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Abstract

Molecular mechanics is a popular method for minimization of energies of large
biomolecular structures and much work has been done in creating packages which
optimize the execution time and memory requirements. Object-based design is a
useful tool in creating packages which are easily updated and clearer than procedural-
based design due to their inherent modularity. The current codes in use are Fortran
77 and C, but Fortran 90 may prove to be a more viable option for object-based
molecular mechanics. In this work, a molecular mechanics package based on the
Merck Molecular Force Field (MMFF94) is designed for hydrocarbons using existing
Fortran 90 tools and object-based design techniques. Presented in this work are the

analysis, design, and impl ion of the hanics package as well as a

report of the numerical results. Included in the numerical results are comparisons with

values for the for the ethane and cyclohexane

systems.
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Chapter 1

Introduction

1.1 Overview of Project

Molecular mechanics has proven to be a viable method of obtaining geometries
and energies for molecular systems. Ab initio and semiempirical methods are also
available for completing the same task, however in the case of large molecules, they are
not feasible. Although molecular mechanics methods are not as accurate as ab initio
or semiempirical methods, in the case of large molecules an approximate structure is
often sought and molecular mechanics provides a less expensive and time-conserving
alternative.

Many different packages are currently available. Each molecular mechanics pack-
age is somewhat different from others in the form of the energy expression as well
as the parameters it uses and the systems it treats. For example, some molecular

mechanics packages are designed to d ies of large biomolecules, while




others reproduce geometries of organic or inorganic systems.
Molecular mechanics packages contain many functionalities, some of which in-

clude geometry optimization and topological methods, as well as menu and printing

‘When ing results using hanics, the input must first
be parsed, the topology generated and used to determine the connectivity, the coor-
dinates determined from this connectivity, and the geometry must be optimized to
provide the desired output.

Design of a molecular mechanics package can be done using procedure or object-
based design. Procedure-based design gives a package which has logical program
subunits which are smaller executable parts of the program, such as functions or
subprograms. The problem is broken down into executable steps taken from the
problem definition to the desired solution. Object-based design, involves modeling
the problem using a real-world model where objects within this model are defined

and the interaction of these objects produces the desired solution.

1.2 Goals of the Project

In this work, a package icted to hydrocarbons will

be created based on an existing force field and using the techniques of object-based
analysis and design. The desired features of this molecular mechanics package are as

follows:

e efficient use of memory and computation time

2



o reliable

© modular

e easy to modify and update

o capable of evaluating a variety of systems
e dynamic allocation of memory

e dynamic execution

 controlled printing and debugging

The language of implementation will be Fortran 90 as it provides backward
compatibility with Fortran 77 as well as limited support for object-based design.
Because the molecular mechanics package will be added to a larger ab initio package
written in Fortran 90 and the existing needed mathematical tools are written in
Fortran 77, the Fortran 90 language provided the needed functionality for object-

based design with straightforward integration into existing Fortran code.

1.3 Outline

The outline of the thesis is as follows. Chapter 2 outlines the molecular mechan-
ics method. It gives the general description as well as a more detailed description
of the force field, and provides the problem description needed for the object-based

design.



Chapter 3 gives a description of some of the tools available to the molecular
mechanics package. It also outlines the coordinate system used.

Chapter 4 provides a description of the object-based design method as well
as giving the results of the application of this method to the molecular mechanics
problem.

Chapter 5 provides a description of the use of the Fortran 90 language to imple-
ment the ideas in Chapter 3 for the molecular mechanics package, as well as describing
some useful features of Fortran 90 which were also used in the implementation. It also

contains some ples of the impl ion of the hanics method.

Chapter 6 provides some examples of single point and geometry optimizations as
well as giving the results of computations on several hydrocarbons. Some comparison

with literature values is also given.



Chapter 2

Molecular Mechanics and Force

Fields

2.1 Introduction

Molecular mechanics is a term used to describe the computational method of
obtaining molecular energies and structures. It is a result of the application of the
Born-Oppenheimer approximation, which allows the electronic and nuclear motions
within a molecule to be treated separately. Thus, one can treat the molecular system
with respect to nuclear motion without explicitly considering the motions of the
electrons. This is the basis for the ideas in molecular mechanics [1, 2, 3, 4, 5, 6].

The idea of treating molecules in this manner dates back to the 1930’s, where

D. H. Andrews and others used the idea that molecules are made up of
of atoms connected by bonds. These bonds, as well as angles, have natural values

5



and the molecule will, if distorted, always attempt to return itself to the geometry
defined by these values. In 1946, T. L. Hill proposed using stretch, bend, and van
der Waals interactions to minimize the total energy (steric energy) of a molecule.
This information would then give structural and energetic information for congested
systems. Later on, Dostrovsky, Hughes, and Ingold used the same method to better
understand the Sy2 reaction rates for various halides. Also, Westheimer and Mayer

studied the rates of ization of optically-active hal i i . The

work of Westheimer and Mayer gave the most convincing molecular mechanics results.
However, it was not until the 1950’s with the introduction of computers that the

molecular mechanics methods became widely understood and used [1, 2].

2.2 Molecular Mechanics

In molecular mechanics the energy is expressed as a function of the positions
of hard spheres, or nuclei. The initial use of molecular mechanics was for repro-
ducing spectra, however its uses have since been extended to energy and structural
reproduction. Although the accuracy of molecular mechanics method does not rival
the current ab initio or semiempirical methods, it has some advantages. Molecular
mechanics is valuable in cases where the molecule is too large to be treated com-
putationally by ab initio or semiempirical methods. Some examples of groups of
systems where molecular mechanics may be the only feasible computational method

are large pol; proteins, and dinati Most mol




packages are relatively general in that they are able to treat two or more groups of
molecules [1, 2, 3, 4, 5, 6].

The energy, expressed as a function of the nuclear coordinates, forms a surface
which is known as the Born-Oppenheimer or potential energy surface. This surface
describes the change in energy for the molecule as a function of the motions of the
nuclei. There are a few regions of interest on this potential energy surface, and these
regions are rich in structural and energetic information, some of which cannot be de-
termined by experiment [7]. For example, in molecular mechanics it is customary to
want the particular point on the potential energy surface which has the lowest energy
as this gives the most optimal structural information for the molecular system. Also
obtainable from the potential energy surface are the vibrational energy levels for the
ground electronic state of the system. This information is very useful to spectro-
scopists and as a result some molecular mechanics methods involve using potential

functions which are designed to duce this inf i Unfortunately,

a molecular mechanics method designed to accurately reproduce spectral data is not
generally good for reproducing structural and energetic information. Also, methods
which reproduce structural and energetic information usually are a poor choice for
reproducing spectra [1, 2, 3, 4, 5, 6].

The results of a molecular mechanics method are a set of interactions between
atoms within the molecule as well as the energy contributions with respect to each of
these interactions. The sum of these energy contributions is the total or steric energy
of the molecule. The functions which define the energy in terms of each of these

7



interactions constitute the force field. This name was adopted from spectroscopy and
it is interesting to note that the first derivatives of these energy contributions give

the forces for particular interactions [1, 2, 3, 4, 5, 6].

2.3 Force Fields

2.3.1 Introduction

The force field is the energy expression which is used to describe the energy
of the system with respect to the nuclear coordinates. There are two classes of
force fields. The harmonic force field only contains contributions to the energy that
result from harmonic motion within the molecule and the anharmonic force field
contains contributions to the energy resulting from both harmonic and anharmonic
motions. The force field has many uses, however it is known for its use in calculating
minimum energy structures or vibrational spectra. This energy can be investigated
over a set of time intervals to give the evolution of a system’s energy with respect
to time (molecular dynamics), which has widespread use in simulations in solution
or condensed phase. Instead of finding a minimum energy, a random sampling of
the conformational space of one or more molecules can be used to determine the
Boltzmann distribution of the energies of various conformations of a molecule (Monte
Carlo simulations) [1, 2, 3, 4, 5, 6, 8].

There are two major criteria a force field must satisfy. First, it should be able to



predict the equilibrium structure of a molecule. Second, it should be able to predict
the stability of the structure at or near the minimum energy. The form of the energy
expression is therefore important to satisfying these criteria. Since the force field is
empirical, there is no correct expression and as a result, many different force fields
are available. For more information on the force field implemented in this work, see
appendix A. Depending on the purpose of the force field, some expressions may be
more accurate than others. Usually there is a tradeoff between accuracy of the force
field and the speed at which it computes the energetic and structural information and

this in turn depends on the area of application [1, 2, 3, 4, 5, 6, 8.

The presence of i lecular and intermolecul:

forces which , stretch,
and twist the molecule cause the potential energy of the system to change. This
change in the potential energy can be further investigated by looking at the form
of the energy expression in more detail. If the potential energy of the molecule is

expanded in a Taylor series, the following expression results:

N N N
av v
Vi Vi §‘ (a-;‘)“m, 4 §‘ 3 :(W)DAI'AT’ e @)
2 e

=

When the molecule is at a minimum on the potential energy surface, the first term in
the series can be set to zero (initial energy is zero) and the second term vanishes (for a
stationary point). Only the second order term is kept in the harmonic approximation.

This leaves the following expression for the potential energy [1, 2, 3, 4, 5, 6, 8] at an



extremum:

(Y
Vit =33 (2
25,

=1 j=1

) Ar;Az;. (2:2)
0

The energy of a molecule can now be given in terms of the deformations of
various interactions (Az; and Az;) which occur between the atoms. Some of these
interactions are stretches, bends, torsions, improper torsions or out-of-plane bends,
van der Waals, and electrostatics. In some force fields, energy terms derived from the
result of one interaction on another are also considered, also called cross-terms. The

energy expression can then be rewritten as [1, 2, 3, 4, 5, 6, 8]:

Vpotential = Vitreth + Voend + Viorsion + Voopsend or imp. tors. + VoanderWaats

(2.3)
+ Vetectrostatics + €ross terms.

Each of these energy contributions is composed of a function containing param-
eters which determine the rate of increase or decrease of the energy depending on the
atoms involved, and is obtained by summing the individual energies for each inter-
action of a particular type. The parameters can be determined from experimental
sesilin o b iniio caloulatiotial However, thisdoss sot solverthis poblemof eompitin
tions on large systems unless an important assumption is made. If the parameters can

be derived for small molecules for which the ions or experimental results are

10



straightforward to obtain, then it should be possible to transfer these parameters to
large molecules. This is a valid assumption if the energy expression contains bonded
and nonbonded interactions. However, the parameters are not transferable between

force fields because their development is dependent on the energy expression used to

derive them. are, however, between molecules as long as the
environments of the interactions are the same (1, 2, 3, 4, 5, 6, 8].

The most common functions for the energy expressions given in the previous
equation will now be discussed. For details on the function used in the molecular me-

chanics package implemented in this work, the reader is again referred to appendix A.

2.3.2 The Potential Energy Expression

The total steric energy for a molecule can be expressed as a sum of contributions
due to stretch, bend, torsion, out-of-plane bends or improper dihedrals, van der Waals,
and electrostatic interactions as well as the coupling between these interactions to

give [1, 2,3, 4,5,6,8):

Vit = D Vowreten+ 3 Viend + 9 Viorsion
bends

stretches torsions

+ Vooplend orimg. tors+ >, Vewmsorwear (24)

oopbend or imp. tors. van der Waals

+ Z Vetectrostatic + €TOSS terms .
electrastatic



C : C
Figure 2.1: Bond stretch.

Bond Stretch

A bond stretch is a deformation within the molecule which occurs along the

bond formed between two atoms. This d ion can d to a length

or shortening of the bond.
Figure 2.1 gives an example of a bond stretch. The potential energy change as
the bond is compressed and stretched is given by the potential energy surface of a

diatomic molecule and is best described by a Morse potential:

2
Vitreteh =D={1 = 8[’““"“'1}

where o = w /2‘;):and w= \/%

The Morse potential is the most accurate representation of the diatomic potential

(2.5)

energy surface, however it is computationally expensive. For smaller systems this
will not be a problem, however, for large molecules this is still not the best option.
Since the structure desired is usually the one corresponding to a minimum energy, the
Morse potential can be expanded in a Taylor series and truncated after the quadratic
term.

The result is Hooke’s law for the deformation of a harmonic spring. In the region

12



around the minimum energy on the potential energy surface, this approximation is
adequate, however bonds are not harmonic in nature. In order to account for the
anharmonicity in the bonds, the quadratic, cubic, and quartic terms in the Taylor

series expansion must be included in the energy ion. This resulting

form very closely approximates the Morse potential in a larger region about the energy

and is less ionally expensive and more accurate than the harmonic

approximation. As a result, many force fields use this form of the potential energy or

some variation of it:

Viaian =* K(r = ro)? +% K{r = ra)® +4 K(r = ro)*. (26)

In the above equation, 2K, 3K, and ‘K denote quadratic, cubic, and quartic
bond force constants. For molecules with long bonds, such as the bonds between
molecules in a transition state, the Morse potential must be used because they are
located too far from the minimum on the potential energy surface to be correctly
represented by the above equation. The Morse potential also correctly describes

bond dissociation [1, 2, 3, 4, 5, 6, 8].

Angle Bend

An angle bend corresponds to a deformation of the angle formed between two

atoms bonded to a common third atom.



Q

Figure 2.2: Angle bend.

Figure 2.2 gives an example of a bend between three atoms. The angle bends
also become harmonic as the angle becomes very close to the equilibrium value. As a
result, the angle bend potential energy is often represented by a harmonic potential.
The force constant in the harmonic potential prevents the angle bend from deforming,
too far from the equilibrium value (called a restoring force constant) and is smaller
for an angle than for a bond because less force is needed to deform an angle from its
equilibrium value. This function is accurate for angle deformations of up to 10 degrees,
however if the deformation is larger, the harmonic approximation fails. In these cases,
and for better accuracy in general, it is desireable to include the anharmonicity as
was done for the stretches. This is again done by adding a cubic and/or quartic term

to the harmonic approximation to give the bending energy as:

Viena =* K(8 — 60) +° K (6 ~ 60)° +* K (0 — 6o)". 27

In the above equation, 2K, *K, and ‘K denote quadratic, cubic, and quartic

14



Figure 2.3: Torsion angle.

angular force constants. This equation is sufficient for reproducing most angles,
however most force fields will include special atom types to distinguish those angles
that must be treated with more accurate force constants and equilibrium values (for
example, strained ring systems). For linear bends the angles are not calculated ac-
curately by the above equation so an expression using cosines is used for this special

case [1,2,3,4,5,6,8).

Torsion

Torsions describe intermolecular rotations. They occur between atoms separated
by three bonds and are defined as the angle formed between two planes, one containing
the first and second bond, and the other containing the second and third bond.

Figure 2.3 shows a torsion from both the side view and the perspective when



looking down the central bond. Torsions occur when two atoms separated by three
bonds attempt to reduce the antibonding interaction between them. In order to
achieve a lower energy the two atoms move in a direction which reduces this repulsive
interaction. The energy due to this torsion is represented by a cosine function. Often
this potential expression is a Fourier series expansion truncated after the third term,
but some force fields include up to six terms. However, for the purposes of obtaining a
‘minimum energy structure, the first three or four terms of the expansion are sufficient,
and it turns out only the first six of these terms can be determined by experiment

from the overtones. The following functional form is most common in force fields:

Viorsion = Va(1 + cos 8) + V5 (1 — cos 28) + V3(1 + cos 36). (2.8)

The V; term in the above expression corresponds to the dipole-dipole interactions
between the first and fourth atom in the torsion, the V; term corresponds to the
conjugation/hyperconjugation effects, and the V; term corresponds to steric interac-

tions [1, 2, 3, 4, 5, 6, 8].

Out-of-Plane Bends and Improper Dihedral Angles

Trigonal planar centres within molecules are not adi d in force

fields which include only stretch, bend, torsion, and nonbonded interactions. As a

result, most current force fields now contain an energy contribution to treat these

16



Figure 2.4: Out-of-plane bend.

trigonal planar centres adequately. This is done by including an improper dihedral
or out-of-plane bending term in the energy expression.

Some force fields use the out-of-plane bend and others use the improper dihedral
angle, and the use of one or the other can offer advantages. Improper dihedrals are
not real angles, but the existing torsion energy expression may be used to compute the
energy contribution. Out-of-plane bends are actual vibrational modes in spectroscopy,
but a new function must be used to compute the energy. If an out-of-plane bend is
used, the motion is harmonic, so the energy can be computed using a harmonic

potential [1, 2, 3, 4, 5, 6, 8]:

1
Voopbend = EKXZ. (2.9)

The out-of-plane angle represcnted above by x can be defined as a Wilson angle,

shown in figure 2.4, or as a pyramid height [8].



van der Waals Interactions

van der Waals ibutions are d between nonbonded atoms, and most

force fields do not include van der Waals contributions resulting from atoms which
are bonded to a common third atom. They were first computed by van der Waals
and show the deviation of a real gas from ideal gas behavior. This energy term
includes the effects of dispersion forces, weak bonds and van der Waals interactions
and contains an attractive and repulsive part. The attractive part is long range and
is due to induced dipole-dipole interactions. The repulsive part is short range and
is a result of the overlap of electron clouds on the interacting atoms. It is common

in force fields to represent the van der Waals i ion energy by a Lennard-J

potential [1, 2, 3, 4, 5, 6, 8:

Vs = (%) ()] -

The ¢ represents the well depth of the potential function, R represents the in-

ternuclear ion, and the Ry the mini energy ion of the

interacting atoms. Some force fields replace the repulsion term in the above expression
by an exponential-6 function. The above expression for the van der Waals potential
is in general sufficient, although the attractive term is often not good enough to re-
produce energies and structures for some organic systems, so some force fields use an
R~ term for the repulsive part. However, the R~'2 term is preferred since it is trivial
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to compute it by squaring the R~% term [1, 2, 3, 4, 5, 6, 8].

Electrostatics

Each nonbonded pair also contributes an energy term due to electrostatic inter-
actions. There are several possible ways to model these interactions, although the

simple Coulomb interaction between two point charges is popular in most force fields:

v _Kue
‘electrostatic R L

(2.11)

Hydrogen bonds are also modeled by electrostatic potentials in some force fields.
Also included in most electrostatic potentials is a constant to prevent infinite attrac-
tions between opposite charges. The charges q; and g are represented by charges at
the centre of the nucleus, also called partial atomic charges. These usually consist of
the sum of a formal charge determined from Lewis dot structures and bond charge

increment contributions from all bonds the atom participates in.

g,

it is desireable to model the ic i i using higher
order multipoles, such as dipoles, quadrupoles or octopoles. One reason for this is
charge may not actually be located at the nucleus as is depicted by the point charge
model, but may be distributed throughout the molecule. In this case a distributed

multipole model may be used instead of the point charge model [1, 2, 3, 4, 5, 6, 8],



rl r2

Figure 2.5: The coupling of one bond to a neighbouring bond.
Cross Terms

Because the bond, angle, torsion, and out-of-plane bend (or improper dihedral)

are each indivi some ion must be added to ac-

count for the effect of one interaction on another. These corrections depend on the
nearest neighbours of the interacting atoms only. For example, two bonds which are
separated from one another by two or more bonds do not affect each other enough
to be significant and are not included. However, two bonds sharing a common atom
will affect one another and should not be ignored. It was found that the inclusion
of energy terms due to coupling of interactions makes the parameters of the force

field more t to not used to ize it. There are many

cross terms and only those that have shown significant contributions to the energy
expression are included. Two of the most common ones in current force fields that

will be discussed are stretch-stretch and stretch-bend [1, 2, 3, 4, 5, 6, 8].
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\

Figure 2.6: The coupling of an angle to the stretch of one of its bonds.

The stretch-stretch coupling interaction is most important in 7-bonded systems.
They describe the effect of one stretch on a neighboring stretch. Figure 2.5 gives
an example of a stretch-stretch interaction. The energy can be expressed using a

harmonic potential:

Vitreteh—streten = K (r = 10) (' — 7). (212)

The stretch-bend coupling interaction is included to account for the change in
bond length that occurs when angles are changed as well as the change in the angle
when the bond lengths are changed.

Figure 2.6 gives an example of a stretch-bend i ion. Often it is d in

terms of one of two bonds that make up the angle and an energy contribution is given

for each bond in the angle. This term is important also if one wants more accurate
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vibrational frequencies.

The energy can be expressed by a harmonic potential [1, 2, 3, 4, 5, 6, 8]

Vitretch—tbena = K (r = 10) (0 = o) (2.13)

2.3.3 Parameterization of the Force Field

The constants in the above equations as well as the exact energy expression for
a force field must be determined in some manner. Some of these parameters include
atom types, force constants, equilibrium values, nonbonded parameters, and scale
factors. The parameters must be derived by matching the desired results of the force
field to existing data, either from experiment or ab initio calculations. In order to
accomplish this a systematic method must be used to obtain the parameters from
the fits to the existing data. The parameterization step is very important in the
development because the accuracy of the force field is very dependent on the energy
expressions and their parameters. Due to the use of varying potential functions and
parameters in the current force fields, it is very dangerous to use parameters from
one force field in another.

Figure 2.7 gives a brief outline of the process of parameterizing a force field.
Once the potential energy expression is obtained, a set of initial guesses for the

parameters is needed. These can be obtained from existing data or a true guess.



Select molecules to be
included in the training
set

Determine initial
parameter guesses

Select experimental
and/or calculated data

Use initial parameters in
initial computation with
force field

Compare results from

with force field results

Do they agree? Adjust parameters

Parameter set for
force field derived.

Figure 2.7: The steps in the parameterization process.



These initial guesses are usually very poor so they are not kept. The next step is to
obtain the results the force field should produce from either experiment or ab initio
calculations. These may be energies, spectral, thermodynamic, or some other form
of data [1, 3, 4, 8, 9].

A set of training molecules is also needed. The training set is generally repre-
sentative of the types of systems the force field is designed to handle. A particular
subset of the training set is used as targets and the data from the force field will be fit
to that experimental or computational data using these molecules. Normally training
sets are large, often in excess of 500 molecules.

Next, the same results are obtained from the force field using the initial param-
eters and energy expressions. These two sets of results are compared and necessary
changes are then made to the parameters and/or potentials. In the early days of force
fields this was manually iterated until the force field results matched the ones from

experiment or computation. This process involved a lot of intuition and guess work

and was very ti ing. A linear least-squares fitting procedure is commonly
used to iterate the parameter generation to convergence, but even in this case con-
vergence is still slow unless the user makes a few adjustments to attempt to speed
convergence [1, 3, 4, 8, 9].

The parameterization proce:

is the most expensive part of force field devel-
opment. Usually the data used for comparison and fitting is limited to alleviate

this expense somewhat. Another problem with ization is that

of the parameters must be done in the same units. This can be eased by using a
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weighting scheme to optimize parameters of differing units. The iterative procedure
is usually converged when no improvements are seen in the force field parameters.
If a parameter goes to zero during the iterative process, the potential function is
eliminated from the energy expression.
Some of the data used for fitting the parameters is listed below along with the
type of interaction it is used for in the fitting procedure [1, 3, 4, 8, 9]:
e Bonds and Angles:
— reduced vibrational spectroscopic values
— optimized geometries of a group of simple (model) compounds
o Torsions:
— barriers to rotation

o van der Waals:

~ van der Waals potentials of rare gas atoms from molecular beam experi-

ments
— van der Waals radii: crystal data or ab initio
® Electrostatics:
— experimental dipoles

~ calculated thermodynamic properties



— molecular electrostatic potentials

The partial atomic charges are not observables and cannot be obtained directly
from ab initio calculations, although this method is often useful for obtaining an initial
guess to other properties from which the partial atomic charges can be determined.
They can be obtained from molecular electrostatic potentials or other sources [1, 3,

4,8,9].

2.3.4 Heats of Formation and Conformations From Molecu-
lar Mechanics

The most common uses of molecular mechanics are geometry optimizations,
conformational searches, individual energy contributions with respect to a particular
interaction, and heats of formation. Techniques for energy minimization will be
covered in more detail in the next chapter, so will not be covered here. Generation
of individual energy contributions in some force fields usually involves specifying a
particular level of printing, with higher printing levels giving more detailed results
from the molecular mechanics computation [1, 3, 10].

Generation of conformers has two practical advantages. First, it enables the lo-
cation of low-energy conformations of a molecule along a potential energy surface with
more than one minimum. Second, saddle points along the potential energy surface

can also be located, and those saddle points which are first-order often correspond to



transition state structures. Conformations can be generated by fixing some param-
eters and optimizing with respect to the parameters which are not fixed. Usually,
the parameters that are fixed are torsions. Another name for this type of conformer
search is torsion driving. In torsion driving using molecular mechanics, a strong tor-
sional potential is added to the force field which fixes one or more of the torsions to
a certain value for the duration of the energy minimization. This corresponds to an
optimized geometry with the desired torsion angle(s). The strong torsion potential
is then removed and a single-point energy is calculated using the original force field,
corresponding to the energy of the desired structure [1].

It is also possible to calculate heats of formation using the strain energy calcu-
lated from molecular mechanics. The equilibrium electronic energy is a combination
of contributions due to the strain energy from molecular mechanics and the bond

energies. As a result, it should be possible to imate the equilibrium el

energy from a combination of the steric energy of the molecule at the bottom of the
potential well and the bond energies. The formation energy for a particular reac-
tion is then the change in this electronic energy which occurs when the products are

formed from the reactants [1, 3:

AUfy = Viteric — bond energies. (2.14)

The heat of formation is then expressed as a sum of the internal energy plus the
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rotational and translational energy and a PV term added to generate the enthalpy

from the energy of the nonlinear molecule [3]:

AH} = AU; + A(PV). (2.15)

The enthalpy of formation, in general, can thus be computed as a sum of the

1, and PV terms bined with the steric energy from molecular

mechanics and the bond energy [1, 3]:

AHS = 4RT + Vyeric + Evona- (2.16)

In the above ion, the 4RT term the ibutions to the energy

from translation, rotation, and a PV term to convert this energy to enthalpy for a
nonlinear molecule. The bond energy increments are usually included in the molecular

mechanics package and several options for these values are available [1, 3].

2.4 Summary

Molecular mechanics is a versatile method for obtaining information about a
molecular system. It is derived from assuming the nuclear and electronic motions

can be treated (the Born-O i imation), giving an energy




expression that is dependent on the positions of the nuclei. This expression is a
sum of all of the interactions which occur in the molecular system and constitutes
the force field. There are a variety of different combinations of energy expressions
which gives a variety of different force fields. The parameters used in the energy
expressions can be derived using an iterative process of fitting force field results to
either ab initio or experimental data. The results of molecular mechanics calculations
are often structural data and energies although other quantities such as vibrational

frequencies and heats of formation can also be obtained.



Chapter 3

Molecular Representation and

Geometry Optimization

3.1 Introduction

Two concepts central to any molecular modeling method, including molecular
mechanics, are how the molecule is represented and the geometry which the molecule
has when its energy is lowest. A molecule can be represented in different ways de-
pending on the coordinate system the method works with. But before the coordinates
for the molecule can be built, the positions of the atoms must be determined. This
can be done by treating the atoms in a molecule as vertices of a graph and the bonds
as the edges which connect the vertices.

Once the coordinates are built and the potential energy function is known, the
potential energy surface around the structure can be explored to find points where
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Figure 3.1: Diagram of a geometry optimization after the generation of the initial
Cartesian coordinates.



the energy is lowest. Methods are available to do this and are collectively called
optimization methods. When these methods are applied to optimize the potential
energy of a molecule with respect to the coordinates used, they are collectively called

geometry optimization. A diagram of this entire process is given by figure 3.1.

3.2 Topology: Information Regarding 3-Dimensional

Molecular Structure

3.2.1 Edges, Vertices, and Graphs

A nondirected graph G can be defined as a collection of vertices and the edges
which join them. The collection of vertices form a vertex set, or Vi and the collection
of edges form an edge set, or Eg, such that the elements of Eg are unordered pairs
of distinct elements of Vg [11, 12].

A graph can be viewed pictorially by representing the vertices by small hollow or
filled-in circles which are connected by lines. These lines represent the edges. Often
the term graph is used to mean both the pictorial representation and the formal
definition.

Graphs are particularly useful in chemistry to represent chemical structures.
These structures can be molecules, crystals, reactions, etc., and they contain pieces
which are connected to one another. The pieces and their connectivities are analogous

to the vertices and edges of a graph, respectively. The vertices in a graph can be used
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H H
propene graphical representation

of propene
Figure 3.2: Example of a diagram of a molecular graph representing propene.
to represent atoms, molecules, electrons, functional groups, etc. The edges can be
used to represent chemical bonds, van der Waals interactions, partially formed bonds,
etc [11, 12]. An example of a diagram of a molecular graph is given in figure 3.2.
The information contained in the graph can be used to determine the atoms in-
volved in interactions (for example, torsions), lists of bonded and nonbonded pairs,
valencies of the atoms, locations of rings in a molecule, and a variety of other in-

formation. Some of the uses of the molecular graph will be di d in

sections.

3.2.2 Valency, the Adjacency Matrix, and the Distance Ma-
trix

A wide variety of information can be collected from a graph, for example the

graph shows which vertices are connected and which ones are not. With the vertices,

this connectivity information, and some idea about bonding at centres (represented

by the vertices), a molecule can be d. The ivity infe




is straightforward to compute for a given graph G provided some order is given
to the vertices. This can be accomplished with vertex labeling. Once the vertices
are labeled, it can be determined if two vertices share an edge if they are adjacent
to one another. One must be careful when labeling the graph as the connectivity
information depends on the way it is labelled. The matrix formed by a collection of
this connectivity information is square symmetric, and is called the adjacency matrix.
Its both dimensions are the number of vertices (N), or N X N. In other words, each
row (or column) contains information about which other vertices are adjacent to the
one represented by the row label. The adjacency matrix is comprised of entries of

ones and zeros which are determined as follows [11, 12]:

1 if vertices v; and v, are adjacent,
A= (3.1
0 otherwise.

When building the adjacency matrix for molecular systems, it often does not suffice
to determine adjacent vertices, but to define some distance which the vertices must

be within to be considered connected.
By summing the entries in a row of the adjacency matrix the number of vertices
a vertex is connected to can be determined. This sum is known as the valency of the
vertex. If the shortest path between two vertices is placed in the adjacency matrix

in place of the entries for each vertex, this matrix is called the distance matrix, and



its entries are denoted by the following relation [11, 12]:

Dy = (32)

The [;; in the above equation is the distance of the shortest path between two vertices.

3.2.3 Rings

Rings within a molecule can be found by constructing a spanning tree to deter-
mine the number of edges which close a ring. This number of edges is the same as the
number of rings within the graph. A spanning tree has the feature that it includes
all vertices of a graph, but does not contain cycles. If an edge is found which creates
a cycle, that is which closes a ring, then it is removed and counted. Determining
the location of rings within a graph involves travelling through the paths of a graph
and the paths which are closed, that is the beginning and end vertices coincide, are
the rings (or cycles). A path is a sequence of edges and vertices where the edge is
incident with the vertices immediately before and after it, but where all vertices are

distinct [12, 13].



3.3 Geometry Optimization and Energy Minimiza-
tion

3.3.1 The Potential Energy Surface and Chemically Interest-
ing Points

The potential energy surface describes the changes in the potential energy of a
system with respect to the positions of the nuclei. As a result, this surface can give
information on the effect of structural changes on the potential energy.

The structure of a molecule can be determined by investigating the poten-
tial energy surface at different geometries. It is possible for the molecule to have
minimum and maximum energy structures, and in the case of molecules in a reac-
tion, a transition state structure. These points are referred to as stationary points
as the first derivatives of the potential energy with respect to the coordinates is
zero [14, 15, 16, 17].

In order to determine the location of these points on the potential energy surface,
it is useful to obtain first and second derivatives of the potential energy function
as they give information on the location and type of stationary points. Since the
negatives of the gradients (or first derivatives) correspond to the forces on the atoms
in classical mechanics, these stationary points also are places where the forces on the
atoms are zero [14, 15, 16, 17).

The second derivative matrix is the force constant matrix and gives information
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about the type of stationary point found. If this matrix is diagonalized, the resulting
diagonal values at the stationary points are the vibrational frequencies. For a mini-
mum, all these diagonal values are positive, for a maximum, they are negative, and
for a saddle point, some are positive and some are negative. If there is more than
one minimum, the one with the lowest energy is the global minimum and all others
are called local minima. The order of the saddle point corresponds to the number of
negative eigenvalues, or the number of directions for which the energy is a maximum.
Transition state structures correspond to first-order saddle points [14, 15, 16, 17).
Figure 3.3 shows an example of a surface for the function given in the caption.
It shows examples of maxima, a global and local minimum, and a first-order saddle

point.

3.3.2 Energy Minimization

A variety of different forms of energy minimization methods exist, each using
varying amounts of information about the potential energy surface. The derivatives
employed in these methods can be computed analytically or numerically, depending
on the expense of analytical computation. Analytical derivatives are preferred as they
greatly speed up the optimization.

The selection of an optimization method depends on the type of problem being
solved, the number of independent variables used in the function, and some charac-

teristics of the function used. In the case of molecular mechanics, the function is the



maximum

first order
saddle point

local minimum 2

global minimum

Figure 3.3: Sample plot showing stationary points for f(z,y) = 3(1 - a?)e~*" —
- ”2 " %efuu)‘ =% yz [18].
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potential energy with respect to cither cartesian or internal coordinates. It is a non-
linear multivariate function (more than one independent variable) with no imposed
constraints. Two possible problems to be solved are minimization and search for sad-
dle points. The methods discussed in this chapter are designed to search for minima.

The problem can be formulated using the following equation [4, 15, 16, 17, 19]:

minV(q), ¢ € D. (3.3)

where the objective function is the potential energy function with respect to the
internal coordinates, given as V(q). The potential energy function also contains
continuous derivatives up to second order, which is needed to be able to apply the
optimization methods.

There are two classes of optimization methods: those that use derivative infor-
mation and those that do not. The derivative methods are the ones which will be
described in this work.

Newton and quasi-Newton methods approximate the potential energy surface

with the following quadratic function:

1
Via +p) % Vig) + gip + 5p'Gp. (3.4)



where the subscript ks the iteration number, V(gx+p) and V (gx) are the current and
initial potential energies, py is the step vector, gi is the gradient, and Gy is the second
derivative matrix. The minimum corresponds to a zero gradient, and the descent
direction is computed by finding a p which minimizes the following function [15, 16,

19):

v
i 9(9) = gk + GrlAgy. (3.5)
Qi

This gives the step size as [15, 16, 19]:

Agy = ~Gy'gi- (3.6)

The descent direction can be computed by the trust region and line search
methods, but will not be described here. The reader is referred to the references

[4, 15, 16, 17, 19] for more details.

3.3.3 First Derivative Methods: Steepest Descent

There are several first derivative methods available, with the most common
one being Steepest Descent. In steepest descent the second derivative matrix is

approximated as unity, giving the step direction and step size as the negative of



the gradient. This is sensible as the gradient is orthogonal to the contours on the
potential energy surface where the function value is constant. A negative gradient
corresponds to a change in the structure of the molecule to reduce the forces on the
atoms which is the direction of steepest descent. Often the step size is taken along
the negative gradient, although in some cases a line search is performed [4, 15].

The steepest descent method works well for initial structures which are far from

a minimum. If, however, the structure is near a mini steepest descent

slowly. As the optimization is taken close to a minimum, the search vectors become

less reliable [4, 15].

3.3.4 Second Derivative Methods

The best known second derivative method is that of Newton and Raphson as it is

exact. In the Newton-Raphson (NR) method, the energy is evaluated for the current

di the di are d, a line search is performed to determine
the next step direction, the Hessian is recomputed, a step is taken to update the
coordinates, and the convergence is tested. In the case of full Newton-Raphson, the
Hessian used is the true second derivative matrix.

This method is quick to converge when near a minimum as the quadratic ap-
proximation is valid and a true second derivative matrix gives faster convergence than
an approximate Hessian. However in places on the potential energy surface where

the quadratic approximation is not as good, such as places far from the minimum,



the NR method is slow to converge [15, 16, 19].

Since the inverse Hessian is expensive to compute directly, several methods are
available to approximate it and it is the variety in these approximations (update
formulas) that gives the different gradient optimization methods.

It is not necessary to compute an exact Hessian and an approximation is much
cheaper to compute. An approximate Hessian can be computed by using information

about the diffe in the d di and gradients at the current and

next steps [15, 19].

Other gradient methods also available to the molecular mechanics package in-
clude Broyden, Fletcher, Goldfarb, and Shanno (BFGS) and Newton-Raphson, as
well as the optimally conditioned (OC) and direct inversion of the iterative subspace
(DIIS) methods. Another method, based on a minimization of sum of squares of the

gradients (VAOSAD) is also included [4, 15, 16, 19].

The BFGS Method

In the BFGS method, the update to the Hessian is computed by the following

relation [4, 15, 16, 19, 20]:

AgeAgh  HiAgpAgpHy @7
AgiAge  AqiHiAge .

Hygp = Hy +



The Direct Inversion of the Iterative Subspace Method

DIIS begins by expressing the set of coordinates as a deviation from the expected

solution:

4 = go + & where ¢, = —H g, (38)

Using the relationship Y, cig; = go, the following system of equations is solved to

generate the ¢;’s:

By B -+ Bim 1l |a 0

By By - B 1 | 0
=i (3.9)

Bm Bmz -+ Bum 1| |cm 0

1 e 1 0] [=A 1

where B;; =< e;le; > and X is a Lagrangian multiplier. The new gradients and

coordinates for the current step are interpolated using gms1 = Y, ¢ig; and gmia

3°; cigi and the updated coordinate vector is then given by [21]:



i1 = Gy = H gy (3.10)

The Optimally Conditioned Method

In the OC method, the Hessian is first factored into H = JJ” and only the
matrix J is stored and updated. The change in the coordinates is given as it is
for NR and other methods as —H~'Ag, but the change in the coordinates and the
gradients, denoted Ag and Ag, are projections of the actual Ag and Ag. These

projections are used to update the Hessian. The optimal conditioning is given as the

of the ratio i 4\, 1) /mai +), 1), where the \s are given by

the equation H,u = AHu [22].

The Minimization of Sum of Squares Method

In the minimization of the sum of squares method (called VAO5AD), the sum of

the squares of the gradients is used [23]:

Flg) = lai(a)]* (3.11)

The minimization is then done in terms of F(q), the sum of squares with the goal

of giving gradients at the next step which are smaller than those at the current step:
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Flgesr) < Flax) (3.12)

The iteration for the VA method is then given as zx4) = Zx + Ak and a suitable
A is chosen to satisfy the above relation. If Ay is modified to give g = ge + Mk,

the step size 7 is given by:

1[0F(q)
= gp—a| = ; 313
=5 [ (313)
where 1y is a ti This par i then optimized to ensure

subsequent iterations give smaller values for the sum of squares of the gradients than

the previous iterations [23].

3.4 Coordinate Systems

3.4.1 Definition

The potential energy must be expressed with respect to a particular set of coor-
dinates. These define the positions of the atoms with respect to one another. There

are several options for coordinate definition and depend on the problem being solved.

In molecul hanics, the i system most often used is redundant



internal coordinates, where every possible stretch, bend, torsion, and out-of-plane
bend is included. These values can be computed using the cartesian coordinates and

simple vector relationships, and are the topic of the next subsection [9, 10].

3.4.2 Definition of Redundant Internal Coordinates from Carte-
sian Coordinates

The definitions of the coordinates are given in chapter 2 and the reader is
referred to this chapter for a definition of them. The gencration of the coordinates
from the cartesians will be given here.

A bond is defined as the magnitude of a vector from atom i to atom j of the

bond. It is also the length of the bond, and is described by the relationship [24]:

rij =\ (&; = 2:)? + (45 — %:)? + (2 — 2)% (3.14)

The values x, y, and z are the cartesian coordinates for the atoms.
Let i, j, and k denote three atoms in an angle, where jis the central atom and is
bonded to i and k. Also, let & and B be the vectors 7 and K}, respectively. Then

the angle is given as the dot product between the two vectors A and B [24]:



(3.15)

2 arccos( 4.7 )

ik = .
AN

Let i, j, k, and [ denote four atoms in a torsion, where the central bond is formed

between atoms j and k, and j is bonded to i and k is bonded to L Also, let Z’, ﬁ,

and T denote the vectors 7, jk, and kI, respectively. Then the torsion is given as

the angle between two vectors formed from the following cross products 14, 24:

B =2 xT =|A|B|sn¢,
E =B x7T =|B|Csings,

(3.16)

where ¢, is the angle between ? and ﬁ, 5 is the angle between ﬁ and E‘\, and
the vectors D and E are the resulting vectors of the cross product. The torsion is

then given by the following scalar product between T and E [14, 24) :

6= arcoos(%’l—%). (317)

Let 4, j, k, and [ be four atoms in an out-of-plane bend where atom j is the
central atom and is bonded to only atoms i, k, and L. Also, let A, B, and € denote

the vectors 77, 7%, and 71, respectively, and D is a vector resulting from the vector
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product of A and B. Then D and the out-of-plane bend are given by the following

relationships [14, 24]:

D=2xB=|R|B|sinp
oo ()]

(3.18)

3.4.3 Coordinate Conversion: Redundant Internal Coordi-
nates to Cartesians

For the molecular mechanics package, it is possible to do the optimizations with-
out converting from one coordinate system to another, as the optimization package
updates the coordinates directly. However, if the cartesian coordinates are needed,
they can be converted from the redundant internal coordinates using an iterative
process and a transformation matrix called the B matrix [25, 26, 27].

In some molecular mechanics packages, the geometry optimization is run us-
ing cartesian coordinates, however for ring systems and to speed up convergence,

redundant internal coordinates are preferred [25, 26, 27].

The ion from di to cartesians is curvilinear, and must
be done iteratively. The relationship between the two coordinate systems can be

written as [25, 26, 27]:
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Aq=BAz —_—
3.19
il
= oh.

The Az is the difference between x values at successive iterations of the above
and the Ag is the difference between the redundant coordinates from the current op-
timization step and those updated during the iterative process. A matrix G can then
be defined by the relation G = B'B. Because the set of q is redundant, the B matrix
contains linearly dependent rows and G is singular and it is not possible to compute
an ordinary inverse . Ordinary inverses can only be computed for nonsingular square
‘matrices, however it is possible to compute a generalized inverse [28].

The generalized inverse is d using a diagonalization followed by a back-

substitution step, and the most popular method is the singular value decomposi-
tion [28].
The update to the cartesian coordinates is given by rearranging the previous

equation to give:

Ac =G B'Aq. (3.20)

Only the ordinary inverse gives the identity matrix if multiplied by the original matrix, shown
by the relationship GG—1 = I [28].

49



To determine if the iterative conversion process is finished, the change in the
cartesians is checked and the iterations stopped when the change is less than a thresh-
old value, usually 1078, If for some reason the iteration does not converge, the results
of the previous iteration are used and the process is stopped [26]. A test for diver-
gence is done by checking at each iteration to make sure the current value is not
greater than the previous value of the updated cartesians. This iterative procedure

will work well if the step taken by the minimization procedure is not too large [27].

3.5 Summary

Obtaining an optimized geometry is central to molecular mechanics. There are
several steps involved, and these were summarized in figure 3.1. From an initial set of

Cartesian di the molecular graph i ion is obtained. The redundant

internal coordinates can then be built from the molecular graph information and

the Cartesian i Geometry optimization can then be completed using the

redundant coordinate system and these can be updated by conversion of the new set of

d di 1 at each optimization step to Cartesian coordinates.

Because this conversion is curvilinear, it must be done iteratively. The new Cartesian

coordinates are used to generate the redundant coordi for the next

step. This process is repeated until convergence is reached.
There are a variety of different methods for geometry optimization, and they

fall into two classes. First derivative methods use first derivative information and
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include the steepest-descent method. The second derivative methods use both first
and second derivative information and include both Newton-Raphson and the family
of quasi-Newton methods. Selection of a method depends on the ease of computing

the function and its derivatives. Central to coordinate generation is the molecular

graph. Before the coordinates can be built, ivity and valence i ion is

needed, and this is built using relationships derived from topology.



Chapter 4

Object-Based Analysis and Design

4.1 Introduction

There are several details which must be considered when the time comes to
start designing code. The analysis and design of any code involves deciding what
features the code should have to be considered a good program (see section 4.2) and
selecting a method of analysis and design which best models these features in the code.

Two types of analysis and design methods often used are called procedural-based and

bject-based design. P: dural-based design involves organizing the code in terms of
the functional steps executed in transforming the statement of the problem one wishes
to solve to the desired solution. Object-based design breaks the problem domain (the
model of the problem in the real world described by the problem statement) into
subunits called objects, and these objects interact to give the solution. There are
advantages to using the object-based design over procedural-based design in solving
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problems in large codes, and as a result, it will be the method outlined in this chapter.

It should be emphasized to the reader at this point that the term object-based
is used loosely here. The ideas of this version of the object-based design method are
not the same as those used in object-oriented design, but may have some similarities.

The object-based design method starts with a description of what features are
present in good programs. This is followed by a description of the problem in terms
of three models: the object, dynamic, and functional models. These models have
many similarities with the models in the object-oriented design strategy, however the
definitions of the parts of the model differ somewhat and the two should not be
confused with one another. In this work, the object-based design strategy was used
and as the analysis and design is given for the molecular mechanics problem described
in Chapter 2, the descriptions of the parts of each model and design steps will be
given in more detail. After the parts of the model are complete, a language is selected

for implementation and the process of implementing the models in the code begins.

4.2 Features of Good Programs

The first step in designing code to solve a problem is deciding on the features it
should have which would be desireable to both the programmer and the user. There

are several general features all software should have to be considered good software.

They are correctness, robustnes dibili bili ibility, efficiency,

portability, verifiability, integrity, easc of use, and proper documentation, and are
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defined as follows.

Correctness and Robustness

Correct code does what it was intended to do for all possible known cases. This
is the most important feature because if the code does not behave as expected, then
the other features mean nothing. However, one cannot possibly know all cases that
need to be run. In these cases, should the program fail, it should do so in a clean
manner with the proper error message to alert the user or programmer of the problem.

This feature is known as robustness [29].

Extendibility

Estendible programs are easy to modify or extend, for example when a new
feature is needed. For small programs this is not an issue but for large complex
programs it is essential. In order to make code more extendible, two things can be

done [29]:

1. Simplify the code: the program should be designed in a simple manner, with a

simple architecture.

2. Divide program into smaller parts: The program can be divided into smaller

independent subunits of the program.



Reusability

Reusability of the code is also an important feature. The more code is reused,
the less code needs to be rewritten and this reduces the cost of development. What
parts can be reused is determined by finding parts of the code that are the same or

share a common piece [29)].

Compatibility

Compatibility is the ability of subprograms to be combined easily without con-
flicts between each part. This is a necessity for projects which involve more than
one contributor. This is important in enabling software parts to interact with one

another [29].

Efficiency

The program should be efficient, that is it should make optimal use of the

hardware and software components of the system it runs on [29].

Portability

Portability, the capability of the program to run on a few different systems, is
an important feature. In ensuring this feature, any machine-specific parts should be

clearly defined in the documentation [29].



Verifiability

The programmer should be able to prepare test data and procedures to determine
if there are any problems with the software. This would be best accomplished if test
data was included with the software package along with instructions on running test

data and listing of expected output [29].

Integrity

The program should have integrity, that is the program components should not
be able to corrupt one another. Utilities can be designed to handle security within

the program and this should be an essential part of the software design [29].

Ease of Use

The software should be easy to use (operate, prepare input, analyze output,
handle errors) and should come with documentation to instruct the user what to do

if a problem is encountered [29].

User and Programmer Interests

From the user’s point of view, the program should be correct, robust, compati-
ble, portable, efficient, easy to use, and be well documented. From the programmer’s
point of view the program should have all of the above features and also be ex-

tendible, reusable (or have reusable parts), verifiable, and have integrity. Ideally for
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both the user and the programmer, the program should be optimal in every feature,
but this is not always possible. As a result, there are tradeoffs between these features.
When designing programs one should try and balance each feature in the best way

possible [20].

4.3 Decomposition Approaches

Breaking a problem down into smaller units is central to code design. There are
two main ways in which the problem can be viewed. The flow of execution from the
problem statement to the desired solution can be examined or the model of the real-
world problem (called the problem domain) can be subdivided into independent units,
called objects, which interact with one another. These two methods of subdividing the

problem are called algorithmic and object-based d ition. There are ad

and disadvantages to using one or the other di ition, and this is d dent on

both the size and type of problem being examined [30].

4.4 Analysis Steps

The first step in the analysis stage is to completely specify the problem domain
using all three models, giving three parts to the analysis. In doing so, no imple-
mentation details are to be considered. The goal of the analysis is to completely

understand the problem and how to obtain the solution. A good description of the
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Figure 4.1: Parts of Analysis and Design.
problem enables the designer to obtain a clear picture of it through the three models.
The main parts to analysis and design are shown in figure 4.1 along with their
interaction with the real world. The analysis stage is an iterative process that must
work to unify all three models. There are four main steps to analysis: the problem
is first described in words and the three models are built from both the knowledge of

the problem and the words in the problem description [30, 31].

4.4.1 Describing the Problem

The first step to describing the problem was to decide what was needed in the

program. This helped to define the necessary parts of the problem. Next, the features



available to users were decided upon as well as which of these were optional and which
were not. When formulating the problem statement, no system requirements were
considered as they would restrict the analysis. Protocols, without implementation
details, were also decided upon and these were to be followed. Also any assumptions
which were made in formulating the problem were clearly stated (30, 31]. The problem

description is given in Chapter 2.

4.5 The Object Model

Of the three parts to object-based analysis and design, the object model is the

largest and encompasses the most concepts. It involves breaking the problem into

separate defining the ik and behaviors of these ab

defining the communication between them, and relating them to give a completed
picture of the problem domain. The four main parts of the object model are abstrac-
tion, encapsulation, modularity, and hierarchy. Together they can be used to create

programs that have the desired features [29, 32].

4.5.1 Parts of the Object Model
Abstraction

Abstractions are classifications based on the properties of objects that make
them different from other objects of different kinds. They are designed to model
the real world version of the object and help to reduce the problem domain into
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subproblems that can be worked with. They provide clear descriptions of the problem
and are based on how their designer interprets them in the real-world model. They
are not implementation-dependent and are not complete or accurate, due to the
limited ability of people to verbally describe the world around them. Abstractions
also provide an external view of an object [29, 32].

The idea behind creating abstractions is to concentrate on those attributes that
belong to objects that have some purpose and supress those that do not. They can
usually be determined by grouping objects together which share a common purpose

and selecting the attributes the objects have in common [29, 32].

Encapsulation

Encapsulation, also known as information-hiding, is used to hide the implemen-
tation details of the program from the user while creating software which gives enough
information to enable the user to easily use it. It also provides barriers between ab-
straction levels. An interface can be used to achieve the illusion of simplicity by
hiding these implementation details. The idea behind encapsulation is twofold: first
the details of the implementation of a program are not needed by the user and it
promotes independent description of objects so that if one object is changed this will

not affect the objects which use it [29, 32].



Modularity

Modularity is a property of a program that is comprised of program pieces, each
which have optimal communication and contain a complete set of abstractions. It
creates defined partitions within the problem domain and these well-defined sub-
problems can be combined to produce the software’s architecture. The module can
be viewed as a container in which the abstractions can be placed. These modules can
be compiled separately and interact with each other through messages. One can place
one or many classifications in a module. Communication between modules must be
optimal. This enables changes such as additions and deletions to be done easily with-
out the recompilation of entire module interfaces, although this issue also depends

on the language used. A good ination of ion and infc ion sharing

between modules should also be created and one must be careful not to create too

many modules (29, 32].

Hierarchy

A hierarchy is a logical ordering of abstractions and objects. Two important hi-
erarchies within programs are the structures of both the abstractions and the objects.
An important part of hierarchy is inheritance and is described as a definition of the
relationships between abstractions. Inheritance is defined by is-a or kind-of relation-
ships, for example an apple is-a kind of fruit. There are three types of hierarchies:

single inheritance, multiple inheritance, and aggregation.



Single inheritance occurs when one abstraction inherits the attributes and be-
haviors of another abstraction. Multiple inheritance occurs when one or more ab-

stractions, also called classes, inherit the attributes and behaviors from more than

one abstraction. Usually similar attributes and | become part of
and different attributes and behaviors become part of subclasses. Aggregation involves
part-of relationships and one class is usually contained within another. One impor-

tant benefit of hierarchies within code is they promote the reuse of common code

fragments [29, 32].

4.5.2 Other Concepts in the Object Model
Classes and Objects

An object in the real world is a visible thing which has clearly defined boundaries
on its definition. It has distinct properties, a state which may change over time, and
some well-defined behavior. It is capable of performing actions itself or a user may
perform actions on it. Often the objects in a problem to be solved on a computer
are defined to model an object in the real world. They also have state, behavior, and
some clearly-defined properties. Objects can also be concrete, like something that is
visible, or abstract, for example, mathematical formulas. They also have their own
identity, which means that every object, whether it has the same attribute values
and behaviors as other objects, have some characteristic which makes them different

from objects of the same kind [30, 31, 32, 33]. In the description of the problem to
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Figure 4.2: A sample class diagram.

be solved, objects are usually the nouns.

A grouping of objects with the same attributes and behaviors can form a classi-
[fication, usually shortened to class. The class describes the attributes and behaviors
that are similar in the group of objects for which it represents. The objects are differ-
ent in the values for their attributes and how they relate to other objects is different.

‘What is defined as a class in the problem domain depends on the judgement of the

performing the ions and the definition of the problem. As a result,

there is no right or wrong way to define a class, however there are some guidelines
that can be followed [30, 31, 32, 33].

A class should provide a very definite abstraction of the objects it represents

as determined from the description of the problem domain. It should also contain a

set of responsibilities, however small, and it should perform these as expected. They

should also be simple in design and easy to understand, although still be built so

they may be modified or extended. Finally, they should clearly describe the behavior

of the abstraction performed and yet keep the details of their implementation well

hidden. Also, they should easily model the group of real world objects for which they

were designed.
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Figure 4.3: A sample object diagram.

There are a couple of diagrams that are useful in describing the object model
pictorially. They are object and class diagrams. An example of a class diagram is
given in figure 4.2. Usually diagrams are used for abstract modeling and are not useful
enough to move directly from them to implementation. The object diagram, however,
can be used for both designing the actual program and abstract modeling [30, 31, 32,
33].

An example of an object diagram is given in figure 4.3. In both object and
class diagrams, the object or class is defined by a rectangular box, but in the object
diagram the corners of these boxes are rounded. In the boxes go the names of either
the class or the object. In the object diagram the name of the class is placed in
parentheses at the top of the box representing an object that is an instance of it. It is
also possible to add attributes to both class and object boxes. Within the class box a
line is placed between the class name and the attributes and the attributes are listed
with their types with a colon separating the attribute and its type. In the object box
the class is listed in boldface and the attribute value is listed in regular print below
the class name [30, 31, 32, 33].

Methods (or behaviors) can be added to the class boxes by placing the method
below the attribute list. The attributes and methods are separated by a line in the
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stretch energy stretch coordinate
name name

Class Diagram

(stretch energy) Has-coordinate (stretch coordinate)

C-H bond C-H bond

Instance Diagram

Figure 4.4: Class and instance diagrams showing a one-to-one association between
the stretch energy and the stretch coordinate for a C-H bond.

class box. The inputs and their primitive types (for example, integer or character) are
also listed. The inputs and types are separated by a colon and placed in parentheses
after the methods. Following the inputs but outside the parentheses are the outputs,
of which the type of output need only be listed.

The way an object or class relates to another object or class is represented by
links and associations. A link is much like an object itself, and each link is an example
of a particular type of association. Associations can be defined as one class (or object)
associated with another class (or object) in a very general sense and vice versa. To
be more specific, a link is used to indicate relationships between classes or objects
in the diagram. An object or class may be linked to one object or class and this is
a one-to-one relationship. An example for a one-to-one association is given for the
stretch energy and its coordinate in figure 4.4. If more than one object or class is

involved in the link it is a t t , or -t y relationshi
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They are often represented as pointers in a programming language, although this
depends on the language being used [30, 31, 32, 33].

In the object and class diagrams, binary relationships are denoted by a line
and ternary relationships by a diamond with lines coming from its corners. If a
particular end of the relationship corresponds to multiple objects or classes, the line
is terminated by a solid circle, if the end corresponds to zero or more classes, the line
ends with a hollow circle, and if the end corresponds to one class or object, the line

ends with nothing attached (30, 31, 32, 33].

Inheritance

Inheritance is defined by an is-a relationship. The main motivation for deter-
mining these relationships is code reuse. Often objects may share things in common

with their own class and also with objects belonging to other classes. In this case it

would be L ial to extract the ik and behaviors common to all the classes
involved in the inheritance and create a superclass containing these attributes and
behaviors. Any attributes and behaviors that are different in the remaining classes
can be added to the subclasses, which would then inherit the components of the su-
perclass. Inheritance also helps to simplify a problem by reducing it to a group of
classes, some of which can be conceptually formed from others [31]

The brief outline of inheritance was given to show the complete picture of the
object model. However, no inheritance relationships are present and as a result it

will not be discussed further.
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4.5.3 Building the Object Model

Not all of the objects and classes can be obtained from the list of nouns, although this
list is a good first approximation. Some objects not stated as nouns will be implicit
in the problem statement. It is also possible some of the classes and objects were
poorly stated and in a first set of objects and classes this is quite common. Some

possible poorly stated classes and how to fix the problems are:

If two classes contain the same information then they are redundant and only

one should be kept.

o Classes that have no relevance to the problem are irrelevant and should be
climinated. Only keep classes and objects that are necessary in the domain of

the problem, no more and no less.

o Classes with an unclear description should be reformulated or removed. A class

should be clear and simple.

Classes which describe one object would be better suited as attributes unless

the class makes sense in the context of the problem.

If a class describes a particular operation and is not operated on itself or it has

no features itself, then it is probably an operation and not a class.

Objects should not be named according to their role in an association.



o There should be no objects or classes which describe some implementation con-
struct. The only objects and classes that should be present should be relevant

to the real world model of the problem [30, 31, 32].

In order to assist in choosing classes and objects, it would be helpful to build a

data dictionary.

DATA DICTIONARY:
Energy: a quantity d using the and dinate values

for particular interactions. This quantity must be minimized to get the opti-
mized structure. It contains contributions from each coordinate and can be
summed to give a total contribution. The number of energies is given by the
number of coordinates.

Gradient: a quantity which is also derived from the coordinate and param-
eter values, and is equal to the analytical first derivative of the energy with
respect to a particular coordinate. This quantity must be zero for minimum

structures. It contains ibuti ding to the di and

the number of contributions is given by the number of coordinates.

Second Derivative: another quantity derived from the parameter and coor-
dinate values. It is the analytical second derivative of the energy with respect
to the coordinates and contains these second derivative quantities with re-

spect to the coordinates. It also contains the same number of contributions

as the number of coordinates squared.




Coordinate: The coordinate is a particular quantity used to describe the
geometry of the molecule. Each coordinate object contains a set of contri-
butions which are the coordinate values for a particular type of interaction
and include only 1-2, 1-3, and 1-4 bonded interactions. The number of coor-
dinates is given by the number of interactions within the molecule.

Molecular Mechanics Atom: The molecular mechanics atom is described
mainly by the atomic number, hybridization, size of ring it belongs to, and
whether it belongs to an aromatic system or not. The result is an assigned
atom type based on these values. The atom type is then used in the selection
of the parameters for a particular interaction (based on the types of atoms
involved in the interaction). This quantity is specific to the force field used.

P: : The is a set of predefined data values for a partic-

ular set of ics atoms and i i It contains sets of|

parameters for each interaction type and is used in the energy, gradient, and

second derivative computations.

Shown above is an example of a data dictionary for the molecular mechanics
problem. In it, the objects are defined, their properties are given, and its uses and
responsibilities are defined in the context of the real world problem. This will help
to pick out classes, objects, and associations [31]. The interaction class mentioned in
several places in the above data dictionary is not defined in the molecular mechanics

code. It is defined by the topology code and it is for that reason it is not included



explicitly in the analysis and design of the molecular mechanics program.

Using Chapter 2 and the above data dictionary as guides, the objects were

selected and placed in a group ding to shared attrik and/or behaviors. The

classes in the molecular mechanics package and the corresponding objects are:

energy

— stretch, bend, torsion, out-of-plane bend, van der Waals, electrostatic,

stretch-bend

gradient

— stretch, bend, torsion, out-of-plane bend

second derivative

— stretch, bend, torsion, out-of-plane bend, stretch-bend

coordinate (redundant)

— stretch, bend, torsion, out-of-plane bend

molecular mechanics atom

~ atoms in the molecule

parameter

— stretch, bend, torsion, out-of-plane bend, van der Waals, electrostatic,
stretch-bend
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The classes and the list of attributes and behaviors are given by investigating the
class descriptions. The data dictionary provides the information needed to form the

attribute and behavior list for each class and is given as follows:

e energy

— attributes: energies, number of energies, sum of energies

— behaviors: initialize energy, build energy
e gradient

— attributes: number of gradients, gradients

— behaviors: initialize gradient, build gradient
e second derivative

— attributes: number of second derivatives, second derivatives

— behaviors: initialize second derivative, build second derivative
e coordinate (redundant)

— attributes: coordinates, number of coordinates

e iors: initialize i build di

e molecular mechanics atom

— attributes: atomic number, hybridization, ring size, atom type, aromatic/not

aromatic



— behaviors: initialize atom
e parameter

— attributes: stretch, bend, torsion, out-of-plane bend, van der Waals, elec-

trostatic, stretch-bend

— behaviors: initialize parameters

In the above list, all energy objects would have a specific value for each attribute
depending on the object, all gradient objects would have specific values for the gra-
dient attributes, and so on. In the case of the parameters, the objects all have a
parameter set, but do not necessarily have the same type of parameters. An example
is given by the stretch and torsional parameters. The stretch parameters have the
equilibrium value and force constant as part of the parameter list for each stretch and
for each torsion there is no equilibrium value or force constant, but three torsional

parameters. As it turns out, the stretch, bend, out-of-plane bend, and stretch-bend

parameter sets each have equilibrium values and force constants, the torsional pa-
rameter list contains the three torsional parameters, the van der Waals parameter
list contains the minimum energy separation and well depth, and the electrostatic
parameter list contains the charges on each atom. Therefore, the parameter list is an
object which includes all parameter lists as its attributes.

An association is a dependency between two or more classes and one class
usually refers to another. Within the problem statement, the verbs generally describe
associations between the objects, one object referring to another. From the groupings
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of these verbs abstractions can be made on the associations, giving association objects
and classes. It is best to write down all the verbs and examine the problem statement
for implicit associations [31].

As a start to a list of associations, the verbs or verb phrases in the data dic-

tionary previously given were investigated. These associations correspond to actions
in a particular direction, for example data use in a computation. In the molecular

+ case, the iati d to the use of one particular quantity or

set of quantities to compute others. For example, the computation of the energy for

the stretches requires the stretch i and and the

between these classes correspond to requests from the stretch energy object to the
coordinate and parameter objects for this data. The following table gives each set of

objects which share an iation and the cor di

Table 4.1: Class Associations

Class 1 Association | Class 2
energy uses parameter
energy uses coordinate
gradient uses parameter
gradient uses coordinate
second derivative uses parameter
second derivative uses coordinate
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continued from previous page

Class 1 Association | Class 2

parameter uses atom

In the above table 4.1, the class on the left has the association in the middle with
the class on the right. For example, in the above table, the entries in the first row
state the energy objects use the parameter objects in the computation of the energy

contributions and must send a request for this information to the parameter objects.

4.5.4 The Object Model Diagram

The above pieces can now be combined to give a pictorial representation of the
object model for the molecular mechanics problem. This diagram is shown in figure
4.5 below.

The parts of this diagram were described in some detail in the previous section

(section 4.5.2).

4.6 The Dynamic Model

The object model is a good start for describing a problem domain in object-
based terms, but is not a complete description. The object model describes the
system from a static point of view, but in many cases the problem domain is dynamic.

The dynamic model investigates the problem based on the state of the objects and
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Figure 4.5: The object model for the molecular mechanics package.
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events which occur that change some or all of these states. It is a description of the
evolution of a system of concurrent objects, describing the actions and reactions of the
objects to events (external stimuli) [30, 31]. For the molecular mechanics problem the
objects defined above are static. The transformation from input to output is defined
in one step and the dynamic model is therefore trivial and will not add additional
information to assist in the understanding and breakdown of the problem. For this

reason the description of the molecul hanics problem in terms of the dynamic

model will not be covered in this work.

4.7 The Functional Model

The functional model represents the flow of data from input to output and shows
how the input is transformed to give the output. It represents a sequence of oper-
ations (or functions) that operate on the data to achieve the final result. It also
includes constraints placed on data or operations and does not include control or
object information. It explains more clearly the actions shown in the dynamic model
and the operations present in the object model. It is very useful for programs which
compute the results of a function [31].

A relationship exists between data values through the functions which act upon
it. This is shown with the functional model and is best built after the object and
dynamic models are built. The processes in the functional model correspond to the

behaviors in the objects and the data flow corresponds to movement and changes in
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the objects’ attribute values. Building the functional model requires five steps and

they will be given below with a description of each step in some detail [31].

4.7.1 Input and Output Values

The design of the functional model begins by making a list of input into the
program and the output the program will produce. These usually correspond to the
passing of information between the system and external clients such as the users [31]

The molecular mechanics package obtains its inputs from the results of the menu
system. If an input file which contains the molecular structure information in the
form of a Z-matrix or cartesians, is given to the program, the menu system parses it
and obtains molecular information which it converts to cartesian coordinates. This
information is used by the topology program to generate a series of interactions within
the molecule, at which time the molecular mechanics package obtains, as its input,
the cartesian coordinates and atoms involved in the interactions within the molecule.

Output from the molecular mechanics code should consist of the contributions

to the energy and the molecular structure in cartesian or internal coordinates.

4.7.2 Data Flow Diagrams

Data flow diagrams specify the flow of data through the program, including
operations that use or change this data and any constraints it must satisfy. It also

shows relationships between data in a system, the functions used to transform it,
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Figure 4.6: A sample high-level data flow diagram.
data stores, input and output values [31].

There is no information in these diagrams which would indicate what path to
take through a program or the time the program spends in a certain state, nor does
it show how the data is placed into abstractions.

The processes are responsible for transforming the information and can be im-
plemented as either high-level or low-level processes. An example of a high-level data
flow diagram for the molecular mechanics problem outlined in Chapters 2 and 3 is
given in figure 4.6. The high-level processes can be broken down further to give other
data flow diagrams and the low-level processes represent a function which cannot be
further broken down. In the data flow diagram a process is drawn as an ellipse with
the process name in regular print inside. The input data is shown as an arrow leaving
from its source (external or another process) and ending at the process. The output
data is shown as an arrow leaving the process [31].

Each data flow diagram contains processes, data flows, actor, and data store
objects. Actors are processes which consume or produce data. They can be the
consumers of the eventual output or the producers of the input into the program.

They are represented in data flow diagrams by a rectangle with the actor’s name



inside it.

Data stores are sources for the storage of data. The data inside a data store is
not generated by the data store and is there for some later purpose. The information
in the data store may be retrieved in any order, and is usually accessed using some
kind of search key. A data store is represented in the data flow diagram as two thick
parallel lines with the name of the data store in bold . Arrows come into and out of
the data store and represent the input operations that access the data using some key
or modify it in some way and the output operation of retrieving the data. Despite the
fact a data store is just data storage, it is usually implemented as an object because
its usage is different from the other data flow elements. Actors are also implemented

as objects [31].

Constructing the Data Flow Diagram

To construct the data flow diagram the method of obtaining the output from the
inputs must be determined. The first step is to start by making a high-level data flow
diagram with the problem as the method, its inputs, and the desired outputs. Then
the method is systematically broken down. Each output is used as a guide and a trace
is done back through the diagram to find the function that computed the particular
output. The inputs can also be used as a guide and the methods used to generate
the final results can be determined. Next all the processes are expanded until they
become atomic (they cannot be further broken down). At this point the processes can

be described with natural language, an algorithm, or mathematical formula. The data
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input geometry, settings computation of energy only
from file or optimization of structure

output energy
and structure

Figure 4.7: High-level diagram (first approximation) for the flow of data through the
entire molecular mechanics program.

that is internal but stored is then identified, as are any control flows. These control
flows are labeled and the actor objects (sources and sinks for data) are determined.
Also data stores must be determined and they usually correspond to external data
which is accessed or modified [31].

From the problem description in Chapter 2, the data flows can be determined.
A second high level data flow for the molecular mechanics package is given by figure
4.7. Tt is more descriptive than figure 4.5 and shows another stage in the breakdown
process. This does not show the complete data flow through the program, but is an
approximation to it. Further breakdown will be shown in a somewhat iterative man-
ner. Once the data is given to the program, the structure and energy are optimized
(in the case of an energy minimization) or computed (in the case of a single-point
calculation), and the outputs are printed to a file.

The next step in constructing the data flows is to further break down the trans-
formation processes defined at a top level. Based on the input commands, the molec-
ular mechanics program can be executed for just an energy calculation, the geometry
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can be optimized (the energy is minimized), or generate one or more of the objects.
For example, if one wanted the gradient contributions for each interaction within the
molecule, these can easily be printed by themselves.

Since the only concern is the ion of the

code, details

of the geometry imization, menu i and ion of logical informa-

tion will not be given. In the diagram, a representation of these will be in terms of a
process. Figure 4.8 shows a diagram of the result of a further breakdown of the data
flows. In this diagram, the data is input in the form of a file and it is parsed by the
menu. One of the menu commands is MM, which selects the molecular mechanics
method as a way of computing the energy and structural information.

Another command is Geom, which selects a geometry optimization. Once the

method and type of calculation (single-point, geometry optimization, or output of
an object) are determined, the data required is passed to a process which generates
the cartesian coordinates. The topology is then generated using these coordinates.
It is the cartesian coordinates and topology information which is used in the com-
putation of the molecular mechanics objects. After the molecular mechanics package

has computed the total energy and coordinates, they are sent to an output file. If

an optimization is required,the optimization is performed before these quantities are
output. If an object was selected for computation, then it is sent to the output file.

Figure 4.9 shows the flow of data through the molecular mechanics method. As
it shows, the molecular geometry and topology are used in the computation of the

| di

and

objects which are sent to the processes which
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input from file

cartesian coordinates

generate
molecule

generate topological
imformation

<——  atomic radii

transform to molecular mechanics
energies, gradients, second

derivatives and the redundant

internal coordinates

output energy, geometry

Figure 4.8: Mid-level functional model diagram for the molecular mechanics program.
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optimization

molecular and
topological information

transform redundant internals
to cartesian coordinates

build the redundant
internal coordinates

build force
field atom
types

build the parameter
set for the molecule

parameters

compute total energy

| compute second derivatives

compute gradients

optimization

Figure 4.9: Low-level functional model diagram for the molecular mechanics program.
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topology information

cartesian coordinates

Build transformation (B)
matrix

redundant coordinates from
previous step

iteratively transform to
cartesian coordinates

optimization step molecular mechanics
(new coordinates)

Figure 4.10: Low-level functional model diagram for the conversion of redundant
coordinates to cartesians.
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compute the energies, gradients, and second derivatives. The force field atom types
also obtain the geometry and topology information to generate a list of force field
atoms for use in the parameter selection. If an optimization is selected, then at some
point the cartesian coordinates may have to be updated, and is represented as a
process in figure 4.9.

Figure 4.10 is the lowest level diagram for the data flow through the iterative

transfc ion of redundant internal di

to cartesians. In this diagram, the
data flow starts with the passing of the cartesians to the process which creates the
B matrix. The B matrix is then passed to the iterative coordinate transformation

along with the redundant coordinates from both the optimization package and the

code which the cartesians. This process is repeated

iteratively for every optimization step so new coordinate and nonbonded interaction

distance values can be and used in sub imization steps.

4.7.3 Describing Functions

Each process in the data flow diagram can be thought of as a function in which
a description using mathematical formulas, natural language, or some other low-
level expression should be given. This description should not contain implementation
information and should clearly identify the relationships between the function’s input

and output values.

are necessary for the complete understanding of any
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problem, in this case the molecular mechanics method. The best way to describe a
function is by using the description of the transformation it performs. For example,
if the function uses mathematical functions, then the functional description should
contain these functions. It should also indicate any input and/or output to the

function.

stretch ies ( dis , D ) — > energy contribu-
tions
for all stretch energies between atoms i and j in a bond, evaluate:
ks 0y2
Viy = 143.9825( 57 ) (ry = )
(4.1)

7
(T4es (riy — ) + (ﬁ) s ¥ (rij — 1))

store energy contributions in energy object attribute CONTRIBUTIONS

number of energies = number of interactions

In the above example, a functional description is given for the computation of
the energy contributions for the stretch energy. The formats for the computation of
the bend, torsion, out-of-plane bend, van der Waals, electrostatic, and stretch-bend
energies are the same, however the energy expressions for each interaction differ. The
energy expressions are given in reference [34]. The purpose of this function is to
compute the individual energy contributions due to each interaction using the given

energy expression. The parameters are input into the equation and the quantities
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CONTRIBUTIONS and NENERGIES are computed using the coordinate informa-

for the

tion which is also passed in. of the energy
functions will not be given here as they are very similar to the above function. Also,

the computations of the gradients and second derivatives are similar to the compu-

tations of the energies, so the function descriptions will not be covered here.

compute parameter set (atoms in i

P s) = > p
set

for all interactions in the set:

for all atoms involved in an interaction:

determine their atom and interaction type

get the or ling to that i

store the parameters in the object’s variables

A description of the method of obtaining parameters of any type is given in the
above functional outline. For a particular parameter set the parameters obtained may
differ in number and type. For example, the stretch parameters are an equilibrium

bond length and force constant, while the torsional parameters are three parameters

three V in the energy jon. The function obtains as
input the atoms involved in the interactions for which the parameters are needed from
the topology code as well as the entire parameter set. It outputs the parameter set
for the molecule(s) in question. It uses information about the atoms’ defined types

according to the force field as well as the interaction type, which is usually derived
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from the latter information. In the case of bond types, this information is hard-coded,
although this will change in future work. The parameters are then selected according
to the atom and interaction types (defined by the force field) and this information is

stored in the parameter set.

determine atom types (topology information, molecular information)
— > atom types

for all atoms in the molecule:

obtain the atomic number, hybridization, ring it belongs to, and whether it
is part of an aromatic system

based on this information and the atom type definitions in the force field,

assign an atom type to the atom

A word description is given above for the determination of the force field atom
types. These atom types are used to determine subsequent interaction types which
are used in parameter selection. As seen above, they are selected based on their
atomic number, hybridization, the size of a ring they belong to (zero if they do not

belong to a ring), and whether or not they are part of an aromatic system.
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compute coordinates (topology information, cartesian coordinates) — >
redundant internal coordinates
for all interactions of a particular type:

using vector relationships, the coordinates are computed

The computation of the coordinates of a particular type are computed from the

topology i jon and cartesian di using simple vector relationships.

This is noted in the above functional description.

The above is a brief outline of functional descriptions for the processes in the
molecular mechanics package. The four of them by no means complete the description
and they do not contain any implementation details. This information will be derived
in the implementation phase. As a whole, the functions give a good description of
the tranformation of object information through the functions that perform these

computations.

4.7.4 Identifying Constraints Between Objects

Constraints correspond to object dependencies that are not related to the inputs
or outputs, but are related functionally. They can occur between instances of two
objects at the same time, at different times, or on two objects at the same time [31].

Constraints do not exist within the molecular mechanics package, however it

should be noted that some constraints on the type of calculation and the values of
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the energies and gradients are placed either on input or as defaults.

4.7.5 Specifying Optimization Criteria

The values in the functional model which must be optimized should now be
determined [31]. The information passed between processes can be optimized by
making the information needed by more than one process global. If all the processes
have access to it, the information need not be passed and multiple copies are not
made in memory. However, this should only be done in cases where the data is not
sensitive. This should be considered for the case of object data in the molecular
mechanics package. In the case of the parameters and coordinates, they are needed
by the energy, gradient, and second derivative processes and should therefore kept
globally accessible. The data sets are in memory throughout the life of the program

and are updated as needed, as in the case of a geometry optimization.

4.8 Combining the Two Models

The two models, now complete for the molecular mechanics problem, give a view
of the problem from two perspectives. The object model shows the molecular me-
chanics method in terms of energies, gradients, second derivatives, force field atoms,
parameters, and coordinates. These objects interact through associations due to the
need for data. The functional model describes the molecular mechanics method as a

set of transformations of the input data through intermediate stages to the output.
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This output corresponds to either an energy at the point on the potential energy
surface due to the positions of the atoms, or is an optimal geometry with a mini-
mum energy. The objects are the keepers of the data and it is their behaviors which
transform it from input to output. The need for data through associations creates
the flow of the data seen in the functional model. Combining this information brings

the analysis and design phase to a close .

4.9 Summary

Problems can be broken down and the programs designed by structural or
object-based analysis. The method chosen is based on the size and type of problem,

but for large there are more ad to using object-based analysis and

design. Object-based methods also have the features that quality software should
exhibit. There are several parts to object-based analysis and design, and each part
contributes its own information to the solution and implementation of the problem

to form the desired software.
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Chapter 5

Implementation of the Molecular
Mechanics Method Using Fortran

90

5.1 Introduction

There are many programming languages available for use when designing scien-
tific codes. For many years the language of choice was Fortran 77 due to the support
it had for numerical problems. As a result, much of the numerical and scientific code
is still only available in Fortran 77.

Object-based ing offers several ad to the scientific
]

with respect to code design. Independently executing units of the code are placed in
separate modules within the code instead of being spread out over the entire program.
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The software is designed in pieces which can inherit one another, promoting code
reuse. The objects within the code are placed together with the routines which define
them, forming a new data type. The collective attributes and behaviors of the objects
model the objects in the real world problem. Similar operations can also be grouped
together into one routine which executes in a similar fashion depending on the type
of data it is acting on, preventing multiple copies of the same utility [35].

‘There are several different I; available for developing object-based code

and each one has its own unique features which make it attractive for code develop-
ment. However, the type of application will dictate which code is ultimately going to
be used. It still seems the language of choice for scientific code is Fortran, and the
emergence of Fortran 90 has proved beneficial as it has incorporated some additional
features for use in object-based design. In the next section, some of these features
will be highlighted.

Throughout this Chapter many key features of Fortran 90 for object-based design

and their application to the impl ion of the molecul. hanics method will

be discussed. The molecul ‘hanics method was covered in detail in Chapter 2.
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5.2 Fortran 90 Versus Fortran 77: Some Added

Features

There are still some advantages to using Fortran 77 for some scientific code, but
there were several key features added when the Fortran 90 standard was developed.
Some of these include dynamic memory allocation, the module, pointers, and user-

defined types.

5.2.1 Dynamic Memory Allocation

Dynamic memory allocation involves defining, changing and removing memory
throughout the life of the program. There are a few benefits to dynamic memory
allocation and in some cases it is essential to insure proper behavior of the program.
It is most beneficial when the size of the data is not known until the program is
executed [36].

In Fortran 90, before an array can be dynamically allocated with a given di-
mension, it must be tagged as an allocatable array. This is done by giving it the
ALLOCATABLE attribute. Arrays with this attribute can be defined at the be-
ginning of a piece of code and allocated once the size is known. When an array is
declared with the ALLOCATABLE attribute, its shape must be stated by using a

colon to represent a particular di ion. The di ions are d by commas.

In the molecular mechanics code, many different arrays are declared as allocatable.
The most common allocatable arrays are those which are used in a local picce of code
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to temporarily store data as they can be allocated, used, and destroyed once they are
no longer needed. This helps conserve memory.

It should be noted that an allocated array cannot be allocated again unless it
is deallocated first, and the status of an allocatable array can be checked by using
the ALLOCATED intrinsic function. The result of this function is a logical variable
which is set to true if the array has been previously allocated [36].

An allocatable array can be declared , checked to determine if it was previously

allocated elsewhere, and allocated in the following manner:

integer, dimension(:), allocatable :: Bond_Type

if(.not.allocated(Bond_Type) .and.NGBONDS.gt.0) then
allocate (Bond_Type (NGBONDS))

end if

In the first line of this example, the array Bond Type was declared to be an
array of variable dimension using the ALLOCATABLE attribute. Once the size
(given by NGBONDS) is determined, it can be allocated using the intrinsic function
ALLOCATE and giving as arguments the array name and its size.

Once an array is no longer needed, the memory used by an array can be released
by deallocating it. For example, if the array in the above code fragment was to be
deallocated, this would be done by using the DEALLOCATE intrinsic and giving the
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array name as the argument. Use of the deallocate intrinsic function is shown in the

following code fragment [36]:

deallocate (Bond_Type)

5.2.2 Pointers

Pointers are useful when data must be initialized and used dynamically. This
is especially true for very large arrays which if copied could use up unnecessary
quantities of space in memory. Arrays in Fortran 90 are created as variables, and as
yet it is not possible to create arrays of pointers directly [36, 37].

A pointer is first declared by giving the pointer variable the POINTER attribute.
It can then be given memory by allocating it in the same manner as for allocatable
arrays [36].

Like an allocatable array, a pointer cannot be associated with (or point to) a
part of memory more than once, so it is first tested to check if it is associated with
any memory using the ASSOCIATED intrinsic and giving the pointer name as the
argument. This intrinsic function returns true if the pointer is associated to memory.
Once this test is done, the pointer can be associated to some memory by allocating
the memory using the ALLOCATE intrinsic and passing in the pointer name and

exact dimension of memory as inputs. The pointer can then be deallocated later
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using the DEALLOCATE intrinsic function (not shown in the above example).
A pointer can be in one of three states depending on whether it is defined or
associated with any memory. Its three states are defined as follows: it can be defined

and

and iated, or defined and iated [36].
A pointer itself can be viewed as an object whose data is hidden from the user’s
view. The intrinsic functions NULLIFY, ALLOCATE, ASSOCIATE, and DEALLO-

CATE are used to modify or retrieve this information.

5.2.3 The Module

The module has a variety of uses, but perhaps its most powerful use is to group
together similar data and functions into a container which can then be made available
to the rest of the code by using it. Some other uses include storage of global data and
grouping user-defined types (discussed in the last part of this section). The code of
the module is stored in a separate file and must be compiled before any code, outside
the module, that uses it. More than one module may be contained within a file and
this file can be used to group common modules [36, 37).

All of the information to be included in a module is contained between the MOD-
ULE and END MODULE lines. Within these lines, the data can be separated from
the functions by first defining data, using the CONTAINS statement to separate the
data from the functions to follow, and finally defining the functions (or subroutines).

This module is then included elsewhere in the code by adding a USE statement to
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the parts which require it. The following code fragment is an example of a module

which would be in its own file and is part of the molecular mechanics package [36]:

MODULE pairlist

* Modules needed...
USE molecule !molecular information
USE constants !global constants, conversion factors

USE topology !topology objects

implicit none leverything must be declared...

* Data in this module:
integer :: NELEC !number of nonbonded pairs
TYPE pair !Derived type
integer :: I !atom i of nombonded pair
integer :: J !atom j of nonbonded pair
integer :: is_vdw !is there a van der Waals contribution?
integer :: is_elec !is there an electrostatic contribution?
integer :: is_tors !are i and j separated by three bonds?
END TYPE pair

* nonbonded connectivity matrix
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logical, dimension(:,:), allocatable :: CONN_NB
* pairlist

type (pair), dimension(:), allocatable :: pair_IJ

CONTAINS !Functions go here...
SUBROUTINE CONN_NBOND

#%* initialize nonbonded connectivity here *k*
SUBROUTINE MAKE_ELEC

#x* initialize pairlist here %k

END MODULE pairlist

In the above example, the module is a collection of pairlist data used in the
molecular mechanics package. The first part of the module gives any USE statements
which indicate other modules needed by this one. The next part in the module is used
for declaring variables for the pairlist. Following the CONTAINS statement are any
subroutines which are used to initialize data within this module only. Only including

the subroutines which initialize this module’s data, encapsulates the pairlist into this

module. The link between the module and object-based design will be di d later
in this Chapter.

Data and subprograms within a module may be kept private to the module by
using the attribute PRIVATE in their definition. If data with this attribute is needed

or must be changed outside this module, functions to pass the data and receive the
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change must be incorporated as the private data cannot be accessed by anything

outside the module, even if it is USEd [35].

5.2.4 Derived Types

User-defined (or derived) types are an addition to Fortran to allow a user to
group data together into a new type. This new type has the same properties as an
intrinsic type (a name, set of values and operations, and a way to specify constants)
and can be used in the same manner as intrinsic types. Derived types are a convenient,
way of grouping data which is used to describe the same concept or is passed around
a program as a group. It is also the only way to define an array of pointers [35, 36].

Derived types are declared by first stating the name using TYPE name of type,
defining the type’s variables, and ending with END TYPE name of type. They can
then be used anywhere in the program in a similar fashion to intrinsic types [36]. An

example of a declaration followed by use of a derived type is given below:

* Declaration of Derived Type:
TYPE energy_component

integer :: NENERGIES !mumber of energy components

double precision :: SUM_COMPONENTS !total emergy contribution
* Individual energy contributions

double precision, pointer :: COMPONENTS(:)

END TYPE energy_component
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* Use of Derived Type:
type (energy_component)
type (energy_component)
type (energy_component)
type (energy_component)
type (energy_component)
type (energy_component)
type (energy_component)

type (energy_component)

:: E_STRETCH

:: E_BEND

:: E_TORSION

:: E_OOPBEND

:: E_VANDERWAALS

:: E_ELECTROSTATIC

:: E_STRETCH_BEND

:: E_TOTAL

In the above example, a derived type is used to define an energy component of

the total molecular mechanics energy. This energy component contains an integer

for the number of energy subcomponents, a double precision variable for the sum of

these subcomponents, and a pointer to an array of subcomponents. This type is then

used to declare specific instances of this derived type.

One limitation inherent in the derived type is allocatable arrays cannot be de-

clared as part of a derived type [36]. In other words, the following code fragment is

illegal:

TYPE sd_component

integer :: N2DERIVATIVES !'mumber of second derivatives

double precision, dimension(:,:),
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allocatable :: COMPONENTS !individual second derivatives

END TYPE sd_component

In the above example, the array COMPONENTS was declared in the derived type
as allocatable, which is illegal. Instead, the allocatable array can be replaced by a

pointer which can be allocated later on in the program:

TYPE sd_component
integer :: N2DERIVATIVES !number of second derivatives
double precision, pointer :: COMPONENTS(:,:) !individual second derivatives

END TYPE sd_component

if (.not.associated (SD_STRETCH/COMPONENTS)) then
allocate(SD_STRETCH/,COMPONENTS (DIM1, DIM2))

end if

5.2.5 Additional Computational Intrinsic Functions

One additional feature of Fortran 90 that makes it appealing in the design of
scientific applications is the addition of matrix operations to the standard. Now,
matrices can be added, subtracted, and multiplied provided their dimensions match.
Addition and subtraction are both provided by overloading of the '+’ and -’ operators
and the multiplication of matrices is provided by the intrinsic function MATMUL.
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Another very useful function to scientific computation is the dot product intrinsic

function DOT.PRODUCT.

Gmatrix = matmul(Bmatrix, transpose(Bmatrix))

The code fragment above (from the di ion part of the mol

mechanics package) shows an example of the use of the MATMUL intrinsic. Two ma-

trices can be iplied by i their cor ing array names as

to the MATMUL intrinsic function and the result can be stored in a third array.
One problem with the MATMUL function is the programmer must insure the array
dimensions of the arrays being multiplied match for matrix multiplication, and the
resulting array must have the required dimensions. For example, if the two arrays to
be multiplied are nx m and m x n, they are multiplied in this order and the resulting
matrix must have dimensions n x n. The size of an array can be determined by using

the SIZE intrinsic function, which takes the array name as input and returns its size.

5.3 Object-Based Programming for Molecular Me-
chanics Using Fortran 90

Object-based design has many benefits which can be taken advantage of in de-
signing scientific code, however it would be advantageous to be able to create code
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using these concepts while still being able to combine the new code with existing For-
tran 77 routines. This is possible with the addition of some of the features discussed in

the above section to the standard to create Fortran 90. Some of these include the use

of modules and derived types to achieve abstraction and 1 and interf

to achieve polymorphism. In this way, newer scientific code can be written in Fortran
90 which is backward compatible with Fortran 77 so the object-based code can be
written effectively without having to rewrite existing numerical routines 35, 38].

In a previous version of Mungauss, written in Fortran 77, a low-level object-
based approach was used (OSIPE [39]), which made it easier to convert to Fortran
90. As a result, many of the old features of Fortran 77 have been phased out over

the past year.

5.3.1 Achieving Data Abstraction, Encapsulation, and Mod-
ularity With Derived Types and Modules

Classes, as discussed in Chapter 3, have a particular structure to their attributes
and behaviors. Groups of objects which share in this structure can collectively belong
to a class, which describes the objects’ attributes and behaviors in a more general
sense. The class can then be placed into a single structure in the code. This pro-
vides modularity to the program as well as encapsulating the details of the class’
implementation [40].

The above can be easily implemented using modules and derived types. The
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benefit of the module is that it provides a neat container to place the abstractions
and behaviors of a group of objects into. The abstractions can then be placed in
a new derived type which can be used to create instances of itself, the objects. In
doing so, each object has the attributes defined in the derived type and access to the
behaviors contained in the module [35, 38, 40]. It also provides some security by only
allowing parts of the code who USE the module to access the data and adding the
PRIVATE attribute to the more sensitive data of the object prevents any part of the
code not belonging exclusively to the object from directly accessing it.

As an example, consider the molecular mechanics energy. It contains seven parts,
each of which has a set of components as well as a total number and sum of these
components. A class can be defined for the energy pieces and these three abstractions
can be placed into a derived type for a generic energy type. These pieces can then
be initialized and summed to give a total energy, which is also an energy type. The

module for the energy class, with the objects included, is given below:

MODULE mm_gradients
* Modules:
USE functions_mm_gradients !first derivative functions

USE constants !global constants

implicit none
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* Class data (each object has these...):

TYPE gradient_contribution
integer :: NGRADIENTS !number of gradient contributions
double precision, pointer :: COMPONENTS(:) !array of gradients

END TYPE gradient_contribution

* Objects:

type(gradient_contribution) :: STRETCH
type(gradient_contribution) :: G_BEND
type(gradient_contribution) :: G_TORSION
type(gradient_contribution) :: G_OOPBEND
type(gradient_contribution) :: G_VANDERWAALS

type(gradient_contribution) :: G_ELECTROSTATIC

CONTAINS

SUBROUTINE GRADCLC_STR !initializes stretch gradients

SUBROUTINE GRADCLC_BND !initializes bend gradients

SUBROUTINE GRADCLC_TOR !initializes torsion gradients

SUBROUTINE GRADCLC_OBND !initializes out-of-plane bend gradients
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SUBROUTINE GRADCLC_VDW !initializes van der Waals gradients

SUBROUTINE GRADCLC_ELEC !initializes electrostatic gradients

END MODULE mm_gradients

In the above example, the attributes for the number of gradient contributions, and
the gradients are given in the derived type gradient_component. The contributions
are the individual first derivatives of the energy expression for each interaction.

The gradient objects for the gradient class, scen above, are then defined by

declaring each of them as variables of the type gradient and initializi
them. The initialization is done for each object individually as the gradient expres-
sions for each interaction differ. There is one routine which is called to build the list
of them in the cases where they are all needed. This routine is contained in a file for
access by all parts of the code.

The class for second derivatives is the same as above, with the addition of the
stretch-bends as a separate object (off-diagonal terms for stretches and bends). The

attributes are only a list of contributions and the number of gradients in each object.

MODULE atom

* Communication...
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USE molecule !molecule information
USE constants !global constants
USE objects_created

USE topology !'topology objects

USE mm_interaction_type_params !parameters global to MM

* Class data definition:
TYPE atomtype
* atomic number of the atom

integer :: atomic_number

*

aton’s hybridization
integer :: hybridization
* size of ring atom belongs to

integer :: ring_size

*

atom’s "type" defined by the

*

force field
integer :: type_mm
* Is the atom aromatic?
logical :: is_aromatic

END TYPE atomtype

* Object definition:
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type(atomtype), dimension(:),
allocatable :: ATOMS
CONTAINS
SUBROUTINE ATOM_TYPE
#kxkxinitialize ATOMS heresixx
END SUBROUTINE ATOM_TYPE

END MODULE atom

The above example shows an implementation of the atom class. The first line is
the beginning of the module and the part following is the definitions of communi-
cations this module has with the ones listed. For example, the atom class requests
information from the molecule and topology classes, as well as the data stores con-
stants and interaction type parameters (bond types). Objects_created is a set of tools
which allow dependency of objects to be defined. The type definition groups the class
data into a user-defined type and the methods are separated from this type by the
CONTAINS statement. There is only one behavior in this class, which is the initial-
ization, defined by the routine ATOM_TYPE. The objects are defined by allocating
them as deferred-shape arrays, specifying the shape (one, two , or higher dimensions),

and later allocating them with the correct dimension.
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5.3.2 The Implementation of the Functional Model Compo-
nents with Subroutines and Modules

In the functional model, the processes most often correspond to behaviors of
objects or some intermediate transformation process. These are implemented in the
molecular mechanics package using SUBROUTINEs. For a further description of the
SUBROUTINE, see reference [36]. If the process describes an object’s behavior, it
is grouped with the class in the module corresponding to that class and its objects.
If the process is executed using more than one object of differing classes, this process
is placed in a file for use by all parts of the program. Data to be passed into or out
of the process appears in the argument list for the SUBROUTINE. Once the data is
passed into the process, it is declared locally and transformed.

Actors, the sources and sinks for the data in the program, are usually objects
themselves. In the case of input and output, they are actual files. The Cartesian
coordinate actor is an object which is included in the coordinate conversion process,

but will not be discussed further as it does not d to the molecul h

problem. It is included because it is an intermediate result needed to compute the

d energies in the molecul hanics package. It is located in the module
molecule.

Data stores in the molecular mechanics are an example of another use for a
module. In the molecular mechanics package, the data store representing the entire

set of is i 1 in modules

to the type of parameter data
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it stores. The data store is actually a group of modules, each containing a complete
parameter set for a particular interaction. For example, the parameter set data store
includes the modules for the stretch, bend, torsion, out-of-plane, nonbonded, and
stretch-bend parameter sets.

Data flows are implemented as USE statements or function calls. In the case
where the information is in a module and one part of the code needs the data from
this module, the module is first USEd, then the initialization routine to compute this
data is called. Once the data is available for use in the module, any part of the code
with a USE statement for the particular module where the data is stored may use

this data. For example, consider the following code fragment:

SUBROUTINE UPDATE_XYZC (q_new, q_old, Bmatrix)

* Modules:

USE redundant_coordinates

USE molecule

CALL BLD_COORDINATES

deltaq = gq_new - g_old

END SUBROUTINE UPDATE_XYZC
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In the above example from the redundant internal to Cartesian coordinate conver-
sion, the process UPDATE_XYZC is defined as a subroutine which has the redundant,
coordinates from the current and previous steps in the optimization (q-new and q_old,
respectively) as well as the transformation matrix (Bmatrix) given as inputs. The

output is the updated Cartesian coordinate set, which is ically updated by

making it available in the module molecule. The parts of q-old are in the module re-
dundant_coordinates and need to be updated once the new Cartesians are computed.
This is done by first including the module with the parts of q_old already available
for modification and modifying them by calling the routine to build the redundant

coordinate objects (called BLD.COORDINATES).

5.4 Summary

Fortran 90 is proving to be a viable option for designing scientific code where the
use of the Fortran language is still preferred over other popular languages. Fortran
90 has support for several object-based features, for example the module and derived
type, which enable programmers to create classes and objects from real-world models.
This provides abstraction and encapsulation to a program written in Fortran 90.

Some advantages and disadvantages to the use of Fortran 90 for scientific code are
worth noting. First, Fortran 90 provides full support for the use of classes and objects
by providing the module and derived type to define classes and data abstractions

from which to create objects. This also provides encapsulation. These features are
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also available even if the goal of the programmer is only to create modular and not
object-based code. Interfaces are also available to provide support for polymorphism
and operator overloading, promoting code reuse. However, although the support
is available for creating classes and objects, the generic methods to construct and
destroy objects are not available in the Fortran 90 language. The programmer must
therefore explicitly create these for every class individually! There is also no explicit
support for inheritance as in other object-based languages. Because of this last point,
Fortran 90 is often referred to as an object-based language because support for the
four main parts to the object model (discussed in Chapter 4) are not all available in
the standard (35, 36, 37, 38, 40, 41].

Some additional features of Fortran 90, such as backward compatibility with
Fortran 77 and explicit support for some matrix and vector operations within the
standard combined with the features for use in object-based design make this language

a choice for scientific code design.
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Chapter 6

Performance of the Molecular
Mechanics Package: Numerical

Results

6.1 Introduction

The ion of the molecul. ics package depends on the desired quan-

tity. In some cases an energy of a given structure is needed without modification

of the input and in other cases and optimal geometry is sought. These types of

tions are called single-points and geometry optimizations. However, in order
to satisfy the quality of controlled printing one must also be able to get the results
of the computation of one or more of the objects. This chapter will cover the re-
sults of printing the objects, single-point, and geometry optimization computations.
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Some i to results for diffe in energy between two differrent

structures of the same molecule (conformational energy differences) will also be given.

6.2 Printing the Objects

This section deals with the printing of the objects. The molecular mechanics
package is capable, through the menu, of printing the energy, gradient, second deriva-
tive, parameter, and coordinate contributions. The objects derived from these classes
are all printed, and at this point an individual object cannot be printed. For example,
if the user specifies printing of the energy objects, all energy objects are printed as a
set of contributions. Printing of data can also be accomplished using local debugging
tools which print intermediate results from the routine (or routines) specified in the

input file.

Molecule

FreeFormatMatrix

ct

HL C1 HC

H2 C1 HC H1 HCH

H3 €1 HC H1 HCH H2 HCHH
H4 C1 HC H1 HCH H2 -HCHH
end !FreeFormatMatrix

define
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IC = 1.0931
HCH = TETRA
HCHH = 120.0000
end !Define
end !'molecule
Output
Object=ENERGY_MM:ENERGY_CONTRIBUTIONS
end

stop

The above code segment shows an example of an input file where certain sets
of objects are requested. The molecule is input as a Z-matrix (see appendix B). The
objects are requested by enclosing the list of objects in an output section using the
Output menu command and the objects are specified using an Object= command.
The first part of the object name is the class it belongs to and the second part is

the set of objects to be computed and printed. For example, the first set of objects

are the energy ibuti and they belong to the class ENERGY_MM.

The result of running the above input file is as follows:

Welcome to Mungauss - Development version (June 7, 2000)

Free format Z-Matrix for: UNKNOWN

Ct
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H1 Ci HC

H2 C1 HC H1 HCH
H3 c1 HC H1 HCH H2 HCHH
H4 C1 HC H1 HCH H2 ~HCHH
VARIABLES:
HC = 1.09310000 HCH = 109.47122 HCHH = 120.00000
BOND_ATOMS

4 1 2

2 1 3

3 1 4

4 1 5

ANGLE_ATOMS

1 2 1 3

5 3 1 5
6 4 1 5
Pruning graph. ..
GRAPH_HOMREDUCED> NPRUNE: 0
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Homeomorphically reducing graph...

# Fundamental Rings = 0

total energy: 4.382124831520715E-005

Energy:

Number of stretch contributions = 4
Total stretch emergy =  2.183551411268918E-008
Stretch contributions: 5.458878528184422E-009
5.458878528184422E-009  5.458878528160169E-009
5.458878528160169E-009

Number of bend contributions = 6
Total bend emergy =  4.344867295603311E-005
Bend contributions: 7.241445492672186E-006

7.241445492672510E-006 7.241445492672510E-006

7.241 -006 7.241 E-006

7.241445492676065E-006
Number of stretch-bend contributions = 6
Total stretch-bend energy =  3.507398450613559E-007

Stretch-bend contributions: 5.845664084362424E-008

B 5. -008

5. 16E-008 6. 16E-008

5.845664084351007E-008
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action> end of inputs

Job :RUN ended on :14-Aug-00 at 00:22:43
user: dshaw on 14-Aug-00 at 00:22:43
Cpu time:00h00m00s14c on garfield

Elapsed time:00h00m00s00c

In the above output file, the input and output Z-matrices are given as well as the
printed set of energy objects. Also given, but not shown in the above example, are
the cartesian coordinates in bohr and angstroms as well as the connectivity matrix
showing how the atoms are connected.

Often the energy at a particular geometry or the geometry at a minimum energy
is sought. These two types of computations and the results for a set of molecules will

be discussed in the next two sections.

6.3 Single-Point Energies

A single-point energy

is the ion of the energy of a molecule
at a particular geometry. Tn the case of molecular mechanics, these energies are often

useful to determine if the output of a hanics package is

however they have no other practical use. The energy of a molecule computed with

different force fields cannot be as the and energy
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used in each force field are different from those of other force fields. As a result, the
single-point energies from this molecular mechanics package are being used to deter-
mine if the molecular mechanics package can give results which are not unreasonably

large or small.

Table 6.1: Single point energies for a series of hydrocar-

bon molecules.

Molecule Single Point Energy (x10° Hartrees)
methane 0.00438212

staggered ethane -5.94363
eclipsed ethane -1.86879
trans-propane -6.63891
cis-butane 619.999
gauche-butane 0.408991
trans-butane -5.45631
trans-pentane -6.68317
trans-hexane -6.59755
t-butane 26.9702
cyclopropane 55.2188
cyclobutane 16.8973
methylcyclopropane 100.710
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continued from previous page

Molecule

Single Point Energy (x10° Hartrees)

boat cyclohexane
chair cyclohexane
benzene
ethene
propene
cyclopropene
cyclobutene
trans-butadiene
gauche-butadiene
cyclobutadiene

cyclopentadiene

7.14584

1.83973

26.0829

13.4039

10.8389

67.6849

94.2949

13.0006

59.1122

182.218

35.9250

Table 6.1 gives the single-point energies for a series of hydrocarbon molecules
covering cyclic and acyclic systems with single, aromatic, and double carbon-carbon
bonds. It should be emphasized at this point that these values of the energy are for
molecules with particular input structures. Changing any of the input coordinate
values will change the energies. These energies correspond to a point on the potential
energy surface for the molecule with the given geometry, and are not necessarily

optimal structures. However, some trends in the energies can be observed and these
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also aid in deciding if the MM energies are reasonable.

Referring again to table 6.1, the energy differences for staggered and eclipsed
ethane, chair and boat cyclohexane, and gauche and trans butane are particularly
useful in investigating conformational energy differences. In the ethane system, stag-
gered should be lower in energy than eclipsed. In the butane system, trans-butane
should be lower in energy than gauche-butane. In the cyclohexane system, the chair
form should be lower in energy than the boat form. The energy values for these
geometries, shown in the above table for ethane, butane, and cyclohexane, demon-

strate these trends, and as a result, it can be that the

package is able to give reasonable single-point energies.

6.4 Geometry Optimizations

The test of a molecular mechanics package is not only to generate single-point
energies but also to generate reproducible results. Since direct energy comparisons of
systems such as methane and the staggered and eclipsed forms of ethane are not pos-
sible, comparisons are often made of conformational differences, The energy values
for two different sets of positions of a molecule’s atoms in space may not be the same
between different force fields, but the difference in these two energies will be compa-
rable. For this reason, comparison of results of the molecular mechanics package to
literature values will be done on the basis of existing results for energy differences in

a molecule’s conformations.
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In order to obtain the best geometry and energy for conformational energy com-
parison, it is useful to run a geometry optimization on the input structure. This
involves minimizing the energy of the molecule, thus optimizing its geometry. A
geometry optimization is started by including the following in the list of menu com-

mands in the input file: the option for geometry optimization, the method desired,

the function to be minimized (in this case, molecul ‘hanics), the i num-
ber of iterations, and the desired accuracy. At each iteration, the results are then

printed for the coordinates, gradients, total energy, and gradient length.

Table 6.2: Table of geometry optimization results for a

series of hydrocarbons.

Molecule Function Energy Gradient
Name Evaluations | (x10-* Hartrees) | Hartrees/Bohr)

methane 4 0.000000 2.366811x10717
staggered ethane 9 -16.1663 8.952353x10"17
eclipsed ethane 9 -10.7367 4.586337x101°
trans-propane 11 -23.2853 3.988721x1071¢
cis-butane 18 -23.5900 7.999749x10~1%
gauche-butane 17 -31.3323 3.651790x10
trans-butane 18 -32.5909 3.207194x10713
t-butane 13 -9.51801 8.573369x10~7
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continued from previous page
Molecule Function Energy Gradient

Name Evaluations | (x10~° Hartrees) | Hartrees/Bohr)
trans-pentane 80 -22.1729 2.979742x10~*
trans-hexane 80 -19.2031 4.988806x10~*
cyclopropane 79 19.9713 2.911428x10°°
methylcyclopropane 80 21.9774 1.799471x10~*
cyclobutane 26 -2.27935 1.865883x10~16
boat cyclohexane 56 -25.0396 4.121210x107°
chair cyclohexane 80 -33.7496 3.419738x107°
benzene 80 -3.27697 1.516619x10~*
ethene 8 11.7355 1.095284x10~ 14
propene 10 5.73116 6.823548x10 "%
cyclopropene 19 6.42416 2.456490x10~"7
cyclobutene ™ 43.9365 3.189709x10*
gauche-butadiene 20 11.9478 1.616714x107'°
trans-butadiene 19 10.4657 2.752949x107 14
cyclobutadiene 9 16.3081 2.527553x1071°
cyclopentadiene 10 -2.91336 3.873846x107%

Table 6.2 gives the geometry optimization results for the molecule set given in
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the previous section. The first column of the table gives the name of the molecule,
the second column gives the number of function evaluations when either the energy
did not change or the maximum number of iterations was reached. For all of the
above cases, the maximum number of iterations was set to 40. The third column
gives the energies at the given step (from column 2) and the fourth column gives the
gradients. The method used in most cases was full Newton-Raphson, but for trans-

pentane, t; h , cycl methy boat

chair

benzene, and the method used was VAOSAD (minimization
of the sum of squares method, section 3.3.4). In the cases where Newton-Raphson
was used, it seemed to give reasonable results while recalculating the exact second
derivative matrix at each step. In the cases where VAOSAD was used, problems with
convergence were encountered and the results where little improvement in the energy
was seen were taken.

Comparison of the energies in tables 6.1 and 6.2 show in nearly all cases
the energy decreases and a more optimal geometry is found. Therefore, movement
from the initial to a more optimal geometry is possible with the molecular mechanics
package using VAOSAD.

True comparison of the molecular mechanics package can be done by compar-

ing the results of c ational energy di using the optimized geometries

with those in the literature. Two systems were chosen to demonstrate the molecu-

lar mechanics package ability to reproduce trends and energy differences. These two

systems are ipsed ethane and boat-chair cycl
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Table 6.3: Table of conformational energy differences for

the ethane and cyclohexane systems.

Conformer Energy Difference | Literature Values
System (kCal/mol) (kCal/mol)
eclipsed-staggered ethane 3.28 2.83, 3.02
boat-chair cyclohexane 5.47 5.93
gauche-trans butane 0.79 0.78

Table 6.3 gives the conformational energy differences between eclipsed and stag-
gered ethane, boat and chair cyclohexane, and gauche and trans butane. The liter-
ature values are also reported, where the first set of literature values correspond to
scaled and not scaled 1-4 nonbonded interactions with the AMBER force field. The
results for the AMBER force field were reported as none were found for this partic-
ular molecule with MMFF94. As the table shows, the energy difference for gauche
and trans butane found in this study is nearly identical to the value reported for the
MMFF94 force field. For boat and chair cyclohexane, the energy difference given is
not as close to the value given for MMFF94, but it should be noted that the exper-
imental value for this energy difference is 5.5 kCal/mol. This is almost identical to
the result obtained for this system in this study. For staggered and eclipsed ethane,

the results are not as good, with energy differences for this work different than the
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non-scaled energy (from AMBER) by about eight percent.
Overall, the trends in the conformational energy differences are well reported
by the molecular mechanics package and the energy differences computed are ac-

ceptable!. The results need to be improved and two possible ways of accomplishing

improvement would be to adjust the guess of the initial second derivative matrix to
speed convergence or use a different input which may put the structure and energy

closer to another local minimum.

6.5 Summary

The results of this chapter show the ability of the molecular mechanics package
to generate single point energies and optimal geometries. The ability of the menu to
give the option of printing desired objects was also shown. The results are acceptable,
but still show the need for some improvements on the existing molecular mechanics

package, especially for optimized geometries.

1Acceptable results are those which lie within ten percent of the literature values
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Chapter 7

Summary and Conclusions

7.1 Summary

The molecular mechanics method provides an alternative way from the ab initio
and semiempirical methods to compute molecular geometries and energies. For some
systems too large to generate the geometries and energies in a reasonable time with
the latter two methods, molecular mechanics is the best alternative.

Molecular mechanics does not only involve the energy computation. In order to
obtain the energy as well as an optimized geometry, the positions of the atoms must
be determined and the coordinates built. The atomic positions and connectivity can
be determined from graph theory concepts and the coordinates can be built from
cartesians. The optimization can be done using derivative information as well as the
energy and coordinates, and there are several methods available to generate optimized

structures.
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When designing a molecul hanics package, consideration into the design
method is important. In this work, an object-based design approach was taken with
the emphasis on designing a package using logical collections of data with the proce-
dures which initialize and build them. Also emphasized was the way in which these
data types interact, The goal of this work was to create a reliable, efficient, dynam-
ically executing, modular, and easily maintained molecular mechanics package. The
concepts from object-based analysis and design were used to aid in the visualization
of the problem and design of a molecular mechanics package with the above features.

The language of choice for this work was Fortran 90, as it provided many features
for the design of an object-based package as well as being backward compatible with
Fortran 77. By making use of these two features of the language, the molecular
mechanics package could use some existing tools and be integrated into Mungauss, a

larger ab initio package.

7.2 Conclusions

The resulting molecular mechanics package contains the features of good pro-
grams, discussed in the above section. It also has printing capabilities enabling the
user to print, in most cases, the desired information without extra data being printed.
The integration of the existing Fortran code from Mungauss with the molecular me-

chanics code was straightforward and the impl ion of the molecul h
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package using the features of Fortran 90 discussed in chapter 4 resulted in an object-
based package.

Comparison of the results of both single-point and geometry optimization cal-

culations shows the ability of the molecul hanics package to luce energies
which are reasonable, as well as energy differences between different orientations of
the atoms of the same molecule (conformations). However, some improvements can
be made on these results in order to obtain better agreement with the literature.
Although most of the goals of this project were reached, some were not fulfilled
and are left as future work on the molecular mechanics package. First, the package is
not flexible with respect to different groups of molecules, as it is only able to handle
systems containing carbon and hydrogen. Since the Merck Molecular Force Field [34]
was designed for a wide variety of organic and biomolecules, it contains more than
these two atoms, and addition of other atoms is necessary and will be done in the
future. Also, integration of force fields to handle inorganic and solvated systems is
also a desired feature which will be completed in future work. It is also hoped to
combine the molecular mechanics package with the genetic algorithm code as well as

modify the existing code to handle transition state systems.
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Appendix A

Brief Description of the Merck

Molecular Force Field, MMFF94

This appendix gives a brief description of the form of the Merck Molecular
Force Field used in this work. It briefly discusses what the force field is designed
for, the atom types used, the source of data for parameterization, and the energy
expression. Notation within equations is kept consistent with bonds being represented

by r, angles by 6, torsions by @, out-of-plane bends by X, i separations

by R, equilibrium values by .0 or _eq and computed values by *. An example of
a computed value would be the minimum separation used in the van der Waals

interactions, shown as R*.
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A1 MMFF9):

The MMFF94 force field, which was the force field used in our study, was de-
signed to give efficient biomolecular structures mainly for the purpose of drug design.
However, it is also designed to handle most organic systems. The force field does not
use extended atom types and currently there are 99 parameters available. These cover
the organic systems as well as the following metals: iron, lithium, sodium, potassium,
zinc, calcium, copper, and magnesium. The parameters were derived by fitting the
results of the force field to both ab initio and experimental data. The form of the

energy expression is as follows [34, 42, 43, 44, 45, 46, 47, 48]:

K.
B = “3-9325(7) (r =102 (L +es(r — o) + %L‘sz(r —10)?)
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The energy expression above is a sum of contributions due to stretch, bend, tor-
sion, out-of-plane bend, van der Waals, electrostatic, and stretch-bend interactions.
The constants included in some of the terms are to insure the energy is in units of

keal/mol [34, 42, 43, 44, 45, 46, 47, 48].
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Appendix B

User/Programmer Guide

B.1 Introduction

This guide describes the necessary back d into the molecul b

package to add to, update, and run the code. It begins with running the program
(within the Mungauss suite of programs), gives an outline on how the source code
is structured in terms of parts of the molecular mechanics method, and discusses

updates and maintenance.

B.2 Performing Molecular Mechanics Calculations

B.2.1 Input

There are several steps involved in obtaining output from a molecular mechanics
program. These steps and their order depend on the quantity desired. Before any
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Tlecul h

with a program is done some decisions should be

made first. Often these can depend on the program that is being used as some options

desireable to a user may or may not be available. Some decisions to be made before

starting a molecular mechanics calculation are as follows [9]:

e What kind of systems are being run?
© What level of accuracy is desired?
o What sort of output is desired, for example structural or spectroscopic data?

e What type of input is needed to run the molecular mechanics program, for

example graphical or Z-matrix?

After these decisions are made, the most appropriate molecular mechanics package
can be chosen, after which the input must be generated. The Mungauss suite of
programs offers a simple menu system to allow the user to select a desired package and
choose what printing should be done. This information along with an input geometry
for the molecular system is put into an input file to be read in by Mungauss.

This can be done through the use of an input format which will allow the program
which builds the molecule to determine what atoms are connected. A popular input
format is a Z-matrix [3, 9, 10, 49].

A Z-matrix is an input file which specifies the geometry of a system in terms
of internal coordinates (bond lengths, angles, and torsions). The location of an atom
with respect to previously specified atoms is given in each row. The first column gives
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each atom in the molecule. The third column gives the value of the length of the
bond formed between the atoms specified in the first two columns. The fifth column
gives the value of the angle formed by the atoms in columns one, two, and four, and
the seventh column gives the value of the torsion formed from the atoms specified in
columns one, two, four, and six [3, 49].

The first entry in the Z-matrix specifies the first atom, which is placed at
the origin. No other information is given on this row. The second row specifies the
second atom and a bond to the first atom. The third row specifies the third atom
bonded to the second atom with a particular bond length and it makes an angle with
the first atom. The fourth row specifies the fourth atom bonded to the third atom,
making an angle with the second atom, and a dihedral with the first atom. After
this point, specification of each atom needs the bond, angle, and torsion information
as outlined in the previous paragraph. The bond, angle, and torsion values can be

inserted as ical results or as a with a label. Labels for the atoms,

bonds, angles, and torsions must start with a letter, followed by another letter or a
number. In the case of atoms, the first letter or letters must be the elemental symbol
of the atom. If a label is used for bonds, angles, or torsions, it must be specified in
a parameter list after the Z-matrix [3, 49]. An example of a Z-matrix for methane is

given below:

INPUT Z_MATRIX FOR METHANE
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Cc1

H1 C1 CH

H2 C1 CH H1 HCH

H3 €1 CH H1 HCH H2 HCHH

H4 C1 CH H1 HCH H2 -HCHH

C = 1.0931
HCH = 109.4800

HCHH = 120.0000

For the molecular mechanics program, there are two options for simulations.
First, a single point energy can be computed on a molecule. Selection of this option
requires the user to add to the input file the menu option for printing the molecular
mechanics energy for the molecule and the energy information will be printed. An
example of an input file for the computation of the single point energy for methane

is as follows:

Molecule
FreeFormatMatrix
Ct
H1 C1 HC
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H2 C1 HC H1 HCH
H3 C1 HC H1 HCH H2 HCHH
H4 C1 HC H1 HCH H2 -HCHH
end
define
IC = 1.0931
HCH = TETRA
HCHH = 120.0000
end
end
Output
Object=ENERGY_MM:ENERGY_CONTRIBUTIONS
end

stop

In the above example, the free format matrix (Z-matrix) for methane is selected
as the input format for the molecule. The next step is to select the method, or in
this case, the energy object. If another object is desired, such as the gradients or
coordinates, it can be printed in the same manner by replacing the energy with the
desired object. The request for an object requires the name of the class to be given

followed by the name of the object group for that class, separated by a colon.
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If a geometry optimization is required, then the method must be explicitly
selected in the case of molecular mechanics, followed by a line selecting a geometry

optimization. Using the methane example gives:

Molecule
FreeFormatMatrix
C1
HL C1 HC
H2 C1 HC H1 HCH
H3 C1 HC Hi HCH H2 HCHH
H4 C1 HC Hi HCH H2 -HCHH
end
define
C = 1.0930
HCH = TETRA
HCHH = 120.0000
end
end
!set tralev=50 end
!set debug=BLD_RIC end
!set debug=BLD_RIC_CONTRIBUTIONS end

MM end
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Geom ME=VA ITER=40 ACC=1.0D-06 run end

stop

Again, the first step is to give the initial representation of the molecule. The line
MM end selects the molecular mechanics method. The Geom keyword selects the
geometry optimization method, where the method in this case is selected as VA, the
maximum number of iterations is 40, and the accuracy desired is 10~° (in atomic
units). The geometry optimization is then run.

In some

information such as a con-
nectivity matrix or string to identify the type of simulation may also be needed. This
will depend on the package being used [3, 49].

Two debugging tools are seen in the methane geometry optimization exam-
ple, although in this case they are commented out. However, they were left in the
example to show an example of the use of the debug and tralev debugging tools. These
have the advantage of forcing the printing of intermediate results and can be used for
this purpose. They are mainly useful to the programmer who can print intermediate
results from a specific piece of code only when this keyword is used, giving useful
debugging information. The keyword tralev causes tracing to be performed and the
result is a statement showing the entry and exit from each routine and function as

they are called.
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B.2.2 Output

The output of the molecular mechanics program is often a geometry as well
as an energy. Since most molecular mechanics packages contain a molecule viewer
and builder, the output is usually a molecule which can be displayed along with its

cor ing energy. For

packages without a molecular viewer
or builder, the generation of output is controlled by menu options. The most common
menu option for generating output is a printing level. This can be set in the input
file and depending on its value, certain computation results will be generated in an

output file [10].

B.3 Molecular Mechanics Code Layout

The molecul ics code is ized ding to classes, utilities, rou-
tines that build sets of objects, and global data. There are two main types of files
in the molecular mechanics code, mun and mod files. The mun files contain routines
which are needed by more than one part of the program, for example utility functions.
mod files contain either classes or global data. Utility functions which are specific to
one type of object but do not necessarily need to be added to a class can also be put
in a module. For example, the equilibrium bond lengths, bond force constants, and
other global force field data are kept in mod files (modules) with names representative
of the file contents. Also in modules are the functions for the energy, gradients, and

second derivatives. All molecular mechanics classes are kept in modules.
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There are three main groups of files in the MM package: classes, utilities, and
global data. These files are all contained in a directory called molecular_mechanics

within the Mungauss main directory. Whenever a file is added, the file can be com-

piled with the remainder of the molecul hanics source code by adding two entries
in the Makefile, one for creating the object file and the other to inform the compiler
the object file depends on the source file. This Makefile is also contained within the

molecular_mechanics directory.

B.4 Addition of New Parts to the Existing Code

B.4.1 Adding Objects and Classes

A class can be added to the molecular mechanics package in a straightforward
manner. The first step once a class is designed is to place the attributes and behaviors
into a module file. The name of this file should be representative of the method and
class. An example of an existing molecular mechanics class file is the energy class
given as mod.mm.class_energy.f.

Objects can be placed in a module after the definition of the attributes,
before the behaviors. The name of the objects should give a very short description of
them and words can be separated by an underscore. Once the objects are known, the
names of the class and objects are placed into the get_object function. The purpose

of this function is to make sure the proper routine(s) to initialize and compute the
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object is called when the object is selected either from the input file or another part
of the code. An example of an object name is SD_.STRETCH, the stretch second
derivative object.

Object information can be used by other parts of the program by adding a
USE statement where the object information is needed and making a call to get_object

with the particular object name in single quotes as the argument, for example:

* Modules:

USE nm_parameters

call get_object (’PARAMETERS:MM_CONTRIBUTIONS’)

In the above example, the calling routine needs the molecular mechanics parameter
object, so the USE statement is added at the top and the call to get_object is then
done to cause the object to be created. From this point on, the object is available for

use anywhere a USE statement is placed.

B.4.2 New Atom Types

Addition of new atom types is also straightforward as the only part of the code
which must be greatly modified is the parameter code. First, consider the addition of

oxygen. Oxygen contributes a set of its own to the h

143



package in terms of bonds, angles, torsions, out-of-plane bends, van der Waals, elec-
trostatic, and stretch-bends. Hence, any parts of the code involving the selection of
these parameters will need to be modified.

The main difficulty in adding a new atom type will be the computation of
case values. The computation of case values depends on several features which are
used in turn to determine the molecular mechanics atom types for each atom in a
particular interaction. These include the atomic number, hybridization, the size of
ring the atom belongs to, the bond types it participates in, and whether or not it is
part of an aromatic system.

Once the case values are known, the routines to select parameters must be
built and added to the file mun_MM_feonst.f. In each routine, a set of parameters
will be selected from a data module depending on the case number passed in. At this
point, the parameter selection routines are available for use and the calls must be
added to the appropriate routine in mod_mm._parameters.f. This module contains the

routines for initializing the parts of the set based on atomic number. So the

addition of oxygen to, for example, the bond parameter selection code would involve
adding routines for parameter selection for all types of bonds containing oxygen.

Once the parameters are modified to incorporate the new atom and the

types of i ions, the code should be able to function properly

with the new atom.
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B.4.3 Adding a New Force Field

Addition of a new force field has not been attempted up to this point, but is
possible. The force field could be designed in a similar manner to the way the current
molecular mechanics package has been designed and an option added to the menu
to select a particular force field. For example, if another force field were added, the
option for the current force field in the menu could be MMFF94. The only parts of
the code which would need to be designed specifically for the new force field are those

which are specific to that particular force field.

B.5 Summary

Addition and modification of the molecul ics package is i ward

and two major additions needed at this point are new atom types and a new force
field. A simple menu system allows input files to be easily put together for both
geometry optimizations and single point energies and debugging tools allow the user
to print intermediate results. Objects can also be selected for printing using the menu
system with the name of the class followed by the name of the object, separated by a
colon. The output of the final results is then given only for the information requested

by the user.
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