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Abstract

Process facilities include operations with different levels of risks. Risk-based design

incorporates risk analysis into the design process and thus facilitates discovering design

limitations and making improvements with respect to process safety. This work presents

two risk-based design tools: (i) a hazard identification methodology and (ii) a risk-based

layout optimization technique.

The first tool developed and presented in this research is for dynamic hazard

identification. In risk assessment, the first major step is hazard identification that helps to

unveil what may go wrong during operation of a process. Traditional hazard identification

tools have the limitations of being static in nature; changing circumstances are not

considered in the existing tools. Therefore, the present work develops a new methodology

which realizes hazard identification by tracing hazard evolutions. A generic model is

proposed. The model is dynamic in making predictions for the most likely hazard in terms

of different input evidences based on field observations.

A risk-based design is to design for safety. Means of conducting risk-based design can be

various. The second aspect of this thesis presents a risk-based design method that uses

inherent safety metrics for layout optimization of floating liquefied natural gas (FLNG)

facilities. Layout plays a paramount role in hazard evolution and thus affects the risk of

an operation. Three topside layouts are proposed and evaluated using inherent safety

indices. Finally, a layout is chosen as the most optimal one in terms of layout evaluation

results. In this way, the layout becomes inherently safer and thus brings tremendous

benefits to reducing risks as well as potential loss.
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Chapter 1. Introduction

1.1 Risk-Based Design

Risk of an event can be expressed as the frequency of the event multiplied by the

severity of its associated consequence. An event may bring unexpected and sometimes

catastrophic outcomes for which huge a cost must be paid to compensate for losses

including human loss, asset loss, or environmental loss. Process industries are

considered risky due to the frequent occurrence of process incidents. To lower risk to

a practical and acceptable level, risk-based design has become a complementary

approach along with traditional design. Risk-based design incorporates risk analysis

into the design process and provides support for decision-making to meet safety

purposes in a cost-effective way (Papanikolaou, 2009). The advantages of risk-based

design over traditional approaches are listed in Thodi’s (2011) work. Simply put, a

risk-based design is to design for safety. The ultimate goal is to make the total risk

meet the following criterion:

where is the estimated risk, and is risk threshold regulated by engineering safety

authorities (Hamann and Peschmann, 2015).

The framework of conducting a risk-based design is shown in Figure 1.1. In general, it

consists of three major steps: define safety goals, implement risk analysis, and assess

risk acceptance. The first step is to define a preliminary safety objective. In this step,

design parameters are varied in compliance with process requirements. Then, the

tuned design goes through a risk analysis process. Risk assessment includes hazard

identification, frequency analysis, and consequence analysis. In this step, the risks are
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both qualitatively and quantitatively defined. Finally, the assessed risk is compared

with the threshold as previously defined to decide whether the risk associated with the

current design is acceptable. The relative level and absolute level are the two options

to determine the risk threshold. The relative level is used to select a reference design,

while the absolute level refers to engineering safety standards or other conventions

specified by authorities (Boulougouris and Papanikolaou, 2013).

Figure 1.1 Risk-based design framework

1.2 Risk Assessment

Risk assessment is the core of a risk-based design which is a systematic approach to

evaluate a design from safety perspectives. There are three main components of risk

assessment; hazard identification that addresses what may go wrong for a process,
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frequency analysis that defines how frequently it might happen and consequence

analysis that identifies what outcomes it may bring.

The essence of risk is uncertainty and casualty. An uncertainty always has two

directions to evolve. Useful risk assessment helps to predict what will occur next

among casualties and to improve risk management decision-making, which increases

the probability of having preferred outcomes and avoiding hazards (Cox Jr, 2013).

Hazard Identification

Hazard identification is the first step in risk assessment. A hazard and its adverse

impact cannot be fully understood until it is identified. Methods of hazard

identification have been developed for decades and can be roughly described as either

qualitative or quantitative. Qualitative methods are generally achieved by listing all

possible hazards, finding the causes, and studying how to improve systems to avoid

these hazards.

Typical and well-known qualitative hazard identification approaches are What-if

analysis, and Hazard and Operability (HAZOP). Details of these approaches and

associated applications can be found in Kletz (1997); Dunjo, Fthenakis, Vilchez, &

Arnaldos (2010); Nolan (1994); and Chen, Zhu, & Chen (2011). Nolan (2011)

discussed the limitations and advantages of these along with Preliminary Hazard

Analysis (PHA). In fact, many other qualitative approaches have also attracted enough

attention and become quite comprehensive, such as Failure Mode and Effect Analysis

(FMEA), checklist, and fault & event tree (Mannan, 2012). Some of these approaches

are continuously evolving, e.g. Computer HAZOP, social HAZOP, and Failure mode,
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Effects, and Criticality Analysis (FMEACA). The illustration can be found in Mannan

(2012), Ericson (2005), and Avila, Pessoa, & Andrade (2013)’s work.

Quantitative hazard identification varies using index-based approaches and ranking

systems. The ranking system hierarchizes hazards, and accordingly the most

hazardous potential will be clearly recognized and fully analyzed so that measures can

be taken to prevent such a risk from turning into reality.

Most of the index based approaches are used for evaluating fire, explosion, and toxic

dispersion, which are the three main hazards in process industries. Representative

indices are Dow Fire and Explosion Index, Mond Fire, Explosion, and Toxicity Index,

and Dow Chemical Exposure Index (Crowl &Louvar, 2002; Mannan, 2012).

Estimation of these indices begins with estimating an initial factor, which is decided

by the properties of materials, and then gradually adds other considerations by

multiplying the initial factor with other factors. Finally, the hazardous level is

quantified by assessing economic loss.

The severity of risk can also be judged by fatalities and injuries. For example, Ordouei,

Elkamel, &Al-Sharrah (2014) dedicated a new risk index to estimate the maximum

affected people per year by dividing multi process streams and investigating each

stream’s effects. While some think though fatality is a paramount factor when

assessing damage potentials, other factors which might be chronically affected, such

as environment contamination and property damage, should also be considered (Khan

&Abbasi, 1997). Khan &Abbasi (1998) developed the Accident Hazard Index (AHI),

which addressed the hazardous impact on population, assets, and the ecosystem. They

also proposed the Hazard Identification and Ranking System (HIRA) (Khan &Abbasi,
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1998) which first separates the entire plant into small units, such as storage units and

transportation units, and then assesses risks by using functions of penalties.

Considering that damage effects from different installed safety devices may vary,

Khan &Abbasi (2001) proposed the Safety Weighted Hazard Index (SWeHI) based on

HIRA, which considered the quantitative measure of damage as well as the credit

value of the safety measures. Khan (2001) provided a worst-scenario identification

method by indexing the credibility factor. In addition, Davaselle, Fieves, Pipart, and

Debray (2006) presented another comprehensive approach, named ARMIS, to identify

major accidents and scenarios based on Bow-tie analysis.

Similar to the use of Bow-tie analysis used in ARMIS, Dynamic Procedure for

Atypical Scenarios Identification (DyPASI), developed by Paltrinieri, Tugnoli, Buston,

Wardman, &Cozzani (2013) is a dynamic approach for identifying atypical scenarios.

It can dynamically retrieve previous risk records because the database can be updated

in real time, thus prioritizing of hazards. Dynamic hazard identification is an emerging

area which makes breakthroughs to static barriers. Other than DyPASI, other literature

presented in this area includes Patrinieri, Tugnoli, & Cozzani (2015) and Knegtering

&Pasman’s (2013) works. More discussion about dynamic hazard identification is

presented in Chapter 2.

Probability Analysis

Probability analysis, or frequency analysis, is an integral part of risk assessment.

Probability means the likelihood of a certain event occurring. It is a quotient of the

number of events that are expected to occur over the total number of all possible

events; therefore, it falls into a range between 0 and 1. The events are random and
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equal which means each event has the same chance to occur. The randomness of

events can be represented by a probability density function, while the probability

density function can be represented by mathematical models, i.e. probability

distribution, to capture uncertainties in the use of random variables (Kalantamia,

2010). The random variables can be discrete or continuous.

The probability that is most widely applied to process industries is the failure rate. The

failure rate is the probability of getting one failure over a period of time. The cause of

a failure is based on interactions among process components (Crowl &Louvar, 2001).

Event tree and fault tree are the two most commonly used approaches to calculate the

failure rate of a system. The mechanism behind them is to investigate logistics for the

interactions. The event tree and fault tree have been fully developed and the associated

applications can be found in the literature (Huang, Fan, Qiu, Cheng, & Qian, 2016;

Liu &Yokoyama, 2015; You &Tonon, 2012). In recent years, dynamic risk

assessment has emerged as a new area to deal with information updates. The Bayesian

network has become a popular dynamic tool because of its dynamic feature. It enables

updating posterior probabilities given prior probabilities, which provides more

accurate results by appropriately accommodating new evidences to the existing model.

Applications of the combination of a fault tree or event tree and the Bayesian network

are documented in Leu &Chang (2015), Khakzad, Khan, &Amyotte (2011), and

Sorbradelo &Martí’s (2010) works.
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Consequence Analysis

Consequence analysis is also of paramount importance in risk assessment. It

identifies the consequences of a potential event and estimates the associated losses it

may cause, such as human, environmental, and asset loss.

Accidents start from incidents. An incident could be a fluid leakage or a material

failure. To estimate the impact, selecting a proper accident model is necessary so that

hazards can be simulated and associated consequences can be estimated. Crowl and

Louvar (2002) illustrated a source model which provides a profile of the state of

discharge, discharge rate, and total quantity discharged (Center for process safety,

2010). The accident model is decided in terms of the defined accident scenarios; for

example, a dispersion model is necessary for a toxic gas release. In addition to the

source model, Dadashzadeh (2013) expanded an overview of the approaches to

consequence analysis, using empirical modeling, fire and explosion modeling, and

computational fluid dynamics modeling.

1.3 Other Forms of Risk Analysis in Risk-Based Design

Risk-based design involves implementation of safety barriers in design and thus

creates a safer environment for plant operations. To date, risk-based design has been

widely applied to industries, such as marine, nuclear, process, etc. Instead of

conducting the risk assessment, other forms of risk analysis are also applied in

conjunction with risk-based design. Demichela &Camuncoli (2014) applied a new

methodology for risk-based design, namely recursive operability analysis, to the Allyl

Chloride production plant. Lee et al. (2015) began with risk-based process safety

management and then modified the design for a gas treatment unit at the preliminary
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stage, to reduce hazards identified from quantitative risk analysis. Bossuyt et al. (2012)

presented a new method by means of transferring risk data into risk appetite corrected

domain, which helps to make risk-based decisions.

In Chapter 3 of this thesis, safety implementation in design is achieved through layout

optimization based on the inherent safety method. Several offshore facility layouts are

developed. Then inherent safety indices are used to evaluate whether risks are

acceptable. The inherent safety indices are derived from inherent safety design which

addresses the safety integrity of facilities and improves the safety intrinsically by

eliminating contribution from the potential failure of passive safety devices.

The inherent safety indices evaluate how much the plant is inherently safer. The

results yielded from using the indices can be regarded as having the same effect as

conducting the risk assessment because the associated mechanisms, such as threshold

values or other intermediate values, include the consideration of frequency analysis

and consequence analysis.

1.4 Research Objective

The goal of this thesis is to develop design tools to improve the safety of process

facilities by means of risk-based design. The thesis includes two research objectives

which are reflected in two major works. To help better understand the objectives, the

scope is shown in Figure 1.2. The first part aims to develop a new methodology for

hazard identification, which is the first step in the risk assessment in a risk-based

design. The methodology helps to construct a hazard identification model that is

considered as dynamic because of the ability to dealing with changing parameters.

The model enables making credible predictions for which hazard will be the most
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likely to occur in terms of the given evidence. This dynamic identification model

overcomes the static barrier that traditional approaches used to have and enables to

accommodate information update each time when changing inputs.

The second part employs safety implementation in designing an FLNG facility. The

FLNG facility appears to be one favorable solution effectively dealing with remote

and small gas fields and has drawn large attention. It combines floating, production,

storage, and offloading to one self-driven unit and is a cost effective option due to

avoiding the construction of numerous subsea pipelines. An FLNG requires the most

advanced technology and a compact design; however, risks have been elevated to a

new level. This part outlines the aspects of inherent safety for the topside layout

design of an FLNG facility. The FLNG plant requires a compact design and needs the

safest layout to tackle multi-dimensional safety issues. Thus, the layout of the facility

is a paramount factor for ensuring its safety in a cost effective way. Three layouts are

proposed and evaluated from the inherent safety perspective. The layout of the process

area is a main focus due to its higher risks. An integrated inherent safety index, a cost

index and a domino hazard index are used to evaluate three alternative layouts in

quantitative terms. An optimal layout is finally chosen based on both inherent safety

and cost performance.
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Figure 1.2 Illustration of research objectives

1.5 Thesis Outline

The thesis is structured as follows.

Chapter 2 presents a manuscript published on Process Safety and Environmental

Protection and proposes a dynamic hazard identification methodology and a prototype

for the dynamic model. This chapter discusses the relation between risk assessment

and hazard identification and also the importance of hazard identification, followed by

discussing the limits of existing hazard identification techniques. A dynamic hazard

identification methodology on the basis of Bayesian network is then developed. Three

case studies are conducted to prove whether the proposed model functions effectively.

A sensitivity analysis is also performed to study the cause of dominant probabilities

appearing in the simulation results.

Chapter 3 presents a manuscript published on Journal of Offshore Mechanics and

Arctic Engineering. Chapter 3 performs a layout optimization for a floating liquefied
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natural gas ( FLNG) facilities. In this chapter, the backgrounds of FLNG facilities are

first reviewed. Then risks associated with FLNG facilities are discussed. Several

topside layouts of an FLNG facility which meet offshore regulations are proposed and

evaluated using inherent safety indices, and the best optimized layout is chosen in

terms of the layout evaluation results.

Finally, Chapter 4 outlines the summary and conclusions for the current work. Future

scope of work in this area is also discussed.
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Abstract

Hazard identification is of vital importance in risk management. It is the first step of

undertaking accident likelihood and associated consequence analysis. The traditional

hazard identification techniques suffer from being static. New information or evolving

conditions cannot be easily incorporated in already identified hazards. To overcome

this, the Bayesian network is used to bring dynamics to the hazard identification step.

The present work develops a new methodology to map hazard scenarios into the

Bayesian network model, which enables real time hazard identification. The model

presents a probability ranking for hazards using given input observations. It helps to

identify the most credible hazard scenarios for further analysis. Sensitivity analyses

are also conducted to investigate the influence of the input parameters on identified

hazards.

Keywords: Hazard identification; hazard scenarios; Bayesian network; risk

assessment; dynamic hazards
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2.1 Introduction

Risk assessment plays a paramount role in process industries in the prevention and

mitigation of unfavorable hazards. The methodologies developed for risk assessment

have evolved to include various kinds, such as quantitative risk analysis (QRA) and

probabilistic safety analysis (PSA), in which hazard identification is the first major

step. Hazard identification is a precursor for hazard frequency analysis and

consequence analysis. Though it is hard to identify all hazards, a list of techniques has

evolved over decades to identify most process hazards and thus to assess risk to a

satisfactory level.

Hazard identification answers what can go wrong in a process. This includes

determination of vulnerable areas and equipment, investigation of causes of deviations

from normal operations as well as evolution of hazards. It can be applied during any

stage of process development, such as along with the conceptual design or during

operation of an existing process. Methods for hazard identification have been

developed over decades, of which the most notable ones are the hazard and operability

study (HAZOP) (Kletz, 1997; Crawley and Tyler, 2015; Nolan, 1994; and Chen et al,

2011), Failure mode, Effects, and Criticality Analysis (FMECA) (Mannan, 2012;

Ericson, 2005), and the quantitative hazard index approach (Crowl and Louvar, 2001;

Khan and Abbasi, 1998; Khan et al, 2001). Many of these techniques have been

widely used throughout industries and have contributed greatly to loss prevention

(Kletz, 1999; McCoy et al, 1999). However, these conventional methods are static in

nature as information updates are hard to incorporate, which may cause inaccurate or

misleading results. This drawback is even exaggerated when process and operational

parameters continue to change. Moreover, knowledge about hazard evolution also
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changes resulting from theoretical studies and practical experience. Therefore, a

dynamic approach with flexibility to accommodate continuously changing information

is needed.

This idea of dynamic hazard identification has already been conceptualized and

incorporated into risk assessment to capture ever-changing variations and possible

deviations from a normal process and also to learn from early warning systems as well

as new and emerging technologies (Villa et al, 2015). The list of developments

includes the Dynamic Procedure for Atypical scenarios Identification (DyPASI)

(Paltrinieri et al, 2013), dynamic risk assessment (Kalantarnia et al, 2009), and risk

barometer (Knegtering and Pasman, 2013). Applications of these approaches have

been documented in the literature, e.g. Wilday et al (2011), Paltrinieri et al (2014),

Paltrinieri et al (2015), and Kalantarnia et al (2010).

The dynamism lies in the adequate recognition of time’s influence on hazard evolution.

As time goes on, process parameters are changing. Accordingly, hazard evolution

routes and hazards are changing. The current work develops a new dynamic hazard

identification method aiming to predict likely hazards in response to real-time inputs.

Unlike DyPASI, which aims at identifying atypical scenarios, the current work is

limited to “Known Known” scenarios, mainly associated with the evolutions which

are within the domain of process knowledge. Nevertheless, the proposed method can

be used along with DyPASI to provide a more comprehensive risk picture.

A dynamic tool is needed to combine all the variations of new and emerging risk

notions, development of early warning tools, and updated knowledge and experiences

so that the risk profile can be updated in real-time to capture the actual circumstances.

The Bayesian network (BN) has been adopted in the literature to implement dynamic
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concepts for dynamic risk assessment and reliability studies (Kalantarnia et al, 2009;

Khakzad et al, 2014; Khakzad et al, 2012; Yuan et al, 2015). BN is a directed acyclic

graph that encodes the dependencies and independencies among variables from a

probabilistic perspective. The current work utilizes the Bayesian network as the

dynamic tool because it not only updates but also probes the hidden problem in the

use of inference (Knegtering et al, 2013). Note that the probabilistic feature of BN is

used in a limited probabilistic way in this work; the probabilities used here only

provide an indication of the likelihood of occurrence of a specific event rather than

denoting frequency or exact accurate probabilities, which is with the same effect as

the weather forecast predicting a 10% chance of rain. The probability is only used for

a predictive purpose and to assess the likelihood of the occurrence of a certain event.

This probability can also be updated over time when comes into operational use.

A hazard is the final consequence in a hazard scenario. The hazard scenario can be

either a single event or a combination of probable events in a certain sequence (Khan

&Abbasi, 1998). It depicts the evolution of hazards which describes the process

through which normal operations become hazardous following deviations. The hazard

scenario is initiated by one or several abnormal primary events, such as overpressure

or material degradation. The primary events gradually evolve under the influence of

additional energy sources, asset conditions, environmental impacts, and so on

triggering a chain of hazard evolution. Finally, the hazard appears. A basic assumption

when investigating the hazard evolution is that the sequence is in a linear progression

(Kim et al, 2003). Therefore, if each step in a hazard evolution is clearly recognized,

the hazards will then be easily determined. Thus, the hazard scenario is a fundamental
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element in hazard identification, and it becomes a basis for the dynamic hazard

identification in the current work.

The purpose of this work is to dynamically identify hazards by mapping hazard

evolution into the Bayesian network. The dynamic feature of the proposed method

makes it possible to identify hazards varying due to different inputs which reflect the

altering field observations in real time. The proposed model is the most suitable for

release or release relevant scenarios. Although the current model is unable to identify

unknown hazards, it can provide satisfactory results in determining hazards of known

types. In addition, the model facilitates the updating of information, updating both the

structure and conditional probability table (CPT), whenever new evidence is available.

The article is structured as follows. In Section 2, the feature of Bayesian network and

the application of using the Bayesian network on hazard identification are discussed.

Section 3 presents the proposed methodology for dynamic hazard identification. The

method will enable real-time hazard identification given any input parameters during a

process. The input parameters dynamically change with time, and the Bayesian model

can make corresponding predictions for which a probability ranking for each hazard

will be displayed. In Section 4, a generic Bayesian simulation model is proposed

based on the mapping algorithm. Further, three case studies involving fire, explosion,

and toxic scenarios are conducted in Section 5 to verify the feasibility of this method.

In Section 6, a sensitivity analysis is presented to demonstrate the influence of input

parameters on hazards.

2.2 Bayesian Network

A Bayesian network (BN) is a graphical modeling technique that consists of a

qualitative part (directed acyclic graph) and a quantitative part (conditional
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probability). The BN can be simply interpreted as finding the best suitable structure

for mapping interdependence among random variables in a set (Friedman et al 1997).

The variables are netted via dependence or independence and quantified by assigned

conditional probabilities, and the independencies of variables are derived by d-

separation (Geiger et al, 2013). Because of this feature and mechanized by Bayes’

theorem, the BN enables both forward analysis used as computing posterior

probabilities and backward analysis used for Bayesian reasoning.

Discrete random variables and continuous random variables can both define the BN

(Bobbio et al, 2001), and the variables may have multi-states to satisfy the given logic

(Darwiche, 2009). Each variable can be reached along with the directed edges, and the

probability of each state in every node of the structure can be expressed by a

conditional probability conditioned by other states in the nodes. The chain rule

enables the probability of any number of joint distributions to be obtained by

multiplying conditional probabilities (Wang et al, 2011).

BN is characterized by updating prior probabilities given a set of random variables

based on observations (i.e. evidence). The evidence can be either deterministic (hard

evidence) or probabilistic (soft evidence or virtual evidence). Reflecting real practice,

the evidence can be the process data from a certain observation, for example

operational parameters (temperature, pressure, etc.) or an estimation when the current

situation is uncertain.

Based on these features, how BN suits for the current study is explained as follows: i)

the types of hazards and their causes are various which can be briefly represented by

propositional variables with multiple states in a BN; ii) the directed edges help to
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encode causal relations in the evolution of hazards; iii) it is a probabilistic tool which

better deals with the concept “hazard and risk” as risk itself is associated with

uncertainties; iv) deterministic and probabilistic evidence better represent situations in

real practice and effectively solve problems brought by uncertainties; iv) the model

will assign the most credible hazards a probability ranking . Using such a ranking one

is able to estimate which hazard is the most likely to occur considering current process

performance, environmental conditions, and other parameters. Another advantage of

the BN is the ability to update the prior marginal probabilities for parent nodes, which

refer to the set of initial conditions in this case, if the probability of a certain hazard is

given.

2.3 Methodology to Develop Dynamic Hazard Identification Model

The methodology behind the dynamic hazard identification is described in this section.

As mentioned above, understanding hazards evolution is the foundation for tracking

the final hazards. If primary events and an accident sequence are determined, hazards

are then easily identified. The following sections take the release-based category as an

example and describe how to create corresponding hazard scenarios as well as the

rules of mapping scenarios into BN. Though the current work defines the scope of

scenarios within a certain category, it can be equally applied to other domains by

using the same method to construct a similar BN model. The developing procedure

will be the same. The difference will be in the creation of different hazard evolution

framework that encompasses cause-effect chains according to a certain circumstance.

The BN mapping algorithm and the applications of the model will be the same.

Creating Accident Scenarios
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Each scenario describes a unique accident sequence in a specific situation given

certain parameters. Therefore, creating accident scenarios become a necessary step in

which the sequence of hazard evolution will be investigated and the hazard will be

consequently identified if any primary event is identified. Methods of envisaging

accident scenarios are various, such as using ontologies (Batres et al, 2014) or a

computer-aided tool (Kim et al, 2003). Accident scenarios are generated in a sequence

based on logic with respect to relevant knowledge and past experience. The logic

algorithm can be found in CCPS (1999), Kim et al (2003), and Assael and Kakosimos

(2010). Khan (2001) also developed a basic logic for generating fire, explosion, and

toxic dispersion scenarios. The current work adopts the framework (Khan, 2001) as a

basis and makes further improvement by incorporating the effects of a larger set of

parameters and considering additional scenarios. The framework for creating accident

scenarios is depicted in Figure 2.1.

A scenario is influenced by various parameters in different categories. As Figure 2.1

shows, the input parameters are partitioned into five categories, namely, chemical

states, operational parameters, process impact factors, chemical characteristics, and

site characteristics. The chemical state refers to the physical state of the contained

chemicals which includes solid, liquid, vapor, as well as liquefied gas. Operational

parameters include a series of monitored variables such as pressure, temperature, mass

flow, and so on. Process impact factors consider whether an abnormal phenomenon

occurs during process and whether safety measures work effectively. Process

abnormal phenomena include out of bound variables e.g. tank overflow and process

degradation such as low material strength resulting from corrosion, collision with

other objects, lack of maintenance, etc. These incidents will decide the type of release
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which greatly influences the final type of hazard. This influence brought by the release

type will be discussed later in Section 4. Chemical characteristics refer to the

properties of chemicals, such as vapor pressure, combustibility, toxicity, etc. The last

category site characteristics refer to the surrounding environment which includes

location (rural or urban area), confinement, meteorological conditions, etc.

Ignition and dispersion are both introduced to further determine accident scenarios. At

each instant of evaluation, according to whether or not there is a source of ignition

and/or dispersion, combined with the consideration of the input parameters, a specific

scenario will be determined. The same procedure is repeated and all accident

scenarios can be generated. Each of the accident scenarios involves a final hazard to

identify. The final hazards include fire (pool fire, jet fire, flash fire, fireball, vapor

fire), explosion (dust explosion, VCE, BLEVE), and toxicity.



38

Figure 2.1 Framework of Creating Release Relevant Accident Scenarios

Darwiche (2009) discussed three main steps of constructing a Bayesian Network (BN):

define relevant variables; define network edges; and assign conditional probability
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tables. On the basis of this and reflecting on mapping the hazard scenarios, the steps

of the mapping algorithm are: 1) breaking hazard evolution into discrete nodes and

defining nodes; 2) mapping causal relations into Bayesian network; 3) assigning

conditional probability tables (CPT).

Identifying nodes

After envisaging hazard scenarios, the first step is to break the linear hazard evolution

into discrete nodes which reflect every step in the hazard progression. Hazard

scenarios are created by considering different aspects of relevant factors. Therefore,

components in Figure 2.1 are all considered to be nodes, and each node represents one

variable. Another issue is to properly define the states of variables. In fact, each aspect

of a single variable can be interpreted as one node, the states of which are binary (such

as true or false). For example, when defining the physical state of the contained

chemical, we can set four nodes indicating solid, liquid, vapor, and liquefied gas

respectively of which each node has two states “true” and “false”. However, this will

significantly increase the number of nodes and thus may cause a high computational

load due to the increasing complexity. To solve this problem, the nodes are allowed to

have multiple states instead of being solely binary. The sub-states describing every

aspect for the same variable are regarded as mutually exclusive and can be combined

into one node. In this case, the state node can be represented as one with four states.
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Classifying nodes and mapping principles for nodes

Having these discrete nodes, the next step is to classify nodes so that the classified

nodes can be matched with different principles when being mapped onto a BN. Nodes

are classified as evidence, intermediary, and query (Darwiche, 2009). In this case, the

evidence nodes are the inputs based on observations or real-time parameters. The

query nodes are the final outcomes, which refer to the predicted hazards. The

intermediary nodes connect the evidence nodes and query nodes and are the

transitional steps in hazard evolution.

Node mapping is associated with parent, child, and leaf node which indicate three

main positions in a cause-effect chain. A parent node has no prior node connected,

such as node “operation temperature” in Figure 2. A child node is the opposite of a

parent node, such as node “type of release” in Figure 2. A leaf node has no child node,

such as node “toxic” in Figure 2. The mapping principles are illustrated as follows.

Firstly, the evidence nodes are the inputs and must only be parent nodes. Secondly,

the query nodes are inferred based on the evidence nodes and intermediary nodes, and

therefore must be child nodes but not necessarily leaf nodes because query nodes may

also affect each other. For example, smoke produced by fire or explosion may also

lead to toxicity. Lastly, the intermediate nodes mostly stand for the main transitional

steps in hazard evolution. They are the core of the model’s logic and directly influence

the BN’s reasonableness and reliability. The intermediary nodes are positioned in the

middle and cannot be leaf nodes. Also note that, conditional probability tables can be

updated for all nodes and this part belongs to the system update and maintenance;

however, when using the model for hazard identification, only the input in the
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evidence nodes can be changed. The intermediary nodes only show computational

process and cannot be set as evidence.

Mapping causal relations among nodes

Next is to map causal relations among these discrete and classified nodes in the BN,

i.e. to define edges. The basic rule is to decide the direct cause and impact for each

node. Overall, the causal relations for the three types of nodes are: the evidence node

is the direct cause of the intermediary node, and the intermediary node directly affects

the query node. Starting from the evidence nodes, determine their impacts sequentially

to initialize the BN structure. Recheck out each node again to confirm whether any

other causal relations exist. In addition, the evidence nodes are independent from each

other; hence, no edges should be added among these nodes.

Assigning conditional probability tables

The last step is to assign conditional probability tables (CPT). The conditional

probability is also known as quantitative degree of belief which defines uncertainty.

This probability can be objective deduction, such as frequency or extracted data

through certain approaches, such as maximum likelihood estimation, or simply

subjective belief (Darwiche, 2009). In the current work, subjective belief is used as the

focus here is to present the overall framework. Again, the probabilities used here are

only for predictive purpose and used only for anticipating the likelihood of occurrence.

A future work will be dedicated solely to determine the conditional probability based

on expert survey. The CPTs can be updated at any time by means of either obtaining
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direct data or through prediction using the Bayesian update mechanism based on

historical records (Rathnayaka et al, 2012).

2.4 Proposed Generic BN Model

Based on the mapping algorithm, the accident scenarios generated in Figure 2.1 are

mapped into a generic BN. Figure 2.2 shows a generic BN rendered by means of

GeNIe, a simulation software developed by the Decision Systems Laboratory used for

implementing graphical decision-theoretic methods (Druzdzel, 1999). In this model,

there is a total of 25 nodes including 16 evidence nodes, 6 intermediary nodes, and 3

query nodes. To better illustrate the proposed BN model, causal relations and node

classifications are shown as Table 2.1. Table 2.2 illustrates each node and its

corresponding states. To simply and effectively capture the current situation of each

node, qualitative description is used for expressing the state. As Table 2.2 shows, state

description can be binary, or discrete events that represent an aspect of the current

node.

The generic model tries to encompass all possible evolution scenarios associated with

release or release relevant cases rather than listing all possibilities for any range. It

provides a framework for the direction of deviations. However, credible scenarios

vary for each specific situation and may be affected by the physical properties of

substance, plant geometry, area congestion, human interactions, and so on. Therefore,

an update on the basis of the generic model is needed. The update can lead to either a

structural change or an updated CPT. To conclude, the goal of integrated updates

targeting a certain circumstance is to achieve more reliable and comprehensive results.
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Table 2.1 Nodes Illustration in Generic Bayesian Network
No. Node Parent Node Child Node Node Classification
1 Operation Pressure N/A Type of Release; Fire Evidence Node
2 Operation Temperature N/A Type of Release Evidence Node
3 Operation Mass Flow N/A Type of Release Evidence Node
4 Unit Capacity N/A Type of Release Evidence Node
5 Material Strength N/A Mechanical Failure Evidence Node
6 Overflow N/A Mechanical Failure Evidence Node
7 Chemical Combustible N/A Ignition Evidence Node
8 Ignition Source N/A Ignition Evidence Node
9 Substance Vaporization N/A Vapor Cloud Formation; Dispersion Evidence Node
10 Substance State N/A Vapor Cloud Formation; Fire; Explosion Evidence Node
11 Confinement N/A Fire; Explosion Evidence Node
12 Toxicity of Released Substance N/A Toxicity Evidence Node
13 Atmospheric Condition N/A Toxicity Evidence Node
14 Quantity Released N/A Toxicity Evidence Node
15 Distance N/A Toxicity Evidence Node
16 Location N/A Toxicity Evidence Node
17 Smoke Fire; Explosion Toxicity Intermediary Node
18 Mechanical Failure Material Strength; Overflow Type of Release Intermediary Node

19 Type of Release
Operation Pressure; Operation

Temperature; Operation Mass Flow; Unit
Capacity; Mechanical Failure

Vapor Cloud Formation; Fire; Dispersion Intermediary Node

20 Ignition Chemical Combustible; Ignition Source Fire; Explosion Intermediary Node

21 Vapor Cloud Formation Type of Release; Substance
Vaporization; Substance State Fire; Explosion Intermediary Node

22 Dispersion Type of Release; Substance Vaporization Toxicity Intermediary Node

23 Fire
Substance State; Operation Pressure;
Type of Release; Ignition; Vapor Cloud

Formation; Confinement
Smoke Query Node

24 Explosion Substance State; Vapor Cloud
Formation; Fire; Ignition; Confinement Smoke Query Node

25 Toxicity
Dispersion; Toxicity of Released
Substance; Atmospheric Condition;
Quantity Released; Distance; Location

N/A Query Node
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Table 2.2 Nodes and Corresponding States

No. Node States
1 Operating Pressure High; Low

2
Operating
Temperature High; Low

3 Operating Mass Flow High; Low
4 Unit Capacity High; Low
5 Material Strength High; Medium; Low
6 Overflow True; False
7 Chemical Combustible True; False

8 Ignition Source Hot Surface; Flame; Mechanical Spark; Electrical
Spark; Lightening Stroke; No Ignition Source

9
Substance
Vaporization High; Low; None

10 Substance State Solid; Liquid; Vapor; Liquefied Gas
11 Confinement High; Medium; Low

12
Toxicity of Released

Substance High; Medium; Low; None

13
Atmospheric
Condition Stable; Unstable

14 Quantity Released Large; Small
15 Distance Very Far; Far; Near
16 Location Urban; Rural
17 Smoke True; False
18 Mechanical Failure Rupture; Hole; Crack; No Observation
19 Type of Release Continuous; Instant
20 Ignition True; False

21
Vapor Cloud
Formation True; False

22 Dispersion True; False

23 Fire Pool Fire; Fireball; Flash Fire; Vapor Fire; Jet Fire;
No Fire

24 Explosion Dust Explosion; VCE; BLEVE; No Explosion
25 Toxicity True; False

Two types of release

The first step when an initiating cause begins to evolve is to decide the release of

materials. Chemical state, operational parameters and process impact factors together

determine the type of release, namely, continuous release and instantaneous release. A

continuous release refers to a steady release that has a large amount of chemical
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supply in comparison to the rate of release. A continuous release reflects a scenario

where hazards do not occur immediately until the release accumulates up to a certain

level over a period of time. In contrast, an instantaneous release refers a sudden

release of a large amount of material within a very short period. An instant scenario

refers to a hazard scenario based on the instant release. The type of release mostly

depends on the type of mechanical failure; for example, a material crack will probably

cause a continuous release, while a rupture can result in an instant release.

Fire and explosion scenario evolution

Release of a material may lead to fire, explosion, and toxicity. Fuel, oxygen, and

ignition are the three components relevant to fire and explosion scenarios. Because

most process equipment is exposed to open air, an abundance of oxygen is assumed.

Hence, fuel and ignition are the two foci in this model. The chemical state of the

released material indicates the type of fuel which, in turn, determines the ultimate

scenario. For example, a liquid fuel most likely will lead to pool fire when meets

ignition, and solid fine particles may lead to dust explosion. Additional attention needs

to be paid to the type of release because that also influences the final type of hazard.

For example, when igniting a vapor, continuous release with a steady momentum may

cause jet fire, while a sudden release may lead to a fireball. On the other hand, ignition

is dependent on ignition source and chemical combustibility, and thus becoming the

child node of these two. The node Vapor cloud formation is included because it is a

key factor in identifying vapor fire and VCE. When a vapor cloud encounters ignition,

the probability of vapor fire and VCE will significantly increase. Confinement is one

of the factors that distinguish fire and explosion scenarios. High confinement will
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increase the likelihood of an explosion, while decrease the likelihood of a fire.

Another special case is BLEVE that can occur with external heating without any

source of ignition. This case occurs depending on the external temperature and the

flash point of the liquid. Typically, liquefied gas easily leads to BLEVE when heated

externally; consequently, for liquefied gases, the probability of BLEVE is higher

when no ignition exists.

Toxic scenario evolution

Regarding the toxic scenario, the most important factor for causing toxicity is

dispersion, which is decided by the type of released material and its vaporization. An

instant release is more likely to induce dispersion than continuous release due to its

potential large amount. Besides, a liquid with no vaporization can hardly cause

dispersion. Smoke produced by fire or explosion is considered to be readily dispersed

and thus directly affects toxicity. Besides dispersion, other factors affecting toxicity

are chemical properties, location, atmospheric conditions, and quantity released.
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Figure 2.2 Generic Bayesian Model of Dynamic Hazard Identification
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2.5 Case Studies

The following case studies are used to verify the rationale and demonstrate applicability of

the proposed model. The case studies are based on accident reports cited from the US

Chemical Safety Board because they are thoroughly investigated with sufficient details in the

public domain. Root causes identified in the reports are used as evidence for the BN model.

The outcomes of the BN model are then compared with the ultimate scenarios described in

the reports.

Case Study 1

Accident Description: A fire occurred on August 6, 2012 in Richmond, California due to the

ignition of a vapor cloud. The pipe in the crude unit containing light gas oil suddenly

ruptured because of the decreased pipe thickness caused by sulfidation corrosion. The

released hydrocarbon vaporized and formed a vapor cloud. The vapor cloud was then ignited

and resulted in a vapor fire. The particulates in the smoke travelled a long distance and

caused serious inhalation problems for people around the plant (CSB, 2015).

BN Model Simulation Results: According to the description above, 11 pieces evidences are

set as follows: high temperature, high mass flow, high unit capacity, low material strength,

high operating pressure, liquid state, high degree of vaporization, combustible chemical,

ignition source, low confinement, low toxicity of released substance, high quantity released.

Then, the simulation result for the fire scenario is shown in Figure 3.3.Three query nodes: fire,

explosion, and toxicity show the final identified hazards in the Bayesian simulation. These

three nodes weigh the same and should be considered separately. The most likely hazard

should be assessed for fire, explosion, and toxicity scenarios respectively. For example, in

this case, vapor fire has the highest probability in the fire category which means vapor fire is
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most likely to occur. In the explosion category, no explosion exists in terms of the ranking of

probability. In the toxicity category, the probability of toxicity is more than 50%, which

means toxicity is also likely to occur. Overall, vapor fire and toxicity are the most credible

hazard to occur.

Case Study 2

Accident Description: A vapor cloud explosion occurred on November 22, 2006 in Danvers,

Massachusetts. An open steam valve on the tank heater continuously heated the flammable

liquid that was contained in the tank, thus vaporizing the liquid. As a result, vapor gradually

released and formed a vapor cloud. Finally, the vapor cloud was ignited and caused vapor

cloud explosion occurred in a congested area (CSB, 2008).

BN Model Simulation Results: the Evidence set is as follows: high temperature, high mass

flow, high unit capacity, low material strength, high operation pressure, liquid state, high

degree of vaporization, combustible chemical, ignition source, high confinement, low toxicity

of released substance, large quantity released, and a far distance due to the exposure

occurring far from the accident site. The simulation result for the explosion scenario is shown

as Figure 3.4, where a VCE and toxicity are the most credible scenarios, with 48% and 61%

possibilities respectively.

Case Study 3

Accident Description: An ammonia toxic release occurred on August 23, 2010 in Theodore,

Alabama. A refrigeration coil suddenly ruptured because of a sharp pressure built-up caused

by hydraulic shock, leading to a large quantity release of toxic ammonia. The ammonia
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dispersed and made people at 0.25 miles downwind suffer from inhalation problems (CSB,

2015).

BN Model Simulation Results: Evidence includes high operation pressure, temperature, mass

flow, high unit capacity, vapor state, high degree of vaporization, chemical combustible, low

material strength, no ignition source, medium toxicity of released chemical, short distance of

exposure from accident site, and large quantity released. The simulation result for the toxic

scenario is shown as Figure 2.5, where toxicity is much more likely to occur (72%) than fire

(11%) and explosion (17%).

On the whole, the results predicted by the BN model all agree with the description in the

accident report. The results validate the model for explosion, and toxic cases; this

demonstrates the applicability of the model for identifying hazards in other cases.
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Figure 2.3 Bayesian Simulation Results in Study 1
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Figure 2.4 Bayesian Simulation Results in Study 2
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Figure 2.5 Bayesian Simulation Results in Study 3
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2.6 Sensitivity Analysis

The results above are summarized as Table 2.3 shows, where hazards with dominant

probabilities can be seen in all the case studies. In order to further analyze how sensitive the

identified results are when subjected to any change in the input parameters, sensitivity

analyses are conducted.

Table 2.3 Bayesian Simulation Results for Three Scenarios

Hazard Category Hazard Type Study 1 Study 2 Study 3

Fire

Pool Fire 18% 13% 10%
Jet Fire 7% 7% 10%
Fireball 20% 10% 10%
Flash Fire 6% 7% 10%
Vapor Fire 35% 18% 11%
No Fire 14% 45% 50%

Explosion

Dust Explosion 10% 3% 3%
VCE 10% 48% 17%
BLEVE 10% 18% 10%

No Explosion 70% 30% 69%
Toxicity Toxicity 60% 61% 72%
Most Credible Hazard Vapor Fire; Toxicity VCE; Toxicity Toxicity

The focus is on studying the parameters which greatly influence fire and explosion scenarios.

The toxic scenario is precluded because fire and explosion can both lead to toxicity. An

ignition source is assumed to exist due to its necessity in both fire and explosion scenarios.

The target parameters to be investigated are narrowed to four parameters: material strength,

overflow, confinement and operating pressure. The overflow and material strength are

considered as one group of parameters because they concurrently determine the type of

release through deciding the type of mechanical failure. The steps of conducting the

sensitivity analysis are as follows. Firstly, generate scenarios by combining different states of

input parameters. Secondly, choose an input parameter as the investigation target and classify
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the scenarios in terms of the state of this parameter. Lastly, check out if the result is sensitive

subject to the inputs.

The first purpose of the sensitivity analysis is to find the parameters that mainly distinguish

fire or explosion scenarios. The sensitivity analyses for confinement, pressure, material

strength and internal overfilling are conducted respectively. Scenarios described here are a

combination of states leading to an event. The common evidences set for all scenarios are

Vapor (for node Substance State), High (for node Vaporization), Flame (for node Ignition

Source), and True (for node Chemical Combustible). Evidence varied for each scenario is

illustrated in Table 2.4. The simulation results are shown in Figure 2.6 (a) ~(c), where the

horizontal axis refers to the number of created scenarios and the vertical axis refers to the

probability of hazards. In Figure 2.6 (a), the first scenarios are created under a low

confinement condition, the middle ones are under medium confinement, and the last ones are

under high confinement. A clear trend can be seen: as the confinement begins to increase, the

probability of fire decreases while the probability of explosion increases. On the other hand,

in pressure sensitivity analysis and material strength and overflow sensitivity analysis, as

shown in Figure 2.6 (b) and (c), no clear order has been found. Therefore, confinement

becomes the main factor in determining the fire or explosion scenario. A high confinement

condition results in an explosion scenario, while low confinement leads to a fire scenario.

Sensitivity analyses of pressure, material strength and overflow are also conducted under

certain conditions of confinement to see how sensitive a certain type of fire or explosion is.

The conditions for causing fireball, jet fire, and flash fire are studied. Information about the

created scenarios is shown in Table 5, and the result is depicted as Figure 2.7. The first four

scenarios are envisaged under high pressure, and the last four scenarios are under low

pressure. Vapor fire is not considered in this analysis as vapor fire occurs irrespective of

conditions as long as a vapor is ignited. As shown in Figure 7, under the condition of low
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confinement, fire ball and jet fire are both more likely to occur at high pressure, while a flash

fire is more likely to happen at low pressure.

Information about overflow and material strength scenarios is listed in Table 2.6 and the

results are shown in Figure 2.8. A total of 24 scenarios are created and they are separated into

eight groups. Four of the groups are in a high confinement condition and the remaining four

are in a medium confinement condition. Within each group, scenarios are created with

varying material strength while keeping other conditions the same. Each group represents

three scenarios with material strength varying from high to low; for example, 1 and 4

represent high material strength, 2 and 5 medium, 3 and 6 low and so on. As the results in

Figure 2.8 show, the following conclusions can be drawn:1) the factor of material strength

has more impact than the factor overflow on the probability of an ultimate identified hazard;

2) a high confinement condition leads to a higher probability of explosion than a medium

condition does; 3) low material strength makes the probability of explosion higher than

medium material strength does, and as does the medium material strength to high material

strength.
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Table 2.4 Scenarios Created for Sensitive Analysis for Fire and Explosion Scenarios

Evidence Scenarios

Node State Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
5

Scenario
7

Scenario
9

Scenario
8

Scenario
6

Scenario
10

Scenario
11

Scenario
12

Material Strength High � � � � � �
Low � � � � � � �

Overflow TRUE � � � � � � � �
FALSE � � � �

Operation
Pressure

High � � � � � � �
Low � � � � �

Site Confinement
High � � �
Medium � � � �
Low � � � � �

Most Credible Hazard Fire Fire Fire Fire Fire Explosion Explosion Explosion Explosion Explosion Explosion Explosion
P(Fire) % 32 28 28 30 33 21 21 22 20 14 15 16
P(Explosion)

% 10 10 10 10 10 34 33 31 35 44 47 49

Figure 2.6 Sensitivity analysis for distinguishing fire and explosion scenarios
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Table 2.5 Scenarios Created for Pressure Sensitivity Analysis

Evidence Scenarios
Node State Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8

Site Confinement
High
Medium
Low 9 9 9 9 9 9 9 9

Material Strength High 9 9 9 9
Low 9 9 9 9

Overflow TRUE 9 9 9 9
FALSE 9 9 9 9

Operation Pressure High 9 9 9 9
Low 9 9 9 9

Most Credible Hazard Fire Fire Fire Fire Fire Fire Fire Fire
P(JetFire) % 24 16 28 18 10 10 10 10
P(Fireball)% 22 27 19 26 10 10 10 10
P (Flash Fire)% 6 6 6 6 23 25 32 28
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Figure 2.7 Pressure sensitivity analysis

Figure 2.8 Overflow &material strength sensitivity analysis
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Table 2.6 Scenarios Created for Material Strength & Overflow Sensitivity Analysis

Evidence Scenarios

Node State Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario
10

Scenario
11

Scenario
12

Site Confinement
High 9 9 9 9 9 9 9 9 9 9 9 9
Medium 9 9 9
Low

Operation
Pressure

High 9 9 9 9 9 9 9 9
Low 9 9 9 9 9 9

Material Strength
High 9 9 9 9
Medium 9 9 9 9
Low 9 9 9 9

Overflow TRUE 9 9 9 9 9 9 9 9 9 9
FALSE 9 9 9 9 9 9

Most Credible Hazard Explosion Explosion Explosion Explosion Explosion Explosion Explosion Explosion Explosion Explosion Explosion Explosion
P(Explosion)

% 44 47 49 42 43 47 43 46 48 38 40 46

Node State Scenario
13

Scenario
14

Scenario
15

Scenario
16

Scenario
17

Scenario
18

Scenario
19

Scenario
20

Scenario
21

Scenario
22

Scenario
23

Scenario
24

Site Confinement
High
Medium 9 9 9 9 9 9 9 9 9 9 9 9
Low

Operation
Pressure

High 9 9 9 9 9 9 9 9
Low 9 9 9 9 9 9

Material Strength
High 9 9 9 9
Medium 9 9 9 9
Low 9 9 9 9

Overflow TRUE 9 9 9 9 9 9 9 9 9 9
FALSE 9 9 9 9 9 9

Most Credible Hazard Explosion Explosion Explosion Explosion Explosion Explosion Explosion Explosion Explosion Explosion Explosion Explosion
P(Explosion)

% 31 33 35 29 30 34 30 32 34 26 27 33
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2.7 Conclusions

The current work proposes a methodology for dynamic hazard identification by mapping

hazard scenarios into a Bayesian network. The methodology helps to construct a dynamic

simulation model that enables real time hazard identification. Given a set of input

parameters during an operation, the model is able to identify the most probable hazards

by assessing the likelihood of each hazard scenario in terms of a probability ranking. The

model is dynamic because the structure is flexible enough to accommodate different

processes; the input parameters can also be conveniently updated at any time. An

advantage of this model is that it facilitates real time hazard identification to

accommodate parameter variations. A generic model is also presented to further explain

this dynamic method. In order to verify the adaptability of the generic model, three case

studies of fire, explosion, and toxic dispersions are conducted by comparing the

simulation results with the root causes identified in investigation reports. A sensitivity

analysis is also conducted to investigate how sensitive the identified hazard is to the

change of input parameters. Results show that confinement has the largest influence on

the occurrence of a fire or explosion, and a high confinement condition more likely

results in an explosion scenario. Pressure influences the type of fire to a great extent.

Material strength and an overflow of equipment influence the probability of explosion

significantly, with the material strength having larger influence. Further, this method is

dynamic not only because it facilitates coping with real time changing parameters, but

also because the conditional probability tables can be updated easily with the latest
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knowledge and experience, and thus improving the accuracy of identification. The update

of prior probabilities will be the focus in the next stage of work.
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Abstract

This paper presents a layout optimization methodology for the topside deck of a

floating liquefied natural gas facility (FLNG) using inherent safety principles. Natural

gas is emerging as a clean energy, and a large amount of natural gas exists in the

proven offshore area, thus making it an energy source with huge potential in today’s

and the future market. FLNG facilities tap natural gas from an offshore well by floating,

compressing it into liquefied natural gas (LNG), and offloading it to LNG carriers after

temporary storage. In addition, FLNG facilities enable long-distance as well as multi-

location transportation. The FLNG facility requires compact design due to limited

space and high construction costs, and thus faces a more challenging situation where

the design has to concurrently guarantee economic profits and a safe operational

environment. Therefore, the layout of the topside deck, which includes production,

storage, and other functions plays a paramount role in designing an FLNG facility. This

papers optimizes the layout of an FLNG topside deck by implementing inherent safety

principles. The objective is to design a topside deck layout which achieves the largest
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extent of inherent safety with optimal costs. Details of the principles and their

application for layout optimization are also provided.

Keywords: Floating LNG facility; topside layout design, layout optimization, inherent

safety principles
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3.1 Introduction

Natural gas has emerged as a clean energy with a low capex in recent years [1]. The

International Energy Agency has predicted that the demand for natural gas will

continue to increase for the next decades and replace coal as the second main fuel [2],

thus making natural gas play an important role in today’s energy markets. Liquefied

natural gas (LNG) is the liquid form of natural gas at the temperature of

approximately -160 Celsius at atmospheric pressure. Its competitive volume, which

only takes up 1/600th of its gas form, facilitates larger storage capacity and long

distance transportation. With this notable feature and the increased exploration of

offshore gas reserves due to the depletion of traditional fossil fuels onshore, floating

liquefied natural gas (FLNG) facilities are being developed as a new offshore

architecture that combines the functions of floating, production, storage, and

offloading (FPSO). More specifically, they are turret-moored facilities which provide

liquefaction process, temporary storage as well as offloading towards LNG carriers [3].

Besides, FLNG facilities are particularly adapted to deep water and are served in

remote areas where the infrastructure of production and transportation are inadequate

[4].

Although FLNG facilities have been less used compared to other offshore facilities,

they are still a favorable solution when dealing with offshore gas fields [5]. To date,

the FLNG industry has made continuous breakthroughs, and the world’s first and

largest FLNG facility developed by Shell has finished construction and will start

production in 2016. Meanwhile, much research has been conducted to develop FLNG

layout, process, mooring systems, and LNG tankers [1,5-7]. FLNG facilities require a

compact layout that raises risk potential to a new height. For example, other than
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hazards triggered by the flammability of LNG, clearances among equipment are

smaller compared to land conditions, and knock-on effects are more likely to take

place; in addition, the living quarter is closer to the process area, and emergency

escape is limited to an isolated situation surrounded by water. Moreover, atypical

scenarios caused by innovative technologies need to be identified [8]. Typical FLNG

risks, such as ship collision and LNG spills were discussed in [9], and representative

LNG accidents of recent decades, which have brought significant loss of life and

injuries, were outlined in [8]. Therefore, risk assessment is of vital importance during

the design stage to spot risk potential and discover design limitations. To date, risk

assessment has been adopted to FLNG studies via using either simulation or

qualitative and quantitative analysis. [10-12].

An index approach was developed by [13] to assess plant layouts from an inherent

safety perspective. Layout plays a key role in the FLNG facility. It decides area and

equipment arrangements and influences accident magnitude and propagation routes of

hazards. Therefore, an optimal layout can greatly enhance plant safety and effectively

mitigate hazards. [14] also demonstrated that safety could be improved by proper

layout design. On the other hand, inherent safety is a proactive way of eliminating

hazards inherently and emphasizes safety integrity rather than relying on passive

measures. Firstly proposed by Trevor Kletz in 1978, the aspects of the inherent safety

have evolved since then. One important development in this field is the index-based

approach for evaluating process safety. Inherent safety indices and the comparison

among different approaches are available in [15-19]. Layout optimization at the

conceptual stage can also be considered as inherent safety improvement out of the

design itself. This paper conducts a layout optimization of the FLNG facility by means
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of the inherent safety method. When dealing with this new concept, FLNG, the

proposed work shows a new way of thinking that sets safety as a starting point and

tries to balance costs of safety measures with unexpected extra costs brought by

potential risks. It also provides an alternative layout assessment in which safety

becomes the primary issue and the assessment is achieved by means of

conceptualizing safety into an index form. Using inherent safety principles helps

ensure the integrity of FLNG, thus making the production and operational systems

inherently safer. Part of this work was presented at the OMAE conference [20], and

this paper will provide more details on the application of the inherent safety

methodology as well as optimizing the layout of FLNG topside deck design.

3.2 FLNG Layout Design

FLNG Layout Framework

The Layout plays a paramount role when designing facilities. It decides areas and

equipment arrangements. It also determines the area with the highest population

density, accessibility of plants, and emergency response plan [13]. Further, it

influences pipeline complexity that associates with costs and the route of propagating

hazards. Offshore units require compact layouts, thus leading to a higher risk of

hazard escalation (chains of hazards). Therefore, layout design of offshore units not

only requires taking into account challenging offshore conditions, but also minimizing

risks as much as possible. Planning the overall site and the process area layout are the

two parts of the plant layout design [21]. The present work started with selecting an

appropriate LNG process adapting to offshore conditions, then determined physical

locations of equipment in the LNG process area, lastly arranged blocks of areas on the
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topside deck of an FLNG facility. The framework of layout optimization is as shown

in Fig. 3.1.

Figure 3.1 FLNG Layout Optimization Framework

LNG Process Selection

[1] described four process components that exist on the FLNG facility. Liquefaction

process is considered as the most important process which might influence the whole

facility’s performance. Thus, the determination of the LNG process is a key element

of the FLNG facility design. [22] pointed out several LNG process criteria including

compactness, modular design, operation problems and process efficiency due to the

limited space under offshore conditions. Descriptions of different liquefaction

techniques can be found in existing literature [1,6,23]. [6] made a comparison of five

liquefaction processes (C3MR, DMR, Liquefin, SMR-SP, and SMR-DP) from seven

criteria (namely energy consumption; feasibility and design of cryogenic exchangers,
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compressors, and water cooled exchangers; ease of operation; references; and loss of

production) and drew a conclusion that DMR, C3MR, and Liquefin were the most

adoptable considering extreme climate conditions and capacities.

Among these liquefaction techniques, Shell’s dual mixed refrigerant (DMR) process

has been adopted by the Sakahalin LNG project and the Shell Prelude FLNG projects

[24]. It enjoys the highest efficiency [25], competitive production capacity and low

capital costs compared to other processes [24]. Therefore, in this study, we chose the

DMR as the liquefaction technology. The DMR process has two liquefaction cycles,

precooling mixed refrigerant cycle and mixed refrigerant cycle, with different mixed

refrigerants, respectively. The mixed refrigerant is firstly chilled in the pre-cooling

cycle and together with the precooling mixed refrigerant chills the natural gas

thoroughly to a liquid phase [23]. The DMR process on the FLNG mainly consists of

raw gas treatment and liquefaction processes, shown below in Fig. 3.2, in which the

Pre-Mixed Refrigerant Module1, Pre-Mixed Refrigerant Module 2, and Mixed

Refrigerant Module all belong to the liquefaction process. [25] studied optimal DMR

process operation conditions; [26, 27] investigated an optimal layout for the FLNG

facility by comparing the required power of several pre-proposed layouts, and the

optimal layout had the highest efficiency. The current work started with the selected

liquefaction process and proposed block design for an FLNG facility topside layout.
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Figure 3.2 DMR Liquefaction Process on the FLNG facility
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Process Area Design

The core factor of an FLNG is to optimize a modular design for liquefaction process

equipment [1], thus indicating the importance of layout design work. The design work

firstly finished the deck design of the process area, and then made arrangement for

different areas of the FLNG facility. In the first stage, design methodology and

constraints mainly were according to [7]. For example the centerlines of each piece of

equipment were perpendicular to x axis and y axis; and this work was used as a

reference to determine the physical location and dimension of the equipment to ensure

the feasibility and adaptability of the design in practice. However, changes and

modifications were also made in order to fit the new situation. The liquefaction

process was separated into four process modules. These were gas treating module

(GT), pre-mixed refrigerant module1 (PMR 1), pre-mixed refrigerant module 2 (PMR

2), and mixed refrigerant module (MR). The allocation of each module is shown in

Fig. 3.3. Additionally, as the process area was regarded as the most cost intensive part,

which concentrating 70% of the total capital cost [11], each module was designed as a

multi-deck allocation in order to decrease the capital cost [7]. The example of design

details of the MR module is illustrated in Fig. 3.3 and Table 3.1. Deck design details

of the other modules are available in Appendix A.

SolidWorks was used in order to examine the feasibility of the proposed deck design,

meaning the examination of inequality restraints of non-overlapping, emergency and

working space areas [7]. The example of the isometric view of the MR module using

the SolidWorks is shown as Fig. 3.4.
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Table 3.1 Design variables of equipment arrangements of the MR module

Equipment Centroid Coordinate Dimension Deck Belonging

No. Name xi(m) yi(m) Length (m) Width (m) Height (m)

1 MR Phase Separator 20.35 21.85 3.5 3.5 9 deck B,C

2 Heat Exchanger3 20.35 12.75 4.7 4.7 42 deck A, B,C,D,E

3 Heat Exchanger4 20.35 3.05 4.7 4.7 42 deck A,B,C,D,E

4 Expansion Valve3 7.5 13 0.1 0.1 0.15 deck C

5 Expansion Valve4 7.5 3 0.1 0.1 0.15 deck D

6 MR Compressor Suction
Drum 14.35 21.85 4.5 4.5 8.5 deck B,C

7 MR Compressor 6.5 12.15 17.3 6 6.4 deck C

8 Cooler for MR
Compressor 6.5 12.15 3 2 3 deck B

9 Overhead Crane 6.5 13 23 16 6 deck D

10 Cooler2 5 13 3 2 5 deck E

Deck width =23 m Deck length = 33.3 m Deck area = 765.9 m2
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Figure 3.3 Plan view of the MR module
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Figure 3.4 Isometric view of the MR module

FLNG Facility Topside Layout Design

Catastrophic events are generally caused by hazard escalation; however, a proper

layout could effectively prevent this from happening due to the precaution of safe

distances among equipment. Spaces setting among units were discussed in [28,29].

However, hazard prevention and mitigation for offshore production facilities need

additional consideration regarding a new surrounding environment and tactics [30]. The

current work arranged area blocks of process, storage, living quarter, water treatment, and

control room. Nine areas are listed as Fig. 5 shows, where the process area is divided into

four modules. Areas of four process modules were consistent with previous discussion

results. Distances between each area were set as 15m [31], and 20m for the process area

due to its higher risks. The dimensions of control room and storage areas were set with

the reference from [32]; walkways were designed according to the example of the

offshore production unit in [30]. On the other hand, topside design not only involves the
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dimensional set of each area, but also concerns the spatial layout of the physical location.

In order to better guarantee the safety of the crew’s working and living environment,

areas with higher risks should be as far as possible from those with lower risks [33].

Therefore, the living quarter, which has a high population density, was arranged to be far

from the process area; moreover, firewalls were added to protect the crews in case of fire

emergency.

Based on the design requirements and regulations of offshore facilities, a base

layout of a topside deck was drafted in SolidWorks as shown in Fig. 3.5 (a). SolidWorks

was used due to the convenience of dimension adjustments. The process modules were

attached to each other and took up approximately half the space of the topside deck, and

the rest of the area were located below. Further, the living quarter was placed at the

bottom so as to be far away from the process area. Meanwhile, underlying risks emerged

as a consequence of saving space. The process area was highly likely to suffer hazard

escalation due to the connected configuration. However, at this point, no quantitative and

sufficient evidence indicated this attachment could cause the mentioned risk. Thus, two

more layouts were proposed to make the comparison with the base layout.



83

Figure 3.5 Three layouts for FLNG topside deck
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With the consideration of the effectiveness of hazard prevention, control, and

applicability to offshore conditions [34], the inherent safety method is found to be the

most appropriate way to improve layout safety. As mentioned earlier, inherent safety

method intrinsically enhances safety rather than relying on passive measures, and the

basis of implementing this method is to apply the so-called inherent guidewords. [13]

discussed three dominant guidewords regarding layouts. These were attenuation,

simplification, and limitation. Applying the attenuation guideword changes the

arrangement of units contributing to reducing the likelihood of hazard escalation; the

simplification guideword impacts spatial organization that ameliorates the complexity

of pipelines and process flow; the limitation guideword has similar effects as the

attenuation guideword which aims to mitigate and eliminate hazard escalation;

however, the limitation guideword considers both inherent measures and passive

measures while the effect of the attenuation guideword is only attained by using

inherent measures [13].

The application of these guidewords to the base layout and two optional

layouts is shown as Fig. 3.5 (b) and (c). In Option 2, PMR Module 1 and PMR

Module 2 were placed along the length (x-axis), unlike the base layout where those

were placed along the width (y-axis). The GT Module and MR Module were separated

and kept parallel to two pre-cooling modules. The arrangements of the remaining were

almost the same as the base layout. Due to the partial segregation, total width of the

facility increased from 67.45m to 72m. In Option 3, all of the four process modules

were placed along the length; physical locations of other areas changed accordingly.

Compared to the base layout, and total width decreased from 67m to 64.97m, total

length increased from 142.08m to 169.3m. Additionally, the living quarter in this
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layout was at the top right corner and kept almost 30m from the GT module which

was considered as the nearest threatening source.

3.3 Layout Optimization Method

The purpose of the majority layout optimal solutions is to minimize costs. The

traditional way of optimizing layout is either to use mathematical algorithms or

programming the shortest distance of flow across units. Research regarding identified

types of layout optimization can be found in the literature [35-38]. However, while

considering how to use optimal layout to save costs, vulnerability to loss from

accidents due to safety issues cannot be ignored. Kletz pointed out safety can be as

well achieved without spending much money [39]. [40] investigated a case study

which substantiated that inherent safety could be balanced with good cost

performance when taking expected loss into consideration, such as environmental loss.

The current work investigated layout optimization from the inherent safety

perspective, and the method used in layout evaluation chose an index-based approach

incorporating an integrated inherent safety index (I2SI) and domino hazard index

(DHI). I2SI is a comprehensive method of inherent safety assessment, which was

proposed by [40] and was revised with an addition of cost evaluation [41]. It provides

a quantitative feedback of the applicability extent of inherent safety and also builds up

a connection between inherent safety and costs estimation. Further, domino hazard

index, a sub-index of the inherent safety index, [42] was used to assess the possibility

of the domino hazard (hazard escalation) of each layout. [43] concluded a domino

hazard could be prevented by appropriately changing plant layouts. Therefore, studies

have hitherto verified plant layouts do influence safety from both the safety and cost
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perspective. Details of indices calculation procedure and relevant costs of safety

measures used in the current work can be found in [18,40-42]. The framework of

layout evaluation is depicted in Fig. 3.6, where the index calculation procedure can be

summarized into a pyramid-shaped structure. In order to obtain the three main indices,

sub-indices of the lower layers should be calculated first. For example, hazard index

(HI) and inherent safety potential index (ISPI) are required before calculating the I2SI,

because the I2SI is a quotient of the HI and the ISPI. Each index has its own function,

and details are available in previously mentioned literatures. The sub-indices in the

lower layer should be considered first before obtaining the indices on the upper layer,

and the layout evaluation can be finally realized by calculating the layers from the

bottom to the top.

Figure 3.6 Framework of layout evaluation

3.4 Result discussion

Risk in the process area is much higher compared to other areas due to extreme

operating conditions or hazardous materials; therefore, the process area should be a
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focus, and the following work was completed based on assessing the layout safety of

the process area. In this area, potential risks should be avoided as much as possible in

order to ensure safety; however, in this particular case, liquefied natural gas can only

be obtained by liquefaction, which means the risks brought by the cooling operational

process cannot be prevented. Thus, safety measures are still required though inherent

safety has been applied. Assessing the extent of applying the inherent safety concept is

based on the hazardous impacts on surrounding units given an accident scenario for

one certain unit. An explosion scenario was assumed to take place on a compressor,

and a fire scenario was assumed for the rest of the equipment. Safety scores were

posed for each individual unit to better understand quantifying inherent safety and its

influence on each unit. Table 2 shows the final results of the I2SI and DHI for three

layout options. The inherent safety index (ISI) as an intermediate step of I2SI index

method is also introduced in Table 3.2. The computed ISI for the base option was less

than 5. Due to the minimum value of ISI is 5 [42], the ISI for all the equipment in the

base option was considered to be 5 in this case. The larger the I2SI is, the more

inherently safer the layout will be. On the other hand, a larger DHI value means a

higher probability of suffering hazard escalation. Note that an assumption was made

that costs of simplification remained the same while the complexity of the process

increased. According to the results yielding from I2SI, DHI and cost indices, the

analysis of each layout is as follows:

x Base layout

In the base layout, the process area was the smallest among the three layouts due to

the connection of four process modules; however, the high likelihood of aggravating

hazard escalation was proved by the highest value of DHI among the three layouts as
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shown in Table 3.2. On the other hand, the I2SI values were generally low (less than 1)

for all equipment shown in Table 2, indicating it was not inherently safe enough

compared to the other two. In the cost part, the cost of conventional safety was first

calculated using the number and price of safety measures. The cost evaluation showed

conventional costs were generally higher compared to the other two layouts as Table 3

shows. The increased cost is due to the more add-on measures that are needed to

guarantee safe operational conditions.
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Table 3.2 Layout Evaluation Results
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x Option 2

In Option 2, partial process modules (GT module and MR module) were demarcated, and

thus directly contributed to a decrease of DHI value as Table 3.2 shows. This decrease

also implied that the segregation of equipment is an effective way to prevent hazard

escalation. Additionally, ISIa and ISIl were significantly increased while the ISIs of some

units slightly decreased as a consequence of higher complexity, leading to the increase of

the total ISI value. PHCI, HCI, and DI values remained as the same with the base layout.

In this layout, most of the equipment had larger values on the I2SI than the base option as

shown in Table 3.2, which also clarifies that area segregation makes plants inherently

safer. As to cost, the cost of inherent safety was smaller than that of the base option in the

GT module and PMR Module 1; however, an increase is also shown in PMR Module 2

and MR module, mainly because of the high cost of some minor units, such as expansion

valve and cooler. In order to better explain this variation, cost saving was then calculated

to compare the safety costs of the base option and Option 2. Overall, additional costs on

PMR module 2 and PMR module 1 were beyond the costs saved by the GT module and

PMR module as shown in Table 3.3, thus making total costs of Option 2 surpassed the

base option.
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Table 3.3 Costs comparison for three layouts

x Option 3

In Option 3, all process modules were isolated in order to mitigate the hazard escalation

of the process area. Generally, DHI values were the smallest and much lower than the

other two options as shown in Table 3.2, which reflected that this layout was much safer

due to the separation of process modules from the hazard escalation perspective. Three

sub-indices changed dramatically due to different assigned DHI scores for each possible

secondary unit. Process complexity and limitation effects remained the same, but overall

most of the I2SI values were higher. From the cost perspective, the MR module was the

only module which cost more than the base option. However, the total saving indicated

Option 3 did save safety costs on the whole. Thus, Option 3 was so far considered as the

most optimal layout.

3.5 Conclusion

The current work performed a layout optimization using the inherent safety principles

given three layouts of the topside deck of an FLNG facility. The layout was optimized

from the view of making plant inherently safer. Three layouts were designed in
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accordance with offshore regulations, and the main difference lay in the arrangement of

four process modules in the process area. The process modules were the sub-parts divided

from the dual mixed refrigerant which was selected as the liquefaction technique after

comparing several technologies. The I2SI and Cost Index were the two main indices

implemented to assess each layout. After analyzing the extent of inherent safety for each

layout, Option 3 was found to be the best layout due to its largest extent of applying the

inherent safety method proved by generally higher I2SI values and the best cost

performance compared to the others. However, Option 3 was not satisfying in every

aspect; for instance, it took the largest space due to the segregation of process modules.

Nevertheless, safety is always at the first priority. Issues brought by safety risks could

very well cost far more than the saved money. Meanwhile, the other two options can also

enhance safety while keeping the current area by adding more safety devices; however,

this also confronts the same expected accidental loss. Thus, on the whole Option 3 was

the most optimal layout. More generally, module segregation could significantly enhance

the safety inherently especially for an offshore structure where the space is limited and

equipment is compact. The distances between modules could inherently prevent the

domino hazard acting among modules. Further, costs brought by the segregation effect

decreased in this case when concerning costs of safety measures and loss of expected

accident events. However, using inherent safety principles takes no consideration of

construction costs, and thus cannot assess the addition costs due to the increased area.

Additionally, the influence of environmental force on layout, such as prevailing wind,

need to be further discussed. Another limitation is the uncertainty of the feasibility of the

proposed layouts. As previously mentioned, FLNG is a new concept, and so far no FLNG
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facilities have come into real production. Therefore, the relevant design information of

FLNG is very limited for use as a reference. The proposed work introduces a new way of

offshore layout design and optimization that is based on inherent safety. Additionally,

ensuring inherent safety is believed to an optimal mechanism to enhance safer operation

and prolong the lifetime of the plants by reducing the risks of accidents.
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Chapter 4. Conclusions and Future Work

4.1 Conclusions

Risk-based design is a complementary approach to traditional design. It incorporates risk

analysis to support decision-making and to lower risks to an accepted level. This thesis

presents two risk-based tools including one dynamic hazard identification tool and one

risk-based layout optimization technique. The proposed hazard identification model is

adaptable to changing input parameters and able to make predictions accordingly for most

likely hazards. The layout optimization technique adopts inherent safety method as a

basis to evaluate different layouts through using inherent safety indices. The summary of

each chapter is presented as follows.

Chapter 1 introduces risk-based design and the steps for conducting a risk-based design.

Risk assessment, as the key element, is a focus. Hazard identification, probability analysis

and consequence analysis are introduced in turns. Then the applications of risk-based

design are reviewed followed by illustrating the research objectives and thesis outline.

Chapter 2 proposes a new methodology of hazard identification using the Bayesian

network which helps to identify major hazards in real time. This methodology enables the

construction of a dynamic hazard identification model which overcomes the drawbacks

brought by the static feature in conventional approaches. The dynamic model enables the

real time identification of hazards as well as information updates. In order to prove the

feasibility and credibility of this method, three case studies of fire, explosion, and toxic

scenarios are conducted. The simulation results from using the BN model are compared to
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the accident reports published on CSB websites and the results turn out consistency. In

order to investigate the dominant probabilities shown in simulation results, sensitivity

analysis is implemented to validate the generic model.

Chapter 3 demonstrates a risk-based method to improve safety inherently by performing

layout optimization using inherent safety indices. The work firstly chooses an LNG

process, followed by constructing an FLNG process area design as well as an FLNG

topside layout design. Two optional layouts are also proposed with different arrangements

of FLNG modules. Lastly, layout evaluation is performed in terms of the extent of

inherent safety, and the layout with the best evaluated results is chosen as the optimized

layout for an FLNG facility. The layout optimization process validates that the increase

clearance between process modules can improve overall safety. Besides, the inherent

safety has been proved a cost-effective method comparing to adding passive safety

measures. However, the associated construction and maintenance costs caused by

enlarging spaces should also be considered to balance with benefits.

Finally, the conducted research contributes to three publications as listed follows:

Xin, P., Khan, F., & Ahmed, S. (2016). Dynamic Hazard Identification and Scenario

Mapping Using Bayesian Network. Paper accepted at Process Safety and

Environmental Protection.

Xin, P., Khan, F., & Ahmed, S. (2015). Layout Optimization of a Floating Liquefied

Natural Gas Facility Using Inherent Safety Principles. Paper accepted at Journal

of Offshore Mechanics and Arctic Engineering.
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Xin, P., Ahmed S., Khan, F., (2015). Inherent safety aspects for layout design of a

floating LNG facility. International Conference on Ocean, Offshore, and Arctic

Engineering (OMAE), St John’s, ASME.

4.2 Future Work

In the future work, certain aspects can be improved for the presented tools.

The updating mechanisms in Bayesian network are encouraged so that results can be

more credible and closer to the latest facts. In addition, frequency analysis and

consequence analysis are also suggested to integrate so that the identified hazards can be

better quantified.

In the layout optimization technique, impacts of environmental forces, such as prevailing

wind, on FLNG layouts could be accounted when evaluating layouts. Furthermore, the

feasibility of the proposed layouts can be further studied in the comparison of other

existing naval architectures.
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Appendix

Appendix Table 1 Deck design for GT module

Deck Design Variables for GT Module

Equipment Centroid Coordinate Dimension Deck Belonging

No. Name xi(m) yi(m) Length (m) Width (m) Height (m)

1 Absorber 3.725 4.275 3.45 3.45 8 deck B,C

2 Distiller 11.45 4.275 2 2 13.8 deck B,C

3 Cooler 11.45 4.275 3 2 5 deck A

4 Common Header 11.45 10.5 1 1 1 deck D

Deck width =14.45 m Deck length = 21 m Deck area = 303.45 m2
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Appendix Table 2 Deck design for PMR Module 1

Equipment Centroid Coordinate Dimension Deck Belonging

No. Name xi(m) yi(m) Length (m) Width (m) Height (m)

1 PMR Suction Drum1 8.5 24.5 3.65 3.65 4.65 deck B

2 PMR Suction Drum2 15.5 24.25 3.2 3.2 4.55 deck B

3 PMR Compressor1 8.5 13 19 6 5.8 deck B

4 PMR Compressor2 15.5 13 19 6 5.8 deck B

5 Cooler for Comp.1 8.5 13 3 2 3 deck A

6 Cooler for Comp.2 15.5 13 3 2 3 deck A

7 Overhead Crane for Compressor 12 13 23 16 6 deck C

8 Cooler1 12 13 8 2 5 deck D

Deck width =24 m Deck length = 35 m Deck area = 840 m2
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Appendix Table 3 Deck design for PMR Module 2

Equipment Centroid Coordinate Dimension Deck Belonging

No. Name xi(m) yi(m) Length (m) Width (m) Height (m)

1 PMR Receiver 4.2 3.7 4.2 4.2 9.9 deck A,B

2 Heat Exchanger1 12.4 11.3 4.2 4.2 21.3 deck B,C,D

3 Heat Exchanger2 12.6 3.9 4.6 4.6 23 deck B,C,D

4 Expansion Valve1 8.8 11.3 0.1 0.1 0.15 deck D

5 Expansion Valve2 8.8 3.9 0.1 0.1 0.15 deck D

Deck width =19 m Deck length = 25 m Deck area = 475 m2


