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Abstract

The observed response of a crystalline and hrinle material to stress is the result of
various rnicromcchanical activities inside the material at the grain, or, at the con­
slilup.nt clement scale. These activities include microcracking, pore formation and
collapse, grain-boundary sliding, and phase change. In this thesis, such microstruc­
tural changes, and their effect on the response of viscoelastic materials are presented
wilh rdeTence to the hehaviour of ice during its interaction with a structure.

Dilring icc·structure interaction, zones of high pressure arc formed at the struc­
Lure interface. Extensive microcracking and other microstructural changes sllch as
werystallization in the icc occur in these zones. \Vhen the cracks coalesce, cavities are
formed between junctions of weakly connected grains. This finely crushed material
i~ finally extruded from lhe struclure interrace. The behaviour of icc and its damage
tlcpend on lhe rate of loading, the degree of confinement, the density of microcracks,
grain bOlindariC!. cavities and other microstructures. To further undef5tanding in
this area, triaxial I.c5ts were carried out on ice at different initial microstructure.

The process o( malCrial modelling is guided by the framework of thermodynam­
iet. The internal variable approach p~ovides a powerful method of incorporating the
microstructures into a continuum theory. The changes in microstructures such as
cracks and grain boundariel are modelled by a generalized J.integral, while change in
the porosity is modelled by an approximate solution for creeping solids. To describe
tile \';I.rious changes in lhe material two theories are developed. In the first theory,
1IOilltions (or nonlinear elastic media are extended to nonlinear viscoelastic media us­
ing a correspondence principle. The second theory for viscoelastic behaviour is based
on iI. mechanical model with nonlinear elements. Three components of deformation,
i.e., the elastic. ~he delayed elastic, and the viscous creep are separalely identified,
Ilnd their changes with the extent of damage are modelled. The fint theory is more
~yslematic and requires fewer parameters. Both of these theories provided good pre·
dictions for strength tests. The dilatation of the cracking polycrystalHne ice and the
porous cru!lhcd ke i~ al~o modelled by the mechanical model.

A silries of plnne·strain extrusion tests were analyzed to understand the flow prop­
()rlics of crushed lee. A dosed· form solution is !'rcsented for the nonlinear and vis­
cous flow of Cfllshed icc, and a finite element solution is also presented for the flow
of crushed ice lhat is also undergoing compaction. These analyses provided a good
agreement to the extrusion tt'Sls.
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Chapter 1

Introduction

A theory of the ddormation and now of \I;~clldl,slil: l11atl~l"ials is ('ssl~tllial ill 1111'

understanding of a wide range of ll~hnical and sl;;cnlific I)ruhl/'ms in lHt';,S such 1111

!\Oil ana rock mechanics. pow/leT and mineral proC(~Sillg, gt.'()physic~, Hn.l urrshnr,·

engineering. Stich problems incJudcliOil deformation, lIlicrocrac:king of M>t:k, I;UlllTf'1 ,',

and fiow of ice and snow a~·alanchC9. These cXi\llIplClllllay ;lllpl~ar to l,,~ VI!fy .liJiparnll:

in nature involving different materials and phi\Scs, hUllhc nature: of ",icrnsLrllduTI'!l

and their mutual interaction is evident in ",lithe prohlcmli.

In polycrystallinc materials such ali mclals and icc in the 1I11l111111ilgl."l"1 sllll.l:, nys·

lal! are pi\ckcd together in a solid structure without visihle por." or v"i,lll. 1JII,I.:r

derormation there is & little change in the density or till: material. In lJ1atc~rialli with

changing microstructures such as brillie and porous materialll, r1f:llsity or pUlllsity ill

sensitive to external loads or deformations. For f:xmnplfJ, ror ;l given I:Olllillinl; prc:lI'

sure, a loose material be, .Ies compressed and ils slifrncss irlcr~a.~f::'i, wllile a fl!:IIS(:

material dilates and its slHrncss degrlu.lcs during axial loadillg (Sflt: FiJ;llrc I. J). Most

or these materials never return 10 their initial slale and show somt~ tilllf:'fJepf:ntl,mt

behaviour upon unloading. In matcriaL~ at high homologous l'JmpelraLlIr'~. q~.• iOl
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Figure 1.1: A typical ddormation behaviour of particulate materials under cyclic
Imuling.

<tlld HI,,>W, the deformation at both loading and unloading is history-dependent.

Modelling of these aspects in a structured-continuum is a major task if the model

pilTilmdcrs arc required to be physically sound. In the present work, investigi\tions arc

carried out ill lids direction. [n this chapler, after outlining the objectivcs, material

IJdmviour is reviewed in detail. A summary of the analysis procedure is presented,

illld finally the organization of the thesis is disc1.ossed.

1.1 Objective

III cold regions ice forces may form the most severe load case for ships and marine

structures. During the process of ice-slructure interaction, ice fails in brittle manner

hy wlllinuous crushing and non-simult.aneous failure by splitting, spalling and bu·~k­

liug. Polycrystalline icc near a structure undergoes extensive damage and crystals

arc l>roken into discrete pieces. The spalling of icc results in the formation of high
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pressure zones from which crushing anti cxL~usiOll OCI:UT. Tile c:rllSIIl~d pitrtid,'1I form

an interfacial layer between the intact icc mass and the structure (FiWm: I.~). TIll)

thickness of this layer may vary ~patially dcpcntlillg on the .~trll(:ll1n! slilflil'SS, il:l:

inhomogeneity and velocity of the interaction, and it is a.,sociall~(1 with till! in: furn:s

and their variation (.Jordaan and Timco, I!J88; Singh ct id., lU!JO).

Icc is a viscoelastic material, and the change ill its mi(foslrllc;tlln~ sllch as l;tltck·

ing in polycrystalline icc, and sinlcring in snow anJ crushed i!:,:, is history tICl't:IUlt:hl.

Similar behaviour I.. ....n be observed in cracking of roCkR, concreLe, and [llJnJll~ l1Iatl!'

rials such as clay and mineral powders. The behavio1Jf or Rllcll III'1Lcriill~ ,]!:pmlll~

on the current state of their microstructurcs and their r.hangc dllrillg lilt! ddorillil'

Lion. Thc objl!ctive of this thcsis is to prescnt a physically ba.,«:cl rnodd to Ilt:~aiht:

changcs during the derormation in the microstructures sHch ;L~ cr;lI:k~ and flore~, ill

the framework of continuum mt."{:hanics.



Figure 1.:1: MicrOlltructnral features of polycrystalline materials

1.2 Review of Material Behaviour

1.2.1 Brittle Materials

In I)olycrystallinc materials cach grain is nearly perfect and meets its neighbors at

grain boundaries. It may contain some flaws such as pores and microcracks (Fig­

lire 1.3). Such [laws weaken the material. When the material is stressed, some energy

iM ~lon:d due to the clillSticiLy of material and in new surfaces, usually created at the

(II\W~ due to stress concentrations, while most of it dissipates due to friction at crack

f;u:cs and in other inelastic deformations (Jordaan and McKenna, 1989, 1991). (n a

IlllcLile material, these flaws iucrease the ductility of the material; whereas in a brittle

material, hrittleness is increased.

In tension, growth of a critical flaw is unstable. Under compression, cracks are

initially less prone to propagate and the growth is stable. Many ductile and brittle

materials such as copper and mild steel can fail in compression by the formation vf

t.ensile cracks normal to the direction of applied compression (Nemat-Nasser, 1989;

Ashby and Hallam, 1986; Schulson, 1990). This is becaust: of development of wing­

cracks on pre-existing flaws in the material. At advanced stages of cracking, the
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Figure 1.4: Failure in compres~iotl of a brittle material al (a) low illlli (1)) high
confining pressures.

loading rate and other environmental fadors influence this pru(('~s.

At low confining pressures, the crack growth is llstmlly along 1I1(~ lIlajor principill

axis (Figure IAa). Sometimes it may be localiill)c1 along tlw maximulll slu!ar .~tn:.~s

plane, while at high pressures such locali7.ation is SUpprl)~~ed, aud r:nu:killg is llni·

formly distributed throughout the maLerial (Figure lAb). Such ullirorruly ,:nu:k,~fl

material under high pressure is essenlially an isotropic anti homogeneous ,Iudill' lWl·

terial. With an increase in the Cllnfining pres.~ure, the strengtll and ductility or tllf'

material increases while the dilatation ue<:rcasl'S (Figure Ulil). III a rale,scllsiliv,~

material, strength increases and the dUclilily decreases with an illcren.ore in thl~ ral,~

of loadi.1g (Figure 1.5b).

Elliott and Bro'~n (1985) studied a highly porOllS limestone Illidcr ,:ollfining prr;s·

..mes up to 30 MPa and observed similar change!! in thl) rnall)rial behaviour. At h,w

confining pressures the failure was hrittle and the material ~howcd dilal;lliol1, whir:1i

changed to ductile compaction by continuous P0rll collarsI': for high C:OJlfillcrTll~f1l.
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Figure 1.5: Erfect of (a) confining pressure and (b) the rate of loading on the material
hdHl.viour.

1.2.2 Particulate Materials

I.....dc (1988) reviewl.'(\ rn«hanical properties of frictional materials, and obsr~ ved that

",trt."5..'1 ilnd drain-rale are not co-axial at low strcss levels. He also observed the tran·

silion to coincidence of strain-rate and stress Uell at hit;h stress levels. This suggests

thllJ frictional mat.~rials may behave like metals at high stre!!se5_ The inelastic defor­

malion of frictional materials is dependent on the stress-path and its initial fabric.

Oda (1972) and Oda et al. (1980) studied initial fabric and ils charlge during the

deformation of sand. The word fabric denotes the local granular structure, defined

ruI the spatial arrangement and contact areas of solid particles and associated \-oids.

The original distribution of fabric lends towards the direction of maximum principal

stress. Rowe (1962) studied rigid spherical particles in conta.cl and observed that

strength lind {Iilatancy behaviour of such an assemblage when sheared, depends on

inter-particle friction, and the gl.'Ometrical angle of packing that forms the initial fab­

ric in the material. The path-depellt!ence is more pronounced at high stress levels,
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Figure 1.6: Sinkring of ~raill~

where indastit· strains ",e relatively large.

rn maLerials at high homologou~ temJlCratllre~ s1II:h as snow alld it:t,. Ll1l' ,11'IISilil';l'

tion rate is largely ir'~'JenC(,:d by the tcmpt'raLllre aparl. rrom th... prt'SSllrt' dl~P"II,It'lI"Y

(Abele and Cow, 1975; Fukuc, 19(9). Iw grains or hlm:ks st.ick I.ogdllt'r by lll'<"k

growth whilc in COJlt~ct (~~ Figure 1.6) all<l form 11 matrix uf sl~gwv,alt .. d llH\lt:rial.

The driving mechanism for this pror,ess is the surfacr, el1er~ aV;lilahlc; lhis 1:11I'r~ is

larger for smaller grain size. The neck growth rcullces the surfacc IIWIL, IUlll Lh1J.~ lilt,

surface energy, anJ causes the material to cornpll.cL Tllc prO(:css of sillterill}t iru:r(!llses

with the Juration of loading and the amourt of applied hYllrustalk prCSiillrt~ (M1I1~lIU

and Ebinuma, 1!J83). The ambicnttemperature nlLU the rn.l.: fir 100ulilig abo haw 11

~ignificant influence 011 such deformations. Under low ratt~s I.llt: rhc()lo~it:1l1 [Jl'ull.:rli(~s

of lhe material become important.

Cale el al. (L987) performed trill.xialtcsls 011 parliculat,: it:c, whidl wa~ isotmpi.

cally compressed for a few hours, and obscrv(:d a hi-linear dllviatoric .~lrt~ss·~lrllill ht~­

havjour, Thf': initial branch rises rapidly and suJuenly a brcak-oVl)r ~Lrf~.~ll i~ rt!lIdll~(1

rollowL'tl by a hardening ductile phase. TILe hwak-ovcr stwss is hi~hly ,1':I,,:mh:llt

on the ~llstained confining pressure. Suell hriUlc break·over i.~ all~/jeilLte.1 wit.h till'

breaking of sintcre<1 bonds and cannot be intcrprcll)d as tht) yield ~lrell~ of Lh!! bulk

malerial. Cale cl al. also compared the hehaviollr or r::rI19!l()U icc and !OIlSli ~ILlIlJ.
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!'igllre 1.7: Corn]Jre.~sible behaviour for materials of (<'I.) low and (b) high porosities.

Bot.h materials displayed broad similarity except for the break-over process. Steel et

al. (I !I!J!) studied the cffcd of the rate of loading, temperature, and the confinement

in triaxiallcsts all spray icc, and observed that the ductility of the malerial increaSlS

wil.h all incfl)ltsc in temperature and confinement, and decreases with the Lte of load­

ing (Fi~l1rc 1.5). Under high confining pressures sand also shows decrease in friclion

with ilicrellSC in pressure (Vesic and Clough, 1968).

Tlll~ volumetric behaviour of materials of various porosities is shown in Figure 1.7.

In luI\' porosity materials where the porosity is mainly due to microcracks, the loading

;\11(1 nnloading curve is strongly nonlinear, and the deformation is largely recoverable

(.Iolillson and Grecn, 1976). For materials of high porosities, pores first collapse and

lHinocr<Lcks form at the grain-boundaries. These materials often show two peaks in

sl.rength tests.

Under very large confining pressure, particulate ice is expected to lose its discrete

nOltllfe. and bcha\'c as polycrystalline ice. The grain size distribution also has sig­

nificant dfect Oil the failure mode. In a gap-graded particulate material, crushing of

1lie grain5 O(:(\I[S. while in a well-graded material, the behaviour is ductile at high



pressures (Fcda. 1982). The reduction ill grain sizc iliITeil:!":! lh(' il11l011l11 of slIrfa",'

energy. which in lui'll incrcast's silltering.

1.3 Approach

During icc-structure interaction l,uge IOCll1 stresses may d"I·t'lop. III IIlt'lliUIIl·sn.l,'

indentation tests (Frerlerking el a1., 1l)90), local slress,~ as high .1., .'ill MPH Wt'r,'

observed. These stresses de\'clop ncar the centre of the critifill WIl"S (Figlll'!' 1.2),

and arc the result of large continement. This wile is produced by t'xlplisin' niu·kin,c.

and fragmentation of icc. The material in this zone is rilw.graillt~tl, l'Olilains lIon's

and its density is less than Lhat of the parent rolycrysLa11iuc ire. Out.~idt~ this WIlt',

confining stresses arc slTlali and tensile stresses Hlay develop hCCilll.~t~ of tIle ';t'tm1l'lry

of icc and structure, and non·simullancous failufC (s]ll\lliug) llIay 0l~':1l1'. Thllllp,1r

spalling may result in the reduction of ire forct'S ill the spalling regioll, till! tulal furr'"

on the structure is largely regulated hy the now of el'llslie,1 it:c from the critit:;11 Wilt's,

and the crushing ncar it. This is hccausc most of the load is r:al'ril!'! by tl,,~sl! wm's.

To investigate the crushing process in ice·strudure iltter.u:tion, triaxial l'Il,rt!ll,l!;tll

and creep tests were conducted on polycryslallillc and crushed ic,~, Tt~ts W,~rt! also

conducted on pre-damaged samples. All samples were made in the hd){lra.lory froul

fresh-water. The confining pressurcs \\'('rr! up to:W MPa iltHl strnil1·ralcs WI~rt~ lip 1.0

2 x LO-l/s at -10· Croom lemperature.

The vi~coelastic response of material with cracks ami rOn!S is !,rCSI,nll~1 IIl'1iu,l!; two

theories: first, a theory based on the modified superposition rrwtlrnrl, arlll .~,~t:l! "I, II

mechanical method, In the modified superp{)~ition mellrod, the dlaJ1go~s in IJII~ lui·

crostructures, ~internal variables," arc modelled first for it lIonlinfJil.f (:lastit: lIIatl~riill

then the prol>lem is transformed into the viscoelastic domain IIsing (orr'~:iponrf':IrI:(~
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prillciples. III the mechanical model each constituent is identified separately, and the

material is prl~~l:nlcd hy combination of nonlinear springs and dash pOLS. This method

provided Inaff: flexibility and the change in the internal variable aITccted various (00­

stilll(:nL.~ separately. Both of these theories arc developed based on thermodynamics

fOlludatiolls and the material is assumed La be statistically isotropic through the de­

fOTl1liltioll protess, i.e. the optical-axis, the graill-boundaries and cracks are randomly

orienLt:u in space.

1.4 Organization of the Thesis

This tlwsis is divided into eight chapters. In Chapler i, the problem is identified with

iL hrld inlrodudion to the mechanical properties or particulate materials. A detailed

l"I~vi{'w of the material behaviour and relevant constitutive theories to describe them

i~ prL'sclltcd in Chapter 2. This includes the mechanical bchadour of elastic and

viscod;L~tic continua with changing microstructure. The description includes a brief

Ilisr.lI11sion un phenomenological and microstructural continuum theories. Finally,

these theories arc again discussed in partir.ular for composite materials, damaging

materials and porous materials.

In CbapLer 3, the details of tria;:ialtest·setu!J and procedure for crushed icc and

polycry:;talline icc are presented. The results of these tests are presented in Chapter 4,

alltl the material behaviour and microstructural features arc discussed.

In Chapter 5, a continuum theory to describe a material with growing damage due

to lIlicrocracking is presented. The effect of individual microcracks and their growth

is ~tlldicd by averaging at a scale that is much larger than size of microstructures.

For nonlinear viscoelastic problems, a method d~\e to Schapery (1991) and based on

modified snperposition method is reformulated and validated for polycrystalline ice.



A mechanical method bnsed on 111(' reduced rime rhar;wll'ri:t.aliul\ ,hi" lu S.-11<lIH'r,\·

(1969) and Jordaan et at. (1992) is also prcscnlt'd. TIlt' Ilt:\"l'lup..,1 1I11'(lri,'~ ;lrI'

compared with the triaxialte:;ts results,

In Chapter 6. a theory to d~'S(Tibc the 1l1~'t;hallil'all)('ha\"ioHr uf I'rll~ht',l i,.,. Ill),l"r

high pressure is presented. A c1uscd·rorm sollllion for .,Iaslil" lIl;)lt'rillls "'1111ilillill~

voids and obeying a power· law is also prt'Sel1tt~d. The dasljr fl'sllltS arc t llt'li ")\1t'1I01,,,1

to predict the viscoelastic response of l:rllslu'il iel'.

In Chapter 7, the Aow properties of crushed ire Hilder plallC-,~lraill ,'xtrllsiull ,'"n

ditiolls are examined. Pinitc dement analyses arc fOlltllld(:d l.o "Olllpar(~ 1.11\' It'St

results and the theoretical dcvdopmcl\l.~. A dosed· form ,~ollitioll is also pn'sl'III,'d for

the plane strain extrusion of viscous material following I)\}\\'/'r-law lIonlill"Mit.y.

Pinally, tile results of earlier chapters are sllmll1ari~,~/1 ill Cltapt./~l' o'i. awl n,,'UIrl

mend at ions are made for future study.



Chapter 2

Theory of Materials with

Microstructure

2.1 Introduction

In this chapter, a thermodynamic theory for elastic and viscoelastic continua with

changing microstructure is described. The description includes a brief discussion on

phenomenological and microstructural continullffi theories for elastic and viscoelastic

materials. MallY viscoelastic problems can be solved by analogy to elastic solutions.

The correspondence principles are presented for such an analogy. Finally, particular

aspects of composite malerials, and the effect of microcracking and pore collapse on

the stiffness of polycrystalline materials are discussed.

2.2 Equivalent Homogeneity

A constitutive theory for particulate materials can be based on phenomenological or

microstructural principles. From the phenomenological viewpoint, these materials

12



exhibit dilatancy, and are scnsili\'c til hydrostatic ~lre~s. Since tIll'S!.' charadt'ris,

tics are due to their microstructure, Lhe microstrnctural definition is of fUlldallll'llLoll

importance. The microstructural approach is ba~ed Oil the inter~u·tion hel\I'l'im fllnda,

mental constitutive nnits of the material. The geometric lnt:aSllrc of tlw 10cIII grl1ll11\l\r

structure is incorporated into the continunm Lheory. A con~tittltive rd~\ti(J1I fllr !It·-

formation of an assemblage of grains or crystals is de\"eloped, amI Llw 101.,11 hdliwiulIr

is expressed in terms of volume-a\'cragcd quantities.

The elastic properties or composite materials arc depl:nucnt 011 "!:'" ,·k,,;-.; IUOllet·,

ties and the volume fractions of the matrix and the particulate phases. 'l'lw getlt1ldril'

features of the microstruclurecan be the crystal grain structure in polyqysti~lline I1m-

terials, where each grain is anisotropic and dilfercnt grains have IlirferenL orielltalioll,

or, ellipsoidal-shaped inclusions embedded in acontinuous nlatrix plmse n.~ ill l:ompos,

ites. The microcracks can be considered as ellipsoidal incluJions where one IlillWn~il)lI

is very smal\. In porous materials, the inclusion phase lacks SWfUtlSS.

The presence of microstructure creates inhomogelleity ill the lIlilteri;l1. To 1I~1: tl\l~

theory of elasticity, which is developed for homogeneous materials, ~tate varillhle~

such as stress and strain need to be redefined. The scale of illhornogelleity is ;L~Slll1ll~t1

to be orders of magnitude smaller than the characteristic dimen~ions (If tile rlrohlt~1Jl

of interest, such that there exists an intermediate dimenllion over which :wllragiliK

can be legitimately performed. Figure 2.1 shows ~lIch representativc volUllltl witlt

microstructures.

The validity of the phenomenological models is limited to lIw l:ases whcr!: Ull~

minimum dimensions of the sample arc several times larger than the maximum di-

mensions of grains. The resulting homogeneous state of strain should be ;lchit:vell

during testing or the material. In fact, all tests on granular ma.terials indicak tilt:

heterogeneous nature of the strain (Oda et aI., 1980, Fukuc, 1919). This rnake~ plll:-
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F'igure 2.1: Volumetric averaging.

Ilumenological continuum theories dubious (Cowin, 1978), unless such heterogeneity

i~ properly addressed.

2.3 Thermodynamic Constitutive Theory

The response of many matcriais depends to a large extent on their history. The

inclilStif, ddormation of metals, polymers, and frict.ional materials exhibit history-

dependent behaviour, though with dissimilar patterns. In theories using internal

variables, dependence on the history is represented by the variables describing the

~tructure of the material clements. Some examples are changes in the crack and

averaged micro-crack geometry, void ratio and dislocation arrangements.

III a thermodynamic system, the internal energy and forces are state rllnctions of

state variables such as temperat.ure, and some measure of deformation, e.g., strain.

The statc variables serve t.o define the syst.em, but arc often insufficient t.o do so by

thcmselvcs. In a revcf5ible system the state is explicitly defined by external variables,



but in an irreversible system some additional \1\riabk'li not il\'ailahlc for lIIilCtOl\t'tJpi,'

obserntions must be introduced to account (or the loss of cller&)' (Bridgmiln, 1950),

These additional "'ariables are referred as internal "ariablt'!!. Thc intcrnal \'aria"!.,

approach (Bridgman, 1950; Diot, 1954: Coleman ilnd Curtin, 1!J6j; Sdlal"'ry, 19m1)

is based on non-equilibrium thermodynamics. In tlti!! theory it ff('C Cllcrg,y functilln

is assumed to exist that is a function of all extcrnal allli internal \'.1tiablt.~. Auvthl.'t

approach in internal \'a.riable theory is due to I\cstin and Rice (1!liO) all.IIlICI! (l!lil),

who postulated that il is always possible lo determine i\ l111ilc set of illtl't1lal variahl":1

so that their number iSlldequnlc to render the IlOI\·t!(jllilibrilllll stnlt~ Illuler olllsidt'ra­

tion sufficiently dose to a constraincd state of the thcrmOllywl11lil: t~tlllilihrilll1l. IInLIl

internal variable theories give the same result.

Rice (1911, 1975) formlilatetl a Lhermodynamic lhcory IHl..'Il.-d 011 llIicrnstrudllral

features for crystalline slip, diffusion, and Gr;£Iith cracks. Ilansell and Ilrown (1!)H(i,

1988) extended Rice's theory to granular ,mow, and idclltHiL-d the stalc variilhlt:Jl

at the granular level rather than the crystalline levr.1 ill tilt: Rice's work, Sch",'M~ry

(1990) presented the inlernal variable rormulation ror lhe t.Idormal;on or nllll·lillt~i~r

elastic media with changes in micro-structures stich as micro-crack Jl,rowth, Ill:l\lill~

and transrormalions. This theory is reviewed ill this section.

2.3.1 Strain Energy

A basic assumption ror all the process or intctclsl is that a str'lin I!nt!rgy fllllt:tiull W

exists, The stra.in energy is a (unction of all extcrnal variablt:s, 1:.,1\., strain f , ) lIml

independent internal variables S... ,

('.1)
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Thcstrl~SS is 'Jdincd as

(2.2)

Tlll~ parameters 8 m may define changes in microstructure, such as rnicrocrack gcome·

lry, void volume and grain boundary sliding. When the S", arc constant the material

is hypl:rda..',tic (Malvt:rn, 1969), and the definition is not limited La linear ell\.3tic ma­

Lf.'rials. For non-isothermal processes W is the Helmholtz free energy and is also a

fundion of temperature. In the present development.s only isothermal processes arc

colIsiu(:rcd. The free energy also contains surface energy (Rice, 1978) W.. = 2'Y",A""

when: I'm is the surface energy per 'mit area of mlh crack with the surface arl'a of

11",. Tlie surface energy is reversible, and often negligible.

2.3.2 Work

Till: ~Mnill energy defined in l::quation 2.1 is the work done when all Sm are constant

Tlw work (lonc in a rcal prOCL'5S in which Sm are not constant, is partially irreversible.

Tile energy is irreversible due to lilt! dissipative nature of friction, and the microc-

racking where the energy is dissipated in processes such as creep and plastic flow.

Tlw total work In a real process, and associated with (Jij and fij is

(2.3)

wlltm: the repeated indices follolY the summation convention.

The strain energy and lotal work are interrelated. for an infinitesimal change in

(,j the change in strain energy from Equation 2,1 i~:

wherc Equation 2.2 is lIsed and 1m are thermodynamic forces defined as

1m = -8W/8S... (2.5)



The thermodynamic (orces J", protlUCI~ changt's ill IhI' mil'rostn1l'tllral pilrilllll't.'rs

Sm' For a cracking material ir Sm is slLrfacI~ att'i\ of a l'ri\t:k, the Illt'rmndYIl,II11il' [urrt'

is the cnergy release ratc for nack propn.e;atioll. H sud"rt' 1'1H'1')!)" is also ,'llIIsid,'n,d

apart from other microstrllctural changl~' ill the 1lIi\1.eri<l1 dllrill~ ,ldurlllalillll. ;In.[

crack growth is locally !\elf-similar. then th' increase ill tht' Sllrfl1"'~ ,'lIt'l'gy ,lllt" III

crack growth is proportional to tht' amOlll1t ur n,~w rrct'surfm·,'. 11"1'1' th., fl'<'(' "lIl'rl;y

is IV + W.~ and the thermodynamic force rl'sponsihl.. for crackillA is

where am is the energy release rate and Am is the surface area,

The change of lotal work is obtained by integrating 1':qllntiull ~.I frulll auy nrlli·

trary state 1 with strain energy WI lo the curnmt Stlttt',

(:!.'i')

where Eqnation 2.3 is used. Thll~ the lotalwork dotle is st~pltratl:d into strain ('II"r~y,

which ill re\'crsible, ancl an irreversihle t'nergy Hl, = W,(."·,,,), which C,lIl s,~rVI~ Lo ddill':

the evolution law

Jm = mv.!OS,,,,

For a Ilrocess starting from the reference statl~ at l = U where ~v = W, ::: f1,

w.1'=W+W... +W.

2.3.3 Thermodynamics

(~.H)

Materials should satisfy the sc<ond law or Lh,:rrnodYllarni(;~, h,:~idl:~ til,: (:quilihrilllll

equations and the constitutive assllll1ptions. Tllis law P{)stula.l(~ LIlt: ,~xisL':llf:(! of

enlropy as a state function or all ~tatc vllTiahl(~s illduoing non-oh~crvabl!! illtNIl11.1
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Vilriabk'S 8m (Malvern, 1D6!l). The second part of l)is law states that the rate of

entropy production per unit mass ., of the universe is always positive. It is zero for

n~vcr~ihll! processes. Thus for all processes,

(2.10)

wlWrll '~I is entropy of the system under consideration, and SlI is entropy of the

surroundings. Now the sy.~tcm is brought in contact with a heat reservoir that is

large enough to maintain the system at constant temperature T. If Qis rate of heat

transfcrn:u from the system to the reservoir, using the definition of entropy from the

first part of second ];(W lii/ = CUT, Equation 2.10 becomes,

(2.11)

From tile first law of thermodynamics, the rate (If work done WT = O';j(;1 and

tllr. m'e of change in internal energy iJ of the system are related to the rate of heat

transferQas

(2.12)

lJsiug the definition of strain energy W = U - T8t, the second law (Equation 2.11)

bccomcs

(2.13)

Biot (195<1) Ilsed this form of second law to derive the theory of viscoelasticity. This

work is reviewed ill Section 2.3.

thing Equation 'lA, E(luation 2.13 can be presented as

(2.\<1)



I!l

s,~

COIllI'I(,lIl1'1ll:.r)"'n<'fg)",II"'

Figure 2.2: Stress-strain wn'l~

2.3.4 Force-Based Formulation

In the formulation of the last !lCCLioll, strain wall taken a.~ au illdl~I)l~lllll~lI~ stall: var;­

able. Material properties are often cvalllalllll in sllch a way by constant 1I1raill-t;llA:

tests. In force-controlled processes, which arc common in hard solids sud. all llwllllll,

the flexibility of lest frames make:! slrain-conLrollt."t1 t1dOTIlli\LiulIlillilliclllL, all ;t!ll:rm,-

t;\'C approach where the stress is the indcpcndcnllllalc variable lIlay hi: 1II0Tl: lI11iLabl,:.

For this case the constitutive equation can be rorn11lIa\.(:U ill lcrmll III culJlpl"mlmlary

strain energy W' (see Figure 2.2) dcfint.'lI i\:!,

The differential or W' b obtained by using I~platioll :.!A a.~,

Thus, the functional form for W'is,

W'=W'(u,j,S... ).

('l,ln)

(2.17)
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The drain (I; amI the thermodynamic force!... is defined by Equation 2.16 as,

co; = aw'/8u,;,

J. =aW'las.,

or I in the functional form as,

U~illg Equation 2.8 And 2.19,

aW'las. = aW.laS.

The lolal complementary work Wf is defined as,

W+ =d,jt;; - Wr.

(2.18)

(2.19)

(2.20)

(2.2l)

(2.22)

(2.23)

ami can be separated into complementary strain energy W' and the irreversible energy

W.as,

W+=W'+W.

The incremental form of Equation 2.20 is

Using Equation 2.18 and 2.19,

where lJijld is the compliance tensor given by

(2.2'1)

(2.25)

(2.26)

(2.27)
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At constant temperature and OIL current \'alue of Sm, and when 1.he load is wIllO\'{'ll,

i.e" U;j=O, the remaining strain is illclil~tic ~train associate,: with a stat.e S,,,. TIlt'

strain increment call be divided into all dasti<: or rcclJ\'Crahl(~ part Ift.;/'. lIllll Illl

irrecoverable part dCi/ a~,

where

dc;]" = lJ;jk/I[l1ll

dt;/ = ~~i: I[S,,,,

Rice (1971) related the irreversible strain increment 1'1 a pl,l.,<;lil: Ito\\' pol.l'lll,ial ill; in

the theory of plasticity, This review is resLricted to da.'ilir and vis(,l/dastit: thr:()fi,~.

The selection of suitable internal variahles repwsenLing Lhe lTlier"sLfIl('Lurt~ is v,~ry

important, and should be based on experimental obsl~rvali()ns, 'l'llt~ 1I1l1ll1wr uf i,l·

lernal variables should be large enough (within the limit .,f pradit:1l1 applkahilil.y)

to represent the material behaviour finder desiwll (olidiliollS. Simllll;Ull'ollsly, I.ht·y

should have physical significance so that tlley l:an he H1e,L'illw,1 ,liredly 01' ilHlin~dly.

AtleasL one internal variable is desired lo present history dl'P{~THII'IIt:f, in llHI mall'rial,

but morc may be needed for non-linear response chamrkri'Hltioll.

2.4 Viscoelastic Theory

In this section viscoelastic theories for material with microstrlldllw is Ilis,:t1ss,~d.

First, linear viscoelastic theory ha~ed on irreversible lherrnouynaflli,;s is Jlrt~SI~lltll{J

in brier. This is followed by a review of nonlinear viscoda.'iLil: llH~()ril~H, Finally

correspondence principles arc descrihl:d to ohtain viscocl;l..'itic Hollltioml fffJrn sollltillus

for elastic materials,
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2.4.1 Linear Theory

For lillear viscodastic; materials sLress "-"I{t) can be expressed in most general form

using til,: Bollunann superposition principle as

(2.29)

wlwrc J);jkj(t) is creep compliance and T is any arbitrary time between 0 and t. The

W~I:P compliance is defined as the creep strain resulting from the application of unit

stress. This is also a memory fundion that describes the stress-history dependency

of the strain.

Iliat (1954) derived the evolution Equation 2.29 using the thermodynamics de.

snilJr.d in Scdion 2.3.3. The theory was presented in generalized coordinates. The

generalized forces, Qj, j = 1,2...0 include external forces Qj, j = 1,2, .. k, and

thermodynamic forces QJ' j = /... + 1,k + 2, ..n. The corresponding generalized dis­

pl.lcclwmts, q), j = 1,2, ..n include external displacements qj, j = 1,2, .. k, and

hid{ICtl {lisplacemcnts (internal variables) qj, j = k + 1, k +2, ..n. Equation 2.13 can

hc written as

(2.30)

1I'11I~rc the coefficients XJ are functions of all quantities affecting irreversibilily of the

process and arc defined as

(2.31)

H the phenomenological laws connecting Xj and the velocity rii arc linear so that

(2.32)

the (~voilltion I~quation 2,30 can be written as

(2.33)



The coefficients bij Are "iscosity terlllS, ami arc symmetric {bi} = bji ) due to Ihe

Dnsager's principle (Fung, 1965). Substituting Equation 2.32 in I'Atllalioll 2.:11. Ihe

governing equation of equilibrium is

l:!·:HI

The strain energy is expanded in quadratic form

where the coefficients Qij are symmctric and aTC uefined i\.~

(:!.:IIi)

Thus, Equation 2.3,1 can be put in the form

The solution of this equation was obtained by eliminating hidden displacelII'~ltll; t!li,

was accomplished by using the f"ctthat allthermotlynamic force'! vanish for all illdkt~

correspol' -ting to hidden displacement.s. The influences of the internal variil.hll~ iHl:

to reveal the hereditary character of the material. The 'Olution of "AI'Ialion 2.:17 ill

llna.logous to a mechanical model rnadeof several Maxwell type materials pillS il.spril1g

and a dashpot all in parallel (see Figure 2.3a). This m(.ochanica.l maud is thl~Tdiclll1y

equivalent to the generalized Voigt model as shown ill Figure 2.3h.

The solution of the mechanical model described if! figure 2.:J for uniaxial Wll~P

testis
t "t t

D(I) = - + E -[I _ e-"I~1 +-,
S,.. i .. l Hi 'I...

where tf = 'Ii/ E; is illl retardation time. The thrC(l different terms in Equation 2.:J8 lUI!

the elastic, the delayed elutie and the steady It~te flow compliances. I::quation 2.:18 is
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Figure 2.3: (a) Mechanical model ~ugge5tcd by Siat (1954). (b) Generalized Voigt
model.

mOlll general form of time-dependence that is physically possible. In practice a chain

of Maxwell or Kelvin units is needed, which is represented by the summation term in

Equation 2.38. This leads to a large number of parameter~ that must be evaluated.

For many viscoelastic materials, the summation term can be approximated into a

power-law lerm. In such cases the compliance is

(2.39)

where Do. ill. O2 and b that is a< b < 1 are material constants. It should he noted

the uulike Equation 2.38, which is unbounded in time scale, Equation 2.39 is valid

for 1\ limited (often large) lime.

The inverse of Equation 2.29 in terms of relaxation moduli C;jkl are

(2.40)

The rdaxation moduli and creep compliances as in Equation 2.29 and 2AO are coin-
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ponents 01 fourth-order tcnsol'1l. These tensors arc ~Ynlllll'lrk IllIe 10 the On~i\~"r'lI

principle, Since creep and relaxation phCll<llnClla arc 1\\'0 aSI)t~'lli of Ihe :mme \'i,l,

coelastic beh,wiour of materia:" lI:cy shou]ll lx- f'(-1.1trod, SUi'll n'lalK>Il i:i ohtaill<."II,.\'

applying the Laplace transform to Equations 2,~J and 2..10. Thl' result in It'nml tlf

the tra.nsformcd \'ariable of is:

where'lj reprt'SCnts Laplace transform of tlu! quantity ~ij' From E(llllltifllis 2.·11 111111

2..12

(2.'1.1)

Applying the inverse Laplace tran:fform to Equation 2.014 yields

(~.'I!i)

Equation 2.45 defines the relationship IJclwccn the creep mlllplian(llS 1);111 IUlll tlH~

relaxation moduli C;jlcl for linear elastic materials,

The form of Equations 2.011 and 2.42 is analogoll:-lto llooke's law. A so]ulil)ll IlsillA

this analogy is presented in Seclion 2A..'j.

2.4.2 Multiple-Integral Representations

For large strains lIIost viscoelastic materials exhibit nonlinear bcllaviour, A Wm­

eralization vf linear viscoelastic theory for such ca."Cll is possible by !Ising Irlultiple

integrals (Green and Rivlin, 1957). The stress relaxation wu formulahxl in tl:rms flf
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Pigure 2.4: Creep response to multiple ~tep of stress

a 1.(!llsor functional of st.rain history based on invariants. The current stress at a point

is 1I0t only a function of current deformation, but also t.he deformation gradient~ at

all rmlviolls tim.)s. A simple cxplil.nation as given by Findley ot al. (1976) is presented

here.

A nonlinear viscoelastic material is subjected to a constant stress .6.170 at time

t = 0 and aU1 is additionally applied at time t = 11 as shown in Figure 2.4. The

lilllc:·depcndcnl strain resulting from this stress is !,rcscnted in polynomial form

ttl) = (auOlDl(t)+ (.6.uo)2D2(t,t) +

+(.6.adD I (t - ttl +(~(1d2D2(t- fJ,t -til +

+2(l.iuo)(uutlD2(t,t - tl)' (2.46)

where the Dn are time· dependent material functions. Only second order terms are

wllsidereu;11 this equation. The time function Dn(t), Dn(!,t) are the same in this

t~quation. The first two terms in lhe right hand side in Equation 2.46 are due to stress

uO'o, the next two due to stress 60"1 and the last term comes from the interaction of

the lwo stresses. If N load steps are applied in this manner, the response is

.V N N

,(I) = 2:(cl.;)D,(I -,;) +2: 2:(".;)(".;)D,(I - ';,1 - I;) +.. (2.47)
,,,,0 j",Oj",O
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For arbitrary varying stress history. Eqllation :.!..lj rim I", prt'!II'IlI"d in tht· rorll1

ror generality, this theory rl'<jllircs sC\'(~ral fl1lldio1\s wilh higlwr un],-r st.n.,;s t."flllS

to describe creep behaviour satisfactorily. This rt'prt·st~l1t.ation is suilablt· for il]] clilS~

of mat.erials and can be approximat(~d to lhe desired <lq;r{'t~ of 1\llnlillt'arit.y. Th,' mI·

pcrimcnLal detcrmin1\Lion of kernel rUlLclions J)" i~ most ,lilliclLlt in this methud. Illul

requires a large set of creep data. For strong nOlllilll~ar n\s,:s it 11l~l"ol1l'~S ;mpriu·ti,·"l

to lise this approach.

2.4.3 Characterization Using Reduced Time

Schapery (1969) derived a simple method to account {or l1olllilll-arity lISillg tlw tlll'l"

moclynamics of irreversible processes (see Section 2.:1). The: linear lilW or l-Alliatioll :l.a:.!

was replaced by a nonlinear law:

('lA!J)

where

(:.!.MI)

The function 0 ... is non-negative. The codlidcnlli bij arfJ still a (Ollstnnt matrix mr·

responding to the linear response ill the neighborhood of the rl{(~rellCC .:quilihriul1I

slate. Thus the governing Equation 2.31 hl~collle~

~ +rJ'lhl/~ '" (}j.

The "reduced lime" $(1) is an implicit. funclion of st.ll.tt~ vlI.riahll:s sud1 a.~ slw~s

in the creep formulation, and is defined u.~

I' d,
w(l) '" J(J 0~[Q"(t)l' (:'Ui:.!)
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Pigure 2.5: A mechanical model for reduced time characterization.

TIle rcsuhillg theory is similar to Equation 2.29. The shift faclor can be II. function

of uther nonlinear effects, e.g., temperature and aging. The intcgnl form for uniaxial

stre~s-statc is

c(1) = 10' D[!b(l) _1/J(T)ld:~ ldr. (2.53)

Jordaan alld McKenna (1988) have successfully employed this theory in the creep

prediction of icc. The function ad was considered as 11. stres5-dcpcndent viscosity. For

a power law creep material, (= «(1I(1o)"io• the shift factor is given as,

all =7J(u) = O'.~~io (2.54)

where dO alld ~ arc reference stress and strain-rate respectively. This model can

he llrt!SCnted mechanically as in Figure 2.5. Thi, theory is general for nonlinear

viscoelastic malerials without changes in the micro-structure during the deformation.

2.4.4 Modified SUjlerposition Principle

/\lIothcr !,:cncralir.<\tion of the linear theory for nonlinear materials is the "modified

Mupcrpo!'i1ion principle" (MSP) (Findley e1 al., 1976). For uniaxial stress-stale,

(= l' L(t:r,t - T)dF~~,T)dT, (2.55)

where F and L arc empirical functions of lime and stress. MSP is an approxi­

male method, which uses the kernel function determined from one step creep lest to



describe nonlinear creep beha\-iour under arbitrary strt':l~-history_ Tile arcurarr \'f

description depends on the material and type of stn.':!", history. This tht.'ory is uO\.

general enough to describe all materials wilh lIlemory. but il is silllVlr tn uS(' fur :ltmlt~

nonlinear malerials under quasi-stalic loading.

Schapery (1981, 1991) has used a form of I~qllatioll 2.55, whe", lhe: £1II11:lioli 1. is

independent of slress Ami is a linear creep compliance I, = 0(1) in Etluiltielll :!.2!l.

and rellecb r.reep behaviour over some uscful stress mnge. AI\ llon-lillearity of th"

material was addressed by the slress function P(O',/),

(:!..'ifl)

where 1"(0) = O. 1'.'!echanical!y, Schapery's model can ht: prr:senktl ilS ill [,'igllrll2.:I,

with F(a) replacing a, all other components rellHdn sallie: alld e[C'liuihc lIw limiar

compliance 0 of Equation 2.56. The springs ami ela.~hpob are lint:ar, unlike: thl: mntld

presented in Figure 2.3. For example, for a power-law viscous lIlalcriai (i = IJ.j l7
n),

F(a) = an and O(t) = D,t, which is linear.

The modified superposition principle provides a simple method for Ilm:lic:linp; viJi·

welastic response from clastic .solutions, when generali1.Cd to tllrC!'C-llimel1llinnallu;lIl-

ing. Following Schapcry (1981), the modified superposition Rlilthod aJ'I IlrC!lt':rttt.'11 ill

Equation 2.56 can be extended lo include change! in the rnicfO!ltrlldllTl~_ The 11011'

linear function F(u) is also a function of randomly distrihulcd and ti"l(~-dllJlI:nllt:llt

microstructural parameters (5... , m = 1,2, .. ). The uniaxial consliLuLivc relalion ;s

(2.'7)

where the quantity CO is referred 10 aJ'I pseudo-strain and is cxp[icil fuudion of JitrtJss,

spatial coordinate, and time. The coefficient En is a free I:onstant and JS termed thl~

reference modulus and introduced to give CO the unit of strain. For an c1a.~tic malerial

with constant 5, En = 1/D and ( = CO. Thus CO is the strain lhaL mlisl, in an
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dasLic material with the same sd of microstructural parameter Sm as the viscoo:iastic

fIl atl~rial.

Prl:,lktion of material hehaviour using this method requires determination of the

quantity (~ llmt is a function of the stress·field and microstructural parameters Sm'

For many Clll;I~S one structural Ilarameter is often sufficient, but when there are com­

plex changCl'i in the microstructure, more than one microstructural parameter may be

rl'fjuin:cl for dilfercnl physically identified characteristics. Por a material like crushed

i((~, Oll(~ measure of microstructure may be for densification due to pressure, while the

..ther may include grain boundary sliding under shear. These features are discussed in

dd,dl in Chapters 5 and 6. The form of the function f< can be obtained by inverting

Equation 2.57;

(2.58)

where C(t) is the relaxation modulus.

If (' = (J/I~'Il, linear viscoelastic theory is recovered. As the function D(t) is

iudependent of state variables and the value Ell is a. constant, the Lheory expressed

in Equation 2,57 imposes a qualification that Poisson's ratio is constant during the

process, The represenLation of nonlinearity and damage in a single function fC im­

POSCll ~lIJe restrictions on the material type represented. If a power-law is used for

ll1<lLI:riill representation, all components of creep compliance, i.e., clastic, anclastic

and steady-sLate creep, should follow same power-law. In ice, clastic behaviour is

lincar, while delayed-clastic and creep terms follow separate type of power-laws in

lime and slress; the applicability of single power law based model cannot cover all

l,hese fl~i\tlln."S. However, in some cases where creep component may be dominant and

dnsLk component may be negligible, this tneory is expected to provide good results.



For multiaxial bchilxiour lhe con~lillltiY{" law is.

2.4.5 Correspondence Principles

For many viscoelastic problems, thc lime variable CILll hI: 1'l'movl'll hy takillg lilt,

Laplace transform of the governing field and houndary ('qlliltiol\s with rt'~]lI'd tn tilill',

thus reducing them to mathematically elluivalcnt c1i1~Lic l)rohll:lIl~, This '\IIalo,;y is

I:allcd the correspondence principle, alld ill1plil'S t1:<1oL clastic analysis nWlhods .:illl ll<'

llsed to derive the referrcd viscoelastic problcm (l.l~:, I!J!'ji); ('llrist(~IlSI'II, 1!171; Firlllll'Y

etal.,1!)7G).

The relationship betwecn shear stress T anu shl:ar strain, ill Iirwar !diLstil:ity, ilud

shear strain-rale '7 in Stokes' flow laws arc given by

T=G,

T = 7/7

(:!,fil)

(Vi:!)

where G and 7/ are the shear modulus and the cocHicicnt of vismsity, n:sp':l:tivdy.

I\n analogy between these equations exits, and viscous solutiolls f;arr hl~ {)hLairll~fl by

replacing shear strain in an elastic solution with the shear "tfllin-riLLl!. In a similar

wayan analogy between steauy-slate creep and rronlinl:ar c1iL~tidty oLlllw l:stiLbli~IIf~I,

Let the nonlinearity be expressed by power law, dasLic equation is
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ilud ! he steauy·state creep Iw defined b.v

(2.64)

wIlen) I1lh tu, ill illld fI an~ material constants. Comparing Equations 2.63 and 2.6·1, if

iI. nnnlillciLr da.stk solution for (0, II and.., is availa.ble, these can be switched to lO' n

iU1l1 ;( to uhtain til(! soliltion for CflOCp. Equation 2.61 and 2.62 are special cases of

E'l"ations 2.fla and 2.lH whcn the power n is l.

Linear Viscoelastic Stress Analysis

I.d "'J{l) ilnd (jAll bl~ the stress and the strain tensor, and u;(t) be the displacement

vl~dor ill the material at the position x and time I, i1le equations of equilibrium arc

(2.65)

wlll'n~ t';· iln: the hOlly forces. The notation (J'j,j denotes the partial derivative of (T,j

with n~SI)<'d to th.~ position vector Xj' The strain-displacement relations arc

(2.66)

Thesl~ strnills satisfy the compatibility relations

IA tlw bOllll<lary S is divided into iI. region .'iT and a complemen~ary region Su =

8 - ."'T. On Sr, exterT'al loading 'J'; arc prescribed as

O"jj(l)nj = T,(t).

011 8~, the surface displacement Vi is prescribed a~

,,(f)=U;(f).

(2.6S)

(2.69)

These field l'lluul.ions together with the constitutive Equations 2.29, or, 2.40 form a

l'llmpleteset for linear viscoelastic stress anal~·sis.
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Solution Using Correspondence Principle

The Laplace transforms of Equati\lll~ :Ui.'j 10 :Ui!I yi.,I,1

1:!.7tl}

l:!·ill

(:!.7'!)

('!.i:l)

(:.!.H)

The Laplace transform of the constitlltiVl~E(jllatiofl :!.·llJ is pn·s'mt(·d in 1'~qll;ttillll :.!.n.

These transformed equations are similar to dnslkil.y f"lllations, wllt'n' (·Iastil' mil'

stants st'jkl{'~)' body forces F,(s), external forces 'h(.~) Oil ."'.,. ;1II(1 ,~xt,~ruid di~1'11ll:".

ments u;(s) on S~ arc functions of the transformed pilrilll1c1.ers. l\fkr tlH~ Hss",·iat,·,1

clastic problem is solved for r:7ij(S) and '11(.5), tlw inv(~r:l'~ I.alllilf:e trall~r()rlll ~iVl':ll.ll1'

time-dependent solutiollS for t1rj(x, l) ilnd lIilx,I). "(lost~d-r()Tlll illvers!' Lrallsfnrltl is

not always possible, and one has to resort to approximate ill1f1 1l1J1I1l~ ..iC:lLllllllllti()Il.~.

This analogy often provides an easy tool for lin('ar visf:odiL~lit: rnalf'riak [n

this approach of solutirl1l, 5001(: limitations on lire houndary f:OlIllitiOlrs apply. 'l'1l,~

boundaries at which stresses and displacements aw prc:lcrib(:d sirollid h,: in(I(~p,~n(I(:UL

of time. However these condition themselvC:l 1:llrl be tillle-d{~I)elldcnt (FirIfJl(~y d

al. 1976). Furthermore the corresponderu:c rrinf:irlf~s ilrc lirrriL(~(l tu (pllJ...~i·!ll"tk

considerations, where the inertia lerms in the efillalion of lTv/lion iln: rl!:~I(:c1.t"J.

Nonlinear Viscoelastic Materials

The analogy between clastic theory and viscodastic theory providl!s an easy tool for

linear viscoelastic materials, while for non·linear lIlat(:rial~ some rr.strir.lions aJlply.
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Fur lIonlinear problems, time and SpiKe dependence of prescribed functions should

if,PI"~ar iL' separate (a.ctors as in Sl~lion 2.'1..1. Schapcry (1981) has presented cor-

ff:spOl1fJ.~nr.r. principlCll for the analysis of viscoelastic cracked bodies. An analogy

hdWt,.m noulim!ar dlL~lic /lnJ viscoelastic media with stationary and growing Cfiler

was '~l.'rivC(1. III the <''fillivalcnt da:>lic dale, the strain is replaced by pseudo-strain

llsill! l'Aluat;on '1..;'7. The principle is shown in F'i!utc 2.0,

From Sdmrw.ry (1981 l, a tcrctcncc clastic solution qfl, tn and ur arc stress, strain

allflllisplaccmcllllt!IISOr~corn~fXlnding to the case in which I{ D(I- r) =E(/ - r) =

/;'/1 (St,.~, SI'cl;OIl :H.·[J. These solutions follow lhe field Equations 2.70 La 2.72 and

l)(IlIIulill"Y COllllililJlI.~ liS ~ivcn in Equ.l1ions 2.7:1 ami 2.7,1.

WhCll the prcscril'md surface t.raction Ti = l7,'jn; on surface S and body rorccs Pi

011 volume \I he ~pcdrictl fUllctions of time amI position, lhe nonlinear viscoelastic

StlllltiollS ha.';P.(1 on Equation 2.57 arc

(2.7.;)

(;1 = Enl O(t - r)d~~11 dT

IIi = En l O(t - T)7?dr.

(2.76)

(2.71)

When tli~I)laccmcTlts U/' = ur i\nd traction Ti = (li/n; i\re prescribed on the bound·

My S. and .'iT rcspccti\'c1y, and body forces Fi on volume V, t.he nonlinear solutions

tli = En l D(t - r)d~~'~dT

Ul = En l O(t - r)~dT.

(2.78)

(2.79)

(2.80)

Ilarpcr (1!IS6) and Jordll.iUl et at (1992) ha\'(; \·ll.lidatcd this theory of deformation or
icr..
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2.5 Particular Aspects

TJ[(~ ~l~lIf:ralized lhl:ory discllssed earlier in this chapler is applicahle to it \'atiety of

Im/hl!!lll ill\'olving dlilllgCS in mir.rflsl ruclurcs. The internal slate variable in the the­

Ol'y II :y St~n'f' to define rnicrocracking by the geometry of cracks and their orientation,

pon:·fr'l<:tioll illld its variation, c:rystalline slip. grain size and its distrihution, diffusion

.tIIll phas(~ changl!S. In this scctiOll, [)articular aspcds of some of these microstructural

rl'llllln~ are discussed.

2.5.1 Composite Materials

COlllposiw material consists of two or more different materials, which are usually

firlllly l}(Judell tog('ther. There arc many materials in this class, such as: concrete,

alluys, [IOTOUS and cracked rr:cdia, polycrystalline materials, reinforced rubber, fibrous

('olllpllsil,(·s. The behaviour could be anisotropic because of alignment of some phases

in Iwtain dircc:tion. lIowcver in the present work only isotropic composites-more

spl:eiliGll1y stiltistkally isotropic-arc considered. Some examples in this class are:

Itlill rix c:ontailling spherical or randomly oriented and elongated particles, polycrys­

l.l11illt: c<>mposites, porous materials, and matrix with randomly oriented cracks.

Fulluwillg Christensen (1979), average stress and strain arc

t1ij = ~ [O"ij(Xi)dV,

(ij = ~ [ tij(Zi)dV,

(2.8t)

(2.82)

wllcn'.t, is thc IOt:ation in the body V. The clfedive behaviour of the heterogeneous

IIll,diil filll be Ilc/ined using linear moduli Cijl<l.

(2.83)



To perform the aver<lging <IS in I~quatiolls :1.81 1\11t1 '2.8:1. l~Xal"t solutiol1s r'lr tltl' 1it'III

variables arc required. This a\"('raging is gelll~rnl ilnd dOl's 11111 imply l"t'lil,ril'lion U11

lhe geometry of the inclusion.

Ld the superscript I reprcsctltlhc inclusion .Hld JI rl'pn's,'ul. tIl<' IW\lrix plta.~".

The isotropic relationship for the inclusion and tlU' 1!l;\l.rix is

(:1.:"\·1)

where C!jH and Ci}~l arc clastic constanl::; for inclusion lUll! Illatrix. If llll:n: an: N

inclusions of volume VI, Vl""Vn in the rcprClientiltivc VlllllltW V, the .w,:raw~ stn'ss is

it,j = ~1 .v fTijdV +~ t 1 11",1\'. (:Ulli)
V-Lu,Vn ~

in matrix in inclusion

Using Equations 2.83 to 2.85, Equalioll 2.86 l:all Ill: lllaniplllat':11 to provilft'

(:Un)

The firsltcrm of Equation 2.87 shows conditions ill matrix diU: lo I:xl.(!rllillly ;lppli,:d

averaged stresses itij, while the second term shows the conllitilJllS withi" tlll: illt:lllsinlis

with some unknown state Uij and (ij. If the conditions witl,ill illdu.~iolls can h,:

obtained, the moduli of thc composite e,jkl c;an hc~ c:stilllatc:II.

A revicIV of various micromcchanical modds is pres<":flted in ClJri.~tell.~c:u (l!)7!J,

1990), Mura (1982) and I1ashin (198:1). These ,Ire the C:Iluivall:nt indu.1ioll lIldhoil

(Eshelby, 1957), composile-sphc:tI: method (lla"hin, I!Jfi2), 1.hc: selr·f:on.~isllmt Illdlt­

ods (Budiansky, 1965; Hill, l!l65), the gcncrali;(oo sclf·mnsistenl llIl:tl,Oll (Cllri.~t1:llslm

and La, 1979) and equivalent inclusion mdhods (Eshclhy, 19.')7; Mnra, 1!}82J. for

dilutc composites, these methods give similar rC!Sllltsi 1I'11i11~ for high wnr;rmtration
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r:omposilP.!i, lhf: generalized self-consistent method gives best performance. For cli­

IUlcly porous materials, such as compacted crushed ice, any of these methods is

expected 10 provide good results.

Equivalent Inclusion Method

The equivalent inclusion method is based on Eshelby's (1957) solution for a uniformly

stressed infinite continuum containing an ellipsoidal inclusion. The stress disturbance

in the applied stress due to the inclusion is obtained by solving an equivalent homo­

geneous problem. For the problem of a composite material in which the particulate

l)hast'S are surrounded by a homogeneous matrix, each particulate phase is considered

lo he all isolated ellipsoidal inclusion. The interaction of inclusions is neglected in

this approach. This method is presented in detail in Appendix B.

Self-Consistent Methods

The self-consislent methods (Budi::msky, 1965; Hill, 1965) provide an approximate

hut reliable estimate of bulk and shear moduli in polycrystalline materials. In the

pwl,lem of a composite material in which the particulate phases are surroundetl by

iUI clfedl ve and homogeneous matrix, each particulate phase is considered to be an

isolaLed ellipsoidal inclusion. The inclusion is assigned the properties and orientation

of the "articulat.e phase and the matrix properties coincides with that of the compos­

ite material (Figure 2.7a). Such mapping of the composite material is possible as the

mean stress and displacements at ils boundary are equal to those at the boundary of

the equivalent idealized continuum. The consistency condition refers to unchanged

dlmsity and displacement at the outer boundary. This results in a condition from

which the isotropic effective properties can be obtained by solving coupled equations.

This method is good when the inclusion concentration is dilute. At higher concentra·
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Figure 2.i: (a) Self·consistent and (1)) tlw generalized sclf-cOtlllistimt lllcLhmlll.

lions results arc only usdul when the moduli of the rniltrix and llw illdulliol1 ph;l..~'!s

arc nearly identical (Christensen, 1982).

Christensen and La (1979) formulaled a problem for composiks ill whidl (,Ill'

inclusion is embcddc<.l in a matrix shell that is crnhclldcd in the dfcctivl! lllc!diulil

(Figure 2.7b). This three-phase problem is also called the gcncrali1..1:d sdf-mnsisllmt

method, and overcomes the drawback of classical sdf-consisLcllL method.

2.5.2 Microcracking and Loss of Stiffness

In the last section, cracks with other microstructures Wf~re cnnsidl~rl~d as indllsiOll ill

the material, to determine its elastic response, Here some 1111~f)ries fur cfiu;killK solir!

are reviewed in general. Due to presence of these cracks tlll~ stilfJl(.'S.~ of the ll1illeri,ll is

('educed significantly, Brittle materials sllch il-~ concrele, rock, ccral11ic.~, iLlld if;e whim

loaded develop microcracksystem and new microcracks could he nuclf~atf:d. Wllell tIll:

damage growth is stable, the density of cracks inereases, and the elastic slirffl(.'!ls ur till:

material degrades. Krajcinovic (1989) has prcsentl!d a review of damagn nll~.;hallics,

A simple elastic damaging material was presented by DOllgill (197G). For lllli,JJClal



40

loading, Young's modulus E in Hooke's law, c =EOf was presented as

E = Eo(\ - Ad), (2.88)

wllf:m Ad i~ a damage parameter. The two extreme value of Ad were defined a:I:

>.., = 0, material lacks damage, while Ad = I represents lotal failure of stiffness in

the material. As },<I varies witli the progress of damage, Hooke's law is presented in

the rille [orm, and an evolution equation for the growth of damage is needed. This

~ill1pl(: model does nol account for any permanent deformation, thus, when unloaded

Nt.rain vanishes.

BudianNki and O'Connell (1976) have presented a self-consistent formulation to

include microcracks. Planar and penny-shaped nacks were analysed as ellipsoidal

inclusions in il homogeneous isotropic medium. This work has set the lone for great

fUlvilllce!n(!nts in this area. Horii and Nemat-Nasser (1983) rederived this problem

using {r,lcture mechanics equations (Rice, a168) of velocity field al the crack tip.

They also included (riction at the crack int~rface. Ashhy and Hallam (1986) have

[lrcscnted a damage theory based on fracture mechanics and a beam theory by con­

~id(!ring cracks in compression as wing cracks. Laws and Brockenbrough (1987) have

prcscnted solutions for the loss of stiffness in cracking solids for various cracks geome­

tries. Often, the application of these modds is restricted to the dilute concentration

for microcT<u;ks. For large populations of microcracks, formulations based on the gen­

eralized sdf-collsistenl melnods are appropriate. Schapery (1990a) nas presented tne

respollse of cracking composites using this procedure. The popularity of these models

is attributed to their clarity and efficiency in considering microcracks, and relating

the response of the material to microstructures.

Chen and Orgon (1979) extended solution for linear elaslic materials to obtain

the responses of heterogeneous alloys following power-law creep, using an incremen-
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tal method. At each increment of stress. lincar t!tt.'ory \\",'~ "l1lployf'd (0 d,'lt'Tl1lilll'

stress-strain relationships. Nonlinear \'iscoclasl, Illl\kriab abo can he Jlrl~SI'lIl.c'tl hy

identifying various mechanisms ill the material during ddonllillioll. TlwlI il I1It'rhalli-

cal model can be IlTCSCllled. ./ordaan and Mal\clIn1l. (l!)!)ll and .Jonlnan pI al. (I~l!l~)

extended Schaper)"s reduced time formulation for IlOlllil1,~ar \'ismel,lsLil' l1lalpri;lls 111

inclll<.Ic damage ill ice using Budianski and O'Collnell's (l!lili) isotropic fr<lt:k .h'lIsily

as a measure of damage. The clastic components ill Figure :!,5 [ollow,',1 LIlt' c1illllil,l!,l'

theory, and the effective viscosities of the viscolls components wI'n' [~nliiuH~1'11 Ims!',1

on experimental observation of Stone eL al. (J!J8!-l).

Oased on the observation that the fir~t grain.filcd. size <Tacks (urm ill II Iltlly·

crystalline material when the average grain-boundary slidinA displaCl~l1wlIl Tl'adll's a

critical value, Sinha (1989) formulaLeua kinetic cquation for (lamage with t!tll I:r.u:k:­

uensity as its measure. The viscous compom~nt was thcn enhnlll:cd lilll!1I.rly with 1.111'

number of cracks according to WeerLman's (1969) forrnulation, Stwllg dq)(~rllll~lIc(~of

damage and the grain-size wa:- ohserved,

r\ rational formulation of kinetic equation~ for micwcracking call be I'Tl~S(:lIlf~d

using J.integ, '1.1 (Schapery, (984, 1986), This formulation g(~ncralizcll the .J·irrtf~griLlo(

discrete fracturing solids (Rice, 1968), aod a uistrihuted damage modd was pres(~nt(!11

in the fl'amework of the thermodynamic theory presented earlier in thi~ t:haptl:r. Tlw

details of this theory are presented in Chapter 5.

2.5.3 Porous Materials

Porous materials arc highly inelastic. With hoth hydrostatic and shear lOi~ding tlwy

undergo volumetric deformations, inc1iUllically. 'l'he~e properties wI:r(! Tl:vil:w(~il ill

Chapter I in detail. Here various constitutive models that account for pon:s mi·

crostructuraly arc reviewed, Some examples of porouy matr:rials Me gmnular matl:ri-
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als such as ~alld, anti crystalline malerials where pores are created during the process

of sintering and failure. Feda (1982), Mroz (1980) and Johnson and Green (1976)

have prelifmlcd rcvif!ws of various models for porous malerials.

Tlw thl..'OTy of plasticity has been used extensively in most phenomenological mod­

ds of porolls materials. Generally, the material is assumed to be clastic until a yield

point is reached, as described by a yield surface in stfl..'SS space. Then, further defor­

lIlilliol1 is Jlrfflicribed by a flow rule, and is a combination of clastic and plastic strains.

t\.~ porous materials arc sensitive to hydrostatic pressure and exhibit work-hardening

fir softening, and dilatation upon shear, the yield surface and the hardening rule de­

lll:nd'lll porosity, pressure and shear (Mroz, 1980). A model, which accounts for these

features, the ~cam·day" model (Schofield and Wroth, 1968) and its variant the "cap

mudd" (DiMaggio and Sandler, 1971), is widely used in soil mechanics.

The I.lwory of plast:city provides solutions for many metals and geomaterials,

hut the phenomenological nature of this theory crealed need for more direct models

with hettcr underslanding of micromethanics. By thc virtual work principle, for a

rigid and cohesionless granular assemblage, ChristolTersen at al. (1981) established a

general reprcscntaLion for the macroscopic stress in terms of the volume average of

the Ilroducl or contad forces and the vectors connectin~ the centroid of contacting

grain.'!. Mehrabadi and Nemal·Nasser (1983) concentrated on the fabric and its rela­

lio1l lo applied stresses. They included statistical distribution of the contact forces

allli branches in Christoffersen's material description. Nemat·Nasser and Mehrabadi

(I!HI.I) llsed kinematb of crystalline materials to model the deformation of granular

Illatcrials.

A set of micromcchanical models for porous materials can be obtained by consid­

ering pores a.~ inclusions in the material, and the theories discussed in Appendix B

un llireclly he used by setting the stilTness of the inclusion zero. Cracks can be



considered as onc population of pOrl'S, and II'Nl' n'\'i\'11'l~1 ill 1111' la~l "1~'liull, Olh,'r

population of pores consisls nf ncarly sllhcriral por,'S, :-'];Il'kl'n/,il~ (1!l!)1l) h,ls Ill'",

scnted a self-consistent l:~timalc of clastic modulus fur ~ph.~rifaIIHm'S, ('arm]] illul

Holl(1972jhallccXlCtl,ledthismodclfordastir'I,I;\stil'tnilleriak

The rcsponre OfV;SCOllS malcrialsColl1 hcohtailll~d froll1lhe"lasli.: r~'SIHUIS" in Slll1\"

cases using correspondence principles, Bndi'\I\ski 1'1 ill. (I'l:t!). DIl\'i\ ami JlnLl'hinsull

(19&-1) aud Cocks (I!lS9) ha\'c prcscullodsohlLions for lIulIlil1car \'isnms IIlal,'riak Th,'

cxtcnsionofthis lI'ork for llonlillear \'iscodaslic 1lI11teriids is Pfl'St 'lltl'dill('\llIl'krli.

2.6 Summary

In lhischaptcr,a rcviclYof elastic il.lIdviscodasticrnaterialswiLhchiUlgillf\ltlil'roslrnl"

lure was presented with special ,Ittelilioll giv'~11 lo cfiu:killg maL(~rials Hml pnroll~ Ilia·

teriak A thermodynamic theory hased on illkrnal variahle apPfOlu:h Wil~ Ill"e~"IIl!'d

in detail. This theQTY provided a ~ystcmalic framework for the olnilly~is uf mal,,·

rials with changing microstrudure, Linear visclH)lasLic theory IHl>;t!f1 011 irr<~ver!tif,l,'

thermodynamics was prcsent.cd, For nonlinear viscodastir. rni\tA~rials a sinKll~ illt'~KI'i\1

formulation is based on modified superposition mdhod was pws(!nt,~d, mal r.urn~~II"II'

dence principles were presented, Finally, particular a.sllt'{;t..~ nf microrril.ckill~ illlli !JOI't~

collapse on the stiffness of polycrystallinc materials were JisCUS.~'~11.



Chapter 3

Triaxial Tests

3.1 Introduction

Triaxial tC!lt~ were conduded to investigate the mechanical properties of fresh-water

icc in various damage stAles. During ice-structure interaction, zones of high pressure

all IIlL'111toned in Section 1.3 are formed. The icc in these zones is subjected to high

confining pressure as well as intense shear. This resulted in modifications in the

microstructure. The triaxial lesl.5 were desi@;ned to investigate this process. The

challll:cs in the microstructure were determined from thin sections before and a(ter

tests. The behaviour orice can be investigated in controlled laborato:-y conditions by

loading an initially intact polycryslallinc ice specimen, and then subjecting it to an

appropriate stress-strain history. This method suitable is for peak stress evaluation.

Al advanced damage slales failure occurs due to the instability created by sudden

propagation or critical cracks. This problem was resolved by testing samples prepared

from cru~hcd ice by moulding.

The b~ic principle of the triaxial test is tha.t a cylindrical sample is compressed

axially while the hydroslatically applied lateral stress is held constant, or varied
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Teyl Syslem

Figure 3.1: Te~t Apparatus.

depending on the stress path. In the pr(~sf:nt ~etup inuepcndl~llt :oulJ'(J! of axial ~tl'ess

anu press:Jre was possible.

3.2 Test Setup

The outline of the test apparatus is shown in Figure :1.1 anu the ddails of Sllrtll)I(~

instrumentation inside the cell are shown in F'igure 3.2. The t(!st [mUll) 111L~ iI

capacity of 500 kN and the triaxial cell has a capacity of 70 MPa. The axial Ildllatnr

and the confining pressure intensifier were controlled independcntly through il diJ;it,d

controller. This control allowed independent variation of axial and latcral stresses.

The complete test system except for the control center W/lll locat{~d in a cold room in

the Thermal 1.aboratory at the Faculty of 8ngineering, Memorial UnivcrHity.

Axial force was measured by a 500 kN capacity loau cell mountl.:J hdw{:t:n the

piston and the cross-head. The axial slress was dcducr.d by dividing til(! axial forc(!

by the actual cross section area obtained from the radial di!lplaccment. The (;ouIiJlinp;
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Figure 3.2: Triaxial Test Setup.

Ilrc~surc intensifier was instrumented. with a linear variable displacement transducer

(LVDT) at its piston and a pressure transducer. These transducers were used to

InC,lSurC the triaxial pressure and the sample volume change.

Two INDTs of 12.5 rom range were mounted diagonally at the top and the bottom

I'[;liens of the specimen. The signals from LVDTs were amplified separately and an

a\'(~ri\ging circuit was used to obtain an average axial displacement. This procedure

reduced the error caused due to tilting of the top platen during the deformation.

Axial strain was defined using logarithmic law as,

(I =loth/hal (3.1)

wlll're, ho illld It arc initial and current length of the sample. Details of other mea·

surClllcllts and characleristics of the triaxial apparatus are described in the following

sub-sections.
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3.2.1 'Iriaxial Cell

The cell was made of nickel.plated higlHllrcllj!;lh alloy sll'l·!. This \\'1IS lilt' 1Il11tIiti,.,L

\'crsion of Rockcell ~todcl 10 triaxial (t·I\. TIlt' I11Otlilir1\\.itlll~ l\"t"T" 11liult~ III aclllill

the cell to the lest frame and to illcrease s1Ifdy. The hellam of till' n·1I fl"llhlUII tl1l'

actuator and the lop was screwClI 011 it after imtallillg Iht~ Si\lllille. All tritllsllnn'rs in

the cell were wired through 11igh pTCliSure l"Omll't;tioIlS. The piston is 1I0t i\Uitt'lll"tl III

the top platen of the sample, but thrnugh i\ hall·sockt·" MrlUlgcl11t'1I1 (St"t~ Fil\ur'l :l.:!).

This provided freedom for rotation in tilt! snlllpll!. To halullc llll~ I'dl llml w,'i~lll'il

nbout I LO kg, the cross-head of the test fmllle IVi1S 1ISI!,l IL~ II lift. FiAU1l1 :I.a s!llJWS

this arrangement.

A silicon fluid with a viscosity of 20 es i\nd it SllC:cilic gmviLy of 1l.!J.I!J III 2.'i"C, was

used to pressurize the triaxial cdl throll~h llw ':OUlillillg flT,:lCSIlTC iI1Ltmsili"r (£:1'1).

The triaxial cell had a lIuid capacity of 11.1>0111 IN litrl'll. IIml it took ;tl",ul:W lIlilllll''lf

lo fill it, through an air driven PUIIlP from the ext'~lml rt:stlrvoir.

3.2.2 Volumetric Strain Measurement

The volumetric strain of icc is an impor1AIlt parameter in ice~' strudurt: i"tt·r1U:tioll.

For crushed icc, where large voIumctric(ldorlllatioll eCCllTlI d"l~ 10 ltore f:ollil{)l;C limier

high pressure, this parameter has an ilddL"t1 signifir.ance. III thl"SC tf:S~. volilmdrif:

strains were dt..'t.iuced by either lhc nuid flisJllacemcnt mdllod or the: r "~;1I1 ,lis[Jlm:".

ment method.

Fluid Displacement Method

The volumetric strain is often dclerrninL~1 fmm lhe volume of the lIui<l ,Hslllat:ed

from the triaxial eel\. For this purpose an LVDT, which wa.~ 11Ilili into lit,: ClJllliflill~



Figure 3.3: Triaxial Cell.
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pressure intensifier was llSt.u. The LVDT WilS t.:idihrilleillo prm'ilh' t.lll' \"lliulIl<' of Iluil!

in the intensifier. The fluid displm:cmcnt llIc1.hod rt:quirt·s \"IJmpl,·It· 11lHll'rsl,lllldill~

of the response of the conHning fluid and the trillxinl ("1,11 1llld"r \·al"iilbh· pn'ssun',

The problem could be further complicalilil hy pr,:xclice of air in till' I rillxiill ... ·11 .lIId

the pressure intensifier, and inhomogcllC(lllX dc[ormlltioll ill the Sllillpl,.. ·1'lllls.lhis

method is more lIseful for tests in which confining prl:ssnre is rtlllsli1l1l.. FlIr \·ilrlah[,·

confining pressure tests, t.he radial displaccment meLholl \\las pn-rl·m'tl.

The volumetric strain is obtained as,

p.:.!)

\\Ihere Vo is the initial volume and V is the CllH,:nt VOhl11lt~ t.r thr, sa11lpl.~. V \\Ii1.~

obtained from the intensifier volume change t. 11;, <lml till' clisplll<:t:lllt:nl of till' pisl.on

(cross-sectional area, ,4~) of lhl.' triaxial cell 61,,, i~~,

Radial Displacement Method

The radial stfllins were recorded by specially designed radial strain tralls,llln~rs(IlSI').

The RSTs were double cantilever beams mountr.d with strain ~11ll~':S. The Wlll~"

length of these transducers could be varictl to apply 11 gentl(~ pressllre 1)11 1I1f~ SIUllpll'

for mounting. They were further secured on the sample hy ruhl11:r hands. A dnLlI~':

in the sample diameter ca.used a change in the l:llrvatmc that wa.~ mr:l~"lllf(~d in l.lw

local strain gauges.

RSTs were mountctl at three places, at 1/6, 1/2 and 5/6 height of Llle SlllJ111ll:. All

average value was used to obtain the radial strain. The radial strain is ddilwd llsill,lo\

logarithmic la\\l as,

(:1 = lu(d/do)
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whew do and d arc the initial and the deformed diameter of the sample. The volu­

mdric strain a~ defined in equation 3.2 is,

(3.4)

3.2.3 Test Control and Data Acquisition

Ditta from all transducers were conditioned before passing through the MTS digital

controller. The controller also had conditioning circuits for system transducers, i.e.,

the 10lld cdl, the pressure transducer and LVDTs in the actuator and the pressure

inti nsHier. The l.VDTs and radial transducers mounted on the sample had external

t:ouuitionillg cirmils. In total, nine channels of data were recorded, including a time

channel. The sampling frequency varied from 10 Hz to 50 Hz for different tests and the

stage in the test. For creep tests, the level-crossing method was used with the axial

displacement ill the sample as the master channel. In the level-crossing method, data

ilr(~ rc~corclcd only when the reading of the master channel changes by a pre-defined

il1ll0unt. This reduced greatly the ..mount of data white preserving all important

chamcteristics.

3.2.4 Lubricated End Platen

COllventionally, in the triaxial tests, the sample contacts the end platens directly. In

this arrangement the friction at the platens restricts the lateral deformation in the

sample, especially near the ends. This leads to the violation of the basic assumption

uf lllliform and homogeneous deformation in the sample. This can be largely overcome

hy lubricated end platens. This provides a homogeneous deformation in the sample

(Raju et al .. 1972). For the present tests on crushed ice, a thin layer of high vacuum

silkoll grease was applied on the steel platens. The grease was covered by a 0.3 rom



thick latex disk, This method reduced the end friction such that the ddormation in

the sample was nearly homogeneous, The bottom platen cOlllnincd II \'Iml-hol,: thaI

was used to apply l'acuum in the snmplc after its preparation.

As the axial deformations were measured betwccn the platens, n bedding t'rror is

created by compression of the latex disks. The amount of error depl~I1(ls on the applic,l

pressure. Kolymbil.S and Wu (1990) have reported comprt'Ssion of latex disks to ilhOllt

30% for normal stress up to 5 MPa. At higher stresses it is nearly incompressihlc. III

present tests, during shearing, the axial stress was higher than 5 Mila; thus the dfed

of the bedding error on the sample deformation was negleded.

3.3 Specimen Preparation

3.3.1 Crushed Ice Samples

Crushed ice wa.." produced by crushing ice made from dcaeraL.:d distilbJ wakr. Tlll~

material below 1.0 rom and above 2.0 mm was rcjl:ded. This providl:d Il lII~al'1y

uniform grain size. The samples of 70 mm diameter and 75 lIllII length werl: pn:[liLr.:r1

in a specially designed split mould. Thin latex disks were placed on the silkon·grm~~.~d

lubricated platens. A latex membrane was placed inside the mould. A vacuulII w;~~

applied between the mould and the membrane to keep it tight during lh(: forrnatillli of

the sample. The crushed ice was tr.'!n placed ill the mould in four Iirts, ilnd l:oll1[Jildl:d

by tamping mildly with a steel rod of 38 mm diameter, lo reach the target d':Il~ity

of 550 kg/mJ, To control the density, the correct mass corresponding to the voltww

of the mould was measured and used in the preparaLion of the sample. The Lop

platen was placed on the mould and the membrane was secured on both plilt.m~ hy

O-rings. A vacuum of 5 mm mercury was applied. through the vent in the I!QUom

platen, before removing of the mould. Thi~ was nece~5ary for the ~tahility of till!
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sample. The vacuum was maintained until the triaxial cell was completely assembled

for filling with the confining fluid. The complete process of sample preparatiM was

r.a.rrir.d out iositu, on the lower platen of the lriaxiaJ cell, mounted on the test frame

in tllf: cold room.

In field tC3U:, densities of the order of 750 kym3 are expected, but such high

Vi\lucs are unlikely for single-grain material obtained by compaction without breaking

or creeping the grains. In the tests the density increased to the level of field tests by

iLppJiC1l.1ion of hydrostatic pressure.

3.3.2 Polycrystalline Ice Samples

'lb prepare polycryslalline ice samples, the method outlined in Slone et a1.(1989) was

followed. The seed ice, i,e., crushed ice, was prepared as discussed in the last section.

This icc was placed in an air-sealed acrylic mould and was subjeded to vacuum of

200 Pa for 2 hours. The mould was then Ho"lded from the bottom with deaeraled

tlistillcd water cooled at IrC. After J days, the ice was removed from the mould and

machined into sa.mples of 11 mm diameter and 96 mm length. Again the lubricated

end platens were used. The sample was covered with a latex membrane and secured

on both platens by O·rings.

3.4 Test Procedure

Tests were conducted at strain rates in the range 1 )( 10-4/5 to 2 )( 10-2 /s and

coufining pressure up to 20 MPa. All tests were cond~·,cted at _10°C. The sample

II·as instrumented with a pair of axial LVDTs radially placed across the end platen,

and the RSTs at 1/1., 1/2 and 5/6 height of the sample as shown in Figure 3.4.

The LVDTs were mounted on the platen by a collar assembly. The averaged output



from these LVDTs provided sample displaccment, and was somelimes used to l:nnl.rul

the servo-valve. The confining prcssure at the intensifier, the axial force, t.III' axial

displacement, the radial displacement, the axial stroke and the allluunt or displ'U:I'<!

nuid were recorded. These values were also displayC(1 011 tllt~ complI~er. ami prlJ\1ide,1

a clear picture of the state or sample during the ll~sl.

The top of the cell was lowered and screwed on the bottom. The hi~li jll"t'SS!lfl'

hoses from the pressure intensifier were aLlache(1 to the triaxial coli ami thl: cdl was

filled with the confining fluid. Care lVas taken to I~Xlld air from 111l: triaxial n'll alld [,Ill'

pressure intensifier. In most tests ~he confining pressure wil.~ llpplied first 1Il111 tlll'l1,

depending on the stress path, axial compression WilS a[lpliell a[tl:t :m-:Io s. In strain

control triaxial tests, a firm contact or the piston on tlll~ ~op platen of the :ialllpll: is

very important. For a compacting material s\I(;h as I:tllshed icl~, this aspect is nucilli.

The desired confinement was first applied and then the actuator was slowly [ltlsitiund

until it. change in the sample height was ohscrved. The av(!ragc time duration hd\YI:I'n

the sample preparation and testing was about '1.'") minutes.

3.4.1 Stress Paths and Test Matrix

The effect of stress-path was examined. This is important e~pecially a.t Iligh ~trt!SSI:~

when the maLerial ceases to behave as a granular medium. Tl~sts on crllslled iCI:

were conducted for hydrostatic compression (IIC), cOIlv<:ntionaltriaxialmJllpressioli

(eTC) and simple shear (55) paths. For JloIYl:rystallirll~ ice only eTC anti IIniaxial

tests were done. The tClit matrix of the program is shown in TallIe :U.



Figure 3.4: Sample with Instrumentations.
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Table 3.1: TC5t ~IaLrix

T~, l\laterial Path , ., Comments
/. (1\11',,),,, eTC [><IO- i 20 no \'olllllwLric 1Il<~i~~\lrel1lellt~,,, CTe [><10-1 to no ~ohll1Letri( II1C,1SUrel111:IIL~,,, ere 1)><10-3 10

-, C.lee CTe 5><10-3

" 1000orcolllrol
5 C.lee eTe a><I0-3 20
6 C.lee eTC 2><10- 1 20 daLill'Mtii\IIY!loo<l
7 C.lee eTe 5><10-3 5
8 C.lee lie vntiCfl triangular IUII"e~ d I M1'4~

9 C.lee lie varied :m Ml'a ill 5 MI'n/" lo",lill~

to C.lee 55 rnean20 load eon~rolloadinR/lInlo"diIlR

II C.lee 55 rnean20 load control 'oadillg/lIT1I<..,diIlR
12 C. lee 55 nwall.) IOilol control lo"dinll/1l1110,,,linR

" C.lee eTC 2><10-1 5
14 C.lee IIC varied IOMI'a~1 MI'"/,,loa<linR
'5 C.lee CTe 2><10-1 10 ullta[lnrtiallygood

16 I" eTe a><!O-J sanll'lcrailllrc
17 I" eTe 1><10-1 Hlllrlple railllr"hy "l'littiUJ;

18 C.lee CTC .')><IO-a 20,10 load/unlm\tl

Olltawere also availableror <h, roliowinglC!:lL!

OT030892 ,,, CTC !><IO-· 0,10 '.I%uniaxinl,cmcl' to'~t.s

DTl10393 ,,, eTC !><1O- 4 20
01'190393 ,,, eTe \><10-1 10

C.lee Crushed Ice

~
.~s

ria,
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3.4.2 Example Measurements

J\ sample of measured quantities, for 'fest 5, i.e. stroke, averaged axial and three

r;"uial displa((~rncnts, axial force, connning stress and displaced fluid volume is shown

ill Figure ;l.iJ. In this lest 20 MPa confining stress was applied and this was followed

hy axial loading uf the sample in stroke control. The soft sample of cru~hed ice

lIuderwent large axial and radial deformation under hydrostatic compression. This

caused loss of contact between the sample and the piston. Contact was made during

the suhscquent axial loading. During this period fluid was displaced from the triaxial

t:dl while keeping the cell pressure constant. Finally lL quick unloading in about 0.01 s

was done by bringing the stroke down and releasing the confinement.

3.4.3 Volumetric Strains

Two methods of measuring volumetric deformations, i.e., first from the radial and the

axial displacements in the sample, and the second, using the fluid displacement from

t.he pressure intensifier are discussed in Section 3.2.2. For Tests 3 and 5 the volumetric

sLrains from thesc mcthods are presented in Figure 3.6 for comparison. The sign

t;(JIl\'t~IlLion for ',llumetric strain is that the compaction is positive in Figure 3.6 a: d

in all future references. Both methods have captured the trend in the volumetric

ddormation for loading in these eTC tests, but the quick unloading was shown only

by the first method. The volumetric strain in this thesis is evaluated from radial and

axial displacements unless otherwise stated. The delay in fluid response to sudden

pi~ton movement made the fluid displacement method unreliable in those conditions;

thi~ method was lIsed as a backup measurement.



"I~I:~*~~fr'"
o 10 W ~ ~ 00 ~ 70 00 00

Tlme(e'

J~-.LJ?j

F
Time (I)

..
Tlme(s)

3:]
Figure 3.5; Details of measured quantities rOT tl:st .1,



_U,\OI,\t
__ ._ FLUID

Figure :1.6: Volumetric strain from the radial displacements and the displaced fluid
volume (or tL'Sts 3 and 5.



fl!)

3.5 Microstructural Observations

In ~his section a method of characterizing lht: slructure of LIlt.' tt~~ll'(l 1Il<1krii\l~ is

discussed. The micro-structures were obsc:n'cd ill thin sectioll~ beforc illltl after Ill!'

tests. Thin sections were prepared by ~ectioning and IlIkrOI.Olllillg at -11I°e. TIlt'

sample was sectioned and frozen on a glass plate llsing cold watcr ,lrIIIJs. The ~1II"filr"

was shaved until it was smooth. The sc<::tiou was thell scrapcd and Tt-rrn7.t~1l Ilpsid,~

down on another glass plate for final shaving unW the thickncss W;L~ ahout n.:! 11111\.

A thin section of polycrystallinc icc before a t\~st is shown ill l~igllrt: ;1.7. Using llll!

line counting method, average grain size is 2.5 111111.

3.5.1 Crushed Ice

Due to the weakness of inter·granular bond between crushed icc~ I'artidc~s, ':~lwcially

when the material is noL compressed at high pressure, St~ctiol1illg of tlll~ SiUIlIJIJ: is

not feasible. Some filler liquid is required to slrengthen the structure:. Tht: gl:Il,~ntl

requirement for the filler is that it should be waler-insoluble liquid, sllpI~rt:oobl1L fl!1\'

degrees below the matrix (icc) melting point and melt ahove lahoriLtory ll~mpl:mtllTl:

(Perla, 1982). Diethyl phthalate, a colourless liquid, melting point .;1"(;, wllich may

be supercooled more than 5 degree, satisfies these re(luirt~mcnts.

The cold room temperalure was set at _lOoe. The icc SrJtlcillll~lI WiL~ plac:l:d in a

tray and the liquid filler (supercoolL-u al the wld-r(JQfI\ lernperaLtm:) WiL'i potlTl:d illt"

the tray. When the specimen is fully satllralt)d, Lite cold room tl:rnperaLuru is reducc:d

to -20°C. The filler hardened when nUc!t:aled wilh some frozen st:rap parlicle!! of Lite

filler liquid. The sample solidified in less than two hours. Firsl time, high tlt~grl:t~ or

supercooling was required Lo freeze lhe filler. This was achiev(.'(1 fly plac:ing lh!: tray

in liquid nitrogen.
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Figure 3.7: Thin sections before a test of (top) polycrystalline ice observed through
cross polaroids, and (bottom) crushed ice observed in direct light.
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The sectioning and microtomillg was done in the cold room al. (l'mpt!ro11.ure of

about -15°C. The sample was seclioned and fro~(~n Ull a gla~~ platl). TIIl~ sudan' of

the section was shaved for smooth appearalll:c ;lIId pulishcll g(~nl1y with 11 higll 111lalit~·

lens cleaning tissue. This was [eft undisturbed at In.horalory klllpl.'ratnrc fill' abullt

10 minutes so that the sublimation of the icc ctdlL'S an oh.~I'I·\'ablt~ hOllllllar,v around

the icc filler interface. The gentle polishing is an 1'S.~I~l1t.i;ll sll~p for l'('lt\uviup; SUrf;lt'I'

asperities for the enhanced contrasl.

The contrast for photomicrography of lhe J>oli.~hl...1surface \\1M illlIHU\'!'d hy p;cul.I)'

painting through a water insoluble marker pen, The snrface is g(.'Ilt.ly IlOlishell a!l:;,ill

with a lens tissue. This process canses trapping of ink in tin: \;f(:Vit.:I~ al the in:·tillt:r

bonndary, thus increasing the contrast. II thin sedioll IHt~I);\rt:\1 by 1.1Iis llll'thOlI for

crushed icc bc[ore test is shown in Figure 3.7. The llVt~rag(: grain size of 0.(; IIlIll was

obtaincd by thc line counling method.

3.6 Summary

Triaxial strength and creep tests were conducled on fresh wlltl:r p\llycrystallilll~ itl:

and crushed icc. Thesc two materials represent various states ill iel' faill1rl: aud llow

during icc-structure interaction. The axial force, thc axial iUltl radial lh~fl)rmatilll's ill

the sample, thc confining pressure, and lhe now of Uuid from tlll~ flrl~SSllrl: inll:lI~ifin

were measured. Specially designed end-platens Wl:re IlSt:tl to eil.~lJre hnrJlogencolI.~

deformation ill the sample. The crushr.d ict: sarnplc~ werl: prl:parl!(! in a split mould,

while polycrystalline icc sampl<:s were IITepared DY machining. 'J(~sts werl~ t:Olllllldt:d

at confining pressure up to 40 MPa and strain rate up to 2 X 10-1, This st:diollS wen~

made fTom samples beforc and after tests.



Chapter 4

Results of Triaxial Tests

4.1 Introduction

[II this c!l;lptcr, the results of the triaxial tests described in the last chapter arc

prt~s{~nlcd. First, homogeneous and isotropic conditions in the sample during testing

nrc cxarninctl. This is followed by triaxial test results and basic interpretations of

the Illal.crial rCSllOllSCS of crushed ice, polycrystalline ice and damaged polycrystalline

ice. Thin sections from various samples after tests are also presented. Compressive

sl.n:sscs and strains aTC taken as positive. The axial strains arc positive and the radial

sl.rains arc negaLive. The positive volumetric strains show compaction. The stress

differcllcc is difference between the a:<;al stress 0"1 and the confining pressure 0"3.

4.2 Homogeneity and Isotropy

III the prl.'8cnt test program, special care was taken to ensure homogeneous deforma­

tion in the 8amplc. The success of the lest set-up can be observed by the measured

IlU,11l1ilie8 during the test and final sample dimensions. The axial and three radial
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Table ·U: Sample dimensions after tests (ill 1Il1ll)

Length
Diameter
Final dimensions:
Length
Diameter at 1/6
Diamelerat 1/2
Diameter at 5/6

i.'i !)li
in il

6·1.5,601.:\, fi·l.li !H.2, !)'Ll, !j.1.1
liO.3, 5!UL 60.5 i1.7, 71.~, il.i
liD.5, 5S.S, 60.5 il.i, il.i, i1.i
61.6,511.6, (lO.O il.8, i1.8, iLi'l

strains arc presented in Figure 4.1 for a crushl'tl icc tl~till1d a ]Jolynystllilille in~ It's1..

The three radial strains were nearly identical for Ihe nllshcII il:ll tl·sl .. This l'Ilulirllls

the homogeneous and the isotropic ddorrnlltiull in the siuupll:. III 1.lw l'ulyny.~l.allilu'

icc sample, the latex disk on the platen SI~I:I11S Lo GUISl: iLt tIll: 1:11I1s. This W1L.~ nil.kal

in uniaxial tests where at high strains sall1pll~s f;Libl hy splitting.

After the test, sample dimensions were measured at ahout 1'2()" apart rUT I,:np;tlt

and three diameters (1/6, 1/2 alld .5/6 of length from lop). Thl: r(~lIlt jl1'I!S(:IlI.,,,1 in

Table ,U show homogeneolJs deformation. Other lest. sampll:s also ddol'Jlllsl homo­

geneously. Photographs of samples after a lC!it arc presented ill !\pplmdix A.

4.3 Crushed Ice

The triaxial tests on crushed ice were conducted lit hydwstatir. compn:5sioll, {'CHlVl'lI-

tional triaxial compression, and simple shear stn:ss·fl;llhs. (II 1I1is sl:dioll, till! [{~~lllt~

of these tests arc presented and the material bdlilVioUT in gl:llf:ral is c1isclIssl!l1.
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Figure .1.1: The axial and radial responses of crushed ice and polycrysta11ine ice.



4.3.1 Hydrostatic Compression

The low density of crushed icc (550 kg/m3) makes it \'cry sl'llsiti\'I~ to Ilydrosialk

(:ompression, The rcsponse of the material 10 hydrostatic lu,\{linp; is prl:-s,'ul,'d ill

Figure ·1.2. In this test triangular prcssure pnlses of20 s duration inkrl"al \I"PrI'lll,plil',1

on the sample at 200 seconds interval. The loading ralt' was 1 Mlla/s. and WilS fotlUI\"'d

by unloading in 0.01 sec. Figure ·1.2 show~ pn:ssurl~ \'ohllllehit: reSpOllSI' <11111 hn'ak·

up of this response in the axial and the l'atlial st.rains obtailll'd from 1,11l' 11\(';(5111·,'<1

displacements, At initial crush.UIl strength or ahout l).Ij ]\'1I'a. larg,' cl({orllmti01IS

occur in the sample. This is because of fradure of pre'l:xistin~ siliterl',lllllUds ill th,'

material. This crush·up behaviour is commonly ohscrvl:d ill silltcrc:d'ptJnl1ls lImll'rial:t

such as sandstone and metals (.Johnson and Gf(:t~II. 1!J7fi).

Although the loading palh is liytlrostnlic compression (lie), i.e., 171 =: ".~ "" ";,

axial strain is not equal to the radial strain, esped/Illy at low pressures. This illi1.i'll

anisotropy is due 10 lhe melhod of sample preparation. The ullshed in: is slilr(:r ill

the axial direction than in the radial directiOlI. Similar rl:sults !IIlVl: IWi:n n~pllrtl:d fur

loose sand (Oda, 1972; I<olymbas anti W1l, liWO), At Idgher pressllres, 1.1i1~ slIllIpl,:

deformation is neady isotropic. The pressure-volume: rdation i,~ Ilighly lllJlI·lilwar,

wbere the bulk modulus also increases with compactiun.

Figure ,1.2 also shows volumetric rclaxati.," after unloading. Tilis shows th'lt 1.)11'

deformation also bas some component of dr.laY'llj da.~1.ie dl~rorrnalioll, hesi,ll:s t:l;~~1.il:

and irrecoverable deformations. Figure 4.:1 sllows timl!.dcpl~IIL1lmt Volllllldric ,I({llf'

mation obtained from hydrostatic compr~sioll rC'r various lriaxialll:sts. 'I'hc~ SHlllpll!s

were hydrostatically compressed a.l certain 10ilding rates and then Uu~ ]ln~S~llff~ WiL~

held constant. This ~gure also shows good rcp,~alahilily iIJ prl'Sl:nt lc:sls.

A thin·section of tes~ 8 afler loading is shaYI'll in FiK'lf(~ ,1.'1. Dllt: to I~xltmsivt:

crushing, the average grain size ha.~ reduced gn:atly from LIlt: original size t,f I HIm,
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Figure ·1.2: Hesponsc or crushed ice due to hydrostatic loading (Test 8). The applied
pressures arc shown inset.
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Figure 4.3: Response of crush<'>Q ice due to hydrostatic.: IOOldillg. Tile OI[Jplit~d pn'ssllrl's
are shown on at the bottom.

except in somc islands of original grains. An l~lliarged sl~tioll is also shown ill tll;S

figure. It seems t~_at the larger grains arc protected hy line graiJLll lhat Wt'n~ I:n~illl~l

by crushing of Clitical grains. The pores arc cntrapped ;It tile trilllt~ points Ilf SOll:r'

larger grains and a.t their grain-boundaries. These thin-sccLiol1ll arc~ very similar tu

those obtained. from medium-scale indentation lests (Stamllcr ct al., [!J!):I).

4.3.2 Conventional Triaxial Compression

[n a conventional triaxial r.ompression (eTC) tc:st, hydroslalil: stn~s is a]lplil~d first

and held constanl throughout the teslo The sample is then axially ddomll~,I, or

stressed. In the present tests, samples weTl~ axially deformed al Ill:0llstant strain rlLtl:

starting 30 seconds after the desired hydrostatic: pressure had hl:t:1I n:i1dll:ll. This

allowed minimization of volumetric creep in the sample without f~xr.(~~siv(: sinterinK Ilr

grains.
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Figure 4.4: Thin-section of crushed ice sample after a hydrostatic test (top) and
enlarged section (bottom) of a typical triple junction showing pores. The average
grain size has reduced from the original size of 1 rom.



The responses of crushed icc for eTC tests nrc shown in Figures ·l.[)··l.i for \·ilriuu,.;

confinements and strain rates. In the slower tests 1.111' ll1all'rinl nlLllergOt'~ larw'

compaction during axialloading, while ill the faster it'st., the drl~I:\. of compal't.iun is

reduced by dilatation causcd by brittleness in 1he 111i\ll~rial. Tlll~ ra1.l~ plfl'd is d,';u-ly

visible for low strains. The material beha\'iollr is higlliy nonlinear. TIll' Y,mll'(s

modulus at loading is about ·1.5,1 CPa for:m MPa 1.t~st.s anti ·1.:1 for.'i ~IPi\ 1"~1s.

Test 18 and test 5 lVere conducted at the same :traill mtll and COnlilll'lIWlll.. hnl at

dHTerent time at which axial load was applied. III :t!st 18 axinlloatl w"s applied ilftl~r

20 minutes compared to 30 seconds in Lest 5 and other tl~stS. M{}n~ silltl'rillg n~~lIlktl

in a strong material. with the strengths comparable \0 that of llolyaysl;lllilw kl!.

4.3.3 Tests in Octahedral Plane

In eTC tests, as discussed in the last section, the cOlllinil1g pressure is hdll mllstallt

while the axial stress is increased. This leads to an increase in IIwali .~lf(~ss, II =
(111 +20"3)/3 on the sample. The malerial is subjct'lcd to hoth slwil.r allli iL dlillll;l!

in pressure. For 11 Lime-dependent pressure-sensitive 1i111tcriallikl! <:rll~hl:r1 je,:, C'I'C

tcsts arc complex tests ror theoretical modelling. To isolate the shear response, simple

shear (55) Lests are suitable. These tests arc ill the ocLaheurnl plane. The Iiydros~atk

pressure (11\ +20"3)/3 is mainlained constant. The sample is ImuJcd by illcrcasinl; axial

stress by 011, while the lateral stress is reducer! hy fll1/2.

Figure 4.8 shows a strength test lind Figure 4.9 show crceJltl~sts in this rhUle.

Again as in CTC tests, the volumetric rcsronsc to shear is COll1puctir>ll. This is ,llJIl

10 the porous nature of the material; shear leads to hcttl:r packing rl grains. At

unloading the material shows delaycd-ela:;tic relaxation. TIu~ rdaxatiolJ is largr~r in

test 12 than in lest It. Due to larger rneil.l1 pressure in lest llalld shear s~resscs,grains

were crusherl into fine powder, and the deformation had 11 largr: viscolls r.orrlprlflr~nl.
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Figure ·1.5: Stress-strain response of crushed ice to conventional triaxial compression
(Test 5: str,lin rate 0.005/5, 0"3=20 MPa, Test 6: strain rate 0.02/s, 0"3=20 MPa, and
Test 15: strain rate 0.02/5,0'3=10 MPa).
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Figure 4.6: Stress-strain response of crushed ice to conventional triaxial ,:orupn!s.~j()f1

(TcsL 7: strain rate O,OD5/s, O"J=5 MPa, and Tcsl 1:J: slrain rale O,02/s, 17:1=.'" MPa).
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hgllrr. ,I.i: S~rcss-strain response of crushed icc to conventional triaxial compression
at strain ralc 0.005/s, and confining pressures 20 MPa and 10 MPa.
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Figure '1.8: Stress-strain respouse of crushed icc al simple shf~ilr path willi lhl~ lflCill1

pressure of 20 ;\-!Pa.





This can be observed from the thill·sC(tions of these tests a:> sholl'lI ill Figllr1: ·Llll.

The calculated volumetric·strains from Figure ·1.!1 for t.est II ;If(: prl'sl'ntl!ll in

Figure '1.1 L The compaction increascs with tIll: allplicalioll of sht'ar sln'ss. I.hnll~h

the mean pressure ;s constant. Similar observation Cilll made from Figure ,ut Tlll'sl'

results show that the pl,-ssure volume relationship dClll:nds Oil th,! Sll'l'ss-pa1.h. lu

other words, the volumetric respollse uepl:nds OIl the shcilr stn.'SSl's ;lppli('d Uti till'

sample apart from hydrostatic stresses.

4.3.4 Strength of Crushed Ice

Based on the eTC tests, the strength profilc for various I'tllllillillP; pl'l'S.~lIrl'S GUl

he constructed. Figure 11.12 shows the pe,lk lleviatoric stn:ss 1111(1 Illl:;m IlTPssun'

relationship for two strain rates. In the test rangc, ti,e strellgth is jrllltllll~IIllt:l1t (If

rate of deformation of the sample. The strellgth is strongly prL'SSllrl:-dl!pl~lIdtmt for

pressures lower than 10 MPa. This is consistent with oLller fricliolllll maL,'rials. l,'or

higher pressures, the strength is prcssure irulependent as in mdals.

4.4 Polycrystalline Ice

Uniaxial and triaxial strength tests of polycry.~tallinc icc at constant straill mll~ aT!'

presented in Figures 4.13 and 4.14 rcspl:clively. The rnatcrii~1 first t:ornpTl~SI)~ dill:

to an increase in hydrostatic pressure caused hy ill crease in axial litmsses. WIIl~n

shear stress is large, cracks are formed, which lead lo dilatation. fl;~'ll:d 011 till! initial

loading, the elastic modlJ1us is 9.7 GPa and Poiswn's ratio 0.:1:1.

In Figure 4.15, the creep response of polycrY'ltaliine icc for 10 MPa and 20 Ml'a

confining pressure is shown, Il should be noled that the slrcssr:s arc lIot very Iligh,

and changes in the microstrncture of polycryslalline icc arc ~\lJlpressl:d hy lar~e COII-
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Figure 4.10: Thin-sections of samples after test 11 (top) and test 12 (bottom). Large
shear stress and confining pressure in test 11 caused crushing of ice into fine grains
similar to those observed in field.
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Figure ,1.11: Elfect of shear stresses on the volullletric n~SpOll.~P of 1'r1lslwd in~ ill

simple-shear stress-path (test ll).

WEAN PRESSURE (WPa)

F'igurc 1.12: Strength of crushed icc.
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F'igur~ 4.13: S~!"(·ss·strain rcspon~c o( polycrystallirw jet: IlIldl:r IIl1i,lXiiil JOilfJj,,~ Ht
I x 10-4 ,
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Figure ,I. \01: Stress-strain response of polycrystallineice under ~riaxialloading (Test 3:
":,=10 ivlPa, ~tTi\in-rate 0.005/5, Test DT190393: u3=10 MPa, strain-rate 1)( 10-4/5,
llntl Test DTll0393: 0'3=20 MPa,strain-rate 1)( 10-~/s).



figure 4.15: Creep response of po\ycrptallinc i,:c at 10 i\,I)'a anll:lll i\11';l wt1[il1ill~

pressure. The applied stresses ilre showlI inse!..

fining pressures. This can be verified [rom the radial strains that ar,! always Il~ss thall

half the axial strains. The clastic respOllse, as (!xpecle,l, ,loes nelt d1i\IIW~ willi till!

confinement, but the crccp strains increillic willi illcrm.lsing t:oufillmm'lIl. This i.~ mm·

pletcly opposite to triaxial crccp behaviour of other lII1\tl!rials snch ;L~ st'~'1 <LIlli rods

(McCormick and Ruoff, L971), which shows dccn~asc in crccp strains willi illnmlS<~ in

the confinement. This behaviour in tllC!ic rn<\terials is attributed to 1\ d,!':n!;l.~'! ill Un'

grain boundary sliding with increase in the wnfinelllenl.

The minimum creep rate for matcriaillfidcr pressure is often ;1.~Sllnlell 1,0 [olluw

the equation

(.1.1)

where Qd is lhe activation energy, p is the hydrostatic prr.ssure, V4 is the adiviLLi,,"

volume, k is Boltzmann's constant, and.,. is ahsolute tC!lI1pcraluw. 'rILis l~qllatioll f:an

estimate creep under pressure for many gt:ological malerials an<J metals, for whidl
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1I1lclcr normal wllrking conditions, the ac.ti\'lI.tion energy and volume do not \'ary

,i';T{!ally with tcmpt:rature And pfC$Sure. Such materials include limestone, rock salt,

tin aIlJ ~inc (lIilcCormick and Ruoff, 1971).

The major difference between icc a.nd other material>s is that icc is normally at

high homologous tempera.lure. In the present work, and often in the field, the ambient

lcmlK~raturc is about 0.96 times the meltinJ temperature in Kelvin. High pressures

rc.'lull in large activation cncrgiC!i, and a decrease in the activation volume..Iones

llOd Chew (]983) have r.stimated these physical paramctcr5 for icc rOT pressures up

lo (iO MPa. Such change causes an increase in both the grain-boundary sliding and

intra-granular dcrormation in crystals. As pressure is applied, there is a transient

illw:a.~f: in l,he temperature of ice (Gagnon and Sinha, 1991). This may increase

cr<->t:p ~trllins, bUl cannot solely explain the increase in creep strains,

Rigsby (1958) sludied the effect of confining pressure on the creep behaviour of

)lingle crystals, and observed lhal the creep strain-rate increased with pressure. He

aUriIUll<--d this change 10 the reduction of melling point at high confining pressure.

I'olycrystalline ice samples have also shown similar behaviour (Haefeli et aI., 1968,

as reported by Jones, 1982). Jones and Chew (1983) observed thal minimum strain

riltc tlccrcases slightly u hydrostalic pressure is increased from 0 to 15 MPa, lhen

increases more rapidly from 30 1060 MPa, These high pressure creep observations

were done for secondary creep, and nol for primary creep which is of main concern

here. ;\ confining pressure of 20 MPa decreases the melting point only by I.5"C. At

~Ollle crilicallocations, e,g., where there arc large stress concentrations, large changes

l,() the melting temperature may occur.

Creep lests were also conducted on pre-damaged ice samples, where pre-damaging

\\'itll none uniaxially al a constant strain-rate by applying 2% strain at the strain ('ate

"f 1 )( lO-~/s, The result of this test is pr~nted in Figure 4.16. Dilalation of ahout
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Figure 4.16: Creep response of pre-damaged ice at 10 MPlt l:()nfil1il\~ pressnrl!. Tlw
applied stresses are shown inset (Test [)TO~08!l2.)

3% was observed during the predamagillg l'roCl'!;S. UpOll the appli,:attull of l'llllfillillJ.!;

pressure, closing of cracks was not instantaneous, but rather tilllf~-(lqll~nfl"lIL. \-VIt"1I

axial sLresses were applied the rate of del1si~cation and Il.xiall:fe(~Jl strain-rall! Wl'fl'

enhanced. This behaviour is similar to that of crushed icc.

Thin sections of icc after tests D'f030892 and 3 is prescnted is Figure ,1.17 an,1

4.l8. The appearance of the damaged ice resembles to that of crushcd if:,~saIllJlIi~ lifter

test. Here again islands of big grains are surrounded by ~neJy-cr\lsllc(1 gmins that

were recrystallized by pressure-sintering. Cracks arc formed aL critical ilihofT1ow~n(Jity

such as grain-boundaries. This can be observed from these thin-sections, 11l0uI;II

sections are taken after axial strain of about 4%.

Under uniaxial stresses, icc is vcry brittle. The high ratr: of damage flJsults in

lower strength of ice. Cracks arc open and aligned to the maximum principle stress­

direction by extending several grains. The cracked material is highly anisotropic at
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Figure 4.17: Horizontal thin-sections after test DT030892 (top). The enlarged section
(bottom) shows cracking and micro-crushing between crack surfaces.
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Figure 4.18: Vertical thin-sections a.fter test 3. Because of damaging in triaxial state,
there are fewer cracks than Figure 4.17 with no preferred orientation.



larw: strains. Failure is usually by axial splitting in the sample due to extension of

olll:or Hlany critical cracks.

Wlll!Tl confining prl'SSllre is also applied, cracks arc arrested in regions of higher

fr,u:tlln: l{Jl1ghlJ(:s~, or, lower stress. Cracks arc distributed uniformly (Figure ~.l8),

and 1.11t~ lTIaterial behaviollr is nearly isotropic. The average length of crack is of the

ord(:r of the grain si~e. Further damage is more stable than uniaxial case. After

cl:rtain confinement, the streng~h curve seems independent of confinement, e.g., at

the I:ltraill-rate of I x 10-1 test DTlI0393 and DTt90393 show similar response, but

Jilfcn:nt from the uniaxial response in Figure 4.13. The different~' is in dilatation

that was ~llppresS(:d by larger conlinemenL.

4.5 Summary

This compadion of crushed ice is time·dependent, and is enhanced several fold when

slwar ~trcsses arc applk'<1. [n the slower tests, material undergoes large compaction

during axial loading, while in the faster test, the effed of compaction is reduced by

dilntatioll cilllsed by brittleness in the material. The rate effect is dearly visible for

low ~trains. The strength is strongly pressurc-dcpenden~ for pressures lower than

10 MPa. For higher pressures, the strength is pressure·independen~ as in metals.

Under uniaxial slrl'Sses, polycrystalline ice is very brittle. Cracks are open and

aligned to the maximum principle stress-direction by extending several grains. Fail­

ure i~ Ilsually by axial spliUing in the sample due to extension of one or many critical

lTil.l.:ks. When confining pressure is applied, cracks are arrested at natural boundaries

such a~ tl'iple junctions. This resulted in an increase in strength. Cracks are dis­

tribuletl unirormly, and the material behaviour is nearly isotropic. Further damage

is more stable than in the uniaxial case. For confining preS~'lre more than 10 MPa,



tbe strength is ittdepettdcntof confinement.

Thin-section studies of samples nner tes1.~ show Ih"t. dill' 10 (·xl.l'nsi\"t~ rr(Jshill~,

the;wcragcgrainsiwhasreuucell grt!iltly from lh('urigillalsil.(', TIIl'l;\r!!:('r,I.;railis

hre protected by line grains that. \\,(!rcCf('11tl'd by I'nlshing or,:riliC",11 gra.ins,



Chapter c.

Theory of Growing Damage

5.1 Introduction

III this chapter, a continuum theory to describe a material with growing damage

dlle til mifro:>LrucLllral change~ in presented using generalized J-i.ltcgral. The eJrcet

or individual microstructures and their growth is studied by averaging at a scale

tbai. is much larger than the size lof microstructures such as grai.ls and microcracks

themselves. III viscoelastic materials damage can be nearly time-independent when

loading i~ rast, but at slow loading it is dependent on time (Leckie, 1978; Schapery,

1!)Sli Cocks and Leckie 1987). For nonlinear viscoelastic problems, a l~lClhod due

to Schapery ':l!191) and based Oll a modified superposition method is validated rOT

polycrYlllallinc icc. A mechanical method based on the reduced time characterizatjC'n

due to Schapery (19G9) and Jordaan ct a1. (1991) is also presented.
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Figure 5.1: Gcumctry of ~t minocral:k.

5.2 Growth of Microcracks

A theory of material wi~h distrib:lted cracks call he ohtailwll l>y IllOddlill)..\ )..\rowl.h 01"

microcracks (Schapery, I!lSI). Iligh stresses calise ([lIl11ngl' iuul failure of t.lu~ llliltwial

at the crack tip. To model this prOCI!!!, tlll~ highly Ilall1ag(:(1 III;tkrial ilt tll'~ rr;u:k

tip need not to he modelled explicit.ly, hut cll1pllasis CHII 1m laid 1I1l til<' cullt.iullllill

surrounding the crack tip, the conditions of which can [lffllliCl Stil!SS allil ddorlUatioll

at the crack tip,

5.2.1 Generalized J-Integral

For linear clastic and elastoplastic fracturing solids, J·iJ1t1~gr;d tlll~llry (Ilin:, l!lfi8) has

been successfully applied to initiation of crack growlh, Tllll ,'-illtllgral is a b;L~iI: I:r;u:k­

growth controlling parameter, and "Ccl,;"nls fot the geometry of cflu:ks and applil~d

load. Schapcry (1984, [!J86) has prcsented a parameter analogolls to thl: .I-intl:gral

for cr,ck growth in nonlinear clastic and nonlinear visr.oclastic mati:rials.

An idealized crack geometry is shown in Pigure ,'i,I. In lh(~ IInstrainll.1 stiltl!, llll~

crack surfaces ncar the tip arc assumed to he planar and coincide willi tlll~ \ol;al ;&1:1::1
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p];Llle, ii. plane p'~rr)l'ndiclllll.r to the page. It is further assumed that the crack tip P

is slmighl and parallel to the r~ axis, i,e" it is in plane strain stale. H the tractions

'I; Oil the sl1rfat:c S showl' in Figure 5.1, and hody rorCl~5 per unit volume Fi produce

til.) disJllao:rncnt rCSllonsc ILj in a hody, the equilibrium equations arc

~:~+Fi=O. (5.1)

1V1Wf(~ slrcssl)S G'ij ilnd surface traction 'Ii arc relaled through the uuil normals "j by

(5.2)

1\ pOl(~r,LiiLl fundion Wand a body force potential IVf, arc assumed to exist wiLh

l. h,~ prop(:rLy t llilt

f1'ij=[)WjOUi,i

Fj = -lJWF/8uj.

(.'.3)

(5.'1)

To 1I11:ct the p:quircmcllls of continuum thl'Ory, the material enclosed within the

arbitrary slIrfa<:e S of Pigurc fJ.! should not contain any cracks. To achieve a path­

indeillmdelll integral that is useful in fracture analysis, the body is assumed homo­

W:l1I!OUH with respect lo local Xl axis. i\Iultiplying Equation 5.1 by -8ud8x\, and

i'llcgratillg over volume V, the result is

'=1. [-a
8

(W+WP)--8
8 ("i~)]dV.

v .'rl Xj vX\
(5.5)

Changing the volume integral to surface integral over the surface S, and using Equa­

lion il.2, the resultingequalion is

(5.6)

I.t'l the crack tip P (the leading edge of the highly damaged mass) he straight and

paralld to .r~ axis for it shorl distance [3. The conlribution of pOlential energy from
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the crack ~llrface other limn Wilt'S in foutaft i~ zew, jll11~ lht' ,'lIt'rj.!;,I' ",,"1rilllllilll "r
"ny surface of length 1:1 oulside I,lli' da1l1;lgcd 1.011" i~ 1'<]lIi,1 III Ih" mhll'

,1::(1/1.1)j [(IF+JrFlIlI-rl~]IIS,
'~I II.r,

I',·,)

\\'ht'rc 5, is the portion of S not illdmlt'd along Ill<' fnillin' ZUllI' IlI'N tIlt' 1"t1~1l1 1".

in the region of cracks, highly dill11agt'd mlll.t'rial IUny Ill' pn'sl'nL Tr;,,"l.illl\~ IlIi,.I·

be on crilck surfaces as frinion, or it 1110\)' h,' npell, Tlli~ i~ llllliki' Ilit·,,\ .I-illll').!,rni

where crack surf;u:e~ wewassulllcd to hI: triu;lioll fl'ct~, 1':qUill.illll."i.i I'l·d\lt'.,~ 10 lIin"~

J-intcgral by omill.ing hody forc{'~,

5.2.2 Power-Law Materials

Powl:r-Iaw nOlilillearily of slre...... illlt! strain oflml rt'lJrl:sl.'lIt.~ rt'nlistir ildlil\'iollr in ~lllllt'

materials. TIle complementary Cllcrp;y per IInit I'OIIlHW for il 1'0I\·t'r·j;lw ll1;ltl'rial is

where '1' and rare conslanls. The linear tlwory n~lIlt:i wilh ,. = I, TI1l' sl.n·ss"s rr 'J

in this equation arc for a rcfcrencl~ sl.ate 11' := I. SlrP1;.~I:S in tlLhl~r slillt's <In: l.l,l,a;tlt'11

thus, by the definition, strains arc

0',
(1/ = Sign(CT,)O""m~;:i:\ = sign(u')lllrll}" (rl.ll)

These equations are also valid fot cracking s()1id~. WlwlI trilclions lllt t:[iu:k r;U:I~S

arc lloL zero they must vary with (1' ill lhe same way as llll~ strcs.~ distril.ulioll, I:.g.,

rriclion force should he proportional to !Iormal rorc(~.
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For pow(·r·law llIflh:ri;ds. St:liapcry (W8G) dCfiv(~d an equation for quasi-static

(.'.J2)

II'lu:n~ k is II positive c:unslanL and 11 reflects the properties of the crack-tip material.

TIll. ,I.inll-grill is ('filial to the strain rmcrgy release ralc:

p.13)

wlwn: II is arCIi of the crack surface. Using the definition of the complementary

alv'
J= aA'

lJsill~ I';qllntiolls 5.8 alld 5.14, ,il2 is written as

~ = f 1 ,'\;(,+1\ (aWl)'
dt lui iJA'

(5.14)

(.i.15)

Fur [lI'lIl1y-shapcd e:tack of radius n, aW'/aA = ha, where h is a constant. The

inkgrnlioll of EqtHLlion 5.15 yields

(5.16)

wh('re (/1,1 is the initial crack radius. If k > I,a ..... 00 allime I = If (failure time),

1.lWll

(a.li)

Using this 1:IIU(\tl0n, the failure time I[ of a crack can be found implicitly.

III a polyuyslalline material, microcr..cks are arrested at a length equal to the

~raill sizc. This causes a sudden dccrease in the growth rate when the crack tip

r<'aches a grain that lies across the crack plane. Though Equation 5.17 does not

n'llcd Ihe arrest, no assumpt,0ns are needed regarding the crack geometry. This is



because the propagation of l:T1ll:k orrllr~ at hil;h·~l"'t-d. anti lilt' HIlll' ~pt'111 ill 1111'

propagation is negligible compared to t.he failnrt·lilllt·'j.

The ldt side of Equation 5.1 i may vary frolll <'rllrk It. ,·rark. 1hll~ I'r",III"il1!-\

different failure limes. For ill~ crlH'k. let. Ill(' h·rl ~id(' is ,1<'11"1<,,] 1..1' "', ami 111<'

resulting failure time by I; a~

(iUS)

Schapcry (1991) has described the crat'king prl',:es~ lISilig Equ,\1.iull .'i.I~. ,\ !T,u'k i~

assumed to have no effeclulltil it hll~ reacht~d its anl'sled si~.,:. t.lll~1I "ud,h'lI sufl"lliu.c:

in the material occurs. To acc01lnt for the dfC'd of llli':rOl:r:l(:kill~, ('n1l1pl"m"lItary

energy is also function of Sj, i.e.. IF' = IF'{o1'l' ...','). The iun,-;,s,: \11 IV' illrn'il~"~

with the increase in S; as sho\\'11 in Figlln: 5.~. There ilrl: SII mallY d(Js,·ly sp:...,·,]

microcracks that the curve in Figure '1.1 may 1)1' Sllllltltlll'll(,oI Oil!', :m,l .,,', (';111 I)l'

taken as a smooth function S, as

(.'U!l)

where q "" k(r+ I).

Instead of using the mechanism or t;r,u;k growth ;,s ,Iesailn:d hy 1'~qllali"lI ""1.11,

Equation 5.19 can be derived for a general state of dlllll1lg,:. Ld lilt" IJh.;lIoltll:lIoloj.\ical

law for the m th change in microstructure hfl

where Pm is function of II"" which rcprc~,:nts illlY mir.rll~Lrllr.lllral p<lrlUndN, ':.j.\.,

size of a cavity, number of cracks or hroken bonds, that ;U:Cllll/lts for raillll'l:. Fmril

Equation 5.20

(5.21)

which is same as Equation 5.l!J.
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Figure 5.2; Elrcd of sudden growth and arrest of microcracks on the complementary
density.

5.2.3 Material Under Axial Deformation and Pressure

Following Schapcry (1990a), the theory developed in the last section can be specialized

for 11. prismatic cylindricalspccimen subjected to confining pressure 113 and axial strain

I .• Here it is desirable to define the strain energy in terms of the volumetric strain (~

aud axial strain c. If (v is the dilat~tion and S",(m = 1,2, ..) are damage parameters,

t.he von Mises stress 5 = (Jj2SijSij)1/2 can be defined, as in Chapler 2 by the strain

energy W = W((,(u,Sm) as
aw

s=--a;'
and the mean stress p as

aw
P = a;;'

Lela. dual energy density Wet = WJ(l,p, 8m) be defined as

(5.22.)

(5.22b)

(5.23)
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This definition of the dual energy is useful ill extending the f('Sll1t~ from propurl.iullill

loading such as uniaxial tests to triaxial tests I\'hcr~ I,he all·arouud pr('s~llre (13 remaius

constant. Equation 5.23 can be differentiated . ~

and the axial stress and dilatation can defined in term~ of the dual cner!;.\, hy mill·

paring Equations 5.22 and 5.24 as

aWIi (1'i.2.ia)s=7);"'

"d
aWol

(!'I.:!.ih)c. ="7iP'
In this theory dilatation is related to the area under the lllfilill-str;~ill curvc. This

can be shown by differentiating Equation 5.251'. with respect to 1J all{1 E'\lIaLinn :I.:!!ih

with rcspecllo f and equating them to yield

as {h~

liP = 7if'

Cll =~ l' _,dc. (!i.27)

As pointed out by Schapery (19901'.), the applicability of l~quaLion :,.27 for pn!{lktinR

dilatation depends on the existence of the potential Wli f:xadly, rcgar{lIc~~ or til,:

number of structural parameters.

In some materials the effect or large confinement is Lo reduce dalllagc~. Ice i~ orll~

such material (see Chapter 4). Here the J-integral or Equation 5.13 for pcunY-llhll]Jc:d

cracks of radius a is proportiona.l to ha, where /3 is alw a function of the confining

pressure apart from the properties of the crack tip material. Following the proCl~dlJrc

of the last section, a relation ror the dama.ge runction S can he ohtained iI.S

(.'i.28)



TIle function f~ is determined experimentally.

5.3 Viscoelastic Media

Using the correspondence principle described in Chapter 2, a theory for polycrys-

tallille ice can be developed. The change of microstructure due to cracking, as formu­

latefl in the last seclion for nonlinear-clastic materials, is equally valid for viscoelastic

materials whell strains in the reference clastic problem are

(5.29)

where e(l) is the relnxation modulus and is related to the crccp function D(I) of

the virgin material through Laplace transform. The reference strains {i/, which arc

also denoted as pseudo-strains depend on material properties and are defined by the

(:omplemcntary pseudo-energy W" as,

(5.30)

Stresses in reference clastic problem and viscoelastic problem are the same. The

il1v(~rs(~ of Equation 29 is

(5.31)

The material nonlinearity and damage both enter in Equation 5.29 via the pseudtr

strain tfj while lite creep compliance D(I) is assumed to be linear over useful stress

range. This 1\lIalysis is based on Schapery's (1981) modified superposition principle

(MSP).

Fllr proportional loading and power-law cracking the pseudo-strain follows the

power-law relationship in stress and a measure of damage 9(5). For the uniaxial

loadings

c" = sign(D') I~r g(5), (5.32)



where u =u(1) is the axial stress and Un is a po~iti\'e constant. Tlw mifro~tru<"1mill

parameter S is the same as that described in Equation il.I!) ami i~ writtl'lI a~

p.:!:!)

where q = ~'(r + I), and 51 is a positi\'c constant. The pnranwler II ill'COlltll~ (or

complexities at crack tips such as changes in temperalure alill Ililrd(~ning. For many

brittle failure cases II can be taken as Iluily. The linear dastk rl'laLi(}l1~hip.~ an!

recovered when r=l, g(5)=1 and 0 = I/Bn. When r=l, hut g(S) t 1 t.he Iwnlin­

earity is introduced hy the damage function. For r t I, the f(!pn~s(~nlatioll of daslk

behaviour by Equation 5.29 is nonlinear.

Equations 5.31 to 5.33 can be IlSed to predict strain or slH~ss in lt~r111s of the oll\t~r

variable. In the following sections various material paramelers rC~CJlIiwd ill lIds L1wury

are obtained using experimental data presented ill Chapler 4.

5.4 Polycrystalline Ice

Polycrystallinc icc is brittle and exhibits nonlinear viscoelastic deformatioll for

wide range of engineering applications. When this malerial is stressed, SOIllC (~ru!rgy

is stored due to elasticity in the malerial and new sUlface~ createll hy lIIic:rocrar:kili/-l,

while most of it is dissipated in inelastic deformations. Mi':rocrack~ of Araill si~l!

are formed initially along the grain boundary when loaded. For ~u~Lailll!d loadill/-ls

the density of cracks increases, and they arc al~o observed af;ro.'1H the grain. Tl1i.~

microstructural process increases the material compliance. The thc{Jry d{~'1nill1!d ill

this seclion and used for predicting the behaviour of polycryslallinl~ ice i.~ 11I11! lo

Schapery (1991).
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5.4.1 Creep Compliance and Nonlinearity

The viscodastic response of poly(:rystallinc icc without damage I:an be written in

l!~rm~ or Llm~c components, the c[a.~tic component, the delayed clastic component,

itnd the steady stale creep component. For creep of icc it widely used formulation is

dill: to Sinha (1!J79), and is presented as follows.

willm: (] is the uniaxial creep stress, E is the modulus of elasticity, a is the grain size,

fl.'/" ilnd Co arc functions of temperature, and el, 11, 0-0 and n are constants. The grain

si~c in the prc~cnt tests is 2.5 mm, and Uo = L Other material constants used arc the

SiUIlC a.~ giv(~n by Sinha. The first term in this equation is linear clastir. strain. The

s('wlld tl!fm is the delayed clastic strain, which is associated with grain boundary

sli{ling. This component is responsible for time.dependent relaxation in ice. The

third is viscollS now caused by dislocation movements and crystalline slip.

EClllatioll 5.:.14 is not in the rramcwork of the viscoelasticity theory as presellted

ill Chapter 2. This is due to the nonlinearity caused by the constants band n. The

material hchaviour is highly nonlinear for sustained long-term loads, although for

high-rate (.(!sts, which are of primary concern in this analysis, nonlinearity is not

l'xpeded to be a major fador. The creep compliance of the form

D(t) =DfJ + DJ(t/lol + Ddt/to), (5.35)

is llSl!{1 in the viscoelastic theory or ice described earlier. In Equation 5.35, Do is

illv('rlw of elast.ic modulus of ice, 'L' ..j Dz , D2 and b are positive constants. The term

In is Ilsed here for dimensional purposes. The creep compliance D(t) can be deter­

llIined hy constant-stress tests on ice. As this component docs not contain the effect

ur damage, te~ts should be conclucted at stresses low enough to avoid microcracking



in ~hc material. {n Ihe prc5cnt analysis D(I) is IIct.cflniIK'11 hy fitting 1':\[ll'llioll ."I.:\ii

in Equation 5.34, which is wcll estnblishc<l for ~hc uniaxial ('Hoefl n'spunSt: ur ]1(1)".

cr)"stalline icc. and the parameters defining JJ(I) ,lfl' ohl,litu'd i1S lJu = 1/!I."JOtl!;"\I';"

D l = 'l x lO-~n,IPa, b = 0.28 aml D1 ='1 x lO-';/MPa. Tl\l~ shnrt·1.t'r1l1 1"'I~t:ll nf in'

is indept~ndent of the state of stress.

The nonlinearity parameter r of EI]llation .",.:1'1 [illl hl~ ohl.aillL'(1 by littillg !':llllil'

tion 5.35 in 5.34 for some useful stress rllllgcs. Its val lit: is hi,;llly dplWlullml. 011 :llrt'5.~

range anclthe lime of loading lind varies from one, i.e.. lincar, for time::; :m s t.tI thn't'

for long term loadings. Thus, if ~hc short-term respOl1S(~ is or main mlln~rn, e.,;., pl'ilk

stress in constant strain rate tests, r can be taken as unity. It should 1m 11()t.l~11 lI1111

r = I does not mean that the material responsc is linear. Nonlilll'arity GIll still Ill!

introduced by the damage function, which indirectly is nOlllinr:ar flllwtioll of stwss

(see the ~hcory presented in the last SI~tion).

5.4,2 The Damage Function

The final stage in the modelling is to determine the tlaflla~e function !J(S') in Equa­

tion 5.32 and the constants .11 and q to t!c:scriol: lhe fJlicrostrllc:lnral par;llrldl:r S

deHncd in Equation 5.33. Schapery (UJ!H) has presented a. JlrO(:c:dlln~ t.u dd(~rlllille Ilf

these values. Creep tests can again be used to (Idermin!'! lhi~ fllUdioli IlSill~ Equa·

tions 5.32 and 5.33, but here the damage pararnder also ~llollld c:lmll';c; ill otlu:r

words tests should be conducted al high stresses. Another appco;lc!t is to lIS1: re~l1lh

of constant strain-rate lests.

If the strain history is known, Equation 5.:12 I:all be inv(:rll:d to giVl~ till: sln~ss

history for uniaxial tests as
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Now differentialing Equation ,5,33 and substituting (J from Equation S.3G, the result

is

(5.37)

(5.38)

whew So is initial damage ill the material. Fa,' an initially unda·.nagcd material So =

O. Tlw parameter S< rerlaces S as the microstructural parameter. The corresponding

value of the damage function 9,(5,) is obtained from Equation 5.36 as

(5.39)

For constant .'itrain-ratc i, Equation 5.29 and Equation 5.38 become

where hI and li1 arc given as

hI = i l'C(t)dt

(5.'10)

(5.41)

(5.42a)

(5A2h)

The parameters (1' and En are taken as unity. The relaxation moJulus C(l) was

obtained numerically by the deconvolution of D(t).

Using test results, the function g,(S,) from Equation 5.39 and S. from Equa-

lion 5.'! I can be {:valualed. At least two tests at different rates arc required ror

evaluation or the damage rundion. From Equation 5.41

(5.43)
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Since g, is function of S .. the mlllll of 9, for te~ts al dilfert~llt sp.'(~d will Ill' S,Iml',

Thus. a cun'e of log9. \'crses log 111 , for each strain mtl~. will differ from il11ul1U'r hy

a horizontal translalion equal to the first term 011 rigllt hand sid., of Etillal iOll ;i..l:I.

For a curve, if .'II is selected such that the term in the Sllllart~ hrat'kd is unit.y. 1.1i'~11

other curves can be brought on this curve by moving them hy a hori~,tJlllal ,lislall...·

-log C1ir". An iterative method is then lIsed to oht.ain the quantity".

5.4.3 Uniaxial Tests

For a general representation, the hltlctioll y(Sj is lIcetled to lie I~xplkill,v ddilll~d. All

exponential function of the form

(.')..l·I)

where.\ is a positive constant and So is the initialtlillllnge. is c()nsidcrl~d for Pl'l~,IiI'-

lion. This function is simple to usc, and relleds softl~llillg due to ,11It1l'lg,~. Ihill~

Equations 5.38 and 5.39, 9, can br: olAainel1 as

Par constant-strain rate tests, stresses arc obtaineuusillg Equations .').:m ,md .'i,'1ll

(.')Afi)

The predicted stress-strain response of uniaxial tColts at two strain rat(~l1 is prcs(mtl~tl

in Figure 5.3 along with the measured rCllponscs. The value: of th(~ pararnders Ilsl~d

in this analysis are presenled in Table 5.1. From Figllre 5.:1, it Can hi: se~l:n thal lilt:

theory can modellhe material behaviour in the: strength t(~ls.
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__ n:ST DAT,I

_THEORY

[~igure .'i.a: The measured and predicted uniaxial response of polycrystalline icc in
colL~lnnl strain-rate lests.

'l';~hlc .'>.1: Material constants for polycrystalline ice to ~e used with the modified
superposition method.

.11 = I; {/o= 1; Ell = 1; rl = 1;
q= 5; r= 1; ..\ = 1.2 x IO-Sj 50 =0;
For uniaxial Tc.:lts:
Do"" 1!9500/MPaj VI = 2 x 1O-5 /MPaj D2 =2 x 1O-6/MPaj b =.28;
For Lriaxial Tests:
Do =1/9500jMPaj D, = 5 x lO-s/MPaj D2 = 5 x 1O-6/MPa; b=.28;
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5.4.4 Triaxial Tests

The tria:.;ial response of polycrystallinc icc is dilfcwl\l. from 1hal \l111I\~r 1111iaxial t"llIuli-

tions. This difference is mainly caused by cr:lcking-induc,'d i\llisotropy IIlUh 11lliaxinl

stress states. At low confinemcnt, cracks arc oricnle~l along till' l11:ndl1l11lll prilll'ip.d

stress. In somc cases the cracking may be localized along t!H~ lIlilxil1llll11 slH'af .~tfl'SS

plane. Further, in uniaxial tests, large dilalntioll UI:Cllr~ ill tile IlOsl.-pl';\k rl'l~illll'.

The effect of dilatation is to increase cumpliallce in lll<~ lIl;\l.cri;\1. U\ld,~r lar,;" tri­

axial stresses, localization of cracks j:; sllpprc$Sl~d mill cracks arl~ ulliformly ori"lIll'd

ill all directions, overall damage is less, anti lhe In;\krial is 1:s.",~utially bOlrupir 111111

homogeneous.

In Figure 5.<1, the creep rt'Sponsc compibl from Figuw ·l.l:,of l'nIYl"rysI.HI1ilu~in'

for 10 MPa ant! 20 MPa con lining pressure is shown with t111~ predict,',1 rl'Spnns~~ hils",l

on Equation 5.34. For uniaxial rcspOll~e, Sillllit'.~ L'filliitioll for I:TCql, whidl ill nUll

prchensivcly established for polycrystallillC icc i~ alsu Jln~eTltr~,1. It should l)l~ lIutl~d

that the applied creep ~tre5SI:S are not very lIigll, .1.lI<I dllLugt:s ill tht: mkros1.l"Il1:tllrl'

or polycrys~al1ineice b suppre~st:d by large ctllllilling l)n~s.~1JI"f:S. The d'L~~ic r<:IlI"'Il.~",

as expect,ed, does not change with the con/ir\l~rncllt, hut the I:rel~p sl.rniull i\lr:r<~,'l.~l~

with increasing confinement (also sec Chilptcr 4). For till) prl~Slmt work, tlw r:rt~'~p

cocHicients as r~quired in Equation 5.:15 umler triaxial cOlldi~iolill ;uc uhtaillt!d It.~

The nonlinearity parameter r in Equation 5.:12 cau Iw c~tirnntl~c1 hy I:rI~t:Jl tr~~tll

on virgin or predamaged ice (predamaging of ic,c was duru: hy loadin.l; itulliaxially ;It

a constant strain rate or 1 x IO-~ Is Lo 2% axial stmill). Agaill tIll! strl~.~St~H shull II!

be low enough so that the damage :ilate ill the material docs not challgt~ durillg till:

creep process. figure 5.5 shows strains from triaxial creep rl!sflonsc (arluptcd frmn

Figure 4.16) at 10 MPa confining flressure on a pre· damaged iccsamplc. As in llfliaxifll
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~.I.----------------..,

Figure 5.'1: Creep behaviour of polycrystalline icc at various confining pressure, and
Ilrediction based on Eiluation 5.34. The applied creep stresses are shown for each set.

Figure 5.5: Creep beha··jour or pre-damaged polycrystalline ice at 10 MPa confining
pressure. The applied creep stresses arc shown.
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tests, thc nonlincarity llla~' \'ary with strt'ss aud .Inratioll uf i~ It's1.. Fl'OllI Fi~,lTt·s rio!

ard 5.5 and thc creep compliancc of Equation 5.:15, the pilf1lmdt'r,. cau Ill' f,mlHl.

For prcscnt analysis I' is lai,(en as unity. It, is !lutl'd that the prpSl'lllc'd l:Tl'l'P ksls an'

short· term tests, do llotl'rcs<'nL highly nOllliUl.'llT hehaviour uf ]lolynystal1illl' in', In

long-term creep tests, microstructural changes Sill'll as void formatioll alOiI/!; 1111' ~raill

boundaries anti recrystalli1.ation occurs. thus l:rccp ;\11(1 ,1anH,p;l~ are ill.~I'I);lr;lhll"

Til Section 5.2.3 a theory for i\ matcrii\ll1ndt:r~oin~ axial ddommtitJI\ wid\., suh·

jectc<:l to con~lling prrssure was presented. Ld tile pTl':lSIlH,·,lcpelldcllt:t' or HII' pH

rameter h in Equation 5.28 be represented lIli

where PB is Lhe aLmospherir pr('~~llre and 1'1 is i\ constant. \VllI:11 ":1 = I'", Equa·

lion 5.47 reduces to the uniaxial rc[;>tion. For lriaxial ksts. thl' h)IVI~r valul' or J:I

results in less uamage in the material. Thl.' predidcd hehavio1Jr fur a lriaxiill t.1'st is

presented in Pillure 5.6 alollg with the test re~lllts. As itflUl Ill: sel'll rmlll Fi~l1f'l~ .'Uj,

the theory ;s in good agreement with the I~xperiml:nlaldata.

5.5 A Mechanical Model

In this section all alternative theory to characleri1.ll po]ynystilllille k" is prl:S':IIt.'~1.

This theory is due to Schapery (1069) and Jordaan and McI<elllla (IOHH), ;m.1 is

derived using ~he thermodYllamic~ of irrcvcr~iblc Jlroccssc.~ (see SecLitln 2.~.:1). 'I'll!'

nonlinearity is contained in a ~reduccd time" 1/J(t), which is 1111 implicit ftll1l:tion !If

stress in th<: crcep formulation. The resulting tlumy is .~illli1l1r to lilll~ilr viSCOo:!'lSlk

theory. The shifl factor can be function of othl!r nonlincilf dreds, I!.j(., tl:ll1ll11raLllrC
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FiF;ur(' ii.fi: Thc mcasured anti prctlicted triaxial response of polycrystalJine icc. The
"pplit.'il strain rates nnd the confining rrcssures arc shown for all tests.

anti aging. The intq!;ral form for uniaxial stress-stale is

(5.-18)

The rcdllcClI time is defined All

(5.49)

TIle function ltd is a shift factor and can be considered as a stress·dependent viscosity.

The wuiation of this function is shown in Figure ,ii'. For 11. power-law creep material.

i = (O'IO'o)nio, the shift factor is given as.

a"
a" = 1](0') = O'n-~,o (5.50)

where O'~ anti fO arc reference stress and strain-rate respectively.

All approximate mechanical model of ice behaviour as given in Equation 5.34 can

he prl.,:;('nted in the Burgers model of Figure 5.S. which is combination of :\hxwell unit
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Figure 5.7: SchemaLic variation or n:ducI:II tinll:.

rigurc .j.8: A mechanir.all11odcl.
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/Iud Kdvin unit in series (Jordaan and McKenna, 1988). Note that the nonlinearity

i~ prcs(~rved by making viscosity of the dash pot stress-dependent as in Equation 5.50.

TIll: spring clements arc linear in this model. The delayed elastic terms in Equll.-

tion .;.;11 is ~hown by the Kelvin unit in Figure 5.8. The total strain from this model

l:an hll presented as summation of three components as

(5.51)

where till! three components arc instantaneous clastic Cd, delayed elastic (d and

~l.cady-stilte creep c" terms respectively.

If the mechanical model is subjected to a creep stress a applied at t::O, and stress

in the dash pot in the Kelvin unit is ad, the resulting strain ik in the Kelvin unit is

(5.52)

where l/k(U,,) is defined by Equation 5.50 with ad:: a.

J-br triaxial stress-states, Equation 5,48 can be presented in terms of shear and

hydrostatic components as,

eij:: ~ l' Jv(¢'(t) -1J!(T)I~dT

fkk =l Jv{¢(t) _1/!(T)]8;;"dT

(5.53a)

(5.53hl

where Jo ilnd J v arc shear 3.nd bulk crcep function respectively. The stress and strain

:lre tlecomposed in deviatodc and volumetric components as

aij =.'Iij + iCijaH

iij = eij+ i6ijfH

(5.Ma)

(5.54h)

In Equation 5.53, l/J is obtained by Equation 5.'19, where the uniaxial stress a is

replaced by von Mises stress s defined as

s = (~S;j.'lij) 1/2. (5.55a)
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Similarity equh'alent shear strain is dcfin~'fI a.s

(5.i'i!'ihl

\'on :\Iiscs stress and cquiwllcnt l'h('ar strain rl"lucr to axia.llIttl.-'5!I i\llIt ~Iu~ar ~train

for uniaxial stress-state. lo'or proportional loadiugs, Illl' tll~"iatnric slrl'S.~'!< lUll1 strains

arc related through VOIl Miscs stress and ClllIi"alclIt 51 rain a.~

5.5.1 Dam&ge Model

Each strain component in Equation 5.51 is influenced hy Lhe prCHCnCt~ of rl1icro(:rac:k~.

The elastic and delayed elastic strains dominale the carly ~tagc Clf dlLlllagc till ring

rapid loading, while for the long-t'!rm e\'ents the permanent t1dorrnatiollll tlolllirHlll'.

The basic assumption of the damage model is thi\t tile material is hOl1lol';cl1Inl1l1 awl

isotropic, and remains 50 throughout the darnagin! process.

Elastic Strain

Budiansky and O'Connell (1976) have derived the moduli of the IlamagClI matl:rial

using a self-consistent method, in terms or the crack density. The material ill lL'i:UIIIIll(1

to contain a population of randomly·oriented pcnny-lIha[)Cd crack!. Cracking leAch t.,

degradation in the modulus of the material. Let an internall1tatc variable >..t f(:prc~:llt

the accumulation of damage; the Young's moduiull E of the UIUTHl.ged lJIatl:tilll is givI:r1

by,

(!i ..'i7)

·.yhere Eo is the Young's modulus of the virgin malerial.
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The damage parameter},... is related lo the degraded PoiS50n's ratio /I and a crack

,lclIsily parameter >., through

(;.58)

All approximate relation between Poisson's ratio of the damaged material, and that

of virgin material, Vb is

(5.59)

Onc(~ /I is evaluated from Equation 5.59, the damage parameter >.... can be obtained

from Equation 5.58, and the Young's modulus of the damaged material can be esti­

mated. The corresponding relation of Equation 5.57 for the bulk modulus 1\ of lite

f:rackcJ material is

~ = I - ~~~I~;:~/ AI, (5.60)

where Ko i~ the bulk modulus of the VIrgin material. The crack density parameter

..\, is related to the numhcr of cracks N and the average crack length a as

>., =Na3
• (5.61)

The crack density parameler >.. is a stale variable and can be described by exler-

llaJ variables such as stress and strain. In Chapter 4, it was observed that changes

in microslructure at large strains are due lo breaking of grains into fine grains. This

conlinuous crushing process rcsulls in an enhanced inelastic activity and lhere is no

~ignificant change in clastic stiffness o( the material. The crack density in a sample

Ciln be estimated for small strains, especially for pre-peak behaviour by direct obser-

vation, hut for IIdvanCl.'d damage processes, the crack and grain-boundary densities

nrc inseparable. lIere a dale variable more general in nature than crack density is

needed. For the present analysis, the stale variable >'1 is considered as a measure

of damage whose change causes change in lhe material slilfness according to Equa-

lions 5.5i-5.59.
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An expression similar to lhat of the damage Ilaramch'r t1dilwd ill Equatiull ;I.:!~

can be assumed for change in '\1 as

where fa, q arid '~1 arc constants alld s is l~qlli\'i\I\~llt shear strt~s. EqlllltioH :).(,1

assumes that crack density increases al any stress. This may 1)(: (rue to for a pp"Ii\1H-

aged malerial. In polycrystalline icc i\ threshold \,itlul,l of stress '<r is 11l't'\.I,',II" il"l",lt'

cracks. \Vhen stre~ses are lo\\'er than ,s(, deformalion docs nol cOlltain CIIl,:. ,1,"II.LUllS

from damage. Further, test results prcscllted in Challtcr ,I sliow that strength of til\'

material increases with an increase in hy,hoslatic pressure. 1':qllf1.Lioll :,.Ii:! call b\~

modified lo account for hydrostatic pressure alill lhe lhreshold slr,!ss as

where parameter h is a function of hydrostalic pressure /I. TIr,~ 1hreslLul,1 sl.ress

depends on grain size and the degree of confinmneul. Uased Oil ,~xlwrirnc:r11aldalll,

Kalifa et a!. (1989) observed that Sc is related to the I:Onfitlitl~ prmmlte 11:1 a.~

Equations 5.57 and 5.60 are derivr.d for illlf!racliug tellsik etacks. Cr;lt:k~ are

assumed 10 be open; this is not ~o ill rnod(~ /I ':racks with friction at llll~jr .~lIrfru:t:s

under compressive stresses. However, as the ctilcking events atl: ,tiredly ;L~~od1Llf~tl

with the dilatation, the assumption or an open crack is not rar rrom the reality. Nf!lI1i1.t­

Nll.Sser (1989) has noted that ductile materials develop ,:xlcrrsiV<: I.r.nsil(: r:raek3 '],11:

to wing cracking even in the absence or any oVf:rall tensile luarh.
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Delayed.Elastic Strain

The cljuivalcnt delayed.clastic strain ratc for the nonlinear Kelvin unit as presented

by ,Jordaan and Mcf(enna (1991) is given hy

(5.65)

when: the viscosity 1/. is function of the internal stress Sd as cleAned by Equation 5.50

by substiLuting sd for u. The ioLcTlial shess depends on the accumulated delayed­

drultic strain c'l :::; f~ cddt. The creep ratc is enhanced exponentially by the product

of a constant 13k nod the damage parameter ..\<t. This enhancement is the result of

increase in the grain-boundary density due to damage. If the stiffness of the spring

in the Kelvin unit is Bk , the internal stress can he obtained as

(5.66)

The stiffness Eo is the degraded stiffness and is related to the spring stiffness in the

Kelvin unit or the virgin icc according to Eqllations 5.57 as Ek =EkO (1 - Ad)'

Secondary Creep

Cracking enhances secondary creep, the third component in Equation 5.51. Experi-

mental results of Stone et at. (1989) suggest that creep increases exponentially with

damage, and can be presented by power law relation between shear stress and shear

slrain-rate. The multiaxial relation is

15.67)

where fJ~ is a creep enhancement parameter.
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Dilatation

Volumetric deformation due to crackint; is the \'ohllne occllpil.'tl by cmck.~. Anl'r

cracking as the material undergoes large inelastic deformation. thcclfed of tlil.llalion

in ice is nearly irre\'cnible. Only a fraction of volumetric change is rl'co\'!'rI'(1 tim' It.

elasticity. The confining pressure, if prescnt, tends to :iiUI'ptClili 0l)('nillg of ct<wks. allil

thu~ the dilatation.

The dilatation can be obtained by the procedure lh.'$cribcd in S.~tioll :I.:!.:I, wlwtl!

it was presented as a function of the mean strt'Ss, shear ~lrt'Sst'll lind flilll1!\gc 1111'

rameters (Equation 5.27). Total volullIetric strain is assumt~J to be till: ~1l111 fir lim

dilatation due to incli\.!itic ddormations anti the hulk elllStit: t:Ortllladioll t~ as

(:diM)

where f~ is a constant, and t" is inelastic strain. Equation 5J'3 il.'\.~lllIIC!l that a. work

potential exists for inelastic ddormations. The seconJ term in ~Ilation ij.6M IJroolm:l'll

compaction while the fint term causes dilatation.

5.5.2 Prediction of Test Results

The predicted results for uniaxial tests arc shown in Pigure :).9. The value uf thl:

constants used in this analysis arc presented in Table 5.2. For a tria1(ial 1f:llt th(~

predicted and measured response or polycrystalline ice is prescntCtI ill Figlln: f).IO. A

good correlation of both the shear and the volumetric relpOl:~e can bl:oh.'il:rVl:11 fllr th(~

uniaxial test. In the trill.xialtest (Figure 5.10), the model is al>ll~ to eaplurt: lhc: lreml

in the behaviour. The difference is in the initial compaction part. The flilll.tl~linll

model was based on the flow deformation, which develops after peak !!lrellp;th. TIll:

ability 10 predict dilatation shows tha1 a work polential exist!! approximilldy dllriliA

damage in ice.
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FiKurc fl.!): Response or polycrystalline ice obtained from the mechanical model when
[mlded uniaxially at constant strain-rale of 1 x 10-4

• The compaction is positive.
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Figurc 5.10: Responsc of po!ycryslll.!linc k,) obtll.ill<~d from lhl: rrwdlll.llical mod<d an,1
subjected to 0.005 /s slrain-rate and 10 MPa confining pr')SSIlW. 'I'll,) r:urnplicLilln is
positive.
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Table .5.2: Model I>arameters

Grain si1.e
Secondary Creep Rererence Rate io
Primary Creel> Reference Rate (kG

Creep Exponent
Creep Enhancement Constant. I 13.
Cf(!CP Enhancement Constant 2 13k
Dilatation constant h

q
h

elll.'llic Modulus
I'ois.son's Ration
EliUllic Modulus in Kelvin Spring
ltefercnceStress
Damage plLrameters

£u !J500 MPa
0..1

EkO 0.8Eo
I ~-1Pa

2
1.5 x lQ-3/p
2.5mm
1.76 x lQ_7

15 x to
3
40
20
0.35

5.6 Summary

In thi~ dlaptcr, two theories to describe the damage in viscoelastic materials were

pres(~nted, In the first t.heory, 1.he damage was described by generalized J-integral

for nonlinear daslic media, which WIlS extended to nonlinear viscoelastic media using

Sdl<lPl:ry'S correspondence principle, The second theory was based on a me<:hanical

modlll, which is 11. Burgers viscoelastic model with nonlinear elements. These theories

compared well with the measured response of polycrystalline ice. The first theory

is more systematic, has a rigorous basis, and requires fewer parameters. The main

di~advantage or this theory is the universality of the nonlinearity. This shortcoming

is adJn:5~ed by the llCCond theory, the mechanical model, which gives a physical

description of various components,



Chapter 6

Theory of Crushed Ice

6.1 Introduction

The behaviour of crushed icc is (liffcrcnl from that of th,) PUrl~l1t k,) ma~s ,III" tn 1.11l~

larger degree of freedom althc grain boundary nnd till.! pl"f:~"nc() of Ilore.~. Tlul dis':ml"

nature or the material results in large contll.c1 prCNSllr'JS ilL grain hOlltl.hlrks I.lULl ill

turn may lead La phase change and further Cl"lIS1lillg uf grains. Tht: sinJar :d,nml-\lll

of this material is largely dependent on the dc:grcc uf confinemenl. I\t 10IY pr<'SSlJrliS,

crushed ice is similar in behaviour to 111101'.', ulnl can be lllo,ld.:d 11.'1 11 fri<:tiOlmlIlIiLL"rial

(Finn e1 aJ. 1989; Sayed and Frcderking, W92). Like snow, l:rllsll1J<! if:': Kmills sti<:k

together by neck growth while in contact willi ,:aoll oUlCr and form a UH\triX.

Under large confinement, the particulate ice IO(l~e~ its dL~cr<:l.:and grllllulM IIHlun).

Large pres~ures causc pore collapse ami rl1<!uc.)U In.:;ali~.!.J ~hf.!ilrin~ .ldnrmaliull till')

to sintering of the grains. This results in derorlllalion in tIll: grain itself b.~si.I.)s ,LIraili

boundary sliding, 11Ild the behaviour of lhe rJli~l.)rial i~ similar ttl Lhat or ImlyuYlItallirm

ice. The iSOlropic hehaviour or crushed ice can h,) i.lf:ali~f)d ililo I~ mal"rial wh,)f':

unirormly distributed pores and graiu bOlllldari{)lI arc cmocdd,),J in all i~otrf)pk matrix

116
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Figure (i. I: The micrm;tructurc of crushl.'d ice. The pores and the grain·boundaries
arc dilitribuled in 3·0 space.

1I11 shown ill Figure 6.1. The geometry of por!!li is idealized as spherical, and grain­

houlldaries arc idealized as thin circular disks. It is further assumed that the pores

alld dl'~ grnill boundaries 1.10 not interaclwith ench Olher. This condition is applicable

for dilute cOl1cc:ntrations of pores and grain boundaries.

III Chapter '1, it WilS ohserved that under large confinement crushed ice behaviour

<:hal1g(~s from the friction·dominant deformation to a pressure-independent behaviour,

where friction docs not play any role at the macro-structural level. A viscoelastic

model is 1I\0re realistic to dClicribe the strength and the deformation behaviour of

crushed iceat high pressures.

III (,he present chapter, a tbcory to dL'Scribe the mechanical behaviou~ of crushed

iCt~ limier high prL'lISnre is presented. A linear-clastic solution based on the equiva­

lent iuclllliiollll1clhod is derived. A closed-form solution for nonlinear-elastic materials

cuntailling \'oids <Iud obeying a power-law is also presented. Using the correspondence
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principles discussN! in Chapter :.1, elastic solutions arl' l'xt"IlII.'d to tIlt' \·i~ ... lt·l;lstk

:espollse or crushed icc. The \·;sroclll.slic 1'('sponSl' i~ ,llsll pn's"llll'tlliSinp; \.11!' I1W,.]l<ll1­

ieal model and results arc compared 10 Lhl-' malerilll rt'SIHl11~l' Ill't'St'llll'd ill ('hill'tl'rs ,I.

The prcs:mre sintering behaviour of crlls!w,1 kc is nisI> sllI<l;,'d.

6.2 Elastic Materials with Pores

A rorolls mater;al can he treated a.s a COIlll111Sill' lIH1l.'~riill, I\'lwrl~ t.lw pon's Ml' ;n·

clusions. Micromcchnnical models sudl as l],t· l~qui\"i11Iml ;lldliSioll 1l1l'l11l1.1 and II\<'

scM-consistent mclhod can he used for solving this prohh·l1l. ,\ W'l1l'rill alli1I~'sis fm

compo,~itc material is presented ;n Appemlix It lien' a solutioll for dillllr~ Iwn's ill

a homogencolls and isotropic maLrix hased on Eslldh:_ (I!l:ij) allll i\lllnl (I~IS'.!) is

presented.

l.et the applied stress (;ij and the n:slllLillg strain (i) Ill: rdalt'd 11lrullJ.\h IhHlk,"s

law, i.e.,

Ili.l)

where C,jH is Lhe stiffness of the material to he ddcrlllirlt~1. DIu. to I'ro~':llr'" lOr jlllr,'

a stress disturhance t1,j and r:orrcspondillg strain Ii) is j';\IISt:t1, 'I'11f~ appli".1 s1-rr'ss 0111,1

strain ilrc also the avcraged total stress i'TiJ+O") and strain Ii} +'-') ill LI*" r"pl'I:sl:nLill.iVl'

volumc, and is prcscnted ns

(fi.:!il)

and
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The fjllalltities S'"kl arc depen.lent on the geometry of t.he pore. Slibstituting f 'l in

Equation fi.2, allll using pore·fraction c, wldch is the ratio of the volume of pore to

the rr~pr<:s,mti1tiv<: volume of the material, the result is

{I - <:)r1;~t,

6ik6}~~1Si}H +(I - C)l;~,

(6.·la)

(6.·lb)

wlwrc i1;~1 and [i¥ arc averaged stress and strain in the matrix M. and are related by

llooke's law a.~

(6.5)

where C:~t, is Lhe known stiffness of Lhe matrix. Eliminating uiY and i;Y from Equa­

I i011 fiA hy Iisilig Equations 6.5 and 6.1, the stilTness of the porous media is

(6.6)

For isotropil: materials, I~qllation 6.6 can be presented in terms of the bulk mod·

ulils f\" 1L1lflthe shear modulus G' as

f\" C

f\".\1 = 1 ~ I _ kS,iJj' (6.7a)

~ = 1- 1-;SijH with j = k &j =1, (6.7h)

\\"lll:n~, 1\'.11 and G·II arc the bulk and the shear moduli of the matrix. For spherical

pores a dosed-from solution for Eshclby's tensor Sijkl is given by ~'Iura (1982) and is

prcscnted ill Appendix [l This pro\'ides

1-5v·11

Sijkl= 1i:i(I-v'\/) withi=k&j=1

I +vM

Siijj=~. (6.8b)

SlIbsl.ilnting these values ill 6.7, and making usc of the relation between the elastic

.:nl\st.allts, 11'\/ = 2:;~.i\:.;;f::). the clastic moduli for porous material are written as

f( 31\·\1
1\'.\1 = (1 - c) - ;j C.II c, (6.9a)
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G5I = I - '\'K.II + st,'.11 c.

1'211

(li,!)h)

In the absence of pores c = 0, K = K·1t illlt! (; = (,..11, E1lllillioll IUlh I'Tt'llirts. ;IS

ohser\"ed ill Chapter ·1, a conpling of shear ilnd 11.\"drnS1.i11 ir n·spnllSI·S.

6.3 Nonlinear-Elastic Materials with Pores

The solutions for a linear clastic f1I'ILeria[ with pores ns d<'snilJl'l[ ill [,1St sl'dinn ("0111 Ill'

extended to nonlinear elastic 1llillcria[~ Ilsing Hn iucrtmH:nlill llwthod. \\'11<'1'1' HI. "ill'h

increment of stress, linear theory is cmpl()y.~d lo detcrmine stTl's~'S1.l"aill n·llltionship,

by assuming fin incremclltally lincar bdl1L\'iour for all JllliI:lt'.~. In lhi.~ s"diou, il

closed-form solution for materials followillg flow(~r·la\l' l1onlil1t:,lrity is IlTl..~t'nlt'd. Tllil<

analysis is based on the works of Blldiansky ct al. (1!IS2), ami 1)IIViI and Ii1ltdlitlSIJ1l

(1984)_

The pores in the material arc assumed ttl IJc~ spherical, iso[;lt(~1 ;ullIIHlll·il1ll'r;u:tiv(~.

Consider a spherical pore of radius u llmt is SlITTO\Jlldc:cl hy til': lIlatrix ltJalt'rial IJf

radius R. (figure 6.2). Magnitudes of th~ radii ilrC SIKII thal till: void v"llllllt' fradioll

~ of this spherical shell and the [lorolls 1I111teriai is SMile, i.e.,

(lUll)

The matrix is assumed to be isotfopir. and illC(Jmpr~ssihlt'. Ihlder IIl1i;lXiilII:Olldi·

tions, stress and strain arc assllmetl to he rdilled hy a pIIWl:r·law t~(IUiltiofi

((i.ll)

where fO and 0"0 arc reference strain and slrc:ss n:spectivdy. For Itlilltiaxial stresses

Equation 6.11 can be generalizetl to yieltl

(fi.12)
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Figure 6.2: ,\ model for the porous material.

where _'0 i~ t1cvialoric stress tensor, and s is von Mises stress. The complementary

1~llcrgy function W' for the power-law material can be obtained as

I (OUo (' )"+'w=- - ,
n+ 1 170

where the definition of strain t;j in terms of W' as

(6.13)

(6.14)

was used. When diJu~e voids are introduced in this material, the potential of the

sy~tcm is increased. Let the total potential be given by

W';'=W'+!J(C)W~, (6.15)

where W~ defines the change in complementary energy caused by an isolated spherical

porc in an infinite matrix, which is subjected to remote stress (fiji and fl(C) is a

function of the porc-volume fraction c and maps the infinite matrix into the finite

domain. Equation 6.15 is of the form of Equation A.I of Schapery (1984).



6.3.1 Hydro:itatic Solution

For materials following powcr-law nonlincarity, a clo~f:d-rOrlll solution is possibl(~ when

the loading is hydrostatic. Let thc spherical shell be suhjedl't! 10 i1 hydrollla\.iI'

prcssure p as sholVn in Figure 6.2. The boundary \·1I.luc problem is solvell in spllt.'rical

coordinates (r,O,¢). Due to thc symmetry of loading this problem is l'ss"llti"lly

one-dimensional. Let tit b~ the radial displa({~meflt due to load I'. th(~ll til .. st"llill

components are

f'=~
lq=,.. =ut/r.

The incomprcssibility condition is

£,==-2'9,

~+;u,==1)

This equation implies Ll.a.t the moot gencral form of displacemcnt Il t is

A
u'==;:1'

The equilibrium equation is

The constitutive Equation 6.12 can be written a.~

{Ii, Hi)

(fU7)

(fLIS)

(Ii.l!))

(fL'lOJ

(li.21)

«(;,22)

Using Equations 6.22 and 6.20, the value of U t - Uo can he ohtained. Sub!llilutu this

value in the equilibrium Equation 6.21, the result is
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This l~llllatioll should satisfy the following houndary conditions

at r=a, CT. =0

Thus,

or,

and at r = R, (l. =p. (6.24)

(6.25)

(6.26)

A rclaLion ror change in pore volumc ratio can be obtaincd from Equation 6.10 as

(6.27)

The quanLities dala and dRI R in this cquation can be ,)btained rrom Equation 6.20.

Thcresllll is

dc=3cA [~- ~l.

nc,

(6.28)

The (Jilalittion and the void volume fraction are related as

de"" (! - e)dl". (6.30)

Wilkinson and Ashby (1975) and Blldiansky et al. (1982) have pres,~nted a similar

formulaLioll for power-law creeping solids unlike power-law nonlinear dastic malerial

ill the prelcnt analysis.

While sintcring pores, which are filled with air, become isolated. Further sintering

leads to increase in the pressure in the pores. The effect of this internal pressure is

10 slow nown the sintering process. The internal pressure is given as

(6.31)
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where Qo and Co are i\\'cragc radius and \"oid fmdioll al the moment \\"lll'll pOTt'S dus{·.

and p~ is the almospheric pressure. In such Cil!\CS drt~ct.i\'l' pr...·ssllw (I' - p;) shlluhl h,.

nsed in Equation 6.29.

6.3.2 Solutions for General Triaxial States

For power-law creep, Budiansky et al. (1982) outailled a solution [or IV,~ IIsilt~ tIlt'

Rayleigh-Ritz metho{j based on minimum principles apI,licll to tlHl Vdlldty lidd. t\

numerical solution is required for the exact analysis. Approximate solutions \\'(~n' i11.~u

given for high triaxial sLll.t<:$ when hydrostatic stresses arc larg(~r lhall slll~al' stn·.'iS'~S.

Another appro:<imate solution applicable for wide range of triaxial staLllS anll pon'

fractions was given by Cocks (1989). The clastic solutions for lhtl Illatcrilds follmvilll;

a power-law relationship can be deduced from their solution 11.~illg l:nrf(~SpOlld(~IWI'

principles. As the objective of the present work is to I~xtentl tile reslllt.ing dil.~Li(: .~ulll·

tions to the viscoelastic solutions fol' icc, only the approximate solution is wlisilll~red

fol' simplicity.

Like W', W~ is also a homogeneous funcLion of order 11 + I. F'ollowing I)IlViL

and Hutchinson (1984), this can be written in terms of VOII MiSl~s stress .~. Mid tlil~

hydrostatic pressure p, as

(fi.:12)

where

0= ~,

and f(o,n) is a dimensionless function.

The dilalation can be obtained as

(6."")
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where II is a function of c. For high triaxiality, 0 ::;> I, Budiansky at al. (1982) have

presented an approximate expression for dilatation as

where

G '= (n - l)[n ::(sign(o»], (6.35)

with flO) '= 0.'1319 dnd 9(-1) '= OA031. For dilute concentrations, the function

Ilk) '=c.

For n = I Equation 6.31 reduces to the exact results. For higher values of n Equa­

tion 6.:)4 predicts strong coupling of hydrostatic pressures am: the shearing stresses

011 dilatation. It is also noted that this equation can predict dilatation even in the

ahscnce of the hydrostatic pressure. The high-triaxiality approximation gives good

results for Q ~ 3, and aboul 30% error for a = 1.5.

By Equations 6.33 and 6.31, the function I is obtained as

( I I )""I(o,n),=~ ~-G
n+ I n

(6.36)

Using Equalion 6.36 in 6.32, total complementary energy for a porous material can

be obtained from Equation 6.15 as

and the slraiu components as

(6.38)

For nonlinear materials, the applicability of the dilute concentration results is

restrictive. Under hydrostatic loading, where the exact solution exists, a comparison

can be made. A pore fraction of c = 0.001 increases the dilatation-rate by 30%
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above the predicted value when 11=3. ror large pore·fraction. the interaction or pow~
must be considered. Cocks (t989) has presented'l semi-cmpirical solution for POrtlll~

materials that covers the practical range of pore fractions. III icc·structl\fc illtt~r.\di(lll

problems, the porc fraction may be lIS high M 20%. This solutiull wns obtnil1L'ti by

interpolating the results for dilute solution ilnd it conccl\trakd ~I\lti\l1\. lll~re \.Iw

complementary energy of the porous media is not a linear combination of LIlt' cllt!r~it's

of the matrix material and the pores, but it coupled f1\nctioll or thc porc.frat:tiun ilnd

is given as

W' _ (00"0(1 - c) (_"_)"+'
T- (ntO uo(l-c) ,

where

[ ( ' 2' )]'"S =.s I t c 3" + (n + Ir;~1 +c) .

The strain components can be obtai oed as

(li.:I!))

(liAO)

6.4 Grain Boundaries and Fracture

Grain-boundaries are imperfections in a homogeneous material. They ilre 11lsu weak

structures, and are subjected to high stress concentrations. When the rmlteriid ill

loaded, sintered bonds are broken and large viscoelastic deformation OCCllrs in il thill

layer lldjacent to the interacting surfaces. There is also dissipation of ener~y (lUll to

friction. The mechanical properties of this thin layer are different rrom Lhat or tlw

grain material, and they may be considered as disk-shaped inclusions. In Clmplcr 5,

cracks were treated in this fashion showing the similarity betwl!f!n grain houndaril!.~

and cracks. Using the solutions of composite materials (Appendix B) the elaslic

moduli of a material with grain-boundary can be estimated.
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The inelastic and anisotropic nalure of the icc crystal-creep along the basal plane

of icc is about two orders higher than along non-basal planes (Duval ct al., 1983)­

plays a vcry important role in the deformation. When loaded, this anisotropy leads

to df~vc1oprncnt of large internal stresses in unfavourably oriented grains and their

crushing. After crushing stresses arc shifted to the neighbouring grains to continue

tile process of crushing. The result is an increase in grain-boundary density and

viscous hehaviour of the material. During slower deformations and in a material

i~t high temperature such as ice, new crystals can nucleate and grow at high stress

concentration points. This process is called. recrystallization. The requirement of

the nudeu~ i~ that its boundary be mobile (McLean, 1957). When large confining

Ilrl~Sllr~ arc also applied, which is the case in the "critical zones" in ice-structure

interaction, the mobility of grain boundaries may change in unfavourab1y oriented

grains due to pressure melting.

Deformation ina granular material is the result of both sliding and rotation of

graill~. The change in the grain size causes increases in the freedom of movement at

the grain-boundaries and enables the rotation of grains. In this process grains with

larger surfacc area, i.e., elongated grains, are broken. This can be observed from the

thin sections of crushed ice prepared before and after a test as presented in Chapters 3

alld,l. Arter tClts, the grain size is reduced and they are round. At large deformations

grain-boundaries and cracks are indistinguishable. In the present analysis there is no

separate trcatment of grain-boundaries in particular, The mobile grain-boundaries

and their changes are presented by the theory of generalized J-integral of damaging

1I1atcriall\S presented in Chapter 5.



6.5 Pressure Sintering

In this section 5int~rinfl of crushed ice under high pn."5lIurc i~ cXAmilll.'I1. The mall'rial

is assumed to fol1olY power-law creep, i "" ia(l1lau)~. \vllerc ill is the rcr(~rl'IICI!Crt!t'll

rate. The solution of this problem can be obtainL'I1 by the TL~lllb Prel(!lllNI in Stoe·

tion 6.3 fOf clastic materials with porcs and 115in~ the analogy hdwl.'cll t'lalll;c ;11..1

viscous solutions, i.e., strain is replaced by t1.e strain-rate. The rC!:Iultin,; \."\II;ltioll fUf

the sintering of crushed icc based on Equation 6.2!J is

i~ = sign(p-Pi)¥ (~I(P-fli)llTol)~[I - cl/~l-n, (Ii.'!'!)

where Pi ill pore pressure and is given by Equation 6.:11. 11. is Ilotl!d that Lht~ 1I1lllid

of sintering presented ill Equation 6.'12 is valid only when P0rL'll arC' i!luliLtt~d, whkh ill

best rcprcscnlativ~of th~ final stage or silltering.

Maneo and Ebinuma (1983) studied the c1ell~irication of snow allli oh:wrvl'tl thllt

pores isolate at the pore·rra.ctioll or 0.1. For pore·rractionli higlwr than 0.1 lllllllM:lllw

0..1, a C)'lindrical model of pore is appropriate. The JIOlution for a cylindrical IJOrt: ill

similar to ~hat of the spherical pores, and the final equation can he wrillt~1l a.1

For the compaction of crushed icc, the simulated hchaviollr is prt..~nh.'d in Fi~.

ure 6.3 with the test data. Using the valUe! of <0 =8.8 X IO-§ that ill .'iOO tilllllll

that or polycrystal1ine icc, the power-law exponr.nt 11=:1.2, and ~hc cnnstaliL "'1)= I,

analysis was performed. The theory and the test data compare ....1:11. It should ht:

noled that at the beginning of compaction, large tleforrnations arl: tluc to fractl.rc of

the sintered bonds. In Figure 6.1 the simulated resulb arc verified for test 8, where

pressure i'ulscs were applied on the specimen. The initial pulae i~ not modelled ll..~

the present theory docs not cover compaction due to fracturing.
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Figure 6.3: Compaction of crushed ice subjected to various hydrostatic pressures.
The applied pressure is shown in inset.

____ TE5t'DAtA

_ THEORY

! \0

Figure 6.4: Model verification for cyclic compaction of the material.
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6.6 Modified Superposition Method

As in Chapler 5, lhe mo<lilicd superposition ll1elhol! (an h,~ Ilsed 10 ohtain I,ll<' \'i~-

cnelilstic response with porcs and grain-boundaries. Fur a lIo11-li!war I'tsnlClilsl if

matcrial

static pressure p, and the microstructural paramclt!rs S~, k "" l,:!,.n I\ll nOll-lilwilrity

in the material is addressed by (;/. The timc-t1cpelldt!lIt structural p'lramd,!r,t ,'J'k

account for the dilatation and cracking of .~intered CruShl'<.! ktl_

The response of crushed ice has two hasic components, tilt! collapse of P0rl'S ilud

the breaking of silltered bonds when subjected Lo shearing stressc~. TllI~ tOlitl mrn­

plementary energy of crushed ice is combination l)f thl! cOl11plc!IIIt!lItary "IIC~rI-\Y or thl!

cracking solid, and increase in the ..:omplcrnclltilty t!llergy due to voids. Thl! tn·.~Ll1u'lil

of cracked solids due 1o distributed rnicrostrucLllrc wa.~ prcsented ill Chapll~r .'i, IUIlI

is due to Schapery (1981). The increasc in thc cornplcrnl~lIlaryenergy dlll~ lo voitl.~ in

a power-law nonlinenr material was prCllculC{1 in Equation fiAI. Using lh,!sc! lllmril'S,

the pseudo-strain f;/ for crushed ice can be wriUcn as

, 3 ( , )" [';' en (1')(, :1,,)] (S') (I' ')f,j =2~o (To(l-c) Si§+(n+I)(I+e) ~ ii-7'~;j fI" 1.'1,1

where g(5) is a damage function, and S is a damage parameter, widell is f>luclinll of

the loading history. Equation (jA5 reducC!! to Lilc damage thf~ry ba.'lCd Oil MSP or

Chapter 5 when the pore fradion c = u,

Equation 6.'15 has two microstructural paramctcrs: the damage rrWilSllrc S, alill

t.he pore fraction c. As the response or (fu~hed icc is re~I\JJt of c1lll.nges in holh

parameters, kinetic equations are defined for thl$c changes. Tilc tlamilKc pararnctc:r
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.'; ';an 1)1) ddim:d hy iUl equation similar to that in Chapter.s, as

(6.·16)

when: 'f MId t11 ,lrc positive constants. The parameter h is function of all-around

(6..17)

wlu;re II ,wd '1 arc constants and Pc is the atmospheric pressure. Unlike polycrys·

Lalline k(;, crllshed icc lacks strength atll':J = P. unless it is sinteredj Equation 6..17

represents the material behaviour ror high confinements.

\\r'licn shearing strcss is also present, the compaction of a creeping solid can be

llescrihcd by !"Alllal.ion 6.38 by replacing strain with strain· rate. The volumetric creep

rolation is

. 9n,', ( • )" (P)
t"=2(ntl)(1+c) uo(l-c)' g 9(S)

IIllll can he lIsl><1 to obtaiu the new value of the pore rraclion c from

c=(t-c)i...

(6AS)

(6.49)

1L is noted tllat Equations 6,.]5 and 6,48 are derived for an incompressible matrix.

Efluatiolls lUG and GAg are two desired kinetic equations ror crushed ice.

6.6.1 Creep Compliance and Nonlinearity

The CRt'l' compliance D(t) can bc determined hy conshnt'stress tests on ice. As this

mmponcnt docs not contain the effect of the microstructures and their changes, the

rDnstnntll of the compliance can be obtained from the creep te~';s on polycrystalline ice

as in Chapter 5. Crushed ice has much higher nonlinearity compared to polycrystallinc

ice. 'l'llis is due to weak intraf,ranular bonding. As the elasticity of crushed icc, as

in polycrysti\11inc icc, is linear, inclusion of an clastic term in the creep compliance,



,,--------~_.. -.
I _.. _~E.\.'1 I'IIESSI'IIE::o Ill'"

::.~~ _ )(~:,\," l'IlESSl'flE r, ~I'"

!

J
I
'I

":\/~:;~'~-:~:~: ·C';~ :!.7r. ~II'"

-! r,' ~Ii'a

Figure 6.5: Slrains rrom CTl'CP Ll~sts 011 crllHhed iCI~ l'lmdllr1.(~1 ,11 r, mill :10 M I'a 1I1l'1I11
prCSSllrc~. The applied strcsSL'S a.re shown OIL lh(~ t:nrVt!s.

this analysis only the delayed cl;l..~Lic alld rWTllIall(!IIL Crel!p l,~rllls ,1m ,'onsirl"n',1 in

the form

(l)..'"jn)

where 0 1, D2 , band to arc [lositivc constants.

The nonlinearity paraml'tcr n I;all he '!slilllat(~d by ';r,!(~p l,'.~tli 011 ':rllslll',j i,-,',

Theoretically it should b(~ possible to gel this parillllcl!:T froll1 iutad ie.~, l,ul till'

strong nonlinearity that develops in t:r\lshctl icc ,IIW to ''r!:(!IHlllll1illiLlil ddorm,llioll

is not reflected in intact ice. Under conl1ninp; prl~ss\Jn~s, allslu:d ite IIlldl~r~(j!:s II lar!\l~

degree of compaction (sec ~est resulls in Chllpll:r 1), thus the ehitllW: of llIil:ros~rlll:tllrl~

is also reflected in the creep lests. Ilere the uonlifJI:arily anulhcl:ompadillll l:IJlIsLallls

should be determined simultaneously. UsiJlg lhl: crts:r data in Fi~IHl: Ii.;;, u w;~<; 1.!1

ror 1) MPa mean pressure lests, and :U for 20 ~l(liL ksls. A lIIellll vallw 2 is IISI:d in
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Figure (i.n: Stress-strain response of crushed ice obtained from MSP. The applied
constant strain-rates alld the confining pressures are shown on the curves.

the rollowinganalysis.

6.6.2 Prediction of Test Results

For the predicLion of triaxial test results, the damage function and damage parameter

.5 arc ;\ssll'ned to be related exponentially as

9 = e.\(s+So) (6.51)

where.\ is 11 constant and So is the initial damage. For a virgin material, the damage

functiun 9 is unity. The predicted results for triaxial tests are shown in Figure 6.6.

'I'he value of the constants used in this analysis are presented in Tilble 6.1. The initial

density of crushed icc at the time of the application of axial force is 0.8 kg{m3 for

5 ;\l~a tests and 0.85 kg{mJ for 20 l\IPa tests. The model captures the principal fea-

lures of the results, although some discrepancies exist, especially for tests conducted
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Table 6.1: :\Iodcl partlmctcrlS required for the 1Il0lIifi.... \ :<IlIH'rpositloll nwl!ltMI (<lr
crushed icc.

Delayed Elastic Constant IJ, ;1,,1O-"/:\ll'a
Dcb.yed Elastic Exponclll h O.:!8
Secondary Creep Constant I), I x 1O-';/:\II'a
:'\onlincatity Paramcter
Hefercncc StrCSll .. I ~IPil

RdcrcnccStrain 1
RderenccStrain·Ratc i. t x 10-·/:<
DamageConstanLs .\ I.:.! x 10-'\

J, 100

",
Init;"l Damage (,1 ~IPa) SOli \.2:.! x IO'~

Initial Damage (10 ;\'IPa) ,1.,'11 0
Damage Exponent 'I ·1,[,

at low confining pressures.

6.7 Mechanical Model

In this section the mechanical model developed in Chapler 5 for lhl: dama"mr; mall:rinJ

is extended for crushed ice. As discussed in Section GA, grain houndaries of r.rn~l.cII

ice are treated a.s penny-shaped inclusions lhalarc weaker ill ~trellJ;th than lhl: "r.,ill

material, and have feature5 of cracks. The c1k-c1 of the porosily of crushl....l iCf: IIll the

mechanical properties, as Jescribt.'<i in Sl.'Clioll 6.2, is also alldt:d to till: medm"ic,,1

model.

Each strain componenl, the clastic, the ,Iclayl:d dll.:llic, ilmllhe s,:coUlI,uy 1:f(~:P i~

inAucnced by the pores and the grain. boundaries in crushed icc, As 'n polycrystallilll:

ice, elastic strains are linear, while delayed clastic and crC(~p straim are noulillear.

Because of the softness of the material, thl: pl:rmllllenl creep i~ .Jorninanl. The dA.~lic



ana aclayr.d clastic strains arc of prime significance during rapid loadings.

6.7.1 Elastic Strain

The dastic proJlcrliei of crushed·iccean be obtained from that of polycrystallincice by

llamaging ana introaucin& pores in it. The elastic moduli inc sivcn by Equations 6.9a

and 6.UI>. The damagc slate in the grain boundaries of crushed ice is similar to that

or r.omprcssion cracks in polycrystallinc ice. In crushed icc the number of &rain.

IKlIIuaaril.'S incrclI.5(..'S due to further crushing of grains, while in polycrystalline ice

Lhe number of t;racks increases due to damage. The difference lies in the ratc of

r.hangc in the microstructure. As the deformation in crushed icc is largely controlled

lJy its t;rccp behaviour, the rate of change of the grain size is smaller than the rate

uf chMge in number of cracks in virgin po!ycrystalline icc where initially the elastic

and delayed elastic deformations are dominant. A macroscopic measure of damage

JIt.'CIllS appropriate for crushed ice. One such meil5ure Wil5 described ;n Section 5.2.

The bulk modulus of crushed ice is assumed to change with porosity only, and not

tine t(\ damage. The Young's modulus E of crushed ice can be written in terms of

the YliUII&'S modulus E, or the porous matrix material, as

E= E,/.(S), (6.52)

where 9(S) is a damage fundion, and S is a damage parameler given by Equation 6.46.

The damage function and damage parameter S arc assumed to be related expo­

nentiallyas ;1\ Equation 6.51. The \'ariation of the Young's modulus or crushed ice

wilh respl.~llo the dalJlll"e parameter S is shown in Figure 6.7.
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figure 6.7: Variation of Young's modulus with the IIil.magc pilril.IllI'll'r S.

6.7.2 Delayed~Elastic Strain

The equivalent delayed clastic strain rate for the lI(lIl!illcar l<e1vill uuit i~ givl~1\ hy

(IUi:l)

where the viscosity '1 is function of the internal strc~~ 1j,1 that J<:JlCr1<l~ 011 tire IllCIlIllU-

lated delayed-elastic strain, eJ = f~ c.Jdl. In this equation tlrl~ Crl!(~P rate is eultall1:l!d

by an exponential form of the product of a constant, #, illld lIrl: JallllJ.g1! pilramdcr

g. If the stiffness of the spring in the Kelvin unit is Ilk, tlr(~ inkrnll.l ~trl:llS r,an Ill:

obtained as

The stiffness, Ek , is related to the spring slilfness in the Kelvin unit iu ttll~ virgin i!:1:

according to E:quations 6.9b, 6.9a and 6.52.

The viscosity '1k is nonlinear function of the internal stress, arll] is ohtail1l:d hy

equating Newtonian floWed =S!''1h and the [lower law flow, 1:4 = (.~'l/(1oti.o. It ill
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~iven as,

(6.5.11

where aD and 4, arc rcfl;wnce stress and strain-rate respec~i\·e1y.

6.7.3 Secondary Creep

TllI~ weaker grain-boundaries in crushed ice enhance the secondary creep. A relation

ror a parulis and viscous material rollowing power-law nonlinearit)· can be obtained

from a corresrorldcncc hct\\lCt:n the elastic solution of Equation G,41 to a viscous

:«llllliOIl by replacing lILrain with strain-rale, and can be presented as

(6.56)

6.7.4 Dilatation

The rt.'Sulls of triaxial tests on crushed ice as presented in Chapter II show that the

volmnetric rcsponscof crushed ice due to shear is always compaction. The major cause

of this trend is presence of hit;h porosity in crushed ice, which ill undergoint; volumetric

creep due to hydrostatic and shear stresses. Other causes of volume change, e.t;.,

c:racking, which is the dominant mechanism of dilatation in poIycrystalline ice, are

negligible for this material.

In Section 6.5 it was shown that the compaction of crushed ice can be successfully

{Iesccibcd by a creeping material with pores. When shearing stress is also present,

the compaction of a creeping solid can be described by Equalion 6.48. The total

volmnclric strain is lIum of the clastic strain obtained from the bulk modulus of

Equation (L9a and the contribution of the dilatation of the porous material following

the power-law creep as given by Equation 6.48.



Table 6.2: ;\Io,lcl paramelt'n for nu~llC'd i(c~.

f~' .If !JrJO() !lll'a
(1.:\

I:'~\I iliOn ~1I':~

,\ 1.1 x l(J-'~

q

Young's Modlilusof Ice
I'oisson'sltation
Elastic ~'Iodulus in Kelvin Spring
DamageConstanl
Damage ExponenL
Secondary Cr('(!p Reference Rate(1fl ~II)a) in
Secondary Creep Relerencc Ralc(1illll'a) (II

PrimaryCrcep RcfcrellceRate iw
Crl:!ep Expollcnl

:I.[,:.!Xlu-7/ s
l.·1 x W-'l/s
lOx iliis

"
6.7.5 Prediction of Test Results

In Figure 6.8 the simulated response~ of crushed ice in simple slwar sUes!! 11<11.11 arc'

shown. The predicted results for Lhe Lriaxial strcngtl,·t,!slS ,Itt' slu,wll in 1"i~lll"l~s lUI

and 6.10. The value of the constants usell ill this lIualysis ~m~ Im~~llt,!d ill 'I'ahl,' Ii,:.!.

Comparison with t.est data ~hows thaL the rnechanicallllodd Gill predid til<' Irlat,~ri:d

response, the shear and the volumetric, vcry well. ror L(~sts at hi~h strain tilt!!, ,1iIa1.a·

tion due 10 opening of cracks reduces the effect of compaction, illlCl oW i1TlPf()V{'t1Il~lll

in prediction can be "TIade by including this effect. If long·term f(~POllSl~ i~ of l11aifl

concern, better performance from this model can be ubtaincd lIy sacrilkiliK dastic:ity

of the material.

6.8 Summary

Crushed icc can be described a.q a porous material with weak inlragrallulilt bOlllls.

The response of crushed ice can be descrihed hy introducing porosity ill till: rw1yuys·

lalline icc. To describe the behaviour of crushed icc, two mudds b;J,.~eu on r:olltiJlllllnl

mechanics were presented. The firsl model was haseu on till: mouilieu .mpc~rposililJn

principles, while the second model is mechanical. In holh !Oouds, till: porous mi·
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Figure 11.8: Creep "nd relaxation response of crushed ice as obtained from the me·
chanical model.
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Figure 6.9: Stress-strain response of crushed ice obtained from the rn(.'chanica] model
subjected Lo constant strain·rate of O.005/s (TEST 7) and 0.02/s (TEST 13) with
the confining pressure of 5 MPa.
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and its variation was included. Another microstructural variable, the grain bound­

ary sliding effect, was also included by considering these as weak structures in the

material. The performance of both models is good.



Chapter 7

Application to Extrusion Analysis

7.1 Introduction

UnTillS the proccss of icc-slruc~urc interaction icc particles arc broken into discrete

Ilit."Ccs due to crushing. These crushed particles form a distinct interfacial layer be-

lWCl!ll the intact icc mass and the structure (Frcderking et aI., 1900). The thickness

of this layer may Vllfy spatially dependin,,; on the structure stiffness, icc inhomogene­

ity ami the velocity of the interaction. The crushed material from the interface is

extruded a:lI icc moves towards the structure. The process of crushing and extrusion

i:> cyclic and load on the structure is characterized by the deformation and Row of the

t'ru~hcd malerial.

III this Chapter, the flow properties of crushed ice under plane-strain extrusion

l'Oudilions arc examined. These tests were oonduc~ed with industry collabora~ion.

The ddails of lhe lesl setup and some remIts are prefiented in Spencer cl a!. (1992)

;tud Singh cl al. (1993). For completeness, I\, brief description of test·se~up is pre-

:wuted here. This is fc.Uo\\'l.-d by discussion of test results a.nd evaluation of various

constillltivc lhl.'Ories applicable to crushed ice extrusion problem. Finally, connections
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figure 7.1: Geometry of extrusion tc~t~. Flow in z-din:dioll I\'a~ prl~vl:ntl'1110 ohtain
plane strain condition.

nre made to the theories described in previ()l1.~ Cha]ltl~rs. and Hnil(~ dl'nll~nt illl:lly­

ses ate conducted to compare the test rcsults ;\lld thl: tlll:urctiC:,11 dl~vd{lIIllU:llls. 1\

dosed· form solution is also presenled for the plallc strain cxlrusiml of ViSl:llllli mat(:rial

following power· law nonlinearity.

7.2 Setup of Extrusion Tests

A schematic diagram of the test geomclry is shown ill Fignrc 7.1. Thn matnri,j ~';I.~

loaded at constant vc!o<.ity in the y-ditcction. The flow of Ulished ic(: WI~~ ill tlll: x­

direc:tion. The channel shape of the hallom plall!rl prcwmled flow in thl) z-tliredioll.

The lop platen was instrumented with eight pmsslItc cellll lo mCII'::uw 1I1f: pn:slillw

distribution. Two potentiometNs w(~re mounled across lIppf:r ar,d lowf:r platen fur

displacement measurements.
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i\ dosed loop servo·conlrolled system was used, where averaged displacement

Hcross the plalen was lhe feedback signal. Mean pressure was also measured at the

aduator. The system as used here could apply load cluse to <\ MN, with servo-control

f....<..dhack. Although the apparatus functioned extremely well, the high loads and

loading ratt." and Uu.. vibrations experienced during the tests cOllstitutea demanding

l:Ondilions. For example, it was not possihle to maintain perfectly the nominal loading

mte du~ing the vibration:. The crushed ice layer of tOO mm thickness and density of

0.51"1 g/crnJ was squcc7,ed between rigid parallel plates at various speeds ranging from

'l.r; mrnls to 160 mrnls at -lO·C.

7.3 Test Results and Discussion

During the initial stages of the extrusion, the mean platen pressure increased mono­

tonically. At high pressures a sawtooth pattern developed in some tests. The extru­

sion or the crushed icc Ivas nearly continuous for the slower tests (2.5 mm/s), while

with the increase in the speetllhe dynamic activilies became dominant. Again at the

highest spcccl (160mm!s) extrusion was smooth. This transition from the dynamic

proccss to a nearly static process al high speeds is typical in ice-structure interaction

(Singh ct aI., (990). Mean pressure and the displacement time-series for typical extru­

sion tests arc presented in Figure 7.2. The dominant frequency of preSfure variation

dl,mged with speed. As the layer thickness reduces during the test, a larger pressure

i~ needed for the extrusion and the dominant frequency decreases. Sudden changes

of pressures during extrusion cycles and a large pressure gradient along the extrusion

planc resulted in vihrations in the platen ror some tests. Post test inspection revealed

1L solid lllasS of fused icc in the cenlral zone.



I-iii

I..

(.)2.5 mm/s

(b) 25 mm/.

.­! 8

~ 8

m
f 4
C.

~

~ 2

°22 24 26 :?!l 30 32 34­

Time (sec.)

''-,----,'''.2--'~.'---,-'~.6:--,7.6:---+''75

Time(lIeC)
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Figure 7.3: Pressure variation as recorded from varic.us ~ell~\lr~ wilh timl' for it lypil:ill
lest at 160 mm/s. The sensor locations are shown in illSd.

7.3.1 Pressure Distributions

The pressure experienced by different transducers varied greiltly (It:[lcndillg upnll

their location in the extrusion channel. A typical pn!SSlln: ff~nrd from all llrt:SSllW

cells is shown in Figure 7.3. The pressure distributions along LIII: iHlXis (SI:nsors ii,

13, 15 and 16) are nearly uniform and verify thal a plane ~train I:OlIllil.ioll ,~.~jstcd

during extrusion. On the other hand, the pressure along lhe x<llxis, the extrusion

axis (sensors 8, 9, lO, I t and 12), varit:J greally. The larw:st [Ifl~~un: alon~ tht:

extrusion axis was recorded at the centre of the plalen, wllilc ncar Lh(~ (!xiL, I'r(!'SslJn~

was negligible.

During the initial stage of the extrusion, pressure along tilt: exlrusion ilxis varil~d

exponentially wilh the peak at the center. As higher pressure developed, tIle pr(:.~slJrt:

distribution flattened out lo a bell shape. [n F'igure 7.1, lhe I~hanw: of tim pn:sSUfl)
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dbtrihution along the extrusion axis is presented for two tests. During tbe initial

stage of extrusion, i.e., al the low-pressure stage, the load was generally <::arried by

a narrow central zone of the platen. As the pressures began to rise, the pressure

dislrihution usually f111.tlcned Ollt to a parabolic shape, and the load carrying zone

gt!ncrally widened. Similar changes in the pressure distribution were observed during

individual dynamic events. For a typical event in lest X9g1 this change is presented

ill Figure 7Ah. The high-pressure fused zone carrying most of the load is denoted the

"critical zone."

In the present tests, rapid decrease in mean pressure was associated with failure in

icc. This failure was not simultaneous throughout the channel, but started just outside

the critical wne. It is noted that in the failure zone, the pressure gradient is highest.

A~ shear stress is [lroportional to the pressure gradient, high shear stresses occur in

the failure wne. In :-igure 7.5 the [lressure variation during a typical dynamic cycle

is presented. At points 1, the pressure distribution is :onvex in the critical zone and

increases both in magnitude and area when the mean press\;re increases. A drop in

pressure outside the critical zone, i.e., about 150 10m from the centre, can he observed

ill poillt 2. The failure has been initiated at this moment, and moves towards the

crmtre. At point 3, pressure in the critical zone, and at a distance of about 75 mm

frum centre, drops as failure progresses. This also causes a sudden pressure increase

at the (;enlre, and momentarily the pressure distribution becomes concave. The high­

pressure gradient near the centre forces the ice in this area outwards towards the low

pressure zones, and the pressure distribution again becomes convex in the critical

;(Olle 1IS at point 'I. This process is repeated for the next cycle.
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F'igure 7.4: Pressure distribution transforming from friction-hill at tltl: heginninA
of extrusion to a flatter parabolic shape at high prCSSUTI: slage of exlrusion for (iL)
160 mm/s and (b) 25 mm/s speed test.
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Figure 7.5: Variation in pressure distribution during a typical dynamic cycle of mean
prC!;sure for a test at 125 mm/s.

7.3.2 Effect of Speed on the Flow

The mean platen pressure changes with the crushed layer thickness as shown in Fig-

lire 7.6 for different speeds. For clarity, the dynamic activities are not shown in the

figure. The results from a compaction test at speed of 2.5 mmls, in which the ice was

prevented from extruding, is also superimposed on the figure. As the platen speed in­

creMed, a lower final thickness was achieved for same mean pressure. From Pigure 7.6

it can be secn that large deformations in crushed. ice are associated with compaction,

even in the absence of extrusion. For a given layer thickness, a much larger load

II'1\S found in the slower tests. TIle formation of fused material in the critical zone is

associaled with the compaction process. For slower tests, the critical zone forms at

1\n earlier stage in the test. For faster tests, rapid extrusion of material caused less

compaction at earlier stages of the tests. The results illustrated in Figure 7.6 make
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Figure'j .6: Change in the mean pressure with the crushccllaycr thick1U~S for di(fcn:nl
speed tests.

an analysis of the effect of ratc of loading difficult.

7.4 Analysis and Interpretation

As the How behaviour of granular geomatcrials is well repwsented hy L1u: Mohr­

Coulomb failure criterion, it has been proposed for crushed ice (1I1l11all1 aud Pick·

ering, 1988; Sayed and Frederking, 1992). On the other hand, a:; solid icc l:xhihil!l

viscoelastic behaviour, models for flow of crushed ice hased on viscous flow havn also

been proposed (Kurdyumov and Kheisin, 1916, for extrusion during dror ball lc:sll(,

and Jordaan and Timeo, 1988, and Jordaan ct aL, 1991, for up~wing during saw­

tooth dynamics). The viscous flow lheory exhibits a dependence: or forc(: CJIl velocity,

whereas the Mohr-Coulomb flow lhcory docs nolo In this section, lhc:s(: UIC:ork~ an:

evalualed for crushed ice. Physical changes in lhe material are also examined.
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For plane-strain extrusion, the material models based on Mohr-Coulomb flow and

vi~cous flow behaviour predict. different pressure distribution along the extrusion chan-

IICI. Thc Mohr-Coulomb flow model predicts an exponentially increasing pressure

llistrilmLioll moving from the exit to a sharp peak at the platen center (Figure 7.7),

while the vi~cous now model predicts a convex pressure distribution (Figure 7.8).

7.4.1 Physical Changes in Crushed Ice and Formation of

Critical Zone

Tllc dcformation of crushed ice at early stages of loading is dominated by granular flow

and compaction. During the high-pressure stage of extrusion, a cycle of solidification

and brcaking occurs. In the critical zone within the crushed layer, groups of particles

stick together under higher pressures, forming a fused mass of crushed ice. D:'ring
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this period, the pressure rises rapidly, and slow solid extrusion fmlll tlll~ ctmtral rq;iun

occu The process of sinLering is closely rclaLt~tJ to prCSSllrt~ rndling. During 10atlil1~

the local pressure at the particle contacts may I)I~ lar~e el10llgh to ,:allSt: IlIdtill~.

Other important mechanisms for sinlering at high temperature arc dJl(~ ttl difftlsioll.

These could be dominant for slow extrusion pro((~~ses. It is ~uAAestt~d Ilerl: tlla1 tilt!

material behaviour could well be viscolls 011 11u~ 'upswings' of 111l~ t1yrlilllllt: prtltl:s.~.

Clearly the failure process leading to drop~ in load is not likdy to n:sult from viswus

flow alone, although it may be aided 'Iy fac::lors such as pressure rndtill~.

As noted, after the tests, a solid lIlass of [used icc ill the cenler of tlll~ r)latl~lIS

was observed. This was also ohserveu by Sayed lind Frederkillg (1!.l92). Tire dl:rrsity

of this solid mass approached that of the polycrystalline iCf~, while ou1sil!/: lIris rrJ.~I!d

zone the density remained close to the initial value (Figure 7.!J). Wilh loading this

[used zone expands from the centre of tltl: plallm. The houndary IJI~tW'~<:I1 llu: fU~l:d
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zone and granular zone was distinct, The measured density afll'r a particular h'st

is 5hoWI1 in Figure 7.D. which also illustratCli growth of the fu~('(l ZOI1t~, Outside l,his

zone, crushed ice is still granular,

The appearance of the fused icc was similar to that found ill L11'~ lay.~r a<ljan'ul

to the indentor in field tests. Here, the ice undergoes 11 breakdown in strnctul'l' to a

fine-grained material characteristic of the layer. Tlms, besides .:raeking, tlH~ rrystal

structure was degraded. There are therefore two kinds of .Iallla/l;c: aa<:kiuA amI

breakdown of structure. Both lead to increased eolllplianrt~, and in partklllnr, a

substantial increase in the viscous response. The prtoscncc of high sh.:arin/l; stWSSI~S

enhances the damage prorp.ss, Such a stress staLe wou[d exist ncar th.~ (~dgcs llf thc

critical zone, leading to breakdown into the Iinc particles,

7,4.2 Crushed Ice as a Mohr-Coulomb Material

In Figure 7.7, thc pressure distribution based on a Mohr·Coulomh (M·e) flow lhl~ory

(Savage et aI., 1992, without the effect of gravity) Wil1l prescnted, For tIll: vdo('·

ity range of these test~, the cITed of gravity i:. Ilegledcd, Cornpilrill/l; th{~ [1TI:1!Sllrl:

distributions shown in Figures 7.4 and 7.7 suggest that M-C mode! (:.111 Jlfl~did t[w

pressure near the exit for all cases. This model can also givf:~ good l~slimilles of the

pressure at the central zone only during the early stage~ of the tl~tS. This (:lIU Ill:

seen in Figure 7.10, where the predicted pressures from this modd ntl~ ptl!~{:lIt{:l1 for

the early stages of extrusion. The value of the material collc~ion i~ [ kP.l with a

friction angle of 25 degrees, whereas a friction angle of 7 degree~ hetween till: icc allli

platen was used for M-C theory. Attempts to fit the M-e [[ow modd wilh CllllstnuL

properties at advanced stages of extrusion were fruitless, a.~ the prC!lSlItlJ dilllrilmtioll

was no longer concave ncar lhe centre.

Sayed and Frederking (1992) conducted similar plane·~trajJl (~xlrlJsion I.i~ts for
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["igufc 7.10: Comparison of measured pressure distributions of a test at early stages of
ext.rusion to I.he Mohr-Coulomb flow theory. Test results form Sayed and Frederking
(1!)!)2) arc also presented.

cruslwd ice. In Figure 7.10, the pressure distribution from their test (test L2) is also

shown in non· dimensional form, with one of the present test, and the M-C solution.

The broken linc shows an alternative interpretation of the pressure distribution corre-

sponding to the early growth of a critical zone. It should be noted that in Sayed and

Frl!{lcrking's test-setup, the next sensor is at a distance of one fourth of half platen

length from the central sensor; while in the present test-setup it is one fifth. It may

be possible that the convex part of the pressure distribution in not always observed.

The [(!sponse of crushed ice in the plane-strain condition is complex because of

sintering of ice, the extent of damage in the material, and the dynamic characteristics,

all of whicll change during a test. This complexity is enhanced by differential com­

paction in the material. In the triaxial tests on crushed ice as presented in Chapters 3

and 'I, the confining pressures in triaxial tests were varied from 5 MPa to 20 MPa
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Figure 7.11: Frictional behaviour of crush/:,l i,:c_

in various tests. This is in the range of the obs':rv(.~1 pressures n':ar ,:cn1.n: o[ the

platen in the extrusion lests. For triaxialteslN helow 10 MPll t:OlIfiuiug preSSllr,~, L)ll'

friction angle based on peak stresses was about 1,1 degrees (l·'igllre '1.12), wlwn-i1s fm'

tests higher than to MPa, a friction angle close Lo ",,~ro de~re(!s IVlL~ oh~wrv/l'l. This

shows that the material hehavior has changed frolll Mohr-CoulOlnll flow, whit:h is

pressure-dependent, to a pressure-independellt maLerial, wher': fridiou {lo(~s lInL play

any role at macro-structural level. This change of material hchavionr is illnslmL,:d ill

Figure 7_11_ This change of behaviour is also possihlll with re,l.\anl lo fricLion hdW'~(~lI

crushed ice and the steel platen. A small change ill the value of frit:tion, iL~ alsn lIoL,:,1

by Savage et at. (1992), will result in an order-uf-magnituue diJfen:nCll in Im!s.~lIn:

prediction. Thus, any attempt to model crushed iCfl fluw uuder l.igh pWSSlJm~ mlisL

include the change in friction during 1I '! process.
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7.4.3 Crushed Ice as a Viscous Materi&.l

For r:rushing evcnt~, the mean stiffness per uniL area of icc increases with compaction.

This stilf"ClIs is mainly due Lo the consolidated zone at the centre of the platen. The

mcan l:cnLral pressure (averaged in central 300 mm of the platen) for a typicaltcst

at 25 mmls is presented for corresponding platen displacement in Figure 7.12. The

st.iITness for the marked event is 4200 MPa/m. Other LClits showing dynamics also

provide similar results with some dependence on speed. Slopes of the mean pressure­

lillie trace from individual dynamic activities are shown in Figure 7.13 for various

tests. This slope increases with speed until the speed of 60 mm/s. The decrease

of slope at high speed may be due to change of the driving mechanics of flow from

quasi-static to inertia.
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To investigate the clastic behaviour of crushed ice, appropriate hOlilidary Nllll~

problems were solved u~ing Lhe Anite el(~mcnt rm.:thod. Only the cenlrill (:()nsoli(I,IL,~d

zone (see Figure 7.9) of 300 rnm length was considered. The lillil(~ deuwllt 1l11~sh Ils,~(1

in this analysis is shown in Figure 7.11. The contact between llll~ "liLt()ri;~1 alHI til,!

top platen is rigid, while symmetric bOUlldary conditions wer,! uscd along X:I. ilnd y"/,'

planes. The measured pressure distribution at the Lop surrace and Il I;tkral Pf(~Sllr<~

as measured at ISO mm from the center was applied. Tllc.!ie values of pr<!SSlIrl..'S awl

the averaged displacement of top surrace nodes arc compared to rlll:l\sun~11 v;~hws

presented in Figure 7.12. The besl fit was obtained when thl! 1ll0l1ulliS nr dllJlti,:ity ur

crushed ice is 45 MPa. This value is Il\ore than Lwo orders less thau th,: rTlOllu!us of

the polycrystallinc icc (about 8 CPa), suggesting that ddormatillfl medlarrjslJls oUll~r

than clastic are dominant.

Jordaan and Timco (19S8) presenled a clo~"'I·rorm solution of N(~wtolliarl visl;OlJs
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Figure 7.14: r.E. mesh used in the analysis.

flow for the Illauc-strain extrusion. Extending their work, we present here a solution

for nonlinear [low. The geometry of flow is shown in Figure 7.15. The material was

assumed to be incompressible and isotropic. The problem is further simplil1ed by using

the luhrication theory. In this, it is assumed that the crushed layer is thin (h« Ll,

and the flolV in x-direction greatly exceeds that in y-direction. This simplification

results in uniforn. pressure distribution in y·dircction.

The wnstitlltivc behaviour of crushed ice is assumed to obey power law as

(7.1)

\\'I11'fC U... is velocity of flow in x.direction, and T is shear stress as shown in Figure 7.15.

Ll't the iner~ia forces be negligible, the equilibrium equation can be written ilS

~+£2:-o
ax By - , (7.2)

where pressure p is only function of x-direction. As the flow is symmetrical about

y = h plane, we will concentrate on the domain x = 0 to Land y = h to 2h.
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Integrating Equation 7.2 in y-direction from h to y, ana substituting for T from

Equation 7.11hc result is

~ =" (~)" (y-h)",ay ox (U)

where the houndary condition T = 0 al y ::: h was used. On further integration,

hetwccn !J and 2h, with the boundary condition U z =0 at y = 2h, Uz is obtained as

(7.4)

From the continuity of now, a relation between Uz and u~, velocity of the platten

motion can be wtiUen as

Xli, = _12h
urdy. (7.5)

Substituting for liz from Equation 7.1, and manipulating terms, an equation for the

variation of the pressure p is

(7.6)

where

(7.7)

At the exit x = L, stress is Po, thus by integrating Equation 7.6 between x and Land

expression for the pressure distribution along the x-direction can be obtained as

(7.8)

The sign of p follows that of the platten velocity, i.e., when platens are converging,

prcssurc throughout the extrusion channel is positive. This solution is presented in

Figure 7.8 for various value of n. For n = 1, Equation 7.8 reduces to Jordaan and

TilllC;o's solution. [II Figure 7.8, pressure distribution for n =00 is also presented. If

Ihe valuc of n is large, Equation 7.8 reduces to

p=A(L-x)+Po· (7.9)



It should be noted that when II = ':'0, the material i~ Jllas~it:, and l,h,: prt'liSllr"

distribution is linear,

Mean pressure, P,n, all the platen ciln be oblainctj by inlt:gratillg I~tlmtt.ioll i.~

betwccn J: = 0 to oJ: = L as

(7.111)

where Po is pressure at exit. In Equation 7.10, the dfed of Hushed-layer l.hil:klu'SS

is in parameter A, as shown in 8quation 7.7. [f the pressure at tlU! t~xit is lU~glr'et,'d,

the mean pressure, pm is

Pm oc. (X)(n+'ll/" (i.ll)

From the logarithmic plot of mean platen prcssluc and the inverse of the t:rllslwd

layer thickness for the data presented in figure 7.6, the slope \va.'! ealculakd for

various tests. This slope varied greatly for pressures less than about 2 Mila, bllt at

higher pressure it is nearly constant. For 2.5 IIlTnls spCt:c1 1,:st it Wil.'; S, and for @,

125 and 160 mm/s speed tesis it was 2.2. for it Newtonian fluid Lhis slopt! woulll hi:

3, and for power-law nonlinear material with II =:l, th,: valtw would lw 1.1;7. ']'his

suggests possible applicability of viscous flow model for higher SlIced l'~'lts. In slow,:r

tesls, the effect of compaction has made interpretation dillicult.

7.4.4 Crushed Ice as a Viscoelastic Material

[n Figure 7.16, the pressure distributions a.tll.dvanced stages of 1l.tcst as prt:st:lIlf:11 ill

Figure 7.4 is compared with the pressure distribution predictr:d by the linn1l.r vi,'ll:OlI,'l

theory (Jordaan and Timeo, 1988) and the nonlinear viscous th,:ory for n = :1 ill

Equation 7.8. These theories provide a good fit to the data. for the r,entml portion,

i.e., for the fused zone.
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I-'igurc 7.16: Comparison of pressure dist.ribut.ions of a typical test at advanced stages
of ext.rusioJl t.o that predicted by linear and nonliJlear viscous theories.

The viscous and viscoelastic theories predict a convex pressure distribution. Thus,

it. cannot represent the observed pressure distribution near the edges. As most of the

force is concentrat.ed in t.he critical zone, the viscous theory models the material well

duriTlg high-pressure interactions. At t.he edges, the material in its loose state has

yet to undergo the solidification proress, which is not included in these theories. For

11 general solution 01 the extrusion problem, both Mohr-Coulomb and viscous flow

theories should be combined t.o obtain the meas:lred pressure distribution. It is also

desirable that the effect of volumetric deformation, which is caused by pore collapse,

should be included in this formulation.

Using the constitutive theory based on the mechanical model of crushed ice as

presented in Chapter 6, a F.E. analysis was performed for the flow of crushed ice

under plane-strain conditions. The material is assumed as a compressible creeping

solid following a power·law relation between stress and strain rate. The density of
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crushed ice is (1 - c) times the density of polycrystal1ine icc. Only the fuscil Wilt'

as shown in Figure 7.9 is analyzed, and outside this ZOlle pn.'SSllfe is Ilcgleded. This

assumption is consistent with the observed pressure tlistriblllioliS discllsSCl1 earlier ill

this chapter. A 150 mm long and 20 mm thick slah of crushed in~ wilh porl~ frl\,:~i()n

of 0.2 is squeezed under plane strain conditions 10 i\. final thickness of 10 1I11ll. 'l'lll'

final state of defonr.ation is similar to e:nrusion tests.

Unlike a fixed boundary at the indentor interface as ill viscous flow Lllt:ory of Ilu'

last section, a frictional boundary condition is used. This I ~ovides a coupled TI'1l[lOUSI'

between viscoelastic icc and the frictional interface. Xiao et al. (1992) havt~ shmvll

the importance of thi., wall friction, the changcs of which can rC!lult ill dYllilmio.: forccl'!

on the structure. The wall friction varies with the sped (Bames doal., 1!11I) uf

extrusion and the magnitude of stresses ncar the interface. (n the pn!sel1t analysis,

as the emphasis is laid on the compaction and flow of crushed icc, the I:odlidmlt or
friction between ice and steel is assumed to be constant with the magnitude of n.l.

The result of this analysis is presented in Figures 7.17 and 7.18 by contours pints of

stresses along the compression axis and the pore fractions of crushed ice. From lht~l~

ligures the effect of the extrusion speed on the material behaviour call be I)lJsl~rvl~d. /n

the slower test, the material has elongated more than the faster test, lhe NtrmlSt.'S illlli

the pore fractions are low, and the deformation is dominant hy 1I1(~ flow. TIIt~ sLrt:ssl~'l

and pore fractions at the top platen-in the extrusion tests prcsNure was rnclL'lurt:ll

at the top platen-are presented in Figure 7.19 fOf both tests a(on~ wilh llw tcst

data. It can be observed that the stress, or tht; pressure as it was lc:rrnl!U frC{!IH:III.ly

in this chapter, distribution is bell shaped. This clistribution is nearly paraholir: for

the faster test and spread in wicler area. This shows that the material docs not hav(!

to be frictional to yield a bell-shaped distrihution, the frictional intcJrfacl! roar: I:au.'lt]

such distribution of stresses for low-speed extrusion tests.
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During the extrusion proce~5. the pore fradion or H1lsl11'11 ice (hilllgl'~' :\1 til!'

exit the pore rraction is at its initial I'alue, while towards t.he cl'nlTi' till' pore rra<:tiull

is reduced largely (Figures 7.17b and 7.1Sb). Thl~ I'arialion or lllm~ity at tIll' lup

platen deduced from the pore fraction is presentell ill Figllrl' i.l!L Thi~ \'ariatioll ill

density is consistent with the observed variation or densit.y il~ ~hO\\'1l in Fi~l1n~ i.!l.

The variation of dcnsity is also depcndent on the ~Pl~~l. III the ~l()wcr ll'~1.. a~ Illllrl'

time is available for compaction that is time-deJlendent. 1.11l~ dl~llsity llC;H [,he O:I'liln.'

is larger than that. in the faster test.

7.5 Summary

The extrusion of crushed ice betwccn parallel platl~ COVI~rs a wide mll/!;l~ (If LIU' ma­

terial behaviour. At low stresses, behaviour uased 011 the Mohr-Coulomb ltIolld i~

appropriate to describe the state of the stresses in tile material. On lhe ()lhl~r 11;11111,

phase change at the grain boundary at high prC5~IlTl~~ iLIler~ the fI1iLLI~riil' Imhavillur.

increases ductility, and a viscous formulation ;~ l:onsC(Jllenlly snggeslllfi. A 11Ulllilll~itr

viscous flow theory for plane strain condition is presented ror such ca.~cs,

The viscous formulation at high stresses is sllrrorkd by tlH~ challgll ill tile l)rl~~Sllrl~

distribution rrom the hill-lype pressure distribution at tile o~ntrll of llll~ plat(~1J t.o it

convex pressure distribution. As lOost of the forces arc disLribuLed ill thf~ COIlVlJX

manner at the central zone, viscoelaslic tll(.'Qrics model the material wdl (Illrin~ hi~h

pressure interactions. The critical zone, which is the ~OTle or fused ie(! BlaSS wilh

density as high as that of polycrystalline icc, IUCfI:aseu from tllf! l;f!ntrf~ or tlU] platfJll

tOlvards the exit in a progressive manner. The stilrncs~ of the fused ice was Cflmrllted,

and was more than an order of magnitude smaller than lhat of polycrystidlilll: iCI~.

This shows that deformation in the crilicallOllc is dominated by illdastk hehaviour,
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Using iI. F.~. analysis of the fused zone hy assuming crushed ice as porous and viscous

malf!rial a bdJ-shapl'ld pressure distribution was ohserved. This suggests that material

do not have La frictional for such distribution.

After the initial compaction of the material, a dynamic force pattern in time simi­

lar to Lho.'lC in mCI!illn1·scalc tests was observed. This shows that spalling and cracking

iLrc not necessary La produce the dynamic elfcet in the icc-structure interaction, and

the key to this process remains in the crushed material and its boundary with the

structure.



Chapter 8

Conclusions and

Recommendations

The Jcvelopmentof a constitutive theory for a nonlinear material ilLVnlvl!~ I1l1dl:rsLaru[­

iog and modelling of various physical processes cOlllrihlltiJl~ to l1w IJhs(~r\l(~d lHillnial

response. At some stage, empirical rdations ohtained from the mal(!rii1ll"l~pllnsemay

be required to ueterminc material codficiclIls. For simplicity orw may TI!Sorllo simpll!

phenomenological models based on curve filling techniques, buL lilt::;\: Im:Lllods ar.:

often restricted to a narrow range of loading conditiolls, ilnd fail to l:xlmpolaLI! 10

staLes for which test data may not be available.

The process of material modelling can he slrcamliuccl by r(jlluwill~ the rralllt:work

of thermodynamics. The internal variahles arc essential in thilt they (~lliLhh~ UI'~ 1I1i·

erostruetural properties to be included into a .:ontinullfll theory. Tllis 1I1l~sis is all

investigation in this diredion. Although a major parL of thi~ tlwsi:J is .JI!voL(~t.l to Lh.~

modelling of physical changes in ice during ice·structIlTl~illter,u;tjoll, yd Lh.: prf~sentl~,1

theory is applicable to broad range of materials where the microslrllctllral rl!RLIJr/~S

such as microcracks ami cavities influence the maLerial bdlflViollr.

172
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Tlw strength and deformation hehaviour o[ icc depends on tIll:! rate of loading, the

density of microcfilcks, the toughness of grain. boundaries and other microstructures.

After ext(~llsivc rniaocracking when the cracks coalesce, pores arc formed at triple

j1Hll;tions o[ weakly connected grllins. Thi~ lIlllterial is finally extruded from the

strudurt~ interface as finely cru~hed icc. The confinement that is clue to the geometry

of ic(~ and structure hil..'i grellt influence orl the rate of change of these microstructures.

Triaxial tests were carried out on polycryslal!ine ice and crushed icc. These two

llIilt(:rials rcrm:s(mt two states in the icc failure and extrusion process. The tests were

dl:sigtlcd to refled the conditions during high rate and pressure interaction bct\I'een

il:l~ and ilstructure. The changc:l in the microstructure were closely examined by thin

.~edions of samples hefore and aftp.r the tests. To describe various changes in the

material two theories were formulated, and verified for both materials. A measure of

(liullilgC and porosity was taken as internal vMiahle. The damage measure includes

lIlicrocrackitig and non-continuous grain-boundary sliding. Flow properties of crushed

iw were also modelled hy a closed-formed solution and a finite clement method.

8.1 Conclusions

8.1.1 Triaxial Tests

Polycrystalline Ice

I1mler uniaxial stresses, icc is very brittle. The high rate of damage in constant

slrain·mtc tests r(:!lults ill lower strength of icc. Cracks are open and aligned to the

maximum principle stres~·direction by extending several grains. The cracked material

is llighly anisotropic at large ~trains. The failure is usually by axial splitting in the

sample due to extension of one or llIany critical cracks.
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\Vhen confining pressure is also applied. rr.ll:k~ Ml' ilrr..~led at natural b'llll'l!Mi..s

such as triple junctions. Tllis n'sldtl~d in incr...,sl' in ~lr(,ll,l;th. ('nn'ks iln' ,lislrihtll,'d

uniformly, ilnd the material uehaviour is ul'arly iSOLropic. TIlt' ,l\','r;,w' II'll!!.lh "f

uacks is of the order of the grain size. Fllrllwr damage i~ nl\ln~ .~I'lhll' t.hall ill lilt'

uniaxial case. For confining IHeSSllrc more Ihan [0 ~·IPil, Ihe sln'lIgl h i~ ill,I,'[wllll"111

of confining pressure. The dilatation under larg,~r ((l1\HIl'~IlI"llts is ~nl'prl·SS"'1.

Thin sed ions of the damage,! in' res'~f1lblc lhose or crnsllt'd ire Silll1[lll'~' Ilig Ar'lill.~

arc surrounded by findy·crushed grains that were recr}'sLal1izI"[ hy pr,'.~sllr<'.~i1\lt·rillg

Cracks iUC formed at critical inhomogeneities snch ilS grain.j)(lIl11diU'il's.

Crushed Ice

High porosity of crushed Itl' makes it vNy sl'n~itive to hydro.~taLit: wllIpn'ssioli. Thill

compaction is time-dependent, and is enhance,l several folll when slwar stn~sSl'.s ,In'

applied. Especially designed end-platens Wl~re sncCf!Ssrlllly IlSl~I! willi nllslwd in: to

maintain homogeneous deformation in the sall1pl,: ,luring lar~l~ stmills. 111 1Ill' slow,:r

tests, material undergoes large compaction during axial loadin,l!;, while ill till: rHst.~r

test, the effect of compaction is reuuced by dilatation eallSl~d hy hrittl'~III~ss ill I.lll:

material. The rate effect is clearly visible for low slrains. TIll: slrength is .~lronv;ly

pressure-dependent for pressures lower LImn 10 Mila. This is ,:nllsi.~tl:nt with oth':r

rrictional materials. For higher preSSIITl:S, lIle slrt:ngth is lJrcsslll't~.illtlr:l'.~ndl:nt ;, . ill

metals. [n the test range (strain rate l)l:twl~r.n !j x [O-f, Is to 'l x 11I-'lls), th.: slr.:nj.\lh

is independent of rate of deformation or the sil.mple.

Thin-section studies of ';amplcs after tests show that due Lo ,:xLmlsi\ll: l:rushin,l!;,

the average grain size has redu("~d gwaLly frorn till: original sizl:. The lar,l!;er v;rilins itT!:

protected by fine grains that wr.re crcah:d by crashing of critic,11 gmilili. Thl~ jJ()r.~s

arc entrapped at the triple poillts of SOrlU: largl~r graills a~'1 at tllt~ir p;raill.lltlun,lari,:s.



8.1.2 Material Modelling

Constitutive equations to describe the damage in viscoelMlk materials were l)rCSI'llll'd

by t\~·o theories. The first theory iJ a solution for nonlinear da~l il' Ilwllia, which was

extended to nonlinear viscoelastic media using the correspoudencc principiI's alill a

modifi~d superposition integral. The second \'iscoclasl k tlll'Ory is hasl'(\ UI1 11l<'I'h;wil:al

model with nonlinear clements. Three components "f deformation, i.f~., 1.1w I'lnsLiI:,

the delayed. clastic, and the viscous crt'Cp, arc sellar.,tdy ith:ntilied 'lnd thdr changf's

with the amount of microcracking and porosily arc modelled. The clasLic propl~r1.il~s

of the damaged material were estimaled by a Sl:lf-consistent solution.

Polycrystalline Ice

The kinetic equation for microcracking and lither changes in the mil:rO!!trllcluff: ill

polycrystalline ice is described by a generalized J-integ!"al. Uoth theories uSE'll in

modelling compared well with the measured response of polycrYl.'Lalline ice. TIlt: fir!!t

theory is more systematic and requires fewer parameters. The main tlisadvilntap;!~ of

this theory is the universality of the nonlinearity. The mechanical model dor:s 1I0t has

such limitation and gives a physical description of various compollents of lleformatjoll.

Crushed Ice

Crushed ice can be described as a I,orous material with wt:ak intcrgtilllulllr hflluls.

In both theories, the effect of porosity is included. Another microstrucLllral variable,

the grain boundary sliding effect, was also included hy considering them iL~ Wf:ilk

structures in the material. The performance of both models is ilcceptahle, tllough

only the mechanical model can addwss the nonlinearity, linear clastic propcrti~, and

the volume change during the deformation.
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Extrusion Analysis

The extrusion of crushed icc between parallel plates covers a. wide range of the ma­

terial behaviour. At low strC!oSeS, behaviour based on the Mohr-Coulomb model is

appropria.tc to describe the stale of thc stresses in the material. On the other hand,

plla.<lC chlUlgc at thc grain boundary at high pressures alters the material behaviour,

increases ductility, and a viscoelastic formulation is conseql.:cntly suggested.

The viscous formulation at high stresses is suppor~ed by the change in the pressure

(ljstribution from ~hc hill.type pressure distribution &1 the centre of the platen to a

f:onvex pressure distribution. As most of the forces are distributed in the convex

marlller atlh,.. central7,one, viscoelastic theories modclthe material well during higll

pressure interactions. The critical zone, which is the zone of fused ice mass with

density as Iligh as ~hat uj polycrys~allineice, increased from the centre of the platcn

towards the exit progressively.

After the initial compaction of the material, a dynamic forcc pattern in time simi­

lar Lo those in medium-scale tests was observed. This shmvs that spalling and cracking

are not necessary to produce thc dynamic elfed in the ice-structure interadion, and

tile key to this process rem&ins in the crushoo material and its boundar; with !he

structure.

8.2 Recommendations for Further Research

Development of a constitutive theory for a nonlinear material with changing mi­

t:r08lrl1cture i!l a major task. This thesis has described many important features of

!lltch a material with 8i-ecial atten1ion given to the ice-structure interaction problem.

Based on the experience gained in this stud)', recommendations for future study can

be made in the following areas:
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1. Uniaxial tests are commOllllleal15 to obtain the response of llIany polycrysli\l1ill"

and composite materials. In uniaxial t~ts, microsLr\lt:tnral iflho11logl'11l'it.it·s

develop at very low strains, and can complicatc th,: l1loddling ~JrO(,('SS. Jo'lIrl.lll'r

in real problems, uniaxial stress states are seldom cllcollnl,'rccl, and ,Idorm;d,illil

is large and cracking is stable. In these cases, lriaxialtcsts af(~ sugg,:st,'(1. For

correct modelling of the material behaviollf eil.lwr in crt'~:lll(:sl.s, or. in strl'llgl.h

tests, volumetric slrains must be measured.

2. During triaxial testing of icc, the cracking activities lire s\lppr(~sscd, hUl ()t.1H~r

micwstructural changes that arc stable such as dlllngc iu grain si1.l~ dIU: to

dynamic recryslallization occur. These physical processes arc poorly Illull'rst,ood

for high pressure and strain-rate tests. Triaxial tests shoul,l Ill: ,1(:siglU~(1 and

conducted to monitor these changes.

:J. The amount of dilalation directly affects damage hehaviour amI its pro.t;f(:s.~.

Further improvements can be made in the ,lilatation relation ior t.he frllckil1ll;

processes, where the work potential doC'S not exist, anti forfl1Il];~tioll of mil'

pled kinetic equations for damage and dilatation, similar to that prescnlc,l for

crushed icc. In crushed icc, improvements in kinetic (!qlli1liollS CiLlI III! l11a,ll~ lJy

including compressibility of icc grains.

4. Interaction of grain boundaries and pores in crushed ice shollld be sllluil:d. The

assumption of dilute and non-interaction ror these microstructnres is ljllcstioll­

able for crushed ice just outside the critical zone, where the density of cruslu:<l

icc is low, or the pore concentration is large dlle to continuous faihlf(~.
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Appendix A

Photographs of Samples

The photographs of samples after a test are presented here. The test number and

the scale are shown. For the detail information about type of sample and the loading

history see Table 3.1.
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Appendix B

Effective Moduli of Composites

The clastic propcrtiL'S of composites arc dependent on the elastic properties and the

volume fractions of the matrix and the particulate phases. The geometric features

of tile microstructure cau be the cr~'slal grain structure in polycrystallinc materials,

where each grain is anisotropic and difi'crent grains have different orientations, or,

dljjJ.~oidal·shapcd inclusions embedded in a continuous matrix phase as in composites.

The microcracks can be considered as ellipsoidal inclusions where one dimension is

vcry small. [n porous materials, the inclusion phase has no stiffness.

A review of various micromcchanical models is pfP.scntcd in Christensen (1979,

l!J!JO), Mura (1982) and Hashin (1983). These are the composite-sphere method

(Hashin, 1962), the self-consistent methods (Budiansky, 1965; Hill, 1965), the gen­

eralized self-consistent method (Christensen and Lo, 1979) and equivalent inclusion

nwthods (Eshclby, 1957; Mura, 1982). For dilute composites, these methods give sim­

ilar results; while for high concentration composites, the generalized self-consistent

method provides the best performance. For dilutely porous materials, such as com­

pacted crushed ice, any of these methods is expected to provide good results. The

equivalent inclusion method is selen~d for its simplicity of computation and is dis-
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cussed in detail. The concepts IISP.cl in tltl' ~1'1("'o1\~is1t'nl Il\l'thmlll and lIlt' gl~lU:ri\li1.•.,l

self-consistent methods arc also slImmarized. il11' concept of l'qui\'i\1t'llt hllllI0P;1'tl(·i1r.

which is common to tl11.'st: rna'! :Ill. is dc~cribcd firsl.

B.l Equivalent Inclusion Method

The equivalent inclusion methoJ is oascd on Elllll'lhy·.~ (l!l.'ii) ~Olllt.ioll fllr 01 I1niformly

stressed infinite continuum conlaining an ellipsoidal illdllSioll. '1'lw Slrt~llS dilll,llrhanrt·

in the applied stress due to the inclusion is ohlaine~l hy SQI\'illf; nn "Illlivall'nt hOIll\!'

gencous problem.

for the problem of a composite malt.'rial in wbich the parl1culal,: pha..o;<·s an: llllr

rounded by a homogeneous lllatrix, ~:;u:h partkulaLI' ph1L'lI: is ,:nllsitl,~re(l t,) Il<~ ;111

isolated ellipsoidal inclusion. The inll'rac1.ioll of inc1llsiolls ill lll'gb:tl:d ill this HI)'

proach. The geometry of the inclusion probh'rn is shown in Fi~lIrt: 1l.la, w!lt'r";1II

infinite material M of elastic modulus Ci}~, conLaills an dlipsoiual indllsioll I ur "lastil

modulu5 Ci~kl' The external applied stress iT,) and the resultill~ slraiu I:,! ,lrl~ rdakd

by Hooke's Law. Due La the inclll~ion I, a ~lrcss disturbance n'l aut! c(JrTI~llp()1I11ill~

strain (ij develops in the matrix and 'lark'S frolll place lo 1)la(:I:. The lol;ll S1. ... ~ll ;lIld

strain are

tolal strain:::: tij + (,j

(IU)

(11.')

respectively. In Figure B.l, the concept uf t.his dl)COrnpQsitioll is .,Iso shown. 'I'll,:

stress componenlS (fij arc in self·equilibriulil alld vallisli at tlw aliter !Jolllhlary:

(11.:1)

This condition ensures non-interaction or inclusions.
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Figure Ell: Micro-structural model and the decomposition scheme.

Hooke's law is written for inclusion and matrix as,

O'ij + (1jj "" Ci~k1(ilr/ + f.,) in [

itij + (1ij "" C,:%/(il:l + fAI) in M

(BA)

(B.5)

Now an equivalent problem is created by imaginary cutting, straining and welding

operation as described by Eshelby (1%7) in an infinitely extended. homogeneous mao

trix with dutic moduli Ctf.,. Cut and remove the domain [ from this matrix. Allow

the unconstrained transformation to ta!(e place, then apply surfa.ce traction on the

domain I to restore its original shape, put back the domain 1 in the hole and weld it.

Finally an equal and opposite body force is applied to balance the surface traction.

Wilen this material is subjected to the applied strain iij, an arbitrary homogeneous

strain (i/ is created in the inclusion 1 due to constraint imposed by the surrounding

matrix. ~'1ura (1982) has given this strain a generic name eigenstrain. This strain in

not related to any elastic deformation. The resulting total str~ and total strain are

O'ij+O'ij and iij+fij respectively, while the elastic strain is (ij+lij -iij in I. Hooke's



law yields,

q~~I(lU + q'l - I.kl) ill {

C,:~~,(/.tl + (,J) in ,II

(lUi)

(11.7)

The necessary ilnd sufficient conllition for the cqllivlllenq of ll\l~ ~tr('~~ <111<1 s1.rain ill

the above two set of problems i,

(IU~)

The strain {ij is related to the eigcnstrain (;;" by Eslwlhy'~ lt~nsor SiJU il~

(lUI)

The quantities S;jkl are dependent on the geometry of till"! illdusiolill. This is llll'

strain equivalent of the stress concentration factor. Using Equation lUI allli II.!), lIw

eigenstrain ii;" can be obtained as,

(H.IO)

where the scalar

(I!.II)

The total stress Uij +t7ij and total strain (;J +i;J in Lhe indusioll /GIll he c;lkulatl·,1

by substituting Equation 13.10 in Equation 118, and using Equations Ii.'! all,l IUj:

iJij+fTij

The averaged stresses in the representative volume V can be written 11.'1

(B.I':.!)
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Substituting Equation B.12 in this equation, total stress is obtained as

(B.15)

where c is the volume fraction of the inclusion, and fJ;y is average stress in the matrix.

Similarly, total strain is obtained as

(B.16)

where (:1 is averaged strain in the matrix 1\Jl and is related to average stress in the

matrix by Hooke's law as

(B.17)

Eliminatingi7iY and i.j¥ from Equations B.l5 and 8.16 using Equation 8.17, averaged

stressfJijis

0',
C'IJrI = I + 6ikOj/(Cilk/ - C;i~/)c (8.19)
C~~/ 6ik6jIC!j~, + Sijkl(C/jk/ CiY,,,l

This equl\tion can be specialized for various geometries of inclusions, such as spherical

inclusions, penny-shaped inclusions and cylindrical inclusions.

B.2 Self-Consistent Methods

For clastic composite and polycrystalline materials self-consistent methods (13udian­

sky, 1965; Hill, 1.965) provide an approximate but reliable estimate of bulk and shear

moduli. BudiansH ~,nd O'Connell (1976) have presented a self-consistent formulation

to include microcracks. This method is similar to the equivalent indusion method

and is ba.~ed on Eshelby's (1957) solution for a uniformly stressed infinite continuum

containing an ellipsoidal inclusion.



In the case of the problem of a compwite llIAterial in which lhe Ilarlimlalc I'ha:<t'l'

are surrounded by an clfl'Cti\'e and homogt'ncolls I\lAtrix, t'ach pnrticlllal~ pha....;c i~

considered to be an isolated ellipsoidal indusion. The i!lclu~io!l I:; assigm'tl tilt" prup­

erties and orientation of the pIHticu[ate phase and the matrix propl'rli~ roilwi,I\'11

with that of the compo!lite malerial. Such mapping of the COI"IKJSile mAterial i~ IllJI('

sible as the mean stress and displacemenls at iLs boundary aT!: elluallo lllo:;\, at tbe

boundary of the equivalent idealized continuum. The COIl~islcmcy conditiu!l rd\~1'lI 10

unchanged density and dispiacemcnt at the ouler boundary. Following thl: lIl\'ll1I in

Section 8.1, a solution for the elastic moduli can be fOllnt! i\,~

Unlike Equation 8.19,8.20 has the moduli of the compo~ile in the right si,I.: al!llJ,

thus it forms a coupled set of equations. In isotropic malerials, thi.~ re'lllin~ t1llll

the bulk modulu! of lhe composite should be known 10 oMain the shear modulus.

For rigid inclusions and for ~hc constant ratio of bulk to shear moduills (n constant

Poisson's ralio or 1/5), a uncoupled set of cqualions is obtAined.

For spherical pores a dosed·from solution for Eshclby'll lensor S'JAI ill ~ivo~1I liy

Mura(l982) as

51111 = 5m2 = S:t33J = 1:(;~::)' (l1.'lla)

, S/IM _ 1

5 11 12 =5'233 =53311 =SliM = Snl1 = 53:122, = 15(1 _ /1M)' (B.'llh)

,I - 511 M

S1112= S23lJ= S31:Jl = IS(I-IIM)' (IU!ll:)

Other components of Sij~1 are :lero.
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