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Abstract 

The woodchuck hepatitis virus (WHV) is closely related to human hepatitis B 

virus (HBV), the prototypic member of the Hepanaviridae family.  Toll-like receptors 

(TLRs) may play an important role in the pathogenesis of hepadnaviral hepatitis, 

however, little is known about their expression during the course of hepadnaviral 

infection.  In this study, woodchuck TLRs1-10 gene exon fragments were identified and 

their transcriptional profiles investigated in livers, hepatocytes isolated from these livers, 

and peripheral blood mononuclear cells (PBMCs) from healthy woodchucks and 

animals with different stages of experimental WHV infection.  Overall expression 

analysis revealed that livers from woodchucks with acute hepatitis (AH) and chronic 

hepatitis (CH) had significantly upregulated expression of TLRs2-10 when compared to 

the livers of healthy animals and those with self-limited acute hepatitis (SLAH) and 

primary occult infection (POI).  This was likely due to intrahepatic immune cell 

infiltration.  In contrast, a significant downregulation of TLR3, TLR5, TLR7, TLR8, and 

TLR10 expression was identified in hepatocytes of woodchucks with CH when 

compared to hepatocytes from healthy animals and those with pre-acute hepatitis 

(PreAH), SLAH and POI.  This may suggest WHV active suppression of the innate 

immune response in these cells.  Upregulated transcription of the majority of TLRs was 

found in PBMCs during CH but not in other stages of infection.  In summary, this study 

uncovered that TLR expression is significantly modulated depending on the stage of 

WHV infection and form of hepatitis.  Treatments designed to restore hepatocyte TLR 

expression may allow for better control of the virus through activation of a stronger 

intrahepatocyte immune response during CH. 
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Chapter 1 – Introduction 

1.1. Brief History of Studies on Hepatitis B Virus Identification 

Virus-induced hepatitis is an inflammatory liver disease caused by DNA or RNA 

viruses that have a specific affinity for the liver, also known as hepatotrophic viruses.  

The hepatitis B virus (HBV) is the largest causative agent of viral hepatitis in the world 

and is characterized by both its hepatotrophic and lymphotrophic nature.  In the 1940’s, 

the name “hepatitis B” was first introduced in order to categorize an infectious liver 

disease that was mainly transmitted by exposure to contaminated blood (MacCallum, 

1946).  It was not until 1965 when Dr. Baruch Blumberg discovered HBV envelope 

lipoprotein, then named the Australian antigen, in the blood of an Australian aboriginal 

(Blumberg et al., 1965).  Following further research, it was determined that the 

Australian antigen, now referred to as the hepatitis B surface antigen (HBsAg), was 

indicative of active HBV infection.  In the 1970’s, Dr. David Dane discovered viral 

particles with a diameter of 42-nm, known as Dane particles, that were eventually 

identified to be HBV virions (Dane et al., 1970).  Since the identification of HBsAg and 

the HBV virion, subsequent immunological and molecular analysis has led to the 

identification of HBV associated proteins and the sequencing of the entire HBV genome.  

Vaccine development began with Dr. Blumberg’s early work, however, it was not until 

1986 that a yeast-derived HBsAg vaccine became the standard vaccine against HBV 

(Gerlich, 2013).  Currently, several recombinant HBV vaccines containing the major 

protein of HBsAg, named the S (small) protein, are available to generate protection 

against HBV (Lavanchy, 2012). 
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1.2. Epidemiology of HBV Infection 

According to the World Health Organization (WHO), an estimated 240 million 

people worldwide are affected by chronic, serum HBsAg-positive, hepatitis B (CHB) and 

approximately one million persons die each year due to complications caused by HBV 

infection (World Health Organization, 2016).  It is estimated that another 2 billion people 

may have occult HBV infection without showing any clinical symptoms.  Furthermore, 

prophylactic vaccines that are available do not inhibit transmission of HBV from infected 

mothers to their babies, which is currently the main route of virus spread.  In 

consequence, severe liver cirrhosis and liver cancer, called primary hepatocellular 

carcinoma (HCC), caused by the virus will remain a significant health problem for many 

decades to come.  The rate of HBV infection varies depending on geographical region 

and is generally highest in developing countries.  These countries are suffering from 

political and socio-economic problems that make it difficult to manage the prevention 

and treatment of the disease (Zampino et al., 2015).  HBV is highly endemic in regions 

such as South East Asia, China, sub-Saharan Africa, the Amazon Basin, and Northern 

Canada, where an estimated 8% of the population are chronic HBsAg-positive carriers 

(Hou et al., 2005).  In these areas, HBV is most commonly acquired during childhood, 

either through perinatal transmission (mother to child) or through horizontal 

transmission (individual to individual).  Intermediate rates of endemicity are found in 

areas such as Eastern and Southern Europe, the Middle East, Japan and South 

America.  It is estimated that 2-7% of individuals in these areas are chronically infected.  

In developed areas of the world, including North America, Northern and Western 

Europe and Australia, less than 1% of the population have CHB.  The number of 
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countries that included HBV immunization in their national vaccination schedule has 

constantly increased since the WHO’s recommendations in 1992 (Schweitzer et al., 

2015).  However, immunization and proper disease management are still lacking in 

many countries, therefore, chronic HBV infection remains a very serious health problem 

in many regions of the world. 

1.3. Hepatitis B Virus 

1.3.1. Molecular Organization and Viral Proteins 

HBV is the prototypic member of the Hepadnaviridae family.  Hepadnaviruses 

have small genomes formed by partially double-stranded and partially single-stranded 

DNA, referred to as relaxed circular (RC) DNA.  HBV has a circular genome that is 3.2 

kilobases (Kb) in length, consisting of a full length minus strand DNA and an incomplete 

plus strand DNA.  The minus strand contains the entire coding information for the virus 

and its circularity is maintained by short cohesive overlapping regions at the 5’-ends of 

the plus and minus strands.  The HBV genome is organized into four open reading 

frames (ORFs).  These include the envelope or surface (S), core (C), polymerase (P), 

and X ORFs (Locarnini and Zoulim, 2010).  In total, the HBV genome codes for 7 

proteins, including pre-core, core, polymerase, X (HBx) and three surface or envelope 

proteins.  The S ORF codes for the three envelope proteins, the large (preS1), the 

middle (preS2) and the small (S).  They share a common C-terminus but differ at the N-

terminus.  All three proteins are glycosylated, type II transmembrane proteins that make 

up the components of the 22-nm-diameter noninfectious particles, also known as 

HBsAg (Seeger and Mason, 2000).  The C ORF encodes the viral capsid protein, also 
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referred to as nucleocapsid or hepatitis B core antigen (HBcAg).  In addition to HBcAg, 

the C ORF encodes the pre-core protein.  The pre-core protein is essentially the core 

protein with an N-terminal signal peptide that gets proteolytically processed and 

secreted from infected cells.  The secreted protein is known as hepatitis B e antigen 

(HBeAg) and its role has not yet been clearly elucidated (Seeger and Mason, 2015).  

The P ORF codes for virus polymerase and comprises nearly 80% of the hepadnaviral 

genome.  The enzyme exhibits both DNA polymerase and RNA polymerase (reverse 

transcriptase) activity, and is critical to the replication of the HBV genome through a 

pregenomic (pg) RNA template.  Lastly, the X ORF encodes the HBx protein and its role 

in the viral infection lifecycle is not well determined.  It has been shown to regulate viral 

replication, as well as numerous host cellular processes, through transcriptional 

activation of both viral and host genes.  It has also been implicated in the development 

of HCC (Tang et al., 2006).   

1.3.2. HBV Replication Cycle 

 The first stage of HBV infection begins with attachment of the viral particle to its 

target cell.  The specific receptor responsible for viral attachment and entry has recently 

been identified as sodium taurocholate cotransporting polypeptide (NTCP) (Yan et al., 

2012).  Studies have shown that the preS1 domain of the HBV envelope is required for 

initiation of infection and it specifically binds to the NTCP receptor (Yan et al., 2014; 

Slijepcevic et al., 2015; Sankhyan et al., 2016).  After attachment, the viral envelope is 

shed and the core particle containing virus genome material is actively transported to 

the nucleus.  In the nucleus, the genomic RC DNA is released from the nucleocapsid of 
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the virus and converted to covalently closed circular DNA (cccDNA) by the host’s DNA 

cellular repair enzymes.  The detection of cccDNA provides definitive proof of HBV 

replication.  From the cccDNA, the cell’s RNA polymerase II generates pgRNA from 

which core protein and DNA polymerase are translated (Gerlich, 2013).  The pgRNA is 

then packaged within the core proteins of the virus, along with DNA polymerase, where 

it serves as the transcriptional template for the minus-strand DNA.  The plus-strand 

DNA is then transcribed from the minus-strand, followed by simultaneous degradation of 

the pgRNA.  Once the RC DNA is produced, the mature nucleocapsid particles can 

follow two pathways.  They can re-enter the nucleus and contribute to another round of 

replication or be packaged into virions and released from the cell.  Similar to other 

enveloped viruses, HBV uses the cellular endosomal sorting complexes required for 

transport (ESCRT) to release virions from the infected cell (Blondot et al., 2016).     

1.4. Categories of HBV Infection  

HBV causes acute and chronic liver disease, liver cirrhosis, as well as HCC.  

More specifically, HBV is a non-cytopathic virus that causes tissue damage by inducing 

virus-specific immune responses.  Due to infection, hepatocytes present viral epitopes 

complexed with major histocompatibility complex (MHC) class I molecules on their 

plasma membrane.  This complex is recognized by cytotoxic T lymphocytes (CTLs) that 

target the cells for destruction.  The clinical course of HBV infection varies between 

individuals and can lead to a wide spectrum of liver disease.  Generally, infection with 

HBV can be divided in several categories, including acute hepatitis (AH), fulminant 

hepatitis, chronic hepatitis (CH), and occult HBV infection (OBI).  
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AH type B is usually diagnosed in patients anywhere from 1-6 months following 

exposure to the virus.  AH is defined by the appearance of HBsAg in the serum.  About 

70% of patients with AH do not have clinical symptoms and the infection can go 

undetected (Liang, 2009).  About 30% of adults with AH develop clinical symptoms that 

can range from mild fever, anorexia and nausea to more severe symptoms, including 

jaundice.  Fulminant hepatitis, also known as acute liver failure (AFL), occurs in less 

than 1% of patients and is characterized by severe liver injury with necrosis, loss of liver 

function, and frequent death (Gotthardt et al., 2007).  Eventually, individuals with AH will 

clear HBsAg within 6 months from its appearance and develop antibodies to HBsAg 

(anti-HBs).  AH diagnosis can be supported by the presence of other HBV serological 

markers, such as HBeAg, antibodies to HBcAg (anti-HBc) and HBeAg (anti-HBe), 

molecular markers (HBV DNA) and the increase in liver enzymes (i.e., alanine 

aminotransferase [ALT] and aspartate aminotransferase [AST]).  Persistence of HBsAg 

in circulation for longer than 6 months is recognized as a marker of the development of 

CHB. 

Early CHB is characterized by the serological presence of serum HBsAg, HBeAg, 

anti-HBc antibodies and HBV DNA, along with the detection of HBV DNA, mRNA, and 

cccDNA in liver tissue that are indicative of active viral replication.  Around 5-10% of 

adults who become infected with HBV will develop CHB, while the remaining individuals 

will resolve the infection and establish life-long, usually asymptomatic OBI that can be 

reactivated when the patient becomes immunocompromised.  In contrast, about 90% of 

neonates who acquire HBV by perinatal transfer (transmission from mother to child) will 

develop CHB (Schillie et al., 2015).  In both situations, the immunological profile of CHB 
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can be categorized into three phases: immune tolerant, immune active and immune 

inactive.  

  Immune tolerant CHB occurs almost exclusively in neonates who acquire the 

infection at birth from their HBV-infected mothers.  This phase of CHB is characterized 

by the presence of HBeAg, normal liver aminotransferases, high levels of serum HBV 

DNA (>100,000 copies/mL)  and minimal to absent liver inflammation (McMahon, 2008).  

The immune tolerant phase can last for up to 30 years with little disease progression 

due to the absence of a CTL response (Hui et al., 2007).  However, following the 

immune tolerant phase, almost all individuals will enter the immune active phase during 

early adolescence or young adulthood.  As previously indicated, about 5-10% of 

individuals who become infected as an adult will develop CHB and will experience the 

immune active phase in the early stages of CHB.  

The immune active phase of CHB is characterized by the presence of HBeAg 

and HBV DNA (>10,000 copies/mL) in the serum, an increase in serum ALT levels, and 

histologically evident active liver inflammation (McMahon, 2008).  Individuals will remain 

HBeAg-positive or can seroconvert to the HBeAg-negative stage with subsequent 

development of anti-HBe antibodies.  In any case, these individuals are at highest risk 

of liver disease complications, such as cirrhosis and development of HCC.   Following 

immune active CHB, some individuals can enter the immune inactive stage.  This is 

defined by a reduction in HBV DNA (<10,000 copies/mL), normal serum ALT, and a 

decline of active liver disease (McMahon, 2008).  However, reactivation can occur 

spontaneously and HBV infection in all phases should be monitored closely.  Over time, 
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CHB can lead to liver fibrosis and cirrhosis, and the risk of HCC is 100-times greater 

than in healthy individuals (Busch and Thimme, 2015).   

More recently, another category of HBV infection has been identified in which 

HBsAg is apparently cleared from the individual, however, the HBV genome and low 

level replication are still detectable.  OBI is characterized by undetectable serum HBsAg 

by current clinical assays, while HBV DNA persists at the level of <100-200 copies/mL 

in the liver and/or lymphatic tissue (Michalak et al., 1994; Michalak, 2000).  Resolution 

of AH and the appearance of anti-HBs was thought to signify clearance of the virus, 

however, this is not the case (Raimondo et al., 2008a; Raimondo et al., 2008b).  This 

was also clearly documented in the woodchuck model of hepatitis B (Michalak et al., 

1999).  Furthermore, perinatal transmission of infectious hepadnavirus was 

demonstrated in offspring born to woodchuck mothers that had resolved AH (Coffin and 

Michalak, 1999).  In humans, the mechanisms of OBI infection are not completely 

understood.  More recently, HBV DNA and HBsAg detection techniques have become 

more sensitive, allowing for more reliable diagnosis of OBI.  In the woodchuck model of 

HBV infection, it has been shown that OBI is accompanied by intermittent liver 

inflammation and may lead to the development of HCC.  Two distinct forms of OBI have 

been documented to occur in woodchucks and humans (i.e., secondary [SOI] and 

primary occult infection [POI]) (Michalak et al., 2004; Zerbini et al., 2008; Mulrooney-

Cousins et al., 2014).  
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1.5. Hepadnaviral Family  

The hepadnaviral family is subdivided into two genera: Orthohepadnaviridae 

(mammalian viruses) and Avihepadnaviridae (avian viruses).  All viruses from this family 

share unique structural, molecular and biological features.  All hepadnaviruses have 

virions that are between 40-48-nm in diameter, and are spherical in shape.  The 

genomes of these viruses are composed of partially double-stranded RC DNA that can 

range from 3.0-3.3 Kb in length.  Replication strategies are similar, involving polymerase 

and reverse transcriptase activity, along with the excess production of subviral particles 

exclusively composed of envelope proteins and lipids (Dandri et al., 2005).   

 Since the discovery of HBV, there have been several hepadnaviral infections 

identified in both avian and mammalian hosts.  These include the woodchuck hepatitis 

virus (WHV), ground squirrel hepatitis virus (GSHV), artic squirrel hepatitis virus 

(ASHV), duck hepatitis B virus (DHBV), heron hepatitis B virus (HHBV), woolly monkey 

hepatitis B virus (WMHBV) and more recently the bat hepatitis B virus (BHBV).  WHV 

and DHBV have been the most extensively investigated in their respective hosts.   

1.5.1. Duck Hepatitis B Virus 

 DHBV is a prototypic member of the avian hepadnaviral family.  Although the 

DHBV has been proven to be a useful animal model for HBV infection, there are major 

differences between avian hepadnaviruses when compared to their mammalian 

counterpart.  Firstly, avian viral genomes are smaller than mammalian viral genomes 

and share less nucleotide sequence homology with HBV.  The DHBV genome lacks the 
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X ORF and only encodes two envelope proteins, instead of three (Dandri et al., 2005).  

In the past, studies that have utilized the DHBV have helped to elucidate the 

mechanisms of hepadnaviral replication.  However, DHBV is not a good model of liver 

inflammation and HCC, as infection usually results in a very mild liver pathology and 

HCC develops in the context of exposure to alphatoxins (Cova et al., 1993).   

1.5.2. Ground Squirrel Hepatitis Virus 

GSHV is a mammalian member of the hepadnaviral family.  GSHV was the 

second HBV-related virus discovered in non-primate animals and was originally 

identified in the Beechy ground squirrel in 1979.  Its virion is 47-nm in diameter, which is 

slightly larger than that of HBV (Marion et al., 1980). GSHV was mainly used to 

elucidate the mechanism of hepadnaviral replication and was found to cause hepatitis 

and HCC (Minuk et al., 1986; Enders et al., 1987).  Interestingly, GSHV is infectious to 

woodchucks and can eventually lead to HCC in some animals.  Nevertheless, HCC 

development, when compared to WHV-infected woodchucks, is much slower in GSHV-

infected woodchucks (Seeger et al., 1991).   

1.5.3. Woodchuck Model of HBV infection  

1.5.3.1. Woodchuck Hepatitis Virus 

 WHV was first discovered in a colony of woodchucks (Marmota monax) that 

exhibited hepatitis and HCC at the Philadelphia Zoological Garden (Summers et al., 

1978).  Since its discovery, studies have shown that WHV has significant molecular and 

pathogenic similarities to HBV.  With time it became apparent that woodchucks infected 
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with WHV represent the closest natural model of human HBV infection.  Both HBV and 

WHV genome size is almost identical (~3.2 Kb and ~3.3 Kb in length, respectively), 

while their nucleotide sequence homology is anywhere from 62% to 72% (Mulrooney-

Cousins and Michalak, 2015).  This high homology translates to a high degree of 

antigenic cross-reactivity between HBV and WHV envelope and core proteins.  Like 

HBV, the WHV virion, at 45-nm in diameter, consists of an exterior envelope protein 

(WHV surface antigen [WHsAg]) and an inner nucleocapsid (WHV core antigen 

[WHcAg]) containing the WHV genome.  Furthermore, replication strategy, viral proteins 

and tropism towards hepatocytes and immune cells are almost identical to HBV (Menne 

and Cote, 2007; Mulrooney-Cousins and Michalak, 2015).  

1.5.3.2. Categories of WHV Infection 

Progression and outcomes of WHV infection in woodchucks are very similar to 

HBV infection in humans.  In both infections, liver involvement begins with AH and can 

advance to CH and eventually HCC.  Excluding the apparent lack of liver cirrhosis in 

woodchucks, histological features of liver inflammation are comparable to HBV infection 

(Hodgson and Michalak, 2001).  Following exposure to WHV, the AH stage of infection 

normally becomes evident with the detection of WHsAg in the serum and liver injury 

through detection of biochemical indicators (i.e., sorbitol dehydrogenase [SDH] and 

ALT).  Undetectable WHsAg prior to 6 months post-infection denotes spontaneously 

resolution of AH and the animal is designated to have self-limited acute hepatitis 

(SLAH).  Approximately 90% of adult woodchucks will resolve AH, however, residual 

amounts of replicating WHV remains detectable in the liver and the lymphatic system to 
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the end of life (Michalak et al., 1999; Menne and Cote, 2007).  Even with resolution of 

hepatitis, these woodchucks still have a lifetime risk of about 20% for the development 

of HCC.  If WHsAg persists in circulation for longer than 6 months, CH is diagnosed. 

Comparable to humans, CH infection occurs in about 5-10% of woodchucks who 

acquire the infection as an adult, while roughly 60-75% of woodchucks with perinatally 

acquired WHV infection progress to chronicity (Cote et al., 2000).  A major difference 

between HBV and WHV CH is that the development of HCC in woodchucks occurs at 

much higher rate (80%-90%) than in humans with CH type B (~5%)(Popper et al., 1981; 

Korba et al., 1989; Mulrooney-Cousins and Michalak, 2015).  Due to the development of 

highly sensitive nucleic acid detection assays, occult WHV infection is being recognized 

for its involvement in the development of cryptogenic HCC (Mulrooney-Cousins et al., 

2014; Mulrooney-Cousins and Michalak, 2015).  

The presence of HBV DNA or WHV DNA with the absence of identifiable HBsAg 

or WHsAg, is defined as an occult infection. Two forms of occult infection have been 

identified in WHV-infected woodchucks, SOI and POI.  First to be identified, SOI is 

characterized by low levels of WHV DNA, the presence of antibodies against WHV core 

antigen (anti-WHc), and residual liver inflammation after resolution of AH  (Michalak et 

al., 1999).  Furthermore, animals with SOI have detectable WHV DNA in their lymphatic 

system which may contribute to the lifelong maintenance of the virus.  It has been 

demonstrated that WHV is transmissible from SOI mothers to their offspring without 

evident serological markers of infection but detectable WHV DNA in both serum and 

lymphatic system (Coffin and Michalak, 1999). This observation provoked further 

studies investigating the transmission of low level WHV-infection.  It was found that 



	

	
 
 

27	

WHV from these offspring could be serially transmitted between adult 

immunocompetent hosts and induce serologically silent but molecularly evident, 

asymptomatic infection, referred to as POI (Michalak et al., 2004).  Additionally, animals 

experimentally infected with WHV doses of less than 1000 virions develop POI.  POI is 

characterized by the absence of classical serological markers of WHV infection, such as 

serum WHsAg, anti-WHc and anti-WHs antibodies, however, viral DNA is detectable in 

the plasma and the immune system.  Over time, POI can spread to the liver without 

induction of hepatitis, but HCC develops in about 20% of the animals (Mulrooney-

Cousins and Michalak, 2007; Mulrooney-Cousins and Michalak, 2015). The woodchuck 

model of OBI can be used to advance our understanding of occult infection in humans, 

including mechanisms of reactivation of asymptomatic infection, clinically unapparent 

viral transmission, and its potential role in the development of cryptogenic HCC. 

1.6. Immune System Organization 

The mammalian immune system is made up of a network of cells, tissues and 

organs that work in concert to protect against invading pathogens through recognition of 

self and non-self.  To elicit a response to a foreign agent, the body has evolved several 

mechanisms to evade or destroy the potentially harmful pathogen.  The first line of 

defense in mammals is a non-specific immune response, referred to as innate immunity.  

The innate immune system includes all anatomical barriers, as well as certain cells and 

soluble factors that are strategically located in the body.  Infection of host cells leads to 

the initiation of the innate immune responses, resulting in the induction and expression 

of type I interferons (IFNs) (i.e., IFN-α and IFN-β), type III IFNs (i.e., IFN-λ) and pro-
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inflammatory cytokines (Ank et al., 2008; Bowie and Unterholzner, 2008; Egli et al., 

2014).  Upon recognition of a pathogen, the innate immune response is nonspecific and 

generalized.  In the event that the infectious agent persists, the body has evolved a 

more specific immune response that is tailored towards a particular antigen, known as 

adaptive immunity.  

The adaptive side of the immune response relies on antigen-specific receptors 

expressed by lymphocytes, T and B cells, that are capable of recognizing and 

selectively eliminating pathogens.  Generally speaking, T lymphocytes are involved in 

pathogen elimination through direct binding and cytokine secretion, while B lymphocytes 

rely on the production of antigen-specific neutralizing antibodies.  These cells possess 

membrane bound and soluble proteins that have high specificity towards antigenic sites 

on foreign microorganisms and molecules.  The adaptive immune system is able to 

recognize millions of antigens and is highly specific due to the rearrangement of 

immunoglobulin and T cell receptor genes that produce an immense number of antigen-

specific receptor combinations.  Unlike the innate immune system, which relies primarily 

on phagocytic cells and antigen presenting cells (APCs), the adaptive immune response 

relies on clonal gene rearrangement to form a large repertoire of antigen-specific T and 

B cells (Mogensen, 2009).  Historically, management of the adaptive immune response 

was the focus of treatments for infectious diseases and cancers.  However, the 

therapeutic importance of innate immunity has been recently recognized in the context 

of several infection models.   
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1.6.1. Innate Immunity 

1.6.1.1. Cells of the Innate Immune System 

Innate immune cell subsets include dendritic cells (DCs), 

monocytes/macrophages, granulocytes (neutrophils, eosinophils, basophils), mast cells, 

natural killer (NK) and natural killer T (NKT) cells.  Each cell type possesses unique 

receptors that are able to detect and initiate downstream signaling which may mediate 

further innate immune responses or help activate the adaptive immune system.  

Furthermore, innate immune cells release soluble molecules, such as complement, 

antimicrobial peptides and cytokines that detect and initiate immune clearance thorough 

phagocytosis, apoptosis or necrosis (Kumar et al., 2013). 

1.6.1.2. Pattern Recognition Receptors (PRRs) 

 The first step in the initiation of the innate immune response against microbial 

pathogens involves sensing of pathogen-associated molecular patterns (PAMPs) 

through use of PRRs that are expressed on the plasma membrane and in the cytoplasm 

of innate immune cells.  Recognition of a pathogen initiates a series of signaling events 

that results in the production of pro-inflammatory cytokines, including type I IFNs, 

chemokines and antimicrobial peptides.  In addition to eliminating early infection, 

activation of PRRs and the release of IFNs help initiate the adaptive immune response 

by priming T helper (Th) cells and CTLs (Bowie and Unterholzner, 2008).  PRRs have 

evolved to recognize a wide range of microbial PAMPs and are expressed by a variety 

of innate immune cells, such as granulocytes, monocytes/macrophages and DCs.  
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PRRs include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like 

receptors (RLRs), and C-type lectin receptors (CLRs) (Owen et al., 2013).  PRRs can 

be classified based on their cellular localization as membrane-bound or intracellular.  

Membrane-bound PRRs include TLRs and CLRs, while NLRs and RLRs are found 

intracellularly.  PRRs cooperate to detect a wide variety of molecules from microbial 

pathogens, including bacterial carbohydrates (e.g., lipopolysaccharides [LPS]), bacterial 

peptides (e.g., flagellin), viral nucleic acids and proteins, and fungal glucans.  PRRs 

play an important role in viral recognition and have been implicated in the pathogenesis 

of hepadnaviral infection.  The main subject of this study is the identification of 

woodchuck TLRs and the delineation of their expression during the course of 

hepadnaviral infection in woodchucks.  TLRs will be covered in detail in Section 1.7.  

1.6.2. Adaptive Immunity 

1.6.2.1. Humoral Immune Response 

The adaptive immune response relies on antibody production by B cells to 

neutralize and clear invading pathogens.  The diversity of antigen recognition is due to 

the combinatorial joining of variable (V), diversity (D) and joining (J) gene fragments 

which encode the antigen-binding regions of B cell receptors (BCRs) (Notarangelo et 

al., 2016).  The large diversity of antigen recognition allows for the generation of a 

response that is specific for a particular pathogen or pathogen-infected cell.  The most 

important aspect of humoral immunity is the generation of antibodies by memory B cells 

and plasma cells that have long lasting, high-affinity for a foreign agent.  Clonal 

selection of B lymphocytes generally occurs through one of three mechanisms: T cell-
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dependent activation, and type 1 or type 2 T cell-independent activation (Owen et al., 

2013).  T cell-dependent activation occurs when an antigen binds to the immunoglobulin 

receptor on a B cell and is internalized and presented to a Th cell.  Subsequently, the Th 

cell binds to the MHC class II-peptide antigen complex presented by the B cell and 

delivers activation signals through co-receptor interactions and cytokine production.  

Conversely, type 1 T cell-independent activation occurs when an antigen binds to both 

an immunoglobulin receptor and an innate immune receptor (i.e., TLR) located on the B 

cell.  While type 2 T cell-independent activation is taking place when the B cell 

recognizes an antigen that has already been identified and bound by complement 

proteins.  In this case, crosslinking occurs when the B cell binds the antigen and 

complement proteins through immunoglobulin and cluster of differentiation (CD) 

molecule 21 (CD21) receptors (Vos et al., 2000).  The resulting crosslink is sufficient to 

initiate an activation signal for B cell clonal expansion.  Ultimately, activation and clonal 

expansion of plasma and memory B cells that express antigen-specific antibodies is 

vital to the development of a long-term humoral immune response.   

1.6.2.2. T Cell-Mediated Immune Response 

 T lymphocytes play a critical role in the adaptive immune response and are 

largely divided in two groups: CD4+ T cells and CD8+ T cells.  T cells are activated by 

professional APCs, typically DCs, that have engulfed a foreign pathogen and presented 

its associated peptides on MHC class I or MHC class II molecules on the cell surface.  

Additionally, T cells can become activated when foreign peptides are recognized by 

circulating naive CD4+ or CD8+ T cells.  Activation results in differentiation and clonal 
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expansion into effector CD4+ and CD8+ T lymphocytes.  Classically, CD4+ T cells, also 

referred to as Th cells, differentiate into either a type 1 (Th1) or type 2 (Th2) cell that are 

classified by the cytokines they secrete.  More recently, additional Th cell subsets have 

been identified, including Th9, Th17, Th22, T follicular-helper (Tfh) and T-regulatory 

(Tregs) (Hirahara and Nakayama, 2016).  In any case, Th cells can influence a variety of 

immune cells indirectly through the production of cytokines, resulting in an immune 

response that is catered to the type of infection.  In contrast, CD8+ T cells, also referred 

to as CTLs, induce death of infected cells directly.  When activated, CD8+ CTLs can 

recognize and destroy target cells through activation of the cell’s internal apoptotic 

cycle.  Cells are targeted based on their expression of pathogenic peptides on MHC 

class I molecules.  In addition to cell cytotoxicity, CTLs produce proinflammatory and 

antiviral cytokines (i.e., TNF-α and IFN-γ) to aid in immune clearance.  Both CD4+ and 

CD8+ T cells can differentiate into memory T cells for long-lasting immune protection.  

However, the exact mechanism and sequence of immunological events leading to the 

development of memory T cells is not completely understood (Gerritsen and Pandit, 

2016). 

1.7. Toll-like Receptors 

1.7.1. Background  

 The name Toll-like receptor is derived from the Toll receptor originally identified 

in Drosophila that is required for dorsal-ventral patterning during development 

(Hashimoto et al., 1988). Investigation into Drosophila’s immune response to fungal 

agents implicated the Toll protein in the control of expression of the antifungal peptide 



	

	
 
 

33	

gene drosomycin (Lemaitre et al., 1996).  Due to the similarities between the 

cytoplasmic domains of Drosophila Toll and human interleukin-1 (IL-1) receptors, it was 

thought that both may be related to ancient evolutionary immune responses.  This 

discovery ultimately led to the identification of a family of human TLR genes residing on 

chromosome 4 (TLRs 1, 2 and 3), chromosome 9 (TLR4), and chromosome 1 (TLR5) 

(Rock et al., 1998).  Since their discovery, 13 TLRs have been identified.  Genes 

encoding TLR1-11 are expressed by both human and mouse; however, mouse TLR10 

is a pseudogene and human TLR11 contains a stop codon, resulting in no protein 

expression for these two TLR genes.  While TLR12 and TLR13 are expressed in 

mouse, they are not expressed in humans (Broz and Monack, 2013; Yarovinsky, 2014).  

1.7.2. Structure and Cellular Localization 

TLRs are a family of type I transmembrane proteins characterized by an 

extracellular, horseshoe shaped, leucine-rich repeat (LRR) domain and a cytoplasmic 

domain referred to as the Toll/IL-1 receptor (TIR) domain (Owen et al., 2013).  The 

cytoplasmic domain was given its name due to its similarities to the cytoplasmic domain 

of the mammalian IL-1 receptor (IL-1R).  When the extracellular domain binds specific 

PAMPs, the intracellular domain alters its configuration causing the initiation of signaling 

events.  These events include translocation of transcription factors into the nucleus, 

interferon-stimulated gene regulation, and cytokine modulation. 

 Diverse cell types have been found to express TLRs, such as airway and gut 

epithelial cells, endothelial cells, B cells, T cells, NK cells, macrophages, monocytes, 

DCs, neutrophils, basophils and mast cells (Pandey and Agrawal, 2006).  In innate 
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immune cells (i.e., macrophages and DCs), ligand recognition and binding is followed 

by a series of signaling events that result in an inflammatory response and release of 

antimicrobial agents.  Activation of TLRs is a critical step in the development of antigen-

specific adaptive immunity (Takeda and Akira, 2005).  In B cells, TLRs have been 

implicated as important regulators of innate signals regulating adaptive immune 

responses (Hua and Hou, 2013).  TLRs recognize a wide range of pathogens and, for 

the most part, can be categorized by their subcellular localization.  Thus, TLR1, 2, 4-6 

and 10 are located on the cell surface, while TLR3, 7-9 and 11-13 are located 

intracellularly.  In general, extracellular TLRs are involved in the recognition of PAMPs 

composed of lipids and proteins, while intracellular TLRs recognize nucleic acid 

sequence motifs. 

1.7.3. Ligand Recognition  

1.7.3.1. Extracellular TLRs 

1.7.3.1.1. TLR1, 2 and 6  

TLR2 recognizes a wide range of PAMPs and is known as the most promiscuous 

TLR of the family.  Ligands for TLR2 include lipoproteins from Gram-negative bacteria, 

mycoplasma and spirochetes, peptidoglycan and lipoteichoic acid (LTA) from Gram-

positive bacteria, lipoarabinomannan from mycobacteria, phenol-soluble modulin from 

Staphylococcus epidermidis, glycoinositolphospholipids from Trypanosoma cruzi, as 

well as various lipopolysaccharides from non-enterobacteria (Takeda et al., 2003).  

TLR2’s capability to recognize such a wide range of microbial PAMPs may be attributed 



	

	
 
 

35	

to its ability to form heterodimers with TLR1 or TLR6.  Studies in mice have shown that 

diacylated lipoproteins require TLR2/6 association for recognition, whereas triacylated 

lipoprotein recognition requires TLR2/1 association (Takeuchi et al., 2001; Takeda et 

al., 2002).  The crystal structure of this heterodimer formation was eventually solved (Jin 

et al., 2007).  Thus, heterodimer formation of TLR2 with either TLR1 or TLR6 allows for 

the recognition of a wide range of microbial PAMPs.  It has been suggested that TLR2 

may also form heterodimers with TLR10 and play a role in the recognition of triacylated 

lipopeptides (Guan et al., 2010). 

1.7.3.1.2. TLR4 

TLR4 is involved in the recognition of LPS on Gram-negative bacteria; however, 

like TLR2, it is able to recognize a variety of PAMPs from various microorganisms.  LPS 

recognition by TLR4 requires the cooperation of several accessory molecules.  Initially, 

LPS binds to LPS-binding protein (LBP) and this complex is then recognized by a CD14 

receptor commonly expressed on monocytes, macrophages and neutrophils (Takeda 

and Akira, 2015).  Once bound, the complex can associate in close proximity with TLR4.  

Furthermore, for effective recognition and induction of an innate response, the presence 

of an additional protein, lymphocyte antigen 96 (MD-2), is needed (Nagai et al., 2002).  

In addition to LPS, TLR4 has been shown to be involved in the recognition of taxol, a 

diterpene anti-tumor agent developed from the Pacific yew, Taxus brevifolia (Kawasaki 

et al., 2000).  It has also been demonstrated that TLR4 can recognize endogenous 

ligands released during inflammatory responses and tissue damage, referred to as 

danger signals. These endogenous danger signals include heat shock proteins (HSP), 
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HSP-60 and HSP-70, and extracellular matrix degradation products, biglycan, 

hyaluronan, and fibronectin (Ohashi et al., 2000; Okamura et al., 2001; Termeer et al., 

2002; Vabulas et al., 2002; Schaefer et al., 2005).  TLR4 is primarily expressed on the 

cell surface, however, studies have also shown that the TLR4/MD-2 complex can be 

localized intracellularly and play a role in sensing Gram-negative bacteria and LPS 

within the cell (Shibata et al., 2011). 

1.7.3.1.3. TLR5 

Mainly expressed by epithelial cells, TLR5 is responsible for the detection of the 

bacterial protein flagellin.  Flagellin is the main component of bacterial flagellum, an 

organelle that is involved in propulsion.  TLR5 is functionally expressed in intestinal, 

respiratory, and kidney/urogenital tract epithelial cells, as well as human macrophages 

and DCs (Vijay-Kumar and Gewirtz, 2009).  Polymorphisms in the ligand-binding 

domain of TLR5 has been correlated with a susceptibility to pneumonia caused by the 

bacterium Legionella pneumophila (Hawn et al., 2003).  Thus, TLR5 plays a critical role 

in the recognition and elimination of bacterium at the mucosal level.  

1.7.3.1.4. TLR10 

 For the most part, subcellular localization and ligand recognition by TLR10 has 

only recently been elucidated.  TLR10 was first cloned in 2001, however, since then 

little has been discovered about the receptor.   Recent studies suggest that TLR10 

works in cooperation with TLR2 in sensing triacylated lipopeptides (Guan et al., 2010).  

Furthermore, TLR10 has been implicated as an important receptor involved in the 
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induction of innate immune responses to influenza virus infection (Lee et al., 2014).  

One reason why TLR10 continues to elude researchers is the absence of a suitable 

mouse model, as TLR10 is a pseudogene in mice due to the presence of gaps and 

retroviral insertions into its sequence. 

1.7.3.2. Intracellular TLRs 

1.7.3.2.1. TLR3 

TLR3 is expressed intracellularly and recognizes double stranded RNA (dsRNA).  

In resting cells, TLR3 is located in the endoplasmic reticulum and upon activation 

becomes localized in endosomal compartments where it initiates innate immune 

signaling (Zhang et al., 2013).  It has been shown that polyinosinic-polycytidylic acid 

[poly (I:C)], a synthetic dsRNA analog, is a potent activator of TLR3-induced production 

of type I IFNs (Alexopoulou et al., 2001).  Additionally, cell-endogenous mRNA double 

stranded regions have been shown to activate TLR3 signaling (Kariko et al., 2004).  

TLR3 has been postulated to play a role in antiviral immunity, since dsRNA is a 

universal viral PAMP (Akira et al., 2006).  Many viruses produce dsRNA during their 

replicative cycle as an intermediate in RNA synthesis or as a byproduct of symmetrical 

transcription of DNA virus genomes (Takeda et al., 2003).  Although it has been 

demonstrated that TLR3 plays an indirect role in antiviral response (Zhang et al., 2013), 

it remains unclear the exact mechanisms of viral recognition.  Interestingly, it has been 

shown that TLR3 knockout mice fail to show increased susceptibility to viral infections 

(Edelmann et al., 2004), which further discredits TLR3’s role in the recognition of 

viruses.    
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1.7.3.2.2. TLR7 and 8 

Located in endosomes, TLR7 acts as an intracellular sensor of single-stranded 

RNA (ssRNA).  TLR7 has been shown to recognize viral origin guanosine-rich and 

adenosine-rich ssRNA sequences from the human immunodeficiency virus (HIV), 

vesicular stomatitis virus (VSV), and influenza virus (Diebold et al., 2004; Heil et al., 

2004; Lund et al., 2004).  TLR7 mediated recognition of bacterial RNA in lysosomes has 

also been demonstrated in conventional DCs (Mancuso et al., 2009).  In addition to 

ssRNA, synthetic compounds have been identified to be potent activators of TLR7 

induced antiviral immunity.  For instance, imidazoquinolone derivatives, such as 

imiquimod and resiquimod, are potent activators of proinflammatory cytokines through 

TLR7-mediated signaling.   

Phylogenetically similar to TLR7, TLR8 also recognizes ssRNA in endosomes.  

Both are structurally similar and recognize many of the same ligands.  For example, 

TLR8 responds to imidazoquinolone derivatives and recognizes viral origin guanosine-

rich and adenosine-rich ssRNA sequences from many viruses.  Although TLR7 and 

TLR8 are expressed in human and mice, mouse TLR8 lacks the presence of 5 

conserved amino acids rendering it nonfunctional (Kugelberg, 2014). 

1.7.3.2.3. TLR9 

Based on sequence homology, TLR9 is phylogenetically related to both TLR7 

and TL8.  Also expressed intracellularly, TLR9 is involved in the recognition of 

unmethylated cytosine-phosphate-guanine (CpG) motifs exhibited by some bacterial 
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and viral DNA.  Studies have revealed that TLR9 can detect CpG DNA motifs of murine 

cytomegalovirus (MCMV), herpes simplex virus (HSV) type 1, and HSV type 2 

(Hochrein et al., 2004; Krug et al., 2004; Tabeta et al., 2004).  TLR9 is also involved in 

the recognition of self CpG DNA that can lead to the development of autoimmune 

disorders, including rheumatoid arthritis and systemic lupus erythematosus (Leadbetter 

et al., 2002; Boule et al., 2004).   

1.7.3.2.4. TLR11 and 12 

TLR11 is localized in endolysosomal compartments and functions to recognize 

proteins of uropathogenic and enteropathogenic bacteria (Broz and Monack, 2013).  In 

mice, TLR11 has been shown to recognize uropathogenic bacteria in the bladder, as 

mice lacking TLR11 are highly susceptible to this infection (Zhang et al., 2004).  

Additionally, TLR11 has been linked to the resistance to Toxoplasma gondii through 

recognition of the protein profilin (Yarovinsky et al., 2005).  Like TLR5, TLR11 

recognizes flagellin, however, both receptors function in different subcellular 

compartments.  TLR12 is also located in endosomal compartments and can function 

alone or as a heterodimer with TLR11.  TLR12 also plays a crucial role in resistance to 

Toxoplasma gondii through profilin recognition (Koblansky et al., 2013).  As mentioned, 

TLR11 is not functional in humans as there is a stop codon inserted in the TLR11 gene 

sequence, while a TLR12 compatible sequence is not found in the human genome.    
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1.7.3.2.5. TLR13 

  The most recently identified, TLR13 functions inside the cell to recognize large 

bacterial ribosomal RNAs (rRNAs).  More specifically, it recognizes conserved 

CGGAAAGACC motifs of 23S rRNA (Broz and Monack, 2013).  A recent study has 

shown that the 23S rRNA of E. coli was able to induce the production of pro-IL1-β 

through a TLR13-dependant pathway.  Like TLR11 and TLR12, TLR13 is not expressed 

in humans.   

1.7.4. TLR Signaling 

 Binding of a TLR-specific ligand on the plasma membrane or in endosomal 

compartments leads to ligand-induced receptor dimerization and recruitment of cystolic 

TIR domain-containing adaptor molecules.  The TIR domain of the activated TLR will 

signal through either the myeloid differentiation primary response protein 88 (MyD88) 

and MyD88-adaptor like/TIR-associated protein (MAL/TIRAP) or Toll-receptor-

associated molecule (TRAM) and Toll-receptor-associated activator of interferon (TRIF) 

(O'Neill et al., 2013).  With the exception of TLR3, all TLRs require MyD88 for 

downstream signaling as studies have shown that cells lacking MyD88 are only 

responsive to TLR3 ligands (Kawai et al., 1999; Akira et al., 2003).  Following adaptor 

molecule recruitment, intracellular signaling results in the interaction of IL-1R-associated 

kinases (IRAKs) and the adaptor molecules TNF receptor-associated factors (TRAFs).  

This leads to the activation of mitogen-activated protein kinases (MAPKs), JUN N-

terminal kinase (JNK) and p38, and IRAKs (O'Neill et al., 2013).  This results in the 

activation of transcription factor nuclear factor-κB (NF-κB), interferon regulatory factors 
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(IRFs), cyclic AMP-responsive element-binding protein (CREB), and activator protein 1 

(AP1).  Ultimately, TLR signaling leads to the induction of an innate immune response 

with the production of pro-inflammatory cytokines, including IL-1 and TNF-α, and type I 

IFNs.  

1.8. TLRs and Antiviral Immunity 

 TLRs have been implicated in the detection of several viruses resulting in the 

subsequent induction of antiviral immunity.  The antiviral innate immune response 

against viruses is characterized by the production IFNs, inflammatory cytokines and 

chemokines that aid in prevention of viral entry, replication and persistence.  IFN 

production plays a critical role in the upregulation of hundreds of IFN-stimulated genes 

that have a wide spectrum of antiviral properties (Lester and Li, 2014).  In addition, IFNs 

act in a paracrine manner to initiate an antiviral state in neighboring cells, as well as 

activation of various innate immune cells to mediate viral clearance.  Furthermore, the 

production of inflammatory cytokines and chemokines aids in the facilitation of the 

innate immune responses and induction of adaptive immunity.  Recognition of viral 

components by TLRs can occur on the surface of the cell (e.g., interaction with viral 

envelope proteins) or intracellularly (e.g., interaction with viral nucleic acids).  In both 

situations, the resulting innate immune response is catered toward elimination of the 

virus.   
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1.8.1. TLRs and Hepadnaviruses 

Historically, HBV was considered to be a ‘stealthy virus’ in the early phase of 

infection due to its inability to activate the innate immune response and induce the 

production of IFNs and IFN-stimulated genes (Wieland and Chisari, 2005).  However, 

these observations were obtained in chimpanzees one week after infection with HBV, 

which was too late to correctly evaluate early innate responsiveness that usually is 

activated in minutes or hours post infection.  In woodchucks experimentally infected with 

WHV, markers of the innate immune response were detected in the first few hours post-

injection (Guy et al., 2008).  In this study, WHV replication was detected in the liver as 

early as one hour after infection.  Between 3-6 hours post infection, there was a 

significant increase in intrahepatic transcription of IFN-γ and IL-12 indicating activation 

of the innate immune response.  By day 3, NK and NKT cells had become activated, 

which coincided with reduction of virus replication.  Thus, in contrast to earlier reports, 

the innate immune system was found to play a role in early recognition of WHV.  

Although direct binding of hepadnaviral antigens to TLRs has not yet been 

demonstrated, there is increasing evidence that TLRs play an important role in the 

immune response to HBV infection. 

Viral lipoproteins and glycoproteins have been shown to be recognized by TLR2, 

thus, HBV glycoproteins seem like viable candidates for TLR ligands.  Studies have 

implicated TLR2 in the induction of cytokines in macrophages due to HBV infection 

(Cooper et al., 2005).  Additionally, TLR2 expression is downregulated in HBeAg-

positive CHB patients when compared to HBeAg-negative CHB patients and healthy 
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controls (Visvanathan et al., 2007).  This suggests that HBeAg may play a role in 

suppression of the immune response though inhibition of TLR2.  This is supported by a 

recent study showing inhibition of expression and function of TLR2 in patients with CHB 

(Huang et al., 2015b).   

TLR3, a nucleic acid sensor that recognizes dsRNA, has been implicated in the 

pathogenesis of HBV infection.  Previous investigations in the transgenic mouse model 

of HBV have demonstrated that TLR3 ligand signaling induces antiviral cytokines to 

inhibit HBV replication (Isogawa et al., 2005).  Furthermore, TLR3-knockout mice have 

an inability to induce innate immune response against HBV infection (Maire et al., 

2008).  It has been shown that TLR3 expression and function is significantly impaired in 

patients with CHB, when compared to healthy controls (An et al., 2007; Li et al., 2009).  

This is suggested to contribute to the prolonged viral persistence in these patients.  

Moreover, genetic variants of TLR3 have been correlated with a higher risk of HBV-

related liver disease (Huang et al., 2015a).  Modulation of TLR3 remains a plausible 

approach to the development of immunotherapies against HBV. 

Although TLR4 is primarily involved in the recognition of LPS from Gram-

negative bacteria, it has been implicated in the progression of CHB related HCC. 

Studies have shown a correlation between upregulated TLR4 on T cells of CHB patients 

is correlated with an increase in liver damage (Xu et al., 2015).  In support of these 

findings, it was also discovered that polymorphisms in the TLR4 gene is associated with 

delayed progression of liver fibrosis and a reduced risk of HCC (Guo et al., 2009).  More 

recently, both soluble CD14 and TLR4 have been implicated in binding HBsAg, as 
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blocking of these receptors resulted in abrogation of HBsAg-induced DC maturation 

(van Montfoort et al., 2016). 

TLR7 has not yet been implicated in direct binding to HBV antigens, however, 

activation of TLR7 results in endogenous production of type I IFNs that inhibit viral 

replication.  Additionally, TLR7 is highly expressed on plasmacytoid DCs (pDCs) and B 

cells, thus engagement of TLR7 on these cells should result in the priming of the 

adaptive immune response.  Recent studies in chimpanzees has shown that activation 

of TLR7 signaling using a synthetic TLR7 agonist resulted in prolonged suppression of 

HBV in chronically infected animals (Lanford et al., 2013).  Currently, clinical trials are 

underway to evaluate the orally administered TLR7 agonist GS-9620 for its safety, 

tolerability, and efficacy in CHB patients (for more detail see Section 1.8.2). 

Studies involving TLR8 have been focused on the induction of a potent antiviral 

response.  TLR8 activation using the agonist ssRNA40 was found to selectively activate 

liver-resident innate immune cells to produce robust quantities of IFN-γ (Jo et al., 2014). 

Furthermore, immunization with HBV antigens and a TLR7/8 agonist adjuvant was able 

to induce antigen-specific immune response in HBV-transgenic mice (Wang et al., 

2014).  More recently, TLR8 expression on trophoblastic cells was found to play a role 

in the prevention of intrauterine HBV transmission by inhibiting viral translocation across 

the trophoblast (Tian et al., 2015).  

Human TLR9 is highly expressed on pDCs and B cells in comparison to other 

mononuclear cells (Medzhitov and Janeway, 2000).  Although the direct mechanism is 

unknown, functional impairment of pDCs has been observed in several viral infections, 
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including HBV (Barchet et al., 2005; Xu et al., 2012).  HBV has developed escape 

mechanisms to avoid TLR9 activation in both pDCs and B cells that, in turn, diminishes 

immune control of the virus and may contribute to the establishment of CHB infection 

(Vincent et al., 2011; Martinet et al., 2012). Studies have shown that nanoparticle 

encapsulated HBV-CpG can reverse suppression of IFN production through TLR9 

signaling (Lv et al., 2014).  Treatments designed to target TLR9 and restore its signaling 

pathways may be beneficial in the treatment of long-term HBV infection 

(Shahrakyvahed et al., 2014).  A recent study in the woodchuck model of HBV infection 

has revealed that combination immunotherapy of CpG oligonucleotides (ODNs) and 

entecavir (ETV) results in suppression of WHV replication and lowering of serum 

WHsAg levels (Meng et al., 2016).  Unfortunately, there was a lack of WHsAg 

seroconversion to anti-WHs antibodies during treatment and viral replication rebounded 

after treatment had been stopped. 

1.8.2. Targeting TLRs in HBV Antiviral Therapy 

 Current treatments for chronic HBV infection (i.e., pegylated IFN-α and 

nucleoside/nucleotide analogs) are only partially effective at controlling the virus in 

chronically infected patients and none of them are able to eliminate virus completely.  

There is a need for the development of an antiviral treatment, likely in combination with 

an immune modulator, that will stop viral replication and induce a HBV-specific cell-

mediated immune response to fully resolve hepatitis and prevent development of HCC.  

 Activation of the innate immune system through TLR stimulation has been the 

recent focus in the development of effective treatments for patients with CHB.  More 
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specifically, CpG ODNs targeting TLR9 have showed promising results in their 

effectiveness to control the virus in vitro.  However, trials using a combination therapy of 

CpG ODNs and ETV in WHV-infected woodchucks did not succeed in long-term control 

of viral replication (Martinet et al., 2012).  As mentioned previously (Section 1.8.1), the 

TLR7 ligand GS-9620 is currently being tested in phase 2 clinical trials in individuals 

with CHB.  Preclinical studies using the orally administered drug has demonstrated an 

ability to control viral replication in WHV-infected woodchucks and HBV-infected 

chimpanzees (Lanford et al., 2013; Menne et al., 2015).  At low doses, GS-9620 has 

also been shown to be induce antiviral innate immune responses without inducing 

systemic IFN-α production (Fosdick et al., 2014).  In two double-blind phase 1b clinical 

trials, GS-9620 was proven to be safe and was associated with the induction of antiviral 

immunity without adverse effects in patients with CHB (Gane et al., 2015).  Although 

more investigation is needed to enhance our understanding of the mechanisms of 

action of GS-9620, it has great potential to be an effective CHB treatment alternative.  

Future potential targets for CHB treatment may include TLR2, TLR3, TLR4, TLR6 and 

TLR8; however, supporting evidence is not yet strong enough to warrant preclinical or 

clinical testing.  

1.8.3. TLRs as Vaccine Adjuvants 

The innate immune system plays a major role in the development of an adaptive 

immune response.  Therefore, developing vaccines that target the innate immune 

system (i.e., TLRs) should enhance virus-specific adaptive immune responses.  To 

date, several TLR ligands have been tested as adjuvants in HBV vaccines.  For 
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example, a vaccine that incorporates a TLR2 agonists, called Theradigm-HBV, was 

tested for its ability to induce a HBV-specific CTL response in healthy individuals and 

those with CHB (Livingston et al., 1997; Livingston et al., 1999).  In phase I and phase II 

clinical trials, the vaccine was able to induce a HBV-specific CTL response in healthy 

volunteers; however, a CTL response was not induced in patients with CHB.  Thus, the 

vaccine did not make it past phase II clinical trials.  Currently, there are two HBV 

vaccines for adults, Fendrix and Supervax, that utilize TLR4 agonists as an adjuvant.  

The TLR4 agonist, monophosphoryl lipid A (MPLA), has been incorporated into HBV 

vaccines and has been proven to induce protective titers of anti-HBs antibodies in 

multiple studies and phase III clinical trails (Thoelen et al., 1998; Levie et al., 2002; Lu 

et al., 2003; Boland et al., 2004).  In a similar manner, TLR9 CpG ODNs have also been 

used in HBV vaccines as an adjuvant.  Of the CpG ODNs tested, a CpG ODN called 

1018 immunostimulatory sequence (ISS) is the most extensively studied.  A 1018 ISS 

conjugated HBV vaccine has demonstrated to be immunogenic and well tolerated in 

healthy adults in a phase I study and in young adults in a phase 2 study (Halperin et al., 

2003; Halperin et al., 2006).  More recently, it was discovered that HBV 1018 ISS, in 

comparison with the currently licensed aluminum-adjuvanted vaccine, is more effective 

and provides earlier onset of protection against HBV infection (Halperin et al., 2012). 

More investigations into the immunogenic response of adolescents, children, and 

immunocompromised hosts are needed before this vaccine becomes commercially 

available.   
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1.9. TLRs and the Woodchuck Model of HBV Infection 

 In the past, studies involving TLRs in the context of viral infection have been 

limited to in vitro conditions and HBV-transgenic mice.  In recent years, investigations 

using WHV-infected woodchucks have implicated TLRs in the pathogenesis of 

hepadnaviral infection.  One study investigating TLR signaling pathways in primary 

woodchuck hepatocytes (PWHs) attempted to elucidate an antiviral effect through TLR 

stimulation with its respective ligand (Zhang et al., 2009).  Ligands for TLR3 [poly (I:C)], 

TLR4 (LPS), TLR7 and TLR8 (R848), and TLR9 (CpG) were investigated for their ability 

to induce innate immune responses and reduce WHV replication in woodchucks. The 

results showed that stimulation of TLR3 and TLR4 was able to induce production of IFN 

and IFN-stimulated genes; however, signaling through TLR7, TLR8, and TLR9 failed to 

do so.  Interestingly, only LPS treatment was able to reduce WHV replication in cultured 

PWHs, despite the strong innate immune response induced by treatment with poly (I:C).  

Another study has proposed that PWHs play an active role in TLR2-mediated antiviral 

response during WHV infection (Zhang et al., 2012). Using the synthetic ligands 

Pam2CSK4 and Pam2CSK4 to activate TLR2/TLR6 and TLR2/TLR1, respectively, 

there was observed induction of anti-inflammatory cytokines that downregulated WHV 

replication in PWHs.  Additionally, they showed that TLR2 was significantly 

downregulated in PBMCs of WHV-infected woodchucks compared to WHV-naïve 

woodchucks.  Interestingly, TLR2 expression in cultured PBMCs from chronically 

infected woodchucks was restored after overnight culture, suggesting that circulating 

virus and its products may have an inhibitory effect on TLR2 expression.  As mentioned 

in Section 1.8.1, a combination therapy of CpG ODNs and ETV have been shown to 
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enhance innate immune antiviral response and reduce WHV replication in infected 

woodchucks (Meng et al., 2016).  However, more investigation is needed as there was 

no seroconversion and long-term protection in these animals.  Also mentioned in 

Section 1.8.1 and Section 1.8.2, the TLR agonist GS-9620 has been extensively studied 

in the woodchuck model and is currently undergoing clinical trials.  The TLR7 ligand 

appears to be highly effective at inducing a sustained antiviral response and anti-WHs 

antibody seroconversion in chronically infected woodchucks (Menne et al., 2015).  The 

most recent study has implicated TLRs in the induction of the programmed cell death 1 

(PD-1)/programmed cell death ligand 1 (PD-L1) system and a role of this system in 

negative regulation of T cell function (Zhang et al., 2011).  Using commercially available 

TLR1-9 ligands, it was found that woodchuck PD-L1 mRNA was upregulated in PWHs 

after stimulation with TLR3 and TLR4 ligands, while PD-L1 mRNA in PBMCs was 

upregulated by TLR4 and TLR7 ligands.  This study has implicated TLRs in the 

upregulation of PD-1/PD-L1 system, thus, suggesting their contribution to reduced T cell 

responses in chronic hepadnaviral infection.  In any case, there is strong evidence 

implying that TLRs play major roles in the control of WHV replication as well as in the 

pathogenesis of hepadnaviral infection.  Understanding the role of TLRs in WHV 

infection in the woodchuck model of hepatitis B and HBV-associated HCC may be 

crucial to the development of novel therapeutics to eradicate hepadnaviral persistence.   

1.10. Objectives  

The woodchuck (Marmota monax) infected with WHV represents the closest 

natural model of human HBV infection, chronic hepatitis B, and HBV-associated HCC.  
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The mechanisms by which hepadnaviruses are recognized by the immune system are 

not fully understood.  It is expected that TLRs play important roles in the pathogenesis 

of hepadnaviral hepatitis and persistence.  However, little is known about expression of 

individual TLRs in primary hepatocytes and in the liver during the course of WHV 

infection and in different forms of hepatitis.  Thus, the purpose of this study was to 

identify partial sequences of woodchuck TLRs, and design specific primers and 

quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays to 

quantify TLR expression.  Previous studies on TLR expression profiles during the 

course of HBV infection were largely limited to investigation of PBMCs, as taking liver 

biopsies from a human during the course of HBV infection is rarely feasible.  In contrast, 

the woodchuck infected with WHV represents a very convenient model to collect both 

liver biopsies and PBMC samples throughout the course of infection and in different 

forms of hepatitis.  Thus, the objectives of this study included: 

1. To identify partial gene sequences of woodchuck TLRs 1-10.  

2. To delineate the profiles of transcription of individual TLRs in primary 

hepatocytes and corresponding liver tissue samples obtained from healthy 

woodchucks and animals with different stages of experimental WHV infection. 

3. To assess TLRs1-10 expression in sequential liver biopsies acquired prior to 

and during WHV infection progressing from AH to SLAH or from AH to CH, 

and in the course of POI. 

4. To recognize profiles of TLRs1-10 expression in PBMCs of healthy animals 

and those with different stages of experimental WHV infection and forms of 

WHV hepatitis.   



	

	
 
 

51	

Chapter 2 - Methods and Materials 

2.1. Collection of Woodchuck Tissue Samples  

All woodchucks were maintained in a facility operated by Animal Care Services of 

Memorial University of Newfoundland in accordance with the guidelines of the Canadian 

Council on Animal Care.  All animal procedures were approved by the Institutional 

Animal Care Committee of Memorial University of Newfoundland.  

2.1.1. Liver Biopsies 

Liver biopsies were obtained through surgical laparotomy as previously reported 

(Michalak et al., 1999).  Briefly, animals were sedated with an intramuscular injection of 

ketamine (23 mg/kg; Ketaset; CDMV Inc., St. Hyacinthe, Quebec) and xylazine (10 

mg/kg; Lloyd Laboratories, Shenandoah, Iowa), and then anaesthetized with 2% to 4% 

isofluorane (CDMV Inc., St. Hyacinthe, Quebec).  Liver biopsies were removed 

aseptically and divided into 1-2 mm
3
 fragments and immediately snap frozen in liquid 

nitrogen and stored at -80 °C for further isolation of nucleic acids.  Other liver tissue 

fragments were collected and processed for downstream histological and 

immunohistochemical examinations as previously reported using standard procedures 

(Michalak, 1978).  

2.1.2. Autopsy Liver and Spleen Tissues 

Animals were injected with an overdose mixture of ketamine and xylazine.  Blood was 

collected by cardiac puncture and used for serum and PBMC isolation (see Section 
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2.1.3).  Liver and spleen samples, as well as other organs, were aseptically removed 

and snap frozen upon collection.  Tissue samples were stored at -80 °C.  Other liver 

tissue fragments were processed for histological and immunohistochemical 

investigations. 

2.1.3. Preparation of Primary Hepatocytes and PBMCs  

Hepatocytes were isolated from the livers of autopsied woodchucks by two-step 

collagenase microperfusion, method described before in detail (Churchill and Michalak, 

2004).  Using phase-contrast microscopy, hepatocyte preparations were confirmed to 

be at least 98% pure.  Display of albumin and asialoglycoprotein receptor (ASGPR) by 

immunohistochemical staining was used as an indicator of differentiated hepatocyte 

phenotype (Churchill and Michalak, 2004).  PBMCs were isolated by Ficoll-Hypaque 

density gradient centrifugation as previously reported (Michalak et al., 1995).  Cell 

preparations were cryopreserved at 1.0 x 10
6
 – 5.0 x 10

6
 cells/mL in heat-inactivated 

fetal calf serum (FCS) with 10% dimethyl sulfoxide (DMSO) and kept in liquid nitrogen 

until used in the current study.    

2.2. RNA Extraction 

Total RNA was isolated from woodchuck liver and spleen tissue samples, liver biopsies, 

and PBMCs using TRIzol® Reagent (Invitrogen Life Technologies, Burlington, Canada).  

A 100 mg tissue sample or 5.0 x 10
6
 PBMCs was supplemented with 0.5 mL of TRIzol® 

and homogenized using a sterile plastic pestle.  Another 0.5 mL of TRIzol® was added 

and the mixture was placed on a rotator at room temperature for 30 minutes.  0.2 mL of 
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chloroform (Fisher Scientific, Ottawa, Ontario) was added and the sample was 

vigorously shaken for 15 seconds and incubated at room temperature for 3 minutes.  

The suspension was then centrifuged at 12,000 x g at 4 °C for 15 minutes.  The top 

aqueous layer was transferred to a new Eppendorf tube and 0.5 mL of isopropanol 

(Fisher Scientific, Ottawa, Ontario) was added.  The sample was then precipitated 

overnight at -20 °C.  Then, the aliquot was centrifuged at 12,000 x g at 4 °C for 10 

minutes.  The supernatant was discarded and the RNA pellet washed once with 75% 

ethanol.  The RNA was centrifuged at 7,500 x g at 4 °C for 5 minutes, the supernatant 

was removed, and the pellet resuspended in 40 µL of 0.1% diethyl pyrocarbonate 

(DEPC)-treated water and stored at -80 °C. 

2.2.1. DNase Treatment of RNA 

In order to remove DNA possibly contaminating the RNA sample, 8 µL of RNA aliquot 

was supplemented with one µL of 10x reaction buffer and one µL of amplification grade 

DNase I (Invitrogen Life Technologies, Burlington, Canada).  The sample was mixed 

gently and incubated at room temperature for 15 minutes.  Following incubation, one µL 

of stop solution was added and the mixture incubated in a water bath at 70 °C for 10 

minutes and chilled on ice.  

2.2.2. RNA Concentration, Purity, and Integrity Assessment 

Nucleic acid concentration and purity were determined using a DU 530 

spectrophotometer (Beckman Instruments Inc., Fullerton, California) and the NanoDrop 

2000 (Thermo Scientific, Waltham, Massachusetts).  For spectrophotometric analysis, 2 
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µL of the RNA sample was supplemented with 98 µL of DEPC-treated water (1:50 

dilution) and placed into a glass cuvette.  Absorbance was measured at 260 nm and 

280 nm.  The final concentration of RNA was calculated using the following equation:			 

	#$%	&'(&)(*+,*-'(	 = 	 (()*	,01'+0,(&)	,*	260	(5)	7	(8-9:*-'(	;,&*'+)	7	(0.04	µ?/µ9) 

Purity of RNA was determined by calculating the 260 nm/280 nm absorbance ratio.  For 

RNA, a pure sample will yield a ratio of approximately 2.0. Analysis of samples in the 

NanoDrop 2000 was used as an additional method for quantifying RNA concentration 

and determining purity.  The NanoDrop applies the same principle as the 

spectrophotometer and measures the absorbance at both 260 nm and 280 nm.  

However, the NanoDrop requires less RNA and gives more accurate readings.  Prior to 

reading, one µL of sterile deionized water was used as a blank.  RNA measurements 

were performed by loading one µL of the RNA sample.  Readouts of RNA concentration 

and purity were automatically generated using the NanoDrop 2000 software.    

RNA integrity was determined using an Agilent 2100 Bioanalyzer (Agilent Technologies, 

Santa Clara, California) and Agilent 2100 Expert Software.  All microfluidic nanochips 

used in the analysis were prepared according to the manufacturer’s protocol.  Briefly, 

the gel-dye mix was prepared by adding 400 µL of gel matrix to 4 µL of dye concentrate 

and then filtered through a spin filter.  The nanochip was filled with the prepared gel-dye 

mixture and 5 µL of sample buffer was added to each of the sample wells.  One µL of 

RNA was then loaded into each well of the chip.  Finally, one µL of the RNA ladder was 

loaded into the designated ladder well.  The chip was vortexed and inserted into the 

Agilent 2100 Bioanalyzer.  Following the analysis, an RNA Integrity Number (RIN) was 
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generated for each RNA sample and scored on a scale from 1-10 (1 = lowest quality, 10 

= highest).  The RIN is calculated based on characteristics of an RNA electropherogram 

tracing RNA degradation.  Generally, samples with a RIN of 8 or above are acceptable. 

2.3. Reverse Transcription (RT) of RNA 

A volume of 2 µL of RNA sample (corresponding to 2 µg of RNA) was resuspended in a 

total volume of 8 µL and supplemented with 2 µL of 0.1 M dithiothreitol (DTT), 4 µL of 5x 

RT reaction buffer, 2 µL of deoxynucleotides triphosphate (dNTPs), 2 µL of 100 ng/µL 

oligonucleotide random primers, 2 µL of Moloney murine leukemia virus (M-MLV) 

reverse transcriptase, and 0.25 µL of RNase Out (all from Invitrogen, Carlsbad, 

California).  Controls consisted of a mock solution that contained all reagents for the RT 

reaction except RNA that was replaced by double-distilled, deionized (ddd) water.  The 

reaction mix was incubated at 37 °C for one hour and then heated to 95 °C for 5 

minutes. 

2.4. Sense and Anti-Sense Primer Design for Detection of Woodchuck TLRs 

TLR forward (sense) and reverse (anti-sense) oligonucleotide primers were designed 

during this study for woodchuck TLR1, TLR2, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 

and TLR10.  Primers for woodchuck TLR3 (GenBank accession number EU586552) 

were previously published (Zhang et al., 2009).  Our primers were designed using 

aligned TLR nucleotide sequences from a variety of mammalian species deposited in 

the Entrez Nucleotide Database (website: http://www.ncbi.nlm.nih.gov/nuccore).  

Complete protein coding sequences were quarried and aligned using Sequencher v4 
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software (Gene Codes Corporation, Ann Arbor, Michigan).  The consensus sequences 

were constructed and primers were designed to amplify TLR fragments in regions of the 

highest homology between species.  Standard rules of primer design were followed.  

Thus, primer length was kept between 20 - 25 nucleotides, primer melting temperatures 

within 5 °C of one another and in the range between 47 and 55 °C (Table 2.1).  The 

guanine-cytosine (GC) content of primers was kept between 40% and 60%.  

Additionally, primers were designed to contain a G or C base within the last five 

nucleotides from the 3'-end of the primer, known as a GC clamp.  This helps to promote 

binding specificity due to the stronger bonding of G and C bases.  Nucleotide repeats 

(i.e., ATATAT) and runs (i.e., AAAAA) were avoided due to their tendency to misprime.  

Primers used for the initial identification of woodchuck TLR1 to TLR10 are presented in 

Table 2.1. 

2.5. End-Point PCR Conditions for Initial Amplification of Woodchuck TLRs 

Five µL of the resulting cDNA (500 ng RNA equivalent) from the RT step was 

supplemented with 72 µL of ddd water, 10 µL of 10x reaction buffer, 8 µL of 2.5 mM of 

dNTP, 3 µL of 50 mM MgCl2, one µL of each TLR-specific forward (+) and reverse (-) 

primer, and 0.4 µL of Taq DNA polymerase (2 U) (all from Invitrogen).  Thermal cycling 

conditions consisted of: 35 cycles at 95 °C for one minute (denaturation), 50 °C for one 

minute (annealing) and 72 °C for one minute (extension).  A final extension at 72 °C for 

10 minutes was also done to fully elongate synthesized products.  In this initial part of 

the study, beta-actin (β-actin) was routinely used in order to confirm RNA integrity and 

as a house-keeping gene. 
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Table 2.1. Oligonucleotide Primer Sequences and PCR Conditions Used for Initial 

Amplification of Woodchuck TLRs1-10  

 

*Uniqueness refers to the number of nucleotides in a given sequence that have not 

been reported in the literature.  For example, TLR2 has 75 nucleotides newly identified 

in this study and 300 previously reported.  

TLR1 + CAT TTG ATG CCC TGC CTA TAT G 22 53 435 435/435
- TAT GCC AAA CCA GCT GGA GGA T 22 55

TLR2 + TGC TCC TGT GAA TTC CTC TCC TT 23 55 375 75/375
- CTG GAC CAT AAG GTT CTC CAC CCA 24 59

TLR3 + AGG GAC TTT GAG GCA GGT GT 20 54 230 0/230
- CGC AAA CAG AGT GCA TGG T 19 51

TLR4 + CTC TGC CTT CAC TAA GAG ACT T 22 55 313 116/313
- CTC CAG AAG ATG TGC CGC CCC AG 23 62

TLR5 + GCC TTG AAG CCT TCA GTT ATG C 22 55 76 76/76
- CCA ACC ACC ACC ATG ATG AG 20 54

TLR6 + GCC CAA ACC TGT GGA ATA TCT CA 23 55 424 424/424
- CAA AGA ATT CCA GCT AAC ATC CA 23 52

TLR7 + GCT GTA TGG TTT GTC TGG TGG GT 23 57 713 0/713
- CAC TGC CAG AAG TAT GGG TGA GC 23 59

TLR8 + CAC ATC CCA AAC TTT CTA TGA TG 23 52 100 100/100
- CTC TTC AAG GTG GTA GCG C 19 53

TLR9 + CTC TGC GGC TGG GAC GTC TGG TA 23 62 551 551/551
- CAG AAG TTC CGG TTA TAG AAG TGG 24 56

TLR10 + ATC CAT TCC GGG TGT ACT TGT GAA T 25 56 520 520/520
- CAA AGA TGG ACT TAT AGC TTT TCT C 25 53

Gene Primer Sequences (5' - 3')
Uniqueness* 

(bp)
Amiplicon 
Size (bp)

Melting 
Temperature (°C)

Length 
(bp)
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2.5.1. Agarose Gel Electrophoresis 

A volume of 20 µL of PCR product was mixed with tracking dye and then loaded on a 

1% agarose gel containing ethidium bromide (EB).  A 100-base pair (bp) ladder was run 

in parallel as a molecular weight marker.  Agarose gels were electrophoresed in 1x Tris-

acetate-ethylenediaminetetraacetic acid (EDTA) (TAE) buffer at 120 V for 25 to 30 

minutes.  Images of agarose gels were captured using a Chemi Genius 2 Bio-Imaging 

System (Syngene, Frederick, Maryland).  

2.6. Plasmid Construction 

2.6.1. DNA Purification from Agarose Gel 

PCR products were selected for downstream purification based on expected molecular 

size of the amplicon band on the EB-gel.  After selection of PCR products of interest, 

amplified products were purified from low-melting point (LMP) agarose gel.  Briefly, 0.5 

g LMP agarose was added to 50 mL of TAE containing EB, melted and allowed to set.  

50 µL of the chosen PCR product was separated by electrophoresis in 1x TAE at 80 V 

for 25 to 30 minutes.  Bands of expected bp length were visualized under ultraviolet 

light, excised using a sterile scalpel blade, placed in a sterile Eppendorf tube, and 

agarose melted at 70 °C in a water bath.  Once the gel had melted, one mL of 

purification resin (Wizard DNA Purification kit, Promega, Madison, Wisconsin) was 

added to the tube and shaken for 20 seconds.  The mixture was then loaded onto a 

syringe barrel with a filter attached and the aliquot collected by vacuum filtration. Two 

mL of 80% isopropanol was added to wash the DNA on the filter.  After centrifugation at 
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10,000 x g for 2 minutes to remove residual isopropanol, the mini-column was 

transferred to a clean Eppendorf tube and 50 µL of ddd water was added.  The tube 

was centrifuged at 10,000 x g for 30 seconds and the eluted DNA was stored at -20 °C 

until needed.   

2.6.2. Cloning of Purified TLR DNA Fragments  

A TOPO® TA cloning kit (Invitrogen) was used to clone each purified TLR DNA 

fragment.  4.5 µL of purified PCR product, one µL of salt solution, and 0.5 µL of TOPO® 

vector were mixed and incubated at room temperature for 30 minutes.  One Shot 

chemically competent Escherichia coli cells (Invitrogen) were thawed on ice, the ligation 

mixture was added, and then incubated on ice for 30 minutes.  Cells were subsequently 

heat shocked at 42 °C for 30 seconds.  250 µL of pre-warmed super optimal broth with 

catabolite repression (SOC) medium was added to the cells.  The transformation was 

performed by incubation at 37 °C for 60 minutes and shaking at 200 revolutions per 

minute (rpm).  100 µL of the resulting bacterial suspension was spread on a prewarmed 

Luria-Bertani (LB) plate containing kanamycin (50 µg/mL) and incubated overnight at 37 

°C. 

2.6.3. Mini-scale Preparations of Plasmid DNA 

After 16 hours of growth, individual colonies were picked from LB plates and each 

colony added to 3 mL of LB medium containing kanamycin.  Individual colonies were 

allowed to grow for 18 hours at 37 °C while shaking at 200 rpm.  The next day, 1.5 mL 

of the bacterial growth was centrifuged at 14,000 x g for 20 seconds and the 
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supernatant was discarded.  The pellet was resuspended in 100 µL of glucose-Tris-

ethylenediaminetetraacetic acid (GTE) buffer and incubated at room temperature for 5 

minutes.  Then, 200 µL of sodium hydroxide (NaOH)-sodium dodecyl sulfate (SDS) lysis 

buffer was added and the mixture was placed on ice for 5 minutes.  150 µL of 3 M 

potassium acetate was added and the mixture vortexed for 2 seconds and placed on ice 

for 5 minutes before centrifugation at 14,000 x g for 3 minutes.  The supernatant was 

then transferred to a fresh tube and one mL of 95% ethanol added to precipitate the 

plasmid DNA.  The DNA was collected by centrifugation at 14,000 x g for 3 minutes.  

Finally, one mL of 70% ethanol was used to wash the DNA pellet, which after air drying 

was resuspended in 30 µL of ddd water.   

2.6.4. Restriction Enzyme Digestion of Miniprep  

To determine if specific clones contained a DNA insert, a restriction enzyme digestion 

was performed.  For this purpose, 10X reaction buffer, 10 U of EcoRI, 0.1 µg of RNase 

and 10 µL of plasmid DNA were combined in a 20 µL volume and incubated at 37 °C for 

4 hours.  Samples were separated on a 1% agarose gel (see Section 2.5.1) to 

determine if the inserts of interest were present. 

2.6.5. Automated DNA Sequencing 

After determining plasmid DNA concentration, approximately 500 ng of each positive 

miniprep carrying DNA for each of the woodchuck TLR genes examined was sent for 

sequence analysis to either the Genomics and Proteomics Facility at Memorial 

University or The Centre for Applied Genomics at the Hospital for Sick Children, 
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Toronto, Ontario.  In each facility, bidirectional sequencing was performed using 

universal forward and reverse M13 plasmid primers.    

2.6.6. Maxi-scale Preparation of Plasmid DNA 

To ensure that a large scale stock of each confirmed TLR sequence was available, a 

maxi-scale preparation was performed.  Recombinant plasmid DNA was isolated using 

the PureLink HiPure Maxi Prep kit (Invitrogen).  To begin, 100 mL of a bacterial culture 

grown over night at 37 °C was centrifuged at 6,000 x g at 4 °C for 15 min in a Sorvall 

Evolution RC centrifuge with a SS-34 rotator.  The supernatant was discarded and 10 

mL of resuspension buffer containing RNase was added to the pellet.  The tube was 

then inverted until the contents became homogeneous.  Ten mL of lysis buffer was 

added and the solution was mixed by inversion.  The lysate was incubated at room 

temperature for 5 minutes.  A volume of 10 mL of precipitation buffer was added and the 

solution was mixed by inversion until homogenous.  The mixture was centrifuged again 

at 15,000 x g for 10 minutes at room temperature.  The supernatant was transferred to 

an elution column that was equilibrated with 30 mL of equilibration buffer.  The 

supernatant was allowed to drain by gravity flow and the flow-through was discarded.  

The column was then washed with 60 mL of wash buffer by gravity flow.  A volume of 

15 mL of elution buffer was passed through the column and the flow-through containing 

plasmid DNA was collected in a sterile 30 mL tube.  10.5 mL of isopropanol was added 

to the DNA and mixed. The tube was then centrifuged at 15,000 x g for 30 min at 4 °C.  

Five mL of 70% ethanol was used to wash the pellet.  The DNA was pelleted by 
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centrifuging at 15,000 x g for 5 min at 4 °C, air-dried for 10 minutes and resuspended in 

200 µL of Tris-EDTA (TE) buffer. 

2.7. Real-Time RT-qPCR for Quantification of Woodchuck TLRs 

2.7.1. Primer Optimization 

Prior to assessing TLR expression levels in woodchuck test samples it was necessary 

to optimize amplification conditions for detection of TLRs by real-time RT-qPCR using 

woodchuck TLR-specific primers.  TLR primers used in the initial identification of 

woodchuck TLR fragments (see Section 2.4. and Table 2.1) were redesigned to be 

100% woodchuck specific.  Each TLR primer pair then underwent a series of 

experiments testing different primer concentrations, template concentrations and 

annealing temperatures for optimal detection of amplicons by RT–qPCR.  Primers were 

tested at a concentration of 2.5 pmol and 5 pmol with the equivalent of 50 ng of RNA 

from healthy woodchuck liver and spleen.  As a positive control, plasmid standards 

carrying TLRs1-10 gene fragments were included in the reaction.  The annealing 

temperature of each amplification reaction was tested at temperatures ranging from 47 

°C to 55 °C, depending on the average annealing temperature of a given primer pair.  It 

was found that TLR1, TLR3, TLR5, TLR6, and TLR8 primer pairs specifically amplified 

woodchuck gene fragments in both liver and spleen tissue samples, in addition to their 

respective TLR plasmids that were used as positive controls.  Therefore, no 

modification of the primer sequences for these TLR gene fragments was needed (Table 

2.1).  In contrast, TLR2, TLR4, TLR7, TLR9, and TLR10 primer sets were redesigned to 
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specifically amplify their respective woodchuck gene fragments.  The final woodchuck 

specific primers used for TLR1-10 expression analysis are presented in Table 2.2.  

2.7.2. Determination of Sensitivity of Detection  

To determine the sensitivity of detection for each TLR primer pair, serial 10-fold dilutions 

of plasmid containing TLR1-10 inserts were amplified by real-time RT-qPCR.  It was 

determined that all TLR primer pairs were able to detect at least 100 copies of a given 

TLR.  TLR1, TLR2, TLR6, TLR9 and TLR10 detected at a level as low as 10 copies per 

reaction (Table 2.2).  Amplification of serial plasmid dilutions of known concentrations 

allowed for the generation of a standard curve for absolute quantification of a given TLR 

in test woodchuck tissue and PBMC samples.  Samples with Ct values that fell within 

the standard curve range were assigned a copy number for the TLR tested. 

2.7.3. Absolute Quantification  

Briefly, woodchuck liver, hepatocytes and PBMC samples were evaluated for 

expression of TLR1-10 by RT-qPCR using SsoFast™ EvaGreen® Supermix (Bio-Rad, 

Mississauga, Ontario), the LightCycler® 480 System, and LightCycler® 480 software 

(Roche Diagnostics, Mannheim, Germany).  Each individual reaction included the cDNA 

equivalent of 50 ng of total RNA and primers specific for a given woodchuck TLR gene 

at a concentration of 5 pmol each.  Serial 10-fold plasmid dilutions containing known 

copy numbers of the respected TLR were included as quantitative standards in each 

qPCR run.  All samples were tested in triplicate.  Absolute quantification of test samples 

was calculated using the LightCycler® 480 software based on copy numbers of  
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Table 2.2. Woodchuck TLR-Specific and Housekeeping Primer Sequences Used 

for Expression Analysis of Woodchuck TLRs1-10 by Real-Time RT-qPCR 

  

TLR1 + CAT TTG ATG CCC TGC CTA TAT G 22 53 435 1.0x10
1

- TAT GCC AAA CCA GCT GGA GGA T 22 55

TLR2 + TGA CTC TCC CTC CCA C 16 49 235 1.0x10
1

- GTC GTA GCA GAT GTC CC 17 49

TLR3 + AGG GAC TTT GAG GCA GGT GT 20 54 230 1.0x10
2

- CGC AAA CAG AGT GCA TGG T 19 51

TLR4 + AAG GTT TCC ATA AAA GCC G 19 47 193 1.0x10
2

- AGT AGG CGG TAC AAC TC 17 47

TLR5 + GCC TTG AAG CCT TCA GTT ATG C 22 55 76 1.0x10
2

- CCA ACC ACC ACC ATG ATG AG 20 54

TLR6 + GCC CAA ACC TGT GGA ATA TCT CA 23 55 424 1.0x10
1

- CAA AGA ATT CCA GCT AAC ATC CA 23 52

TLR7 + GCC TGT TCT GTA AAG G 16 43 471 1.0x10
2

- ACT CCC GGA ATG ATT G 16 43

TLR8 + CAC ATC CCA AAC TTT CTA TGA TG 23 52 100 1.0x10
2

- CTC TTC AAG GTG GTA GCG C 19 53

TLR9 + TGG TAC TGC TTC CAC CT 17 47 358 1.0x10
1

- ACA CCA CGA  CAT CCT T 16 43

TLR10 + GAT GGT CAG ATT CAT ACA TCT G 22 51 124 1.0x10
1

- ATG ATG GCC ACA ATG GTG AC 20 52

HPRT + TGA CAC TGG CAA AAC AAT GCA 21 51 96 1.0x10
2

- GGT CCT TTT CAC CAG CAA GCT 21 54

 Sensitivity of Detection 

(Copy Number/Reaction) 
Gene Primer Sequences     (5' - 3')

Amiplicon 

Size (bp)

Melting 

Temperature 

Length 

(bp)
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the plasmid standards.  Expression of β-actin was evaluated for gene housekeeping 

purposes and was found to be unreliable in liver and hepatocytes (see Section 3.4).  

Therefore, TLR expression in subsequent experiments was normalized to the 

expression of hypoxanthine-guanine phosphoribosyltransferase (HPRT).  HPRT was 

chosen based on previously published works (Dheda et al., 2004; de Kok et al., 2005; 

Chen et al., 2006; Nishimura et al., 2006; Tsaur et al., 2013).  Studies comparing the 

expression of multiple housekeeping genes have concluded that HPRT is one of the 

most stably transcribed genes in human and rat livers and hepatocytes (Chen et al., 

2006; Nishimura et al., 2006). 

2.8. Real Time RT-qPCR for Quantification of Expression of Individual Woodchuck 

TLRs  

2.8.1. Plate Layout and Controls 

The layout for real-time RT-qPCR 96-well plates used in this study was designed to 

contain multiple controls for each set of TLR amplification reactions (Figure 2.1).  On 

each plate, controls included: (1) all components of the amplification reaction except the 

cDNA template (no template control, NTC), (2) water was used instead of RNA template 

when reverse transcribing RNA to cDNA (negative RT, mock), (3) internal controls (ICs) 

from two healthy woodchuck livers (IC1 Liv and IC2 Liv) and spleens (IC1 Spl and IC2 

Spl), (4) 10-fold serial dilutions from 10
1
 to 10

6
 copies of the appropriate plasmid 

containing a given TLR fragment as quantitative standards (10
1
 and 10

6
 plasmid 

standards).  The NTC was essential for detecting potential contamination in the PCR 

reagents, while the mock controlled for any contamination carryover from RT reagents.   
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Figure 2.1. Plate layout for RT-qPCR quantification of individual TLRs in 

woodchuck samples. 

96-well plate layout used in this study for RT-qPCR quantification of individual TLRs in 

woodchuck liver, spleen, and PBMC samples.  This layout represents a single plate that 

was used to quantify expression of individual TLRs in woodchucks.  Each plate tested 

included a no template (water) control (NTC), negative RT reaction control (mock), 

internal natural controls (IC), woodchuck test samples, and quantitative plasmid 

standards (10
1
 – 10

6
 copies).  All samples were loaded in triplicate. 
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The expression levels of each TLR gene were previously determined for IC1 and IC2 

liver and spleen cDNA.  The ICs were used to assess consistency of TLR quantification 

throughout all runs of the assay.  Expression levels of the target gene should be 

consistent from plate to plate, controlling for the efficiency of each PCR reaction.  

Finally, serial 10-fold dilutions of plasmid standards of an individual TLR were included 

for absolute quantification of test samples.  All samples were loaded in triplicate, with 

NTC and mock controls loaded first to avoid potential contamination.  All cDNA samples 

(i.e., ICs and woodchuck test samples) were loaded next.  Finally, all wells of the plate 

were carefully covered with plastic wrap before loading of the plasmid standards, which 

were loaded on the far right side of plate (Figure 2.1). 

2.9. Multiplex Real-Time RT-qPCR for Simultaneous Quantification of Woodchuck 

TLRs1-10 

2.9.1. Plate Layout and Controls 

In this study, RT-qPCR quantification of TLRs1-10 was designed in a multiplex format.  

All TLRs are amplified under the same conditions, thus, it was possible to assess the 

expression of all ten TLRs in woodchuck test samples on the same PCR plate (Figure 

2.2). Each plate included a NTC, mock, and a single plasmid standard (10
3
 copies) for 

each TLR.  Samples were loaded in triplicate, with negative controls loaded first, then 

the cDNA samples (i.e., ICs and test samples), followed by the plasmid standards.  

Again, wells of the plate were covered before loading of the plasmid standards.  A 

representative multiplex real-time RT-qPCR plate layout is shown in Figure 2.2.   
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Figure 2.2. Plate layout for multiplex RT-qPCR quantification of woodchuck 

TLRs1-10. 

96-well plate layout used for multiplex RT-qPCR quantification of TLRs1-10 in 

woodchuck tissues and cells.  This layout represents a single plate to quantify 

woodchuck TLRs1-10 in two test samples in a single run.  Each plate included a no 

template (water) control (NTC), negative RT reaction control (mock), two test samples 

(1 and 2) and a plasmid (P) standard for each TLR tested at 10
3
 copies/reaction.  All 

samples were loaded in triplicate. 

 

 

 

 

 

 

 

 



	

	
 
 

70	

 

 

 

 

 

 

 

 
 



	

	
 
 

71	

2.10. Animals and Categories of WHV Infection  

2.10.1. Categories of WHV Infection 

Woodchucks (Marmota monax) examined in this study were maintained in the 

Woodchuck Viral Hepatitis Research Facility at Memorial University of Newfoundland, 

St. John’s, Newfoundland.  Healthy animals were not exposed to WHV, as confirmed by 

testing of serum samples for WHV DNA by highly sensitive PCR-based assays 

(Michalak et al., 1999).  They were also negative for anti-WHc and anti-WHs, and 

nonreactive for WHsAg (Michalak et al., 1989; Michalak et al., 1999).  Animals infected 

with WHV at doses of less than 1000 virions develop POI (Michalak et al., 2004).  

Animals with POI are characterized by the lack of classical serological markers of WHV 

infection, such as WHsAg, anti-WHs and anti-WHc.  However, WHV DNA is detectable 

in plasma and the lymphatic system.  Over time, this infection can spread to the liver 

without induction of hepatitis (Mulrooney-Cousins and Michalak, 2015).  When WHV-

naïve woodchucks are infected with WHV doses greater than 1000 virions, animals 

develop AH where high WHV DNA levels and WHsAg are detectable in serum, as well 

as biochemical indicators of liver injury are evident.  The initiation of AH is considered 

when serum WHsAg becomes detectable and serum biochemical markers of liver injury, 

SDH and ALT, increase.  If WHsAg clears prior to 6 months post-infection, the 

woodchuck has spontaneously resolved AH and SLAH is diagnosed.  This is 

accompanied by the persistence of WHV DNA at low levels and anti-WHc reactivity for 

life.  If WHsAg persists in circulation for longer than 6 months, CH is diagnosed.  In 

addition to serological indicators, histological examination of liver biopsies obtained in 6 
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– 12 month intervals are used to identify liver disease status (Michalak and Lin, 1994; 

Michalak et al., 2000).  For the purpose of this study, pre-acute hepatitis (PreAH) refers 

to samples collected three days post infection (dpi), prior to the establishment of 

serologically and biochemically confirmed AH.  

2.10.2. Animals and Samples Examined 

This study included autopsy liver and hepatocytes isolated from these livers, liver 

biopsies, and PBMCs isolated from a total of 32 woodchucks.  Autopsy livers and paired 

hepatocytes were investigated for expression of TLR1-10 from 26 woodchucks, 

including five healthy, four with PreAH, eight with SLAH, six with CH, and three with 

POI.  Sequential liver biopsies acquired from 28 woodchucks were also analyzed for 

their TLR expression profiles, including two healthy, four with PreAH, eight with SLAH, 

nine with CH, and five with POI.  Sixty-one liver biopsies were investigated in total. 

Finally, 51 sequential PBMC samples were collected from four woodchucks prior to and 

throughout the course of WHV infection and examined for their expression of TLR1-10.  

Two of the woodchucks developed AH and resolved hepatitis while acquiring SOI, and 

two others progressed from AH to CH.  Numbers of autopsy liver samples and 

hepatocytes, liver biopsies and PBMCs from healthy woodchucks and different stages 

of WHV hepatitis are summarized in Table 2.3. 
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Table 2.3. Woodchuck Samples from Different Categories of WHV Infection Used 

in This Study 

 

Sample Type 
Number of 

Woodchucks 

Sample Number and Stages of WHV Hepatitis  Total 

Sample 

Number 

Tested 
Healthy PreAH AH SLAH CH  POI 

Autopsy Livers  26 5 4 0 8 6 3 26 

Hepatocytes 26 5 4 0 8 6 3 26 

Liver Biopsies 28 20 4 8 3 12 14 61 

PBMCs 4 11 8 18 6 8 0 51 

PreAH, pre-acute hepatitis; AH, acute hepatitis; SLAH, self-limited acute hepatitis; CH, chronic hepatitis; 

POI, primary occult infection. 
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2.11. Calculation of Relative Expression 

Relative expression of TLRs1-10 in liver, hepatocyte and PBMC samples was 

calculated using HPRT gene expression for normalization.  For each sample, the 

absolute expression values for TLRs1-10 and HPRT were determined based on serial 

10-fold dilutions containing known copy numbers of the respected gene.  The absolute  

expression values for TLRs1-10 were divided by the absolute expression value of  

HPRT. 

2.12. Statistical analyses 

Results were analyzed by paired or unpaired Student's-t test, where applicable, using 

GraphPad Prism software (Graph Pad Software Inc., San Diego, California).  A paired t-

test was used when analyzing TLR1-10 expression in livers, and hepatocytes derived 

from those livers.  Differences between experimental conditions were considered to be 

significant when two-sided P values were less than 0.05. Data bars marked with * were 

significant at P < 0.05, ** at P ≤ 0.01, *** at P ≤ 0.001, and **** at P ≤ 0.0001. 
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Chapter 3 - Results 

3.1. General Study Design 

The results of this study will be presented in chronological order of data 

collection.  Using TLR primers designed based on interspecies sequence compatibility 

(Table 2.1), the amplification of woodchuck TLRs1-10 gene fragments was achieved.  

The resulting amplicons were cloned and sequenced to confirm the identity of the 

woodchuck gene fragment amplified.  Following confirmation by automated DNA 

sequencing, the primer sequences were adjusted to be entirely woodchuck TLR 

sequence compatible (Table 2.2) and real-time RT-qPCR tests for quantification of 

expression of individual woodchuck TLRs1-10 were developed.  When sensitivity of 

detection, melting curves, or amplification curves were undesirable using a specific TLR 

primer pair, primers were redesigned, synthesized, and tested again.  Once all the real-

time RT-qPCR assays were adjusted in such a way that all woodchuck TLRs could be 

quantified under identical amplification conditions, expression analysis was performed.  

Woodchuck livers, hepatocytes isolated from these livers, sequential liver biopsies and 

PBMCs derived from animals with different forms and stages of WHV infection were 

analyzed for the expression levels of TLRs1-10.  To establish baseline expression, liver, 

hepatocytes and PBMCs from healthy woodchucks were investigated and the results 

from these evaluations are presented first.  After establishing baseline, TLR expression 

throughout the course of WHV infection is presented in representative samples of 

woodchuck liver and paired hepatocytes, liver biopsies, and PBMC samples.  
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3.2. Woodchuck TLR1-10 Gene Fragment Identification and Their Sequence 

Confirmation  

TLR primer pairs designed based on interspecies homology (Table 2.1) were 

used to amplify fragments of the woodchuck TLR using cDNA from liver and spleen 

samples from healthy woodchucks.  EB-agarose gel electrophoresis was used to 

identify the amplification product of the RT-PCR reaction for each TLR primer set. 

TLR1-5 and TLR7-10 primer pairs yielded bands of the predicted molecular size 

(Figures 3.1A – 3.5A and 3.7A – 3.10A).  TLR6 primer set amplified a gene fragment of 

predicted base pair size from liver cDNA but not from spleen cDNA (Figure 3.6A).  

The amplified gene fragments for each TLR were excised from LMP-agarose and 

DNA cloned using a TOPO TA cloning kit.  Mini-scale preparations of the resulting 

plasmids were digested with EcoRI to determine if they contained the fragments 

carrying the woodchuck TLR sequences of interest.  Many plasmid digests for each TLR 

transcript produced bands of predicted size (Figures 3.1B – 3.10B).  However, TLR1 

and TLR7 plasmid digests yielded additional bands of unexpected size.  Clone 2 of the 

TLR1 digest yielded a band of approximately 400-bp, while clone 8 yielded a band of 

about 300-bp (Figure 3.1B).  Similarly, clone 3 of the TLR7 digest yielded a band of 

approximately 500-bp, while clone 5 yielded a band of about 400-bp (Figure 3.7B).  

Clones with inserts of unexpected base pair size were excluded from further 

downstream processing and analysis. 
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Figure 3.1. Initial PCR amplification of woodchuck-specific TLR1, analysis of 

minipreps of TLR1 plasmid DNA, and sequence confirmation. 

A.  EB-agarose gel electrophoresis of PCR products amplified using TLR1 primers.  500 

ng of cDNA, generated using DNase-treated RNA samples from liver and spleen tissue 

of two woodchucks, were used as templates.  Lane 1, 100-bp ladder; lane 2, water 

(negative PCR control); lane 3, RT mock (negative cDNA control); lane 4, liver sample 

(cDNA from woodchuck 1232); lane 5, spleen sample (cDNA from 1232); lane 6, liver 

sample (cDNA from woodchuck 588); lane 7, spleen sample (cDNA from 588).  Arrows 

indicate the 435 bp-specific amplicon.  The white circle indicates the band that was 

purified and inserted into plasmid DNA.  

B. Analysis of EcoRI-digested minipreps of TLR1 plasmid DNA using EB-gel 

electrophoresis.  Lane 1, 100-base pair ladder; lanes 2 - 11, clone #1 to clone #10. 

Multiple clones showed a band of 435-bp, while bands of approximately 400-bp were 

detected in lanes 3 and 9.  The white circle indicates the clone that was sequenced. 

C. Woodchuck TLR1 gene fragment determined by automated DNA sequencing.  

D. Nucleotide BLAST result comparing woodchuck TLR1 sequence homology with other 

mammalian species reported.  
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Figure 3.2. Initial PCR amplification of woodchuck-specific TLR2, analysis of 

minipreps of TLR2 plasmid DNA, and sequence confirmation. 

A. EB-agarose gel electrophoresis of PCR products amplified using TLR2 primers. 500 

ng of cDNA that was generated using DNase-treated RNA from indicated cell or tissue 

samples were used as templates. Lane 1, 100-bp ladder; lane 2, water (negative PCR 

control); lane 3, mock (negative RT control); lane 4, human U937 cell line (macrophage 

cell line used as positive control); lane 5, liver sample from woodchuck 144; lane 6, 

spleen sample from woodchuck 144. Arrows indicate the 375 bp-specific amplicon. The 

white circle indicates the band that was purified and inserted into plasmid DNA.  

B. EB-gel electrophoresis of miniprep products of TLR2 cloning reactions.  Lane 1, 100-

bp ladder; lanes 2 - 7, TLR2 clone #1 to clone #6. Clones #5 and #6 showed expected 

molecular size of bands.  The white circle indicates clone that was processed for 

sequencing. 

C. Woodchuck TLR2 gene fragment determined by automated DNA sequencing.  

D. Nucleotide BLAST result comparing woodchuck TLR2 sequence homology with other 

mammalian species reported.  
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Figure 3.3. Initial PCR amplification of woodchuck-specific TLR3, analysis of 

minipreps of TLR3 plasmid DNA, and sequence confirmation. 

A. EB-agarose gel electrophoresis of PCR products amplified using TLR3 primers. 500 

ng of cDNA, generated using DNase-treated RNA from liver and spleen tissue samples, 

were used as templates. Lane 1, 100-bp ladder; lane 2, water; lane 3, mock; lane 4, 

liver from woodchuck 129; lane 5, spleen from woodchuck 129).  Arrows indicate the 

expected 230 bp amplicon. The white circle indicates the band that was purified and 

cloned. 

B. EB-gel electrophoresis of miniprep products from TLR3 cloning reaction.  Lane 1, 

100-bp ladder; lane 2 - 11, TLR3 clone #1 to clone #10.  Multiple clones demonstrated 

bands of expected molecular size of 230-bp.  The white circle indicates the clone that 

was sequenced. 

C. Woodchuck TLR3 gene fragment determined by automated DNA sequencing.  

D. Nucleotide BLAST result comparing woodchuck TLR3 sequence identified with other 

mammalian species reported.  
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Figure 3.4. Initial PCR amplification of woodchuck-specific TLR4, analysis of 

minipreps of TLR4 plasmid DNA, and sequence confirmation. 

A. EB-agarose gel electrophoresis of PCR products amplified using TLR4 primers. 500 

ng of cDNA, generated using DNase-treated RNA from liver and spleen tissue samples, 

were used as templates. Lane 1, 100-bp ladder; lane 2, water; lane 3, mock; lane 4, 

liver cDNA from woodchuck 105; lane 5, spleen cDNA from woodchuck 105.  Arrows 

indicate the expected 313 bp amplicon. The white circle indicates the band that was 

purified and inserted into plasmid DNA. 

B. EB-gel electrophoresis of miniprep products from TLR 4 cloning reaction.  Lane 1, 

100-bp ladder; lanes 2 - 9, TLR4 clone #1 to clone #8. Multiple clones showed the 

expected molecular size of 313-bp. The white circle indicates the clone that was 

subsequently sequenced. 

C. Woodchuck TLR4 gene fragment determined by automated DNA sequencing.  

D. Nucleotide BLAST results comparing woodchuck TLR4 sequence with other 

mammalian species reported.  
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Figure 3.5. Initial PCR amplification of woodchuck-specific TLR5, analysis of 

minipreps of TLR5 plasmid DNA, and sequence confirmation. 

A. EB-agarose gel electrophoresis of PCR products amplified using TLR5 primers. 500 

ng of cDNA was generated after DNase treatment of isolated RNA and used as a 

template. Lane 1, 100-bp ladder; lane 2, water (negative PCR control); lane 3, mock 

(negative RT control); lane 4, liver cDNA from woodchuck 32C1; lane 5, spleen cDNA 

from woodchuck 32C1; lane 6, liver cDNA from woodchuck 129; lane 7, spleen cDNA 

from woodchuck 129. Arrows indicate the 76 bp-specific amplicon. The white circle 

indicates the band that was purified and inserted into plasmid DNA. 

B. EB-gel electrophoresis of miniprep products from TLR5 cloning reaction.  Lane 1, 

100-bp ladder; lanes 2 - 16, TLR5 clone #1 to clone #15. Clone #12 and clone #14 

showed expected molecular size of the bands observed. Both clones were sequenced 

(marked by white circles). 

C. Woodchuck TLR5 gene fragment determined by automated DNA sequencing.  

D. Nucleotide BLAST result comparing TLR5 sequence homology with other 

mammalian species reported.  
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Figure 3.6. Initial PCR amplification of woodchuck-specific TLR6, analysis of 

minipreps of TLR6 plasmid DNA, and sequence confirmation. 

A. EB-agarose gel electrophoresis of PCR products amplified using TLR6 primers. 500 

ng of cDNA, generated using DNase-treated RNA from liver and spleen tissue samples 

indicated, were used as templates. Lane 1, 100-bp ladder; lane 2, water (negative PCR 

control); lane 3, mock (negative RT control); lane 4, liver cDNA from woodchuck 105; 

lane 5, spleen cDNA from woodchuck 105; lane 6, liver cDNA from woodchuck 1232; 

lane 7, spleen cDNA from woodchuck 1232. Arrows indicate the 424 bp-specific 

amplicon. The white circle indicates the band that was purified and inserted into plasmid 

DNA. 

B. EB-gel electrophoresis of miniprep products from TLR6 cloning reaction.  Lane 1, 

100-bp ladder; lanes 2 - 10, TLR6 clone #1 to clone #9. Multiple clones showed 

expected molecular size of bands.  The white circle indicates clone that was sequenced. 

C. Woodchuck TLR6 gene fragment determined by automated DNA sequencing.  

D. Nucleotide BLAST result comparing woodchuck TLR6 sequence identified in this 

study with other mammalian species reported.  
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Figure 3.7. Initial PCR amplification of woodchuck-specific TLR7, analysis of 

minipreps of TLR7 plasmid DNA, and sequence confirmation. 

A. EB-agarose gel electrophoresis of PCR products amplified using TLR7 primers.  500 

ng of cDNA, generated using DNase-treated RNA from cell and tissue samples, were 

used as templates. Lane 1, 100-bp ladder; lane 2, water; lane 3, mock; lane 4, human 

U937 cell line cDNA (macrophage cell line used as expected positive control); lane 5, 

liver cDNA from woodchuck 144; lane 6, spleen cDNA from woodchuck 144. Arrows 

indicate the 713 bp-specific amplicon. The white circle indicates the band that was 

purified and inserted into plasmid DNA. 

B. EB-gel electrophoresis of miniprep products from TLR7 cloning reaction.  Lane 1, 

100-bp ladder; lane 2 - 7, TLR7 clone #1 to clone #6. Clone #2 band showed expected 

molecular size of 713-bp.  Clone #2 DNA was processed and sent for sequencing.  

C. Woodchuck TLR7 gene fragment determined by automated DNA sequencing.  

D. Nucleotide BLAST result comparing woodchuck TLR7 sequence identified in this 

study with other mammalian species reported.  
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Figure 3.8. Initial PCR amplification of woodchuck-specific TLR8, analysis of 

minipreps of TLR8 plasmid DNA, and sequence confirmation. 

A. EB-agarose gel electrophoresis of PCR products amplified using TLR8 primers. 500 

ng of cDNA, generated using DNase-treated RNA from liver and spleen tissue samples, 

were used as templates.  Lane 1, 100-bp ladder; lane 2, water; lane 3, mock; lane 4, 

liver cDNA from woodchuck 129; lane 5, spleen cDNA from woodchuck 129.  Arrows 

indicate the 100 bp-specific amplicon.  The white circle indicates the band that was 

purified and inserted into plasmid DNA. 

B. EB-gel electrophoresis of miniprep products from TLR8 cloning reaction.  Lane 1, 

100-bp ladder; lanes 2 - 11, TLR8 clone #1 to clone #10.  Several clones produced 

expected molecular size of 100-bp.  The white circle indicates the clone that was 

sequenced. 

C. Woodchuck TLR8 gene fragment determined by automated DNA sequencing. 

D. Nucleotide BLAST result comparing woodchuck TLR8 sequence homology with other 

mammalian species reported.  
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Figure 3.9. Initial PCR amplification of woodchuck-specific TLR9, analysis of 

minipreps of TLR9 plasmid DNA, and sequence confirmation. 

A. EB-agarose gel electrophoresis of PCR products amplified using TLR9 primers. 500 

ng of cDNA, generated using DNase-treated RNA from cell line and tissue samples, 

were used as templates.  Lane 1, 100-bp ladder; lane 2, water; lane 3, mock; lane 4, 

human U937 cell line cDNA (macrophage cell line used as expected positive control); 

lane 5, liver cDNA from woodchuck 144; lane 6, spleen cDNA from woodchuck 144.  

Arrows indicate the 551 bp-specific amplicon.  The white circle indicates the band that 

was purified and inserted into plasmid DNA. 

B. EB-gel electrophoresis of miniprep products from TLR9 cloning reaction.  Lane 1, 

100-bp ladder; lane 2 - 7, TLR9 clone #1 to clone #6.  Three clones demonstrated 

bands of expected molecular size of about 551-bp.  The white circle indicates the clone 

that was sequenced. 

C. Woodchuck TLR9 gene fragment determined by DNA sequencing.  

D. Nucleotide BLAST result comparing woodchuck TLR9 sequence identified in this 

study with other mammalian species reported.  
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Figure 3.10. Initial PCR amplification of woodchuck-specific TLR10, analysis of 

minipreps of TLR10 plasmid DNA, and sequence confirmation. 

A.  EB-agarose gel electrophoresis of PCR products amplified using TLR10 primers. 

500 ng of cDNA, generated using DNase-treated RNA from liver and spleen tissue 

samples indicated, were used as templates.  Lane 1, 100-bp ladder; lane 2, water; lane 

3, mock; lane 4, liver cDNA from woodchuck 129; lane 5, spleen cDNA from woodchuck 

129.  Arrows indicate the 520 bp-specific amplicon. The white circle indicates the band 

that was purified and inserted into plasmid DNA. 

B. EB-gel electrophoresis of miniprep products from TLR10 cloning reaction.  Lane 1, 

100-bp ladder; lane 2 - 11, TLR10 clone #1 to clone #10.  Several clones showed 

expected molecular size of bands.  The white circle indicates the clone that was 

sequenced. 

C. Woodchuck TLR10 gene fragment determined by automated DNA sequencing.  

D. Nucleotide BLAST result comparing woodchuck TLR10 sequence homology with 

other mammalian species reported.  
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Mini-scale preparations of the plasmids carrying inserts of the expected base-pair 

size yielded a sufficient amount of material to perform sequencing, thus providing 

validation that the bands of interest were indeed woodchuck TLRs.  Automated 

sequencing of the amplified fragments yielded a 435-bp sequence for woodchuck TLR1 

(calculated molecular mass of 268.61 kDa), 375-bp sequence specific for TLR2 

(calculated molecular mass of 231.64 kDa), 230-bp sequence specific for TLR3 

(calculated molecular mass of 141.96 kDa), 313-bp sequence specific for TLR4 

(calculated molecular mass of 193.29 kDa), 76-bp sequence specific for TLR5 

(calculated molecular mass of 46.84 kDa), 424-bp sequence specific for TLR6 

(calculated molecular mass of 261.80 kDa), 713-bp sequence specific for TLR7 

(calculated molecular mass of 440.40 kDa), 100-bp sequence specific for TLR8 

(calculated molecular mass of 61.66 kDa), 551-bp sequence specific for TLR9 

(calculated molecular mass of 340.43 kDa) and a 520-bp sequence specific for TLR10 

(calculated molecular mass of 321.15 kDa) (Figure 3.1C – 3.10C).  Alignment of each 

TLR sequence with published sequences deposited in GenBank using the basic local 

alignment search tool (BLAST) allowed for comparison (by percent homology in the 

nucleotide sequence) between woodchuck TLRs and those of other mammalian 

species.  All woodchuck TLRs1-10 gene fragments shared a nucleotide homology equal 

to or greater than 84% with either human, other higher primates, or even-toed hoofed 

animals, such as the sheep or cow (Figure 3.1D – 3.10D).   

Once it was confirmed that each woodchuck TLR was amplified, large quantities 

of each plasmid were produced.  By performing maxipreps of the plasmids, woodchuck 
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specific TLRs1-10 sequences are now available in Dr. Michalak’s laboratory for use in 

further applications.   

3.3. Optimization of Real-time RT-qPCR Conditions for Absolute Quantification of 

Woodchuck TLRs1-10 

3.3.1. Primer Specificity 

 To ensure specificity of real-time RT-qPCR amplification, it was important to 

perform Tm (melting temperature) calling analysis (Roche Life Sciences, LightCycler® 

480 Software, Version 1.5).  A Tm calling analysis determines the temperature at which 

amplified dsDNA product melts or dissociates into ssDNA.  As the reaction temperature 

increases, the sample fluorescence decreases due to dsDNA product separation; the 

fluorescent DNA binding dye (SYBR® green) is specific for dsDNA and will separate 

from the amplicon as it denatures.  The resulting fluorescent profile will identify the 

characteristic melting peak of a product.  The melting temperature of a given 

amplification product depends on nucleotide sequence, the length of the sequence, and 

guanine-cytosine to adenine-thymine (GC/AT) ratio (Roche Life Sciences, 2008).  If the 

primers are specific, the melting profile will show only a single peak indicating the 

presence of a single product.  A Tm calling analysis was performed on all TLRs amplified 

with primer pairs designed in this study (see Table 2).   

The specificity of TLR1-10 primer pairs was determined by analyzing melting 

curves and melting peaks.  Figures 3.11A and 3.12A illustrate melting peaks obtained  
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Figure 3.11. An example of real-time RT-qPCR optimization and determination of 

the assay sensitivity for detection of woodchuck TLR4. 

A. cDNA from PBMC samples (n=20) and 10-fold serial dilutions of known 

concentrations of TLR4 plasmid (10
6
 – 10

1
 copies) were amplified using woodchuck 

TLR4-specific primers.  The resulting melting peaks for TLR4 plasmid standards (top) 

and both standards and amplicons of test PBMCs (bottom) are displayed.  Single peaks 

obtained indicate that TLR4-specific products were amplified using both the plasmid 

standards and PBMC samples.  

B. Amplification curves for TLR4 plasmid standard dilutions showing amplification of 10
6
 

copies down to 10
1
 copies per reaction (left to right).   

C.  The resulting plot generated from amplification of TLR4 plasmid standards.  The 

standard curve had an error of 0.0160, efficiency of 1.979 and a slope of -3.374.   

D. Overlay of amplification curves for both TLR4 plasmid standards and tested PBMC 

samples.  PBMC cDNA samples were amplified and produced amplification curves 

within the range of the standard curve, thus, allowing for absolute TLR4 quantification in 

PBMCs based on known copy numbers of the TLR4 plasmid standards.   
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Figure 3.12. An example of real-time RT-qPCR optimization and determination of 

the assay sensitivity for detection of woodchuck TLR10.  

A. cDNA from liver tissue (n=20) and 10-fold serial dilutions of known concentrations of 

TLR10 plasmid standards (10
6
 – 10

1
 copies) were amplified using woodchuck TLR10-

specific primers.  The resulting melting peaks for TLR10 plasmid standards (top) and 

both standards and amplicons of test liver tissue samples (bottom) are displayed.  

Single peaks obtained indicate that TLR10-specific products were amplified in both the 

plasmid standards and liver samples.  

B. Amplification curves for TLR10 plasmid standard dilutions showing amplification of 

10
6
 copies down to 10

1
 copies per reaction (left to right).   

C. The resulting plot generated from amplification of TLR10 plasmid standards.  The 

standard curve had an error of 0.0193, efficiency of 1.914 and a slope of -3.547.   

D. Overlay of amplification curves for both TLR10 plasmid standards and test liver 

cDNA samples.  Liver cDNA samples were amplified and produced amplification curves 

within the range of the standard curve, thus, allowing for absolute TLR10 quantification. 
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after amplification with TLR4-specific or TLR10-specific primers, respectively.  As 

shown, primer pairs generated single melting peaks indicating a high specificity of the 

primers to the amplicons generated.  Ultimately, a multiplex approach was designed; 

i.e., all TLR primer pairs amplified their target sequences optimally under the same PCR 

cycling conditions. 

3.3.2. Quantification Standard Curve Optimization  

 Absolute quantification analysis allows for the quantification of an amplification 

product based on an absolute value (i.e., copy number).   For this purpose, 10-fold 

serial dilutions of known concentrations of quantification standards were amplified to 

produce amplification curves.  From these amplification curves, standard curves were 

derived.  The slope of the standard curve describes the kinetics of the reaction and is 

directly related to the efficiency (E).  Ideally, the perfect standard curve will have a slope 

of -3.3 and, thus, an efficiency of 2 (E=10
-1/slope

).  This means that the amount of nucleic 

acid in the reaction is doubling with each amplification cycle (Light Cycler480® Software 

Applications Manual, 2008).  An error value is assigned to each standard curve and is a 

direct measure of the accuracy of the quantification based on the standard curve (error 

values < 0.2 are acceptable).  Based on the crossing points of the unknown test 

samples within the standard curve, a value can be generated relative to the copy 

number of the target DNA present.  The absolute quantification method provides 

upmost accuracy when analyzing expressional changes of target genes.  

 In this study, standard curves for absolute quantification of woodchuck TLRs1-10 

were generated.  For example, amplification curves for TLR4 and TLR10 quantification 
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standards (Figures 3.11B and 3.12B, respectively) and the resulting standard curves 

(Figure 3.11C and 3.12C) produced efficiency values very close to 2, with acceptable 

error (< 0.2).  All test sample amplification curves were within the standard curve (Figure 

3.11D and 3.12D) allowing for accurate quantification.  

3.4. Housekeeping Gene Expression Profiles in Liver, Hepatocytes and PBMCs 

from Healthy and WHV-Infected Woodchucks 

It was important to investigate the expression level of the housekeeping b-actin 

gene to ensure that it is expressed at comparable levels in tissue samples being 

evaluated.  Expression of b-actin was assessed in livers (n=26) and hepatocytes 

isolated from these livers (n=26) in healthy (n=5) and WHV-infected (n=21) 

woodchucks.  Interestingly, b-actin was expressed at significantly higher levels in liver 

samples (P=0.028) when compared to hepatocytes (Figure 3.13A).  Due to this 

difference in expression, along with reasons outlined previously (Section 2.7.3), it was 

necessary to test the reliability of other housekeeping genes.  HPRT was expressed 

similarly among liver samples (n=87) and hepatocytes (n=26).  However, HPRT 

expression was significantly higher in PBMCs (n=51) than in both liver (P<0.0001) and 

hepatocytes (P<0.0001) (Figure 3.13B) (for rough copy numbers see Appendix Tables 

A1 – A3).  Therefore, TLR expression levels in livers and hepatocytes were only 

compared to those in PBMCs of healthy woodchucks.  
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Figure 3.13. HPRT is a more reliable housekeeping gene than b-actin when 

comparing gene expression in woodchuck livers and hepatocytes derived from 

these livers.   

A. Liver samples (n=26) and derived hepatocytes were obtained from 26 woodchucks 

with different forms of WHV infection. b-actin housekeeping gene is expressed at 

significantly higher levels in livers than in hepatocytes isolated from these livers. 

B. Liver samples (n=87), hepatocytes (n=26), and PBMCs (n=51) were isolated from 

woodchucks prior to and during WHV infection.  HPRT housekeeping gene was 

expressed at similar levels in livers and derived hepatocytes, while the gene 

transcription levels were significantly higher in PBMCs.  b-actin and HPRT expression 

were quantified by real-time RT-qPCR.  50 ng of RNA equivalent for each sample was 

tested in triplicate.  Results are shown as mean values ± SEM.  Differences between 

data bars marked with * are significant at P < 0.05, and **** at P ≤ 0.0001 by two-tailed 

Student’s t-test.   
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3.5. TLR Expression Levels in Normal Woodchuck Livers, Hepatocytes and 

PBMCs 

To establish baseline expression levels of woodchuck TLRs1-10, liver (n=25), 

hepatocyte (n=5) and PBMC (n=11) samples from healthy, WHV-naïve woodchucks 

were evaluated for expression of individual TLRs using specific real-time RT-qPCR 

assays.  Except for TLR2 (P=0.0422) and TLR10 (P=0.0069), TLRs were equally 

expressed in hepatocyte and liver tissue (Figure 3.14).  When compared to PBMCs, 

hepatocytes and liver tissue demonstrated significantly upregulated gene transcription 

of TLR3 (P=0.0188 and P=0.018, respectively) and TLR7 (P<0.0001 and P=0.0139, 

respectively).  Moreover, hepatocytes were found to transcribe significantly higher levels 

of TLR4 (P=0.0271) and TLR5 (P=0.0015) than PBMCs.  In contrast, TLR6 (P=0.0015), 

TLR8 (P=0.0001) and TLR9 (P<0.0001) expression was significantly greater in PBMCs 

than in liver tissue.  Interestingly, TLR1 was not expressed in hepatocytes or liver 

tissue, but was detected in PBMCs (Figure 3.14).  For rough copy numbers detected in 

livers, hepatocytes and PBMCs from healthy animals see Appendix Tables A1 – A3. 

3.6. Transcription of Individual TLRs in Livers and Hepatocytes Isolated from 

These Livers of Healthy Woodchucks and Animals with Different Stages of WHV 

Infection 

To delineate possible differences of TLR expression levels in the livers of 

animals with different stages of WHV infection, hepatic TLR expression was compared 

among all study groups.  Analysis showed that TLR5 transcriptional levels
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Figure 3.14. Baseline expression levels of TLRs1-10 in healthy woodchuck livers, 

hepatocytes and PBMCs. 

Real-time RT-qPCR quantification of woodchuck TLR1-10 transcription in healthy liver 

tissue samples (n=25), hepatocytes derived from healthy woodchuck livers (n=5) and 

PBMCs (n=11).  TLR1 expression was evaluated but not detected in liver or 

hepatocytes.  Gene transcription was normalized against woodchuck HPRT expression 

in respective tissue or cells and presented as relative expression values.  Total RNA 

equivalent of 50 ng was tested in each sample in triplicate.  Results are presented as 

mean values ± SEM.  Differences between data bars marked with * are significant at P 

< 0.05, ** at P < 0.01, *** at P < 0.001, and **** at P < 0.0001 by two-tailed Student’s t-

test.  
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were significantly greater in livers of healthy (P=0.0082) and SLAH (P=0.0035) animals 

when compared to those from woodchucks with CH (Figure 3.15).  While livers from 

healthy woodchucks (P=0.0005) and animals with PreAH (P=0.0107) showed 

significantly lower transcription levels of TLR9 when compared to those from animals 

with POI.  Lastly, TLR8 expression was upregulated in livers of animals with PreAH 

(P=0.0493) in comparison to those from woodchucks with SLAH (for additional 

information see Appendix Table A1) 

In hepatocytes, transcriptional levels of TLR1-10 were also evaluated across all 

study groups.  When compared to CH, hepatocytes from healthy animals had 

significantly higher levels of TLR5 (P=0.0350), while those from SLAH animals 

displayed upregulated expression of TLR3 (P=0.0352), TLR7 (P=0.0096) and TLR10 

(P=0.0379) (Figure 3.15).  Hepatocytes from woodchucks with CH also showed 

downregulated expression of TLR7 and TLR8 when compared to woodchucks with 

PreAH (P=0.0106) or POI (P=0.0038).  It became apparent that hepatocyte TLR 

expression in CH was characterized by distinctive downregulation of TLR3, TLR5, 

TLR7, TLR8, and TLR10 in comparison to hepatocytes from healthy animals and those 

from woodchucks with other stages of WHV infection.  For rough copy numbers 

detected in hepatocytes see Appendix Table A2.  

Transcription levels of TLR1-10 were compared between livers and hepatocytes 

derived from these livers from healthy and WHV-infected woodchucks.  The livers of 

healthy woodchucks (P=0.012) and animals with SLAH (P=0.002) showed significantly 
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Figure 3.15. TLRs1-10 expression profiles in livers and hepatocytes purified from 

these livers from healthy and WHV-infected woodchucks 

Transcriptional levels of TLRs1-10 in livers from healthy animals (n=5), woodchucks 

with PreAH (n=4), SLAH (n=8), CH (n=6) or POI (n=3) and hepatocytes isolated from 

these livers.  Expression was quantified by real-time RT-qPCR.  TLR1 expression was 

evaluated but not detected in livers or hepatocytes. TLR transcription in livers and 

hepatocytes were only compared within the same study group (i.e., form of WHV 

infection), while expression in livers were compared with livers, and hepatocytes with 

hepatocytes across the study groups.  TLR transcription was normalized against HPRT 

expression and presented as relative expression values.  Total RNA equivalent of 50 ng 

was tested for each sample in triplicate. Results are shown as mean values ± SEM.  

Differences between data bars marked with * are significant at P < 0.05, ** at P < 0.01, 

and *** at P < 0.001, by two-tailed Student’s t-test.  
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upregulated levels of TLR7 when compared to hepatocytes from the same study groups 

(Figure 3.15).  Conversely, livers from woodchucks with SLAH demonstrated 

significantly downregulated gene expression of TLR3 (P=0.0253), TLR4 (P=0.0478), 

and TLR10 (P=0.0193) when compared to hepatocytes derived from these livers.  TLR8 

expression was also found to have significantly lower levels in the livers than 

hepatocytes (P=0.0005) in animals with POI (Figure 3.15).  These results clearly 

indicated that there are significant differences in expression of individual TLRs between 

livers and high purity hepatocytes isolated from these livers.  Furthermore, these 

differences were influenced by the status of WHV infection and they were most evident 

in animals with SLAH. 

There were no significant differences seen in expression of TLR2 and TLR6 in 

livers and hepatocytes from healthy and WHV-infected woodchucks.  Again, TLR1 was 

undetected in both liver and hepatocytes samples.  

3.7. Expression Profiles of TLRs1-10 in Sequential Liver Biopsies Obtained Prior 

to and During WHV Infection 

Woodchuck liver tissue collected at biopsies throughout the course of WHV 

infection and during follow-up autopsy were investigated.  When compared to the 

heathy state, the PreAH phase was characterized by significantly higher expression 

levels of TLR3 (P=0.0060) (Figure 3.16).  Livers in the PreAH stage also had higher 

transcription levels of TLR3 (P=0.0074), TLR5 (P=0.0251) and TLR7 (P=0.0329) when 

compared to the SLAH phase, while TLR8 (P=0.0276) was upregulated when compared      
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Figure 3.16. Transcription levels of TLRs1-10 in sequential liver biopsy samples 

collected from woodchucks with different forms of WHV infection.  

Liver tissue samples from healthy woodchucks (n=25) and animals with PreAH (n=8), 

AH (n=8), SLAH (n=11), CH (n=18) phases of WHV hepatitis or POI (n=17) were 

analyzed for expression of TLR1-10.  Liver samples analyzed were a combination of 

biopsy and autopsy samples collected prior to and during different phases of hepatitis or 

SLAH or POI. Quantification of mRNA was performed by RT-qPCR.  TLR1 expression 

was evaluated but not detected. Gene transcription levels were normalized against 

woodchuck HPRT expression and presented as relative expression values. Total RNA 

equivalent of 50 ng was tested from each test sample in triplicate. Results are shown as 

mean values ± SEM. Differences between data bars marked with * are significant at P < 

0.05, ** at P < 0.01, and *** at P < 0.001, by two-tailed Student’s t-test.  
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to livers with POI.  Conversely, POI livers had significantly higher expression levels of 

hepatic TLR7 (P=0.0395) when compared to the SLAH phase.  Analysis of liver biopsies 

from the AH phase showed significant upregulation of TLR genes, more specifically, 

TLR3 (P=0.0039), TLR4 (P=0.0148), TLR6 (P=0.0312), TLR7 (P=0.0132), TLR8 

(P=0.0024), TLR9 (P=0.0244) and TLR10 (P=0.0020) when compared to their 

expression in healthy liver tissue (Figure 3.16).  Upregulated transcriptional levels of 

hepatic TLRs were continued when comparing AH with both SLAH and POI forms of the 

infection.  AH stage livers had significantly higher transcripts for TLR2 (P=0.0175), 

TLR3 (P=0.0455), TLR4 (P=0.0283), TLR5 (P=0.0312), TLR7 (P=0.0447), TLR8 

(P=0.0229), and TLR10 (P=0.0302) compared to the SLAH stage.  When compared to 

POI, AH livers showed higher expression of TLR3 (P=0.0254), TLR7 (P=0.0291), TLR8 

(P=0.0040), TLR9 (P=0.0083) and TLR10 (P=0.0045).  In a similar manner, CH livers 

transcribed significantly more TLR2 (P=0.0201), TLR3 (P=0.0265), TLR4 (P=0.0098), 

TLR6 (P=0.0006), TLR7 (P=0.0176), TLR8 (P=0.0066), TLR9 (P=0.0041), and TLR10 

(P=0.0068) than livers of healthy animals.  Liver biopsies from woodchucks with CH 

also had significantly greater transcriptional levels of TLR2 (P=0.0353), TLR4 

(P=0.0170), TLR6 (P=0.0133), TLR7 (P=0.0247) and TLR8 (P=0.0386) when compared 

to the SLAH stage.  TLR2 (P=0.0143), TLR6 (P=0.0064), TLR7 (P=0.0300), TLR8 

(P=0.0090), TLR9 (P=0.0065) and TLR10 (P=0.0201) were transcribed at significantly 

higher levels, again in the CH phase, when compared to the liver tissue collected during 

POI (Figure 3.16).  Again, TLR1 was undetectable in liver biopsies throughout the 

course of WHV infection.  There was a trend towards a global increase in hepatic TLR 

expression when comparing healthy, SLAH, and POI phases directly to both AH and CH 
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stages.  The Increase in TLR expression could be related to active liver inflammation 

characterizing both AH and CH.  For rough copy numbers detected see Appendix Table 

A1. 

3.8. Expression of TLRs1-10 in Sequential PBMC Samples of Healthy Animals and 

Those with Different Stages of Experimental WHV Infection   

 Sequential PBMC samples collected from healthy and infected woodchucks 

during the course of WHV infection progression were evaluated for TLR1-10 

transcription levels.  As seen with liver tissue, woodchucks with CH showed upregulated 

expression of TLR genes in their PBMCs when compared to the PBMCs from healthy 

woodchucks and from other study groups (Figure 3.17).  When comparing cells from 

healthy animals and those with SLAH, PBMCs from CH had significantly higher 

expression levels of TLR6 (P=0.0452) and TLR2 (P=0.0420).  Additionally, PBMCs from 

CH transcribed greater levels of TLR2 (P=0.0209), TLR6 (P=0.0029), TLR9 (P=0.0110) 

and TLR10 (P=0.0129) in comparison to those from AH (Figure 3.17).  TLR8 was 

significantly downregulated in the cells from SLAH when compared to PBMCs from 

PreAH (P=0.0423) and AH (P=0.0066).  Whereas TLR3 had higher expression levels in 

PBMCs from PreAH phase (P=0.0213) when compared to the cells from AH.  For rough 

copy numbers detected in PBMCs see Appendix Table A3. 
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Figure 3.17. Profiles of TLRs1-10 expression in sequential PBMC Samples 

isolated from heathy woodchucks and those with different forms of WHV 

infection.  

Transcriptional levels of TLRs1-10 in PBMCs from healthy animals (n=11) and 

woodchucks during the course of different phases of WHV infection, including PreAH 

(n=8), AH (n=18), SLAH (n=6) and CH (n=8).  Quantification of mRNA was performed 

by RT-qPCR. Gene transcriptional levels were normalized against woodchuck HPRT 

expression in individual PBMC samples.  Total RNA equivalent of 50 ng was tested 

from each test sample in triplicate. Results are shown as mean values ± SEM.  

Differences between data bars marked with * are significant at P < 0.05, and ** at P < 

0.01, by two-tailed Student’s t-test.  
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Chapter 4 - Discussion 

4.1. Summary of Findings 

This study investigated the expression of TLRs1-10 in the liver, hepatocytes 

isolated from these livers, and PBMCs of healthy woodchucks and animals with different 

stages of experimental WHV infection and forms of WHV hepatitis.  Due to the lack of 

recognition of the full spectrum of woodchuck TLRs, primers specific for TLRs1-2 and 

TLRs4-10 were generated.  TLRs1-10 primers were used to amplify woodchuck TLR 

gene exon fragments, as confirmed by sequencing and interspecies homology 

comparisons.  TLRs1-10 primers were optimized for RT-qPCR and a multiplex assay 

was designed that allowed for simultaneous absolute quantification of TLRs1-10 

expression in a single PCR run with high specificity and sensitivity.  Expression analysis 

revealed that TLRs1-10 transcription levels were comparable among healthy 

woodchuck livers and their derived hepatocytes, while PBMC expression differed.  

However, there were significant differences in TLR expression in livers and their derived 

hepatocytes when comparing healthy woodchucks and woodchucks with different 

stages of WHV-infection. Analysis of hepatocytes collected throughout different forms of 

WHV infection showed a trend towards decreased expression during CH, while liver 

biopsies showed a trend towards global increase in TLR expression during active liver 

inflammation (i.e., AH and CH).  Finally, sequential PBMC samples collected from 

healthy and WHV-infected woodchucks showed an increase in most TLR gene 

transcription during CH. 
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4.2. Timeline of Woodchuck TLRs1-10 Identification 

A comparison of the woodchuck TLRs1-10 gene fragments identified in this study 

(Figures 3.1C – 3.10C) with previously published woodchuck TLRs revealed sequence 

fragments which were not previously reported, in addition to entirely new woodchuck 

TLRs sequences identified.  In November of 2009 (when this study was already in 

progress), partial sequences for TLR3 (GenBank accession number EU586552.1), 

TLR4 (GenBank accession number EU586553.1), TLR7 (GenBank accession number 

EU586554.1), TLR8 (GenBank accession number EU586555.1), and TLR9 (GenBank 

accession number EU586556.1) were reported by another group (Zhang et al., 2009).  

In December of 2010 and August of 2015, woodchuck TLR2 (GenBank accession 

number HQ446273.1) and the complete coding sequence for woodchuck TLR7 

(GenBank accession number KT013099.1) were also reported to the National Center for 

Biotechnology Information (NCBI) GenBank.  When compared to the TLR gene 

fragments identified in the current study (Figure 3.1A – 3.10A), all but TLR3 and TLR7 

sequences were partially or fully unique and have not yet been previously reported 

(Table 2.1).  It is important to note that I successfully identified all woodchuck TLR 

sequences, with the exception of TLR3, in the Michalak Lab prior to the reporting by 

other research groups.  TLR2, TLR4, TLR7 and TLR9 were positively identified during 

my honors degree program in the summer semester in 2008.  TLR1, TLR5, TLR6, TLR8 

and TLR10 woodchuck sequences were identified during my Master’s degree program 

which began in September of 2009.  
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4.3. Woodchuck TLR1-10 mRNA Protein Coding Sequence Compatibility with 

Human TLRs1-10  

Woodchuck TLRs1-10 partial gene sequences (Figure 3.1C – 3.10C) were 

aligned with complete mRNA protein coding sequences of human TLRs1-10 and then 

translated to their respective amino acid sequences.  Based on the alignment position of 

the woodchuck amino acid sequence, it was possible to infer the region of the TLR 

protein that the partial woodchuck gene fragments represented.  After analyzing 

woodchuck TLRs1-10 amino acid sequences it was apparent that all identified gene 

fragments, except for TLR1 and TLR6, coded for the TIR domain of the TLR protein.   

Woodchuck TLR3 (amino acids 790 – 870), TLR4 (amino acids 710 – 810), and TLR5 

(amino acids 770 – 800) aligned with a region located directly within the TIR domain of 

human TLR3 (GenBank accession number ABC86910), TLR4 (GenBank accession 

number AAF05316), and TLR5 (GenBank accession number AAI09119).   While TLR8 

(amino acids 880 – 910) and TLR9 (amino acids 840 – 1030) spanned the cytoplasmic 

region prior to the TIR domain, as well as overlapping with the TIR domain of human 

TLR8 (GenBank accession number AAZ95441) and TLR9 (GenBank accession number 

AAZ95521).  Furthermore, TLR2 (amino acids 540 – 670), TLR7 (amino acids 790 – 

1030), and TLR10 (amino acids 520 – 693) corresponded to the extracellular, 

transmembrane and TIR domains of human TLR2 (GenBank accession number 

AAH33756), TLR7 (GenBank accession number AAZ99026), and TLR10 (GenBank 

accession number AAY78491).  In contrast, TLR1 (amino acids 120 – 270) and TLR6 

(amino acids 280 – 420) represent the cytoplasmic domain of human TLR1 (GenBank 

accession number AAH33756) and TLR6 (GenBank accession number BAA78631).   
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TLRs1-10 primers used in this study were designed based on a consensus sequence 

that incorporated multiple mammalian complete protein coding sequences for each TLR 

gene.   The TIR domain is the most evolutionary conserved region of TLRs, thus, it is 

not surprising that most primers were located in this region due to high sequence 

homology when comparing multiple mammalian genes.  As mentioned in Section 

1.7.3.1.1, TLR2 can dimerize with both TLR1 and TLR6.  It has been shown that the TIR 

domain of both TLR1 and TLR6 have high sequence homology, making it an 

undesirable region for primer development (Plain et al., 2010).  Therefore, primers for 

woodchuck TLR1 and TLR6 were designed to amplify the mRNA protein coding 

sequence for the cytoplasmic region, where the receptors share the least sequence 

homology.  This allowed for specific amplification of woodchuck TLR1 and TLR6 in our 

study.   

4.4. Amplification Techniques Utilized in This Study 

This current work implemented multiple techniques that allowed for efficient and 

accurate quantification of TLRs1-10 in healthy and WHV-infected woodchucks with a 

very high degree of sensitivity.  Firstly, a multiplex assay was developed that allowed for 

simultaneous amplification of TLRs1-10 in woodchuck tissue and cell samples in the 

same RT-qPCR run (Figure 2.2).  This technique was highly valuable as it served as an 

efficient quantifying tool to determine the level of expression of different TLRs in the 

same tissue or cell sample.  Most TLRs can recognize a wide range of PAMPs, thus, 

utilizing a multiplex approach helped quickly identify the TLR signaling pathway being 

activated in a given experimental group.  In the same manner, TLRs1-10 expressional 
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changes were able to be quickly assessed in a single RT-qPCR reaction from multiple 

test samples.   

The quantification techniques used in this study were designed to provide 

absolute quantification of TLR target genes with a high degree of accuracy and 

sensitivity.  TLRs1-10 plasmid standards were developed that contained inserts of each 

TLR gene fragment of interest.  Serial 10-fold dilutions of these quantification standards 

(Figure 3.11B and 3.12B) were included in each RT-qPCR run which allowed for 

absolute quantification of expression of the TLR target gene in test samples (Figure 

3.11D and 3.12D).  Additionally, each TLR primer pair designed in this study was able 

to successfully amplify its target gene sequence with a high degree of sensitivity (i.e., 

10
1
 – 10

2
 copies/reaction) (Table 2.2), allowing for the detection of TLR expressional 

changes at very low levels.  Controls for each PCR reaction included a NTC that 

contained everything but the cDNA template.  This was essential for excluding potential 

contamination in the PCR reagents (Figure 2.1).  In addition, a mock was included to 

control for any contamination carryover from the RT step.  In this control, water was 

used instead of RNA template when reverse transcribing RNA to cDNA.  This would 

control for any contamination carryover from RT reagents.  Further, ICs were included 

(IC#1 Liver, IC#1 Spleen, IC#2 Liver, IC#2 Spleen) that consisted of cDNA from both 

liver and spleen tissue samples from two healthy animals.  The expression levels of 

TLRs1-10 were previously quantified for these samples. They were used to assess 

consistency of TLR quantification between RT-qPCR runs on different plates.  

Expression levels of the tested gene should be consistent from plate to plate.   Thus, 

the amplification techniques utilized in this study included the proper specificity and 
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quantification controls to ensure accurate quantification of TLRs1-10 in healthy and 

WHV-infected woodchucks.   

4.5. TLRs1-10 Expression Profiles in Normal Woodchuck Livers and Isolated 

Hepatocytes Were Comparable, While PBMCs Displayed Different Patterns of 

TLRs1-10 Expression than in Hepatic Tissue 

To establish a baseline for TLRs1-10 expression, hepatocytes were isolated from 

the livers of normal woodchucks and both total hepatic tissue and their isolated 

hepatocytes were analyzed for expression of TLRs1-10.  In addition to liver and 

hepatocytes, PBMCs isolated from healthy woodchucks were also analyzed for their 

TLRs1-10 expressional patterns.  It was found that TLR transcription levels in normal 

woodchuck liver and isolated hepatocytes were, for the most part, equally expressed 

(Figure 3.14). In contrast, woodchuck PBMCs were found to express TLR6, TLR8, and 

TLR9 at significantly higher levels than the liver and isolated hepatocytes.  While TLR3, 

TLR4, TLR5, and TLR7 were expressed at significantly lower levels in PBMCs than in 

the liver and hepatocytes (Figure 3.14).  TLR1 expression was not detected in the liver 

or hepatocytes, but was identifiable in PBMCs of healthy woodchucks. 

Studies investigating TLR expression in healthy human tissues have found that 

the liver contains the lowest mRNA levels of TLRs1-10 when compared to other organs 

in the body (Zarember and Godowski, 2002; Nishimura and Naito, 2005).  This 

decreased basal expression has been suggested to contribute to the high immune 

tolerance of the liver to intestinal microbes of which the liver is constantly exposed 

(Mencin et al., 2009).  In contrast, it has been shown that human PBMCs, along with the 
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spleen, have the highest mRNA levels of TLRs1-10, as they are most likely to encounter 

external pathogens in the blood and lymphoid system.  One study comparing human 

PBMCs to hepatic tissue has found that all TLRs are expressed at higher levels in 

PBMCs when to compared to hepatic tissue, except TLR3 (Zarember and Godowski, 

2002).  Consistent with previous findings in human, the current study found that TLR3 

mRNA was significantly higher in woodchuck livers when compared to woodchuck 

PBMCs (Figure 3.14).  However, TLR4, TLR5, and TLR7 were found to be lower in 

woodchuck PBMCs than in hepatic tissue, while all other TLRs were expressed at 

comparable levels.  The differences seen in basal (healthy state) expression patterns of 

TLRs between human and woodchuck may be attributed to species differences in 

expression of receptors involved in the innate immune response.  Due to the limited 

availability of woodchuck TLR1-10 expressional studies in the literature, it was not 

possible to compare the basal TLR expression profiles found in this study with other 

woodchuck studies.   

4.6. There Are Significant Differences in TLR Expression Profiles in the Liver and 

Isolated Hepatocytes During the Course of WHV Infection 

Activation of the innate immune system through TLR signaling has been a recent 

focus for the development of treatments for hepadnaviral infection.  In the woodchuck 

model of HBV infection, the majority of peer-reviewed articles have been focused on 

manipulation of TLR signaling with a lack of expressional analysis of individual TLR 

genes.   Furthermore, due to the difficulties in obtaining liver biopsies during the course 

of infection, woodchuck studies have been limited to experiments involving in vitro 
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manipulations (i.e., cultured hepatocyte cell lines and PWHs) and analysis of PBMC 

populations.  Our study is the first to evaluate TLRs1-10 transcriptional levels in the liver 

and isolated hepatocytes of healthy woodchucks and those with different stages of 

WHV infection.  Similarly, this study is the first to investigate TLR1-10 expressional 

changes in woodchuck liver biopsies throughout the course of WHV infection.   

Firstly, when comparing woodchuck livers and their isolated hepatocytes across 

stages of infection, there was a common trend towards significant downregulation of 

TLRs (i.e., TLR3, TLR5, TLR7, TLR8 and TLR10) in hepatocytes from CH when 

compared to hepatocytes from healthy animals and those with PreAH, SLAH, and POI 

(Figure 3.15).  WHV has a tropism toward the liver, and with hepatocytes contributing to 

about 75-85% of the liver total cell number, WHV productively infects nearly 100% of 

hepatocytes by the time CH develops.  Studies in HBV-transgenic mice have shown 

that HBV is able to suppress innate immune receptor signaling in hepatocytes and 

nonparenchymal liver cells (Wu et al., 2009).  Additionally, it has been well documented 

that HBV and its associated antigens and nucleic acids have the ability to augment 

TLR2 (Visvanathan et al., 2007), TLR3 (An et al., 2007; Li et al., 2009), and TLR9 

(Vincent et al., 2011; Martinet et al., 2012) expression in patients with CHB, thus, 

potentially diminishing immune control of the virus and contributing to establishment of 

CHB.  The downregulation of TLR expression observed in the hepatocytes of 

woodchucks with CH may be due to WHV’s ability to evade/suppress TLR signaling.   

When comparing liver and hepatocytes within the same study group it was 

observed that SLAH animals have significantly lower levels of TLR3, TLR4 and TLR10 
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in the liver when compared with isolated hepatocytes (Figure 3.15).  SLAH is defined as 

the resolution of AH, accompanied by a reduction of liver inflammation while virus 

replication persists at low level.  In the woodchuck model, AH is characterized by 

immune infiltrations that, in some cases, can reach a high histological degree of 

hepatitis (Guy et al., 2008).  Immune infiltrations, consisting mainly of CD4+ (Th) and 

CD8+ T cells (CTLs), will increase overall TLR expression in the liver.  Previous studies 

have confirmed that CD4+ and CD8+ T cells express mRNA and protein of most TLRs 

(Rahman et al., 2009).  In addition to T cells, hepatic immune infiltrations consist of B 

cells, monocytes/macrophages, and NK cells that all express TLRs at relatively high 

levels (Zarember and Godowski, 2002; Tu et al., 2008; Hua and Hou, 2013).  With the 

resolution of AH (i.e., SLAH), periods of normal or near normal liver morphology are 

observed (Michalak et al., 1999; Guy et al., 2008).   Thus, it is not surprising that SLAH 

animals have decreased expression of TLR3 and TLR4 in the liver, as the number of 

immune cells expressing TLRs has decreased.  As seen in Figure 3.14, TLR10 

expression is significantly lower in the normal liver when compared to isolated 

hepatocytes, thus, lower levels of TLR10 in the liver of SLAH is closer to the situation 

characterizing the normal liver.  

To gain a better understanding of the transcriptional regulation of TLRs during 

the progression of WHV-infection, liver biopsies taken throughout the course of infection 

were evaluated.  When comparing healthy, SLAH, and POI stages of infection to AH 

and CH, there was significant upregulation of TLRs2-10 in the livers of woodchucks with 

AH and CH (Figure 3.16).  HBV is a noncytopathic virus that causes intrahepatic 

inflammatory infiltrations during both AH and CH stages of infection.  HBV-specific CTL 
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responses are generally too weak to eliminate the virus from infected hepatocytes, as 

observed in woodchucks with SLAH (Michalak et al., 1999).  However, the immune 

response is sufficient enough to induce acute and chronic liver inflammation 

(Rehermann, 2000).  As mentioned, lymphocytic infiltration (i.e., Th cells, CTLs, B cells, 

monocyte/macrophages, and NK cells) peaks during AH and can continue engaging the 

liver throughout the course of CH (Guy et al., 2008).  One study reported that immune 

infiltrates in a liver biopsy from a patient with CHB contained around 75% T cells,  10% 

B cells, and 10% NK cells (Mani and Kleiner, 2009).  Therefore, the observed global 

increase in TLR expression in the liver during AH and CH stages of WHV infection may 

be directly related to intrahepatic inflammatory infiltration resulting in a global increase 

in cells expressing TLRs.  As previously mentioned, hepatocyte TLR expression is 

downregulated during CH, which may be attributed to active suppression of the innate 

responses by the virus.  Thus, it can be deduced that since the increase in TLR 

expression in the liver of woodchucks with CH is not due to an increase in hepatocyte 

TLR expression, it must be directly related to intrahepatic inflammatory infiltration. 

When analyzing woodchuck liver biopsies from animals with PreAH it was 

apparent that TLR3, TLR5, and TLR7 transcriptional levels were upregulated when 

compared to the SLAH phase, while TLR8 expression was increased when compared to 

livers from woodchucks with POI (Figure 3.16).  Previous studies in the Michalak lab 

have shown that WHV mRNA transcripts are detectable in hepatic tissue starting from 

one hour post infection, while molecular markers of the innate immune responses are 

detectable within the first few hours post-infection (Guy et al., 2008).  By 3 dpi, WHV-

induced activation of intrahepatic APCs, NK and NKT cells is observed, which coincides 
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with a reduction in liver WHV virus load (Guy et al., 2008).  Additionally, hepatocytes 

have been shown to actively contribute to intrahepatic immune regulation and likely 

moderation of the local inflammatory response in WHV-infected woodchucks (Guy et al., 

2010; Guy et al., 2011).  Thus, the upregulation of TLRs observed in the livers of 

animals with PreAH is likely due to an increase in hepatocyte innate immune receptor 

expression in attempt control WHV levels within the infected cells.  Similarly, the 

activation of intrahepatic APCs, NK and NKT cells in the early stages of infection likely 

adds to the overall increase in innate immune responses.  

4.7. Selective TLRs are Upregulated in PBMCs Isolated from Woodchucks with CH 

 In the recent past, hepadnaviral infection of the lymphatic system was considered 

controversial.   As of late, there has been accumulating data to support the idea that 

hepadnaviruses are both hepatotrophic and lymphotrophic in nature (Michalak, 2000; 

Michalak et al., 2004; Mulrooney-Cousins and Michalak, 2015).  Studies in WHV-

infected woodchucks and HBV-infected humans have shown that PBMCs provide a 

place for hepadnaviruses to replicate and persist and they also play a role in the 

transmission of the virus from mother to child (Coffin and Michalak, 1999; Shao et al., 

2013).  Due to the relatively non-invasiveness of blood collection, the majority of TLR 

investigations in the HBV field have been largely PBMC based.  Most studies have 

focused on manipulation of TLR signaling to control virus replication, however, gene 

expression analysis of TLRs throughout the course of infection was usually absent or 

limited to a specific TLR (Zhang et al., 2012; Meng et al., 2016).  Our study is the first to 
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investigate the expression profiles of TLRs1-10 in PBMCs isolated from woodchucks 

during the course of WHV infection and in different stages of WHV hepatitis.    

Consistent with the findings in liver tissue, woodchuck PBMCs from animals with 

CH showed significant upregulation of TLR2, TLR6, TLR9 and TLR10 transcripts when 

compared to healthy and other stages WHV infection (Figure 3.17).  These findings 

support the previous argument that immune cell infiltrates contribute to the increase in 

TLR expression observed in the liver of animals with AH and CH (Figure 3,16).  Immune 

cells (Th cells, CTLs, B cells, monocyte/macrophages, and NK cells) not only have 

higher basal expression levels of TLRs, they likely also have upregulated TLR 

expression during CH on cells forming intrahepatic inflammatory infiltrates.  

The expression patterns of both TLR2 and TLR9 in woodchuck PBMCs observed 

in this study somehow differs from what was seen in previous reports describing 

findings in WHV-infected woodchucks.  One study investigating TLR2 expression in 

PBMCs of healthy woodchucks and those with AH and CH found that TLR2 was 

significantly downregulated in both AH and CH stages of infection (Zhang et al., 2012).  

Additionally, the authors found that mRNA expression of TLR2 was negatively 

correlated with WHV viral loads in the sera of animals with AH, and it was suggested 

that TLR2 expression may be actively suppressed by the virus.  In the current study, an 

upregulation of TLR2 was seen in the PBMCs of woodchucks with CH when compared 

to animals with AH and SLAH (Figure 3.17).  More investigation is needed to 

conclusively elucidate TLR2’s role during WHV infection.  Finally, it has been previously 

shown that TLR9 signaling in human pDCs and B cells is diminished in patients with 
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CHB, thus potentially contributing to establishment of CHB (Vincent et al., 2011; 

Martinet et al., 2012).  Although it was observed in the current study that TLR9 was 

upregulated in PBMCs during CH (Figure 3.17), it is possible that its ability to induce an 

antiviral response is diminished.  An increase in mRNA for a particular gene may not 

always correlate into an increase in functional activity of transcribed protein. Functional 

studies are needed to confirm that TLR9 antiviral response was affected by WHV-

induced CH. 

It is interesting to note that TLR1 was detectable in woodchuck PBMCs but not in 

the liver or isolated hepatocytes.  There were no significant differences in TLR1 

expression observed during the course of WHV-infection, however, it is possible that 

TLR1 may be more functionally active as an innate immune receptor in the periphery 

than in the intrahepatic inflammatory infiltrates.  
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Chapter 5 – Conclusions and Significance 

5.1. Summary and Conclusions 

1. Primers for woodchuck TLRs1-2 and TLRs4-10 were designed and used to 

successfully amplify woodchuck TLRs1-10 gene exon fragments.   

2. With the exception of TLR2 and TLR10, expression of TLRs in livers (n=25) and 

hepatocytes isolated from healthy woodchucks (n=5) was not different.  However, 

comparing pairs of livers and hepatocytes isolated from them (n=5), significant 

upregulation of TLR7 was found.   

3. An upregulation of several TLRs (i.e., TLR3, TLR5, TLR7) in the liver was 

characteristic of animals with PreAH when compared to woodchucks with SLAH. 

TLR3 and TLR8 transcription was also significantly higher in PreAH livers when 

compared to healthy animals and those with POI, respectively.  No difference in 

liver TLRs2-10 transcription was evident between animals with PreAH and those 

with AH or CH.  Comparing pairs of livers and hepatocytes obtained during 

PreAH (n=4), there was no difference in TLRs expression.  The results suggest 

that upregulated TLR transcription during PreAH may be related to an increase in 

hepatic innate immune response in attempt to control WHV during early infection.  

Interestingly, the level of this response appeared to be comparable to that 

characterizing AH and CH despite of the absence of inflammatory cell infiltrations 

in PreAH. 

4. Livers from woodchucks with SLAH demonstrated significant downregulation of 

TLR2, TLR3, TLR4, TLR5, TLR7, TLR8 and TLR10 when compared to livers 
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from animals with AH, while TLR2, TLR4, TLR6, TLR7 and TLR8 transcription 

was significantly lower when compared to livers from CH.  Furthermore, TLR7 

was downregulated in the livers of SLAH woodchucks when compared to animals 

with PreAH and POI.  There were no significant differences in expression of liver 

TLRs2-10 when comparing SLAH to healthy animals.  Hepatocytes from animals 

with SLAH showed a significant reduction in gene transcription of TLR3, TLR7 

and TLR10 when compared to hepatocytes from CH.  When comparing liver and 

hepatocyte pairs (n=8), SLAH animals have significantly higher TLR3, TLR4 and 

TLR10 expression levels in their hepatocytes than livers, while TLR7 was 

downregulated.  Taken together, livers from SLAH transcribed significantly less 

TLRs than livers in AH and CH, but similar levels as in healthy woodchucks.  This 

is consistent with resolution of liver inflammation.  However, upregulated 

expression of some TLRs in hepatocytes from SLAH suggests that WHV 

persisting in these cells was recognized by the innate immune system.     

5. In the livers of woodchucks with CH, an upregulation of TLRs2-4 and TLRs6-10 

was evident when compared to healthy animals and those with SLAH or POI, but 

not to those with AH.  In contrast, a downregulation of TLR expression (i.e., 

TLR3, TLR5, TLR7, TLR8 and TLR10) in hepatocytes was seen in CH when 

compared to healthy animals and those with PreAH, SLAH and POI.  Taken 

together, this may suggest active suppression of TLR expression in hepatocytes 

during CH due to WHV’s potential ability to evade or suppress TLR signaling.  

When comparing pairs of livers with their isolated hepatocytes (n=6), no 

differences were observed in CH.  
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6. Liver tissue obtained at biopsies, that encompasses both hepatocytes and other 

liver cells, showed significant upregulation of expression of TLRs during AH (i.e., 

TLR2-10) and CH (i.e., TLR2-4 and TLR6-10).  The increase in TLR expression 

appeared not to be related to an increase in hepatocyte TLR expression in CH 

and, thus, was likely related to intrahepatic inflammatory infiltration alone. 

7. Expression of TLR2, TLR3, TLR6, TLR7, TLR8, TLR9 and TLR10 was found to 

be significantly downregulated in the livers of POI animals when compared to AH 

and CH.  TLR8 transcription was also downregulated in the livers of POI 

woodchucks when compared to PreAH, while TLR7 was upregulated when 

compared to SLAH.  There were no differences seen between TLRs2-10 

transcription in POI livers when compared to healthy hepatic tissue.  When 

considering hepatocytes, TLR8 transcription was significantly upregulated in 

comparison to the livers they were isolated from and it was also upregulated in 

relation to hepatocytes from animals with CH.  POI is characterized by the 

absence of classical serological markers of WHV infection, WHV DNA in the liver 

and liver inflammation, therefore it is not surprising that there was no induction of 

TLR expression in hepatic tissue.  

8. Woodchuck PBMCs significantly upregulated TLR expression (i.e., TLR2, TLR6, 

TLR9 and TLR10) during CH and this may coincide with the increased TLR 

expression observed during active liver inflammation. 

9. Overall, this study uncovered that hepatic TLR expression is significantly 

modulated in the course of WHV infection and coinciding hepatitis, and that 
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analysis of TLRs expression in circulating lymphoid cells (PBMC) does not reflect 

the liver profiles of TLR transcription. 

5.1.1. Comments 

 This study was the first to investigate TLRs1-10 expression patterns over the 

course of hepadnaviral infection and in different forms of hepatitis in the woodchuck 

model.  Primers were designed to successfully amplify woodchuck TLRs1-2, and 

TLRs4-10 gene exon fragments.  These primers and their target gene sequences are 

now available to further TLR research in the WHV-woodchuck system.  Ultimately, a 

multiplex assay was developed allowing for the amplification of TLRs1-10 in test 

woodchuck tissue or cell samples in a single PCR run.  

Expression analysis of livers and isolated hepatocytes revealed that TLR 

expression from normal woodchucks were comparable, while PBMCs differentially 

expressed TLRs1-10 in relation to hepatic tissue.  In WHV-infected woodchucks, an 

upregulation of several TLRs, namely TLR3, TLR5, TLR7 and TLR8, was discovered in 

the livers of animals with PreAH when compared to healthy animals and those with 

SLAH and POI.  This might be due to an increase in hepatic innate immune response in 

attempt to control WHV during early infection.  The activation of intrahepatic APCs, NK 

and NKT cells has been observed in the early stages of infection.  In contrast, a 

downregulation of TLR expression (i.e., TLR3, TLR5, TLR7, TLR8 and TLR10) in 

hepatocytes was identified in animals with CH when compared to hepatocytes from 

healthy animals and those with PreAH, SLAH, and POI.  The observed suppression of 

TLR expression may be due to WHV’s ability to evade/suppress TLR signaling.  On the 
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other hand, liver biopsies demonstrated significant upregulation of TLR gene transcripts 

during AH (i.e., TLRs2-10) and CH (i.e., TLRs2-4 and TLRs6-10), when there is active 

cell inflammatory infiltration in the liver.  Therefore, it can be deduced that the increase 

in TLR expression in the liver of woodchucks with AH and CH must be related to 

inflammatory infiltration.  This is supported by the fact that woodchuck PBMCs (i.e., Th 

cells, CTLs, B cells, monocyte/macrophages, and NK cells) have higher expression 

levels of TLR2, TLR6, TLR9 and TLR10 during CH.  

5.2. Significance of Findings 

Taken together, it can be concluded that the liver TLR expression is significantly 

altered in the course of hepadnaviral infection.  Although binding of hepadnaviral 

antigens to TLRs has not yet been directly confirmed, there is accumulating evidence 

strongly indicating TLR involvement in the immune response to HBV infection.  The 

findings in my study suggest that restoration of hepatocyte TLR expression may be 

important in resolving CH.  Restoring hepatocyte TLR function may promote viral 

clearance.  In consequence, this should limit intrahepatic immune cell infiltration and 

coinciding damage to the liver.  The findings of this study contribute to a better 

understanding of the role of TLRs during hepadnaviral infection in the woodchuck model 

of hepatitis B.  They may contribute to the development of novel antiviral treatments to 

allow for better control of the virus through activation of a stronger intrahepatocyte 

immune response during CH.  Assessment of hepatic TLR expression could serve as 

an important biomarker to predict the efficacy of test antiviral drugs and their 

effectiveness in resolving CH.  
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Chapter 6 – Future Directions 

1. To assess the histological degree of inflammatory infiltrations and relate to the 

TLRs1-10 expression levels identified in the livers and hepatocytes in the course 

of this study.   

2. To investigate the expression of TLRs1-10 at the protein level in the liver, 

isolated hepatocytes, and PBMCs of healthy woodchucks and woodchucks 

infected with WHV.   

3. To carryout functional studies using TLR ligands and inhibitors in cell cultures of 

PWH and PBMCs isolated from woodchucks with different stages of WHV-

infection and asses their effects on WHV replication and production of cytokines. 

4. To carry out in vivo studies on the effects of selected TLR inhibitors, particularly 

those differentially expressed in hepatocyte and in whole liver tissue, on the 

progression and outcomes of CH in woodchucks. 
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Appendices 

 

 

 

 
 
Figure A1. Expression levels of TLRs1-10 in sequential liver biopsy samples and 

PBMCs during the course of hepadnaviral infection in woodchuck #1 that 

progressed from acute hepatitis (AH) to chronic hepatitis (CH).  

Liver biopsy tissue samples (top; white bars) and PBMCs (bottom; grey bars) isolated 

from woodchuck #1 during the progression of WHV infection (Healthy>AH>CH) were 

analyzed for expression of TLRs1-10.  Quantification of TLR mRNA was performed by 

RT-qPCR.  TLR1 expression was evaluated but not detected in the liver.  Gene 

transcription levels were normalized against woodchuck HPRT expression. Total RNA 

equivalent of 50 ng was tested from each test sample in triplicate.  
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Figure A2. Expression levels of TLRs1-10 in sequential liver biopsy samples and 

PBMCs during the course of hepadnaviral infection in woodchuck #2 that 

progressed from acute hepatitis (AH) to chronic hepatitis (CH).  

Liver biopsy tissue samples (top; white bars) and PBMCs (bottom; grey bars) isolated 

from woodchuck #2 during the progression of WHV infection (Healthy>PreAH>AH>CH) 

were analyzed for expression of TLRs1-10.  Quantification of TLR mRNA was 

performed by RT-qPCR.  TLR1 expression was evaluated but not detected in the liver.  

Gene transcription levels were normalized against woodchuck HPRT expression. Total 

RNA equivalent of 50 ng was tested from each test sample in triplicate.  
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Table A1. GenBank Accession Numbers of Woodchuck TLR1-10 Partial Gene 

Sequences Identified in This Study 

 

 GenBank Accession Number 

TLR1 KY468972 

TLR2 KY468973 

TLR3 KY468974 

TLR4 KY468975 

TLR5 KY468976 

TLR6 KY468977 

TLR7 KY468978 

TLR8 KY468979 

TLR9 KY468980 

TLR10 KY468981 
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Table A2. Copy Number Values for the Housekeeping Gene HPRT and TLRs1-10 in Woodchuck Livers 

Investigated in This Study 

  HPRT TLR1 TLR2 TLR3 TLR4 TLR5 TLR6 TLR7 TLR8 TLR9 TLR10 

Healthy 
(n=25) 

41,208 
± 

5,779 

0 
± 
0 

964 
± 

183 

610 
± 

88 

58,341 
± 

6,769 

1,790 
± 

247 

38 
± 
5 

2,349,408 
± 

327,866 

20,849 
± 

3,744 

86 
± 
9 

101 
± 

11 

PreAH 
(n=8) 

30,945 
± 

9,226 

0 
± 
0 

654 
± 

165 

581 
± 

135 

45,288 
± 

6,315 

2,163 
± 

402 

36 
± 

10 

2,118,750 
± 

308,004 

21,158 
± 

5,580 

173 
± 

33 

171 
± 

44 

AH 
(n=8) 

18,662 
± 

6,236 

0 
± 
0 

913 
± 

280 

451 
± 

156 

50,250 
± 

15,213 

928 
± 

226 

38 
± 

12 

1,513,875 
± 

529,613 

17,145 
± 

4,531 

132 
± 

30 

124 
± 

31 

SLAH 
(n=11) 

34,655 
± 

9,810 

0 
± 
0 

707 
± 

184 

402 
± 

106 

50,874 
± 

13,011 

1,323 
± 

377 

37 
± 
9 

1,423,121 
± 

256,761 

13,159 
± 

2,996 

213 
± 

96 

167 
± 

31 

CH 
(n=18) 

32,896 
± 

10,707 

0 
± 
0 

1,140 
± 

205 

364 
± 

92 

46,082 
± 

8,265 

259 
± 

41 

90 
± 

36 

1,476,543 
± 

366,389 

26,276 
± 

7,063 

350 
± 

78 

264 
± 

78 

POI 
(n=17) 

36,664 
± 

5,783 

0 
± 
0 

688 
± 

78 

536 
± 

67 

63,243 
± 

7,035 

1,648 
± 

254 

41 
± 
8 

2,377,510 
± 

371,466 

11,701 
± 

2,176 

143 
± 

44 

118 
± 

25 

Mean 
32,505 

± 
7923 

0 
± 
0 

844 
± 

182 

491 
± 

107 

52,346 
± 

9,435 

1,352 
± 

258 

47 
± 

13 

1,876,534 
± 

360,017 

18,381 
± 

4,348 

183 
± 

49 

158 
± 

37 
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Table A3. Copy Number Values for the Housekeeping Gene HPRT and TLRs1-10 in Woodchuck Hepatocytes 

Investigated in This Study 

 

  HPRT TLR1 TLR2 TLR3 TLR4 TLR5 TLR6 TLR7 TLR8 TLR9 TLR10 

Healthy 
(n=5) 

3,159 
± 

985 

0 
± 
0 

825 
± 

528 

67 
± 

22 

8,695 
± 

3,723 

132 
± 

27 

25 
± 

16 

46,367 
± 

12,071 

5,008 
± 

2,296 

56 
± 

31 

136 
± 

88 

PreAH 
(n=4) 

22,851 
± 

8,856 

0 
± 
0 

551 
± 

208 

324 
± 

14 

16,985 
± 

4,274 

358 
± 

188 

22 
± 

11 

1,230,983 
± 

551,626 

17,108 
± 

1,441 

508 
± 

189 

237 
± 

99 

SLAH 
(n=8) 

4,910 
± 

1,919 

0 
± 
0 

876 
± 

399 

96 
± 

35 

28,387 
± 

18,881 

691 
± 

627 

60 
± 

47 

136,722 
± 

85,963 

11,216 
± 

5,265 

89 
± 

34 

118 
± 

27 

CH 
(n=6) 

66,871 
± 

31,359 

0 
± 
0 

225 
± 

114 

225 
± 

88 

48,638 
± 

25,140 

90 
± 

60 

34 
± 

14 

98,700 
± 

61,332 

21,504 
± 

17,060 

650 
± 

455 

43 
± 

27 

POI 
(n=3) 

15,156 
± 

1,975 

0 
± 
0 

1,266 
± 

838 

298 
± 

75 

27,700 
± 

2,283 

392 
± 

176 

58 
± 

20 

185,889 
± 

42,563 

22,422 
± 

3,948 

940 
± 

822 

323 
± 

190 

Mean 
22,589 

± 
9,019 

0 
± 
0 

749 
± 

418 

202  
± 

47 

26,081  
± 

10,860 

333  
± 

216 

40  
± 

22 

339,732  
± 

150,711 

15,452 
± 

6,002 

449  
± 

306 

172  
± 

 86 
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Table A4. Copy Number Values for the Housekeeping Gene HPRT and TLRs1-10 in Woodchuck PBMCs 

Investigated in This Study 

 

  HPRT TLR1 TLR2 TLR3 TLR4 TLR5 TLR6 TLR7 TLR8 TLR9 TLR10 

Healthy 
(n=11) 

93,458 
± 

18,021 

130 
± 

16 

7,712 
± 

1,311 

715 
± 

194 

41,878 
± 

12,554 

86 
± 

25 

1,737 
± 

411 

43,231 
± 

7,112 

310,421 
± 

79,215 

9,320 
± 

3,104 

1,118 
± 

337 

PreAH 
(n=8) 

101,292 
± 

13,708 

144 
± 

56 

8,433 
± 

1,466 

1,098 
± 

261 

32,588 
± 

7,746 

98 
± 

22 

2,075 
± 

418 

48,967 
± 

6,715 

317,958 
± 

40,233 

6,628 
± 

1,743 

1,009 
± 

266 

AH 
(n=18) 

80,694 
± 

10,430 

175 
± 

25 

6,183 
± 

1,013 

595 
± 

86 

34,366 
± 

8,223 

78 
± 

21 

1,389 
± 

227 

42,188 
± 

5,470 

282,926 
± 

35,104 

4,736 
± 

798 

646 
± 

114 

SLAH 
(n=6) 

131,839 
± 

11,610 

181 
± 

47 

7,863 
± 

620 

1,014 
± 

152 

31,839 
± 

5,794 

109 
± 

22 

2,400 
± 

423 

72,656 
± 

7,371 

288,000 
± 

52,478 

6,650 
± 

1,580 

1,638 
± 

614 

CH 
(n=8) 

96,900 
± 

18,048 

238 
± 

58 

10,157 
± 

2,274 

833 
± 

204 

34,822 
± 

8,844 

72 
± 

15 

3,009 
± 

779 

51,777 
± 

10,580 

294,925 
± 

72,845 

13,473 
± 

4,507 

1,601 
± 

464 

Mean 
100,837 

± 
14,363 

174 
± 

40 

8,069 
± 

1,337 

851 
± 

179 

35,098 
± 

8,632 

88 
± 

21 

2,122 
± 

452 

51,764 
± 

7,450 

298,846 
± 

55,975 

8,161 
± 

2,347 

1,203 
± 

359 

 


