-direction. This simplification
results in uniforn, pressure distribution in y-direction.

‘The constitutive behaviour of crushed ice is assumed to obey power law as

due .
o = (1)

where u; is velocity of flow in x-direction, and 7 is shear stress as shown in Figure 7.15.

Let the inertia forces be negligible, the equilibrium equation can be written as
ap  or
55y

where pressure p is only function of x-direction. As the flow is symmetrical about

s (1.2)

y = h plane, we will concentrate on the domain z = 0 to L and y = h to 2h.



162

e dy Sormed
p+ Sedz, T
.

=3 it
T T4 Gy
»

Figure 7.15: Geometry of flow. The pressure distribution along y-direction i
to be uniform.
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Integrating Equation 7.2 in y-direction from h to y, and substituting for 7 from
Fquation 7.1 the result is

duz _, (dp
=b|a;

Fuz _ (82 (g hy, 7
e =0 () w-n @
where the boundary condition 7 = 0 at y = h was uscd. On further integration,

between y and 2h, with the boundary condition u. =0 at y = 2h, u; is obtained as

wr= 2 () (- mr - (14)

From the continuity of flow, a relation between u, and u,, velocity of the platten
motion can be written as
24
oy =— /h uzdy. (7.3)
Substituting for u; from Equation 7.4, and manipulating terms, an equation for the

variation of the pressure p is

g_: = Adtn, (76)
where .,
+2)]""

A= [%} . I

At the exit @ = L, stress is po, thus by integrating Equation 7.6 between & and L and
expression for the pressure distribution along the x-direction can be obtained as

AR ity _ tnbt)/m
P m[u FO/n _ g0 g, (7.8)

The sign of p lollows that of the platten velocity, i.e., when platens are converging,
pressure throughout the extrusion channel is positive. This solution is presented in
Figure 7.8 for various value of . For n = 1, Equation 7.8 reduces to Jordaan and
Timeo's solution. In Figure 7.8, pressure distribution for n = oo is also presented. If

the value of n is large, Equation 7.8 reduces to

p=A(L - z)+po. (7.9)
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It should be noted that when n = oo, the material is plastic, and the pressure
distribution is linear.
Mean pressure, pn, on the platen can be obtained by integrating Equation 7.8

between z =0tox =L as

An
= A 7
Pm 2n+11 + po, (7.10)

where po is pressurc at exit. In Equation 7.10, the effect of crushed-layer thickness
is in parameter A, as shown in Equation 7.7. If the pressure at the exit is neglocted,

the mean pressure, pi, is
1\ (2
P (l_.) (7.11)

From the logarithmic plot of mean platen pressure and the inverse of the crushed
layer thickness for the data presented in Figure 7.6, the slope ‘'was caleulated for
various tests. This slope varied greatly for pressures less than about 2 MPa, bt at
higher pressure it is nearly constant. For 2.5 mm/s speed test it was 8, and for 60,
125 and 160 mm/s speed tests it was 2.2. For a Newtonian fluid this slope would be
3, and for power-law nonlinear material with n = 3, the value would be 1.67. This
suggests possible applicability of viscous flow model for higher speed tests. In slower

tests, the effect of compaction has made interpretation difficult.

7.4.4 Crushed Ice as a Viscoelastic Material

In Figure 7.16, the pressure distributions at advanced stages of a test as presented in
Figure 7.4 is compared with the pressurc distribution predicted by the linear viscons
theory (Jordaan and Timco, 1988) and the nonlinear viscous theory for n = 3 in
Equation 7.8. These theories provide a good fit to the data for the contral portion,

i.e., for the fused zone.
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IFigure 7.16: Comparison of pressure distributions of a typical test at advanced stages
of extrusion to that predicted by linear and nonlinear viscous theories.

The viscous and viscoelastic theories predict a convex pressure distribution. Thus,
it cannot represent the observed pressure distribution near the edges. As most of the
force is concentrated in the critical zone, the viscous theory models the material well
during high-pressure interactions. At the edges, the material in its loose state has
yet to undergo the solidification process, which is not included in these theories. For
a general solution of the extrusion problem, both Mohr-Coulomb and viscous flow
theories should be combined to obtain the measired pressure distribution. It is also
desirable that the effect of volumetric deformation, which is caused by pore collapse,
should be included in this formulation.

Using the constitutive theory based on the mechanical model of crushed ice as
presented in Chapter 6, a F.E. analysis was performed for the flow of crushed ice
under plane-strain conditions. The material is assumed as a compressible creeping

solid following a power-law relation between stress and strain rate. The density of



166
crushed ice is (1 — ¢) times the density of polycrystalline ice. Only the fused zone
as shown in Figure 7.9 is analyzed, and outside this zone pressure is neglected. This

assumption is consistent with the observed pressure distributions discussed earlier in

this chapter. A 150 mm long and 20 mm thick slab of crushed ice with pore fraction
of 0.2 is squeezed under plane strain conditions to a final thickness of 10 mm. The
final state of deformation is similar to extrusion tests.

Unlike a fixed boundary at the indentor interface as in viscous flow theory of the
last section, a frictional boundary condition is used. This | zovides a coupled response
between viscoelastic ice and the frictional interface. Xiao et al. (1992) have shown
the importance of this wall [riction, the changes of which can result in dynamic forces
on the structure. The wall friction varies with the speed (Barnes et al., 1971) of
extrusion and the magnitude of stresses near the interface. In the present analysis,
as the emphasis is laid on the compaction and flow of crushed ice, the coefficient of
friction between ice and steel is assumed to be constant with the magnitude of (1.1,

The result of this analysis is presented in Figures 7.17 and 7.18 by contours plots of

stresses along the compression axis and the pore fractions of crushed ice.  From these

figures the effect of the extrusion speed on the material behaviour can be observed. In
the slower test, the material has elongated morc than the faster Lest, the stresses and
the pore fractions are low, and the deformation is dominant by the flow. The stresses
and pore fractions at the top platen—in the extrusion tests pressure was measured

at the top platen—are presented in Figure 7.19 for both tests along with the test

data. It can be observed that the stress, or the pressure as it was Lermed frequently
in this chapter, distribution is bell shaped. This distribution is nearly paraholic for
the faster test and spread in wider area. This shows that the material does not have
to be frictional to yield a bell-shaped distribution, the frictional interface car cause

such distribution of stresses for low-speed extrusion tests.
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Figure 7.17: Contour plots of stresses in the direction of compression and pore frac-
tions for a test speed of 2.5 mm/s. The contours are leveled from 1 to 9, and are
presented on the deformed mesh.



vavanaun—
2

A
i i
T‘ |
s
28 :
ek e
(RAR s
‘
Al
teete?
B oy
P
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IFigure 7.19: Variation of axial stresses (top) and density (bottom) in the critical zone
al the top platen as obtained from Figures 7.17 and 7.18.
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During the extrusion process. the pore fraction of crushed ice changes. Al the

exit the pore fraction is at its initial value, while towards the centre the pore fraction

is reduced largely (Figures 7.17b and 7.18b). The variation of density at the top

platen deduced from the pore fraction is presented in Figure 7.19. This variation in

density is consistent with the observed variation of density as shown in Figure 7.9.
The variation of density is also dependent on the speed. I the slower test, as more
time is available for compaction thal is lime-dependent, the density near the contre

is larger than that in the faster test.

7.5 Summary

The extrusion of crushed ice between parallel plates covers a wide range of the ma-
terial behaviour. At low stresses, behaviour based on the Mohr-Coulomb model is
appropriate to describe the state of the stresses in the material. On the other hand,

phase change at the grain boundary at high pressures alters the mal

al behaviour,

increases ductility, and a viscous lation is ly 1. A nonlinear

viscous flow theory for plane strain condition is presented for such cases.

The viscous formulation at high stresses is supported by the change in the pressure
distribution from the hill-type pressure distribution at the centre of the platen to a
convex pressure distribution. As most of the forces are distributed in the convex
manner at the central zone, viscoelastic theoties model the material well during high
pressure interactions. The critical zone, which is the zone of fused ice mass with
density as high as that of polycrystalline ice, increased from the centre of the platen

towards the exit in a progressive manner. The stiffness of the fused ice was computed,

and was more than an order of magnitude smaller than that of polycrystalline ic

This shows that deformation in the critical zone is dominated by inelastic hehaviour.
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Using a F.E. analysis of the [used zone by assuming crushed ice as porous and viscous
material a bell-shaped pressure distribution was observed. This suggests that material
do not have to [rictional for such distribution.

After the initial compaction of the material, a dynamic force pattern in time simi-
lar to those in medium-scale tests was observed. This shows that spalling and cracking
are not necessary to produce the dynamic effect in the ice-structure interaction, and
the key to this process remains in the crushed material and its boundary with the

structure.



Chapter 8

Conclusions and

Recommendations

wnd-

The development of a constitutive theory for a nonlincar material involves unde

ing and modelling of various physical proces

s contributing Lo the observed material

response. At some stage, empirical relations obtained from the material response may

be required to ine material coeffici For simplicity one may resort to simple

phenomenological models based on curve fitting techniques, but these methods are
often restricted to a narrow range of loading conditions, and fail to extrapolate to
states for which test data may not be available.

The process of material modelling can be streamlined by following the framework
of thermodynamics. The internal variables are essential in that, they enable the mi-
crostructural properties to be included into a continuum theory. This thesis is an

investigation in this direction. Although a major part of this thesis is devoted o the

modelling of physical changes in ice during ice-structure interaction, yet. the presented
theory is applicable to broad range of materials where the microstructural features

such as microcracks and cavities influence the material behaviour,

172
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“The strength and deformation behaviour of ice depends on the rate of loading, the

b I 1

density of mi ks, the of ies and other microstructures.
After extensive microcracking when the cracks coalesce, pores are formed at triple
junctions of weakly connected grains. This material is finally extruded from the
structure interface as finely crushed ice. The confinement that is due to the geometry
of ice and structure has great influence on the rate of change of these microstructures.

‘I'iaxial lests were carried out on polycrystalline ice and crushed ice. These two

materials repr

ent Lwo states in the ice failure and extrusion process. The Lests were

designed to reflect the conditions during high rate and pressure interaction between

ice and a structure. The changes in the microstructure were closely examined by thin
sections of samples before and after the tests. To describe various changes in the
material two theories were formulated, and verified for both materials. A measure of

damage and porosity was taken as internal variable. The damage measure includes

and i grai dary sliding. Flow properties of crushed

ice were also modelled by a closed-formed solution and a finite element method.

8.1 Conclusions

8.1.1 Triaxial Tests
Polycrystalline Ice

Under uniaxial stresses, ice is very brittle. The high rate of damage in constant

strain-rate lests results in lower strength of ice. Cracks are open and aligned to the

principle stress-direction by extending several grains. The cracked material

is highly anisotropic at large strains. The failure is usually by axial splitting in the

sample due Lo extension of one or many critical cracks.
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When confining pressure is also appliced. crac

are arre

ed at natural boundaries

such as triple junctions. This resulted in increase in strength. ('ra

s are distributed
uniformly, and the material behaviour is nearly isotropic. The average length of
cracks is of the order of the grain size. Further damage is wore stable than in the
uniaxial case. For confining pressure more than 10 MPa, the strength is independent

of confining pressure. The dilatation under larger confinemonts is suppressed.

Thin sections of the damaged ice resemble those of crushed ice samplos. g grains
are surrounded by fincly-crushed grains that were recrystallized by pressure-sintering,

Cracks are formed at critical inll itics such as grain-h laries,

Crushed Ice

High porosity of crushed ice makes it very sensitive to hydrostatic compression. 'I'is

compaction is time-dependent, and is cnhanced several fold when shear stres

are

applied. Especially designed end-platens were lly used with erushed ice to
maintain homogeneous deformation in the sample during large strains. In the slower

tests, material undergoes large compaction during axial loading, while in the

stor

n the

test, the effect of compaction is reduced by dilatation caused by brittlenc
material. The rate cffect is clearly visible for low strains. The strength is strongly
pressure-dependent for pressures lower than 10 MPa. This is consistent. with other
frictional materials. For higher pressures, the strength is pressurc-independent a - in

metals. In the test range (strain rate between 5 x 107 /s to 2 % 1072/s), the strength

is independent of rate of deformation of the sample.

‘Thin-section studies of samples after tests show that due to extensive crushing,
the average grain size has reduc~d greatly from the original size. "Ihe larger grains are
protected by fine grains that were created by crushing of eritical grains. "The pores

are entrapped at the triple points of some larger grains anl at their grain-boundaries.



8.1.2 Material Modelling

Constitutive equations to describe the damage in viscoclastic materials were presented
by two theories. The first theory is a solution for nonlinear elastic media, which was
extended to nonlincar viscoelastic media using the correspondence principles and a

modified superposition integral. The sccond viscoclastic theory is based on mechanical

model with nonlinear elements. Three components of deformation, i.c., the clastic,
the delayed clastic, and the viscous creep, are separately identified and their changes

with the amount of microcracking and porosity arc modelled. The clastic prope

of the damaged material were estimated by a self-consistent solution.

Polycrystalline Ice

The kinetic equation for microcracking and other changes in the microstructure in

polycrystalline ice is described by a generalized J-integral. Both theories used in

delli

{ well with the 1 response of polycrystalline ice. The first

theory is more systematic and requires fewer parameters. The main disadvantage of

this theory is the uni lity of the nonlinearity. The mechanical model does not has

such limitation and gives a physical description of various components of deformation.

Crushed Ice

Crushed ice can be described as a porous material with weak intergranular bonds.
In both theories, the effect of porosity is included. Another microstructural variable,
the grain boundary sliding cffect, was also included by considering them as weak
structures in the material, The performance of both models is acceptable, though
only the mechanical model can address the nonlincarity, linar clastic propertics, and

the volume change during the deformation.



Extrusion Analysis

The extrusion of crushed ice between parallel plates covers a wide range of the ma-
terial behaviour. At low stresses, behaviour based on the Mohr-Coulomb model is
appropriate Lo describe the state of the stresses in the material. On the other hand,
phase change at the grain boundary at high pressures alters the material behaviour,

increases ductility, and a viscoelasti lation is d

‘The viscous formulation at high stresses is supported by the change in the pressure
distribution from the hill-type pressure distribution at the centre of the platen to a
convex pressure distribution. As most of the forces are distributed in the convex
manner at the central zone, viscoelastic theories model the material well during high
pressure interactions. The critical zone, which is the zone of fused ice mass with
density as high as that of polycrystalline ice, increased from the centre of the platen
towards the exit progressively.

After the initial compaction of the material, a dynamic force pattern in time simi-
lar to those in medium-scale tests was observed. This shows that spalling and cracking
are not necessary to produce the dynamic effect in the ice-structure interaction, and
the key to this process remains in the crushed material and its boundary with the

structure.

8.2 Recommendations for Further Research

Development of a constitutive theory for a nonlinear material with changing mi-
crostructure is a major task. This thesis has described many important [eatures of
such a malerial with sj.ecial attention given to the ice-structure interaction problem.
Based on the experience gained in this study, recommendations for future study can

be made in the following areas:
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g

. Uniaxial tests are common means (o obtain the respouse of many polycr

177

rstalline

and composite materials. In uniaxial tests, microstructural inhomogencities
develop at very low strains, and can complicate the modelling process. Further
in real problems, uniaxial stress states are seldom encountered, and deformation

is large and cracking is stable. In these cases, triaxial tosts are suggested. For

correct, modelling of the material behaviour cither in creep tests, or, in strength

tests, volumetric strains must be measured.

During triaxial testing of icc, the cracking activities are supp

d, but other
microstructural changes that are stable such as change in grain size due to

dynamic recrystallization occur. These physical processes are poorly understood

for high pressure and strain-rate tests. Triaxial tests should be d

gned and

conducted to monitor these changes.

The amount of dilatation directly affects damage behaviour and its progress.
Further improvements can be made in the dilatation relation for the cracking
processes, where the work potential does not exist, and formulation of cou-

pled kinetic equations for damage and dilatation, similar Lo that presented for

crushed ice. In crushed ice, improvements in kinetic equations can be macde by

including compressibility of ice grains.

Interaction of grain boundaries and pores in crushed ice should be studied. The
assumption of dilute and non-interaction for these microstructures is question-
able for crushed ice just outside the critical zone, where the density of crushed

ice is low, or the pore concentration is large duc to continuous failure.
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Appendix A

Photographs of Samples

The photographs of samples after a test are presented here. The test number and
the scale are shown. For the detail information about type of sample and the loading

history see Table 3.1.
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Appendix B
Effective Moduli of Composites

The elastic properties o ites are dependent on the elastic properties and the

volume fractions of the matrix and the particulate phases. The geometric features
of the microstructure can be the crystal grain structure in polycrystalline materials,

where cach grain is anisotropic and different grains have different orientations, or,

iisdtdatisaped el bedded in a continuous matrix phase as in composites.

The mi ks can be idered as ellipsoidal inclusions where one di ion is

very small. In porous materials, the inclusion phase has no stiffness.

A review of various micromechanical models is presented in Christensen (1979,
1990), Mura (1982) and Hashin (1983). These are the composite-sphere method
(Hashin, 1962), the self-consistent methods (Budiansky, 1965; Hill, 1965), the gen-
cralized self-consistent method (Christensen and Lo, 1979) and equivalent inclusion

methods (Eshelby, 1957; Mura, 1982). For dilute composites, these methods give sim-

ilar results; while for high i ites, the lized self-
method provides the best performance. For dilutely porous materials, such as com-
pacted crushed ice, any of these methods is expected to provide good results. The

equivalent inclusion method is selecied for its simplicity of computation and is dis-
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m

cussed in detail. The concepts used in the self-consistent methods and the generalized
self-consistent methods are also summarized. The concept of equivalent homogencily,

which is common to these mo+

s described first.

B.1 Equivalent Inclusion Method

The equivalent inclusion method is based on Eshelby's (1957) solution for a uniformly
stressed infinite continuum containing an ellipsoidal inclusion. The stress disturbance
in the applied stress due to the inclusion is obtained by solving an equivalent homo-
geneous problem.

For the problem of a composite material in which the particulate phases are

i
rounded by a homogeneous matrix, each particulate phase is considered to be an

isolated ellipsoidal inclusion. The interaction of inclusions is neglected in this

i
proach. The geometry of the inclusion problem is shown in Figure B.la, where an
infinite material M of clastic modulus 3, contains an ellipsoidal inclusion / of elastic
modulus Cl. The external applied stress 4, and the resulting strain ¢, are related

by Hooke's Law. Due to the inclusion 7, a stress disturbance a;, and corresponding

strain ¢; develops in the matrix and varies from place Lo place. The Lotal stress and

strain are

total stress = gy, + 0, (B.1)

total strain = ¢ + ¢ij (82)

respectively. In Figure B.1, the concept of this decomposition is also shown. The

stress components ;; are in sell-equilibrium and vanish at the outer boundary:
00,,i=0 (B.3)

This condition ensures non-interaction of inclusions.
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Figure B.1: Micro-structural model and the decomposition scheme.

Hooke’s law is written for inclusion and matrix as,

&ij + 015 = Cl(@u + ew) in [ (B.4)
5+ 05 = Chiy(eu+ ) in M (B.5)

Now an cquivalent problem is created by imaginary cutting, straining and welding
operation as described by Eshelby (1957) in an infinitely extended homogeneous ma-
trix with elastic moduli C}};. Cut and remove the domain / from this matrix. Allow
the unconstrained transformation to taice place, then apply surface traction on the
domain / to restore its original shape, put back the domain / in the hole and weld it.
Finally an equal and opposite body force is applied to balance the surface traction.
When this material is subjected to the applied strain &j, an arbitrary homogeneous
strain ;" is created in the inclusion / due to constraint imposed by the surrounding
matrix. Mura (1982) has given this strain a generic name eigenstrain. This strain in
not related to any elastic deformation. The resulting total stres. and total strain are

Gij+0i; and &;+ €;; respectively, while the elastic strain is &;+ €; — €}; in I. Hooke's
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law vields,

Gytoy = Chul@u+em—e)inl (1.6)

Gij oy = Cllltu+ ) in M (B.D)

The necessary and sufficient condition for the equivalency of the stress and strain in

the, above tivoiset ofiproblemalis
Clialen + ew) = Chileu + ew = ) in 1. (1.8)
The strain e; is related to the eigenstrain c; by Eshelby’s tensor Sy as
G =St (19)

The quantities S are dependent on the geometry of the inclusions. This is the

1

strain equi of the stress con ion factor. Using Equation B.8 and B.9, the
cigenstrain ;" can be obtained as,

oM ¢l
s _ﬂ‘q_'l‘-‘zk,, (13.10)

Gj
where the scalar

9= 6ubiC + Siju( Gl ~ Cll)- (B.11)

The total stress &;; + 0y; and total strain &, +¢;, in the inclusion [ can be calculated

by substituting Equation B.10 in Equation B.8, and using Equations B.4 and B.5:

ciCl
Giitoy = —J—“I—J“z.-, (13.12)

Gbey = (1n.13)

The averaged stresses in the representative volume V can be written as

1 1 1
= VA(&"’ Foy)dV = V/,(a.», +ap)dV + V/M”"' Fop)dV.  (B14)
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Substituting Equation B.12 in this equation, total stress is obtained as
Mol
CHuCi
g

aij

g+ (1=o)al, (B.15)

o

where ¢ is the volume fraction of the inclusion, and )’ is average stress in the matrix.

Similarly, total strain is obtained as

ch,
Gi=c —"—‘y“'éu+(1 —c)elf, (B.16)

M

where & is averaged strain in the matrix M and s related to average stress in the

matrix by Hooke's law as

Y =l (B.17)

i

Eliminating ¢}/ and & from Equations B.15 and B.16 using Equation B.17, averaged

stress G s

ij = Cyuin = Cliy 1+§6ik6j!(0,’,k,—' )| & (B.18)
or,
O\, SublCfu~Ollge -
Cha 6ix651CH + Sijua (Cli — Cl)

This cquation can be ialized for various ies of incl such as spherical

inclusions, penny-shaped inclusions and cylindrical inclusions.

B.2 Self-Consistent Methods

For elastic composite and polycrystalline materials self-consistent methods (Budian-
sky, 1965; Hill, 1965) provide an approximate but reliable estimate of bulk and shear
moduli. Budianski and O’Connell (1976) have presented a self-consistent formulation
to include microcracks. This method is similar to the equivalent inclusion method
and is based on Eshelby’s (1957) solution for a uniformly stressed infinite continuum

containing an ellipsoidal inclusion.
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In the case of the problem of a composite material in which the particulate phases
are surrounded by an effective and homogencous matrix, cach particulate phase is
considered to be an isolated cllipsoidal inclusion. The inclusion is assigned the prop-
erties and orientation of the particulate phase and the matrix properties coincides
with that of the composite material. Such mapping of the couposite material is pos-

sible as the mean stress and displacements at its boundary are equal to those at the

boundary of the equivalent idealized i The i -y condition refers to
unchanged density and dispiacement at the outer boundary. Following the steps in
Section B.1, a solution for the elastic moduli can be found as

Cigut _ | , Ciint (Cly = e
Cll Clu L8 + Sijmn(Clonsa =

j (13.20)

Unlike Equation B.19, B.20 has the moduli of the composite in the right side also,

thus it forms a coupled set of equations. In isotropic malcrials, this requires that
the bulk modulus of the composite should be known to obtain the shear modulus.
For rigid inclusions and for the constant ratio of bulk Lo shear modulus (a constant
Poisson’s ratio of 1/5), a uncoupled set of cquations is obtained.

For spherical pores a closed-from solution for Eshelby’s tensor Siu is given hy

Mura (1982) as

7—50M
S = Sz = S0 = (B21a)
sM—1
Sz = Saz3 = Szau = Suzs = Sz = Sy, = m (B.21h)
. i3 .
Siziz = Sz = Sy = B =) —‘:/M)' (B.21¢)

Other components of Sjjx are zero.
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