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ABSTRACT 

In Canada, about 9 million tonnes of residential waste with over 40% of organic waste 

was disposed every year. Another major source of organic waste in Canada is from the 

seafood processing industry. For effective organic waste management, composting serves 

as a sound, cost-efficient and environmental friendly measure.  

The selection of bulking agents is of primary importance to adjust the moisture and 

carbon/nitrogen (C/N) ratio of organic waste during composting. Therefore, initially, the 

performance of locally available bulking agents (i.e., sawdust and peat in Newfoundland 

and Labrador (NL)) during organic municipal solid waste (MSW) composting was 

evaluated. Results indicated that to generate a high temperature and a longer duration of 

high temperature to kill pathogens and sterilize the compost, peat was considerably more 

effective. 

A design of experiment (DOE) based methodology was then adopted to investigate the 

effects of multiple factors including C/N ratio, moisture content (MC), type of bulking 

agent (BA) and aeration rate (AR) and their interactions on the maturity, stability and 

toxicity of compost product. For the first time, enzyme activities were used as indices of 

maturity and stability during the course of a DOE based composting. The results provided 

guidance to optimize a MSW composting system that will lead to increased 

decomposition rate and the production of more stable and mature compost. 

Thirdly, the feasibility of using enzyme activities for indicating the state of marine fish 

waste composting was also examined. A good correlation among enzyme activities and 
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different physiochemical parameters including oxygen uptake rate (OUR), C/N ratio, and 

germination index (GI) led to the conclusion that enzyme activities could be feasible 

indicators of the state and evolution of the composting process.  

Raw materials contribute about 30% of the biosurfactant production cost. Evaluation of 

the feasibility of using fish waste compost (FWC) extract as an unconventional substrate 

for biosurfactant production was highly desirable to refine the utilization of FWC and 

achieve the economical biosurfactant production. In this study, the nutrient extraction 

from FWC was achieved by enzyme hydrolysis and optimized using response surface 

methodology (RSM). The extract was used to produce biosurfactants by Rhodococcus 

erythropolis sp. P6-4P and bacillus sp. N3-1P strains. FWC extract showed a good 

potential as an unconventional source of nutrient for microbial growth. The obtained 

biosurfactants showed excellent properties with high surface tension reduction, high 

emulsification activity, and exhibited a high level of stability.  

The research outputs can contribute to the technical and scientific knowledge to design 

and operate composting system to manage the organic MSW and fish waste by achieving 

a double benefit of waste reduction while producing marketable products. Additionally, 

the products and the bioprocess can be of great value to both scientific understanding and 

industrial applications.  
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CHAPTER 1  

INTRODUCTION 
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1.1 Background  

Canada is one of the largest nonhazardous municipal solid waste (MSW) producers in the 

world (Bruce et al. 2016). The large amount of MSW has led increasing environmental, 

social and economic problems (Adhikari et al. 2008; Asase et al. 2009). For example, in 

2008, daily MSW generation rate in Canada was about 1.2 kg/capita (Bruce et al. 2016). 

After Alberta and Saskatchewan, in Canada, Newfoundland and Labrador (NL) has the 

highest quantity of waste disposal per person, and the lowest proportion of waste (48%) 

from non-residential sources, i.e., 429 kg of residential waste per capita and 382 kg of 

non-residential waste per capita as it is shown in Table ‎1.1 (NL 2002).  

The increase rate of Canadian MSW generation is alarming. From 1996 to 2010, the per 

capita generation rate increased by more than 26% (Bruce et al. 2016). NL, Nova Scotia 

and Saskatchewan had the highest increase in total waste disposed from 2008 to 2010, at 

4% each (Statistics Canada 2013). The most common final disposal option utilized in 

Canada is landfill, where waste is buried in the ground (or sometimes above ground, 

especially in areas with bedrock) (SWMC 2014). Approximately 97% of the residual 

MSW waste after diversion (recycling and composting), and recovery (energy-from 

waste) is landfilled (or about 24,111,546 tonnes per year) (Statistics Canada 2013). The 

two primarily environmental concerns related to landfills are leachate generation and gas 

emission (Kjeldsen et al. 2002; Spokas et al. 2006). Stringent environmental regulations 

for waste disposal and landfills make finding new sites for waste disposal and 

management a growing challenge (Adhikari et al. 2008; Asase et al. 2009). In addition, 

disposal sites produce noise, dust and odour which make the surrounding area 
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undesirable for habitation (Ponsá 2010). Successful waste policy requires effective 

strategies for proper waste diversion from landfills. Minimizing waste generation and 

recycling have become the focus of governmental agencies in many countries to reduce 

human impact on the environment. Biodegradable material such as food waste constitutes 

approximately 40% of the residential waste stream. The environmental benefits of 

diverting organic materials from landfill include reduced methane emissions and 

decreased leachate quantities from landfills and production of renewable energy (David 

and Canada 2013). With this focus, composting has received a high ranking in the 

hierarchy of recycling methods and continues to gain importance throughout the world 

for the conversion of organic MSW to new resources and products (Keener 2010). 

Another source of organic waste generation in NL is from seafood processing industry. In 

2011, total world fishery production amounted to approximately 91.3 million tonnes form 

capturing and 158 million tonnes from aquaculture (FAO 2012). In Canada, commercial 

marine and freshwater landings yielded 832,767 metric tonnes valued at $2.2 billion and 

aquaculture production was 174,057 metric tonnes, valued at $825 million (FOC 2012). 

The Atlantic Region accounted for 703,905 metric tonnes (82.76%) for total landing from 

sea fisheries with a value of $1,828,714 (Ghaly et al. 2013). NL, with 17,450 Km of 

coastline and with widespread fish processing plants in its coast, currently has one of the 

most valuable commercial fishing industries in Canada and fish industry is considered as 

an important economic pillar in the province. The portion of NL from fish production in 

Canada amounted 256,093 tonnes in 2012 (DFA 2012). Amount of fish waste produced 

in Atlantic Provinces in 2001 is presented in Table 1.2 (Ghaly AE 2013). 
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It is estimated that 43% of total fish and shellfish ends up as products for human 

consumption and the remainder is classed as waste (Ghaly AE 2013). Recent estimates 

revealed that current discards from the world’s fisheries exceed 20 million tons, 

equivalent to 25% of the total production of marine capture fisheries (Arvanitoyannis 

2010). The majority of waste is produced in the on-shore processing sector (35% of the 

resource) whereas discards and processing waste at sea produce smaller quantities (17% 

and 5% of the resource respectively) (Brinton 1994; Jayasinghe and Hawboldt 2012; 

Seafish 2001). For example, amount of waste produced from white fish processing is 27-

32% as is shown in Table 1.3 (Arvanitoyannis and Kassaveti 2008). If the fishery waste 

is not properly be treated, it represents a lost resource and a potential pollution problem 

(Illera-Vives et al. 2015). 
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Table ‎1.1 Residential and non-residential waste disposed in NL 

 Residential sources Non-Residential sources All sources 

Canada  9,350,354 16,557,113 25,907,467 

NL  200,918 179,257 380,176 

 

Table ‎1.2 Fish waste amount by province in 2001 

Province Landing Product Waste 

Tonnes (%) Tonnes (%) Tonnes (%) 

New 

Brunswick  

113588 13.95 89012 78.36 24576 21.36 

Newfoundland 

and Labrador 

267959 32.92 120999 45.15 146960 54.84 

Nova Scotia 366381 45.01 146708 40.04 219673 59.95 
Prince Edward 

Island  

66046 8.11 39000 59.04 27046 40.95 

Total  813974 100 395719 48.61 418255 51.38 

 

Table ‎1.3 Inputs and outputs of fish production processing 

Process Input Output 

Fish (kg) Wastewater(m3)  BOD (kg) COD(kg) Solid waste (kg) 
White fish 
filleting  

1000 5-11 35 50 Skin:40-50 
Heads:210-250 

Bones: 240-340 
De-icing and 

washing  

1000  1 0.7-4.9 0-20 

Grinding  1000 0.3-0.4 - 0.4-1.7 0-20 
Deheading  1000 1 - 2-4 Head and debris:270-

320 
Filleting of  

deaheded fish  

1000 1-3 - 4-12 Frames and off 

cuts:200-300 
Skinning  1000 0.2-0.6 - 1.7-5 Skin: 40 

 



6 

 

1.2 Statement of Problems  

1) Insufficient composting system evaluation and optimization 

The high organic fraction in MSW makes it easy to be converted to the energy sources 

through composting (Jolanun and Towprayoon 2010; Ponsá 2010). Therefore, 

composting has become an increasingly important strategy for the treatment of organic 

MSW and investments in composting provide opportunities to significantly increase 

diversion of waste. Composting of food and yard waste has seen a 125% increase in 

diversion Canada-wide from 2000-2010 (SWMC 2014). It is an inexpensive, simple and 

environmental-friendly alternative for the treatment of organic MSW (Jolanun and 

Towprayoon 2010). It is also a useful method to produce a stabilized material from 

organic MSW that can be used as a source of nutrients and soil conditioner in fields and 

can improve the physical and chemical properties of amended soils (Brown et al. 1998; 

Castaldi et al. 2008). However, a composting program was not developed in NL (Table 

1.4). 

Previously, many studies investigated the physiochemical changes during composting of 

MSW (Ahn et al. 2008; Canet and Pomares 1995; Castaldi et al. 2008; Chang and Chen 

2010; Ciavatta et al. 1993; Eklind and Kirchmann 2000; Garcia et al. 1993; Iqbal et al. 

2010; Jolanun and Towprayoon 2010; Kayikçioğlu and Okur 2011; Mote and Griffis 

1979; Strom 1985; Xiao et al. 2009). In addition, many studies have been conducted to 

evaluate the influence of different factors such as temperature (Suler and Finstein 1977), 

moisture (Suler and Finstein 1977), aeration rate, and bulking agents (Adhikari et al. 

2008; Chang and Chen 2010; Eklind and Kirchmann 2000) on composting of MSW.  
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The formula required to successfully compost organic MSW depends significantly on the 

selection of bulking agent. There are currently limited studies on the effect of locally 

available bulking agents (i.e., peat and sawdust) on the maturity and stability indices such 

as enzyme activities and germination index (GI) in NL. In addition, evaluation and 

optimization of the MSW composting to increase the decomposition rate and to produce 

more stable and mature product is still confronted with many challenges. Most of the 

studies just focused on the effect of one factor on the composting process, with no 

comprehensive consideration of the interaction among the factors during composting. 

The function of enzyme activity during composting was not well illustrated. In addition, 

DOE methodology was not well applied for system optimization of composting.  

2) Lack of effective fish waste management technologies  

The common methods for disposing fishery waste is wherever possible, directly used for 

land applications, sent to fishmeal processing  plants, to landfill in the absence of suitable 

facilities and disposed at sea in remote parts where waste cannot feasibly be sent for 

reprocessing or landfill (AMEC 2003). Direct use of fishery wastes for land manuring, or 

land spreading, is deterred by the uniquely obnoxious odours of putrefying fish (Mathur 

S. I. 1988). Since many processors are no longer allowed to discard their offal, it leads to 

high cost of refining the material before it is discarded (Environment Canada 2005). 

Environmental concerns and regulations have made it costly to dispose fishery wastes by 

landfilling due to the nuisance of malodours and scavengers, and the delayed pollution it 

causes. The slow rate of decomposition of fishery waste in ocean results in the 

subsequent increase in biological oxygen demand (BOD), release of dissolved 
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phosphorus and dissolved nitrogen, and the formation of black zone (Arvanitoyannis and 

Kassaveti 2008; Schaub and Leonard 1996). It can reduce the phytoplankton growth and 

increase alga growth, attract marine birds and lead to local increases in their populations 

(Environment Canada 2005; IECS 2005).   
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Table ‎1.4 Composting programs in Canada in 2008 

Province Composting Program Population Served Total Population 

British Columbia 28 2,471,982 3,907,738 

Alberta 9 1,005,619 2,974,807 

Saskatchewan 2 18,400 978,807 

Manitoba 3 82,400 1,119,583 

Ontario 57 10,003,304 11,410,046 

Quebec 12 2,561,630 7,237,479 

New Brunswick 2 138,180 729,498 

Nova Scotia 20 750,534 908,007 

Prince Edward Island 1 135,294 135,294 

Newfoundland 0 0 512,930 

Total 134 17,167,343 29,914,315 
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An important waste reduction strategy for the fishery industry is the recovery of 

marketable by-products from fishery wastes by treating the waste (Arvanitoyannis and 

Kassaveti 2008). The goals of solid treatment systems in fishery production are volume 

reduction (e.g. thickening and dewatering) as well as stabilization. Stabilization of solid 

waste reduces pathogens (both human and animal) and eliminates offensive odors and the 

potential for putrefaction (Seymour et al. 2001). Additionally, the stabilization of this 

types of materials prior to its use can prevent problems associated with the appearance of 

phytotoxic substances and to diminish their water contents and transportation costs 

(Adler and Sikora 2004). 

Composting is a simple and inexpensive method to achieve the volume reduction, 

stabilization and valuable soil conditioner production from organic waste like fishery 

waste (Laos et al. 1998). Composting is a sustainable option, and if done properly can 

potentially reduce pressure on already overburdened landfills (Miller and Semmens 2002; 

Seymour et al. 2001). It is one of the lowest cost approaches to nutrient stabilisation, 

which is the aerobic decomposition of organic material by successive microbial 

communities (Cole et al. 2015). Also, fishery waste compost is of great potential use in 

agriculture. Several studies have evaluated the fertilizer effects of composts and have 

suggested composting as one of the most appropriate techniques for producing organic 

fertilizers (Shen et al. 2011). 

Various enzymes have shown the potential for controlling the biodegradation rate during 

composting. Enzyme activities have been widely used to evaluate the performance of 

composting for sewage sludge (Benitez et al. 1999; Vargas-Garcia et al. 2010), MSW 
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(Castaldi et al. 2008; Raut et al. 2008) and animal manure (Godden et al. 1983; Tiquia 

2002), but they have been never applied to the marine fish waste composting process for 

evaluating its state and evolution. 

3) Lack of promising options for fish waste compost usage  

Compost made from fish manure and mortalities, or processing waste could provide an 

effective source of nutrient-rich organic matter. Therefore, composting from organic 

materials can be used to create a useful and potentially marketable product (Benhabiles et 

al. 2012). 

Biosurfactants are biologically produced surfactants. They are less toxic, more effective 

and stable at extreme pH, temperature and salinity, and better at enhancing 

biodegradation are promising substitutes for surfactants with significant toxic effects and 

persistency in the environment (Muthusamy et al. 2008). Currently, their main 

application is for enhancement of oil recovery and hydrocarbon bioremediation. The use 

of biosurfactants has also been proposed for various industrial applications, such as in 

food additives, cosmetics, detergent formulations (Reis et al. 2013). The global 

biosurfactants market has grown incrementally. According to a new market report, global 

biosurfactant market was USD 1,735.5 million in 2011 and is expected to reach USD 

2,210.5 million in 2018, with a production of 476,512.2 tonnes by then (Kosaric and 

Sukan 2014). However, existing production of biosurfactants has suffered from low 

yields and high cost. The raw materials contribute 30% of the total production cost, so 

that the utilization of waste streams such as agro based industrial wastes as substrate can 

help develop economically viable biosurfactants and could be a promising strategy for the 
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industry to increase its profitability and competitiveness (Mukherjee et al. 2006; Mulligan 

and Gibbs 1993). As a cheap substrate, fish waste compost (FWC) extract has not been 

used to produce biosurfactants. 

1.3 Research Objectives  

The goal of this research, therefore, is to fill knowledge and technical gaps identified 

above through in-depth investigation of MSW and fish waste composting and utilization 

of FWC for biosurfactant production. The major research tasks include:1) to design a 

composting system to achieve a successful composting treatment; 2) to investigate the 

performance of locally available bulking agents in NL during bench-scale MSW 

composting; 3) to conduct a design of experiment (DOE) based optimization of the 

operation parameters of MSW composting using enzyme activities as responses; 4) to 

evaluate the state and evolution of marine fish waste composting by enzyme activities; 5) 

to utilize FWC extract as low-cost substrate for biosrufactant production using 2 bacteria 

isolated from Atlantic Canada. 

1.4 Structure of the Thesis  

Chapter 2 presents comprehensive literature review including MSW composting, bulking 

agents for composting, composting system optimization, fish waste composting, system 

characterization and parameter evaluation, and use of fish waste compost for 

biosurfactant production. Chapter 3 tackles task 2 and describes methods of experiments 

and presents the result of the experiments to evaluate the performance of locally available 
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bulking agents in NL during bench-scale MSW compost and displays the results of 

monitoring of physiochemical parameters such as temperature, pH, electrical 

conductivity (EC), GI, OUR and C/N ratio and assessing of enzyme activities during 

MSW composting with 2 bulking agents. Chapter 4 tackles task 3 and presented a DOE 

method which has been used to screen the significant factors and their interactions on 

MSW composting. The importance of each model parameter is evaluated through 

analysis of variance (ANOVA) by using final C/N ratio, final moisture content, and 

cumulative enzyme activities as responses. The optimum condition was proposed based 

on the developed model. Chapter 5 tackles task 4 and describes experimental methods for 

marine fish waste composting and monitoring of physicochemical parameters and 

enzyme activities. The data of monitoring parameters and enzyme activities during fish 

waste composting are shown in the chapter. Chapter 6 and chapter 7 tackle task 5 which 

describes experimental methods to extract nutrients from fish waste compost through 

enzyme hydrolysis. The optimization of the enzyme hydrolysis process parameters is 

presented using response surface methodology (RSM). The extracted nutrient under 

optimum condition was used as substrate for bacillus (N3-1P) strain to produce 

biosrufactant. The production condition is optimized to increase the efficiency of the 

process. FWC extract as a novel substrate is also used to produce biosurfactnat by 

Rhodococcus (P6-4P) strain and the production condition using RSM is optimized.  

Chapter 8 concludes this study with summarized contribution and recommendations for 

future research. 



14 

 

 

 

CHAPTER 2  

LITERATURE REVIEW
1
  

  

                                                 
1 This chapter is based on and expanded from the following paper: 

Kazemi, K., Zhang, B.Y., and Lye, L., (2016). Composting of fishery waste: a review 
(Ready for submission).  

Role: Khoshrooz kazemi solely worked on this study and acted as the first author of 

this manuscript under the guidance of two supervisors, Dr. Baiyu Zhang and Dr. 
Leonard Lye. Most contents of this paper was written by her and further edited by 

the other co-authors. 
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2.1 Composting  

Composting is a biological process in which easily degradable organic matter is stabilized 

and converted by the action of microorganisms into a humus-rich product (Eiland et al. 

2001). During composting, compounds such as protein, cellulose, and hemicellulose are 

utilized by microorganisms as carbon and nitrogen sources. The residual plant organic 

matter, along with compounds of microbial origin, is transformed by microorganisms to 

form humic-like substances of increasing complexity (Mondini et al., 2004). 

Tchobanoglous et al. (1994) suggested the following diagram to describe the composting 

process. 

The objectives of composting are 1) diverting organic matter from landfills and reducing 

the pressure on landfills, leachate content of and odour potential of landfills; 2) 

converting organic matter to stabilized forms; 3) decreasing the odour potential of the 

organic matter; 4) decreasing the moisture content of municipal and industrial sludge; 5) 

reducing the subsequent cost of transportation; and 5) producing a soil amendment to 

increase the soil fertility, raise the quality of crops, and improve plant resistance to 

disease (Haug 1993; Zorpas et al. 2000). 

 

  



16 

 

 

 

  

 

Figure ‎2.1 Diagram of the composting process 
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Composting can be divided into four stages which include pre-processing, high-rate 

phase, curing phase, and post processing. Depending on the raw material (feedstock) and 

the required quality of final products, pre- and post-processing may be required. The pre-

processing includes removing unwanted material and reducing size, adjusting moisture 

content, adding bulking agents, and mixing feed components to provide the optimum 

composting conditions. In the high- rate phase, microorganisms reduce biodegradable 

volatile solids and decompose complex organic matter into the simple organic matter. 

The high-rate phase proceeds in two steps and each step is characterized by a different set 

of microorganisms. In the first step, mesophilic microorganisms consume carbon sources 

and temperature rises to 45 °C. The degradation will then increase the system temperature 

to 70 °C in the second step and the thermophilic microorganisms start to dominate. The 

high temperature in the thermophilic phase is important to inactivate pathogens and plant 

seeds. After the high-rate phase, due to the decreasing of microbial activities, the 

temperature drops under 40°C so that the curing phase starts and stabilization and 

maturation of organic matter take part. The final products of a composting treatment will 

be H2O, CO2, and stabilized matter (Figure ‎2.2 and Figure ‎2.3) (Haug 1993; van der 

Wurff et al. 2016).  
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Figure ‎2.2 Generalized process diagram for composting (Haug 1993)  

 

Figure ‎2.3 General overview of three composting phases and the degradation processes taking 

place (van der Wurff et al. 2016) 



19 

 

Composting first received attention because it is an inexpensive, simple and 

environmental friendly process (Magalhaes et al. 1993). It reduces the mass, bulk 

volume, and water content of organic matter and it returns nutrients to the soil (Arslan et 

al. 2011; Cronje et al. 2003). In addition, pathogens become inactivated due to the 

thermophilic stage (Cronje et al., 2003). Physiochemical, microbiological and 

thermodynamic phenomena and their interaction are involved in the composting process, 

making the composting very complicated (Petiot and De Guardia 2004). Decomposition 

of organic matter produces heat. The energy and mass transfer are indicated by 

temperature, moisture content, and oxygen concentration. To produce a high quality end 

product from composting, water content, oxygen, and the composition and quantity of 

raw material play important roles (Magalhaes et al. 1993). Oxygen deficiency increases 

odour production because it creates anaerobic situation and reduces the growth of aerobic 

microorganism; however, excessive aeration can increase costs and slows down the 

composting process via heat, water, and ammonia losses (Guo et al. 2012). High moisture 

content enhances the anaerobic condition and produces more leachate. On the other hand, 

low moisture content decreases the microbial activity (VanderGheynst et al. 1997). Due 

to these concerns, more studies are needed to understand the interactions between the 

process degradation kinetics and the mechanisms of heat and mass transport as well as 

the process optimization (Petiot and De Guardia 2004; VanderGheynst et al. 1997). In 

addition, further studies will allow to reduce the time, energy and cost of the process, and 

produce a pathogen free, stable, and mature product (Mason and Milke 2005). 
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2.2 Characteristics of MSW as Raw Material for Composting  

The term MSW describes the stream of solid waste generated by households, commercial 

establishments, industries and institutions (Farrell and Jones 2009). MSW is made up of 

different organic and inorganic fractions like food, vegetables, paper, wood, plastics, 

glass, metal and other inert materials. In cities, it is collected by the municipalities and 

transported to designated disposal sites (Mor et al. 2006). The production and 

composition of MSW vary from place to place and from season to season. Which is 

influenced by various factors such as geographical location, population’s standard of 

living, energy source, weather, food habits, urbanization, tradition and culture (Adhikari 

2005). The characterization of MSW before composting is of primary importance to 

balance the recipe in terms of moisture content for aeration, pH for a proper microbial 

environment, and carbon and nitrogen for proper microbial development (Adhikari et al. 

2008). 

Fathi et al. (2014) conducted a research to characterize MSW for composting in Zanjan 

city, Iran. Amount of biodegradable materials in MSW of Zanjan is 75.2 percent, which 

comes to 225.6 tons per day. C/N ratio of Zanjan ranges from 14.22 to 19.53 and the 

average is 17.6. Relative Humidity interval in MSW of Zanjan city is 67.94 to 70.3% 

with a mean of 69.2%. Most organic materials in MSW of Zanjan are in range of 8-40 

mm (Fathi et al. 2014). Adhikari et al. (2008) characterize food waste in downtown 

Montreal a prerequisite for compost recipes from May to August. The C/N ratio was 

found to decrease from 29.1 in May to 23.1, 18.4 and 17.9 in June, July and August, 

respectively. Similarly, the food waste pH was found to be the highest in May (4.6 ± 
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0.25) and to drop in June, July and August. The food waste produced in May had a dry 

matter (DM) of 13.7% (±2.47%), in June, July and August, the DM dropped to 12.2% 

(±2.05%), 10.0% (±1.01%) and 10.3% (±0.83%), respectively. In May, the wet bulk 

density was 269 kg m-3 (±84) while it increased to 410 kg m-3 (±92), 510 kg m-3 (±72) 

and 552 kg m-3 (±80), in June, July and August, respectively. 

The percentage of organic waste in MSW characterization in Pakistan has not shown any 

significant difference in summer (71.79) and winter (72.45) season, where as its average 

share was 72.12% of the total average waste. The organic waste contains average C 

(30.2) in summer and (11.06) in winter on dry weight basis, whereas the N (dry weight 

base) was (1.2) in summer and (0.57) in winter. pH of winter MSW (4.91) was 

significantly lower than that of summer (5.25) (Iqbal et al. 2010). Table ‎2.1 summarize 

the characteristic of MSW reported in previous studies. 
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Table ‎2.1 Physical and chemical properties of MSW used for composting 

 MSW  Food 

waste  

Food 

waste  

Food 

waste 

Synthesised 

food waste  

MSW Organic 

waste 

(winter) 

MSW Organic 

fraction of 

MSW 

MSW Kitchen 

waste 

MSW Kitchen waste  

Moisture content (%)  69.21  70-80 80 80.5 - - - 58.0 36 66.9 57.3 65-80 

Organic matter (%) 61.38  - -  690.6 g/kg - 36 62.9 45 -  - 

Ash content (%) -  - - 1  79.81 -   -  3-5 

pH  5.45 4.1 3.8-6.5 4.4  5.95 4.91 6.5 6.9 7.8 5.75 6.4  

EC -   2.5 

(ds/m) 

 8.29 ds/m - - 3 (ms/cm)  -   

C 44.05 2 47.35 53 44.5  11.06 17.84 34 32 40 39.9 50-52 

N 2.61 47.4 5.35 2.2 3.3 21.29 g/kg 0.57 1.84 2 0.05 11.4 2.28  

C/N  17.66 24 8.85 25 13.3 17.1 19.19 9.7 17 40 - 17.7 13-18 

 Zanjan, 

Iran 

Montreal, 

canada 

Hsinch

u City, 

Taiwan  

Republi

c of 

Korea 

Kaohsiung, 

Taiwan 

Co´rdoba’s 

(Spain) 

Lahore, 

Punjab, 

Pakistan 

Spain Barcelona, 

Spain 

Jabalpur, 

India 

Beijing, 

China 

Spain Kaohsiung, 

Taiwan 

References  (Fathi et 

al. 2014) 

(Adhikari 

et al. 

2009) 

(Kumar 

et al. 

2010) 

(Kim et 

al. 

2008) 

(Chang and 

Chen 2010) 

(Delgado-

Rodríguez 

et al. 2012) 

(Iqbal et 

al. 2010) 

(Mato 

et al. 

1994) 

(Barrena et 

al. 2008) 

(Gautam 

et al. 

2010) 

(Yang et al. 

2013) 

(Tejada et 

al. 2009) 

(Chang and 

Chen 2010) 
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2.3 Characteristics of Fishery Waste as Raw Material for Composting 

The composition of the fishery waste varies according to the type of species, sex, age, 

nutritional status, time of year and health. Most of the fish contains 15-30% protein, 0-

25% fat and 50-80% moisture (Ghaly AE 2013). For example, Alaska pollock contains 

25% protein in skins, 15.2% in heads, in comparison, pink salmon heads contain 13.9% 

protein (Tarnai 2009). Frederick (1989) study showed that the fish waste contained 58% 

crude protein, 22% ash, 19% ether extract, 1% crude fiber, 22% monosaturated acids, 

palmitic acid and oleic acid. Compared with other waste streams, fishery waste contains a 

large amount of readily digestible protein and, thus, has a high content of nitrogen and a 

low C/N ratio. These characteristics of fishery waste may result in a special composting 

process and compost features that are different from other waste materials as well 

(Frederick 1989). The physical and chemical characteristics of fishery waste are 

stabilised by composting are summarized in Table ‎2.2. 
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Table ‎2.2 Physical and chemical properties of fishery waste used for composting 

Parameter Fish 

waste 

Fish 

waste 

Dogfish 

Gurry 

Filleted 

fish 
scrap 

Crab 

scrap 

Lobester 

scrap 

Fish 

waste 

Shrimp 

waste 

Clam 

wastes 

Herring Flounder Fish 

waste 

Scallop 

viscera 

Crab Scrap mackerel, 

sardine, tuna, 
squid waste 

Moisture 

content (%) 

44.34

±1.58 

 73.0 50 35 45 - 65% 56.5 ± 

1.2 

70 73 53.7 80 65 69.75 ± 9.01 

Organic 

matter (%) 

  - 65.5 56.3 - -  800.0 

± 17.2 

g/kg 
DM 

   81.65 55.47  

Crude 

protein (%) 

      57.92± 

5.26 

      -  

Fat (%)       19.10± 

6.06 

      -  

Crude fiber 

(%) 

      1.19± 

1.21 

      -  

Ash (%)       21.79± 

3.52 

 200.0 

± 17.2 

g/kg 

DM 

    -  

pH 5.70±
0.02 

 - - -   6-7 6.21 ± 
0.15 

6.7 6.7 -  7.65 5.89 ± 0.48 

EC (ds/m) 2.37±
0.07 

 - - - -   26.5 ± 
2.4 

mS/c

m 

  - 1.5 6.2 4.81 ± 3.19 

C (%) 45.98

±0.06 

39.2 - 32.7 27.7 -   432.0 

± 9.5 
g/kg 

DM 

  45.2 46.8 - 46.22 ± 2.80 

N (%) 9.39± 

0.06 

1.5 5.49 8.2 8.2 4.6   102.1 

± 3.5 

g/kg 
DM 

13.4 14.2 5.0 14.2 8.84 10.17 ± 2.29 

C/N 4.90± 

0.03 

 - 3.9 3.3 -  6.59 4.2 3.3 3 9.0 3.3 3.6 4.79 ± 1.24 

P (%) 2.05± 0.3 0.92 6.1 6.1 3.5 2.04 ±  3.96 ±   19136  2.25 1.80 ± 0.90 
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Parameter Fish 

waste 

Fish 

waste 

Dogfish 

Gurry 

Filleted 

fish 

scrap 

Crab 

scrap 

Lobester 

scrap 

Fish 

waste 

Shrimp 

waste 

Clam 

wastes 

Herring Flounder Fish 

waste 

Scallop 

viscera 

Crab Scrap mackerel, 

sardine, tuna, 

squid waste 

0.03 0.64 0.11 

g/kg 

DM 

mg/kg 

DM 

K (%) 1.25±

0.02 

0.2 0.53 0.37 0.32 0.5 0.68± 

0.11 

 0.48 ± 

0.04 

g/kg 

DM 

  3565 

mg/kg 

DM 

 0.35 0.79 ± 0.46 

Ca (%) 1.63±
0.01 

1.1 1.40 10.19 14.91 - 5.80 ± 
1.35 

    465 
mg/kg 

DM 

 14.2 1.86 ± 1.85 

Mg (%) 0.06±

0.01 

0.2 0.14 0.27 0.9 - 0.17± 

0.04 

    538 

mg/kg 

DM 

 - 0.15 ± 0.04 

Na (%) 1.79±

0.05 

 0.66 <0.1 <0.1  0.61± 

0.08 

  0.9 0.6 4569 

mg/kg 

DM 

  0.64 ± 0.16 

Cd  0.08±

0.03 
mg 

/kg 

0.7 

mg 
/kg 

<1 µg/g ND ND - -     -    

Cr (mg /kg) <0.06

±0.00 

mg 
/kg 

22 

mg 

/kg 

- - - - -     -    

Pb  0.33±

0.29 

mg 

/kg 

mg 

/kg 

2 µg/g 8.7 

µg/g 

2.8 

µg/g 

- -     -    

Ni  2.78±

0.2 

mg 

/kg 

6 mg 

/kg 

<0.1 

µg/g 

3.8 

µg/g 

3.4 

µg/g 

- -     -    

Reference (Illera
-Vives 

et al. 

2013) 

(Shelt
on et 

al. 

1998) 

(Mathur 
S. I. 

1988) 

(Mathur 
et al. 

1986) 

(Math
ur S. I. 

1988) 

(Mathur 
S. I. 

1988) 

(Dubo
is et 

al. 

1956) 

(Bicca 
et al. 

1999) 

(Hu et 
al. 

2009) 

(Brinton 
and 

Seekins 

1988) 

(Brinton 
and 

Seekins 

1988) 

(Tarna
i 

2009) 

(Brinton 
and 

Gregory 

1992) 

(Brinton 
and 

Gregory 

1992) 

(López-
Mosquera et 

al. 2011) 
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2.4 Composting Technologies  

Thermophilic aerobic composting of MSW on a commercial scale uses systems of 

varying complexity, of which can be classified based on their aeration methods: turned or 

forced aeration systems. Turned systems are commonly based upon the windrow system, 

which entails the feedstocks being piled in elongated heaps up to 2 m high and 50 m in 

length. In contrast to turned systems, actively aerated systems are often more complex 

with computer controlled aeration regimes, and generally offer greater control over the 

process conditions. Having greater process control is often desirable with highly 

heterogeneous wastes such as MSW as this aids the operator in adapting the process to 

suit the chemical and physical makeup of the feedstock (Farrell and Jones 2009). 

Figure ‎2.4 shows the main systems of centralized composting, that is, aerated static-pile 

system, enclosed system and the windrow system. In aerated static-pile system, piles of 

organic waste are formed, which are sometimes covered with screened compost to reduce 

odours and to maintain a high temperature inside the pile. Aeration is provided through 

blowers and air diffusers. The enclosed system is either a silo type or an agitated bed 

type. The enclosed container ensures control of temperature, oxygen concentration, and 

odours. Windrow is simply a pile of waste material subjected to decomposition. In cross 

section, the shape of a windrow varies from rectangular to trapezoidal to triangular, 

depending largely on characteristics of the composting material and equipment used for 

turning. Aeration of the composting mass is achieved by frequent turning (Kumar 2011). 

Table ‎2.3 summarized esign parameters of MSW composting systems.  
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Figure ‎2.4 Typical composting systems(Kumar 2011) 
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Table ‎2.3 Design parameters of MSW composting systems 

System Waste Source Size Scale Operating for 

aeration 

Bulkign 

agent/Mixing 

ratio 

Moisture content 

adjustment  

Ref 

 

Windrow  MSW Jabalpur city 4’ high, 8’long Full scale  Turned manually 

every 3-5 days 

Vegetable, fruit 

and kitchen waste 
Sprinkling water 

to maintain 

moisture of  40-

60% for 6 weeks 

(Gauta

m et al. 

2010) 

In-Vessel Food 

waste  

Hsinchu City  

Taiwan 

120-L stainless steel 

cylindrical reactor (60 

cm length and 50 cm 
diameter) 

Lab-scale Air pump at a rate 

of 10 L/min 

Food and green 

wastes 
- (Kumar 

et al. 

2010) 

Windrow  MSW Spain 3x3x1.25 m pile Full scale  Centrifugal blower  <100 mm fraction 
of MSW 

- (Mato 

et al. 

1994) 

Static piles Municip
al 

organic 
waste 

(MOW) 

Patagonia 

Argentina 

Four static piles (8.5 

m3) 

Full scale  Turning at 30, 50, 

70, and 

130 days 

Shredded MOW,  
unshredded MOW, 

shredded MOW + 
woodshaving 

(1:1v/v) and 
unshredded 

MOW+ 

woodshaving 
(1:1v/v) 

Adding water at 

50 days  

(Tognet

ti et al. 

2007) 

In-Vessel Food 

waste  

Chuncheon, 

Korea 

Compost bay with 

45m length, 6m 

width, and 1.2m 

depth (a total volume 

of 324m3) 

Pilot 

scale  

Forced 

aeration at a rate 

of 0.15m
3
/m

3
 min 

Continuous 

horizontal flows 

(food waste/ wood 

chips 3:4 w/w) 

- (Kim et 

al. 

2008) 

Windrow  MSW Canary 

island, Spain 

Heaps with 3 m in 

length, 2 m in width 

and 0.75 m in height. 

Full scale  Six to eight 

turnings for 6-8 

weeks 

810 kg waste Adding water to 

maintain 

moisture of 40-

60% 

(Iglesia

s 

Jiménez 

and 

Perez 

Garcia 

1989) 

Windrow  MSW Carpi, Italy 8 m
3 

trapezoidal pile Full scale  Aerated (turned MSW and plant Adding water to (Castal
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System Waste Source Size Scale Operating for 

aeration 

Bulkign 

agent/Mixing 

ratio 

Moisture content 

adjustment  

Ref 

 

and mixed every 3 

days) for 30 days 

and static 70 days 

waste 1:1 v/v maintain 

moisture of 40–

50% 

di et al. 

2008) 
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In order to compost fishery waste, different systems and sizes of reactors have been 

reported in the literature. Composting was conducted in the full-scale, pilot scale and 

bench scale reactors for different purposes. The composting methods used by the fish 

processing industry include passively aerated static piles, actively aerated static piles, 

turned windrows and in-vessel systems. Selection of the most appropriate method will 

depend on the nature of the waste, the location of the site (e.g. proximity to urban or rural 

areas) and the capital and operating funds available (Schaub and Leonard 1996). The 

windrow and aerated static-pile methods are the most appropriate for on farm fish 

composting.The windrow method requires turning periodically, while the aerated static-

pile method does not require turning. With this method, aeration is generally achieved by 

piling the mixed raw materials onto a base containing perforated pipes (Liao et al. 1994). 

Forcing air and/or turning of composts aerates waste and retains the whole mass at a high 

temperature for a long period. Turned composts or force-aerated static pile composts 

without a colder envelope therefore tend to lose ammonia that causes odour problems and 

decreases the fertilizer value of the product (Hayes et al. 1994). Although the composting 

process works well with windrows in remote locations, composting of seafood wastes can 

create odor problems for unsympathetic neighbors. Optimal process control of in-vessel 

systems can control and perhaps accelerate the composting process. Other advantages of 

in-vessel composting compared to open windrow composting are odor control and 

prevention of vermin and vector problems (Schaub and Leonard 1996). Actively aerated 

static pile method was reported to minimize the losses of ammonia while in-vessel 

systems have the advantage of being immune to climate restrictions. Such systems result 
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in material composting more quickly and efficiently, and allow increased rates of 

decomposition. A rough qualitative comparison of these methods is shown in Figure ‎2.5. 

In general, higher technology systems require higher capital investment but result in 

better control of the process and higher waste processing rates. Higher waste processing 

rates generally result in less area being required for the total system (Schaub and Leonard 

1996). 

The windrow composting system generally composed of three layers as it is shown in 

Figure ‎2.6, the base layer made of bulking agent to drain the composting system and 

intercept the leachate, composting layer composed of fish waste and bulking agent to 

generate the high temperature and sustain the aerobic microbial process and the cover 

layer composed of bulking agent or recycled compost to intercept the ammonia and odor, 

retard heat loss and retard the fly and animal entry into composting layer (Frederick 

1989). 
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Figure ‎2.5 Schematic comparison of composting methods (Schaub and Leonard 1996) 
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Figure ‎2.6 Fish waste composting process (Frederick 1989) 
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Vizcarra et al. (1993) developed a modified version of the static pile method specifically 

for the composting of whole fish mortalities (Figure ‎2.7). This two-stage, layered static 

pile method is particularly suitable for any compostable materials which do not readily 

lend themselves to mixing. Whole fish and bulking agent were arranged in alternate 

layers within a reactor located on a platform over an air chamber. This method is more 

economical, since it entails less labor and equipment. The basic facilities are portable and 

require minimal space, making the method especially appropriate for small and medium 

sized fish farming for their composting purposes. With this method, composting could 

even be done on floating offshore structures where there would be little danger of it 

giving offence. Evaluating the effect of the height of the modified static pile on both the 

process and on the quality of the compost produced suggested that the heavier and thicker 

layers of fishery waste must have slowed down decomposition and also the taller the pile, 

the longer it takes for the temperature to rise to thermophilic levels and the longer it takes 

for the temperature to cool down to ambient temperatures. However, after 4 months pile 

heights had no significant effect on the quality and maturity of the fishery compost 

(Vizcarra et al. 1993). Liao et al. (1994) studied layered static pile method and their 

results indicated that thinner layers of fishery waste can improve the temperature profiles 

and higher mixing ratio (3:1) with thinner layers allows more fishery waste to be 

composted per unit area. 
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Figure ‎2.7 Cross section of layered static pile (Vizcarra et al. 1993) 

  



36 

 

Passively aerated windrow system (PAWS) is a system was developed for fishery waste 

composting which has two essential features, passive aeration and envelopment. PAWS 

eliminates needs for turning by placing open-ended air intake pipes at the base, with 

holes only on the top side so that the heat generated in the compost mass itself energizes 

the movement of fresh oxygen-rich air into the mix and by enveloping the decomposing 

mass in already sanitary (hygienic, weed seed and pathogen-free) peat or mature 

compost. The PAWS technology has been proven to be effective for composting wastes 

from seafood processing (Hayes et al. 1994). A summary of composting technologies 

have been used for fishery waste is presented in Table 2.4.
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Table ‎2.4 Design parameters of fishery waste composting systems 

System Waste Source Size Scale Operating for 

aeration 

Bulkign 

agent/Mixing ratio 

Moisture 

content 

adjustment  

Ref 

 

In-vessel 

(self 

heating) 

Clam waste Norfolk, 

Virginia, USA 

20.5 cm 15.5 

cm  17.0 cm 

(length width 

height), 

insulation wall 

(7–8 cm 

thickness) 

Bench-scale passive 

aeration 

Clam wastes and 

woodchips1:0.5, 

1:1, 

1:1.5, 1:2, and 1:3 

(w/w) 

Sprinkling 

water 

(Hu et al. 

2009) 

In-vessel 

(self 

heating) 

Clam waste Norfolk, 

Virginia, USA 

drums (75 cm 

height with 40 

cm inner 

diameter) 

wrapped with 

glass-wool (8 

cm thickness) 

Pilot scale 

 

natural 

aeration/ 

manually 

shaken 2–3 

min every day 

Clam waste to 

woodchips 

1:1 (w/w) 

Maintained 

moisture at 55–

65%. 

(Hu et al. 

2009) 

Windrow                   Fish gurry                                                                                                                                                                   Waldoboro, 

Maine, USA 

30 m3- 178 m3) 

5 piles) 

Full scale Turning ( keep 

O2 level over 

5%)/ first 3 

week ( twice 

per day) after 3 

week ( once 

per day) 

Sawdust : horse 

litter: fish gurry 

(20-90m3) : (7.5-

30m3) : (2.8-19 

m3) (keep fish 

waste at 13-24% 

) 

Natural 

precipitation 

(rainfall 

approximately 

1 month)  

(Brinton 

and 

Seekins 

1988) 

Windrow  Fish waste  Coast of Lugo 

(NW Spain, 

Conical piles 

(6×2×1.5 m) 

Full scale  Open air Seaweed, fish 

waste, and pine 

bark at a 

volumetric ratio of 

1:1:3 

Piles were 

constructed on 

an 

impermeable 

base and 

covered with 

geotextile 

fabric 

(TopTex®) to 

avoid moisture 

loss 

(Illera-

Vives et 

al. 2013) 
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System Waste Source Size Scale Operating for 

aeration 

Bulkign 

agent/Mixing ratio 

Moisture 

content 

adjustment  

Ref 

 

Windrow  Rrock fish 

head, 

halibut 

head, some 

salmon fish 

head, and 

some fish 

bones 

Homer, Alaska 14 feet (4.3 m) 

long, 12 feet 

(3.7 m) wide 

and about 8 feet  

(2.4 m) in 

height. 

Full scale Weekly 

turning  

12 totes of fish 

waste (363 to 454 

kg/tote)  and 50 

cubic yards (38.5 

m3) of sphagnum 

peat moss 

- (Tarnai 

2009) 

Windrow  Fish waste 

generated 

by 

salmonid 

fishery   

New York’s 

great lake  

4 feet high, 5 

feet wide and 16 

feet long  

Full scale  Aeration 

through 

perforated 

pipes 

Base of gravel 

covered with wood 

chip, mixture of 

fish waste and peat 

moss and final 

layer of peat moss 

3000-5000 lb fish 

waste 

Add water to 

maintain 

moisture 40-60 

percent  

(White et 

al. 1989) 

In-vessel  Crab scalp  Maryland's blue 

crab processing 

plants, USA 

0.2m
3
 chamber, 

covered with 

polyethylene 

and wrapped in 

9 cm of 

fiberglass  

Bench scale  Controlled 

aeration based 

on the signal 

form timer/ 

thermometer 

Crab scrap, straw 

,water and ferrous 

sulfate to control 

pH at different 

ratio  

Adding water 

to the raw 

material  

(Cathcart 

et al. 

1983) 

In-vessel Fish waste, 

chicken 

manure and 

Queen crab 

shells 

Trinity and 

Foxtrap,   

Newfoundland, 

Canada 

Bin was 2.5 m 

long and 1.25 m 

high 

and wide, 5 cm 

plastic foam 

insulation 

Pilot scale  Natural 

vertical 

convective 

flow of air 

through the bin 

25% fish offal, 

75% sawdust 

25% fish offal, 37-

5% sawdust, 

37.5% peat 

25% fish offal, 

75% peat 

20% chicken 

manure, 10% crab 

waste, 70% 

- (Martin et 

al. 1993) 
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System Waste Source Size Scale Operating for 

aeration 

Bulkign 

agent/Mixing ratio 

Moisture 

content 

adjustment  

Ref 

 

sawdust 

20% chicken 

manure, 10% crab 

waste, 35% 

sawdust, 35% peat 

20% chicken 

manure, 10% crab 

waste, 70% peat 

Layered 

static pile 

Fish 

mortalities  

Vancouver, 

Canada  

Square cross-

section of 0.9 m 

x 0.9 m 

Full scale  6 h daily at a 

rate of 0.2 

1/min for every 

kg of volatile 

matter. 

300 kg of fish 

morts and 100 kg 

of sawdust in a 3: 1 

ratio by weight. 

- (Vizcarra 

et al. 

1993) 

Static pile  Salmon 

and dogfish 

waste 

East Anglia, 

United 

Kingdom (UK) 

7.5 m3,2 by 2.5 

m and 1.5 m 

high,  

Full scale  Enhanced 

passive 

aeration 

system, loosely 

turned on 

average twice 

Five piles 

(unshredded and 

shredded  straw 

mixed with ground 

fish wastes and fish 

slurry  

- (Brinton 

1994) 

An 

agitated in-

vessel 

Offal from 

fish 

processors 

and salmon 

farm 

mortalities 

University of 

British 

Columbia's 

Research Farm 

50 

m x 2.5 m x 

1.25 m (length × 

width × height). 

Full scale  Aeration not 

provided 

Two batch 1.3705 

kg of sawdust 

and 2850 kg of 

fisheries wastes, 2. 

3960 kg of sawdust 

and 3960 kg of 

fisheries wastes 

Sprinkle water 

to maintain a 

consistent 

moisture  

(Liao et 

al. 1995) 
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System Waste Source Size Scale Operating for 

aeration 

Bulkign 

agent/Mixing ratio 

Moisture 

content 

adjustment  

Ref 

 

Windrow  Fish waste 

(mackerel, 

sardine, 

tuna, 

squid)from 

the 

Pescados 

Rubén, S.L 

Company 

Foz, NW Spain 10 m3  

1 m high and 6 

m long 

Full scale  Aeration not 

provided, 

turned weekly 

during the 

first two 

months and 

every 15 days 

during the last 

two months 

Fish, seaweed and 

pine bark 1:1:3 

- (López-

Mosquera 

et al. 

2011) 

Agitated 

in-vessel 

system  

Fish waste  Vancouver BC, 

Canada 

20m× 61m Full scale  Aeration 

through 

perforated 

pipes 

Fish waste and 

wood waste  

- (Holbek 

and Egan 

1992) 

Aerated 

static pile  

Salmon-

farm 

mortalities 

Vancouver, 

British 

Columbia   

Square cross-

section of 0.9 m 

x 0.9 m, Height 

varying from 

0.6 to 0.85 m 

Full scale  Aeration at a 

rate of 0.2 liter/ 

min kg volatile 

matter for 6h 

daily 

100, 200, and 300 

kg of fish molts in 

each reactor, 

respectively, with 

100 kg of sawdust 

as bulking agent 

and 20 kg of cow 

manure 

- (Liao et 

al. 1994) 

Windrow Seastar 

(Asterias 

amurensis) 

waste 

Hobart, 

Australia 

Windrow with 

Heaps built to a 

height of 

1.5 m 

Full scale Turning at 

approximately 

10 day 

intervals over a 

two month 

composting 

period 

Eucalypt sawdust: 

seastar waste in a 

ratio of 4.'1 (v/v) 

and of bark 

waste: seastar 

waste in respective 

ratios of 3 : 1 and 5 

: 1 

(v/v). 

- (Line 

1994) 
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System Waste Source Size Scale Operating for 

aeration 

Bulkign 

agent/Mixing ratio 

Moisture 

content 

adjustment  

Ref 

 

Passively 

aerated  

Head and 

viscera of 

chum 

salmon  

Vancouver, 

British 

Columbia  

76 litre PVC 

Pail 

Small scale  Passing air 

form air 

chamber at the 

bottom to the 

top of the 

reactor through 

pipe 

27.25 kg Fish 

waste+ 5.45 kg 

bulking agent 

(sawdust, peat and 

wood shaving)  5:1 

(w/w), covered 

with fiberglass 

layers  

 (Liao et 

al. 1995a) 

Static pile Fish 

processing 

waste  

Sea Grant 

institute 

Wisconsin,USA 

8 feet wide, 4 to 

6 feet height  

Full scale  Turning every 

3 weeks 

One volume of fish 

waste (100,000 lb) 

to three volume of 

wood chips, 

covered with layer 

of wood chips and 

mature compost 

- (Frederick 

1991) 

Windrow  Riach, 

perch,  and 

Amerch 

waste 

Partala research 

station, Juva, 

finland  

Six cubic meter Full scale  Turning the 

pile 

50 or 100 kg/m
3
 

fish waste mixed 

with pear, sawdust 

and reed over 10 

cm layer of peat 

5 months 

compost was 

frozen  

(Roinila 

1997) 

In-Vessel  Crawfish  Louisiana, USA 0.3 m 3 

Commercial 

reactors 

(Barclay 

Recycling Inc., 

Ontario, 

Canada). 

Small scale  Opening in the 

reactor for 

aeration  

Crawfish residuals 

mixed 1:5 v /v with 

pine wood chips 

and rice hulls and 

1:6.5 v /v with 

bagasse and bark 

Adding water 

to maintain 

moisture 

contents 

between 40-60 

percent 

(Minkara 

et al. 

1998) 
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System Waste Source Size Scale Operating for 

aeration 

Bulkign 

agent/Mixing ratio 

Moisture 

content 

adjustment  

Ref 

 

Passively 

aerated in-

vessel  

Salmonid 

waste  

National 

University of 

Comahue, 

Bariloche, 

Argentina 

220-Liter PVC 

container 

Pilot sale  A perforated 

pipe from the 

air 

chamber at the 

bottom to the 

top of each 

reactor was 

installed 

to facilitate 

aeration 

Rainbow trout 

offal: 16.2 

kg of heads and 

skeletons and 31.2 

kg of 

viscera; 2) bulking 

agent: 16.0 kg of 

sawdust 

+wood shavings. 

Adding water 

to maintain 

moisture 

contents 

between 40-60 

percent 

(Laos et 

al. 2002) 

In-Vessel Crab 

processing 

waste 

Maine, USA 1 cubic meter 

(internal box 

dimensions are 

1 m X 1 m X 1 

m) 

Pilot scale  Intermittent 

aeration 

Crab processing 

waste to wood 

shaving (1:2 v/v) 

Water was 

added 

(Seymour 

et al. 

2001) 

Layered 

mesophilic 

compost 

system 

Arctic char 

iSalvelinus 

alpinus) 

waste 

Shepherdstown, 

West Virginia, 

USA 

3 plot of 144 ft2 Full scale  Passive oxygen 

transfer from 

base through a 

six-inch layer 

of course wood 

chips 

58.3 N, 18.8 P,  

and 902 Arctic 

char manure, and 

1,089 wheat straw 

or 1,545 

oak sawdust 

(pounds/acre/day) 

 (Adler 

and 

Sikora 

2004) 

 



43 
 

2.5 Composting Process Variable  

In order to control and optimize the composting process toward achieving a product of 

desired quality, it is necessary to understand the factors that influence the process in one 

way or the other. By providing a favorable environment for the growth and activities of 

the desired biota in the system, good quality compost can be produced (Gajalakshmi and 

Abbasi 2008). It has been demonstrated that physical properties of the composting 

feedstock significantly affect the composting process (Chang and Chen 2010). There is a 

range of parameters which can affect composting process and the quality of the end 

product such as the C/N ratio, moisture content, aeration and temperature. The effect of 

these factors are discussed below. 

2.5.1 C/N Ratio 

The C/N ratio is one of the most important parameters to control the composting process 

and to determine the feedstock recipe and the degree of maturity of the end product of 

compost (Iglesias Jiménez and Pérez García, 1992; Doublet et al., 2010; Puyuelo et al., 

2011, Guo et al., 2012). C/N ratio can influence microbial activity in composting 

processes (Zhu 2007). Nitrogen has received the most attention in composting systems 

since it is the most needed element for plant nutrition. Moreover, it has often been 

recognized as a limiting factor for microbial growth and activity during the 

decomposition of plant residues especially in materials with a high C/N ratio. Carbon that 

provides energy for the degradation process is an element that is also most likely to be 

lost during the composting process (Eklind and Kirchmann, 2000; Tiquia and Tam, 2000; 
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Dresbøll and Thorup-Kristensen, 2005). Nitrogen content increases through the 

mineralization of organic matter and consequent loss of 𝐶𝑂2, 𝐻2𝑂 and decreases through 

ammonia volatilization. At the later stage, the activity of nitrogen-fixing bacteria 

compensates the nitrogen loose partially. High temperature of composting can affect 

adversely the nitrification and nitrogen balance (De Bertoldi et al., 1983). The C/N ratio 

of the initial composting material has also been reported to affect N loss during 

composting. A very low C/N ratio can lead to loss of N through 𝑁𝐻3volatilization (De 

Bertoldi et al., 1983; Tiquia and Tam, 2000). When C/N ratio is low, the excess of N can 

be lost from the composting mass through leaching or volatilization as ammonia and lead 

to potential odor problem. An extremely high C/N ratio makes the composting process 

very slow as there is an excess of degradable substrate and lack of N for the 

microorganisms (Gao et al., 2010; Christensen, 2011). Haug, (1993) proposes an 

optimum C/N ratio value as 15- 30 (Haug 1993). If the initial C/N ratio is greater than 35, 

microorganisms must oxidize the excess carbon, until a more convenient C/N ratio for 

their metabolism is reached (De Bertoldi et al., 1983). Composting of a nitrogen/protein-

rich (a low C/N ratio) may result in a rapid increase of temperature to thermophilic phase, 

while in the composting a lignocellulose-rich (high C/N ratio) material, the process may 

exhibit longer initial mesophilic period before reaching thermophilic phase 

(Alburquerque et al., 2006). A decreasing trend in the ratio of C/N with eventual 

stabilization, can generally be observed as composting progresses due to the release of 

CO2 as organic substrates are decomposed, resulting in the loss of carbon from the 

system (Wichuk and McCartney 2010). For C/N ratio as maturity and stability index, 



45 
 

different thresholds ranging from <10:1 to <20:1 has been recommended in the literature 

(Mathur et al. 1993; Sullivan and Miller 2001), 

Food waste has high moisture contents and low C/N ratios for efficient composting (Iqbal 

et al. 2010; Kumar et al. 2010; Mato et al. 1994). To control the moisture contents and to 

optimize the C/N ratio, bulking agents are added in composting process for an effective 

disposal of MSW. Bulking agents also affect ammonia emission and others volatiles 

during the composting process (Iqbal et al. 2010). Bulking agents serve two purposes in 

composting; it allows air to enter the pile so bacteria and fungi can work, and it provides 

a proper C/N ratio so the material will compost efficiently without offensive odor 

(Frederick 1989; Laos et al. 1998). The required quantity of bulking agents depends on 

the structure and moisture content of the waste and on the properties of the bulking 

agents (Schaub and Leonard 1996). Cost and availability are further consideration when 

choosing bulking agent (Minkara et al. 1998). The weight ratio of bulking agent and 

waste also affects the total throughput of a composing facility. That is, using less bulking 

agent in the composting mix means that more wastes can be composted in a given time 

period (Liao et al. 1995). The amount of bulking agent needed may range from less than 

1:1 (parts by volume) to more than 5 bulking agent to 1 part waste (Liao et al. 1995a). 

Chang and Chen (2010) mixed food waste with three bulking agent including rice husk, 

sawdust and rice barn to investigate the effects of bulking agents on the composting 

process of food waste. Their results showed that the water absorption capacity of the 

composting mixture was the dominant physical property that affected the composting 

rate. More sawdust in the composting mixture resulted in the increases of the water 
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absorption capacity and the composting rate, shorter composting and acidification times, 

and lower final pH value (Chang and Chen 2010). Adhikari et al. (2008) evaluated 

available bulking agents in the region for food waste composting: chopped hay , chopped 

wheat straw, pine wood shaving, rough cardboard without a glossy finish, medium rough 

cardboard with a medium glossy finish, smooth cardboard with a glossy finish, wheat 

pellets and wasted animal feed. In other study, Adhikari et al. (2009) tested three bulking 

agents (e.g., chopped wheat straw, chopped hay and wood shavings) at three moisture 

levels for the composting of food waste. With a food waste ratio resulting in a 20% DM 

content, the chopped wheat straw (1:1.3) and chopped hay (1.5:1) formulas met an 

acceptable level of nutrients (total nitrogen, total phosphorous and total potassium). Iqbal 

et al. (2010) investigated the effect of regionally available bulking agents (bagass, paper, 

peanut shell, sawdust) for moisture reduction during MSW composting. They found the 

effect of 40% addition of sawdust was best to optimize the moisture up to 60% in 

composting. Table 2.5 summarizes the physical and chemical properties of some 

commonly used bulking agents for MSW composting. 
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Table ‎2.5 The physical and chemical properties of some commonly used bulking agents for MSW composting 

Material  C (%) N (%)  pH Ash 
content(%) 

C/N ratio Moisture 
(%)  

Ref 

Rice husk 37-40 0.6-0.7 - 18.21 60-70 9-11 (Chang and Chen 2010) 
Sawdust 43-46 0.2-0.4 - 2-3 140-160 10-12 (Chang and Chen 2010) 

Rice barn 48-52 1.6-2 - 8-11 25-30 10-14 (Chang and Chen 2010) 
Rice husk  41.56 1.22 7.1-7.3 - 34.17 8-11 (Kumar et al. 2010) 
Chopped wheat straw 50.4 0.5 7 - 103 - (Adhikari et al. 2009) 

Chopped hay 51.7 0.9 6.6  59 - (Adhikari et al. 2009) 
Wood shavings 54.5 0.08 5.6 - 676 - (Adhikari et al. 2009) 

Sawdust  45.56 0.49 6.38 17.98 92.36 - (Iqbal et al. 2010) 
Bagass 41.73 0.76 5.92 23.88 54.68 - (Iqbal et al. 2010) 
Peanut shell 36.58 6.0 6.32 34.17 6.06 - (Iqbal et al. 2010) 

Rice husk 21.0 0.83 4.89 62.21 25.15 - (Iqbal et al. 2010) 
Corn pith 32.47 0.87 5.11 41.55 37.25 - (Iqbal et al. 2010) 

Paper 18.97 0.39 6.32 65.86 48.25 - (Iqbal et al. 2010) 
cornstalks 50 10.5 7.43 - - 48 (Yang et al. 2013) 
sawdust 53 2.3 7.24 - - 6.1 (Yang et al. 2013) 

Spent mushroom 
substrate 

33 23.8 6.72 - - 11.6 (Yang et al. 2013) 
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Generally, low C/N ratio for fishery waste ranging from 2.6 to 9 was reported in the 

previous studies (Cathcart et al. 1983; Hu et al. 2009; Laos et al. 2002; Liao et al. 1995). 

To achieve the C/N ratios between 26 and 35 which have been observed to produce an 

efficient and rapid composting process, a careful blending should be prepared form 

fishery origin waste which are more nitrogenous (meaning proteinaceous) materials, can 

be as high as 12% N, with other carbonaceous bulking agents as a source of carbon to 

effect transformation of potentially highly malodours protein decomposition products 

into organic composition (Brinton and Seekins 1988). Since most of the nitrogen in fish 

wastes is readily available and are generally received and handled as wet slurry; 

therefore, such wastes require a readily available carbon additive and a relatively dry, 

high carbon bulking agent. Without it, the composting process will tend to generate an 

objectionable smell due to the release of ammonia gas (Liao et al. 1997; Liao et al. 1995). 

In addition, when fish material is not mixed in well with bulking agent, wet pockets 

remain and can quickly give rise to odor problems (Frederick 1989). Mixing fishery 

waste with bulking agent (a) has a wide C/N ratio; (b) is acidic and hydrophilic enough to 

trap NH3 in solution; (c) has high capacities for adsorbing and complexing cations like 

NH4
+ and CA++; (d) is fluffy enough to be well aerated so that malodours of anaerobic 

decomposition are not created but acidic SO4
--; and NO3

-, ions that help dissolve bone 

phosphates are generated (oxidatively); (e) deodorizes any malodours produced even 

transiently; (f) provides heat insulation; and (g) will, though biodegradable, not sustain 

thermophilic by itself so that the composts can mature early, would improve composting 

performance and shorten the composting period (Mathur S. I. 1988).  
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Bulking agents including peat moss, sawdust, peat, straw (wheat and oil seed rape), bark, 

bagasse, rice hull and sawmill waste have been mixed with fishery waste to produce 

desirable mix for composting (Brinton and Seekins 1988; Illera-Vives et al. 2013; Liao et 

al. 1995; López-Mosquera et al. 2011; Seymour et al. 2001). Wood by products wastes 

are the most common bulking agents mixed with fishery waste because they contain 

hemicelluloses and celluloses that degrade easily, and the recalcitrant lignin that 

contribute heavily to humus formation, also they are more widely available (Hayes et al. 

1994). Due to the importance of the choosing of bulking agent and finding optimum 

mixing ratio, many studies have been focused on investigation of suitable bulking agents 

to be mixed with fishery waste and generate mature and stable product (Liao et al. 1995a; 

Liao et al. 1997; Line 1994; Martin et al. 1993; Minkara et al. 1998). Liao et al. (1997) 

composted fish waste with four bulking agents including fir, Alder, peat moss and 

vermiculite for 20 days in a full scale composting system. They concluded that all mixes 

composted well and ammonia emission from composting piles was reduced by the 

addition of peat moss, vermiculite and alder as bulking agents. Peat moss was more 

effective than vermiculite in retaining ammonia. Seeing that peat moss contains acidic 

carboxyl and phenolic hydroxyl compounds, therefore, the peat moss mix had the lowest 

pH among the different treatments. As a result, more nitrogen was retained as ammonium 

in the peat moss mix and less ammonia was volatilized. Since peat moss is also an 

essential ingredient in potting mixes used for plant production, its use would probably be 

preferred (Liao et al. 1997). Liao et al. (1995a) concluded that composting with peat 

moss were better able to retain nitrogen so it produced superior compost in comparison to 
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sawdust and wood shaving. The results of their study indicate that peat moss, sawdust 

and wood shaving are all potentially good bulking materials for the composting of fish 

offal (Liao et al. 1995a). In addition peat moss has excellent water absorption capacity 

which rendering them as a suitable bulking agent for fishery waste with high moisture 

content (Martin et al. 1993). Frederick (1989) recommended using three volumes of peat 

moss, one volume of fishery waste, and one volume of covering material (compost or 

peat moss) to compost fishery waste in a windrow in Wisconsin (Frederick 1989). Adler 

and Sikora (2004) studied the fishery waste composting with wheat straw and oak 

sawdust and they found the structure of carbon source affected both the potential for 

runoff and the oxygen content. The wheat straw's open structure made it possible for it to 

absorb waste liquid without runoff during both the summer and winter season. The oak 

sawdust compost mixture did not reach stable stage until sometime during the 118 to 167 

day period of composting. However, the wheat straw compost mixture reached stability 

during the 63 to 118 day period. Mineralization and nitrification rates were higher with 

wheat straw as indicated by the higher levels of both ammonium and nitrate probably due 

to the higher rates of decomposition (Adler and Sikora 2004). Wheat straw needs careful 

consideration before being incorporated into mix recipes. Fresh wheat straw has 

hydrophobic surface characteristics as well as a high lignin content, both of which can 

lengthen its breakdown time. As with other types of straw, wheat straw is a bulky 

material with low density. Thus a very large quantity of straw is needed in proportion to 

fishery waste, when considering C/N ratios, with the ratios increased to compensate for 

the ligneous nature of the material (Brinton 1994). 
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Significant losses of N and other essential nutrients can occur during composting. Such N 

losses are attributed to NH3 volatilization as well as subsequent leaching of NH4 and N03. 

Composting crawfish residuals with rice hulls, bark and bagasse resulted in average 

losses of total N of 47.2 percent, 42.6 percent and 20.2 percent (ash basis), respectively, 

after 50 days. Because bagasse was the most degradable of the bulking agents, a greater 

portion of its N may have been retained as organic N thus reducing volatile losses of 

NH3. NH4 and N03 concentrations in bagasse mixture were consistently low, which 

support the hypothesis that greater immobilization of N may account for the lower losses 

of N from bagasse mixture. Bagasse appeared to be able to assimilate mineralized N 

more readily than bark, rice hulls, or wood chips (Minkara et al. 1998).  

Martin et al. (1993) employed composting system to compost fish offal, chicken manure 

and crap processing waste to evaluate the effect of peat and sawdust as bulking agents on 

composting process. Relationships were observed between the type of bulk material 

employed and the composition of the composted material. The acidic peat fibers by their 

adsorption properties, were able to retain NH3, which otherwise would escape from the 

composting process (Martin et al. 1993). The lower pH and longer thermophilic process 

were observed for fishery waste compost containing peat in comparison to the compost 

containing straw and reed as bulking agents (Roinila 1997). In composting of blue crap 

scrap in Florida, fresh cypress sawdust, aged cypress sawdust, pine bark and yard 

trimming were used as bulking agents. Fresh cypress sawdust sustained longest period of 

active heating but both composting piles with sawdust completed active composting by 

about 60th days. When pine bark was used, the heating period was very short-lived. All 
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piles meet the requirement of 15 days or more temperature above 55ºC for pathogen 

reduction (Brinton and Gregory 1992). All studies agreed that the choice of bulking 

agents is important for fish waste composting performance and the quality of the end 

product. The physical and chemical properties of some commonly used bulking agents 

for fishery waste composting are summarized in Table ‎2.66.  
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Table ‎2.6 The physical and chemical properties of some commonly used bulking agents for fish waste composting 

Material  C (%) N (%)  pH EC 
(mS/cm_1) 

Ash 
content 

C/N 
ratio 

Organic 
matter (%)  

Moisture 
(%)  

Ref 

Sawdust 50 0.24 - - - 208 - - Eyras et 
al.,1998 

Sawdust 40 0.08 - -  500 - 30 (Laos et 
al. 1998) 

Wood 

chips 

483.5 ± 

3.8 (g/kg 
DM) 

 40.0 ± 

1.4 
(g/kg 

DM) 

7.75 ± 

0.05 

2.5 ± 0.3 

(mS/cm) 

9.1 ± 2.5 

(g/kg DM) 

12 990.9 ± 2.5 

(g/kg DM) 

43.2 ± 

0.9 

(Hu et al. 

2009) 

Wood 
chips 

50.3 0.1    719 98 5.5 (White et 
al. 1989) 

Straw 47.02 1.26    37.32 81.04 41.5 (Cathcart 
et al. 

1986) 
Peat  50 1    50 98.5 65 Mathur S. 

I., 1988 

 Pine Bark 49.89 0.4    121.8 - 47.03 Illera-
Vives et 

al., 2013 
Aged Bark      83  52 (Brinton 

and 

Seekins 
1988) 

Peat moss 24 1.1 3.6 1.2 
(mS/cm)  

 22.0 - 6.5 (Tarnai 
2009) 

Vermiculite 0 (%DW) 0.02 

(%DW) 

- - 0 - - 1.0 (Liao et 

al. 1997) 
Pine bark 50.41 ± 0.16 ± 5.63 ± 0.86 ±  304.24 - 38.08 ± (López-
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Material  C (%) N (%)  pH EC 

(mS/cm_1) 

Ash 

content 

C/N 

ratio 

Organic 

matter (%)  

Moisture 

(%)  

Ref 

0.02 0.01 0.04 0.02 ± 

11.84 

0.51 Mosquera 

et al. 
2011) 

Wood 
chips  

535.9 ± 
1.4  (g/kg 
DM) 

18.1 ± 
1.2 
(g/kg 

DM) 

7.75 ± 
0.05 

2.5 ± 0.3 9.1 ± 2.5 
(g/kg DM) 

29.6 990.9 ± 2.5 
(g/kg DM) 

43.2 ± 
0.9 

(Hu et al. 
2009) 

Lameque 

peat  

43.70 0.8 3.00 - - 53 96.0 50 (Hayes et 

al. 1994) 
Shigawake 
peat 

54.84 1.03 4.4 - - 53.24 98.72 75.00 (Hayes et 
al. 1994) 

Bagasse 436.3(g/kg 
DM) 

9.3 
(g/kg 

DM) 

- - - 47 - 53.4 (Minkara 
et al. 

1998) 
Rice hulls 372 (g/kg 

DM) 
4.8  - - - 76.9 - 9.5 (Minkara 

et al. 

1998) 
Bagasse 41.5 0.36 4.56±0.12 0.28±0.03 16.51±2.62 115.2 83.49±2.53 30 (Cole et 

al. 2015) 
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2.5.2 Moisture Content  

Microbial activity and the physical structure in the composting process can be affected by 

moisture content, also it has a central influence on the biodegradation of organic 

materials (Ahn et al. 2008). Moisture content is one of the critical design and operating 

parameters used in compost engineering systems. It is important to transport dissolved 

nutrients required for the physiological and metabolic activities of microorganisms 

(McCartney and Tingley 1998). Moisture works as a medium to transfer dissolved gas 

and nutrients absorbed through the cell membrane of microorganisms (Christensen 2011; 

Haug 1993). Moisture content has also significant effects on enzyme activities and 

microbial respiration of the composting process (Mondini et al. 2004). The moisture 

content during the active phase of composting is a function of temperature and rate of 

aeration. Positive aeration, temperature elevation and turning can reduce the moisture 

content in composting matrix (Said-Pullicino et al. 2007). Over the period of composting, 

the moisture content drops through leaching and evaporation and inversely, the volume of 

air within the pile increases until there is sufficient air to meet the needs of the aerobes. 

At that time, the process of active composting begins and the temperature in the pile 

starts to rapidly rise (Vizcarra et al. 1993). Monitoring the changes in moisture content 

over time is considered useful for assessing the progress of composting process, since the 

heat generation which accompanies decomposition drives vaporization, moisture loss is 

therefore indicative of the decomposition rate (Liao et al. 1995). In general, a 50% 

moisture was the minimum requirement for maintaining high microbial activity (Liang et 

al. 2003). Optimum moisture content for most materials composting is in range from 50% 
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to 70%, while some other materials can be effectively composted outside this range 

(about 25–80% on a wet basis) (Cronje et al. 2003; Haug 1993). 

CO2 evolution was used to examine the effect of temperature, aeration, and moisture on 

composting of food waste by Suler and Finstein (1977). Carbon dioxide formation was 

maximal at the intermediate moisture content (60%). They stated moisture content was a 

convenient and useful process control parameter in composting but it was a poor means 

of comparing the water status of dissimilar organic materials as this relates to microbial 

activity (Suler and Finstein 1977).  

For fish waste, moisture content from 35% to 75% has been reported in the previous 

studies (Brinton 1990; Hayes et al. 1994; Mathur et al. 1986) . Haug (1993) found most 

of the bacteria halted their activity at very low moisture content. In some cases, to 

prevent moisture drop, water was added to the fishery waste composting system to 

sustain moisture content above 40% (Cathcart et al. 1983; Laos et al. 2002; Minkara et al. 

1998; White et al. 1989). Cathcart et al. (1986) stated carbon dioxide generation is a 

function of moisture content and temperature during crab scrap composting process. 

Maximum predicted carbon dioxide generation occurred at 55-56 °C and at a moisture 

content of 55 % (Cathcart et al. 1986). 

2.5.3 Aeration 

The main purposes of air supply to composting is to provide oxygen for biological 

degradation, dry up the wet materials and remove excess moisture, and to carry off 

exhaust gas and generated heat (Haug 1993). Air flow influences spatial distribution of 

gases, moisture, temperature, and the decomposition rate of the organic matter (Cronje et 
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al., 2003). Lack of aeration can lead to anaerobic conditions and excess aeration will 

increase the cost the heat, as well as the loss of moisture and ammonia (Guo et al. 2012). 

Shen et al. (2011) found that composting never reached the thermophilic phase at low 

rate aeration. Also at the low aeration rate, the production of organic acids due to 

anaerobic conditions led to the relatively low pH, large CH4 production, high N2O 

emissions, higher loss of total nitrogen , low total organic carbon (TOC) reduction 

(Paradelo et al.) and low GI (Shen et al. 2011). Rasapoor et al. (2009) stated that a lower 

aeration rate had a significant effect on the ammonium and nitrate formation. (Haug 

1993) recommended the aeration rate with a value ranging from 1.2 to 2.0 g O2/g 

biodegredable volatile solids (BVS) for most composting substrates and a higher value 

such as 4.0 g O2/G BVS for saturated substrates (Rasapoor et al. 2009). 

The influence of the industrial control composting conditions (aeration 0.05–0.3 L 

kg.min-1 and moisture 40–70 %) of MSW compost on emissions of volatile organic 

compounds (VOCs) was studied by Delgado-Rodríguez et al. (2012). They reported the 

highest emissions of VOCs were in the early stages of the MSW composting process 

(initial and thermophilic phases). Aeration rate had a strong effect on VOCs emissions. 

High aeration rates (0.3 L.kg.min-1) caused normally high emissions of all selected 

compounds in the early stages of the composting process. A medium moisture value 

(55%) could be a suitable balance to control compound emissions. 

Arslan et al. (2011) determined the effect of various aeration rates (0.37, 0.49, 0.62, 0.74, 

0.86, and 0.99 L/min kg volatile solids (VS) on composting to supply the optimum 

aeration rate for a successful and economic composting of vegetable and fruit waste. The 
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highest C/N reduction was observed at airflow rate of 0.62 L/min kg VS. They 

recommended 0.62 L/min kg VS as the optimum aeration rate for forced aerobic 

composting of vegetable and fruit waste.  

The effects of different aeration rates (0.4, 0.6 and 0.9 L/min.kg), and aeration patterns on 

the composting of MSW was investigated by (Rasapoor et al. 2009). The result of the 

study showed the lower and medium aeration rates had a significant impact on nitrogen, 

C/N ratio and temperature profile, while higher aeration rates led to higher EC and values 

starting at a rate of 0.6 L/ min. kg during first 2 month of the process and continuing at a 

rate of 0.4 L/min. kg until the end of composting process would result in lower energy 

consumption (Rasapoor et al. 2009). 

Seymour et al. (2001) used the two aeration-control methods including 1) Constant 

frequency automatic aeration and 2) temperature dependent aeration to determine the 

comparative efficacy of the different aeration strategies on the crap waste processing 

composting process. Statistical analysis showed no significant difference for any aeration 

treatment in maximum temperatures, the duration of maximum temperatures or the slopes 

of temperature changes while additional air may have increased the drying effect of 

aeration which in turn could reduce microbial activity. They concluded that measured 

oxygen content was the best predictor of temperature changes (Seymour et al. 2001) . 

2.5.4 Temperature  

Temperature is one of the important factors for evaluating composting efficiency 

(Miyatake and Iwabuchi 2006). It can affect microbial metabolism, population dynamics 

(e.g., composition and density) of microbes and diversity of microorganisms (Arslan et 
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al. 2011; Suler and Finstein 1977) and thus can be considered as a promising index of 

microbial activities and biooxidative stages (Godden et al. 1983). Indeed, composting 

temperature is the valuable data for assessing the progress of decomposition (Minkara et 

al. 1998). Temperature increase within composting materials is a function of initial 

temperature, metabolic heat evolution and heat conservation (Liang et al. 2003). Heat 

generated during composting can be harnessed to kill human, plant, or animal pathogens 

(Adler and Sikora 2004). To assure pathogens were effectively reduced after composting, 

the temperature of the compost should remain higher than 55 °C for more than two 

weeks. It is also used as a standard measure of success (EPA 1995). It is necessary to 

consider that, in the self-heating ecosystem; temperature is both effect and cause. The 

temperature is a function of the accumulation of heat generated metabolically, and 

simultaneously the temperature is a determinant of metabolic activity (MacGregor et al. 

1981). Therefore, it can be considered both as a controlling and monitoring parameter. 

Some of the process factors identified as influencing both the maximum temperature 

attainable in the compost as well as the time taken to attain it are the composition of the 

organic wastes, the availability of nutrients, moisture content, particle size, and the 

degree of aeration and agitation (Vizcarra et al. 1993). The temperature of composting 

layer is also related to the size and shape of the composting pile. Low temperature can be 

observed in very flat pile which results in odor and leachate generation. Very wide and 

high pile can sustain high temperature for long time which can lead to rapid drop in 

moisture and killing beneficial bacterial and fungi required for compost maturation 

(Frederick 1989).  
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Many studies showed that nitrogen transformation is influenced by the temperature. 

(Grigatti et al. 2011) found an intense NH4–N accumulation up to 650 mg kg-1 in 

correspondence with the temperature peak. Zorpas et al. (2000) reported the total nitrogen 

is affected by the action of proteolytic bacteria and temperature. At high temperatures, 

nitrogen is lost in the atmosphere (Zorpas et al. 2000). 

Chang and Hsu (2008) stated during food waste composting each temperature peak could 

be interpreted as the decomposition of a certain material or a composite of 

decompositions of several materials. They observed the first sharp temperature peak as a 

result of the aerobic biodegradation of the fast decomposing sugars in the substrate in the 

first 9–12 h and the second broader temperature peak occurred between 18 and 96 h 

which was a composite of biodegradations of slowly decomposed materials and were 

composition-dependent.  

For fishery waste composting, the rapid establishment of high temperature in the 

composting layer is particularly important for stabilizing the fishery waste by dehydration 

and for encouraging the development of non-purifying fungi (Frederick 1989). It has 

been reported that in fishery waste composting, in which a high ratio of fishery waste to 

bulking agent attained a higher temperature since fishery waste contained high levels of 

easily digestible nitrogenous components such as proteins; when mixed with bulking 

agent with a high portion of carbonaceous material generated more heat and longer 

thermophilic period (Hu et al. 2009; Laos et al. 2002). Cathcart et al. (1986) showed 

temperature, moisture content and C/N ratio are all significant in the unshredded crab 

scrap composting model and suggested 67% and 63 °C as optimum moisture content and 
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temperature for composting of unshredded crab scrap, respectively (Cathcart et al. 1986). 

During clam waste composting, clam waste mixed with wood chips clearly showed the 

four compost phases: mesophilic, thermophilic, cooling, and maturation phases. The high 

ratio of clam waste to woodchips resulted in a higher temperature and longer 

thermophilic phase and, thus, an improved composting performance. Clam waste 

contained high levels of easily digestible components such as proteins; when mixed with 

woodchips, the mixes with a high portion of clam waste generated more heat. Sharp 

increase in temperature was observed during clam waste compost as an index of high 

microbial activity, which induces the rapid decomposition of the readily digestible 

components contained in the clam waste at the earlier stages of composting (Hu et al. 

2009). Liao et al. (1995) found that during fishery waste composting, at temperatures 

lower than 30°C, a linear relationship existed between an increase in the efficiency of the 

process and an increase in temperature. At temperatures in excess of 55°C, efficiency 

began to drop abruptly, becoming negligible at temperatures higher than 70°C. At 

temperatures in the region of 65°C, spore formers grow rapidly and most of the non-

spore-formers simply died off (Liao et al. 1995).  

Secondary peaks in the temperature profiles of fish waste compost pile have been 

explained in the literature as possibly due to (a) the re-invasion of the center by 

thermophilic fungi from the cooler outsides of the pile, (b) by mesophilic organisms 

recommencing activity or (c) excessive presence of ammonia and phenols, which inhibit 

bacterial growth and activity. Once most of the ammonia and phenols are released to the 

air, the bacterial population can resume growth, thus causing the minor peaks in 
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temperature later (Vizcarra et al. 1993). The volatility of ammonia is known to be 

temperature dependent, and higher levels of ammonia above the composting pile should 

occur as the temperature of the composting pile increases. As composting proceeded, the 

release of ammonia was further facilitated by increased pH of the compost piles (Liao et 

al. 1997). Temperature were sustained over 55 °C long enough for most of fish waste and 

MSW composting in the literature to meet the EPA requirement to reduce the pathogens 

(Illera-Vives et al. 2013; Laos et al. 2002; Liao et al. 1994; López-Mosquera et al. 2011). 

The temperature decrease after active phase of composting is considered a good indicator 

of compost maturity since it reflects the decrease in microbial activity and, consequently, 

the depletion of easily biodegradable organic compounds (Illera-Vives et al. 2013). 

2.6 Maturity and Stability Assessment of Compost  

2.6.1 Compost Maturity and Stability  

Maturity and stability are important indices for compost quality assessment and practical 

use of composted materials in agriculture (Mondini et al. 2004). Stability and maturity 

are both commonly used to define the degree of decomposition of organic matter during 

the composting process even if they are conceptually different (Benito et al. 2003). They 

are helpful to monitor the effectiveness of the biological degradation and process 

performance and compare different composting systems (Cossu and Raga 2008; Xiao et 

al. 2009). 

Stability is related to the microbial activity and can be expressed by biological indicators 

like respiration index (OUR or CO2 evolution rate), heat release as a result of microbial 



63 
 

activity, enzyme activity and total microorganisms count (Benito et al. 2003; Wu et al. 

2000). In stable compost, readily biodegradable material was decomposed and converted 

to humic-like substances so the matter cannot sustain the microbial activity anymore 

(Xiao et al. 2009). Thus the oxygen consumption reduced and odor cannot be produced. 

The rate of energy release due to microbial degradation of the organic matter equals the 

rate of energy loss to the environment, and temperature of the compost thus equals that of 

the ambient temperature (Zmora-Nahum et al. 2005). The stability of given compost can 

determine the potential impact of the material on nitrogen availability in soil or growth 

media and maintain consistent volume and porosity in container growth media (Grigatti 

et al. 2011).  

Maturity refers to the decomposition degree where compost does not pose any adverse 

effects on plants and growth of various crops (Castaldi et al. 2008; Zmora-Nahum et al. 

2005). It is commonly associated with plant-growth potential or phytotoxicity. Mature 

compost contains negligible or acceptable concentrations of phytotoxic compounds such 

as NH3 or short-chain organic acids and a high proportion of humic substances. Maturity 

has been evaluated based on chemical parameters correlated with plant response (Bernal 

et al., 2009, Xiao et al., 2009). 

Immature and poorly stabilized composts may cause a number of problems during 

storage, marketing and use. During storage of unstable compost, anaerobic conditions can 

result in odor, fire, or toxic compounds (CCQC 2001). During the usage of immature and 

unstable compost, due to the ongoing microbial activities and decomposition, a 

competition between plants and the microbial biomass for oxygen exist (Benito et al. 
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2003; Chukwujindu et al. 2006). This may constrain the availability of oxygen to roots, 

suppress plant growth and produce H2S and NO3 (Chukwujindu et al. 2006; Grigatti et al. 

2011). Decomposition of unstable composting also produces phytotoxic substrate like 

phenolic compounds, ethylene oxide, low-molecular weight organic acids, ammonia and 

toxic nitrogen compounds which could inhibit root growth (Zucconi et al. 1981).  

To characterize compost maturity and stability, several factors have been studied 

including microbial respiration activity (CO2 evolution) (Benito et al. 2003; Hellebrand 

and Kalk 2001; Wu et al. 2000), specific oxygen uptake rate (SOUR) (Cabañas-Vargas et 

al. 2005; Lasaridi and Stentiford 1998; Scaglia et al. 2007), dissolved organic carbon 

concentration (Grigatti et al. 2011; Mondini et al. 2004; Wu et al. 2000; Zmora-Nahum et 

al. 2005), seed germination tests (Ghaly et al. 2013; Komilis et al. 2011; Said-Pullicino et 

al. 2007; Zmora-Nahum et al. 2005; Zucconi et al. 1981), NH4
+-N and NO3

-- N 

concentration (Benito et al. 2003; Chikae et al. 2006; Francou et al. 2005; Gao et al. 

2010; Gregory et al. 2011), neutral degradable fiber and lignin (Hutchinson and Griffin 

2008), enzyme activity including protease (Benitez et al. 1999; Castaldi et al. 2008; 

Goyal et al. 2005; Kayikçioğlu and Okur 2011), urease (Benitez et al. 1999; Castaldi et 

al. 2008; Godden et al. 1983), cellulose (Castaldi et al. 2008; Godden et al. 1983), β-

glucosidase (Benitez et al. 1999; Kayikçioğlu and Okur 2011; Mondini et al. 2004), 

dehydrogenase activities (Barrena et al. 2008; Benito et al. 2003; Castaldi et al. 2008; 

Tiquia 2005), and phosphatase (Godden et al. 1983; Kayikçioğlu and Okur 2011; 

Mondini et al. 2004), cation exchange capacity (Gao et al. 2010; Iglesias Jiménez and 

Perez Garcia 1989), humification parameters (humic acid (HA), fulvic acid (FA)) 



65 
 

(Francou et al. 2005; Tiquia 2005; Wu et al. 2000),total organic carbon (Francou et al. 

2005; Gao et al. 2010),  microbial biomass (Mondini et al. 2004), BOD and COD 

(Spellman 2012), non-cellulosic polysaccharides,  phenolic compounds (Said-Pullicino et 

al. 2007), and water-soluble organic matter (Said-Pullicino et al. 2007). Threshold for 

maturity indices have been defined by several studies and summarized in Table 2.7. 

The major parameters considered in Canadian compost quality standards are maturity, 

trace element (heavy metal), time temperature requirements and microbial pathogens 

(indicator organisms). Based on the Canadian Council of Ministers of the Environment 

(CCME) requirements, compost must conform two of the three tests including 1) 

carbon/nitrogen ratio (C/N) ≤ 25, 2) oxygen uptake rate < 150 mg O2 kg−1 OM (VS) h−1, 

3) germination of cress or radish seeds in compost ≥ 90% that of control sample, and 

plant growth rate in soil–compost mix ≥ 50% that of control sample. Additionally, 

compost must be cured for a minimum of 21 days and must not reheat upon standing to 

greater than 20 ◦C above ambient temperature (Ge et al. 2006).  
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Table ‎2.7 Threshold for maturity and stability parameters 

Index  Threshold  Units  Reference  

respiration rates <2 mg CO- C g compost 

C-1 d-1 

(Brewer and Sullivan 

2003) 
Water-soluble organic 

matter  

<2.2  g/litre (Garcia et al. 1993)   

water soluble carbon 
(WSC)/ water soluble 

nitrogen (WSN) 

<2 - (García et al. 1991) 

WSC/ORG.N <5 - (Laos et al. 2002) 

index of biodegradability <2.4 - (Laos et al. 2002) 
C/N ratio 20 - (Iglesias Jiménez and 

Perez Garcia 1989)) 

WSC/N <0.5 - (Iglesias Jiménez and 
Pérez García 1992) 

NH4+-N 0,04%  (Seafish 2001) 
NH4

+-N/NO3
--N <0.16   (Benito et al. 2003) 

NH4
+-N/NO3

--N 1.9  (Benito et al. 2003) 

dehydrogenase activity 800  mg TPF kg-1d-1 (Tiquia et al. 2002) 
GI (high phytotoxicity) <50%  (Zucconi et al. 1981) 

GI(no phytotoxicity) 50%-80%  (Zucconi et al. 1981) 
dynamic respiration 
index 

500 mg O2 kg-1 (VS) h-1 (Adani et al. 2004) 

DOC  <17 g kg-1 (Bernal et al. 2009) 
DOC ≤10 g kg-1 (Hue and Liu 1995) 

WSC <0.5%  (Laos et al. 2002) 
WSC <1%  (Hue and Liu 1995) 
WSC <1.7%  (Bernal et al. 2009) 

C/N ratio 12  (Bernal et al. 2009); 
(Iglesias Jiménez and 

Pérez García 1992) 
Water extractable organic 
carbon(WEOC) 

<0.4 mg mL-1 (Zmora-Nahum et al. 
2005) 

dissolved oxygen content 4 g kg-1 (Zmora-Nahum et al. 
2005) 

C/N ratio <15  (Saidi et al. 2009) 
NH4+-N  < 400  mg/kg (Saidi et al. 2009) 

CO2-C  < 2000 mg CO2-C/kg (Saidi et al. 2009) 
dehydrogenase activity  < 1 mg TPF/g DM (Saidi et al. 2009) 
GI  > 80%  (Saidi et al. 2009) 
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2.6.2 Carbon and Nitrogen Related Maturity and Stability Indices  

A number of parameters related to determination of organic matter especially different 

forms of carbon and nitrogen such as WSC, total carbon, TOC, WSN, N𝐻4
+ − 𝑁, and 

N𝑂3
− − 𝑁 have been proposed for testing compost stability and maturity.  

WSC is an indication of water-soluble fraction of organic matter of compost. It is the 

most accessible organic nutrient to microorganisms because it consists of sugars, 

hemicellulose, and phenolic substances, amino acids, peptides, and other easily 

biodegradable substances during composting. It has been frequently used as maturity 

index in the literature (Gajalakshmi and Abbasi 2008; Paradelo et al. 2010).   

Ammonium and nitrate are the forms of N, which could be changed during composting. 

Poor aeration during composting resulted in excessive ammonium (Environment Canada 

2005). The N𝐻4
+/ N𝑂3

− ratio has also been proposed to estimate the compost stability. At 

the end of the composting process, the content of N𝑂3
−should be higher than that of N𝐻4

+, 

indicating that the process has been performed under adequate aeration conditions 

(Grigatti et al. 2011). 

Laos et al. (2002) measured the content of WSC, TOC, total nitrogen content, nitrate 

nitrogen, ammoniacal nitrogen in the water extract of the compost. They noticed that 

WSC and WSN decreased significantly with time in all the samples during composting. 

Also the WSC/WSN showed a decline by proceeding composting. The WSC, WSN, and 

WSC/WSN were suggested as suitable parameters to reflect maturity of compost. It was 

recommended that the value of WSC/WSN should be less than 2 in the final matured 

product of composting. 
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Said-Pullicino et al. (2007) found that the TOC/N ratio decreased with composting time. 

The variation in the water-extractable organic carbon to soluble organic nitrogen 

(WEOC: ON) ratio during the process showed a similar trend to that observed for the 

TOC/N ratio. The WEOC/ON ratio is generally lower than TOC/N ratio due to the faster 

degradation of the soluble C with respect to soluble organic N. It could be derived that 

when the concentration of organic C in the germination media is 1.85 mg mL-1, the 

phytotoxicity disappeared. Also the ratio of hydrophobic to hydrophilic water extractable 

organic C could represent the solubilisation and mineralization, that are responsible for 

the attainment of stability. 

2.6.3 Enzyme Activities as Maturity and Stability Indices 

Enzyme is a biocatalyst which controls the rate of substrates degradation or accelerates 

the rate of biological reactions. In degradative processes, enzymes act as the main 

mediators (Castaldi et al. 2008; Kayikçioğlu and Okur 2011; Valsange et al. 2012). They 

are responsible for the breakdown of several organic compounds characterised by a 

complex structure, finally leading to the solubilisation of simple water-soluble 

compounds (Castaldi et al. 2008). Due to the role played by enzymes in the biological 

and biochemical processes during composting, enzyme activity can indicate the ability of 

microbes to degrade a wide range of common organic substrates (Castaldi et al. 2008; 

Mondini et al. 2004; Tiquia 2002). The presence of a high content of degradable organic 

compounds in the initial mixture might stimulate microbial growth and enzyme synthesis 

(Castaldi et al. 2008). 
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Characterizing and quantifying specific enzyme activities during composting could 

provide information of dynamics of the composting process. They can reflect the rate of 

transformation of organic residues and nitrogen, as well as the stability and maturity of 

end products (Mondini et al. 2004; Raut et al. 2008). Moreover, the determination of 

enzyme activity, in contrast to other analytical techniques used for compost stability 

evaluation is easy, fast, and relatively inexpensive (Mondini et al. 2004). Important 

enzymes involved in the composting process include dehydrogenase for substrate 

oxidization by a reduction reaction, β-glucosidases for glucoside and amide hydrolysis, as 

well as phosphatases and arylsulphatase for phosphate and sulphate removal from organic 

compounds. Other enzymes in composting process are celluloses for cellulose 

depolymerisation, proteases and urease involved in N mineralization (Mondini et al. 

2004). 

Dehydrogenases are enzymes belonging to the oxido-reductase group which catalyse the 

oxidation of organic substances (Kayikçioğlu and Okur 2011). They participate in the 

metabolic reactions producing energy in the form of ATP through the oxidation of 

organic matter (Barrena et al. 2008). Dehydrogenases involve in the detachment of 

electrons from the substrate and their binding with protons (Kayikçioğlu and Okur 2011). 

The microbial activity during composting, when defining by the dehydrogenase activity, 

reflects the role of enzymes on the oxidative phosphorylation process and their 

involvement in the respiratory chain of all organisms (Castaldi et al. 2008; Kayikçioğlu 

and Okur 2011; Vargas-Garcia et al. 2010). Barrena et al. (2008) used dehydrogenase 

activity to monitor the composting process. Temperature and dehydrogenase profiles 

http://en.wikipedia.org/wiki/Substrate_%28biochemistry%29
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were very similar during the thermophilic stage; both showed a rapid increase in the first 

days of composting. However, maximum values of dehydrogenase (0.54 mg TPF g DM-

1h-1) were observed at the end of thermophilic stage or at the beginning of mesophilic 

stage. They concluded that dehydrogenase is a useful parameter to follow the evolution of 

the biological activity of the composting process, since it correlates well with the 

temperature profile in the reactor. 

Phosphatase is group of enzymes that catalysis the hydrolysis both esters and anhydrides 

of H3PO4 (Page 1982). Phosphatase has agronomic value because it hydrolyses 

compounds of organic phosphorus and transforms them into different forms of inorganic 

phosphorus assimilable by plants. The phosphatase activity is due to the presence of 

phosphorylated compounds, a substrate for the microorganisms to synthesize 

phosphatase. It is considered as a general microbial indicator. Phosphatase is an enzyme 

for the characterization of microbial activities during composting, since it can only be 

synthesized by microorganisms but is not originated from plant residues (Raut et al. 

2008). Phosphatase includes phosphomonoesterases. phosphomonoesterases or 

phosphoric monoester hydrolases include acid and alkaline phosphomonoesterase (which 

hydrolyse monoester bonds including mononucleotides and sugar phosphates). Acid and 

alkaline phosphomonoesterases do not hydrolyse phosphates of phytic acid (myo-inositol 

hexaphosphates) but they can hydrolyse lower-order inositol phosphates (Nannipieri et al. 

2011). 

β-Glucosidase is one of the key enzymes governing the C-cycle. It hydrolyses reducing 

terminations of b-D-glucose chains and form b-glucose. Its activity is therefore indicative 
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of the presence of these terminations, which come from the labile organic matter 

(Kayikçioğlu and Okur 2011; Vargas-Garcia et al. 2010). 

Garcia et al. (1993) characterized biochemically three groups of urban wastes used in 

agriculture, (fresh MSW, fresh sewage sludge, and the composted products of both).  

Five hydrolase activities in the cycles of C (β-glucosidase), N (urease and protease) and P 

(phosphatase) were determined. Total urease activity was found to be the highest in the 

sewage sludge, with variable values being observed in the fresh MSW and low values in 

the compost. Protease showed quite low values in all cases. They confirmed that the 

hydrolytic enzymes were biomarkers of the state and evolution of the organic matter.  

Kayikçioğlu and Okur (2011) evaluated the enzyme activities during composting of 

tobacco waste (TW), a mixture of TW and grape pomace (GP), and a mixture of TW and 

olive pomace (OP). They found that the maximum values of dehydrogenases activity 

probably corresponded to the end of the thermophilic stage or the beginning of 

mesophilic stage, as the highest temperature in the composts was determined at the 

second week of composting processes. β-Glucosidase activity increased during the first 5 

weeks and then the activity in TW and TW+GP composts decreased until the 17th week. 

Results indicated that this enzyme activity was related to the type of humic compounds 

and humic enzyme complexes which are resistant to microbial attack accumulated. 

2.6.4 Maturity and Stability Assessment for MSW Composting  

To evaluate the maturity and stability of compost effectively, easy, rapid and reliable 

testing methodologies for all kind of composts should be developed and applied (Castaldi 

et al. 2008). Since the origins of compost are different, maturity and stability are not 
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described by a single property and the combination of multiple parameters is desired for a 

comprehensive evaluation (Wong 1985). 

It is found that SOUR increased with age of compost and presents a consistent trends and 

highly significant correlations with processing time, thus respiration was suggested as a 

suitable indicator for compost stability (Hellebrand and Schade 2008). Wu et al. (2000) 

indicated that, total nitrogen, total phosphorus, total volatile solid, C/N ratio, and HA /FA 

cannot be considered as a promising indication of compost maturity and stability, because 

they did not show a consistent trend for different waste feedstock. They found that the 

respiration test and bioassay test represent different properties of compost, and both CO2 

evolution and seed germination test are needed to be able to assess the compost stability 

and maturity. 

Saha et al. (2010) measured compost stability and maturity by CO2 evolution for MSW 

compost produced in 29 cities in India. They concluded that Compost respiration did not 

have significant correlation with C/N ratio. As C/N ratio is more related to feedstock 

composition than maturity. Heavy metal content is also considered another important 

quality parameter necessary in their study for protecting the soil and water resource from 

pollution. 

The HA/FA ratio was also used to describe the relative speed of HA and FA 

transformation as well as the maturity of the final compost of food waste. Fourier 

transform infrared spectroscopy (FTIR) which is one of the most important and efficient 

techniques for monitoring the changes in the functional groups during the humification 

process of composting has been used by Zhou et al. (2014). The absorption peaks that 
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express the chemical bonds stretch and bending vibration after energy level transition, 

explain the changes of chemical structures. HA/FA ratio was high at the end of the 

composting and that the reduction of aliphatic and carboxylic groups and the increase of 

aromatic groups demonstrated by FTIR results indicated the stability and maturity of the 

compost and an efficient humification (Zhou et al. 2014). Kim et al. (2008) also used 

E4/E6 ratio, which shows the ratio of the humic acid and fulvic acid in the compost, as an 

assessment index for the molecular weight of humic substance for evaluating maturity of 

compost during the composting of MSW. EC as a salt content index and heavy metal 

content of the final compost were measured for final compost quality evaluation. They 

found the concentrations of heavy metals increased after composting. This observation 

might be due to the concurrent decrease in the organic matter content of the composting 

materials (Kim et al. 2008). Iglesias Jiménez and Perez Garcia (1989) stated humic acid-

like carbon to fulvic acid-like carbon (Cha/Cfa) ratio might constitute a valid parameter to 

establish the evolutional grade of the organic matter during city refuse composting and 

therefore of the degree of compost maturity. 

Zmora-Nahum et al. (2005) used dissolved organic carbon (DOC) concentration as a 

maturity index to predict plant response upon compost application. In the MSW compost 

the plant biomass increased dramatically as the DOC decreased, but it reached its 

maximum weight long after the DOC concentration reached it constant level.  
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2.6.5 Maturity and Stability Assessment for Fishery Waste Composting  

Numerous methods or indicators were applied to determine the maturity and stability of 

fishery waste compost including moisture content (Minkara et al. 1998), pH (Line 1994; 

Minkara et al. 1998), temperature, EC, ash content (Martin et al. 1993), mineral N (NH4-

N and NO3-N) (Mathur et al. 1986; Roy et al. 1997), total N and total C (Liao et al. 

1995a; Minkara et al. 1998; Vizcarra et al. 1993), extractable phosphorus (P) and 

potassium (K) (Tarnai 2009), Ca, Mg and Na (Mathur et al. 1986), total phosphate (Laos 

et al. 1998), total carbohydrate (TCH) (Martin et al. 1993), total lipids (Martin et al. 

1993), total organic carbon (TOC) (Cathcart et al. 1986; Liao et al. 1994; Martin et al. 

1993; Vizcarra et al. 1993), heavy metal content (Line 1994), residual toxicity (Line 

1994), WSC, volatile fatty acids (VFAs) (Laos et al. 1998; Liao et al. 1995a; Liao et al. 

1994; Vizcarra et al. 1993), phytoptpcixity (Line 1994; Mathur et al. 1986; Roy et al. 

1997), oxygen concentration (Minkara et al. 1998), Carbon dioxide generation rate 

(Cathcart et al. 1986), concentration of H2S and NH3 in exhaust gas (Mathur et al. 1986), 

total microbial numbers (Roy et al. 1997), and self-heating test (Illera-Vives et al. 2013; 

Minkara et al. 1998).  

The parameters are measured to evaluate the maturity and stability depend on the final 

use of the compost. For example in order to use compost as ecological organic 

amendment following parameters were measured; particle density, bulk density, total 

pore space, air capacity, easily available water, water buffering capacity, unavailable 

water, cation exchange capacity, micronutrients (Cu, Fe, Mn, and Zn), potentially toxic 

metals (Cr, Hg, Ni, and Pb), sanitization (the levels of Escherichia coli and Salmonella in 
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the compost) and self-heating test (Illera-Vives et al. 2013) and if the hydrolysate of 

fishery waste compost is intended to be employed for biotechnological applications TCH 

measurement is useful (Martin et al. 1993). 

Laos et al. (1998) found during the fishery waste composting, values of total nitrogen 

(TN), TOC/TN and pH did not show a clear trend while in most cases EC, NH4-N and 

WSC decreased significantly. They suggested that one of the more adequate parameters 

to predict compost maturity is WSC/TN ≤ 0.7. Fishery waste compost, in their study, met 

this requirement during summer but WSC/TN of composting in winter was 1.2 which 

needed additional days to achieve maturity. They concluded that fish offal composting 

with wood shaving by the in-vessel system was adequate to endure pathogen reduction 

and organic matter stability. The VFAs also decreased to non-detectable values in the 

case of butyric, isobutyric and propionic acids, but the acetic acid trend was erratic. Fish 

waste compost showed higher release of available N at a constant rate of 12% and less 

soil retention of bioavailable P (Laos et al. 1998). 

The presence of VFAs was determined by a head-space gas chromatography (HS-GC) 

analysis technique (Liao et al. 1997; Vizcarra et al. 1993). It has been argued that the best 

indicator of compost maturity is the absence of bioinhibitory aliphatic acids and 

phenolics. Vizcarra et al. (1993) suggested VFAs are a reliable indicator of compost 

maturity since VFAs are the intermediate products of the biodegradation which occurs in 

the composting process. An increase in these compounds should therefore reflect the 

degree of microbial activity and the progress of decomposition (Liao et al. 1997; Vizcarra 

et al. 1993). In contrast to traditional indications of maturity, the results from HS-GC by 
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Vizcarra et al. (1993) indicated that the 4 month old composts had not yet reached 

biomaturity, whilst Liao et al. (1995a) foundlings showed after 102 days of salmon waste 

composting, the level of VFAs and phenols were low enough that compost reaches 

maturity which is substantially indicated by traditional indicators of maturity (e.g: 

temperature, C/N ratio, pH). Liao et al. (1994) used HS-GC method also to determine the 

organic acid content. After 60 days, the composts still contained very high concentrations 

of organic acids which are considered to be phytotoxic. Level of acetic, propionic, 

isobutyric, butyric and isovaleric acids were very high, so it can be concluded the 

composting pile was still very active after 60 days. In the active stage of composting, the 

concentrations of VFAs and ammonia were increasing, whereas during the maturing 

stage of the process their concentrations were declined (Liao et al. 1995; Liao et al. 

1995a; Liao et al. 1994). 

In Liao et al. (1995) set of experiments, the ammonia levels increased rapidly in the first 

3 days of composting, stayed at that level for a period of 6-9 days, then finally declined. 

During this period, the growing concentrations of ammonia in the composting piles 

appeared to coincide with greater microbial activity and therefore with more efficient 

composting. At the same time that the ammonia levels were increased rapidly, there was 

a rapid increase in temperature. Above 45°C, this began to level out. When temperatures 

eventually exceeded 60°C, the ammonia concentrations started to decline. This pattern 

offers support to the assumption that ammonia production is a good indicator of the 

effectiveness of the composting process in the active stage. That is, the period in which 
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greater concentrations of ammonia were detected in the composting pile with more 

microbial activity and more efficient composting (Liao et al. 1995). 

Laos et al. (1998) used degree of decomposition which is ratio of mass of CO2 generated 

to initial compost dry mass variable for compost quality evaluation since the quantity of 

carbon dioxide generated by the composting microorganisms is directly proportional to 

their activity and to the amount of organic material consumed (Laos et al. 1998). 

Line (1994) found sodium, calcium and magnesium levels were significantly higher in 

the seastar compost than in either of the other materials (sewage sludge and dairy 

manure) while seastar compost mix (seastar compost, 60%; peat, 10%; sand, 30%; lime, 

2 g litre-1) would be well suited for use as an organic mulch for application to agricultural 

soils and it did not show toxicity to earthworms (Line 1994). 

Eggen and Vethe (2001) used pH, total solids, total carbon, total nitrogen, NH4-N and 

NO3-N, TOC, respiration rate, WSC, WSN and fractionation of humic substances to 

compare as the stability indices for paper mill sludge compost, fish waste compost treated 

in static reactor, biowaste compost from windrow system and biowaste compost from 

small scale composting systems. They found that fish waste compost contained 

significantly more inorganic WSN than the other composts. Water-soluble TOC was the 

only parameter that correlated significantly with respiration rate for all samples. Two of 

the fish waste compost samples at different stages of composting showed low respiration 

rate even though water soluble TOC values were very high (Eggen and Vethe 2001). 

Stability was tested indirectly by the autoheating method through estimation of resistant 

organic matter present in the sample. The result can be expressed as the percentage ratio 
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of resistant organic matter (ROM) to total organic matter (TOM), %DS = 

(ROMx100/TOM). Auto-heating showed the difference between the inside and outside 

Dewar flask to be less than 10ºC, which indicates maturity of compost (Cathcart et al. 

1986).  

Volumetric shrinkage results from the loss of moisture and of biodegradable organic 

matter, and from compaction due to the overlying weight of composting materials was 

also measured as an important parameter for indicating the progress of composting (Liao 

et al. 1994). Weight loss during clam waste composting has been used to evaluate 

composting process; the total weight loss was significantly affected by the ratio of clam 

waste to woodchips. There were more than 30% weight losses for the ratios of 1:0.5, 1:1 

and 1:1.5; while the weight loss for the ratio of 1:2 was about 21%, and the ratio of 1:3 

was only 13%. The weight loss is due to the decomposition of easily degradable organic 

matter and leachate loss.  

The matured clam waste compost had high EC value and such ‘‘salty” characteristics 

should be considered when applying the compost for plant growth (Hu et al. 2009). 

Mathur S. I. (1988) tested the phytotoxicity. They concluded the GI in the compost was 

higher than 95 % in all samples, which according to Zucconi et al. (1981) indicates the 

absence of phytotoxic substances or the presence of only very low levels. 

Numerous methods or indicators could be applied for determining the maturity of a 

compost, but none work equally well for a variety of composts (Martin et al. 1993). 

(Eggen and Vethe 2001) concluded that different types of compost yield different 

chemical relationships with respiration rate. Fish waste compost, for example, showed 
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quite different – and occasionally opposite– index value trends compared with the other 

types of compost. Therefore, it appears that specific stability indices and index reference 

levels are required for specific types of compost (Eggen and Vethe 2001). Final fish 

waste compost properties are presented in Table 2.8. 
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Table ‎2.8 Final fish waste compost properties 

Waste mixing ratio C (%) N (%) C/N (%) pH EC (mS 
/cm) 

OM References  

Fish waste: seaweed: pine 
bark  1:1:3 (v/v) 

46.28±2 2.11±0.03 21.9±0.78 6.68±0.14 2.47±0.23 79.88±3.45 (Illera-Vives et 
al. 2013) 

Bark: seastar waste 3:1 (v/v)  1.56 - 7.1 2.56 - (Line 1994) 
Salmon : sawdust (1:2) 37.7  3.63 10 5.9 - 79.6 (Eggen and 

Vethe 2001) 

Fish waste: wood debris (3:1) 48.8 0.8 61 5.06 2.06 - (Sen 2010) 
Fish, seaweed and pine bark 

(1:1:3). 

47.97 ± 

0.15 

2.13 ± 

0.11 

22.56 ± 

1.24 

7.08 ± 

0.07 

1.45 ± 

0.01 

- (López-

Mosquera et al. 
2011) 

Clam waste :  woodchips  

1:1 (w/w, wet weight). 

449.8 ± 

7.8 

30.8 ± 2.2 14.6 6.54 ± 

0.11 

14.5 ± 1.3 833.0 ± 

14.1 

(Hu et al. 2009) 

Blue crab scrap : wood by-

products  

23.5 0.97 24.3 7.64 3.2 33.69 (Brinton and 

Gregory 1992) 
Scollap viscera:sawdust:red 
algae:tree trimming 2:0.5:1:1 

- 0.31 78.4 - 2.4 45.4 (Brinton 1990) 

Salmo-morts + sawdust 2:1 52.5-52.8 2.87-3.2 16.4-18.4 8.3-8.8 - - (Liao et al. 
1994) 

Crap scrap +peat  31.7 2.61 12.14 7.75 - 63.4 (AOAC 1995) 
Various fish waste :peat  35.7 1.35 29.9 6.9 - 68.7 (Bimbo 2012) 
Atlantic Marine Compost 13.63 0.63 21.98 7.9 - - (Bimbo 2012) 

Fish offal:sawdust:yard 
trimming 

477 -480 
g/kg 

27 -30 
g/kg 

16-18 6.3-6.8 2.4 -3.5 - (Laos et al. 
2002) 
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2.7 Design of Experiments in Composting   

Many factors can influence composting process and the quality of the end product. 

Design of experiments is an effective tool to research the effect of these factors and their 

interaction. Although in the literature the effect of one factor at time has pronominally 

been used to conduct the experiments, some literature used different methods of 

experimental design to perform the experiments (Antony, 2003). Liang et al. (2003) 

investigated the influence of temperature and moisture contents on the aerobic microbial 

activity of bio-solid (municipal wastewater treatment sludge) composting using 2 

factorial design method with six temperatures and five moisture contents. They 

concluded that the moisture content can affect microbial activity so that a higher 

microbial activity accrues at higher moisture content. 

The effect of bulking agent/sludge ratio, bulking agent particle size and composting 

volume on the compostibility of the municipal wastewater sludge has been studied by a 

full factorial design (Leiva et al., 2003). The mixture 1:1 of sludge and wood chips was 

indicated as the optimum value for laboratory scale sludge composting. It was concluded 

that the experimental design is a valid tool to determine the initial operation condition for 

the composting of raw sludge. 

Paradelo et al. (2010a) used 33 fractional factorial design to study the optimal condition 

for the composting of the hydrolyzed Grape marc and vinification Lees, in which three 

dependent variables (temperature, addition of vinification lees and addition of CaCO3) 

were assayed at three levels. The proportion of vinification lees in the mixtures was the 
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factor with the main influence in the final nutritive properties of the composs. The result 

of the DOE suggested 1:1 mixture of hydrolyzed grape marc and vinification lees, 

amended with no more than 5 g of CaCO3 per 100 g of hydrolyzed as the optimum value. 

Central composite design (CCD) was used by Bueno et al. (2008) to study the influence 

of moisture, aeration, particle size and time on the nitrogen conservation during legume 

trimming residues composting. 

It was concluded that the experimental design methods are valid tools to evaluate the 

effect of composting process variable and to determine the initial operation condition for 

the composting (Leiva et al. 2003). 

A few studies have applied DOE (e.g., factorial designs) to study the effects of a few 

factors such as temperature and moisture (Liang et al. 2003); temperature, aeration and 

moisture (Suler and Finstein 1977); operation volume, bulking agent particle size and 

bulking agent/sludge volume ratio (Leiva et al. 2003) on the performance of composting 

system. The investigated factors were not comprehensive enough to illustrate their effects 

and interactions on the performance of a composting process. Enzymatic activities could 

apparently give interesting information on the rate of decomposition of organic matter 

and, therefore, on the produced compost stability (Jurado et al. 2014), however, they have 

never been reported as responses for optimizing MSW composting based on DOE 

methods as it is reported in Table 2.9. 
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Table ‎2.9 Summary of DOE, factors and responses for composting 

Raw material Factors and their levels Responses Method Reference 

Hydrolyzed 

grape marc 
(HGM) 

Temperature(20-50 °C), 

concentration of 
vinification lees (5-100 
g/100 g HGM), 

concentration of CaCO3 (g 
of CaCO3/100 g of HGM) 

OM, total organic C (TOC), 

total N (TKN), EC and pH, 
water-soluble ammonium and 
nitrate, water-soluble carbon 

(WSC), water-soluble Mg, K, 
P, Na and GI 

33 Factorial 

design 

(Paradelo et al. 2010) 

Sludge Temperature (22, 29, 36, 
43, 50, and 57 °C), MC 
(30, 40, 50, 60, and 70%) 

OUR, cumulative OUR, 
maximum OUR 

2-factor 
factorial 
design 

(Liang et al. 2003) 

Legume 
trimming 
residues 

MC ( 40, 55, 60%), AR 
(0.2 l, 0.41, 0.61 air/ min 
kg), particle size (1, 3, 5 

mm) and time (78 days) 

TKN, N-NO3, N-NH4 , C/N, 
P2O, N-losses, OM 

Central 
composite 
experimental 

design 

(Bueno et al. 2008) 

Sludge BA: sludge ratio (1:1 to 

1:4 (w/w), BA particle 
size( 0.5 to 2.5 mm), 
composting volume (1.5 to 

25 L) 

Relative heat generation Factorial 

composite 
experimental 
design  

(Leiva et al. 2003) 

Pig feces 

and corn 
stalks 

AR (0.24, 0.48, 0.72 L 

kg_1 DM min_1), C/N 
ratios (15, 18, 21), and MC 
(MC: 65%, 70%, 75%) 

GI, TN, TOC, NH4-N, NO3 -N 

and NO2 –N. oxygen content , 
CO2-C  

33 Factorial 

design 

(Guo et al. 2012 

Pulp and 
paper mill 
sludge (PMS) 

Incubation temperature 
(35°C and 55°C), nutrient 
addition (mineral nitrogen, 

phosphorus and 

cumulative dry weight loss as 
C02, cumulative nitrogen loss 
as NH3 and final C:N 

2x2 factorial 
design 

(Jackson and Line 1997) 
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Raw material Factors and their levels Responses Method Reference 

potassium) (full nutrient 
addition (FNA) and an 

incremental nutrient 
addition (INA)) 

MSW (mixed 
paper waste 
food waste 

and yard 
waste) 

Absence or presents of a 
component or the seed 
(compost from MSW 

composting facility) from 
the digester 

CO2-C and NH3- N yields and 
production rates 

Factorial 
design and 
mixture 

experiment al 
design  

(Komilis and Ham 2006) 

Paper mill 
sludge with 
broiler litter 

Temperature (35, 45, 55, 
60, and 65°C) and Initial 
MC (30, 35, 40, 45 and 

50%) 

Rates of decomposition based 
on captured CO2 , final ash 
contents, MC, oxygen 

concentration  

5x5x2 
factorial 
design 

(Ekinci et al. 2004) 

Mixture of 

dewatered 
sludge, food 
waste, mixed 

paper waste, 
sawdust and  
branches 

Absence or presents of a 

component in such a 
manner, so as to maintain 
initial moisture contents of 

the resulting mixtures 
between 56% and 65% 
(w/w) and initial C/N 

between 19 and 30 

MC, OM, total C and total N, 

CO2, O2 and CH4 
concentrations, NH4 

concentrations 

Mixture 

experimental 
design 

(Komilis et al. 2011) 

Barley dregs 

and sewage 
sludge 

Mix ratio of barley 

dregs/sewage sludge and 
MC 

Carbon decomposition rate 

(CDR) and total volatile solids 
(TVS) loss rate, CO2 evolution 
rate (CER), MC, and pH 

central 

composite 
design (CCD) 

(Lu et al. 2008) 

MSW AR (0.005–0.300 L/ kg) 
and MC (40–70 %) 

Volatile organic compounds 
(VOCs) (limonene, b-pinene, 

2-butanone, undecane, phenol, 
toluene, dimethyl sulfide, 
dimethyl disulfide), 

 Two level, 
full factorial 

design 

(Delgado-Rodríguez et 
al. 2012) 
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Raw material Factors and their levels Responses Method Reference 

temperature 
MSW – 

Legume 
trimming 

residue  
 

MSW– Legume trimming 

residue mixing ratio ( 1:0, 
1:1, 1:2 (w/w)), AR (0.05, 

0.175, 0.3 L/Kg.min), MC 
(40, 55,70%), C/N ratio 
(21,60, 77),  

Chemical oxygen demand 

(COD), nitrate, Nitrogen-
losses (%) and 

biodegradability, coefficient 

Factorial 

design 

(Cabeza et al. 2013) 

Vinasse/cotto
n waste 

mixtures 

Vinasse added (11 to 69 % 
(w/w) and time of 

operation (7 to 45 days) 

pH,  TKN, C/N ratio, 
biodegradability, Kjeldahl-N 

losses, and GI 

Central 
composite 

experimental 
design 

(Dıaz et al. 2003) 

Wastewater 

sludge 

Initial MC (20–70%) and 

BA  particle size 
distribution (8–>40 mm) 

OM, total carbon, COD, OUR, 

airflow dispersion coefficient 

Central 

composite 
factor design 

(Trémier et al. 2009) 

Urban sludge Pile depth (-2.4 to -2m), 
MC (50 to 65%), particle 
size (<20 mm to >20 mm), 

and type of BA (recycled 
and fresh wooden pallets) 

Bulk density, free air space, air 
permeability, and thermal 
conductivity 

Factorial  
design 

(Huet et al. 2012) 

MSW  Effects of protein and fat CO2 and O2 concentrations, 
temperatures, pH, MC, ash, 
TKN,  and total carbon 

Mixture 
experimental 
design 

(Chang and Hsu 2008) 

MSW and 
green waste  

MC (45–75%) and C/N 
ratios (13.9–19.6) 

MC, pH, temperature, volatile 
solids, water soluble total 

organic carbon (TOCW), and 
water soluble total Kjeldahl 
nitrogen (TKNW), germination 

index, relative root growth 

Central 
composite 

design 

(Kumar et al. 2010) 

Food waste Effects of rice husk, 

sawdust and rice bran 

Composting and acidification 

times, lowest and final pH 

Mixture 

experimental 

(Chang and Chen 2010) 
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Raw material Factors and their levels Responses Method Reference 

values, 
highest temperature, water-

soluble organic carbon to water 
soluble organic nitrogen 

(COW/NOW ratio), water 
soluble organic carbon to total 
organic nitrogen (COW/NOT) 

ratio, CO2 and O2 
concentrations 

design 

MSW AR (0.4, 0.6 and 0.9) L 
min-1kg-1 

C/N ratio, NO3–N, nitrogen, 
potassium and phosphorous 

Nested design 
method 

(Rasapoor et al. 2009) 

MSW AR (0.3 and 0.5 

L/min.kg), MC (55 and 
70%), BA (sawdust and 

peat), C/N ratio (12 and 
17) 

Cumulative dehydrogenase 

activity, cumulative β-
glucosidase activity, 

cumulative phosphodiesterase 
activity, final C/N ratio, final 

GI, and final 
moisture content  

Factorial 

design  

Present work 
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2.8 Compost Usage 

Compost is used generally as soil conditioners to promote soil aggregation, improve the 

soil water retention capacity and encourage the more extensive development of root 

system. It also improves soil structure by adding organic matter and the breakdown of 

organic matter results in slow release of phosphorus and nitrogen in a rate that can be 

utilized by the plants. Compost also is used as a mulch to conserve moisture, improve soil 

structure and hold down weeds in soil. In summer it will keep soil temperature down and 

in winter it will prevent frost around the plants. The performance of fishery waste 

compost produced at Lake Michigan from fish offal as a fertilizer was comparable to 

commercial composts. The concentration of heavy metal was acceptable to be used in 

land and their concentration was lower than sewage sludge concentration (Frederick 

1989). Illera-Vives et al. (2015) found compost from fish waste and seaweed is suitable 

soil amendment for horticultural crops grown, as indicated by the tomato and lettuce 

yields. The application of compost at a rate of 66 t/ha significantly increased the tomato 

yield and was associated with increased fruit weight and larger fruit diameter compared 

to crops receiving mineral fertilization or no fertilization (Illera-Vives et al. 2015). 

Roy et al. (1997) developed a novel composting process characterized by two 

thermophilic phases to produce chitin waste based compost. Chitin has been used as a 

soil amendment to control fungal diseases and root parasitic nematodes. Shrimp waste 

was added after the first thermophilic phase to compost from cow manure, peat moss and 

pine sawdust (in a 1 :1 :1 proportion). Compost obtained potentially has phytoprotective 
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properties and sufficient concentration of oligomeric chitin to elicit successfully the 

defense reactions in plants. The disease suppressive properties of such composts will be 

very attractive for applications in horticulture and in biological agriculture (Roy et al. 

1997). 

Although compost has mainly been used in agriculture as a fertilizing agent and soil 

amendment, its extracts is increasingly could be employed as an inexpensive nutrient 

source for fermentation processes and support the mycelial growth. It could also be 

employed in environmental applications, such as in packed columns for the biofiltration 

of liquid and gas effluents (Martin 1999). Also new uses such as bioremediation and 

pollution prevention are being suggested for compost which help save money, and 

conserves natural resources (Keener 2010). 

2.9 Biosurfactant Production 

2.9.1 Biosurfactant Definication and Characteristics  

Biosurfactants are surface-active metabolites produced by microorganisms (Heyd et al. 

2008). They possess both hydrophilic and hydrophobic moieties and are able to display a 

variety of surface activities that, among other roles, help solubilize hydrophobic 

substrates and lead to the reduction of surface tension and interfacial tension (Satpute et 

al. 2010). Microorganisms synthesize a wide variety of high- and low molecular- mass 

biosurfactant. The low-molecular-mass biosurfactant lower surface and interfacial 

tensions, whereas the higher-molecular-mass biosurfactant are more effective at 

stabilizing oil-in-water emulsions (Rosenberg et al. 2013). Biosurfactants are classified 
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based on their chemical structure and the organisms that produce them (Makkar et al. 

2011). The hydrophilic parts of biosurfactants can be polysaccharides, phosphates, amino 

acids, carbohydrates, polyhydroxy structures, andcyclic peptide, while the hydrophobic 

parts are usually made up of aliphatic hydrocarbons (Mao et al. 2015). Diverse functional 

properties namely, emulsification, wetting, foaming, cleansing, phase separation, surface 

activity and reduction in viscosity of crude oil, makes it feasible to utilize them for many 

application purposes (Satpute et al. 2010). Biosurfactants can potentially replace virtually 

any synthetic surfactant and, moreover, introduce some unique physico-chemical 

properties (Reis et al. 2013). Biosurfactants have countless advantages in comparison 

with chemical surfactants, especially regarding biodegradability, compatibility with the 

environment, low toxicity, high selectivity and their activity even in extreme temperature, 

pH and salinity conditions (Souza et al. 2014). 
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Figure ‎2.8 Representative structures of biosurfactants (Soberón-Chávez 2010) 
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Three natural roles for biosurfactant have been proposed: (1) increasing the surface area 

of hydrophobic water-insoluble growth substrates, (2) increasing the bioavailability of 

hydrophobic substrates by increasing their apparent solubility or desorbing them from 

surfaces, and (3) regulating the attachment and detachment of microorganisms to and 

from surfaces (Rosenberg et al. 2013). With these natural roles, biosurfactants have many 

environmental applications such as bioremediation and dispersion of oil spills, enhanced 

oil recovery and transfer of crude oil. Other potential applications of biosurfactants relate 

to food, cosmetic, health care industries and cleaning toxic chemicals of industrial and 

agricultural origin (Saharan et al. 2011). Biosurfactants have potential for stabilising 

emulsions between liquid hydrocarbons and water, thus increasing the surface area 

available for bacterial biodegradation. In addition, above the Critical Micelle 

Concentration (CMC), a significant fraction of the hydrophobic contaminant partitions in 

the biosurfactant micelle cores which results in a general increase in the bioavailability of 

contaminants for degrading microorganisms(Banat et al. 2010). In oil spill responses, the 

most common role of biosurfactants is to enhance the dispersal of contaminants in the 

aqueous phase and increase the bioavailability of the hydrophobic substrate to 

microorganisms, with subsequent removal of such pollutants through biodegradation 

(Silva et al. 2014). 

The production economy of every microbial metabolite is governed by three basic 

factors: (1) initial raw material costs; (2) availability of suitable and economic production 

and recovery procedures and (3) the product yield of the producer microorganisms.  

Despite all advantages, the application of biosurfactants has been significantly restricted 
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due to their low yields and high production cost as well as the lack of desired producing 

microorganisms (producers) (Montgomery 2008). It was estimated that biosurfactants 

would cost 3-10 times of synthetic surfactants (Mulligan and Gibbs 1993). The 

biosurfactant surfactin (98% purity) available from Sigma Chemical Company costs 

approximately $153 for a 10 mg vial. In comparison the cost of chemical surfactants is 

around one dollar/lb (Makkar et al. 2011). Currently there is only a very limited offer of 

commercially available biosurfactants, e.g., surfactin, sophorolipids and rhamnolipids 

(Sen 2010). 

The production of biosurfactants with the use of renewable substrates and different 

microbial species as well as the variation in culture parameters (incubation time, stirring 

speed, pH of the medium and added nutrients) allow the acquisition of compounds with 

distinct structural characteristics and physical properties. This makes biosurfactants 

comparable to or even better than synthetic surfactants in terms of efficiency, although 

production costs do not yet allow greater competitiveness with their petrochemical 

counterparts (Sobrinho et al. 2013). Three basic strategies were adopted worldwide to 

make this process cost-competitive: (1) the use of cheaper and waste substrates to lower 

the initial raw material costs involved in the process; (2) development of efficient 

bioprocesses, including optimization of the culture conditions and cost-effective 

separation processes for maximum biosurfactant production and recovery and (3) 

development and use of overproducing mutant or recombinant strains for enhanced 

biosurfactant yields (Mukherjee et al. 2006; Saharan et al. 2011).  
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The use of the alternative substrates such as agro based industrial wastes is one of the 

attractive strategies for economical biosurfactants production. Another approach involves 

using raw substrates with negligible or no value. Main problem associated with this 

approach is the selection of suitable waste material with the right balance of nutrients that 

permits cell growth and product accumulation (Makkar et al. 2011). Examples of 

inexpensive raw material for biosurfactant production is reported in Table ‎2.10 

(Montgomery 2008). 
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Table ‎2.10 Summary of inexpensive raw materials for biosurfactant production 

Raw Material Biosurfactant type Producer microbial 
genus 

Maximum 
Yields(g/l) 

Rapeseed oil Rhamnolipids Pseudomonas 45 
Babassu oil Sophorolipids Candida - 

Turkish corn oil Sophorolipids Candida 400 
Sunflower and 
Soybean oil 

Rhamnolipids Pseudomonas 4.31 

Sunflower oil Lipopeptide  Serratia - 
Soybean oil Mannosylerythritol 

lipid 

Candida 95 

Waste frying oil  Rhamnolipids Pseudomonas 2.7 
Soybean soapstock 

waste 

Rhamnolipids Pseudomonas 11.72 

Sunflower oil 

soapstock waste 

Rhamnolipids Pseudomonas 16 

Oil refinery waste  Glycolipid Candida 10.5 
Soybean oil refinery 

wastes 

Rhamnolipids Pseudomonas 9.5 

Crude whey and 

distillery wastes 

Rhamnolipids Pseudomonas 0.92 

Potato process 
effluents  

Lipopeptide Bacillus - 

Cassava flour 
wastewater 

Lipopeptide Bacillus 2.2-3.0 
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Moreover, Cell growth and the accumulation of metabolic products are strongly 

influenced by medium compositions such as carbon sources, nitrogen sources, growth 

factors, and inorganic salts. Thus, it is difficult to search for the major factors and to 

optimize them for biotechnological processes as several parameters are involved 

(Rodrigues et al. 2006). The use of different carbon sources alters the structure of the 

biosurfactant produced and its properties and can be exploited to get products with 

desired properties for particular applications (Saharan et al. 2011). Several studies have 

aimed to optimize the biosurfactant production process by changing the variables that 

influence the type and amount of biosurfactant produced by a microorganism. Important 

variables are carbon and nitrogen sources, potential nutrient limitations and other 

physical and chemical parameters such as oxygen, temperature and pH (Banat et al. 2010; 

Reis et al. 2013). 

Experimental design techniques have been extensively used to optimise biosurfactant 

production. The use of RSM effectively enhanced the production of biosurfactant by 

Rhodococcus spp. MTCC 2574 growing on n-hexadecane with yields of biosurfactant 

increasing from 3.2 to 10.9 g/L (Banat et al. 2010). Rodrigues et al. (2006) optimized the 

medium for biosurfactants production by probiotic bacteria using RSM to obtain a higher 

cellular growth and higher cell-bound biosurfactant production yield. (Pal et al. 2009) 

compared two optimization techniques, (artificial neural network (ANN) coupled with 

genetic algorithm (GA) and RSM, that were used to enhance the yield of Rhodococcus 

biosurfactant by media. They observed that use of an organic nitrogen source gave higher 

cell mass than with inorganic nitrogen. Their results showed that ANN had better 
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generalization capacity, and ANN-GA was more accurate in predicting the optimum than 

RSM. 

The commercial success of microbial surfactants is currently limited by the high cost of 

production. Optimised growth/production conditions using cheaper renewable substrates 

could make biosurfactant production more profitable and economically feasible (Banat et 

al. 2010). 

2.9.2 Biosurfactant Producers  

Biosurfactants are produced by a diverse group of microorganisms mainly bacteria, fungi, 

and yeasts from various substrates including sugars, glycerol, oils, hydrocarbons, and 

agricultural waste (Shekhar et al. 2015; Soberón-Chávez 2010). The quantity of 

biosurfactant production mainly depends on the type of microorganisms and their 

sources. Microorganisms play a major role in biosurfactant production (Shekhar et al. 

2015). Microorganisms can carry out biosurfactant production when grown either on 

insoluble substrates (such as hydrocarbons, oils and waxes) or on soluble ones 

(carbohydrates) (Carrillo et al. 1996). Several reports have been published on screening 

and isolation of biosurfactant-producing microorganisms, their growth characteristics and 

on product type and efficiency (Banat 1993; Cai et al. 2014; George and Jayachandran 

2013; Najafi et al. 2010; Rocha e Silva et al. 2014; Youssef et al. 2004).  

Cai et al. (2014) collected samples from offshore oil and gas platforms in North Atlantic 

Canada, crude oil, formation water, drilling mud, treated produced water and seawater to 

screen for potential biosurfactant producers. They identified 59 biosurfactant producing 

strains from which 24 strains and 20 strains belonged to genera of Rhodococcus and 
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Bacillus, respectively. The most effective isolates were P6-4P (Rhodococcus sp.) and N3-

1P (Bacillus sp.). 

Bacillus sp. is mostly known for the production of lipopeptides, lichenysin, surfactin, 

lipid protein complexes, and subtilisin from the different marine ecosystems (Shekhar et 

al. 2015).Rhodococcus sp. is known for the production of glycolipid surface-active 

molecules. Different types of biosurfactants such as glycolipids, polysaccharides, free 

fatty acids, and trehalose dicorynomycolate are produced by Rhodococcus erythropolis 

(Shekhar et al. 2015). A summary of isolated biosurfactant producers and classification of 

produced biosurfactant is presented in Table 2.11 (Shekhar et al. 2015). 
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Table ‎2.11 Classification of biosurfactants based on the chemical nature and the source 
microorganisms  

SR. 

No 

Biosurfactant  Source 

1 Glycolipids 

Trehalolipids 

Rhodococcus erythropolis, Nocardia 

erythropolis, Arthrobacter sp., 
Mycobacterium sp. 

Trehalose dimycolates  

Trehalose dicorynomycolates  
Rhamnolipids 

 

Mycobacterium sp., Nocardia sp. 

Arthrobacter sp., Corynebacterium 
sp. 

Pseudomonas aeruginosa, 
Pseudomonas sp. 

Sophorolipids Torulopsis bombicola, Torulopsis 

apicola, 
Torulopsis petrophilum Torulopsis sp. 

Cellobiolipids Ustilago zeae, Ustilago maydis 

2 Lipopeptides and lipoproteins  
Peptide-lipid Bacillus licheniformis 

Serrawettin Serratia marcescens 
Viscosin Pseudomonas fluorescens 
Surfactin Bacillus subtilis 

Fengycin Bacillus sp 
Arthrofactin Arthrobacter sp. 

Subtilisin Bacillus subtilis 
Gramicidins Bacillus brevis, Brevibacterium 

brevis 

Polymyxins Bacillus polymyxa, Brevibacterium 
polymyxa 

Lichenysin Bacillus licheniformis 

Ornithine lipids Myroides sp. SM1, 
Pseudomonas sp., 

Thiobacillus sp., Agrobacterium sp., 
Gluconobacter sp. 

3 Fatty acids, phospholipids, and neutral 

lipids 

 

Neutral lipids Nocardia erythropolis 

Phospholipids Thiobacillus thiooxidans 
Bile salts Myroides sp. 
Fatty acids Candida lepus, Acinetobacter sp., 

Pseudomonas sp., Micrococcus sp., 
Mycococcus sp., Candida sp., 
Penicillium sp., Aspergillus sp. 

4 Polymeric surfactants  
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SR. 

No 

Biosurfactant  Source 

Emulsan Arethrobacter calcoaceticus 

Biodispersan Arethrobacter calcoaceticus 
Mannan lipid protein Candida tropicalis 

Liposan Candida lipolytica 
Carbohydrate protein lipid Pseudomonas fluorescens, 

Debaryomyces 

polymorphus 
5 Protein PA Pseudomonas aeruginosa 

Particulate biosurfactants biosurfactants 
Vesicles and fimbriae whole cells Arthrobacter calcoaceticus 
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2.9.3 Substrate Extraction and Hydrolysis  

Hydrolysis of food proteins has a long history, mainly for vegetable and milk proteins; 

these proteins are widely used in the food industry. Most work on the hydrolysis of fish 

proteins was conducted in the 1960s. Hydrolysates can be defined as proteins that are 

chemically or enzymatically broken down into peptides of varying sizes. Chemical and 

biological methods are the most widely used for protein hydrolysis with chemical 

hydrolysis used more commonly in industrial practices. Biological processes using added 

enzymes are employed more frequently, and enzyme hydrolysis holds the most promise 

for the future because it results in products of high functionality and nutritive value 

(Kristinsson and Rasco 2000). Enzymatic hydrolysis of fish protein has been employed as 

an alternative approach for converting underutilized fish biomass into edible protein 

products, instead of animal feed or fertilizer (Schaub and Leonard 1996). The raw 

material for fish waste hydrolysis is the material remaining after fillets are removed, and 

if viscera is included, this can represent something on the order of 64% of the weight of 

whitefish, the protein content of this waste being about 10%. Using added enzymes to 

hydrolyze food proteins is a process of considerable importance used to improve or 

modify the physicochemical, functional, and sensory properties of the native protein 

without jeopardizing its nutritive value, and often protein absorption is improved. 

Figure ‎2.9 outlines a fairly typical process for producing fish protein hydrolysates 

(Kristinsson and Rasco 2000). In the process of hydrolyzation, proteolytic enzymes are 

used to solubilize the fish protein, resulting in two distinguishable fractions, soluble and 

insoluble. The insoluble fraction may be used as animal feed and the soluble fraction, 
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which contains the hydrolyzed protein, may be converted into a food ingredient, 

incorporating into food systems, or used as a nitrogen source for bacterial growth. 

Dehydration of the soluble hydrolysate results in a more stable powder which is high in 

protein content. Such a product is known as fish protein hydrolysate (Arvanitoyannis and 

Kassaveti 2008). A flow sheet for the enzymatic hydrolysis of fish protein to make fish 

protein hydrolysate is presented in Figure ‎2.9. 

RSM is a useful technique for the investigation of complex processes. It has been 

successfully applied to optimize seafood processing operations (Arvanitoyannis and 

Kassaveti 2008; Shahidi et al. 1995). RSM consist of a group of mathematical and 

statistical procedures that can be used to study relationship between one or more 

responses (dependent variables) and a number of factors (independent variables). RSM 

defines the effect of the independent variables alone, and in combinations, in the process. 

In addition to analyzing the effects of variables, this experimental methodology generates 

a mathematical model that accurately describes the overall process using a significant 

estimation (Arvanitoyannis and Kassaveti 2008; Diniz and Martin 1996). CCD is the 

most popular second-order RSM design. The design involves, F factorial points, 2k axial 

points and nc center points (Figure ‎2.10). The areas of flexibility in CCD resides in the 

selection of α, the axial distance, and nc , the number of center distance. 
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Figure ‎2.9 A flow sheet for the enzymatic hydrolysis of fish protein to make fish protein 

hydrolysate 

 

 

Figure ‎2.10 Central composite design for k=3 
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For fish waste hydrolysis, given a particular enzyme any hydrolysis process involves at 

least five independent variables. These are S (protein substrate concentration: %N × 

6.25), E/S (enzyme-substrate ratio in % or in activity units per kg N × 6.25), pH, 

temperature, and time (Kristinsson and Rasco 2000). Arvanitoyannis and Kassaveti 

(2008) Optimized hydrolysis conditions (enzyme activity, temperature, and time) to 

produced hydrolysate from the viscera of yellowfin tuna (Thunnus albacares) using RSM. 

A factorial design was applied to minimize enzyme utilization and modeling of degree of 

hydrolysis. The protein efficiency ratio of tuna visceral hydrolysate was 2.85–5.35. The 

effect of temperature, pH, E/S ratio on degree of hydrolysis (DH) of dogfish muscle 

protein using RSM has been studied by Bernal et al. (2009). Their results indicate that all 

three factors markedly influenced the peptide bonds cleavage in the protein substrate.  

The preferred commercial enzymes for most researchers are protease preparations of 

bacterial origin like Alcalase, Neutrase, Protease N and Protamex (Aspmo et al. 2005). 

Alcalase, an alkaline enzyme produced from Bacillus licheniformis and developed by 

Novo Nordisk (Bagsvaerd, Denmark) for the detergent industry, has been proven 

repeatedly by many researchers to be one of the best enzyme used to prepare functional 

fish protein hydrolysis and other protein hydrolysates (Kristinsson and Rasco 2000). 

Generally, Alcalase® 2.4-L-assisted reactions have been repeatedly favored for fish 

hydrolysis, due to the high degree of hydrolysis that can be achieved in a relatively short 

time under moderate pH conditions, compared with the neutral or acidic enzymes 

(Aspmo et al. 2005; Kristinsson and Rasco 2000; Rasapoor et al. 2009). Cod viscera were 

hydrolysed by endogenous enzymes alone or in combination with one of seven different 
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commercial protease preparations (Alcalase1 2.4L, Neutrase1 0.8L, ProtamexTM, 

Papain, Bromelain, Actinidin and a plant protease mix). Alcalase was clearly the most 

efficient enzyme when it comes to degrading the larger proteins of the substrate mixture. 

The concentration of a-amino groups in the hydrolysate may be used as an indication of 

the amount of peptide bonds broken in the reaction (Aspmo et al. 2005).  

Approximately 15–17% of the weight of the cod is viscera. The cod viscera contained 

19.0% DM, including 1.2% ash and 2.2% nitrogen (Aspmo et al. 2005). The effect of  

enzyme including Alcalase, Neutrase, Papain, and Autolysis has been investigated 

through RSM under different temperature, reaction pH, inactivation pH and E/S ratio by 

Liao et al. (1997). Although many factors affect the yield of hydrolysis, the type of 

enzyme used had a marked effect on the yield and properties of the final product. 

Neutrase had a much lower activity than Alcalase and was suitable only when a low 

degree of hydrolysis is preferred. High protein recovery by Alcalase and its low cost may 

provide an incentive for using it in commercial operations (Liao et al. 1997). 

2.10 Summary  

This chapter started with introduction of composting process. Some physiochemical 

properties of MSW and fish waste have been reviewed, followed by the factors that 

influence composting process including C/N ratio, moisture content, aeration and 

temperature. The review from this part concluded that composting is a viable mean for 

MSW and fish waste management. In addition, MSW and fish waste should be mixed 

with bulking agent to adjust their C/N ratio and moisture content. Subsequently, the 
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reviews extended to the composting technologies have been used for MSW and fish 

waste composting. The following section reviewed indices have been applied to evaluate 

compost maturity and stability. It has been revealed that a few studies have applied DOE 

(e.g., factorial designs) to study the effects of factors (e.g., moisture content, aeration 

rate, C/N ratio and bulking agent, temperature) on the performance of composting 

system, enzyme activities have never been reported as responses for optimizing MSW 

composting based on DOE methods. Additionally, enzyme activities never have been 

investigated to evaluate the state and evolution of fish waste composting. In the following 

section, compost usage was reviewed. One of the usages of compost extract is substrate 

for fermentation process. In the last following section of this chapter, biosurfactant has 

been introduced and using the waste material as substrate to reduce the biosurfactant 

production cost has been discussed. Then it was explored that fish waste compost extract 

has never been used as substrate for biosurfactant producing bacteria.  
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CHAPTER 3  

PERFORMANCE OF LOCALLY AVAILABLE BULKING AGENTS 

IN NEWFOUNDLAND AND LABRADOR DURING BENCH-SCALE 

MUNICIPAL SOLID WASTE COMPOSTING 
2
 

  

                                                 
2 This chapter is based on the following paper: 

Kazemi, K., Zhang, B., Lye, L. M., and Lin, W. (2014). Performance of locally available 
bulking agents in Newfoundland and Labrador during bench-scale municipal solid 

waste composting. Environmental Systems Research, 3(1), 1. 

Role: Khoshrooz Kazemi solely worked on this study and acted as the first author of 
this manuscript under the guidance of two supervisors, Dr. Baiyu Zhang and Dr. 

Leonard Lye. Weiyun Lin participated in conducting experiments. Most contents of 
this paper was written by Kazemi and further polished by the other co-authors. 
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3.1 Background 

Population growth, aggregation of human settlements, higher living standards, and 

increased development and consumption of less biodegradable products have increased 

solid waste generation over the last 20 years (Adhikari et al. 2008; Asase et al. 2009). 

Municipal Solid Waste (MSW) management has thus become one of the biggest 

environmental concerns in recent decades (Iqbal et al. 2010). MSW contains high 

moisture content (60-70%) and large organic fraction (70-80%), posing adverse 

environmental impacts if it is not treated properly. Fortunately, the high organic fraction 

of MSW can be easily converted to energy sources through composting (Bradford 1976; 

Jolanun and Towprayoon 2010). Therefore, composting has become an increasingly 

important strategy for the treatment of MSW. Composting is a biological process in 

which easily degradable organic matter is stabilized and converted into a humus-rich 

product by the action of microorganisms (Eiland et al. 2001). The advantages of 

composting are diverting organic matter from landfills, reducing waste volume, 

decreasing the potential odour, decreasing the moisture content of MSW, and amending 

soil/improving soil quality (Arslan et al. 2011; Cronje et al. 2003; Hasan et al. 2012; 

Haug 1993).  

Some environmental conditions (moisture content, aeration rate, pH, and temperature) 

and substrate characteristics (C/N ratio, particle size, bulking agents, nutrients contents, 

and free air space) affect the composting process (Iqbal et al. 2010). Selection of a 

bulking agent which should be inexpensive and readily available in the vicinity of the 

composting region is very important because bulking agents can affect the condition of 
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the starting composting mixtures, biodegradation kinetics and composting performance as 

well as the final compost quality (Blanco and Almendros 1995; Chang and Chen 2010; 

Jolanun and Towprayoon 2010). Bulking agents have different properties because of their 

carbon source, physical shape, particle size, water absorption capacity, and their bulking 

density (Iqbal et al. 2010). Bulking agents are usually fibrous and carbonadoes material 

with low moisture content; therefore they can absorb part of the leachate produced during 

decomposition to keep the moisture and sustain the microbial activity (Adhikari et al. 

2008; Dias et al. 2010; Iqbal et al. 2010). The bulking agent provides structural support to 

prevent physical compaction, promotes porosity and air void, and improves the compost 

aeration and gas exchange (Adhikari et al. 2008; Dias et al. 2010; Doublet et al. 2011; 

Yañez et al. 2009). It can also act as a buffer against the organic acids in the early stages 

of composting and help maintain the mixture’s pH within a range from 6-8 for proper 

microbial activity (Haug 1993), and adjust C/N ratio of the feedstock and encourage 

microbial activity without inhabitation (Jolanun and Towprayoon 2010). Numerous 

studies have used different bulking agents, which are mostly from agriculture byproducts. 

They include sawdust (Adhikari et al. 2008; Banegas et al. 2007; Blanco and Almendros 

1995; Chang and Chen 2010; Martin et al. 1993; Yang et al. 2013), wheat straw (Banegas 

et al. 2007; Blanco and Almendros 1995), hay and pine wood shaving (Banegas et al. 

2007), bagasse and paper (Adhikari et al. 2008), rice husk and rice barn (Chang and Chen 

2010), wooden palette (Huet et al. 2012), cornstalks and spent mushroom substrate (Yang 

et al. 2013), wheat flour (Silva et al. 2014), peat (Martin et al. 1993; Mathur et al. 1986; 

Mathur et al. 1990; Nolan et al. 2011; Vuorinen 2000), and barley straw (Vuorinen 2000).  
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Sawdust is a by-product of cutting, grinding, drilling, and sanding of wood, and it is a 

very common and easily available bulking agent used in composting to provide the free 

air space, control moisture, and maintain the C/N ratio (Batham et al. 2013). Banegas et 

al. (2007) mixed aerobic and anaerobic sludge with sawdust in two ratios (1:1 and 1:3 v: 

v), and concluded that sawdust is a good bulking agent for sludge composting because of 

its dilution effect on the nutritional components of the compost. Iqbal et al. (2010) 

suggested that the effect of 40% addition of sawdust to MSW was best to optimize the 

moisture content to up to 60% in composting. Chang and Chen (2010) found more 

sawdust in the composting mixture resulted in the increase of the water absorption 

capacity and the composting rate, shorter composting and acidification times, and lower 

final pH value.  

Peat is an accumulation of partially decayed vegetation or organic matter which has been 

used as a bulking agent because it has high water absorption capacity, is rich enough in 

exchangeable H+ ions to neutralize the ammonia and the cations released by 

decomposition prevents  the loss of ammonia by remaining slightly acidic environment 

throughout the composting process. Peat has the capacity for adsorbing anions and 

retarding the leaching of NO3
- and PO4

-3 when added to soil. It is fluffy to provide 

thermal insulation and replaceable air to prevent anaerobic production of malodours, and 

also has an exceptionally high capacity for enhancing soil organic matter (Mahtur et al. 

1990). 

In Canada, Newfoundland and Labrador (NL) has the highest quantity of waste disposal 

per capita after Alberta. This amounts to about 429 kg of residential waste per capita 

http://en.wikipedia.org/wiki/Decomposition
http://en.wikipedia.org/wiki/Vegetation


110 
 

(Pande et al. 1963). NL comprises more than 200 small communities with population 

between 100 and 600. Most of these small communities are located in remote and 

isolated areas and cannot access large solid waste disposal sites or central organic 

processing facilities. Therefore, on-site composting facilities have been considered as a 

viable means to deal with organic wastes in the small communities. Although a lack of 

extensive agricultural production in the northern region of NL could limit the selection of 

bulking agents for composting, NL generally possesses extensive peat resources. In 

addition, the forestry industry in NL produces wastes organic materials in the form of 

sawdust, bark, and wood chips, which can be used as the bulking agent for MSW 

composting (Martin et al. 1993). The food waste constitutes approximately 40% of the 

MSW and it represents a significant proportion of organic material found in MSW. 

Diversion of food waste from landfill since it is the biggest organic stream in municipal 

solid waste is essential to reach high diversion target (Dubois et al. 1956). Therefore, 

detailed knowledge of the performance of the composting process with locally available 

bulking agents would allow the improvement of community-scale composts quality in the 

small communities of NL. 

For compost quality assessment and practical use of composted materials in agriculture, 

maturity and stability indices are important (Mondini et al. 2004). Stability can be 

expressed by biological indicators such as the respiration index (i.e., oxygen uptake rate 

(OUR) or CO2 evolution rate) and enzyme activity (Benito et al. 2003; Bernal et al. 2009; 

Wu et al. 2000). Important enzymes involved in the composting process include 

dehydrogenase activity for substrate oxidization by a reduction reaction, β – glucosidase 

http://en.wikipedia.org/wiki/Substrate_%28biochemistry%29
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activity for glucoside and amide hydrolysis, as well as phosphodiesterase activity for 

phosphate removal from organic compounds (Mondini et al. 2004). Maturity refers to the 

degree of decomposition where the compost does not pose any adverse effects on plants 

and growth of various crops (Castaldi et al. 2008; Zmora-Nahum et al. 2005). It is 

commonly reflected using the germination index (GI).  There are currently limited studies 

on the effect of bulking agents (i.e., peat and sawdust) on the maturity and stability 

indices such as enzyme activities and GI.  

Therefore, in this study, the performance of locally available bulking agents on the 

bench-scale MSW composting in NL was examined. Meanwhile, a comprehensive 

investigation of parameters indicating compost maturity and stability and monitoring 

composting process was conducted. The OUR and enzyme activities were selected to 

reflect compost stability, and GI was investigated to evaluate compost maturity.  

3.2 Methods 

3.2.1 Raw Materials and Experimental System 

The synthetic MSW (food waste) consists of potato, carrot, meat, rice, cabbage, and 

soybean. The composition of the composting mixture is presented in Table ‎3.1. Food 

material was shredded with food processor to approximately 5 mm in diameter and was 

then mixed with locally available sawdust or peat (in a ratio of 10:1 by wet weight) with 

the moisture content adjusted to 70%. Two mixtures including FP (food waste + peat) 

and FS (food waste + sawdust) were composted in two identical lab-scale reactors for a 

month. Each composting reactor (50×20×25 cm) was made of acrylic sheets (Figure ‎3.1). 
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Six mixers were installed to enable homogenous materials. A perforated plate was 

installed over the bottom of reactor to distribute the injected air. The aeration rate was 

monitored by a flowmeter. The exhaust gas was discharged into a flask containing H2SO4 

solution (1 M) to absorb NH3, and then primarily monitored by gas monitoring system 

before released through ventilation system. The leachate outlet was used to collect the 

outcome leachate. A thermometer was used to monitor the temperature. The reactor was 

cover by heat insulating material to prevent the heat loss. 
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Table ‎3.1 Composition of composting mixtures (unit: kg) 

 FP FS 

Meat 0.3 0.3 

Rice 2.2 1.9 
Carrot 2.2 2 
Potato 1.1 1.1 

Lettuce 0.2 0.2 
Soybean 0.3 0.8 

Peat 0.7 - 
Sawdust - 0.7 

 

 

  

 

Figure ‎3.1 Schematic diagram of the composting system 
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3.2.2 Sampling and Analysis 

Samples were collected randomly from 3-4 different points in the reactors after turning 

material, and then mixed together in a beaker on the 2nd, 4th, 6th, 8th, 10th, 12th, 16th, 

20th, and 27th days. The effect of bulking agent on composting was evaluated through 

measuring pH, EC, C/N ratio, moisture content, ash content, dehydrogenase activity, 

phosphodiesterase activity, β – glucosidase activity, and GI. Temperature and OUR were 

recorded every 12 hours and all parameters were measured in duplicate. The average 

value for each duplicate measurement was used in figures and tables. 

Temperature was recorded by bi-metal dial thermometer (H-B Instrument Company, PA). 

EC and pH were measured in 1:2 (w:v) aqueous extract by using a pH/Ion meter (Metller 

Toledo. EL20-Educational line pH, EL3-Educational line conductivity). The moisture 

content was determined by gravimetric loss on-ignition of 10 g sample at 105 °C for 24 h, 

and the ash content of the dried samples after measuring moisture were determined by 

burning at 550 °C in a muffle furnace (Blue M Electric Company, Blue Island, USA) for 

4 h. The outlet oxygen concentration in the compost exhaust gas was monitored by 

passing the air through a M40 Multi-Gas Monitor (Industrial Scientific Corp., Oakdale, 

PA, USA). OUR was calculated through the following equation:  

OUR = ( (O2 out (%)-O2 in (%)) × airflow rate (L/min)  (3.1) 

Where O2 out (%) is the oxygen concentration in compost exhaust gas and O2 in (%) is the 

oxygen concentration in the inlet air (20.9%) at airflow rate (0.5 L/min/kg) which is 

injected to the system. 
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For seed germination test, water was extracted from the samples by shaking fresh 

samples with double distilled water (DDW) at solids: DDW = 1:10 (w/v) for 1 h, then 

suspensions were centrifuged at 3,000 rpm for 20 min before filtering through Whatman 

No-1 filter paper. A filter paper was placed in the petri dish and almost 10 milliliter of 

water extract was introduced into the petri dish. Ten cucumber seed were placed on the 

filter paper. For control experiments, the DDW was used. The dishes were placed in the 

oven at 25 °C in the darkness for 5 days. Test for each sample was run in triplicate. The 

GI was calculated according to Zucconi et al. (1981): 

GI (%) = (Seed germination x Root length of the treatment x 100) / (Seed germination x 

Root length of the control)        (3.2) 

The total carbon and nitrogen contents of the composting sample were determined by the 

Perkin Elmer 2400 Series II CHNS/O analyzer. 

For dehydrogenase activity determination, a 5 g sample was suspended in 5 mL of 3% 

w/v 2, 3, 5-triphenyl-tetrazolium chloride (TTC) at 37 °C for 24 h in the dark, and then 

40 mL acetone was added and incubated at room temperature for 2 h in the dark. The 

suspension was filtered through a glass fiber filter and absorbance was measured at 546 

nm (Alef and Nannipieri 1995; Thalmann 1968). Phosphodiesterase activity was 

measured using the method of Browman and Tabatabai (1978) and Tabatabai (1994). 

After the addition of a Tris buffere (pH 8) and Sodium bis-p-nitrophenyl phosphate 

(Sigma; for phosphodiesterase activity) to 1 g compost, samples were incubated for 1 h at 

37 °C. The p-nitrophenol released by phosphodiesterase activity was extracted and 

coloured with calcium chloride and determined spectrophotometrically at 400 nm. For β 
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– glucosidase activity measurement, a 1g sample was suspended in 0.25 mL toluene and 

4 mL of MUB (Modified Universal Buffer, pH 6.0) plus 1 mL p-nitropenyl-β-D-

glucopyranoside (Sigma; for glucosidase). After incubation for 1 h at 37 °C, 1 mL of 0.5 

M CaCl2 and 4 mL Tris buffer (0.1M, pH 12) were added and the suspension was filtered 

through a glass fiber filter. The release of p- nitrophenol was measured 

spectrophotometrically at 400 nm (Alef and Nannipieri 1995; Eivazi and Tabatabai 

1988). 

Temperature, OUR, moisture content, ash content, and C/N ratio were measured in 

duplicate.  pH, EC, GI, and enzyme activities are tested in triplicate. The average value 

for each duplicate measurement was used in figures and tables.  

3.3 Results and Discussion 

3.3.1 Temperature and OUR 

The changes in composting temperature and OUR for FP and FS are shown in Figure ‎3.2. 

The temperature of the composting reactor indicates the breakdown of the organic matter 

and the quality of the compost, since the rise of temperature is the result of 

decomposition of readily available organic matter and nitrogen compounds by 

microorganisms (Lee et al. 2009; Ros et al. 2006). Temperature is one of the important 

indices to evaluate compost efficiency (Lee et al. 2009) because it affects the biological 

reaction rate, the population dynamic of microbes, and the physiochemical characteristics 

of the compost (Hue and Liu 1995). (Godden et al. 1983) suggested three distinct stages 

during composting, including the mesophilic (below 40°C), thermophilic (above 40°C), 



117 
 

and cooling (ambient temperature) stage. As the FP composting proceeded, the 

temperature of the decomposing waste rose rapidly and reached to a maximum 

temperature of 68 °C after 2 days. It is known that the highest thermophilic activity in the 

composting system was maintained at a temperature between 52 and 60°C (Kalamdhad et 

al. 2009; Liang et al. 2003). The high temperature ensured the elimination of all 

pathogens; only 3 days at 55°C was sufficient for elimination of pathogens (Rasapoor et 

al. 2009). Although the temperature of the FS compost showed an increase to 52°C on the 

third day, the high temperature period on compost was not sufficient to ensure the 

hygiene safety of the end product. Longer high temperature period was observed in FP 

composting, indicating effective pathogen removal and sterilization. The microbial 

activity and the organic matter breakdown rate decreased when the organic matter 

became more stabilized and consequently the temperature dropped for almost two weeks 

in both compost to the ambient temperature (Ros et al. 2006). Microbial respiration has 

been used to measure the microbial activity during composting. It has also been used to 

assess the evolution of the composting process and maturity of the final product (Ros et 

al. 2006). High OUR was recorded for FP during the first 5 days of composting and then 

it decreased sharply. High OUR indicates that organic matter are available for 

microorganisms to be degraded, and therefore the material is not stabilized yet. Low 

OUR indicates organic matter are more stabilized and most of the organic matter has 

been decomposed by microorganisms (Said-Pullicino et al. 2007). Increase of OUR for 

FS was smoother and reached the highest value at the end of the first week. Although the 

maximum OUR for FP was almost double the value of that for FS, the duration of the 
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high OUR was much longer for FS than for FP. The OUR eventually decreased and 

appear to reach a steady state. 
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Figure ‎3.2 Temporal variations of temperature and OUR 
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3.3.2 pH and EC 

The pH values for FS and FP ranged from 4.6 to 8.68 during composting. The pH value 

of the compost is one of the important factors to evaluate compost stability and maturity 

due to its influence on the physical-chemical and microbiological reactions in the 

compost (Banegas et al. 2007). The initial pH and the pH in the first week of FS and FP 

composting were slightly acidic as a result of organic acids such as acetic acid and 

butyric acid, partially contained in the food waste and partially produced by 

microorganism reactions (Adhikari et al. 2009; Eklind and Kirchmann 2000; Smårs et al. 

2002). When microorganisms consume organic acids as a substrate, pH started to 

increase (Adhikari et al. 2009). The highest pH was observed after 8 days for FS and after 

16 days for FP compost This delay for FP compost could be due to the loss of ammonium 

through volatilization and nitrification, and accumulation of organic acid and CO2  during 

decomposition of the simple organic matter like carbohydrates (Banegas et al. 2007; 

Chukwujindu et al. 2006; Kayikçioğlu and Okur 2011). Compost with low pH indicates 

lack of maturity due to the short composting time or occurrence of the anaerobic process 

(Iglesias Jiménez and Perez Garcia 1989).The final pH for FS and FP was above 8 and 

pH levels stayed almost steady by the end of composting. 

Compost EC affects microbial population and organic matter transformation. High EC 

values of compost may have phytoxicity effects on the plant and negatively influence the 

plant growth and seed germination (Arslan et al. 2011; Banegas et al. 2007; Kalamdhad 

et al. 2009). Experimental results showed that EC values of FS compost increased earlier 

than FP compost (Figure ‎3.3). This increase could be due to the release of mineral cation 
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concentration such as ammonium ions and phosphate which did not bind to the stable 

organic complex or went out of the system through leachate (Francou et al. 2005; 

Kalamdhad et al. 2009). 

3.3.3 Moisture and Ash Content 

Moisture and ash content variations are shown in Figure ‎3.4. As shown in the figure, 

moisture content showed descending trends in both compost. The combination of 

evaporation because of high temperature and aeration lead to the decrease of moisture 

content during composting, especially at high temperatures (Lashermes et al. 2012; Said-

Pullicino et al. 2007). Moisture content for FS compost showed a slow declining trend by 

10 days, which is an indication of decomposition of organic matter (Arslan et al. 2011; 

Kalamdhad et al. 2009). The temporary increasing trend observed for FS and FP compost 

was because temperature was not high enough to evaporate the water produced through 

microbial activity. The amount of ash increased consistently. The ash content increasing 

trend had a large slope at the thermophilic stage, and then the slope became smoother 

when the temperature dropped. During composting the organic matter was decomposed 

into volatile compounds, and consequently the final compost has lower organic matter 

and higher ash content (Kalamdhad et al. 2009). 
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Figure ‎3.3 Temporal variations of pH and EC 
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Figure ‎3.4 Temporal variations of moisture and ash content 
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3.3.4 C/N Ratio 

Figure ‎3.5 shows the C/N ratio variation for both FS and FP compost. Both composts 

have close C/N ratio in the beginning (17). The initial C/N ratio has a strong influence on 

the performance of the composting process and the quality of the end product (Gao et al. 

2010). An extremely high C/N ratio makes the composting process very slow as there is 

an excess of degradable substrate and lack of N for the microorganisms. On the other 

hand, a very low C/N ratio can lead to loss of N through NH3 volatilization and generate 

potential odour problem (Gao et al. 2010; George and Jayachandran 2013; Seafish 2001). 

For FS and FP composting, the initial C/N ratio were lower than the optimum value 

recommended for composting, i.e., 25 to 30 (Haug 1993). C/N ratio decreased for both 

composts during thermophilic phase. Decrease was very fast for FP whereas after the first 

week, the C/N ratio for FP dropped to 9 while it was 13 for FS.  High microbial activity 

and high decomposition of organic matter after two weeks led to a C/N ratio decrease in 

both treatments. The C/N ratio stayed steady after two weeks by the end of the 

experiments for both FS and FP composts. The final value of C/N ratio of FP was low 

than that of FS. 

3.3.5 GI 

The maturity of the compost has been evaluated based on chemical parameters correlated 

with plant response (Bernal et al. 2009; Xiao et al. 2009). Seed germination test helps to 

evaluate the efficiency of the composting process for plant growth and seed germination 

(Banegas et al. 2007). As it is shown in Figure ‎3.6, GI is high at the beginning since the 

raw material is synthetic and non-toxic food waste. GI decreased as a result of formation 



124 
 

of toxic compounds such as alcohols, phenolic compound, and organic acids during the 

thermophilic phase as a result of the composting process. This decrease was sharp for FS 

compost by the end of the first week and after that it started to increase quickly. It has 

been suggested that a GI over 80% indicates the absence of phytotoxicities in compost 

(Tiquia and Tam 1998; Zucconi et al. 1981). At the end of the composting, GI for FS was 

higher than 80%; but for FP, GI did not reach 40%, which can be associated with the 

stage of the composting. Higher degree of maturity was found for the FS compost. 
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Figure ‎3.5 Temporal variations of C/N ratio 
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Figure ‎3.6 Temporal variations of GI 
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3.3.6 Enzyme Activities 

Enzymes are responsible for the breakdown of several organic compounds characterised 

by complex structures, finally generating simple water-soluble compounds (Castaldi et al. 

2008). Characterising and quantifying specific enzyme activities during composting 

could provide information of dynamics of the composting process. Enzyme activities can 

reflect the rate of transformation of organic residues and nitrogen, as well as the stability 

and maturity of end products (Mondini et al. 2004; Raut et al. 2008). Moreover, the 

determination of enzyme activity, in contrast to other analytical techniques used for 

compost stability evaluation, is easy, fast, and relatively inexpensive (Mondini et al. 

2004). Garcia et al. (1993) confirmed that the hydrolytic enzymes were biomarkers of the 

state of the composting and evolution of the organic matter.  

Dehydrogenase activity was 1,959 and 837 (µg TPF g DM -1) on the second day for FP 

and FS, respectively. Dehydrogenase is an enzyme belonging to the oxido-reductase 

group which catalyzes the oxidation of organic substances (Kayikçioğlu and Okur 2011). 

Bernal et al. (2009) used dehydrogenase activity to monitor the composting process. They 

concluded that dehydrogenase is a useful parameter to follow the evolution of the 

biological activity of the composting process, since it correlates well with the temperature 

profile in the reactor. Dehydrogenase activity increases for FS and FP. FS reached the 

maximum value, 19,106 (µg TPF g DM -1) after 10 days corresponding to the peaks of 

temperature and OUR. The maximum value, 18,815 (µg TPF g DM -1) for FP observed at 

16 days at the end of the thermophilic phase or the beginning of the mesophilic stage is 

similar to the results of Kayikçioğlu and Okur (2011) and Bernal et al. (2009). Vargas-
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Garcia et al. (2010) stated that the higher dehydrogenase activity values were related to 

the higher microbial activity and large account of mesophilic and thermophilic bacteria 

and lower dehydrogenase activity values associated with the maturation phase. The 

longer period of high dehydrogenase activity was observed for FP compost. As shown in 

Figure ‎3.7, after 20 days the dehydrogenase activity decreased, which means that most of 

the organic matter has been degraded by the microorganism and converted to stable 

materials and consequently the respiratory process slowed down (Benitez et al. 1999; 

Benito et al. 2003; Kayikçioğlu and Okur 2011; Ros et al. 2006; Tiquia 2005; Vargas-

Garcia et al. 2010). The cumulative dehydrogenase activity for FP (94, 899 µg TPF g DM 

-1) was much higher than the cumulative dehydrogenase activity for FS (67, 924 µg TPF 

g DM -1). 

β-glucosidase is one of the key enzymes governing the C-cycle. It hydrolyses reducing 

terminations of b-D-glucose chains and form b-glucose. Its activity is therefore indicative 

of the presence of these terminations, which come from the labile organic matter 

(Kayikçioğlu and Okur 2011; Vargas-Garcia et al. 2010). The temporal variation of the β 

– glucosidase activity is shown in Figure ‎3.8. β – glucosidase activity was high at the 

beginning for both composts. At the end of the first week, β – glucosidase activity 

showed a peak, 11,980 (µg PNP g DM−1ℎ−1), and then dropped. The peak of β – 

glucosidase activity for FS was observed later than for FP after the second week but with 

almost the same value. β – glucosidase activity for both of the composts decreased by the 

end of composting and it was lower for the FS compost. 
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Figure ‎3.7 Temporal variations of dehydrogenase activity 
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Figure ‎3.8 Temporal variations of β – glucosidase activity 
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Phosphodiesterase (phosphoric diester hydrolases) hydrolyse one or two ester bonds in 

phosphodiester compounds including nucleases, which catalyze the hydrolysis of 

phosphodiester bonds of nucleic acids to produce nucleotide units or mononucleotides 

but not inorganic phosphates. Phosphodiesterase catalyzes phospholipids and nucleic 

acids degradation which are among the major sources of fresh organic P inputs 

(Nannipieri et al. 2011). In the beginning, phosphodiesterase activities were high in both 

composts. Phosphodiesterase activities showed the same trend for FS and FP in the first 

two weeks. The peak values observed at 8 days, 25,366 and 21,032 (µg PNP g DM−1ℎ−1) 

for FP and FS, respectively. After 2 weeks, the phosphodiesterase activity dropped 

dramatically for FS compost and reached zero by the end of the experiment, whereas for 

FP compost, phosphodiesterase activity was 9,401 (µg PNP g DM−1ℎ−1) at the end of 

experiment (Figure ‎3.9). 

  



130 
 

 

 

  

 

Figure ‎3.9 Temporal variations of phosphodiesterase activity 
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3.4 Summary 

The results of different maturity and stability indices indicated the choice of bulking 

agents is important for composting performance and the quality of the end product. 

Applying different bulking agents in composting influence temperature, OUR, GI, 

dehydrogenase activity and β-glucosidase activity. The final GI values for food waste 

composting with sawdust as a bulking agent was found to generate more mature compost 

with less phytotoxicity. The choice of bulking agent did not affect dehydrogenase and β – 

glucosidase activities values at the end of the composting for both treatments, but the 

final value for phosphodiesterase activity for FS was much lower than that for FP. High 

dehydrogenase and β-glucosidase activities during the third week of composting for FP 

indicate high microbial activities. To generate a high temperature and a longer duration of 

high temperature to kill pathogens and sterilize the compost, peat was considerably more 

effective. Both sawdust and peat are effective bulking agents for bench-scale composting. 

The choice depends on the availability of the bulking agent and land in the target 

community, the price of the bulking agent and its transportation, and the desired quality 

(e.g., higher maturity or stability) of the end compost. 



132 
 

 

 

CHAPTER 4  

DESIGN OF EXPERIMENT (DOE) BASED SCREENING OF 

FACTORS AFFECTING MUNICIPAL SOLID WASTE (MSW) 

COMPOSTING
3
 

  

                                                 
This chapter is based on the following paper: 

Kazemi, K., Zhang, B., Lye, L. M., Cai, Q., and Cao, T., (2016). Design of Experiment 

(DOE) based Screening of Factors Affecting Municipal Solid Waste (MSW) 
Composting, Waste Management. 

Role: Khoshrooz Kazemi solely worked on this study and acted as the first author of 
this manuscript under the guidance of two supervisors, Dr. Baiyu Zhang and Dr. 
Leonard Lye. Qinghong Cai and Tong Cao participated in conducting experiments. 

Most contents of this paper was written by Kazemi and further polished by the other 
co-authors. 

 



133 
 

4.1 Background 

Municipal solid waste (MSW) is one of the major environmental concerns in recent 

decades due to the aggregation of human settlements and increased individual solid waste 

generation rate (Iqbal et al. 2010). In North America, 0.75 tonnes of garbage is produced 

per capita per year (Adhikari et al. 2008; Asase et al. 2009). In Canada, around 75% of 

total MSW go to landfills (Statistics Canada 2008) which may have negative 

environmental impacts on groundwater and surface water due to the toxic and polluting 

components (e.g. halogenated organics and heavy metals) generated from the landfill 

leachate (Kjeldsen et al. 2002). Besides, landfill gas emission is another environmental 

concern as the emitted gases are explosive and toxic and require treatment (Spokas et al. 

2006). Moreover, noise, dust and odour from the disposal sites make the surrounding area 

undesirable for habitation (Garrod and Willis 1998). In Canada, the strict environmental 

regulations render finding new sites for MSW disposal and management a growing 

challenge (Adhikari et al., 2008).  

Composting has become an inexpensive, simple and environmental-friendly alternative 

for the treatment of MSW as easily degradable organic matter (OM) in MSW is prone to 

be stabilized and converted to the humus-rich compost by the action of microorganisms 

(Jolanun and Towprayoon 2010; Ponsá et al. 2010). The mature compost can then serve 

as soil conditioner for agriculture and gardening with high economic values (Wong et al. 

1996). The maturity of the compost is evaluated by diverse parameters such as pH value, 

electrical conductivity (EC), final carbon/nitrogen (C/N) ratio, germination index (GI) 

and ash content (Laos et al. 2002; Zucconi et al. 1981). In addition, temperature 
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dynamics, oxygen uptake rate (OUR) and diverse enzyme activities are also important 

parameters to determine the overall performance of the composting process and the 

quality of the compost (Ros et al. 2006; Said-Pullicino et al. 2007).  

The optimization of the above mentioned parameters entails appropriate set-up design 

factors such as C/N ratio (C/N), moisture content (MC), aeration rate (AR) and type of 

bulking agent (BA), to allow the sufficient development of the microbial population with 

robust enzymatic activities, which control the OM degradation and thus the maturity of 

the compost (Garcıa-Gómez et al. 2003) Specifically, C/N of 25–30 are considered ideal 

for composting (Min and Wong 1999) although the C/N of MSW generally is lower than 

the ideal value. Inappropriate C/N limit the microbial activity slowing down composting 

and generating immature products (Christensen 2011; de Bertoldi et al. 1983; Gao et al. 

2010; Tiquia and Tam 2000). MC, when too low halts microbial activity (Haug 1993) and 

limits oxygen flux if it is too high (Liang et al. 2003; Sundberg and Jönsson 2008). The 

AR determines the oxygen amount, while affecting the MC and temperature of the 

system (Kuter et al. 1985). BA adjusts water content, porosity and provides free air space 

(Haug 1993). Different BA provide diverse adjustments to the above parameters which 

lead to the different maturities of the compost (Leiva et al. 2003).  

Although many studies have investigated the effects of these design factors on the 

composting performance and maturity of the compost, most studies only worked with one 

or two parameters using one-factor-at-a-time approach (OFAT) (Guo et al., 2012). 

However, OFAT generally requires more experimental runs, has less accuracy and is not 

able to estimate factor interactions when compared with designed experiments (Czitrom 
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1999). A few studies have applied design of experiments (DOE) (e.g., factorial designs) 

to study the effects of a few factors such as temperature and moisture (Liang et al. 2003); 

temperature, aeration and moisture (Suler and Finstein 1977); operation volume, bulking 

agent particle size and bulking agent/sludge volume ratio (Leiva et al. 2003) on the 

performance of composting system. The investigated factors were not comprehensive 

enough to illustrate their effects and interactions on the performance of a composting 

process. Enzymatic activities could apparently give interesting information on the rate of 

decomposition of organic matter and, therefore, on the produced compost stability 

(Jurado et al. 2014), however, they have never been reported as responses for optimizing 

MSW composting based on DOE methods. 

In this study, statistically significant factors that affect the performance of a composting 

process were screened based on the DOE technique. A two-level (or 2k ) factorial design 

was applied to study the effects of four factors, AR, MC, BA, and C/N on the maturity, 

stability and toxicity of compost product by evaluating temperature, OUR, pH, EC, and 

ash content of the compost. In addition, final C/N ratio, GI and enzyme activities were 

also used as responses to evaluate system performance. 

4.2  Material and Methods 

4.2.1  Experimental Design and Statistical Analysis 

 Factorial design was employed to screen factors that may have significant effects on 

response(s) because it is the most efficient available method for conducting multifactor 

experiments. The significant factors can then be used to develop a model to optimize and 
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predict the response (Montgomery 2008; Montgomery et al. 1997), if needed. The most 

common factorial design is the two-level (or 2𝑘) design. Based on the analysis of 

variance (ANOVA), the significant factors are determined and used to produce the 

regression prediction model. The regression model representation of a 24 factorial 

experiment can be written as: 

𝑌̂ =𝛽0 + 𝛽i xi + 𝛽ijAiBj +𝛽ijkAiBjCk + 𝛽ijklAiBjCkDl+ ε,  (4.1) 

i=1,2,…,4, j=1,2,…,4, k=1,2,…,4, l=1,2,…,4             

Where 𝑌̂is the response, 𝛽0 is the mean of all treatment combinations, 𝛽i, 𝛽ij ,𝛽ijk , and 

𝛽ijkl are half of the effect estimated corresponding to significant effects, Ai, Bj, Ck, and Dl 

are coded variables that represent significant effects and take on values between -1 and 

+1, and ε is a random error term. The random error terms are assumed to have a normal 

distribution, a constant variance, and are independent. The four factors investigated in 

this study include AR, MC, BA, and C/N. The high and low levels of variables are 

presented in Table 4.1. The high/low levels of the variables were selected based on the 

values reported in the previous studies (Delgado-Rodríguez et al. 2012; Gao et al. 2010; 

Guo et al. 2012; Kumar et al. 2010; Rasapoor et al. 2009). For four factors, the design 

requires 16 runs which are shown in Table 4.2. 
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Table ‎4.1 Design factors and their high and low levels 

Factor High level Low level 

A-AR (L/min.kg) 0.5 0.3 

B-MC (%) 70 55 

C-BA Peat sawdust 

D-C/N  17 12 

 

 

Table ‎4.2 Experimental design for MSW composting 

Std Run A:AR B:MC C:BA C/N 

1 1 0.3 55 Sawdust 12 
4 2 0.5 70 Sawdust 12 

8 3 0.5 70 Peat 12 
14 4 0.5 55 Peat 17 
11 5 0.3 70 Sawdust 17 

7 6 0.3 70 Peat 12 
15 7 0.3 70 Peat 17 

10 8 0.5 55 Sawdust 17 
16 9 0.5 70 Peat 17 
2 10 0.5 55 Sawdust 12 

12 11 0.5 70 Sawdust 17 
3 12 0.3 70 Sawdust 12 

13 13 0.3 55 Peat 17 
6 14 0.5 55 Peat 12 
5 15 0.3 55 Peat 12 

9 16 0.3 55 Sawdust 17 
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4.2.2 Composting Process  

Six identical composting reactors (50×20×25 cm) made of acrylic sheets (Figure ‎4.1) 

were designed and manufactured for the experiments. To facilitate the technology 

transfer and system scale-up, in this study, the bench-scale system was designed as 

rectangular. Mixers were installed to enable homogenous mixing of materials. A 

perforated plate was installed over the bottom of the reactor to distribute the injected air. 

The aeration rate was monitored by a flowmeter (Acrylic block flowmeter, FR2000, 

VWR). The exhaust gas was discharged into a flask containing H2SO4 solution (1 M) to 

absorb NH3, and monitored by a gas monitoring system, then treated and released 

through a ventilation system. The leachate outlet was used to collect the outcome 

leachate. The top of the reactor can be opened for feeding and after feeding, the arm in 

the feeding part can push the waste forward along the tunnel. A thermometer was used to 

monitor the temperature. The reactor was covered with a layer of aluminum foil and then 

two layers of foil insulation “reflectix bubble pack” which is filled with a 3.5 inch thick 

fibreglass layer to prevent heat loss through the reactor walls.  
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(a) 

 

(b) 

Figure ‎4.1 (a) 3D view of the designed composting system; (b) Schematic diagram of 

the composting system 
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Synthetic MSW (food waste) consisting of potato, carrot, meat, rice, cabbage, soybean, 

and different bulking agents (i.e., sawdust and peat) was used for composting. The food 

material was shredded with a food processor to approximately 5 mm in diameter and then 

mixed in different ratio to adjust the C/N based on the experimental design. Sawdust or 

peats as BA (in a ratio of 1:9 by wet weight) were added to the material. The initial 

moisture content was adjusted by natural drying to 55% or 70% according to the 

experimental design. The composition of the composting mixture is presented in Table 

4.3. 
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Table ‎4.3 Composition of composting mixture (unit: kg) 

 Run (3,6,14,15) Run (4,7,9,13) Run (1,2,10,12) Run (5,8,11,16) 

Meat 0.5 0.3 0.5 0.3 

Rice 1.4 2.2 1.3 1.9 
Carrot 1.5 2.2 1.2 2 

Potato 1.4 1.1 1.4 1.1 
Lettuce 0.1 0.2 0.1 0.2 

Soybean 1.4 0.3 1.8 0.8 

Peat 0.7 0.7 - - 
Sawdust - - 0.7 0.7 
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The composting material was turned with mixers twice a day in order to get homogenized 

samples. After turning, approximately 100 g compost was collected randomly from 3-4 

different points in the reactor, and was then mixed in a beaker on the 2nd, 4th, 6th, 8th, 

10th, 12th, 16th, 20th, and 27th day. The collected samples was divided into different 

sub-samples to measure pH, EC, C/N, MC, ash content, enzyme activities, and GI. 

Temperature and OUR were recorded every 12 hours. MC, ash content, pH and EC were 

measured in duplicate and the presented data are the average values. Measurements for 

enzyme activities and tests for GI were carried out in triplicate. 

4.2.3 Analytical Methods 

Temperature was recorded by a bi-metal dial thermometer (H-B Instrument Company, 

PA). EC and pH were measured in 1:2 (w:v) aqueous extract by using a pH/Ion meter 

(Metller Toledo. EL20-Educational line pH, EL3-Educational line conductivity). The MC 

was determined by gravimetric loss on-ignition of 10 g sample at 105 °C for 24 h, and the 

ash content of the dried samples after measuring moisture, were determined by burning at 

550 °C in a muffle furnace (Thermo Scientific, Type FD1500M) for 4 h. The outlet 

oxygen concentration in the compost exhaust gas was monitored by passing the air 

through a multi-Gas Monitor (M40 Industrial Scientific Corp., Oakdale, PA, USA). OUR 

was calculated through the following equation:  

OUR =( (O2 out (%)-O2 in (%)) × airflow rate (L/min)   (4.2) 

Where O2 out (%) is the oxygen concentration in compost exhaust gas and O2 in (%) is the 

oxygen concentration in the inlet air (20.9%) at airflow rate (0.3 or 0.5 L/min/kg) which 

is injected to the system. 
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For seed germination test, water was extracted from the samples by shaking fresh 

samples with double distilled water (DDW) at solids: DDW = 1:10 (w/v) for 1 h, then 

suspensions were centrifuged at 3,000 rpm for 20 min before filtering through Whatman 

No-1 filter paper. A filter paper was placed in the petri dish and almost 10 milliliter of 

water extract was introduced into the petri dish. Ten cucumber seeds were placed on the 

filter paper. For control experiments, the DDW was used. The dishes were placed in the 

oven at 25 °C in darkness for 5 days. Test for each sample was run in triplicate. The GI 

was calculated according to Zucconi et al. (1981): 

GI (%) = (Seed germination x Root length of the treatment x 100) / (Seed germination x 

Root length of the control)              (4.3) 

For dehydrogenase activity (DGH) determination, a 5 g sample was suspended in 5 mL 

of 3% w/v 2, 3, 5-triphenyl-tetrazolium chloride (TTC) at 37 °C for 24 h in the dark, and 

then 40 mL acetone was added and incubated at room temperature for 2 h in the dark. 

The suspension was filtered through a glass fiber filter and absorbance was measured at 

546 nm (Alef and Nannipieri 1995; Thalmann 1968). Phosphodiesterase activity (PDE) 

was measured using the method of (Browman and Tabatabai 1978) and (Tabatabai 1994). 

After the addition of a Tris buffer (pH 8) and Sodium bis-p-nitrophenyl phosphate 

(Sigma; for PDE) to 1 g compost, samples were incubated for 1 h at 37 °C. The p-

nitrophenol released by PDE was extracted and coloured with calcium chloride and 

determined spectrophotometrically at 400 nm. For β – glucosidase activity (BGH) 

measurement, a 1g sample was suspended in 0.25 mL toluene and 4 mL of MUB 

(Modified Universal Buffer, pH 6.0) plus 1 mL p-nitropenyl-β-D-glucopyranoside 
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(Sigma; for glucosidase). After incubation for 1 h at 37 °C, 1 mL of 0.5 M CaCl2 and 4 

mL Tris buffer (0.1M, pH 12) were added and the suspension was filtered through a glass 

fiber filter. The release of p- nitrophenol was measured spectrophotometrically at 400 nm 

(Alef and Nannipieri 1995; Eivazi and Tabatabai 1988).The total carbon and nitrogen 

contents of the composting sample were determined by the PerkinElmer 2400 Series II 

CHNS/O analyzer. 

4.3 Results and Discussion  

The temporal variation of the temperature, OUR, pH, EC, MC, ash content, C/N, GI, and 

enzyme activities are presented in Figure ‎4.2 .Temperature is one of the important indices 

to evaluate compost efficiency (Lee et al. 2009) due to its effect on the biological reaction 

rate, the population dynamic of microbes, and the physiochemical characteristics of the 

compost (Hue and Liu 1995). Decomposition of readily available OM and nitrogen 

compounds by microorganisms led to the rise of temperature. Composting temperature 

can indicate the breakdown of the OM and the quality of the compost (Lee et al. 2009; 

Ros et al. 2006). The microbial activity and the OM breakdown rate decrease when the 

OM becomes more stabilized and consequently the temperature drops to the ambient 

temperature (Ros et al., 2006). 
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Figure ‎4.2 Temporal Variations of Temperature, OUR, pH, EC, MC, Ash content, GI, 
C/N, DGH, BGH, PDE  
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The temperature pattern corresponded to the typical composting temperature profile at 

the laboratory scale reactor for most of the runs. Generally, the composting process 

occurs in 2 stages: the biooxidative stage and the maturing stage. The biooxidative stage 

can be divided into three phases: (i) during the mesophilic phase, mostly bacterial and 

fungi degrade simple OM such as sugar, amino acids, and proteins; (ii) during the 

thermophilic phase, fats, cellulose, and hemicellulose are degraded by themophilic 

microorganisms and the pathogens are suppressed; and (iii) during the last phase or 

cooling phase, the deficiency of the biodegradable material leads to reduction of 

microbial activity and decrease in temperature (Bernal et al. 2009). The appearance of the 

temperature peak depended on the composition of the waste material which affects the 

microorganism growth. The first temperature peak is a result of aerobic biodegradation of 

the fast decomposing OM in the food waste. Some runs including run 2 and 4 showed 

second peak at the beginning of the second week. The second peak value can be a result 

of degradation of slowly decomposing material. Except run 7, 8, 10, 11, and 16 all other 

runs met the requirement of the US Environmental Protection Agency (EPA) regulation; 

based on the US EPA regulation, aerated static piles and in vessel systems should 

maintain a minimum operating temperature of 55°C for at least 3 days to inactivate 

pathogen and destruct seed (EPA 2003). The highest temperature was recorded for run 5 

and the longest thermophilic activity occurred also on run 5 which was 10 days. Run 3, 6 

and 11 reached the themophilic phase later than the others.  

Respiration (CO2 evolution rate or OUR) has been used to determine biological stability 

and microbial activity (Xiao et al. 2009). Said-Pullicino et al. (2007) observed the 
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maximum specific oxygen uptake rate (SOUR) during the active phase in which most of 

the OM was degraded. It can thus be concluded that OUR max is related to the 

concentration of immediate carbon sources (i.e., sugars, amino sugars, amino acids, 

simple organic acids).  Microbial respiration has been used to assess microbial activity, 

the evolution of the composting process and stability of the final product (Ros et al. 

2006).  The trend of OUR in all runs were very similar to the trend of the temperature. 

The highest OUR was recorded during the thermophilic phase, when the temperature 

rises. High OUR indicates high biological activity in the composting system and OM are 

available for microorganism to be degraded, therefore the material is not stabilized yet 

(Said-Pullicino et al. 2007). Similar to the temperature, OUR showed several peaks and 

after the active phase, the OUR decreased and reached a steady state. Low OUR indicates 

OM are more stabilized and most of the OM has been decomposed by microorganisms 

(Said-Pullicino et al. 2007). For some runs like run 5, the duration for high OUR was 

longer whereas for runs 6 and 9 a sharp increase was observed and then it decreased 

dramatically. The maximum values of OUR was between 26.1 and 62 (
10−2L

min
) for run 16 

and for run 9, respectively.  

The initial pH of some runs such as 3, 5, 7, 9, 11 were slightly acidic as a result organic 

acids like acetic acid and butyric acid have been produced by microbial activity during 

storage and initial phase of composting (Adhikari et al. 2009; Eklind and Kirchmann 

2000; Smårs et al. 2002). The pH value of the compost can influence the physical-

chemical and microbiological reactions in the compost and it is one of the important 

factors to evaluate compost stability and maturity (Banegas et al. 2007). When 
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composting process proceeds, pH increases which can be associated with the 

accumulation of NH4
+ due to proton assimilation during ammonification and N 

mineralization and consumption of organic acids as a substrate by microbial activity 

(Dresbøll and Thorup-Kristensen 2005; Rasapoor et al. 2009). Loss of ammonium 

through volatilization and nitrification, and accumulation of organic acid and CO2  during 

decomposition of the simple OM like carbohydrates lead to delay in pH increase for some 

runs including 4, 5, 7, 8, 9, 11, and 16 (Banegas et al. 2007; Kayikçioğlu and Okur 2011). 

Run 9 had the longest duration before pH increases; it could be due to the rapid increase 

of temperature during the thermophilic phase. Microorganisms cannot tolerate high 

temperature and low pH at the same time. Thermophilic bacterial are not acid tolerant so 

the low pH led to a decline in microbial activity and the low microbial activity resulted in 

low degradation rate and longer period of the acidic pH (Sundberg and Jönsson 2008). In 

all runs, after almost 10 days, pH increased above 8 and it stayed almost steady by the 

end of the experiment.  

The EC values of runs on the second day of composting were between 2.02 to 5.05 

mS/cm. Generally, EC values increased with time for all runs. This increase could be due 

to the release of mineral cation concentration such as ammonium ions and phosphate 

which did not bind to the stable organic complex or went out of the system through 

leachate (Francou et al. 2005; Kalamdhad et al. 2009). For a short period of time a slight 

decrease was observed for runs 6 and 9, this decrease may be attributed to the reduction 

of water soluble substances such as organic acids during the composting process (Arslan 

et al. 2011). Final values of EC were between 5 and 9.68 mS/cm at the end of the process. 
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MC showed descending trends in all runs. High temperature and aeration caused 

evaporation and evaporation led to MC decrease during composting, especially at the 

thermophilic phase (Lashermes et al. 2012; Said-Pullicino et al. 2007). Runs 7, 10, 12, 

13, and 15 showed corresponding trends, as temperature increased, moisture decreased. 

Decrease of the MC during composting is an indication of decomposition of OM (Arslan 

et al. 2011; Kalamdhad et al. 2009). On the first 6 days, except run 9, high temperature 

had positive effect on moisture reduction. Although in general, moisture showed reducing 

trend in all runs, temperature was not high enough to evaporate the water produced 

through microbial activity and consequently moisture showed temporary increasing trend 

for a short period of time for some runs including runs 6, 8, 9, and 11. Moisture content 

for runs 9 and 11 exceeded 70% at some points, which is undesirable for composting 

because it is capable of creating anaerobic condition (Tiquia and Tam 1998). The highest 

reduction was observed for run 7 which could be associated to the long period of high 

temperature. Haug (1993) suggested 40% as the minimum MC to continue microbial 

activity. MC at the end of experiments, in all runs with 70% initial MC, was above 40%. 

In contrast, MC in runs with 55% initial MC, reached under 40% except run 4 and run 8.  

The amount of ash increased consistently in all runs. The ash content increasing trend had 

large slope at the thermophilic stage, and then the slope became smoother when 

temperature dropped. During composting, the OM was decomposed into volatile 

compound, and consequently the final compost has lower OM and higher ash content 

(Kalamdhad et al. 2009). The Ash content of the samples at the beginning of experiment 

was between 0.8 % and 1.2%. At the end of the experiments, the ash content increased to 
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2.1% to 5.5%. The highest increase happened in run 7 which could be due to the long 

thermophilic phase.  

As Wichuk and McCartney (2010) mentioned, decomposition of OM releases carbon 

dioxide and it results in carbon lost from the composting system, therefore a decreasing 

trend with eventual stabilization were observed for C/N ratio during composting process. 

The highest declines in C/N ratio were observed during the thermophilic phase and at the 

end of the first week for most of the runs similar to the results of Brewer and Sullivan 

(2003) and Bustamante et al. (2008), except run 1, 2, and 10.  After the themophilic 

phase, the C/N ratio stayed almost stable except runs 3, 6, 12, and 15. The biodegradation 

still is ongoing during this phase because when pH is higher than 7.5, carbon and 

nitrogen lost are happening through CO2 and NH3 release but C/N ratio remains stable 

(Hao et al. 2004).   Although a C/N ratio below 20 is suggested as indicative of 

acceptable maturity in the final product, and a ratio of 15 or even less is preferable 

(Iglesias Jiménez and Perez Garcia 1989; Raut et al. 2008), the C/N ratio cannot be used 

as an indicator of the state of maturation of these composts because of the variation and 

the low initial C/N of composting material (<20). The periodic monitoring of C/N ratio 

during composting in conjunction with other parameters such as temperature can be a 

good indicator for OM degradation and reliable factor for compost stability and maturity 

evaluation (Iglesias Jiménez and Pérez García 1992; Wichuk and McCartney 2010). An 

increase of C/N ratio occurred during the thermophilic phase for runs 3, 6, 12 and 15 after 

the primary decrease which can be attributed to NH3 volatilization (Hutchinson and 

Griffin 2008). 
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Seed germination test helps to evaluate the efficiency of the composting process for plant 

growth and seed germination (Banegas et al. 2007).  In this study, the raw material is 

synthetic food waste, which does not contain any toxic material for plant growth; 

consequently, the germination indices in most of the runs at the beginning were very 

high. In some runs low germination indices at the beginning can be a result of the fast 

starting of biological activity and the formation of toxic compounds such as alcohols, 

phenolic compound, and organic acids which inhibits seed germination (Vargas-Garcia et 

al. 2010). GI decreased during the thermophilic phase and during the transition of 

thermophilic to mesophilic phase. This decrease attributed to the production of low 

molecular weight short chain volatile fatty acids (mainly acetic acid) and ammonia (Fang 

et al. 1999). In the majority of runs GI started to increase after 3 weeks of composting. It 

has been suggested that a GI over 80% indicates the absence of phytotoxicities in 

compost (Tiquia and Tam 1998; Zucconi et al. 1981). Only GI of runs 4, 5, 8, 11, 13, and 

15 raised over 80%, in other runs the low GI can be associated with the stage of the 

composting.  Runs 1, 2 and 3 showed low GI after 4 weeks.  EC can affect adversely seed 

germination in these runs. 

DGH is not related to a specific element cycle. It has been used to evaluate the microbial 

activity because it belongs to the group of intercellular enzymes which catalyse the 

oxidation of compost OM (Benito et al. 2003; Saidi et al. 2009; Vargas-Garcia et al. 

2010). Due to the relationship between DGH and temperature, Barrena et al. (2008) 

suggested to use DGH to describe the biological activity during the thermophilic and 

mesophilic stage. DGH initially increased for all runs. The DGH values at the beginning 



167 
 

of some runs were high, which could be a result of the fast starting of microbial activity 

or starting microbial activity during storage time. As Kayikçioğlu and Okur (2011) and 

Barrena et al. (2008) pointed out the maximum values of DGH corresponded to the end 

of the thermophilic phase or the beginning of the mesophilic stage. In this study, runs 2, 

3, 4, 5, 6, 8, 9, 11, 14, and 16 showed the similar patterns. For some runs including 1, 10, 

13, and 15 the peak temperatures, OUR, and DGH appear simultaneously. Vargas-Garcia 

et al. (2010) and Kayikçioğlu and Okur (2011) stated that the higher DGH values are 

accompanied by higher microbial activity and lower values associated with the 

maturation phase.  After day 20, the DGH decreased, which means that most of the OM 

has been degraded by microorganisms and converted to the stable material and 

consequently the respiratory process slowed down.  

The BGH was high at the beginning of the composting. High BGH in the initial phases 

was also observed by Vargas-Garcia et al. (2010). BGH catalyses the hydrolysis of the b-

glucoside bonds of the carbohydrates, which contributes to the release of energy for 

microbial activity. The high BGH is related to the availability of the readily metabolized 

substrate in initial phase (Ros et al. 2006; Vargas-Garcia et al. 2010). After thermophilic 

phase, a decline has occurred in BGH in all runs and then it started to rise again for some 

runs. Mondini et al. (2004) reported the increase of BGH during the composting process. 

Benitez et al. (1999) also reported decrease of BGH after an increase throughout the 

composting process. Increase in the later stages may be related to the release of carbon 

compounds from the cellulytic and hemicellulytic activities and lignin content after 
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consuming of the easily metabolized carbon (Castaldi et al. 2008; Vargas-Garcia et al. 

2010). 

Phosphatases are group of enzymes that perform an important function by transforming 

organic P into inorganic phosphate (𝐻𝑃𝑂4
2− , 𝐻2𝑃𝑂4

−4  ) which is directly available for 

organisms. Phosphatases are classified into phosphomoesterases, phosphodiesterases and 

phosphotriesterase base on the number of ester bonds of the respective substrate 

(Margesin and Schinner 1994) . Although, measurement of acid and alkali 

phosphomonoesterases are used to assay phosphatase activity in compost in the previous 

studies, phosphodiesterase (phosphoric diester hydrolases) is catalyzes phospholipids and 

nucleic acids degradation which are among the major sources of fresh organic P inputs.  

PDE plays an important role in the P cycle in compost by  hydrolysing one or two ester 

bonds in phosphodiester compounds including nucleases to produce nucleotide units or 

mononucleotides (Nannipieri et al. 2011).  PDE showed a peak at the end of the first 

week of the experiment for runs including 1, 2, 3, 4, 10, 11, 13, 14, and 15. For runs 

including 5, 7, 8, 9, 12, and 16 the peak observed at the second week and for run 6 it 

happened at the third week in which highest temperature observed later than other runs. 

The decreasing trend happened at the last days of the experiment for all runs. In the set of 

runs that conventional maturity and stability parameters, OUR, C/N ratio, GI indicated 

compost maturity, enzyme activities showed consistent results since after bio-oxidative 

phase enzyme activities were declined. This consistency supports the possibility of using 

enzyme activities as indicator of compost stability. 
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4.4 Statistical Analysis 

 In this work, a factorial design was employed to study the optimal conditions for the 

composting of MSW, in which four variables were assayed at two levels. Statistical 

analysis was conducted to screen for statistically significant factors for responses 

including cumulative DGH (y1), cumulative BGH (y2), cumulative PDE (y3), final C/N 

ratio (y4), final GI (y5), and final moisture content (y6). The result of the experiments 

allowed the development of regression models describing the interrelationship between 

operational variables and responses by equations including linear and interaction terms. 

The regression coefficients and their statistical significance for the calculated models and 

statistical parameter (R-Squared) to measure the fit of the model are presented in Table 

4.4. To assess the reproducibility of the composting experiment, duplicated experiments 

with identical initial condition was conducted and C/N ratio and temperature were 

evaluated. Results indicated that the processes can be developed similarly. The data 

deviations were less than 10% and the analysis of deviation between the replicate profile 

of C/N ratio and temperature showed that the composting process was duplicable. As 

such blocking was deemed unnecessary in this study. 
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Table ‎4.4 Regression coefficients, significance level (P), and R-Squared to predict cumulative DGH (y1), cumulative BGH 
(y2), cumulative PDE (y3), final C/N ratio (y4), final GI (y5), and final moisture content (y6) 

Coefficient y1 Py1 y2 Py2 y3 Py3 y4 Py4 y5 Py5 y6 Py6 

b0 72590.5 - 55784.61 - 125258.01 - 11.11  83.30 - 47.76 - 
b1 471.92 0.7771 -1272.64 0.6779 2159.12 0.5738 - - -3.54 0.1778 - - 
b2 9215.63 0.0012 11656.30 0.0024 16349.89 0.0011 - - 1.87 0.4550 7.89 00001 
b3 749.82 0.6546 - - - - -0.98 < 0.0001 0.51 0.8361 - - 
b4 -1733.45 0.3184 14751.44 0.0004 15079.57 0.0019 0.79 < 0.0001 8.87 0.0072 - - 
b12 - - -10861.5 0.0039 - - - - - - - - 
b13 - - - - - - - - -6.40 0.0303 - - 
b23 -1312.1 0.4418 - - - - - - -8.87 

 
0.0071   

b14 5061.33 0.0192 - - -10530.64 0.0164 - - - - - - 
b24 -6806.5 0.0053 - - - - - - 7.01 0.0209 - - 
b34 -1038.72 0.5387 - - - - - - -6.51 

 
0.0283 - - 

b123 - - - - - - - - - - - - 
b124 - - - - - - - - - - - - 
b234 7465.13 0.0034 - - - - - - - - - - 

R-Squared 0.9350 - 0.8285 - 0.8000 - 0.8508 - 0.8866 - 0.7927 - 
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The assumptions of ANOVA which are independency of the individual observation, 

normal distribution of random errors, and homogeneity of variance of random errors were 

checked and found satisfactory. Design-Expert 9.0 by Statease.com was used for all 

statistical analysis. Statistical significance is tested at the 5% level. Figure ‎4.3 shows the 

cumulative enzyme activity for all 16 runs. Statistical analysis was conducted to 

investigate the significant factors on cumulative enzyme activities. 
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Figure ‎4.3 Cumulative DGH, BGH, and PDE for 16 runs 
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Results of the analysis of variance (ANOVA) for the response cumulative DGH verified 

that MC and interaction between AR and C/N, MC and C/N and three factor interaction 

of MC, BA and C/N are significant effects at the 5% level. Cumulative DGH increased 

when MC increased from 55% to 70% for both C/N but it has more positive effect on 

runs with C/N of 12, as it is shown in Figure ‎4.4. It also showed different trend for runs 

with peat and sawdust. 
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(a) 

 

(b) 

Figure ‎4.4 Interaction effect plot AR and C/N, MC and C/N of cumulative DGH with (a) 
sawdust (b) peat 
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Main effects MC, C/N and the interaction between AR and MC are statistical significant 

factors at the 5% level for cumulative BGH. Increase of AR from low level to high level 

has positive effect on BGH when MC is 55% and it has negative effect when MC is 70% 

(Figure ‎4.5). Increase of C/N would result in increase of cumulative BGH.  
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Figure ‎4.5 Main effect of C/N plot and interaction effect plot AR and MC of cumulative BGH 
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MC, C/N and interaction between AR and C/N are significant factors for cumulative 

PDE. Increasing MC and C/N has positive effect on cumulative PDE (Figure ‎4.6). The 

highest cumulative PDE was observed at highest C/N and lowest AR. 
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Figure ‎4.6 Main effect MC and interaction effect plot AR and C/N of cumulative PDE 
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For the response final C/N ratio main factors including BA and C/N are statistically 

significant factors at the 5% level. Figure ‎4.7 presents effect plots of BA and C/N for 

final C/N ratio. Generally, runs with peat has lower final C/N ratio compare to runs with 

sawdust as BA. Also, runs with low C/N have lower final C/N ratio compare to the runs 

with high C/N. Although Bueno et al. (2008) found a decrease on C/N using high 

aeration level and concluded to obtain lower C/N ratio, medium-to-high aeration levels 

(0.4-0.6 l air/min kg) can be used, in this study, AR was not significant factor for final 

C/N ratio. 
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Figure ‎4.7 Main effect plot of BA and C/N of final C/N ratio 
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Main effect C/N and the two factor interaction including AR and BA, MC and BA, MC 

and C/N, and BA and C/N are the statistically significant effects at the 5% level for final 

GI. As it is seen in the Figure ‎4.8 when AR increase, GI for runs with peat decreases 

while it increase for runs with sawdust. Also increase of MC, has positive effect on GI of 

runs with sawdust and runs with higher C/N and negative effect on runs with peat and 

runs with low C/N. Generally, runs with high C/N showed higher final GI (86%) whereas 

for low C/N, lower GI (51%) was recorded. Also at low AR, high GI was observed for 

runs with peat and at high AR, high GI was observed for runs with sawdust. (Gregory et 

al. 2011) showed C/N had a significant influence on GI but MC and AR were not 

important influential factors. 
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Figure ‎4.8 Interaction plot AR and BA, BA and C/N, MC and BA, MC and C/N of final GI 
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The MC was the only statistical significant effect for final moisture content.  The runs 

with the low level MC showed lower moisture content (39%) in comparison to the runs 

with high level MC (57%). Figure ‎4.9 presents the main effect plot of MC on the final 

moisture content. 
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Figure ‎4.9 Main effect plot of MC of final moisture content 
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4.5 Summary 

 In this study, a 2-level four factor factorial design was adopted to evaluate the effect of 

AR, MC BA, and C/N on the composting process. A laboratory scale MSW composting 

system was designed and environmental and biochemical parameters including 

temperature, pH, EC, OUR, C/N ratio, GI and enzyme activities were selected to monitor 

the composting process.  The final C/N ratio, cumulative enzyme activities, final GI and 

final moisture content were used as responses. Results indicated that C/N was one of the 

main factors that affect compost maturity and stability. The type of BA has a  statistically 

significant effect on final C/N, final GI and cumulative enzyme activities. AR in the 

selected range affect statistically compost stability and maturity. The cumulative enzyme 

activities were influenced by all factors and their interactions. The research results can be 

applied to optimize initial conditions to start the composting and can help to increase the 

efficiency of the composting process. Because the relationship between composting 

factors is very complicated in the dynamic composting process, replicating response data 

and validating the linearity of the regression models will be of interest and useful in 

assessing the effects of these factors on the composting process. To economically treat 

the increasing quantities of MSW and achieve maximum cumulative enzyme activities, 

maximum GI and low C/N ratio composting with an AR of 0.3 L/min. kg, C/N of 17, MC 

of 70% with peat as BA is recommended. 
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CHAPTER 5   

EVALUATION OF STATE AND EVOLUTION OF MARINE FISH 

WASTE COMPOSTING BY ENZYME ACTIVITIES
4
  

  

                                                 
4 This chapter is based on the following paper: 

Kazemi, K., Zhang, B., Lye, L. M., Zhu. Z., (2016). Evaluation of State and Evolution of 
Marine Fish Waste Composting by Enzyme Activities, Submitted to the Canadian Journal 

of Civil Engineering 

Role: Khoshrooz Kazemi solely worked on this study and acted as the first author of this 
manuscript under the guidance of two supervisors, Dr. Baiyu Zhang and Dr. Leonard 

Lye. Zhiwen Zhu participated in conducting experiments. Most contents of this paper was 
written by Kazemi and further polished by the other co-authors. 
 



187 
 

5.1 Background 

The fishery industry is important economically in a number of countries worldwide (Teh 

and Sumaila 2013). The increasing trend of global seafood production in the past decade 

due to the increasing consumption of seafood products is expected to continue 

(Benhabiles et al. 2012). The Province of Newfoundland and Labrador (NL), Canada, 

currently has one of the most valuable commercial fishing industries in the world, and 

fish processing plants are widespread in its coastal areas as illustrated in Figure ‎5.1. 

However, the fishery industry also generates large volumes of fish waste such as fish 

offal. These wastes are either disposed off through ocean dumping, or by on land 

disposal. It is estimated that fish waste accounts for up to 30-45% of its initial weight 

depending on the type of utilization (Teh and Sumaila 2013). During the period April 

2009 to March 2010, around 66,185 tonnes of fish waste was generated in Atlantic 

Canada of which NL contributed about 40% (Environment Canada 2010). 
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Figure ‎5.1 Locations of fish processing plants in NL 
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To appropriately utilize the nutrient rich fish wastes and to reduce their adverse 

environmental impacts, composting has been considered to be an appealing solution to 

the problems of waste disposal experienced by the fishery processing industry (Illera-

Vives et al. 2013; Liao et al. 1997). Composting is a biological process that can reduce 

the volume and mass of organic waste in a sustainable manner. There are three main 

states of composting. In the first state, mesophilic microorganisms consume carbon 

sources and temperature rises to 45 °C. In the second state thermophilic microorganisms 

start to dominate and the energy released during this rapid microbial respiration produces 

heat which typically raises the temperature of a compost to 70 °C. Pathogens will be 

eradicated due to the heat generated during the thermophilic phase. Finally, in the last 

state, mesophilic fungi and actinomycetes colonize the compost for the breakdown and 

transformation of humic substances and lignin (Farrell and Jones 2009). Therefore, the 

organic composition of waste, in the meantime, can be converted into an odourless, 

stable, stabilized, and nutrient-enriched soil amendment through the mineralization and 

humification processes which greatly reduce its volume (Bernal et al. 2009; Jurado et al. 

2014). Fish wastes are a rich source of organic materials, containing high levels of 

nitrogen and phosphorus (Chowdhury et al. 2010). These organic materials in fish wastes 

can be broken down by various microorganisms and hydrolytic enzymes may accelerate 

the breakdown of organic materials into small, stable compounds that can be easily 

assimilated by plants (Benitez et al. 1999). Therefore, composting of fishery by-products 

can be an appealing alternative to reduce wastes in landfills (Laos et al. 1998; Laos et al. 

2002). Furthermore, the generated fish wastes based compost can serve as a good organic 
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fertilizer and nutrient for both local agricultural and landscaping purposes and for 

rehabilitation of degraded areas (Liao et al. 1997). 

Physiochemical parameters such as temperature, moisture content, C/N ratio and 

electrical conductivity (EC) have been widely applied to monitor the composting process 

(Kopcic et al. 2014; Silva et al. 2014). Some biochemical parameters, especially enzyme 

activities, have attracted increasing attention recently as good indices of the aerobic 

biotransformation of organic wastes throughout the composting process (Mondini et al. 

2004; Raut et al. 2008). Various enzymes have shown the potential for controlling the 

biodegradation rate during composting, and the most promising enzymes are 

dehydrogenases, β-glycosidases, and phosphatases (Vargas-Garcia et al. 2010). These 

enzyme activities could provide correct estimations of the events that take place 

throughout a composting process. As a group of membrane bound enzymes, 

dehydrogenases play an important role in the metabolic pathways of microbial activities 

by acting as a catalyst for the synthesis of ATP through oxidative phosphorylation 

(Barrena et al. 2008). The dehydrogenase enzyme activities thus are used as an indicator 

of biological reactions (Saviozzi et al. 2009). β-glucosidases and phosphatases, on the 

other hand, are employed to represent specific cycles during biotransformation. β-

glucosidases are enzymes that can break carbohydrate polymers into small organic 

compounds through hydrolyzation, and facilitate future enzyme activities while 

phosphatases could be actively involved in the release of phosphate groups from organic 

compounds (Albrecht et al. 2010; Sardans et al. 2008). Therefore, tracking the changes of 
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β-glucosidases and phosphatases activities could contribute to a deeper understanding of 

carbon and phosphorous cycling during composting (Mondini et al. 2004).  

Although enzyme activities have been used previously to evaluate the performance of 

composting, they have been never applied to the marine fish waste composting process 

for evaluating its state and evolution. Due to the high complexity of fish wastes, different 

enzymes worked collaboratively to fully decompose the organic materials into stable 

compounds (Islam et al. 2004). It is thus meaningful to conduct a detailed monitoring, 

characterization, and quantification of the enzymatic activities during composting. The 

results could provide a clearer picture about the dynamics of the composting process in 

terms of the decomposition of organic matter and the maturity of composted products 

(Tiquia et al., 2002). It would also advance the understanding of the underlying 

mechanism of fish waste composting, as well as the development of a better way to 

control the process and evaluate performance of the composting system accordingly. 

In this study, a composting system was thus designed for achieving the effective 

reduction of fish wastes, and generating mature and high quality compost products. 

Enzyme activities including dehydrogenase, β- glucosidase, and phosphatase were 

monitored to gain a better insight into the dynamic process of fish waste composting and 

establish a relationship between the degradation of organic matter and enzyme activities. 

The correlation between enzymes activities and previously employed maturity and 

stability (i.e., C/N ratio, OUR, temperature, pH, and GI) was investigated to evaluate 

possibility of using enzyme activities as stability and maturity indices.  
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5.2 Materials and Methods  

5.2.1  Composting System 

The fish waste composting experiment was performed in a 35L bench scale cylindrical 

reactor. A schematic diagram of the composting reactor is shown in Figure ‎5.2. The 

cylindrical reactor has a removable lid with two holes, one for installation of a 

temperature sensor and the other for gas collection. Temperature was monitored during 

the composting process using the sensor located in the middle of the reactor. The exhaust 

gas mixture was trapped in a flask containing H2SO4. Before treating and then emitting 

through a ventilation system, the remaining discharging gases were further determined 

for the concentration of O2. The leachate was collected at the bottom of this reactor. 

Three layers of aluminum foil and Styrofoam were wrapped around the reactor to achieve 

the microbial self-heating condition. A vacuum air pump and an airflow meter were 

equipped at the bottom of the reactor for air supply at a rate Fish waste composting. 
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Figure ‎5.2 Schematic view of the composting system 
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The fish (cod) wastes comprise a complex mixture of fish heads, bones, and viscera were 

obtained from a local seafood processing center in NL and transported to the laboratory 

in a cooler at 4 ºC. The cod wastes were grinded to a size of 1 to 2 cm. Peat was used as 

the bulking agent and thoroughly mixed with fish wastes at the ratio of 1:10 (w:w). The 

raw materials were then transferred into the composting reactor.  

The raw materials were mixed twice per day by turning the mixer to increase their 

homogeneity. During composting, the materials were randomly collected from 4 different 

points in the reactor and then well mixed to create a consistent and representative sample. 

Samples were obtained on the 2nd, 5th, 9th, 14th, 18th, 26th, 38th, and 50th days. Each 

collected sample was divided into different sub-samples to measure pH, EC, C/N ratio, 

moisture content, ash content, enzyme activities, and germination index (GI). 

Temperature and oxygen uptake rate (OUR) were recorded every 12 hours.  

5.2.2  Analytical Methods 

Temperatures were recorded by a bi-metal dial thermometer (H-B Instrument Company, 

PA). EC and pH were measured in 1:2 (w:v) aqueous extract using a pH/Ion meter 

(Metller Toledo. EL20-Educational line pH, EL3-Educational line conductivity). 

Moisture content was determined by gravimetric loss on-ignition of 10 g sample at 105 

°C for 24 h. The sample was further used for the determination of ash content by 

continuously burning it at 550 °C in a muffle furnace (Thermo Scientific, Type 

FD1500M) for 4 h. The concentration of outlet oxygen in the exhaust gas was monitored 

by passing the air through a M40 multi-gas monitor (Industrial Scientific Corp., Oakdale, 

PA). OUR was calculated using the following equation:  
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OUR = (O2 out (%)-O2 in (%)) × airflow rate (L/min)  (5.1) 

Where O2 out (%) is the oxygen concentration in the exhaust gas and O2 in (%) is the 

oxygen concentration in the inlet air (20.9%) with an injected airflow rate of 

0.3L/min/kg. 

For seed germination test, extraction was first conducted through mixing each fresh 

sample with double distilled water (ddH2O) at 1:10 (w:v) and shaking the mixer for 1 h. 

The suspension was then centrifuged at 3,000 rpm for 20 min before filtering the mixer 

through a Whatman No-1 filter paper. Another filter paper was placed in the petri dish 

and almost 10 milliliter of water extract was introduced into the petri dish. Ten cucumber 

seeds were placed on the filter paper. For control experiments, the ddH2O was used to 

replace the water extract. The dishes were placed in the oven at 25 °C in the darkness for 

5 days. The GI was then calculated: 

GI (%) = (Seed germination x Root length of the treatment x 100) / (Seed germination x 

Root length of the control)      (5.2) 

For dehydrogenase activity determination, 5 g of  sample was suspended in 5 mL of 3% 

(w:v) 2, 3, 5-triphenyl-tetrazolium chloride (TTC) at 37 °C for 24 h in the dark, and then 

40 mL acetone was added. The mixer was incubated at room temperature for 2 h in the 

dark. The suspension was then filtered through a glass fiber filter. The absorbance of the 

filtered solution was measured at 546 nm (Pepper et al. 1995). 

Phosphatase activity was determined based on p-nitrophenol release after cleavage of the 

synthetic substrate (p-nitrophenyl phosphate) with a concentration of 15mM. Acid and 

alkaline phosphatase assays differed only in the selected modified universal buffer (MUB 
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with pH of 6.5 and 11, respectively) to examine the activity of acid and alkaline 

phosphatase. One gram of sample was mixed with 4ml of MUB and 0.25 ml of toluene 

and then incubated for 1 h at 37 °C. 1 ml of CaCl2 (0.5 M) and 4 ml of NaOH (0.5M) 

were added after incubation and the absorbance of the filtered suspension was recorded at 

400 nm (Guo et al. 2012; Petiot and De Guardia 2004).  

β – glucosidase activity was measured by suspending 1g of sample in a solvent with 0.25 

mL of toluene, 4 mL of MUB (pH 6.0) and 1 mL of p-nitropenyl-β-D-glucopyranoside 

(Sigma). After the incubation at 37 °C for 1 h, the sample was well mixed with 1 mL of 

0.5 M CaCl2 and 4 mL of Tris buffer (0.1M, pH 12), and the suspension was filtered 

through a glass fiber filter. The release of p- nitrophenol was measured 

spectrophotometrically at 400 nm (Tabatabai 1994). 

The total carbon and nitrogen contents of the composting samples were determined by 

the Perkin Elmer 2400 Series II CHNS/O analyzer. Duplicated tests were conducted for 

measuring moisture content, ash content, pH and EC, respectively. GI and enzyme 

activities were determined in triplicate. The data presented are the average values.  

5.3 Results 

5.3.1  Reproducibility of Reactor Performance  

To assess the reproducibility of the composting experiment, duplicated experiments with 

identical initial condition was conducted and C/N ratio and temperature were evaluated. 

As shown in Figure ‎5.3 the processes were developed similarly. The data deviations were 

less than 10%. During the 50 days of the composting process, the average difference 
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between the duplicated experiments for C/N ratio and temperature were 4.05% and 

3.67%, respectively. The analysis of deviation between the replicate profile of C/N ratio 

and temperature shows that the composting process was duplicable. 
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(a) 

 

(b) 

Figure ‎5.3 Temporal variations of (a) C/N ratio and (b) Temperature of duplicated 

experiments (R1and R2) 
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5.3.2 Physiochemical Parameters  

To establish the relationship of enzyme activities with the physiochemical parameters 

during the fish waste composting and evaluate the feasibility of using enzyme activities 

for indicating the state of the process, the profile of parameters including temperature, 

EC, OUR, pH, moisture content, C/N ratio and GI were monitored. 

5.3.2.1Temperature, EC, OUR and pH 

A temperature profile can indicate the microbial activity along the entire composting 

process and determine the stability of the organic material. It can also reflect the 

composting process evolution (Jurado et al. 2014). Figure ‎5.4 shows the temporal 

variations of temperature and OUR, and Figure ‎5.5 shows the temporal variations of pH 

and EC during the fish waste composting process. From Figure ‎5.4, the temperature of 

the fish waste compost reached 60°C on the second day of composting and stayed over 

55°C for more than 8 days. After this period, temperature declined to 50°C but was above 

40°C until the twentieth day of the composting. Temperature dropped to the ambient 

temperature after 33 days due to the decrease of microbial activity and depletion of easily 

biodegradable organic compounds (Laos et al. 1998). The temperature profile was similar 

to the result of Shelton et al. (1998) and Illera-Vives et al. (2013), except that in this 

study, the temperature climbed rapidly and reached maximum value on the second day. 

This trend indicated the mesophilic period was quickly substituted by the thermophlic 

phase as a result of aerobic biodegradation of the fast decomposed organic matter. 

Another temperature peak was observed on the 24th day as a result of the degradation of 
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slowly decomposed raw materials. The United States Environmental Protection Agency 

(USEPA) recommends maintaining the temperature of compost piles at above 55 °C for 3 

days in in-vessel composting to ensure the hygiene safety of the end product (Scaglia et 

al. 2007). This work strictly followed the recommendation and the generated fish waste 

compost met the requirement for a proper disinfection of the waste materials from 

pathogens. 

The results of OUR followed the same pattern as temperature except its first peak 

appeared on the 4th day. Another increase accrued during the third week and it stayed 

high for 7 days. After 30 days, it started to decrease and dropped to the minimum value 

by the end of the experiments. A high OUR value indicated that a high content of organic 

matter was available for microorganisms to be degraded, and therefore the raw material 

was not stabilized yet. A low OUR value indicated that the organic matter was more 

stabilized and had been mostly decomposed by microorganisms (Said-Pullicino et al. 

2007). 
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Figure ‎5.4 Temporal variations of Temperature and OUR during fish waste composting 
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Figure ‎5.5 Temporal variations of pH and EC during fish waste composting 
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The characteristic values of pH, EC, C/N ratio and moisture content of fish waste are 

presented in Table ‎5.1. The pH values of the fish waste was slightly acidic as a result of 

the organic acids contained inside (Aspmo et al. 2005; Klute 1986). The pH gradually 

increased due to the  microbial usage of the organic acids as a substrate (Adhikari et al. 

2009), and then finally stayed stable. The EC value showed a sharp increase in the 

beginning of the process as a result of the release of mineral cations such as ammonium 

ions, phosphate, and accumulation of salts and nutrients (Kalamdhad et al. 2009). 

Although a slight decrease occurred during the third week which can be attributed to 

volatilization of ammonia and the participation of mineral salts (Rasapoor et al. 2009), 

the EC value increased and stayed stable by the end of the experiment. 

5.3.2.2Moisture Content 

Moisture content could affect microbial activities, physical structure, and the 

biodegradation of organic materials in a composting process (Ahn et al. 2008). Figure ‎5.6 

showed the moisture content during the composting period. The moisture content of the 

raw material was 52% initially. After 10 days of composting, the moisture content 

decreased to 44%. High microbial activity and high rate of organic matter decomposition 

increased the temperature and evaporation rate. Temperature rise had a positive effect on 

moisture reduction. However, this temperature was not high enough to evaporate the 

generated water from organic matter degradation, so moisture content increased after its 

initial decrease (Haug 1993). After a month, moisture content eventually dropped to 41%. 

Haug (1993) suggested 40% as the minimum moisture content to continue microbial 
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activity which means microbial activity cannot be sustained in the system after 50 days of 

composting. Ash content had an increasing trend during the experiment. During the 

thermophilic phase the trend was sharper and it had a smoother trend after that. 

Decomposition of the organic matter produced more volatile compounds and the final 

product contained more ash content and less organic matter (Kalamdhad et al. 2009). 
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Table ‎5.1 Characteristic values of fish waste 

Material pH EC C/N ratio Moisture content 

Fish waste 6 3.06 mS/cm 12 52% 

 

 

 

  

 

 

Figure ‎5.6 Temporal variations of moisture content and ash content during fish waste 

composting  
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5.3.2.3C/N Ratio 

The fish waste generally contains high amounts of N and P, highly saline, and a low C/N 

ratio (Illera-Vives et al. 2013). Figure ‎5.7 showed the variations of C/N ratio and GI. The 

initial C/N ratio of the fish waste was 12, which was lower than the optimum value 

recommended for composting, i.e., 25 to 30 (Haug 1993). The C/N ratio increased during 

the first and second weeks of composting. This increase can be attributed to the intensive 

nitrogen loss through ammonia emission when pH and temperature were high (Sánchez-

Monedero et al. 2001). During twenty days of composting, carbon was decomposed via 

microbial respiration to carbon dioxide (CO2) thus a decline in C/N ratio was observed 

and the declining trend continued by the end of the experiment. Finally C/N ratio of the 

compost reached 10.6. 

5.3.2.4GI  

Seed germination test helps to evaluate the efficiency of the composting process for plant 

growth (Banegas et al. 2007). In the beginning of the composting, the seed germination 

inhabitation (GI) was observed because of the biological activity and the formation of 

toxic compounds such as alcohols, phenolic compound, and organic acids. The minimum 

GI recorded after 10 days and it started to increase smoothly by the end of the 

experiments. Over 80% of seed germination was obtained in extracts of 7 weeks old 

compost (Zucconi et al. 1981). According to Tiquia and Tam (1998), this was an 

indication of the production of a phytotoxic-free and mature compost.  The change in GI 

with time was also shown in Figure ‎5.7. 
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5.3.3 Enzyme Activities 

Measurement of enzyme activities is helpful in understanding microbial metabolism 

during composting (Mondini et al. 2004). The biosynthesis of the hydrolytic enzymes 

began in the initial phase of composting. Those enzymes were responsible for 

transformations of complex compounds of carbon, nitrogen and organic phosphorus in 

composts. Hydrolases enzymes, due to their inductive character, were a good indicator of 

qualitative and quantitative changes in the content of particular organic polymers in the 

process of composting (Bohacz and Korniłłowicz-Kowalska 2009; Vargas-Garcia et al. 

2010).  

5.3.3.1 Dehydrogenase   

Dehydrogenase activity can be used as an indication of the oxidation of simple organic 

sources of carbon and overall microbial activity due to its involvement in the respiratory 

chains of all microorganisms (Bohacz and Korniłłowicz-Kowalska 2009; Castaldi et al. 

2008). Dehydrogenase activity as shown in Figure ‎5.8 increased fast from the beginning 

of the composting and the highest dehydrogenase activity was recorded after 14 days. 

Oxidation of simple carbon substrates catalysed by enzymes led to rapid increase in 

dehydrogenase activity in the initial period of composting (Bohacz and Korniłłowicz-

Kowalska 2009). After 30 days, a progressive decrease was observed in dehydrogenase 

activity, which indicated the depletion of easily available organic matter for 

microorganisms and end of the active decomposition phase (Benito et al. 2003; Bohacz 

and Korniłłowicz-Kowalska 2009; Tiquia 2005). The profile of dehydrogenase activity 



207 
 

was very similar to the one reported by Castaldi et al. (2008) for municipal solid waste 

and plant waste compost, and Tiquia et al. (2002) for yard waste trimming compost.  

5.3.3.2 β-Glucosidase 

β-glucosidase is related to carbon mineralization and is one of the important hydrolytic 

enzymes during composting that microorganism-induced degradation of organic matter 

depends on them (He et al. 2013; Jurado et al. 2014). In this study, β-glucosidase 

increased from the beginning of the experiments and the highest value (1894 µg PNP g 

DM−1h−1) was recorded at the end of the second week (Figure ‎5.8). β-glucosidase activity 

is indicative of the presence of labile organic matter easily usable by the microorganisms 

(Castaldi et al. 2008) and it hydrolyses reducing terminations of β-D-glucose chains to 

give β-glucose (Nannipieri et al. 2011). Composting phases characterized by a higher 

availability of various β-glucosides, mainly cellobiose, are associated to greater β-

glucosidase activity (Vargas-Garcia et al. 2010). He et al. (2013) found the activities of 

dehydrogenase and b-glucosidase during chicken manure composting peaked at the same 

time. The peaks of dehydrogenase and β-glucosidase activities during fish waste 

composting were also accrued almost simultaneously. After the third week a sharp 

decrease was observed in β-glucosidase activity and reached a stable lowest value at the 

end of the experiments. The same result was reported during tobacco waste and tabacco 

waste - olive pomace compost for β-glucosidase activity reported by Kayikçioğlu and 

Okur (2011).  
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Figure ‎5.7 Temporal variations of C/N ratio and GI during fish waste composting  
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Figure ‎5.8 Dehydrogenase and β-glucosidase activities during fish waste composting 
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5.3.3.3 Phosphatase 

The term "phosphatases" is used to describe a group of enzymes that catalyse the 

hydrolysis of esters and anhydrides of orthophosphoric acid (Margesin and Schinner 

1994). It catalyses the hydrolysis of organic phosphorus compounds to different inorganic 

forms which plants can metabolize. Phosphatase is considered as a general microbial 

indicator because of the critical role it plays in P cycles (Vargas-Garcia et al. 2010). 

Information about the evolution and behaviour of phosphatases also gives information 

about the hydrolytic enzymes as a whole in composting, since they are considered to be 

good representatives of overall hydrolytic activity, at least in organic soils (Vuorinen 

2000).  

Acid and alkaline phosphatase are subdivision of phosphatases which differ from other 

phosphatases by their substrate specificity and their optimum pH for activity, namely in 

the acid range for acid phosphatase or in the alkaline range for alkaline phosphatase 

(Margesin and Schinner 1994). As seen in Figure ‎5.9, the initial concentration of both 

acid and alkaline phosphatase was high in the raw material.  Though a sharp drop was 

observed since the start of the composting process, they stayed at a fairly high value by 

the end of the experiments. The high level of phosphatase activity may indicate a 

successive influx of available forms of phosphorus in the course of fish waste 

composting. It should also be attributed to stronger growth of microorganisms (Bohacz 

and Korniłłowicz-Kowalska 2009). After 50 days of composting, phosphatase declined 

slightly. (Godden et al. 1983) found the level of enzyme increased during the early 

mesophilic period and remained approximately constant during the later periods of the 
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process. They also reported that when the heaps of composting pile began to cool, the 

enzyme activities began to decrease. For the first week of composting a decrease was 

observed in the case of acid phosphatase. This result was similar to the findings of 

Vuorinen (2000) that had an increasing trend during the later period. The evolution of the 

alkaline phosphatase during composting also varied greatly on the basis of raw materials 

and type of composting process (Jurado et al. 2014). The alkaline phosphatase plays a 

role in the use of alternative phosphorus sources and might be considered as a general 

index of microbial activity in compost since it is only synthesized by micro-organisms 

and cannot be originated from plant residues. (Godden et al. 1983; Kayikçioğlu and Okur 

2011). 

The enzyme activity has been consistent with the temperature and OUR pattern. In 

general, during the second and third weeks of the process, the presence of the readily 

available substrates leads to rise in temperature and enzymatic activity. After active 

phase, when temperature dropped and availability of nutrients reduced, enzymatic 

activity decreased evidently. Decline of enzyme activities in compost samples observed 

concurrently with decrease in C/N ratio and increase in GI. Thus, enzyme activities could 

represent a useful index of state of composting since the conventional maturity and 

stability parameters, OUR, C/N ratio, GI support the use of enzyme activity as indicator 

of compost stability in this work. Because enzyme activity is depending on nature and 

origin of the raw material, it is hard to establish a threshold for enzyme activities as a 

stability index.  
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Figure ‎5.9 Acid and alkali phosphatase activity during fish waste composting 
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5.4 Correlation Analysis   

Moisture content, ash content, pH, and EC tests were conducted in duplicate. GI and 

enzyme activities were determined in triplicate. The typical error in the measurement was 

less than ± 5%. The correlation matrix plot of the parameters is presented in Figure ‎5.10. 

The relationships among the parameters are mostly not linear as it is seen in Figure ‎5.10.  

As such the Spearman’s rank correlation coefficient () is used to indicate correlations 

among the variables.  The Spearman’s rank correlations among the enzyme activities and 

other monitoring parameters are shown in Figure ‎5.10 with sample size of 8. 
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Figure ‎5.10 Correlation matrix plot of all variables with lowess fit line  
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A significant correlation was recorded between temperature and dehydrogenase activity 

(= 0.622, P<0.1). Tiquia (2005) reported that dehydrogenase activity was the most 

important factor affecting pig manure compost temperature. Barrena et al. (2008) stated 

that due to the high correlation between dehydrogenase activity and temperature, 

dehydrogenase activity was a useful parameter to follow the evolution of the biological 

activity of the composting. Strong correlation was observed between OUR and 

dehydrogenase activity (= 0.828, p <0.05) as well. Bohacz and Korniłłowicz-Kowalska 

(2009), and Barrena et al. (2008) also found significant correlation between respiratory 

activity and dehydrogenase activity. OUR was also significantly correlated with β-

glucosidase activity (=0.803, P<0.05) (see Table 5.2). 

Castaldi et al. (2008) found significant correlation between β-glucosidase and 

dehydrogenase activity (r= 0.973, P < 0.001) and Vuorinen (2000) stated a correlation 

between β-glucosidase activity with dehydrogenase activity in the mature cattle manure 

composts (r=0.886, P<0.01). The correlation measures used in those studies were based 

on Pearson correlation r which requires a linear relationship. In this study, the 

relationship between β-glucosidase and dehydrogenase activities was also positive 

(=0.536, P < 0.05). The correlation coefficient for β -glucosidase and C/N ratio 

(=0.682, p <0.1) was higher than the values reported by He et al. (2013) (=0.385). The 

negative correlation between acid phosphatase with EC and alkaline phosphatase with EC 

(= -0.683, and = -0.917 P<0.05, respectively) were obtained. Kayikçioğlu and Okur 

(2011) also reported the higher EC levels of tobacco waste compost could negatively 

affect alkaline phosphatase. Tripathi et al. (2007) also observed a high salinity that led to 
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a decrease in the alkaline phosphatase activity. Acid phosphatase activity showed 

significant negative correlations with ash content and GI (= -0.650 and = -0.667, 

p<0.1, respectively). Furthermore, a strong correlation in this study between acid 

phosphatase with the C/N ratio (= -0.767, p<0.05), was in agreement with results of 

Vuorinen (2000) who reported a strong correlation between acid phosphatase with the 

C/N ratio. pH value was negatively correlated with acid phosphatase activity (= -0.717, 

P<0.05) since the pH value of the compost was alkaline for the most period of the 

experiment. All enzyme activities showed a negative correlation with composting time 

(dehydrogenase activity =-0.267, β-glucosidase =-0.510, acid phosphatase =-0.683, 

and alkaline phosphatase =-0.617) which were similarly in sign as those reported by 

Bohacz and Korniłłowicz-Kowalska (2009), except their results were based on Pearson’s 

r. GI correlated with pH, ash content, and C/N (0.7, P<0.05 

respectively).  
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Table ‎5.2 Correlation matrix between different parameters and enzymatic activities during fish waste composting process 

Parameter Temp OUR pH EC M Ash C/N GI DGH BGH Acid PME 

OUR 0.489           

pH -0.588 -0.142          

EC -0.286 -0.489 0.733**         

M 0.084 0.192 -0.35 -0.283        

Ash -0.664* -0.201 0.95** 0.567 -0.467       

C/N 0.9 ** 0.452 -0.717** -0.483 -0.08 -0.7**      

GI -0.588* -0.092 0.9** 0.633* -0.217 
0.817** 

 
-0.7**     

DGH 0.622* 0.828 ** -0.233 -0.08 0.35 -0.35 0.46 0.05    

BGH 0.549 0.803** - 0.477 -0.711** 
-0.033 

 
-0.427 -0.628* -0.444 0.536   

Acid PME 0.748** 0.444 -0.717 ** -0.683** -0.033 -0.650* 0.767** -0.667* 0.383 0.812**  

Alkali PME 0.168 0.477 -0.633* -0.917** 0.567 -0.533 0.3 -0.483 0.4 0.544 0.450 

Note: Temp, temperature; OUR, oxygen uptake rate; EC, electrical conductivity; M, Moisture content; Ash, Ash content; C/N, carbon to 

nitrogen ratio; GI, germination index, DGH, dehydrogenase activity; BGH, β -glucosidase activity; Acid PME, acid phosphatase; 

Alkaline PME, Alkaline phosphatase. Spearman rank correlation coefficient values with ** and *are significant at P < 0.05 and P<0.1 

respectively. 
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In summary, inter-correlations among the hydrolytic enzymes and dehydrogenase activity 

and among enzyme activities with other parameters confirm that enzyme activities are 

important indicators of the process activity and evolution of the organic matter during 

fish waste composting. Strong correlation between enzyme activities and maturity and 

stability indicators also allows using enzyme activities as stability and maturity 

parameters of a compost sample.  

 

5.5 Summary 

This study reported fish waste based composting with peat as the bulking agent. Results 

indicated that composting could be a feasible method to dispose and utilize fish waste in 

NL, which led to the production of stable and hygienic compost. Dynamic changes in the 

enzymatic activities during composting were observed. The maximum enzyme activities 

were observed in the first 3 weeks, at the active phase of decomposition. The changes of 

enzyme concentrations served as useful indices to evaluate the effectiveness and progress 

of the fish waste composting. A number of key physicochemical properties were also 

monitored and their correlations with the enzyme activities were investigated. The 

correlation results suggested characterizing compost maturity and stability by each 

isolating parameter might be not reliable. The combination of multiple parameters is 

desired for a comprehensive evaluation of fish waste compost maturity and stability such 

as enzyme activities and GI.  The research results provide a way forward for improving 

fish waste composting and contribute to a better understanding of the biodegradation 

process in fish waste management. 
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CHAPTER 6  

MANAGEMENT OF FISH WASTE COMPOST: LOW COST 

SUBSTRATE FOR BIOSURFACTANT PRODUCTION
5
 

  

                                                 
5
This chapter is based on the following paper: 

Kazemi, K., Zhang, B., and Lye, L. M., (2016). Management of Fish Waste Compost: 
Low Cost Substrate for Biosurfactant Production  

Role: Khoshrooz Kazemi solely worked on this study and acted as the first author of 
this manuscript under the guidance of two supervisors, Dr. Baiyu Zhang and Dr. 

Leonard Lye. Most contents of this paper was written by Kazemi and further polished 
by the other co-authors. 
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6.1 Background 

Compost generated from fish waste composting is an effective source of nutrient-rich 

organic matter. Generally it is used as a fertilizer to improve plant production. Many 

studies have been evaluated their effect on plant growth (Atikpo et al. 2008; Danaher et 

al. 2009; Laos et al. 1998; Welke 2005). Beside fertilizer, it can be used as a good source 

of nutrient for production of other valuable products (Shelton et al. 1998). Martin (1999) 

used fish waste compost (FWC) extract as a fermentation substrate to grow fungus S. 

acidophilum. Desai and Banat (1997) used compost extract to enhance desorption of α-

naphthol and naphthalene from pristine and contaminated soils. Janzen et al. (1995) 

added compost extract to soil to simulate community-level controls on soil 

microorganisms which are involved in element cycling. Compost extract was recognized 

as a solution of chemically-defined growth factors because all the materials in the 

compost extract are directly or indirectly derived from microbial activity. It also contains 

other growth factors such as chelated micronutrients. 

In most previous studies, the compost nutrient was extracted by mixing the compost with 

water at different ratios and passing through filters or a centrifuge (Welke 2005; Weltzien 

1991). In some studies, CuSO4  was added to collect the flocculate colloids (Janzen et al. 

1995; Shelton et al. 1998). Martin (1999) used acid hydrolysis to extract FWC with peat. 

Enzyme hydrolysis is also widely used in the food industry for protein recovery. 

Enzymatic modification of proteins uses selected proteolytic enzyme preparations to 

cleave specific peptide bonds (Ovissipour et al. 2009). Although researches have been 

dedicated to enzyme hydrolysis of fish waste (Aspmo et al. 2005; Nilsang et al. 2005; 
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Ovissipour et al. 2012), it has never been reported in the literature for FWC. Enzymatic 

hydrolysis of proteins is a complex process because of several peptide bonds and their 

specific accessibility to enzymatic reactions. Beside the specificity of enzymes, there are 

other environmental factors such as temperature, time and pH which can affect the 

peptide profile of the final product (Kristinsson and Rasco 2000a). Generally, there is an 

optimum combination of factors where an enzyme is the most active. Temperature and 

pH extremes deactivate the enzymes by denaturing them (Kristinsson and Rasco 2000a). 

The variables with the most important roles in this complex enzymatic reaction have been 

reported to be enzyme concentration, protease specificity of the enzyme, time, pH and 

temperature of the reaction, the nature of the protein substrate, and the degree of 

hydrolysis attained (Kristinsson and Rasco 2000b; Ovissipour et al. 2009). The preferred 

commercial enzymes for most researchers are protease preparations of bacterial origin 

such as Alcalase, Neutrase, Protease N and Protamex(Aspmo et al. 2005). Alcalase, an 

alkaline enzyme produced from Bacillus licheniformis has been proven repeatedly by 

many researchers to be one of the best enzyme used to prepare functional fish protein 

hydrolysis and other protein hydrolysates (Kristinsson and Rasco 2000a). Generally, 

Alcalase® 2.4-L-assisted reactions have been favored for fish hydrolysis, due to the high 

degree of hydrolysis that can be achieved in a relatively short time under moderate pH 

conditions, compared with the neutral or acidic enzymes (Aspmo et al. 2005; Ovissipour 

et al. 2012). 

For fish waste hydrolysis, given a particular enzyme, any hydrolysis process involves at 

least five independent variables. These are S (protein substrate concentration: %N × 
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6.25)(, E/S (enzyme-substrate ratio in % or in activity units per kg N × 6.25), pH, T 

(temperature), and t (time) (Kristinsson and Rasco 2000a). Modern statistically based 

experimental designs are useful techniques for the investigation of complex processes. It 

has been successfully applied to optimize seafood processing operations (Liao et al. 

1997; Ovissipour et al. 2012). Ovissipour et al. (2012) used RSM to optimize hydrolysis 

conditions (enzyme activity, temperature, and time) to produce hydrolysate from the 

viscera of yellowfin tuna (Thunnus albacares). A factorial design was applied to 

minimize enzyme utilization and modeling of degree of hydrolysis. The effect of 

temperature, pH, enzyme-substrate ratio on degree of hydrolysis(DH) of dogfish muscle 

protein using RSM has been studied by Bernal et al. (2009). Their results indicated that 

all three factor markedly influenced the peptide bonds cleavage in the protein substrate. 

In this study, of the extraction of FWC nutrients through enzyme hydrolysis will also use 

design of experiment methods (e.g. response surface methodology, factorial design). 

Biosurfactants are a diverse group of surface-active chemical compounds mainly 

produced by hydrocarbon-utilizing microorganisms (Banat 1995). They are 

environmentally friendly, biodegradable, less toxic and non-hazardous. They have better 

foaming properties and higher selectivity. They are active at extreme temperatures, pH 

and salinity as well  (Pacwa-Płociniczak et al. 2011). Despite of the above advantages, 

the application of biosurfactants has been significantly restricted due to their low yields 

and high production cost as well as the lack of desired producing microorganisms 

(producers) (Mukherjee et al. 2006). The use of waste streams or cheap substrates to 

reduce the initial raw material costs which is 10-30% of the final product costs is one of 
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the attractive strategies for economical biosurfactant production (Makkar et al. 2011; 

Mukherjee et al. 2006). Peanut oil cake (Canada 2008; Thavasi et al. 2011), molasses and 

whey (Joshi et al. 2008), canola waste frying oil, soybean waste frying oil, and corn steep 

liquor (Rocha e Silva et al. 2014) are few examples of alternative substrates that have 

been used for biosurfactant production. A novel raw material to produce biosurfactant 

can be FWC extract which is a source of nutrition for microorganism. Use of statistical 

experimental strategies including factorial design and response surface methodology 

(RSM) will help in better optimization of production of biosurfactants (Makkar et al. 

2011; Min and Wong 1999). Using FWC extract as substrate for biosurfactant production 

and the relevant methodology has not been previously reported. 

This paper describes the extraction of FWC nutrients using enzyme hydrolysis under 

optimum conditions and then utilize the extract as a novel substrate for biosurfactant 

production. The production of biosurfactant was compared with other carbon and 

nitrogen sources. The optimum condition for biosurfactant production was explored and 

surface tension, emulsification activity, and critical micelle concentration of the produced 

biosurfactant were measured and tested.  

6.2 Materials and Methods  

6.2.1 Compost 

The fish (cod) wastes were obtained from a local seafood processing center in 

Newfoundland and Labrador (NL) and mixed with peat as a bulking agent then 

composted in a 35L bench scale cylindrical reactor at the Northern Region Persistent 
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Organic Pollution Control (NRPOP) laboratory, Memorial University of Newfoundland, 

for two months and then it is left to pass the curing phase for 6 months. The mature and 

stable compost is then ground for further experiments. 

6.3 Enzyme Hydrolysis 

6.3.1.1Enzyme  

Alcalase, a serine bacterial endopeptidase ( generic name, Subtilisin Carsberg) prepared 

from a strain of Bacillius licheniformis, was provided by Sigma Aldrich, a food grade 

enzyme, having a specific activity of 2.4 anson units g-1 was stored at 4°C until it is used 

for hydrolysis experiments. Its optimum activity occurs at a temperature between 50° and 

70°C, and at pH values between 6 and 10. Its density is 1.18 g mL-1, and its deactivation 

temperature is 85°C for 10 min (Bernal et al. 2009). 

6.3.1.2Experimental Design  

Experiments to investigate the effects of hydrolysis variables in the range given in Table 

6.1 were conducted based on a central composite design (CCD) with five centre points 

(Table ‎6.2). All reactions were performed in a 250 mL flask in water bath. 5 g of FWC 

was mixed with distilled water 1:1 (w/w). The pH of the solution was in the optimal 

range for the enzyme. The enzyme based on the design range from 0.5% to 2.5% (v/v) 

was added to the flask. The temperature can range from 55 to 65 °C  and time can range 

from 1 to 5 h, were adjusted based on the experimental design and the reaction was 

allowed to proceed. The reaction was terminated by heating to 90 °C for 20 minutes, 
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assuring the inactivation of the enzyme. The hydrolysate were then cooled to room 

temperature and centrifuged at 10,000 rpm for 10 min to collect the supernatant. The SN-

TCA method uses trichloroacetic acid (TCA) to precipitate the unhydrolyzed protein that 

may be present. To the supernatant, one volume of 20% TCA was added, followed by 

centrifugation at 10,000 rpm, 10 min to collect the 10% TCA-soluble materials. The 

supernatants were collected for TCA-soluble N determination using the Kjeldahl method 

(AOAC, 2005). The Kjeldahl digestion was carried out in a Buchi 402 rapid digestion 

unit (Flaw& CH) and a distillation unit (Buchi 322). 
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Figure ‎6.1 Flow sheet for the enzymatic hydrolysis of FWC 
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Compost: water 1:1  (50g+50mL)  
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Hydrolysis  

Water bath at 55 ºC for 6h with 120 rpm 

 

Enzyme inactivation 

Heating at 90 ºC in the water bath for 20min 

 

Centrifugation10, 000×g, 10 min 

 

Collect supernatant  

 
Add TCA 

 
Centrifugation 10,000×g, 10 min 

 

Determine DH 
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The approximate degree of hydrolysis (DH) of FWC samples was determined by the 

ratio, percent of 10% trichloroacetic acid (TCA)-soluble nitrogen to total nitrogen. The 

degree of hydrolysis (DH) was calculated as: 

DH = (10% TCA-soluble N in sample / Total N in sample) x 100    (6.1) 
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Table ‎6.1 Hydrolysis variables and their low and high levels 

Independent variables Symbols       Levels 

Coded  Uncoded  Low High 

Time A Time (h) 1  5 
Enzyme/ Substrate (E/S) B E:S 0.5 2.5 

Temperature C Temperature 
(°C) 

55 65 

 

Table ‎6.2 CCD used in the experiment and the response for DH (observed and predicted 

values) 

Run A: 

Time  

B: 

(E/S) 

C: 

Temperature. 

Y0 Observed 

DH (%) 

Y Predicted 

DH (%) 

1 3 1.5 60 20.4354 19.168 

2 6 1.5 60 47.5893 46.386 

3 3 1.5 60 20.3158 19.1392 

4 5 0.5 55 26.9727 29.021 

5 3 3 60 18.48 22.644 

6 1 2.5 65 17.4853 13.377 

7 3 1.5 67.5 11.9524 14.192 

8 1 0.5 65 24.2748 24.520 

9 1 2.5 55 15.2112 13.445 

10 3 1.5 52.5 13.2456 14.294 

11 3 0 60 25.2453 24.369 

12 3 1.5 60 18.2231 19.168 

13 3 1.5 60 16.9231 19.168 

14 5 2.5 55 38.6111 37.864 

15 1 0.5 55 26.9279 24.588 

16 5 2.5 65 38.653 37.864 

17 0 1.5 60 20.2546 24.746 

18 3 1.5 60 22.4104 19.168 

19 5 0.5 65 28.8244 28.824 
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6.3.2 Biosurfactant Production  

6.3.2.1 Strain and Culture Condition 

Biosurfactant producing microorganism N3-1P (Bacillus sp.) was isolated as an effective 

biosurfactant producing microorganisms from petroleum hydrocarbon contaminated 

marine sources (Cai et al. 2015). The bacteria colony was then transferred from the agar 

plate to a 125-ml Erlenmeyer flask containing 50 ml BD 23400 nutrient broth (Fisher 

scientific company, Ottawa, Canada) to grow the culture on a rotary shaker for 24h at 37 

°C and 180rpm to reach the optical density at 600 nm (OD600) of 0.8. For further 

incubation, this culture was used with a production media as 1% (v/v). The bacteria was 

transferred from culture to the medium composed of NaCl, 2.2 g; FeSO4‧7H2O, 2.8×10-4 

g; KH2PO4, 3.4 g;K2HPO4‧3H2O, 4.4 g; MgSO4‧7H2O, 0.5 g; yeast extract, 0.5 g, n-

Hexadecane 50 ml/L, (NH4)2SO4 15 g, and 0.5 ml/L trace element solution in 125-ml 

conical flasks. The trace element solution contained ZnSO4, 0.29 g; CaCl2, 0.24 g; 

CuSO4, 0.25 g; MnSO4, 0.17 g/L was sterilized separately. The medium was adopted and 

modified from (Peng et al. 2007). Chemicals used were analytical grade, unless otherwise 

specified. After 1 day, before inoculation, a purity check was conducted by spreading the 

medium over nutrition broth agar plate to avoid cross contamination. Nutrition broth 

composed of peptone, 8g; yeast extract, 3g; NaCl, 6 g; Glucose, 1 g: and agar, 15 g. 
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6.3.2.2Effect of Carbon and Nitrogen Sources on Biosurfactant Production 

Different carbon source including FWC extract (FWCC), glucose, sucrose, n-hexadecane, 

glycerol, and starch (at 5% concentration in the place of n-hexadecane) and different 

nitrogen sources such as FWC extract (FWCN), yeast and NaNO3 (at 15% concentration 

in the place of ((NH4)2SO4) were tested for biosurfactant production by the selected 

strain. Table ‎6.3 shows the different carbon and nitrogen sources have been used to 

compare the efficiency of FWC extract as substrate for biosurfactant producing bacteria. 
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Table ‎6.3 Carbon and nitrogen sources for biosurfactant production 

Carbon source  Nitrogen source 

n-Hexadecane   

 (NH4)2SO4 Sucrose 
Starch 
Glucose  

Glycerol 
FWCC 

 
n-Hexadecane  

Yeast extract  
Ammonium nitrate  
FWCN 

 
  



232 
 

A 1% bacterial cell suspension from a 24-h culture was used as inoculum.15 ml medium 

was prepared in a 50 ml conical flask and incubated at 30oC, 200 rpm for 5 days. Cells 

were removed from the culture by centrifugation at 12, 000 rpm for 20 min. Cell- free 

culture broth was used for analytical measurements. Three parameters including surface 

tension, CMD and emulsification index were measured to evaluate the efficacy of the 

generated biosurfactants. 

Surface tension measurements of the culture broth supernatants were performed 

according to the Ring method with a surface tensiometer (DuNouyTensiometer, 

Interfacial, CSC Scientific). To increase the accuracy of the surface tension 

measurements, an average of triplicates was determined. All measurements were 

performed at room temperature (20 C). Critical micelle concentration (CMD) is the 

dilution of the culture broth upon reaching the critical micelle concentration (Shavandi et 

al., 2011). After centrifuging at 12,000 rpm for 20 min and discarding the pellet, the cell 

free broth were diluted with distilled water, while the surface tension of each dilution was 

measured. The CMD was determined as the highest dilution with which the surface 

tension did not significantly increase. As the broth consists of both aqueous and oil 

phases, each dilution was conducted with sonication to ensure homogeneity. Before each 

measurement, the sonicated solution was allowed to stand for 15-20 min to achieve 

equilibrium. The maximum standard deviation observed for surface activity 

measurements was 0.20.  

The emulsification index (EI24) of culture samples was determined according to the 

methods of (Cooper and Goldenberg 1987), by adding 2 mL of hexadecane to the same 
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amount of culture, mixing with a vortex at high speed for 2 min, and leaving to stand for 

24 h. The emulsification activity was evaluated by EI24 using following equation: 

EI24=HEL/HS×100%      (6.2) 

where HELis the height of the emulsion layer and HS is the height of the total solution. 

6.3.2.3Biosurfactant Production Optimization   

A CCD design with 5 center-points (Table ‎6.5) was used to analyze the responses and 

subsequently to optimize biosurfactant production. Incubation time and concentration of 

FWC extract were considered as independent variables and CMD was used as the 

response to evaluate biosurfactant production. Table 4 presents the variables and their 

low and high levels. 
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Table ‎6.4 Biosurfactant production variables and their low and high levels 

Independent variables Symbols Levels 

Coded  Uncoded  Low High 

Time (days) A Time (d) 3  7 
FWC extract concentration  B Concentration 

(%) 

20 80 

 

Table ‎6.5 CCD for biosurfactant production   

Run A: Time  B: Concentration   Y0 Observed CMD Y Predicted CMD 

1 7 80 18.55 18.81 

2 8 50 12.79 11.11 

3 5 5 1.6 0 

4 5 50 8.78 9.13 

5 2 50 20.83 20.81 

6 5 50 8.78 9.3 

7 5 50 8.78 7.3 

8 5 95 31.58 32.5 

9 3 80 32.86 31.87 

10 5 50 8.78 12.5 

11 5 50 8.78 5.26 

12 3 20 4.5 6.26 

13 7 20 8.13 11.11 
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6.3.2.4Biosurfactant Extraction and Assay 

To extract the biosurfactant, the cell free culture were mixed with equal volume of 

chloroform/ methanol (1:2 v/v) and shaken on an orbital shaker (200 rpm) for 24 hours. 

The solvent was then evaporated by rotary evaporator and kept at 4°C. Biosurfactant 

production was determined through mixing 10 ml of cell free culture with equal volume 

of chloroform/ methanol (1:2 v/v) and shaken on an orbital shaker (200 rpm) for 24 hours 

in a glass tube, the solvent was evaporated. The final and initial weight of the glass tube 

was recorded to calculate the weight of produced biosurfactant. Characterization of the 

biosurfactant was done by thin layer chromatography (TLC). TLC was performed on 

silica gel 60 plates (Sigma Aldrich) with chloroform, methanol, acetic acid and water 

mixture. Standard spray, Ninhydrin reagent, phenol–sulphuric acid and iodine were used 

to detect protein, carbohydrate and lipid spots respectively. Total protein content and total 

carbohydrate of biosurfactant was determined by the Bradford (1976) and phenol–

sulphuric acid Dubois et al. (1956) method, respectively. Total lipid was analysed based 

on the method which is described by Pande et al. (1963).  

6.3.2.5Biosurfactant Stability Test 

Stability studies were done using cell-free broth obtained after 72h of cultivation. Broth 

samples were incubated in a water bath at different temperatures including 4, 20, 40, 60, 

80 and 100°C and cooled at room temperature. The pH stability was performed by 

adjusting the broth to different pH (2, 4, 6, 8, 10, 12) values by adding 1N NaOH or 1 N 

HCl. For studying the effect of salt addition on the biosurfactant, different concentrations 
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of NaCl comprises 0, 5 10, 15 and 20% (W/V) were added to broth samples and mixed 

until complete dissolution. The stability of the biosurfactant was monitored for one week. 

The surface tension values of each treatment were performed as described. The data are 

presented in terms of averages of at least three replicates. 

6.4 Results and Discussion 

6.4.1 Hydrolysis  

The effect of time, E/S ratio and temperature on degree of hydrolysis of FWC was 

evaluated using a CCD response surface design. The observed values for DH at different 

combinations of the independent variables are presented in Table ‎6.2. Results of the 

ANOVA for model and significant factors at the 5% level are summarized in Table ‎6.6. 

A quadratic model was selected to describe the DH since there is nonlinearity in the 

responses. As it is suggested by the model, time interaction of time and E/S ratio and 

temperature in the selected ranges are significant factors. According to other studies, 

hydrolyzing conditions significantly influence the peptide bond cleavage in the protein 

substrate (Bhaskar et al. 2008; Diniz and Martin 1996). Response surface graphs from the 

model are presented in Figure ‎6.2 to show the interaction of factors. The combined 

effects of each pair of factors, indicate that an increase of time at low and high E/S ratio 

has significant effect on DH, it has positive effect at high level of E/S and it has negative 

effect at low level of E/S ratio. Higher DH was observed at high level of time and high 

level of E/S ratio. For temperature, increase of temperature causes increment in DH until 

it reaches to 60°C, after this point increase of temperature leads to a decrease in DH. 
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Such a decrease in hydrolysis rate over higher enzyme activity values, temperatures, and 

time may be due to denaturation of the enzyme and reducing its activity (Ovissipour et al. 

2012). Therefore high DH can be achieved at a high level of time and at the mid-level of 

temperature. The assumptions of ANOVA were checked and they met the requirement so 

the model can be used to predict the optimum condition for DH.  The analyses were 

carried out using Design-Expert Version 8 (Statease Inc., 2013). 
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Table ‎6.6 ANOVA table of DH affected by time, E/S ratio and temperature during 
optimization experiment 

Source Sum of Squares Degree of 

freedom 

Mean Square F Value p-value 

Model 1430.35 6 238.3917 21.50428 < 0.0001 

A-Time 650.3645 1 650.3645 58.66657 < 0.0001 

B-E/S 4.13241 1 4.13241 0.372767 0.5529 

C-Temperature 0.014464 1 0.014464 0.001305 0.9718 

AB 199.7321 1 199.7321 18.01697 0.0011 

A^2 519.2061 1 519.2061 46.83534 < 0.0001 

C^2 49.37227 1 49.37227 4.453659 0.0565 

Residual 133.0293 12 11.08578   

Lack of Fit 114.878 8 14.35975 3.164455 0.1404 

Pure Error 18.15131 4 4.537828   

Cor Total 1563.379 18    

R-Squared 0.9149 Adj R-Squared  0.8724 Pred R-Squared  0.7227 Adeq Precision  17.28 
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Goodnessness of fit measures indicated a good fit of the model to the data. There is also 

no statistically significant lack of fit of the model indicating that the model can be 

adequately used for predicting the degree of hydrolysis for any combination of 

experimental independent variables. 
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Figure ‎6.2 Response surface plot for DH of FWC (1) as a function of time and E/S ratio, (2) as a 
function of temperature and time  
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The model equation for the response variable (DH (%)) of FWC as a function of the three 

independent variables (A, B, and C) and their interactions is given by: 

DH (%) = DH (%) =+20.50+7.21*A-0.57* B-0.034* C+5.00* A * B+7.24* A2-2.23* C2  

            (6.3) 

Where A, B and C represent time, E/S ratio and temperature, respectively.  

The optimum hydrolysis condition for hydrolyzing FWC based on the quadratic model 

was obtained using the desirability function approach available within Design-Expert. 

The optimum condition obtained was: time of 5 h, E/S ratio of 2.5 and temperature of 

59.97 for maximum DH (39.97%). To generate the FWC extract to be used in the later 

stages these conditions were applied. The CHN analysis result for the FWC extract 

generated under optimum hydrolysis condition gave the amount of total carbon, total 

organic carbon and total nitrogen in FWC hydrolysis as 366.7, 332.6 and 48.97 mg/g, 

respectively. 

6.4.2 Biosurfactant Production  

To evaluate the possibility of using FWC extract as an effective alternate substrate for the 

production of biosurfactant by a newly isolated Bacillus (N3-1P), it was used as carbon 

(5%) and nitrogen (15%) sources. Surface tension, EI24 and biosurfactant productivity 

rate were determined. The performance of FWC as a nutrient source was compared with 

the other organic and inorganic carbon and nitrogen sources. Results are presented in 

Figure ‎6.3. There are evidences that carbon and nitrogen play important roles in the 

production of surface-active compounds by microorganisms (Wu et al. 2008). The carbon 

source and nitrogen source influenced surface tension, EI24 and productivity similarly in 
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this study as well. Surface tension measurements was used as an indirect measure of 

biosurfactant production and to evaluate the efficiency of the produced biosurfactant 

(George and Jayachandran 2013).The lowest surface tension was observed for Glucose 

which is in agreement with other studies for Bacillus strain (Abdel-Mawgoud et al. 2008; 

Joshi et al. 2008). Glucose, sucrose, starch, glycerol, yeast and FWCC decreased the 

water surface tension to 28.5, 29.1, 31.7, 34.5, 32.9, and 32.43 (mN/m), respectively. 

FWCN and hexadecane did not decrease the surface tension of water significantly. The 

inhibitory effect of hydrocarbons (including n-hexadecane and paraffin) as the only 

carbon source on bacteria growth and biosurfactant production with different Bacillus 

strains have been reported in previous studies (Pereira et al. 2013). The emulsification 

index (% EI24) provides a rapid and reliable measure of the quantity of biosurfactant (Pal 

et al. 2009). The high emulsification activity was observed for glucose, glycerol, sucrose, 

starch and FWCC, respectively. Yeast and FWCN did not show remarkable 

emulsification index. The highest amount of biosurfactant was produced by glucose, then 

starch and sucrose. Glucose and sucrose have been reported as the best carbon sources for 

growth using different Bacillus isolates (Abdel-Mawgoud et al. 2008; Makkar and 

Cameotra 1997). While FWCC yielded 1.48 g/L, FWCN yielded very low production 

rate. Although the production rate of FWCC was lower than glucose and glycerol, it is a 

sustainable substrate for biosurfactant production, since its cost is low. The CMD values 

are useful data to indicate the biosurfactant concentration present in medium (Marin et al. 

2015). Sucrose showed the highest CMD and then the high CMD was associated to 

glycerol. FWCC showed CMD equal to 7.30. Results showed that the strain, Bacilluse, 
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N3-1P was able to grow and produce biosurfactant when cultivated in the FWC. Using 

FWC as a substrate for biosurfactant production will add value to the FWC. FWC 

demonstrated a promising performance as substrate for biosurfactant producing bacteria. 

In the next step it is used as the sole carbon and nitrogen source and the production 

condition was optimized using response surface methodology. 
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Figure ‎6.3.Effect of carbon and nitrogen sources on the biosurfactant production 
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6.4.3 Optimization of Process Parameters for Biosurfactant Production  

The media components play a key role in controlling yield and specific productivity in 

microbial production process which is mostly complex and nonlinear (Pal et al. 2009). 

Therefore, optimization of the media condition is an effective method to increase the 

productivity of biosurfactant. To screen the significant factors, design of experiment 

(DOE) based method was selected to also investigate the effect of each factor and their 

interactions. To optimize biosurfactant production, the time of inoculation was varied 

from 3 days to 7 days and the concentration of FWC extract as a sole source of carbon 

and nitrogen was varied form 20% to 80% of the medium. CMD of the produced 

biosurfactant was selected as a response. From the ANOVA table (Table ‎6.6), both time 

and concentration of FWC are significant factors at the 5% level for biosurfactant 

production. As shown in Figure ‎6.4, with an increase in concentration of FWC, 

biosurfactant production was enhanced dramatically. Most of the biodegradable 

substances present in the substrates seemed to be consumed by the bacteria after 3 days 

since longer period of incubation did not show superior biosurfactant production (Partovi 

et al. 2013). There is also a significant interaction between time and concertation (p-value 

= 0.0132). The highest CMD was observed after 3 days incubation with 80% of FWC 

concentration as nutrient source. A second-order polynomial equation was used to relate 

the independent process variables with biosurfactant production. The fitted regression 

model and subsequent optimization using the desirability function approach suggested 

time of 3 days, FWC extract concentration of 80% as optimum condition. The maximum 

CMD for produced BS obtained by using the above optimized values of the variables is 
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32. The maximum CMD obtained experimentally was 30.5. This is in close agreement 

with the model prediction. 
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Table ‎6.7 Total carbon, total organic carbon and total nitrogen in FWC extract after 
hydrolysis 

Source Sum of 

Squares 

Degree of 

freedom 

Mean Square F Value p-value 

Model 1118.556 5 223.7112 30.29961 0.0001 

A-Time 60.94325 1 60.94325 8.254198 0.0239 

B-Concentration 792.2169 1 792.2169 107.2984 < 0.0001 

AB 80.19203 1 80.19203 10.86127 0.0132 

A^2 105.5434 1 105.5434 14.29488 0.0069 

B^2 113.3033 1 113.3033 15.34588 0.0058 

Residual 51.68312 7 7.383303   

Lack of Fit 22.90464 3 7.634881 1.061193 0.4586 

Pure Error 28.77848 4 7.19462   

Cor Total 1170.239 12    

R-Squared 0.9384 Adj R-Squared  0.9242 Pred R-Squared   0.8212 Adeq Precision  16.37 

 

 

 
  

 

Figure ‎6.4 Response surface plot showing biosurfactant production as function of FWC 
concentration and time 
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CMD =+8.78-2.68 * A+9.65 * B-4.48 * A * B+3.57* A2+3.70* B2    (6.4) 

Where A and B are time and concentration of FWC, respectively. The goodness of fit 

measures showed a reasonable good fit of the quadratic model to the responses with no 

significant lack of fit. 

6.4.4 Biosurfactant Assay  

The composition of the medium, as reflected by nutrients balance, is of critical 

importance for determining product yield and biosurfactant properties (Sheppard and 

Mulligan 1987), therefore, it is essential to characterize the properties of the biosurfactant 

obtained from FWC. Minimum concentration necessary to initiate micelle formation is 

called critical micelle concentration (CMC). In practice, it is the maximum concentration 

of surfactant monomers in water (Mulligan 2005). The CMC is also the point at which 

the surface tension abruptly increases (Mulligan et al. 2001). The CMC can be 

determined by plotting surface tension as a function of biosurfactant (or broth) 

concentration since the slope of the curve abruptly changes at the CMC. However, the 

abruptness is a function of both the particular biosurfactant and the presence of impurities 

in the system (Sheppard and Mulligan 1987). The method of (Sheppard and Mulligan 

1987) was followed to determine CMC of the produced biosurfactant. In Figure ‎6.5 the 

minimum effective concentration of biosurfactants corresponds to 0.013 g/ml. Structure 

of biosurfactants, pH, ionic strength, temperature, and the polarity of the solvent 

influences CMC (Desai and Banat 1997).  
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Figure ‎6.5 CMC determination through measuring surface tension  
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Biosurfactants can be glycolipids, lipopeptides, lipolysaccharides, polysaccharide-protein 

complexes, fatty acids and lipids (Makkar et al. 2011). Although Bacillus species are 

known to produce exclusively lipopeptide biosurfactants (Thaniyavarn et al. 2003), the 

biosurfactant produced by B. megaterium was classified as a glycolipid (Thavasi et al. 

2008). Cyclic lipopeptides produced by bacilli like surfactin (produced by B. subtilis) and 

lichenysin (produced by B. licheniformis) are, the most effective biosurfactant discovered 

so far (Joshi et al. 2008). Preliminary characterization of the produced biosurfactant 

showed that it was composed of lipid (58%) and protein (18%) and carbohydrate (32%). 

After extraction and thin layer chromatography, a single purple spot with Rf = 0.45 was 

observed after spraying with ninhydrin and a single brown lipid spot with Rf = 0.7 was 

seen on exposure to iodine vapors, while a spot was detected with phenol–sulphuric acid 

reagent had Rf = 0.3. From the results of CHN analysis, biosurfactant contains 35% 

carbon with 33% of organic carbon and 3.6% nitrogen. The biggest portion of the lipid 

composition of biosurfactant is an acetone mobile polar lipid that represents part of lipid 

fraction that is acetone extractable. Glycolipid is also an important part of this class 

(Quigley et al. 1989). The fatty acid composition of the biosurfactant is important for 

their activity (Youssef et al. 2005). The total fatty acid analysis reveals that C18 has the 

biggest portion which accounts for about 50%. 
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Table ‎6.8 Lipid composition of the biosurfactant (percent of the total amount of lipid) 

% Lipid Composition of biosurfactant  

Hydrocarbons 1.81 

Free Fatty Acids 1.19 

Alcohols 0.52 

Sterols 5.17 

Acetone Mobile Polar  Lipids  59.99 

Phospholipids 31.32 
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6.4.5 Biosurfactant Stability  

Salinity is one of the critical factors for controlling the production of biosurfactants 

especially for those producers isolated from salty environments (Najafi et al. 2010). 

Biosurfactant reduced surface tension in the temperature range of 20–80 °C and 

maximum reduction was observed at 40 C. Maximum surface tension reduction was 

obtained in the presence of 5% (w/v) of NaCl and it retained almost 80% of its activity in 

presence of 15% (w/v) of NaCl. Biosurfactant stayed stable for 4 days when salt 

concentration was 5% (w/v) at 80 °C in the pH range of 6.5–11. Stability studies of the 

produced biosurfactant indicated the biosurfactant to be thermostable and also pH stable 

from values over 6.0. Biosurfactant showed salt tolerance of up to 15%. These findings 

revealed that the product obtained could be very useful in situations where extreme 

conditions of temperature, salinity and alkaline pH are present, such as enhancing oil 

recovery and bioremediation of soil and marine environments (Nitschke and Pastore 

2006). 
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  (a)     (b)          (c) 

Figure ‎6.6 Effect of (a) temperature, (b) pH, and (c) NaCl concentration on surface tension of 
the biosurfactant  
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6.5 Summary 

Raw material can account for about 30% of the overall cost of a microbial surfactant 

production, therefore the economical production of biosurfactant depends on the 

development of cheaper processes and the use of low-cost raw materials (George and 

Jayachandran 2013). In this study, the potential utilization of low-cost substrates of FWC 

as an inexpensive nutrient source for the production of biosurfactants was studied to 

minimize the waste and produce cost-efficient biosurfactant and improve biosurfactant 

production economics by incorporation of the waste. To extract the nutrient from FWC, 

enzyme hydrolysis was optimized and extract was conducted under optimum condition. 

To the best of our knowledge, enzyme hydrolysis of FWC, optimization of the hydrolyse 

process, and usage of FWC extract as nutrient source for the production of biosurfactant 

have not been reported in the available literature.  

The biosurfactant obtained from FWC extract showed high surface tension reduction and 

high emulsification activity, exhibited a high level of stability (thermostable, pH stable 

and stable in presence of salts) suggesting that further studies can help to achieve 

practical production, therefore reduce the usage of synthetic surfactant and preserve the 

environment. In this study, each step in the biosurfactant production including the 

selection of suitable strains with the desired properties, use of inexpensive alternative 

substrates and application of experimental design approach for optimizing process 

parameters have been applied to enhance the production rate of biosurfactant. 
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CHAPTER 7  

PRODUCTION OF BIOSURFACTANT BY RHODOCOCCUS 

ERYTHROPOLIS SP. CULTIVATED IN A NOVEL FISH WASTE 

COMPOST EXTRACT SUBSTRATE
6
  

  

                                                 
6 This chapter is based on the following paper: 

Kazemi, K., Zhang, B., and Lye, L. M., (2016). Production of biosurfactant by 
Rhodococcus erythropolis sp. cultivated in a novel fish waste compost extract 

substrate, Proceedings  CSCE Annual Conference, June, 1-4, 2016, London, Canada 

Role: Khoshrooz kazemi solely worked on this study and acted as the first author of 
this manuscript under the guidance of two supervisors, Dr. Baiyu Zhang and Dr. 

Leonard Lye. Most contents of this paper was written by Kazemi and further polished 
by the other co-authors. 
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7.1 Bachground 

Biosurfactants are amphiphilic compounds produced by a wide variety of 

microorganisms containing both hydrophilic and hydrophobic moieties that allow them to 

array at the interface of polar and nonpolar media (Sen 2010). They have been identified 

for several industrial applications in cosmetic, pharmaceutical, food processes, and 

environmental engineering as emulsifiers, humectants, preservatives, and detergents. 

Because of their structural diversity (i.e., glycolipids, lipopeptides, fatty acid esters), low 

toxicity thus ecologically safe, and high biodegradability, biosurfactants have potential 

for replacing synthetic surfactants in bioremediation and waste treatments (Pal et al. 

2009). Despite all advantages that biosurfactant have, low yields and high production cost 

limit the extension of biosurfactant applications (Makkar et al. 2011). Raw material can 

count almost 30% of the overall cost of a microbial surfactant production, therefore the 

economical production of biosurfactant depends on the development of the use of low-

cost raw material and optimization of the production processes (George and 

Jayachandran 2013). The use of the alternative substrates such as industrial and/or 

municipal wastes is one of the attractive strategies for economical biosurfactants 

production to minimize the pollutants and produce valuable product (Kosaric 1992). 

Improvement of efficiency of the production process (e.g., optimization of cultural condition) 

can also help to overcome the economic constraints associated with biosurfactat production 

(Mukherjee et al. 2006). 

Form 267,959 tonnes of fish landed in Newfoundland and Labrador, 54% was classified 

as fish waste in 2001(Ghaly AE 2013). Composting is considered to be a viable solution 
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to the problems of waste disposal experienced by fish processing plants and fish farms 

(Liao et al. 1995). Compost made from fish waste is rich in nutrients, particularly 

nitrogen and phosphorous (Benhabiles et al. 2012; Illera-Vives et al. 2013; Laos et al. 

2002). It can be used to generate subtract for bacterial growth and production of valuable 

products such as biosurfactants.  

Medium compositions such as carbon sources, nitrogen sources, and inorganic salts 

strongly influence cell growth and the accumulation of metabolic products (Li et al. 

2002). Environmental factors and growth conditions such as pH and time of cultivation 

also affect biosurfactant production through their effects on cellular growth or activity 

(Desai and Banat 1997). Through studying the effect of these factors on production 

process and optimizing media condition, the yield of biosurfactant production can be 

elevated (Kiran et al. 2009; Mukherjee et al. 2006). Among various statistical methods, 

response surface methodology (RSM) is the most widely used method in system 

optimization. Through integrating a collection of statistical tools and techniques, RSM 

leads to constructing and exploring an approximate functional relationship between a 

response variable and a set of design variables (Venter 1998).  

The present paper investigates the potential usage of fish waste compost (FWC) extract 

as a novel substrate for biosrufactant production by a strain Rhodoccocus (P6-4P) 

isolated from Atlantic ocean. In order to optimize media conditions to enhance the yield 

of Rhodococcus biosurfactant using FWC extract as an involving factor and develop an 

empirical model of the process, one of the most important RSM designs methods namely 

central composite design used in process optimization.  
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7.2  Material and Methods  

7.2.1 Strain and Culture Condition 

Biosurfactant producing microorganism P6-4P (Rhodococcus erythropolis sp.) isolated as 

an effective microorganisms from petroleum hydrocarbon contaminated marine sources 

in the North Atlantic Canada in the NRPOP lab, Memorial University of newfoundland, 

Canada was selected to produced biosurfactant (Cai et al. 2015). Bacteria colony was 

transferred from agar plate to 125-ml Erlenmeyer flask containing 50 ml BD 23400 

nutrient broth (Fisher scientific company, Ottawa, Canada) to growth the culture on a 

rotary shaker for 24h at 37 °C and 180rpm to reach the optical density of the culture at 

600 nm (OD600) of 0.8. Growth and biosurfactant production by the isolate was 

evaluated using media which is adopted and modified from (Peng et al. 2007) including  

NaCl, 2.2 g; FeSO4‧7H2O, 2.8×10-4 g; KH2PO4, 3.4 g;K2HPO4‧3H2O, 4.4 g; MgSO4‧

7H2O, 0.5 g; yeast extract, 0.5 g, N-hexadecane 30 ml/L, (NH4)2SO4 15 g, and 0.5 mL/L 

trace element solution in 125 mL conical flasks. The trace element solution contained 

ZnSO4, 0.29 g; CaCl2, 0.24 g; CuSO4, 0.25 g; MnSO4, 0.17 g L-1 and was sterilized 

separately. The chemicals used were analytical grade, unless otherwise specified. 

Incubation was conducted at 30oC, 200 rpm for 2 days. After 2 days, before inoculation, 

purity check was conducted by spreading the medium over nutrition broth agar plate to 

avoid cross contamination. Nutrition broth composed of peptone, 8 g; yeast extract, 3 g; 

NaCl, 6 g; Glucose, 1 g: and agar. 15 g. Difference carbon and nitrogen sources has been 
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used to compare the efficiency of FWC extract as substrate for biosurfactant producing 

bacteria.  

7.2.2 Effect of Carbon and Nitrogen Sources on Biosurfactant Production  

The effect of different carbon sources was studied by replacing the n-hexadecane with 

sucrose, starch, glucose, and fish waste compost extract (FWCC). The different carbon 

sources were added to the media at a concentration of 5 g l−1. To evaluate the nitrogen 

sources, ammonium sulphate was replaced by an equivalent amount of different nitrogen 

sources, namely yeast, ammonium nitrate and FWC extract (FWCN). The different 

nitrogen sources were added to the media at a concentration of 15 g l−1. A 1% bacterial 

cell suspension from a 24-h culture was used as inoculum. 15 ml medium has been 

prepared in the 50 ml conical flask and incubated at 30oC, 200 rpm for 5 days. Cells were 

removed from the culture by centrifugation at 12, 000 rpm for 20 min. Cell- free culture 

broth was used for analytical measurements. 

7.2.3 Surface Tension and CMD Measurement  

Surface tension measurements of culture broth supernatants were performed according to 

the Ring method with a surface tensiometer (DuNouyTensiometer, Interfacial, CSC 

Scientific). To increase the accuracy of the surface tension measurements, an average of 

triplicates was determined. All measurements were performed at room temperature 

(20 °C). Critical micelle concentration (CMD) is the dilution of the culture broth upon 

reaching the critical micelle concentration (Shavandi et al., 2011). After centrifuge at 

12,000 rpm for 20 min and discard the pellet, the cell free broth were diluted with 
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distilled water, while the surface tension of each dilution was measured. The CMD was 

determined as the highest dilution with which the surface tension did not significantly 

increase. As the broth consists of both aqueous and oil phase, each dilution was 

conducted with sonication to ensure homogeneity. Before each measurement, the 

sonicated solution was allowed to stand for 15-20 min to achieve equilibrium.   

7.2.4 Emulsifying Activity  

Emulsifying activity was determined by the addition of 2 ml of n-hexadecane to the same 

volume of cell-free culture broth supernatant in glass test tubes. The tubes were mixed 

with vortex at high speed for 2 min and subsequently incubated at 25 °C for 24 h. The 

stability of the emulsion was determined after 24 h, and the emulsification index (EI24) 

was calculated as the percentage of the height of the emulsified layer (mm) divided by 

the total height of the liquid column (mm). All emulsification indexes were performed in 

triplicate. 

7.2.5 RSM Experimental Design 

To examine the combined effect of three different medium conditions and to obtain the 

functional relationship between incubation component including time, pH and FWC 

concentration and response namely CMD, a CCD of 23 = 8  plus 6 center points,  plus 

one replicate of star point and one replicate of factorial point leading to a total of 20 

experiments was designed. The value of the response (CMD) was the mean of three 

replications. Trial version of Design Expert software (version 8.0, Stat-Ease, USA) was 
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used to conduct the statistical analysis. Table ‎7.1 presents the variables and their high and 

low levels. 
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Table ‎7.1 Biosurfactant production variables and their high and low level 

Independent variables Coded  High Low 

Time (d) A 3 7 

pH B 6 8 

FWC concentration 
(%) 

C 20 80 

 

Table ‎7.2 CCD for biosurfactant production 

Run Factor 

A 

Factor 

B 

Factor 

C 

Y0 observed  

CMD 

Y predicted 

CMD 

1 5 8.5 50 10.8 8.75 

2 5 7 50 14.2 13.34 

3 2 7 50 20.8 21.99 

4 5 7 50 12.2 13.34 

5 3 8 20 15.5 14.03 

6 5 7 50 12.4 13.34 

7 7 6 20 2.2 0 

8 3 8 80 21.5 25.75 

9 7 8 20 0 0 

10 7 8 80 8.13 10.03 

11 5 7 5 0 4.56 

12 5 7 95 23 22.13 

13 5 5.5 50 0 2.35 

14 5 7 50 17.6 13.34 

15 7 6 80 9.13 9.95 

16 8 7 50 0 4.7 

17 5 7 50 16.2 13.34 

18 3 6 20 2.83 5.55 

19 3 6 80 20.5 17.26 

20 5 7 50 16.7 13.34 
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7.2.6 Biosurfactant Extraction and Assay 

To extract the produced biosurfactant, the cell free culture were mixed with equal volume 

of chloroform/ methanol (1:2 v/v) and shaken on an orbital shaker (200 rpm) for 24 

hours. The solvent then evaporated by rotary evaporator and kept at 4°C. For total lipid 

(Pande et al. 1963) method and for total carbohydrate (Dubois et al. 1956) method were 

used. The total carbohydrate in the sample solution was expressed in terms of D-Glucose 

(g/ 100 mL) and the total lipid in the sample solution was expressed in terms of Palmitic 

acid (g/ 100 g/mL). The surface tension of 10 mL diluted biosurfactant solution at various 

concentrations was determined in triplicate with a surface tensiometer at 25°C for CMC 

estimation. The CMC was determined by plotting the surface tension versus the 

concentration of biosurfactants in the solution. Total lipid and fatty acids test was 

conducted at ocean science centre (OSC) Memorial University of Newfoundland.  Lipid 

samples were extracted according to Parrish (1999). Lipid class composition was 

determined using an Iatroscan Mark VI TLC-FID, silica coated Chromarods following 

three-step development method (Parrish 1987). The fatty acids composition of surfactant 

extracts was analysed by GC–FID.  

7.2.7 Stability of Biosurfactant 

Stability studies were done using cell-free broth obtained after 72h of cultivation. Broth 

samples were incubated in a water bath at different temperatures including 4, 20, 40, 60, 

80 and 100°C and cooled at room temperature. The pH stability was performed by 

adjusting the broth to different pH (3, 6, 9, and 12) values by adding 1N NaOH or 1 N 

HCl.  Different concentrations of NaCl comprise 0, 5 and 10 % (W/V) were added to 
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broth samples and mixed until complete dissolution to study the effect of salt addition on 

biosurfactant. 

7.3 Results and Discussion  

7.3.1 Effect of Carbon and Nitrogen Sources on Biosurfactant Production  

The genus Rhodococcus bacteria with a diverse and efficient metabolism is able to 

transform, biodegrade or utilize as carbon source several hydrophobic compounds such as 

hydrocarbons, chlorinated phenols, steroids, lignin, coal and crude oil. This capability 

could be of great commercial and industrial importance (Bicca et al. 1999). 

Biosurfactants produced by some Rhodococcus species have been reported to be more 

effective and efficient in reduction of surface and interfacial tensions than many synthetic 

surfactants (Bell et al. 1998).  Therefore, Rhodococcus erythropolis sp has been selected 

for this study. The type of carbon and nitrogen source affected biosurfactant yield which 

is depicted through ST, EI24 and production rate in Figure ‎7.1. Biosurfactant produced 

with FWC as carbon source and nitrogen sources showed excellent surface tension 

reduction activity and they reduce water surface tension to 29.33 and 28.95 mN/m, 

respectively. The lowest surface tension was recorded for sucrose of 24.61 mN/m. All 

carbon and nitrogen sources except glycerol reduced water surface tension to under 40 

mN/m. highest emulsification activity was observed for n-hexadecane. Also, FWCN 

showed well emulsification activity while it was less than n-hexadecane and yeast.  Yeast 

yielded the highest production rate, after yeast ammonium nitrate and FWCN produced 

higher biosurfactant. The lowest production rate belongs to glycerol. According to 
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surface tension, emulsification activity and biorurfactant production FWC was able to 

promote the production of biosurfactant as a nitrogen source and carbon source and it can 

be considered as a promising nutrient source for selected Rhodococcus strain. 

7.3.2 Biosurfactant Production Optimization 

The ANOVA of a quadratic regression model demonstrates that the model is highly 

significant as it is shown by the model F-value of 19.02. There is only a 0.01% chance 

that a model F-value this large could occur due to noise. Noise, which is responsible for 

most of the variability in the response, arises due to parameters that are hard and 

expensive to control in process settings (environmental conditions such as temperature 

and humidity, variations in raw material, accuracy limits of instruments, etc.), and it 

varies randomly within the process.  
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Figure ‎7.1 Effect of carbon and nitrogen sources on the biosurfactant production by P6-

4P 

 

Table ‎7.3 ANOVA table for biosurfactant production 

Source Sum of Squares df Mean Square F Value p-value 

Model 1060.715 5 212.1429 19.02782 < 0.0001 

A-Time 415.5268 1 415.5268 37.27001 < 0.0001 

B-pH 56.90311 1 56.90311 5.103833 0.0404 

C-FWC (%) 429.0106 1 429.0106 38.47942 < 0.0001 

AB 35.57461 1 35.57461 3.190808 0.0957 

B^2 123.6994 1 123.6994 11.09502 0.0049 

Residual 156.0873 14 11.14909   

Lack of Fit 129.839 9 14.42655 2.748089 0.1390 

Pure Error 26.24833 5 5.249667   

Cor Total 1216.802 19    

R-Squared 0.8717 Adj R-Squared  0.8259 Pred R-Squared  0.7074 Adeq Precision  15.045 
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Values of P less than 0.05 indicate model terms that are significant. The coefficient and 

the corresponding P values suggest that, among the input variables time, pH , FWC 

concentration, interaction of time and pH are significant model terms. The lack-of-fit F-

value of 2.75 implies the lack of fit is not significant. Relatively lower value of 

coefficient of variation (CV = 29.%) indicates a better precision and reliability of the 

experiments carried out. The coefficients of regression equation were calculated using 

Design Expert and the following regression equation was obtained. 

Y =+13.35-5.77* A+2.13 * B+5.86 * C-2.11* A * B-3.46* B2   (7.1) 

Where Y is the response that is CMD of the produced biosurfactant and A, B and C are 

coded values of the test variables, time, pH and FWC concentration (%), respectively. 

The regression equation and determination coefficient R2 was used to test the fit of the 

model. The model presented a high determination coefficient (R2 = 0.8717) explaining 

87% of the variability in the response. An adequate precision of 15.04 indicates an 

adequate signal for the signal–noise ratio. The value of the adjusted determination 

coefficient is also very high to indicate a high significance of the model (Khuri and 

Cornell 1996). 
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Figure ‎7.2 Response surface plot for CMD of biosurfactant production (1) as a function 

of time and pH, (2) pH and FWC concentration 
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Since linear effect of FWC concentration is significant which means that it can act as 

limiting nutrient source and variation in its concentration will change the product CMD. 

Increase of time has a negative effect on CMD. pH has a positive linear effect and 

negative quadratic effect on CMD of the produced biosurfactant, therefor its changes 

alter the CMD. To achieve the highest CMD the time of 3 days, pH of 7.2 and FWC 

concentration of 76.37 were suggested as optimal condition to generate biosurfactant for 

further tests.   

7.3.3 Biosurfactant Production Assay  

Biosurfactant production over the course of 72 h was investigated through ST, EI24% and 

production rate measurement. As expressed by decrease in surface tension, the 

Rhodococcus (P6-4P) started to produce biosurfactant after 12 hours of cultivation. 

Dramatic decrease was observed in surface tension until 24 hours and then it reached its 

minimum values at 31 (mN/m). The emulsification index increased continuously until it 

reached its maximum value after 30 h. The maximum production rate of biosurfactant has 

been observed after 60 h of cultivation which was 3.2 g/l.  
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Figure ‎7.3 Times course of growth and biosurfactant production 
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A direct relationship between biosurfactant production and cell growth was observed 

during the biosurfactant production by Rhodococcus (P6-4P). The biosurfactant 

production with FWC started soon after inoculation and increased progressively, then 

remained constant during stationary phase and reached its maximum value at the end of 

the stationary phase. Cell growth stayed at stationary phase form 24 h to 60h of 

cultivation. Although it can be stated that FWC is a promising substrate for bacterial 

growth and biosurfactant production by the tested microorganism, it cannot be claimed 

that biosurfactant production by Rhodococcus (P6-4P) with FWC is a metabolic process 

and it is growth-associated, since biosurfactant production continued during the 

stationary phase.  

7.3.4 CMC Determination  

When biosurfactants were produced in the water, the surface tension changes with 

increasing concentration of biosurfactants until it reaches the critical micelle 

concentration (CMC), at this point surface tension remains constant and biosurfactant 

molecules start to form aggregates like micelles because of the chemical interactions 

between the polar head groups and the non-polar tail groups including hydrophobic, Van der 

Waals' force, and hydrogen bonding   (Mulligan 2005; Schramm 2000; Soberón-Chávez 

and Maier 2011). To evaluate biosurfactant content in the cell free broth,the CMC was 

determined by measuring the surface tension of the supernatant at various dilutions 

(Mulligan et al. 2001).  The CMC can be determined by plotting surface tension as a 

function of biosurfactant (or broth) concentration since the slope of the curve abruptly 

changes at the CMC. However, the abruptness is a function of both the particular 
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surfactant and the presence of impurities in the system (Sheppard and Mulligan 1987). 

The method of (Sheppard and Mulligan 1987) has been followed to determine CMC of 

the produced biosurfactant. In the Figure ‎7.4 the minimum effective concentration of 

biosurfactants corresponds to 0.0155 g/ml. CMC varies with the structure of surfactants, 

pH, ionic strength, temperature, and the polarity of the solvent (Desai and Banat 1997). 

Improving the downstream process for biosrufactant extraction and reducing the 

impurities can reduce the CMC.   

Biochemical composition of the produced biosurfactant revealed that the total 

carbohydrate content in 1 g biosurfactant was 18.2 mg in term of D-glucose and the total 

lipid content was 48.6 mg in term of Palmitic acid in 1 g product. Certain species of 

Rhodococcus, such as Rhodococcus erythropolis are important biosurfactant producers.  

These species produce biosurfactants through the utilization of water-insoluble 

hydrocarbons. Most of the biosurfactants produced in this way are lipids containing 

trehalose. Although the diversity of Rhodococcus glycolipids has been reported while 

free fatty acids are rarely reported as major biosurfactant products of Rhodococcus 

erythropolis (Peng et al. 2007), the major component of produced biosurfactant was fatty 

acid and accounted for 64% of total lipid composition.  

  



273 
 

 

Figure ‎7.4 CMC determination through measuring surface tension  
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Table ‎7.4. Lipid composition of the biosurfactant (percent of the total amount of lipid) 

% Lipid Composition in biosurfactant 

Hydrocarbons 2.71 

Steryl Esters/Wax Esters 0.00 

Ethyl Esters 0.79 

Methyl Esters 0.00 

Ethyl Ketones 1.99 

Methyl Ketones 0.00 

Glycerol Ethers 0.00 

Triacylglycerols 0.00 

Free Fatty Acids 63.84 

Alcohols 0.93 

Sterols 6.64 

Diacylglycerols 0.00 

Acetone Mobile Polar  Lipids 9.80 

Phospholipids 13.31 

 

Table ‎7.5 Fatty acid composition of the biosurfactant (percent of the total amount of fatty 
acids) 

% ID'ed Fatty acids in biosurfactant 

14:0 1.30 

Trimethyltridecanoic acid (TMTD) 1.04 

16:0 8.26 

16:1w7 1.77 

i17:0 1.29 

18:0 7.88 

18:1w9 5.36 

18:1w7 7.30 

18:2w4 3.22 

20:1w11? 1.67 

20:1w9 23.06 

20:1w7? 2.71 

22:1w11(13) 17.50 

22:1w9 4.86 

21:5w3? 1.99 

24:1 1.72 

Sums 100.00 
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7.3.5 Biosurfactant Stability 

Surface tension of the produced biosurfactant was measured under wide range of 

temperature, pH and salinity to study the stability of the biosurfactant. The biosurfactant 

showed stability at all temperature ranges and salinity ranges and its surface tension 

changed slightly. At the low pH, biosurfactant precipitated and surface tension was high. 

Biosurfactant stayed stable for 4 days when salt concentration was 5% (w/v) at 80 °C in 

the pH range of 6.5–10.5. Stability studies demonstrated that the biosurfactant is stable 

under extreme temperature and salinity and wide range of pH. 

7.4 Summary  

This study aims to contribute to the use of FWC as substrates for the production of 

biosurfactant. The use of an experimental design to reveal the influence of media 

condition on biosurfactant production, allowed the screening of experimental significant 

factors on media conditions for optimization of biosurfactant production. The effort of 

using waste as a cheap substrate and optimization of the production condition to enhance 

the biosurfactant production rate and decrease the cost can help to make the microbial 

surfactant competitive with synthetic surfactants. The significant achievement of the 

present work lies in the fact that the FWC as cheap and novel source of nutrient can be 

used to produce biosurfactant and experimental design can be applied to enhance 

biosurfactant production.  
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CHAPTER 8  

CONCLUSIONS AND RECOMMENDATIONS   
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8.1 Summary 

In Canada, nationally, the amount of non-hazardous waste sent to private and public 

waste disposal facilities was approximately 25 million tonnes in 2010. Residential waste 

accounted for 37% of the total waste disposed, with about 9.3 million tonnes in 2010 and 

organic waste makes up to 40% of the residential waste. Aside environmental concerns 

related to landfill such as leachate generation and gas emission, landfill post closure and 

maintenance funds of $93 million in Canada in 2010. In addition, legislative mandates, 

recycling goals, protection of the water and soil resources, strict and costly landfilling 

and incineration regulations and other objectives set forth by national, state, and local 

governments provided the impetus for waste managers to look for alternatives to divert 

the amounts of waste disposed on the land.  

The amount of waste diverted to recycling or organic processing was 8.1 million tonnes 

and organic materials accounts at 27% (2.2 million tonnes) or 236 kg per person in 

Canada in 2010. Among all Canadian provinces, Nova Scotia diverted the most MSW 

from landfills. This province banned organic waste from landfill sites and organized 

separate curbside collection and recycled 310 kg per capita, which contributed to 45% of 

its total wastes. NL has the highest quantity of waste disposal per capita after Alberta. 

This amounts to about 429 kg of residential waste per capita (Pande et al. 1963). Based 

on the waste management survey by Government of Canada, there has been no allocation 

of funds to operate an organics processing facilities in NL whereas one of the primary 

stages of the Provincial Solid Waste Management Strategy (2010) was increasing waste 

diversion by diverting 50% of materials going to disposal by 2015. 
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Another source of organic waste in NL is fishery waste since the fishery industry is 

important economically in the province. Fishery industry generated 115,263 tonnes of 

waste in 2013. Where there is no opportunity to reuse fish waste, it is disposed in the 

ocean under permit from Environment Canada at approved locations. The immersion and 

presence of fish offal could potentially have an impact on fish and marine habitat at the 

dumping site. The slow rate of decomposition of fish waste results in the subsequent 

increase in biological oxygen demand (BOD), release of dissolved phosphorus and 

dissolved nitrogen, and the formation of black zone.  

Composting is considered to be a useful method to produce a stabilized material from 

organic MSW and fish waste and it is a viable solution to the problems of waste disposal. 

Furthermore, it is a promising mean for NL to achieve the goal of solid waste 

management plan, with diverting 50% of the organic wastes from landfill.  

Selection of a bulking agent which should be inexpensive and readily available in the 

vicinity of the composting region is very important because bulking agents can affect the 

condition of the starting composting mixtures, biodegradation kinetics and composting 

performance as well as the final compost quality. Therefore, in this research, the 

performance of locally available bulking agents on the bench-scale MSW composting in 

NL was examined. Meanwhile, a comprehensive investigation of parameters indicating 

compost maturity and stability and monitoring composting process was conducted. The 

OUR, enzyme activities and GI were selected to reflect compost stability and maturity. 

Effective MSW composting was achieved based on the analysis of the results of the 

physiochemical and biological parameters. A higher temperature for a longer duration 
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was observed during composting using peat as the bulking agent, leading to more 

effective pathogen removal and sterilization. A high enzyme activity of dehydrogenase, 

β-glucosidase, and phosphodiesterase in the third week of composting with peat implies 

high microbial activity and high decomposition rate. In addition, the low final C/N ratio 

for compost with peat implies acceptable stability states. Maximum temperature and high 

OUR for composting using sawdust as the bulking agent were observed in the third week 

of composting and the peak of dehydrogenase, β-glucosidase, and phosphodiesterase 

activities occurred in the second week. Composting with sawdust generated a higher 

germination index, indicating higher maturity.  

Physicochemical parameters such as temperature, moisture content, C/N ratio and EC are 

widely applied to monitor the composting process. Enzyme activities can indicate the 

ability of microbes to degrade a wide range of common organic substrates due to the role 

played by enzymes in the biological and biochemical processes during composting. 

Characterising and quantifying specific enzyme activities during composting could 

provide information of dynamics of the composting process. Moreover, the determination 

of enzyme activity, in contrast to other analytical techniques used for compost stability 

evaluation is fast, and relatively inexpensive. Despite their advantages as stability and 

maturity indices, enzyme activities have never been used in DOE based composting 

process optimization. For the first time, cumulative enzyme activities were served as 

responses for 2-level four factor factorial design to evaluate the effect of AR, MC BA, 

and C/N on the composting process. Results indicated that C/N was one of the main 

factors that affect compost maturity and stability. The type of BA has a statistically 
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significant effect on final C/N, final GI and cumulative enzyme activities. The developed 

regression models can be used to optimize initial operational conditions of composting 

and can help to increase the efficiency of the composting process. To economically treat 

the increasing quantities of MSW and achieve maximum cumulative enzyme activities, 

maximum GI and low C/N ratio, composting with an AR of 0.3 L/min. kg, C/N of 17, 

MC of 70% with peat as BA is recommended.   

Enzyme activities were applied to evaluate the state and evolution of marine fish waste 

composting process. A composting system was designed for achieving the effective 

reduction of fish wastes, and generating mature and high quality compost products. It was 

meaningful to conduct a detailed monitoring, characterization, and quantification of the 

enzymatic activities during fish waste composting. Due to the high complexity of fish 

wastes, different enzymes worked collaboratively to fully decompose the organic 

materials into stable compounds. The maximum enzyme activities were observed in the 

first 3 weeks, at the active phase of decomposition. The changes of enzyme 

concentrations served as useful indices to evaluate the effectiveness and progress of the 

fish waste composting. Decline of enzyme activities in compost samples observed 

concurrently with decrease in C/N ratio and increase in GI. Thus, enzyme activities could 

represent a useful index of state of composting since the conventional maturity and 

stability parameters, OUR, C/N ratio, GI support the use of enzyme activity as indicator 

of compost stability in this work. A number of key physicochemical properties were also 

monitored and their correlations with the enzyme activities were investigated. The 



281 
 

correlation results suggested characterizing compost maturity and stability by each 

isolating parameter might be not reliable. 

Nutrients of generated FWC were further used to produce a valuable product such as the 

biosurfactant. Biosurfactants are found to be less toxic, more effective and stable at 

extreme pH, temperature and salinity, and enhancing biodegradation. Using inexpensive 

raw materials and optimization of cultural condition can help to cope with the economic 

constraints associated with bulk production of biosurfactats. Thus, in the present research, 

FWC nutrient was extracted using enzyme hydrolysis. The effect of time, E/S ratio and 

temperature on DH of FWC was evaluated using a CCD response surface design. Time, 

interaction of time and E/S ratio and temperature in the selected ranges were significant 

factors. Higher DH was observed at high level of time and high level of E/S ratio. The 

optimum condition obtained was: time of 5 h, E/S ratio of 2.5 and temperature of 59.97 

for maximum DH. Two newly isolated strains (e.g., Bacillus (N3-1P) and Rhodococcus 

erythropolis sp. (P6-4P)) were selected to evaluate the feasibility of using FWC extract as 

substrate for biosurfactnt production. The performance of FWC extract as a nutrient 

source was compared with the other organic and inorganic carbon and nitrogen sources 

by determining surface tension, EI24, CMD and biosurfactants productivity rate. FWC 

extract demonstrated a promising performance as substrate for biosurfactant producing 

bacteria. RSM was implied to optimize the production condition. A quadratic model was 

selected to predict the CMD of the produced biosrufactant. The maximum CMD 

predicted by model was 32 and obtained experimentally was 30.5 by Bacillus (N3-1P). 

The CMC of the produced biosrufactant was 0.013 g/ml and 0.0155 g/ml for N3-1P and 
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P6-4P, respectively. The biosurfactant obtained from fish waste compost extract showed 

high surface tension reduction and high emulsification activity, exhibited a high level of 

stability. The effort of using waste as a cheap substrate and optimization of the 

production condition to enhance the biosurfactant production rate and decrease the cost 

can help to make the microbial surfactant competitive with synthetic surfactants. The 

significant achievement of the present work lies in the fact that the FWC as a cheap and 

novel source of nutrient can be used to produce biosurfactant and experimental design 

can be applied to optimize the process thus enhance biosurfactant production.  

8.2 Research Contributions  

This research can be summarized and highlighted by the following contributions: 

1) The impact of two locally available bulking agents on the performance and 

quality of the final product of the compost of MSW in NL was investigated for 

the first time. Both sawdust and peat are effective bulking agents for Bench-scale 

composting and they generated mature and stable compost. The choice of a 

bulking agent for a particular community then depends on the availability of the 

agent and land in the adjacent region.   

2) Enzyme activities (dehydrogenase activity, β – glucosidase, and 

Phosphodiesterase) have never been used as responses for DOE based 

examination of MSW composting process. Effect of the composting process 

variables including moisture content, aeration, bulking agent, and C/N ratio was 

investigated during MSW composting based on the DOE technique. In this 
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research, the variation of enzyme activities has been assessed to monitor the 

organic matter decomposition and progress of the composting process. The 

cumulative enzyme activities also have been used as responses beside GI, OUR, 

Final C/N ratio and moisture content to develop a model. The research results can 

be applied to optimize initial operational conditions of composting and can help to 

increase the efficiency of the composting process to economically treat the 

increasing quantities of MSW. 

3) Composting as a solution was used for growing fish waste problem. Enzyme 

activities have been innovatively proposed to evaluate the state and evolution of 

the fish waste composting process. The results of the experiments revealed that 

enzyme activities could represent a useful index of state of composting since the 

conventional maturity and stability parameters, OUR, C/N ratio, GI support the 

use of enzyme activity as indicator of compost stability in this work. 

4) Fish waste compost extract was generated through enzyme hydrolysis and the 

hydrolysis process was optimized based on RSM as an innovative process to 

extract compost nutrient. The extract was used as novel substrate for newly 

screened biosurfactant producer strains from northern Atlantic Canada including 

Bacillus (N3-1P) and Rhodococcus erythropolis sp. (P6-4P). The generated 

biosurfactants from fish waste compost extract reduced surface tension and had the 

ability to stabilize emulsions. The developed methodology can extract nutrient from 

compost effectively and generate biosurftacnts in economical way by using waste 

stream as substrate. 
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8.3 Recommendations for Future Research  

1) There are small communities in NL which are located in remote and isolated areas 

and cannot access large solid waste disposal sites or central organic processing 

facilities. In addition, mostly fish processing plants are located at the remote 

costal area. Therefore, in such area both MSW and fish waste should be treated 

and there are limited studies relevant to the composting of the mix waste. The 

feasibility of composting of mixture of fish waste and MSW can be investigated 

to conduct composting in the remote communities.  

2) Using enzyme activity to evaluate the state of the composting could be improved 

by investigating the relationship between other compost maturity and stability 

indices such as CO2 evolution rate, WSC, NH4
+-N and NO3

--N and enzyme 

activities to establish a set of thresholds for enzyme activities as maturity and 

stability indices in relation to other parameters.  

3) Further structural characterization of generated biosurfactant can be carried using 

GS/MS. fast atom bombardment mass spectral (FABMS) and HPLC. Also, the 

application of the generated biosurfactant in bioremediation and enhance oil 

recovery can be further investigated.  
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