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Abstract  

This work is a preliminary study on the dynamic response of poles with and without the 

influence of electrical lines. It is part of a research collaboration between NL Hydro and 

Memorial University of Newfoundland to achieve a better method of diagnosing aging 

wooden poles through non-destructive techniques. Previous researchers in this 

collaboration have found a good correlation between modal testing and wooden pole decay 

when the poles were tested in the laboratory. However, this correlation weakens with 

results from field tests, possible due to foundation or attached cables. Therefore, the main 

objectives of this research are to create a dynamic model for a pole and cable, to design an 

experimental rig of a reduced scale pole and cable, to use the experimental rig to validate 

those models, and to gain insights on the influences of the cable on the pole response for 

future research. The pole model consists of a Euler-Bernoulli cantilever beam obtained 

through the separation of variables method. The cable was modeled by using a lumped 

segmentation technique that considers the system as a sum of several lumped elements 

containing mass, ideal springs and viscous dampers. Both models are implemented using 

the commercial software 20sim, which is a graphical solver for the bond graph formalism 

that simplifies the process of building, assembling and testing the models. These models 

are intended to be preliminary tools for future work with trustable simulations, thus will 

allow for the study of the interaction between systems, the scaling of long transmission 

lines and their effects on the results of modal testing, and the insertion of other electric 

components and attachments usually found holding the cables on the poles (i.e. isolators, 

cross arms, ground wire, guy wires, etc.). A reduced physical model for the pole and cable 
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is designed to proceed with the validation of the developed models. Modal testing and time 

series measurements are performed over the apparatus and compared with the simulation 

results, showing good comparative results. In addition, the methods developed, physical 

and computational, can be used in the continuation of this work. 
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Chapter 1 - Introduction 

 

The use of wooden poles goes back to the end of the 19th century when the earliest 

telegraphic lines were installed for communication and, later, with the implementation of 

public electrification. Wood was an obvious choice of material for this purpose, since initial 

attempts to make underground lines failed at the time, and wood is abundant, resilient and 

durable. These characteristics gave the wooden pole the usage preference throughout the 

centuries and they are still widely used all over North America, where about 130 million 

poles are currently in use (Wood Poles, 2016). In Newfoundland, NL Hydro maintains 

26000 wooden poles for electrical transmission lines (Dillon, 2009).  

Wooden poles are not only abundant and relatively inexpensive, but they also present 

several advantages when compared with steel or concrete poles. They have lower storage 

costs and don’t require protection for transportation. The amount of space necessary to 

stack wooden poles is less than half of the needed for steel and concrete poles, according 

to the manufacturers (Scan Pole, 2016). When compared with concrete and steel poles, 

wooden poles can resist surface impacts better due to their elastic characteristics. Impacts 

can cause cracks over concrete allowing for water infiltration and damage propagation. 

Superficial damages also affect the durability of steel poles, since damages in the coating 

can favour rust. Besides, wood has a great ratio between strength and weight, presents 

excellent dielectric characteristics and has a life expectancy of between 35 to 50 years when 

subjected to proper treatment and maintenance (Morrell, 2016).   
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However, during its life span, wooden poles are subjected to environmental conditions that 

cause degradation of the material. Insect infestation, animal perforations, plant and fungi 

growth, weather variations, etc., all contribute to the deterioration of the wooden pole. With 

time, these factors compromise the network reliability, the safety of the population and the 

operators of the electrical system. Pole strength degradation is a serious issue, causing the 

industry to invest considerable amounts of money in maintenance programs and research. 

NL Hydro, for example, presents online reports which show that in 2017, investments of 

3.8 million Canadian dollars will be expended on pole maintenance and upgrades (Hiller, 

2016).  

 

Research Proposal  

 

This research is a continuation of work performed by NL Hydro and Memorial University 

of Newfoundland with the aim of studying the use of non-destructive tests to assess wooden 

utility pole integrity. Previous researchers started with initiatives a few years ago, to 

provide information showing a correlation between modal damping and pole strength when 

the poles are excited by a hit of a hammer in a laboratory (non-destructive testing). The 

tests using the modal technique appeared to be more accurate than other non-destructive 

methods used by NL Hydro, based on the experience of the author’s research group.  

New investigations have been carried out since then, and the most recent research stage 

obtained information through field measurements. The first results from that research 

indicate that modal test quality decreases in the field, presumably due to foundation 
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damping and compliance, cables, or a combination of both effects (Rideout & Whelan, 

2014). 

Now, to give continuity to this research, it is necessary to better understand how cables 

interact with poles, and to determine whether it is possible to find a pattern that could help 

improve the existing model in order to obtain better strength predictions for wooden poles. 

Overall, this research proposes to implement and validate reliable models for the dynamic 

simulation of pole interaction with cables. The model should predict dynamic cable tension 

and motion, cable natural frequencies and damping ratios, pole motion, and pole modal 

properties during simulated modal testing.  

 

Figure 1.1. Schematics of Pole - Cable System (Pinto & Rideout, 2016) 

 

In addition, other research objectives are to design a reduced physical model of a pole and 

a cable that can be used for model validation and for experimental tests that are performed 

to bring insights to system behaviour. Figure 1.1 presents a schematic of the pole-cable 

system proposed for this study.    
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The bond graph formalism is used for implementation of pole and cable models due to its 

modular characteristics, allowing easy changes in each sub-model. 

Presently, work is being performed to validate computational models which simulate the 

diverse in-situ configurations of wooden poles (i.e. with attachments such as conductors, 

isolators or guy cables). This approach provides a better estimate for future statistical 

models. It is expected that this research will result in a method for in-situ verification of 

the quality of wooden poles through modal testing associated with statistical analysis of 

the empirical results. 

This work is organized in eight chapters which systematically present the research done, 

and offers new contributions towards the overall development of wooden pole test 

methods. Chapter 2, Literature Review, is a comprehensive synthesis of some of the 

relevant research done so far on NDT for wood and wooden poles, and on the modeling of 

the dynamic behaviour of cables. In Chapter 3, a theoretical background on the 

mathematical and engineering resources used in this work is presented. Chapter 4 

introduces pole theoretical and physical models developed along with design guidelines for 

a reduced physical pole model. Chapter 5 presents the development of cable models and a 

reduced scale cable. Chapter 6 presents proposed tests for verification of the created 

models. Chapter 7 presents results and discussions regarding physical and simulated 

models. Finally, Chapter 8 presents the conclusions on the results and proposes future 

research directions related to these topics. 
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Chapter 2 - Literature Review 

Non-destructive Methods  

 

As a natural material extracted from forests, wood cannot be manufactured with strict 

quality patterns in the same way metals, ceramics and composites, for example, can be. 

Wood presents specific characteristics such as knots, cross grains, checks, splits, and a 

rigorous selection is necessary to obtain the best samples for engineering applications. In 

addition, wood deteriorates and suffer from the attack of insects, fungi and the weather 

even when treated (Forest Products Laboratory, 1999). For these reasons, there is 

considerable interest in developing and improving the existing non-destructive test (NDT) 

methods to assess wood properties, both during processing and along its entire life span. In 

this work, our interest is specifically related to the use NDT for wooden utility poles. 

However, a brief review of the main techniques used and an overview of the previous 

research of this group are first presented. 

Non-destructive methods for testing and structural assessment can be defined, according to 

Ross (1991), as the science that allows the identification of mechanical properties of 

materials without causing structural damage or harming their final application. Thus, non-

destructive techniques used for testing wood have a clear advantage: the studied sample is 

not damaged. However, it is particularly difficult to apply the methods to wood due to its 

orthotropic characteristics or due to the diverse configurations the installed material can 

assume. Diverse studies and methods were developed to attempt to explore ways for the 

non-destructive identification of wood properties.  
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Ross (1991), for example, presents in his review some of the NDT techniques that have 

been used for wood testing by many researchers, such as: bending techniques, transverse 

vibrations, and stress wave techniques. Ross also presents very briefly some other 

techniques such as: ultrasonic waves, attenuation of x-rays methods, visual inspection (not 

a quantitative method), screw withdrawal and pick (causing some small damage), and high 

speed puncture. 

From the list above, Ross (1991) highlighted three methods: First, the static bending 

technique, which uses measurable properties of the material along with static bending 

theory to obtain the sample modulus of elasticity. One example of how this method works 

can be given by considering the lumber as a cantilever beam, and test its deformation under 

controlled applied loads. The elastic relationship between displacement and applied load, 

along with beam theory, should suffice to estimate the elastic modulus of the lumber. The 

second method, transverse vibration, uses the dynamic characteristics of lumber to 

determine the modulus of elasticity, measuring the resonant frequencies and matching them 

with equations for free beam vibration, for example. Lastly, stress wave techniques are 

performed by exciting the lumber to cause vibrations and then monitoring the velocity of 

the resulting sound propagating through the material, to permit a comparison of the results 

with experimental tables that correlate velocity and elastic modulus. The author concludes 

his review by considering that, despite the value of the other methods, stress wave 

techniques should be studied more because they appear to offer promising possibilities with 

low equipment cost and because, up to that moment, there were no study on how the 

boundary conditions of diverse wood structures would affect measurements verified in the 

laboratory.  
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Despite the extensive work done with NDT for wood testing, application of the methods 

for wooden poles is more recent. Usually a combination of methods has been used by utility 

companies to test their networks. A common combination for testing wooden poles is a 

visual inspection, where a technician climbs and observes the pole looking for critical 

damage, and sound inspection, where an experienced technician climbs the pole while 

striking its surface with a hammer and listening to the sound. Sounds that are contained 

and not reverberating may indicate rotten areas. Both methods are clearly very subjective 

techniques, depending greatly on the experience of the technician, and are usually used 

with a more quantitative method such as the use of a resistograph or a vibration appraisal 

(Datla & Pandey, 2006).  

Bodig & Phillips (1984) report the application of a non-destructive method developed by 

other researchers that uses the speed of sound waves propagating along a pole. Sound 

velocity is measured at one foot above the ground line, and registered with a timer. The 

researchers correlated these measurements with the bending strength at the ground line of 

the wooden poles, revealing bad correlations. However, when they applied collected data 

and associated it with statistical models developed by other authors, they were able to 

create a strong statistical strength distribution for the poles. 

Another non-destructive method that makes use of vibration techniques for testing utility 

poles was proposed by (Tallavo, Cascante, & Pandey, 2012). Their work presents the use 

of ultrasonic waves, along with other identification parameters for use in cylindrical and 

orthotropic materials. Instead of estimating the modulus of elasticity of the wood by 

comparing the velocity of the ultrasonic waves in the medium with experimental tables for 

different species, the authors consider wave velocity along with the transmission factor and 
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the module of elasticity in radial and tangential directions (calculated for specific 

temperatures and moisture content). The apparatus uses a “belt” of five receivers and four 

ultrasonic transmitters around an investigated section of pole. Additional parameters 

associated with statistical indices allow an estimation of wood quality. Sound poles and old 

poles were tested with this method, and areas of deterioration were identified in the old 

poles. Though the method presented good results, it can only predict defects on the section 

of the pole that is being investigated, creating difficulties for in-situ lengthwise testing.  

Downer, (2010), whose work is a precursor to the present research, introduced a new 

approach to verify wooden pole quality. In his work, the design of experiments (DOE) 

technique associated with experimental modal testing identification (for frequency and 

damping ratios) was used to locate defects in wooden poles. DOE was used for the creation 

of regression models that would be able to predict defects based on the dynamic response 

of the wooden pole for frequency and damping ratio. Downer also found good correlation 

between modal damping and pole strength in laboratorial tests. However, this correlation 

became weakened when used with data collected in field. The discrepancy was attributed 

to the different foundation of the poles and to the conductors connected to the poles. 

Therefore, to investigate how these processes occur in field, virtual simulated models are 

necessary, allowing to isolate the parameters of interest and improving the correlations. 
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Background for Cable Modeling Theory, Experiments and Simulation  

 

The relevance of modeling cable dynamics is well known in civil applications such as 

suspended bridges, guy-cables for masts, poles, communication towers, antennas, 

structural tents, and precision structures (such as those used in space). One famous example 

of dynamic effects on cables for civil applications, which is constantly cited in diverse 

engineering and physics textbooks, was the collapse of the Tacoma Narrows Bridge in 

Washington, U.S.A. The bridge collapsed due to self-excited vibrations resulting from an 

interaction between fluid and the structure caused by wind conditions. This was a tragic 

example of how dynamic behaviour can affect such cable structures (Billah & Scanlan, 

1991). 

Despite that, cable dynamics involving electricity transmission lines have been studied 

mainly because of the possibility that induced vibrations can damage the circuits and 

structures, the vibrations in this case being caused by winds shedding over the cable. 

Starossek (1994), in his review of cable dynamics, presents the history and the state of art 

of cable theory. Cable dynamics studies have been done since the beginning of modern 

mechanics and mathematics, but new applications and materials require new developments 

in modeling and cable theory. Starossek’s review presents different attempted approaches. 

By introducing simplifications to the model, such as considering the cable as a massless 

string that is inextensible and fixed at two levered ends with no sag; and by adding weights 

along the string in an attempt to discretize the problem. Only by the end of the 19th century 

were there enough contributions to describe the motion and frequency of wires with no sag, 
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to set out the discreet approach for sagging wires, and to identify empirical equations for 

sagging cables. The author explains that before the 1970s there was no theory or 

experiment to solve the problem of comparing the frequencies of a cable with no sag with 

the frequencies of a taut string. Later, researchers found that it was necessary to include 

cable elasticity to the equation, assuming cable dynamic tension as a function of time alone. 

In addition, the author presents the development of a linear theory for cables with small 

sags.  

Another approach for cable modeling is to consider a multi-stranded cable as a shear beam 

model, and then adjust the parameters such as area, density, elastic modulus, shear rigidity, 

and shear modulus according to measurements of an actual cable (Spak, Agnes, & Inman, 

2014). Those researchers were able to rewrite the equation of motion for a beam by 

modifying the individual parameters and adding shear effect, tension, rotational stiffness, 

and damping. The authors also performed dynamic tests to verify the model, using four 

different configurations of cable strands, comparing their experimental results with 

modeled results for a few modes of vibration. In addition to developing the cable model, 

the authors noticed that the common boundary conditions used for beams, such as pinned 

or clamped at both extremities, would not be consistent with the experimental setup 

available. To address this problem, the authors added rotational and translational springs 

at the extremities of the cable model, and this produced better results when compared with 

data from the experiments. Their study, which intended to generate dynamic cable models 

for studies on precision applications in space, presented excellent results in comparisons 

between the model and the experiments. The authors concluded that the model alone is able 

to predict well only the first three modes and better results are obtained for thicker cables. 
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They also obtained improved results by adding rotational and linear springs to the model, 

as boundary conditions at the cable extremities.  

The cable model presented by Spak et al. (2014) was successfully used as a simple and 

effective tool to describe cables with little or no sag. The beam model cable was also used 

for modeling electrical transmission line dynamics. A simplified version of the beam model 

was presented by Barbieri et al. (2004). They studied the dynamic behaviour of 

transmission lines, aiming to improve models used in new projects and maintenance. For 

this project, finite element analysis is used with the mathematical beam model and verified 

through experimental and theoretical results, and the cables were kept tensioned at 5% of 

the rated tensile strength (10 KN).  

Another part of this project involved verification of the models by means of 

experimentation, so it is relevant to question how to perform a dynamic test on a cable that 

would allow the identification of its resonant frequencies and modal damping. Qiu & Maji 

(2011) experimented with cables made of steel and carbon fiber. They built a wood setup 

that was similar to a rectangular frame, where they could attach one extremity of the cable 

to a load cell while leaving the other side fixed. They installed two accelerometers over the 

cable in strategic positions to avoid the nodal points and excited it in the center, measuring 

the accelerations for diverse levels of tension. The measured time series of acceleration 

was investigated using Fast Fourier Transformation (FFT) of computational commercial 

tools, and the damping was calculated using the half-power bandwidth technique. The 

authors compared their results with the theory for inextensible strings (presented later in 

Chapter 5) and concluded that a reduction in tension over the cable causes an increase in 



12 

 

vibration frequency, while frequency decreases when the number of twists on the carbon 

fiber are increased and damping decreases with an increase in tension.  

It is also possible to obtain dynamic parameters from transmission lines by measuring the 

frequency response function (FRF) from a known excitation. This method can be executed 

with modal analysis, using a hammer as the excitation source and accelerometers as the 

means to acquire the responses. The generated FRF makes it possible to obtain the modal 

damping and frequencies. This information can be used to feed diverse types of dynamic 

cable models, such as lumped segmentation models, parametric models or finite element 

models, as seen in Barbieri et al. (2004). 

For the cable simulations for this project, the lumped segmentation model presented itself 

as a convenient way to represent cable response in the analysis of an in-situ wooden pole. 

This approach is intuitive since it consists of a sort of discretization of the system in terms 

of known linear components. In the cable case, it is assumed that it can be divided into a 

finite number of segments, each one containing a spring, a damper and a mass. Although 

the lumped segmentation model is simple to elaborate and visualize, the more one increases 

the number of lumps, the more difficult it becomes to achieve convergence. In addition, 

low frequencies can be improved with an increase in the number of lumps, although this 

also produces spurious results in the high frequency range (Karnopp, Margolis & 

Rosenberg, 2012).  

The dynamic modeling of a wire as a lumped segment can be found in Skjong & Pedersen 

(2016). Using a bond graph to simulate a hydraulic winch system for sub-sea applications, 

the authors created a winch configuration that included the wire, the reel and the payload. 

This work is based on their approach, modeling an electric cable as lumped segments of 
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wire (with mass, spring and damping) moving in two dimensions in the same way as 

presented by Skjong & Pedersen (2014), with the main contribution being an extension of 

their work for the three-dimensional world.  

  



14 

 

Chapter 3 - Research Methods 

 

This chapter presents a brief introduction to the theoretical background of the engineering 

resources used in this work. Bond graph formalism is introduced with a simple example 

using a single degree of freedom oscillator. Information on modal testing and experimental 

modal analysis is presented, along with some of the methods used to acquire signals. This 

text does not intend to go deeper into mathematical explanations for each method, since 

much more complete literature is available and cited for reader investigation.  

 

Bond Graphs  

 

Bond graph formalism was developed by Henry Paynter to facilitate the modeling and 

integration of dynamic systems that are usually composed of elements in multidisciplinary 

fields. It derives from the fact that interaction between various fields (electrical, 

mechanical, hydraulic systems, etc.) is an exchange of energy and information in their 

diverse forms. Bond graph representation reduces the complexity of each subsystem (even 

ones in different fields) by allowing the creation of systems through an association of ideal 

elements connected by power bonds. This approach is elegant since the apparent 

complexity imposed by physical boundaries between areas vanishes, leaving only power 

interactions which are easily visualized after some practice. 
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Figure 3.1. Bond Graph of a Generic System and its Elements (Extracted from Karnopp, et al. 

(2012)) 

 

Figure 3.1 shows an electrical – mechanical system modeled using graph elements such as 

power bonds, junctions (1-junction and 0-junction), resistors (R), compliance (C), inertia 

(I), transformers (TF), and sources (flow and effort). Here, power bonds are half arrows 

representing the conduction of power (flow and effort) between junctions and components. 

The bonds have strokes assigned to their tails or arrows to emphasize the direction of the 

flow and to help to determine which variables are dependent or independent when writing 

the model equations. The 1-junctions’, analog to an electrical loop, allow the same flow in 

all connected ports, with the sum of efforts resulting in zero. 0-junctions’ exhibit a 

complementary behaviour with 1-junctions’, efforts in all connected ports are the same, 

and the sum of flows is zero, analog to Kirchhoff’s current law. Other basic components 

are: Resistors or dissipative elements where energy is released from the system to the 
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environment, analog to electrical resistances or viscosity dampers; Capacitors or storage 

elements, which represent accumulators of energy, analog to electrical capacitors or 

mechanical springs; Inertia elements, which also are storage elements analog to electrical 

inductances; and Transformers, elements that are able to conserve power entering and 

leaving them, similar to an electrical transformer or a mechanical lever. All elements obey 

a set of rules having equations describing their behaviour, as seen in more detail in 

Karnopp, et al. (2012).  

Note that the element terminologies resemble the electrical world but are not intended only 

for electrical modeling, due to the analog behaviour between elements in different fields. 

For example, an (R) symbol could be used to represent a valve on a hydraulic circuit and a 

(C) symbol could be used to represent a spring in a mechanical scheme. 

 

Figure 3.2. Mechanical and Electrical Systems in Bond Graph Representation 

 

Figure 3.2(c) illustrates an example where the same bond graph is used to represent two 

different fields: the mass, spring and damper presented in Figure 3.2(a) is a model of a 
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linear oscillator with one degree of freedom. Figure 3.2(b) shows an electric circuit 

containing an electrical resistance, a capacitor and an inductor connected to a source of 

variable voltage.  

In conclusion, the bond graph is a methodical tool for modeling dynamic systems to allow 

integration between fields and facilitate the derivation of governing equations. From the 

time of the development of Bond graph formalism, one would solve derived equations 

using math or, depending on the complexity of the problem, some numerical integration 

method. The models derived in this project are implemented using commercial software 

called 20sim (2015). This software has a graphical interface specifically designed for 

drawing bond graph schematics, offering a library of components and diverse resources for 

simulation and animation. In addition, 20sim (2015) has a sophisticated suite of integrators 

and a rich Frequency Domain toolbox for eigenvalues calculations.   

  

Modal Testing  

 

Mechanical structures may vibrate due to diverse operational situations and external 

excitation. If, for example, the component is a structural part of a machine it will probably 

experience vibrations throughout its lifespan due to moving shafts, pumps, motors, engines, 

gears and other dynamic devices. If the component is part of a static structure, a bridge for 

example, it might be subject to vibration by external sources of excitation, such as wind, 

and vehicles and people passing over it.  In both scenarios, the vibrations, inherent or 

causal, may degrade the structure or even trigger a destructive effect.  
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Realization of these phenomena has led researchers to the development of mathematical 

and experimental tools to investigate structural dynamic response. Thus, a technique called 

modal analysis was investigated by the aerospace industry beginning in the 1940’s, for the 

dynamic evaluation of aircraft. Since then, the technique has evolved and the use of modal 

analysis now has broad applications in the industry: it can be used for the development of 

analytical dynamic models, for structural damage detection, for certification, and for design 

modification (Ewins, 2000). 

The next sections in this chapter offer a general overview on how to perform and analyse 

impact modal testing.  

 

Performing a Modal Test  

 

Experimental modal analysis is a system identification method used to obtain the natural 

frequencies, mode shapes and damping of structures, by analysing the transfer function 

spectrum resulting from measured vibrations that are caused by known excitation. In other 

words, experimental modal analysis makes it possible to extract useful dynamic 

information from structural vibration responses when exciting the structure properly. The 

information collected can be used for modeling dynamic structures, employing methods 

such as variable separation or finite element analysis (FEA). It also has been applied to the 

non-destructive testing of the structural integrity of wood (as explained in Downer (2010)).   

Many different methods have been developed to execute an experimental modal analysis, 

as can be seen in details in Ewins (2000). In this work, a technique called impact or hammer 
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excitation is used, which consists of exciting the structure using a special hammer 

containing a load cell on its tip. The vibrational response is measured through 

accelerometers placed at known locations along the analysed part. Figure 3.3 shows a 

schematic of a generic impact modal test. 

 

Figure 3.3. Schematics of a Generic Modal Test of a Beam Using Hammer Excitation 

 

The sensors, accelerometers and load cell on the hammer produce a small but measurable 

analog electrical current that is filtered, amplified and sampled for digital processing. This 

is usually done by a data acquisition system (DAQ), which is an electronic device that 

samples and digitizes the signals streaming them to a personal computer where the analysis 

can proceed. Here, the analyses that follow are obtained using FRFs measured by the 

equipment presented in Table 3.1. More information on the hammer, accelerometer, DAQ 

and load cell, can be found in the Appendices A, B, C and D. 
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Table 3.1. Equipment for Modal Testing and Tension Measurements 

Equipment Manufacturer  Model 

Impact Hammer Bruel & Kjaer 8205-002 

Accelerometer  Bruel & Kjaer 4507 B 004 

DAQ National Instruments NI USB-4432 

Data cables PCB  

Software for Analysis ModalVIEW  

S-Beam Load Cell Omega LCCA-250 250-lb 

 

The load cell is not part of the modal testing. However, as seen in the literature review, the 

natural frequencies of cables vary depending on the tension on the cable, thus, tension is 

registered for some of the tests proposed in Chapter 6. 

In this project, the software ModalVIEW (2012) will be used to extract modal information, 

frequency and damping. ModalVIEW (2012) provides a complete low-cost tool for modal 

testing and analysis. The software has a main project management interface divided in 

several icons where it is possible to: acquire data, model 3D geometric drawings, create 

animations, and perform modal analysis with multiple degrees of freedom polynomial 

curve fitting.  

Thus, after performing the measurements, the resulting time series signal is then multiplied 

by a “window” function which causes the amplitude of the data to be zero at the beginning 

and end of the recording, closing the sequence in a recognizable period. Windowing is a 

pre-processing method necessary to avoid “leakage” when the FRF is subjected to the 

discrete fast Fourier transform (DFFT), which is the next step in the analysis.  Leakage will 

occur when the alternative signal does not have an integer number of periods, causing the 
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(DFFT) to create high frequency components that are not present in the original signal. A 

detailed explanation of data acquisition systems and how to avoid leakage can be found in 

Figliola & Beastley (2011).  

General modal testing extraction is used to obtain all modal parameters (modal shapes, 

frequency and damping ratio). However, for this project we will only be interested in modal 

frequency and damping because, as previous presented, researchers in this group found 

correlations between those parameters and wood decay.  

Using ModalVIEW (2012), an averaging method is employed to remove noise, improving 

the FRF results and permitting the analysis to proceed using different methods. 

In ModalVIEW (2012), an averaging method is used to remove noise improving the results 

of the FRFs and the analysis can proceed with different methods. 

ModalVIEW (2012) also provides a tool called stabilization chart to perform modal 

extraction. This tool can help the analyst to find real physical poles from the mathematical 

ones created, due to the presence of noise on the acquired signal. After choosing a 

frequency interval to investigate, the analyst can indicate the maximum model order for 

the polynomial that will be used for curve fitting the FRFs. Then a chart is created with the 

poles calculated from the model, increasing the order up to the maximum previously 

selected. The stable poles, which have a corresponding negative real part and are stable for 

frequency, damping ratio and mode shape, receive in ModalVIEW a green “s” on the chart. 

Other codes are attributed to identify the quality of the estimation; v, d, f, and o, and more 

details for these codes can be seen in ModalVIEW’s help content. Relevant poles that can 

be associated to physical modes appear in the chart forming a straight, or almost straight, 
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vertical line, and mathematical poles usually appear scattered about without a relevant 

pattern.  

 

Figure 3.4. Generic Stabilization Chart Analysis Generated with ModalVIEW 

 

Figure 3.4 presents an analysis performed for the FRF response of a vibrating bar, 

considering frequencies of 45 to 180 Hz. Three modes are observed: each has stable modes 

lined up in the same frequency, with an increase in model order. Selecting any of the stable 

values causes them to appear on the right side of the window with a numerical estimation 

of the frequency and damping ratio. 
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Chapter 4 - Pole Modeling 

 

In this chapter, a dynamic pole model is developed through the application of the theory 

for vibrating beams along with assumptions about the material, geometry, and boundary 

conditions. Although this project aims to produce information for use in future 

developments on wooden pole non-destructive testing, no wood pieces or wooden 

properties will be used here. Instead, a theoretical and numerical model of a cantilever 

beam is explored by using bond graph representation and a physical beam is designed 

allowing verification tests of the numerical model. 

 

Modeling an Euler-Bernoulli Beam through Distributed Parameters  

 

The most common mathematical models used for beams are the Euler- Bernoulli and the 

Timoshenko models. The difference between the models rests upon the sort of assumptions 

made to establish the equations of motion. The Euler-Bernoulli model assumes that any 

plane perpendicular to the neutral axis before bending will remain plane after deformation. 

The Timoshenko beam model, on the other hand, accounts for the shear deformation and 

rotational bending effects, allowing the deformation of the sections perpendicular to the 

neutral axis. Thus, the Euler-Bernoulli beam is stiffer and presents less deformation under 

static load then the Timoshenko beam. However, the difference between models is minimal 

unless when working with stubby beams and large deformation, when Timoshenko’s 

model is recommended. For dynamic loads, the addition of rotational inertia in 
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Timoshenko’s model produce better results in high frequencies. In addition, Inman (2014) 

affirms that the assumption of small shear deformation in Euler-Bernoulli beams can be 

used when the ratio between the length and the thickness and the ratio between the length 

and the depth of the beam is greater than ten.   

Because the Euler-Bernoulli model is simpler but presents good results for the range of 

frequencies expected in the experiments (bellow 200 Hz), it will be used here and 

introduced as presented by Inman (2014) and Karnopp, et al. (2012), for a beam subjected 

to small deflection.  

In the following equations, the geometric section of the beam is considered constant, 

although future work might use the model of a tapered pole presented by Rideout & Whelan 

(2014). In that work, the authors consider the differences in the resulting modal shapes 

between the pole model with regular and tapered sections. 

Thus, Equation 4.1 represents the transverse displacement for a beam modeled as an Euler-

Bernoulli beam with constant sectional area acted on by a force that varies over time:  

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑤

𝜕𝑡2
=  𝐹(𝑥, 𝑡)       (4.1) 

Through the assumption of separations of variables, it is possible to write the vertical 

displacement 𝑤(𝑥, 𝑡) as the product of a displacement function 𝑌(𝑥) by a time function 

𝑓(𝑡), such as,  

𝑤(𝑥, 𝑡) = 𝑌(𝑥)𝑓(𝑡)          (4.2) 

substituting Equation 4.2 into Equation 4.1 and solving for the homogeneous form, results 

in, 



25 

 

𝐸𝐼

𝑌𝜌𝐴

𝑑4𝑌

𝑑𝑥4
+

1

𝑓

𝑑2𝑓

𝑑𝑡2
=  0       (4.3) 

Now, replacing the second term on the left-hand side of Equation 4.3 with 𝜔2, we can write 

the motion equation as, 

𝑑4𝑌

𝑑𝑥4
+

𝜌𝐴

𝐸𝐼
𝑌𝜔2 =  0       (4.4) 

and Equation 4.4 has a general solution of the form,  

 

𝑌(𝑥) = sin(𝛽𝑥) 𝑎1 + cos(𝛽𝑥) 𝑎2 + sinh(𝛽x) 𝑎3 + cosh(𝛽x) 𝑎4      (4.5) 

 

Because we want to model a cantilever beam, it is necessary to apply the four boundary 

conditions to the general solution of Equation 4.5: Bending moment and shear force are 

zero at the beam’s free extremity, and the deflection and slope are zero at the clamped 

extremity: 

𝐸𝐼
𝜕2𝑤

𝜕𝑥2
= 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
= 0 

𝑤(𝑥, 𝑡) =
𝜕𝑤

𝜕𝑥
= 0 

When substituted into Equation 4.5, this results in a system of four equations and four 

unknowns (𝑎1, 𝑎2, 𝑎3, 𝑎4), 

[

𝛽 0 𝛽 0
0 1 0 1

−𝛽2 sin(𝐿𝛽) −𝛽2 cos(𝐿𝛽) 𝛽2 sinh(𝐿𝛽) 𝛽2 cosh(𝐿𝛽)

−𝛽3 cos(𝐿𝛽) 𝛽3 sin(𝐿𝛽) 𝛽3 cosh(𝐿𝛽) 𝛽3 sinh(𝐿𝛽)

] {

𝑎1

𝑎2

𝑎3

𝑎4

} = {

0
0
0
0

}        (4.6) 

Making the determinant of Equation 4.6 equal zero results in the characteristic equation, 

𝑐𝑜𝑠 (𝛽𝑙) cosh(𝛽𝑙) = −1     (4.7) 
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The quantity 𝛽𝑙 is called “weighted frequencies” and can have infinite solutions depending 

on the value choices for 𝛽. Solving Equation 4.7 yields the following solutions (Inman, 

2014).  

𝛽1𝑙 = 3.926602              𝛽2𝑙 = 7.068583 

𝛽3𝑙 = 10.210176            𝛽4𝑙 = 13.351768 

𝛽5𝑙 = 16.49336143 

Values greater than n = 5 are well approximated by, 

𝛽𝑛𝑙 =
(4𝑛 + 1)𝜋

4
         (4.8)   

and the natural frequencies of the system can be determined by  

𝜔𝑛 = 𝛽𝑛
2√

𝐸𝐼

𝜌𝐴
        (4.9) 

In addition, the solution of Equation 4.5 leads to the mode shapes (eigenfunctions) 

equation, 

𝑌 =
𝑠𝑖𝑛ℎ (𝛽𝑙) − sin(𝛽𝑙)

𝑐𝑜𝑠ℎ (𝛽𝑙) + cos(𝛽𝑙)
(𝑠𝑖𝑛 (𝛽𝑥) − sinh(𝛽𝑥)) + 𝑐𝑜𝑠ℎ (𝛽𝑥) − cos(𝛽𝑥)           (4.10) 

Where 𝑥, is the position along the beam.  

 

Bond Graph Implementation of an Euler-Beam (Modal Expansion) 

 

The cantilever beam derived in the previous section through the assumption of separation 

of variables can be adapted to the bond graph representation for use in computational 
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simulations. Karnopp, et al. (2012) presents the adaptation of the equations above in a more 

suitable form to be used in a bond graph model of the Euler-Bernoulli beam.  

It starts by rewriting the total response function (Equation 4.2). Linearity allows the total 

response 𝑌𝑛(𝑥) to be written as an infinite summation of the mode shapes multiplied by the 

modal time responses, such as, 

𝑤(𝑥, 𝑡) = ∑ 𝑌𝑛(𝑥)𝑓𝑛(𝑡)

∞

𝑛=1

             (4.11) 

Now, following the idea introduced in the previous section, we can insert Equation 4.11 

into a modified form of Equation 4.2. The Dirac delta function is added to incorporate the 

external point force at the free extremity of the beam. Multiplication by the mth mode shape 

(Ym) and integration along the length of the beam results in, 

∑ (∫ 𝜌𝐴𝑌𝑛
2𝑑𝑥

𝐿

0

) 𝑓�̈�

𝑛

+ ∑ (∫ 𝜌𝐴𝑌𝑛
2𝑑𝑥

𝐿

0

)

𝑛

𝜔𝑛
2𝑓𝑛 =   ∫ 𝐹(𝑡)𝛿(𝑥 − 𝐿)𝑌𝑚𝑑𝑥

𝐿

0

      (4.12) 

With n = 1, 2… and, due to orthogonality, the integrals inside the brackets are equal to zero 

when n = m.  We are left with an equation that describes the total response of the beam by 

a summation of infinite second order oscillators.  

The integral inside the brackets in the first term is defined as the modal mass and the same 

term multiplied by the modal frequency squared is defined as the modal stiffness (Karnopp, 

Margolis & Rosenberg, 2012).    

𝑚𝑛 = ∫ 𝜌𝐴𝑌(𝑥)2𝑑𝑥, 𝑛 = 1,2, …            (4.13)
𝐿

0

 

𝑘𝑛 = 𝑚𝑛𝜔2                   (4.14) 

Inserting Equation 4.13 and 4.14 into 4.12 results in the total response:  



28 

 

𝑚𝑛�̈�𝑛 + 𝑘𝑛𝑓𝑛 =   𝐹(𝑡)𝑌𝑛(𝑥)           (4.15) 

Remembering the introduction to bond graphs presented in Chapter 3, we can use a 1-

junction to write the equation of a single degree of freedom oscillator, since it represents a 

sum of the efforts (force) equal to zero and the same flow (velocity). If we connect to this 

1-junction the elements Resistor (R), representing viscous damping, Inertia (I), for the 

mass, and Compliance (C), or linear spring, we have created a single degree of freedom 

oscillator.  

Up to this moment, there is no damping in our set of equations and, according to Karnopp 

et al. (2012), separation of variables is only correct without the inclusion of damping. 

However, because we are assuming that each one of the oscillators acts as a single degree 

of freedom, the bond graph representation allows us to introduce viscous damping to the 

Equation 4.15 by using the element Resistor (R) according to, 

𝑅𝑖 = 2ε𝑖𝜔𝑖𝑚𝑖          (4.16) 

where ε𝑖 is the modal damping ratio extracted from experiments for each mode i.  

Now, the equations above can be assembled using the bond graph representation with each 

one of the oscillators corresponding to a specific mode shape. The difference here is that 

each element was derived from the general Euler-Bernoulli beam, and Equations 4.13 and 

4.14 need to be solved depending on the parameters of the beam and on the frequency of 

each specific mode.  

Having the oscillators, it is necessary to perform a multiplication between the input force 

at a pre-determined location, and the mode shape at that location, such as that shown in the 

right side of Equation 4.15. This is done by using transformers (TF) with the modulus equal 
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to the value of the mode shape at the desired location. Finally, it is necessary to sum up the 

resultant flow coming from each modal oscillator and equate the effort with the source of 

effort. This can be done by using a 0-junction connecting the source of input force of each 

transformer. Figure 4.1 shows the Euler-Bernoulli implemented for this project using the 

equations above and considering two power ports, one at the halfway length of the beam 

and other at the tip used for the purpose of analysis. These ports can be used for connecting 

other elements or boundary conditions, application of impact, or measurement of the 

output. 

 

Figure 4.1. Cantilever Euler-Bernoulli Beam Considering Five Modes (Pinto & Rideout, 2016) 
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Proposing a Physical Model for Testing the Pole Model 

 

To determine what material should be used to represent the pole and serve as the subject 

of tests for numeric model validation, a theoretical evaluation was performed considering 

different lengths, material properties, and material availability in our laboratory. In 

addition, it was established that a metallic bar would be used instead of lumber since this 

is a preliminary study and because metal properties are constant under similar 

temperatures, and produce consistent modal testing results.  

The condition adopted was to have a bar able to match the lower frequency of the cable. 

Preliminary tests on the cable alone provided the necessary information for a theoretical 

trial and error search for the dimensions and material for the bar. Using the available 

metallic bars and their dimensions, a calculation table was created presenting the 

theoretical natural frequencies of copper, steel, and brass, considering the dimensions 

available. Another consideration was to keep the length manageable to allow for 

comfortable testing. The material that matched the conditions was a copper bar with 

dimensions: 31.75 x 6.35 mm and free length of 1150.0 mm (the additional length is left 

for clamping). This bar had its density and elastic modulus estimated by measurements by 

means of a small sample, and through a bending deflection technique, respectively.   
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Modifications for Adding Damping  

 

Through the development of this project, further investigations into the possibility of 

extracting useful dynamic information from the pole, even when it is in the presence of a 

cable became necessary. The idea proposed is to modify the bar by adding quantified 

damping without introducing significant changes in mass and frequencies. Two different 

approaches are explored.  

According to Inman (2014), a way of adding damping is by placing layers of materials with 

damping qualities over the beam. Here, an attempt to add damping by placing one layer of 

double-sided silicone tape over the length of the bar resulted in no significant change in the 

frequency or in the damping. Another idea explored was to add damping by using the 

surrounding atmosphere through aerodynamic drag. In this case, cardboard pieces were 

added to the bar and modal testing was performed to verify the changes in damping.  

Adding damping is relevant since the aim of this test is to verify the possibility of extracting 

pole dynamic information from the pole and cable system. By comparing the bar alone 

with the bar and cable connected with and without damping it is possible to visualize the 

interactions. In Chapter 6, details of the experiments with the cardboard-induced drag are 

presented.  In Chapter 7, the results produced by this approach are presented and discussed.  
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Chapter 5 - Cable Modeling 

 

This chapter discusses a dynamic cable model that was developed using the lumped-

segment technique, which employs several “lumps” of mass interconnected through ideal 

springs and viscous dampers, creating something similar to a chain. In the modeling, the 

precise interactions between the wire strands that compose a real cable are ignored.  

Instead, we wanted to be able to predict the cable frequency content, with acceptable 

accuracy, to allow future simulation of a cable’s effects on the pole response spectrum and 

to study the possibility of extracting useful information about a pole when it is connected 

to cables. In addition, a short length cable was used during a series of dynamic tests with 

the scaled pole presented in the previous chapter to verify the developed models.  

 

Lumped-Segmentation Model 

 

Today, people readily understand that everything is made from a combination of small 

elemental structures. We can “visualize” these structures and even name them: molecules, 

atoms, particles, electrons, etc. In fact, this ancient idea of small components combining to 

make bigger systems goes back to the ancient Greek philosophers, and has found well-

established grounds in modern science. For most applications, engineers do not need to 

pursue models which describe fundamental elements down to the atomic scale, but they 

can explore the idea of combining small components with inherent characteristics to form 

macro structures.  
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Even though this idea seems simple and logical, when dealing with dynamic systems, 

segmentation using small blocks or “lumps” is not easy to implement by “hand” with a 

pencil. The complexity of the modeling grows the more lumps we add, since each element 

is associated to an equation. Solving the final equation system would be difficult and time-

consuming, and that was why many of these methods were not used until computers 

became more accessible, with more memory and more processing capacity. Nowadays, 

computers can solve such equations quickly, allowing the exploration of several techniques 

for discretization in all areas of science.  

Here it is convenient to observe that Inman (2014) suggests the use of the terms “lumped 

parameter” instead of ‘discrete system’, and “distributed parameters” instead of 

‘continuous system’, because the terms are usually employed to refer to the 

discrete/continuous time domain. Here, “discretization” is related to the division of the 

system into small lumps that are connected to form a system of equations to describe a 

motion, and “continuous” is related to the continuity of the function used to describe the 

motion.  

 

Modeling a Cable through Lumped Segmentation  

 

This derivation is based on the work of Skjong, S., & Pedersen, E. (2016). To illustrate the 

process of modeling a cable through lumped segmentation, Figure 5.1 is used to show a 

cable fixed at its extremities. The assumption is that if we could zoom the cable up to a 



34 

 

small division, we would see a chain of masses connected to springs with viscous dampers 

in parallel.  

 

Figure 5.1. Element of Spring (K), Damper (B) and Mass (M) of a Cable (Pinto & Rideout, 2016) 

 

Taking some arbitrary elements of the cable and placing then in a two-dimensional 

coordinate system allows the visualization of forces in equilibrium, as shown in Figure 5.2. 

 

Figure 5.2. Equilibrium of Forces on Two Elements of the Cable on the X-Y Plane (Pinto & 

Rideout, 2016) 

 

The diagram shows the mass (mi) surrounded by force components: with the spring/damper 

on the previous mass (mi-1), due to gravity in the negative y direction and also due to the 
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next spring/damper elements. The equilibrium requires these forces to balance in the x and 

y directions: 

𝐹𝑥 = 𝑚𝑖𝑎𝑥 = 0                 (5.1) 

𝐹𝑦 = 𝑚𝑖𝑎𝑦 = 𝑚𝑖𝑔                 (5.2) 

To define the forces on the spring and damper we start by presenting relations for each 

component. The spring is considered linear and massless, with stiffness defined by 

Equation 5.3 the same way it is for an axial load on a rod. 

𝑘𝑒 =
𝐸𝐴

𝑙𝑒
                    (5.3) 

Thus, the spring element with the force given by Equation 5.4 is, 

𝐹𝑠 = 𝑘𝑒𝛿𝑒                   (5.4) 

The damper is modeled with constant viscous damping, according to,  

𝐹𝑏 = 𝑏𝑒𝛿�̇�                   (5.5) 

Trigonometry is used to determine the displacement in Equation 5.4, resulting in,    

𝛿𝑒 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 − 𝑙𝑒            (5.6) 

Derivative of Equation 5.6 results in the velocity in the axial direction of the spring/damper.  

𝛿�̇� =
2(𝑥2 − 𝑥1)(𝑥2̇ − 𝑥1̇) + 2(𝑦2 − 𝑦1)(𝑦2̇ − 𝑦1̇)

2√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2
− 𝑙�̇�      (5.7) 

In addition, the angle between the reference plane and the spring/damper elements can be 

found by the following trigonometric relation, 

𝜃𝑒 = tan−1
(𝑦2 − 𝑦1)

(𝑥2 − 𝑥1)
                  (5.8) 
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Now, all equations above can be put together, resulting in the total force from the spring 

and damper. In addition, the force can be decomposed in the x and y directions. 

 

𝐹 = 𝐹𝑠 +  𝐹𝑏                 (5.9) 

𝐹𝑥 = 𝐹𝑐𝑜𝑠(𝜃𝑒)                  (5.10) 

𝐹𝑦 = 𝐹𝑠𝑖𝑛(𝜃𝑒)                  (5.11) 

 

Bond Graph Implementation of a Cable  

 

The equations describing a lumped segment of cable, which were presented in the previous 

section, can now be implemented using the elements of bond graph representation. One 

element not mentioned in Chapter 3’s introduction to bond graphs was the “field” element. 

Due to the nature of this modeling, when considering movement in two dimensions in space 

it is convenient to construct a multiport element for the spring, or “C-field”. The C-field 

will contain expressions for the spring and damping, which were developed in the previous 

section, to allow the exchange of power port variables velocity (generalized flow) and force 

(generalized effort) between the previous and subsequent elements in the chain.      
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Figure 5.3. Element of Spring/Damper and Mass in Bond Graph (Pinto & Rideout, 2016) 

 

Figure 5.3 shows implementation of an element of the cable in the bond graph 

representation. Here, 1-junctions correspond to the velocity nodes at the extremity of the 

spring/damper (C-field) element, such as between the coordinates x1, y1 and x2, y2 in 

Figure 5.2. Attached to the right side of the power bonds connected to the 1-junctions are 

the mass elements mx and my (I elements) for the x and y coordinates, and the contributions 

of gravity -mg source of effort (Se element) and viscous damping (R element) for the y 

coordinate.     

The masses (I elements) are therefore attached to the x and y 1-junctions along with the C-

field, decomposing Newton’s law into the two component directions, x and y.  Note the 

additional R element is not present in the equations above; it was added as a mean to 

provide additional lateral viscous damping.  

Velocities are causal inputs to the C-field, and forces are the causal output. Passing through 

the C-field, velocity will be integrated, resulting in displacements of the spring/damper. 

Causality is emphasized by the short strokes at the power bonds arriving at the 1-junctions.  
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Cable Bond Graph on the Connection Points 

 

Implementation of boundary conditions at both extremities of the cable model is necessary 

to hold the cable at fixed points, and for the connection between pole and cable models.  

The cable is considered to be fixed by pinned connections on the supports at both 

extremities. To produce the pinned connection, it is necessary to attach a zero-valued 

generalized source of flow at both of the coordinates x and y. However, if we simply 

introduce the source of flow to the cable element as presented in the previous section, that 

would cause a causality conflict in the model because the velocity (flow) is directed by 

each submodel to the extremity. Since it is convenient to avoid causalities in order to 

produce explicit ordinary differential equations in the model, modifications were made on 

the last lumped element of the cable.   

 

Figure 5.4. Termination Element of Cable (Pinto & Rideout, 2016) 

 

Figure 5.4 presents the termination element of the cable where the mass elements in the x 

and y directions are removed and the sources of zero flow are added. The mass is then 
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redistributed through the other elements in the chain and the last element becomes a 

spring/damper only element.  

In the case where the pole model is connected to the cable model, lateral motion (velocity) 

of the pole is bonded to the horizontal motion (x direction) of the cable, leaving the y 

direction velocity connected to a zero-flow source, since no motion is expected in that 

direction.  

Excitation sources are added to convenient locations along the cable to emulate hammer 

hits, or to emulate sudden impulses caused by plucking the cable. The excitation sources 

are effort sources (Se) that can be added to the 1-junction elements in the y direction to 

excite lateral motion. Any number of elements could be used to compose the cable chain, 

depending on the compromise between the frequency range expected and the 

computational demand. Here, fifteen segments are used and considered sufficient for the 

capture of the first natural frequencies.   

 

String Equation  

 

As another resource for verification, the results of the modeling above can be first 

compared to the equation of continua for a vibrating string presented in Inman (2014). The 

frequencies of a string subjected to tension T [N] and small sag are:  

𝑓𝑛 =
𝑛

2𝐿
 √

𝑇

𝜇
 , 𝑛 = 1,2, …            (5.12)  

where 𝜇 is the linear density and 𝐿 is the length of the string.  
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Proposing a Physical Model for Testing the Cable Model 

 

Cables exist in diverse constructions and are used for different applications. Due to 

availability, for the physical model a steel cable was used to represent a scaled electric line. 

The properties of the 7x7 stainless steel stranded cable were: length of 3.6 meters, diameter 

of 8.35 mm, density of 9537 kg/m3, and elastic modulus of 195 GPa. Cable density was 

estimated by measuring the volume of a single strand and the total weight. Since the exact 

manufacturer was not known, modulus of elasticity was obtained from the averaged value 

found in similar cable datasheets. 

 
Figure 5.5. Connector with and without Load Cell and Threaded Rod to Hold the Cable 

 

To connect the cable to the other components of the physical model, a set of mechanical 

parts was designed and produced allowing motion of the cable in the vertical direction.  
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Figure 5.5 shows the connector and the threaded rod holding the cable on a support at the 

laboratory. The threaded rod can allow tension adjustments.  

Because the stranded cable presented here is different from the simulated model, i.e., 

multiple wires with some torsional effects and friction, discrepancies are to be expected.  

 

Adding the Third Dimension  

 

The possibility of testing the pole in different directions relative to the electrical lines 

requires an extension of the developed cable model to the third spatial dimension. This 

development can be used in the future by researchers continuing this project, and will not 

be explored through any simulation or development in this work.  

Modification of the model to allow for spatial motion, by adding the z direction, requires 

the addition of some previously presented equations.  

Equation 5.6 for the length of the spring/damper element becomes:  

 

𝛿𝑒 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2+(𝑧2 − 𝑧1)2 − 𝑙𝑒            (5.13) 

 

Derivative of Equation 5.13 results in the velocity on the axial direction of the 

spring/damper.  

 

𝛿�̇� =
2(𝑥2 − 𝑥1)(𝑥2̇ − 𝑥1̇) + 2(𝑦2 − 𝑦1)(𝑦2̇ − 𝑦1̇) + 2(𝑧2 − 𝑧1)(𝑧2̇ − 𝑧1̇)

2√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2+(𝑧2 − 𝑧1)2
− 𝑙�̇�      (5.14) 



42 

 

Equations 5.10 and 5.11 become Equations 5.15 and 5.16 and the complements of Equation 

5.17. 

𝐹𝑥 = 𝐹𝑐𝑜𝑠(𝛼𝑒)                  (5.15) 

𝐹𝑦 = 𝐹𝑠𝑖𝑛(𝛽𝑒)                  (5.16) 

𝐹𝑧 = 𝐹𝑠𝑖𝑛(𝛾𝑒)                  (5.17) 

 

And Equation 5.8 is replaced by angles in all three directions:  

 

𝛼𝑒 = 𝑎𝑟𝑐𝑐𝑜𝑠
(𝑥2 − 𝑥1)

𝛿𝑒
                  (5.18) 

𝛽𝑒 = 𝑎𝑟𝑐𝑐𝑜𝑠
(𝑦2 − 𝑦1)

𝛿𝑒
                  (5.19) 

𝛾𝑒 = 𝑎𝑟𝑐𝑐𝑜𝑠
(𝑧2 − 𝑧1)

𝛿𝑒
                  (5.20) 

 

Similarly, as previously done, these equations can be implemented into a C-field using 

bond graph formalism. Figure 5.6 presents the bond graph representation of one element 

showing the power ports correspondent to each orthogonal direction x, y, z.  
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Figure 5.6. Three-Dimensional Element of Cable Implementation in 20sim 

 

Note that mass element I is attached in all directions, with gravity and linear drag damping 

still attached only in the y direction.  

Appending a drag damping element to the z direction as well is straightforward.
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Chapter 6 - Proposed Tests for Model Verification 

 

Previous chapters presented the formulation of the sub models for the pole and cable, while 

in this chapter a set of tests is proposed to obtain experimental data for comparison with 

the models’ results. The pole, reduced to a bar here, is subjected to modal testing and 

plucking, and the FRF and time series are registered. Similar tests are performed on the 

cable alone, and on the cable when connected to the bar. These tests can be replicated in 

simulation. The results are compared in the next chapter, Results and Discussion. 

Additional tests are proposed as proof of concept for attempts to increase damping along 

the bar and to verify changes in the total system response spectrum.  

  

Pole and Cable Materials 

 

The properties of the available materials for the pole (copper bar) and cable (49-strand 

stainless steel) scaled structure were determined using the methods presented in the 

previous chapters and summarized here in Table 6.1.   

 

Table 6.1. Materials Properties 

 Material 
Length 

(m) 

Elastic Mod. 

(GPa) 

Density 

(Kg/m3) 

Area 

(m2) 

Pole Copper bar 31.75 x 6.35 mm 1.15 119 8910 2.01x10-4 

Cable Stainless steel 7x7 wires 3.6 195 9537 2.78x10-5 
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Modal Testing Procedures 

 

The bar (representing a pole) and cable were subjected to impact modal tests. After proper 

configuration in ModalVIEW, the hammer was used to produce five separated FRFs which 

were averaged and saved for posterior frequency and damping extractions according to the 

methods previously presented. 

The bar was clamped at one of its extremities, leaving the free side pointing towards the 

ceiling of the laboratory (see Figure 6.1a). Then two accelerometers were fixed to the bar, 

at the tip and at 25 cm from the clamp.  

Modal testing was also performed on the cable alone, for several different tensions with 

very little sag (91.4, 104.5, 140.6, 230.8 N) and one tension with sag (15.5 N in the 

horizontal direction). Two accelerometers were used in this test, being affixed at 0.3 and 

1.8 m from one of the cable’s extremities. Hammer hits were applied at 1/4 and 1/5 of the 

cable span (see Figure 6.1b).   

 

Figure 6.1. Modal Testing over Bar and Cable 
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In Figure 6.1, the “S” shaped figure on the right side represents a load cell, the black arrows 

represent hammer hit locations, and the diamond icons indicate accelerometer positions. 

For tension adjustments, the load cell was attached to a threaded rod.  

Finally, modal testing was performed on the bar and cable while connected. The left side 

of the cable presented in Figure 6.1b is then fixed to the tip of the bar in Figure 6.1a. Here, 

the accelerometers were positioned only on the bar and in the same way as for the bar alone. 

Figure 6.2 illustrates the connected set-up.  

 

Figure 6.2. Experimental Set-Up for Cable and Pole Model Verification (Pinto & Rideout, 2016) 

 

Time Series Procedures 

 

Time domain tests for the physical model were also proposed for dynamic verification of 

the bar and cable system. As done previously with the modal testing, time series tests are 

first performed on the bar alone, then on the cable alone, and then on both connected.  

The bar was firmly held to a rigid metallic structure using C-clamps. The other extremity 

points at the ceiling and was able to vibrate in the horizontal direction. Then the bar was 

assembled to the string-pulley-mass system (see Figure 6.3a). In Figure 6.3a, the diamond 

icon at the tip of the bar indicates the position of an accelerometer used for the time series 
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recordings. Finally, the bar can be excited by one cutting of the string, and the time response 

was properly recorded for posterior analysis.  

The cable test was performed similarly. First, the cable was fixed at its two extremities 

using the designed connectors presented in Chapter 5. One cable extremity was fixed 

directly to a rigid structure, leaving the other extremity to be connected to a load cell which 

was fixed to the other support. Cutting the string will excite the accelerometer positioned 

at the middle of the cable span (see Figure 6.3b).  

 

 

Figure 6.3. Schematic of Time Series Tests 

 

Finally, the test is performed over the bar and cable connected. The right side of the cable 

is attached to the tip of the bar with the mass held on the cable. In this case, time series is 

recorded using the accelerometer attached to the bar. The final configuration is similar to 

Figure 6.3a with cable of Figure 6.3b. The horizontal component of tension for the 

combined case was recorded as approximately 15 N. 
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Procedures for Adding Damping to the Bar  

 

To add damping to the bar without causing a significant increase in weight, cardboard 

panels were fixed to the bar with the aid of double sided tape. Figure 6.4 illustrates the bar 

with the added panels.  

 

Figure 6.4. Schematics of the Bar Configurations for Additional Damping 

 

In this case, the bar was held as previously, but with a second accelerometer positioned at 

half- length on the bar, with hits performed in the same place, between the cardboards. To 

facilitate test arrangements, the cardboards were numbered in combined groups: 0 (no 

cardboard), 1 (for one cardboard piece), 2-3 (for 2 and 3 cardboard pieces) and 1-2-3 (with 

all cardboard pieces), Figure 6.4. 

Modal testing was performed for the bar alone and using these combinations of cardboard 

pieces and the same was done for the combined system, pole and cable. However, not all 

the cases tested will be presented in the Results and Discussion chapter.  
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Chapter 7 - Model Verification and Added Damping: Results 

and Discussion  

 

The proposed verification tests discussed in the previous chapter were expected to yield 

three results for the bar, cable, and system bar / cable configuration: the measured results 

from the modal testing, the expected results from the theory application of the proposed 

properties and geometry, and the results from the simulations.  

Note that in the case of the bar simulations, the damping obtained from the modal testing 

of the bar alone is used together with its properties and geometry to produce the model 

used in this comparison. Equation 4.16 converts the percentage damping to the resistance 

element added to each mode oscillator in the bond graph model. These resistances are: 

1.396, 1.946, 2.072, 13.156, 3.9366 N-s/m. 

In addition, the results of the proposed methods for changing the bar damping and its 

influence on the overall behavior of the system are discussed.  

 

Verifying the Pole Model 

 

Five modal damping ratios associated with their respective frequencies are used in the 

simulation bond graph diagram presented in Chapter 4. Therefore, the same number of 

modes are retained from the modal testing performed on the bar. Table 7.1 presents the 
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results of the tests and simulations, and compares the frequencies obtained from the 

simulations with the frequencies observed in the tests. 

Table 7.1. Pole Frequency Response, Modal Testing and Simulation (Pinto & Rideout, 2016) 

Modes Modal testing Simulation  

 
Frequency  

Hz 

Damping 

% 

Frequency 

Hz 

Frequency 

Error % 

1st 2.660 2.021 2.474 6.9 

2nd 17.153 0.437 17.618 2.7 

3rd 48.078 0.166 49.322 2.5 

4th 94.721 0.535 96.638 2.0 

5th 156.319 0.097 159.791 2.2 

 

It is noticeable from the table above that the simulations fairly closely reproduce most of 

the chosen frequencies of the bar, with errors less than 3%, the first mode being the most 

different.  

 
Figure 7.1. Acceleration Time Series for Pole Tip, Measurement and Simulation (Pinto & 

Rideout, 2016) 
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Figure 7.1 shows the results of the time series test on the bar using an accelerometer at the 

tip of the bar. The simulation result is shown in the lower part of the figure.  

The measurement result appears to indicate a damping that is lower than that in the 

simulated model. Despite that, the initial amplitudes are similar. In the measured case, there 

is a constant oscillation after a long period of time (more than 20 seconds). This effect 

might be due to gravitational force acting on the distributed mass of the bar that was 

vertically positioned.  

 

Verifying the Cable Model 

 

Experimental modal analysis is performed on the cable to identify dynamic properties in 

diverse cable tensions. These results are compared to the theoretical expected values for a 

vibrating string with the same properties and geometry, and compared also to the cable 

simulation results. The simulated cable was excited using an effort source pulling the cable 

to an initial deflected state.  The effort source was then set to zero after some time, resulting 

in free vibration. Results with small sag and higher tension can be seen in Table 7.2.  

A comparison of the frequencies obtained using the different methods are consistent with 

an error of around 10%. However, it is noticeable that in two cases the simulation was not 

able to capture the first mode. This was due to the difficulty during simulation of inducing 

excitation in the cable in a way that would allow capture of the first mode. Other attempts, 

changing the effort source, captured frequencies in the missing interval, between 2.5 and 

3.5 Hz, which is consistent to the previous results. This inconsistency might be due to 
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numerical tolerances in the 20sim transfer function generator applied to the lumped 

segment model.    

Table 7.2. Cable Frequencies: Theoretical, Modal Test and Simulation. (Pinto & Rideout, 2016) 

Tension Theoretical Modal Testing Simulation 

 Frequency Frequency Damping Frequency Damping 

N Hz Hz % Hz % 

91.4 2.581 2.78 1.751 2.563 0.45 
 5.161 5.141 4.766 4.501 0.28 
 7.742 7.274 1.411 6.891 0.16 

      

104.5 2.759 - - - - 
 5.519 5.991 3.055 5.680 0.22 
 8.278 7.543 1.243 9.412 0.15 
      

140.6 3.201 3.254 1.409 - - 
 6.402 6.636 1.568 6.729 0.18 
 9.602 10.713 2.713 10.775 0.13 
      

230.8 4.101 5.71 2.691 5.397 0.31 
 8.202 8.611 1.217 8.827 0.23 
 12.303 13.155 1.573 13.151 0.33 

 

The lumped segment model is not able to match the damping ratios, so it is necessary to 

attempt to tune it by varying the overall damping applied to the cable, or by varying lateral 

damping (Resistor added to the 1-Junction in the y direction discussed in Chapter 5).  

Test results with sagged cable and low horizontal tension (15.5 N) are:  

Table 7.3. Sagged Cable Measurements 

Modes Modal testing 

 
Frequency  

Hz 

Damping 

% 

1st 2.487 3.339 

2nd 4.133 12.285 

3rd 6.659 4.717 

 

Sagged cable tests were performed because sagging is a condition expected of electric 

cables in the field.  



53 

 

Time series experiments on the cable were performed based on the proposed conditions in 

the previous chapters. A cable tension of 191 N is used for tests and simulations, and is 

inside the range of tensions in Table 7.2. Figure 7.2 shows a 20 second time series using 

an accelerometer positioned at the half span of the cable. Amplitudes are similar. However, 

the measured response is damped slower than in the simulation, demonstrating the 

necessity of final tuning of the damping. In addition, it is possible to observe some beat 

frequencies in the simulated result, perhaps caused by high frequency modes introduced by 

the lumped segmentation technique.  

  

 

 
Figure 7.2. Acceleration Time Series of Cable Tests (Pinto & Rideout, 2016) 
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Cable and Pole Model Verification 

 

Table 7.4 presents the results of modal testing and the simulation of the bar and cable.  

Table 7.4. Bar-Cable System Frequency Response, Modal Testing and Simulation (Pinto & 

Rideout, 2016) 

 Modal Testing Simulation  

Modes Frequency Damping Frequency Damping Frequency 

 Hz % Hz % Error % 

1st 1.401 4.397 1.504 1.18 7.40 

2nd 4.474 2.784 4.709 0.24 5.26 

3rd 10.038 3.145 10.047 0.11 0.09 

4th 12.677 0.955 13.066 0.46 3.07 

5th 40.268 0.428 40.934 0.19 1.65 

6th 83.550 0.606 84.877 0.49 1.58 

 

 

The system ensures low errors in frequency between the simulation and the bar modal 

testing. However, modal testing performed according to the method suggested in Chapter 

3 was not able to detect all of the frequencies obtained in the simulation. System simulation 

produced frequencies that are not shown in Table 7.4, but they do seem to be relatable to 

the cable frequencies in Table 7.3, being: 2.37, 4.70, and 6.79 Hz. The lumped 

segmentation method used for the cable caused a discrepancy due to the appearance of 

higher frequencies. However, for the range of low frequencies investigated, it seems to be 

reasonable to use this model.     

Time series tests were also performed on the system bar-cable, and acceleration at the bar 

tip was recorded (see Figure 7.3). 
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Figure 7.3. Acceleration Time Series for the Pole and Cable Connected. (Pinto & Rideout, 2016) 

 

The cable model had the damping ratio tuned to match the time series decay seen in Figure 

7.2, and the high frequencies continue to appear in the combined system as shown in Figure 

7.3. The simulations therefore contained frequencies not present in the tests.  

The stabilization chart used to obtain the damping and frequencies shown in Table 7.4 is 

presented in Figure 7.4.  
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Figure 7.4. Experimental Stabilization Chart of the Pole and Cable (Cable Tension 15N) (Pinto & 

Rideout, 2016) 

 

A comparison of the first three frequencies in Table 7.1 (from the “pole’) with the FRF 

presented in Figure 7.4 indicates that the addition of the cable shifted the frequencies, 

lowering them considerably.  

Previously, it was presented that the first frequency of the cable was designed to correspond 

to the first frequency of the bar. This caused the reduction in the frequency in the combined 

system.  

Even though the model seems to match closely, the test results and the verification suggests 

a good approximation, it seems that there is a significant difference between measurements 

obtained from the bar alone and measurements obtained from the combined system. 

However, there is still room for more exploration. In the proposed test, the cable that was 

used was significantly thicker and heavier than the bar, obviously resulting in a greater 
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interaction with the bar. In addition, the excitation direction of the bar was in the same 

direction as that of the cable, amplifying its influence even more.  

 

Additional Damping and System Behaviour 

 

Proceeding according to the method presented in Chapter 6, four tests were chosen to be 

presented: the bar without any cardboard (condition 0), the bar with the cardboard panels 

(combination 2-3), the bar and the cable without cardboard, and the bar and cable with 

cardboards 2-3. Figure 7.5 shows the FRFs from the new test with the bar, with and without 

additional damping and now including a wider range of frequencies, from 0 to 512 Hz.  

 
Figure 7.5. Transfer Function of the Bar, without Damping (Top) and with Damping 2-3 

(Bottom), Blue is the Accelerometer at the Tip, Red is the Accelerometer at Mid-way 

 

The FRF of the bar without additional damping is clear and allows the recovery of at least 

8 clear modes. With the additional damping, the second mode in low frequency seems to 
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be attenuated, with the single peak of the 4th mode at the top, changing to three smaller 

peaks in the FRF at the bottom. The chart in Figure 7.6 was generated by extracting the 

frequencies and damping ratios of both scenarios. The observations for the FRFs are then 

confirmed, because in the low range (below 150 Hz) it is possible to observe some change 

in damping, but after that there is not much effect.      

 

Figure 7.6. Variations in Bar Damping – Before and After Damping Increase 

 

Impact test was performed on the bar with additional damping while it was connected to 

the cable. This test was intended to verify whether bar damping could be detected even 

when the bar is connected to the cable. The transfer function of this measurement is 

presented in Figure 7.7. The overall aspect of the FRFs is the same, except that the bottom 

image seems to have more noise. By comparing the previous measurements of the bar alone 

with these new ones, it is noticeable that the frequencies are considerably lowered.  

The frequencies and damping ratios of the system without damping and with additional 

damping are presented in Table 7.5. Six peaks were chosen. When comparing both 
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scenarios (with and without damping) the frequency slightly decreases and the damping 

ratios showed increased values, except in the 4th mode.  

 
Figure 7.7. Transfer Function of the Bar and Cable, without Damping (top) and with Damping 2-

3 (bottom), Blue is the Accelerometer at the Tip, Red is the Accelerometer at Mid-way 

 

Table 7.5. Results of Modal Testing on Bar and Cable with/without Additional Damping. 

 
Bar and Cable without 

Additional Damping 

Bar and Cable with 

Additional Damping 

 Frequency Damping Frequency Damping 

Modes Hz % Hz % 

1 12.872 0.315 12.536 0.683 

2 40.988 0.212 40.214 0.376 

3 83.032 0.629 79.673 1.733 

4 144.87 2.774 154.92 1.202 

5 219.59 0.789 217.438 2.07 

6 317.711 5.006 320.5 6.242 

 

As per Table 7.5, the frequencies of the system do not change much with additional 

damping. Showing that, though we can’t identify the exact frequencies of the pole (all 
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frequencies are reduced when comparing with the frequencies of the pole alone), we still 

able to verify the changes in damping ratio between correspondent frequencies. This points 

to the necessity of having a database of the system (pole and cables) over the life of the 

pole, i.e. collect measurements of the system along the lifespan of the network. Since the 

cable and other equipment will present slightly changes in damping, the changes in the 

system damping can be attributed to the pole decay.  

Figure 7.8 presents the changes in damping of the bar and cable before and after the 

increase in damping ratio. The damping increases much less than when the bar is alone (see 

Figure 7.6), it suggests that it becomes more difficult to extract information related to the 

damping ratios of bar when it is interacting with other systems.  

 

Figure 7.8. Variations in Bar/Cable Damping – Before and After Damping Increase 
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Chapter 8 - Conclusions and Future Work 

 

This work was a preliminary study of the dynamic response produced by attaching 

electrical cables to wooden poles subjected to non-destructive tests. Three main objectives 

were proposed: to develop a simulated model of a pole and cable using the bond graph 

formalism, to design a reduced scale system containing a pole and a cable to be used for 

verification of the models, and to use the reduced system to obtain insight into how a cable 

dynamically interacts with a pole, aiming to isolate these effects in the future.  

Modal expansion through separation of variables was used to model the pole, and the 

lumped segmentation technique was used for the cable model. An experimental setup 

composed of a copper bar and a steel cable was assembled and used to verify the model. 

Time series testing and modal testing were performed on the physical model, and the 

dynamic results were compared to the simulated ones. Frequencies in both models 

presented overall good agreement for the low frequency range studied. The Euler-Bernoulli 

beam and modal expansion were verified to be an excellent model for metallic beams 

undergoing small deflection. The lumped-segment cable model, with 15 elements, could 

not map the damping ratio appropriately, and time responses also presented some 

discrepancies. These effects were expected, due to the difficulty of tuning the cable 

damping and to the spurious frequencies added to the system, which were inherent to the 

chosen modeling. The associated model, pole and cable permitted observation of the effects 

of the cable on the frequencies associated with the pole. However, future improvements 

are necessary to obtain better results.   
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The tests on the reduced physical model, modified with the addition of drag damping to 

the bar, lead to two main conclusions: First, it is possible to add damping by using the 

proposed method, with greatest effects being perceived in the lower modes. Second, the 

influence of the cable on the bar is immense for the reduced model, partially because the 

weight of the cable was applied to only one side of the bar (there being no other pole to 

share the weight), and the direction of the hits favoured excitation of the cable. These 

conclusions point to the necessity of future improvements in the reduced test apparatus.  

 

Future Work 

 

The pole model developed using modal expansion can map frequencies with very small 

error for the constant properties of a solid regular section metal bar. However, this is the 

case for this reduced metal model, not for a real wooden pole which does not have constant 

properties, has defects, and is tapered from the bottom to the top. The tapering factor was 

already addressed in a model presented by Rideout & Whelan (2014), and can be used in 

future work in association with cable models.  

The cable model presented can reproduce the frequencies measured. However, it also 

created many spurious frequencies due to the nature of lumped segmentation. If other 

attachments common to electric power transmission networks (i.e. more cables, isolators, 

guy cables, etc.) are included in the future, errors caused by extra numerical frequencies 

might be amplified in the overall result. For this reason, an improvement in the model 

would require a process of optimization in the number of segments, or a complete change 
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in the lumped segment, using rigid bodies, rotational inertia, bending stiffness and other 

damping mechanisms.  

Another approach for modeling the cable could be to explore the separation of variables 

done for strings in Inman (2014). Similar to what was done for pole modeling, it could be 

done for the cable, to permit tuning damping on the model according to measured values. 

In the physical model, the cable used was proportionally heavier in comparison to the pole 

weight, and this highly influenced the total response of the system. Future work on a 

physical model should use a cable with reduced diameter as well. In a real situation, the 

cable diameter is only a small fraction of the pole diameter, and usually the pole stands 

between other poles, balancing the effort.  

In this study, the experimental setup was not scaled down from the real pole and cable 

using similitude laws for dynamics. However, future work should consider scaling new 

models using similitude given the considerable research that has been developed in this 

area. The work of Balawi et al. (2015), for example, developed similitude laws for beams 

and plates performing experiments and testing the results against finite element analysis 

finding good results. Another example comes from Wilson (2014), whom also employed 

scaling laws for dynamics for the study of flawed utility poles by deriving the equations of 

motion to use in reduced scaled laboratory models.    

In testing a real pole in the field, it is possible to impact the pole in at least two directions: 

perpendicularly, or parallel to the electrical lines. The models presented so far allow the 

cable to move only in the vertical direction (y) and the hitting effort is parallel to the line. 

Therefore, new implementations are necessary by extending the cable model to the third 
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dimension, which necessarily implies a modification of the test setup. Currently, a 3D 

lumped model based on the presented theory has been implemented, but not yet verified.  

The simulations were performed using a commercial software to assemble the bond graph 

formalism and to solve the differential equations created according to the formulations 

presented. However, as most of the software packages, not all methods used in solving the 

equations can be seen in details and other tools could be used for modeling and verification 

in future work.  

In conclusion, other attachments (cross bars, isolators, etc.) still need to be modeled and 

more cables and poles need to be included to extend this work and obtain a deeper 

understanding of the influence of such systems in each of the pole’s responses. Besides, 

the increase in complexity of these models might require the use of other simulation tools. 

Simulations using the method of separation of variables and lumped segmentation could 

be also compared to the results of a finite element analysis of the pole and cable. Extensive 

material has been developed to allow the modeling of dynamic parameters, such as modal 

frequency and damping, using FEA formulation.  

 Improvements on the simulated models need to be done based on field tests and cumulative 

data, in order to achieve a model that better represents the reality of wooden poles 

interactions. Thus, the research group that is continuing this work predicts the future 

necessity of implementing specific software/hardware for the dynamic extraction of 

wooden pole properties, including those of developed models.     
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Appendix A – Data Sheet of the Impact Hammer 

Page 1 of 2 in the original document. B&K ©. Full document at: 

https://www.bksv.com/en/products/transducers/vibration/Vibration-transducers/impact-

hammers/8206 
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Page 2 of 2 in the original document. B&K © 
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Appendix B – Data Sheet of the Accelerometer 

Page 1 of 12 in the original document. B&K ©. Full document at: 

https://www.bksv.com/~/media/literature/Product%20Data/bp1841.ashx 
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Page 9 of 12 in the original document. B&K © 
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Page 11 of 12 in the original document. B&K © 
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Appendix C – Data Sheet of the DAQ  

Page 1 of 4 in the original document. National Instruments ©. Full document at: 

http://sine.ni.com/nips/cds/view/p/lang/en/nid/206676 
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Page 4 of 4 in the original document. National Instruments © 
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Appendix D – Data Sheet of the Load Cell  

Page 1 of 1 in the original document. Omega ©. Find document at: 

http://www.omega.ca/pptst_eng/LCCA.html 

 

*Used with DAQ NI USB 6008 and Operational Amplifier Circuit AD620. 


