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Abstract 

Organisms modulate nutrient cycles by transforming, storing, and transporting nutrients. 

While the impact of microorganisms and autotrophs on local and global biogeochemical 

cycles is well studied, our understanding of the nutrient cycling role of macro-consumers 

is in its infancy. In the following thesis, I explore aspects of the role of aquatic vertebrates 

in ecosystem nutrient cycling. Recent studies demonstrate substantial intraspecific 

variability in body element composition arising from environmental conditions and 

ontogeny. First, I test whether body element concentration varies among life stages and 

populations of Atlantic salmon (Salmo salar) from three Newfoundland rivers. I 

demonstrate that most intraspecific variability is explained by life stage and inter-stage 

variability in element concentrations can be attributed to the energy and nutrient 

requirements of reproduction and migration. Second, using long-term population 

monitoring data, I test whether ontogenetic differences in body phosphorus (P) 

concentration influence the role of Atlantic salmon as net sources or sinks of freshwater 

P. I find that incorporating inter-stage variability in body composition into nutrient flux 

models qualitatively changes our assessment of these populations as P sources or sinks 

relative to assuming ontogenetic homogeneity of body P concentration. Third, I develop a 

framework to describe the stoichiometric traits of vertebrate populations and use the 

framework to evaluate ontogenetic variability in body stoichiometry and total nutrient 

storage in brook trout (Salvelinus fontinalis) populations and partition nutrients released 

by migrating Atlantic salmon between eggs and excretion. Finally, life history strategy 
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may influence interspecific variation in the ecosystem effects of migratory animals. I 

derive a two ecosystem model to investigate the ecosystem effects of migratory top 

consumers as subsidies. I formalized the hypothesis that iteroparous migratory animals 

should have stronger top-down effects on their biotic resource stocks than semelparous 

migratory animals, and that the response of ecosystem fluxes depends on the efficiency of 

consumer-mediated nutrient recycling. Overall, my findings suggest that interactions 

between ontogenetic development and life history strategy shape the nutrient cycling role 

of vertebrates. Connecting population structure and dynamics to nutrient cycles in this 

way may be a new path for 21
st
 century ecological research and wildlife management.   
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Preface 

This is a manuscript-based thesis. In the Introduction and Overview, I connect the themes 

of the subsequent chapters with broad strokes and list the topics I hope those chapter 

advance. In the Conclusion, I summarize the primary findings of the chapters and 

integrate them into a more general statement about how this research can be extended to 

meet the challenges of 21
st
 century fish and wildlife management. The following 

manuscripts are included as chapters in my thesis:  

(1) Whole body element composition of Atlantic salmon Salmo salar influenced by 

migration direction and life stage in three distinct populations. 

(2) Ontogenetic differences in Atlantic salmon phosphorus concentration and its 

implications for cross ecosystem fluxes.  

(3) Length-nutrient content relationships for linking individuals and populations to 

ecosystem nutrient cycles.  

(4) Ecosystem effects of top consumers with migratory and complex life cycles.  

The first chapter is in press at the Journal of Fish Biology. The second chapter is 

published in Ecosphere. The third chapter is in preparation for Ecology Letters. The 

fourth chapter is under review at The American Naturalist.    
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Chapter 1: Introduction and Overview 

“One is constantly reminded of the infinite lavishness and fertility of Nature – 

inexhaustible abundance amid what seems enormous waste. And yet when we look into 

any of her operations that lie within reach of our minds, we learn that no particle of her 

material is wasted or worn out. 

-John Muir (1838-1914)  

Nutrients are essential for life. In rarity they constrain and in excess they overwhelm. The 

transformation of nutrient between abiotic and biotic forms, termed nutrient cycling, is 

constantly underway at every level of biological organization from the cell to the 

biosphere. While biological energy transformations ultimately express the interaction of 

life with the sun, nutrient cycling ultimately expresses the interaction of life with the 

earth. For these reasons, the conservation or manipulation of nutrient cycles at 

intermediate and higher levels of organization (i.e., individual, population, community, 

ecosystem, biosphere) is important for maintaining and improving human well-being both 

locally and globally. As human impacts have expanded from local to global, we need to 

further embrace John Muir’s poetic statement  

Nutrient cycling has historically been the domain of biogeochemists who focus on 

the role of microorganisms and humans in transforming nutrients (Schlesinger 1997). 

Indeed, the major global fluxes of nitrogen (N) are dominated by microbial and human 

mediated nitrogen fixation and microbial denitrification while global carbon fluxes are 
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dominated by net primary production, fossil fuel combustion, and microbial respiration. 

Yet, ecologists have demonstrated that animals influence nutrient dynamics at local and 

regional scales in direct and indirect ways (reviewed by Vanni 2002). Animals directly 

modulate nutrient cycling by acquiring, transforming, storing, transporting, and recycling 

nutrients. They indirectly modulate nutrient cycling by influencing prey behavior and 

inducing trophic cascades (Schmitz et al. 2010). In this thesis, I tackle the direct effects of 

large aquatic animals on ecosystem level nutrient cycles. I begin with a review of animal 

mediated nutrient cycling at the individual and population level and show that 

understanding intraspecific variation in nutrient cycling may be associated with individual 

ontogeny while interspecific variation at the population level may be associated with life 

history strategy.  

1.1.  ANIMAL-MEDIATED NUTRIENT CYCLING AT THE INDIVIDUAL LEVEL 

Understanding the roles of individuals in nutrient cycling begins with the concept of 

balanced growth because nutrient dynamics obey mass balance (DeAngelis 1992; Sterner 

and Elser 2002; Loreau 2010). The balanced growth equation separates nutrients 

consumed by an individual (C) between assimilation (A) and egestion (Eg). Assimilated 

nutrients are used for somatic growth (G) or reproduction (Rp), or are otherwise excreted 

(Ex) such that 

(Eq 1.1) 𝐶 = 𝐴 + 𝐸𝑔 = 𝐺 + 𝑅𝑝 + 𝐸𝑥 + 𝐸𝑔. 

At short temporal scales, this equation partitions individual consumption between three 

different pathways in an ecosystem nutrient cycle. Egested nutrients are available to 
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microbial decomposers, excreted nutrients are available to primary producers and 

heterotrophic microbes, and nutrients in growth and reproduction are available to 

predators. In the long term, egested nutrients can be re-mineralized and become available 

to primary producers while growth and reproduction becomes available to decomposers 

following the death of the individual, the failure of its gametes to produce embryos, or the 

death of its offspring.  

 In ecological stoichiometric theory, consumer body element composition is 

considered one major determinant of the partitioning of different nutrients between 

recycling (Ex+Eg) and production (G) pathways, and the consumer’s resource element 

composition is the other (Sterner and Elser 2002). If consumers exhibit non-strict 

homeostasis of body element composition, meaning that the element ratio X:Y of growth 

varies with the X:Y of the resource because production efficiencies (C/G) for single 

nutrients are constant, then the elemental ratio of recycled nutrients is linearly associated 

with the elemental ratio of the resource consumed (Sterner and George 2000). However, 

the assumption of constant production efficiencies for single nutrients is invalid for most 

larger animals because these animals are thought to adjust production efficiency to 

maintain body element homeostasis (i.e., strict homeostasis; Sterner and Elser 2002). 

Thus, the element ratios of recycled nutrients may be better approximated by the 

elemental imbalance between the individual’s body and its resource (Cross et al. 2003). 

 Strict homeostasis of vertebrate body element composition is a common 

simplifying assumption in bioenergetic (Kraft 1992; Schindler & Eby 1997) and 

theoretical models (Leroux et al. 2012) concerned with animal mediated nutrient cycling. 
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These models are important to our understanding of nutrient excretion by vertebrates 

because direct measurements of the composition and rates of nutrient excretion by 

individuals of many species in many ecosystems are unavailable (but see Vanni et al. 

2002; Sereda and Hudson 2011; Allgeier et al. 2015; Tiegs et al. 2016; Showalter et al. 

2016; Vanni and McIntyre 2016). The central part that body composition measurements 

play in bioenergetic models in particular caused rapid growth in the number of studies 

quantifying interspecific variability in vertebrate body element composition, especially in 

freshwater fishes (Hendrixson et al. 2007; Vanni et al. 2002; McIntyre and Flecker 2010).  

These efforts concluded that body element composition is largely taxon specific. 

Likewise, variation in individual animal excretion rates and stoichiometry are well 

explained by taxonomic identity, trophic guild, temperature, and body size (Allgeier et al. 

2015; Vanni and McIntyre 2016) and poorly explained by body composition, at least at 

low levels of resolution. The difficulty for ecological stoichiometry to predict nutrient 

excretion rates using body composition may arise from (1) rates and ratios being 

measurements on different scales with different distributions, (2) inaccurate accounting of 

consumption rates when combining data from many disparate species (Vanni and 

McIntyre 2016) or (3) a poor understanding of intraspecific variability in both vertebrate 

body composition and the composition of their resources.    

Recent work shows substantial variability in body element composition within 

taxa resulting from habitat type (Vrede et al. 2011; Tuckett et al. 2016), predation 

pressure (El-Sabaawi et al. 2012), and ontogeny (Pilati and Vanni 2007; Boros et al. 

2015; Tiegs et al. 2016; Showalter et al. 2016). For example, Boros et al. (2015) found 
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that %C, %N, and %P differed by life stage among individual fathead minnows 

(Pimephales promelas) and sheepshead minnows (Cyprinodon variegatus) sampled as 

embryonic, post-embryonic, larval, juvenile, and adult life stages experiencing a single 

diet shift occurring at the juvenile stage. Similarly, total body N and P content expressed 

as number of moles and molar N:P of wood frogs peaked at intermediate larval life stages 

corresponding to the completion of bone ossification (Tiegs et al. 2016). Ontogenetic 

changes in body element composition coincide to changes in mass-specific excretion rates 

(Tiegs et al. 2016; Showalter et al. 2016) and shifts in diet composition (Pilati and Vanni 

2007) suggesting that ontogenetic stage is important to consider when evaluating the 

nutrient cycling effects of individuals within populations.  

1.2.  ANIMAL MEDIATED NUTRIENT CYCLING AT THE POPULATION LEVEL 

A single individual of most species in most ecosystems will not have measureable direct 

effects on ecological processes at the ecosystem level, but the aggregative effects of all 

individuals within a population or community may (Allen and Giloolly 2009). Indeed, 

when the nutrient content of all individuals within a vertebrate population are summed, 

vertebrate populations and communities can represent substantial pools of nutrients in 

aquatic ecosystems, particularly phosphorus (Kitchell et al. 1979; Milanovich et al. 2015).  

The magnitude and pathway by which nutrients move into and out of this pool 

determines the population’s or community’s effect on ecosystem nutrient dynamics. For 

example, vertebrate community excretion in Rio Las Marias, Venezuela can provide 

146% of algal P demand suggesting that vertebrate communities played an important role 
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in supporting primary production (Vanni et al. 2002) and the spatial distribution of fish 

among habitats creates hotspots of nutrient transformation rates (McIntyre et al. 2008). In 

contrast, Sereda and Hudson (2008) estimated that, although fish represented 54% and 

55% of total epilimnetic P in two Ontario Lakes, nutrient excretion by fish only 

accounted for a maximum of 36% of epilimnetic phytoplankton regeneration. The high 

turnover time of nutrients in fish biomass relative to the turnover time of nutrients in 

phytoplankton biomass suggests that fish nutrient release should have a smaller effect on 

phytoplankton productivity than the release of nutrients by the phytoplankton themselves 

(Sereda and Hudson 2008). Yet, both of these examples examine only part of vertebrate 

nutrient releases (i.e., excretion) at short temporal scales by summing excretion rates by 

individuals according to body size (Sereda and Hudson 2008). While vertebrates may or 

may not contribute to primary productivity through excretion, how vertebrates interact 

with nutrient cycles at longer temporal scales requires accounting for population 

dynamics and the constraints on recycling of non-excretion releases (i.e., mortality and 

emigration; Vanni et al. 2013). 

At longer timescales, nutrients stored in biomass by aquatic vertebrates are 

released from the population upon the deaths of individuals, where those nutrients may or 

may not be recycled into the food web through decomposition and remineralization. As 

such, the long-term net effect on ecosystem nutrient availability depends not only on 

population abundance and excretion rates, but also on mortality and remineralization 

rates. Thus, at longer timescales, the net flux of nutrients (Fnet) between animal biomass 

and the rest of the ecosystem can be expressed as  
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(Eq 1.2)  𝐹𝑛𝑒𝑡 = 𝛿𝑂 − 𝐼, 

where I is the total input of nutrients into a population through consumption by all 

individuals, O is the output of nutrient from the population measured as the sum of 

excretion, egestion, and mortality, and δ is the rate at which outputs are recycled back 

into a biologically available form. A more precise formulation would include variable 

recycling rates for each output from the population.  

1.3.  ANIMALS AS NUTRIENT SUBSIDIES 

Subsidies are inputs of individuals, material, or energy to an ecosystem from another 

ecosystem that increase the productivity of the recipient (Polis et al. 1997) and can play 

an important role in ecosystem regulation (Loreau and Holt 2004). Subsidies occur as 

consumer and resource fluxes (Allen and Wesner 2016); consumer fluxes include inputs 

of individuals at upper trophic levels and act as a top down force on lower trophic levels 

(i.e., depress in situ prey; McCoy et al. 2009), whereas resource subsidies include inputs 

to lower trophic levels (i.e., detritus, abiotic nutrients, and prey) and act as a bottom up 

force on food webs (Marczak et al. 2007; Holgerson et al. 2016). Empirical studies often 

focus on direct effects of resource fluxes on the recipient trophic level (Marczak et al. 

2007; but, see Sato and Watanabe 2014). Meanwhile, recent theoretical studies on 

subsidies have taken a meta-ecosystem perspective (Loreau et al. 2003) and examined the 

effects of reciprocal consumer and resource fluxes between ecosystems on various 

ecological processes including trophic cascades (Leroux and Loreau 2012), food web 

stability (McCann et al. 2005), and nutrient co-limitation (Marleau et al. 2015). Animals 
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can simultaneously act as both consumer and resource subsidies depending on their 

behavior and life history, thus impacting food webs and nutrient cycling across 

ecosystems.   

Animal movement is often nutrient translocation and is recognized as a way 

vertebrates directly contribute to the vertical distribution of nutrients in the food web (i.e., 

biomass pyramids) and the rates of cycling (Vanni 2002). Inputs of nutrients by animals 

immigrating or migrating to an ecosystem or habitat represent a subsidy with associated 

effects on the productivity and structure of the recipient ecosystem (Polis et al. 1997). For 

example, detritivorous gizzard shad (Dorosoma cepedianum) sequester P in the benthic 

zone of lakes and release P in the pelagic zone resulting in a gradual increase in pelagic P 

when without gizzard shad-mediated P translocation, pelagic P would decline (Vanni 

2002). Roe deer move nutrients from fertilized cropland to forest patches across Europe 

(Abbas et al. 2012) and geese supply up to 40% of nitrogen and 75% of phosphorus in 

their wetland roosts by transporting nutrients from farm fields (Post et al. 1998). 

Migratory animals transport nutrients across ecosystem boundaries and, in some extreme 

cases inputs via migratory animals can support biota at regional scales (e.g., Pacific 

salmon; Schindler et al. 2003). Yet, the effects of migratory animals on food webs and 

nutrient cycles are sometimes inconsistent, depending on the behavior of the animals 

(e.g., nest digging by sockeye salmon decreases benthic mancroinvertebrate biomass and 

gross primary productivity; Moore et al. 2007; Holtgrieve et al. 2011). Meanwhile, bi-

directional flows of migratory animals and the simultaneous delivery of consumer and 

resource subsidies may yield non-intuitive results. My thesis is concerned with how 
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organismal characteristics, primarily life history strategy and body composition, influence 

ecosystem nutrient cycles.  

1.4.  THESIS OVERVIEW 

My thesis combines empirical studies, synthesis of large datasets, and mathematical 

modelling to address the role of life cycle and ontogeny in shaping the role of animals in 

nutrient cycling.  

In Chapter 2, I test whether variation in body element composition of a migratory animal, 

the Atlantic salmon (Salmo salar L.), is explained by life stage and/or river of capture.  

In Chapter 3, I explore the effect of differences in body composition among life stages on 

the role of populations as sources or sinks of nutrients in natal ecosystems.  

In Chapter 4, I present an alternative method for incorporating animals into nutrient 

cycles using relationships between length and total body nutrient content. With further 

development and testing, these relationships may serve to bridge a gap between 

ecological stoichiometry, population ecology and traditional ecosystem ecology. 

In Chapter 5, I derive and analyse a model to explore how trophic structure and 

ecosystem fluxes respond to variation in life history characteristics of top consumers with 

migratory life cycles. 

In Chapter 6, I summarize my findings and briefly discuss why two current conceptual 

frameworks for connecting organisms to ecosystem structure and function may not be 

ideal for informing fish and wildlife management policy. Merging population and 
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ecosystem ecology probably requires returning to investigating intraspecific trait 

variability and understanding its impacts within and across ecosystems.  
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Chapter 2: Whole body element composition of Atlantic salmon (Salmo 

salar) influenced by migration direction and life stage in three distinct 

populations 

A version of this chapter can be found in the Journal of Fish Biology: 

Ebel, J. D., S. J. Leroux, M. J. Robertson, and J. B. Dempson. 2016. Whole body element 

composition of Atlantic salmon Salmo salar influenced by migration direction and life 

stage in three distinct populations. Journal of Fish Biology 89:2365-2374. 

doi:10.1111/jfb13123 

2.1. ABSTRACT 

Body element content was measured for three life stages of wild Atlantic salmon Salmo 

salar from three distinct Newfoundland populations as individuals crossed between 

freshwater and marine ecosystems. Life stage explained most of the variation in observed 

body element concentration whereas river of capture explained very little variation. 

Element composition of downstream migrating post-spawn adults (i.e., kelts) and juvenile 

smolts were similar, and the composition of these two life stages strongly differed from 

adults migrating upstream to spawn. Low variation within life stages and across 

populations suggests that S. salar may exert rheostatic control of their body element 

composition. Additionally, observed differences in trace element concentration between 

adults and other life stages were probably driven by the high carbon concentration in 

adults because abundant elements, such as carbon, can strongly influence the observed 
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concentrations of less abundant elements. Thus, understanding variation among 

individuals in trace elements composition requires the measurement of more abundant 

elements. Changes in element concentration with ontogeny have important consequences 

for the role of fishes in ecosystem nutrient cycling and should receive further attention. 

2.2. INTRODUCTION 

Fish populations can control aquatic nutrient cycling because they can be substantial 

pools of elements within aquatic ecosystems (Vanni 2002) and transport elements 

between ecosystems (Moore and Schindler 2004; Twining et al. 2013). In theory, a fish’s 

role in within-ecosystem nutrient cycling is determined by the elemental composition of 

its body relative to the composition of its food, which influences fish growth and 

excretion rates (Sterner and George 2000). Stoichiometric models of fish growth and 

nutrient cycling typically assume homeostatic regulation of body element composition 

within taxonomic groups (Sterner et al. 1992), and this assumption led to investigations 

evaluating interspecific variability in fish body element composition (Hendrixson et al. 

2007; Dantas and Attayde 2007). Additional work has shown that substantial intraspecific 

variability among populations can arise through differences in habitat (Vrede et al. 2011; 

El-Sabaawi et al. 2012), and within populations through developmental shifts such as the 

shift from larval to juvenile stages (Pilati and Vanni 2007). For example, % carbon (C) 

decreased and % phosphorus (P) increased when gizzard shad Dorosoma cepedianum 

Lesueur 1818 reached ca. 30mm in length (Pilati and Vanni 2007). Meanwhile, Boros et 

al. (2015) found that % nitrogen (N) decreased, %C increased, and %P oscillated along a 

trajectory from embryonic and adult stages in fathead minnows Pimephales promelas 
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Rafinesque 1820 and sheepshead minnows Cyprinodon variegatus Lacepede 1803.  

Similarly, the shift from juvenile to the mature adult stage may also result in a change in 

body element composition, as may the release of elements during reproduction that marks 

the shift from pre-spawn to post-spawn adult (see Chapter 3).  

Many fishes use different habitats at different stages of their life cycles, and at a 

population level, these migrations can represent substantial movements of elements 

(Vanni et al. 2013).  Anadromous and catadromous fishes in particular transport nutrients 

between marine and freshwater ecosystems when juveniles migrate to the ocean and 

adults return to freshwater to overwinter or spawn (Moore and Schindler 2004; Chapter 

3). Because different life stages move nutrients in different directions and certain life 

stages of a species can dominate fish community biomass in some ecosystems, 

quantifying ontogenetic shifts in fish element composition is important for determining 

how anadromous fishes modulate within ecosystem nutrient cycling and across ecosystem 

nutrient transport (Chapter 3). To date, few published studies present body element 

composition measurements of all migratory stages of a wild anadromous species that can 

capture potential interpopulation variability, inform nutrient cycling and transport models 

(Shearer et al. 1994; Talbot et al. 1986), and shed light on how body element composition 

changes during migration and reproduction (Chapter 3). The aim of this study was to 

determine the body element composition of three wild Atlantic salmon Salmo salar L. 

1758 life stages, and evaluate differences with respect to variations in individual size, 

habitat use, and morphology that follow ontogeny.  
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2.3. MATERIALS AND METHODS 

Whole body element content was quantified for adult S. salar returning to freshwater to 

spawn, as well as downstream migrating kelts (i.e., downstream migrating post-spawn 

adults), and smolts from three river systems in Newfoundland, Canada: Campbellton 

River (49° 17' N, 54° 56' W), Conne River (47° 55' N, 55° 41' W), and Western Arm 

Brook (51° 11' N, 56° 46' W). The three rivers drain different geographic regions of the 

island and the populations are genetically distinct (Bradbury et al. 2014). A more detailed 

description of study rivers can be found in Chapter 3. 

At least four individuals of each life stage from each river were collected as they 

passed the monitoring facility located at the mouth of each river (Table A.2.1). Samples 

were homogenized as described in Chapter 3 before chemical analysis of carbon (C) and 

nitrogen (N), phosphorus (P), sulfur (S), potassium (K), magnesium (Mg), sodium (Na), 

and iron (Fe). Approximately 5 g of each wet sample was placed in a clean scintillation 

vial and refrozen at -20º C before shipping on dry ice to the Agriculture and Food 

Laboratory at University of Guelph where it was freeze dried to obtain dry mass and then 

analyzed for P, Ca, S, K, Mg, Na, and Fe on a VARIAN VISTRA-Pro simultaneous ICP-

OES (www.varianinc.com) using test methods SNL-019,047 with a bovine liver standard 

(NIST 1577c). All samples exceeded detection limits by at least an order of magnitude 

(Table A.2.2). An additional 10-20 g of each sample was further prepared for C and N 

(C/N) analysis. C/N samples were dried at 50º C until a constant mass was obtained (ca. 5 

d), and then ground to a fine powder with a mortar and pestle. Powdered sample was 

stored in a sealed vial for up to two months. Then, the vials were opened and placed in a 
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desiccator for one week prior to transferring 1 mg of dried sample into 7x7mm ultralight 

tin capsules and analyzed for C and N concentration with a Carlo Erba NA 1500 Series II 

Elemental Analyser (www.thermo.com) at the Stable Isotope Lab Facility at Memorial 

University of Newfoundland. 

General linear models (GLM) were used to test whether life stages differed in 

terms of elemental composition by including body element concentration on a dry mass 

basis as the dependent variable.  Life stage, river of origin, and the interaction of life 

stage with river of origin were used as explanatory factors. Akaike’s Information 

Criterion corrected for small sample sizes (AICC) in the “AICcmodavg” R package 

(Mazerolle 2015) was used to determine the most parsimonious model to explain 

variation in S. salar body element composition. Explanatory factors included the 

interaction of life stage and river because of an a priori hypothesis that differences in 

environmental conditions and genetic make-up among populations (Bradbury et al. 2014) 

may lead to inter-population variability in the magnitude of differences in elemental 

composition among life stages. Model fits were compared by evaluating the percent of 

deviance explained, which is defined as the reduction in deviance caused by adding 

parameters to the intercept model, and expressed as DevianceExplained = (Dnull – Dfitted) 

* Dnull 
-1

 , where D is the deviance extracted from the GLM summary. To evaluate 

differences in element concentration between pairs of life stages (i.e., adult vs. kelt, adult 

vs. smolt, kelt vs. smolt), effect sizes were calculated as the percent difference between 

measured concentrations in each life stage (e.g., ([C]adult – [C]smolt)*[C]adult 
-1

) and 

qualitatively assessed. To test for autocorrelation between elements, which may indicate 
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whether one element is driving observed concentrations of other elements, correlations 

between the most abundant elements in S. salar bodies were examined (i.e., C, N, P, Ca). 

All analyses were performed in R v.3.1.1 (R Core Team 2014).  

2.4. RESULTS 

A model with life stage was the most parsimonious model for most elements (Akaike 

weights 0.74 to 1.00) and explained most of the variation in body element concentration 

(Table 2.1; Figure 2.1). C and Na were the only elements where the best model included 

the interaction of life stage with river as the explanatory factor. Despite small sample 

sizes, life stage explained over 80% of deviance from the intercept model for C, N, P, Ca, 

Mg, and Na, and 40-70% of deviance from the intercept model for Fe, K, and S (Table 

2.1). Models that included the interaction of life stage and river of origin better fit the data 

for all elements, but the increase in deviance explained was less than 10% and including 

the interaction term came at the cost of additional parameters. 

Carbon concentration was 20-25% higher in adults than it was in either kelts or 

smolts (Figure 2.2a,b), but all other elements had higher concentrations in kelts and 

smolts than in adults (Figure 2.2c). The strongest percent difference in element 

concentrations between adults and other life stages occurred for Ca, followed by Fe, Na, 

and P (Figure 2.2a,b).  Kelts and smolts, however, had very similar element 

concentrations for all elements except for Mg (Figure 2.2c). Across life stages, %N was 

negatively correlated with %C (Fig. 3a; Pearson’s r = -0.76), as was %P (Figure 2.3b; 

Pearson’s r = -0.93). Meanwhile, %N was positively correlated with %P (Figure 2.3c; 
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Pearson’s r = 0.77) and %P was positively correlated with %Ca (Figure 2.3d; Pearson’s r 

= 0.99). Elemental composition on a dry mass basis is preferred for use in stoichiometric 

models, but % element on a wet mass basis is required for application in nutrient transport 

models. As such, % element by wet mass is provided in Table A.2.3 and the differences 

between adults and other life stages for element concentrations on a wet mass basis are 

qualitatively similar to concentrations on a dry mass basis presented in Figure 2.1.  

2.5. DISCUSSION 

Salmo salar in this study spanned the range of C, N, and P concentrations 

observed in freshwater fishes. Mean adult element concentrations slightly exceeded the 

maximum of %C, was the extreme low end of %P, and near the mean %N observed in 95 

freshwater species (McIntyre and Flecker 2010). Adult element concentrations in this 

study were similar to N and P values published for sockeye salmon Oncorhynchus nerka 

Walbaum 1792 (Donaldson 1967 as cited in Moore and Schindler 2004) and artificially 

reared S. salar (Talbot et al. 1986; Shearer et al. 1994). Kelt P concentration in this study 

was higher than presented for spawned adults prior to overwintering (Shearer et al. 1994), 

and similar to P concentration of wild kelts measured by Talbot et al. (1986). N, Ca, and 

Na concentration of kelts in Talbot et al. (1986) was also similar to concentrations in the 

present study. Smolts in the present study had lower concentrations of N, P, Ca, Na, and 

K than parr sampled by Talbot et al.  (1986). Neither Talbot et al. (1986) or Shearer et al. 

(1994) measured C concentration. The results of this study run contrary to C, N, and P 

values presented for wild S. salar from the River Tweed, UK published by Lyle & Elliott 

(1998), although their values have been used by multiple nutrient transport and cycling 



   

 

26 

 

studies (e.g., Jonsson and Jonsson 2003a; Samways and Cunjak 2015), which may be 

problematic (Ebel et al. 2015). Specifically, adult S. salar in this study had 40% and 12% 

higher C and N concentration by wet mass, respectively, and 21% lower P concentration 

than shown by Lyle and Elliott (1998). This difference is probably due to the timing of 

fish collection relative to freshwater entry; however, Lyle and Elliot (1998) do not state 

when or where their samples were collected. 

Counter to the initial expectation, there was evidence that kelts and smolts in this 

study had equivalent elemental composition, whereas adult S. salar sampled after feeding 

in marine habitats differed strongly from kelts and smolts. Thus, ontogenetic variation in 

body element composition observed in this study may result from differences in the 

energetic and material requirements of life stages as determined by the direction of 

migration and marked by recent feeding activity. The consistency in element 

concentration across populations and within life stages suggests that S. salar in these 

study rivers may exhibit programmed rheostasis, where an individual regulates its body 

composition around multiple set points defined by its life cycle (Mrosovsky 1990). Most 

examples of rheostatic control of body composition is related to changes in body fat 

content through periods of anorexia (Mrovosky 1990), which can be indirectly connected 

to the elemental changes between smolts and adults, and adults and kelts in this study 

because carbon is the dominant component of lipids. By including carbon, the results of 

the present study parallel previous work assessing inter-life stage variation in energy 

content of wild S. salar (Jonsson and Jonsson, 2003b; Dempson et al. 2004) and a shift 

towards increased lipid storage in young-of-the-year gulf menhaden Brevoortia patronus 
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Goode 1878 (Deegan 1986). Similarly, investigations examining differences in crude fat 

and energy levels were noted in Conne River parr rearing in fluvial versus lacustrine 

habitats with outgoing smolts characterized by lower values of each of these components 

(Dempson et al. 2004) as the smoltification process often results in reduced levels of 

lipids (Wedermeyer et al. 1980; McCormick et al. 1998). Strong differences in elemental 

composition among life stages moving in different directions with low spatial variation 

supports the hypothesis that there is a proximate basis for ontogenetic shifts involving 

migration (Thorpe 1986; Thorpe et al. 1998). 

Carbon comprises a large portion of dry mass; adult dry mass was 51-58% C 

whereas kelt and smolt dry mass was 37-47 % C (Figure 2.1). Negative correlations of C 

with N (Figure 2.3a), and C with P (Figure 2.3b), when compared to the positive 

correlations of P with N (Figure 2.3c) and P with Ca (Figure 2.3d) suggest that the strong 

difference in %C among life stages is probably the driver of differences in the 

concentrations of other, less abundant elements. The interaction of river with life stage 

improved the fit of general linear models for C concentration suggesting that 

environmental differences among streams may act directly on C by influencing energy 

budgets (El-Sabaawi et al. 2012). Differences in C concentration within life stages, but 

among rivers, however, were not high enough to cause appreciable differences in the 

concentrations of most other elements. The interaction of life stage and river also 

provided a better fit for Na concentration, potentially resulting from spatial variation in 

progress towards shifting from hypo-osmotic to hyper-osmotic regulation (or vice versa) 

at the time when individuals were captured at counting fences (Potts et al. 1985).  



   

 

28 

 

In conclusion, life stage was revealed to be a primary driver of body element 

composition of wild S. salar. Different life stages appear to have distinct elemental 

signatures, and composition is also profoundly influenced by recent behaviour and 

environmental conditions (i.e., overwintering and subsequent downstream migration). To 

the authors’ knowledge, this is the first study that measured both whole body macro-

element (i.e., C and N) and trace element concentrations in S. salar at a set point in space 

and ontogeny (the freshwater-marine interface), which has explained some previously 

observed differences in trace element concentrations among life stages (Talbot et al. 

1986; Shearer et al. 1994). Differences in trace element concentrations between adults 

and other life stages appear to be related to C storage levels, probably in the form of 

lipids. Kelts and smolts had similar element concentrations despite large differences in 

body size. More generally, differences between adults and other life stages show that 

timing of sampling relative to the reproductive phenology and behaviour of fishes can be 

an important determinant of observed elemental concentrations, which should be 

considered in nutrient recycling and transport models involving fishes.  
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Table 2.1. Results of general linear models quantifying the importance of life stage and 

river of origin as predictors of Salmo salar body element concentration on a dry 

mass basis. 

Element Model k
 Log 

Likelihood 

AICc ΔAICc Akaike 

weights 

Deviance 

Explained
 

Carbon Life stage X 

River 

10 125.46 -224.63 0.00 1.00 94.58 

Life stage 4 106.20 -203.43 21.20 0.00 87.48 

Intercept 2 58.41 -112.56 112.08 0.00 0.00 

River  4 60.00 -111.01 113.61 0.00 6.66 

Nitrogen Life stage 4 172.83 -336.69 0.00 0.98 84.55 

Life stage X 

River 

10 177.71 -329.13 7.55 0.02 87.51 

Intercept 2 129.87 -255.46 81.22 0.00 0.00 

River  4 130.72 -252.46 84.22 0.00 3.61 

Phosphorus Life stage 4 200.94 -392.91 0.00 0.77 86.42 

Life stage X 

River 

10 208.38 -390.48 2.43 0.23 90.17 
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Intercept 2 155.03 -305.77 87.14 0.00 0.00 

River  4 155.97 -302.97 89.94 0.00 4.04 

Calcium Life stage 4 164.61 -320.24 0.00 0.74 80.17 

Life stage X 

River 

10 172.22 -318.15 2.08 0.26 85.76 

Intercept 2 127.39 -250.50 69.74 0.00 0.00 

River  4 128.64 -248.30 71.94 0.00 5.29 

Sulfur Life stage 4 280.10 -551.23 0.00 0.94 68.98 

Life stage X 

River 

10 286.01 -545.73 5.49 0.06 76.00 

Intercept 2 253.18 -502.08 49.14 0.00 0.00 

River  4 253.54 -498.10 53.13 0.00 1.54 

Potassium Life stage 4 245.68 -482.39 0.00 1.00 67.91 

Life stage X 

River 

10 246.84 -467.39 15.00 0.00 69.48 

Intercept 2 219.55 -434.81 47.58 0.00 0.00 

River  4 219.57 -430.17 52.23 0.00 0.11 
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Magnesium Life stage 4 369.19 -729.40 0.00 1.00 90.17 

Life stage X 

River 

10 372.22 -718.15 11.25 0.00 91.39 

Intercept 2 315.82 -627.36 102.03 0.00 0.00 

River  4 316.46 -623.94 105.46 0.00 2.73 

Sodium Life stage X 

River 

10 292.42 -558.56 0.00 1.00 93.57 

Life stage 4 275.16 -541.34 17.22 0.00 86.37 

Intercept 2 229.31 -454.34 104.22 0.00 0.00 

River 4 230.11 -451.24 107.32 0.00 3.40 

Iron Life stage 4 405.13 -801.29 0.00 0.98 46.71 

Life stage X 

River 

10 409.80 -793.31 7.97 0.02 56.50 

Intercept 2 390.66 -777.03 24.25 0.00 0.00 

River  4 391.28 -773.59 27.70 0.00 2.69 
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Figure 2.1. Whole body (a) carbon, (b) nitrogen, (c) phosphorus, (d) calcium, (e) sulfur, 

(f) potassium, (g) magnesium, (h) sodium, and (i) iron concentrations of adult (●), kelt 

(*), and smolt (○) Salmo salar captured at counting fences installed at three rivers located 

on the island of Newfoundland. Concentrations are presented as percent of dry mass. 
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Figure 2.2. Percent difference in whole body element concentration between Salmo salar 

(a) adults and smolts, (b) adults and kelts, and (c) kelts and smolts collected from three 

watersheds in Newfoundland, Canada. Percent difference was calculated as (mean of life 

stage 1- mean of life stage 2) / mean of life stage 1. Confidence intervals were calculated 

by ranking the percent differences between all combinations of individuals of the life 

stages being compared and removing the upper and lower 2.5%. 
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Figure 2.3. Correlations between (a) % C and %N, (b) %C and %P, (c) %P and %N, and 

(d)  %P and %Ca of adult (●), kelt (*), and smolt (○) Salmo salar. Percent element is 

presented on a dry mass basis. 
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Chapter 3: Ontogenetic differences in Atlantic salmon phosphorus 

concentration and its implications for cross ecosystem fluxes  

A version of this paper can be found in Ecosphere: 

Ebel, J. D., S. J. Leroux, M. J. Robertson, and J. B. Dempson. 2015. Ontogenetic 

differences in Atlantic salmon phosphorus concentration and its implications for cross 

ecosystem fluxes. Ecosphere 6:136. doi:10.1890/ES14-00516.1 

3.1.  ABSTRACT 

Nutrient transport across ecosystem boundaries by migratory animals can regulate trophic 

and biogeochemical dynamics of recipient ecosystems. The magnitude and direction of 

net nutrient flow between ecosystems is modulated by life history, abundance and 

biomass, individual behavior, and body element composition of migrating individuals. 

We tested common assumptions applied to nutrient transport models regarding 

homeostasis of species’ body element composition across space and ontogenetic stage. 

We quantified whole body phosphorus (P) concentration of three life stages of wild 

Atlantic salmon (Salmo salar L.) from three distinct populations in Newfoundland, 

Canada, to evaluate the importance of river of origin and life stage as predictors of 

salmon %P. We found that life stage was a more important predictor of salmon %P than 

river of origin, and that %P of post-spawn adults migrating downstream to the ocean (i.e., 

kelts) was more similar to %P of juveniles migrating downstream to the ocean (i.e., 

smolts) than it was to %P of adults migrating upstream to spawn. We then compared 
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nutrient flux for the three rivers over a 20 year period calculated with body composition 

values extracted from existing literature and our direct measurements to evaluate how 

assumptions regarding spatial and ontogenetic homogeneity in salmon %P influenced the 

observed P fluxes. We demonstrate that assuming equality of kelt %P and adult %P 

results in an over-estimate of net nutrient flux to rivers by Atlantic salmon and the 

erroneous conclusion that Atlantic salmon populations are unconditional sources of 

nutrients to their natal watersheds. Instead, Newfoundland’s salmon populations are 

conditional sinks of freshwater P, which is the opposite functional role of Pacific salmon. 

Our results highlight that a better understanding of intra-specific variation in body 

element composition of fishes is a prerequisite to determining their role in global 

biogeochemical cycling.  

3.2.  INTRODUCTION 

Nutrient transport by organisms can be an important ecosystem process (Vanni 

2002; Bauer and Hoye 2014), as flows of nutrients influence trophic dynamics and 

biogeochemical processes in recipient ecosystems (Seale 1980; Leroux and Loreau 2008; 

Childress et al. 2014). Pacific salmon are a classic example of a species long considered 

as an ecological and biogeochemical force because they move nutrients between marine 

and freshwater ecosystems. Pacific salmon (Oncorhynchus spp.) assimilate nutrients in 

marine ecosystems and deposit those nutrients in freshwater ecosystems in the form of 

gametes, excretions, and carcasses. In turn, the nutrients support resident fish populations 

(e.g., Bentley et al. 2012), aquatic macroinvertebrates (e.g., Wipfli et al. 1999), terrestrial 
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vegetation (e.g., Hocking and Reynolds 2011), and terrestrial predators (e.g., Holtgrieve 

et al. 2009). 

The magnitude and direction of nutrients transported across ecosystem boundaries 

depends on population size, the behavior of individuals while inhabiting the different 

ecosystems, and their biochemical characteristics. Migrating Pacific salmon, which can 

number in the millions, commit their entire bodies to the spawning process and hence the 

watershed ecosystem as a consequence of their semelparous life history strategy. Annual 

nitrogen and phosphorus imports by adults can be substantial at the watershed scale (e.g., 

Gresh et al. 2000; Moore and Schindler 2004). In the last decade, numerous studies have 

concluded that semelparous Pacific salmon are net sources of nitrogen and phosphorus to 

their natal watersheds when populations are considered healthy (e.g., Moore and 

Schindler 2004; Scheuerell et al. 2005; Kohler et al. 2013). Anadromous Atlantic salmon 

(Salmo salar L.) are iteroparous and the majority of adults spawning in late autumn 

survive to over-winter in freshwater and return to the ocean as kelts (i.e., post-spawn 

adults). Juvenile Atlantic salmon spend 2-8 years feeding and growing in their natal 

watersheds prior to migration as smolts, which may also influence among-species patterns 

in the magnitude and net direction of nutrient transport across ecosystems. To date, 

however, nearly all iteroparous anadromous fishes have been found to be net nutrient 

sources to their rearing watersheds (see Lyle and Elliott 1998; Jonsson and Jonsson 2003; 

Moore et al. 2011; West et al. 2010).  

At the ecosystem level, the balance of adult import with smolt export, termed 

nutrient flux, determines the status of an anadromous fish population as a nutrient source 
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or sink (Loreau et al. 2013). In a recent review of the concept of sources and sinks, 

Loreau et al. (2013) define a net source or sink as a subsystem that is a net importer or 

exporter of a specific entity to an ecosystem. As such, a salmon population is a source of 

nutrients to the freshwater ecosystem when the amount of nutrients imported from the 

ocean by adults exceeds the amount of nutrients exported by smolts during their 

migration to the ocean (i.e, annual flux > 0) A population is a sink of nutrients in the 

freshwater ecosystem when the reverse is true; when smolt export exceeds adult import 

(i.e., flux < 0). For iteroparous species, a basic model calculates nutrient flux as the 

difference between nutrients imported by spawning adults and nutrients exported by 

smolts and kelts migrating to the ocean (Moore et al. 2011). The model is expressed as  

 , , ,t t a t a t s t s t t a t kFlux A M N S M N kb A M N    

where A is the number of spawning adults, S is smolt count, M is mean fish mass, N is 

whole body nutrient concentration, k is the proportion of spawning adults that survive to 

exit the river as kelts (i.e., overwinter survival rate), and b is the proportion of imported 

adult body mass that exits the river as kelt body mass. Subscripts t, a, s, and k refer to 

year, adult, smolt, and kelt, respectively. This nutrient flux model is data intensive and 

long term datasets that include all parameters are rare, especially for iteroparous fishes, 

which require additional information about the kelt export pathway.  

In this nutrient flux model, biomass flow is converted to nutrient flow by scaling 

biomass estimates by nutrient content of fishes on a wet weight basis, which makes 

nutrient content an important parameter in a nutrient flux model. Whole-body nutrient 
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content, however, is rarely measured directly for the populations or species of interest. 

Atlantic salmon nutrient flux estimates have relied on body composition values measured 

over 30 years ago. Separate investigations quantified (Lyle and Elliott 1998; Jonsson and 

Jonsson 2003a) or modelled (Nislow et al. 2004) nutrient transport via Atlantic salmon 

using percent carbon, nitrogen and phosphorus (P) values from unpublished data collected 

in the late 1970’s and mentioned in an article on brown trout (Salmo trutta) body 

composition (see Elliott 1976). Nutrient transport by Pacific salmon species, including 

one iteroparous species (Moore et al. 2011), was quantified using whole body %P of 

sockeye salmon collected from Iliamna Lake, Alaska and published in a 1967 doctoral 

thesis (Table 3.1).  

By using the nutrient content values published in studies conducted in different 

ecosystems (Table 3.1), all previous salmonid-mediated nutrient flux studies implicitly 

assume that salmon elemental composition does not vary among species or within species 

across space. However, work on other fishes has documented significant intraspecific 

variation in %P arising from sex, ontogeny, size, physical habitat, feeding history, and 

geographic location (Hendrixson et al. 2007; McIntyre and Flecker 2010; El-Sabaawi et 

al. 2012). The magnitude of variation in %P within salmonid species in the wild is 

unknown. In addition, studies focused on iteroparous salmonids explicitly assume that 

kelts exiting the river have a wet weight nutrient content equal to that of incoming 

spawning adults (Lyle and Elliott 1998; Moore et al. 2011), but measurements of 

artificially reared Atlantic salmon show clear changes in %P during this portion of their 

life cycle (Shearer et al. 1994). Whether the two previously held assumptions regarding 
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spatial variability and ontogenetic equivalency of %P are correct has not been explicitly 

tested, nor do we understand how our nutrient flux estimates respond when these 

assumptions are violated. 

We investigated the interaction between whole salmon %P and the patterns and 

magnitude of P transport between the ocean and freshwater ecosystems. We chose to 

evaluate P dynamics because this element exhibits the highest intra- and interspecific 

variation in fishes (Sterner and George 2000; Vanni et al. 2002; El-Sabaawi et al. 2012) 

and is commonly considered to be the dominant limiting nutrient in freshwater 

ecosystems. First, we quantified whole body %P of three life stages of Atlantic salmon 

from three populations inhabiting rivers of insular Newfoundland, Canada, to assess 

whether ontogeny and population can explain intraspecific variation in wild Atlantic 

salmon %P. We expected adult %P to be equal to kelt %P as assumed previously (Lyle 

and Elliott 1998) and both stages to have lower %P than smolt as previously shown 

(Shearer et al. 1994). Second, we examined the sensitivity of flux estimates to (1) 

variation in %P among populations and (2) the assumption that %P of kelt and spawning 

adults are equal (see Lyle and Elliott 1998; Jonsson and Jonsson 2003a; Moore et al. 

2011) to test the hypothesis that small differences between assumed and measured %P 

values compound to influence ecosystem flux estimates. 

3.3.  MATERIALS AND METHODS 

To accomplish our two objectives, we determined whole body %P of spawning adult, 

kelt, and smolt Atlantic salmon migrating to and from Campbellton River, Conne River, 
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and Western Arm Brook (henceforth Campbellton, Conne, Western Arm) of insular 

Newfoundland (Figure 3.1) and compiled time series data for Atlantic salmon from these 

three rivers (Table A.3.1). Newfoundland presents a unique opportunity to examine 

nutrient flux from migratory Atlantic salmon because it is one of the last areas in North 

America with healthy wild populations of this species (Parrish et al. 1998) relative to 

other portions of its range.  

3.3.1.  Study system 

Campbellton, Conne, and Western Arm are in three distinct geographic regions of 

Newfoundland (Figure 3.1). Campbellton flows into Notre Dame Bay on the northeast 

coast of the island and is underlain by marine siliciclastic sedimentary rock and felsic 

volcanic rock; Conne into Bay d’Espoir on the south coast and is underlain by marine 

siliciclastic sedimentary rock; and Western Arm into the Straight of Belle Isle on the 

Great Northern Peninsula and is underlain by thin-bedded limestone, dolostone and shales 

(Colman-Sadd et al. 2000; Figure 3.1). Anadromous and resident forms of Salmo salar 

numerically dominate the fish communities in the three study rivers. Other freshwater 

fishes include brook trout (Salvelinus fontinalis), American eel (Anguilla rostrata), 

rainbow smelt (Osmerus mordax), and three-spined stickleback (Gasterosteus aculeatus). 

The occasional upstream migrating American shad (Alosa sapidissima) is found at the 

counting fence at Western Arm (Chadwick 1982), while alewife (Alosa pseudoharengus) 

periodically occurs at Conne (O’Connell and Dempson 1996).  
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Salmon populations on Campbellton, Conne, and Western Arm have been monitored by 

Fisheries and Oceans Canada since 1993, 1986, and 1971, respectively. Adult salmon and 

smolts were enumerated at counting fences (Table A.3.1). We refer the reader Appendix 

A for a brief description of enumeration protocols and to Downton et al. (2001), Dempson 

et al. (2004), and Chadwick (1982) for a detailed description of enumeration protocols on 

Campbellton, Conne, and Western Arm, respectively. Smolts typically migrate to the 

ocean at ages 2-5 (O’Connell and Ash 1993) and return to spawn after one winter at sea. 

All three populations were exploited in Newfoundland’s coastal mixed-stock commercial 

fishery until a moratorium in 1992. Because of this drastic change in management, we 

chose to include only years after the commercial fishery moratorium in our study (i.e., 

1993-2012).  

Recreational fishing is allowed on Campbellton and 7-15% of small salmon (< 

63cm) are retained by anglers (Downton et al. 2001). Conne supports a limited 

recreational harvest (DFO 2014), previously supported a First Nations subsistence fishery 

(Dempson et al. 2004), and the fjords near the mouth of the river have sheltered part of 

Newfoundland’s expanding salmon and trout (Oncorhynchus mykiss) aquaculture 

industry since the mid-1980s. In Western Arm, recreational fishing was prohibited in 

1988 (Mullins et al. 2001). Therefore, the Western Arm salmon population experienced 

zero legal removal of adult fish from the river above the counting fence during the years 

included in our study. Conne is included in the South Newfoundland population which 

was recently deemed threatened (COSEWIC 2010), while the other two populations are 

considered “not at risk”.  
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3.3.2.  Quantifying whole body %P of adults, kelts, and smolts  

To test whether nutrient content of salmon differed by life stage and/or population, we 

quantified whole body %P of at least four individuals of each life stage from each 

population (Table A.3.2). Fish were collected at counting fences on the three study rivers 

by Fisheries and Oceans Canada personnel, placed in polyethylene bags and frozen before 

being transported to Memorial University of Newfoundland, St. John’s, Newfoundland, 

for initial processing. Whole fish were homogenized by wet grinding multiple times and 

refrozen for analysis for total phosphorus at the Agriculture and Food Laboratory at the 

University of Guelph on an VARIAN VISTRA-Pro simultaneous ICP-OES according to 

standard protocols. Further detail regarding fish sample preparation is provided Appendix 

A.3.2. 

We fit general linear models (GLM) with wet weight %P as the dependent 

variable and life stage, river of capture, and both life stage and river of capture as 

explanatory variables. We used Akaike’s Information Criterion corrected for small 

sample sizes (AICc) in the “AICcmodavg” R package to determine the weight of evidence 

in support of life stage and or river as important predictors of variation in salmon %P. We 

calculated effect size of life stage and river as the percent difference in mean whole-body 

P concentration among life stages and between rivers within life stages, respectively. We 

compared model fits according to the reduction in deviance caused by adding parameters 

to the null model, expressed as a percent of the deviance of the null model. 

Mathematically, it is expressed as  
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  /null fitted nullDevianceExplained D D D  ;  

where D is the deviance extracted from the GLM summary. 

3.3.3.  Estimating phosphorus fluxes  

We used population counts to estimate 60 river years of P flux via Atlantic salmon with 

the basic P flux model modified for application to an iteroparous species by accounting 

for P export by kelts similar to that described in the introduction of this article (e.g., 

Moore et al. 2011). Newfoundland’s adult salmon data, summarized in Appendix A, are 

split into two sets for a given year; one set for small salmon (< 63cm fork length; FL) and 

another set for large salmon (> 63 cm FL). Large salmon in these rivers are typically 

repeat spawners. Therefore, we altered the basic P flux model to incorporate these two 

groups into calculations of adult import and kelt export as 

, , , rg , arg ,adult t small t small t a la e t l e t kImport A M N A M N    

, , , arg , arg , arg ,kelt t small small t small t k l e t l e t l e t kExport kb A M N kb A M N   ; 

Where, subscripts small and large refer to small salmon or large salmon data from which 

parameters (defined in the introduction) were calculated as described below. Smolt export 

was calculated as described in the introduction. 

Annual P import by spawning adults and export by smolts was calculated using 

spawning escapement, weights, and whole body %P of spawning adults and smolts (Table 

A.3.2). Spawning escapement was calculated by adjusting actual counts of adults passing 
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upstream through the counting fences for the number of individuals removed from the 

system by recreational anglers as determined from analysing data obtained from an angler 

license stub return system on Campbellton (plus an estimate for unreturned license stubs) 

and via reports from fishery guardians on Conne. Counts and spawner escapement on 

Western Arm were nearly identical during this period because recreational angling is 

prohibited in this system (Table A.3.1). We compiled smolt weights measured annually 

for 100-300 individuals on each stream as they passed through counting fences. Adult 

weights and lengths for small adults were measured on all three study streams for nearly 

all of the study years. Large salmon measurements were available for almost all years on 

Western Arm and for five years on Campbellton. If the weights of smolt or adults were 

not measured on a river in a given year, we used the mean measured weight over the 

entire time series of the same size class and life stage for that river. Large salmon were 

not measured for weight at Conne from 1993-2012, thus we used weights and lengths of 

large salmon on Conne River measured from 1986-1992 (n = 6 salmon) and applied it to 

the whole time series.  

Estimating P export by kelts was not as direct as estimating P import by adults or 

P export by smolts because complete counts of out-migrating kelts from Newfoundland 

rivers are rare. Overwinter survival on Campbellton for 1994-2012 was 0.57 (range: 0.31-

0.76; M. Robertson, unpublished data) where outmigrating kelts are captured in the smolt 

counting fence. Kelts are rarely captured in counting fences on Conne and Western Arm 

because they presumably migrate before the smolt fences are installed in the spring. 

Although we can expect variability in overwinter survival among rivers and years, we 
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applied this mean post-spawn survival rate to all three study rivers. To address the 

uncertainty in kelt survival, we compared P flux estimated with a mean, high, low and 

measured annual overwinter survival rates for Campbellton (see Appendix A.3.4). 

Direct measurements of the mass of adults retained by kelts upon exiting the river 

(b) are also rare for Newfoundland rivers. We estimated parameter b in nutrient flux 

model by inserting annual mean lengths of adults into length-weight relationships for 

kelts measured in 2014 on Campbellton (n = 75) and Western Arm (n = 10) and adults 

measured on Campbellton (n = 175), Conne (n = 64), and Western Arm (n =100). The 

proportion of adult mass retained by kelt (parameter b) for each year in the series was 

calculated as;  

   10 10log log
10 /10k k t a a tL L

b
   

  ; 

where α and β are slopes and intercepts of the length-weight relationship for kelts 

(subscript k) and adults (subscript a), and Lt is the mean fork length of adults measured at 

the counting fence in year t. If mean length of either small or large adults was not 

available for a given year and river, we used the mean length over the entire time series 

for that river (Appendix A.3.1). Since our salmon count, weight, and length data was 

specific to either small or large salmon, we calculated separate b’s for each group of fish 

using Lsmall, t and Llarge, t to estimate total P exported by kelts.  
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3.3.4.  Sensitivity of flux model to assumptions regarding salmon %P 

To determine the sensitivity of P flux estimates to variation in whole body %P that may 

occur when applying nutrient content values obtained from distant systems or assuming 

kelt and adults %P are equivalent, we calculated P flux using three different sets of 

salmon %P values: (1) means of population specific %P as a percentage of wet mass, (2) 

a regional value calculated as the mean of %P (wet mass) of all individuals sampled from 

the three study rivers, and (3) %P values published in Lyle and Elliott (1998), which 

assumed that adult and kelt %P is equal. To determine whether the body composition 

values affected the characteristics of the P flux time series, we used simple linear 

regressions of P flux against time for flux estimates calculated using the three different 

%P values described above. We tested for homogeneity of regression coefficients and 

equality of elevations for k regressions as described by Zar (2010). When significant 

differences in either regression coefficients or elevation were found, we conducted 

multiple comparisons with Tukey HSD tests. We used R v.2.15.2 for all calculations and 

statistical analyses (R Core Team 2012). 

3.4.  RESULTS 

3.4.1.  Whole-body P-content of three life stages of Atlantic salmon  

Overall, differences in salmon %P among rivers but within life stages was not as strong as 

differences among life stages (Figure 3.2). Life stage was more important in explaining 

among-individual variation in whole-body P concentration than was river (Table 3.2). 
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Life stage explained 65% of variation in %P among individuals, whereas river only 

explained 1.6%. Although a model including both life stage and river provided a slightly 

better fit to the data than did the model including life stage as the sole predictor, it came 

at the cost of an additional parameter (Table 3.2). 

We explored the magnitude of difference in whole-body %P between life stages 

on a wet mass basis because this is the metric most suitable for nutrient flux models. 

When individuals were pooled across rivers, adult P concentration was 45% lower than 

that of kelt; kelt P concentration was 18% lower than that of smolts; smolt P 

concentration was 70% higher than that of adults. Similar patterns held true within rivers 

(Figure 3.2). The highest %P was observed in Conne smolt and was similar to smolts 

from Western Arm. The lowest %P occurred in Conne adults, but the difference in adult 

%P between the highest and lowest river was less than 0.02 %P. The ratio of calcium to P 

(Ca:P), an indicator of the amount of P contained within bone (Pilati and Vanni 2007), 

was higher in smolts (mean = 1.01) and kelts (mean = 1.10) than it was in adults (mean = 

0.60).  

3.4.2.  Annual P flux using river-specific salmon P concentration  

As expected, a logarithmic relationship existed between the lengths and weights of adults 

and kelts (Figure 3.3a). Weight at a given length for kelts was 55 to 65% of adult weight 

upon entering the river (Figure 3.3b). Parameter b applied to each year ranged from 0.56 

to 0.59 for small salmon and 0.62 to 0.65 for large salmon depending on the mean length 

of small and large adults for that year.  
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Using river-specific %P measurements, we estimated that Atlantic salmon 

exported more phosphorus as smolts and kelts than was imported by adults on the three 

study rivers (solid line; Figure 3.4). Median annual P flux was -0.45kg ± 4.07SD, -6.79kg 

± 4.05SD, and -0.15 kg ± 1.71SD for Campbellton, Conne, and Western Arm, 

respectively. Campbellton was the only river to exhibit weak but statistically significant 

positive linear trend in P flux over the study period (y = 0.439x – 4.801, df=18, r
2
=0.37, 

p=0.003). Salmon were net exporters of P in all streams; over the 20 year period, smolts 

exported 102% and 108% of P deposited by adults in Campbellton and Western Arm (i.e., 

deposit = net import). In contrast, smolts exported 188% of adult deposited P in Conne 

(Table A.3.4).  

3.4.3.  Effect of body composition value source on P flux estimates  

The source of %P for the different life stages (i.e., river specific, regional, or literature 

value) did not influence the slope of linear trend in flux over the study period but 

significantly affected the elevation of that trend (Campbellton, F0.05(2),56  =21.13, p < 

0.001; Conne, F0.05(2),56  = 28.96, p < 0.001; Western Arm F0.05(2),56  = 15.18, p < 0.001). 

Using multiple comparison tests, we found that %P values that assumed equal %P of 

adults and kelts (Lyle and Elliott 1998) yielded flux values that diverged significantly 

from our directly measured, river-specific values, but the elevations of regressions did not 

differ significantly between the pooled regional and the river-specific estimate (Figure 

3.4). Median P flux estimated with body %P extracted from Lyle and Elliott (1998) was 

higher than those estimated with our directly measured %P in all three rivers. In contrast 
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to river-specific %P, the assumption that adult and kelt nutrient content is equal led to the 

opposite pattern, where flux estimates were positive in all streams in nearly all years. As 

expected, low overwinter survival rates resulted in higher P flux than high overwinter 

survival rates, but P flux estimated with mean overwinter survival held constant over the 

entire time period did not differ from variable, directly measured overwinter survival on 

Campbellton (Appendix A.3.4).  

3.5.  DISCUSSION 

We set out to (1) assess whether ontogenetic stage or river of origin were important 

predictors of salmon %P, and (2) to quantify Atlantic salmon mediated P flux for three 

Newfoundland rivers using salmon body P measurements of different resolutions (i.e., 

river specific, regional means, and existing literature values). Our results clearly depict 

differences in Atlantic salmon %P among life stages, and that these differences modulate 

the species’ functional role in their natal freshwater ecosystems. The Atlantic salmon 

sampled in our study exhibited a wide range of %P, but most of the variation occurred 

among rather than within life stages. Smolt and kelt %P in this study differed on average 

by only 0.09%P by wet weight (Figure 3.2a) and fell in the middle of the range of dry 

weight %P of freshwater fishes (1% to 6%P by dry mass; McIntyre and Flecker 2010; 

Figure 3.2b). Adult wet weight %P, however, was on average 0.29% lower than smolt 

wet weight %P and fell at the extreme low end of the range for freshwater fishes. 

Ontogeny explained a larger portion wet weight %P variation among individual Atlantic 

salmon than was explained by population of origin (Table 3.2). By qualitatively assessing 

the effect size of life stage on wet weight %P, we reject the hypothesis that wet weight 
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%P of adults entering the river to spawn is equal to the wet weight %P of post-spawn 

kelts exiting the river. Therefore, the assumption of equal wet weight %P in adults and 

kelts, which is used by several previous nutrient flux studies (Lyle and Elliott 1998; 

Jonsson and Jonsson 2003a; Moore et al. 2011), is likely invalid, at least for populations 

examined in the current study. We show for three insular Newfoundland salmon rivers, 

this assumption caused us to over-estimate actual Atlantic salmon-mediated P flux across 

the marine-freshwater ecosystem boundary (Figure 3.4), such that our interpretation of 

the ecosystem function of these populations changed from considering these populations 

as P sources to concluding that they are P sinks or exhibit a balanced flow in the long 

term. 

3.5.1.  Whole body % phosphorus  

Life stage explained 65% of variation in %P among individuals, whereas river explained 

under 2% (Table 3.2). The overwhelming evidence for life stage as a driver of 

intraspecific variation in %P is consistent with studies on gizzard shad (Dorosoma 

cepedianum; Pilati and Vanni 2007), Eurasian perch (Perca fluviatilus; Vrede et al. 2011) 

and artificially reared Atlantic salmon (Shearer et al. 1994) that show a change in %P on 

a dry mass basis with ontogeny. These studies attribute ontogenetic changes %P (dry 

weight) to the ossification of bones during growth as demonstrated by positive 

relationships between body size and %P in immature fishes. We observed the opposite 

pattern; %P wet weight declined from smolts to adults, and increased from the adults to 

kelts. The pendulum-like shift in %P during the smolt-adult-kelt ontogeny shows that 



   

 

56 

 

material allocated for reproduction and the time in the reproductive cycle can influence 

observed intraspecific variability in body nutrient composition.  

Previous investigations of fish nutrient content attribute interspecific variability to 

skeletal structure (Sterner and George 2000; Hendrixson et al. 2007; McIntyre and 

Flecker 2010). Intraspecific variation in %P has been attributed to local environmental 

conditions that influence %C (i.e., predation; El-Sabaawi et al. 2012) and to ontogeny 

(Pilati and Vanni 2007). Pilati and Vanni (2007) measured individual %P along a size 

gradient that encompassed ontogenetic diet shifts and concluded that the %P of fish 

beyond a threshold size was stable. Yet, their study did not include adult fishes 

approaching or immediately following a reproductive event, at which time sequestered 

resources are allocated to gamete production rather than growth. We followed the 

approach of Pilati and Vanni (2007) by using Ca:P ratios to qualitatively assess whether 

differences in P content between life stages of Atlantic salmon in our study were 

associated with changes in contribution of bone to body mass (Figure 3.2c). Ca:P of 

smolts and kelts was similar to gizzard shad juveniles and is approximately one-half the 

Ca:P of bone (fish bone, 2.14; Hendrixson et al. 2007). Adult Ca:P was one-quarter the 

Ca:P of bone suggesting that more P was stored in tissues other than bone when salmon 

return to freshwater than when they migrate to the ocean. 

The increase in body %P between adult and kelt life stages suggests some form of 

dilution of body P by other elements in adult salmon. In our study, %C was 

approximately 100% higher in returning adults than it was in kelts and smolts (Figure 

A.3.1). The high %C of adults is likely associated with the storage of lipids during the 
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ocean-feeding phase of the species’ life cycle. The difference between %C in adults and 

kelts results from the allocation of energy to gonadal development (Jonsson and Jonsson 

2003b) and the catabolism of free fatty acids during migration and periods of sustained 

swimming during non-feeding freshwater residence over the winter (Doucett et al. 1999).  

Thus, we speculate that the low %P observed in Atlantic salmon adults relative to smolts 

and kelts, is likely caused by the stoichiometric dilution of P by C. This finding highlights 

the need to measure not only energy content (see Jonsson and Jonsson 2003b), but also 

nutrient content of fishes along their entire life histories from larval to post-spawn stages, 

which is rarely done for wild fishes.  

We were surprised that river explained only a small portion of variation in salmon 

%P because spatial differences in %P have been found in other fishes (Boros et al. 2012; 

El-Sabaawi et al. 2012). El-Sabaawi et al. (2012) found that the presence of limestone in 

watersheds had a greater influence on %P of Trinidadian guppies than did genetic lineage 

because limestone deposits have direct effects on the amount of P cycling in aquatic 

ecosystems and thus a different biogeochemical setting for juvenile growth. We expected 

similar watershed effects to emerge in our study because Western Arm is underlain by 

limestone and dolostone, whereas the other two study streams are underlain by 

siliciclastic rocks with low P content (Colman-Sadd et al. 2000). The three salmon 

populations presumably rear under different biogeochemical conditions, are genetically 

distinct (Bradbury et al. 2014), and leave the freshwater ecosystem at different ages 

(O’Connell and Ash 1993), yet we found no appreciable differences in body %P. We 

conclude that environmental factors and fine scale genetic differences are not drivers of 
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salmon %P at the resolution we examined in this study. Our sample size may not have 

been large enough to capture inter-population variation within life stages, particularly 

smolt. However, it is likely that evolutionary forces associated with resource allocation to 

reproduction are at play in these systems.  

Body stoichiometry is a biochemical descriptor of an individual’s traits, and is 

subject to natural selection because biochemical characteristics of certain anatomical 

features provide fitness benefits (Kay et al. 2005). Similar to classic phenotypes such as 

behavior, and morphology, the elemental composition, acquisition, assimilation, 

allocation, and excretion by organisms can be considered an elemental phenotype 

(Jeyasingh et al. 2014). Indeed, the biochemical signature of evolution can be seen in the 

association of body stoichiometry with phylogeny (Hendrixson et al. 2007). The 

consistency in %P among the three study populations within life stages may relate to the 

interaction of proximate factors (i.e., physiological states) with genetic thresholds that 

some researchers have used to model variation in the timing of ontogenetic shifts in 

Atlantic salmon (Thorpe et al. 1998), such as the migration of juveniles to the ocean and 

adults to freshwater. The low coefficient of variation within life stages, the similarity in 

smolt %P among populations, and the convergence of %P at the smolt and kelt stages 

suggests that %P may be a conserved elemental phenotype related to migration timing: a 

classic phenotype (Jeyasingh et al. 2014). Kay et al. (2006) found similar stage-structure 

differences in body P-content in pavement ants (Tetramorium caespitum), which they 

attributed to the structural needs of the various stages from larvae to worker ants (Kay et 

al. 2006). Currently, the effect of body elemental composition on behavioral patterns and 
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the reproductive success of fishes is unknown, but is important to understand (Kay et al. 

2005). 

3.5.2.  Phosphorus Flux  

Atlantic salmon can be either sources or sinks of P in freshwater ecosystems. Sources and 

sinks can be conditional or unconditional (Loreau et al. 2013); the former meaning that 

whether a subsystem imports or exports an entity depends on conditions within the 

subsystem or ecosystem, and the latter meaning that a subsystem is an importer or 

exporter of an entity under all conditions. In the context of anadromous salmonids, 

spawning adults are an unconditional source of nutrients to freshwater ecosystems, 

whereas smolts are an unconditional sink. When considering a river’s entire salmon 

population as the subsystem of interest, however, the balance of adult import with export 

by smolt determines whether a salmon population is source or sink of nutrients in 

freshwater ecosystems.  

There is a general consensus that Pacific salmon populations are unconditional 

sources of nutrients to their natal streams (Moore and Schindler 2004; Scheuerell et al. 

2005) or should be (Moore et al. 2011; Kohler et al. 2013). In our study on Atlantic 

salmon over a twenty year period, flow of P into freshwater via adult salmon and the flow 

of P back to the ocean via smolts was almost perfectly efficient in Campbellton and 

Western Arm, meaning that adult salmon deposited nearly the same amount of P that was 

exported by smolts. Meanwhile, the Conne salmon population is a P sink in 90% of years 

included in our study and the median P flux is much more negative than the other 
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populations. Median annual P flux on Conne is the most negative estimate we have found 

for an anadromous fish population. Atlantic salmon adult returns to Conne declined 80% 

between 1987-1992 (Dempson et al. 2004) and has continued to decline (Robertson et al. 

2013) coincident with increases in salmonid aquaculture production in the region and is 

included in the South Newfoundland population that was designated as threatened under 

the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) guidelines 

(COSEWIC 2010). We conclude that healthy Atlantic salmon populations in this study 

shift between sources and sinks of P at the annual scale and are balanced at longer 

temporal scales. It appears that Atlantic salmon populations experiencing a long term 

decline potentially due to adverse marine conditions may be unconditional P sinks. 

Anadromous salmonids exhibit a wide range of phenotypes (e.g., 

semelparity/iteroparity, spawning density, duration of parr stage) in an equally wide range 

of freshwater habitats, from small oligotrophic mountain streams to coastal rivers and 

lakes. Amongst the diversity of spawning and rearing strategies, one consequence of life 

history is common to all anadromous salmonids: they move nutrients between the ocean 

and freshwater. The ubiquity of this ecosystem function makes flux a useful metric for 

comparing and understanding the interplay of salmon with their natal ecosystems among 

species and regions. Yet, the utility of such comparisons is predicated on the accuracy of 

flux estimates. In our study, the differences between adult and kelt %P has important 

implications for obtaining ecosystem flux via iteroparous species. The use of %P values 

from Lyle and Elliott (1998) leads us to a different conclusion about the ecosystem role of 

Atlantic salmon than our own direct measures of Atlantic salmon %P. By assuming that 
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%P of adults and kelts are equal, we would erroneously conclude that Atlantic salmon are 

consistently net importers of P to all three Newfoundland streams, whereas by accounting 

for differences between kelts and adults we conclude the opposite; that stable or growing 

Atlantic salmon populations are balanced and declining populations are sinks. Therefore, 

our results call into question the strength of the net P import by salmon populations to the 

River Tweed (Lyle and Elliott 1998) and the River Imsa (Jonsson and Jonsson’s 2003a; 

see Table 3.1). This problem may be more pronounced in flux estimates for iteroparous 

fishes than it is for semelparous fishes due to the addition of post-spawn export by kelts; a 

value that depends on estimates of post-spawn survival rate (see Appendix A.3.4), 

proportion of mass lost during spawning and residence, and kelt nutrient composition.  

Nutrient mass models of migratory animals and the patterns that emerge may 

shine light upon the evolution of different life history strategies within and among 

species, as well as provide new insights into the temporal dynamics of populations in the 

context of their ecosystem. Nutrient inputs by anadromous fishes can play a defining role 

in short-term ecosystem processes including fish production (e.g., Bentley et al. 2012). 

Underlying the short-term ecological processes associated with nutrient inputs are the 

long term trends in nutrient deposition and extraction. We highlight the need for 

information regarding the elemental composition of migratory animals where possible to 

understand ontogenetic and spatial patterns because it allows populations to be placed 

accurately in the context of long term biogeochemical cycling. Additionally, our results 

contradict the common notion that naturally functioning anadromous fish populations are 

ubiquitously net sources of all nutrients to freshwater ecosystems, raising questions about 
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what factors determine the magnitude and direction of animal-mediated flows of specific 

nutrients.  
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Table 3.1. Whole body %P of migratory life stages of selected anadromous fishes extracted from the literature and used in fish 

mediated P flux studies. %P presented as percent of wet weight. 

Species Study Population Adult (n) Kelt (n) Smolt (n) Used by: 

Salmo salar Shearer et al. 

(1994) † 

Artificial 

rearing 

0.40 (5) 0.48  (5) 0.52  (5) None 

 Lyle and Elliott 

(1998) ‡ 

River Tweed, 

UK 

0.47 (5) 0.47  (0) 0.45 (9) Lyle and Elliott 

(1998), Jonsson and 

Jonsson (2003) § 

 Talbot et al. (1986)  Mixed 0.39  (4) 0.58 (2) 0.45 (8) Jonsson and 

Jonsson (2003) § 

 This study Newfoundland 0.37 (14) 0.54 (15) 0.63 (20) NA 

Alosa 

pseudoharengus 

Durbin et al. 

(1979), West et al. 

(2010) 

Pausacaco 

Pond, RI 

0.42 (29) 0.45 (14) 0.58 West et al. (2010), 

Twining et al. 

(2013) 



   

 

71 

 

Oncorhynchus 

nerka 

Donaldson (1967) ¶ Lake Illiamna, 

AK 

0.38 NA 0.43 Moore and 

Schindler (2004), 

Scheuerell et al. 

(2005), Moore et al. 

(2011), Kohler et 

al. (2013) 

Oncorhynchus 

spp.  

Larkin and Slaney  

(1997) # 

British 

Columbia 

0.36 NA … Larkin and Slaney 

(1997), Gresh et al. 

(2000) ††, Thomas 

et al. (2003) ‡‡ 

Notes: 

† Cultured fish. Adults sampled as maturing fish in July. Kelts sampled as post-spawn fish with gonads removed. Smolt sampled as 32 g parr in 

freshwater. Numbers extracted from figure using ImageJ. 

‡ Adult and kelt %P assumed to be equal. Cited as Elliott (1976), which presents brown trout (Salmo trutta) proximate composition. 

§ Cite Lyle and Elliot (1998) and Talbot et al. (1986) but the authors did not clarify the numbers used. 

¶ Unpublished dissertation with restricted access. Numbers were extracted from Moore and Schindler (2004) 
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# Based on personal communication, average of five species (O. nerka, O. kisutch, O. gorbuscha, O. keta, O. tschawytshca) 

†† Used 0.35 %P but cite Larkin and Slaney (1997) who used 0.36 %P. 

‡‡ Cite Donaldson (1967), but use number from Larkin and Slaney (1997)
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Table 3.2. Results of general linear models of whole body P concentration of Atlantic 

salmon from three insular Newfoundland rivers with life stage and river of capture as 

explanatory variables. 

Model k 

Log 

Likelihood AICc Δ AICc 

Akaike 

weights 

Deviance 

explained 

Life Stage 3 55.34 -104.15 0 0.52 64.73 

Life Stage + River 4 56.45 -103.98 0.16 0.48 66.28 

Intercept 2 29.81 -55.36 48.79 0 0.00 

River  3 30.20 -53.89 50.29 0 1.56 
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Figure 3.1. Map of insular Newfoundland, Canada (inset) showing three study watersheds 

where Atlantic salmon were collected for elemental analysis and, subsequently, salmon-

mediated P flux was estimated. 
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Figure 3.2. Whole body phosphorus concentration (panel A & B) and Ca:P (panel C) of 

Atlantic salmon adults (open triangle), kelts (asterisk), and smolts (open circle) captured 

in three insular Newfoundland rivers. Phosphorus concentration is presented on a wet 

mass basis (A) and dry mass basis (B). Mean wet weight %P for each river and life stage 

combination is provided in Appendix A.3.2.  
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Figure 3.3. Length-weight relationships (panel A) for adults (n = 339, y = 10
-4.10+2.69 (log(X)) 

, adjusted R
2
 = 0.86) and kelts (n = 85, y = 10

-5.11 + 2.98 (log(X)) 
, adjusted R

2
 = 0.82) 

collected from Newfoundland rivers and used to estimate the proportion of adult mass 

that exits the river retained in kelts (panel B) in the nutrient flux model for a given length 

of adult (i.e., parameter b). 
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Figure 3.4. Time series of net flow of phosphorus via Atlantic salmon from three 

Newfoundland rivers from 1993 and 2012 calculated using three different whole body 

phosphorus concentration values. The thick horizontal line denotes annual P flux = 0. 

Values above this line indicate that P is imported to the freshwater ecosystem, whereas 

values below indicate P is exported from the freshwater ecosystem. The different lines 

describe flux values estimated using river-specific, regional, and previously published 

salmon P concentration values. River-specific and regional P concentration values were 

obtained through direct measurement of fish from study rivers. The values extracted from 

the literature are described in Lyle and Elliot (1998). Significant differences between 

pairs of time series determine with Tukey HSD multiple comparison tests for differing 

elevations of linear regressions for flux against time (p<0.05) are indicated with 

contrasting letters.
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4.1. ABSTRACT 

Managing vertebrate populations may at long temporal scales require a nutrient cycling 

perspective, which in turn requires an understanding how body nutrient composition 

changes with size and season, and a way to measure it for many species. We suggest that 

differences in scaling coefficients between body size and the contribution of various 

tissue types to total body mass indicate that the accrual rates of multiple elements change 

over an organism’s ontogeny. These changes can be quantified using population level 

relationships between length metrics and total body nutrient content, which we term 

length-nutrient content relationships (LNCRs). When placed in the context of mass 

balance, LNCRs can be used to make quantitative predictions about how changes in 

population age and size structure influence the vertebrate consumers’ functional role in 

terms of multiple elements.  We illustrate two potential practical applications of LNCRs: 
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calculating nutrient standing stocks of brook trout and estimating nutrient investment in 

migration and reproduction by Atlantic salmon. The framework we develop here may 

help advance broad ecological theory by translating individuals into nutrients at the 

population level. 

4.2. INTRODUCTION 

Organisms are an important biogeochemical force. Macro-biota modulate nutrient cycles 

by storing nutrients in biomass (Kitchell et al. 1979),  releasing nutrients via excretion 

(Vanni et al. 2002) and death (Boros et al. 2015b), and translocating nutrients within and 

across ecosystems (Moore and Schindler 2004). The strength of direct effects of biota on 

nutrient cycling is often taxon specific (Vanni et al. 2002) and are regulated by the 

elemental composition of individuals and the size and dynamics of populations (Kraft 

1992; Vanni et al. 2013). Thus, our understanding of the role of biota in biogeochemical 

cycling hinges on linking individual and population level characteristics (i.e., body 

composition, ontogeny, behavior, and biomass) to within and across ecosystem patterns in 

nutrient distribution, flow strengths, and trophic production. Here we propose a novel 

method to connect individual and population level characteristics to the roles of 

vertebrates in ecosystem nutrient cycles. 

Mass balance requirements constrain systems at all levels of biological 

organization (DeAngelis 1992; Sterner and Elser 2002; Loreau 2010). As such, mass 

budgets are key to connecting individuals to ecosystem processes. Mass balance at the 

individual level is expressed in the balanced growth equation, where nutrients consumed 
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by individuals (C) can either be assimilated (A) or egested (Eg). Assimilated nutrients can 

be used for biomass production (P), which includes somatic growth (G) and reproduction 

(Rp), or are otherwise excreted (Ex). A simple balanced growth equation (Loreau 2010) 

integrating these phenomenon takes the form  

(Eq. 4.1) 𝐶 = 𝐴 + 𝐸𝑔 = 𝐺 + 𝑅𝑝 + 𝐸𝑥 + 𝐸𝑔 

All of these individual level processes scale with body size (Peters 1983), and the 

combination of body size scaling with the balanced growth equation provides the 

foundation for determining the role of organisms in ecosystems. 

 Ecological stoichiometry has emerged as a powerful tool that uses principles of 

mass balance to determine element ratios in organisms and their resources to investigate 

aspects of ecosystem structure and function (Sterner and Elser 2002), such as the 

association of the elemental composition and rates of excretion with consumer and 

resource body composition. Ecological stoichiometry has predominantly addressed 

questions regarding small organisms (reviewed by Hessen et al. 2013) such as 

zooplankton (e.g., Elser and Urabe 1999) and macroinvertebrates (e.g., Cross et al. 2003; 

Frost et al. 2006), with a more limited body of empirical literature on the ecosystem roles 

of larger consumers, such as vertebrates (Schindler and Eby 1997; Vanni et al. 2002; 

McIntyre and Flecker 2010). Much work on vertebrate stoichiometry is concerned with 

linking biodiversity with ecosystem function by investigating interspecific variation in 

body composition (Hendrixson et al. 2007; McIntyre and Flecker 2010) and its 

consequences for total nutrient excretion (Vanni et al. 2002; Allgeier et al. 2015).  
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Recent work has revealed substantial intraspecific variation in vertebrate body 

composition (Boros et al. 2015a) and excretion, especially with respect to ontogeny 

(Boros et al. 2015a; Showalter et al. 2016). Intraspecific variability in body stoichiometry 

is also attributed to reproductive phenology (Chapter 2). Intraspecific variability in body 

composition among life stages, space, and time, which can be greater than interspecific 

variability, likely confounds results obtained by stoichiometric models that assume 

constant body composition with growth (e.g., Kraft 1992; Schindler and Eby 1997), and 

from the extrapolation of direct, one time measurements of nutrient excretion to the 

population level over long temporal scales (e.g., Sereda et al. 2008). The current discord 

between assumptions of vertebrate nutrient cycling models and the reality of intraspecific 

variability in body composition precludes the accurate incorporation of the nutrient 

cycling role of vertebrates into species and population specific fish and wildlife 

management policies.   

The ability to move between demography and ecosystem processes in similar 

currencies is an important step towards unifying population and ecosystem ecology while 

incorporating ecosystem processes into fish and wildlife management. We develop a 

framework to describe the stoichiometric traits of populations of indeterminate 

vertebrates and use these descriptions to predict the role of large consumers in modulating 

ecosystem structure and function over multiple temporal scales. To achieve this goal we 

broadly examine what we know about changes in physical structure with growth through 

the tradition of allometry and link that knowledge to what we know about the elemental 

composition of vertebrates through the lens of stoichiometry. We suggest length-nutrient 
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content relationships; LNCRs) as a means to measure intraspecific variability in body 

composition, and then discuss how these relationships can be applied to estimate nutrient 

fluxes at the population level. We use two small datasets of salmonid body element 

composition to illustrate potential LNCR applications. We end with a discussion of future 

development and applications of LNCRS to theory and practice, as well as their 

limitations. 

4.3.  BODY SIZE SCALING OF BODY ELEMENT COMPOSITION 

Body size relationships are some of the strongest relationships described (Peters 1983; 

Hatton et al. 2015). These relationships typically take the form Y= aX
b
, where X is the 

size of an organism determined by a measurement of linear dimension (i.e., length or 

mass), Y is the characteristic we seek to predict, a is a constant, and b is a scaling 

coefficient. Traditional body size relationships, operationalized under the term allometry, 

describe the scaling of shape with size and its corresponding morphological and 

physiological consequences (Gould 1966). Allometry arose from questions about changes 

in organism form with size that result from differential growth rates among body parts 

(Huxley 1932) and was used to explore ontogenetic changes within taxa and phylogenetic 

relationships among taxa (Gould 1966). Relationships between length and mass remain a 

staple in fisheries and wildlife biology where they form the basis for body condition 

indices (Froese 2006; Peig and Green 2010).  

 In modern ecology, body size scaling is a framework for predicting physiological, 

behavioral, and ecological processes based on individual body size, usually body mass 
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(Peters 1983). In contrast to traditional allometry, body size scaling in modern ecology 

focuses on interspecific patterns because theoretical development of these relationships 

sought to predict general patterns to applicable to macroecology (Brown et al. 2004). 

Individual body mass is a good predictor of biomass production (Brown et al. 2004), net 

primary production (White et al. 2007), food web structure (Hatton et al. 2015) and 

stability (Otto et al. 2007), and individual excretion rates (Sereda et al. 2008; Allgeier et 

al. 2015). Intraspecific body size scaling is seldom studied in the context of ecological 

processes, but is the cornerstone of recent theoretical developments in population ecology 

(deRoos and Persson 2013).  

 Relationships between body size and body element composition remain poorly 

developed despite body composition being an important component of consumer-

mediated nutrient recycling models (Sterner 1990; Kraft 1992; Eby and Schindler 1997). 

A relationship between body stoichiometry and body size at the macroecological level has 

been hypothesized (Elser et al. 1996) because of the differences in the relative 

contributions of different mechanical structures to total body mass along a gradient from 

prokaryotes to blue whales (Reiners 1986). These mechanical structures include 

organelles and biochemical components at the cellular level and tissues at the organismal 

level. Elser et al. (1996) hypothesized that prokaryote and metazoan invertebrate nitrogen 

(N) to phosphorus (P) ratio should increase with body mass because body P concentration 

is positively associated with specific growth rate (Elser et al. 2003) and specific growth 

rate declines with body mass (Peters 1983). The opposite trend is hypothesized for 

vertebrates because bone comprises an increasing percentage of total body mass with 
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increasing body size, and bone is P-rich relative to other tissue types (Elser et al. 1996; 

Vanni 1996). Exploration of interspecific body size-element composition relationships in 

vertebrates have focused on fish. Generally, associations of body mass with body 

stoichiometry and per cent body element composition are weak because body element 

composition depends heavily on taxonomic identity (Hendrixson et al. 2007; Allgeier et 

al. 2015).  

 Intraspecific scaling of body composition has not been adequately considered 

within the realm of ecological stoichiometry, maybe because the relative amount of an 

element (i.e., per cent) often forms weak or non-significant allometric relationships with 

body size (Sterner and George 2002; Tiegs et al. 2016). This is not surprising given that 

body size is also a weak predictor of relative measures of tissue and molecule types (Peig 

and Green 2009). In contrast, absolute measures of tissue and molecule contribution (i.e., 

mass) are strongly associated with body size in both determinate and indeterminate 

growers (Peig and Green 2009). For example, fat mass, protein mass, water mass, and ash 

mass are strongly correlated with body mass, snout-to-vent length and total body length in 

water snakes (Peig and Green 2009). Skeletal mass scales isometrically with snount-vent-

length in lizards (Metzger and Herrel 2006) and scales positive allometrically with total 

body length in rattle snakes (Prange and Christman 1976). The evidence for strong 

associations between absolute measures of body composition and body size suggests that 

intraspecific scaling of total body nutrient content with length may be a natural extension 

of body size scaling relationships in ecology. This may aid the application of ecological 

stoichiometry to ecosystem-based vertebrate management because ecosystem functions of 
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individuals change with ontogeny (Showalter et al. 2016), body size is a good predictor of 

ontogeny (deRoos and Persson 2013), and vertebrate management has long occurred at 

the species or population level and harvest is body size selective.  

4.4.  LENGTH-NUTRIENT CONTENT RELATIONSHIPS (LNCRS) 

We define length-nutrient content relationships (LNCRs) as the relationship between the 

absolute amount of nutrient in an indeterminate vertebrate and a longitudinal 

measurements (e.g., total body length, fork length, snout-to-vent length, standard length). 

LNCRs are an extension of body mass-length relationships as commonly used to compare 

and contrast vertebrates within and among taxa (Froese 2006; Peig and Green 2010). 

Within a growth class of many organisms, particularly fish, mass often increases 

exponentially with body length. Total body nutrient content should also follow this 

exponential increase because body mass (M) and total body nutrient content (Nx) are 

linearly related, being that Nx is the product of mass and the proportion of mass 

comprised of a given nutrient. Formally, LNCRs take the form  

(Eq. 4.2) 𝑁𝑥 = 𝑎𝐿𝑏 

Where a is the intercept of the regression of Nx with a length measurements (L) used as 

the independent variable, and b is the slope of the regression. In its most basic form, the 

model requires a length measurement (e.g., fork length, snout-vent-length, total length, 

standard length), the wet weight of an individual without stomach contents, and whole 

body nutrient concentration of individuals along the full length range of the population or 

cohort of interest.  
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4.4.1.  ESTIMATING INDIVIDUAL LEVEL NUTRIENT ACCRUAL 

Estimating nutrient accrual within a population is important for understanding how a 

population directly impacts ecosystems at intermediate temporal scales because the net 

flow of nutrients in a population makes those nutrients unavailable to primary producers. 

Unfortunately, estimating nutrient accrual at the individual level, the aggregate of which 

is accrual at the population level, is impossible with the general equation for measuring 

growth rate (Bumpers et al. 2015) 

(Eq. 4.3) 𝐺𝑅 =
ln 𝑀𝑓−ln 𝑀𝑖

(𝑡+1)−𝑡
 

Where, GR is growth rate, Mi is the initial body mass, Mf is the final body mass, and t is 

the time between measurements because a researcher cannot measure body nutrient 

concentration on the same individual twice. Body nutrient content can only be measured 

following lethal sampling. This problem might easily be solved by assuming constant 

body nutrient concentration along a growth trajectory (Kraft 1992; Schindler and Eby 

1997; Vanni et al. 2013); however, there is often differential growth rates among tissue 

types and tissue types differ in their nutrient composition, which can cause changes in 

body nutrient concentration with growth (Boros et al. 2015a). We suggest LNCRs may 

serve to circumvent this problem by generalizing changes in body element concentration 

at the population level in a way that permits the use of mass balance.  

 LNCRs provide a simple means of calculating nutrient accrual over any period 

defined by a change in length. Length-at-age is a common metric in population data of 

indeterminate growers, thus length can often be used as a surrogate for age (Vanni 1996). 
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Given that an individual of length L1 at age t is expected to be L2 at age t+1, then 

individual accrual of nutrient (Nx,accrued) over that period is  

(Eq. 4.4) 𝑁𝑥,𝑎𝑐𝑐𝑟𝑢𝑒𝑑 = 𝑎𝑥𝐿2
𝑏𝑥 − 𝑎𝑥𝐿1

𝑏𝑥 

Then, nutrient accrual rate (NAR) is estimated as  

(Eq. 4.5) 𝑁𝐴𝑅 =  
𝑁𝑥,𝑎𝑐𝑐𝑟𝑢𝑒𝑑

(𝑡+1)−𝑡
 

This basic formulation can be applied when we expect that the relationship between 

length and nutrient content to be the same during both periods of interest (i.e., t, t+1).  

This constraint on LNCR application is similar to the constraint on the use of 

length-weight relationships to calculate growth rates (Ricker 1975). Just as the 

coefficients of length-weight relationships can change seasonally according to a taxon’s 

phenology, so may LNCRs. Therefore, with long lived taxa in many natural settings, a 

LNCR formed with samples collected at the beginning of a growing season can only infer 

nutrient accrued at the annual scale (e.g., age 1 to age 2). To estimate nutrient accrual at 

shorter time scales (i.e., over a growing season), the population must be sampled at the 

beginning and end of the period of interest to form two LNCRs with period specific 

coefficients. In this scenario, we can calculate nutrient accrual rate as 

(Eq. 4.6) 𝑁𝐴𝑅𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 =
𝑎𝑥,𝑡+1𝐿𝑡+1

𝑏𝑥,𝑡+1−𝑎𝑥,𝑡𝐿𝑡

𝑏𝑥,𝑡+1

(𝑡+1)−𝑡
 

Where 𝑎𝑥,𝑡𝐿𝑡
𝑏𝑥 is the season specific LNCR and (𝑡 + 1) − 𝑡 is the time difference 

between sample periods.  
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4.4.2. ACCRUAL OF MULTIPLE NUTRIENTS AT THE INDIVIDUAL LEVEL 

Growth and reproduction require energy investment in somatic and gonadal tissue 

(deRoos and Persson 2013), but also require multiple nutrients (Sterner and Elser 2002). 

The differences in tissue growth over time suggest that different nutrients may be accrued 

at different rates in animals of different sizes and ages. This differential nutrient accrual 

ultimately leads to observed changes in body stoichiometry along ontogeny (Pilati and 

Vanni 2007, Boros et al. 2015a, Chapter 2). We can capture these changes in body 

stoichiometry using LNCRs constructed for different nutrients (Nx, Ny) on the same 

sample set by scaling Nx and Ny by their respective molar masses and dividing the molar 

quantities to produce molar X:Y. A simple exercise comparing the responses of dividing 

power relationships with different scaling coefficients (b) provides a set of conditions 

under which nutrients are accrued isometrically or allometrically relative to each other, 

the latter indicating that body stoichiometry changes with length. Body X:Y remains 

constant across body sizes when bx = by, decreases with body size when bx < by, and 

increase with body size when bx > by (Figure 4.1). Thus isometric growth in terms of 

multiple nutrients (i.e., accrual in constant proportions) occurs only when the scaling 

coefficients of LNCRs for each element are equal. When coefficients differ, the 

individuals exhibit changes in body stoichiometry with changes in body length.  

4.4.3. NUTRIENT ACCRUAL AT THE POPULATION LEVEL  

LNCRs are population level generalizations of the change in nutrient content in an 

individual’s body through growth, which can be extended to place population dynamics 
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in the context of nutrient cycling at intermediate temporal scales. Populations are groups 

of individuals of the same species in a given area, and the dynamics of populations 

include not only changes in the number of individuals, but also changes in size structure 

occurring with sustained harvest and stochastic mortality events. Because different sized 

individuals may have different body stoichiometries and different nutrient accrual rates, 

the total net flux of nutrients into a population is highly dependent on its size structure. 

Here, we describe how LNCRs can be used to estimate the flow of nutrients between a 

population and its ecosystem by calculating the total mass of nutrients accrued in a 

population and explore how changes in size-specific loss rates affect whether a population 

is a source or sink of nutrients (Vanni et al. 2013).  

 Consider a population consisting of k cohorts or size classes. The total nutrient X 

mass within cohort j is the total nutrient content of an individual (Eq. 4.2) times the 

number of individuals (nj) in the cohort expressed as  

(Eq. 4.7) 𝑁𝑥,𝑗 = 𝑛𝑗𝑎𝑥𝐿𝑗
𝑏𝑥  

Then the total nutrient X mass contained in the populations (i.e., standing stock), an 

aspect of ecosystem structure, is the sum of nutrient mass in k cohorts at time t,  

(Eq. 4.8) 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛,𝑥,𝑡 =  ∑ 𝑛𝑗𝑎𝑥𝐿𝑗
𝑏𝑥𝑘

𝑗=1      

The accrual of nutrients in a population is the difference between inputs and outputs of 

nutrients from a population and can be positive or negative depending on whether the 

population as a whole is gaining or losing nutrients, respectively. Input of nutrients to 
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population biomass (Ipop) is the maximum accrual of nutrients by a population assuming 

no mortality or dispersal losses calculated as 

(Eq 4.9) 𝐼𝑝𝑜𝑝 = ∑ 𝑛𝑗(𝑎𝑥𝐿𝑗+1
𝑏𝑥 − 𝑎𝑥𝐿𝑗

𝑏𝑥)𝑘
𝑗=1 . 

If we assume nutrients are lost from cohorts at rate lj only at the beginning of the period 

of interest (i.e., before growth within cohorts occurs) the outputs from the population 

(Opop) is the sum of nutrient nutrient losses from j cohort calculated as 

(Eq. 4.10) 𝑂𝑝𝑜𝑝 = ∑ 𝑙𝑗𝑛𝑗𝑎𝑥𝐿𝑗
𝑏𝑥𝑘

𝑗=1 , 

and nutrient accrual by the population is then 

(Eq. 4.11) 𝐴𝑐𝑐𝑟𝑢𝑎𝑙 = ∑ 𝑛𝑗(𝑎𝑥𝐿𝑗+1
𝑏𝑥 − 𝑎𝑥𝐿𝑗

𝑏𝑥)𝑘
𝑗=1 − ∑ 𝑙𝑗𝑛𝑗𝑎𝑥𝐿𝑗

𝑏𝑥𝑘
𝑗=1 . 

The net flux of nutrients between a population and the ecosystem it inhabits is an aspect 

of a population’s functional role in its ecosystem and reflects whether a population is a 

net sink or source of ecosystem nutrients (Loreau et al. 2013). When more nutrients are 

sequestered in vertebrate biomass and made unavailable to primary producers than 

released in an available form the population is a net sink. When more nutrients are 

released from a population over time in a form available to primary producers than 

transformed into an unavailable form, the population is a net source. Ultimately, whether 

a population removes or supplies nutrients to primary producers depends on whether 

nutrients that are lost from the population are recycled through remineralization (Vanni et 

al. 2013). To determine whether a population is a net sink or source of nutrients, we split 

cohort specific loss rate lj into losses occurring from mortality (mj) and dispersal (dj) rates 
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such that total loss rate is the sum of mortality and dispersal rates because mortality losses 

may be recycled within the ecosystem whereas nutrient losses through dispersal are 

permanent. From the standpoint of the ecosystem, gross input (Ipop) to the population is an 

output from the other subsystems. Inputs to the ecosystem from the population are the 

mortality fraction of population outputs (Eq. 4.10) further reduced by the efficiency with 

which mortality losses are recycled (i.e., recycling efficiency δ). As such, net flux 

between the population and the ecosystem is calculated as 

(Eq. 4.12) 𝐹𝑥 =  𝛿 ∑ 𝑚𝑗𝑛𝑗𝑎𝑥𝐿𝑗
𝑏𝑥 − ∑ 𝑛𝑗(𝑎𝑥𝐿𝑗+1

𝑏𝑥 − 𝑎𝑥𝐿𝑗
𝑏𝑥)𝑘

𝑗=1  𝑘
𝑗=1  

Where a population is a net sink of nutrients when population accrual exceeds recycled 

mortality losses (i.e., Fx < 0) and a net source when the reverse is true (i.e., Fx > 0). All 

parameters in Eq. 4.12 can be estimated using LNCRs to obtain individual accrual rates, 

population estimates to obtain abundances, and capture-mark-recapture models to 

estimate mortality and dispersal rates. 

4.5. LNCR IN PRACTICE  

4.5.1. ILLUSTRATION #1: EVALUATING ONTOGENETIC VARIABILITY IN BODY STOICHIOMETRY IN 

BROOK TROUT (SALVELINUS FONTINALIS) AND CALCULATING NUTRIENT STANDING STOCKS WITH 

SINGLE SEASON LNCRS. 

With our first case study, we used one-sample period LNCRs for five populations of 

brook trout (Salvelinus fontinalis) to (i) illustrate a possible use of LNCRs by testing 

whether LNCRs vary within elements among populations and within populations among 
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elements and (ii) use LNCRs to estimate standing stock of multiple elements at the 

population level. We sampled brook trout in 50-m segments of five second and third 

order streams in Terra Nova National Park Newfoundland and Labrador, Canada from 

15-17 June 2015; Charlottetown Brook, Cobblers Brook, Davey Ann’s Brook, Spracklin 

Brook, and Yudle Pond Brook (Table A.4.1). We estimated population density with three 

pass depletion electrofishing using a Smithroot LR-24 backpack electrofisher and barrier 

nets located at the upstream and downstream edges of study segments. All captured 

individuals were measured for mass and fork length and at least 10 individuals from each 

population were lethally sampled for analysis of C, N, and P. We selected individuals for 

chemical analysis so that the overall sample contained individuals spanning the size 

gradient found in a given segment. Fish samples were placed on ice and then frozen at -

20°C for up to two months before being prepared for chemical analysis. Please refer to 

Appendix A.4.1 for more information on sample processing and analysis.  

We constructed LNCRs (i.e., Eq. 4.2) for each brook trout population by 

regressing natural log-transformed total body nutrient content of each individual 

(calculated as % nutrient on a wet mass basis by wet weight measured in the lab without 

stomach contents) against natural log transformed fork length of samples. Because the 

slopes and elevations of LNCRs for each element did not differ among populations 

(Figure 4.2; Table A.4.2.), we conclude that body element content of a given size fish 

does not vary among populations. As such, we pooled data from all streams within 

elements for further statistical analysis and calculations. 
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We were interested in whether body stoichiometry varied along a body size 

gradient of brook trout in study systems during late spring as indicated by differences in 

the slopes of LNCRs among elements.  LNCR slopes (b) were 3.17, 3.09, and 2.94 for C, 

N, and P respectively (Figure 4.2); however, these differences were not statistically 

significant (Appendix A.4.2; Table A.4.4.). Therefore, we conclude that C:N, C:P, and 

N:P ratios do not vary with body length at the population level during the sampling 

period; a result possibly arising from considerable variability within elements among 

individuals and low within stream sample size.  

Our second goal was to estimate the distribution of nutrients among cohorts and 

the total standing stock of nutrients held within the brook trout population using LNCRs. 

We estimated the storage of nutrients within cohorts for each brook trout population by 

multiplying the number of individuals in the cohort by the total body nutrient content 

from the LNCR (Eq. 7).  Total nutrient standing stock of the population was calculated 

using Eq. 8. Estimated standing stocks of C, N, and P in brook trout populations in our 

study segments ranged from 66-301, 17-79, 3-15 mg∙m
-2

, respectively (Table 4.1), which 

is similar to the vertebrate standing stocks in other small stream ecosystems (Milanovich 

et al. 2015). Uncertainty around the estimated stock (95% CI) reflects the uncertainty in 

the cohort size estimates (number of individuals; Table A.4.5) rather than the uncertainty 

in the LNCR for the given element. We feel that this is justified due to the high R
2
 of 

LNCRs for these populations (Figure 4.2).  

In this illustration, we found that brook trout body composition did not change 

with body length, thus estimating standing stock with LNCRs should yield similar results 
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to simply multiplying population biomass by nutrient concentration in this scenario. The 

lack of differences in body composition among sizes we observed may be the result of 

similar allocation of body element resources to growth during this sampling period. 

Future work should investigate whether this pattern holds throughout the year, 

particularly when larger, mature individuals begin allocating resources to gonadal tissue 

in early autumn.   

4.5.2. ILLUSTRATION #2: ESTIMATING SUBSIDIES DELIVERED BY MIGRATING ATLANTIC SALMON 

(SALMO SALAR) 

Migrating animals represent important nutrient subsidies to ecosystems they inhabit over 

their life cycles; however it is often difficult to quantify individual contributions to the 

total magnitude of subsidies when organisms are iteroparous and how individual 

contributions are partitioned among different trophic pathways. In our second illustration, 

we approximated the amount of nutrients released by female Atlantic salmon during 

migration, spawning, and overwintering using a two season LNCR (Eq. 4.6) constructed 

for pre-spawn mature adult Atlantic salmon (termed adults) migrating from the ocean to 

freshwater and post-spawn Atlantic salmon (termed kelts) migrating from freshwater to 

the ocean. Migrating and spawning adult Atlantic salmon do not feed in freshwater, 

typically lose 35-45% of their body mass during their freshwater spawning and 

overwintering period (Chapter 3), and do not change in fork length. As such, changes in 

body mass and composition can be attributed to losses occurring in the freshwater 



   

 

96 

 

ecosystem only, which is a measure of the magnitude of a subsidy delivered by an 

individual.  

We used a two season LNCR formulation to estimate total amount of nutrients 

released during migration, spawning and overwintering and whether elements were 

released in different amounts relative to the body nutrient content of the incoming adult. 

As described in Eq. 4.6, we regressed log-transformed total body nutrient content of 

samples of each life stage (adults and kelts) using data from 13 adults and 14 kelts 

collected from three streams on the island of Newfoundland, Canada. Individuals crossed 

the freshwater-marine boundary in April-May 2014 and July-August 2014, respectively 

(see Appendix A.4.4. for detailed methods). As expected, we found lower C, N, and P 

content in kelts than in adults of a given length (Figure 4.3). By applying mass balance to 

individuals at freshwater entry and exit (i.e., Eq. 4.6), we estimate Atlantic salmon that 

survive spawning and overwintering release 135-415 g C, 19-55 g N, and 0.5-3.3 g P per 

individual over the 8-9 months they reside in freshwater. By placing these losses (i.e., 

adult Nx – kelt Nx) relative to the initial body nutrient content upon freshwater entry (i.e., 

adult Nx), we estimate that female Atlantic salmon release 70-80%, 50-65%, and 16-30% 

of their initial body C, N, and P during their entire freshwater migration, respectively 

(Figure 4.4 ; Total released). For comparison, Jonsson et al. (1997) estimated that Atlantic 

salmon in a Norwegian river expended 60-70% of body energy reserves during upstream 

migration and spawning. Similarly, Hendry and Berg (1999) estimated that sockeye 

salmon (Oncorhynchus nerka) expended 65-75% of body energy reserves between 

freshwater entry and death. Both studies used relationships between fish length and the 
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sum of somatic and gonadal energy content (Jonsson et al. 1997; Hendry and Berg 1999) 

similar to the LNCRs we describe. Thus, our estimates of total nutrient release obtained 

using a two season LNCR (Eq. 4.6) offer a complementary method for evaluating the 

costs of migration and reproduction using similar principles, but in a way that can place 

salmon in the context of ecosystem nutrient cycling (Reiners 1986) while simultaneously 

quantifying an important metric for evolutionary biology, investment in reproduction, in 

terms of nutrients.   

To quantify the effects of anadromous fish mediated subsidies, it is important to 

distinguish between nutrients released in the form of eggs and nutrients released as 

excretions and respiration (see Eq. 1) because the two releases can support different parts 

of the aquatic food web. Eggs are available to higher trophic levels and decomposers 

(e.g., Bentley et al. 2012), whereas excretions are available to autotrophs and microbes 

(Tiegs et al. 2011). To partition the proportion of nutrient released during the migration 

and spawning between eggs and excretions, we constructed an additional LNCR for the 

nutrient content of salmon eggs (Figure 4.3) by collecting eggs from mature female 

Atlantic salmon captured at a fish holding facility on the Exploits River, Newfoundland 

Canada (see Appendix A.4.4 for detailed sample collection and processing methods). By 

regressing log-transformed total egg nutrient content against female fork length, we 

estimate that female Atlantic salmon between 45 and 63 cm fork length release 30-95 g C, 

6- 19g N, and 0.6 – 1.8 g P per female as eggs (Figure 4.3). By examining the magnitude 

of egg release relative to body nutrient content upon freshwater entry (i.e., Nx, eggs / Nx, 

adults), we estimated individuals invest 15-18%, 18-21%, and 15-19% of total body C, N, 
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and P content upon freshwater entry in eggs (Figure 4.4; lower line, light yellow shading) 

with the remainder of losses being attributable to excretion and respiration for C and 

excretion for N and P.  

4.6.  PERSPECTIVES 

We develop a tool to link large consumers and ecosystem nutrient cycles using 

measurements of total body nutrient content in conjunction with common population 

level measurements such as body length, age, and population size. We envision that 

LNCRs may serve a number of uses in both basic and applied ecology because they rely 

on the principle of mass balance that underlies both the metabolic theory of ecology 

(Brown et al. 2004) and ecological stoichiometry (Sterner and Elser 2002). Allen and 

Gillooly (2009) outline four theoretical principles for predicting nutrient and energy 

fluxes at the ecosystem level using sub-cellular structure and kinetics in order to merge 

and extend both theoretical frameworks. With a basic LNCR (Eq. 4.2), we acknowledge 

Principle II – biomass is comprised of metabolic and structural pools with distinct 

allometries and element compositions (Allen and Gillooly 2009) – when we explicitly 

connect total body element content to total body length. As we extend the use of LNCRs 

to the population level (Eq. 4.8-4.12), we acknowledge Principle IV – the storage, flux, 

and turnover of energy and materials in biological communities and ecosystems can be 

estimated by summing across individuals in that community – when we sum the nutrient 

contents of individuals within ecosystems at multiple points in time.  
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We add two points to Allen and Gillooly’s (2009) synthesis to further assist in the 

application of ecological stoichiometry to populations: (i) elemental composition of an 

individual can vary in predictable ways over the course of its life due to changes in the 

proportional representation of structural components with implications for predicting 

nutrient fluxes at the individual level and (ii) populations consist of individuals at 

different stages of development, which influence the rates and composition of nutrient 

fluxes at the population level. LNCRs begin to address both points because these 

relationships implicitly incorporate variation in body element composition that follow 

ontogeny and phenology in a manner that permits the use of mass balance at seasonal and 

annual scales. Ontogeny is implicit in the basic LNCR because we assume ontogeny 

changes along a size gradient, which we applied to the population level in Illustration #1. 

In a two season LNCR we explicitly incorporate ontogeny and phenology, which we used 

to estimate fluxes out of individual Atlantic salmon in Illustration #2. Standing stocks and 

fluxes are key aspects of ecosystem theory (DeAngelis 1992, Loreau 2010). LNCRs may 

increase the precision of estimates of stocks and fluxes for indeterminate vertebrates, such 

as many fish, reptiles, and amphibians, especially at longer temporal scales. Similar 

methods have been used to great effect for terrestrial plants (Kerkhoff and Enquist 2006). 

LNCRs may shed light on feedbacks between ecology and evolution, a major 

focus of modern ecology in these times of rapid environmental change (Post and 

Palkovacs 2009). Kay et al. (2005) developed a stoichiometric framework for 

macroevolutionary biology by describing how the genetic determinants of body 

composition are shaped by abiotic (e.g., growing season length, temperature, and UV 



   

 

100 

 

radiation) and biotic (e.g., competition, predation, sexual interactions) factors. More 

recently, Jeyasingh et al. (2014) called for shifting attention towards intraspecific 

variation in elemental composition to address connections between ecology and evolution 

by merging ecological stoichiometry with population genetics. LNCRs may facilitate this 

effort because a LNCR is a stoichiometric characteristic of a population that emerges 

from selective forces acting on individual body composition, which is considered an 

elemental phenotype (Jeyasingh et al. 2014). Then, phenotypic variation in a population 

at any one time is reflected in the residual variance of the regression. Consistent, 

unidirectional shifts in LNCR coefficients at evolutionarily relevant temporal scales 

suggest ecologically important changes in organismal structure that can be traced directly 

to gene frequencies in a population and feed back on ecosystem processes such as nutrient 

standing stocks and population level accrual rates.   

Animal populations and communities have the strongest impacts on nutrient 

cycling at ecosystem and regional scales (Schmitz et al. 2013). At short temporal scales, 

the spatial distribution of fish can create areas of high nutrient availability (McIntyre et al. 

2008) with consequences for ecosystem productivity (Allgeier et al. 2014) and 

anadromous fish modulate primary and secondary production in their natal ecosystems by 

transporting nutrients between marine and freshwater ecosystems (Levi et al. 2013). At 

longer temporal scales, animals existing in stable populations are hypothesized to be 

long-term nutrient sinks at the whole ecosystem level (Sereda et al. 2008), but only when 

nutrient contained in their bodies are not re-mineralized because nutrient are transformed 

into a recalcitrant form and stored in sediments (Vanni et al. 2013; Boros et al. 2015b) or 
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populations are harvested. These examples suggest that fish, wildlife, and ecosystem 

managers can implement policies that have direct effects on nutrient cycles by influencing 

animal storage pools, but these policies require refinement of our understanding of how 

nutrients are distributed within populations and among populations across space.  

Over-exploitation of fish stocks is pervasive with well-studied consequences for 

the abundance of organisms at lower trophic levels arising from consumptive effects 

(Frank et al. 2005). Recently, some ecologists have shifted their focus to the effects of 

animal harvesting on ecosystem productivity via non-consumptive effects. Layman et al. 

(2011) found that gray snapper (Lutjanus griseus) excretion rates at the population level 

were 400 to 500% higher in unfished sites than fished sites in the Bahamas and connected 

this difference in nutrient availability to primary production. Similarly, Allgeier et al. 

(2016) found mixed models including fishing pressure as a categorical variable (i.e., 

fished or unfished) best explained aspects of nutrient storage and recycling at the level of 

reef fish communities in the Caribbean. 

Our understanding of the effects of harvest on nutrient cycles at larger spatial and 

temporal scales is more limited, but evidence suggests that commercial and recreational 

harvest can influence nutrient cycles by changing short term fluxes, but also may change 

the total amount of nutrients in an ecosystem. Maranger et al. (2008) estimated that the 

proportion of N fertilizer runoff removed from coastal ecosystems via commercial 

fisheries declined from 60% to 20% between 1960 and 2000. Likewise, Hjerne and 

Hansson (2002) estimated that herring, sprat, and cod fisheries removed approximately 

2% and 18% of anthropogenic N and P load moving to the open ocean from the Baltic 
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Sea, respectively. Thus, commercial harvest may alter long term nutrient dynamics with 

consequences for ecosystem productivity, especially in ecosystems with low exogenous 

inputs. The opposite may also be true; harvest may serve as a tool to mitigate the effects 

of anthropogenic nutrient loading by removing excess nutrients from ecosystems in a 

form that is edible for humans. Indeed, managers have a long history of removing fish to 

control algal blooms in eutrophic lakes (Hansson et al. 1998, Schaus et al. 2010). Given 

the magnitude of global fish harvests, the diversity of species exploited, the size-specific 

nature of current fish harvest regulations, and potential local scale effects, we believe that 

LNCRs may help us manage fish populations for both food production and conserving or 

manipulating nutrient cycles at ecosystem, regional, and global scales by refining 

estimates of harvest related nutrient removal by accounting for interspecific, ontogenetic, 

and phenological variability in fish body composition.  

There are a number of paths for the future development of LNCRs as a tool for 

bridging ecosystem and population ecology. First, LNCRs require further testing using 

datasets with larger sample sizes. In Illustration #1, our within-population sample size 

was low and inter-individual variability in body composition may have masked true 

differences among populations. In Illustration #2, the confidence intervals on our 

estimates of proportion of body nutrient released are wide, which we attribute to the small 

sample sizes within life stage and the diversity of populations represented in the dataset. 

Large uncertainty in estimates obtained by dividing predictions, as we executed in 

Illustration #2, are expected because of the propagation of errors associated with merging 

independent measurements. We illustrate how LNCRs differ along a species phenology 
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using pre-spawn and post-spawn Atlantic salmon, but anadromous salmon are an extreme 

example due to their complex, migratory life cycle.  Changes may be more subtle or 

extreme for non-migratory species if LNCRs are analyzed for pre-and post-spawn 

periods.  

The specificity of LNCR coefficients to a population and time period needs to be 

known. Is a relationship applicable season after season so that LNCRs can be used in long 

term studies? If the coefficients change from year to year  ̶  why? Coefficients may 

change during years of high food availability, low temperature, species invasion, et 

cetera, where the difference between LNCR slopes can potentially be used as a nutrient 

explicit expression of body condition (Peig and Green 2010) at the population level. If 

LNCR coefficients depend on the timing of sampling relative to reproductive phenology 

(Illustration #2), then changes in LNCR coefficients over years may suggest shifts in the 

timing of reproduction. 

There is a disconnect between population and ecosystem ecology in both theory 

and practice arising from a difference in the units of analysis; ecosystem ecologists use 

atoms and energy, whereas population ecologists use biomass and individuals. With 

further development, LNCRs may serve to translate individuals into nutrient masses using 

a standardized measurement with applications in basic macroecology, evolutionary 

ecology, and the management of population and ecosystems.  
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Table 4.1. Carbon, nitrogen, and phosphorus standing stock (mg∙m
-2

; lower 95%CI, upper 95%CI) in brook trout populations 

inhabiting five streams in Terra Nova National Park in June 2015. Confidence intervals were obtained using the 95% 

confidence intervals from the cohort size estimates from three pass depletion methods (see Appendix A.4.1).  

Element Stream Age 0+ Age 1+ Age 2+ Age 3+ Total 

Carbon Charlottetown 0.4 (0.3, 0.5) 4.4 (0, 8.8) 44.8 (0.8, 88.9) 14.2 (14.2, 14.2) 63.8 (15.2, 112.3) 

 

Cobblers 0.3 (0.2, 0.4) 16.1 (15.5, 16.7) 116.6 (115.2, 118.1) 25.9 (25.9, 25.9) 158.9 (156.8, 161.0) 

 

Davey Ann's 0 10.9 (5.7, 16.1) 131.9 (131.9, 131.9) 0 142.8 (137.6, 147.9) 

 

Spracklin 28.3 (24.8, 31.7) 42.3 (34.4,50.1) 55.7 (38.5, 72.9) 174.4 (93.9, 255.9) 301.1 (191.7, 410.6) 

 

Yudle 3.2 (2.2, 2.2) 6.1 (6.1, 6.1) 151.1 (135.9, 166.3) 131.5 (70.6, 192.3) 291.9 (214.8, 369.0) 

Nitrogen Charlottetown 0.1 (0.1, 0.1) 1.2 (0, 2.4) 11.8 (0.2, 23.3) 3.6 (3.6, 3.6) 16.7 (3.9, 29.4) 

 

Cobblers 0.1 (0.1, 0.1) 4.4 (4.2, 4.5) 30.6 (30.2, 31.0) 6.6 (6.6, 6.6) 41.7 (41.1, 42.2) 

 

Davey Ann's 0 3.0 (1.6, 4.4) 34.6 (34.6, 34.6) 0 37.6 (36.2, 39.0) 

 

Spracklin 8.2 (7.2, 9.1) 11.7 (9.5, 13.8) 14.7 (10.2, 19.3) 44.4 (23.8, 64.9) 78.9 (50.7, 107.2) 

 

Yudle 0.9 (0.6, 1.2) 1.6 (1.6, 1.6) 40.2 (36.1, 44.2) 33.7 (18.1, 49.3) 76.4 (56.5, 96.4) 

Phosphorus Charlottetown 0.02 (0.02, 0.03) 0.24 (0, 0.47) 2.24 (0.04, 4.45) 0.67 (0.67, 0.67) 3.2 (0.7, 5.6) 

 

Cobblers 0.02 (0.01, 0.03) 0.89 (0.86, 0.93) 5.85 (5.78, 5.92) 1.21 (1.21, 1.21) 8.0 (7.9, 8.1) 
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Davey Ann's 0 0.61 (0.32, 0.90) 6.63 (6.63, 6.63) 0 7.2 (7.0, 7.5) 

 

Spracklin 1.85 (1.63, 2.08) 2.44 (1.99, 2.90) 2.86 (1.98, 3.74) 7.99 (4.29, 11.70) 15.2 (9.9, 20.4) 

 

Yudle 0.21 (0.14, 0.27) 0.33 (0.33, 0.33) 7.88 (7.09, 8.67) 6.18 (3.32, 9.04) 14.6 (10.9, 18.3) 
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Figure 4.1. Simulation of how differences among LNCR coefficients for multiple 

elements correspond to changes in body stoichiometry with increasing body length. Panel 

(A) depicts LNCRs for nutrient X (upper line) and Y (lower lines) when ax = 0.03, ay = 

0.003, by = 3 (solid upper line), bx=3 (solid lower line), bx = 2.9 (dashed lower line), and 

bx = 3.1 (dotted lower line). Panel (B) depicts the body ratio assuming that nutrient X is 

nitrogen and nutrient Y is phosphorus when bx = by (solid line), bx > by (dashed line), and 

bx < by (dotted line).  
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Figure 4.2. Length nutrient content relationships of C (ln(NC) = -14.45+ 3.17ln(fl) , R
2

 = 

0.95, n=62), N (ln(NN) = -15.42+ 3.09ln(fl) , R
2

 = 0.95, n=62), and P (ln(NP) = -16.39+ 

2.94ln(fl) , R
2

 = 0.95, n=62) for five brook trout populations in Terra Nova National Park, 

NL. Different symbols denote different populations. 
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Figure 4.3. Length nutrient content relationships (LNCRs) of carbon (left), nitrogen 

(middle), and phosphorus (right) for Atlantic salmon adult body content (solid circles; 

n=13) and kelt body content (open circles; n=14) sampled in July-August 2013 and April-

May 2014, respectively, from Campbellton River, Conne River, and Western Arm Brook, 

Newfoundland and Labrador Canada. Asterisks represent the nutrient content of eggs 

non-lethally retrieved from mature female Atlantic salmon captured in the Exploits River, 

Newfoundland and Labrador in November 2014 (n=12). Solid lines indicate predictions 

from ordinary least squares regression of natural log-transformed nutrient content against 

natural log-transformed fork length for adults (NC = e
-6.79+3.15*ln(fl)

, R
2
=0.91; NN = e

-

8.37+3.11*ln(fl)
, R

2
=0.92; NP = e

-11.68 + 3.39*ln(fl)
, R

2
=0.85), kelts (NC = e

-11.24+3.91*ln(fl)
, R

2
=0.63; 

NN = e
-11.63+3.71*ln(fl)

, R
2
=0.65; NP = e

-11.557 + 3.29*ln(fl)
, R

2
=0.78), and eggs (NC = e

-

9.54+3.40*ln(fl)
, R

2
=0.83; NN = e

-10.55+3.25*ln(fl)
, R

2
=0.81; NP = e

-12.37 + 3.11*ln(fl)
, R

2
=0.74). 
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Figure 4.4. The proportion of adult body nutrient content released by anadromous 

Atlantic salmon during upstream migration, spawning, and downstream migration (upper 

line; light blue shading) and the proportion of adult body nutrient content released as eggs 

(lower line; light yellow shading). Shaded areas represent the 90% confidence intervals of 

our estimates of proportion of body nutrient content released and was determined by 

randomly removing one datum from each dataset (i.e., adults, kelts, and eggs) 100 times, 

re-calculating the proportions, and removing the upper and lower 5% of the proportion 

estimates.   
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Chapter 5: Ecosystem effects of top consumers with complex and 

migratory life cycles 

JONATHAN D. EBEL AND SHAWN J. LEROUX
 

Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, 

Canada.  

5.1. ABSTRACT 

Migratory consumers with complex life cycles, in which individuals experience 

ontogenetic habitat and diet shifts, couple the dynamics of ecosystems through 

interdependent, bi-directional flows of individuals and material; a special type of subsidy 

not yet incorporated into ecosystem theory. We derived a meta-ecosystem model 

consisting of natal and adult ecosystems connected by flows of migrating top consumers 

and evaluated how changes in the relative magnitude and form of subsidies (i.e., 

consumer or resources fluxes) that occur within and among migratory taxa regulate 

trophic structure and ecosystem fluxes. We demonstrate that increasing migration rates 

always decreases resource stocks, but can sometimes increase resource production in the 

recipient ecosystem. In the donor ecosystem, increasing migration rates always increases 

resource stock, but can sometimes decrease resource production. The direct incorporation 

of adult-borne subsidies into juvenile consumers can increase natal ecosystem fluxes, but 

only when juvenile losses through mortality and excretion are recycled efficiently. Our 

analyses revealed that ecosystem fluxes are more useful metrics for understanding 
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variation in the ecosystem effects of migratory consumers because production responds to 

both top-down and bottom-up forces. With human activity exerting extreme pressure on 

migratory consumers, we need to connect these organisms’ characteristics to their 

ecosystem effects. 

5.2. INTRODUCTION 

Ecosystems are connected by flows of material and organisms, forming complex webs of 

interactions among ecosystems (Baxter et al. 2005; Marczak et al. 2007; Soininen et al. 

2015). These flows are often referred to as subsidies. Subsidies are flows of material from 

one ecosystem that increase the productivity of a recipient in another ecosystem (Polis et 

al. 1997). Many empirical studies document strong effects of subsidies on food webs 

because subsidies can increase resource availability (Polis and Strong 1996; Nakano et al. 

1999) or increase predator density (Knight et al. 2005) depending on subsidy type, 

quantity, quality, duration, and timing. Current theory concerning the role of subsidies in 

ecosystem dynamics focuses on the effects of sustained or pulsed subsidies on trophic 

dynamics (Takimoto et al. 2002; Leroux and Loreau 2008; Holt 2008; Takimoto et al. 

2009), the reciprocal, but independent flows between ecosystems on trophic stocks 

(Leroux and Loreau 2012), independent nutrient flows among ecosystems on community 

stability and resilience (Gravel et al. 2010a; Marleau et al. 2010) and nutrient co-

limitation (Marleau et al. 2015), and flows of consumers across habitats on food web 

stability (Huxel and McCann 1998; McCann et al. 2005). This theory, and most of the 

empirical work that inspired it, consider cross ecosystem fluxes to be passive and 

independent; it has not acknowledged that for many well studied subsidies, those borne 
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by migratory animals (but see Schreiber and Rudolf  2008; McCoy et al. 2009), the 

response of the donor ecosystem and the recipient ecosystem are inextricably linked by 

the naturally selected characteristics of the migrating taxa. 

Organisms with migratory and complex life cycles, in which individuals transition 

in ecological niche and space during their lives (reviewed by Werner and Gilliam 1984), 

connect spatially distinct ecosystems through the consumption of local resources and 

subsequent transport of material and individuals across boundaries during their life 

cycles. These organisms include several large taxonomic groups including amphibians, 

homometabolous insects, diadromous fishes, et cetera. In these taxa, individuals move 

into and out of the ecosystem for different purposes and different portions of the material 

transported into an ecosystem act as consumer and resource subsidies, which are 

opposing forces on trophic structure. As such, migratory consumers are a special, yet 

common case of subsidies. 

As a consumer subsidy, migrants contribute to the consumer population by 

producing offspring, re-establishing residency, or providing allochthonous prey, which is 

hypothesized to decrease autochthonous prey (McCoy et al. 2009; Blaustien et al. 2014; 

Collins et al. 2016). For example, adult amphibians deposit eggs in ponds and the 

resulting larvae tend to have top-down effects on their natal resources (Seale 1980; Nery 

and Schemera 2016). As a resource subsidy, material moves to lower trophic levels 

through migrating consumer excretion and mortality and is hypothesized to stimulate 

upper trophic levels by increasing primary production (Schindler et al. 2003). For 

example, anadromous fishes hatch and rear in freshwater ecosystems and migrate to 
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marine ecosystems to grow substantially in size before returning to freshwater to spawn. 

The material accrued during marine feeding phase of their life cycle is deposited in 

freshwater ecosystems as gametes, excretions, and carcasses, which constitutes a 

substantial material subsidy (Moore and Schindler 2004) which is hypothesized to 

stimulate both aquatic and terrestrial production (Schindler et al. 2003). Additionally, the 

material contained in different life stages migrate in different directions and represents a 

drain of material in the donor ecosystem and a subsidy to the other ecosystem (e.g., 

Chapter 3). At the same time, individual consumers leaving an ecosystem may relieve 

predation pressure on lower trophic levels in one ecosystem and increase it in the other 

ecosystem (McCoy et al. 2009). All of these processes have potential consequences for 

biomass distributions and ecosystem fluxes in both ecosystems that are difficult to 

measure. Ecosystem theory (e.g., Loreau and Holt 2004; Leroux and Loreau 2008) has 

not yet considered migratory complex life cycles and population models (Schrieber and 

Rudolf 2008; McCoy et al. 2009) have not incorporated feedbacks through material 

recycling. 

Connecting subsidies to the ecosystem effects and population dynamics of 

organisms with complex and migratory life cycles requires a meta-ecosystem perspective 

(Loreau et al. 2003). A meta-ecosystem is a network of ecosystems connected by material 

or energy flows. Embedded within the connected ecosystems are communities comprised 

of trophic compartments, or trophic levels, which may respond to inputs or outputs of 

material to the local ecosystem. Furthermore, global mass balance constraints, where 

inputs must equal outputs to the entire network, explicitly acknowledge that material 
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flowing into one ecosystem necessarily comes from another. Recent meta-ecosystem 

theory predicts that the dispersal ability of organisms, community structure, and relative 

fertility of the connected ecosystems influence whether one ecosystem is a source or sink 

of material for other ecosystems (Gravel et al. 2010b; Marleau et al. 2014). Complex life 

cycles are a special case within a meta-ecosystem framework, where flows between 

ecosystems are actively transported by higher trophic levels and coupled through 

reproduction. Interdependent bi-directional flows have not yet been explored within meta-

ecosystem theory, but this is important to understand given that migratory and complex 

life cycles are common across the animal kingdom and exhibit significant variation in life 

history characteristics among taxa, there is substantial evidence that these taxa have 

strong ecosystem effects (Janestski et al. 2009; Bauer and Hoye 2014), and migratory 

taxa face extreme anthropogenic pressure (Wilcove and Wilkelski 2008).  

In this article, we merge principles from population and ecosystem models to 

explore how variation in the characteristics of migratory consumers with complex life 

cycles influence the ecosystems they inhabit over their life cycles. We derive a meta-

ecosystem model to generate predictions about the responses of trophic structure and 

ecosystem functions to migrating top consumers. We use our abstract model consisting of 

two ecosystems coupled by reciprocal and active flows of a migrating consumer with a 

complex life cycle to address the following questions: (i) How does trophic structure at 

local and meta-ecosystem scales respond to changes in migration rates and partitioning of 

a subsidy between consumer and resource fluxes? (ii) Do subsidies from migratory 

consumers increase ecosystem fluxes (i.e., production and material cycling)? 
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5.3. MODEL DESCRIPTION 

We derive a meta-ecosystem model comprised of two ecosystems each containing one 

basal abiotic compartment (Ni) and two biotic compartments; a resource (Ri) and a top 

consumer (Ci), where subscript i denotes the natal ecosystem (i=1) or the adult ecosystem 

(i=2) (Figure 5.1; Table 5.1; Table A.5.1). Each compartment describes a stock of mass 

and follows mass balance constraints at equilibrium. Each ecosystem receives constant 

inputs to basal compartment (Ni) at rate Ii and mass-dependent outputs at rate Ei. Ri 

represents a compartment of highly interconnected primary producer and herbivore 

species that behaves similarly to a food chain community module (Holt 1996). The meta-

ecosystem is coupled via a consumer with a complex life cycle. Specifically, the 

consumer has a juvenile life stage (i.e., C1) residing and feeding on biotic resources (i.e., 

R1) in the natal ecosystem and an adult life stage (i.e., C2) residing and feeding on biotic 

resources (i.e., R2) in the adult ecosystem. Stock k uptakes stock j at a rate described by f 

j,k (k, j), where j denotes the resource and k denotes the consumer in each feeding 

interaction. Similar to other ecosystem and meta-ecosystem models (DeAngelis 1992; 

Gravel et al. 2010a; Gravel et al. 2010b; Leroux and Loreau 2010), we assume that uptake 

is described by linear functions, where uptake depends on the stock of both j and k and 

obeys the law of mass action. Specifically, recipient control trophic interactions are 

defined as, fj,k (k, j) = aj,kkj, where aj,k is the consumer k attack rate on resource j. Uptake 

is assimilated by a compartment with efficiency εi. Mass is lost from the consumer 

compartments (C1, C2) through mortality and excretion at rate mi and recycles to the basal 

abiotic compartment (Ni) with efficiency δw where subscript w indicates the recycling 
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source (i.e., 1, 2, r for recycling of juvenile losses, recycling of adult losses, and recycling 

of abiotic subsidy, respectively). Because we are primarily interested in the effects of 

coupled subsidies on trophic structure and ecosystem fluxes, we assume no losses from 

Ri. 

 Natal and adult ecosystems are connected by active flows of mass via the 

consumers’ migrations, and each flow represents a mass subsidy to the receiving 

ecosystem. We derived the model to generally describe migrations associated with 

complex life cycles. Therefore, reproduction can only occur in one ecosystem, which has 

implications for how the subsidy is distributed among trophic compartments. Specifically, 

the juvenile consumer (C1) migrates at rate α from the natal ecosystem to the adult 

ecosystem and is entirely assimilated by the adult compartment (C2). The reciprocal mass 

flow of adults migrating to the natal ecosystem occurs at rate β, but is assimilated by the 

juvenile consumer with subsidy conversion efficiency r. This subsidy conversion 

efficiency (r) describes the portion of the adult subsidy mass consisting of (i) gametes that 

form embryos that hatch into feeding offspring, (ii) adult subsidy mass (i.e., carcasses and 

gametes) that are ingested by juvenile consumers (Kiernan et al. 2010; Collins et al. 

2016), and (iii) the temporary or permanent re-establishment of residency by returning 

adults (Bond et al. 2015), all of which directly contribute to stock and production of the 

juvenile compartment. The remainder of the mass transported into the natal ecosystem by 

adult consumers (i.e., 1-r) represents excretions and decomposed carcass materials, which 

are absorbed by abiotic compartment N1 at efficiency δr.  In this way, we divide the 

material transported by adult consumers during its migration to the natal ecosystem into 
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two trophic pathways. Doing this allows us to investigate direct and indirect effects of 

subsidies in ecosystems (Allen and Wesner 2016).  

2.4. MODEL ANALYSIS 

We were interested in how the characteristics of migratory consumers modulate their 

direct (top-down) and indirect (bottom-up) effects on trophic structure and ecosystem 

fluxes. We focus our equilibrium analyses on three parameters that generalize differences 

among taxa in the characteristics that determine the magnitude of a subsidy relative to the 

size of the consumer population (i.e., juvenile migration rate α, and adult migration rate 

β) and efficiency with which the subsidy to the natal ecosystem is incorporated into 

juvenile consumer mass (subsidy conversion efficiency r). A description of how different 

taxa can be mapped onto these parameters is contained in Figure 5.2.  Because we are 

interested in variation in the above three parameters, we simplified our model by 

assuming all attack rates (aj,k) and assimilation efficiency (εj) are equal.  

 Changes to the magnitude of subsidies can induce trophic cascades. The trophic 

cascade concept traditionally refers to changes in the distribution of biomass among 

trophic levels within an ecosystem that occur with changes in ecosystem fertility (i.e., 

nutrient supply) or changes in the presence and abundance of predators (Carpenter et al. 

1985; Pace et al. 1999). Broadly, there are two ways in which migratory consumers may 

regulate biomass distribution; indirectly or directly. Indirect regulation occurs when 

subsidies from migratory consumers increase production at lower trophic levels, which 

has subsequent positive effects on stocks of all higher trophic levels. Direct regulation 
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occurs when subsidies from migratory consumers increase production of a higher trophic 

level, which has subsequent positive effects on stocks of non-adjacent trophic levels 

below it (Carpenter et al. 1985). To test the first part of question (i), whether increasing 

the magnitude of a subsidy has direct or indirect control of equilibrium stocks in the 

recipient and donor ecosystems, we qualitatively assessed the direction of the partial 

derivatives (i.e., positive or negative) of the equilibrium stocks with respect to adult 

migration rate (β) and juvenile migration rate (α). We tested the second part of question 

(i), that the way in which migratory consumers regulate meta-ecosystem biomass 

distribution is determined by life history strategy (i.e., subsidy partitioning) in a similar 

way; we qualitatively assessed the direction of the partial derivatives (i.e., positive or 

negative) of the equilibrium stocks with respect to the subsidy conversion efficiency (r).   

 Subsidies may influence ecosystem fluxes differently than they influence stocks 

(Loreau 2010). We focused on two types of fluxes; production (Φj; Table A.5.2) and 

within ecosystem recycling flux (RFi; Table A.5.2). Production describes the mass flux 

into trophic compartments. Within ecosystem recycling flux describes the flow of 

material from upper trophic levels to the basal nutrient pool. To test the first part of 

question (ii), that increasing the magnitude of the subsidy has a positive effect on 

production by all trophic levels by increasing recycling flux in the recipient ecosystem 

and decreasing production in the donor ecosystem by removing material, we qualitatively 

assessed the direction of the partial derivatives of consumer and biotic resource 

production (Table A.5.2) at equilibrium with respect to juvenile migration rate (α) and 

adult migration rate (β). Finally, we tested the second part of question (ii) that taxa that 
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more efficiently transfer material to juvenile consumers have negative effects on natal 

ecosystem fluxes because they contribute less material to the abiotic resource pool (N1), 

by qualitatively assessing the direction of the partial derivatives of production and 

recycling flux with respect to the subsidy conversion efficiency (r).  

5.5. EQUILIBRIA 

Our model has four equilibria, but only one where all compartments exist. We focus our 

analysis on this equilibrium because we are interested in deciphering how flows influence 

the full meta-ecosystem. The other equilibria are presented in Appendix A.5.2.   

 The equilibrium representing migratory animals that exhibit co-occurring 

ontogenetic habitat and diet shifts (i.e., all compartments exist) consists of the following 

equilibrium stocks; 

N1
∗ =

𝜀(𝐼1(𝛽 + 𝜇2) + 𝐼2𝛽𝜌)

𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1
 

 

R1
∗ =

𝐼2𝛽(𝑟(𝜇1 − 𝑚1) + (𝑟 − 𝜌)(𝑚1 + 𝛼)) − 𝐼1(𝜇2(𝑚1 + 𝛼) + 𝛽(𝑚1 + 𝛼 − 𝑟𝛼))

𝑎𝜀(−𝐼1(𝛽 + 𝜇2) − 𝐼2𝛽𝜌)
 

 

C1
∗ = 𝜀N1

∗ 
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N2
∗ =

𝜀(𝐼1𝛼 + 𝐼2(𝛼 + 𝜇1))

𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1
 

 

R2
∗ =

− (𝐼1𝛼𝜀(𝐸2 − 𝑚2𝛿2𝜀) + 𝐼2 (−𝑚2(𝜇1 + 𝛼) − 𝛽(𝜇1 − 𝛼(1 − 𝜌))))

𝑎𝜀(𝐼1𝛼 + 𝐼2(𝜇1 + 𝛼))
 

 

C2
∗ = 𝜀N2

∗  

 

Where;  

𝜇1 = 𝐸1𝜀 + 𝑚1(1 − 𝛿1𝜀2) 

𝜇2 = 𝐸2𝜀 + 𝑚2(1 − 𝛿2𝜀2) 

𝜌 = 𝑟 − 𝛿𝑟𝜀2(−1 + 𝑟) 

In this equilibrium, compartment stocks and ecosystem fluxes depend on input 

and loss rates in both ecosystems demonstrating that migratory top consumers couple the 

dynamics of abiotic and biotic resources in the ecosystems they inhabit over their life 

cycle (Schrieber and Rudolf 2008; McCoy et al. 2009; Sun and de Roos 2015). By 

examining the equations for equilibrium stocks, we see that changes in the rate of 

consumer mortality losses are recycled back to the consumers (i.e., μ1 and μ2), the amount 

of the adult consumer subsidy is taken up by compartments in the natal ecosystem (i.e., 
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ρ), and changes in basal inputs to one ecosystem (i.e., I1 and I2) feeds back on 

compartment stocks in the other ecosystem.  

5.6. MIGRATORY CONSUMER EFFECTS ON TROPHIC STRUCTURE  

Migratory consumers are, as described earlier, a special case of subsidies where the 

subsidy is not completely donor-controlled and the subsidy is received by multiple trophic 

levels within an ecosystem. Overall, our model showed that changes in the characteristics 

of migratory consumers occurring among and within communities and taxa have 

consistent effects on ecosystem stocks. Our analytical results demonstrate that increasing 

each of the three parameters (juvenile migration rate (α), adult migration rate (β), and 

subsidy conversion efficiency (r)) decreases biotic resource stocks in at least one 

ecosystem (Figure 5.3 a, b, c), which agrees with previous models showing direct 

regulation of ecosystem stocks through predation (Schrieber and Rudolf 2008; McCoy et 

al. 2009). Additionally, increasing α, β and r induces directional responses (i.e., positive 

or negative) of trophic stocks that are consistent across all combinations of feasible 

parameter described by our mathematical analysis (Table A.5.3, A.5.4, A.5.5). 

The adult migration rate (β) determines the magnitude of the subsidy relative to 

adult consumer stock that flows to the natal ecosystem. In the natal ecosystem, juvenile 

consumer and abiotic resource stocks increase with increasing adult migration rate and 

biotic resource stock decreases (Figure 5.3b; Table A.5.4). In the adult ecosystem, biotic 

resource stock increases with increasing adult migration rate, while adult consumer and 

abiotic resource stocks decrease (Figure 5.3b). In our model, increasing the juvenile 
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migration rate induced a similar pattern of responses as increasing the adult migration 

rate, but in the opposite direction (Figure 5.3a; Table A.5.3). In the juvenile ecosystem, 

biotic resources stock increases while juvenile consumer and abiotic resource stocks 

decrease with increasing juvenile migration rate. In the adult ecosystem, adult consumer 

and abiotic resource stocks increase with increasing juvenile migration rate, and biotic 

resource stock decreases (Figure 5.3a).  

Increasing adult migration rate causes a top-down trophic cascade in the juvenile 

ecosystem and increasing juvenile migration rate causes a top-down trophic cascade in 

the adult ecosystem. By stepping back to observe the meta-ecosystem, we found a 

“horseshoe cascade” under both scenarios (Figure 5.3a, b) marked by opposite directional 

responses of analogous trophic compartments; a decrease in juvenile biotic resource stock 

accompanies an increase in adult consumer resource stock. The addition of trophic levels 

below our migratory consumer by dividing our biotic resource compartments into primary 

producers and herbivores would change the directional response of the abiotic resource 

pool, but the response of the migratory consumers and their adjacent resource will remain 

the same as our current model. Thus a migratory consumer would have a positive effect 

on primary producers by both controlling herbivores and recycling material (Leroux and 

Loreau 2010). 

Increasing the subsidy conversion efficiency (r) causes a top down trophic 

cascade in both ecosystems (Figure 5.3c; Table A.5.5) as opposed to the horseshoe 

cascade caused by changing the juvenile or adult migration rates. Consumer and abiotic 

resources in both ecosystems increase with increasing subsidy conversion efficiency, and 



134 

 

134 

 

biotic resources in both ecosystems decrease. As the subsidy conversion efficiency 

approaches 1, the model more closely resembles a single population of consumers that 

feeds on two resources with independent carrying capacities (Holt 1977; McCann et al. 

2005) or a piscivore that feeds in both pelagic and littoral habitats (Vadeboncoeur et al. 

2005). 

We explore the interactive effect of adult migration rate, juvenile migration rate, 

and subsidy conversion efficiency with a numerical simulation of our model (Figure 5.4) 

using a haphazard selection of parameters because the directional responses of 

compartment stocks should be the same under all combinations of feasible parameters 

(Tables A.5.3, A.5.4, A.5.5). We conducted a local stability analysis of our feasible 

equilibrium to confirm the stability of the results of our numerical simulations. Increasing 

the subsidy conversion efficiency had a stronger effect on stocks in the natal ecosystem 

than the adult ecosystem, and this property is robust to changes in the ratios of basal 

inputs and outputs between ecosystems. Furthermore, the larger change in juvenile 

ecosystem stocks over the gradient of subsidy conversion efficiency when adult migration 

rate is high versus when adult migration rate is low indicates that the subsidy conversion 

efficiency and adult migration rate act synergistically to enhance or depress juvenile 

ecosystem stocks (Figure 5.4). Increasing juvenile migration rate decreases top down 

pressure exerted on juvenile biotic resources and shifts that pressure to the adult 

ecosystem, resulting in a decrease in biotic resource stocks (Figure 5.4).  
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5.7.  MIGRATORY CONSUMER EFFECTS ON ECOSYSTEM FLUXES 

Ecosystem fluxes do not always respond in the same direction as their corresponding 

stocks (Figures 5.3 d, e, f; Tables A.5.6, A.5.7, A.5.8). In the natal ecosystem, recycling 

flux always increase with increasing adult migration rate (β; Figure 5.3e; Table A.5.7), 

but the direction of this response to increases in juvenile migration rate (α; Figure 3d; 

Table A.5.4) and subsidy conversion efficiency (r; Figure 5.3f; Table A.5.8) depend on 

parameter values. In contrast, adult ecosystem recycling flux always decreases with 

increasing adult migration rate, but, like in the natal ecosystem, the direction of the 

response depends on parameter values (Figure 5.3e; Table A.5.7). Thus, increasing adult 

migration rate increases recycling flux in the natal ecosystem by extracting it from adult 

ecosystem; an example of the physical constraints imposed on ecosystems by the law of 

mass conservation (Loreau et al. 2003; Loreau and Holt 2004).  

The parameter dependent response of natal ecosystem recycling flux (i.e., the 

amount of material cycling from consumers to the abiotic resource compartment) to 

increasing juvenile migration rate highlights the importance of feedbacks between adult 

and juvenile stocks and the differences in the way material is recycled in the two 

ecosystems. We would expect natal ecosystem recycling flux to decrease with increasing 

juvenile migration rate similar to the decrease in adult ecosystem recycling flux 

associated with increasing adult migration rate. The two migration-based flows are 

functionally analogous because both flows are mass dependent; however, increasing the 

juvenile migration rate can result in an increase in natal ecosystem recycling flux under 

some conditions (Table A.5.6). The mass of migrating juveniles (i.e., αC1*) is completely 
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incorporated into adults consumer stock. Increased adult consumer stock leads to higher 

adult ecosystem recycling flux because adult recycling flux is mass dependent (i.e., 

m2C2*) and represents the sole contributor to adult ecosystem recycling flux. The increase 

in adult ecosystem recycling flux does not necessarily extract that mass from the natal 

ecosystem abiotic resource pool because the increase in adult stocks increases the 

reciprocal flow of mass back to juvenile via adult migration. Specifically, increasing 

juvenile migration rate has a positive effect on recycling flux in the natal ecosystem when 

recycling rate of adult losses back into the adult compartment (i.e. m2δ2ε
2
) is higher than 

the basal loss rate from the adult ecosystem (Table A.5.6).  

Recycling efficiencies in the natal ecosystem (i.e., δ1 and δr) play an important 

role in determining the direction of juvenile’s biotic resource production response with 

increases in subsidy conversion efficiency (Figure 5.5; Table A.5.8). The subsidy 

conversion efficiency determines the portion of the adult borne subsidy that is directly 

incorporated into juvenile consumers, and its converse (i.e., 1-r) determines the amount of 

the subsidy that flows to the abiotic resource compartment in natal ecosystem (Figure 

5.1). Increasing the subsidy conversion efficiency serves to shunt subsidy mass to the 

abiotic resource pool indirectly through juvenile mortality. This pathway increases natal 

ecosystem recycling flux by increasing juvenile stock when subsidy recycling efficiency 

(i.e., δr) is lower than the juvenile mortality recycling efficiency (i.e., δ1). In turn, the 

increased recycling flux increases abiotic resource stock which, increases biotic resource 

production through mass action (Figure 5.5).  
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We expound on the influence of migration rates on biotic resource production in 

the natal ecosystem because it is of interest to practitioners managing declining migratory 

populations (Larkin and Slaney 1997; Moore et al. 2011; Kohler et al. 2013). To examine 

the disparity between the consistent response of natal ecosystem biotic resource (R1) 

stock and variable response of biotic resource production to increases in juvenile and 

adult migration rates (α and β), we consider a special case of our model; when the subsidy 

conversion efficiency is one (i.e., r = 1). In this special case, there is no direct 

contribution of the adult borne subsidy to the juvenile abiotic resource pool, which is rare 

in nature, but occurs when humans stock fishes in aquatic ecosystems.    

Biotic resource production in the natal ecosystem (ΦR1) increases with increasing 

adult migration rate when ∂ ΦR1/∂β (Table A.5.7) is positive, which requires that  

𝐸1 < 𝑚1𝛿1𝜀 −
𝛿𝑟𝜀(𝑚1+𝛼)(𝑟−1)

𝑟
, 

and natal ecosystem biotic production increases with increasing juvenile migration rate 

(α) when ∂ ΦR1/∂α (Table A.5.6) is positive, which requires that 

  

𝐸2 < 𝑚2𝛿2𝜀 −
𝑚2

𝜀
+

𝛽(−1+𝑟)(1−𝑚1𝜀(𝛿1−𝛿𝑟))

1−𝑚1𝛿1𝜀
. 

When adults are perfectly efficient at converting migratory adult mass into juvenile mass 

(i.e. r =1), the above conditions for ∂ ΦR1/∂β and ∂ ΦR1/∂α to be positive reduce to  

𝐸1 < 𝑚1𝛿1𝜀  

and  
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𝐸2 < 𝑚2𝛿2𝜀 − 
𝑚2

𝜀
. 

These simplified conditions highlight how the nutrient cycling aspects of life history 

strategy influence ecosystem properties. First, when there is no direct contribution of the 

subsidy to the natal ecosystem abiotic resource pool, biotic resource production (ΦR1) 

increases with increasing migration rate, or subsidy magnitude, only when the efficiency 

with which juvenile losses through mortality and excretion are recycled through the 

abiotic resource pool to biotic resource pool (m1δ1ε) is greater than the natal ecosystem 

basal export rate (E1). Therefore, the few migratory adult consumers whose subsidy 

conversion efficiency approaches one because they (i) spend very little time reproducing 

in the natal ecosystem and produce live larvae (e.g., fire salamanders; Caspers et al. 2015) 

or (ii) entirely re-establish residency following the return to the natal ecosystem (e.g., 

Salvelinus spp.; Bond et al. 2015) can only increase mass flow in their natal ecosystem 

with higher adult migration rates if juvenile mortality and excretion rates are high and 

those losses are recycled efficiently, or if basal export rates are very low. As r decreases, 

the positive response of ΦR1 can be maintained at higher basal loss rates or lower juvenile 

loss recycling efficiencies. 

 Second, increasing the juvenile migration rate will always decrease juvenile biotic 

resource production when r =1 (i.e., ∂ΦR1/∂α < 0; Table A.5.6) despite increasing juvenile 

biotic resource stock (i.e., ∂R1/∂α > 0; Table A.5.3) because the adult ecosystem basal 

loss rate (E2) is constrained above zero (see feasibility condition in Equilibria), but 

𝑚2𝛿2𝜀 −  
𝑚2

𝜀
 will always be negative. Higher juvenile migration rates lead to increased 
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biotic resource stocks in the natal ecosystem, but those higher stocks have lower 

production because more mass is leaving the natal ecosystem than being returned via 

adults and subsequently recycled. This provides a theoretical foundation for the idea that 

the “enhancement” of migratory salmonids by artificial supplementation to compensate 

for caused by high adult mortality rates will slow the flow of material in food webs and, 

consequently, decrease ecosystem productivity (Eby et al. 2006).   

5.8. DISCUSSION 

Previous empirical studies considered organisms with complex life cycles to represent a 

resource subsidy (Schindler et al. 2003) or a consumer subsidy (Knight et al. 2005) to the 

natal ecosystem or the adult ecosystem. We have a rich set of theory for how migratory 

consumers act as consumer subsidies (McCann et al. 2005; Schreiber and Rudolf 2008; 

McCoy et al. 2009), and how ecosystems respond to resource subsidies (Loreau and Holt 

2004). Yet, migratory consumers simultaneously act as both consumer and abiotic 

resource subsidies in multiple ecosystems. In this article, we extend theory on the 

interaction of consumers with the ecosystems they inhabit. We derived a meta-ecosystem 

model to explicitly account for the role of migratory consumers as both consumer and 

resource subsidies in natal ecosystems by partitioning adult borne material into two 

pathways, a direct contribution to juvenile consumers and an indirect contribution through 

the abiotic resource pool. Specifically, our model predicts that increasing juvenile and 

adult migration rates depresses biotic resource stocks in the recipient ecosystems by 

increasing predation pressure while increasing biotic resource stock in the donor 

ecosystems. Both of these are local scale effects that emerge from meta-ecosystem 
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properties mediated by the characteristics of consumer taxa. Increasing the efficiency 

with which adults convert material directly into juvenile consumers depresses resource 

stocks in both ecosystems simultaneously. Despite the negative association of adult 

migration rate (β) and subsidy conversion efficiency (r) with biotic resource stocks in the 

natal ecosystem, increasing these two characteristics of migratory consumers can increase 

biotic resource production when juvenile losses are recycled more efficiently than the 

subsidy to the abiotic resource pool. By explicitly incorporating material recycling into a 

theoretical model of complex life cycles, we show previously unexplored indirect effects 

of ontogenetic habitat and diet shifts on material flow through lower trophic levels, and 

connect them to variation in the characteristics of migratory taxa.  

The coupling of ecosystem compartments in our model is consistent with previous 

models of consumer-connected ecosystems (McCann et al. 2005; Schreiber and Rudolf 

2008; McCoy et al. 2009); however, we arrive at this conclusion under different 

assumptions. Schreiber and Rudolf (2008) explicitly examined the dynamics of two 

ecosystems connected by a consumer with a complex life cycle in a stage-structured 

consumer-resource model. In particular, they were interested in how resource productivity 

and consumer mortality rates in the two ecosystems affected the distribution of consumers 

between juvenile and adult habitats. These authors showed that consumer populations can 

exist in alternative stable states driven by the juvenile resource productivity relative to 

adult resource productivity, which was executed by changing resource carrying capacity 

under the assumption that resources experience logistic growth. In our model, we did not 

make assumptions about resource carrying capacity because density dependence of biotic 
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resources arises from parameters governing biotic resource (Ri) and abiotic resource (Ni) 

interactions and basal flows into and out of the abiotic resource compartment (DeAngelis 

1992; Loreau 2010). Without an explicit assumption about the carrying capacity of the 

consumer’s resource, we were able to address both the effects of a migratory consumer on 

trophic structure and ecosystem fluxes with the same model thereby merging food web 

and ecosystem ecology (Loreau 2010). 

Increasing juvenile consumer production by increasing either the adult migration 

rate or the subsidy conversion efficiency has a negative effect on juvenile resource stock. 

This entails that increasing the adult migration rate and/or increasing the conversion 

efficiency of adult mass to juvenile mass (r) has a qualitatively similar effect on the 

adjacent lower trophic level, in this case R1, as increasing the juvenile consumers 

resource attack rate (i.e., aj,k) in a simple model of a tri-trophic system with no spatial 

flows (Leroux and Loreau 2015). Top down control of resources by taxa with efficient 

conversion has been shown both empirically (Knight et al. 2005) and theoretically 

(McCoy et al. 2009) in adult ecosystems and empirically in natal ecosystems (Blaustein et 

al. 2014). Top-down control of resources by migratory consumers with increasing 

migration borne subsidy rates is also common in nature. For example, Post et al. (2008) 

observed stronger top-down regulation of zooplankton biomass and increased chlorophyll 

a concentrations in lakes inhabited by anadromous alewife (Alosa pseudoharengus) 

populations compared to landlocked populations of the same species (Post et al. 2008) 

despite the increase in allochthonous material available to the base of the food web (West 

et al. 2010). Similar to our model predictions, the contribution of a subsidy directly to the 
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juvenile population outweighs the bottom-up effects on resource stocks that occur 

through the recycling of adult alewife excretions and carcass decomposition (Post et al. 

2008).  

Many studies on natural runs of Pacific salmon observe decreasing resource 

stocks with increasing adult salmon biomass (Moore et al. 2007) and researchers attribute 

this decline to nest digging activities in high density populations, which dislodges 

macroinvertebrates and sediments from stream substrates and decreases local stocks 

(Moore et al. 2007; Janetski et al. 2009). Although, our model predicts a decline at this 

trophic level, our model is not applicable to disturbance-driven biotic resource decline 

that these studies commonly observe. Our model does not treat adult digging behavior 

within spawning habitats, but focuses on where juveniles of these species rear; sockeye 

juveniles typically feed in lakes and pink salmon juveniles typically feed in estuaries, not 

often near the substrates from which they emerged and were initially disturbed by adults. 

For example, Juday et al. (1932) state the “rich crop of plankton produced by [three lakes 

in AK] is due, at least in part, to the fertilizing substances contributed to their waters by 

the decomposing carcasses of the salmon.” While there no doubt this is true, the authors 

were unable to measure the longer term effects of increasing the adult subsidy, which is 

the scale of inference from our model. Following the “fertilizing substances” that increase 

plankton stock are the planktivorous offspring of the sockeye that consume it. This 

presents an opportunity to incorporate adult habitat engineering into a three ecosystem 

model, where adult mass may increase nutrient inputs to downstream rearing ecosystems 

through adult spawning disturbance.  
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Ecosystem models show that the responses of stock and production to changes in 

ecosystem conditions can be disconnected (de Mazancourt and Loreau 2000). In single 

ecosystem models without recycling, production always responds positively to increased 

input to basal nutrient compartments regardless of the addition of trophic levels because 

production is less affected by top-down forces than is biomass (Loreau 2010). Our model 

yielded parameter dependent responses of biotic resource production and within-

ecosystem nutrient cycling in both ecosystems. Increasing juvenile migration rate (α) can 

increase natal ecosystem production despite increasing the movement of material out of 

the ecosystem, but only when consumer losses in the adult ecosystem are recycled 

efficiently, which allows the material to return to the natal ecosystem. The role of 

recycling efficiencies in modulating the response of production was common in our 

model (Tables A.5.6, A.5.7, A.5.8) and highlights the importance of non-consumptive 

mechanisms that may affect production more than biomass (Leroux and Loreau 2010; 

Schmitz et al. 2010; Leroux and Schmitz 2015). In this specific scenario, the non-

consumptive mechanism occurs in a spatially distinct ecosystem than the production it 

influences. Because the directional response of production is sensitive to both bottom-up 

and top-down forces, we suggest that production is a better metric than stocks for 

evaluating the ecosystem effects of migratory consumers. 

The characteristics of migratory consumers with complex life cycles vary 

considerably within and among taxa (Werner and Gilliam 1984). We have shown that 

variation in the combination of characteristics modulates the consumers’ effects on local 

and meta-ecosystems, which has been suggested by some empirical studies (Chapter 3; 
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Childress et al. 2016). As such, future empirical studies on the ecosystem effects of 

migratory consumers may benefit from exploring differences in characteristics among 

populations within taxa, and among taxa within ecosystems, and to quantify these 

differences in metrics consistent with ecosystem processes (i.e., nutrients and energy).  

Migration rates and subsidy conversion efficiency are empirically tractable 

parameters. Migration rates, measured as a proportion of total consumer mass in a given 

population that migrates to the other ecosystem, likely differ within taxa across time and 

space. Migration rates at the population level are a function of the probability that an 

individual migrates, and the age and size at which it migrates, if it does. For example, age 

at seaward migration of juvenile Atlantic salmon (Salmo salar L) decreases with 

increasing growth opportunities at the individual level, which are mediated by 

temperature and photoperiod (Metcalfe and Thorpe 1990). This variation can be 

accounted for in our model by changing the juvenile migration rate (α); juvenile 

migration rate increases with increasing growth opportunity. Given similar ecosystem 

characteristics, we predict that increases in juvenile population size in more northerly 

populations should have a stronger effect on prey resource stocks than more southerly 

populations. Similar predictions can be made for long-term shifts in the sea-age 

composition of spawning Atlantic salmon with changes in climate that influences adult 

migration rates (Otero et al. 2012).  

Subsidy conversion efficiency (r) is essentially a population level measure of the 

uptake of the adult borne subsidy by juvenile consumers. It is the aggregation of 

individual adult traits (i.e., fecundity and egg size), adult behavior (i.e., feeding or not 
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feeding in the natal ecosystem), juvenile behavior (i.e., propensity for cannibalism; 

Rudolf 2007) and population level metrics (i.e., post-reproduction survival rate, adult sex 

ratio, and survival of offspring from fertilization to first feeding). Given similar 

ecosystem characteristics, we predict that semelparous species have a stronger positive 

effect on production than iteroparous species, unless the recycling of juvenile losses is 

high and efficient. 

The predictions of our model apply to long term dynamics rarely captured in 

empirical studies. Yet, long term dynamics have consequences for the biogeochemical 

role of migratory consumers because subsidies occur in the conceptual realm of sources 

and sinks (Loreau et al. 2013). Material originates at a source, is delivered to another 

ecosystem as a subsidy, and is absorbed by a sink. A complex life cycle may result in a 

population being both a source and sink of ecosystem material, as the different portions of 

the population absorb material from one ecosystem and deliver it to another. Adults are 

unconditional sources of material to the natal ecosystem, whereas juveniles are 

unconditional sinks (Loreau et al. 2013). Because adults and juveniles populations are 

linked, the balance of the inputs and outputs determines whether a population deposits or 

extracts material from the natal ecosystem over time. When inputs to an ecosystem via 

reproducing individuals exceed outputs via non-reproducing individuals, the consumer is 

a net source to natal ecosystem. When the reverse is true, outputs exceed inputs, the 

consumer is a net sink (Loreau et al. 2013). Differences in migration characteristics have 

a strong effect on net flux, making net material flux a possible integrator of both 

ecosystem and consumer characteristics that can be measured using common population 
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monitoring data (e.g., Chapter 3). For example, semelparous sockeye salmon 

(Oncorhynchus nerka) have a low subsidy conversion efficiency (r) because in addition to 

gametes that produce offspring, sockeye also deposit their carcasses in the freshwater 

ecosystem. Sockeye salmon are typically unconditional net sources of material to their 

natal ecosystems (Moore and Schindler 2004). Atlantic salmon can survive spawning and 

have higher subsidy conversion efficiencies (r) than sockeye salmon (Figure 5.2). 

Atlantic salmon are conditional material sinks to their natal watersheds (Chapter 3). 

Underlying these net fluxes are the dynamics of the food webs and the recycling 

efficiencies (Vanni et al. 2013) that are described in our model.  

Although we focus on migratory top-consumers, future theoretical work should 

explore how stocks and ecosystem fluxes will respond under different food web 

configurations, such as when juvenile migratory consumers are prey for resident 

predators, which is common in many ecosystems (e.g., Bentley et al. 2012) and relevant 

for predicting how the ecosystem effects of migratory consumers may change following 

invasion by resident predators (e.g., Sepulveda et al. 2013). Also, the active flows 

included in our model can be incorporated into more complex spatial networks that 

include both active and passive flows (see Marleau et al. 2014), thus providing a more 

expansive understanding of how migratory taxa interact with all of the food webs and 

ecosystems they pass through during their life cycle (Mouquet et al. 2005; Naimen et al. 

2012). Understanding how different combinations of migrators’ characteristics influence 

the stability of food webs (McCann et al. 2005) and the structure of a consumer 

population (i.e., juvenile dominated or adult dominated; Schrieber and Rudolf 2008) 
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under different ecosystems conditions may yield information on why a certain migratory 

taxa, or combinations of migratory taxa, exist in stable populations and communities in 

some ecosystems, but not in others. Finally, we model material flows in a single currency 

framework; however, juvenile migration flow and adult migration flow can have different 

stoichiometric ratios due to differences in body composition (Chapter 2) and elements 

may be differentially allocated among the different recycling pathways. Incorporating 

stoichiometric constraints into our model may clarify other important factors determining 

the consumptive and non-consumptive effects of migratory consumers (Leroux and 

Schmitz 2015).  

Human activity has had a disproportionately strong effect on top consumers (Estes 

et al. 2011), and especially migratory top consumers (Wilcove and Wikelski 2008). It is 

imperative we have a holistic understanding of how human activities indirectly affect 

ecosystem structure and function by changing the characteristics of migratory taxa. 

Understanding and managing migratory consumers requires that we think across 

ecosystems when we study food webs because material is not wasted nor worn out, but 

rather ebbs and flows.  
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Table 5.1. Model of ecosystem coupled by a migrating top consumer with variable and 

parameter definitions.  Parameter constraints are provided in Table A.5.1. 

Model equations 

𝑑𝑁1

𝑑𝑡
= 𝐼1 − 𝐸1𝑁1 − 𝑎𝑅1𝑁1 + 𝛿1𝑚1𝐶1 + 𝛿𝑟(1 − 𝑟)𝛽𝐶2 

𝑑𝑅1

𝑑𝑡
= 𝜀𝑎𝑅1𝑁1 − 𝑎𝐶1𝑅1 

𝑑𝐶1

𝑑𝑡
= 𝜀𝑎𝐶1𝑅1 + 𝑟𝛽𝐶2 − 𝛼𝐶1 − 𝑚1𝐶1 

𝑑𝑁2

𝑑𝑡
= 𝐼2 − 𝐸2𝑁2 − 𝑎𝑅2𝑁2 + 𝛿2𝑚2𝐶2 

𝑑𝑅1

𝑑𝑡
= 𝜀𝑎𝑅2𝑁2 − 𝑎𝐶2𝑅2 

𝑑𝐶2

𝑑𝑡
= 𝜀𝑎𝐶2𝑅2 + 𝛼𝐶1 − 𝛽𝐶2 − 𝑚1𝐶1 

Notes 

†Variables: Ni, abiotic stock; Ri, resource stock; Ci, consumer stock. 

‡Parameters: Ii, constant input to Ni; Ei loss rate from Ni; ε, Production efficiency; a, 

resource utilization rate; mj, consumer loss rate; δr, recycling efficiency; β, mass flow rate 

from ecosystem 2 to ecosystem 1; α, mass flow rate from ecosystem 1 to ecosystem 2  ; r, 

subsidy conversion efficiency;  
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Figure 5.1. Conceptual diagram of two ecosystems linked by reciprocal flows of a 

migratory top consumer. Squares represent abiotic compartments and circles represent 

biotic compartments where Ni, Ri, and Ci denote inorganic nutrient, resources, and 

consumers, respectively. Thin lines represent basal inputs and losses; solid lines represent 

consumptive relationships; long dash lines represent nutrient recycling from biotic to 

abiotic compartments; short dash lines represent mass flows via consumer migration.   
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Figure 5.2. A conceptual diagram for mapping migration rates and subsidy conversion 

efficiency studied in the model on to the characteristics of migratory taxa with complex 

life cycles.  Juvenile migration rate describes the proportion of the consumer 

compartment in the natal ecosystem that migrates to the adult ecosystem, and is 

negatively associated with the average age at migration from the natal ecosystem to the 

adult ecosystem and incorporates a gradient of partial migration (i.e., Tachniki and 

Koizumi 2016). For example, many anadromous charr species (Salvelinus spp.) have 

lower juvenile migration rates than Chinook salmon (Oncorhynchus tshawytscha) 

because charr populations tend to be partially migratory (e.g., Rikardsen et al. 2004), 

whereas Chinook rarely mature in their natal ecosystem and migrate to marine 

ecosystems in the first or second year of life (Healey 1991). Adult migration rate 

describes the proportion of the consumer compartment in the adult ecosystem that 

migrates to the juvenile ecosystem, and is negatively associated with age at maturation 

and time spent in the adult ecosystem. For example, anadromous charr species have 

higher adult migration rates than Chinook salmon because charr return to the natal 

ecosystem annually following a brief migration to the estuarine and marine ecosystems 

(e.g., Constonguay et al. 1982, Quinn et al. 2016), whereas Chinook salmon may spend 

more than five years in marine ecosystems before returning to the natal ecosystem 

(Healey 1991). Subsidy conversion efficiency describes the efficiency with which 

migrating adult consumer mass is converted into juvenile consumer mass that is actively 

feeding in the natal ecosystem, and is a function of post-reproduction adult survival rate, 

offspring survival rate to first feeding, and the propensity for cannibalism (i.e., 

consumption of adult flesh or gametes by juveniles). For example, charr species have a 
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higher subsidy conversion efficiency than Chinook salmon because charr are iteroparous 

with high post-reproduction survival rates, and exhibit facultative anadromy (Bond et al. 

2015), whereas Chinook salmon are semelparous and most of the subsidy is deposited as 

carcasses in the natal ecosystem rather than deposited as embryos that survive to first 

feeding.   
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Figure 5.3. Qualitative assessment of analytical solutions for the response of equilibrium 

stocks (panels A, B, C) and ecosystem fluxes (panels D, E, F) to increasing juvenile 

migration rate (α; left column), adult migration rate (β; middle column), and subsidy 

conversion efficiency (r; right column). The sign to the immediate left or right of a 

compartment indicates whether the stock, production or recycling flux responds 

positively (+), negatively (-), or if the response could be either positive or negative 

depending on the full parameter set (*) to increases in the parameter noted at the top of 

each column. Note that there is no directional sign associated with abiotic resource 

production (ΦNi). Within ecosystem recycling flux (i.e., RFi) and abiotic resource 

production (ΦNi) have the same partial derivatives because recycling flux and abiotic 

resource production are identical functions except the latter includes a constant and 

independent basal nutrient supply rate (Ii), which shifts abiotic resource production to a 

higher magnitude than recycling flux, but does not change the direction or shape of the 

response. Analytical solutions and conditions for positive responses to changes in 

migrations rates and subsidy conversion efficiency are found in Appendix A.5.3.  
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Figure 5.4. Numerical simulations for the response of equilibrium stocks in two 

ecosystems coupled by mass flows via a migratory top consumer to increases in the 

subsidy conversion efficiency, r, when adult migration rate (β) is low (β= 0.2; squares), 

moderate (β = 0.5; circles), and high (β = 0.8; triangles) under two juvenile migration 

rates, α = 0.2 (open shapes) and α = 0.8 (filled shapes). Other parameter values are I1 = 

10, I2 = 1, E1 = 30, E2 = 0.5, a = 1, ε = 0.5, m1 = m2 = 3, δ1 = δ2 = δr = 0.2. The 

equilibrium is locally stable (i.e., leading eigenvalues of the Jacobian matrix are negative) 

for the given parameter sets. See Appendix A.5.4 for equilibrium production for all 

trophic stocks associated with these parameter values.  
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Figure 5.5. Response of natal ecosystem biotic resource stock and production to 

increasing subsidy conversion efficiency. Response of natal ecosystem biotic resource 

stock (panel A) and production (panel B) to increasing subsidy conversion efficiency (r; 

x-axis). Squares depict stocks and production when the subsidy is recycled more 

efficiently than juvenile losses (δr > δ1;  δr = 0.9, δ1 = 0.2). Triangles depict stock and 

production the subsidy and juvenile losses are recycled with the same efficiency (δr = δ1 = 

0.5). Circles depict when the subsidy is recycled less efficiently than juvenile losses (δr < 

δ1;  δr = 0.2, δ1 = 0.9). Other parameters used in this simulation were as follows: I1 = 1, E1 

= 0.01, I2 = E2 = 1, a = 1, ε = 0.5, δ2 = 0.3, m1 = 10, m2 = 3, α = 0.9, β = 0.8. The 

equilibrium is locally stable (i.e., leading eigenvalues of the Jacobian matrix are negative) 

for the given parameter sets. 
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Chapter 6: Conclusion 

Large animals play important roles in ecosystems by storing, transporting, and releasing 

nutrients at times and places modulated by their life cycle. Most research on vertebrate-

mediated nutrient recycling focuses on excretion as the predominant way that organisms 

interact with ecosystem nutrient cycling (Vanni 2002, Allgeier et al. 2015), but recent 

syntheses point out important long-term processes by which populations control nutrient 

availability by acting as net sources or sinks through births and deaths at the population 

level (Vanni et al. 2013). In this thesis, I use analysis of novel empirical data, synthesis of 

long-term data, and mathematical modelling to investigate various aspects of the role of 

aquatic vertebrates in ecosystem nutrient cycles. I found that:  

(i) Atlantic salmon body element composition is mostly explained by life stage, and 

individuals do not have constant element compositions throughout their lives. 

Adults have higher concentrations of carbon and lower concentrations of nitrogen, 

phosphorus, and calcium than post-spawn adults and migrating juveniles. The 

difference in carbon probably influences the observed concentration of other 

elements because it is the most abundant element by dry mass. The consistency in 

element concentrations among individuals within life stages but across space 

suggests that Atlantic salmon exhibit rheostatic control of body element 

composition. 

(ii) Differences in body element concentrations among life stages strongly influence 

the output of nutrient cycling models. In particular, I found that classifications of 
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Atlantic salmon populations as sources or sinks of nutrients made by previous 

studies that assumedequal body P concentration of upstream-migrating adults and 

downstream migrating post-spawn adults may be invalid. By accounting for 

ontogenetic variability in body element composition, I classified three Atlantic 

salmon populations as conditional P sinks to their natal ecosystems rather than 

unconditional P sources, which would have occurred by assuming that body 

element composition is constant over the life of an individual.  

(iii) Body size relationships are some of the strongest in biology; however, 

interspecific scaling of body nutrient concentration with body mass has 

traditionally yielded poor results. I propose length-nutrient content relationships as 

a means for scaling from individual to population level nutrient fluxes. By using 

an absolute amount of nutrient as the dependent variable, LNCRs can be used to 

estimate ecosystem structures (e.g., body stoichiometry and standing stock of 

nutrients in a population) and functions (e.g., element release rates, nutrient 

accrual) when used in combination with common population monitoring data 

(e.g., abundance and individual lengths) and knowledge regarding species’ 

phenology. It has potential applications in fish and wildlife management by 

linking population and ecosystem concepts.  

(iv) Life history strategy is an important determinant of the ecosystem-level effects of 

subsidies borne by migratory consumers with complex life cycles. Iteroparous 

consumers should have stronger top-down effects on food webs than semelparous 

consumers in both ecosystems they inhabit over their life cycles. Meanwhile, the 

efficiency with which in situ consumer mortality is recycled to the base of the 
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natal food web relative to the recycling efficiency of subsidy material (e.g., adult 

carcasses and excretions) determines the directional response of biotic resource 

production to changing life history strategies.  

Understanding the reciprocal interactions between population dynamics and 

ecosystem processes should be a major goal of ecological research as it applies directly to 

fish and wildlife management. Theoretical frameworks like ecological stoichiometry 

(Sterner and Elser 2002) and the metabolic theory of ecology (Brown et al. 2004) that 

have recently been applied to large consumer nutrient recycling (Allgeier et al. 2015, 

Vanni and McIntyre 2016) may be important advances for basic ecological 

understanding, but neither framework encompasses both ecosystem structure and function 

at management relevant extents (i.e., habitat and landscape).  

Ecological stoichiometry utilizes ratios of elements as a means to connect multiple 

levels of organization (Sterner and Elser 2002). Defined as the patterns in proportions of 

elements in the reactants and products of chemical reactions, stoichiometry provides 

means of quantifying ecosystem structure, or the pattern or organization of compartments 

including connections between those compartments (Odum 1994). The elemental ratios of 

organisms’ bodies, their resources, and released material (i.e., excretion, egestion, and 

reproduction) are aspects of ecosystem structure because they describe composition of 

compartments and connections in terms of the relative amounts of multiple elements. 

Ecosystem functions are flows through system structures and the transformations of 

material that accompany that flow (Odum 1994). A compartment’s functional attributes 

include production, turnover time, residence time, and efficiency. Integrated over time, 
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these attributes determine a compartment’s functional role as a source or sink of material 

within the overall system. Ecological stoichiometry cannot directly predict ecosystem 

functions because ratios are not rates and without actual quantities we can only infer how 

functional roles of organisms change over time, but cannot quantify how important these 

changes may be at an ecosystem level. Meanwhile, metabolic theory of ecology focuses 

predominantly on metabolism, an ecosystem function, and can only predict ecosystem 

structure (e.g., total population biomass; Brown et al. 2004) at macroecological levels 

which are not the focus of most wildlife management. I question whether we can predict 

fish biomass in a set of streams using the negative ¼ power scaling rule for relationships 

between population biomass and individual body size in a way that is accurate enough to 

inform management. This arises because the metabolic theory of ecology does not 

account for material requirements of organismal growth and reproduction, nor incorporate 

any information on ontogeny. 

While many ecologists look for macroecological patterns in relationships between 

ecosystem structure and function, the taxonomic specificity of diets, body composition, 

and life history may preclude direct application to fish and wildlife management, at least 

for nutrients. My conclusions suggest that merging population and ecosystem ecology 

requires a return to examining intraspecific variability in species’ traits which has recently 

been re-embraced by community ecology (Violle et al. 2012). Theoretical population 

models do not incorporate nutrient cycling by consumers as a possible determinant of 

resource availability (e.g., Schreiber and Rudolf 2008), whereas theoretical ecosystem 

models do not often test for the effects of trait variability (e.g., Leroux and Loreau 2010). 
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With the realization that vertebrates are important for ecosystem nutrient cycles and with 

ever decreasing wild vertebrate populations corresponding to the ever increasing level of 

human activity, the time to merge population and ecosystem ecology is now, but 

unfortunately occurs one small step at a time.  
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A.2. Appendices for Chapter 2: Whole body element composition of 

Atlantic salmon Salmo salar influences by migration direction and life 

stage in three distinct populations. 

A.2.1. Characteristics of sampled individuals, specifics of chemical analyses, and 

body element composition on a wet mass basis. 

Table A.2.1 Characteristics of Salmo salar collected from three rivers on insular 

Newfoundland for quantification of whole-body nutrient concentration. 

River Life 

Stage 

% Female Collection Date n Fork length 

± 1 SD 

 (cm) 

Weight ± 

1 SD 

(g) 

Campbellton  Adult 100 30 Jul – 03 Aug 

2013 

5 59.4 ± 2.4 2316.7 ± 

240 

Kelt 100 01-10 May 

2013 

5 57.8 ± 7.7 1331.4  ± 

586 

Smolt NA 01-10 May 

2013 

4 16.1 ± 1.9 42.7  ± 

11.4 

Conne  Adult 50 14-28 Jun 2013 4 49.48 ± 1.4 1238.8  ± 

63.2 
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Kelt 80 23-30 May 

2013 

5 50.5 ± 1.3 730.0  ± 

76.3 

Smolt NA 30 Apr – 06 

May 2013 

8 14.1 ± 1.4 26.6  ± 6.9 

Western 

Arm 

Adult 60 13-22 Jul 2013 5 55.6 ± 2.3 1968.1  ± 

137.4 

Kelt 100 21-22 May 

2013 

5 54.0 ± 2.9 826.9  ± 

151.9 

Smolt NA 30 May 2013 5 21.0 ± 3.0 54.4  ± 6.7 
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Table A.2.2. Extraction efficiency, reference levels, and detection limits for ICP-OES 

analysis of P, Ca, S, K, Mg, Na, and Fe completed at the Agriculture and Food 

Laboratory at University of Guelph.   

Element 

% recovery (based on 

NIST reference level) 

NIST 1577c bovine liver 

reference levels (ppm) 

Method detection 

limits (ppm) 

P 96% 11750±270 17 

Ca 109% 131±10 7 

S 84% 7490±340 8 

K 101% 10230±640 37 

Mg 105% 620±42 15 

Na 102% 2033±64 20 

Fe 102% 197.94±0.65 2 
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Table A.2.3. Mean percent element composition presented on a wet mass basis for three 

migrating life stages of Salmo salar captured from three Newfoundland Rivers. Values 

presented are means that include all sampled fish of the given life stage. 

Element Adult ± 1SD Kelt ± 1SD Smolt ± 1SD 

Dry Mass 33.76 ± 0.86 20.36 ± 1.37 22.48± 1.75 

No. samples 14 15 17 

Carbon 19.23 ± 0.72 8.49 ± 1.06 9.58± 0.92 

Nitrogen 3.37 ± 0.15 2.60± 0.26 2.76± 0.12 

Phosphorus 0.37 ± 0.04 0.54± 0.06 0.65± 0.10 

Calcium 0.30 ± 0.11 0.76 ± 0.14 0.88± 0.21 

Sulfur 0.18 ± 0.02 0.14 ± 0.01 0.16± 0.01 

Potassium 0.35 ± 0.02 0.28 ± 0.03 0.32± 0.03 

Magnesium 0.03 ± 0.002 0.02 ± 0.002 0.03± 0.003 

Sodium 0.07 ± 0.01 0.12 ± 0.01 0.10± 0.01 

Iron 0.001 ± 0.0003 0.002 ± 0.0004 0.003± 0.001 
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A.3. Appendices for Chapter 3: Ontogenetic differences in whole body 

phosphorus content and its implications for cross ecosystem fluxes. 

 

A.3.1. Characteristics of study populations 

Table A.3.1. Mean annual count, number of spawning individuals, mass, and length of 

smolt, small salmon (<63cm), and large salmon (> 63cm) passing through counting 

fences installed above the head of the tide on three Newfoundland rivers from 1993-2012. 

Adults on Campbellton and Conne were enumerated by video camera systems installed at 

openings, person monitors located at openings during the day, and with adult traps. The 

Western Arm counting facility consisted of an adult trap checked daily. Smolts were 

counted at fences spanning the entire stream on Campbellton and Western Arm. 

Department of Fisheries and Oceans, in partnership with the Conne River Indian Band, 

operate two partial river smolt counting fences on Conne (Dempson and Stansbury 1991) 

and estimate the full smolt run using a mark-recapture estimator described by Schwarz 

and Dempson (1994).  
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Life 

Stage 

River Count  

(mean ± 

1SD) 

Spawners  

(mean ± 

1SD) 

Mass  

(kg; mean ± 

1SD) 

[no. of fish] 

Length 

(cm; mean ± 

1SD) 

[no. of fish] 

Small 

Adult 

Campbellt

on 

3043 ± 869  2586 ± 857 1.73 ± 0.44 

[470] 

53.6 ± 4.1 

[470] 

 Conne 2435 ± 

1010 

2305 ± 976 1.54 ± 0.31 

[748] 

51.9 ± 2.6 

[748] 

 Western 

Arm 

1185 ± 380 1163 ± 376 1.99 ± 0.38 

[1493] 

55.0 ± 2.8 

[1493] 

Large 

Adult 

Campbellt

on 

332 ± 160 335 ± 162 3.59 ± 0.67  

[41] 

68.6 ± 3.8 

[41] 

 Conne 135 ± 68 136 ± 66 2.97 ± 0.39 

[6] 

65.8 ± 2.59 

[6] 

 Western 

Arm 

49 ± 34 47 ± 32 4.50 ± 1.07 

[253] 

72.7 ± 4.6 

[253] 

Smolt* Campbellt

on 

40146 ± 

8632 

NA 0.05 ± 0.002 

[20] 

17.44 ± 0.48 

[20] 

 Conne 67209 ± 

15745 

NA 0.03 ± 0.002 

[20] 

14.86 ± 0.24 

[20] 

 Western 

Arm 

15756 ± 

3797 

NA 0.05 ± 0.002 

[20] 

17.71 ± 0.71 

[20] 

Notes: 
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† Mean smolt weight and length (*) is a pooled annual mean, rather than of all smolt over 

the entire period. [20] refers to number of years, rather than number of individuals as 

presented for adults.
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A.3.2. Sample processing methods and characteristics of sampled individuals 

Sample processing protocols differed slightly between mature fish, including kelts, and 

smolts due to differences in fish size (Table A.3.2). We recorded fork length after mature 

fish had thawed for ca. 12 hours. Adults and kelts were filleted, the fillets were skinned, 

gut contents removed from the entrails, and the fillets plus the carcass were cut into 

pieces. We then weighed the cut pieces before grinding each fish through a 300 watt 

electric meat grinder (Cuisinart™) three times; twice through a 7mm diameter plate and 

once through a 3mm plate. We removed the flank skin for the sake of efficiency and our 

sanity because initial attempts to grind test samples that included flank skin consistently 

clogged the grinder. We further homogenized ca. one quarter of ground fish sample with 

10-15 one to three second bursts in a Magic Bullet food processor until the ground fish 

was a fine paste before taking 10-20 g subsamples for chemical analysis. Each sample 

was thoroughly mixed between grindings and all equipment was rinsed between samples. 

The small size of smolts precluded the use of our grinder for smolt sample processing. 

Instead, thawed smolts were measured for fork length and round weight before their gut 

contents were removed. We placed whole smolts into the Magic Bullet food processor 

and chopped them into small pieces. Upon removing smolt from the food processor, we 

spent a maximum of 30 seconds picking out largest pieces of skin and scraped the 

attached tissue back into the sample. Each sample was then chopped into finer pieces with 

a knife and placed again into the food processor for 10-15 one to three second bursts 

before we stored a 10 g subsample for analysis. Following initial processing, all samples 

were refrozen and shipped to the Agriculture and Food Laboratory at the University of 
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Guelph for analysis, where they were freeze dried, further homogenized, dry matter 

determined, and macro-element analysis conducted using test methods SNL-019,047.  

Table A.3.2. Collection date, length, weight, and number of fish collected from three 

rivers on insular Newfoundland for quantification of whole-body phosphorus content. 

River Life Stage Collection Date n Mean fork 

length ± 1 SD 

 (cm) 

Weight ± 1 SD 

(g) 

Campbellton  Adult 30 Jul – 03 Aug 2013 5 59.4 ± 2.4 2316.7 ± 240 

Kelt May 2013 5 57.8 ± 7.7 1331.4  ± 586 

Smolt May 2013 5 16.1 ± 1.9 42.7  ± 11.4 

Conne  Adult 14-28 Jun 2013 4 49.48 ± 1.4 1238.8  ± 63.2 

Kelt 30-23 May 2013 5 50.5 ± 1.3 730.0  ± 76.3 

Smolt 30 Apr – 06 May 2013 14 14.1 ± 1.4 26.6  ± 6.9 

Western Arm Adult 13-22 Jul 2013 5 55.6 ± 2.3 1968.1  ± 137.4 

Kelt 21-22 May 2013 5 54.0 ± 2.9 826.9  ± 151.9 

Smolt 30 May 2013 5 21.0 ± 3.0 54.4  ± 6.7 
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Table A.3.3. Mean %P on a wet weight basis of adults, kelts, and smolts collected in three 

Newfoundland Rivers in 2013.  

River Adult  

(%P ± 1SD) 

Kelt 

(%P ± 1SD) 

Smolt 

(%P ± 1SD) 

Campbellton 0.38 ± 0.04 0.50 ± 0.05 0.58 ± 0.12 

Conne 0.36± 0.03 0.53 ± 0.06 0.65 ± 0.11 

Western Arm 0.37± 0.05 0.58 ± 0.07 0.65 ± 0.08 
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Figure A.3.1. Whole body carbon concentration on a wet mass basis of Atlantic salmon 

adults (open triangle), kelts (asterisk), and smolts (open circle) captured in three insular 

Newfoundland rivers. %C was measured on separate subsamples of the same fish as 

described in the main text. %C analysis was conducted on a Carlo Erba NA1500 Series II 

Elemental Analyser at the Stable Isotope Lab facility at Memorial University of 

Newfoundland according to standard methods. 
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A.3.3. Long term P flux via Atlantic salmon in three Newfoundland Rivers  

Table A.3.4 Total P flux for three Newfoundland salmon populations summed over a 

twenty year period (1993-2012). Efficiency was calculated as smolt export divided by net 

import.  

River Gross Import (kg) Net Import (kg) Smolt Export (kg) 

% 

efficiency 

Campbellton 412 228 232 102 

Conne 290 149 279 188 

Western Arm 186 87 94 108 
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A.3.4. Sensitivity of P flux model estimates to changes in overwinter survival 

(parameter k) 

We analyzed the sensitivity of the nutrient flux model to changes in parameter k in the 

same manner as we assessed the sensitivity of the model to assumptions regarding 

nutrient content (i.e., parameter N). We recalculated P flux over the 20 year study period 

for Campbellton using 4 sets of values for overwinter survival; the mean of annual 

survival rates measured on Campbellton between 1994-2012 (M. Robertson, unpublished 

data) held constant over the study period (i.e., same as main text), a high survival rate 

calculated as mean annual survival + 1SD and held constant, a low survival rate 

calculated as mean annual survival rate – 1 SD and held constant, and the actual annual 

survival rates, which were variable over the study period. Because overwinter survival 

was not quantified in 1993 and 1998, we replaced these years with the mean of all annual 

survival estimates. We tested for differences in the elevations of k regressions (Zar 2010) 

and conducted multiple comparisons with Tukey HSD tests.  

We found significant differences between the elevations of series produced with mean, 

high, low, and actual survival rates (Figure A.3.2; F.05(2),75  =22.60, p < 0.001). Using 

multiple comparison tests, we found statistically significant differences (p<0.05) only 

when we compared P flux time series estimated with high and low survival rates (Table 

A.3.5). 
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Table A.3.5. Results of a test for differences in elevation of k regressions conducted on 

time series produced by substituting four sets of values for the overwinter survival 

parameter in the nutrient flux model described in the main text. Significant differences 

found between pairs of regressions are indicated by contrasting capital letters in the 

superscripts.  

Regression Σx
2 

Σxy Σy
2
 Residual SS Residual DF 

High survival
 A 

665 252.85 231.18 135.04 18 

Low survival 
B 

665 331.84 421.20 255.61 18 

Actual survival 
A, B 

665 435.83 476.00 190.37 18 

Mean survival 
A, B

 665 291.93 315.60 187.44 18 

Pooled regression 

   

768.46 72 

Common regression 2660 1312.46 1443.99 796.42 75 

Total Regression 9275 1060.69 1637.73 1516.43 78 
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Figure A.3.2. Sensitivity of Atlantic salmon mediated P flux estimates to changes in 

overwinter survival rate (i.e., parameter k in nutrient flux model) on Campbellton River, 

NL. The solid line is estimated using mean overwinter survival rate measured from 1994-

2012 and is the same as in the main text. High (long dash) and low (dotted) survival rates 

were determined as mean plus or minus one standard deviation (i.e., k = 0.70 and 0.43). 

We also included P flux estimated with directly quantified survival rates (actual; dash 

dot) and missing years (1993 and 1998) were replaced by the mean of the time series.   
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A.4. Appendices for Chapter 4: Length-nutrient content relationships as 

a tool for understanding the role of large consumers in ecosystem 

nutrient cycles. 

 

A.4.1. Additional information regarding Illustration 1 in the main text including 

brook trout sample processing and chemical analysis methods, the characteristics of 

study segments, the number brook trout individuals sampled from each stream, and 

the sample sizes. 

 

Brook trout sample processing and analysis. 

Brook trout samples were partially thawed, the stomach contents removed, and each fish 

was measured for fork length and wet mass. Samples were then dried at 60°C for ca. 7 

days and dried samples were allowed to cool in a dessicator before being re-weighed and 

sealed in clean 60mL scintillation vials. For chemical analysis, we pooled all individuals 

weighing less than 0.25g dry weight (wet mass range 0.1-1.1 g; fork length range; 27-

46mm) into one sample regardless of stream of capture because individual fish were too 

small to analyze for all three elements (i.e., C, N, and P) and in some streams we did not 

capture enough of these small individuals to constitute an adequate sample weight for 

analysis. Dried samples were shipped to the Agriculture and Food Laboratory at the 

University of Guelph where samples were ground in 5mL polyethylene vials with 

stainless steel grinding balls in a SPEX Sample Prep 2010 Geno/Grinder for three 

minutes at 1000 rpm. Some samples were further ground with a mortar and pestle. 
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Subsamples taken for %C and %N were analyzed on an Elementar Vario Macro Cube. 

Subsamples taken for %P analysis were digested with nitric acid in a CEM Marsxpress 

microwave digester and analyzed on a Varian Vista Pro ICP-OES.  
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Table A.4.1. Characteristics of segments sampled in five streams in Terra Nova National 

Park, Newfoundland and Labrador.  

Stream Coordinates 

Discharge 

(m
3
∙s

-1
) 

Channel area 

sampled (m
2
) 

No. fish 

sampled 

No. 

samples 

included 

in 

LNCR† 

Charlottetown Brook 48° 26’40.06”N 

54° 1’17.54”W 

1.16 237 12 10 

Cobblers Brook 48° 25’11.77”N 

54° 8’11.46”W 

0.24 151 15 14 

Davey Ann's Brook 48° 36’50.81”N 

53° 58’2.20”W 

0.14 108 14 15 

Spracklin Brook 48° 29’17.78”N 

54° 1’18.93”W 

0.1 94 26 16 

Yudle Pond Brook 48° 26’9.62”N 

54° 1’49.55”W 

0.18 85 12 11 

Notes 

†Fish under weighing less than 0.25g dry weight (wet mass range 0.1-1.1 g; fork length 

range; 27-46mm) into one sample regardless of stream of capture because individual fish 

were too small to analyze for all three elements (i.e., C, N, and P) and in some streams we 

did not capture enough of these small individuals to constitute an adequate sample weight 

for analysis. For example, zero small fish were captured in Davey Ann’s Brook, however 
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we still included the young of the year body content in the LNCR analyses for 

consistency under the assumption that individuals of this size may still have been present 

in the sampled segment.  
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A.4.2. Results of ANCOVAs used to test for differences in the slopes and intercepts 

of LNCRs among populations within elements and among elements when 

individuals from all five populations were pooled.  

To evaluate whether nutrient content of fish of a given length differed among populations, 

we used an ANCOVA and type II sum of squares with ln-transformed fork length as the 

independent variable and stream of capture as our categorical variable in the ‘car’ 

package in R (Fox and Weisberg 2011) to test whether the slopes and intercepts of 

LNCRs for each element (i.e., C, N, or P) differed. The slopes and intercepts of the 

LNCRs for each element did not differ among populations (Tables A.4.2, A.4.3 ) 

suggesting that either the forces acting on the amount of a given nutrient in brook trout 

bodies were the same in all five streams, or that the amount of C, N, or P in brook trout 

bodies are endogenously controlled. However, sample sizes within streams were low 

(Table A.4.1), which may have limited our ability to detect differences in LNCR 

coefficients among populations.  

To evaluate ontogenetic variation in body element content, we tested for differences in 

the slopes among LNCRs for each element, we used an ANCOVA with type II sum of 

squares with ln-transformed body element content as our dependent variable, fork length 

as a continuous independent variable and element (C, N, P) as our categorical 

independent variable using the full dataset where individuals from each stream were 

pooled. 

References 
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Table A.4.2. ANCOVA results for tests of differences in slopes of regressions of natural 

log-transformed total body carbon, nitrogen, and phosphorus against natural log 

transformed fork length (mm) among five populations of brook trout in Terra Nova 

National Park in June 2015.  Slopes of the LNCR differ among streams if the interaction 

term, ln(fl)*stream, is statistically significant.  

Element Source SS df F p 

Carbon ln(fl) 103.21 1 1753.69 < 0.001 

 

Stream 0.397 4 1.688 0.17 

 

ln(fl) *Stream 0.198 4 0.8413 0.51 

 

Residuals 2.94 50 

  Nitrogen ln(fl) 97.41 1 1673.81 <0.001 

 

Stream 0.2 4 0.88 0.48 

 

ln(fl)*Stream 0.13 4 0.54 0.71 

 

Residuals 2.91 50 

  Phosphorus ln(fl) 93.2 1 1707.78 <0.001 

 

Stream 0.32 4 1.48 0.22 

 

ln(fl)*Stream 0.19 4 0.87 0.49 

 

Residuals 2.73 50 
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Table A.4.3. ANCOVA results for tests of differences in intercepts of regressions of 

natural log-transformed total body carbon, nitrogen, and phosphorus against natural log 

transformed fork length (mm) among five populations of brook trout in Terra Nova 

National Park in June 2015. Intercepts of the LNCRs differ among streams if the 

categorical variable, stream, is a statistically significant source of variation. 

Element Source SS df F p 

Carbon ln(fl) 103.21 1 1774.56 <0.001 

 

Stream 0.4 4 1.71 0.17 

 

Residuals 3.14 54 

  Nitrogen ln(fl) 97.41 1 1732.8 <0.001 

 

Stream 0.2 4 0.91 0.47 

 

Residuals 3.04 54 

  Phosphorus ln(fl) 93.2 1 1724.75 <0.001 

 

Stream 0.32 4 1.49 0.22 

 

Residuals 2.92 54 
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Table A.4.4. ANCOVA results for tests of differences in the slopes of LNCRs for 

different elements analyzed with all populations pooled. Slopes of LNCRs differ among 

elements if the interaction term, ln(fl)*Element, is a statistically significant source of 

variation.  

Source SS df F p 

ln(fl) 219.04 1 3622.48 <0.001 

Element 268.08 2 2220.56 <0.001 

log(fl)*Element 0.201 2 1.17 0.193 

Residuals 10.88 180 
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A.4.3. Method for classifying brook trout captured during sampling to different age 

classes.  

Determining length-at-age 

We did not directly quantify the age of brook trout in our study. To estimate length at age, 

we used length and age data of non-anadromous brook trout collected via electrofishing 

by Parks Canada in nearby, similarly sized streams (i.e, Terra Nova Brook, Wings Brook, 

and Minchins Pond Brook) in August 1981 (M. Langdon unpublished data). Age data for 

these populations was determined by examining annuli on the brook trout’s otoliths (M. 

Langdon, personal communication).  Age-at-length for June 2015 samples was estimated 

by assuming that change in length was constant over time (i.e., proportional change in 

length from age 1 to age 2 is equal to the proportional change in length of an age 1 

individual from June to August), such that 

 𝑓𝑙𝑎,𝐽𝑢𝑛𝑒 = 𝑓𝑙𝑎,𝐴𝑢𝑔𝑢𝑠𝑡 − 𝑥 ∙ 𝑓𝑙𝑎,𝐴𝑢𝑔𝑢𝑠𝑡; where, fl is fork length (mm), subscript a is age 

class, and x is proportional change in fork length of over an age increment calculated as 

 𝑥 =
𝑓𝑙𝑎+1,𝐴𝑢𝑔𝑢𝑠𝑡−𝑓𝑙𝑎,𝐴𝑢𝑔𝑢𝑠𝑡

𝑓𝑙𝑎,𝐴𝑢𝑔𝑢𝑠𝑡
. We quantified uncertainty around the mean age at length by 

using the same procedure but using the upper and lower 95% confidence interval (i.e., 

±2SD) of August age at lengths to determine the upper and lower 95% confidence 

intervals.  

 We were interested in calculating the amount of C, N, and P stored in our five 

study populations at the time of sampling (i.e., standing stock) and the maximum 

potential nutrient accrual for each of our five populations. Both of these goals require that 
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we estimate the number of individuals per cohort. We estimated the number of 

individuals per cohort using the Zippin method of k-pass removal in the FSA package 

(Ogle 2016). This method assumes that the population is closed and that the capture 

probability of individuals and constant within and across sampling passes. We assigned 

captured individuals to age classes (cohorts) by subsetting our dataset into groups where 

individuals smaller than lower 95% CI fork length of age 1 individuals were assigned age 

0+ cohort, individuals with fork lengths between the lower 95% CI fork length of age 1+ 

and the lower 95% CI fork length of age 2+ were assigned to the age 1+ cohort,   

individuals with fork lengths between the lower 95% CI fork length of age 2+ and mean 

fork length of age 3+ were assigned to the age 2+ cohort, and individuals smaller than the 

mean estimated fork length of age3+ fish were assigned to the  age 3+ cohort.. 

References 
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Figure A.4.1. Length of individuals of a given age class. Solid circles represent the mean 

age-at-length (± 2sd) of Salvelinus fontinalis collected from Minchins Pond Brook, Terra 

Nova Brook, and Wings Brook in August 1981 (n=140). This age-at-length data was used 

to back-calculate the expected age-at-length of fish sampled from five nearby, similarly 

sized streams in Terra Nova National Park in June 2015 (open circles). Age-at-length for 

June 2015 samples was estimated by assuming that change in length was constant over 

time, such that 

 𝑓𝑙𝑎,𝐽𝑢𝑛𝑒 = 𝑓𝑙𝑎,𝐴𝑢𝑔𝑢𝑠𝑡 − 𝑥 ∙ 𝑓𝑙𝑎,𝐴𝑢𝑔𝑢𝑠𝑡; where, fl is fork length (mm), subscript a is age 

class, and x is proportional change in fork length of over an age increment calculated as 

 𝑥 =
𝑓𝑙𝑎+1,𝐴𝑢𝑔𝑢𝑠𝑡−𝑓𝑙𝑎,𝐴𝑢𝑔𝑢𝑠𝑡

𝑓𝑙𝑎,𝐴𝑢𝑔𝑢𝑠𝑡
. Actual length measurements of S. fontinalis sampled in 2015 

(X) fall within the predicted range of lengths for age classes 0+ to 3+.  
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Table A.4.5. Number of individuals from each assigned age class in study segments (lower 95%CI, upper 95% CI) estimated 

from three-pass depletion sampling using the Zippen method (Ogle 2016).  

Stream 0+ 1+ 2+ 3+ 

Charlottetown 81 (71.2, 90.8) 20 (16.3, 23.7) 5 (3.5, 6.5) 3 (1.6, 4.4) 

Cobblers 3 (2.5, 3.5) 2 (0, 4.0) 7 (0.1, 13.9) 1 (1, 1) 

Davey Ann’s 2 (1.2, 6.8) 7 (6.8, 7.2) 12 (11.8, 12.1) 1 (1, 1) 

Spracklins 0 4 (2.1, 5.9) 10 (10, 10) 0 

Yudle 6 (4.0, 8.0) 1 (1, 1) 15 (13.5, 16.5) 3 (1.6, 4.4) 
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A.4.4.  Additional details of our sampling collection, processing and analysis for 

Illustration #2: Partitioning individual losses between eggs and excretions in 

migrating Atlantic salmon (Salmo salar). 

Adult and kelt sampling.  

Individuals were sampled when they passed through counting facilities located near the 

freshwater/ marine boundary at the mouth of each river. Sampled adults fork length 

ranged from 48 - 62 mm and wet mass ranged from 1165-2450 g. Sampled kelt fork 

length ranged from 49 – 60 mm and wet mass ranged from 640 – 1300 g. We 

homogenized individuals and analyzed the resultant subsampled for C, N, P concentration 

according to methods described in Chapter 2. Data including wet weights, fork lengths, 

and body element concentrations are found in Ebel et al. (2016); however we removed a 

70 cm kelt from our analysis because it was anomalously longer than any of the adults we 

sampled from the same streams. Characteristics of the watersheds and the sizes of 

populations sampled are provided in Chapter 3. 

Egg sampling 

We collected salmon eggs from individuals captured at the Grand Falls fish ladder on the 

Exploits River in 2014. Individuals selected for research and re-introduction purposes 

were held by the Environment Resources Management Association in large flow-through 

tanks adjacent to the river from initial capture in July – September until individuals 

reached full maturity in late October and early November 2014. Eggs were non-lethally 

retrieved from 12 females (fork length range 46-61 cm, body mass range 755-2342 g, egg 
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mass range 142-442 g) by standard protocols and probably represent just under 100% 

eggs present in each female. Females were released after eggs were retrieved. Eggs were 

transported in coolers to the Memorial University of Newfoundland, where they were 

separated from ovarian fluid with a strainer, weighed, subsampled, placed in a drying 

oven for 48-72 hours, measured for dry mass, and stored in a dessicator for five months 

prior to chemical analyses of C, N, and P. Dried samples were ground with a mortar and 

pestle. A portion of ground material was analyzed for C and N on a Carlo Erba NA1500 

Series II Elemental Analyser at the Stable Isotope Lab facility at the Memorial University 

of Newfoundland and another portion of ground material was dissolved in nitric acid and 

hydrogen peroxide and analyzed for P concentration with a Perkin Elmer ELAN DRCII 

ICP-MS at the Inductively Coupled Plasma Spectrometry (ICPMS) Facility at the 

Memorial University of Newfoundland.  

References 
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A.5. Appendices for Chapter 5: Ecosystem effects of top consumers with 

migratory and complex life cycles 

A.5.1.  Parameter constraints and equations describing ecosystem fluxes 

This appendix contains the parameter constraints (Table A.5.1) and the equations used to 

determine the response of production and within ecosystem nutrient recycling (Table 

A.5.2) for the model described in the main text.  
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Table A.5.1. Parameter definitions and constraints. 

Parameter Description Constraints 

Ii Constant input to Ni Ii > 0 

Ei Basal loss rate from 

Ni 

Ei > 0 

εi Assimilation 

efficiency 

0 < εi < 1 

aj,k Attack rate aj,k  > 0 

mi Consumer loss rate mi > 0 

δr Recycling efficiency 0 < δi < 1 

β Adult migration rate 0 < β  

α Juvenile migration 

rate 

0 < α 

r Subsidy conversion 

efficiency 

0 < r <1 
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Table A.5.2. Equations for evaluating production and within-ecosystem nutrient cycling 

flux.  

Natal Ecosystem Adult Ecosystem 

Function Equation Function Equation 

ΦR1 𝜀𝑎𝑅1
∗𝑁1

∗ ΦR2 𝜀𝑎𝑅2
∗𝑁2

∗ 

ΦC1 𝜀𝑎𝐶1
∗𝑅1

∗ + 𝑟𝛽𝐶2
∗ ΦC2 𝜀𝑎𝐶2

∗𝑅2
∗ + 𝛼𝐶1

∗ 

RF1 𝛿1𝑚1𝐶1
∗ +  𝛿𝑟(1 − 𝑟)𝛽𝐶2

∗ RF2 𝛿2𝑚2𝐶2
∗ 
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A.5.2. All Equilibria  

This appendix contains all four equilibria to the meta-ecosystem model included in the 

main text. Our model has four equilibria: (1) where only abiotic resource compartments 

are present, (2) where all compartments are present except for natal ecosystem biotic 

resources (i.e., R1), (3) where all compartments are present except for adult ecosystem 

biotic resources (i.e., R2), and (4) where all compartments are present in both ecosystems. 

We do not analyze Equilibrium 1 where;  

𝑁1
∗ =  

𝐼1

𝐸1
 

𝑁2
∗ =

𝐼2

𝐸2
 

because biota do not exist in the either ecosystem, and the ecosystems are not coupled by 

mass flows. Equilibria 2 and 3 are qualitatively similar, as one consumer life stage does 

not obtain resources in their respective ecosystem. Both of these equilibria are 

represented by life cycles of consumer taxa in nature. Equilibrium 2 describes the system 

at equilibrium when the juvenile life stage does not feed in the natal ecosystem. At 

equilibrium, these stocks are; 

𝑁1
∗

=
− (𝐼1 (−𝜇2(𝑚1 + 𝛼) − 𝛽(𝑚1 + 𝛼 − 𝑟𝛼) + 𝐼2𝛽𝜀2(−𝑚1𝛿1𝑟 + 𝛿𝑟(−1 + 𝑟)(𝑚1 + 𝛼))))

𝐸1(𝜇2(𝑚1 + 𝛼) + 𝛽(𝑚1 + 𝛼 − 𝑟𝛼))
 

𝑅1
∗ = 0 
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𝐶1
∗ =

𝐼2𝑟𝛽𝜀2

𝜇2(𝑚1 + 𝛼) + 𝛽(𝑚1 + 𝛼 − 𝑟𝛼)
 

𝑁2
∗ =

𝐼2𝜀(𝑚1 + 𝛼)

𝜇2(𝑚1 + 𝛼) + 𝛽(𝑚1 + 𝛼 − 𝑟𝛼)
 

𝑅2
∗ =

𝑚1(𝑚2 + 𝛽) + 𝛼(𝑚2 + 𝛽 − 𝑟𝛽)

𝑎𝜀(𝑚1 + 𝛼)
 

𝐶2
∗ =

𝐼2𝜀2(𝑚1 + 𝛼)

𝜇2(𝑚1 + 𝛼) + 𝛽(𝑚1 + 𝛼 − 𝑟𝛼)
 

Equilibrium 2 can represent a number of diadromous fishes that have larval stages that 

migrate out of their natal ecosystem to the adult ecosystem soon after hatching and before 

first feeding (e.g., longnose sucker; Childress et al. 2015). 

Equilibrium 3 describes the system at equilibrium when the adult life stage does not feed 

in the adult ecosystem. At equilibrium, these stocks are;  

𝑁1
∗ =

−𝐼1𝜀(𝑚2 + 𝛽)

−𝑚2(𝛼 − 𝜇1) − 𝛽(𝜇1 − 𝛼(1 − 𝜌))
 

𝑅1
∗ =

𝑚1(𝑚2 + 𝛽) + 𝛼(𝑚2 + 𝛽(1 − 𝑟))

𝑎𝜀(𝑚2 + 𝛽)
 

𝐶1
∗ =

−𝐼1𝜀2(𝑚2 + 𝛽)

−𝑚2(𝛼 + 𝜇1) − 𝛽(𝜇1 + 𝛼(1 − 𝜌))
 

𝑁2
∗ =

−𝐼1𝛼𝑚2𝛿2𝜀2 − 𝐼2 (𝑚2(𝜇1 + 𝛼) + 𝛽(𝜇1 + 𝛼(1 − 𝜌)))

−𝐸2 (𝑚2(𝜇1 + 𝛼) + 𝛽(𝜇1 + 𝛼(1 − 𝜌)))
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𝑅2
∗ = 0 

𝐶2
∗ =

𝐼1𝛼𝜀2

𝑚2(𝜇1 + 𝛼) + 𝛽(𝜇1 + 𝛼(1 − 𝜌))
 

Equilibrium 3 is exemplified by mayflies (Order Ephemeroptera), which feed as larvae in 

aquatic ecosystems before migrating and metamorphosing into adults in terrestrial 

ecosystems. Adult mayflies do not have mouthparts and do not feed in terrestrial 

ecosystems. Equilibria 2 and 3 always produce non-zero values for existing compartment 

stocks under the initial parameter constraints (table A.5.1).  

 Consumers represented by Equilibrium 2 and 3 experience ontogenetic habitat 

shifts, but do not experience ontogenetic diet shifts. In these scenarios, basal input rates, 

basal loss rates, and recycling efficiencies in only one ecosystem drive the consumers’ 

dynamics. In the non-feeding ecosystem (i.e., the ecosystem without an existing biotic 

resource compartment), the migratory consumer acts as a subsidy to the abiotic resource 

compartment only. In Equilibria 2 and 3, the increase in abiotic resource in the non-

feeding ecosystem can support other food webs in a bottom-up fashion that are not 

directly connected to the consumer. These forms of subsidy are commonly examined 

empirically (Baxter et al. 2005, Allen and Wesner 2016, Childress et al. 2016). 

Equilibrium 4 describes a system where all compartments exist and is included in 

the main text. At equilibrium, these stocks are; 

𝑁1
∗ =

𝜀(𝐼1(𝛽 + 𝜇2) + 𝐼2𝛽𝜌)

𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1
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𝑅1
∗ =

𝐼2𝛽(𝑟(𝜇1 − 𝑚1) + (𝑟 − 𝜌)(𝑚1 + 𝛼)) − 𝐼1(𝜇2(𝑚1 + 𝛼) + 𝛽(𝑚1 + 𝛼 − 𝑟𝛼))

𝑎𝜀(−𝐼1(𝛽 + 𝜇2) − 𝐼2𝛽𝜌)
 

𝐶1
∗ = 𝜀𝑁1

∗ 

𝑁2
∗ =

𝜀(𝐼1𝛼 + 𝐼2(𝛼 + 𝜇1))

𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1
 

𝑅2
∗ =

− (𝐼1𝛼𝜀(𝐸2 − 𝑚2𝛿2𝜀) + 𝐼2 (−𝑚2(𝜇1 + 𝛼) − 𝛽(𝜇1 − 𝛼(1 − 𝜌))))

𝑎𝜀(𝐼1𝛼 + 𝐼2(𝜇1 + 𝛼))
 

𝐶2
∗ = 𝜀𝑁2

∗ 

Where;  

𝜇1 = 𝐸1𝜀 + 𝑚1(1 − 𝛿1𝜀2) 

𝜇2 = 𝐸2𝜀 + 𝑚2(1 − 𝛿2𝜀2) 

𝜌 = 𝑟 − 𝛿𝑟𝜀2(−1 + 𝑟) 

Unlike Equilibria 2 and 3, which produce non-zero stocks under all combinations of 

parameters, Equilibrium 4 only produces positive non-zero biotic resource stocks (i.e., R1 

and R2) under a range of parameters defined by the inequality 

𝑚2𝛿2𝜀

𝑚1 + 𝛼
+

𝐼2𝛽(𝜌 − 𝑟)

𝐼1𝜀
+

𝐼2𝛽𝑟(𝜇1 − 𝑚1) −  𝛽(𝑚1 − 𝛼 − 𝑟𝛼)

𝐼1𝜀(𝑚1 + 𝛼)
−

𝑚2

𝜀
<  𝐸2  

<  𝑚2𝛿2𝜀 + 𝐼2𝛽 (
𝐸1(1 + 𝑚2)

𝐼1𝛼
+

1 − 𝜌 + 𝑚2

𝐼1𝜀
+

𝑚1(1 + 𝑚2)(1 − 𝛿1𝜀2)

𝐼1𝛼𝜀
) 
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Where the juvenile’s biotic resource stock is zero or negative when ecosystem 2 basal loss 

rate (i.e., E2) is lower than the left hand side of the in equality and the adult’s biotic 

resource stock is zero or negative when ecosystem 2 basal loss rate is higher than the 

right-hand side of the inequality. 
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Appendix A.5.3. Analytical solutions and qualitative evaluation of stocks and 

production presented in Ecosystem effects of consumers with migratory and 

complex life cycles. 

In this appendix, we provide the analytical solutions and qualitative assessment of the 

directional response of equilibrium stocks, production, and within-ecosystem recycling 

flux to increases in the parameters for juvenile migration rate (α), adult migration rate (β), 

and subsidy conversion efficiency (r).  
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Table A5.3. Analytical solutions and qualitative evaluation of the response of equilibrium 

stock to increases in juvenile migration rate (α). 

 𝜕𝑠𝑡𝑜𝑐𝑘∗/𝜕𝛼 Qualitative effect 

N1
* 

−𝜀(𝜇2 + 𝛽(1 − 𝜌))(𝐼1𝛽𝜌 + 𝐼1(𝛽 + 𝜇2))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Negative 

R1
* 

𝐼2𝛽𝛿𝑟𝜀2(−1 + 𝑟) + 𝐼1(𝛽(−1 + 𝑟) − 𝜇2)

𝑎𝜀(−𝐼1(𝜇2 + 𝛽) − 𝐼2𝛽𝜌)
 

Positive 

C1
* 

− (𝜀2(𝜇2 + 𝛽(1 − 𝜌))(𝐼1(𝜇2 + 𝛽) + 𝐼2𝛽𝜌))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Negative 

N2
* 𝜀(−𝜇1)(−𝐼1(𝜇2 + 𝛽) − 𝐼2𝛽𝜌)

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 

R2
* 

−(𝐼2(−𝜇1)(−𝐼1(𝜇2 + 𝛽) − 𝐼2𝛽𝜌))

𝑎𝜀(𝐼1𝛼 + 𝐼2(𝜇1 + 𝛼))
 

Negative 

C2
* 𝜀(−𝜇1)(−𝐼1(𝜇2 + 𝛽) − 𝐼2𝛽𝜌)

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 
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Table A5.4. Analytical solutions and qualitative evaluation of the response of equilibrium 

stock to increases in adult migration rate (β). 

 𝜕𝑠𝑡𝑜𝑐𝑘∗/𝜕𝛽 Qualitative effect 

N1
* 

𝜀(−𝜌)(−𝜇2)(𝐼1𝛼 + 𝐼2(𝛼 + 𝜇1))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 

R1
* 

−𝐼1𝑟𝜇2(𝐼1𝛼 + 𝐼2(𝛼 + 𝜇1))

𝑎𝜀(𝐼1(𝛽 + 𝜇2) + 𝐼2𝛽𝜌)2
 

Negative 

C1
* 

𝜀2(−𝜌)(−𝜇2)(𝐼1𝛼 − 𝐼2𝜇2(𝛼 + 𝜇1))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 

N2
* 

−𝜀(𝐼1𝛼 + 𝐼2(𝛼 + 𝜇1))(𝜇1 + 𝛼(1 − 𝜌))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Negative 

R2
* 

𝐼2(𝜇1 + 𝛼(1 − 𝜌))

𝑎𝜀(𝐼1𝛼 + 𝐼2(𝛼 + 𝜇1))
 

Positive 

 

C2
* 

−𝜀2(𝐼1𝛼 + 𝐼2(𝛼 + 𝜇1))(𝜇1 + 𝛼(1 − 𝜌))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Negative 
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Table A.5.5. Analytical solutions and qualitative evaluation of the response of 

equilibrium stock to increases in subsidy conversion efficiency (r). 

 𝜕𝑠𝑡𝑜𝑐𝑘∗/𝜕𝑟 Qualitative effect 

N1
* 

− (𝛽𝜀(𝜇2 + 𝛽)(−1 + 𝛿𝑟𝜀2)(𝐼1𝛼 + 𝐼2(𝜇1 + 𝛼)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 

R1
* 

𝛽(−𝐼1𝛼 − 𝐼2(𝜇1 + 𝛼))(𝐼2𝛽𝛿𝑟𝜀2 + 𝐼1(𝜇2 + 𝛽))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Negative 

C1
* 

− (𝛽𝜀2(𝜇2 + 𝛽)(−1 + 𝛿𝑟𝜀2)(𝐼1𝛼 + 𝐼2(𝜇1 + 𝛼)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 

N2
* 

− (𝛼𝛽𝜀(−1 + 𝛿𝑟𝜀2)(𝐼1𝛼 + 𝐼2(𝜇1 + 𝛼)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 

R2
* 

𝐼2𝛼𝛽(−1 + 𝛿𝑟𝜀2)

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Negative 

C2
* 

− (𝛼𝛽𝜀(−1 + 𝛿𝑟𝜀2)(𝐼1𝛼 + 𝐼2(𝜇1 + 𝛼)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 
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Table A.5.6. Analytical solutions and qualitative evaluation of equilibrium ecosystem fluxes to increases in juvenile migration 

rate (α). 

 𝜕𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛∗/𝜕𝛼  Qualitative effect 

ΦR1
* 

𝜀2(−𝐼1(𝜇2 + 𝛽) − 𝐼2𝛽𝜌) (𝐸1 (𝛽(−1 + 𝑟)(1 − 𝑚1𝜀(𝛿1 − 𝛿𝑟)) − 𝜇2(1 − 𝑚1𝛿1𝜀)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive when 

𝐸2 < 𝑚2𝛿2𝜀 −
𝑚2

𝜀
+

𝛽(−1 + 𝑟)(1 − 𝑚1𝜀(𝛿1 − 𝛿𝑟))

1 − 𝑚1𝛿1𝜀
 

 

ΦC1
* 

− (𝜀2(−𝐼1(𝜇2 + 𝛽) − 𝐼2𝛽𝜌)(𝑚1𝛽𝜌 + (𝜇2 + 𝛽)(𝐸1𝜀 − 𝑚1𝛿1𝜀2)))

𝐴2
 

Positive* when 

𝐸2 > 𝑚2𝛿2𝜀 −
𝑚2 + 𝛽

𝜀
−

𝑚1𝛽𝜌

𝜀2(𝐸1 − 𝑚1𝛿1𝜀)
 

ΦR2
* 𝜀2(−𝜇1)(𝐸2 − 𝑚2𝛿2𝜀)(𝐼1(𝜇2 + 𝛽) + 𝐼2𝛽𝜌)

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive when 

𝐸2 < 𝑚2𝛿2𝜀 

ΦC2
* −𝜇1𝜀2(𝑚2 + 𝛽)(−𝐼1(𝜇2 + 𝛽) − 𝐼2𝛽𝜌)

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 
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RF1
* 

− (𝜀2(−𝐼1(𝜇2 + 𝛽) − 𝐼2𝛽𝜌)(𝑚1(𝛽(−1 + 𝑟)(𝛿1 − 𝛿𝑟) − 𝛿1𝜇2)−𝐸1𝛽𝛿𝑟𝜀(−1 + 𝑟)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive when  

𝐸2 < 𝑚2𝛿2𝜀 −
𝑚2

𝜀
+

𝛽(−1 + 𝑟)(𝑚1(𝛿1 − 𝛿𝑟) − 𝐸1𝜀𝛿𝑟)

𝑚1𝛿1𝜀
 

 

RF2
* 𝑚2𝛿2𝜀2(−𝜇1)(−𝐼1(𝜇2 + 𝛽) − 𝐼2𝛽𝜌)

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 
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Table A.5.7. Analytical solutions and qualitative evaluation of the response of equilibrium ecosystem fluxes to increases in 

adult migration rate (β).  

 𝜕𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛∗/𝜕𝛽 Qualitative effect 

ΦR1
* 

−𝜇2𝜀2 (−𝐸1𝑟 + 𝜀(𝑚1𝑟𝛿1 − 𝛿𝑟(−1 + 𝑟)(𝛼 + 𝑚1))(−𝐼1𝛼 − 𝐼2(𝛼 + 𝜇1)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive if 

𝐸1 < 𝑚1𝛿1𝜀 −
𝛿𝑟𝜀(𝑚1 + 𝛼)(𝑟 − 1)

𝑟
 

 

ΦC1
* 

− ((−𝜇2)(−𝜌)𝜀2(𝛼 + 𝑚1)(−𝐼1𝛼 − 𝐼2(𝛼 + 𝜇2)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive
 

ΦR2
* 

𝜀2(−𝐸2 + 𝑚2𝛿2𝜀)(−𝐼1𝛼 − 𝐼2(𝛼 + 𝜇1))(𝜇1 + 𝛼(1 − 𝜌))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive  when, 

 𝐸2 > 𝑚2𝛿2𝜀 

 

ΦC2
* 

− (𝜀2(−𝐼1𝛼 − 𝐼2(𝛼 + 𝜇1))(𝑚2𝛼𝜌 + 𝜀(𝐸2 − 𝑚2𝛿2𝜀)(𝜇1 + 𝛼)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive when  

𝐸2 > 𝑚2𝛿2𝜀 −
𝛼𝜌𝑚2

𝜀(𝜇1 + 𝛼)
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RF1
* 

−𝜇2𝜀2 ((−𝑚1(𝑟(𝛿𝐶𝑗 − 𝛿𝑟) + 𝛿𝑟) + 𝛿𝑟(−1 + 𝑟)(𝛼 + 𝜀𝐸1)) (𝐼1𝛼 + 𝐼2(𝛼 + 𝜇1)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 

RF2
* 

−𝑚2𝛿2𝜀2(𝐼1𝛼 + 𝐼2(𝜇1 + 𝛼))(𝜇1 + 𝛼(1 − 𝜌))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Negative 
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Table A.5.8. Analytical solutions and qualitative evaluation of the response of equilibrium ecosystem fluxes to increases in 

subsidy conversion efficiency (r). 

 𝜕𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛∗/𝜕𝑟  Qualitative effect 

ΦR1
* 

𝛽𝜀2(−𝐼1𝛼 − 𝐼2(𝜇1 + 𝛼)) (𝐸1(𝜇2 + 𝛽) + 𝜀(𝛼𝛿𝑟𝜇2 − 𝑚1(𝛿1 − 𝛿𝑟)(𝜇2 + 𝛽)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive when 

𝐸2 > 𝑚2𝛿2𝜀 −
𝑚2

𝜀
+

𝛽(𝑚1(𝛿1 − 𝛿𝑟) + 𝐸1)

𝜀(𝑚1(𝛿1 − 𝛿𝑟) − 𝐸1 − 𝛼𝛿𝑟𝜀)
 

ΦC1
* 

𝛽𝜀2(𝑚1 + 𝛼)(𝜇2 + 𝛽)(−1 + 𝛿𝑟𝜀2)(−𝐼1𝛼 − 𝐼2(𝜇1 + 𝛼))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 

ΦR2
* 

− (𝛼𝛽𝜀2(−𝐸2 + 𝑚2𝛿2𝜀)(−1 + 𝛿2𝜀2)(𝐼1𝛼 + 𝐼2(𝜇1 + 𝛼)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive when 

𝐸2 < 𝑚2𝛿2𝜀 

ΦC2
* 

− (𝛼𝛽𝜀2(𝑚2 + 𝛽)(−1 + 𝛿𝑟𝜀2)(𝐼1𝛼 + 𝐼2(𝜇1 + 𝛼)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 

RF1
* 

𝛽𝜀2(−𝐼1𝛼 − 𝐼2(𝜇1 + 𝛼)) ((𝜇2 + 𝛽)(𝛿𝑟𝐸1𝜀 − 𝑚1(𝛿1 − 𝛿𝑟)) + 𝛼𝛿𝑟𝜇2)

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive when  

𝐸2 > 𝑚2𝛿2𝜀 −
𝑚2

𝜀
+

𝛽(𝛿𝑟𝐸1𝜀 − 𝑚1(𝛿1 − 𝛿𝑟))

𝜀(𝑚1(𝛿1 − 𝛿𝑟) − 𝛿𝑟(𝐸1𝜀 + 𝛼))
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RF2
* 

− (𝛼𝛽𝑚2𝛿2𝜀2(−1 + 𝛿𝑟𝜀2)(𝐼1𝛼 + 𝐼2(𝜇1 + 𝛼)))

(𝛼𝛽(1 − 𝜌) + 𝜇2(𝛼 + 𝜇1) + 𝛽𝜇1)2
 

Positive 
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A.5.4. Numerical simulations of equilibrium production to complement Figure 5.4 in 

Ecosystem effects of top consumers with migratory and complex life cycles.  
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Figure A.5.1. Response of equilibrium production (Φi) and within-ecosystem recycling 

flux (RFi) in natal and adult ecosystems connected by bidirectional flows of a migratory 

consumer to increases in the subsidy conversion efficiency, r, when adult migration rate 

(β) is low (β= 0.2; squares), moderate (β = 0.5; circles), and high (β = 0.8; triangles) 

under two juvenile migration rates, α =0.2 (open shapes) and α=0.8 (filled shapes). Other 

parameter values are the same parameters used in the simulation of equilibrium stocks 

show in Figure 5.4 of the main text and are as follows: I1 = 10, I2 =1, E1=30, E2 = 0.5, a = 

1, ε = 0.5, m1 = m2 = 3, δ1 = δ2 = δr = 0.2. The equilibrium is locally stable (i.e., leading 

eigenvalues of the Jacobian matrix are negative) for the given parameter sets. 


