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Abstract

The research in this thesis was inspired by a particular magnetic compound,

IrMn3, which has been used extensively as the antiferromagnetic layer for exchange

pinning in spin valves for computer hard disk drives and other magnetic storage

technologies. Its magnetic structure is the fcc kagome lattice, where 2D kagome

layers are ABC stacked along [111] to give a full 3D lattice. To gain a better un-

derstanding of its basic spin structure and dynamics, several theoretical techniques

are considered and an experiment was performed with a focus on examining the

effect of adding magnetic anisotropy to the Heisenberg fcc kagome lattice model.

Monte Carlo simulations using the standard Metropolis algorithm are per-

formed for the fcc kagome lattice with the addition of cubic magnetocrystalline

anisotropy K. Comparisons are made between previous K = 0 results and K > 0

through spin order parameters and the specific heat, to study anisotropy effects

on the spin degeneracies associated with the 3D kagome spin lattice. A look at

energy histograms and Binder energy cumulants reveals a change from a first order

to a continuous phase transition with the addition of anisotropy, associated with

the removal of ground state degeneracies.

Magnetic neutron scattering experiments were carried out on a IrMn3 powder

sample at the Oak Ridge National Laboratory to study the magnetic structure and

determine whether anisotropy could be detected. Spin waves along with elastic

and inelastic magnetic scattering theories are developed for the fcc lattice in an

attempt to compare to the experiment. While noise in the data makes this quite

difficult, the expected results may help shed some light on this material for future

experiments on single crystals.
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Chapter 1

Introduction: Motivation

1.1 The fcc Kagome Antiferromagnet

The research focus of this thesis was motivated by the realization that little work

had previously been done to characterize the magnetic order and spin excitations

in an unusual, yet popular, 3D frustrated antiferromagnet (AF), namely the fcc

kagome lattice. The paradigm for frustration is the triangle with nearest neighbor

(NN) AF exchange interactions [1]. Unlike the four NN AF interactions associated

with the unfrustrated 2D square lattice, the three spins at the vertices of a triangle

cannot all be antiparallel. The typical realization in the zero temperature (T = 0)

ground state of this frustration for real materials with lattice structures based on

the triangle is the 120◦ spin structure, with spin vectors around the triangle having

this inter-angle value. The 2D triangular lattice with six NN is constructed from

edge-sharing triangles. The 2D kagome lattice is built from corner-sharing triangles

and the word “kagome” comes from an ancient Japanese basket weaving design

[2]. The 2D kagome lattice can also be constructed by removing one-quarter of the

sites from a triangular lattice, as in Fig. 1.1, and each site has four NN. Over the
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figuration. The latter structure also describes the fcc lattice with twelve NN. The

fcc AF has been studied over many decades and exhibits a large variety of types

of magnetic order [4],[5].

The basic 2D kagome lattice can also be stacked in a variety of ways to form 3D

crystal structures, as discussed in Sec. 1.2.2. ABC stacked kagome layers in a close-

packed configuration form the fcc kagome lattice with eight NN, the most popular

realization being AuCu3 and the most popular AF being IrMn3, this structure

having the crystal symmetry space group No. 221, Pm3m. There have been a

large number of publications on IrMn3 over the past few decades that mostly

appear in journals focused on applied physics [6]. This is the material of choice

for the so-called “Pinned Layer” in the spin valve structure used in hard drives

[7], as seen in Fig. 1.2. The magnetic order was identified some time ago and is

based on the 120◦ spin structure around each triangle. In all the published works

on IrMn3 and sister AFs, there is no mention of “kagome” despite the fact it is a

true realization of a 3D kagome structure, with 8 NN in 3D. In these publications,

the 3D spin structure is called “T1” magnetic order. Correspondingly, none of the

work published on the magnetic order in kagome lattices made the connection to

the IrMn3-class of compounds.

Exchange pinning, where the magnetization of a ferromagnetic layer is pinned

to a certain direction, is crucial to the operation of a spin valve, which is based

on the magnetoresistive response of the device. Due to spin-dependent electron

scattering, the resistance of the spin-valve is dependent on the relative orientation

of the two ferromagnetic thin-film layers shown in Fig. 1.2. In one of the layers,

the “Free Layer”, the magnetization rotates in response to an external magnetic

field (e.g., from a passing bit on a hard-drive disk). In the other layer, the Pinned

3



Figure 1.2: Schematic of a read-head structure.

Layer, the magnetic moments are pinned in a fixed direction through coupling

to an adjacent AF. For the past decade, thin films of IrMn3 have been the most

popular AF for this purpose.

Agreement on the fundamental mechanism responsible for exchange bias, the

shift in the magnetization curve of the ferromagnet due to the AF, in Ir-Mn thin

films and other materials remains elusive [8]. It is believed that frustration of some

sort at the interface between the antiferromagnet and ferromagnet is essential [9].

It is clear that there needs to be a pinned ferromagnetic component within the first

few layers of the AF. Some studies also suggest that exchange bias is enhanced

if this component is perpendicular to the plane of the film [10],[11]. An essential

requirement for technological applications is that the AF layer magnetically orders

well above room temperature. A preliminary Monte Carlo (MC) study of the

fundamental spin structures and spin degeneracy of the 3D fcc kagome lattice

was performed by a previous graduate student (V. Hemmati) in our group [12].

Only NN exchange interactions were included, with cubic anisotropy omitted. A

summary of the results of that study is presented below.
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The work in this thesis represents a significant extension of this first investiga-

tion. There are two main focuses: MC simulations to explore the impact of cubic

anisotropy and a theoretical and experimental study of spin excitations. The MC

simulation results were published in an article [13] in Phys. Rev. B and represent

the main contents of Chap. 3. The spin excitations results along with some pre-

liminary neutron scattering theory were published in another Phys. Rev. B article

[14] and are presented in Chaps. 4 and 5.

1.2 Kagome Lattice

1.2.1 2D Kagome Lattice

The macroscopic degeneracy associated with magnetic dipoles on the 2D kagome

lattice (Fig. 1.1 and Fig. 1.3) composed of corner-sharing triangles, with four NN

exchange interactions, continues to generate new physics after twenty years of

study [15],[16]. The main focus of these works has been associated with ultralow

temperature and quantum effects. Quasi-3D experimental manifestations have

been limited to systems with weakly coupled kagome layers or distorted hyper-

kagome lattice structures [17],[18].

For continuous spin models on the 2D kagome lattice with NN exchange inter-

actions, the ground state is highly degenerate with the only requirement being a

net zero magnetic moment for each triangle. This gives rise to many degenerate

configurations having an overall 120◦ spin structure in either q = 0 or
√
3 ×

√
3

co-planar forms [15] (see Fig. 1.3), the names referring to their ordering wave

vector. The 120◦ spin structure can be thought of as three interpenetrating fer-

romagnetic sublattices. In addition to the usual continuous degrees of freedom

5





along a row with no change in energy. Unlike the triangular lattice AF, there is

no correlation between chiralities, used to further characterize the spin order, of

adjacent triangles [19]. The macroscopic degeneracy found in the 2D kagome lat-

tice and similar systems such as spin ice materials [20],[21], where the correlated

but disordered ground state has the local magnetization obeying ice rules leaving

a residual entropy, can often be lifted by thermal or quantum fluctuations through

the mechanism of order-by-disorder in which states are selected from the ground

state manifold by entropic forces [22],[23]. The degeneracy can also be lifted with

the addition of further neighbor interactions or magnetic anisotropies [24],[25].

Classical Heisenberg MC simulations found that low temperature (T ≈ 10−4−

10−1J , with J the strength of the exchange interaction) 2D Heisenberg kagome

models exhibit three separate states: a coplanar, a cooperative paramagnetic and

a paramagnetic state seen in the specific heat C [17]. C saturates at the value

of 11/12 when the data is extrapolated to T = 0. Further analysis at even lower

temperatures (T ≈ 10−6J) show that the
√
3×

√
3 structure is maintained [16],[26].

For the 2D q = 0 kagome lattice, a spin wave analysis [15] found that when

there are only nearest neighbor interactions J1, three spin wave modes emerged,

one of which being a zero-frequency mode for all wavevectors k and the other two

modes being degenerate linear modes. The zero-frequency dispersionless mode

allows the formation of local zero-energy modes corresponding to changing spin

orientations of select spins in a local area without affecting the total energy.

By adding second and third nearest neighbor interactions J2 and J3, the modes

change according to the relationship between J2 and J3. J2 > J3 gives three non-

degenerate modes, J2 = J3 gives the same result as only having nearest neighbors

and J2 < J3 gives complex frequencies showing that q = 0 is not stable in this
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case. A similar analysis was performed on the
√
3×

√
3 lattice where zero-energy

stable modes were also found.

Other studies on the addition of next NN [27] interactions show that having

even a very small J2 (positive or negative) enables a finite-temperature phase

transition.

1.2.2 3D Kagome Lattice

In the 3D fcc kagome case (see Fig. 1.4), only the q = 0 structure is selected and

two of the three sublattice spins within a plane defined by the eight NN exchange

interactions can be reoriented with no cost in energy [12],[14]. As described in

Chap. 3, much of the degeneracy in 2D carries over into 3D.

Interest in the fcc kagome lattice has been driven not only by it being a unique

realization of this type of frustration in three dimensions but also due to its connec-

tion with magnetic thin-film technology through IrMn3, which is commonly used

as the AF exchange pinning layer in spin valves [28],[29] for magnetic recording.

IrMn3 also serves as a candidate for observing the anomalous Hall effect in zero

magnetic field [30],[31],[32]. It, and sister compounds RhMn3 and PtMn3, have

the fcc CuAu3 crystal structure [33],[34],[35],[36], where, in the ordered phase,

magnetic Mn (manganese) ions reside on the cube faces and the nonmagnetic Ir

(iridium) ions sit at the cube corners. The magnetic ions can thus be viewed as

being on ABC stacked (111) kagome planes, where each site has eight NNs (four

in-plane, two to the plane above, and two to the plane below) as shown in Fig. 1.4.

Bulk IrMn3 was shown experimentally to have long-range magnetic order below a

Néel temperature of TN ≃ 960 K [6], referred to as the “T1” structure, which is the

3D manifestation of the 120◦ q = 0 spin structure [12]. Similar magnetic order is
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also observed in RhMn3 and PtMn3. In thin-film applications, the [111] direction

is perpendicular to the film plane. It is of interest to note that the 3D q = 0

structure remains favored in the presence of 6 ferromagnetic second-NN exchange

interactions, 16 AF third-NN exchange and 12 ferromagnetic fourth-NN exchange

interactions, as calculated for IrMn3 [37] using density functional theory. These

next NN exchange interactions strengths are calculated and also given as being as

strong as 25% of the strength of the NN interactions, which are speculated to play

a minor role in spin wave theory, though they are not considered in the present

work.

Figure 1.4: The fcc kagome lattice with magnetic Mn ions on cube faces forming
stacked 2D kagome layers along the (111) axis. Nonmagnetic Ir ions are at the
corners. The four interlayer exchange interactions (J) are indicated [13].
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1.3 Outline of the Thesis

This chapter provided an overview on the motivation behind this study.

Chap. 2 describes the theoretical, computational and experimental techniques

used in this study of IrMn3. MC methods are reviewed along with how they are

used to study the fcc kagome lattice. An introduction to neutron scattering, used

in later chapters, is also given.

Chap. 3 reviews previous MC simulation results on the fcc kagome lattice us-

ing pure (no anisotropy) Heisenberg and XY models. New MC simulations where

cubic anisotropy is added to the NN Heisenberg fcc AF kagome lattice comprises

the main focus of this chapter. An analytic calculation of the ground state re-

veals an out-of-plane rotation of the sublattice spins driven by the anisotropy as

well as a concomitant net magnetic moment perpendicular to the plane. The ef-

fect of anisotropy in removing certain degeneracies is determined. The impact

of anisotropy on the Néel temperature TN and various thermodynamic properties

is studied. In addition, results from energy histograms and fourth-order Binder

energy cumulants [38] are used to argue that the transition changes from discon-

tinuous to continuous as a consequence of anisotropy reducing spin degeneracies.

Chap. 3 is based on Ref. [13].

Chap. 4, partially based on Ref. [14], describes a theory for elastic neutron

scattering of IrMn3 through analysis of the fcc kagome lattice. An analysis of the

nuclear and magnetic scattering cross sections is included to study the effects of

adding anisotropy to the model, with theoretical results being derived.

Chap. 5, based heavily on Ref. [14], focuses on neutron scattering of IrMn3

through analysis of the fcc kagome lattice. A linear spin wave approach is described

that includes the effect of cubic anisotropy. Also considered is the impact of
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having a coupling strength between kagome lattices different from the one within

the planes (rhombohedral symmetry). Spin wave modes ω(k) are plotted along

with the intensity for elastic and inelastic scattering, relevant for the single-crystal

case. Experimental neutron scattering intensity results on powdered IrMn3 are

also presented and matching theory to these experiments performed at Oak Ridge

National Laboratory (ORNL) is attempted. Discrepancies are noted and possible

explanations are presented.

A discussion on the results and conclusions drawn from them is presented in

Chap. 6. Possibilities for future work are also suggested. Finally, an appendix that

expands on deriving the fundamentals of magnetic neutron scattering and shows

supplementary calculations and data is located in Appendix A.
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Chapter 2

Introduction: Techniques

2.1 Monte Carlo Methods

2.1.1 Introduction to Monte Carlo

The Monte Carlo (MC) method can provide an accurate solution to many types of

problems using a very simple process that relies on random numbers. It is used to

solve a wide variety of problems and done correctly can be an efficient tool, with

applications such calculating integrals or performing simulations. In statistical

mechanics applications, the internal energy and other thermodynamic properties

of a system can be calculated using MC techniques with minimal programming

effort.

2.1.2 Principles of Monte Carlo

In the Boltzmann distribution, which gives the probability of a system being in

a certain microstate based on the system energy and temperature, a system at

equilibrium is in a state a with probability
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pa =
1

Z
e−βEa , (2.1)

where β = 1
kT

with k the Boltzmann constant (1.38x10−23JK−1), T the tempera-

ture, Ea is the internal energy for the state a, and Z is the partition function

Z =
∑

a

e−βEa . (2.2)

In Monte Carlo simulations an algorithm is used that generates a set of random

states with the probability given by the Boltzmann distribution. The algorithm

takes some initial set of states from which a Markov chain, where a new state can

be obtained randomly from a current state without access to all the previous states,

is generated with the transition probability between successive states a → b given

by P (a, b). This probability is made to satisfy ergodicity and detailed balance

to get a good algorithm. The number of steps in the Markov chain required to

equilibrate some set of initial states depends on a number of factors and while

difficult to determine initially can be validated with some measure of confidence

afterwards.

Ergodicity requires that any state of a system must be accessible from any

other state given enough simulation time. There must be a path from any state a

to any other state b, and conversely one from state b to state a.

Detailed balance is best described by an equation

P (a, b)

P (b, a)
=

pb
pa

, (2.3)

where P (a, b) (P (b, a)) is the probability that the system will transition to state

b (a) from state a (b), and the pa and pb are the probabilities of occupation at
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equilibrium. The transition probability P (a, b) involves the selection probability

(probability that the algorithm generates a state b from state a) and the acceptance

ratio (probability that the system changes from state a to state b). When following

the Boltzmann distribution, pa and pb are known and Eq. 2.3 becomes

P (a, b)

P (b, a)
= e−β(∆E), (2.4)

where ∆E ≡ Eb − Ea.

2.1.3 Metropolis Algorithm

As detailed balance does not dictate the transition probability P (a, b) needed, the

choice of algorithm remains, so long as it satisfies ergodicity and detailed balance.

Due to its simplicity and efficiency, the Metropolis-Hastings algorithm is the most

popular algorithm, and is the one used here. It has single-spin flip dynamics, only

considering a single spin at a time.

This algorithm can be summarized as

1. Calculate the energy of the system.

2. Pick a random spin on the lattice.

3. Calculate the energy if the spin is flipped and ∆E, the difference in energy

between this energy and the previous one.

4. If ∆E ≤ 0, the spin is flipped. Otherwise, the next step is followed.

5. Calculate the Boltzmann weight, w = e−β∆E.

6. Generate a random number 0 ≤ r < 1.
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7. If r < w, flip the spin. If not, no change is made.

A Metropolis MC step (MCS) is defined as one sweep of the lattice with the

Metropolis algorithm, picking as many random spins as there are sites in the lat-

tice. The total energy of the system can either be calculated every single step, or

calculated initially and updated iteratively. This can be applied to other quan-

tities of interest, such as the order parameter and the magnetization. As such,

the process of flipping (or not) a single spin can be made to be computationally

efficient. This is very important since, due to the quantity of spins considered,

the application of the algorithm can quickly become a bottleneck in simulations at

large system sizes which reveal information relevant to the thermodynamic limit

(infinite system size).

2.1.4 Thermodynamic Quantities

The fundamental thermodynamic quantities calculated for magnetic lattices in this

work are defined below. The energy associated with nearest-neighbor interactions

is (where scalar Si spins are used for simplicity)

EJ = −J
∑

〈ij〉
SiSj, (2.5)

with J the exchange interaction strength, either positive for a ferromagnet or

negative for an antiferromagnet. A representative order parameter (magnetization)

per spin is defined through

M(T ) =
1

N

〈∣

∣

∣

∣

∣

∑

i

Si

∣

∣

∣

∣

∣

〉

, (2.6)
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where i is summed over all N lattice sites. For IrMn3, this definition is modified,

as seen in Chap. 3. In addition, the magnetic susceptibility per spin is calculated

using:

χ(T ) = βN(〈M(T )2〉 − 〈M(T )〉2), (2.7)

where β = 1/kT and the specific heat per spin is given by

C(T ) =
β2

N
(〈E(T )2〉 − 〈E(T )〉2). (2.8)

In simulations, we define units such that k ≡ 1 to simplify calculations.

2.1.5 First-Order vs Continuous Phase Transitions

When going from one state (phase) to another, a system undergoes a phase transi-

tion. These transitions can be seen in everyday life, such as ice melting into water.

For phases that depend on temperature, TC is defined as the critical temperature

(Curie temperature) where this transition occurs. In magnetic systems, a well

studied phase transition is a ferromagnet, becoming paramagnetic and losing its

magnetism as the temperature is raised. In an antiferromagnet (AF), the phase

transition temperature is denoted as the Néel temperature TN instead.

These phase transitions are separated into two different types, first-order and

continuous (or second and higher order). A first-order transition, such as ice melt-

ing, involves a latent heat where the system absorbs or releases energy at a constant

temperature. Furthermore, there is a discontinuity in the first derivative of the

energy versus thermodynamic variables such as T . A continuous transition, such

as a ferromagnet losing its magnetism, does not have a discontinuity in the first

derivative of the energy (as the name implies) but rather in the second derivative.
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For many systems studied with MC techniques, it is not always straightforward

to determine if a phase transition is first-order or continuous. In simulations,

there is often enough inaccuracies due to simulated systems having finite sizes

and a limited simulation time that does not allow determining the order of the

transition simply by calculating the energy derivatives. Finite-size scaling methods

can be employed in these cases. Two such methods were used in this thesis and in

the previous work [12] on the fcc kagome lattice.

One common method used for studying the order of a phase transition involves

Binder fourth-order cumulants [38]. These can be defined for the energy as

UE = 1− 〈E4〉
3〈E2〉2 , (2.9)

with a similar expression for the magnetization cumulant. While UE is strictly

a theoretical construct, it shows different behaviors for first-order and continuous

phase transitions. From the theory of thermodynamic fluctuations, the energy E

can be described by a probability distribution function PN(E) that is approximated

by a Gaussian and depends on the number of spins N . In a first-order transition,

due to the defining discontinuity in the derivative of the energy, PN(E) consists of a

superposition of two Gaussians. Far from TC , PN(E) in a first-order transition can

be described by a single Gaussian such that for both first-order and continuous

transitions, UE → 2
3
in the thermodynamic limit of N → ∞. Around TC , UE

remains at 2
3
in the thermodynamic limit for a continuous transition, but UE for

first-order transitions is different. As simulations are done for a finite lattice size,

the value of the cumulants around TC are not at their limit values and extrapolation

to large N must be used.

To use the cumulants, UE is calculated at temperatures near TC . It exhibits a
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minimum near TC that depends on the lattice size. By calculating UE for different

values of N near TC , the minimum of UE vs N can be obtained. Plotting this

minimum against 1/N and extrapolating towards 1/N → 0 gives an indication of

the order of the transition. In a continuous phase transition, it will extrapolate to

2
3
[39].

Using the same theory, another technique involves calculating energy histograms

at several temperatures very close to the critical temperature. As the system tra-

verses the critical temperature, indications of discontinuity are revealed by multiple

energy peaks (two phases) if the transition is first-order. If the transition is con-

tinuous, there will only be a single peak observed that evolves smoothly as the

temperature changes around TC [40].

2.2 Neutron Scattering and Spin Waves

2.2.1 Motivation

Whereas MC simulations can provide some important insight into the thermody-

namic behavior of the 3D fcc kagome lattice, it is useful to study other experimental

methods that compliment these results. Magnetic elastic neutron scattering can

be used to determine the magnetic structures, and inelastic scattering is used to

study spin excitations of the equilibrium magnetic order.

A previous study by Tomeno et al. [6] reported on an elastic magnetic neutron

scattering experiment on a single crystal of ordered IrMn3 that established the

q = 0 kagome spin structure. By observing the (100) peak over a wide range

of temperatures, the Néel temperature was estimated to be TN = 960 ± 10 K.

A determination of the lattice parameter a was also possible by analysis of the
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peak locations. In their study, the authors noted that the scattering results might

have had a small but significant influence from the presence of disordered phases

of IrMn3. This disordered form of IrMn3 allows the Ir and Mn ions to randomly

switch position, thus giving an overall fcc lattice structure to the Mn-ion positions.

Both the ordered and the disordered phases have been studied in more detail in

thin-film form [41]. Furthermore, the temperature range studied by Tomeno et al.

did not go below 250 K.

This opened up the possibility of further neutron scattering studies, including

inelastic neutron scattering, going to lower temperatures, and to study any impact

of magnetic anisotropy. Experimental results were obtained through a week-long

visit and collaboration with ORNL in Oak Ridge, Tennessee in May 2012. There,

inelastic studies on IrMn3, with powdered samples provided in collaboration with

other research groups at ORNL, were performed at temperatures from about 5K

up to room temperature. The inelastic intensity data could also be integrated to

give elastic peaks. Further details of the experiment are given in Chap. 5 where

the analysis of the data and a corresponding theory are presented.

2.2.2 Spin Wave Theory

In condensed matter physics, a quantity of great interest is the dispersion relation

giving frequency versus wavenumber, ω(k), which describes how waves propagate

through a medium and the effects of dispersion. It can often be a challenge to

obtain ω(k) and its derivation can differ considerably from one material to another.

Once it is known, an important application is in inelastic magnetic scattering. As

such, calculating ω(k) for the fcc kagome lattice is the focus of Chap. 5, where the

effect of cubic anisotropy is included.
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In magnetic materials, spin waves describe excitations about the equilibrium

magnetic order and can be characterized with the dispersion relation. An equiva-

lent description of the magnetic lattice disturbances is through magnons, quasipar-

ticles that quantize spin waves. In Chap. 5, the goal is to find the spin dispersion

relation ω(k) for the 3D fcc kagome lattice. A number of theories can be utilized,

either classical or quantum, but as S = 5/2 for the magnetic manganese atoms

in IrMn3, quantum effects are negligible and a classical theory is likely sufficient.

Furthermore, for large S and small temperatures (typically well below the critical

temperature), a linear spin wave theory can be applied that provides additional

theoretical simplifications.

An Example Spin Wave Calculation

An example of classical linear spin theory, for a simple 1D antiferromagnet, is

given here [42]. The spin wave theory used for the fcc kagome lattice described in

Chaps. 4-5 follows the basic method described below.

For N spins Sp of magnitude S = 1 in one dimension, coupled with an an-

tiferromagnetic exchange interaction conventionally chosen such that J > 0, the

Heisenberg Hamiltonian is given as

H = J

N
∑

p=1

Sp · Sp+1. (2.10)

Each nearest neighbor (NN) spin p will have a term of the form

JSp · (Sp−1 + Sp+1). (2.11)

From the magnetic torque equation, the time derivative of the angular momen-
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tum ~Sp is equal to the torque (cross product of the magnetic moment with the

magnetic field) which acts on the spin. This then gives

dSp

dt
=

−J

~
(Sp × Sp−1 + Sp × Sp+1). (2.12)

At equilibrium, all the spins point along a single axis (defined here to be z), alter-

nating in direction along the chain. In the linear approximation, only transverse

excitations occur with Sz
p = S such that

dSz
p

dt
= 0. Thus, two equations for x and

y remain. For an antiferromagnet, half the spins can be divided in one sublattice

A with Sz
2p = S ≡ 1 in equilibrium, and the other half into another sublattice B

with Sz
2p+1 = −S ≡ −1.

For sublattice A spins, Eq. 2.12 becomes

dSx
2p

dt
= −(J/~)(−2Sy

2p − Sy
2p−1 − Sy

2p+1), (2.13)

dSy
2p

dt
= (J/~)(−2Sx

2p − Sx
2p−1 − Sx

2p+1). (2.14)

For sublattice B spins, Eq. 2.12 becomes

dSx
2p+1

dt
= −(J/~)(2Sy

2p+1 + Sy
2p + Sy

2p+2), (2.15)

dSy
2p+1

dt
= (J/~)(2Sx

2p+1 + Sx
2p + Sx

2p+2). (2.16)

From these, S+ = Sx + iSy can be used so that

dS+
2p

dt
= −(iJ/~)(2S+

2p + S+
2p−1 + S+

2p+1), (2.17)
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dS+
2p+1

dt
= (iJ/~)(2S+

2p+1 + S+
2p − S+

2p+2). (2.18)

Defining ωc = 2J/~ and looking for solutions of the type S+
2p = uei(2pka−ωt) and

S+
2p+1 = vei(2(p+1)ka−ωt), with p a position variable, gives

ωu =
1

2
ωc(2u+ ve−i(ka) + vei(ka)), (2.19)

−ωv =
1

2
ωc(2v + ue−i(ka) + uei(ka)). (2.20)

To determine ω, the coefficient matrix C of u and v is obtained

C =







ωc − ω ωc cos(ka)

ωc cos(ka) ωc + ω






, (2.21)

with the solution to the secular equation giving

ω = ωc| sin(ka)|. (2.22)

Note that ω ∼ k for small wave vectors and that this classical derivation reproduces

results obtained using quantum techniques (such as Holstein-Primakov [43]) in the

large S limit.

2.2.3 Magnetic Neutron Scattering

Magnetic neutron scattering gives two separate but related types of information.

Inelastic scattering measures neutrons that change energy after colliding with a

material, while in elastic scattering there is no change in energy of the incident

neutron. By analyzing how the neutrons interact with the sample, it is possible
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to study the intensity as a function of k in reciprocal space. Due to the lattice

configuration, different refractions will occur that can be measured for certain

wavevectors k. It is then possible to calculate the relative intensity for different k

and thus compare with experiments.

Another important factor when looking at magnetic neutron scattering is single

crystals compared to powder samples. Single crystals, which can be theorized as an

infinite lattice structure, are highly desirable but not always possible to synthesize

easily. Often, powder samples, where the material is essentially ground up and

made of many smaller crystals, are used and powder diffraction is necessary. A

theoretical analysis that examines these samples is constructed for a single crystal

before doing a powder average.

Elastic Scattering

For elastic scattering, it is important to identify the differential cross section which

is related to the count of neutrons scattered into a solid angle dΩ in the direction

θ, φ. This quantity, dσ
dΩ
, once found gives all the information necessary to know

how neutrons are scattered. In turn, the location in wavevector space and rela-

tive intensity of peaks are obtained. The cross section used in elastic magnetic

scattering is derived in Appendix A and can be written as [44]

dσ

dΩ
= r20

∑

ll′

eiκ·(l−l′)

∣

∣

∣

∣

∣

∑

d

eiκ·de−Wd(κ)
1

2
gd〈Sd〉Fd(κ)

[

κ̂×
(

Ŝd(κ)× κ̂
)]

∣

∣

∣

∣

∣

2

. (2.23)

Each term is defined in Appendix A.2, but important ones are the scattering vector

κ = k− k′, the form factor Fd(κ), the index d of the ion at position d within the

unit cell, and the spin vector S. For a simple ferromagnet with a Bravais lattice,
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the sum over d only has one term, d = 0. Note that for a single domain of spins,

∣

∣

∣

∣

∣

∑

d

κ̂×
(

Ŝd(κ)× κ̂
)

∣

∣

∣

∣

∣

2

= 1− (Ŝ · κ̂)2. (2.24)

Ŝ can also be written as η̂ (direction of the domain). When κ = τ (reciprocal

lattice vector), 1 − (Ŝ · κ̂)2 = 1 − (τ̂ · η̂)2. If there are multiple domains for a

ferromagnet, each with its own orientation, an average over the various orientations

is taken. If η̂ has an equal probability to be in any direction, or if it is equally

likely to be along axes related by cubic symmetry, then 1− (τ̂ · η̂)2av = 2
3
.

An example for a simple AF is given here [45]. In this case, all the spins of the

unit cell are parallel or antiparallel to a single direction η̂ within a domain.

For the AF, there can also be multiple domains and an average over 1−(τ̂ ·η̂)2av
can be used, which does not affect peak locations in k space. The spin is described

as either pointing along +η̂ or −η̂, so an Ising-like variable σd = +1 or −1 is

introduced into Sd to take this into account. Then, from Eq. 2.23 one finds that

dσ

dΩ
= r20N

(2π)3

ν0

∑

τ

δ(κ− τ )

∣

∣

∣

∣

∣

∑

d

σde
iτ ·de−Wd(τ )

1

2
gd〈Sd〉Fd(τ )

∣

∣

∣

∣

∣

2

[1− (τ̂ · η̂)2av].

(2.25)

For the simplest AF, there is only one type of ion d with the only variation between

sites being σd. In such cases, the magnetic unit cell is larger than the chemical

unit cell due to the greater diversity in sites. The cross section can be put in the

following form

dσ

dΩ
= r20N

(2π)3

ν0

∑

τ

δ(κ− τ )e−2W (τ ) |FM(τ )|2 [1− (τ̂ · η̂)2av], (2.26)
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with

FM(τ ) =
∑

d

σde
iτ ·d1

2
gd〈Sd〉Fd(τ ) =

1

2
g〈S〉F (τ )

∑

d

σde
iτ ·d. (2.27)

As such, due to the delta function, peaks are located at κ = τ , for τ corresponding

to the reciprocal lattice vectors for the magnetic lattice (often simple cubic with

a basis); however, the sum over d in FM(τ ) can still cancel peaks.

As a specific example, MnTe2 is reproduced here [44]. The unit cell is fcc

for Mn atoms, spins having twelve NN. Looking at an fcc cube, four sides on a

horizontal plane have spins pointing in the opposite direction of the other eight

spins. Treating the cell as simple cubic with a basis, the four sites of the unit

cell are given by (direction given by “up” or “down” to indicate whether spins

are parallel or antiparallel to the spin direction that lies unspecified in the (001)

planes)

d1 =a (0, 0, 0) up,

d2 =a

(

1

2
,
1

2
, 0

)

up,

d3 =a

(

1

2
, 0,

1

2

)

down,

d4 =a

(

0,
1

2
,
1

2

)

down.

(2.28)

The simple cubic values τ are given by τ = 2π
a
(t1, t2, t3) for ti any integer. The
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interesting part of the structure factor FM(τ ) concerns the sum over d. Indeed,

∑

d

σde
iτ ·d =(+1) + (+1)ei

2π
a
(t1,t2,t3)·a( 1

2
, 1
2
,0)+

(−1)ei
2π
a
(t1,t2,t3)·a( 1

2
,0, 1

2
) + (−1)ei

2π
a
(t1,t2,t3)·a(0, 12 ,

1

2
)

=1 + eiπ(t1+t2) − eiπ(t2+t3) − eiπ(t1+t3).

(2.29)

This means that any reflections associated with fcc (t1, t2 and t3 all even or all

odd) will cause the structure factor to be zero. In fact, the only reflections allowed

are either: a) t1, t2 even, t3 odd b) t1, t2 odd t3 even. So, (111) and (100) are not

allowed but (110) and (001) are.

A further application of Eq. 2.23 is expanded upon in Chap. 4.

Inelastic Scattering

Inelastic magnetic scattering is proportional to the dynamic structure factor

S(κ, ω) =
∑

α,β=x,y,z

Sαβ(κ, ω)(δαβ − κ̂ακ̂β), (2.30)

where Sαβ(κ, ω) is the double Fourier transform of the correlation function

< Sα
i (0)S

β
j (t) > and can be calculated using the spin wave analysis dispersion rela-

tions along with standard Green’s functions techniques [44]. Sαβ(κ, ω) is equal to

the imaginary part of the time Fourier transform of the retarded Green’s function

Gαβ(κ, ω) = −iG(t) < [Sα
κ(t), S

β
−κ(0)] > . (2.31)
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The results for a simple AF are given here. The dynamic structure factor for

creation (+) and annihilation (−) of a single magnon can be expressed as [44]

∑

d=0,1

∑

q,τ

(nq,d+
1

2
± 1

2
)δ(~ωq,d∓~ω)δ(κ∓q−τ )(u2

q+v2q+2uqvq cos(p ·τ )). (2.32)

Here, d corresponds to two separate modes, p is a vector joining NN between

separate sublattices, and nq,d = (e~ωq,dβ − 1)−1. The uq and vq are related to ωq

through (ignoring constants)

uq ∼ 1 + ωq

2ωq

, (2.33)

vq ∼ 1− ωq

2ωq

, (2.34)

uqvq ∼ −γq
2ωq

, (2.35)

with γq ∼ (1− ωq).

Simplifications can be made based on symmetry, as the analysis can be quite

involved. This is illustrated in Chap. 5 for the fcc kagome lattice.
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Chapter 3

Monte Carlo simulations of the

fcc kagome lattice: Competition

between triangular frustration

and cubic anisotropy

The impact of local cubic anisotropy on the magnetic states of the Heisenberg

model on the fcc kagome lattice is examined through classical Monte Carlo sim-

ulations. Previous simulations revealed that the macroscopic degeneracy of the

two-dimensional (2D) kagome exchange-coupled co-planar spin system partially

persists in the 3D case of ABC stacked layers giving rise to a discontinuous phase

transition. Local cubic anisotropy is shown to remove this degeneracy by re-

orienting the spins out of the co-planar configuration. In addition, the re-oriented

states are shown to carry a uniform magnetic moment. Simulation results indicate

that the effect of anisotropy is to transform the first-order phase transition to a
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continuous one.

3.1 Introduction

Szunyogh et al. [37] used symmetry arguments supported by electronic struc-

ture calculations to demonstrate the importance of an effective local-axis cubic

anisotropy term in the spin Hamiltonian for IrMn3 (see Fig. 3.1). Its value is esti-

mated to be about 10% of the NN exchange strength and results in the sublattice

moments being tilted out of a co-planar configuration along the 〈100〉 axes while

the projection of the spins in the (111) plane maintains the 120◦ structure.

In this chapter the effects of adding cubic anisotropy to the NN Heisenberg

fcc kagome lattice AF are studied through a series of extensive MC simulations.

Previous MC results of Heisenberg and XY models on this lattice, that included

only exchange effects, revealed the spin degeneracies in three dimensions with

the suggestion that the discontinuous phase transition is of the order-by-disorder

type [12]. This order-by-disorder phenomenon can be explained by looking at the

ground state degeneracy of classical frustrated AFs [18]. If the degeneracy is not

a consequence of symmetry, ground states with larger entropy and lowest possible

energy can be selected by thermal (or quantum) fluctuations. This can lead to an

otherwise unexpected ordered state. While mean field theory predicts a continuous

phase transition for all AF magnetic transitions at TN , as all terms in the Landau

free energy are even due to time reversal symmetry [46], large thermal fluctuations

due to the ground state degeneracies select the q = 0 configuration for the kagome

lattice which points towards a critical fluctuation driven [47] weakly first-order

transition.

In the present work, an analytic calculation of the ground state reveals an
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out-of-plane rotation of the sublattice spins driven by the anisotropy as well as

a concomitant net magnetic moment perpendicular to the plane. The effect of

anisotropy in removing certain degeneracies is demonstrated and the impact of

anisotropy on the Néel temperature and various thermodynamic properties is stud-

ied. In addition, results from energy histograms and fourth-order cumulants [38]

are used to argue that the transition changes from discontinuous to continuous

as a consequence of anisotropy reducing degeneracies of the ground state spin

configurations.

This chapter is organized as follows. In Sec. 3.2, the Heisenberg model on a 3D

kagome fcc lattice is described. Sec. 3.3 provides previous results [12] for a system

that has no anisotropy. In Sec. 3.4, analytical calculations are presented for the

zero-temperature ground states with anisotropy. In Sec. 3.5, MC simulation results

are shown that describe the effect of the anisotropy on the critical temperature

and analyze the order of the phase transition in comparison to the results of earlier

work without anisotropy. Results are discussed in Sec. 3.6.

3.2 Model

A 3D lattice is considered that consists of L layers of L×L spins per kagome (111)

plane, ABC stacked as shown in Fig. 1.4. MC simulations were performed on this

model for lattice sizes L = 18, 24, 30, and 36 using the Metropolis algorithm.

This method gave satisfactory results even down to the lowest relevant tempera-

tures. Typically between 105 and 107 Monte Carlo steps (MCS) were used with

an initial 10% discard rate for equilibration, determined to be sufficient by ana-

lyzing magnetization vs MCS data and also the smoothness of the magnetization

vs temperature data. The interactions include NN Heisenberg exchange, and the
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effective local cubic anisotropy developed by Szunyogh et al. [37], as described by

the Hamiltonian

H = J
∑

<i,j>

Si · Sj −K
∑

γ

∑

k⊂γ

(Sk · nγ)
2, (3.1)

where i, j are summed over all the N = 3
4
L3 spins of the entire lattice, with a

quarter of the spins being removed due to the geometry of the kagome lattice,

J ≡ 1 is the antiferromagnetic coupling of a spin to its four in-plane and four

out-of-plane NN spins, and K denotes the cubic anisotropy constant. Here, γ

represents sublattice 1, 2, and 3 and k is summed over the N
3

= 1
3
(3
4
L3) spins

of sublattice γ, Si are unit spin vectors at each site, and nγ are unit vectors in

the cube axes directions, n1 = x̂,n2 = ŷ, and n3 = ẑ, as in Fig. 3.1. Electronic

Figure 3.1: Schematic showing a 120◦ ground-state spin structure (blue arrows)
in the cubic (111) plane, along with the local [100] anisotropy axis directions (red
rods). The cube shown has sides of length a/2, where a is the lattice constant of
the fcc unit cell [13].
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structure calculations [37] have been used to estimateK ≈ 0.1 in the case of IrMn3,

however in these series of simulations a range of anisotropy values are considered.

The anisotropy term in Eq. 3.1 represents a simplification of a more general form

derived from ab initio calculations with anisotropic exchange and on-site anistropy

matrices. Symmetry considerations simplify these to an effective anisotropy.

There are two order parameters calculated for this model. The sublattice mag-

netization is defined as

Mt =
1

N

〈

∑

γ

∣

∣

∣

∣

∣

∑

k⊂γ

Sk

∣

∣

∣

∣

∣

〉

. (3.2)

where the angular brackets denote thermal averaging over MC states. A simi-

lar order parameter was also used in the case [12] of K = 0 to characterize the

ground-state spin configuration. With the addition of anisotropy, the ferromag-

netic magnetization vector becomes nonzero and is defined as

Mf =
1

N

∣

∣

∣

∣

∣

〈

∑

i

Si

〉∣

∣

∣

∣

∣

. (3.3)

It is statistically zero for all temperatures when K = 0 and also zero in the

paramagnetic state (T > TN) when K 6= 0. Its zero-temperature value can be

calculated analytically, as shown later in this chapter.

3.3 Previous Simulation Results K = 0

This thesis extends the MC simulations reported in [12], which examined the NN

XY and Heisenberg fcc kagome lattice AFs with no anisotropy. Simulations of

energy histograms and Binder energy cumulants were included to study the order

of the phase transitions. Degeneracies associated with the lattice through cooling,
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heating, and independent temperature MC runs were reported. In cooling (heat-

ing) runs, the system is set to a high (low) temperature and gradually decreased

(increased) while using the previous temperature step spin configuration result as

the initial configuration for the next temperature step. For independent temper-

ature runs, previous spin configurations are not used and a random state is used

at the start of every temperature value. These results are summarized here to

provide a framework for this chapter.

The results of Ref. [12] showed that only the q = 0 spin configuration was

consistent with the eight NN AF exchange interactions. Cooling, heating, and

independent temperature runs were simulated over a wide range of temperature

that covered the Néel temperature TN . Peaks in the specific heat yielded the

estimates TN = 0.760 ± 0.005 for the XY model and TN = 0.476 ± 0.005 for the

Heisenberg model.

The orders of the phase transitions were also examined. The energy versus

temperature data showed that the XY model exhibited a discontinuity near TN

which indicated a first-order phase transition. The order of the phase transition

of the Heisenberg model proved more difficult to determine, but a small gap in

the energy vs temperature plot at large N suggested a weakly first-order transi-

tion. To study this, energy histograms and Binder energy cumulants plots were

generated. The energy histograms showed two distinct peaks for both the XY and

Heisenberg models, the latter reproduced here in Fig. 3.2, near the Néel tempera-

ture, indicative of first-order transitions [38]. A clear separation near TN is seen,

which illustrates a discontinuous jump in the energy. The energy cumulants were

studied at several different lattice sizes in an attempt to extrapolate its behavior

as L → ∞, to verify the histogram results. The cumulants extrapolated to 2
3
in
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This discrete degeneracy can be examined by looking at the effects on the

sublattice magnetizations. By switching a row of spins in 2D or a plane of spins

in 3D, the ground state (T = 0) sublattice magnetizations for L×L or L×L×L

systems can be determined through an analysis of the individual effects of switching

spins. This can be summarized in the following equation

Mη =

√

(

1
4
L3 − 3

2
n
)2

+
(√

3
2
n
)2

3
4
L3

, (3.4)

where η is the sublattice (1, 2 or 3) and n is the number of spins switching. In 2D,

switching occurs in a row of n = L/2 spins, whereas switching a plane in 3D has

n = (L/2)(L/2). In the ideal q = 0 ground state, Mη = 1
3
whereas the maximum

variation comes from switching half the population, n = 1
8
L3, giving Mη =

1
6
. This

degeneracy is removed when anisotropy is added, as shown below.

3.4 Ground State Properties

To analyze the effect of the anisotropy on the ground state spin configuration, it is

convenient to define α as the cosine of the angle between each sublattice spin and

its anisotropy axis α = Si·ni and β the cosine of the angle with respect to the other

anisotropy axes β = Si ·nj, i 6= j. As such, each spin will have direction cosines of

the general form 1 : (±α,±β,±β), 2 : (±β,±α,±β), and 3 : (±β,±β,±α). When

K = 0, this gives specific planar configurations of the Heisenberg spin system’s

continuously degenerate ground states.

With the addition of a finite anisotropy, the continuous degeneracy is removed,

as the spins now have a preferential direction. There are eight possible ground
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states when this anisotropy is added to the system, corresponding to the four

possible (111) planes with two configurations related to spins being lifted out of

either side of each plane. The degeneracies obtained numerically are enumerated

as

±(111) → ± [S1 = (α,−β,−β),S2 = (−β, α,−β),S3 = (−β,−β, α)] ,

±(1̄11) → ± [S1 = (−α,−β,−β),S2 = (β, α,−β),S3 = (β,−β, α)] ,

±(11̄1) → ± [S1 = (α, β,−β),S2 = (−β,−α,−β),S3 = (−β, β, α)] ,

±(111̄) → ± [S1 = (α,−β, β),S2 = (−β, α, β),S3 = (−β,−β,−α)] .

(3.5)

Since each spin is a unit vector,

Si · Si = 1 = α2 + 2β2. (3.6)

The system energy per spin is given by

E =− 4

3
J(S1 · S2 + S2 · S3 + S3 · S1)

− 1

3
K
[

(S1 · n1)
2 + (S2 · n2)

2 + (S3 · n3)
2
]

,

(3.7)

with the energy in the ground state given by

E = 4(β2 − 2αβ)−Kα2. (3.8)

Finding the energy minimum and solving for α gives

α =

√

1/2 + 1/2
√

1− 1/[1 + (K + 2)2/32], (3.9)
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and [from Eq. 3.6]

β =

√

1− α2

2
, (3.10)

using the positive values of the square roots to give physical solutions. When

K = 0, α = 2/
√
6 and β = 1/

√
6 which defines spins in the co-planar 120◦ spin

structure.

For low values of K, an expansion can be obtained which gives an energy

per magnetic site in the ground state of E ≈ −2 − 2K/3. The degeneracy that

corresponded to interchanging sublattice spins in a plane at zero anisotropy will

now have an energy cost of K/(3L), thus removing the degeneracy up to order K.

When K = 0, the spins are in one of many degenerate coplanar ground states

subject to the requirement that the interspin angle on a triangle be 120◦. This

angle can be calculated using

Si · Sj = β2 − 2αβ, (3.11)

for any i 6= j with the analysis above for finite K. The results in Fig. 3.4 show

how the addition of anisotropy modifies the 120◦ spin configuration. In the limit

of very large K, the angle between spins reaches 90◦ where the spins are no longer

in the (111) plane and are pointing along the anisotropy (cube axes) directions.

For any nonzero anisotropy the spins are no longer coplanar and have a net

moment directed out of the (111) plane, given by

M f = S1 + S2 + S3

= [±(α− 2β),±(α− 2β),±(α− 2β)],

(3.12)
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with its norm equal to (α − 2β)/
√
3. The magnetization as a function of K is

shown in Fig. 3.4, where in the limit of large K, M → 1√
3
.
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Figure 3.4: Interspin angle and magnetic moment at zero temperature vs
anisotropy strength [13].

3.5 Simulation Results

MC simulation results for the K = 0 Heisenberg model on the fcc kagome lattice

[12] demonstrated the onset of long-range q = 0 spin order at TN = 0.476J .

Degeneracies were evident by examining the total order parameter Mt in cooling

runs, where complete saturation,Mt → 1 at T = 0, does not occur due to sublattice

spin switching, as seen in Fig. 3.3.

Figure 3.5 shows results for the total order parameter Mt as a function of

temperature in cooling runs for values of K between 0 and 0.06 for L = 24. At

K = 0.03, 0.05, and 0.06, the system fully saturates, indicating that it has relaxed
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to a ground state spin configuration in the limit T → 0; however, for K = 0.01

and 0.04 the order parameter Mt does not saturate in the limit T → 0 indicating

that the system has locked into a low energy spin configuration that includes one

or more defect. The particular low energy spin configuration that the system locks

into upon cooling below TN is largely random and the impact of K on reducing

the degeneracy is dependent upon its value relative to thermal fluctuations as

well as the system size and number of MCSs. For K larger than ≈ 0.06, this

is no longer the case (for the set of simulation conditions used in this example)

and the sublattice magnetization order parameter always tends toward unity as

T = 0 is approached. This result, together with the analysis of the ground state, is

suggestive that any nonzero value ofK eliminates the degeneracy that is associated

with the NN Heisenberg model on a kagome lattice.
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Figure 3.5: Sublattice magnetization order parameter vs temperature for small
values of K from simulations with L = 24 [13].
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The impact of anisotropy on the transition temperature TN can be estimated

through the location of the specific-heat peak, as shown in Fig. 3.6 for K = 0, 0.1,

0.5, 1, 5, and 10 taken from the same cooling runs as the magnetization. Horizontal

error bars are not shown, but are quite small, on the order of T = 0.01 for low

values of K and TN . Higher values of TN have a higher uncertainty, on the order

of T = 0.03 and would require better simulations for more accurate results. Note

that for large K the system acts primarily under the influence of the single-site

axial anisotropy. In this case, a broad maximum in the specific heat is expected

[48] at T ≈ K/6 due to the onset of short-range correlations well above TN . Such

a maximum is seen in the inset of Fig. 3.6 for K = 10 around T ≈ 1.67 as a lower

peak than the sharp TN peak.
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Figure 3.6: Specific heat vs temperature used to locate TN for the values of K
indicated from simulations with L = 24. Inset shows results for K = 10 and the
expected lower broad peak at T ≈ K/6 ≈ 1.67 due to short-range order [13].
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Figure 3.7 summarizes the results of estimating TN from simulations of the

specific heat for a wide range of K values. For small and moderate values of K

it is seen that TN increases to a maximum of about 0.9J at K ≈ 5, followed

by a monotonic decrease up to the largest anisotropy value (K = 50) examined.

In the limit of infinite anisotropy, all NN spins are perpendicular to each other

and the interspin exchange interaction would thus be reduced to zero, eliminating

long-range order.
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Figure 3.7: Néel temperature TN vs the anisotropy strength K estimated from the
specific-heat peaks from simulations with L = 24 [13].
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Figure 3.8 shows the total magnetization Mf vs temperature at K = 0, 0.1, and

0.5. In the absence of anisotropy, the simulated Mf is zero for all T , as expected

from the ground-state calculations. Its temperature dependence for the nonzero

values of K is similar to the order parameter results of Fig. 3.5, although much

smaller. The values of Mf extrapolated from these data at T = 0 agree with those

expected from the analytic analysis of Sec. 3.4.
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Figure 3.8: Simulation results with L = 24 for the ferromagnetic magnetization vs
temperature for the values of K indicated [13].
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In the absence of anisotropy, the Heisenberg fcc kagome lattice has a phase

transition that appears to be weakly first-order as deduced from MC simulations.

Evidence in support of these ideas was found in MC simulation results of energy

histograms and the Binder energy cumulant [12], as shown in Fig. 3.2. The addition

of anisotropy removes the usual kagome-type degeneracies and it is believed that

this leads to a continuous transition, as would occur within mean-field theory.

To verify this, energy histograms and cumulants were calculated for a number

of different values of K. Figure 3.9 shows the results for the energy histograms

near the corresponding critical temperatures (determined by the specific-heat peak

locations) for K = 0.1 and K = 5. In contrast with the previous MC results for

K = 0, a double-peak structure is not observed in the present cases indicative of

a continuous phase transition.
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L = 36 from simulations using L = 24 [13].
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The energy cumulant, defined by UE = 1−〈E4〉/3〈E2〉2, was examined in Ref.

[12] for K = 0 but provided inconclusive support for a first-order transition [38].

In the present work, this case is studied again along with an analysis of cumulant

results at K = 0.1, 0.5, and 1 for lattice sizes L = 18, 24, 30, and 36. Simulations

were performed at temperatures close to TN(L) estimated from specific-heat peaks

using 106 MCS. Figure 3.10 shows example data for the cases K = 0 and K = 0.1.

The value of the minimum for each curve was estimated and clearly will depend

on the temperature interval examined. Data collected for the study presented in

Ref. [12] were at a relatively large interval of ∆T = 0.001 whereas a smaller value

of 0.0002 was used in the present work allowing for a more accurate estimate of

the minimum.
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T = TN(L) estimated from the specific-heat peaks for the values of L indicated
[13].
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Figure 3.11 shows the best estimation of the minimum vs 1/N where N is the

number of magnetic lattice sites (N = 3
4
L3) for K = 0, 0.1, 0.5, and 1. In the

case of a continuous transition, the minimum should extrapolate to 2/3 in the

thermodynamic limit [38]. The data seem to show a distinction in the trend of the

finite-size scaling between the results for finite K, which appear to be consistent

with the 2/3 limit, and the K = 0 case, in support of the notion that nonzero

anisotropy drives the transition to be continuous.
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Figure 3.11: Estimated cumulant minimum vs 1/N from the results of Figure 3.10.
The broken line shows behavior expected of a model continuous transition [13].

3.6 Summary and Conclusions

The extensive Monte Carlo simulations analyzed in this work have demonstrated

the importance of cubic anisotropy on the ABC stacked kagome lattice of magnetic
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dipoles, relevant for fcc IrMn3 and related compounds. An expression for the eight

possible degenerate ground states is obtained at T = 0, allowing for an analytic

description of the interspin angle showing an increasing deviation from 120◦ with

increasing K. As a result of anisotropy, the spins develop a nonzero ferromagnetic

moment along the [111] direction. Simulations show that the Néel temperature

increases nonlinearly as the anisotropy strength is increased until a maximum at

K ≈ 5 when it begins to overwhelm the exchange interaction. The transition

temperature then decreases for larger K, approaching zero in the limit of infinite

anisotropy.

It is argued that the large spin degeneracy of the pure isotropic Heisenberg

model is removed with the addition of cubic anisotropy and that the phase tran-

sition to long-range q = 0, local 120◦, magnetic order changes from first-order [12]

to continuous. Evidence to support this conjecture comes from simulation data on

the energy histograms near TN , which show a double peak at K = 0 and a single

peak at K 6= 0. Analysis of the Binder energy cumulants is also consistent with

this conclusion. It is speculated that the spin degeneracy of the pure Heisenberg

model for this lattice leads to a first-order transition driven by critical fluctuations.

An analysis of the spin-wave modes in the 3D pure Heisenberg system show the

presence of a zero-energy mode (for wave vectors along certain directions) which

develops a finite energy of order K as anisotropy is added, as explored in Chap. 5.

It is anticipated that finite-temperature fluctuations remove the degeneracy asso-

ciated with this K = 0 mode. A somewhat analogous effect has been shown to

occur in the pyrochlore antiferromagnet Er2Ti2O7 which involves a partial removal

of the infinite ground-state degeneracy due to the addition of exchange anisotropy

[49],[50],[51].
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The development of a finite magnetic moment along the [111] direction as a

consequence of anisotropy and the expected in-plane canting of the spins on the

top layer of the antiferromagnet in the presence of a ferromagnetic layer [11] are

expected to be important to describe the exchange bias seen in IrMn3.
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Chapter 4

Magnetic Elastic Scattering

Considered here are the effects of anisotropy on magnetic elastic scattering in the

fcc kagome lattice, with a focus on IrMn3. Appendix A.2 explains some of the more

fundamental concepts necessary to understand the theory. Both Appendix A.2 and

this chapter serve to expand upon the brief introduction given in Chap. 2 (also see

Ref. [44]).

4.1 Nuclear cross section

To study the effects of magnetic elastic scattering, it is important to know the

form of both the nuclear and magnetic cross sections. The nuclear cross section

can be written as

(

dσ

dΩ

)

nuc,coh,el

= N
(2π)3

ν0

∑

τ

δ(κ− τ ) |FN(κ)|2 , (4.1)
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and involves the nuclear structure factor

FN(κ) =
∑

d

b̄de
iκ·de−Wd , (4.2)

with κ = k−k′, bd the scattering length for atom d. The Debye-Waller factor Wd,

often called temperature factor, is specific to each atom and is often approximated

to be the same for all the atoms and is often ignored. This allows the nuclear

structure factor of IrMn3 to be written, without the temperature factor, as

FN(κ) =
[

bIr + bMn((−1)h+k + (−1)h+l + (−1)k+l)
]

, (4.3)

with the relevant scattering lengths bIr = 10.6×10−13 cm and bMn = −3.73×10−13

cm [6]. Here, as in a typical fcc crystal, the atoms in the basis are such that

there is an Ir atom at the origin with three Mn neighbor atoms at face centers.

If h = k = l or they are all even or all odd, there is an almost exact accidental

cancellation of the structure factor due to bIr + 3bMn being almost zero. This is

an unusual and unfortunate feature of IrMn3. The difference between (bIr − bMn)
2

and (bIr + 3bMn)
2 is almost a factor of 600. This makes it difficult to differentiate

magnetic and nuclear peaks as there are forbidden magnetic peaks for the same κ

that give a nearly zero nuclear peak, as is shown below. There is also the possibility

of the IrMn3 containing a significant proportion of a disordered phase. In such a

phase, the manganese and iridium do not align in a Cu3Au-type structure with

the magnetic ions at face centers. Experimentally, it is difficult to create a sample

with no disordered phase. If there is a significant presence of this disordered phase,

the (111) and (200) peak locations will be slightly altered given that the lattice

parameter a for IrMn3 is larger in the disordered phase, as it does not possess the
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same magnetic structure as the ordered phase [6].

4.2 Magnetic form factor

For the magnetic cross section, an expression for the magnetic form factor is

needed. In the usual dipole, or spherical, approximation this is given by [52],[53]

F (s) = Ae−as2 +Be−bs2 + Ce−cs2 +D, (4.4)

where s = |q|/4π. This function approaches zero at s & 1Å−1 and is negligible for

|q| & 4πÅ−1.

The values of the dimensionless [54] constants depend on the oxidation state

of Mn, as indicated in Table 4.1.

State A a B b C c D
Mn0 0.2438 24.9629 0.1472 15.6728 0.6189 6.5403 -0.0105
Mn1 -0.0138 0.4214 0.4231 24.6680 0.5905 6.6545 -0.0010
Mn2 0.4220 17.6840 0.5948 6.0050 0.0043 -0.6090 -0.0219
Mn3 0.4198 14.2829 0.6054 5.4689 0.9241 -0.0088 -0.9498
Mn4 0.3760 12.5661 0.6602 5.1329 -0.0372 0.5630 0.0011

Table 4.1: Dimensionless Mn constants for different oxidation states as used in the
magnetic form factor [53].

Thus far the local Heisenberg exchange model has been adequate in describ-

ing the observed equilibrium spin structure. As Mn is a transition metal, a more

precise model would take into account the itinerant nature of the electrons which

could give a better clue on the correct oxidation state. Despite the significant vari-

ation in constants for the different oxidation states, differences in F as a function

of the oxidation state are small, as shown in Fig. 4.1.

The wavevector in Fig. 4.1 is |q| (or κ) as used in the experiments and is
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Figure 4.1: Magnetic form factor vs wavevector for different oxidation states of
Mn (from Eq. 4.4).

calculated through |q| = 2π
a

√
h2 + k2 + l2, with a the lattice constant estimated to

be around 3.75− 3.77 at low temperatures [6]. Based on this figure, the oxidation

state of Mn does not have a large impact on the form factor.

4.3 Magnetic cross section

The factors involved in the scattering cross section which allows a determination

of the relative peak heights and positions for different scattering vectors can be

calculated for the fcc kagome lattice. The following simplified analysis assumes

K = 0 (zero anisotropy) for one ground state (single domain) as it is possible to

obtain a simple analytical result. From Eqs. A.15, A.16 and A.20, the magnetic
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cross section can be written

dσ

dΩ
= r20N

(2π)3

ν0

∑

τ

δ(κ− τ )e−2W (τ )

(

1

2
gF (τ )

)2

〈S〉2I(τ ), (4.5)

with I(τ ) given by

I(τ ) =
∑

αβ

∑

dd′

Ŝα
d′Ŝ

β
d e

iτ ·(d−d′)(δαβ − τ̂ατ̂β). (4.6)

This takes into account that all magnetic unit cells are the same size and each

sublattice spin has the same orientation within its unit cell for all Mn ions, each

having the same average value of the spin 〈Sd〉. Both double sums give rise to

3× 3 terms for a total of 9× 9 = 81 terms. While I depends on reciprocal lattice

vectors τ , the previous equation and the following development focuses on κ, with

the knowledge that peaks appear when κ = τ = 2π
a
(t1, t2, t3) (a being the cubic

lattice constant) for the simple cubic symmetry with t1, t2, and t3 any integer, as

the fcc system is treated as simple cubic with a basis.

In the q = 0 ground state spin structure as described in Chap. 3, the system

has a magnetic unit cell (equal to the cubic crystal unit cell) of three spins such

that there are three sublattices. The spin orientations for the three sublattices are

chosen as

ŜA =

(

− 1√
6
,− 1√

6
,

√

2

3

)

, (4.7)

ŜB =

(

− 1√
6
,

√

2

3
,− 1√

6

)

, (4.8)

ŜC =

(

√

2

3
,− 1√

6
,− 1√

6

)

. (4.9)
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with their position vectors being

dA = a

(

1

2
,
1

2
, 0

)

dB = a

(

1

2
, 0,

1

2

)

dC = a

(

0,
1

2
,
1

2

)

. (4.10)

Using these results and

Dx = dA − dB = −(dB − dA) = a

(

0,
1

2
,−1

2

)

Dy = dA − dC = −(dC − dA) = a

(

1

2
, 0,−1

2

)

Dz = dB − dC = −(dC − dB) = a

(

1

2
,−1

2
, 0

)

(4.11)

in Eq. 4.6 yields

I(κ) =
1

3

∑

α

[

(1− κ̂2
α) [3 + cos (κ ·Dα)− 2 cos (κ ·Dα′)− 2 cos (κ ·Dα′′)]

− κ̂ακ̂α′ [5 cos (κ ·Dα′′)− cos (κ ·Dα′)− cos (κ ·Dα)− 3]

]

,

(4.12)

where α = x, y, and z. Here, α′ and α′′ are defined such that x′ = y, x′′ = z,

y′ = z, y′′ = x, z′ = x, and z′′ = y.

If κ = (k, k, k), it is straightforward to show that I = 0. As such, there are no

(111), (222), etc. reflections. It can also be determined that I = 0 if h, k, and l

are all simultaneously even or all odd, as in an fcc crystal. If those condition are

not met, I > 0 and there are reflections when κ = τ , for simple cubic rules ((hkl)

with any integer h, k, and l).

The peak heights depend on I times the magnetic form factor squared. To give

an idea of how it varies with κ, the form factor for Mn0 (as the oxidation state has
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minimal impact on the form factor, another state could also have been chosen) is

used and the results are shown in Tab. 4.2. There is no peak for h, k, l all odd or

all even.

h k l I × |F (|q|)|2Mn0

1 0 0 1.140
1 1 0 1.961
1 1 1 0
2 0 0 0
2 1 0 1.920
2 1 1 1.492
2 2 0 0
3 0 0 0.381
2 2 1 1.059
3 1 0 0.743
3 1 1 0
2 2 2 0
3 2 0 0.567

Table 4.2: Relative magnetic peak heights from Eq. 4.4, Tab. 4.1 and Eq. 4.12.

For Bravais systems, the ratio of the magnetic and nuclear cross sections
(

dσ
dΩ

)

mag,el
/
(

dσ
dΩ

)

nuc,coh,el
is simple. The fcc kagome lattice is not a Bravais system,

but the Debye-Waller factor can be approximated as if for a single ion (which uses

a mean atomic mass), giving

(

dσ

dΩ

)

mag,el

/

(

dσ

dΩ

)

nuc,coh,el

=
1

|FN(κ)|2
r20〈S〉2|F (|q|)|2I, (4.13)

with FN(κ) the nuclear cross section showed earlier. In this, 〈S〉 at T = 0 is

around 0.4 for Mn. Eq. 4.13 has a very similar form to what is shown in Tab. 4.2

and indeed would give the same results multiplied by a constant as the nuclear

peaks are always the same if h, k, and l are not either all even or all odd (magnetic

peaks). In their report, Tomeno et al. [6] found enough evidence to classify IrMn3
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as having the q = 0 structure based on the location of observed peaks as described

here.

When looking at the effects of anisotropy, a similar analysis can be followed,

where a different set of spins S̃ are used in Eq. 4.6. These ground spins change

when anisotropy is added, as described in Eq. 3.5, which adds a dependence on the

strength of K through α and β. Multiplying the new I by the form factor squared,

summing over possible permutations of h, k, and l and applying a distribution

around the peak centers is then carried out numerically to obtain Fig. 4.2, showing

the peak height difference for different values of K (0 and 5J in the figure). Since

the expected experimental value of K is only around 0.1J , the effect of anisotropy

on the elastic scattering is not pronounced. The impact ofK on inelastic scattering

is examined in detail in the following chapter.

For zero anisotropy, the spins have a 120◦ structure and lie in the (111) plane,

but for K > 0 the spins are non-planar each with a component along the [111]

direction leading to a non-zero magnetization. The value of I(h, k, l) depends on

the direction of ~κ with respect to the [111] direction. For zero anisotropy, there

are no contributions from h, k, l all even or all odd whereas for K > 0 these terms

become non-zero and are proportional to the magnetization squared. However,

these additional peaks are very small compared to the principal peaks. The results

for K/J = 0.1 were calculated, but showed especially small differences. Fig. 4.2

shows the elastic scattering intensity vs wavevector κ for K/J = 0 and K/J = 5

using values of the form factor for Mn ions. These results would be appropriate for

a powder sample as all marked peaks correspond to a summation of the multiplicity

for a given h, k, and l. A more promising signature of anisotropy in IrMn3 may

be through inelastic magnetic scattering.
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Figure 4.2: Elastic scattering showing several peaks forK/J = 0, 5 and J = J ′ = 1.
The intensity of the peaks is plotted vs the wavevector κ, focusing on the locations
of the peaks. The peaks at 111, 200, and 220 are unique to K > 0 [14].
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Chapter 5

Spin Waves and Inelastic

Magnetic Scattering in the

Anisotropic fcc Kagome

Antiferromagnet

5.1 Introduction

Classical spin wave calculations demonstrate that the macroscopic continuous de-

generacy associated with the two-dimensional kagome Heisenberg spin lattice per-

sists in the case of the stacked fcc structure giving rise to zero energy modes in

three dimensions. The addition of an effective local cubic anisotropy is shown

to remove this continuous degeneracy and introduce a gap in the spectrum as

well as modify the inelastic scattering function S(κ, ω). This scenario supports

earlier Monte Carlo simulations which indicate that the phase transition to long
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range q = 0 magnetic order is driven to be discontinuous by critical fluctuations

associated with the large degeneracy in the absence of anisotropy, but becomes

continuous with the addition of anisotropy. The results are relevant to Ir-Mn al-

loys which are widely used in the magnetic storage industry in thin film form as

the antiferromagnetic pinning layer in spin-valve structures.

Evidence for zero-energy spin wave modes through inelastic neutron scattering

experiments has been reported in a system with weakly coupled kagome layers [24]

(more exotic ground states have also been predicted to occur in the 2D kagome spin

lattice when quantum effects are important [55]). Zero-energy (classical) modes

also occur in the stacked triangular lattice antiferromagnet where the inter-layer

exchange coupling J ′ differs from the intra-layer interaction J (a model of the

magnetism in solid oxygen) [56],[57],[58]. In this case of rhombohedral symmetry,

the degeneracy is associated with ground state helimagnetism, where the spins

are arranged in a helical pattern, and occurs if |J ′| < 3|J |. For this system,

degenerate modes occur along lines in reciprocal space that are dependent on

the value of J ′. Similar macroscopic degeneracies are found in spin ice materials

[20],[21],[51],[59],[50] and can often be lifted by thermal or quantum fluctuations

through the mechanism of order-by-disorder in which states are selected from the

ground state manifold by entropic forces [22],[23]. Such degeneracies can also be

removed with the addition of further neighbor interactions or magnetic anisotropies

[24],[25],[56],[57].

In this chapter, the sublattice numbering uses an ABC nomenclature as op-

posed to 1, 2 and 3 from Chap. 3 as shown in Fig. 5.1. The Hamiltonian from

Eq. 3.1 is adapted to include J ′ when considering interactions between different
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Figure 5.1: (a) The fcc lattice is divided into four cubic sublattices, each with
lattice constant a and labeled as A,B,C, and D. The D sites (spheres) are non-
magnetic whereas the remaining three sublattices (arrows) are magnetic. (b) The
A,B, and C sites form a set of kagome lattices stacked along the (111) direction.
Figure from Ref. [14], adapted from Ref. [6].

planes as

H = J
∑

i<j

Si · Sj + J ′
∑

i<j

Si · Sj −K
∑

γ

∑

l⊂γ

(Sl ·n̂γ)
2, (5.1)

where J ′ is used here to show the transition from the 2D J ′ = 0 kagome lattice to

the 3D J ′ = J fcc case as explored in Sec. 5.3.
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5.2 Spin Wave Theory

This section is based on notes from Prof. B. Southern (Univ. of Manitoba).

In order to study the linearized spin wave excitations, a single domain in which

the net magnetization is along the [111] direction is considered. The spins Si on

each sublattice are transformed to local spin coordinates S̃i such that S̃z
i = 1 in

the ground state. Plane wave solutions involving the transverse spin components

S̃i = S̃ei(k·ri−ωt) are desired. The linearized equations for the six transverse spin

amplitudes can be obtained through the standard torque equation [60, 61] or other

techniques [62] (see Chap. 2)

dS

dt
= (S ×Heff), (5.2)

where Heff = −∂E
∂S

is the field. Linearization of the torque equations with respect

to this equation is required. One can also use the quantum equation of motion for

the spin operators

i~
dS

dt
= [S,H], (5.3)

where H is the Hamiltonian and [,] is a commutator. The spin components satisfy

[Sα, Sβ] = ǫαβγδγi~.

The simplest approach is to first transform the Hamiltonian from a crystal

coordinate system to local spin coordinates S̃i using rotation matrices based on the

q = 0 spin structure. These rotation matrices are derived for each sublattice [15].
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Writing the sublattice spin vectors as column vectors,

SA =













√
2β 0 α

α/
√
2 −1/

√
2 −β

α/
√
2 1/

√
2 −β













S̃A = MAS̃A, (5.4)

SB =













α
√
2 1/

√
2 −β

√
2β 0 α

α/
√
2 −1/

√
2 −β













S̃B = MBS̃B, (5.5)

SC =













α/
√
2 −1/

√
2 −β

α/
√
2 1/

√
2 −β

√
2β 0 α













S̃C = MCS̃C . (5.6)

Here, SABC are the spin coordinates in the reference frame of the crystal while

S̃ABC are the local spin coordinates. These transformations preserve the spin

length and the commutation relations.

In the crystal axes, the Hamiltonian can be expanded as

H = J
∑

i<j

Si · Sj + J ′
∑

i<j

Si · Sj −K
∑

γ

∑

l⊂γ

(Sl ·n̂γ)
2

= J
∑

i<j

[(SA
i · SB

j ) + (SB
i · SC

j ) + (SC
i · SA

j )]

+ J ′
∑

l<m

[(SA
l · SB

m) + (SB
l · SC

m) + (SC
l · SA

m)]

−K
∑

i

[(SiA ·n̂A)
2 + (SiB ·n̂B) + (SiC ·n̂C)].

(5.7)

To transform the scalar product SA · SB to local coordinates requires writing SA
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as a row vector and SB as a column vector

SA = MAS̃A, (5.8)

ST
A = S̃

T

AM
T
A, (5.9)

where T indicates transpose. Furthermore,

ST
A · SB = S̃

T

AM
T
AMBS̃B

= ST
AΛABS̃B,

(5.10)

where

ΛAB =













2αβ + α2

2
β − α/2 α2−2β2−βα√

2

−β + α
2

−1
2

−α+β√
2

α2−2β2−αβ√
2

α+β√
2

β2 − 2αβ













. (5.11)

A similar process is used for the other sublattice interactions and finds ΛCA =

ΛBC = ΛAB = Λ.

In addition,

−KS2
Ax = −KST

A













1 0 0

0 0 0

0 0 0













SA

= −KS̃
T

AM
T
A













1 0 0

0 0 0

0 0 0













MAS̃A

= −KS̃
T

AWS̃A,

(5.12)
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where

W =













2β2 0
√
2βα

0 0 0
√
2βα 0 α2













. (5.13)

Similarly,

−KS2
By = −KS̃

T

BWS̃B, (5.14)

−KS2
Cy = −KS̃

T

CWS̃C . (5.15)

Hence, in local coordinates, the Hamiltonian is

H = J
∑

i<j

S̃
T

i ΛS̃j + J ′
∑

i<j

S̃
T

i ΛS̃j −K
∑

i

S̃
T

i WS̃i. (5.16)

The equation of motion for S̃A
ix becomes

i~S̃A
ix

dt
= [S̃A

ix,H] = i~J
∑

j













(0, S̃A
iz,−S̃A

iy)Λ













S̃B
jx

S̃B
jy

S̃B
jz













+ (S̃C
jx, S̃

C
jy, S̃

C
jz)Λ













0

S̃A
iz

−S̃A
iy

























+ same terms for J ′

− i~K













(0, S̃A
iz,−S̃A

iy)W













S̃A
ix

S̃A
iy

S̃A
iz













+ (S̃A
ix, S̃

A
iy, S̃

A
iz)W













0

S̃A
iz

−S̃A
iy

























.

(5.17)
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Retaining terms linear in S̃x, S̃y and replacing S̃z by 1,

dS̃A
ix

dt
= J

∑

j

[

(
α

2
− β)S̃B

jx −
1

2
S̃B
jy − (β2 − 2αβ)S̃A

iy

+ (β − α

2
)S̃C

jx −
1

2
S̃C
jy − (β2 − 2αβ)S̃A

iy

]

+ same terms for J ′

+Kα2S̃A
iy +Kα2S̃A

iy.

(5.18)

Now letting S̃i =
∑

q S̃qe
iq·ri on each sublattice,

dS̃A
qx

dt
= (

α

2
− β)λABS̃

B
qx −

1

2
λABS̃

B
qy − 4(β2 − 2αβ)(J + J ′)S̃A

qy

+ (β − α

2
)λACS̃

C
qx −

1

2
λACS̃

C
qy + 2Kα2S̃A

qy

= −YABS̃
B
qx − ZABS̃

B
qy + YACS̃

C
qx − ZACS̃

C
qy −XS̃A

qy,

(5.19)

and so on for the other spin components. Eq. 5.19 combined with the similar

equation for y and the ones for x and y on sites B and C give a system of linear

equations which may be integrated to obtain S̃
A
(t),S̃

B
(t) and S̃

C
(t). Assuming

solutions of the form S̃(t) = S̃eiωt, the following eigenvalue equation in the form

of a 6x6 matrix Γ for the allowed frequencies is obtained

67



−iω

































S̃x
A

S̃x
B

S̃x
C

S̃y
A

S̃y
B

S̃y
C

































=

































0 YAB −YAC X ZAB ZAC

−YAB 0 YBC ZAB X ZBC

YAC −YBC 0 ZAC ZBC X

W TAB TAC 0 YAB −YAC

TAB W TBC −YAB 0 YBC

TAC TBC W YAC −YBC 0

































































S̃x
A

S̃x
B

S̃x
C

S̃y
A

S̃y
B

S̃y
C

































,

(5.20)

where

X = 4(J + J ′)(β − 2α)β − 2Kα2

W = 4(J + J ′)(2α− β)β + 2K(α2 − 2β2)

Yij = (β − α/2)λij

Zij = λij/2

Tij = (2αβ + α2/2)λij,

(5.21)

and

λAB = 2J cos
(

(kx − ky)
a

2

)

+ 2J ′ cos
(

(kx + ky)
a

2

)

λBC = 2J cos
(

(kx − kz)
a

2

)

+ 2J ′ cos
(

(kx + kz)
a

2

)

λAC = 2J cos
(

(ky − kz)
a

2

)

+ 2J ′ cos
(

(ky + kz)
a

2

)

.

(5.22)

The wavevector components kx, ky, kz are defined with respect to the cubic axes

with lattice constant a. The linearized equations yield six real eigenvalues±ω1,±ω2,±ω3,

although it should be noted that the corresponding eigenvectors associated with

each pair ±ωn, while linearly independent, are not orthogonal. While in the gen-
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eral case the eigenvalues and the corresponding eigenvectors must be obtained

numerically, analytical results can be determined in special cases.

Note that this matrix has a sign difference from that given in Ref. [14] due to

a lack of minus sign in the torque equation, but it does not change the value of

pairs of ±ω.

5.3 Spin Wave Analysis

5.3.1 Zero Anisotropy

For K = 0, the ground state is the (111) planar spin configuration with the three

sublattices oriented at 1200 with respect to each other. In this case the problem

can be reduced to finding the eigenvalues ω2 of a 3× 3 symmetric matrix













A1 B1 B2

B1 A2 B3

B2 B3 A3













, (5.23)

where

A1 =4(J + J ′)2 − (λ2
AB + λ2

AC)/2

A2 =4(J + J ′)2 − (λ2
AB + λ2

BC)/2

A3 =4(J + J ′)2 − (λ2
AC + λ2

BC)/2

B1 =(J + J ′)λAB − λACλBC/2

B2 =(J + J ′)λAC − λABλBC/2

B3 =(J + J ′)λBC − λABλAC/2.

(5.24)
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If the interplane coupling J ′ is also zero (the 2D case), the λij satisfy the

following relation for arbitrary values of the wavevector k

λ2
AB + λ2

BC + λ2
AC = 4J2 + λABλBCλAC/J. (5.25)

The characteristic cubic equation has a zero eigenvalue for all k and the remaining

two eigenvalues are degenerate and given by the following expressions

ω1 = 0

ω2,3 =
√
2J{sin[(kx − ky)a/2]

2 + sin[(kx − kz)a/2]
2

+ sin[(ky − kz)a/2]
2}1/2,

(5.26)

where the wavevector components kx, ky, kz are defined with respect to the cubic

axes with lattice constant a. These expressions agree with previous results [15] for

the 2D NN q = 0 kagome spin lattice when a =
√
2 (corresponding to a NN distance

of unity). The dispersionless mode is related to the local rotations of the spins

from one ground state to another. Note that for kx = ky = kz all three modes are

dispersionless. The latter case corresponds to the fact that the decoupled kagome

planes can have arbitrary uniform rotations with respect to one another. For k

along one of the cube axes, Eq. 5.26 reduces to ω2 = ω3 = 2J | sin(ka/2)|.

When the interplane interaction J ′ > 0, the cubic characteristic equation again

factors if any two of the λij are equal, such as when ky = kz. In this particular

case, A1 = A3 and B1 = B3 and the eigenvalues are

ω2
1 = A1 − B2

ω2
2,3 =

A1 + A2 +B2

2
±
√

(A1 − A2 +B2)2 + 8B2
1

2
. (5.27)
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Similar expressions can be obtained for kx = ky or kx = kz. In general, all three

modes are dispersive and non-degenerate when J ′ > 0. However, there are two

special cases where degeneracy occurs and where zero frequency modes are present.

For kx = ky = kz, analysis shows that

ω2
1 = ω2

3 = [1− cos(kxa)][4J
′2 + 6JJ ′ + 2J ′2 cos(kxa)]

ω2
2 = [1− cos(kxa)][4J

′2 + 12JJ ′ + 8J ′2 cos(kxa)].

(5.28)

All three modes are dispersive due to the coupling between kagome planes and

two are degenerate. However, note that ω2 becomes zero at the zone boundary

kx = π/a when J ′ = 3J . For values of the inter-plane coupling J ′ > 3J the ground

state is no longer the q = 0 kagome state but rather corresponds to ferromagnetic

kagome planes which are ordered antiferromagnetically with respect to each other.

Here, a constraint of J ′ < 3J is applied.

In the second special case, ky = kz = 0, which corresponds to spin waves

propagating parallel to one of the cubic crystal axes,

ω1 = 0

ω2 = ω3 = 2(J + J ′)| sin(ka/2)|,
(5.29)

where k represents kx, ky, or kz. These expressions reduce to the correct 2D result

above when J ′ = 0. Hence, the coupling of the planes stiffens the excitations for

wavevectors along the crystal axes but does not remove the zero frequency mode.

The zero mode can be understood from Fig. 5.1. The x = na planes only

have B sites whereas the x = (n + 1/2)a planes have both A and C sites where

n = 0, 1, 2, .... In the ground state the A and C sublattices are at 1200 to each other

and to the B sublattice. The entire plane of AC spins can be rotated continuously
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about the direction of the B sublattice spins in the planes on either side with

no change in energy. In addition, these rotations in each of the AC planes are

independent and correspond to a set of localized excitations for J + J ′ > 0. When

J ′ = 0, there are additional degeneracies which lead to a zero energy mode [15] for

all k.

5.3.2 Effects of Anisotropy

In the general case with K > 0, the spin wave frequencies can only be obtained

numerically. The ground state is no longer a planar configuration and the contin-

uous degeneracies are removed and there are no zero modes. For values of k along

the cubic axes, the lowest mode is almost dispersionless while the other two modes

have strong dispersion. In all other wavevector directions, all three modes have

strong dispersion. Fig. 5.2 shows the spin wave frequencies ω along the ΓX(100)

and ΓR(111) directions for different values of the inter-plane coupling J ′ and the

cubic anisotropy K. For K = 0, the effect of J ′ is to stiffen the frequencies along

ΓX and to remove the zero modes along ΓR. For K > 0, the zero modes along

both ΓX and ΓR now have a substantial gap. Along the ΓX direction, there is a

low frequency mode which is almost dispersionless (similar to the mode reported

in Ref. [24]). Based on electronic structure calculations [37], the case K = 0.1J

with J ′ = J best represents IrMn3. As shown in the next section, there is a strong

dependence of the inelastic scattering intensity on wave vector.

At the zone center k = 0 the leading behavior of the three positive frequencies

72



0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

ω/J

0.0

(a)
J '=0

K=0

(b)
J '=0

K=0.1J

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

ω/J

0.0

(c)
J '=0.1J

(d)
J '=0.1J

X Γ R

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

ω/J

Γ Γ
0.0

(e)

J '=J

X Γ RΓ Γ

(f)

J '=J

Figure 5.2: Spin wave modes along the ΓX and ΓR directions (a) K = 0, J ′ = 0,
(b) K = 0.1J, J ′ = 0, (c) K = 0, J ′ = 0.1J , (d) K = 0.1J, J ′ = 0.1J , (e)
K = 0, J ′ = J , (f) K = 0.1J, J ′ = J [14].

as a function of K is obtained

ω1 ≃ ω2 ≃
√

2(J + J ′)K

ω3 ≃ 2
√

2(J + J ′)K.

(5.30)
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As such, all modes have a gap for K > 0 and although ω1, ω2 are degenerate to

leading order in K, they become nondegenerate as K increases. At the point R

(kx = ky = kz = π/a) and with J ′ = J , all three modes are degenerate for all K.

In the MC simulations of the Chap. 3, the sublattice magnetizations did not

saturate at low T and displayed evidence of degenerate spin configurations at

T = 0 for values of K/J smaller than ∼ 0.06. This behavior is consistent with

the presence of a small gap in the excitation spectrum. As K increases, the gap

increases and the sublattices become fully saturated as T = 0 is approached.

5.3.3 Summary

The results above have demonstrated that the fcc kagome antiferromagnet is an

example of the relatively rare phenomenon of macroscopic continuous degeneracy

in 3D that gives rise to zero energy spin wave modes. Local cubic anisotropy

is found to remove this degeneracy and introduce a gap in the spectrum. The

lowest mode at small K is almost dispersionless and has energy ω ∼ 2
√
JK when

J ′ = J , which is about 0.63J , assuming K/J ≈ 0.1. The electronic structure

calculations [37] on IrMn3 provide the estimate J ∼ 40 meV giving ω ∼ 25 meV.

Other more exotic quantum effects are not anticipated and as such the S spin

quantum number as studied in quantum calculations [62] is omitted from these

results. While anisotropy did not show a strong effect in elastic scattering results

from Chap. 4, it does induce a uniform magnetization in the [111] direction which

could be utilized to stabilize a single-domain sample using field cooling techniques

to better facilitate observation of these effects with inelastic neutron scattering

experiments. These results support earlier MC simulations which suggest that,

in the absence of anisotropy, critical fluctuations drive the phase transition to be
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discontinuous, but that it becomes continuous with the addition of anisotropy due

to the removal of degeneracies. The link between such removal of degeneracy in

geometrically frustrated spin systems through anisotropic interactions, the nature

of the phase transition to long-range order, and magnetic excitations, has recently

been established in the pyrochlore antiferromagnet Er2Ti2O7 [50] (as noted in

Chap. 3). Degeneracies are known to give rise to critical fluctuations which can

drive a phase transition that is continuous within mean field theory to be first-order

[47], [63]. In the present system, the introduction of an energy gap in the spin wave

spectrum due to the addition of local cubic anisotropy suppresses the low-energy

excitations responsible for the critical fluctuations near the Néel temperature.

5.4 Inelastic Scattering - Spin Wave Theory

The ORNL results carried out on powdered ordered samples were analyzed using

inelastic magnetic neutron scattering. To compare them to theory, the following

analysis, first for single crystal and then for powder, is carried out. While the spin

wave overview of this chapter examines ω using torque equations, more analysis is

needed to develop a theory of inelastic magnetic scattering intensity.

The relevant parts of the scattering cross section for inelastic magnetic scat-

tering are given as [44]

(

d2σ

dΩdE ′

)

inel

∝ k′

k
F (κ)2S(κ, ω), (5.31)

where F (κ) is the form factor and S(κ, ω) is the dynamic structure factor. The de-

velopment in Appendix A.3 reviews the derivation of the dynamic structure factor

in terms of the retarded Green’s function Gαβ(κ, t) = −iθ(t) < [Sα
κ(t), S

β
−κ(0)] >.
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(111) domain at fixed values of κ along [100] directions with J = J ′ = 1 for both

K = 0 and K/J = 0.1. The wave vector is allowed to extend beyond the first zone

boundary for Fig. 5.3(a) and Fig. 5.3(b), but is restricted to be in the first zone

for Fig. 5.3(c) and Fig. 5.3(d). In Fig. 5.3(a) and Fig. 5.3(b), the intensity is very

large at the wave vectors corresponding to the elastic peaks with h, k, l not all even

or odd, but the scale is such that the smaller wave vector modes (which can be

seen in Fig. 5.3(c) and Fig. 5.3(d)) are not visible due to the large intensity near

the elastic peaks located at h = 1, k = l = 0. The flat mode is clearly visible in

Fig. 5.3(d) on the smaller scale but has an intensity much reduced from the other

modes at the zone boundary. Fig. 5.3 can be compared with Figs. 5.2(e) and (f),

illustrating the appearance of the low frequency mode along ΓX and the splitting

of the degeneracy of the higher frequency modes. While the [111] direction (ΓR) is

not shown, the intensity is on the order of a hundred times smaller than the [100]

direction.

Of particular note for all of the results shown in Fig. 5.3 is that the intensity

is expected to be relatively small in the first Brillouin zone but is substantially

larger in the second zone. On comparing panels (a) and (c) with (b) and (d), the

impact of the anisotropy on the calculated spectrum is very strong.

5.4.2 Powder Averaging

Average Over Angles

For powder samples as used in the Oak Ridge experiments, it is necessary to

average S(κ, ω) over crystalline orientations, or angles. The average over angles
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can be calculated directly with

S(κ, ω) =

∫ 2π

φ=0

∫ π

θ=0

S(κ, ω) sin θ dθ dφ, (5.32)

which can be solved through Monte Carlo integration using, with r1 and r2 two

random numbers from 0 to 1 and n the number of iteration steps,

S(κ, ω) =
1

n

n
∑

i=1

S(κ, arccos(2r1i − 1), 2πr2i , ω). (5.33)

Experimental Range

While the wavevector κ = k − k′ is used when describing the system from a

theoretical point a view, Q = ki − kf is often employed in experiments instead

to represent the change between the initial and final states with the notation Q.

Furthermore, ω is related through the energy E by the relation E = ~
2Q2

2m
= ~ω.

While they represent the same concepts, they are described here in this method

to maintain consistency with conventional experimental naming systems.

In these experiments, there is a relation between Q and E such that certain

regions are not accessible. Here a derivation of the upper and lower bounds for Q

versus E is shown. Conservation of momentum gives

Q = ki − kf , (5.34)

whereas conservation of energy requires that the measured energy of the scattered

neutron satisfy

E = Ei − Ef . (5.35)
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Here, the initial energy of the neutron is

Ei =
~
2k2

i

2Mn

, (5.36)

with Mn the neutron mass. It is possible to write

Ef

Ei

= 1− E

Ei

=

(

kf
ki

)2

. (5.37)

Now, the scattered wavevector Q = ki − kf satisfies

Q2 = k2
i + k2

f − 2kikf cos(θ), (5.38)

where θ is the scattering angle. Rearranging this gives

(Q/ki)
2 = 1 + 1− E/Ei − 2

√

1− E/Ei cos(θ). (5.39)

Since Ei =
~
2

2Mn
k2
i = (2.072meV Å2)k2

i = Lk2
i with L = ~

2

2Mn
≈ 2.072 meVÅ2, it

can be written that

Q =

√

Ei

L
(2− E/Ei − 2

√

1− E/Ei cos(θ)), (5.40)

where E,Ei are in meV and Q is in Å−1.

The Oak Ridge results for IrMn3 has a maximum scattering angle around

θ = 60◦. Thus, for a given E,Ei, Q1 ≤ Q ≤ Q2 can be used with

Q1 =

√

Ei

L
(2− E/Ei − 2

√

1− E/Ei), (5.41)
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5.4.3 Oak Ridge Results

An example of the inelastic results obtained at Oak Ridge is shown for a temper-

ature of 5 K and an incident energy Ei = 100 meV in Fig. 5.7. A subtraction of

aluminum intensity (due to the sample holder) using Oak Ridge software with a

fitting parameter was performed, but proves problematic as there is still consider-

able contribution remaining in regions of interest. Other incident energies such as

Ei = 50 meV and Ei = 200 meV were used, but proved to give less useful results.

The intensity is shown as the color for different energy transfer (vertical axis)

and scattering vector Q values (horizontal axis). As can be seen, there remains

a strong intensity from the aluminum despite the subtraction at lower energy

transfers which makes a quantitative analysis difficult. There are lighter bands

corresponding to Q values at ordered peak positions that might correspond to

an effect of the anisotropy. An elastic cut of the inelastic data around E = 0 is

provided in Appendix A.4, which shows more clearly the peak locations.

Comparing these experimental results in Fig. 5.7 to the results given by the

predicted model in Fig. 5.6 proves difficult in large part because of background

effects. The energy gap caused by anisotropy cannot be seen due to this low energy

noise. Using a value of a = 3.75 Å, ordered peak locations for [100], [110] and [210]

correspond to Q = 1.67 Å−1, 2.37 Å−1 and 3.75 Å−1. The lighter vertical bands

seen in Fig. 5.7 correspond to these ordered peak locations, although the lower Q

peak is mostly hidden by the limitation of the experimental setup at this incident

energy, but quantitative results proved difficult to obtain. Selected single crystal

theory results, given in Appendix A.5 show that for the [110] direction there should

be significant scattering, but in the powder average theory results of Fig. 5.6 there

is no vertical band around [110], which is puzzling. A minor contribution from the
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order is of the q = 0 type. Ideally, experiments at temperatures above TN = 960

K would be made to separate these components, but it was not possible to achieve

such high temperatures in the experimental setup. The quality of the data also

made it difficult to make direct comparisons on relative peak heights which can

be used to distinguish nuclear and magnetic scattering [6]. It would be far more

useful to have single crystal samples results to compare with the theory.
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Chapter 6

Discussion and Conclusions

Several approaches are presented in this study of the magnetic structure of the

fcc kagome model used to describe IrMn3. Monte Carlo simulations, spin wave

calculations and magnetic neutron scattering experiments are the primary focus

of this thesis. Various quantities and consequences of adding anisotropy to the 3D

Heisenberg model of the fcc kagome using the Monte Carlo method are studied,

such as the ground state, the transition temperature TN , energy histograms and

cumulants to determine the order of the phase transition. A spin wave model is

constructed to analyze any effects of a non-zero anisotropy. Building upon the 2D

kagome model, elastic and inelastic scattering predictions are made for the 3D fcc

kagome model. The inelastic results are adapted to account for a powder sample,

as the experiment conducted on IrMn3 as part of this research used such samples.

A background signal from the sample holder proved to cause significant noise in

the experimental results which render comparison to theory less than ideal.
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6.1 Monte Carlo Simulations

In Chap. 3, a detailed study of the effect of anisotropy on the fcc kagome lattice

through Monte Carlo simulations is described. This work builds upon a previous

study of the same model without anisotropy [12]. When K = 0, it is found

that the system undergoes a first-order phase transition at the Néel temperature

TN = 0.476J . Furthermore, a macroscopic ground state degeneracy associated

with interchanging the direction of two sub-lattice spins in planes in the fcc kagome

lattice is discussed.

With the addition of anisotropy, this degeneracy in the ground state is broken

and new discrete ones are formed. Spins are locked to a particular (111) plane,

giving rise to eight possible ground state spin configurations per value of K. In

theory, any nonzero value of K locks the spins in these ground states. In these

Monte Carlo simulations, a finite system size must be used which causes finite

size effects. It is found that K & 0.06 is needed to cause the system sublattice

magnetization order parameter to saturate as T approached zero. In studying the

effects of varying K, TN is found to first increase, then to decrease, as expected.

For large values of K, the uniaxial anisotropy dominates and a broad maximum

in the specific heat is seen due to the onset of short-range correlations. The

anisotropy also cants the spins out of the (111) plane, inducing a ferromagnetic

magnetization. Comparisons with expected spin angle deviations from the 120◦

structure at T = 0 proved useful to explain the effects of K on the ground state.

Unlike the first-order phase transition observed in the K = 0 case, a continuous

phase transition is determined to describe the anisotropic system using energy

histograms and cumulants. This change in the order of the transition is believed

to be associated with the removal of the macroscopic degeneracy of K = 0. The
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development of a finite magnetic moment along the [111] direction as a consequence

of anisotropy along with the expected in-plane canting of the spins on the top layer

of the antiferromagnet in the presence of a ferromagnetic layer [11] are expected

to be important to describe the exchange bias seen in IrMn3.

6.2 Elastic Neutron Scattering

Chap. 4 provides an overview of elastic magnetic scattering for the fcc kagome

lattice with a focus on the effects of anisotropy. Starting from the fundamentals

of magnetic scattering theory, the structure factor, both nuclear and magnetic, is

developed specifically for IrMn3. The nuclear structure factor, published initially

in [6], proves problematic as there is an accidental nearly exact cancellation of the

structure factor for certain values of (h, k, l), which makes it difficult to differentiate

nuclear and magnetic peaks. Calculating the magnetic elastic cross section, using

the magnetic form factor and magnetic structure factor, different peak height

differences are obtained and tabulated. The effect of anisotropy is studied, but

found to be minimal for the relevant value of K = 0.1J expected of IrMn3. Even

using a high value of K = 5J shows only a small effect on the peak height and it

is concluded that inelastic scattering should provide a stronger indication of the

effect of anisotropy.

6.3 Spin Waves and Inelastic Neutron Scattering

Chap. 5 gives a somewhat elaborate development of spin waves and their use in

inelastic magnetic scattering for IrMn3. A spin wave theory is developed for the

kagome fcc antiferromagnet that shows the effect of anisotropy. Starting from a
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ground state spin configuration, the Hamiltonian is developed to obtain a 6×6 ma-

trix that describes the motion of the three sublattice spins in x and y coordinates.

An analysis of the zero anisotropy case confirms several extrapolated modes, with

a zero-energy mode seen along certain directions (in contrast with the 2D case

where this mode is zero for all directions) This difference between the 2D and 3D

cases is a reflection of the reduction of degeneracy when kagome planes are coupled

in a fcc structure. By including the anisotropy, this mode is raised as a function

of the anisotropy strength, a consequence of the further reduction in degeneracy.

The effects of this zero-energy mode is seen in Monte Carlo simulations where the

sublattices do not fully saturate until a sufficiently large value of K is used. Such

dynamics are linked to the change in order of the phase transition.

These spin wave calculations are used as the basis for the magnetic inelastic

scattering theory. The scattering cross section depends mostly on the dynamic

structure factor S(κ, ω). This is derived using a Green’s function approach, making

use of the previous spin wave theory results, namely the 6 × 6 matrix describing

how the spins behave on the different sublattices with time. Analysis of a single

crystal model shows the anticipated zero mode being raised with the anisotropy. To

make direct comparisons with the experimental samples, the single crystal results

must be averaged over all scattering angles, which is done through Monte Carlo

simulations. Expected powder results for IrMn3 are calculated and shown.

An attempt is then made to compare these results to the experimental results

of Fig. 5.7 obtained at ORNL. However, these experimental results exhibit a con-

siderable amount of noise in the data due to the background aluminum sample

holder which makes finding an elevated low energy mode, if anisotropy is present,

difficult. There is also a possibility of a strong signal from single crystals along a
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certain direction being kept in the experimental powder sample. Almost vertical

bands of higher intensity are seen that correspond to several ordered peak loca-

tions expected from the scattering theory. The band corresponding to [110] is not

seen in the theoretical powder results, but is present in both the single crystal the-

oretical calculations and the experimental results. Appendix A.5 also shows that

a small scattering is seen for the [111] direction that is unexpected. The reason

for these remains unclear.

6.4 Future Areas of Study

There still remains several unanswered questions in the study of IrMn3 using these

methods or otherwise. The effect of next NN interactions could help elaborate

on some of the spin wave and inelastic behavior of the system. Experimental

verification of the presence of ferromagnetism in the bulk or thin-film ordered

phase IrMn3 and related compounds is desirable.

Monte Carlo simulations of thin films of the fcc kagome structure have been per-

formed [64] where a surface anisotropy is considered. When this surface anisotropy

is sufficiently large, a net magnetization directed perpendicular to the film devel-

ops. This study could be extended to also include exchange coupling to a ferro-

magnetic layer as well as including dipole coupling within and between surface

layers to provide a realistic atomic-level model of exchange bias. The model used

in the present work can also serve as the foundation for further study of excitations

associated with thin films of IrMn3. Such results could be useful in an examination

of dynamic effects in exchange bias phenomena.

There is also much interest in the magnetic-field vs temperature phase diagrams

of 2D and 3D frustrated lattice systems based on coupled triangles of spins [65],
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[66]. The magnetic phase diagram for the 2D and 3D triangular lattice appear

to be very similar. The 2D kagome phase diagram is very different, where the

enhanced effect of frustration prevents the onset of conventional spin order.

Intriguingly, preliminary Monte Carlo simulation results for the 3D fcc kagome

lattice suggest a phase diagram similar to the triangular lattice [67]. Additional

simulations are needed to confirm this behavior as well as to study the impact of

cubic anisotropy K.
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Appendix A

Magnetic Neutron Scattering

A.1 General Derivation

A.1.1 Neutron Scattering

In neutron scattering, a sample is bombarded by neutrons and the deflections

are studied [45]. This is done by finding the partial differential cross section dσ2

dΩdE′

(energy dependent), differential cross section dσ
dΩ

(independent of the energy) or the

total cross section σtot (independent of angle). When looking at elastic scattering,

the goal is to find dσ
dΩ

, whereas inelastic scattering seeks dσ2

dΩdE′
. These quantities

give the number of neutrons scattered per second within a small angle dΩ divided

by the incident neutron flux. The change in spin state of the neutrons are not

considered in the present work, but can be studied with polarization experiments.

By considering the processes where the state of the scattering system changes

from λ to λ′ and the wavevector of a neutron changes from k to k′ for angles

inside dΩ, the differential cross section depends on the number of transitions per

second from one state to another. The starting point for finding these differential
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cross sections is Fermi’s golden rule, which connects this transition number to the

number of momentum states for a potential V the neutron feels. Writing the final

energy of the neutron as E ′ = ~
2

2m
k′2, it is possible to write the cross section as

(

dσ2

dΩdE ′

)

λ→λ′

=
k′

k

( m

2π~2

)2

| < k′λ′|V |kλ > |2δ(Eλ − Eλ′ + E − E ′), (A.1)

where the delta function comes from the energy distribution of the scattered neu-

trons. The next step involves finding an appropriate V . A Fermi pseudopotential

V (r) = 2π~2

m
bδ(r) is used that involves the scattering length b (which depends on

the nucleus and the spin state of the nucleus-neutron system) and the Dirac delta

function δ(r). The scattering length can vary considerably for different nuclei and

is often treated as a parameter that needs to be determined experimentally. The

cross section is summed over all final states λ′ before averaging over all λ. With

Rj being the nucleus j position, κ = k−k′ and ~ω = E−E ′, this ends up giving

(

dσ2

dΩdE ′

)

=
k′

k

1

2π~

∑

jj′

bjbj′

∫ ∞

−∞
< e−iκ·Rj′ (0)eiκ·Rj(t) > e−iωt dt. (A.2)

Neutron scattering is separated into coherent and incoherent scattering, with the

coherent scattering corresponding to having all scattering lengths bj per nuclei

being equal to an average and the incoherent scattering being the correction to

this. The incoherent scattering is not considered here, as is often done.
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A.1.2 Nuclear Scattering

For nuclear scattering, the crystalline structure of the system is exploited to con-

sider harmonic forces and normal modes. Due to thermal motion, a nucleus l

moves from its equilibrium position with displacement u. Defining U = iκ ·u0(0)

and using a phonon expansion, the coherent cross section becomes

(

dσ2

dΩdE ′

)

coh

=
σcoh

4π

k′

k

N

2π~
e<U2>

∑

l

eiκ·l
∫ ∞

−∞
e−iωt dt, (A.3)

and
(

dσ

dΩ

)

coh,el

=
σcoh

4π
N
(2π)3

v0
e−2W

∑

τ

δ(κ− τ ), (A.4)

where the factor 2W = − < U >2 is the Debye-Waller temperature factor, which

is often ignored. Here, v0 is the unit cell volume, the delta sum comes from a

rewriting of the lattice sum, τ is a reciprocal lattice vector, N is the number of

nuclei in the crystal and σcoh = 4πb. Coherent elastic scattering of neutrons can

also be considered as Bragg scattering. Inelastic nuclear scattering follows from

phonon scattering.

A.1.3 Magnetic Scattering

For magnetic scattering, the spin state of the neutron matters, specifically in how

it interacts with the system. In addition to the state λ and wavevector k, the spin

σ also needs to be averaged

(

dσ2

dΩdE ′

)

λ→λ′

=
k′

k

( m

2π~2

)2

| < k′σ′λ′|Vm|kσλ > |2δ(Eλ −Eλ′ +E−E ′), (A.5)
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with Vm the potential between all the electrons in the scattering system and the

neutrons.

For a non-Bravais crystal at position Rld with l the ionic unit cell and d the

index of the ion inside the unit cell, the cross section for spin-only scattering with

localized electron can be derived to give

dσ2

dΩdE ′ =(r0)
2k

′

k

∑

αβ

(δαβ − κ̃ακ̃β)
∑

l′d′

∑

ld

F ∗
d′(κ)Fd(κ)

×
∑

λλ′

pλ < λ|e−iκ·Rl′d′Sα
l′d′ |λ′ >

× < λ′|eiκ·RldSβ
ld|λ >

1

2π~

∫ ∞

−∞
ei(Eλ′−Eλ)t/~e−iωtdt.

(A.6)

Here, p is the momentum, F the magnetic form factor, α and β the x, y, z coordi-

nates and the S terms represent the spin vectors. Using time-dependent operators

and assuming electron spins have almost no effect on the interatomic forces, the

magnetic cross section can be given by

dσ2

dΩdE ′ =
(r0)

2

2π~

k′

k

∑

αβ

(δαβ − κ̃ακ̃β)
∑

l′d′ld

F ∗
d′(κ)Fd(κ)

×
∫ ∞

−∞
< e−iκ·Rl′d′ (0)eiκ·Rld(t)

× < Sα
l′d′(0)S

β
ld(t) > e−iωtdt.

(A.7)

Note that the R terms are factored as the Debye-Waller expression.

For elastic scattering, the limit as t → ∞ is used, which decouples spin terms.

It is then possible to integrate with respect to the energy. A similar approach can

be used to find Eq. A.9 below [44].
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A.2 Elastic Scattering

The following provides some background theory of coherent elastic scattering

[44],[45], relevant for the intensity obtained in neutron diffraction experiments

for the fcc kagome antiferromagnet IrMn3.

Beginning with a derivation of the magnetic neutron scattering cross section,

a fundamental constant for magnetic neutron scattering is r0 given by the gyro-

magnetic ratio times the classical electron radius

r0 = γ
µ0

4π

e2

me

= −0.54 ∗ 10−12 cm, (A.8)

with γ = −1.913. The magnetic cross section can be written as

dσ

dΩ
= r20

∑

ll′

eiκ·(l−l′)|κ̂× (F(κ)× κ̂)|2, (A.9)

with the magnetic unit-cell vector structure factor

F(κ) =
∑

d

eiκ·dFd(κ), (A.10)

with

Fd(κ) =

∫

dr3 Sd(r)e
iκ·r. (A.11)

Here, l is the position vector for Bravais lattice vectors (with l′ used as a comple-

ment for the double sum), κ = k′ − k is the scattering vector, d (and d′) denotes

the position of a particular ion within the unit cell, r is an arbitrary position vec-

tor and Sd(r) is the ion spin vector. For particular ions in a unit cell with a spin

102



density, then

Fd(κ) = e−Wd(κ)
1

2
gd〈Sd〉Ŝd(κ)Fd(κ). (A.12)

Note that the atomic spin vector is related to the spin density through

ρ(r) =
∑

l,d

Sd(r − (l + d)). (A.13)

Here, gd is the Landé splitting factor, Wd is the in Debye-Waller temperature

factor, 〈Sd〉 is the thermal average value of the spin associated with the ion (not a

vector quantity) which drops to zero at a critical temperature. Ŝd, which can also

depend on l, is the unit spin vector for ion d and Fd(κ) is the (non-vector) atomic

or magnetic form factor which drops off for large κ, and is unity for κ = 0. It is

then possible to write

F(κ) =
∑

d

eiκ·de−Wd(κ)
1

2
gd〈Sd〉Ŝd(κ)Fd(κ), (A.14)

to finally obtain (see Eq. 2.23)

dσ

dΩ
= r20

∑

ll′

eiκ·(l−l′)

∣

∣

∣

∣

∣

∑

d

eiκ·de−Wd(κ)
1

2
gd〈Sd〉Fd(κ)

[

κ̂×
(

Ŝd(κ)× κ̂
)]

∣

∣

∣

∣

∣

2

,

(A.15)

as the magnetic cross section. If all the unit cells are the same (κ is periodic),

then
∑

ll′

eiκ·(l−l′) = N
∑

l

eiκ·l = N
(2π)3

ν0

∑

τ

δ(κ− τ ), (A.16)

with N being the number of unit cells in the sample and ν0 their volume.
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The double cross product can be developed with

a× (b× c) = b(a · c)− c(a · b), (A.17)

so that

κ̂× (Ŝd(κ)× κ̂) = Ŝd − (Ŝd(κ) · κ̂)κ̂. (A.18)

Noting that
∣

∣

∣

∣

∣

∑

d

f d

∣

∣

∣

∣

∣

2

=
∑

dd′

f ∗
d′ · f d, (A.19)

the double cross product can then be written in a number of useful ways

∣

∣

∣

∣

∣

∑

d

κ̂×
(

Ŝd(κ)× κ̂
)

∣

∣

∣

∣

∣

2

=
∑

dd′

[

Ŝd′ −
(

Ŝd′(κ) · κ̂
)

κ̂
]

·
[

Ŝd −
(

Ŝd(κ) · κ̂
)

κ̂
]

,

=
∑

dd′

Ŝd′ · Ŝd − (Ŝd′ · κ̂)(Ŝd · κ̂),

=
∑

dd′

∑

αβ

(δαβ − κ̂ακ̂β)Ŝ
α
d′Ŝ

β

d ,

(A.20)

where α and β are the x, y and z coordinates.

This shows that a nonzero scattering intensity is expected only if the scattering

vector κ is perpendicular to the spins S. This is a very useful feature for the

purpose of determining the orientation of the spin density vector.

For the determination of crystal structures, the nuclear (non-magnetic) scat-

tering cross section is useful. The coherent elastic scattering contribution for a

non-Bravais crystal is given by

(

dσ

dΩ

)

nuc,coh,el

= N
(2π)3

ν0

∑

τ

δ(κ− τ ) |FN(κ)|2 , (A.21)
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where the nuclear structure factor is given by

FN(κ) =
∑

d

b̄de
iκ·de−Wd . (A.22)

Here, b̄d is the scattering length, a known quantity for each individual type of

atom, which depends on the atomic electronic structure.

A.3 Inelastic Scattering

A.3.1 Green’s Functions

The description outlined here is based on notes provided by Prof. B. Southern

(Univ. of Manitoba). The relevant parts of the scattering cross section for inelastic

magnetic scattering are given as [44]

(

d2σ

dΩdE ′

)

inel

∝ k′

k
F (κ)2S(κ, ω), (A.23)

where F (κ) is the form factor and S(κ, ω) is the dynamic structure factor. As

stated in Chap. 2,

S(κ, ω) =
∑

α,β=x,y,z

Sαβ(κ, ω)(δαβ − κ̂ακ̂β), (A.24)

where Sαβ(κ, ω) is the double Fourier transform of the correlation function <

Sα
i (0)S

β
j (t) > and can be calculated using the spin wave analysis dispersion rela-

tions along with standard Green’s functions techniques [44]. Sαβ(κ, ω) is equal to
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the imaginary part of the time Fourier transform of the retarded Green’s function

Gαβ(κ, t) = −iθ(t) < [Sα
κ(t), S

β
−κ(0)] > . (A.25)

This Green’s function satisfies

i~
∂

∂t
Gαβ(κ, t) = ~δ(t) < [Sm

κ (t), Sn
−κ(0)] >

− iθ(t) < [[Sα
κ(t),H], Sβ

−κ(0)] >,

(A.26)

or

ωGαβ(κ, ω) =
1

2π
< [Sm

κ (t), Sn
−κ(0)] > + < [[Sα

κ(t),H], Sβ
−κ(0)] > . (A.27)

The correlation function or equivalent Green’s functions for < Sα
κS

β
−κ > is needed,

and thus has 81 components since there are 3 Cartesian elements and 3 sublattices.

In local coordinates, the Cartesian z components are not considered, leaving

36 local Green’s functions that satisfy

ωG̃ = iz̃+ iΓG̃, (A.28)

where z̃ is a 6-component column vector involving commutators of the spin oper-

ators in the correlation function, and Γ is the 6x6 matrix of Eq. 5.20.

For example, the correlation function < S̃A
−κy

S̃A
κx

> involves the Green’s func-
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tions

G̃ =

































<< S̃A
κx
S̃A
−κy

>>

<< S̃B
κx
S̃A
−κy

>>

<< S̃C
κx
S̃A
−κy

>>

<< S̃A
κy
S̃A
−κy

>>

<< S̃B
κy
S̃A
−κy

>>

<< S̃C
κy
S̃A
−κy

>>

































, z̃ =

































1
2π

0

0

0

0

0

































(A.29)

such that G̃ = (ωI − iΓ)−1iz̃ with <<>> denoting the double time Green’s

function [68]. Other Green’s functions are obtained in a similar manner. A small

imaginary part is added to ω → ω + iǫ. Only the transverse correlations in the

local frame are considered as the z-components yield the elastic scattering. The

correlations in the crystal frames can be transformed into local coordinates using

the proper rotations matrices.

A.3.2 Calculation of S(κ, ω)

The following establishes the transformation of the inverted matrix obtained above

into S(κ, ω). Here, γ1, γ2 represent sublattices A, B, and C and α, β represent

x, y, z, with indices starting at 1. The i, j variables represent the x, y 2D compo-

nents from the spin wave calculations used in producing Γ, the 6x6 matrix for the

local frame, and ι is the imaginary unit here (to avoid confusion with the indices i

and j). The multiplication by the M rotation matrices components transforms the

results from the local reference frame where the z component is not considered into

the crystal axes frame. Simple algebra is used to obtain the correct components

for the inverted matrix T = [(ω + ιǫ)I− ιΓ]−1, with G̃ = Tιz̃
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pγ1,γ2α,β = ι
2
∑

i=1

2
∑

j=1

(2i− 3)Mγ1
α,iM

γ2
β,jT3(j−1)+γ2,3(2−i)+γ1 , (A.30)

S(κ, ω) = S(κx, κy, κz, ω) = S(κ, θ, φ, ω)

= Im

[

3
∑

α=1

3
∑

β=1

3
∑

γ1=1

3
∑

γ2=1

pγ1,γ2α,β (δαβ − κ̂ακ̂β)

]

.
(A.31)

A.4 Elastic Cut of Experimental Data

From the experimental inelastic scattering powder results of Fig. 5.7, it is possible

to do horizontal “cuts” that amount to elastic scattering by averaging within the

range E = −1 meV to 1 meV to obtain a 2D graph. The averaging helps remove

some of the effects of any background scattering from the aluminum sample holder.

Fig. A.1 shows this cut for Ei = 100 meV at T = 5 K before any aluminum

subtraction is done, while Fig. A.2 shows the same results after subtraction (using

ORNL provided software).

The scattering includes both nuclear and magnetic peaks. Ordered peak loca-

tions corresponding to the [100], [110], and [210] directions around Q = 1.67 Å−1,

2.37 Å−1 and 3.75 Å−1, respectively, are seen. A MnO byproduct magnetic peak is

seen around Q = 1.23 Å−1 as the temperature is below its transition temperature

TN = 116 K. Aluminum peaks are also present around Q = 2.70 Å−1 and 3.05

Å−1 before and after subtraction, indicating that the subtraction was not com-

plete. Finally, there is a smaller peak that appears around 3.50 Å−1 that remains

unexplained. Peaks at larger values of Q correspond to higher harmonics.
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J = J ′ = 20 meV, K = 2 meV, and an incident energy of 100 meV. The form

factor term is included along with the term kf/ki in Eq. 5.31.

Along the [100] direction, the Bragg positions are 2π/a = 1.67 and 6π/a = 5.03

with a = 3.75Å. There is a difficult to see low energy dispersionless mode at about

12.6 meV caused by the anisotropy. Along the [110] direction, the Bragg position

is at 2π/a21/2 = 2.37 which is not seen in the powder average results of Fig. 5.6.

There are no low energy modes along this direction, but there is a gap of around

12 meV. The Bragg point along the [210] direction is at 2π
√
5/a = 3.75, but there

is significant low energy scattering at the [11
2
0] and [33

2
0] points. For the [210]

direction, there is only the Bragg point around 4.1. Finally, the [111] direction

has a Bragg point around 2.9 with a smaller contribution of intensity. This is

contradictory to the expected result of having no scattering for [111].
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