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ABSTRACT

Many ordinary differential equations that describe physical phenomena
possess solutions that cannot be obtained in closed form. To obtain the
solutions to these systems, the use of numerical schemes is unavoidable. Tra-
ditional numerical analysis concerns itself with obtaining error bounds within
finite closed time mtervals however, the study of asymptotic or long term

behaviour of sol d by ical schemes has alot of
interest in recent years. It is now well established that numerical schemes for
can admit ptotic soluti
which do not correspond to tlmse of the ODE
This thesis studies i point ion methods, ibut-
ing to this important i igation by ideri i i hy in

autonomous ODEs and studying the dynamics of the methods for nonau-
tonomous ODEs.

Using the theory of normal forms, it is established that the common
codimension-1 bifurcations that exist in continuous dynamical systems will
occur in the methods at the same pbase space location. However, the meth-
ods can exhibit period doubling bifurcations, which are necessarily spurious.
They also introduce a singular set, which drastically affects the global dy-
namics of the methods.

The techni of b i ling of the ical solution is used
to study the dynamics of nonautonomous ODEs with periodic solutions, and
conditions under which the methods have a unique periodic solution that is
asymptotically stable, are stated explicitly. A link between these conditions
and linear and li stability theory is established.
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Chapter 1

Preliminaries

1.1 Introduction
Let
z' = f(t,), 2(0) = 2o, (1.1)

where f: R x I C R™ — R™, be an ordinary differential equation.

If f does not depend icitly on ¢, then the diffe ial equation

' = f(z), z(0) = zo, (1.2)

where f: I C R™ — R™, is said to be autonomous, otherwise it is nonau-
tonomous.

This thesis will be primarily concerned with various aspects of dynamical
behaviour that may exist in the solution of (1.1) and the conditions under

which these are exhibited by linearized one-point collocation methods. In this



chapter, we will summarize the well known aspects of dynamical behaviour
that will be of interest in this work, and derive this class of numerical methods

which we will be using in the study.

1.2 Awutonomous Case

Assume f € C'(R™,R™), so that (1.2) has unique solution, ®(zo, t), defined
for t = (B, B) with 0 € (1, B2).
If f(z*) =0, z* is said to be an equilibrium point of (1.2).

Define the orbits of z,:

THz) = U ®(.0)

t€[0,62)

(@) = U ®(0.t)
E(31.0]

Yw) = U o).
te(B1.52)

If 4~ (o) is bounded, we define
a(zo) = ,‘i’;‘; ®(zo,t),
and if v*(zo) is bounded, define
w(zo) = lim ®(zo,t).
[

We call a(zo) the a-limit set of zo and w(zo) the w-limit set of zo.
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‘We state some stability concepts for equilibrium points in autonomous

equations (see Wiggins [32]).

Definition 1.2.1 An equilibrium point, z°, of (1.2) is said to be Lapunov
stable if, for any € > 0, there is a & = 6(¢) > 0, such that, for every o for
which {|zo—z*|| < &, the solution ®(t, z) of (1.2] satisfies [|®(t, zo) —z"|| < €
forallt > 0.

z* is said to be asymptotically stable if it is stable and, in addition, there
isanrt >0 such that [|®(t,z0) —z*|| — 0ast — +oc for all zo satisfying

llgo — z*|| < 7.

An equilibrium point z° of ' = f(z) is said to be hyperbolic if none of the
eigenvalues of f;(z") have zero real part.
Stability of a hyperbolic equilibrium point can be determined from the

linearization of the vector field:

Theorem 1.2.2 Let f be a C' function. If all the eigenvalues of the Jaco-
bian matriz, f.(z*), have negative real parts, then the equilibrium point =" is

asymptotically stable.

A hyperbolic equilibrium point is called a saddle if some, but not all, the

eigenvalues of f;(z*) have real parts greater than zero and the rest have real



parts less than zero. If all the eigenvalues have negative (positive) real part,
then the hyperbolic equilibrium point is called a stable (an unstable) node or
a sink (a source). An equilibrium point is called a spiral if all the eigenvalues
have nonzero real and imaginary parts.

For scalar autonomous equations, the a- and w-limit sets are equilibrium
points, if they exist. If a numerical method is used to discretize a differential
equation, then the discrete system so obtained is a dynamical system in its

own right — a discrete dynamical system. Since discrete systems possess, in

general, much richer dynamics than their conti ts (see De-

vaney [6] for a hensive discussion of the dynamics of discrete systems)

we are confronted with a number of possibilities:

e Can the numerical method exhibit limit sets that are not present in

any continuous system?

e Can the numerical method exhibit limit sets that do not exist in the

specific system it has been designed to solve?

In other words, how do the aspects of dynamical behaviour of the numer-

ical method compare with that of the continuous system? Let

z > = + ho(z, h) = g(z) (1.3)



be the map corresponding to the discretization of (1.2) by a chosen numerical
method. Starting with the initial value zo, the map generates a solution

sequence (positive orbit) denoted by
7*(z0) = {0, 9(20). (0} - - . g"(x0).... }-
Then, we have the following definition.

Definition 1.2.3 A point X* such that g(X*) = X, that is, $(X*.h) =0

in (1.8) is called a fixed point of the map.

Definition 1.2.4 A fized point, X*, of (1.3) is said to be stable if. for any
€ >0, there is a § = 6(€) > 0, such that, for every xo for which ||zo—X*|| <6,
the solution sequence originating at zo satisfies ||g™(zo) — X*|| < € for all
n>0.

X" is said to be asymptotically stable if it is stable and, in addition, there
is anr > 0 such that ||g™(z0) — X*|| = 0 asn — +oo for all zo satisfying

llzo = X[ <r.

It should be noted that the stability of X* is dependent on the discretiza-
tion parameter h.
A fixed point X* of the map z — g(z) is hyperbolic if none of the eigen-

values of g:(X*) has modulus one.

o



Stability of a hyperbolic fixed point can also be determined from lin-

carization of the map:

Theorem 1.2.5 Let g be a C' function. If all the eigenvalues of the Jaco-
bian matriz, gz(X*), have moduli less than one, then the fized point X* is
asymptotically stable. If at least one of the eigenvalues has modulus greater

than one, X* is unstable.

A hyperbolic fixed point is called a saddle if some, but not all, the eigen-
values of g.(X*) have moduli greater than one and the rest have moduli less
than one. If all the eigenvalues have moduli less than one (greater than one),
then the hyperbolic fixed point is called a stable (an unstable) node or a sink
(source). A fixed point is called a spiral if all the eigenvalues have nonzero
real and imaginary parts.

The of period 2 ions in discrete dy ics, which we

now define, has no in i systems of di ion less than

3 (sce Humphries [18] and Stuart & Humphries [31]).

Definition 1.2.6 A solution sequence of the form Xpn = u®, Xonsy = v°,

where u* # v*, is called a period 2 solution of (1.8).

If a numerical method generates period 2 solutions, we know that such



solutions are necessarily spurious since no continuous systems admit such
solutions.

The study of dynamics of numerics has focused primarily on Runge-Kutta
and multi-step methods. We present here these two classes of numerical
methods.

Consider the general consistent linear k-step method
k E
> Xni; = kY Bif (Xnss) (1.4)
i=0 =

with fixed A > 0. Define the first and second characteristic polynomials by
p(z) = T¥ya;27 and o(z) = T¥, ;' respectively. Since the method is
consistent, p(1) = 0 and o(1) = p/(1) = a. If the method is zero-stable, a is
a nonzero constant.

We also consider the s-stage Runge-Kutta method
Ry =Xn+hZ’;b.'f(Z.'), (1.5)
2
where
z,:.\’,.+hzj;a-.,[(zl), i=1,2,...,s (1.6)
Z
Here, we define 4 := [a;;] and b := [5,]T.

Definition 1.2.7 A function f : R™ — R™ is said to be Lipschitz on X C

7



R™ if there eists a number L > 0 such that
Ifz) = f@I < Lllz —yll  for allz,y € X, 17)

where || - || is an R™ norm. L is called the Lipschitz constant. f is globally
Lipschitz if f is Lipschitz on R™, and locally Lipshitz if f is Lipschitz on all

bounded subsets of R™.

Iserles [19] related the notion of a fixed point of (1.3) with that of an
equilibrium point of (1.2) for Runge-Kutta and multi-step methods. He
proved that Runge-Kutta schemes can possess ertra fixed points that are

not equilibrium solutions of the di i ion; these, whenever they

exist, are said to be spurious solutions. Linear multi-step methods do not

possess spurious fixed points.

Definition 1.2.8 (Stuart & Humphries [31]) A numerical method for (1.2)
which does not admit spurious fized points is said to be regular of degree

1, R, A method which is not RV is irregular of degree 1, denoted IR!!.

Definition 1.2.9 (Stuart & Humphries [31]) A numerical method for (1.2)
which does not have period two solutions is said to be regular of degree 2,
RPl. A method which is not R is irregular of degree 2, denoted IR?.
A method that is both R and R? is said to be regular, denoted R('2.

8



The explicit Euler method is the only explicit R-K method that is Rl!],
no explicit R-K method that is R exists, and the highest order of regular
Runge-Kutta methods is 2 (Hairer et al. [13], Stein [28]). If we would
like to use only R(*? R-K methods, then we are essentially restricted to
low order methods. However, Stein [28] proved that a limit stepsize, A,
exists, below which a Runge-Kutta method exhibits no spurious fixed points.
Also, Humphries [18] proved that if f is globally Lipschitz, spurious fixed
points in R-K methods cannot exist for arbitrarily small h. However, Stein

demonstrated that the limit stepsize h; can be computed.

Theorem 1.2.10 (Humphries [18]) The linear multi-step method (1.4) is
not R? if p(—1) = 0. If p(—1) # 0, and the method is zero-stable, then it is

ROl if and only if o(—~1) = 0.

The backward differentiation formula (BDF) is an example of an R linear
multi-step method.

The following famous example is used to demonstrate that numerical
methods can exhibit very complicated dynamical behaviour even if the un-

derlying system is very simple.



Example (Griffiths et al. [10])

Consider the well-known logistic equation
7' =az(l —z), z(0) = o, (1.8)

where z € R and a > 0 is a parameter. This differential equation has
equilibrium solutions z = 0 (unstable) and z3 = 1 (stable). The w-limit set
of all solutions with zo > 0 is z3.

The Explicit Euler Method, applied to the logistic equation, gives the

map
z— z+ haz(l —z). (1.9)

Figure 1.1 depicts the bifurcation diagram for (1.9). As the parameter
I = ha is increased through the value 2, z3 loses stability and the system

undergoes a series of spurious period doubling bifurcations.



Figure 1.1: Bifurcation diagram: Explicit Euler method, applied to (1.8).

In the simple example above, no spurious behaviour exists below the lin-
earized stability limit ({ = 2) of the method for the fixed point z3. However,
spurious behaviour has been observed by Yee, Sweby and their collaborators

(Yee et al. [35]) below linearized stability limits of methods.



1.3 Invariant Sets and Manifolds
Definition 1.3.1 4 set S C R™ is said to be invariant under the vector field
(1.2) if for any zo € S, the solution z(t,x0) € S for all t € R.

Let z* be an equilibrium point of (1.2). In seeking to study the nature of

the orbits of the system near z*, we consider the associated linear equation

FACEN (1.10)
The following sets (or manifolds) are invariant under this linear flow.

E* = spanfe, ez, €}

E¥ = span{esi1, €542, " s €stu}

E° = span{esius1; €siusz: 1 €asuichs
where s+u+c=mandey,--- e, are the eigenvectors of f;(z*) correspond-
ing to the eigenvalues of f,(z") having negative real part, e, 1, -+ , €54y are
the ei ors of fz(z*) ding to the ei of fz(z") having
positive real part, and €s4u41, -+ , €s4ute are the eigenvectors of f.(z*) corre-

sponding to the eigenvalues of f,(z") having zero real part. The sets E¥, E*

and E€ are invariant subspaces of R™, and are referred to as stable, unstable

and center sub; of the li ization (1.10). Furth the sub:

E* and E™ have the following asymptotic properties:

12



(i) Solutions with initial values in E* approach z* asymptotically as t —
+oc.

(ii) Solutions with initial values in E* approach z* asymptotically as
b= ~00;

Considering the nonlinear system (1.2), we define the global stable and

unstable manifolds of z* respectively as

Wi(z") = {zo € R™|®(zo,t) — 2" as t = +o0},

We(z") = {0 € R™[®(z0,t) = 2" as t - —oo}.

These manifolds are tangent to the respective invariant subspaces of the
linear vector field (1.10) at z*; hence they are locally representable as graphs.
To discuss center manifolds, we assume without loss of generality that

z° =0 and (1.2) has been transformed to the form

zy = Azi+u(z1,70)

3 = Bz +v(T1,72), T =(21,72) €R° x R®, (1.11)
where u(0,0) = 0, v(0,0) = 0, u,(0,0) = 0 and v,(0,0) = 0. In (L.11), A is
a ¢ x ¢ matrix having eigenvalues with zero real parts, B is an s x 5 matrix

having eigenvalues with negative real parts, and u and v are C" functions

(r 2 2). Then, an invariant manifold that is locally representable as follows

13



We(0) = {(z1,72) € R® x R®|z2 = h(z)). || < 6,k(0) = 0,4'(0) = 0}

for sufficiently small §, is called a center manifold for (1.11). A center mani-
fold. 11°¢(0) is tangent to E° at z = (z1,1) = (0,0).

The Center Manifold Theorem (see Guckenheimer & Holmes [11], Wiggins
[32]) states that the dynamics of (1.11) restricted to the center manifold is

given by the vector field
¥ = Ay +u(y, h(v)), yER,

and, near y = 0, determines the dynamics of (1.11) near (zi,z,) = (0,0).

Analogous definitions for maps exist.

Definition 1.3.2 A set S C R™ is said to be invariant under the map (1.3)

if for any zo € S. g™(z0) € S for all .

Let X* be a fixed point of (1.3). In seeking to study the nature of the

orbits of the system near X*, we consider the associated linear map

z - ga(X")z. (1.12)



The following sets (or manifolds) are invariant under this linear map.

E* = span{ey, ez, e} (1.13)
E* = span{e,41,€552, " ;€s4u} (1.14)
E® = span{e,iu+is€stut2: " s Coture) (1.13)
where s+u+c=m and e, - , e, are the eigenvectors of g(X*) correspond-
ing to the eigenvalues of g;(X*) having modulus less than one, es1, -+ . €54u
are the ei of g:(X") ding to the ei of g:(X*)
having modulus greater than one, and €,4y+1." " - ,€s+usc are the eigenvec-

tors of g:(X") corresponding to the eigenvalues of g.(X*) having modulus
one. E*, E* and E° are invariant subspaces of R™, and are referred to as
stable, unstable and center subspaces. The subspaces £* and E* have the
following asymptotic properties:

(i) Solutions with initial values in E* approach X* asymptotically as
n = +oc;

(ii) Solutions with initial values in E* approach X* asymptotically as
n— —oco.

Considering the nonlinear map (1.3), we define the global stable and



unstable manifolds of X* respectively as

WA(X") = {zo€ R™|6(t. 7o) = X" as t — +o0},

W*(X") = {zo € R™|6(t.z0) =+ X" ast — —oc}.

These manifolds are tangent to the respective invariant subspaces of the
linear vector field (1.12) at X*.

The discussion of center manifolds for maps is very similar to the one for
vector fields; we assume without loss of generality that X* = 0 and (1.3) has

been transformed to the following form

;= Az +u(z(,72)

z3 — Bz +v(71,22), z=(z,72) ER° xR, (1.16)
where u(0,0) = 0, v(0,0) = 0, u,,(0.0) = 0 and v,,(0,0) = 0. In (1.16).
as in (1.11), A is a ¢ x ¢ matrix having eigenvalues of modulus one. B is an
s x s matrix having eigenvalues of modulus less than one, and v and v are
C7 functions (r > 2). Then there exists an invariant manifold that is locally
representable as follows

We(0) = {(z1,72) € R x R'|z2 = h(z1), |z| < §,h(0) = O, '(0) = 0}

for sufficiently small §. This manifold is called a center manifold for (1.16).
A center manifold, W¢(0) is tangent to E° at z = (z,,22) = (0,0).

16



The Center Manifold Theorem for maps is completely analogous to the
one given for vector fields and states that the dynamics of (1.16) restricted

to the center manifold is given by the map
y > Ay +u(y, h(y)). yER,

and, near y = 0, determines the dynamics of (1.16) near (z;,z2) = (0,0).

1.4 Nonautonomous Case
Consider the ODE
2 =f(t,z),  z(0) =z, (1.17)

where f: I CR xR — R. and f depends explicitly on .

We confine ourselves to the case in which f is assumed to be periodic in
¢ with prime period T. Under certain conditions on f, (1.17) has a unique
T-periodic solution. These will be stated for each form of f we will consider.

In these cases, the notion of ilibri points in

systems is replaced by that of periodic solutions.

Definition 1.4.1 A periodic solution, ®(t, o), of (1.17) is said to be stable

if, for any € > 0, there is a 6 = 3(€) > 0, such that, for every yo for which

17



[vo = ol < 8, the solution ®(t,yo) of (1.17) satisfies |®(t, yo) — B(t, o)| <
forallt>0.

B(t,0) is said to be asymptotically stable if it is stable and, in addition,
there is an > 0 such that |B(t, o) — ®(t,70)| — 0 ast — +oo for all yo

satisfying |yo — To| <T.

‘We will use linearized one-point collocation methods to study the dynam-
ics of the nonautonomous system (1.17) for the special forms of f:

(i) f linear: f(z,t) = a(t)z + b(t), where a(t) and b(t) are C* T-periodic
functions of .

(ii) f nonlinear: f = a(t)g(z) + b(¢), where a(t) and b(t) are as in (i) and
g(z) is a C? nonlinear function of z.

The Poincaré map is often used to study the stability of periodic solutions.

Definition 1.4.2 Let (1.17) be a T-periodic scalar ordinary differential equa-
tion with T-periodic solution ®(t,z0)- Then, the Poincaré map of (1.17) is

the scalar mapping
OI:R—-R; zo — (T, 7o)

A point zo is the initial value of a T-periodic solution of (1.17) if and

only if [I(zo) = zo, that is, it is a fixed point of the Poincaré map. The

18



stability properties of the T-periodic solution are the same as the stability
properties of the corresponding fixed point of the Poincaré map (see Hale &
Kogac [16]). We will use an analogous procedure; by selecting the stepsize
h in a numerical method such that T is an integral multiple of h, T = hk
(k € N), we can use the k-fold composition of the method instead of the
Poincaré map. This procedure, which does not require prior knowledge of
the periodic solution, is known as stroboscopic sampling, and is explained in

explicit detail in Chapter 5.

1.5 Linearized Collocation Methods

Our study will be based on linearized one-point collocation methods, which
is a class of numerical methods for the solution of (1.1). We will present a

short derivation of the methods, and present three important special cases.

1.5.1 Derivation of One-Point Collocation Methods
We approximate the solution, z(t), by a piecewise linear C° function, u(t);
on [tn, tnsi], u(t) is given by

u(ty + sh) = T, + hsza (1.18)
where s € [0,1] and z, = u/(t) is constant on (tn, tas1)-

19



Collocation at t = t, + c;h, where 0 < ¢; < 1 is given, implies
Wty + c1h) = f(tn + cih, u(tn + c1h)) (1.19)
and, from (1.18) and (1.19),
zn = f(ta + cth,Ta + hey2n). (1.20)
If we let s = 1 in (L.18), noting that u(ta) = Zn, U(tns1) = Tns1, then
Tnpl = Tn + hzn. (1.21)

Rearranging (1.20) and (1.18) gives the family of numerical methods called

one-point collocation methods:
ZTngt = Tn + hf(ta + 1k, (1 = €1)Zn + C1Tn11), (1.22)

where ¢; € [0,1].

Collocation methods for initial value problems were introduced in Loscalzo
(24]. and have attracted great interest ever since. A general discussion of the
methods can be found in Hairer et al. [14], and a brief history is given in
Brunner [5]. All the one-point methods are globally first-order; however,
Guillou and Soulé [12] proved that local superconvergence of the methods
is attained at the mesh points if the {c;} are Gauss points. In the one-
point case, this would mean order 2 local superconvergence is attained when
¢ =05,
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Special Cases: Note that putting ¢, = 0 in (1.22) gives us the explicit
Euler method, ¢; = 1/2 gives the implicit midpoint method, and ¢, = 1 gives
the implicit Euler method.

One-point collocation methods belong to a class of continuous one-step
Runge-Kutta methods for (1.1); they are implicit whenever ¢; > 0.

When ¢; > 0, difficulties can arise (such as loss of uniqueness) in at-
tempting to solve the implicit equations at each step for z,4;. A method
that has proved to be numerically inexpensive and reliable (see Yee & Sweby
{33]) is linearization. Also, the study of the dynamics of linearized methods
is of interest on its own; due to their obvious computational advantages, they
would be preferable over fully implicit methods if they retain the dynamics

of the differential equation.

1.5.2 Linearization
We perform a linearization of (1.22) about the point (tn,z,). The resulting

methods take the following form:

Znst = Tn + h{I = c1hfz(tn, Za)] 7 [f (ta: Ta) + c1hfeltn: Ta))-
(1.23)

Extracting the three special cases gives:



Explicit Euler (c; = 0):
Zast = Tn + hf(ta, Ta)- (1.29)
Linearized Implicit Midpoint (c; = 0.5):

Zaes = 2+ B = o 2 s 70) + 2 il 2]

(1.25)
Linearized Implicit Euler (¢; = 1):
Znst = Zn + AL = hfz(tn, 2a)] 7 [f(ta, Za) + hfeltn, 70)]-
(1.26)
Observe that for i i ized point collocation
methods are given by
Tast = Tn + h[I = crhfe(za)] " f(zn)- 1.27)

The following lemmas are simple consequences of the form of the lin-

earized one-point collocation methods (1.27).
Lemma 1.5.1 Ifz = z* is an equilibrium point of ' = f(z), and he fo(z") #
I. then z* is a fized point of (1.27).

Lemma 1.5.2 If z = X* is a fized point of (1.27), then it is an equilibrium
point of the generating vector field z' = f(z) of (1.27).
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Proof: We write (1.27) in the form
(I = c1hfz(2a))(Zn+1 = Za) = hf(zn).

Clearly, if X* is a fixed point of (1.27), f(X*) =0.

1.6 Outline of Thesis

Chapter 2 gives some background and motivation of the work in the the-
sis, and provides some historical development of the area of Dynamics of
Numerics.

In Chapter 3, we apply the linearized one-point collocation methods to
autonomous equations of the form z’ = f(u,z), where u is a parameter.
Our objective is to ascertain whether any bifurcations that occur in the
differential equation are inherited by the methods, and at the same values of
the parameter.

In Chapter 4, we consider the possible effect of the singularity in these
collocation methods when solving autonomous equations. It is shown that
the singularity structures of the methods are responsible for the distortion of
the global asymptotic behaviour of the methods.

In Chapter 5, we consider nonautonomous equations. Starting with lin-
car equations, we establish conditions under which the numerical methods’
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dynamical behaviour mimics that of the differential equations. This study is
extended to nonlinear problems, and it is shown that there is a relationship

between beh

and linear, i stability theory for our
chosen methods. The study is extended to multi-dimensional linear nonau-
tonomous equations in Chapter 6.

Chapter 7 summarizes the results obtained in the thesis, and gives some

suggestions for future work.
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Chapter 2

History and Background

2.1 Introduction

The subject treated in this thesis belongs to a new area of Applied Math-
ematics called “The Dynamics of Numerics”, which attempts to study nu-
merical methods for the solution of differential equations using the theory of
dynamical systems.

The study of numerical schemes using the theory of dynamical systems
has attracted much interest since the early 1990’s and the term “Dynamics
of Numerics”, as applied in this context, was the subject of the Conference
on Dynamics of Numerics and Numerics of Dynamics [4].

It is now well ished that ical methods are dy ical systems

in their own right whose iour can differ signil v, often ically

from that of the differential equation they are attempting to solve. The



implications of this possibility are far reaching. In practice, to predict long

term iour of solutions of diffe i i one has to rely solely on
numerical schemes. Therefore, it is absolutely essential to be familiar with
the dynamical behaviour of the numerical scheme one intends to use. The

importance of this investigation is stated explicitly by Stewart [29]:

. the safest route is to have some understanding of the dy-

namical behaviour of the numerical method being used. In short,
the whole area needs sorting out. The main problems are not so
much numerical as dynamical: the actual behaviour of the con-
tinuum models, and their relation to discretizations, must be the
central object of study. Until these advances in the dynamics of
numerics are made, all users of the numerics of dynamics — most

of whom are wielding a math ical tool without unds

how it works — should heed the warning.”

This chapter will survey existing results on this dynamic subject which

has come to be known as the Dynamics of Numerics. The text by Stuart &

E ies [31] gives a ive review of the then known results on

this subject.



We consider the autonomous differential equation
7' = f(z), z(0)=z" € R™,

and the cor ding map iated with a

> 7 + ho(z. h) := g(z, h).

It is the asymycotic states (the a- and w-limit sets) that are of interest in

this chapter.

2.2 Spurious Fixed Points

Iserles [19] made the connection between the dynamical features of the map
representing a numerical method and those of the autonomous differential

equation (1.2). Defining the sets

F {z€R": f(z) =0} and

Gh = {X eR™:9(X,h) =0},
he proved the following results.
Theorem 2.2.1 For linear multi-step methods, Gy = F for all h > 0.

Theorem 2.2.2 For Runge-Kutta and Predictor-Corrector methods, F C
Gh, and the inclusion may be strict.
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In other words, linear multi-step methods are R!!l whereas Runge-Kutta
and Predictor-Corrector methods are generally /R (can admit spurious
fixed points). However, even in the absence of spurious fixed points, the
dynamics of a linear multi-step method can differ from that of the differential
equation since the domain of attraction of a fixed point of the method may
fail to resemble that of the corresponding equilibrium point in the differential
equation, depending on h (see Iserles [19]).

2.3 Characterization of Regularity in Runge-
Kutta Methods

Hairer et al. [13] studied conditions under which Runge-Kutta methods are

R, They established the following results.

Theorem 2.3.1 A consistent ezplicit Runge-Kutta scheme is R if and only

if it produces the same solution sequence as the ezplicit Euler method.

This theorem essentially means that spurious fixed points can be expected
in higher order explicit Runge-Kutta methods. The following theorem, also
in Hairer et al. [13], states the regularity condition of general Runge-Kutta

methods.

Theorem 2.3.2 The mazimal order of an R Runge-Kutta method is 3,
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and the mazimal order of an A-stable Runge-Kutta method is 4.

The above results do not specify the magnitude of the stepsize for which
spurious fixed points are observable. Hence, it may be assumed that they
would occur for stepsizes above those normally used in practice. Humphries
(18] studied the behaviour of these spurious fixed points as h — 0, and
Griffiths et al. [10] studied the occurrence of spurious fixed points below the

linearized stability limit for the genuine fixed points.

2.4 Study of Spurious Fixed Points

Humphries (18] studied the behaviour of spurious fixed points, whose exis-
tence was uncovered by Iserles [19], in the limit as h — 0. He proved the

following results.

Theorem 2.4.1 If a numerical approzimation to (1.2) is obtained by using
an ezplicit Runge-Kutta method or an implicit Runge-Kutta method (where
the implicit equations are solved using a convergent iterative scheme), then

(i) if f is globally Lipschitz, spurious fized points cannot ezist for h arbi-
trarily small,

(ii) if f is locally Lipschitz, and in particular if f € C'(R™,R™), and
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spurious fized points ezist for h arbitrarily small, then they tend to infinity

in norm, as h — 0.
A similar result is true for period-2 solutions.

Theorem 2.4.2 If a numerical approzimation to (1.2) is obtained using an
ezplicit R-K method, an implicit R-K method (where the implicit equations
are solved using a convergent iteration), or a zero-stable linear multi-step
method with p(~1) # 0, then

(i) if f is globally Lipschitz, period-2 solutions cannot ezist for h arbitrar-
ily small,

(ii) if f is locally Lipschitz, and in particular if f € CY(R™,R™) and a
period-2 solution (u(h),v(h)) egists for h arbitrarily small, then both u(h),

u(h) tend to infinity in norm, as h — 0.

While these results are quite revealing, in practical computations, h remains
finite but not extremely small, so that h # 0. This necessitates the study
of the possible effect of spurious solutions which may coexist with the true
asymptotic solutions.

More recently, Stein [28] proved that, for any hyperbolic fixed point of

an explicit Runge-Kutta method, there exists a computable limit stepsize A;,
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below which spurious solutions do not exist and the method inherits only the
fixed points of the differential equation with their stability types. While this
result reveals that spurious solutions do not exist provided the stepsize is
small enough, we often have to use relatively large stepsizes when computing
over long time intervals.

2.5 Bifurcations to Spurious Period-2 Solu-
tions

Iserles et al. [20] proved that spurious period-2 solutions can bifurcate from
genuine fixed points as h is varied. This, they showed, can occur in both
Runge-Kutta and linear multi-step methods. They also established an order

condition for R%? Runge-Kutta methods, which is stated below.

Theorem 2.5.1 The highest attainable order of an R*? Runge-Kutta method

is 2.

A natural question to ask is: How do period-2 solutions in /R? methods
arise? The two theorems below answer this question for Runge-Kutta and

linear multi-step methods.

Theorem 2.5.2 Consider the Runge-Kutta method (1.5), used to solve the
scalar equation = = f(z) where f : R — R, which has a hyperbolic equilib-
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rium point z*. Then, period-2 solutions bifurcate from z* at h = he, where

T 055 NS %
b (I — hef'(z)A) lH'W(I')VO' 21)
provided (I — hef'(z")A) is invertible and bT (I — hof'(z")A)~21 # 0.

A similar result holds for linear multi-step methods.

Theorem 2.5.3 Consider the z and ble linear multi-step

method (1.4), with p(—1), o(—1) # 0. Suppose this method is used to solve
the scalar equation &' = f(z), where f : R — R which has a hyperbolic
equilibrium point z*. Then, period-2 solutions bifurcate from z* at h = h,,

where

__ p(=1)
e = Flme-1 @)

Griffiths et al. [10] show that, even though Ac may be above the linearized
stability limit of the respective method for z°. an unstable branch of the
spurious solution may exist below the linearized stability limit. This may
affect the global asymptotics of the method for reasonable values of k by
distorting or segmenting the basin of attraction of 2* (see Yee & Sweby [36]

and Chapter 4 of the thesis).

32



2.6 Branches of Spurious Solutions

In [10], Griffiths et al. study a genuine fixed point, z*, of an explicit Runge-

Kutta method such as (1.5). Per i are used to i

the local nature of bifurcations from the fixed point to spurious solutions.
Linearization about a fixed point leads to the stability function
R(z*,h) =1+ pbT(I — pA)™"1 (2.3)

where p = hf'(z"), b = (b;,by,...,b,)T, 1 = (1,1,...,1)7, and A denotes
the s x s array of weights a;; in (1.6).
Loss of stability of z* is encountered when p = p* = h*f'(z") satisfies

either

PBT(I = p A1

PO = g A) M =0 (23)

In the former case, as p decreases beyond p*, the method undergoes a
period doubling bifurcation. In the latter case, z* loses stability and for

a linear problem, this would lead to [X,| — oo as n — oo; however, for

li i i ions (f'(z) # constant), there may be

a bifurcation to a fixed point X* that is spurious.
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It is further proved that not only can spurious steady states be reached
for h > h* (corresponding to p*), but an unstable branch exists for h < A*,
which may substantially affect the domain of attraction of the true, stable
steady state.

This work is enlightening because it shows that the existence of spurious
solutions of a Runge-Kutta scheme, regardless of their stability, below the
linearized stability limit of the scheme for a genuine fixed point, can adversely
affect the computed solution and result in a distorted numerical basin of

attraction.

2.7 Global Asymptotic Behaviour

Yee & Sweby ([36], [33], [34]) concentrate their study on specific 2x 2 systems
of ODEs and show how spurious asymptotes, regardless of their stability, can

give rise to ical basins of ion that differ signi ly from the

basins of the ODE for the true asymptotes.

Nine explicit and two implicit R-K methods, as well as four linear multi-
step methods are considered. These are the explicit Euler, modified Euler,
improved Euler, Heun, R-K 3, R-K 4, PC2, Adam-Bashforth, linearized im-

plicit Euler, linearized trapezoidal, implicit Euler, trapezoidal, 3-level BDF
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and mid-point implicit method. C are ob-

tained. All eleven R-K methods generate spurious asymptotes, and for the
predator-prey model, for example, more than one spurious fixed point below
the linearized stability limit of the scheme is introduced.

Numerical results indicate that, for different finite discretization parame-
ters hy and hy below the linearized stability limit of the scheme, numerical
solutions might converge to two different solutions even if no spurious stable
steady-state numerical solution is introduced by the scheme. The existence
of spurious asymptotes, regardless of their stability has detrimental effects
on the computed solution.

Thus, for a given h below the linearized stability limit of the scheme, the
numerical solution may:

(a) converge to the correct steady state;

(b) converge to a spurious steady state;

(c) converge to a spurious periodic solution;

(d) yield spurious asymptotes other than (b) or (c);

(e) diverge, even for physically relevant initial data.

Even though linear multi-step methods preserve the same number of
steady states as the underlying ODE, they may change stability types of

the fixed points. Also, the solution procedure used in computing the full
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discretized equations, has an effect on the asymptotic behaviour. Results
show that linearized implicit methods are more efficient than other solution

procedures.

2.8 Relevance of Thesis

This thesis will settle some issues in the dynamics of numerics that are either
incompletely considered or not treated in the literature.

Collocation methods have grown in importance since their initial intro-
duction. Generally speaking, implicit methods tend to be computationally
expensive in practice, and explicit methods are computationally cheaper yet
impose stringent stability restrictions which place major limits on the dis-

In order to dt ine whether li ization gives us

the best of both worlds, we have to study the dynamics of the linearized
methods.

Much of the study that is in the Ii has

on autonomous ODEs, fixed points and possible existence of spurious fixed
points in Runge-Kutta and linear multi-step methods. This thesis goes fur-
ther, and studies the dynamics of linearized collocation methods for both au-

t ions and ions with periodic solutions.




From the numerical results in Yee & Sweby ([33], [36]), it is observed
that there are different numerical basins of attraction for different numeri-
cal methods and different solution procedures used in implicit methods. In
particular, there is a shrinking of the basin of attraction for oo in certain
methods, particularly linearized ones. Here, we introduce the concept of
pole-type behaviour and prove that the existence of spurious pole-type be-
haviour, which is inextricably linked to the presence of singularities in the
methods, causes basin shrinkage for co.

It has been established in Griffiths et al. [10] that numerical methods can

introduce spurious period-doubling bifurcations and bifurcations to spurious

fixed points. What is the effect of di ization of a
ODE by a numerical method? In particular, we will consider two types of
parameter-dependent ODEs: scalar ODEs with the common codimension-
1 bifurcations and planar ODEs with the Hopf bifurcation. The objective
is to ascertain whether discretization of the ODEs by linearized one-point
collocation methods results in a discrete system that possesses the discrete
analog of the same bifurcation and if so, whether this bifurcation occurs
at the same parameter value. The results are generally applicable to higher
dimensional systems through center manifold theory (as discussed in Wiggins
[32)).
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Chapter 3

Autonomous Equations

3.1 Introduction
Let
2 = f(z,n), for ¢t > 0 and z(0) = 2°, (3.1)

where f : R" xR — R™, be an ordinary differential equation with parameter
1 € R. Since f does not depend explicitly on ¢, (3.1) is autonomous.

In those instances in which the solution z(t) of (3.1) is approximated by
a linearized one-point collocation method, we would like to investigate the
dynamical behaviour of the numerical method and see how far it correctly
represents the dynamical features of the vector field.

The linearized one-point collocation methods, when applied to (3.1) are

given by



Xt = X+ h[I = hey fo(Xn, 1)) f (X, 1) = 9(Xn), (32)

where [ is the m x m identity matrix, f; the Jacobian of f with respect to
z and h is the time step. It is clear from Lemma 1.5.1 that (. z*(m)) is a
fixed point of (3.2) if and only if it is an equilibrium point of (3.1) for u =7
provided ke, fz(z"(R), ) # 1.

If an equilibrium point of the system (3.1) undergoes a bifurcation, we
would like to ascertain whether the fixed point in the numerical methods
will undergo the discrete analog of the same bifurcation, and whether that
bifurcation occurs at the same value of the parameter . We begin by study-

ing common codimension-1 bifurcations, then the Hopf bifurcation in planar

systems.

3.2 Codimension-1 Bifurcations

The stability of common codii ion-1 bifi i under i i one-
point collocation methods has been studied using normal forms, and detailed

results are in Foster & Khumalo [7].

Normal forms is a method of simplifying a system (
or discrete) by finding a coordinate system in which the dynamical system
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takes the simplest form. The di i are typ-

ically local to a known solution (such as a fixed point or periodic solution).

3.2.1 Saddle-Node Bifurcation

The following lemmas give well-known topological normal forms for one-
dimensional systems that possess the saddle-node bifurcation (see Wiggins

[32]).

Lemma 3.2.1 Let 2’ = f(z,a) be a one-parameter family of scalar flows
such that f is C? in z and C" in & on some sufficiently large open set
containing (0,0). Let the origin be a nonhyperbolic fized point: f(0.0) = 0,
£:(0.0) = 0. Let the non-degeneracy conditions f«z(0,0) # 0, fa(0.0) # 0

ezist. Then a normal form for the saddle-node bifurcation is

Z=a+zr’ (33)

The normal form equation z’ = a+z? has equilibrium points z* = +\/=a.
For a < 0, ° = +/—a is unstable and z* = —/=a is stable. At a =0,
there is a single unstable equilibrium point z* = 0.

The second lemma states a normal form for the saddle-node bifurcation
in maps.

40



Lemma 3.2.2 Let = — g(z,p) be a one-parameter family of scalar maps
such that g is C? in z and C* in p. Let g(0,0) = 0 and g-(0,0) = 1,
922(0,0) # 0 and g,(0,0) # 0. Then a normal form for the saddle-node

bifurcation is

T p+zEzi (34)

The curves of fixed points in equations (3.3) and (3.4) correspond exactly

in location and stability type.

Theorem 3.2.3 If a saddle-node bifurcation occurs in & = f(z,a), then
a corresponding saddle-node occurs in its transformation by linearized one-

point collocation.

Proof [7]: Applying linearized one-point collocation methods to the nor-

mal form (3.3) gives rise to the maps z +— g, where

572
g llakis)

I=TT T TShaz

and § = 1.
Expanding as g(z, a) = z+3 gi(@)z’, we obtain g = ha+(1+25h%cia) T+

(5h + 4h’ca) 28 + O(z?).
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Let £ = +4, where § = §(a) is to be defined. Then the image of £ under

the action of the map is

£ = z+d 0 g(z,a)+8 = g(§—d,a)+6

]

Because ¢:(0) = 0 and g2(0) # O, the Implicit Function Theorem can be

invoked to annihilate the a-dependent part of the linear term (in &) for all

9(0)
292(0)

sufficiently small |a|. Hence we define é(a) = a+ 0(a?) = heia +

0O(a®). obtaining
&+ [ha — 5h3cia’ + a*®(a)] + £ + [5h + O(a)] € + O(&°),

(3.3)
where ®(a) is a smooth function. Let v(a) be the &-independent term of
(3.3). Since %(0) = 0 and ¥(0) = h > 0, the Inverse Function Theorem
assures local existence and uniqueness of a smooth inverse a(y) increasing
through the origin. Then £ — v+&+a2(7)€2+0(€%), where a,(7) is smooth

with @,(0) = 5h # 0. A final change of variable n = |as(7)| £ gives
N+ pt+n+357+0(n),

where p = |az(7)| 7. The higher-degree terms can be eliminated due to local

dependent maps [2].

logical j v of these
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Thus we obtain the normal form (3.4) for saddle-node bifurcation at
(n.1) = (0,0). Direct consideration of the above transformation sequence,
restricted to a neighbourhood of (z,a) = (0,0), confirms that (n, x) = (0,0)
if and only if (z,a) = (0.0). Furthermore, the derived map and the original
flow have exactly corresponding normal forms and y is z-independent. There-
fore, the phase location, orientation and stability properties of the saddle-
node bifurcation are preserved under the map. o

We now consider the stability of fixed points. Assuming without loss of
generality that § = +1, the fixed points are given by z* = +\/—a. Sin-
gularities occur for 1 — 2he;z = 0, hence the fixed points exist for a < 0,
a # —1/(4hc}). Performing standard stability analysis, we determine that
the fixed point z* = /=« is stable for

PD -1
{ a'< m (er >1/2).
and the fixed point z* = —\/=a is stable for

%o (a0 21/2)
-1 PD SN
m<a<0 (e < 1/2).
The labelled i iti the | i of saddl de (SN) and

period doubling (PD) bifurcations, see Figures 3.1 and 3.2. The following
key applies to each of the diagrams:
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Stable fixed point: —
Unstable fixed point: — — —

Singular set: - - - -

Observe that when ¢; = 0 (explicit Euler method), the singularity is
removed to z — 0c. On the other hand, for ¢; = 1/2 (linearized implicit

midpoint) the period doubling bifurcation is removed to z — co.

!
Wa-17 wmg

Figure 3.1: Saddle-node: f =a+12, ¢; > 0.5
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Figure 3.2: Saddle-node: f = a+ 22, ¢ < 0.5

We now consider the converse of Theorem 3.2.3. That is, we assume a
saddle-node bifurcation exists in the family of maps generated by linearized
one-point collocation methods, and examine the nature of the flow from which

the maps are derived.

Theorem 3.2.4 If a saddle-node bifurcation occurs in a scalar map T

9(z. 1) due to a transfor ion by a linearized -point ion method,
it results from a corresponding saddle-node in the originating scalar flow

o = f(z,0).
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Proof [7]: Assume a linearized one-point collocation method possesses a
saddle-node bifurcation at (z.u) = (0,0), where f = f(z, ) is an undeter-
mined flow function given to be C? in z and C! in p. Equating this family
of maps to the normal form (3.4), and expanding f(z,p) = % ai(u)z’, we

match coefficients to obtain
o p) = £ + 260 () - 2pa2(w)z + ax(w)2® + O().
A change of variable £ = z + 6(u) yields the originating flow as

§ = o= f(z,p)=fE-b.p)

= [ag - @18 + a28% + O(8%)] + [a1 — 2a20 + 62 U(p, 6)I€ + [a2 + O(8)]€ + O(E%),

where ¥(u.d) is a smooth function. If a;(0) =0 and —2a2(0) # 0, then the
linear term in £ can be annihilated for all sufficiently small || by application
of the Implicit Function Theorem. These conditions are satisfied whenever
3y # 0'in ax(i) = Bo + O(u), equivalent to the non-degeneracy condition
f22(0.0) # 0 for saddle-node bi i A ing this, we can define

. 2(0)
) = 20 0)

1+ O(p?) = —e 1 + O(4?), to obtain
1@ = [§ + Bt + 52w + 16+ O] € + OE).
where ®() is smooth.
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Now define 7 = 7(u) as the &-independent term of (3.6). Since 7(0) =0
and +/(0) # 0, the Inverse Function Theorem guarantees local existence

and uniqueness of a smooth inverse 4 = u(v) with u(0) = 0. Therefore,

&' =5 +a,(7)€ + O(£%), with az(7) a smooth function such that a,(0) = Go-

Finally, we scale the variable as n = |G| €, which gives
7 =a+s7+0(r),

where o = |G| (% + Bocii® + u%(y)) and s = sgn(Bo).

The higher-degree terms for n can be elimi d due to local

equivalence of the flows, to attain the normal form (3.3) in 7. The origin is
locally preserved under the transformation (z,x) — (7,a), so the location
of the bifurcation is preserved. Lemma 1.5.2 implies the direction of saddle-
node bifurcation is preserved under the transformation (n.b., direction is not
preserved by the normal forms themselves). The derived normal form is
identical to (3.3), and a increases with increasing u near the origin, so the
stability type is preserved as well. [=]

Thus. no spurious saddle-node bifurcations can occur in linearized one-

point collocation methods.



3.2.2 Transcritical Bifurcation

Intuitively, a transcritical bifurcation occurs when two equilibrium (or fixed)
points (one stable, the other unstable) coalesce at the bifurcation point and
an exchange of stability occurs. We now state well-known topological normal
forms for the transcritical bifurcation in flows and maps.

Lemma 3.2.5 Let ' = f(z,a) be a one-parameter family of scalar flows
such that f is C? in z and C' in a. Assume the genericity conditions
£(0,0) = 0, £2(0,0) = 0, fa(0,0) = 0, and the non-degeneracy conditions
f22(0,0) # 0, fza(0,0) # 0. Then a normal form for the transcritical bifur-

cation is
' =az +1° 3.7)
The following lemma contains a normal form for the transcritical bifur-
cation in a discrete system.
Lemma 3.2.6 Let T ~ g(z,p) be a one-parameter family of scalar maps
such that g is C? in = and C' in p. Assume g(0,0) = 0, ¢,(0,0) = 1,
94(0,0) = 0, gzz(0,0) # 0 and g;,(0,0) # 0. Then a normal form for the
transcritical bifurcation is
T (14 p)z =22 (3.8)

48



The theorem below the exi ofa i it-
ical bifurcation in the discrete system generated by the transformation of a

differential equation that a

Theorem 3.2.7 If a transcritical bifurcation occurs in z' = f(z.a), then

a cor dir itical bif occurs in its transformation due to

linearized one-point collocation methods.

Proof: See [7].
The bifurcation behaviour of the family of maps arising from the transfor-
mation due to linearized one-point collocation can be found explicitly. The

collocation methods transform (3.7) into the family of maps z - g, where

h(az + 3z?)

=z+ s
9= 2t I her(a + 252

Observe that the maps introduce a singular set 1 — he;(a + 25z), which

is, however, removed from the origin.
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We now obtain the bifurcation behaviour of the maps explicitly. The

fixed point z* = 0 is stable for

-2 PD T
m<a<0 (a1 <1/2)
T
a<0 (e >1/2)
PD 2

a > e (e1 >1/2).

The other fixed point is £* = Fa, with the following stability regions:

T _PD 24
0<a<m (a <1/2)
«%o (e 21/2)
2. =2 (e >1/2).

2=
¢ < R@a -1
The labelled inequalities represent the locations of transcritical (T) and pe-

riod doubling (PD) bifurcations. See Figures 3.3 and 3.4.
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Figure 3.3: Transcritical: f = az + 22, ¢; > 0.5

=
Ri=2e)

Figure 3.4: Transcritical: f = az + 2, ¢; < 0.5



Both fixed points exist for all a, except for the singularities (z,a) =
(0. (her) ™), (&(hei) ™ —(her)™"). 1 = 0, the singularities are removed to
. and for ¢ = 1/2 the locations of the period doubling bifurcations are

removed to oo.

Theorem 3.2.8 If a transcritical bifurcation occurs in a scalar map T —

9. 1) due to transformation by linearized one-point collocation, it results

from a ding transcritical bif ion in the origi scalar flow
7' = f(z,a).

Proof: See [7].

Hence, li ized poi 1l ion methods can i d no spurious

transcritical bifurcations.

3.2.3 Pitchfork Bifurcation

Suppose the scalar flow 2’ = f(z, @) has an equilibrium point z* = 0 for all
a € R. Assume that on one side of the bifurcation value, @ = 0, the system
has two other equilibrium points and on the other z* is the only equilibrium
point. Then, the system undergoes a pitchfork bifurcation at & = 0. The
following lemmas supply well-known topological normal forms for this type

of bifurcation (Wiggins [32]).



Lemma 3.2.9 Let 2 = f(z,a) be a one-parameter family of scalar flows
such that f is C® in z and C! in o. Assume the genericity conditions
£(0.0) = 0, £2(0,0) =0, fa(0,0) =0, f.-(0,0) = O, and the non-generacy
conditions fza(0,0) # 0, fzzz(0,0) # 0. Then a normal form for the pitchfork

bifurcation is

z' =azF (3.9)

Lemma 3.2.10 Let =+ g(z, ) be a one-parameter family of scalar maps
such that g is C® in z and C' in p. Assume ¢(0,0) = 0, g-(0,0) = 1,
94(0,0) =0, g22(0,0) =0, z4(0,0) # 0 and g.22(0,0) # 0. Then a normal

form for the pitchfork bifurcation is
z (1+p)zF2° (3.10)
The following theorem asserts that linearized one-point collocation meth-
ods do not give rise to spurious pitchfork bifurcations.

Theorem 3.2.11 If a pitchfork bifurcation occurs in ' = f(z,a), then a
corresponding pitchfork bifurcation occurs in its transformation due to lin-

earized one-point collocation.



Proof: See [7].

Explicit calculation from the family of maps arising from the transforma-

tion shows the fixed point z* = 0 to be stable for

B

Ri-2q) - ¢
ao

ahe__ 2
hZe —1)

(@<1/2)

(e 21/2)

(a1 >1/2).

If the pitch the ial fixed points are z* = +/a.
stable for s &
0<°<I|(T2c_|) (a1 <1/2)
abo (e 2 1/2).

If the pitchfork is subcritical, the nontrivial fixed points are z* = £\/—a.

which are always unstable when ¢, < 1/2, and stable for

2
*< REa-1)

(e >1/2).

The labelled inequalities represent the locations of pitchfork (P) and pe-

riod doubling (PD) bifurcations. See Figures 3.5 and 3.6.
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Figure 3.5: Supercritical Pitchfork: f =az — 2% ¢, <0.5

Figure 3.6: Supercritical Pitchfork: f =az — 2% ¢; > 0.5
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The nontrivial fixed points exist for a > 0 in the supercritical case, and
for @ < 0, a # —1/(2hey), in the subcritical case. The trivial fixed point
exists for all & # 1/(he;). The limiting case ¢, = 0 merely removes the
singular set to oc. The limiting case ¢; = 1/2 removes the period doubling

bifurcations to oc.

Theorem 8.2.12 If a pitchfork bifurcation occurs in a scalar map z
9(z. 1) due to transformation by a linearized one-point collocation method,

it results from a co ding pitchfork bifurcation in the originating scalar

flow =’ = f(z,a).

Proof: See [7].

3.2.4 Period Doubling Bifurcation

The case of an eigenvalue A = —1 is fundamentally different and does not
have an analogue with one-dimensional vector field dynamics; if it occurs in
a numerical method, it is necessarily spurious. This case results in a period

doubling (flip) bifurcation.

Lemma 3.2.13 Let =+ g(z, ) be a one-parameter family of scalar maps

such that g is C* inz and C' in p. Assume the genericity conditions g(0,0) =
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0. 9:(0,0) = —1, and the non-degeneracy conditions g,(0,0) # 0, g2,,(0,0) #

0. Then a normal form for the period doubling bifurcation is

T —(1+p)z £z (3.11)

The map has a nonhyperbolic fixed point with A = —1, and the second

iterate of the map undergoes a pitchfork bifurcation at the same fixed point.

Theorem 3.2.14 Spurious period doubling bifurcations can occur under the
transformation resulting from linearized collocation methods for all ¢ # 1/2.

A normal form for spurious period doubling bifurcation is

‘= 2 _ 3
z'= (h(2q~1) a)rtz.

for all ¢, #1/6, 1/2.
Proof [7]: Assume the induced scalar map will have normal form (3.11)

for period doubling bifurcation at (z,) = (0,0). Expanding the undeter-

mined flow function f(z, 41) = ¥ a;(u)z’ and solving for coefficients of powers

dFzdn
—(1+ w7+ 85 =z + hf/(1 - herf)

vields

Flogi)i= et BB L 2+ 0(zY).

"o+ an—1) " " e Tap—1)(6a +3an—1)
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Define
P = — .—“
a=ael) = e e DEa =)
Then a(0) = 0 and a’(0) > 0 for ¢; # 1/2, 50 a unique smooth local inverse
function () exists by the Inverse Function Theorem, and the function and

its inverse monotonically increase in a neighbourhood of the origin. We have

2

f = (ag — a)z + faz(a)z® + O(zY), ® = pee Ty

where as(a) is smooth with a3(0) = [A(2c, — 1)(6¢; — 1)]~* # 0, but a5(0) is
singular for ¢; = 1/6 and ¢; = 1/2.
Finally, let n = \/|a3(a)| z, yielding

7' = (a0~ a)n +s7° + O(n"),

where s = sgn(3as(0)) = sgn(5(2¢; — 1)(6c; — 1)). Higher degree terms can

due to local logical equival [2]. The origin (z, 1) = (0,0)

is preserved under the transformations (z, 1z) — (1, ). Therefore, we inter-
pret this as a normal form for scalar flow causing a spurious period doubling
bifurcation at the origin under linearized one-point collocation methods. O

The normal forms of scalar vector fields causing spurious period doubling
2
R@a-1)

We can explicitly calculate the family of maps arising from the transforma-

under collocation methods are f(z, @) = (ap—a) z£z°, where g =
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tion by considering

h(aoz — az + §7°%)

9= T b0 —a + 352%)

Fixed points are z* = 0 and z* = %,/35(a — @). =" = 0 is stable for:

-2 P PD
ricmy o0 @<
a0 (er > 1/2)

P g
a> h(T‘U (a1 > 1/2).

z* = £,/5(a — ay) are stable for:

-3 P

o - S 2. §=—
) <a< (a1 <1/2,5 1)

(a>1/2,5=-1)
2 95—

a> e =) (a>1/2,5=1).

In the subcritical case, the nontrivial fixed points are z* = +/=a, always

unstable when ¢, < 1/2, and stable for:
!
= 2
{ a < <D (e1 > 1/2).

The labelled inequalities represent the locations of pitchfork (P) and pe-

riod doubling (PD) bifurcations. See Figures 3.7 to 3.10.
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e RZe-1)

Figure 3.7: Period doubling: f = (ag — @)z + 2%, ag = @ >05

B
R@a-T

Figure 3.8: Period doubling: f = (a0 — @)z +2° a0 = 2=, 0 <1 < }
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Fer(i-Zen). _ R(1-2&) Zhei(1-2¢1) i

Figure 3.9: Period doubling: f = (a0 — @)z + 2, a0 = sy, 1< < &

PD,

2 L
RZe-1)7 6§

Figure 3.10: Period doubling: f = (aq — @)z — 2%, ag = <a<i
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The nontrivial fixed points exist for @ > 0 in the supercritical case, and
for a < 0. @ # —1/(2hc,). in the subcritical bifurcation. The trivial fixed
point exists for all @ # 1/(he;). The limiting case ¢; = 0 merely removes the
singularity set to & — +oc. The limiting case ¢; = 1/2 removes the period

doubling bifurcations to & — %o00.

3.2.5 Conclusion

It has been blished that li i -point collocation methods do not

admit spurious codi ion-1 bil i with the ion of the period

doubling bifurcation which can occur in the methods for ¢; # 1/2. A normal
form for the flow that gives rise to spurious period doubling bifurcations
under transformation by these methods has been obtained.

It is worth noting, though, that while local dynamical behaviour of the

methods may resemble that of the di ial equation in the neighb od
of the bifurcation, the presence of the singular set may distort the basins of

attraction for the fixed points. This is discussed in Chapter 4.
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3.3 Hopf and Neimark-Sacker Bifurcations

In this section, we assume z' = f(z, u) for some p € Ris a C* (k > 3) planar

vector field. Isolating the linear part of f, we obtain
' = J(u)z + F(z, ).

Assume the linear part J(u) at z* (z* may depend on u) has eigenvalues
Ara2(k) = a(u) £ iB(n). Assume further that a(u") = 0 and B(u") # 0
and that for sufficiently small [u — '], F(z*,4) = 0 and Fi(z*,p) = 0.

Furthermore, suppose a’(u*) # 0. Then, the vector field undergoes a Hopf

. and in any neighbourhood U of z* in R? there exists with any
given pg > 0. a i with [ — p*| < o such that 2’ = J(iz)z + F(z, i) has a

nontrivial periodic orbit in U.

3.3.1 Bifurcation Values in Differential Equations

In (3.1), let = = (z1,22) and f(z,1) = (fu(z1, T2, 1), fo(z1, T2, 1))T. We

define the quantities

Alp,z) = g%:*—g—ﬁ— (3.12)
Buz) = 2k _0hOk @.13)

97,08z, Oz, 0z
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Then, the eigenvalues of f,(z*(u), ) are
M) = %(a+ VaZ =)
M) = la- V@B,

where a = A(z"(1), 1) and b = B(z* (), ). If we let @ = a/2, then

A o= a+VaTh (3.14)
d = a—vai-b (3.15)

A necessary condition for the equilibrium point z*(1) to undergo a Hopf

bifurcation at 4 = u* is a(u*) = 0 and b(u) > o? in a neighbouhood of 1*.

3.3.2 Bifurcation Values in the Numerical Methods

Now. let us assume that a numerical scheme such as (3.2) is used to solve
(3.1) numerically. Assume g is a C* map and satisfies the conditions
(i) g(u.z*) = 0 for u near some fixed 7 (z* may depend on );

(ii) gz (1, z°) has two non-real eigenvalues o) 5(y) for u near 7 with |o(7)| =

wx @ o
(iii) Zlo(u)| > 0at u =7
'
(iv) o*(@) #£ 1, for k =1,2,3,4.
Then, there is a neighbourhood U of z* and a § > 0 such that, for
| — 7| < & and o € U, either
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(a) the omega limit set of zo is z* if 4 < 7 and for p > [. the omega
limit set of zq is I'(4) where () is a closed invariant C' curve encircling
z*. Furthermore, ['(z) = z*;

or.

(b) the alpha limit set of zo is z* if 4 > & and for u < 7, the alpha
limit set of zq is [(12) where ['(y) is a closed invariant C' curve encircling
z°. Furthermore, ['(z) = z*.

The map undergoes a Neimark-Sacker bifurcation, which is the discrete
analog of the Hopf bifurcation in vector fields. In (a) above, the bifurcation
is said to be supercritical and in (b) it is said to be subcritical.

We then have the following lemma.

Lemma 3.3.1 For u =i, let A\ () and \y(fz) be eigenvalues of f.(f.z" (7).

Then, the ei lues cor ding to the li i of the methods (3.2)
at z* for p =W are given by

hi (/)

(@ = 1+ T~ han@’ (3.16)
ik 1 hXa(7) o
o(m) = 1+Tv\:(ﬁ)' (3.17)

Proof: Perform standard perturbation analysis on (3.2) about the fixed point
z*(7), that is, define vectors 6™ and 6™*! such that X"*' = z*(f) +6"*! and
X" = z*(z) + 6". Linearizing about z*(f), and dropping second and higher
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order terms in § and h, we obtain

= A, ), (3.18)

where A(z*, &) = I + h(I — he fz(z*. 7)) f2(z", ).
If the eigenvalues of f:(z*.7) are A,() and Ay(7Z), then the eigenvalues
of A(z", ) are given by (3.16) and (3.17). o

We now consider the problem of determining whether solving a system

with a Hopf bil ion by lineari point collocation methods will re-
sult in the same bifurcation occurring at the same parameter value. The

following theorem answers this question.

Theorem 3.3.2 Let (3.1) be a system that undergoes a Hopf bifurcation at
the parameter value u = p*. We represent the eigenvalues of the Jacobian
matriz of f at any equilibrium point (i, " (n)) where p is sufficiently close
to p*, by A2 = & = Va2 — b where b > a®. Then, if a linearized one-point

collocation method with fized stepsize is used to discretize the system, the

method will ezhibit a Neimark-Sacker bi) ion, occurring at a p

value p = 7, where

2a(p) = hb(@)(2¢1 — 1) (3.19)
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Proof: Assume the non-degeneracy conditions are satisfied. Making use of

(3.16) and (3.17), and ing some algeb ipulations, we obtain
_ bh(a — bhey) bh —
o2 = ( F bheie £ w?c?) 2 HhaarRRE Y b'(s 0

Now. [o1,2(7)] = 1 if either
b(m)(1 ~ 2he1e() + b(m)h*cF] = 0

or
20(g) — b(E)h{2e1 — 1} =0
The first of the above conditions represents a singular point for the eigenval-

ues, and the second yields
2a(g) = hb(@)[2¢, — 1]. (3.21)

This completes the proof. [u}
Under our assumptions, it is clear that & = - if and only if ¢; = 1.

Hence, the following corollary.

Corollary 3.3.3 The Neimark-Sacker bifurcation occurs for the same para-
meter value as with the Hopf bifurcation in the differential equation if and
only if ¢ = 1/2, that is, for the linearized implicit midpoint method.
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3.4 Examples

3.4.1 Van der Pol’s Oscillator (Unforced)
The Van der Pol oscillator is given by

"+ 4z - 1)z’ +z2=0. (3.22)
where 7 is a parameter. This system can be transformed to the 2-D system

z
7

Clearly, the origin is the only equilibrium point of the system (3.23). The

(3.23)

o

z2
-z = (2} — D)za.

eigenvalues of the linearization of the system about the equilibrium point are

given by
N FEVETA “27"‘ (3.24)
If we make the transformation e = 7/2, then
Me=exVeE— 1L (3.25)

We assume —1 < € < 1, so that the eigenvalues are complex. The origin

d a itical Hopf bi ion at € = 0.
For one-point collocation methods we have, according to Theorem 3.3.2,

the Neimark-Sacker bifurcation at the parameter value
h
e=5e-1).
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3.4.2 Forced Oscillators and the Method of Averaging

The method of 1 a i ial equation

to an autonomous one. Suppose we have a differential equation of the form

ef(z.t) + Eg(z,t.€) (3.26)

where f:UxR—R™ and g: U x R x [0, &) — R™ are C" (r > 1) on their
respective domains of definition and T-periodic (7' > 0) in t. Here, U is an

open set in R™. Then, the averaged equation will take the form
¥ =€f(y), yER™, (3.27)
where
Fo) =7 [ S
Starting with a differential equation of the form
2’ = f(z) +eg(z,t,€), zeR™, (3.28)

we can transform it to the form (3.26) by performing the simple steps (see

Wiggins, 1990 for details):

o Consider a solution, y(t) = z(t, zo(t)), of (3.28), taking the initial con-
dition as a function of ¢. Differentiating with respect to ¢ and rearrang-
ing gives 2 = (D7) ' [f(2(t, 7o) — 2’ + €g(z(t, 20), . €)].
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o If z(t, 7o) is a solution of (3.28) with € = 0 (unperturbed equation), the

above reduces to
25 = €(Dzox) " 9(2(t, 20), 1, €)).

The dynamics of the averaged equation is related to that of the original

equation by the following theorem from Guckenheimer & Holmes [11].
Theorem 3.4.1 Consider the differential equation
7’ = ef(z, t; p) + €g(z, t, € 1) (3.29)
and its associated averaged equation
= Fn) F=i [t (330)
¥ =ef(y. ), =7 ), Jwtima .

where p € R is a parameter.

If, at = p*, (3.30) undergoes a saddle-node or Hopf bifurcation, then,

Jor i near u* and € sufficiently small, the Poincaré map of (3.29) undergoes

a saddle-node or Neimark-Sacker bif ion.

Van der Pol’s Oscillator (Forced)
The forced Van der Pol's oscillator
2"+ £(22 ~ 1)z’ + 2 = eF coswt (3.31)
w
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is transformed by the method of averaging to the autonomous system

v o= u—ov—u(ul+v?)

Vo= cutv—v+o?)—n, (3.32)

where e0 = 1 —w? and v = F/2 (See Guckenheimer & Holmes [11]).
Figure 3.1 depicts the bifurcation diagram for (3.32). A Hopf bifurcation
occurs along the curve marked OE, whose equation is given by 842 = 402 +1

where |o] > 0.5.

1 T T T T
08 - E A
0.6 |- ~
~ o
04 4
D
0.2 - —
C,
0 1 L L 1
0 0.2 0.4 & 0.6 0.8 1

Figure 3.11: Bifurcation diagram of the averaged equations (3.32)
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Guckenheimer & Holmes [11] discuss the diagram in more detail from the
point of view of continuous dynamics. Our interest here will be to study the
effect of discretization by using linearized one-point collocation methods on

the location of the Hopf bift ion. We take a ion of the diagram

at o = 0.75, and vary 7. The Hopf bifurcation (subcritical) then occurs at
+* = /13/32 ~ 0.6373774. It can be shown that for any value of v and o,

the equilibrium points of the system (3.32) satisfy

7?0 — 209u? + 0*(0% + 1)u — 70° = 0 (3.33)

v= %(u-2a?). (3-34)
Recall that the eigenvalues of the linearization

1-3u2—v? —0—2uv
o—2uy 1-3v?-u?

J(u,v) = (

of the function on the right of (3.32) at an equilibrium point determined by

+ (o = 0.73) are given by
A2 (7) = a(7) £ Vb — a?; b>a?,
where a(7") = 0. The canonical form of the Jacobian is then given by

J@ (7)., v (7)) = ( “(1’/) 02('2(;)5(.,) ) )
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Recall also that the Neimark-Sacker bifurcation in the collocation methods

will occur at v =7, where
2a(7) = b(7)h(2e — 1). (3.35)
On the other hand, we observe that
Det[J (v (7. v"(F)] = (1 — 3u® — v?)(1 — 3% — v?) + 0% — du®v® = b(7)
(3.36)
and
Trace[J(u* (7, v" (7)] = 2a(7) = 2 — 4u® — 402 (3.37)

We solve the equations (3.33), (3.34), (3.36) and (3.37) simultaneously
using (3.35) on MAPLE to obtain (u",v") and the corresponding . In Fig-
ure 3.12, we plot the bifurcation values ¥ for various values of ¢; and h = 0.01.
Note that, for ¢; < 0.5, the numerical bifurcation values are below the true

value and the opposite is true for ¢; > 0.5.
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0.6375 |- x
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Figure 3.12: Bifurcation values of collocation methods for the averaged equa-

tions of the forced VDP oscillator.
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Chapter 4

Spurious Poles in Numerical
Solutions to Autonomous
Equations

4.1 Introduction

In this chapter, we consider the possible effect of the singularity in linearized

one-point collocation methods on the d; ics of
Recall that, applied to the autonomous ODE (1.2). the linearized one-point

collocation methods are given by
Tt = Tn + h{I = hey fz(za)] 7 f(zn) (4.1)

where f; is the Jacobian of f. The existence of the inverse of the matrix
I—he, fr in the method may result in singularities. We will first demonstrate
what effect this could have on the asymptotic behaviour of the solution, then
discuss some general theory on singularity analysis and poles.
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The discussion begins with a consideration of global dynamics in some of

the normal form equations in § 3.2 of Chapter 3.

4.2 Normal Form Equations: Codimension-1
Bifurcations

4.2.1 Saddle-node Bifurcation

Recall that a normal form for the saddle-node bifurcation is given by

@' =a+z%
Hence the map
T T+ otz
1—2hez

represents an application of linearized one-point collocation methods to the
normal form.

The case ¢; = 1/2 is of special interest since it produces a locally su-
perconvergent method. Taking ¢; > 1/2, we use linear stability analysis to

establish that a local period-2 cycle exists for a > 5~ This cycle

P T
22 — 1)

is stable for

= W 3-10c,
R2(2c; — 1) 2h2(2¢, — 1)(10G — 66, + 1)

For these values of a, the cycle attracts all z-values such that <z <oo.

1
2hey
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The system goes through a period doubling cascade to chaos, before a
=L
2k, (20, — 1)
is created when the basin boundary of a chaotic attractor collides with an

boundary crisis bifurcation occurs at a = A boundary crisis
unstable fixed point. In this case, the unstable “fixed point” is the singular
set. As a result of the boundary crisis, the chaotic set is no longer attracting

and becomes transient. For < a < 0, all initial values, apart

=1
22,20 - 1)
from the singular set, are mapped to the stable fixed point z* = —\/—a. In
this range, the numerical method turns the stable fixed point into a global at-
tractor, which is not the case in the ODE. In the ODE, the stable equilibrium
attracts all z < \/=a, and for all z > \/=a, orbits go to cc. Furthermore,
the monotonicity of the orbits for z > \/=a is lost in the numerical methods.
This is because the direction of orbits destined for +oc is changed when they
cross the singular set. For a > 0, the system has no fixed points and the
chaotic set, which has been transient, reappears as a type [ intermittency
(see Pomeau & Manneville [25], Foster [8]). Figure 4.1 is the bifurcation

diagram for the system with & = 0.1 and ¢, = 1.



Figure 4.1: Saddle-node: f=a+2? ¢, =1, h=0.1

4.2.2 Transcritical Bifurcation
A normal form for the transcritical bifurcation is given by
o' =az+2%

Discretizing using linearized one-point collocation methods results in the map

h(az +2?)
- T

s 1— hey(e 4+ 2z)

Using ¢; > 1/2, we establish that there is a local period-2 cycle for o <

m:_—”[. This cycle is stable (and attracts all initial values above the sin-

gular set) for
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=Y o 2(10¢; — 3)
h(2e; — 1) h2(206 — 223 + 8¢, — 1)
2(10¢, — 3) i 2
R2@e — 1)(103 — 6+ 1) ~* < h(2e, — 1)

The system undergoes period doubling cascades to chaos, culminating with

and

boundary crisis bifurcations at

P
= a1

and for |a] < /'T’ET;T:?S’ all initial conditions apart from the singular set
itself vield orbits that converge to the stable fixed point. Again, the map
converts the fixed point into a global attractor, and the singular set destroys
the monotonicity of orbits. Figure 4.2 is the complete bifurcation diagram

for this map.
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Figure 4.2: Transcritical: f = az + 22 ¢; =1and h=0.1.

4.2.3 Subcritical Pitchfork Bifurcation

A normal form for the subcritical pitchfork bifurcation is given by

7' = ar+1°,

hence the map

haz + 2®)
T T+ T ha(@+3) (4.2)

represents an application of linearized one-point collocation methods to the

normal form.
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Due to the complexity of the equations for the locations of the bifurcations
in the map (4.2), we let h=0.1 and ¢, = 1.

Figure 4.3 shows the complete bifurcation diagram for (4.2). As we
saw with the saddle-node and transcritical normal forms, there are spurious
period-doubling bifurcations, period-doubling cascades and chaotic behav-
iour. In addition, at a = 90/7, a period-2 cycle undergoes a transcritical

20 *ﬁo‘/;. We iden-

then a period-doubling bi ion at & =
tify Type Il intermittent behaviour (Pomeau & Manneville [25]) to the right

of the pitchfork bifurcation.

Figure 4.3: Suberitical Pitchfork: f =az+12% ¢ =1, A=0.1
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4.2.4 Remarks

From the preceding examples, it is clear that the global dynamics of the
methods is different from that of the corresponding system. Not only do
the methods give rise to spurious period doubling and chaotic behaviour,

but they change the asy ics of traj ies and i alter the

basins of attraction of the fixed points. However, local to a bifurcation,
the local dynamics and asymptotics of the ODE are preserved. Typically,
in the presence of a stable fixed point and an unstable one, the w-limit set
of any orbit with initial condition not on the singular set is the stable fixed
point; the exception being the values of the parameter for which the spurious
period-doubling cascade is present. This does not occur in scalar flows, and
is directly due to the presence of the singular set in the methods.

We further motivate the study of the effect of the singular set on global

by considering a planar predator-prey system.
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4.3 Motivation: A Predator-Prey System

Consider the it ional system of li first-ord
ordinary differential equations,

—3u + 4u? - 0.5uv — u*

~2.1v+uv (4:3)

where u and v represent the population of the prey and predator respectively.
The equilibrium points of this system are (0,0) (stable node), (2.1, 1.98)
(stable spiral), (1, 0) and (3, 0) (saddles).

Yee & Sweby [33] studied the global asymptotic behaviour of the above
system using a number of linear multistep methods. What they uncovered
is that different numerical schemes can give rise to differing appearances of
basins of attraction of local fixed points. In general, the numerical basins of

attraction bore no resemblance to the exact basins of attraction. Depending

on the di izati the i basins also differed signifi-
cantly from each other (see Chapter 2). Our objective here is to explain this

behaviour by appealing to the singular set analysis of the maps.
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4.3.1 Linearized One-point Collocation Methods

Applying the methods (4.1) to the system (4.3) gives

sz, = e h(L + 2.1hey — heyun) (—3un + 4u2 — 0.5unv, — ud)
Q(un, vn)
h?eiun(=2.10n + Untn)
R ey w2 4.4,
Qlum,v2) (4]
72610 (=3un + 4u2 = 0.5unva — ul)
Vast = Unt o) +
h(1 + 3hcy — 8heyup + 0.5hcivn + 3heyul) (—2.10p + Unva)
Q(un, vn)

+

where h is the time step and
Q(tn, vn) = (14+3he; —8heyuy +0.5hc vn+3heru?) (142.1hey —he un ) +0.5h*Fun v,

Performing some standard stability analysis of each of the four fixed
points, we discover that, depending on ¢, and the stepsize A, the dynamics
of the numerical methods may differ significantly from that of the system.
The stability analysis was performed analytically and verified using MAPLE.
Figures 4.4 to 4.7 are bifurcation diagrams for each of the four fixed points,

as obtained analytically.
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Figure 4.4: Bifurcation curve for the fixed point (2.1,1.98).

Stable Node

Figure 4.5: Bifurcation curve for the fixed point (0,0).
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Figure 4.6: Bifurcation curve for the fixed point (1,0).
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Figure 4.7: Bifurcation curve for the fixed point (3,0).
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While the methods do not admit spurious fixed points, the diagrams
show that they change the stability types. For example, the saddle (1,0) is
converted to a stable node by a linearized one-point collocation method with

- 1
cr>05and h > g
4.3.2 Basins of Attraction

Depicting basins of attraction (showing global asymptotic behaviour) is very
revealing. Figure 4.8 shows the true basin of attraction for the equilibrium
points of (4.3) as shown in Yee & Sweby [33]. Figure 4.9 shows the basin as

by the li ized implicit midpoint method with A = 0.1. In both

diagrams, red represents the basin for (0,0), blue for (2.1,1.98) and black for
infinity. The darker shade of blue indicates a slower rate of convergence to
(2.1,1.98).

The set of initial values that is attracted to (0.0) is larger in the numerical
basin than in the true basin. This is due to the shrinking of the basin
for oc. The reason for this behaviour is the existence of the singular set
Q(u,v) = 0. All orbits with initial value in the true basin for —oco are
attracted to the fourth-quadrant subset of the unstable manifold, W™, of the
saddle at (u,v) = (3,0). However, because of the singular set, these orbits
are “diverted” into the basin for (0,0) upon reaching some neighbourhood
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of the singular set. Such behaviour will be defined in the next section as
pole-type behaviour.

For h = 0.1 and ¢; = 0.5, E* = span(—0.21739,1)7. W™ is tangent to
the vector E* at (3,0).

Figure 4.10 shows the location of the singular set Q(u,v) = 0 of linearized
one-point collocation methods with ke, = 0.05 for the system (4.3). The fig-
ure also shows one orbit of the discrete system with initial value, o, in the
true basin of attraction of —oco. For this initial condition, w(zo) = (0,0).
When the orbit, while moving along W*, reaches a neighbourhood of the
singular set, it loses its monotonicity, falls in the basin of (0,0) and then ap-
proaches this fixed point monotonically, as shown. The loss of monotonicity

occurs at approximately v = —800 (not shown).
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Fig 4.8: Basin of attraction - Predator-Prey Model
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Fig 4.9: Numerical Basin of local fixed points (h=0.1, ¢;=0.5)
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Figure 4.10: Singular set of Linearized One-point collocation methods with

hey = 0.05. Singular set (- - - -), single orbit (—).

4.4 Spurious Pole-type Behaviour

Linearized point collocation methods, d

v for the pla-
nar autonomous equation u’ = fi(u,v), v' = fo(u.v) can be written in the

form

P(un, vq)
Q(un, va)
R(un, vn)
Q(un, va) )

Uns1 = Un+h

Uns1 =Un+h
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where P(u.v), Q(u,v) and R(u.v) are functions involving the f, and f; and
their partial derivatives.
Definition 4.4.1 We define the singular set of the method as the subset of
R? where Q(u.v) = 0.

All linearized one-point collocation methods with ¢; > 0 have a nontrivial
singular set. The location and nature of the singular set is important since we
expect the dynamics of the method near the singular set to be unpredictable,

so that orbits destined for infinity are “disrupted” and end up finite. This

is to the exi; of poles in i systems.

Definition 4.4.2 (Albowitz & Segur [1]) Consider any ordinary or partial

equation. Singularities of the coefficients of the diff ial equa-

tion will also be singularities of the solution. Such singularities are called
fixed singularities. Any singularity of the solution that is initial condition
dependent is called a movable singularity.
Definition 4.4.3 A differential equation is said to possess the Painlevé prop-
erty (PP) if all movable singularities of its solutions are poles.

Joshi [21] alluded to the existence of behaviour analogous to poles in
discrete dynamical systems. The following is an adaptation of his definition
to R™.
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Definition 4.4.4 (Joshi [21]) An orbit of a discrete dynamical system that
begins in the finite part of R™, reaches the point at infinity in a finite number
of steps n, and continues past infinity to the finite region of R™ is said to
have pole-type behaviour.

The integration of a differential equation that has no PP by a numerical

method that exhibits pole-type behaviour can result in di ion or misrep-

resentation of the global ptoti iour (basin of ion)

Consider a scalar differential equation of the form
2 = P(z), (4.6)

where P(z) is a polynomial of degree ¢ > 2 in z. This differential equation

has no PP ([21]).

Theorem 4.4.5 A linearized one-point collocation method with ¢; > 0, ap-

plied to (4.6), ezhibits spurious pole-type behaviour if and only if c; = 1/q.
Proof: If the numerical methods are represented by the map
Tntt = Tn + hé(Tn, by 1),

then it suffices to show that lim;, e Tps1 = d < co.

Let




Then, applying one-point collocation methods to (4.6), gathering terms and
simplifying, gives

o EathEl(l - jeaz
ik 1= hey £y ja;zh

T+ h B (1 = jer)assi?
Za® — hey Tioy jajzh

Clearly. if ¢, # 1/q, lim Zn.; = oo.

ey =1/q
Tnp1 =
so that
lim = -%=L < oo
Fhe 9 qa,
and the conclusion of the theorem follows. a

4.4.1 Remarks

In spite of the fact that we have not proved the existence of spurious pole-
tvpe behaviour in systems in which f(z) is not a polynomial, we remark here
that Theorem 4.4.5 and the results of the first two sections of this chapter,

suggest that the of spurious pole-type behaviour does occur in
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the general case. Indeed, if f is approximated by a truncated power series,

spurious pole-type behaviour will be observed for some values of c;.



Chapter 5

Nonautonomous Equations and
Periodic Solutions

5.1 Introduction
Let
7' = f(z.t), z(0) =z (5.1)

where f : I € Rx R — R, be a scalar ordinary differential equation in which
f(z.1) is a periodic function of ¢ with prime period T.

Since f depends explicitly on ¢, the ial equation is said to be

nonautonomous. The detailed dynamics of numerics for nonautonomous
ODEs has notably been lacking until the work in Khumalo [22] which is
based on the material in this chapter.

Although any nonautonomous ODE can be transformed to an autonomous
one, thereby increasing the dimension by one, the familiar dynamics of
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autonomous equations which is centered around the notion of equilibrium
points, is lost. In certain special cases, this notion is replaced by that of pe-
riodicity. It is on these special cases that we will focus our attention. Stuart
[30], proved using bifurcation theory that for reaction-diffusion-convection

quation: implies the exi: of spurious periodic so-

lutions. Our i ion here on ODEs where

f is periodic in t, and differs from that of Stuart who considered partial dif-
ferential equations. Nonautonomous ODEs with periodic solutions are very

common in applications such as fon dynamics with seasonal parame-

ters or periodically forced systems.
Under certain conditions on f, (1.17) has a unique T-periodic solution.

These will be stated for each form of f we will consider. We will assume

the solution is approximated by a linearized one-point collocation method.

Our objective is to determine, for each f under consideration, whether the

numerical scheme has the same dy as the di ial equa-
tion. In particular, we will consider cases in which the ODE has a unique.
asymptotically stable periodic solution and establish conditions under which
the numerical methods have the same dynamics. These special cases will
take the following form:

(i) £ linear: f(z,t) = a(t)z + b(z), where a(t) and b(t) are C! T-periodic
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functions of ¢.

(ii) f nonlinear: f = a(t)g(z)+b(t), where a(t) and b(t) are C' T-periodic
functions of ¢t and g(z) is a C? nonlinear function of z.

Recall that the linearized one-point collocation methods for (1.17) are
given by

_ Zn + hf(tns Zn) + c1h* % (tn, T) — c1hza 3L (tn, Ta)
1—cih@(tn, za) ’ (5.2)

Lo+t

We begin with a description of the dynamical systems theory approach,

which will be used in determining the conditions under which the methods

have the same d; as the Upon es-
tablishing these conditions, we compare them with those imposed by nonau-

tonomous stability theory.

5.1.1 Dynamical Systems Approach

In what follows, we will use a technique known as stroboscopic sampling to re-
duce the problem of determining existence and stability of periodic solutions
to existence and stability of fixed points.

Let 2,41 = p(zn;n;h) be the discrete system representing the numeri-
cal method, applied with fixed stepsize, to the nonautonomous differential
equation.
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Step 1: Using inductive arguments, write the method in the form zn+1 =
(zo; n; h).

Step 2: Choose h such that the period, T = hk. Then, zx = 6(zo; k; k),
and then we establish the new discrete system Xns1 = 6(Xy; k; h). This is
known as stroboscopic sampling.

Step 3: The fixed points of the last system correspond to T-periodic
solutions of the method. These are determined, with their stability types.

The above procedure is analogous to the Poincaré map of (1.17): Let
®(t,75) be the T-periodic solution of (1.17), with starting value z(0) = zo.

Then, the Poincaré map of (1.17) is the scalar mapping

M:R>R oo 8T, 2).

5.2 Linear Case

Suppose f = a(t)z + b(t), where a and b are T-periodic functions of ¢. Then,
the linear nonautonomous differential equation (1.17) becomes

' =a(t)z +b(t), for t > 0 and z(0) = zo. (3:3)
If v, = f{a(t)dt < O, then (5.3) has a unique T-periodic asymptotically
stable solution. If a(¢) = 0, then (5.3) has a unique T-periodic solution that
is asymptotically stable if v, = [T b(s)ds = 0 (Hale & Kocac, 1991).
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Now, the linearized one-point collocation methods are given by

+ l_h:m(a(nh)z" + b(nh) + hei[a(nh)z, + b’(nh)](}a;A)

Inil =In

We will begin our discussion with the cases in which the function a(t) is

trivially periodic (a(t) = 0 and a(t) = —1).

5.2.1 Linear Case with a(t) =0

Theorem 5.2.1 Suppose a linearized one-point collocation method is used
to solve the linear nonautonomous differential equation (5.8) with a(t) = 0.
The method tends (as n — 00, h > 0 fized) to a periodic solution for any

starting value if and only if
s

T

1
b =0,
0

where b, = b(rh) + he,b(rh) for eachr.

Proof: Assume v = [ b(s)ds = 0. Taking a(¢) = 0 in (5.4), we obtain
Zns1 = Tn + h{b(nh) + herb! (nk)}.

We define

b; = b(ih) + heyb' (ih) fori=0,1,2,... (5.3)
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and denote
(2a) = Zn + h{b(nh) + hei¥'(nh)}. (5.6)

Now, we can prove by induction that for a given value of o,

=
o

Tpsi =To+h 3 b
=

‘We can select h in such a way that T is an integral multiple of ~. That

is, we can fix k£ € N such that T = hk. Consider the k-th iterate of zo under

o
=
g = [1F(zg) = o + % b (5.8)
=
and the related iteration, which ds to stroboscopi L
ot
Xop=Xat £ 35 (5.9)
r=0

where Xo = z;. If the summation on the right-hand side of (5.9) is zero, then
the discrete system is fixed at Xp for all n, which corresponds to a periodic
solution. If it is nonzero, then the stroboscopic iteration has no fixed point

and diverges. a
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Remark

The second term on the right-hand side of (5.9) can be viewed as an appli-

cation of the left rectangular quadrature rule to the integral
r T,
/n (Os) +cr b (5)) ds.

From the assumption that v, = 0, we conclude that the above integral is

zero, and (5.9) can be written as the simple map
Xons1=Xa+c (5.10)
where

bl = Zﬂ—kw(g) +c,%b”(5)l (5.11)

for some £ € (0, T), is the quadrature error.

The above theorem can then be restated as follows: Suppose a linearized
one-point collocation method is used to solve the linear nonautonomous dif-
ferential equation (5.3) with a(t) = 0. The method tends (as n — oo, h > 0
fixed) to a periodic solution for any starting value if and only if the rectan-
gular quadrature rule, used to approximate the integral in (5.11), gives an
exact result.

Suppose that ¢ # 0 in the last theorem. We remark that the rate at
which the system (5.9) grows or decays is dependent on the value of |c],
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which, in turn depends on h. If h is very small (corresponding to large k),
the growth/decay will be so small that in order for it to be significant, one

would have to integrate over significantly long times.

Illustration

We examine the stroboscopic sampling of the solution of the differential equa-
tion £’ = coste®™™*; z(0) = 1. Figure 5.1 shows the numerical results for
k=4, 5 and 10 with ¢; = 0.5. For k = 4, the method diverges quicker from

the periodic solution than for £ = 5. For k = 10, the divergence is negligible.
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Figure 5.1: Numerical results for (5.9) with ¢; = 1/2. k =4 (x x), k=5

(=) k=10 (- --)

5.2.2 Linear Case with a(t) = —1

If we take a(t) = —1 in (5.3), then clearly 1, = [T a(s)ds < 0 and the
differential equation has a unique, asymptotically stable periodic solution.
If a(t) is a negative constant, the differential equation could be scaled such

that a(t) = —1. Then, we have the following theorem.

Theorem 5.2.2 Suppose a linearized one-point collocation method is used to
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solve the linear nonautonomous differential equation (5.3) with a(t) = —1.
Then, for fized ¢, and k, the method admits a unique periodic solution that

is asymptotically stable, provided

T
k>3 (1-2).

Proof: If a(t) = —1, (5.4) simplifies to

T Ta
+ rTc‘[—z,l +b(nT/k) + -

Zn+l =Zn

b'(nT/k)]

or

k+T(c,—l))+ T

Teyy,
T +Th i Te [b(nT/k) + Tb (nT/k)].

Proceeding in a manner analogous to the above, we can show by induction

that

(k+T@-)\"™ . T & (k+T@-1\;
I"“*I"< E+Ta s e M e b"}:’*-12)

where each b; is defined by (5.5).
Denoting the right-hand side of (5.12) by I1(z,), we can perform strobo-

scopic sampling and consider

k+T(c—1\* T 2 k+T@-1)\:
= I¥(zo) = (2L =0 2 Been
o=z =g ( k+Tc ra s\ ke Ta "2‘5_15)

r=0

105



and the associated map

. k+T(c—1)\* T A (k+T{e -1\
Xop =Xa (S — el I
k+Tc, k+Ta 5 k+Tc (5.14)
Equation (5.14) is just the linear map
Ty =cXn+d
with
k+T(e -1)\*
£ k+Te
and
T = (k+T@-1)\";
d= ST T e
k+Tc.§ k+Te Bece-i
The map has a single fixed point,
X (5.15)
which is asymptotically stable if and only if |c| < 1, that is,
o> T0=20)
2
and the result is established. o

The following results are simple consequences of the above theorem.

Theorem 5.2.3 A linearized one-point collocation method with ¢, € [4,1],

applied to the linear nonautonomous differential equation with a(t) =
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admits a unique periodic solution that is asymptotically stable for all values
of k.

Thus. the linearized implicit Euler method and the linearized implicit
midpoint method for the linear nonautonomous differential equation with
a(t) = —1. admit a unique, asymptotically stable periodic solution for all
k>0.

However,

Theorem 5.2.4 The ezplicit Euler method for the linear nonautonomous
differential equation with a(t) = —1 admits a unique, asymptotically stable

periodic solution if and only if k > T/2.

We attempt to bound | X*|. The following lemma gives a bound on the

solution &(¢) of (5.3).

Lemma 5.2.5 Let b(t) be a C' T-periodic function of t and assume (5.3)
with a(t) = —1 has a unique T-periodic solution. There ezists a number

Al > 0 such that |b(t)]. [6'(t)| < M and the T-periodic solution, ®(t), satisfies
1®(0)| < M
fort = o0,
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Proof: The boundedness of b(¢) and ¥(t) follows from the periodicity and
continuity of both functions.
Let ¢(t) be a periodic solution of (5.3) with a(¢) = —1. Then, ¢(t) satisfies

the inequality
—6-M<¢<—¢+M  forallt.
This gives Gronwall's inequality
e zo+ M) — M < 6 < etz — M) + M, (5.16)

see [16]. Thus, o(t) is bounded for ¢ > 0; therefore it approaches a T-periodic
solution ®(¢). Taking ¢t — oo in (5.16) establishes the lemma. o
From the above lemma, we have [X*| < M. Then, we have the following

theorem.

Theorem 5.2.6 Let X, given by (5.15), denote the fized point generated
by the stroboscopic sampling of the numerical solution of the linear nonau-
tonomous differential equation (5.3) with a(t) = —1 by a linearized one-point
collocation method. Then, the inequality

Te,

X7 SJW(1+T)

holds.
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Proof: Since b(t) is continuous, there is a number M such that [6(¢)], [5'(£)] <
M for all t € R. Then, for large t, the solution [®(t)| < M.
Observe that

bl < M = ML +eip)

and
T k4 T(e—1)\"
e b b St
< g M = k+Tc;
r=0
_ & k+T(c—1) k+T(c—1)\*"
= k+7Ta M"{“’ v Ul ey =y 1
E+T(e-1)*
= M- e e e e
4oL ( k+Tc ]
= M(1-o).
Therefore,
=M =M1+ %). (5.17)

o
Hence, X" has essentially the sarne bound as the periodic solution.
Numerical Experiments
Consider the linear nonautonomous equation
z' = -z +sint, z(0)=0 (5.18)
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which has a solution z() = ifsint — cost + e~t]. Figure 5.2 shows the
numerical results (stroboscopic sampling) of the linearized implicit midpoint
method (¢; = 1/2) with k = 3 and k = 10; Figure 5.3 shows the results of the

explicit Euler method (c; = 0) with k =3 and k = 10. In these experiments,

hence, convergence to a unique periodic solution is expected for

k> (1= 2¢).

0.2 T T T T T

16 L i (A | I !
20 40 60 80 100 120
t

Figure 5.2: Numerical results of (5.18) using linearized implicit midpoint

method: k=3 (—) and k =10 (— — )
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Figure 5.3: Numerical results of (5.18) using Explicit Euler method: £ = 3

(—)and k=10 (- — —)

5.2.3 Linear Case with a(t) = —1 +€p(t)

at) = -1+ ep(t) (5.19)

where € > 0 is a constant, and p(t) is a T-periodic function of ¢. We assume

that =T + sf,f p(s)ds < 0, so that (5.3) has a unique asymptotically stable
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periodic solution.

Li ized One-Point C ion Method:

We establish conditions under which a one-point collocation method with

fixed ¢; and step-size h > 0 exhibits the same dynamical behaviour as the

nonautonomous linear differential equation with a(t) = —1 + €p(t).
Notation: In what follows, we will denote b, = b(nh), &, = b/(nh), pn =

plnh) and p, = p(nh). Here, as before, T = hk (k € N).

Theorem 5.2.7 Suppose a linearized one-point collocation method is used
to solve a linear nonautonomous differential equation of the form (5.3) with
a(t) = =1 +€p(t). Then, for fized ¢, and k, the method will admit a unique
periodic solution that is asymptotically stable, provided

5=t kKT(=1+epi) + e T?ep,

I+ et e | <%

Proof: From (5.4), we deduce that the linearized collocation methods, ap-

plied to the nonautonomous linear ODE with a(t) given by (5.19), are

_ k(=1 + €py) + cihepl,
ot = [H L) Ll
h v = 5
T ha(Tren bn kbl 6.20)
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We can write the above as

Znst = TnZn + Habn := (z4)

where

Tn 1

H,

. h(=1+ €pa) + c1h®ep),

1= hei(=1+ €pn)
h

1 — hey(—1+€pn)
ba = ba+cihd,.

Proceeding by induction, we establish that

Zny1 = To ﬁT. +
=0

from which we deduce that

=
=z [[ T+ 3 Hb: [] Tj:=1*(xo).
8 ah

The discrete system that

n
> Hb,

=0

to

II T

Et

linear system

Xnst

where

ole) =

d(e) =

= c(e) Xp + d(e).

(5.21)

(5.22)

(5.23)

(5.27)



This system has a unique fixed point, X*, given by (5.15). It is asymptotically
stable if and only if [c(e)| < 1, that is, |[I53{ T;| < 1, or

kst 3 h(—1 + €p;) + c1h%ep,

1 <1 5.28
QJ T—he(-1%ep) | (5:26)
Substituting h = T/k gives the result. o.

Numerical Experiments

For each of the three special values of c;, p(t) = sint and increasing values
of €, we determined, using (5.28), the minimum value of k such that each
method has dynamical behaviour that is the same as that of the differential

equation. The results are illustrated in Figure 5.4.
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Figure 5.4: Least & for unique periodic solution. Explicit Euler (— — —),

Linearized Implicit Midpoint (—), Linearized Implicit Euler (x x)

For € < 2, the Explicit Euler method is the most restrictive of the three
(that is, comparatively larger minimum values of k£ must be used to obtain
dynamical behaviour that is the same as that of the differential equation).
However, as ¢ is increased, the Explicit Euler method outperforms the lin-
earized implicit Euler method by becoming less restrictive than that method
for € > 3. For € > 3, the explicit Euler and linearized implicit midpoint
methods give comparable results, and for those values of ¢, the linearized
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implicit Euler method becomes more and more restrictive in comparison to
the other two.

Finally, we develop a bound on [X*|. For comparison purposes, we
present the following lemma, which can be proved in a manner analogous

to Lemma 5.2.5.

Lemma 5.2.8 Let b(t), p(t) be C' T-periodic functions of t. There exist
numbers M, My > 0 such that [b(¢)], |6'()] < M, |p(t), |#/(£)] < Mz, and the
solution ®(t) satisfies

M
1901 < ez

ast — oco.

Theorem 5.2.9 Let X*, given by (5.15), be the fized point generated by the
stroboscopic sampling of the numerical solution of the linear nonautonomous
differential equation with a(t) = —1+¢p(t) by a linearized collocation method.
Then, the following inequality holds.

M(1+ T

e MO+TE) -
XN < T it = ety 8i29)

Proof: Since b(t) and p(t) are C' and periodic, there are numbers Af, M

such that [b(2)], [6'(t)] < M and |p()], [0'(t)] < My for all t € R

116



For each i,

1 + hey + heMy

T;
7 1+ hey — hereM

IA

VP N
1Hl < |1+ hey — hejeMa|

Bl < My=MQ1+ch).

where h = T/k. If

1+ hey — heyeMy + heMy + hicieMy — h

= 5.30,
d 1+ hey — heyedly : (5.30)
then
G R — — N S
= [ +he—haeds] "
hM; | 1ok |
= i ; — heieM
[T+ hey — heredy]  |h(1 = ciheM, — €M) | 11+ hey — hereMy|
1-v*
= M

i |(1 ZciheM; — eMy)|”

On the other hand, we deduce from the definition of c(e) that

1+ hey — h+ heM, — heiedy + h2cieMy | *
el h - ;
-9l 2 1 ( 1+ he, — here,
Hence,
M M1+ cih)

X*(e)] < = y

X < T=ohan —eMy|  L— ciheMy — €M) (5.31)
which is identical to the inequality (5.29). o
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If we substitute € = 0 in (5.31), we obtain (5.17) as expected. Here, as
well, the bound for X*(e) is the same as that of the periodic solution as
h—0.

between the dy ical approach

We would like to obtain a
study and stability analysis. We introduce a natural stability criterion for
the differential equation as well as any numerical method used to discretize

it.

5.2.4 Conditional AN-stability and AN-stability

We consider the problem of determining a criterion for some sort of “con-
trolled behaviour” of the solutions of the methods. We adopt a linear stability

criterion that is based on the scalar test equation
z' = a(t)z, (5.32)
where a(t) € C. If Re(a(t)) < O for all ¢ € [y, 3], then
z(t+h) = Kz(t), K| <1,
for all = € [By, 3] and h > 0.

Definition 5.2.10 A numerical method is said to be conditionally AN-stable
for some h > 0 if, when applied to the test equation (5.32) with Re(a(t)) < 0
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for all t,

Tnel = K(h)zn, KR <1,
holds for all n € N.

If this condition is satisfied for all h > 0, then the method is AN-stable

(Lambert (23], Stuart & Humphries [31]).

The following simple result gives a condition under which the linearized

poi it ion methods are conditi; ly AN-stable.

Theorem 5.2.11 The linearized one-point collocation methods are condi-

tionally AN-stable if
, 2 -
(1= 2¢))alt) + cvha'(f) 2 -+ (5.33)
and a(t) + cha’(t) < 0.

Proof: Use the above test equation in (1.23).

Examples:

L. If a(t) = —1, then the linearized one-point collocation methods are con-
ditionally AN-stable if
g( 1-2¢) <1
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It is easy to observe that the methods are AN-stable if ¢; > } and condi-

tionally AN-stable for sufficiently small k if ¢; < }.

2. If a(t) = —1+¢p(t), where €, p(t) €C, and e(p(t) + c1hg()) < 1. then

the linearized one-point ion methods are conditi AN-stable if
2
~1 + ep(t) + c1(hep'(t) + 2 — 2ep(t) > -

Our results suggest the existence of a relationship between the linear
stability theory of the collocation methods and the existence and asymptotic

stability of periodic i i i via b i Li This

relationship is stated in the following theorem.

Theorem 5.2.12 Suppose a linearized one-point collocation method is used
to solve a linear nonautonomous equation with periodic coefficients which has
a unique, asymptotically stable periodic solution. Then, the method yields the

same d; ical behaviour if it is conditic AN-stable. The reverse does

not necessarily hold.

Proof: The first statement follows from the conclusions of Theorems 5.2.2
and 5.2.7 as well as Examples 1 and 2 in section 5.2.4.

We use an example to show that the reverse is not true in general. If,
in § 5.2.3, we let p(t) = sint, ¢, = 1, k = 10, and € = 2, we find that the
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method has a single asymptotically stable periodic solution since it satisfies
the condition (5.28). However, it is not conditionally AN-stable since the
condition in Example 2 is violated. a

The last theorem is very significant, since it gives us a bridge connecting
standard stability theory with dynamical systems. Naturally, we would like
to find out if there is a corresponding result for the nonlinear case, which we

now consider.

5.3 Nonlinear Case
We consider the nonlinear equation,
2’ = a(t)g(z) + b(t), for t > 0 and z(0) = zo (5.34)

where b(t) is a T-periodic function of ¢ and g(z) is a C? nonlinear function
of z.
The following is an existence and uniqueness theorem for the solution of

(5.34).

Theorem 5.3.1 The differential equation (5.34) has a unique T-periodic
solution that is asymptotically stable if g(z) € C?, ¢'(z) > 0, a(t) < 0 for all

z and t, and g(z) = +00 as z — +oc, g(z) = —00 as T — —oc.
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Proof: We follow a method of proof similar to that used in Hale & Kogac
[16]. We start by establishing the existence of at least one periodic solution

of (5.34). Let

Omin = mipa(t)
amax = maxa(t)
bmin = minb(t)
bmax = maxb(e),

where a(t) and b(t) are T-periodic.
If ®(t) is any solution of (5.34), then ®(t) satisfies
9(®)amin + bmin < ¥’ < g(P)amax + bmax- (5.35)
Defining the sets

U- = {(t,2) : 9(z)amin + bmin > O}
Us = {(t.2) : 9(z)amax + bmax < 0}

we observe that & is increasing in U- and decreasing in U.. If g(z) — +oc
as £ — +oc then z € U for all z sufficiently large, and if g(z) — —oo as
£ — —oo then z € U for all z sufficiently small.

Therefore, the solution is bounded for all ¢ > 0; hence, there is at least
one T-periodic solution of (5.34).
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Unigueness: Let z,(t) and z,(t) be two T-periodic solutions of the differ-

ential equation. Then,

74 = a(t)g(z1) +b(t) (5.36)
75 = a(t)g(zz) +b(t). (5.37)

From (5.36). (5.37) and the Mean Value Theorem, we have
X'(t) = a(t)g'(edt)) X (5.38)
where X(t) = 21(t) — z2(t) and a(t) is between z(¢) and z,(t) for all .
If ¢'(z) > 0 for all z, and a(t) < —e < 0 for all ¢, then clearly X (t) = 0
as t — oo, proving the uniqueness of the periodic solution. o

We assume the hypotheses in Theorem 35.3.1 are satisfied, and consider

the exercise of devising numerical approximations for the solution of (5.34).

5.3.1 Linearized One-Point Collocation Methods

The linearized collocation methods, applied to (5.34), are given by

4+ hangl) hby
1 - hanerg'(z2) 1 — hanerg'(zq)

(5.39)

Tn+l =Tn

where b, = b, + cihb), and @, = a, + cihal,.
We perform a simplification on the third term of (5.39) that takes the
form of evaluating the derivative of g at the starting value, instead at each
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step. The resulting method, that will be referred to as a simplified linearized

one-point collocation method, is

Zns1 = Zn + hanG(Ta; n) + Hybn,

where
h
H, B
1 — hanc1g'(zo)
- 9(z)
Glam) = haqeig(z)

5.3.2 The Dynamical Systems Approach

We would like to take the d; ical systems h and d

the

conditions under which (5.40), applied to the differential equation (5.34),

vields the same dynamics as the continuous system.

We rewrite (5.40) as
hanG(Znin) = Zns1 = Zn — Hybn.
Inductively, we can show that

Tnpi =20+ Hib +h3 a.Glzi7).
= =

(5.41)

We choose an integer k such that T = hk. Sampling stroboscopically in

the iteration above, we get
P k-1
Tk =20+ Y Hb +h Y 4,G(z;7)
= =0
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and associate this with the discrete system

=l kel R
Xopt =X+ > Hb, + 1Y 3,G(X:r) (5.43)
= =
where,
Xo = Xa
mt et _
X, = Xa+ S Hb +hY aG(Xii) forr=1,2,.... k—1.(5.44)
= =

The fixed points of (5.43) correspond to periodic solutions of (5.34). Fixed

points are points, X*, such that

kol kel _

S Hb +hY aG(Xnir)=0, (5.43)
= =

where
R el e _
X, =X+ Hb+hY aG(Xii) forr=1,2,... ,k—1,
= =

and Xg = X". Define the sequence of functions Fi(z), Fa(z), .. by

B
Fi(z) = Zl[ﬁrhG(fr; )+ Hb,] (5.46)
=
where £ = z and
Er=z+ E[&,hG(f.v; i)+ Hiby) (5.47)
=

forr=1,2,...,k=1.



The theorem below gives conditions under which the simplified linearized
one-point collocation methods, applied to (5.34), exhibit dynamical behav-

iour that is the same as the differential equation.
Lemma 5.3.2 If |1+ ha(t)G'(z; t)| < 1 for all z and t, then
~1< Fi(z) <0
for all k € N, where Fy(z) is given by (5.46).
Proof: Observe that F\(z) = h@oG(z;0) + Hobo and

Fi(z) = Fer(2) + hie1G(z + Fer(2); K — 1) + Hiobe
(5.48)
for k=2.3,.... It can be established by induction that
k-t ket [ ket
F(z)=F@ [[a+a)+ ¥ |a [] 1 +a) (5.49)
= = =i
where @; = ha;G'(z + Fi(z);1) < 0 for each i € N.
It can be shown by induction on k that Fi(z) < 0 for all z and k € N.

On the other hand, we obtain an extremum, Fy, of F} when

or
Aoy

k-1 -1 k-1 k=1
HEIM | | (l+ﬁ,)+z[ﬁ. 11 (l+ﬁ,)]+ IT a+a) =0
=1 #l =+l

i=Ligl J=itly
for|=1,2,... k- 1. Taking!=k — 1 in the above equation gives
k=2 k=2 k=2
Fz)[Ja+a)+ Y |& [ Q+a)|=-1, (5-50)
i=t b=l =it
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from which we deduce that Fy = —1. Clearly, this extremum is a minimum,

and the lemma is established. [s]

Theorem 5.3.3 Assume the differential equation (5.34) has a unique solu-
tion. If

(i) 9"(x)9(z) <0,

(i) c1a'(t) < =34 for all t, and

A L
(iii) Max G'(z;1) < s

then a simplified linearized point collocation method has a periodic

solution for any k = T/h; this solution is unique and asymptotically stable.

Proof: Finding possible fixed points of (5.43), hence periodic solutions as-
sociated with the methods, is the same as finding zeros of (5.46). This is

qui to solving the i system:

127



—hdoG(z";0) — ha,G(£1; 1) — harG(22:2) — ...
~hag1G(zi-1; k — 1) — Hobo — Hiby — ... — Heoybey = 0
&) — 2" — h@oG(z;0) — Hoby = 0

£ — z* — haoG(z";0) — harG(£1; 1) — Hobo ~ Hiby = 0

Zil — 27 — haoG(2%:0) — ha G (215 1) — hasG(22:2) — ...
—hie2G(zi2; k — 2) — Hobo — Hiby — ... — Hi_abe_2 = 0.
The above system is of the form F(x) = 0, where F is a nonlinear function

of

To prove existence, it is sufficient to show that the Jacobian matrix, J(F),

of F is non-singular. Now,

dy dy dy d3 ... dio di

—14+dp 1 0 O 0
~14dy d, 1 0 0 ... 0

IF)=| _14dydy & 1 O ... 0
—1+dy dy dy ... dik—p dpy 1
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where d; = —h@G'(%; i) for each i. We perform one elementary row opera-

tion: row 1 — row 1 - row k. The matrix becomes

1 0 0 0 ... 0 -l+di
-1+d, 1 0 0 ... 0 0
—l+dy d; 1 0 0 ... 0
~1+dy dy d» 1 O 0
—l+dy dy d» ... dia diy 1

It is easy to see that the above matrix is nonsingular.
To prove uniqueness, let z; and z, be two fixed points of (5.43). Then,

from (5.48),

Fi(z1) = Feoi(@1) + hae1G(@ + Feer(z1): k= 1)

+Hi1be-1 =0 (5.51)
and

Fi(z2) = Fio1(z2) + ha@e1G(z2 + Fior(z2): b — 1)

+Hp_ybg-1 =0. (5.52)

Subtracting (5.52) from (5.51) and using the Mean Value Theorem gives

(z1 — z2){Fi_y(e) + hax-1G'(azi k — 1)(1 + F{_y (1))} =0,
(5.53)
which may alternatively be written as
(21 — z2){Fi_ (1) (1 + hae1G'(@2; k — 1)) + hie—1G'(az; k — 1)} = 0.
(5.54)
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In the above equations, a, is between z;, and z; and «, is between z; +
Fi_1(21) and 75 + Fi_1(z2)-

From the hypotheses of the theorem, we have that F' < 0. G' > 0,
@y <0and 1> 1+ hax,G'(az;k—1) > 0. Thus, z) = z,.

To prove that the periodic solution is asymptotically stable, we need
only to show that |1 + F’| < 1. Since 1 > 1 + ha(t)G'(z;t) > 0, we have
-1< F' <0 from Lemma 5.3.2.

This completes the proof. a

5.3.3 Nonlinear Stability Theory

We wish to establish conditions under which numerical methods for the so-
lution of (5.34) behave in a “controlled” manner.

Consider R™ as an inner product space with corresponding norm || - ||.
Then, if neighbouring solution curves converge with respect to this norm (as
t — oc), the system is said to have contractive solutions (Lambert [23],
Stuart & Humphries [31]). As in the linear case, we will contrast the condi-
tions for stability with the existence and uniqueness of a periodic solution in
the numerical methods.

We briefly state the concepts of contractivity and conditional BN-stability.
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Definition 5.3.4 Let z(t) and Z(t) be any two solutions of the differential
equation ' = f(z.t), satisfying initial conditions z(0) =1, E(0) = 7. n £ 7.
Then, if

llz(t2) — Z(t2) | < llz(t1) — Z(2)Il
holds under the R™ norm || - | for all t,, t, such that 8, < t, < t2 < B, the

solutions of the system are said to be contractive in [5y, 3]

The discrete analog of the above definition is given below.

Definition 5.3.5 Let {z,} and {Z,} be two numerical solutions generated

by a numerical method with different starting values. Then, if
llZnst = Fnntl| S llZn = Zull, 0<n <N,
the numerical solutions are said to be contractive for n € [0. N].
Definition 5.3.6 The system z’ = f(z,) is dissipative in [8;. 3] if
< f(z,t) - f(ZT.1).z2—F><0 (5.35)
holds for all =, T € R™ and for all t € [By. By].

It is easy to show that the ions of a dissipative system are

under the norm induced by the inner product in (5.55). It is desirable that
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a numerical method, used with fixed stepsize £ > 0 to solve a dissipative
system, gives contractive solutions. This brings us to the concepts of con-
ditional BN-stability and BN-stability, nonlinear nonautonomous stability

criteria.

Definition 5.3.7 If a numerical method, applied with fized steplength h > 0

to (5.94) satisfying (5.55), ive solutions, the method is said
to be conditionally BN-stable. If the method generates contractive solutions

when applied with any h > 0, then it it is BN-stable (Lambert [23]).

The concepts of AN- and BN-stability are equivalent for nonconfluent
Runge-Kutta methods.

To d ine the ditional BN-stability of the methods, we use the

scalar test system
' =a(t)g(z) (5.6)
where, as before, a(t) € C and g(z) € C*. This system is dissipative if

a(t) < g(z) —9(@)c—7> = a(t)g'(®)lz -z
<o,
where £ lies between z and T and < -,- > is an inner product in K. The
condition is satisfied if a(t) < O for all ¢ and ¢/(z) > O for all z. Therefore, the
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existence and uniqueness of a periodic solution in (5.34), by Theorem 5.3.1,
is a sufficient condition for the dissipativity of the system.
Now, we determine the conditions under which the linearized one-point

methods are iti ly BN-stable. Applying the methods to

the test system (5.56) for two different initial conditions, gives

ZTnsl = Tn+ hanG(zain) (5.57)

Farl = Zn+ hdaG(Znin). (5.58)

Subtracting (5.58) from (5.57) and using the Mean Value Theorem gives

[Zne1 = Tnsal = (@0 = Zn)| - [1 + hanG' (6ni )], (3.59)

where &, lies between z, and T,.
The solutions generated by the methods are contractive if |1+hd,G'(En;7)| < 1.
Assuming @(¢) < 0 for all ¢ and G'(z;¢) > 0 for all z and ¢, the methods are

conditionally BN-stable if

. 2 -
GED < gy (5.60)

Remark: If we let g(z) = z (the linear case), then condition (5.60)

collapses to (5.33), which is the ition for iti AN-stability.
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5.3.4 Discussion

We have, in Theorem 5.3.3, blished diti for the si

linearized one-point collocation methods to exhibit the same dynamics as

the 1i; ODE. Conditions (i) and (ii) are required for

conditional BN-stability as well, but condition (iii) is not necessary for the

of a unique, ly stable solution. In fact, we can come

to the same conclusion as in Theorem 5.3.3 if, in (5.33),
F'(z)[1 + ha(t)G'(z; )] + ha(t)G'(z:t) # 0 (5.61)

for all z and ¢. The following theorem shows that condition (5.61) is satisfied

if the method is conditionally BN-stable.

Theorem 5.3.8 Suppose a simplified linearized one-point ion method
is used to solve a nonlinear nonautonomous equation of the form (5.84) with
periodic coefficients which has a unique, asymptotically stable periodic solu-
tion. Then, the method yields a unique periodic solution that is asymptotically

stable if it is conditionally BN-stable.

Proof: Assume conditional BN-stability. To prove the theorem, it is

sufficient to establish condition (5.61). From ditional BN-stability, we

have —1 < 1+ haG' < 1. Recall that —1 < F’ < 0 from Lemma 5.3.2.
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Therefore,
F' + haG' < F'(1 + haG') + haG' < —F' + haG'. (5.62)
From Lemma 5.3.2, 0 < —F' <1, so that if —1 < 1+ haG’' <0,
F'(1+haG') + haG' < 1+ haG' < 0.
f0<1+haG' <1,
F'+ haG' < F'(1+ haG') + haG' < haG' < 0. (5.63)

This proves the theorem. a
Remark: The above theorem is equivalent to Theorem 5.2.12 (in the lin-
ear case) if we replace the concept of conditional BN-stability by conditional

AN-stability.

5.4 Conclusion

We already knew that numerical methods can introduce spurious behav-
iour into the solution for autonomous equations. Concentrating on linear

and i ions with unique periodic solutions, and

discretizing them using linearized one-point collocation methods, we were
interested in the existence of periodic solutions in the numerical methods.
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We found that the results obtained from the dynamical systems approach

are closely linked to those that are imposed by standard stability analysis.

It has been shown that, for linear and

equations of the form considered in this chapter, the conditional AN- or BN-

stability of a li i point ion method is a
for the method yielding the same dynamical behaviour as the differential

equation under consideration.
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Chapter 6

Higher Dimensional Linear
Systems

6.1 Introduction

In this chapter, we will extend some of the results of the preceding one to
higher dimensional linear systems. In particular, we would like to determine
conditions under which the results that were obtained in the scalar case carry
over.

Consider the system of linear equations (see Sanchez [27]),

' = A(t)z + b(t), (6.1)
where A(t) = [a;;(t)] € R™™ is a continuous periodic matrix of period 7' and
b(t) = (b:(t)) € R™ is also continuous and T-periodic. In addition, consider
the boundary conditions

2(0) — z(T) = 0. (6.2)

137



We will also be d with the ing h system

A(t)z. (6.3)

Since A(t), b(t) are T-periodic, then any solution z(t) of (6.1) or (6.3) sat-
isfving (6.2) is T-periodic (Hartman (17]). The theorem below is an existence

and uniqueness result for the solution of (6.1).

Theorem 6.1.1 (Hartman (17]) Let A(t) be continuous for 0 < t < T and
T-periodic. Then, (6.1) has a T-periodic solution z(t) satisfying (6.2) for
every continuous T-periodic b(t) if and only if (6.3),(6.2) has no nontrivial
(3 0) solution; in which case z(t) is unique and there ezists a constant K,

independent of b(t), such that

T,
=@l < K [ b(s)lds  for0<t<T. (6.4)

‘We now consider linearized one-point collocation methods, as used to
discretize a system of the form (6.1) which satisfies the hypotheses of The-
orem 6.1.1. In a manner similar to the discussion of the linear scalar case

of Chapter 5 with a(t) = —1 + €p(t), we will use stroboscopic sampling to
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establish conditions under which the methods exhibit the same dynamics as

the differential equation.

6.2 Linearized Collocation Methods

We rewrite the linearized one-point collocation methods (1.23) in the form

[l = cihfz(tn, 2n)|Zner = (I = c1rhfz(tn. Tn)lon + Alf (tn, Tn) + C1hfe(tn, n)]
(6.5)

where, as before, I is the m x m identity matrix, & a constant stepsize and
[z the Jacobian of f with respect to z.
Applying (6.5) to (6.1), we obtain
[I—hey ANz = [T—he; Az +h%e; [A™ 2 150 |+ (A () b))
where A™ = [a;;(rh)], A = [af;(nh)], etc.
The methods can then be written in the form of the discrete system
2+ — g g(n) o grmm) (66)
where
S® = [T+ h(I — he; A™) "V A®) 4 B2, (I — hey A™) =LA
H®™ = R(I - hoA™)~L,
b = b+ heb™.
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It can be verified by induction that the system (6.6) can be written
20 = [ s-020 1 35 ([ vor) moge ©7)
=0 =0 =i+l
where VU) := Sn=i+i+l)
6.2.1 Periodic Solutions

We now consider the possible existence of a unique, asymptotically stable

periodic solution in the discrete system. For any k € N, we define the matrix
k-1

S =T s*-'-9. (6.8)
i=o
Then. we have the following theorem.

Theorem 6.2.1 Suppose a linearized one-point collocation method is used
to discretize the system (6.1) with boundary conditions (6.2), satisfying the
hypotheses of Theorem 6.1.1. Then, the method has a unique, asymptotically
stable periodic solution provided the matriz S, defined by (6.8), has all of its

eigenvalues with moduli less than unity.

Proof: From (6.7), we have
k=1 k=1 (k=1 .
2® = ] s9z0 + ¥ [ T VU’) HOR0. (6.9)
i=0 i=0 a1
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Choose h such that T = hk, k € N. The discrete system corresponding to

the stroboscopic sampling of (6.7) is then given by
) = Sz 4y, (6.10)
where S is defined by (6.8) and

k=l [ k=1 &
= (11 r'o)) HORO,

=0 \j=i+1

Clearly, the system (6.10) has a unique fixed point given by
=-S5

provided the matrix S has no eigenvalue of 1. This fixed point is asymptoti-
cally stable if all eigenvalues of S have moduli less than unity. a
Referring back to § 5.2.3, we observe that the argument has been general-

ized; the role of 7; in (5.22) is replaced by the matrices S®) and the condition

(5.28) is replaced by the conclusion of Theorem 6.2.1. A similar link exists

between the vector v and the corresponding term in (3.25).

6.2.2 Remarks

The complexity of the matrix S and the vector v in the above argument
shows the difficulties that arise in moving from the scalar case to higher
dimensions. Future work will be directed at relating the conditions imposed
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by Theorem 6.2.1 on S to the original matrix A(t). This will enable us to
characterize those systems, if any, which could result in spurious periodic
solutions in linearized one-point collocation methods.

The result on the link between conditional AN-stability and dynami-
cal behaviour holds in the higher dimensional situation, since the nonau-

tonomous stability criterion is based on the scalar test equation (5.32).
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Chapter 7

Concluding Remarks

7.1 Summary of Thesis

The main objective of the thesis was to study the dynamical behaviour of
linearized one-point collocation methods, used with constant stepsize, to dis-
cretize four classes of ordinary differential equations. The idea is to charac-
terize the differences, if any, between some of the dynamical features of the

discrete system and its continuous counterpart.

7.1.1 Scalar Parameter-dependent ODEs
Discretizing ODEs of the form
z' = f(z,u), z(0) = 20 (7.1)

where € R and f : R x R — R, the thesis considered the question of the

possible exi: of spurious i ion-1 bi i in the methods.
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Normal forms theory was used in the analysis.

It was established that no spurious saddle-node. transcritical. and pitch-
fork bifurcations can occur in linearized one-point collocation methods. In
other words. any such bifurcation occurring in the methods must have re-

sulted from a dis i ion in the originating ODE.

The period doubling bifurcation in discrete dynamical systems is a phe-
nomenon that has no counterpart in continuous systems. It was discovered

that spurious period doubling bifurcations can occur in all the methods with

the ion of the linearized implicit midpoint method (¢, = 1/2).

7.1.2 Planar Parameter-dependent ODEs

An ODE of the form (7.1) with 4 € Rand f : R x R? — R? was considered.
The ODE was assumed to have an equilibrium point that undergoes a Hopf
bifurcation at a known parameter value.

It was determined that, when using a linearized one-point collocation
method to solve such an ODE, the corresponding fixed point in the resulting
discrete system undergoes a Neimark-Sacker bifurcation (which is the discrete
analog of the Hopf bifurcation) but, unless ¢, = 1/2, the bifurcation occurs
at a different parameter value. The parameter value at which the bifurcation
was found to be dependent on ¢, and the stepsize h.
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The unforced and forced Van der Pol’s oscillators were used to illustrate

these results. In the case of the forced osci the method of

was used to reduce the system to an autonomous one. The numerical results

were i with th

7.1.3 Planar Non-parameter-dependent ODEs

Concentrating on the autonomous ODE
' = f(z), z(0) = zo (7.2)

where f: R — R, the issue of global asymptotic behaviour was considered.

As stated in Chapter 1, linearized one-point collocation methods do not
generally admit spurious fixed points. However, the presence of a singularity
in those methods for which ¢; > 0 may introduce spurious pole-type behav-
iour, and the numerical basin of attraction for the fixed points may differ
from the true basin.

[t was proved that if f(z) = P(z), where P(z) is a polynomial of degree
at least 2, spurious pole-type behaviour will occur in the linearized one-point

collocation method with ¢, = 1/n.

This is i in R? using a predator-prey model, in which the lin-
earized implicit midpoint method depicts spurious pole-type behaviour.
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7.1.4 Periodic Solutions - N ODEs

A scalar nonautonomous ODE of the form

f(t2), z(0) =z (7.3)

where f : R x R — R and T-periodic in t, was considered. For the cases
in which (7.3) is known to have a unique, asymptotically stable T-periodic
solution, the main interest was to establish conditions under which the chosen
methods exhibited the same dynamics.

The technique used is analogous to the Poincaré map, and is called stro-
boscopic sampling. Two cases were considered; f = a(t)z + b(t) (linear case)
and f = a(t)g(z) + b(t) (nonlinear case), where a(t) and b(t) are C* and T-
periodic and g(z) is C' and generally nonlinear. The trivial cases, a(t) = 0
and a(t) = —1 in the linear category, were studied first.

Having bli itions for the exi: of unique, ically

stable periodic solutions in the methods, it was investigated whether the
conditions were linked to linear and nonlinear stability theory. It was proved
that such a relationship exists; if a method is conditionally AN- or BN-
stable. it will have a unique periodic solution that is asymptotically stable.

The study was taken to higher dimensions. Let

=AMz +b(t)  2(0) =z (7.4)
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where A(t) € R™™ is C' and T-periodic and b(t) € R™ is also C' and
T-periodic. The analysis was similar to the scalar case, and some of the

difficulties that arise were highlighted.

7.2 Suggestions for Future Work

This thesis has raised a number of issues and questions that are worth in-
vestigating. The most natural direction in which to take this work is in
generalizing the problems and methods used. The setting in which the the-

sis some fund ions in the ics of numerics has

been a simple one, yet it has enabled identification of areas to which further
investigation could be directed.
Periodically forced systems play a very important role in practice. In the

thesis. we considered the forced van der Pol’s oscillator as an example and

in i the Neimark-Sacks i ion in li ized point colloca-

tion methods, used to discretize the averaged equations of this system. We

would like to extend the i igation to consider the

analysis. For example, we would like to consider the effect of the proximity,

in some places, of the saddle-node and Hopf bil ions on the ics of

numerics. Since, as it has been established in Chapter 4, the Hopf bifurca-
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tion does not occur at the same parameter value as it does in the differential

equation, it would be i ing to study the of this in the

presence of a neighbouring bifurcation.

The link between the dynamics of the methods and the stability theory
discussed in the thesis could naturally be investigated with other standard
numerical methods such as Runge-Kutta and linear multistep methods. This
also goes for the local bifurcations. Linearization of a general s-stage implicit
Runge-Kutta method results in an s-stage Rosenbrock method (see Hairer &

Wanner [15]), which, for the autonomous case, is given by

= :
k= f (x,.+za,,—kj) +J Y ks, i=1,2,...,s
= =
s
Xnvt = Xa+h3 bk (7.5)
=

where J = f'(zo) and aj;, ¥, b; are the determining coefficients.

Applied to nonautonomous problems, these methods can be written

ko= f (z,, + azh, Xp +;§xu,)k]) + ‘y,h%(t,., Xa) + gﬁ(lm Xr.)g‘mk,
Xt = Xn+h i;b,-k,-, (7.6)
i=
where a; = T} o and v = T, s
Some Rosenbrock methods (7.5) or (7.6) can also be categorized as lin-
earized collocation methods. This is the case if, in the derivation of the orig-
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inating implicit Runge-Kutta method, a set of collocation points {t, + c;h}

(i =1.2,...,s) is chosen and the solution from t, to tn4: is approximated

by a polynomial of degree s which satisfies the differential equation at the
collocation points. Future work will attempt to base the dynamical approach
study on such methods.

Also, it is known that explicit methods generally perform poorly, while
Rosenbrock methods perform well, when used to solve stiff differential equa-
tions (Hairer & Wanner [15]). Future work will also attempt to apply lin-
earized collocation methods to stiff equations, the aim being to ascertain if
these methods can be used to solve stiff equations in general.

Finally, there has been increasing interest recently on local error control.
It has been proved that, in most cases, spurious solutions cease to exist when
local error control is used (see Aves et al. [3] and Sanz-Serna [26]). Further-
more, most modern numerical algorithms have built-in local error control. It
would, therefore, be of great value to consider the problems and methods in

this thesis within the variable ti tepping context. An ing of

the dynamics of fixed time-stepping methods is, however, necessary before

on variable ti pping (see Stewart [29]).
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