

••• Nationa l Library
of Canada

Acquis itions and
Bibliog raph ic Services

~~::e~~~~SJ~1
Canada

Bibhojheque nationale
duCanada

Acquisisitonset
services bibriographiques

395. rue Wellington
Ottawa ON K1A ON4
Canada

Your file VotrereflJrence
ISEJN.D-61 2-8967D-6
Our file No/rariJ({mfflce

ISBN:D-61 2-S9S7D-6

The author has gra nted a non­
exclusive licence allowing the
National Libra ry of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains owners hip of the
copyright in this thesis . Neither the
thesis nor substa ntial extracts from it
may be printed or otherwise
reproduced without the author's
permission .

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this disse rtation.

Whil e these forms may be included
in the document page count,
their remov al does not represent
any loss of content from the
diss ertation.

Canada

L'auteur a acco rde une licence non
exclusive permettant a ta
Bibltoth eque nationale du Canada de
reproduire , preter . distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film. de
reproduction sur papier ou sur forma t
electronlque.

L'auteur conserve la proprie te du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substan nels
de celle-ci ne doivent etre imprimes
ou eturement reproouits sans son
autorisation.

Conto rmement a la loi cana dienne
sur la protect ion de la vie prlvee.
quelques formulaires secondaires
ont eteenleves de ce manuscrit .

Bien que ces formulaires
aient inclu s dans la pagina tion,
il n'y aura aucun conten u manquant.

DESIGN OF A MODULAR FORTR AN 90 MOLECULAR

MECHANICS PACKAGE FOR HYDROCARBONS

by

@ Michelle Shaw , B.S c.(Honours)

A t hesis submitted to the School of Gra duate

Stud ies in partial fulfillment of the

requirements for the degree of

Master of Science

Depar tm ents of Chemist ry, Physics, and Compu ter Science

Memoria l University of Newfound land

St. John 's, Newfoundland, Ca nada

August , 2000

St. John 's, Newfoundland, Can ada

Abstract

Molecular mechanics is a popular met hod for minimization of energies of large

biomolecular structures and much work has been done in creat ing packages which

optimize t he executio n time and memory requirements . Object-based design is a

useful tool in creati ng packages which are easily updated and clearer than procedural­

based design due to their inherent modular ity. The current codes in use are Fortran

77 and C, hut Fort ran 90 may prove to be a more viable opt ion for object-based

molecular mechanics. In th is work, a molecular mechanics package based on the

Merck Molecular Force Field (MMFF9 4) is designed for hydrocarbons using exist ing

Fortra n 90 tools and object -based design techniques. Pr esented in this work are t he

analysis, design, and implementa tion of the molecular mechanics package as well as a

report of the numerical re mits . Included in the numerical results are comparisons wit h

literature values for the conformat ional differences for the et hane and cyclohexane

systems .

Acknowledgements

T here are severa l ind ividuals I would like to than k for t heir guidance and support

while this work was being completed. First, I would like to thank my supervisors

Jolanta Lagowski and Raymond Poirier for their advice and assistance which was

invaluab le in the complet ion of t his work. Also, I would like to thank t he depa rtmen ts

of chemist ry, physics, and computer science for the use of t heir facilities and resources

and my colleagues James Xidos, Tammy Gosse, Sharene Bungay, and Darryl Reid

for their conti nued support a nd encouragement . Than ks to the school of graduate

studies, the computational science committee , the Nat ional Sciences and Engineering

Research Council of Canada, and Memorial University of Newfoundland for financial

support and giving me t ile opport unity to complete my masters programme here.

I would like to extend a special thanks to my family and friends , especially

my parents. The ir conti nued support and encouragement t hroughout the completion

of th e project will always be greatly appreciated .

Contents

Ab st r ac t

Acknow ledgement s

Ta ble of Conten ts

List of Tab les

List of Fi gur es

1 Int roducti on

1.1 Overview of Proj ect .

1.2 Goals of the Project

1.3 Outline .

2 M olec ular Me chanics and Force F ields

2.1 Introduction

2.2 Molecular Mechanics

ii i

iii

2.3 Force Fields .

2.3.1 Int roduct ion

2.3.2 The Potential Energy Expression 11

2.3.3 Parameterization of the Force Field 22

2.3.4 Heats of Formation and Conforma tions From Molecular Me-

chanics 26

2.4 Summary 28

3 Molecular R epresentat ion and Geometry Opti m ization 30

3.1 Int roduction 30

3.2 Topology: Information Regarding 3-Dimensional Molecular Struct ure 32

3.2.1 Edges, Vertices, and Graphs . 32

3.2.2 Valency, the Adjacency Matrix, and the Distance Matrix 33

3.2.3 Rings

3.3 Geometry Optimization and Energy Minimization

3.3.1 The Potent ial Energy Surface and Chemically Interest ing Points

36

3.3.2 Encrgy Minimizatio n

3.3.3 First Derivat ive Metbods : Steepest Descent

3.3.4 Second Derivative Methods

3.4 Coordinate Systems

3.4.1 Definition

35

36

37

4.

41

45

45

3.4.2 Definition of Redundant Internal Coordinat es from Cartesian

Coordinates .

3.4.3 Coordinate Conversion: Redundant Internal Coordinates to

46

Cartesians 48

3.6 Summary 60

4 Object . Based Ana lysis and Desi gn 52

4.1 Int roduction 52

4.2 Features of Good Programs 53

4.3 Decomposition Approaches 67

4.4 Analysis Steps 57

4.4.1 Describing the Problem 58

4.5 The Object Model 59

4.5.1 Part s of the Object Model . 59

4.5.2 Other Concepts in the Object Model 62

4.5.3 Building the Object Model . 67

4.5.4 The Object Model Diagram 74

4.6 The Dynamic Model 74

4.7 The Functional Model 76

4.7.1 Input and Outpu t Values . 77

4.7.2 Data Flow Diagrams 77

4.7.3 Describing Functions . 86

-1.7.4 Ident ifying Const ra ints Between Objects .

-1.7.5 Specifying Optimization Criteria

-1.8 Combin ing the Two Models

4.9 Summ ary

89

90

90

91

5 Im pl em e n t a t io n o f t he Molecu lar M echan ics Me t ho d Usi ng For t ra n

5.1 Int roduct ion

90

5.2.3 The Modu le

5.2 Fortran 90 Versus Fortran 77: Some Added Feat ures

5.2.1 Dynam ic Memory Allocat ion

5.2.2 Pointers

92

92

94

94

96

97

100

102Add it ional Comput.a.tion al ln trinsic Functions

Derived Types5.2.4

5.2.5

5.3 Object-Based Programming for Molecular Mechanics Using Fortran 90 103

5.3.1 Achieving Data Abstr acti on, Encapsulation. and Modulen ty

With Derived Types and Modules 104

5.3.2 T he Implementation of the Functi onal Model Compone nts with

Subroutines and Modules .

5.4 Summa ry

110

112

6 P er formance o f the M olecu lar M echan ics P a cka ge : N ume r ica l He-

s u its 114

vi

6.1 Introduction . 114

6.2 P rinting t he Objec ts 115

6.3 Single-Point Energies 119

6.4 Geometry Opt imiza tions . 122

6.5 Summary 127

7 Sum ma ry a nd Conclus ions 12.

7.1 Summary 12.

7.2 Concl usions 129

A Brief De scription of the Me rck Mol ecular Force Field, M M FF 94 131

A.I MMFF 94:

8 Uller / P rogram me r G uide

B.l Introduction .

8.2 Performing Molecular Mechanics Calculat ions

8.2 .1 Input .

B.2.2 Outp ut .

8.3 Molecula r Mechanics Code Layout .

8 .4 Addition of New Parts to the Existing Code

8 .4.1 Adding Objects and Classes .

8.4.2 New Atom Types .

8.4.3 Adding a New Force Field .

vii

132

134

134

134

134

141

141

142

142

143

145

B.5 Summa ry

viii

145

List of Tables

4.1 Class Associat ions 73

6.1 Single point energies for a series of hydrocarbon molecules. 120

6.2 Table of geomet ry optimizat ion results for a series of hydrocarbons. 123

6.3 Table of conformational energy differences for th e et hane and cycle-

hexane systems.

ix

126

List of Figures

2.1 Bond str etch . 12

2.2 Angle bend. 14

2.3 Torsion angle. 15

2.4 Out-of-plane bend. 17

2.5 The coupling of one bond to a neighbouring bond. . 20

2.6 The coupling of an angle to t he stretc h of one of its bonds. 21

2.7 T he steps in the parameterization process. 23

3.1 Diagram of a geomet ry optim izatio n aft er th e generation of t he initial

Cartesian coordinates . 31

3.2 Example of a diagram of a molecular graph representing propene . 33

3.3 Samp le plot showing different types of stationary points . 38

4.1 Ana lysis and design 58

4.2 Class diagram . 63

4.3 Object diagram . 64

4.4 Stretch class diagram . 65

4.5 T he object model for the molecular mechanics package.

4.6 High-level data flow diagram .

4.7 High-level diagram (first approximat ion) for the flow of da ta thro ugh

the enti re molecular mechanics program .

4.8 Mid-level functi onal model diagram for t he molecular mecha nics pro-

gram . .

4.9 Low-level functio nal model diagram for th e molecular mechanics pro­

gram ..

4.10 Low-level functional model diagram for the conversion of redundant

coordina tes to certesians. .

xi

75

78

80

82

83

84

List of Abbreviations

FF force field

M}"I molecula r mechanics

C Ca rbon

H Hydrogen

SVD singular value decompos itio n

XR Newton Raphson

VA05AD)'fini mizat ion of Sum of Squares met hod

BFGS Broyden-Fletcher-Goldfarb-Shanno

OIlS Direct Inve rsion of the Iterative Subspace

OC Optimally Condit ioned

OSIPE Open Structured Inte rfaceable Programming Environment

MMFF94 Merck Molec ular Force Field , 1994 v ersion

xii

Chapter 1

Introduction

1.1 Ove rview of P roject

Molecular mechan ics has proven to be a viable met hod of ob ta ining geometries

and energies for molecular systems. Ab initio and semiempirical methods art' also

availab le for completing the same task, however in t he case of large molecules, they are

not feasible. Although molecular mechanics method s are not as accurate as ab initio

or semiempirical met hods , in the case of larg e molecules an approximate st ructure is

often sought and molecular mechanics provides a less expensive and time-conserving

alte rnative.

Many di fferent packa ges are currently avai la ble. Each molecula r mechan ics pack­

age is somewhat different from ot hers in the form of the energy expression as wel l

as the parameters it uses and the systems it treats. For example, some molecular

mechan ics packages are designed to reprod uce geomet ries of large bic moleculee, while

others reproduce geometries of organic or inorganic systems.

Molecular mechanics packages contain many functionalities, some of which in­

clude geometry optimizat ion and topological methods, as well as menu and printing

capabilities. When generati ng results using molecular mechanics, the input must first

be parsed, the topology generated and used to determine the connectivity, the coor­

dinates determined from this connect ivity, and the geometry must be optimized to

provide the desired output.

Design of a molecular mechanics package can be done using procedure or object­

based design. Procedure-based design gives a package which has logical program

subunits which are smaller executable parts of the program, such as functions or

subprograms. T he problem is broken down into executable stops taken from the

problem definition to the desired solution. Object-based design, involves modeling

the problem using a real-world model where objects within this model are defined

and the interact ion of these objects produces the desired solut ion.

1.2 Goals of t he P roj ect

In this work, a molecular mechanics package restricted to hydrocarbons will

be created based on an existing force field and using the techniques of object-based

analysis and design. The desired feat ures of this molecular mechanics package are as

follows:

• efficient use of memory and computat ion t ime

• reliable

• mod ular

• easy to modi fy and update

• capab le of evaluat ing a variety of syste ms

• dynamic allocation of memory

• dynami c execut ion

• cont rolled print ing and debugging

T he language of implementa tion will be Fort ran 90 as it provides backward

compat ibilit y with Fort ran 77 as well as limited support for object -based design.

Because the molecular mechan ics package will be added to a large r ab initio peckege

writt en in Fort ran 90 and t he exist ing needed mathematical tools are writ ten in

Fort ran TI, t he For t ran 90 language provided th e needed functional ity for object­

based design with straight forward integr ation into existing Fortran code.

1.3 Outline

T he outline of t he thests ill as follows. Chapter 2 outliucs the molecula r mechan­

irs method. It gives the general descrip tion as well as a more detai led descriptio n

of the force field, and provides the problem description needed for t he object-based

design .

Chapter 3 gives a descriptio n of some of the toots availab le to th e molecular

mechanics package. It also outl ines the coordinate system used.

Chapter 4 provides a description of the object-based design method as well

as giving th e results of the application of this method to th e molecular mechan ics

probl em.

Chapter 5 provides a descripti on of th e use of the Fortr an 90 langua ge to imple­

ment t he ideas in Cha pter 3 for the molecular mechanics package, as well as describing

some useful features of Fort ran 90 which were also used in the implemen tat ion. It also

contains some examples of the implementation of the molecular mechanics method.

Chapter 6 provides some examples of single point and geomet ry optimizat ions as

well as giving t he results of comp utat ions on several hyd rocar bons. Some comparison

with literature values is also given.

Chapter 2

Molecular Mechanics and Force

Fields

2.1 Introduction

Molecular mechan ics is a term used to describe th e computational met hod of

obtaining molecular energies and str uctures . It is a result of the applica t ion of t he

Born-Oppenheimer approximation, which allows t he electro nic and nuclear motions

within a molecule to be treated separately. Thus, one can t reat the molecular system

with respect to nuclear motion without explicitly considering the motions of the

electrons. This is th e bas is for the idees in mo lecular mechanics [1, 2, 3, 4 , 5, 6].

The idea of trea ting molecules in t his mann er dates back to the 1930's, where

D. H. Andrews and others used the idea that molecules are made up of assemblies

of atoms connected by bonds. These bonds, as well as angles, have natural values

and the molecule will, if distorted , always atte mpt to return itself to the geometry

defined by these val ues. In 19-16, T. L. Hill proposed using st retch, bend, and van

der Waals interactions to minimize the total energy (sterie energy) of a molecule.

This information would then give st ructural and energerlc informat ion for congested

systems. Later on, Dosrrovsky, Hughes, and Ingold used the same method to bet ter

understand the SN2 reaction rates for various halides. Abo, We:;theimer and Mayer

studied the rates of racemization of optically-act ive halo-substituted biphenyls. T he

work of Westheimer and Mayer gave the most convincing molecular mechanics results.

However, it was not unt il the 1950's with the introduction of computers that the

molecular mechanics methods became widely understood and used [I , 2J.

2.2 Mole cu la r M ec ha nics

In molecular mechanics the energy is expressed as a function of the posit ions

of IuJrd 3pheru, or nuclei. The initial use of molecular mechanics was for repro­

ducing spectra, however its uses have since been extended to energy and structural

reproduct ion. Although the accuracy of molecular mechanics method does not rival

the current ab initio or semiempirical methods, it has ROme advantages. Molecular

mechanics is valuable in cases where the molecule is too large to be treated com­

puta tionally by ab Initio or scmiempincal methods. Some examples of groups of

systems where molecular mechanics may be the only fea...ible computa tional method

are large polymers, proteins, and coordination complexes. Most molecular mechanics

packages are relativ ely general in that they are able to tr eat two or more groups of

molecules [1, 2, 3, 4, 5, 61.

The energy, expressed as a function of t he nuclear coordinates, forms a surface

which is known as t he Born-Opp enheimer or potent ial energy surface. This surface

describes t he change in energy for t he molecule as a funct ion of th e motions of the

nuclei. There are a few regions of interest on th is potent ial energy surface, and these

regions are rich in st ruct ural and energet ic informat ion, some of which cannot be de­

termined by exper iment [71 . For example, in molecular mechanics it is customary to

want th e particular point on t he potential energy surface which has the lowest energy

as th is gives the most opt imal st ruct ura l information for t he molecular system. Also

obtainable from the potenti al energy surface are the vibrat ional energy levels for t he

ground electron ic state of the system. Th is information is very useful to spect ro­

scopists and as a result some molecular mechanics meth ods involve using potenti al

functions which are designed to reprodu ce this informa tion accurate ly. Unfortunately,

a molecular mechanics method designed to accurately reprodu ce spect ral data is not

generally good for reprod ucing struct ural and energetic information. Also, met hods

which repro duce st ructural and energet ic information usually are a poor choice for

reproducing spectra [1, 2, 3, 4, 5, 6}.

The results of a molecular mech anics method are a set of interac tions between

ato ms within t he molecule as well as t he energy contrib ut ions with respect to each of

these interactions. T he sum of these energy cont ribut ions is t he tot al or ste ric energy

of the molecule. The functions which define t he energy in terms of each of t hese

interactions constitute the force field. T his name was adopted from spectroscopy and

it is interesting to note that the first derivatives of these energy contributions give

the forces for particula r interact ions (1, 2, 3, 4, 5, 6J.

2.3 Force F ields

2.3 .1 Introduction

The force field is the energy expression which is used to describe the energy

of the system with respect to the nuclear coordinates. There are two classes of

force fields. The harmonic force field only conta ins contributions to the energy that

result from harmonic motion within the molecule and the anharmonic force field

contains contributions to the energy resulting from both harmonic and anharmonic

motions. The force field has many uses, however it is known for itt; use in calculating

minimum energy st ructures or vibratio nal spectra . This energy can be investigated

over a set of ti me intervals to give the evolution of a system's energy with respect

to t ime (molecular dynamics), which has widespread use in simulations in solution

or condensed phase. Instead of finding a minimum energy, a random sampling of

the conformational space of one or more molecules can be used to determine the

Boltzmann dtsutbuno n of the energies of various conformations of a molecule (Monte

Carlo simulat ions) [1, 2, 3, 4, 5, 6, 8].

There are two major criteria a force field must satisfy. First , it should be able to

predict t he equilibrium st ruct ure of a molecule. Second, it should be able to predic t

t he sta bility of the st ructure at or near th e minimum energy. The form of the energy

expression is therefore important to satis fying these crite ria. Since th e force field is

empirical, there is no correct expression and as a result , many different force fields

are availa ble. For more informat ion on the force field implemented in this work, see

append ix A. Depending on th e purpose of t he force field , some expressions may be

more accura te t han others. Usually t here is a tr adeoff between accuracy of t he force

field and t he speed at which it computes the energetic and structu ral informat ion and

this in turn depends on th e area of applicat ion [1, 2, 3, 4, 5, 6, 81.

The presence of intramolecular and intermolecular forces which comp ress, stretch,

and twist the molecule cause the pot ential energy of t he system to change. T his

change in the potent ial energy can be furt her investigated by looking at the form

of the energy expression in more detail. If the potential energy of the molecule is

expa nded in a Taylor series, t he following expression results:

N (av) N N (a'v)
Vpotenlial = Vo+~ a;: 0~Xi +~ f,; 8x.8xj o~XjaXj + . (2.1)

When t he molecule is at a minimu m on the potent ial energy surface, t he first term in

the series can be set to zero (init ial energy is zero) and the second term vanishes (for a

sta tionary point). Only the second order term is kept in t he harmon ic approxi mat ion.

This leaves t he following expression for the potent ial energy [1, 2, 3, 4, 5, 6, 8] at an

ext remum :

NN (8'V)
VP<'/. n tiai =LL ux;ux - fi.x;fi.x, .

i = I , = 1] 0

12.2)

Th e energy of a molecule can now be given in term s of t he deformatio ns of

vario us interactions (fi.x; and fi.x,) which occur between t he atoms . Some of t hese

inter ac tions are st retches, bends, tors ions, impro per torsions or out-o f-plane bends,

van der Waa ls, and electros tati cs. In some force fields, energy te rms derived from t he

result of one int eraction on anot her are also considered, also called cross-te rms. T he

energy expression can then be rewritt en as (1, 2, 3, 4, 5, 6, 8];

12.3)

+ V" ' d r ... l<lhc~ + cross terms.

Each of these energy contributions is composed of a function containing par am-

eters which determin e th e rate of increase or decre ase of t he energy depending on t he

ato ms involved, and is obtained by summing t he individu al energies for each inter-

action of a partklllar type. Th e parameters can be determined from experiment al

results or ab initio calculatio ns. However , th is does not solve th e problem of comp uta-

tions on large systems unless an import ant assumptio n is made . If the param eters can

be derived for small molecules for which th e computations or experimenta l results are

10

strai ghtforward to obtain, t hen it should be possible to transfer t hese par ameters to

larg e molecules. This is a valid assumption if t he energy expression contains bonded

and nonbonded intera ct ions. However, the pa rameters are not transferable between

force fields because their development is dependent on t he energy expression used to

derive them . Par ameters are , however, transfe rable between molecules as long as the

environments of the interact ions are the same [1, 2, 3, 4, 5, 6, 8J.

Th e most common functions for t he energy express ions given in the previous

equation will now be discussed . For detai ls on the funct ion used in the molecular me-

chanica package implemented in this work, the reader is again referred to appendix A.

2.3 .2 T he P ot ent ial Energy Exp ressio n

The total ste ric energy for a molecule can be expressed as a sum of cont ribut ions

due to st retch, bend, tors ion, out-of-plane bends or impro per dihedrals, van der Waals,

and electros ta tic inte ractions as well as th e coupling between these interact ions to

give [1, 2. 3, 4, 5, 6, 8];

+ L V ti <clrootatic + cross term s
dcctro.latic

11

Figure 2.1: Bond stretch.

Bond St ret ch

A bond stretch is a deformation within the molecule which occurs along the

bond formed between two atoms. This deformat ion can correspond to a lengthening

or shortening of the bond.

Figure 2.1 gives an example of a bond stretch. The potential energy change as

the bond is compressed and stretched is given by the potent ial energy surface of a

diatomic molecule and is best described by a Morse potential:

" ~D { l _ [- o(T- roll} '~ . !.dch - ~ e

where a = w~and W = If;,. (2.5)

The Morse potentia l is the most accurate representat ion of the diatomic potentia l

energy surface, however it is computatio nally expensive. For smaller systems this

will not be a problem, however, for large molecules this is still not the best option.

Since the struc ture desired is usually the one corresponding to a minimum energy, the

Morse potential can be expanded in a Taylor series and trunca ted after the quadratic

term.

The result is Hooke's law for the deformation of a harmonic spring. In the region

12

around the minimum energy on the potential energy surface, this approximation is

adequate , however bonds are not harmonic in natu re. In order to account for the

anhar monicity in the bonds, the quadratic , cubic, and quartic terms in the Taylor

series expansion must be included in the energy expression. This resulting functional

form very closely approximates the Morse potential in a larger region about the energy

minimum and is less computation ally expensive and more accurate than the harmonic

approximation. As a result, many force fields use this form of the potent ial energy or

some var iati on of it:

In the above equat ion, 2K , 3K , and 4K denote quadrat ic, cubic, and quart ic

bond force constants . For molecules with long bonds, such as the bonds between

molecules in a transition sta te , the Morse potential must be used because they are

located too far from the minimum on the potential energy surface to be correctly

represented by the above equation . The Morse potential also correctly describes

bond dissociation 11, 2, 3, 4, 5, 6, 8J.

An gle Be nd

An angle bend corresponds to a deformation of the angle formed between two

atoms bonded to a common third atom.

13

Figure 2.2: Angle bend.

Figure 2.2 gives an example of a bend between thr ee atoms. The angle bends

also become harm onic as t he angle becomes very close to t he equilibrium value. As a

result , t he angle bend potential energy is often represented by a harmo nic potent ial.

The force constant in the harmonic potent ial prevents the angle bend from deform ing

teo far from the equilib rium value (called a restoring force consta nt) and is smaller

for an angle t han for a bond because less force is needed to deform an angle from its

equilibrium value. This functi on is accurate for angle deformations of up to 10 degrees,

however if t he deformation is larger, the harmonic approximat ion fails. In these cases,

and for better accuracy in general , it is desirca ble to include the anh arm onicity as

was done for th e st retches. This is again done by addi ng a cubic and /o r quartic term

to t he harm onic approximat ion to give the bending energy as:

In t he above equation, 2K , 3K, and 4K denote quadr atic, cubic, and quartic

14

Figure 2.3: Torsion angle.

angul ar force consta nts . T his equa t ion is sufficient for reproducing most angles,

however most force f ields will include special ato m types to d istinguish those angles

t hat must be treated wit h more accurate force consta nts and equ ilibrium values (for

example , strained ring S)"Stf'IDS). For linear be-nds the angles are not calculated eo­

curately b)' t he above equat ion so an expression using cosines is used for this special

case (1, 2, 3, 4, 5, 6, 81.

Tor sion

Tors ions describe intermolecular rotations. T hey occur between at oms separa ted

by Linc e uonds and ere dcflned It.-; the angle formed between twu planes, one containing

the first and second bond , and t he other containing the second and third bond .

Figure 2.3 shows a torsion from bot h t he side view and the perspective when

15

looking down the cent ral bond. Torsions occur when two atoms separated by three

bonds attempt to reduce the antibonding interact ion between t hem. In order to

achieve a lower energy the two atoms move in a direction which reduces this repulsive

inter action . The energy due to t his torsion is represented by a cosine functio n. Often

t his potent ial expression is a Fourier series expansion truncated after the third term ,

but some force fields include up to six t erms. However, for the purposes of obtai ning a

minimum energy st ruct ure, th e first thr ee or four terms of the expansion are sufficient ,

and it turns out only the first six of these terms can be determ ined by experiment

from t he overtones . The following function al form is most common in force fields:

\';or.;qn = Vj(I +cosO)+ \-; (1 - cos 20) + V3 (1 + cos 30). (2.8)

The VI term in t he above expression correspond s to the dipole-dipole interact ions

between the first and fourth atom in th e tors ion, t he V2 term corresponds to the

conjugation f hyperconjugat ion effects , and the Vs term corresponds to ste ric interac-

t ions [1, 2, 3, 4, 5, 6, 8J.

Out-of-P lan e Bends and Im pr oper Dihedral Ang les

Trigonal planar centres within molecules are not adequately represen ted in force

fields which include only stret ch, bend, torsion, and nonbonded interac tions. As a

result , most current force fields now conta in an energy cont ribution to treat these

16

~ ...

Figure 2.4: Out -of-plane bend .

trig ona l planar centres adequate ly. This is done by including an improper dihedral

or out- of-pla ne bend ing term in the energy expression.

Some force fields use the out-of-plane bend and ot hers use the improper dihedr al

ang le, and th e use of one or the other can offer advantages. Improper dihedrals are

not real angles, but the existing torsion energy expression may be used to compute the

energy contr ibut ion. Out -of-pla ne bends are actual vibrationa l modes in spectrosc opy,

but a new funct ion must be used to compute the energy. If an out-o f-plane bend is

used , the mot ion is harm onic, so the energy can be comp uted using a harmonic

potential [1, 2, 3, 4, 5, 6, 8J:

(2.9)

T he out -of-plane angle represented abov e by)(cun be defined as a Wililon an gle,

shown in figure 2.4, or as a pyramid height [81.

17

van der Waa ls In teract ions

van der Waals contributions are computed between nonbonded atoms, and most

force fields do not include van der Waals cont ributions resulting from atoms which

are bonded to a common third atom. They were first computed by van der Waals

and show the deviation of a real gas from ideal gas behavior. This energy term

includes the effects of dispersion forces, weak bonds and van der 'Waals interactions

and contains an att ract ive and repulsive part . The at tr act ive part is long range and

is due to induced dipole-dipole interactions. The repulsive part is short range and

is a result of the overlap of electron clouds on the interacting atoms. It is common

in force fields to represent the van der Waals interact ion energy by a Lennard-Jones

pot enti a l jl , 2, 3, 4, 5, 6, 81:

(2.10)

The (represents the well depth of the potential function, R represents the in­

ternuclear separation, and the 1?{) represents the minimum energy separation of the

interact ing atoms. Some force fields replace the repulsion term in the above expression

by an exponential-f funct ion. The above expression fur the van der Waab putent.ial

is in general sufficient, although the at tractive term is often not good enough to re­

produce energies and struct ures for some organic systems, so some force fields use an

R- 9 term for the repulsive part. However, the R- 12 term is preferred since it is trivial

18

to compute it by squa ring t he R-6 term [1, 2, 3, 4, 5, 6, 8].

E lectrost at ics

Each nonbonded pair also cont ributes an energy term due to electrostatic inter­

actions . The re are several possible ways to model th ese interac t ions, although the

simple Coulomb interactio n between two point charges is popular in most force fields:

Vd ectT,.. I<lh C = K{~q2 . (2.11)

Hydr ogen bonds are also modeled by electrostatic potent ials in some force fields.

Also included in most electrostatic potent ials is a consta nt to prevent infinite aurae­

tions between opposite charges. The charges ql and q2 are represented by charges at

the centre of the nucleus, also called partial ato mic charges. Th ese usually consist of

the sum of a formal charge determined from Lewis dot struc tures and bond charge

increment cont ributions from all bonds the atom part icipates in.

Someti mes it is desireab le to model th e electros t atic interactions using higher

order mult ipoles, such as dipoles, quedrupoles or octopoles. One reason for th is is

charge may not actually be located at the nucleus as is depicted by the point charge

model, but may be distr ibuted thro ughout the molecule. In this case a distr ibut ed

multi pole model may be used instead of the point charge model [1, 2, 3, 4, 5, 6, 81.

19

Figure 2.5: The coupling of one bond to a neighhouring hondo

C ross Terms

Because the bond, angle, torsion, and out-of-plene bend (or improper dihedral)

Interact ions are each computed individually, some correction must be added to ac­

count for the effect of one interaction on another. These correct ions depend on the

nearest neighbours of the interact ing atoms only. For example, two bonds which are

separa ted from one another by two or more bonds do not affect each other enough

to be significant and are not included. However, two bonds shar ing a common atom

~;11 affect one another and should not be ignored. It was found that the inclusion

of energy tenu s due to coupling of interactions makes the parameters of the force

field more transferable to molecules not IISed to parameterize it . There are many

cross terms and only those tha t have shown significant cont ributions to the energy

expression are included. Two of the most common ones in current force fields that

will be discussed are st retch-st retch and stretch-bend (1. 2, 3, 'I, 5, 6, 81.

20

Figure 2.6: The coupling of an angle to t he stretc h of one of its bonds.

The st retch-stretch coupling inter acti on is most important in a -bonded systems .

They describe the effect of one stretch on a neighboring st retch. Figure 2.5 gives

an exa mple of a st retch-st retch interaction. The energy can be expressed using a

harmoni c pote ntial :

(2.12)

The st retch-bend coupling interac t ion is included to account for the change in

bond length that occurs when angles are changed as well as the change in the angle

when the bond lengt hs are changed.

Figure 2.6 gives an exam ple of a stret ch-bend inte ract ion. Often it is expressed in

terms of one of two bonds t hat make up tile angle and an energy contribution is given

for each bond in the angle. This term is important also if aile wants more accurate

21

vibrat ional frequencies

The energy can be expressed by a har monic potenti al [1, 2, 3, 4, 5, 6, 81:

(2.13)

2.3.3 P aramet er izat ion of the Force Field

The const ants in the above equatio ns as well as the exact energy expression for

a force field must be determined in some manner. Some of t hese param eters include

at om types , force constan ts, equilibrium values, nonbonded parameters, and scale

fact ors. The pa rameters must be derived by matching t he desired result s of the force

field to exist ing dat a, eithe r from experiment or ab initio calculat ions. In order to

accomplish this a syste matic meth od must be used to obtain t he parameters from

the fits to the existing data . The paramet r-rlzatl on step is very imp ortan t in the

development because t he accuracy of the force field is very dependent on the energy

expressions and the ir parame ters. Due to the use of varying potential functions and

parameters in t he current force fields, it is very da ngerous to use par ameters from

one force field in anot her .

Figure 2.7 gives a brief outline of the process of param eterizing a force field.

Once th e pot ent ial energy expression is obta ined, a set of init ial guesses for th e

paramete rs is needed. These can be obta ined from existin g dat a or a tru e guess .

22

Parameter set for
force field deriv ed.

Figure 2.7: The steps in the parame ter izat ion process.

23

These initia l guesses are usually very poor so they are not kept. The next step is to

obtain t he result s the force field should produce from eit her experiment or ab initio

calculations . These may be energies, spectral, thermodynamic, or some other form

of data [1, 3, 4, 8, 9J.

A set of tra ining molecules is also needed . The trai ning set is generally repre­

sent at ive of the types of systems the force field is designed to handl e. A particular

subset of t he train ing set is used as targets and the data from the force field will be fit

to that experi menta l or computational data using t hese molecules. Normally training

sets are large, often in excess of 500 molecules.

Next, the same results are obtained from th e force field using the init ial param ­

eter s and energy expressio ns. These two sets of results are compared and necessary

changes are t hen made to the paramet ers and/o r potentia ls. In th e early days of force

fields this was manually itera ted unti l the force field results matc hed the ones from

exper iment or computa t ion. This process involved a lot of intuit ion and guess work

and was very time- consuming . A linear least-squares fitting procedur e is commonly

used to iterate t he parameter genera tion to convergence, but even in t his case con­

vergence is still slow unless the user makes a few adjustme nts to attempt to speed

convergence [1, 3, 4, 8, 9J.

The paramete rizati on prvcese is t he most expensive par t of force field devel-

opmen t. Usually the data used for comparison and fitt ing is limited to alleviate

this expense somewhat. Anot her problem with parameteriza tion is that optimiza tion

of the parameters must be done in t he same unit s. This can be eased by using a

24

weightin g scheme to opti mize parameters of differing unit s. The iterat ive procedure

is usually converged when no improvements are seen in the force field parameters .

If a par ameter goes to zero dur ing the iterative process, the potent ial function is

eliminated from t he energy expression.

Some of t he data used for fitt ing the para meters is listed below along with the

type of interact ion it is used for in the fitti ng procedure [1, 3, 4, 8, 91:

• Bonds and Angles:

- reduced vibrational spectrosco pic values

- opt imized geometries of a group of simple (model) compounds

- barr iers to rota tion

• van der Waals:

- vall der Waals potenti als of rare gas atoms from molecular beam expcri-

- van der Waals radii: crysta l data or ab initio

- experimenta l dipoles

- calculated t hermodyna mic properti es

25

- molecular elect rosta tic potential s

The partial at omic charges are not observables and cannot be obtained directly

from ab initiocalculat ions, altho ugh this method is often useful for obtai ning an init ial

guess to ot her properties from which the partial atomic charges can be determined .

They can be obtained from molecular electros tatic poten tials or ot her sources [1, 3,

4,8,9).

2.3.4 He ats of Format ion and Confor ma ti ons From Mo lecu-

lar Mechanics

The most common uses of molecular mechanics are geometry opt imizatio ns,

conforma t ional searches, individual energy contrib ut ions with respect to a particular

interact ion, and hea ts of formation . Techniques for energy minimiz ation will be

covered in more detail in the next chapter , so will not he covered here. Generatio n

of individual energy contr ibut ions in some force fields usually involves specifying a

part icular level of print ing, with higher print ing levels giving more detail ed results

from the molecular mechanics computation [1, 3, 101.

Gener ation of conformers has two practical advantages . First , it ena bles t he lo­

catio n of low-energy conformatio ns of a molecule along a potentia l energy surface wit.h

more tha n one minimum. Second, saddle points along the potential energy surface

can also be located, and t hose saddle points which are first-order often correspond to

26

t ransit ion sta te st ruct ures. Conformations can be generated by fixing some param ­

eters and optimizing wit h respect to t he parameters which are not fixed. Usually,

th e parameters tha t are fixed are torsions. Anot her name for this type of conformer

search is torsion driving. In torsion driving using molecular mechanics, a strong tor­

sional potent ial is added to t he force field which fixes one or more of the torsions to

a certain value for the duration of the energy minimizatio n. This corresponds to an

optimized geomet ry with th e desired torsion angle(s). The stro ng torsion potential

is then removed and a single-point energy is calculated using the original force field ,

correspondin g to th e energy of th e desired structure [11.

It is also possible to calculat e heats of forma t ion using the str ain energy calcu­

lated from molecular mechanics. The equilibrium elect ronic energy is a combinat ion

of contr ibutions due to the st rain energy from molecular mechanics and the bond

energies. As a result , it should be possible to approximate the equilibrium elect ronic

energy from a combination of the steric ellergy of th e molecule at t he bottom of th e

potent ial well and the bond energies. The format ion energy for a partic ular reac­

t ion is then the ch ange in t his electronic energy which occurs when the products are

formed from t he reactants [I , 3]:

AU; ,o = v.~"c - bond energies. (2.14)

The heat of format ion is t hen expressed as a sum of t he internal energy plus t he

27

rotatio nal and trans lat ional energy and a PV term added to generate the enthalpy

from the energy of the nonlinear molecule (31:

AHi = AU; + A(PV t . (2.15)

The enthalp y of formation, in general, can thus be computed as a sum of the

rotat ional, vibrat ional, and PV terms combined with the steric energy from molecular

mechanics and the bond energy {I, 31:

AJl j =4Kf + \t~t<ric: + E......,. (2.16)

In the above expression, th .. .aRT term represents the cont ributions to the energy

from translation, rotati on, and a PV term to conve rt th is energy to enthalpy for a

nonlinear molecule. T he bond energy increments are usually included in the molecular

mechanics package and seve ral opt ions for these values are available 11,31.

2.4 Summary

Molecular mechanics is a versatile method for obtaining informatio n about a

molecular system. It is derived Irom assuming the nuclear and elect ronic motions

can be t reated separatel y (the Born-Oppe nheimer approximation), giving an energy

28

expression that is dependent on t he positions of t he nuclei. This express ion is a

sum of all of t he inter actions which occur in the molecular syst em and constit utes

the force field. There are a variety of different combinat ions of energy express ions

which gives a variety of different force fields. The parame ters used in the energy

expressions can be derived using an ite rative process of fitting force field results to

either ab initi o or experimenta l data. The results of molecular mechanics calculat ions

are often structural data and energies although othe r quant it ies such as vibra tional

frequencies and heats of formation can also be obtained.

29

Chapter 3

Molecular Representation and

Geometry Optimization

3.1 Introduction

Two concepts cent ral to any molecular modeling method, including molecular

mechanics, are how th e molecule is represented and the geomet ry which t he molecule

has when its energy is lowest. A molecule can be represented in d ifferent ways de­

pending on th e coord inat e system the method works with. But before t he coordina tes

for the molecule can be built , the posit ions of the atoms must be determined. This

ca n be d on e by t reating t he atom s in a molecul e us ver tic es of a gr ap h an d t he bo nd s

as the edges which connect the vertices.

Once the coordinates are built and the pote ntial energy function is known, the

potent ial energy surface around the structure can be explored to find points where

30

No

Figure 3.1: Diagram of a geome try optimiz ati on after th e gen era t ion of the initi al
Cart esian coordinates.

31

t he energy is lowest . Methods are available to do th is and are collecti vely called

optimiza tion met hods. When these methods are applied to opt imize the potentia l

energy of a molecule with respect to t he coordina tes used, the y are collectively called

geomet ry opt imizatio n. A diagram of this entire process is given by figure 3.1.

3.2 Topology: Informat ion R egarding 3-Dimensional

Molecular Structure

3.2.1 Edges, Ver t ices , and G raphs

A nondlrected grap h G can be defined as a collection of vertices and the edges

which join them. The collection of vertices form a vertex set, or Va and the collect ion

of edges form an edge set , or Ee , such that the clements of Ea are unordered pairs

of d istinct elements of Va Ill , 12J.

A graph ca n be viewed pictorially by representi ng t he vert ices by small hollow or

filled-in circles which are connected by lines. These lines represent the edges. Often

t he term graph is used to mean both the pictor ial represent ation and the formal

definit ion.

Gra phs are part icular ly useful in chemistry to represent chemical st ruct ures.

These struc tures can be molecules, cryst als, react ions, ctc., and th ey conta in pieces

which are connected to one anot her. The pieces and t heir connectivities are analogous

to t he vertices and edges of a graph, respectively. The vert ices in a graph can be used

32

I
H" ,0C - H

H----<: - C/'
/ \

H H

graph ical l't'prese ntation
of propene

Figure 3.2: Example of a diagra m of a molecular graph representing propene.

to represent atoms, molecules, elect rons, functional groups, etc. The edges can be

used to represent chemical bonds, van der Waals interactions, part ially formed bonds,

etc [11, 121. An example of a d iagram of a molecular grap h is given in figure 3.2.

Th e inform at ion cont ained in the graph call be used to determine the atoms tn-

valved in interactions (for example, torsions). hsts of bonded and nonbonded pairs,

valencies of the atoms, locations of rings in a molecule, and a variety of other in-

fonna tion. Some of the uses of the molecular graph will be discussed in subsequent

seeuone .

3.2.2 Valen cy. th e Adj acen cy M atr-ix , and t he Distance Ma-

t r ix

A wide variety of information can be collected from 8. graph, for example the

graph shews which vertices are connected and which ones are not. With the vertices.

this connect ivity informat ion, and some idea about bonding at centres (represented

by the vert ices), a molecule can be reconst ructed. The connectivity information

33

is straightforward to compute for a given graph G provided some order is given

to the vertic es. Thi s call be accomplished wit h vertex labelin g. Once t he vertices

are labeled, it can be dete rmined if two vert ices share an edge if th ey are adjacent

to one another. One must be careful when labeling the graph as the connectivity

informat ion depends on th e way it is labelled. Th e matrix formed by a collection of

thi s connect ivity informat ion is square symmetric, and is called the adjac ency matrix.

It s both dimen sions arc th e number of vertic es (N), or N X N. In oth er words , each

row (or column) conta ins information about which other vert ices are adjac ent to the

one represent ed by the row label. Th e adjacency matr ix is comprised of entri es of

ones and zeros which are determ ined as follows [11, 121:

{

I if vert ices Vi and Vj are adjacent ,
Ai j =

o otherwise.

(3.1)

When building the adjacency matrix for molecular systems, it often does not suffice

to determin e adjacent ver tices, but to define some dist ance which th e vertic es must

be wit hin to be considered connected.

By summing the ent ries in a row of th e adja cency matrix th e number of vertices

a vertex is conn ected to can be det erm ined . T his SUIll is known as the valency of the

vertex. If the shor test path between two vertices is placed in t he adjacency ma t rix

in place of t he ent ries for each vertex, th is matr ix is called t he dist ance ma tr ix, and

34

its ent ries are denoted by t he following relatio n [11, 121:

{
" , '.fi. ' :D ;j =

o 1ft = J .

(3.2)

The l ij in the above equatio n is the dista nce of the shortest path between two vertices.

3,2 .3 Rings

Rings withi n a molecule call be found by constructing a span ning tree to deter-

mine the number of edges which close a ring. T his number of edges is the same as the

number of rings within t he graph. A spanning tree has the feature that it includes

all vert ices of a graph, but does not contain cycles. If an edge is found which creates

a cycle, that is which closes a ring, th en it is removed and counted . Determi ning

th e locat ion of rings within a grap h involves tra velling throu gh t he pat hs of a graph

and t he paths which are closed, tha t is the heginning and end vertices coincide, are

t he rings (or cycles). A path is a sequence of edges and vertices where the edge is

incident with the vertices immedia t ely before and afte r it, but where all vertices are

distinct [12, 13).

35

3.3 Geometry Optimization and Energy Mi n im iza ­

tion

3.3.1 The P ot entia l En er gy Surface a nd C hem ically Interest ­

in g Points

T he potent ial energy surface describes the changes in the potential energy of a

system wit h respect to the positions of the nuclei. As a result , this surface can give

informatio n on th e effect of st ruct ural changes 0 11 the potential energy.

Th e st ructure of a molecule can be det ermined by invest igating the poteu­

tie l energy surface at different geometr ies. It is possible for the molecule to have

minimum and maxim um energy structures, and in t he case of molecules in a reac­

t ion, a tra nsit ion state st ruct ure. T hese point s are referred to as st ationary points

as the first derivatives of the potent ial energy wit h respect to th e coordina tes is

zero [14, 15, 16, 17).

In order to det ermine t he locat ion of t hese points all t he potent ial energy surface,

it is useful to obta in first and second derivativ es of th e potential energy function

as they give information 011 the location and type of stationary points . Since the

negative s of the gradients (or first derivatives) correspond to th e forces on the atoms

in classical mechani cs, these sta t ionary points also are places where t he forces on the

at oms are zero [14, 15, 16, 171.

The second deriva tive mat rix is the force constant matrix and gives informatio n

36

about t he type of stationary point found . If th is mat rix is diagonal lzed, the result ing

diagona l values at the stationary point s are th e vibrational frequencies. For a mini­

mum, all these diagonal values are positi ve, for a maximum, they are negative, and

for a sadd le point , some are positi ve and some are negative . If there is more tha n

one minimum , the one with the lowest energy is the global minimum and all others

are called local minima. T he order of the saddle point corresponds to the number of

negat ive eigenvalues, or th e number of directions for which the energy is a maximum.

Transition sta te st ructures correspon d to first-order saddle points [14, 15, 16, l7 J.

Figure 3.3 shows an example of a surface for the function given in the capt ion.

It shows examples of maxima, a global and local minimum, and a first-order saddle

point .

3.3 .2 Energ y Mi nimizat ion

A variety of different forms of energy minimization meth ods exist, each using

varying amounts of informa t ion ab out the potential energy surface. The derivatives

employed in t hese methods call be computed analyt ically or numer ically, depending

on the expense of analytical computat iun. Analytical derivatives are preferred as th ey

greatly speed up t he opti mization.

The selection of all opti mization metho d depends on the type of problem being

solved, the number of independent variables used ill the function, and some charac­

ter ist ics of the function used. In th e case of molecular mechanics , the function is the

37

- 2

- 4 - 4

-2
globa l minimum

Figure 3.3: Sample plot showing stat ionary points for f (x , y) = 3(1 _ x2)e- Z I
_

1O(!- x3 _ y5)e-r~ _ y2 _ ~e-(H l) 7 _ y2 [18].

38

pote ntial energy with respect to either cartesian or internal coordinates . It is a non­

linear mult ivariate funct ion (more t han one independent var iable) with no imposed

constrain ts. Two possible problems to be solved are minimizat ion and search for sad­

dle points . The meth ods discussed in this chapter are designed to search for minima.

The problem can be formulated using t he following equation [4, 15, 16, 17, 191:

min V(q), q ED. (3.3)

where the object ive function is the potent ial energy functio n with respect to the

internal coordinate s, given as V(q). The potential energy funct ion ab o contains

cont inuous derivatives up to second order, which is needed to be able to apply the

optimiza t ion met hods.

There are two classes of optimi zation methods: those tha t use derivat ive infor­

matio n and t hose t hat do not . Th e derivati ve methods are the ones which will be

described in this work.

Newton a nd quas i-Newton methods approximate the potentia l energy surface

with t he following quadrat ic function:

(3.4)

39

where the subscript kl s t he iterati on number, V (qk+P) and V (qk) are t he curr ent and

initial pote ntial energies, Pk iii t he step vector , 9k is the gradient , and G t is the second

derivative matrix. Th e minimum corresponds to a zero gradient, and th e descent

direction iii compu ted by find ing a p which minimizes the following funct ion [15, 16,

19Jo

(3.5)

Th is gives the step size as [15, 16, 191:

(3 .6)

Th e descent direct ion can be computed by t he t rust region and line search

meth ods, but will not be described here. The reader is referred to the references

[4, 15, 16, 17, 19) for more detail s.

3.3.3 First Der ivati ve Methods: Steepest De scent

There are several first derivative meth ods available, with t he most common

one being Steepest Descent. In steepest descent the second derivativ e matr ix is

approximated as unity, giving the step direction and step size as th e negative of

40

t he grad ient. T his is sensib le as the gradient is orthogo nal to the contours on th e

potent ial energy surface where the functio n value is consta nt. A negat ive gradient

corresponds to a change in the structure of the molecule to reduce the forces on t he

ato ms which is the direct ion of steepest descent . Often t he ste p size is ta ken along

t he negative gradient , althoug h in some cases a line search is perfor med [4, 15J.

The steepest descent meth od works well for init ial st ructures which are far from

a minimum . If , however, the struct ure is near a minimum, steepest descent converges

slowly. As t he optimizatio n is ta ken close to a minim um, t he search vectors become

less reliable [4, 151.

3.3 .4 Second Der ivat ive Method s

The best known second derivative method is tha t of Newton and Rap hson as it is

exact . In the Newton-Rap hson (NR) method , the energy is evaluated for the curre nt

coordina tes, the grad ients are compu ted, a line search is performed to determine

t he next step direct ion, the Hessian is recomputed , a step is taken to update the

coordinates, and t he convergence is tested . In the case of full Newton-Ra phson, the

Hessian used is the true second deriva tive matrix .

This met hod is quick to converge when near a minimum as the quad rat ic ap­

proximation is valid and a t rue second deriva tive matr ix gives faster convergence than

an approximate Hessian. However in places on the potential energy surface where

the quadratic approximat ion is not as good, s,uch as places far from the minimum,

41

the NR method is slow to converge [15, 16, 19].

Since the inverse Hessian is expensive to compute directly, several methods are

available to approximate it and it is the variety in these approximati ons (upda te

formulas) that gives the different gradient optimizatio n methods.

It is not necessary to compute an exact Hessian and an approximation is much

cheaper to compute. An approx imate Hessian can be computed by using information

about the difference in the computed coordinates and grad ients at the current and

next steps [15, 19J.

Other gradient methods also available to the molecular mechanics package in-

elude Droyden, Fletcher, Goldfarb , and Shanno (BFOS) and Newton-Raphson , as

well as the optim ally conditioned (OC) and direct inversion of the iterat ive subspace

(OIlS) methods. Another method, based on a minimizat ion of sum of squares of the

gradients (VA05AO) is also included [4, 15, 16, 19J.

T he BFGS M ethod

In the BFOS method , the update to the Hessian is computed by the following

relation [4, 15, 16, 19, 201:

(3.7)

42

The Direct Inversion of t he It erati ve Subs pace Met hod

OIlS begins by expressing the set of coord inates as a deviat ion from t he expected

soluti on:

(3.8)

Using t he relat ionship L ,c,q, = qo, t he following system of equati ons is solved to

genera te t he c/s:

(3.9)

Bmm 1 Cm

o - A

where Bij =< e,lej > and>. is a Lagrangian mult iplier. The new gradients and

coordinates for t he curren t step are interpolated using qm+! =Ei c,q; and 9m+l =
L:iC,9i and the updated coordina te vector i ~ then given by [21J:

43

(3.10)

T he Optimall y Cond itio ned Meth od

In t he OC met hod , th e Hessian if! first factored into H = J)1 ' and only the

mat rix J is stored and updated. The change in the coordinates is given as it is

for NR and other methods as _ II- lb..g, but the change in the coordinates and the

grad ients , denoted b.q and 1:::.9, are project ions of the act ual t:::.q and !:::.g . Th ese

projections are used to up date th e Hessian. The opti mal cond it ioning is given as th e

minimum of the ra tio maximu m(±>.. , l)/minimum(±>. , 1), where t he >'S are given by

the equation lJ+u = >'I/v. [22].

The Minimizat ion of S um of Sq ua re s M et hod

In the min imizat ion of t he sum of squares met hod (called VA05AD), the sum of

t he square s of t he gradients is used 123]:

F(q) ~ 2) 9,(,)1' . (3.11)

T he minimization is then done in te rms of F(q), the sum of squares wit h t he goal

of giving grad ients at the next step which are smaller than t hose at t he current step:

44

(3.12)

The iteration for t he VA method is then given as I.hl = Xi +).,kOI< and a suita ble

At is chosen to satisfy the above relation. If).,kOk is modified to give qk+l = qk + '1k ,

t he ste p size 'fit is given by;

(3.13)

where Pk is a non-negat ive parameter. Th is parameter is then opti mized to ensure

subsequent iterat ions give smaller values fur the sum of squa res of the gradients than

the previous iterations [23].

3.4 Coordinate Systems

3.4.1 Definition

The potential energy must be expressed with respect to a partic ular set of coer-

dinates . These define the positions of t he atoms with respect to one anothe r. There

are several options for coordina te de finition and depend on the problem being solved.

In molecular mechanics, t he coord ina te system most often used is redundant

45

internal coordinates, where every possible st retch, bend , torsion, and out-of-plane

bend is included. These values can be computed using the cartesia n coordinates and

simple vector relat ionships, and are the topic of the next subsection [9, 10].

3.4.2 Definition of Re d undant Internal Coord ina t es from Carte-

sian Co ordinat es

T he definitio ns of the coordinates are given in chapte r 2 and the reader is

referred to th is chapte r for a definition of th em. The generat ion of the coordinates

from t he cartesians will be given here.

A bond is defined as th e magnitude of a vector from atom i to atom j of the

bond. It is also th e lengt h of the bond, and is described by the relat ionship [24J:

(3.14)

The values x, y, and z are t he cartes ian coordinates for the atoms.

Let i , j, and k denote three atoms in an angle, where j is the centra l atom and is

bonded to i and k. Also, let A and B be the vectors T1 and kj , respect ively. Then

th e angle is given aa the dot product bet ween the two vectors A and 71 [24]:

46

(All)
8;jk ::: arccos iAIiBi . (3.15)

Let i, i. k, and 1de note four atoms in a torsion, where the central bond is for med

between atoms j and k, and j is bonded to i and k is bonded to 1. Also, let it, B,

and Z!' denote the vectors T1 ,Jk,and It ,Tl'Spl'Ct.ivl'ly. The n the torsio n is given as

t he ang le bet ween two vecto rs formed from the following cross products [14, 24]:

D ~ A x B = IAIIBI,'n••

E = B x 7'J = Ill ll7'JI ,'no"
(3.16)

where 4>1 is the angle between It and 11, ¢>2 is the angle between Band C, and

the vectors It and It are the resulting vectors of the cross product. The torsion is

the n given by the following scala r pro duct betwee n D and E (14, 24] :

(DE)¢ = arccos iLfiiEI . (3.17)

Let i, i , k, and I be four ato ms in an nut-of-plane bend where atom j is the

central ato m and is bonde d to only atoms i, k, and I. Also , let A, 11, and C denote

the vectors Tt ,Jt,and}1, respectively, and D is a vector resu lt ing from the vector

47

produc t of A and 71 . Then D and the out-of- plane bend are given by the following

relationships [14, 24]:

It ~ A x]j ~ IA II]jI' in. ,

F 90" - [~"o'C~I ,i,)]
(3 18)

3.4.3 Coord inat e Conversion: Redund ant In t ernal Coordl-

nat es to Cart esians

For the molecular mechanics package, it is possible to do the optimizations with-

out converti ng from one coordinate system to another , as the optimization package

updates the coord inates directly. However, if the cartesian coordinates are needed,

they can be converted from the redunda nt intern al coordinates using an iterative

process and a tra nsformat ion matrix called the B matrix [25, 26, 27].

In some molecular mechanics packages, t he geometr y optimization is run us-

Ing cartesian coordinates, however for ring systems ami to speed up convergence,

redundant interna l coordinates are preferred [25, 26, 27].

The conversion from redundant coordinates to cartes ians is curvili near, and must

hf! done iterat ively. The relationship between the two coordi nat e system s can be

writt en as [25, 26, 27]:

48

t..q= Bt..x

=~t..x.
(3.19)

The t..x is t he difference between x values at successive iterations of the above

and th e t..q is t he d ifference between the redundant coordinates from the current op-

timizat ion step and t hose updated dur ing th e itera tive process. A matrix G can then

be defined by the relation G = BtB. Because the set of q is redund ant , t he B matr ix

contains linearl y depen dent rows and G is singula r and it is not possible to compute

an ordinary inverse I. Ordinary inverses can only be computed for nonsingular square

matric es, however it is possible to compute a generali zed inverse [28].

The generalized inverse is comput ed using a dia gonalization followed by a back-

subst ituti on step, and the most popular meth od is the singular value decompos i-

tion [281.

The update to the car tesian coordinates is given by rearra nging the previous

equation to give:

(3.20)

IOuly the ordinary inverse gives the identi ty matrix if mult iplied by t he original matrix, shown
bythe relationship G G - I"" I[28].

49

To determine if the iterative conversion process is finished, the change in the

cartesians is checked and the iterat ions stopped when the change is less than a thresh­

old value, usually 10- 6
• If for some reason the iteration does not converge, the results

of the previous iteration are used and the process is stopped [261. A test for diver­

gence is done by checking at each iteration to make sure the current value is not

greater than the previous value of the updated cartesiaus. This iterative procedure

will work well if the step taken by the minimization procedure is not too large [271.

3 .5 Summary

Obta ining an optimized geometry is cent ral to molecular mechanics. There are

several steps involved, and these were summarized in figure 3.1. From an initial set of

Cartes ian coordinates, the molecular graph information is obtai ned. The redundant

internal coordinates call then be built from the molecular graph information and

the Cartesian coordinates. Geometry optimization can then be completed using the

redundant coordinate system and these can be updated by conversion of the newset of

redundant coordinates generated at each optimization step to Cartesian coordinates.

Because this conversion is curvilinear, it must be done itera tively. The new Cartesian

coordinates are used to generate the redundant coordinates for the next opt imization

step. T his process is repeated until convergence is reached.

There are a variety of different methods for geometry opt imizat ion, and they

fall into two classes. First derivative methods use first derivative information and

50

include the steepest-descent metho d. The second derivative met hods use both first

and second derivat ive informatio n and include Lot h Newton-Haphson and the family

of quasi-Newto n met hods. S~lectioll of a met hod depends on t he ease of computing

the function and its derivatives. Central to coordinate generat ion is the molecular

graph. Before t he coordi nates can be built , connectivity and valence informat ion is

needed, and this is bu ilt using relationships derived from topology.

51

Chapter 4

Object-Based Analysis a nd D esign

4.1 Int rod uct ion

There are several detai ls which must be considered when the t ime comes to

start designi ng code. Th e analys is and design of any code involves decidin g what

featu res th e code should have to be considered a good program (see section 4.2) and

select ing a method of anelys is and design which best mod els th ese features in the code.

Two types of anal ys is and design methods often used are cal led procedural-based a nd

object- based design. Procedural-based design involves organizing the code in terms of

the functional steps executed in trans forming th e statement of the problem one wishes

to solve t o t he desi red solut ion. O bj ect-based design br oak a tho probl em domai n (t he

model of t he probl em in the real world described by the problem statement) into

subunits cal led objects, and these objects interact to give the solution. T here are

advant ages to using t he object- based design ove r procedural-based design in solving

52

problems in large codes, and as a result , it will be the method outli ned in t his chapter.

It should be emphasized to the reader at this point that t he term object-based

is used loosely here. Th e ideas of t his version of th e object -based design method are

not th e same as those used in object-oriented design, but may have some similarities.

T he object -based design method starts with a descript ion of what features arc

present in good program s. Thi s is followed by a description of th e problem in terms

of th ree models: the object, dynamic, and functional models. These models have

many similarities with t he models in the object-oriented design strat egy, however the

definitions of the part s of the model differ somewhat and the two should not be

confused with one anot her. In this work, t he object-ba.9I'A design st rategy was lIS00

and as t he ana lysis and design is given for the molecular mechanics problem described

in Chapte r 2, th e descriptions of the parts of each model and design steps will be

given in more detai l. After th e parts of t he model are complete , a language is selected

for implementa tion and t he process of implementing the models in the code begins.

4.2 Features of Good Programs

The first ste p in designing code to solve a problem is deciding 011 the feat ures it

should have which would be destreeble to both the programmer and the user. There

are severa l general feat ures all software should have to he considered good softunre.

They are correctness, robustness, extendibilit y, reusab ility, compatibility, efficiency,

port ability, verifiabilit y, integrity, ease of use, and proper documentat ion, and are

53

defined as follows.

Correctness and Robustness

Correct code does what it was intended to do for all possible known cases. This

is the most importa nt feature because if th e code docs not behave as expected , then

the other feat ures mean nothing. However, one cannot possibly know all cases that

need to be run. In these cases, should the program fail, it should do so in a de an

manner wit h t he proper error message to alert the user or progra mmer of the problem

This feat ure is known as robustness [29].

Extendibility

Extendible programs are easy to modify or extend , for example when a new

feature is needed. For small programs this is not an issue but for lar ge complex

programs it is essential. In order to make code more extendible, two th ings can be

done [29]:

1. Simplify the code: the program should be designed in a simple manner, with a

simple archi tect ure.

2. Divid e program into smollcr pa rts: Th e program can be divid ed into smeller

independent subunits of the program.

54

Reu sability

RelUJ ability of the code is also an important feature. The more code is reused,

the less code needs to be rewritten and this reduces the cost of development. What

parts can be reused is determined by finding parts of the code that are the same or

share a common piece [29].

Compatibility

Compat 'ibilit y is the ability of subprograms to be combined easily without con­

flicts between each part. T his is a necessity for projects which involve more than

one contributor. This is importan t in enabling software parts to interact with one

another [29].

Efficiency

The program should be effic ient, that is it should make optimal use of the

hardware and software components of the system it runs on [291.

Portability

Portability, the capability of the program to run on a few different systems, is

an importa nt feature. In ensuring this feature, any machine-specific parts should be

clearly defined in the documentation [29].

55

Veri fiability

The programmer should be able to prepa re test data and procedures to determine

if t here are any problems with the software. Th is would be best accomplished if test

da ta was included with the software package along with instructions on running test

data and listing of expected output [29J.

Integrity

The program should have integn ty, th at is the program compon ents should not

be able to corru pt one anot her. Utilities can be designed to handle securit y within

the program and this should be an essent ial part of the software design [29].

Ease of Use

The software should be ea.~y to UBe (operate, prepar e input , anal yze output ,

handle errors) and should come with documentation to instruct t be user what to do

if a problem is encountered [29].

Use r and P rogrammer In t erest s

From the user's point of view, the program should be correct , robust , compati­

ble, portable, efficient , easy to lise, and be well documented. From t he programm er's

poin t of view the progra m should have all of the above features and also be ex­

tendible, reusable (or have reusable part s), verifiable, and have integr ity. Ideally for

56

both t he user and the programm er, the program should be optimal in every featur e,

but t his is not always possible. As a result , there are trad eoff'sbetween these features.

When designing programs one should try and balance each feature in t he best way

possible (29}.

4.3 Decomposition Approaches

Breaking a problem down into sma ller units is cent ral to code design . There are

two main ways in which the problem can be viewed. The flow of execution from the

problem sta tement to the desired solution can be examined or the model of the real­

world problem (called the problem doma in) can be subdivided into indep endent uni ts,

called objects, which interact with one anot her. These two meth ods of subdiv iding the

problem are called algorithmic and obJect-based decomposition. There are advanta ges

and disadva ntages to using one or the other decomposition , and this is dependent on

both the size and type of problem being examined [30].

4.4 Analysis Steps

The first step in the analys is stage is to completely specify the problem doma in

using all t hree models, giving three parts to the analysis. In doing so, no imple­

menta tion details are to be considered. The goal of the anal ysis is to completely

understand the problem and how to obtain the solution . A good descript ion of t he

57

--------------+
Figure 4.1: Part s of Analysis and Design.

ANALYSIS

DESiGN

proble m enab les t he des igner to obtain a dear pictu re of it th rough t he t hree models .

T he main parts to enel ysls and design are shown in figure " .1 along with thei r

interaction with t he real world. The analysis stage is an itera tive process that must

wo rk to unify all three models. There are four main steps to analysis: the problem

is first described in words and the three models are bu ilt from bot h the knowledge of

t he pro blem and th e words in the problem descriptio n (30, 311.

4.4.1 D esc r ibi n g t h e P ro b le m

T he first step to describing the problem was to decide what was needed in the

program . This helped to define the necessary parts of t he problem. Next , the features

58

available to users were decided upon as well as which of these were optional and which

were not . When formulating t he problem state ment , no system requirements were

considered as they would rest rict the ana lysis. Protocols, wit hout implementatio n

detai ls, were also decided upon and these were to be followed. Also any assumptions

which were made in fon nulating the problem were clearly stated [30, 31]. Th e problem

description is given in Chapter 2.

4 .5 T he Object Mo de l

Of the thr ee parts to object-based ana lysis and design, the objec t model is the

largest and encompasses the most concepts. It involves break ing the problem into

separate abst ract ions, defining the attributes and behaviors of these abst ractions ,

defining t he communicat ion between them, and relating them to give a completed

picture of the problem domain. The four main parts of the object model are abstrac­

tion , encapsulation, modular ity, and hierarchy. Toget her t hey can be used to create

programs that have the desired features [29, 32).

4 .5. 1 Parts of th e Obje ct Mod el

A bs tract ion

A bstractions are classifications based on the propert ies of objects that make

them different from other objects of different kinds. Th ey are designed to model

the real world version of the object and help to reduce t he proble m domain into

59

subproblems tha t can be worked with . T hey provide clear descriptions of t he problem

and are based on how thei r designer inter prets them in the real-world model. They

are not Implementation-dependent and are not complete or accurate , due to the

limited ability of people to verbally describe the world around them. Abstractions

also provide an external view of an object [29, 321.

The idea behind creat ing abstractions is to concentra te on t hose attributes t hat

belong to objects that have some purpose and supress those that do not . They can

usua lly be determine d by grouping objects together which share a common pur pose

and select ing the attributes the objects have in common [29, 32].

En ca ps ula t ion

Encapsulation, also known as info rmation-hiding, is used to hide the implemen ­

tation details of t he program from the user while creat ing software which gives enough

information to enable the user to easily use it. It also provides barriers between ab­

straction levels. An interface can be used to achieve the illusion of simplicity by

hiding these implementation details. T he idea behind encapsulation is twofold: first

t he detai ls of the implementation of a program are not needed by the user and it

promotes independent descript ion of objects so that if one object is changed this will

not affect the objects which use it [29, 32].

oo

Modular ity

Modularity is a property of a program t hat is comprised of program pieces, each

which have opt imal commun ication and conta in a complete set of abstr actions. It

creates defined partitions within the prob lem domain and these well-defined sub­

proble ms can be combined to produce the software's architectu re. The module can

be viewed as a contai ner in which th e abst ract ions can be placed . These modules can

be compi led separately and interact with each other throug h messages. One can place

one or many classifications in a module. Communicat ion between modu les must be

opt imal Th is ena bles changes such as additions and delet ions to be done easily with­

out the recompilatio n of ent ire module interfaces, alth ough this issue also depends

on t he language used. A good combinatio n of encapsulation and infomation sha ring

between modu les should also he created and one must be careful not to create too

many modul es (29, 32).

Hierarchy

A hiemrchy is a logical ordering of abst ract ions and objects . Two import ant. hi­

erarchies wit hin programs are t he struct ures of both the abst ract ions and the objects

An important. part. of hierarchy is inheritance and is descri bed as a definition of the

relatio nships between abst ractions. Inheritance is defined by i.i-a or kind-a/relation­

ships, for example an apple is-a kind of fruit . There are thr ee types of hierarchies:

single inherita nce, multiple inherit ance, and aggregat ion.

61

Single inheritance occurs whcn one abst ractio n inherits t he att ributes and be­

haviors of anot her abstraction. Multiple inheritance occurs when one or more ab­

stract ions, also called clas,~es, inherit t he attributes and behaviors from more than

one abstraction. Usually similar attributes and beha viors become part of superclasses

and different attributes and behaviors become part of subclasses , Aggregation involves

part-of relationships and one class is usually contai ned within anothe r- One impor­

tant benefit of hierarchies within code is they promote the reuse of common code

fragments (29, 32].

4 .5. 2 Other Conc ep ts in the O bject Model

Clas ses a nd Objects

An object in t he real world is a visible thin g which has clearly defined boundaries

on its definition, It has disti nct propert ies, a state which may change over time , and

some well-defined behavior. It is capable of performing actio ns itself or a user may

perform actio ns on it . Often the objects in a problem to be solved 0 11 a computer

are defined to model an object in the real world. They also have state , behavior, and

some clearly-defined properties. Objects can also be concrete , like somet hing th at is

visible, or abstract, for examp le, mat hemat ical formulas. They also have their own

identit y, which means tha t every object, wheth er it has the same att ribute values

and behaviors as ot her objects, have some characteristic which makes th em different

from objects of the same kind [30, 31, 32, 331, In the description of t he problem to

62

Figure 4.2: A sample class diagram .

be solved, objects are usually the nouns.

A grouping of objec ts with the same att ributes and behaviors can form a classi­

fication, usually shor tened to class. The class describes the att ribu tes and behaviors

t hat are similar in t he group of objects for which it represents . The objects are d iffer­

ent in the values for the ir att ribut es and how they relate to ot her objects is different.

What is defined as a class in the problem domain depends on the judgement of the

individual performing the abstractions and the definition of the problem. As a result,

there is no right or wrong way to define a class, however there are some guidelines

that can he followed [30, 31, 32, 331.

A class should provide a very definite abstr action of the objects it represents

as determined from the description of th e problem domain . It should also contain a

set of responsibilit ies, however sma ll, and it should perform these as expected. They

should also be simple in design and easy to understan d, although st ill be built so

t hey may be modified or extended . Finally, t hey should clear ly describe t he behavior

of the abstraction performed and yet keep t he details of their implementat ion well

hidden. Also, they should easily model t he group of real world objects for which they

were designed.

63

Figure 4.3: A sample object diagram.

The re are a couple of diagrams that are useful in describing t he object model

pictorially. They are object and class diagrams . An example of a class diagram is

given in figure 4.2. Usually diagrams are used for abstract modeling and are not useful

enough to move directly from them to implementation. The object diagram, however,

can be used for bot h designing t he actual program and abstract modeling [30, 31, 32,

33J.

An example of an object diagram is given in figure 4.3. In both object and

class diagrams, th e object or elass is defined by a recta ngular box, but in the object

diag ram the corners of these boxes are rounded . In the boxes go the names of eit her

th e class or the object . In the object diagram the name of the class is placed in

parentheses at the top of t he box representing an object th at is an instance of it . It is

also possible to add att ributes to both class and object boxes. Within t he class box a

line is placed between the class name and the attributes and the at tributes are listed

with their types with a colon separating the attribute and its type. In the object box

t he class is listed in boldface and th e at tribute value is list ed in regular print below

th e class name [30, 31, 32, 33J.

Met hods (or behaviors) can be added to the class boxes by placing t he meth od

below the att ribute list . The attributes and met hods are separated by a line in the

64

stre tch coor d inat eHas-co ordinate1,:::l<h<n"" I-==='-- _
Class Diagram

Has-coordinate

Instance Diagram

Figure 4.4: Class and instance diagrams showing a one-to-one associat ion between
the stretch energy and the st retch coordinate for a C-H bond.

class box. T he inpu ts and their primitive types (for examp le, integer or character) arc

abo listed. T he inputs and types are separated by a colon and placed in parent heses

after t he methods. Following t he inputs but outsi de the parentheses are t he out puts ,

of which the type of out put need only be listed

The way an object or class relates to another object or class is represented by

links and associat ions. A link is much like an object itself, and each link is an exam ple

of a particular type of association. A.~sociatiQns can be defined as one class (or object)

associat ed with anot her class (or objec t) in a very genera l sense and vice versa. To

be more specific, a link is used to indicat e relat ionships between classes or objec ts

in the diagram. An object or class may be linked to one object or class and this is

a one-to-one relatio nship . An exam ple for a one-to-one association is given for t he

stretch energy an d its coordina te in figure 4.4. If more than one object or class is

involved in the link it is a one-to-ma ny, many-t o-one , or ma ny-to- many relationship.

65

They are often represented as pointers in a programm ing language, alt hough this

depends on the language being used [30, 31, 32, 33].

In the object and class d iagrams , binary relat ionships are denoted by a line

and ternary relat ionships by a diamond wit h lines coming from its corners. If a

part icular end of the relatio nship corresponds to multi ple objects or classes, the line

is term inated by a solid circle, if the end correspon ds to zero or more classes, the line

ends with a hollow circle, and if the end corresponds to one class or object , the line

ends with noth ing att ached {3G, 31, 32, 33J.

In her it an ce

Inhe ritance L<> defined hy an i.~ - a relat ionship. T he main motivation for deter­

mining t hese rela tionships is code reuse. Often objects may share things in common

with t heir own class and also wit h objects belonging to othe r classes. In t his case it

would be beneficial to extract t he att ributes and behaviors common to all the classes

involved in the inher ita nce and create a superclass conta ining these attributes and

behaviors. Any att ributes and behaviors t hat are different in t he remaining classes

can be added to t he subclasses, which would t hen inherit t he components of the su­

perclase . Inherit ance also helps to simplify a problem by reducing it to a group of

classes, some of which can he conceptua lly formed from ot hers [31J.

The brief outline of inheritance was given to show th e complete picture of the

object model. However, no inheritanc e relat ionships are present and as a result it

will not be discussed furthe r.

66

4.5.3 Building t he Obj ect Mod el

Not all of the obj ects and classes can be obtained from th e list of nouns, althou gh this

list is a good first appro ximation . Some objects not stated as nouns will be implicit

in the problem statement. It is also possible some of the classes and objects were

poorly stated and in a first set of objects and classes this is quite common. Some

possible poorly st ated classes and how to fix the problems are:

• If two classes contain the sallie informat ion then they are redundant and only

one should be kept .

• Classes t hat have no relevance to the problem are ir relevant and should be

eliminated . Only keep classes and objects that are necessary in the domain of

the problem , no more and 110 less.

• Classes with an unclear descriptio n should be reformulated or removed. A class

should be clear and simple.

• Classes which describe one object would be better suited as attributes unless

the class makes sense in the context of the problem.

• If a class describes a particular operation and is not operated on itself or it has

no fea tur es it se lf, t hen it is probably all operation and not a. class .

• Objects should not be named according to their role in an association.

67

• There should be no objects or classes which describe some implementation con-

struct . The only objects and classes that should be present should be relevant

to the real world model of the problem [30, 31, 321.

In order to assist in choosing classes and objects, it would be helpful to build a

data dict ionary.

Energy: a qua nti ty computed using the parameters and coordina te values

for parti cular interact ions. Th is quant ity must be minimized to get the opt i-

mized structure. It contai ns cont ributions from each coordinat e and can be

summed to give a total cont ribution . Th e number of energies is given by th e

number of coordi nates.

Gradie nt : a quant ity which is also derived from t he coordina te and pararn-

eter values, and is equal to t he analy tical first derivat ive of t he energy wit h

respect to a part icular coordinate. This quant ity must be zero for minimum

structures. It contains contri but ions correspond ing to the coordina tes and

th e number of contr ibutions is given by the number of coord inates.

Second Derivative : anothe r quantity derived from t he para meter and coor-

dinate values. It is the ana lytical second derivative of t he energy with respect

to the coord inates and contains t hese second derivat ive quanti ties with te-

speer to t he coordina tes. It also contains the same number of contri but ions

as the number of coord ina tes squa red.

68

Coor d inate: The coordina te is a particular quantity used to describe the

geomet ry of the molecule. Each coordinate object contains a set of contri­

bu tions which are the coordinate values for a part icular type of interac tion

and include only 1-2, 1-3, and 1-4 bonded Interact ions. Th e number of coor­

diuates is given by the number of interactions within the molecule.

M olecu lar Mecha nics Atom: The molecular mechanics atom is described

mainly by the atomic number, hybridizat ion, size of ring it belongs to, and

whether it belongs to an aromatic system or not. The result is an assigned

atom type based on th ese values. The ato m type is then used in the selection

of t he parameters for a particular interaction (based on t he types of atom s

involved in the interact ion) . T his quantity is specific to th e force field used.

P ar ameter : The param eter is a set of predefined data values for a par tic­

ular set of molecular mechanics atoms and interactions. It contain s sets of

parameters for each interaction type and is used in the energy, grad ient , and

second derivat ive computat ions.

Shown above is an exam ple of a data dictionary for the molecular mechanics

problem. In it , the objects are defined, their properties arc given, and its uses and

responsibilit ies are defined in the context of t he real world problem. This will help

to pick out classes, objects , and associat ions {31J. The int eraction class mentioned in

several places in th e above data dictionary is not defined in the molecular mechanics

code. It is defined by the topo logy code and it is for that reason it is not included

69

explicitly in the analysis and design of the molecular mechanics program .

Using Chapter 2 and the above data dictionary as guides, th e objects were

selected and placed in a group according to shared attributes and /or behaviors. The

classes in th e molecular mechani cs package and the corresponding objects are:

• energy

- stretch , bend, torsion, out-or-plan e bend, van der Waals, electrostatic,

stretch-bend

• gradient

- st retch, bend , torsion, out-or-plane bend

• second derivative

- stretch, bend , torsion , out-of-plane bend , stret ch-bend

• coordinate (redundant)

- stretch , bend , torsion, out-or-plane bend

• molecularmechanics atom

- atoms in the molecule

• parameter

- stretc h, bend, torsion, out-of-plane bend , van der Waals, electrostatic,

stretch-bend

70

The classes and t he list of att ributes and behaviors are given by invest igat ing the

class descripti ons. The data dict ionary provides the information needed to form t he

att ribut e and behavio r list for each class and is given as follows:

• ene rgy

- attribut es: energies, number of energies, slim of energies

- behaviors: initia lize energy, build energy

• grad ien t

- attri butes: number of gradient s, gradient s

- behaviors: initia lize gradient , build gradient

• second deri va t ive

- attribut es: number of second derivatives, second der ivatives

- behaviors: initial ize second derivat ive, build second derivative

• coord inate (r edun da nt)

- att ributes: coordinates , number of coordinat es

- behaviors: init ialize coordinates , build coordinates

• m olecul a r mecha nics at om

- att ributes: atom ic number, hybridization, ring size, atom type , aromati c/n ot

aromatic

71

- behaviors: initi alize atom

• paramet er

- attributes: stre tch , bend, torsion, out-of-plane bend, van der Waals, elec­

trostatic, stretch-be nd

- behaviors: init ialize parameters

In the above list , all energy objects would have a specific value for each at tribu te

depend ing on t he object, all gradien t objects would have specific values for t he gra­

dient att ributes , and so on. In the case of t he parameters, the objects all have a

parameter set, but do not necessarily have the same type of para meters. An example

is given by the stretch and torsional para meters. The stretch parameters have the

equili brium value and force constant as part of the parameter list for each stretch and

for each tors ion ther e is no equilibrium value or force constan t , but three torsional

parameters. As it t urns out , the stretch, bend , out-of-plane bend, and stretch-bend

parameter sets each have equilibrium values and force constants, the torsional pa­

rameter list contai ns the t hree torsional par ameters , the van der Waals parameter

list contai ns th e minimum energy separation and well depth , and the electrostatic

parameter list contai ns the charges on each atom . Th erefore, the parameter list is an

object wh ich includes all pa rameter list s as its attr ibutes .

An associat ion is a dependency between two or more classes and one class

usually refers to another. Wit hin the pro blem state ment , the verbs generally desc ribe

associations between the objects, one object referr ing to anot her. From the groupings

72

of t hese verbs abstr act ions can be made on the associations, giving association object s

and classes. It is best to write down all t he verbs and examine the problem sta tement

for implicit associations [31].

As a start to a list of associat ions, th e verbs or verb phrases in the data die-

t ionary previously given were invest igated. These associations correspond to act ions

in a pa rticul ar direction, for example data use in a computation. In t he molecular

mechan ics ewe , the associations correspo nd to the use of one partic ular quant ity or

set of quantiti es to compute othe rs. For example, the computation of t he energy for

the stretches requires the stretch coordinates and parame ters and t he associations

between t hese classes correspond to requests from the stretch energy object to the

coordinate and parameter objects for t his da ta . The following ta ble gives each set of

object s which share an associat ion and t he corresponding association:

Table 4.1: Class Associations

C lass 1 Associati on Class 2

energy uses parameter

energy uses coordinate

gradie nt uses parameter

grad ient uses coordinate

second derivat ive uses param eter

second derivative uses coordinate

73

cont inued from previous paj{e

Class 1 TAssociation I C las s 2

parameter T uses I atom

In the above table 4.1, the clas s on the left has the associa tion in the midd le with

the class on the right . For example , in t hc above table, t he entries in th e first row

st ate the energy objects use the parameter objec ts in the computation of the energy

contributions and must send a request for this informat ion to the parameter objects.

4. 5.4 T he Object M odel Diagram

T he above pieces can now be combined to give a pictorial represe ntation of the

object model for th e molecula r mecha nics problem. Th is diagram is shown in figure

4.5 below.

The parts of th is diagram were described in some detai l in the previous section

(section 4.5.2).

4 .6 The Dynamic Model

T he object model is a good start for describing a problem domain in object -

based terms , but is IIOt a comple te descr ipt ion. The object model descr ibes t he

syste m from a static point of view, hut in many cases the prob lem domain is dynamic .

The dynam ic model investigates the problem bas ed on t he state of the object s and

74

"mo lecu la r mecha nics" atom

atomic number
hybridization
ring size
arcmauc/noraromaric
atom type

initialize atoms

~ second d erl vatl ves
pa ram eters

number of components
parameter set components

select parameters initialize second derivatives
build parameters build second derivatives

gra d ients

energy number of components
L-- components

number of components
compo nents initialize gradients
sum of components build gradients

initialize energies

~ rbui ld energies

red u nda nt coordinate s

numher of coordinales
coordinates

initialize coordinates
build coordinates

Fi gure 4.5: T he object model for t he molecu lar mechanics package.

75

events which occur th at change some or all of these sta tes. It is a descripti on of th e

evolut ion of a system of concur rent objects, describing t he act ions and reactions of th e

objects to event s (externa l stim uli) (30, 31J. For the molecular mechanics problem the

objects defined above are stat ic. The transformation from inpu t to output is defined

in one step and the dynamic model is therefore t rivial and will not add add it ional

information to assi st in t he understanding and breakdown of the problem. For this

reason th e descript ion of th e molecular mechanics problem in term s of the dynamic

model will not be covered in this work.

4 .7 The Funct ion al Model

The junct iotlall7lodel represents the flow of da ta from input to out put and shows

how the inpu t is tr ansformed to give t he out put. It represents a sequence of oper­

ations (or functions) tha t operat e on t he dat a to achieve t he final result . It also

includes constr aints placed on dat a or operations and does not include contro l or

object informati on. It explains more clearly the act ions shown in the dynamic model

and t he operat ions present in t he object model. It is very useful for programs which

compute t he results of a funct ion [31).

A rela tionship exists between data values t hrough the funct ions which act upon

it. T his is shown with the functionaJ model and is best built after t he object and

dyna mic models are built . The processes in t he functional model correspond to th e

behaviors in the objec ts and the data flow corresponds to movement and changes in

76

the object s' att ribute values. Building the funct ional model requires five steps and

they will be given below with a description of each step in some detail [31].

4.7. 1 In put and Ou t pu t Valu es

The design of th e funct ional model begins by makin g a list of input into th e

program and t he output the program will produ ce. These usually correspond to the

passing of informa tion between the system and external client s such as the users [31].

The molecular mechanics package obtain s its input s from the results of the menu

system. If an input file which contai ns the molecular structure informat ion in the

form of a Z-matrix or cartesians, is given to the program , the menu system parses it

awl obtains molecular information which it converts to cartesian coordinates. This

information is used by the top ology program to generate a series of interactions within

the molecule, at which time the molecular mechanics package obtains , as its input,

the cartesian coordi nates and atoms involved in the interactions withi n the molecule.

Outp ut from t he molecular mechanics code should consist of the contri butions

to t he energy and the molecular structure in cartesian or internal coordinates.

4.7.2 Data Flow Diagr ams

Data flow diagmms specify t he flow of data t hrough the program, including

operations that use or change th is data and any const raint s it must sati sfy. It also

shows relatio nships between data in a system, the functions used to transform it,

77

input
structure

input
coordinates

Molecular
Mechanics

optimized
structure

Figure 4.6: A sample high-level data flow diagram.

da ta stores, input and out put values [311.

There is no informa tion in these diagrams which would indicate what pat h to

take through a program or the time the program spends in a certain state , nor does

it show how the data is placed into abst ractions .

The processes are responsible for tra nsforming t he information and can be im-

plemeuted as either high-level or low-level processes. An example of a high-level data

flow diagram for t he molecular mechanics problem outlined in Chapters 2 and 3 is

given in figure 4.6. The high-level processes can be broken down further to give other

data flow diagrams and the low-level processes represent a function which cannot be

furt her broken down. In the data flow diagram a process is drawn as an ellipse with

the process name in regular print inside. The input data is shown as an arrow leaving

from its source (external or anot her process) and ending at the process. The out put

data is shown as an arrow leaving the process [31J.

Each data flow diagram contains processes, data flows, actor, and data store

objects. A ct ors are processes which consume or produce data. They can be th e

consumers of t he eventual out put or the producers of the input into the program.

They are represe nted in data How diagrams by a recta ngle with the actor's name

78

inside it.

Data stores are sources for the storage of data. The data inside a dat a sto re is

not generat ed by the data sto re and is t here for some lat er purpose. The informat ion

in t he data store may be ret rieved in any order, and is usually accessed using some

kind of search key. A data store is represente d in t he dat a Bow diagram as two thick

parallel lines with t he name of t he data store in bold Arrows come into and out of

t he dat a store and represent the inpu t operatio ns that access the data using some key

or mod ify it in some way and t he out put operation of retri eving t he data . Despite the

fact a data store is just data storag e, it is usually implemented as an object because

its usage is different from the other data flow clements . Actors are also implemented

as objects [31].

Co nst r uct ing t he Data F low Diagram

To constr uct the data flow diagram the method of obtaining the out put from the

input s must be determined. The first step is to start by making a high-level data flow

diagra m with the probl em as the method, its input s, and t he desired out puts . The n

th e meth od is systematically broken down. Each outpu t is used as a guide and a trace

is done back through t he diagram to find the funct ion th at comput ed the particu lar

out put. The inpu ts can also be used as a guide and th e met hods used to generat e

the final results can be determined. Next all the processes are expanded until they

become ato mic (they cannot be furt her broken down). At this point th e processes can

be described with nat ural language, all algorithm , or mat hemat ical formula. The data

79

computation of energy only
or optimizat ion ot strucnre

Figure 4.7; High-level diagram (first app roximation) for t he flow of data through the
ent ire molecular mechan ics program.

that is inte rnal but stor ed is then identified, as are any control flows. T hese control

flows are labeled and t he actor objects (sources and sinks for dat a) are determined.

Also data stores must be dete rmined and they usually correspond to external data

which is accessed or modified (31].

From t he problem descript ion in Chapt er 2, the dat a flows can be determine d.

A second high level da ta flow for the molecular mechan ics package is given by figure

4.7. It is more descript ive than figure 4.5 and shows another sta ge in t he breakdown

process. Thi s does not show t he complete data flow through the program , but is an

ap proximation to it . Further breakdown will be shown in a somewha t iterat ive man-

ncr. Once t he da ta is given to the program, the st ruct ure and energy are opt imized

(in the case of an energy minimization) or computed (in the case of a single-point

calculati on), and the outpu ts are printed to a file.

The next step in const ruct ing th e dat a flows is to further break down the t rans-

formation processes defined at a top level. Based on the input commands, the molec-

ular mechanics program can be executed for just an energy calculation, the geometry

80

can be optimized (t he energy is minimized), or generate one or more of the objects

For example , if one wanted the gradient contributions for each interact ion with in th e

molecule, these can easily be printed by themselves.

Since the only concern is t he execution of the molecular mechanics code, det ails

of th e geometry optimization, menu functions, and generation of top ological informa­

tion will not be given. In th e diagram, a representation of t hese will be in terms of a

process. Figure 4.8 shows a diagra m of the result of a further breakdown of the data

flows. In th is diagram , t he data is input in the form of a file and it is parsed by the

menu. One of the menu commands is M:-.t , which selects the molecular mechanics

method as a way of computing the energy and structural informat ion.

Anothe r command is Geom, which selects a geomet ry optimization. Once the

method and type of calculat ion (single-point, geomet ry opt imization , or out put of

an object) are determined, the da ta required is passed to a process which generates

t he cartesian coordinates . The topology is then generated using these coordinat es.

It is the cart esian coordinate s and topology information which is used in the com­

putation of the molecular mechanics objects. After the molecular mechan ics package

has computed th e total energy and coordinates, they are sent to an out put file. If

an optimization is required ,the optimization is performed before these quantiti es are

outp ut. If an object was select.e.J for computation, then it is sent to the output file.

Figure 4.9 shows t he flow of data throu gh the molecular mechanic s method . As

it shows, th e molecular geomet ry and top ology are used in the computation of the

parameter and redu nda nt coordinate object s which are sent to t he processes which

81

transform to molecular mechanics
energies, gradie nts, second

derivatives and the redundant
inlemal coordinates

Figure 4.8: Mid-level functiona l model diagram for the molecular mechanics program.

82

opnnuzano n

molecular and
topolo gical information

transform redu ndant internals

to cartesian coo rdinates

optimiza tion

Figure 4.9; Low-level funct ional model diagram for the molecular mechanics program.

83

opumizadon step
(new coo rdinates)

molecu lar mechanics

Figure 4.10: Low-level functi onal model diagram for the conversion of redundant
coordinates to certcsi ens .

84

compute the energies, gradients, and second der ivatives . Th e force field atom types

also obta in the geometry and topology informat ion to generate a list of force field

atoms for use in the param eter select ion. If an optimizat ion is selected, then at some

point the cartesia n coordina tes may have to be updated , and is represented as a

process in figure 4.9.

Figure 4.10 is t he lowest level diagram for the dat a flow th rough t he iterat ive

transformat ion of redundant internal coordinates to certes ians. In this diagram, th e

data flow star ts with the passing of the cartesians to the process which creates the

B mat rix. The B matri x is the n passed to t he iterative coordina te transformation

along with the redundant coordinates from bot h the optimizatio n package and the

molecular mechanics code which regenerates t he cartesians. This process is repeated

iterat ively for every optimization step so new coordinate and nonbondcd interact ion

distance values can he recomputed and used in subsequent optimization steps.

4.7.3 Describing Fun ctions

Each process in the data flow diagram can be thought of as a function in which

a descript ion using math ematical formulas, nat ural language, ur some other low­

level expression should be given. This descript ion should not contain imp lementa tion

informatio n and should clearly identify th e relationships bet ween t he function's input

and output values.

Functio nal descriptions are necessary for the complete understanding of any

85

problem, in th is case the molecular mechanics met hod . T he best way to describe a

function is by using the descript ion of the transfor matio n it performs. For exam ple,

if t he function uses mathe matical funct ions, then the functional description should

conta in t hese functions. It should also indicate any input and/or out put to th e

function.

comp ute st ret ch energies [coordiauues, pammeters) - > energy contribu·

liuns

for all st retch energies between atoms i and j in a bond , evaluate :

V;j = 143.9325(~) (r,j _ r?j)2

(1+C8 * (r,j - 1'?j) + (~) * C8
2 * (1"J - r?j))

(4.1)

store energy cont ributions in energy object attribute CONT RIBUTIONS

number of energies = number of interactions

III t he above example, a functional description is given for th e computation of

the energy contri but ions for the st retch energy. The formats for the comput atio n of

the bend , torsion , out-of-plane bend, van der Waals, electrostatic, and st retch-bend

energies are the same, however th e energy expressions for each interaction differ. The

energy expressions are given in reference (341. The purpose of this function is to

compute t he individual energy contr ibutio ns due to each interact ion using t he given

energy expression. The parameters are input into the equat ion and t he quanti t ies

86

CONTnI BUTIONS and NENE RGIES are computed using the coordinate informa­

tion which is also passed in. Examples for the remaind er of the energy computat ion

functions will not be given here as t hey are very similar to the above funct ion. Also,

th e computations of the gradients and second derivatives are similar to the compu­

t ations of t he energies, so t he function descrip t ions will not be covered here.

co m p ute par amet er set (atoms in interaction, parameters) - > parameter

set

for all intera ct ions in the set:

for all atoms involved in an interaction:

det ermine their atom and interact ion type

get t he parameters corresponding to that interaction

store t he para meters ill t he object' s variables

A descrip tion of the meth od of obtaining parameters of any type is given in the

above funct iona l outline . For a parti cular parameter set the parameters obtai ned may

differ in number and type. For example, the st retch paramete rs are an equilibrium

bond length and force consta nt , while t he torsional parameters arc three parameters

representing th ree V paramet ers in the energy expression. The function obtains as

input the ato ms involved in the interactions for which the para meters are needed from

the topology code as well as the enti re parameter set. It outputs the parameter set

for t he molecule(s) in question. It uses informa tion abou t the ato ms' defined types

according to the force field as well as the interact ion type, which is usually derived

87

from the lat ter information . In the case of bond types , this information iiihard -coded,

although this will change in future work. The param eters are then selected according

to t he atom and interaction types (defined by th e force field) and t his information is

stored in the param ete r set.

d etermine a t om ty pes (topology informa tion, molecular injormatioTI)

- > atom types

for all atoms in t he molecule:

obta in th e atomic number , hybridization , ring it belongs to, and whether it

is part of an aromatic system

based on th is information and th e atom type definitions in t he force field,

assign an atom type to the ato m

A word descriptio n is given above for the determination of the force field at om

types. These atom types are used to determine subsequent interaction types which

are used in pa rameter selection. As seen above, they are selected based on t heir

at umic number, hybridizat ion, the size of a ring t hey belong to (zero if they do not

belong to a ring), and whethe r or not th ey are part of an aromati c system.

88

compute coordinates (!opology information, carte.sian coordinates) - >

redundant internal coordinates

for all interac tions of a part icular type:

using vector relationships , the coordinates are computed

The computat ion of the coordinates of a partic ular type are computed from th e

topol ogy information and cartesian coordi nates using simple vector relationsh ips.

This is noted in the above functional description.

The above is a brief outline of functional descriptions for t he processes in the

molecular mechanics package. The four of t hem by no means complete the descript ion

and they do not contain any implementation detai ls. This informat ion willbe derived

in t he implementation phase . As a whole, the functions give a good description of

the t ranformation of object information through the functions t hat perform t hese

computations.

4.7 .4 Ident ify ing Cons t r a int s Between Ob je ct s

Constraints correspond to object dependencies t hat are not related to the input s

or outputs, but are related functionall y. They can occur between instances of two

object.'! at t he same time , at different t imes, or on two object s at the same time [31].

Const raints do not exist within the molecular mechanics package, however it

should he noted that some constrai nts on the type of calculation and th e values of

89

t he energies and gradients are placed either on input or as defau lts.

4.7.5 Sp ecifying Op ti mization Cri t er ia

T he values in the functi onal model which must be opti mized should now be

dete rmined [31]. The informatio n passed bet ween processes can be optimized by

making the information needed by more tha n one process global. If all the processes

have access to it, t he informat ion need not be passed and mult iple copies are not

made in memory. However, t his should only be done in cases where the data is not

sensiti ve. This should be considered for the case of object data in the molecular

mecha nics package. In th e case of the pa rameters and coordinates, they are needed

by t he energy, gradient , and second deri vative processes and should th erefore kept

globally accessible. Th e data sets are in memory throug hout t he life of the program

and are updated as needed, as in the case of a geometry optimization .

4.8 Com bining the Two Models

The two models, now complete for the molecular mechanics problem, give a view

of the problem from two perspectives. The objec t model shows the molecular me­

chanics method in terms of energies, gradients, second deri vatives, force field atoms ,

param eters, and coordinat es. These objects inter act thro ugh associa tions due to the

need for data. T he functio nal model describes the molecular mechanics method as a

set of transformations of the inpu t data thr ough intermediat e stages to the out put.

90

This out put corresponds to either an energy at the point on the potential energy

surface due to t he positions of th e at oms, or is an opt imal geometry with a mini­

mum energy. The objects are the keepers of the data and it is their behaviors which

trans form it from input to out put . The need for data th.rough associatio ns creates

the flow of the dat a seen in the functional model. Combining thi s information brings

the analysis and design phase to a close .

4 .9 Summary

Problems can be broken down and the programs designed by st ructural or

object- based analysis. The metho d chosen is based on the size and type of problem,

but for large programs there arc more advantages to using object- based analysis and

design. Object-based methods also have the features t hat qua lity software should

exhibit . T here are several parts to object-based analys is and design, and each part

cont ributes its own informat ion to the solut ion and implementa tion of the problem

to form t he desired software.

91

Chapter 5

Implementation of the Molecular

M echanics M ethod Using Fortran

90

5.1 Introd uction

There are many progra mming languages available for use when designing scien­

tific codes. For many years th e language of choice was Fortran 77 due to t he support

it had for nume rical problems. As a result , much of t he num erical and scientific code

is still only availa ble in Fortr an 77.

Object-based programming offers several advantages to the scient ific community

with respect to code design. Independently executi ng units of the code are placed in

separate mod ules within the code inste ad of being sp read out over t he ent ire program.

92

The software is designed in pieces which can inherit one anot her, promoting code

reuse. The objects within t he code are placed toget her with the routines which define

t hem, forming a new data type. The collecti ve at tributes and behaviors of the object s

model the obj ects in the real world problem . Similar operati ons can also be grouped

together into one rout ine which executes ill a similar fashion depending on th e type

of da ta it is acting on, preventing multiple copies of the same utili ty [35].

There are several different languages available for developing object-based code

and each one has its own unique featur es which make it attractive for code develop­

ment. However, t he type of applicat ion will dictate which code is ultim at ely going to

be used. It sti ll seems the language of choice for scient ific code is Fortran , and the

emergence of Fortran 90 has proved beneficial as it has incorpora ted some addit ional

feat ures for use in object-based design. In the next sect ion, some of th ese featur es

will be highlighted.

Thro ughout this Chapte r many key feature s of Fortran 90 for object-b ased design

and th eir application to t he implementat ion of the molecular mechani cs meth od will

be discussed. The molecular mechanics method was covered in deta il in Chapter 2.

93

5. 2 Fortran 90 Versus Fortran 77: Some Added

Features

There are still some advantages to using Fortran 77 for some scientifi c code, but

there were several key features added when the Fort ran 90 standard was developed .

Some of t hese include dynamic memory allocation, the module, pointers, and user-

defined types.

5.2.1 Dynamic M emory Allocation

Dynamic memory allocation involves defining, changing and removing memory

throughout the life of the program. There are a few benefits to dyna mic memory

allocat ion and in some cases it is essent ial to insure proper behav ior of the program .

It is most beneficial when the size of the data is not known until the program is

executed [36J.

In Fortran 90, before an array can be dynamica!ly allocated with a given di­

mens ion, it must be tagged as an allocatable array . This is done by giving it the

ALLOCATABLE attribute. Arrays with this att ribut e can be defined at the be­

ginning of a piece of code and allocated once the size is known. When an arra y is

declar ed with the ALLOCATAB LE at tribute, us shape must be stated by using a

colon to represe nt a particular dimension. The dimens ions are separated by commas.

In the molecula r mechanic s code, many different array s are declared as allocat able.

Th e most common allocatable arrays are those which are used in a local piece of code

94

to tempora rily sto re data as they can be allocated, used , and destr oyed once the y arc

no longer needed . This helps conserve memory.

It should be noted that an allocated array cannot be allocated agai n unless it

is deallocated first , and th e status of an allocatable ar ray can be checked by using

t he ALLOCATED intr insic funct ion. The result of t his function is a logical variable

which is set to true if the arra y has been previous ly allocated [36].

An alloca table array can be declared , checked to determi ne if it was previously

allocated elsewhere, and allocated in the following manne r:

integer, d i mens i on(:) , allocatable c : Bond_Type

if(.not . allocated(Bond_Type) . and .NGBONDS . gt . 0) t hen

al locate (Bond_Type (NGBONDS))

end if

In the first line of this examp le, the array Bond .Ty pe was declared to be an

array of varia ble dimension using the ALLOCATABL E attribute. Once the size

(given by NGBO NDS) is determ ined, it can be allocated using t he intrinsi c func tion

ALLOCATE and giving as arg uments the arr ay name and it s size.

Once an array is no longer needed, t he memory used by an array can be released

by deallocating it . For exam ple, if th e array in the above code fragment was to be

dealloca ted , this would be done by using the DEALLOCATE intrinsic and giving th e

95

array name as the argument. Use of the deallocate intrins ic funct ion is shown in thc

following code fragment [361:

deal l oca te (Bond_Type)

5.2 .2 Pointers

Poi nte rs are useful when dat a must be initialized and used dynamically. T his

is especially t rue for very large arrays which if copied could use up unnecessary

quantities of space in memory. Arrays in Fort ran 90 are created as variables, and as

yet it is not possible to create arrays of pointers directly [36, 37J.

A pointer is first declared by giving the pointer variable the POINTER attribute.

It can then be given memory by allocating it in the same manner as for allocatah le

arrays [361.

Like an allocata ble array, a pointer cannot be associated with (or point to) a

par t of memory more than once, so it is first tested to check if it is associated with

any memory using the ASSOCIATED intrinsic and giving the pointer name as the

argu ment. T his intrinsic function returns t rue if the pointer is associated to memory.

Once this test is done, the pointer can be associated to some memory by allocating

the memory using the ALLOCATE intrinsic and passing in the pointer name and

exact dimension of memory as inputs . The pointer can then he deallocated later

96

using the DEALLOCATE int rinsic funct ion (not shown in the above example).

A pointer can be in one of three states depending on whethe r it is defined or

associated with any memory. Its t hree sta tes are defined as follows: it can be defined

and associated , undefined and unassoeiat ed, or defined and unassociated [36].

A pointer itself can be viewed as an object whose data is hidden from the user's

view. The intrin sic functions NULLIFY, ALLOCATE, ASSOCIATE, and DEALLO-

CATE are used to modify or retrieve th is information .

5 .2.3 The Module

The module has a variety of uses, but perhaps its most powerful use is to group

together similar data and functions into a container which can then be made available

to the rest of the code by using it. Some other uses include storage of global data and

grouping user-defined types (discussed in the last part of this section). The code of

the module is stored in a separate file and must be compiled before any code, outside

the module, that uses it . More than one module may be contained within a file and

this file can be used to group common modules [36, 371.

All of the informati on to be included in a module is conta ined between the MOD­

e LE and END ~IODULE lines. Within these lines, t he dat a can be separated from

the functions by first defining data , using the CONTAINS sta tement to separate the

da ta from the funct ions to follow, and finally defining the functions (or subroutines }.

T his module is then included elsewhere in the code by adding a USE statement to

97

the parts which require it. The followingcode fragment is an example of a module

which would be in its own file and is part of the molecular mechanics package [36]:

MODULE pa i r list

* Modules need ed . .

USE mol ec ule !molecular informat i on

USE constants !gl oba l cons tants , conversion f act or s

USE topology !t opol ogy objects

implicit none !everyt hi ng must be dec l ar ed . .

* Data i n t his modu l e ;

in t eger t : NELEC !number of nonbonded pai rs

TYPE pa i r !Der i ved t ype

integer :: I 1atom i of nonbon ded pair

in teger:' J !a t om j of nonbonde d pa i r

i nteger:' is_vdw !is there a van der li'aals co nt ribution?

integer i : ta . er ec ! is th er e an electrostatic contribution?

integer: ' is_tors !are i and j se parated by t hree bonds ?

END TYPE pair

* nonb onded co nnectivity matr i x

98

logical. dimen s i on (: , :) , a lloca t able : : CONN_NB

* pa irlist

type (pair), di mension(:), allocatable : : pai r_ I J

CONTAINS !Funct i ons go her e . . .

SUBROUTINE CONN_NBO ND

*** i ni t ialize nonbonded connectivity here ***

SUBROUTINE HAKE_ELEC

.** initialize pairlist here •••

END MODULE pairlist

In the above example, the module is a collect ion of palrlist data used in the

molecular mechanics package. The first pa rt of t he module gives any USE sta tements

which indicat e other modules needed by this one. The next part in t he modul e is used

for declaring variab les for t he pair list , Following t he CONTA INS statement are any

subrout ines which are used to initialize dat a within this module only. Only includ ing

the subrouti nes which initialize this module's data, encapsulates the pair list into this

modu le. T he link between th e modul e and objec t-based design will be discussed later

ill this Chapter.

Data and subprograms within a module may be kept private to the module by

using the att ribut e PRIVATE in their definit ion. If da ta with this attribute is needed

or must be changed outside this module, functions to pass t he data and receive the

99

change must be incorporated as the private data cannot be accessed by anythin g

outside the module, even if it is USEd [35].

5.2 .4 Deri ved T yp es

User-defined (or derived) types are an addi tion to Fortr an to allow a user to

group da ta together into a new type. T his new type has the same properties as an

int rinsic type (a name, set of values and operat ions, and a way to specify constant s)

and can be used in t he same man ner as intri nsic types. Derived types are a convenient

way of gro uping da ta which is used to describe th e same concept or is passed around

a program as a group. It is also the only way to define an array of pointers [35, 36].

Derived types are declared by first st at ing the name using TY PE name of type,

defining the type's variables, a nd ending with END T YPE name of type. Th ey can

t hen be used anywhere in t he program in a similar fashion to int rinsic types [36]. An

exa mple of a declaration followed by use of a derived type is given below:

* Decl ar at i on of Der ive d Type :

TYPE energy-co mponent

in t eger: : NENERGIES !number of ene r gy components

doubl e pr ec ision :: SUJ'LCOHPONEnTS !t ot a l ene rg y cont r ib ution

* Individua l ener gy contributi ons

double pr e ci s io n , pointer : : COMPONENTS(:)

END TYPE energy _component

JOO

* Use of Derived Type ;

t ype(energy_component) : : E_STRETCH

eype tenergy..ccepc nen e) :: E_BEND

type(energy_component) r : E_TORSION

type (enargyccoeponent) :: E_OOPBEND

t ype (ene r gy_componen t) t : E3ANDERWAALS

type(en ergY30mpone nt) t : E_ELECTROSTATIC

type(ene rgy_co mponent) :: E_STRETCH_BEND

t ype {energy_compone nt) :: E_TOTAL

In t he above example, a derived type is used to define an energy component of

th e total molecular mechanics energy. T his energy component contains an integer

for t he number of energy subcomponent s, a double precision variabl e for the sum of

these subcomponents, and a pointer to an arra y of subcomponent s. This type is then

used to declare specific instances of this derived type .

One limit at ion inherent in the derived type is allocatable arrays cannot be de­

clared as par t of a derived type [36]. In other words, the following code fragment is

illegal:

TYPE ad_component

in teger:: N2DERIVATIVES !number of second der i vative s

double pr ecision, d i mens i on { ,:) ,

101

allocatable : : COMPONENTS ! ind i vidual second deriva t i ves

END TYPE sd _component

In the above example, the array COMPONENTS was declared in the derived type

as allocat able, which is illegal. Instead , the allocatable array can be replaced by a

point er which can be allocated lat er on in t he program:

TYPE sd_ component

integer : : N2DERIVATIVES !number of second der i vatives

doub le precis ion, po inter : : COMPONENTS{ :, :) ! i ndi vi dua l second deriva tives

END TYPE Sd_component

if (. not .associated (SD_STRETCHi(,COHPONENTS» then

alloca te (SD_STRETCHi(,COMPONENTS(DIM1, DIM2»

end i f

5.2.5 Additional Computatio nal Intrinsic Functions

One additional featu re of Fortran 90 that makes it app ealing in the design of

scienti fic applications is the addition of matrix operat ions to the sta nda rd. Now,

matrices can be added , subt racted , and multiplied provided t heir dimensions matc h.

Addition and subtraction are both provided by overload ing of t he '+' and '-' operators

and t he mult iplicat ion of mat rices is provided by th e int rinsic functi on :-'1ATMUL.

102

Anot her very useful function to scient ific computation is the dot product intr insic

function DOT...PRODUCT .

Gmat rix " mat mul(Bmat rix , transpo se (Bmatrix »

The code fragment above (from the coordinate conversion part of the molecular

mechanics package) shows an example of t he use of the ~tATMUL intr insic. Two ma­

trices can be mult iplied by indicati ng their corresponding array names as argu ments

to the ~lATMUL intr insic function and t he result can be stor ed in a third array.

One problem with the MATM UL function is the programmer must insure the array

dimensions of t he arrays being mult iplied match for mat rix multiplication, and the

resulting array must have the required dimensions. For exam ple, if the two arrays to

be multiplied are n x m and m x TI, they are multiplied in th is orde r and t he resulting

mat rix must have dimensions n x n. The size of an array can be determined by using

the SIZE int rinsic funct ion, which ta kes the array name as input and returns its size.

5.3 Object -B ased P rogramming for Molecu lar Me­

chanics Using Fortran 90

Object-based design has many benefits which can be taken advantage of in de­

signing scienti fic code, however it would be advantageo us to be able to create code

103

using these concepts while still being able to combine the new code wit h existing For­

tran 77 rout ines. This is possible with t he addition of some of t he featur es discussed in

the above sectio n to t he standard to create Fort ran 90. Some of these include th e use

of modules and derived types to achieve abst ract ion and encaps ulat ion, and interfaces

to achieve polymorphism. In this way, newer scientific code can be writt en in Fort ran

90 which is backward compatible with Fortran 77 so th e object-based code can be

writte n effectively without having to rewrite existing numerical routines [35, 38].

In a previous version of Mungauss , writte n in Fortra n 77, a low-level object­

based app roach was used (OSIPE [39]), which made it easier to convert to Fortra n

90. As a result , many of Hie old features of Fortra n 77 have been phased out over

the pas t year.

5.3.1 Achiev ing Dat a Ab straction, Encap sul ation , and Mod­

ular ity W it h Derived Types a nd Modules

Classes, as discussed in Cha pter 3, have a part icular st ructure to t heir att ributes

and behaviors. Gro ups of objec ts which share in t his structure can collect ively belong

to a class, which describes t he objects ' attributes and behaviors in a more genera l

sense. The class can then be placed into a single st ructu re in the code. This pro­

vides modu larity to th e program as well as encapsulating t he det ails of the class'

implementation [40].

T he above can be easily implemented using modu les and derived types. Th e

104

bene fit of the module is that it provides a neat container to place the abstractions

and behaviors of a group of obj ects into. The abst raction s can then be placed in

a new deriv ed type which can be used to crea te insta nces of itself, the objects . In

doi ng so, each object has the attributes defined in the derived type and access to t he

behav iors cont ained in the module {35, 38, 40]. It also provides some security by only

allowing parts of the code who USE th e modu le to access th e dat a and adding th e

PR IVATE att ribut e to th e more sensitive data of the object prevents any par t of t he

code not belonging exclusively to th e obj ect from directly accessing it.

As an exampl e, consider th e molecular mechanic s energy. It contains seven par ts,

each of which has a set of components as well as a tot al number and sum of these

components. A class can be defined for the energy pieces and t hese three abstractions

can be placed into a derived type for a generic energy type. T hese pieces can then

be ini tialize d and summed to give a total energy, which is also an energy type. T he

module for the energy class, with the obj ects included , is given below:

MODULE mm_gradients

* Modules ;

USE f unctions_mDl_gradients 1first derivat iv e functions

USE constants !gl obal constants

i mplic i t none

105

* Class data (each object has these . . . j :

TYPE gradient30ntribution

integer:: NGRADIENTS !number of gradient contributions

double precision, pointer : : COMPONENTS(:) !array of gradients

END TYPE gradient_contribution

* Objects :

t ype (gr adi ent_cont r i but i on) r : STRETCH

type (gradient_contribut ion) : : G_BEND

t ype(gradienLcontribution) t : G_TORSION

type(gradient_contribution) : : G_OOPBEND

t ype (gr adient _cont r i but i on) i : G_VANDERWAALS

type(gradient_contribution) r : G_ELECTROSTATIC

CONTAINS

SUBROUTINE GRADCLC_STR ! i ni t i a lize s stretch gr ad i ent s

SUBROUTINE GRADCLC _BND ! i ni t i a lize s bend gradients

SUBROUTINE GRADCLC_TOR ! i ni t i a lizes torsion gr ad i ent s

SUBROUTINE GRADCLC_OBND ! i ni t i a lizes out-of-plane bend gradients

106

SUBROUTINE GRADCLC_VDW !initializes van der Waals gradients

SUBROUTINE GRADCLC_ELEC !i ni tializes electrostatic gr ad i ent s

END MODULE mm_gradients

In the ab ove examp le, the att ributes for the number of gradient cont ribut ions, and

the gradi ents are given in the der ived typ e gradient.co mponent . The cont ribut ions

are th e individ ual first derivatives of the energy expression for each interact ion.

The grad ient objects for t he grad ient class, seen above, are t hen defined by

declarin g each of t hem as variables of the type gradient-component and initi alizing

t hem. The initial izat ion is done for each object individually as th e gradient expres­

sions for each interact ion differ. There is one routine which is called to build the list

of the m in the cases where t hey are all needed. This ront ine is conta ined in a file for

access by all part s of t he code.

The class for second derivatives is th e same as above, with t he addition of the

st retch-bends as a separate object (off-diagonal terms for stretches and bends). The

at tribu tes are only a list of cont ributi ons and the number of gradients in each object .

MODULE atom

• Communicati on . .

107

USE molecule !molecule information

USE constants !global constants

USE objects_created

USE topology !topology objects

USE mm_interaction_type_params lparameters global to HH

* Class data definition :

TYPE atomtype

* atomic number of the atom

integer :: atomic_number

* atom's hybridization

integer :: hybridization

* size of ring atom belongs to

integer - : ring_size

* atom's "type" defined by the

force field

integer : : typeJltlll

* Is the atom aromatic?

logical is_aromatic

END TYPE atomtype

* Object definition :

108

ty pe(atomt ype) , dimena i on (:) ,

allocatabl e ;; ATOMS

CONTA I NS

SUBROUTINE ATOM_TYPE

..... i ni t i alize ATOMS here.....

END SUBROUTI NE ATOM_TYPE

END MODULE atom

The above example shows an implementation of t he ato m class. The first line is

the beginning of the module and th e par t following is th e definitions of communi­

catio ns t his modul e has with the ones listed. For examp le, the ato m class requests

informat ion from t he molecule and topology classes, as well as the da ta stores con­

sta nts and interac tion type parameters (bond types). Objects.c reated is a set of tools

which allow depe ndency of objects to be defined. The type definition groups the class

data into a user-defined type and t he met hods are separated from t his type by tbe

CONTAINS statement. Th ere is only one behavior in th is class , which is th e initia l­

izat ion, defined by t he routi ne ATOM_TY PE. The objects are defined by allocat ing

them as deferred-shape arrays, specifying t he shape (one, two , or higher dimens ions),

and later allocat ing them with the correct dimension.

109

5.3.2 The Implement at ion of th e Fun ctional Model Compo­

nent s wit h Subrou ti nes and Modules

In t he functional model, the processes most often correspond to behaviors of

object s or some intermediate transformation process. T hese are implemented in the

molecular mechan ics package using SUBROUTI:-;'Es. For a furt her descript ion of the

SUBRO UTIN E, see reference [36]. If the process describes an object's behavior, it

is grouped with th e class in th e module corresponding to that class and its objec ts.

If the process is execute d using more th an one object of differ ing classes, t his process

is placed in a file for usc by all parts of t he program . Data to be passed into or out

of the process appears in the argument list for t he SUBROUTINE . On ce th e data is

passed into t he process, it is declared locally and t ransformed .

Actors, t he sources and sinks for th e data in t he program , are usua lly objects

the mselves. In th e case of inp ut and output , th ey are actual files. The Ca rtesian

coordinate ac tor is an object which is included in the coordinate conversion process,

but will not be discussed furth er as it does not correspond to the molecular mechanics

proble m. It is include d because it is an intermediate result needed to comput e the

nonbcnded energies in t he molecular mechanics package. It is loca ted in the modu le

molecule.

Da ta stores in the molecular mechanics are an exa mple of anot her use for a

module . In the molecula r mechanics package, t he data store representing th e ent ire

set of param eters is implemented in modu les according to t he type of pa rame te r da ta

lIO

it stores. The data store is actually a group of modules, each containing a complete

parameter set for a particular interact ion. For example, the parameter set data store

includes the modules for the stret ch, bend, torsion, out-of-plane, nonbonded, and

st retch-bend parameter sets.

Data flows are implemented as USE statem ents or function calls. In the case

where the informat ion is in a module and one part of the code needs the data from

this module, the module is first USEd, then the initia lizat ion routine to compute this

data is called. Once the dat a is available for lise in the module, any part of the code

with a USE state ment for the particular module where the data is stored may use

this data. For example, consider the following code fragment:

.... Modules :

USE redundant_coordinates

USE molecu l e

CALL BLD_CDDRDI NATES

END SUBROUTINE UPDATE_XYZC

111

In the above example from the redundant internal to Cartes ian coord inate conver­

sion, the process UPDATE..xyZC is defined as a subrout ine which has the redundant

coordinates from the current and previous steps in the opt imization [q.new and q.old,

respect ively) as well as the trans format ion matrix (Bmat rix) given as inputs. The

output is the updated Cart esian coordinate set, which is aut omatically upd ated by

making it available in the module molecule. The parts of q..old are in the module re­

dundant- coordinates and need to be updated once the new Cartesians are computed .

This is done by first including the module with the parts of q.old already available

for modification and modifying them by calling the routine to build the redundant

coordinate objects (called BLD_COORDlNATES).

5 .4 Summary

Fort ran 90 is proving to be a viable opt ion for designing scientific code where the

use of the Fort ran language is still preferred over other popular languages. Fort ran

90 has support for several object-based features, for example the module and derived

type , which enable programmers to create classes and objects from real-world models.

Th is provides abstraction and encapsulation to a program writt en in Fortran 90.

Some advant ages and disadvantages to the use of Fortran 90 for scient ific code are

worth noting. First , Fortra n 90 provides full support for the use of classes and objects

by providing the module and derived type to define classes and data abstr act ions

from which to create objects. This also provides encapsulat ion. These featur es are

112

also available even if the goaJ of the programmer is only to create mod ular and not

object-based code. Interfaces are also available to provide support for polymorph ism

and operator overloading , promotin g code reuse. However, although the support

is available for creat ing classes and objects, the generic methods to constr uct and

destroy objects are not available in the Fort ran 90 language. The programmer must

therefor e explicitly create these for every class ind ividually! There is also no explicit

support for inhe ritance as in other object- based languages. Because of this last point ,

Fort ran 90 is often referred to as an object-based language because support for the

four main parts to t he object model (discussed in Cha pter 4) are not all available in

the standard [35, 36, 37, 38, 40, 41J.

Some additional features of Fortran 90, such as backward compatibility with

Fortran 77 and explicit support for some matrix and vector operat ions within the

standard combined with the featur es for lise in object -based design make t his language

a choice for scienti fic code design.

113

Chapter 6

Performance of the Molecular

M echanics P ackage: Numerical

R esults

6.1 Introduction

The execution of the molecular mechanics package depe nds on t he desired quan­

tit y. In some cases an energy of a given st ructure is needed wit hout modificat ion

of the input and in other cases and optimal geometry is sought . These types of

ccnuput.at.iuna are called .'Ji71ylt-puifl'lJ and yev7llt t1"1I trpt imizuti uns. However, in order

to satis fy the Quality of controlled printi ng one must also be able to get the results

of the computati on of one or more of the objects. T his chapter will cover the re­

sults of printing th e obj ects , single-point , and geomet ry opt imization computati ons.

114

Some compa risons to literature results for differences in energy between two differrent

struc tu res of th e same molecule (conformational energy diff erences) will also be given.

6 .2 Printing the Objects

Thi s section deals with the printing of t he objects . The molecular mechanics

package is capable, th rough the menu, of print ing the energy, gradient , second der iva­

tive, parame ter , and coordinat e contr ibutions. The objects derived from these classes

are all prin ted , and at t his point an individual object cannot be printe d. For example,

if the user specifies prin ting of t he energy objects , all energy objects are printed as a

set of cont ribut ions. Pr int ing of data can also be accomplished using local debugging

tools which print intermediat e results from the routine (or routines) specified in the

input file.

Mol ec ul e

FreeFormatMatrix

cr

HI ct He

H2 ci He HI HeH

H3 or He HI HeH H2 HCHH

H' ci He HI HeH H2 - HeHH

end !Fr e eFor mat Mat r i x

define

115

He ., 1.0931

HCH ... TETRA

HCHH '" 120 . 0000

end !Define

end !mol e cule

Out put

Obj ect=ENERGY_HM: ENERGY_CONTRI BUTIONS

end

stop

The above code segment shows an example of an input file where certa in sets

of objects are requested. The molecule is input as a Z-matri x (see appendix B). The

objects are requested by enclosing the list of objects in an output section using the

Output menu command and the objects are specified using an Object.: command.

The first part of the object name is the class it belongs to and the second part is

the set of objects to be computed and printed. For example, the first set of objects

requested are the energy contributions, and they belong to the class ENERGY.MM.

The result of running the above input file is as follows:

Welcome to HungauD8 - Deve l opment ve r s i on (J une 7 , 2000)

Free format Z- Matrix for : UNKNOWN

Cl

116

HI

H2

H3

H4

ci

c i

Cl

c i

He

He

He

He

HI

HI

HI

HeH

HCH

HCH

H2

H2

HeRR

- HCHH

VARIABLES :

He = 1. 09310000 HCH 109.4712 2 HCHH 120 . 00000

Pruni ng graph. .

GRAPH_HOMREDUCED> NPRUNE:

117

Homeomorphically reducing graph . .

Fundamental Rings =

total energy : 4 .382 124831520715E- 005

Energy:

Number of stretch contributions •

Total stretch ener gy = 2 .1835514112689 18E-008

Stretch contributions : 5 . 458878528184422E-009

5 .458878528184422E-009 5. 458878528160169E-009

5 .458878528160169E-009

Number of bend contributions =

Total bend ene rgy = 4 . 344867295603311E-00 5

Bend contributions : 7 . 2414 45492672 186E-006

7 .2 41445492672510E-006 7 . 241445492672510E-00 6

7 .241445492669923E-006 7 . 2414 45492669923E-006

7 .2 41445492676065E-006

Number of stretch-bend contributions '"

Total stretch-bend ene r gy = 3 . 507398450613559E-007

St re tch- bend contri butions: 5 .845664084362424E-008

5 .845664084356063E-008 5 . 845664084356063E-008

5 .845664084355016E-008 5 . 845664084355016E-008

5 .8 45664084351007E-008

118

action> end of inputs

Jo b : RUH ende d on : 14- Aug - oo at 00 :22 :43

ds ha w on 14- Aug- 00 at 00 :22 :4 3

Cpu t ilDe :00hOOmOOs1 4c on garfield

El ap s ed t ime :OOhOOmOOsOOc

In the above out put file, the input and out put Z-mat rices are given as well as the

prin ted set of energy obj ect s. Also given, bu t not shown in t he above exam ple, are

the car tes ian coord inates in bohr and angstrom s as well as th e connect ivity mat rix

showing how the atoms are connected.

Oft en t he energy at a part icular geometry or t he geomet ry at a minimum energy

is sought. Th ese two types of comp uta tions and the results for a set of molecules will

hi;>d iscussed in the next two sections.

6.3 Single-Point Energies

A single-poi nt energy calculat ion is t he comput ati on of th e energy of a molecule

at a par ticu lar geo met ry. III th e case uf molecu lar mechanics, these ene rgies are often

useful to determin e if the output of a molecula r mechanics package is reasonable,

however t hey have no other practica l use. T he energy of a molecu le computed with

different force field'! cannot be compared as the parameters and energy expressions

119

used in each force field are different from those of other force fields. As a result, the

single-point energies from this molecular mechanics package are being used to deter­

mine if the molecular mechanics package can give results which are not unreasonably

large or small.

Table 6.1: Single point energies for a series of hydrocar­

bon molecules.

M olec ule Sing le P oint E ne rgy (xlO·1 Har t rees)

methane 0.00438212

staggered ethane -5.94363

eclipsed ethan e -1.86879

trans-propane -6.63891

cis-butane 619.999

gauche-butane 0.408991

t rans-butane -5.45631

tr ans-pentane -6.68317

tran s-hexane -6.59755

t-butane 26.9702

cyclopropane 55.2188

cyclobutane 16.8973

methylcyclopropane 100.710

120

contin ued from previous page

Mo lecu le Single P oint E nergy (xl oJ Har tr ees)

boat cyclohexanc 7.14584

chair cyclohexane 1.83973

benzene 26.0829

ethene 13.4039

propene 10.8389

cyclopropene 67.6849

cyclobutenc 94.2949

tra ns-buta diene 13.0006

gauche-butadiene 59.1122

cyclobutad iene 182.218

cyclopentadic nc 35.9250

Table 6.1 gives the single-point energies for a series of hydrocarbon molecules

covering cyclic and acyclic systems with single, aromat ic, and double carbon-ca rbon

bonds. It should he emphasized at this point that these values of the energy are for

molecules with part icular input struct ures. Changing any of the input coordinate

values will change the energies. These energies correspond to a point on the potent ial

energy surface for the molecule with the given geomet ry, and are not necessarily

optima l structu res. However, some t rends in the energies can he observed and these

121

also aid in deciding if the M~I energies are reasonab le.

Referr ing again to table 6.1, the energy differences for stagge red and eclipsed

ethane, chair and boat cyclohexane, and gauche and trans butane are particu larly

useful in investigating conforma tio nal energy differences. In the ethane system, stag­

gered should be lower in energy tha n eclipsed. In t he but ane syste m, trans-butane

should be lower in energy than gauche-butane. In the cyclobexane system , the chai r

form should be lower in energy tha n the boat form. The energy values for these

geometries, shown in t he above table for ethane, butane, and cyclohexane, demon ­

strate these trends, and as a result , it can be concluded that the molecular mechanics

package is able to give reasonable single-point energies .

6 .4 Geomet r y Optimizations

TIle test of a molecular mechanics package is not only to generate single-point

energies but also to generate reproduc ible results. Since direct energy compar isons of

systems such as methane and the stagge red and eclipsed forms of ethane are not pos­

sible, compariso ns are often mad e of conformational differences. Th e energy values

for two different sets of posit ions of a molecule's ato ms in space may not be the same

between different force fields, but the d ifference in these two energies will be comp a­

rable . For th is reason , comparison of results of th e molecular mechanics package to

literature values will be done on the bas is of existing results for energy differences in

a molecule's conformations .

122

In order to obtain t he best geometry and energy for conformational energy com­

parison, it is useful t o run a geometry optimization on the input st ructu re. This

involves minimizing t he energy of the molecule, thus opt imizing its geometry. A

geometry optimiz atio n is started by including the following in the list of menu com­

mands in the input file: the option for geometry opt imizat ion, t he method desired,

the funct ion to be minimized (in this case, molecular mechanics), the maximum num­

ber of iterations, and the desired accuracy. At each iterat ion, t he results are then

printed for the coordinat es, gradient s, total energy, and gradient lengt h.

Table 6.2: Tab le of geometry optimization results for a

series of hydroca rbons .

M olecule Funct ion Energy G ra d ien t

N a m e Eva lu a tions (xlO - 3 Har t rees) Ha r treesfBohr)

met hane 4 0.000000 2 .36681 IxlO~ 17

stagge red ethane 9 -16.1663 8.952353xl0 - 17

eclipsed ethane 9 -10.7367 4.586337xlO- 19

trans-propane 11 -23.2853 3.98872lxlO- 16

cis-butane 18 -23.5900 7.999749xlO- 15

gauche-buta ne 17 -31.3323 3.651790xIO- 14

trans -butane 18 -32.5909 3.297194xlO- 13

t-butane 13 -9.51801 8.573369xlO- 17

123

cont inued from previous page

Molecul e Fu n cti o n E n er gy Gradien t

Name E va lua t ions (xlO - 3 H artrees) H a r t rees/ B oh r)

t rans-pentane 80 -22.1729 2.979742x l0 - 4

t rans-hexane 80 -19.2031 4.988806xlO - 4

cyclopropane 79 19.9713 2.911428xlO- 6

met hylcyclopropane 80 21.9774 1.799471xlO - 4

cyclob uta uc 26 ·2 .27935 1.865883xl0- 16

boat cyclo hexa ne 56 -25.0396 4.12121Ox lO- 5

chai r cyclohex ane 80 · 33.7496 3.4 19738x l0 - 5

ben zene 80 -3.27697 1.516619x 1O- 4

ethene 8 11.7355 1.095284xlO- u

prope ne 10 5.73116 6.823548xlO - 18

cyclopro pene 19 6.42416 2.45649Ox1O-17

cyclobut ene 79 43.9365 3. 1 89709x1O~4

gauche-butad iene 20 11.9478 1.616714xlO- 18

tra ns-butadiene 19 10.4657 2.752949xlO- 14

cyclobutadiene 9 16.3081 2.527553x lO- 15

cyclopent ad iene 10 -2.91336 3.873846x10- 13

Table 6.2 gives the geometry opt imization results for the molecule set given in

124

the previous sect ion. The first column of the table gives the na me of the molecule,

the second column gives th e number of function evaluat ions when eithe r the energy

did not change or the maximum number of iterat ions was reached. For all of the

ab ove cases, the maxim um number of iterations was set to 40. The third column

gives t he energies at the given step (from column 2) and the fourt h column gives th e

gradients . The method used in most cases was full Newtcn-Raphscn, but for tran s­

pentan e, t rans-hexane, cyclopropane, methylcyclopropane, boat cyclohexane , chair

cyclohexane, benzene, and cyclobutene the met hod used was VA05AD (minimization

of th e sum of squares met hod, section 3.3.4). In the cases where Newton-Raphson

WaH used, it seemed to give reas onable results while recalculati ng the exact second

derivative matrix at each ste p. In t he cases where VA05AD was used, problems with

convergence were encountered and the results where little improvement in the energy

was seen were ta ken.

Comparison of t he energies in tables 6.1 and 6.2 show in nearly all cases

t he energy decreases and a more optimal geometry is found. T herefore, movement

from the initial to a more opt imal geometry is possible with the molecular mechanics

package using VA05AD.

True comparison of t he molecular mechanics package can be done by compar­

ing the results of conformat ional energy differences using the opt imized geomet ries

with those in the literatu re. Two systems were chosen to demonst rate the molecu­

lar mechanics package ability to reproduce trends and energy differences. These two

systems arc stagge red-eclipsed ethane and boat-chair cyclohexane.

125

Table 6.3: Table of conformatio nal energy differences for

the eth ane and cyclohexane systems.

Co nfo r me r Energy Differ ence Lit erature Values

System (kCal jmol) (kCaljmol)

eclipsed-staggered etha ne 3.28 2.83,3.02

boat-chair cyclohexane 5.47 5.93

gauche-trans but ane 0.79 0.78

Table 6.3 gives the conformat ional energy differences between eclipsed and stag­

gered etha ne, boat and chair cyclohexane, and gauche and tr ans but ane. The liter­

at ure values are also reported, where the first set of literatur e values correspond to

scaled and not scaled 1-4 nonbo ndcd interact ions wit h t he AMBER force field. The

results for the AMBER force field were reported as none were found for th is partic­

ular molecule with 1IMFF94. As the t able shows, the energy difference for gauche

and t rans butan e found in this study is nearly identical to the value repor ted for the

M~lFF94 force field. For boat and chair cyclohexane, th e energy difference given is

not as close to the value given for MMFF94, hut it should be noted th at the exper­

imental value for t his energy difference is 5.5 kCal/m ol. This is almost identica l to

the result obtai ned for this system in this study. For staggered and eclipsed ethane ,

the results are not as good, with energy differences for this work different t han the

126

non-scaled energy (from AMBER) by about eight percent .

Overa ll, the t rends in the conformat ional energy differences arc well reported

by the molecular mechanics package and the energy differences computed are ac­

cepta ble". The result s need to be improved and two possible ways of accomplishing

improvement would be to adjust the guess of the initial second derivati ve matrix to

speed convergence or lise a different input which may put th e struct ure and energy

closer to another local minimum.

6.5 Sum mary

The result s of th is chapter show t he ability of the molecular mechanics package

to genera te single point energies and opt imal geometr ies. Th e abilit y of the menu to

give t he option of printing desired objects was also shown. The resul ts are accepta ble,

but st ill show the need for some improvements on the exist ing molecular mechanics

package, especially for optimized geometri es.

"Acceptab le results ar e those which lie within ten percent of the lite ratu re values

127

Chapter 7

Summary and Conclusions

7.1 Su m m a ry

T he molecula r mechan ics metho d provides an alterna tive way from the ab ini tio

and semie mpirica l met hods to comput e molecular geometries and energies. For some

systems too large to generate the geometries and energies in a reasonable t ime with

the lat ter two methods, molecular mechanics is the best alternative.

Molecula r mechan ics does not only involve t he energy computa tion. In order to

obta in the energy as well as an opt imized geometry, the posit ions of the ato ms must

be determined and the coordinates built. The atomic positions and connectivity can

he dete rmi ned from graph th ro f Y conce pts and t he eoordtnat es can he huilt from

cartes ians. T he optimization can be done using der ivati ve informa tion as well as the

energy and coordina tes , and th ere are several method s available to generate opt imized

st ruct ures.

128

When designing a molecular mechanics package, considerat ion into the design

method is important. In this work, an object-based design approac h was ta ken with

the emp hasis on designing a package using logical collections of data with the proce­

dures which initiali ze and build them . Also emphasized was the way in which these

dat a typ es interact . The goal of this work was to create a reliable, efficient , dynam­

ically executing, modular, and easily maintai ned molecular mechanics package. The

concepts from object-based anal ysis and design were used to aid in the visualizat ion

of the problem and design of a molecular mecha nics package wit h the above feature s.

T he lan guage of choice for this work was Fortran 90, as it provided many features

for t he design of an object- based package as well as being backward compatihle with

Fortra n 77. By making usc of these two features of th e language, t he molecular

mechanics package could usc some existing tool s and be integrated into Mungauss, a

larger ab initio package.

7.2 Co nclusio ns

The resul ting molecular mechani cs package contain s the featur es of good pro­

grams , discussed in the above section . It also has printing capabilities enablin g the

user to print, in most cases, the desired informa tion without extra data being printed .

The integra tion of the existing Fortran code from Mungauss with the molecular me­

chanics code was strai ghtforward and the implementation of the molecular mechanics

129

package using the featur es of Fortran 90 discussed in chapter 4 resulted in an object -

based package.

Compar ison uf the results of both single-point and geomet ry opt imization cal­

culat ions shows the ability of the molecular mechanics package to reproduce energies

which are reasonable , as well (1.<; energy differences between different orientations of

t he atoms of th e same molecule (conformat ions). However, some imp rovements can

be made on these results in order to obtain better agreement wit h the literature.

Altho ugh most of the goals of th is project were reached, some were not fulfilled

and are left as fut ure work on th e molecular mechanics package. First , the package is

not flexible wit h respect to different groups of molecules, as it is only able to handle

systems containing carbon and hydrogen. Since the Merck Molecular Force Field (341

was designed for a wide variety of organic and biomolecules, it contains more th an

these two atom s, and add it ion of other atoms is necessary and will be done in th e

futu re. Also, integration of force fields to handl e inorganic and solvated systems is

also a desired feature which will be completed in future work. It is also hoped to

combine the molecular mechanics package with the genetic algorit hm code a."well as

modify t he existing code to handle t ransition state systems.

130

Appendix A

Brief Description of the M erck

Molecular Force Field, MMFF94

This appe ndix gives a brief description of the form of the Merck Molecular

Force Field used in this work . It briefly discusses what the force field is designed

for, the atom types used, th e source of da ta for parame teriza tion, and the energy

expression. Notation within equations is kept consistent wit h bonds bein g rep resented

by r, angles by 8, torsions by rj>, out -of-plane bend s by X, internuclear separat ions

by R, equilibri um values by _0 or .eq and comput ed values by ". An example of

a computed value would be the minimum separation used ill the van der Waals

in t cr ect. iona , shown as n' .

131

A.l MMFF94:

T he MMFF94 force field , which was the force field used in our stud y, was de-

signed to give efficient biomolecular str uctures ma inly for the pur pose of drug design.

However , it is also designe d to handle most organi c systems . The force lield does not

usc extended atom types and currently t here are 99 parameters available . Th ese cover

the organi c systems as well as t he following metals : iron , lithium, sodiu m, pot assium,

zinc, calcium, copper, and magnesium. T he parameters were derived by fittin g the

results of the force field to both ab initi o and experimenta l data. The form of the

energy expression is as follows [34, 42, 43, 44, 45, 46, 47, 48J:

Elolal = ~t,~~. 143 .9325 (!t) (T - ro)2(1 + cs(r -ro) + ~cs2(r _ r o)2)

+J;.0.043844(!!t)(9 - 8o?(l + cb(O- (Jo))

I
+J;..'2[Vl (l + cos¢J) + V2(1 - cos241) + V3(1+ cos3¢»)

+ ""t_"J~nel><nd' 0.0438 44(!f)X~ + d'cI~t<>t;~. 332.0716 D (~l~ 0)"

(
l.0 7R·) '(1.12R·)

+ ~6" d~W6.w f (R + O.07Ro) (R7+O.l2 Ro1)- 2

132

(A.I)

The energy expression above is a sum of contributions due to st retch, bend, tor­

sion, out-or-plane bend, van der Waals, electrosta tic, and st retch-bend interactions.

The consta nts included ill some of the terms are to insure the energy is in units of

kcaljm ol [34, 42, 43, 44, 45, 46, 47, 48].

133

Appendix B

User/P r ogra m mer Guide

B.1 Int ro ducti on

This guide describes t he necessary background into the molecular mechanics

package to add to, update, and run the code. It begins with running the program

(within the Mungauss suite of programs), gives an out line on how the source code

is structured in terms of parts of the molecular mechanics method, and discusses

updates and maintenance.

B.2 Perfor mi ng Mo lecular Mecha nics Calculations

B .2 .! Input

There are several steps involved in obtaining output from a molecular mechanics

program. These steps and their order depend on the quantity desired. Before any

134

computa tion with a molecular mechan ics program is done some decisions should be

made first. Often th ese can depend on the program that is being used as some options

desireable to a user may or may not be available. Some decisions to be made before

star t ing a molecular mechanics calculat ion are as follows [9]:

• What kind of systems are being run?

• Wha t level of accuracy is desired?

• What sort of output is desired, for example st ructural or spectroscopic dat a?

• What type of input is need ed to run t he molecular mechanics program, for

example graphical or Z-mat rix?

After these decisions are made, the most ap propri ate molecular mechanics package

can be chosen, after which t he input must be generate d. The Mungauss suite of

programs offers a simple menu system to allow the user to select a desired package and

choose what prin ting should be done . This information along wit h an input geometry

for th e molecular system is put into an input file to be read in by Munga uss.

Thi s can be done t hrough th e usc of an input forma t which will allow the program

which bu ilds th e molecule to determine what at oms are connected. A popu lar input

format is a Z-mat rix [3, 9, 10, 491.

A Z-mat rix is an input file which specifies the geomet ry of a system in terms

of inte rnal coordin ates (bond lengths , an gles, and torsions). The locat ion of an atom

with respect to previously specified ato ms is given in each row. The first column gives

135

each atom in the molecule. The third column gives t he value of t he length of the

bond formed between the atom s specified in the first two columns. The fifth column

gives the value of t he angle formed by the atoms in columns one, two, and four , and

t he seventh column gives the value of the torsion formed from t he atoms specified in

COlUlIIlISone, two, four, and six [3, 49J.

The first entr y in the z-mantx specifies the first atom , which is placed at

t he origin . No ot her information is given on this row. T he second row specifies t he

second atom and a bond to the first atom. The third row specifies the thir d atom

bonded to the second atom with a particular bond lengt h and it makes an angle with

the first atom. The fourt h row specifies th e fourt h atom bonded to the t hird atom ,

makin g an angle with t he second atom, and a dihedral with the first atom . After

t his point, specification of each atom needs t he bond , angle , and torsion informat ion

as outlined in the previous paragraph. The bond , angle, and torsion values can be

inser ted as nume rical results or as a parameter with a label. Labels for the atom s,

bonds, angles, and torsions must start with a let ter, followed by anot her letter or a

number. In the case of atoms, the first lett er or lett ers must be the elemental symbol

of the atom . If a label is used for bonds, angles, or torsions, it must be specified in

a parameter list after t he Zcmatrix [3, 49J. An examp le of a Zcmatrix for methane is

g iven bdow:

INPUT Z_HATRIX FOR METHANE

136

Cl

H1 Cl CH

H' ci CH H1 HCH

H3 Cl CH HI HCH H' HCHH

H4 cr CH HI HCH H' - HCHH

He = 1.0931

HCH = 109.4800

HCRR = 120 .0000

For the molecular mechanics program , there are two opt ions for simulations.

First , a single point energy can be computed on a molecule. Selection of th is opt ion

requires th e user to add to the input file th e menu opti on for printing the molecular

mechan ics energy for the molecule and t he energy information will be pri nted. An

example of an input file for the computation of the single point energy for metha ne

is as follows :

Mole cu l e

Fr eeFo r matHat r ix

C1

Hi Cl He

137

H2 C1 HC HI HCH

H3 C' HC HI HCH H2 HCHH

H' C, HC HI HCH H2 - HCHH

end

de fi ne

He s 1. 0931

HeH = TETRA

HCHH = 120 .0000

end

on'
Outp ut

Dbj ec t =ENERGY_KI'I: ENERGY_CONTRI BUTI ONS

end

stop

In the above example, t he free format matrix (Z-mat rix) for methane is selected

as t he input format for the molecule. T he next step is to select the method, or in

this case, the energy object . If another object is desired, such as the gradients or

coordinates, i t can be printed in th e same man ner by replacing t he energy with till '

desired object . Th e request for an object requi res th e name of t he class to be given

followed by the name of the object group for that class, separated by a colon.

138

If a geometry opt imizat ion is required, then the method must be explicitly

selected in the case of molecular mechanics, followed by a line selecting a geomet ry

optimization. Using the methane exam ple gives:

Mol ecule

Fr eeFor matMat ril:

Cl

HI Cl HC

H2 Cl HC HI HCH

H3 Cl HC HI HCH H2 HCHH

H4 Cl HC HI HCH H2 -HCHH

end

define

HC .. 1.0930

HCH :: TETRA

HCHH " 120.0000

en d

end

!set trarev-sc end

!set debug" BLD_RIC end

!set debug"BLD_RIC _CQNTRIBUTIO NS end

MM end

139

Geom HE"VA I TER=40 ACC=1.0D-06 run end

stop

Again, the first step is to give the initial representation of the molecule. The line

MM end selects the molecular mechanics method. The Georn keyword selects the

geometr y optimization method, where th e method in this case is selected as VA, the

maximu m number of iterat ions is 40, and the accuracy desired is 1O~6 (in atomic

units). The geometry opt imization is then run.

In some molecular mechanics programs additional information such as a con­

nectivi ty matrix or st ring to identify the type of simulation may also be needed. This

will depend on the package being used [3, 491.

Two debugging tools are seen in the methane geometry optimization exam­

ple, althoug h in this case they are commented alit . However, they were left in the

example to show an example of the use of the debug and tralevdebugging tools. These

have the advantage of forcing the printing of intermed iate results and can be used for

this purpose . They are mainly useful to the programme r who can print intermediate

results from a specific piece uf code only when this keyword is used, giving useful

debugging information. TIll' keyword tmlev causes tracing to be performed and the

result is a statement showing the entr y and exit from each routine and function as

they are called.

140

B.2 .2 Output

The output of the molecular mechanics program is often a geomet ry as well

as an energy. Since most molecular mechanics packages contai n a molecule viewer

and builder, the outp ut is usually a molecule which can be displayed along with its

corresponding energy. For molecular mechanics packages without a molecular viewer

or builder, t he generat ion of output is contro lled by menu options. T he most commo n

menu option for generat ing output is a printing level. This can be set ill the input

file and depending on its value, certa in computa tion result s will be generated in an

outp ut file [101.

B.3 Molecular Mechanics Code Layout

The molecular mechanics code is organized according to classes, utilit ies, rou­

t ines tha t bu ild sets of object s, and globa l data. T here are two main types of files

in t he molecular mechanics code, mun and mod files. Th e mun files contain routines

which are needed by more tha n one part ofth. e program, for example util ity funct ions.

mod files contai n eit her classes or global data. Ut ility functions which are specific to

one type of object but do not necessaril y need to be added to a class can also he put

in a module. For example, t he equ ilibrium bond length s, bond force constants, and

other global force field dat a are kept in mod files (modules) with. names representative

of the file contents . Also in modules are th e functions for the energy, grad ients, and

second derivatives. All molecular mechanics classes are kept in modules.

141

There are t hree main groups of files in the MM package: classes, utilities , and

global data. These files are all contained ill a directory called moiecuiaLmechanics

within t he Mungeuse main directory. Whenever a file is added , th e file can be com­

piled with the remainder of the molecular mechanics source code by adding two ent ries

in the Makefile, one for creating the objec t file and the other to inform the compiler

t he object file depends on the source file. This Makefile is also contained within the

molecular .rnechanics directory.

B.4 Addition of New Parts to the Existing Code

8.4.1 Adding Object s and Cla sses

A class can be added to the molecular mechanics package in a straightforward

manner. T he first step once a class is designed is to place the attributes and behaviors

into a mod ule file. T he name of this file should be represent ative of th e method and

class. An exam ple of an existing molecular mechanics class file is the energy class

given as mod_mm_cl(Uj.s~enefYY.f.

Objects can be placed in a module after the definition of the attributes,

before the behaviors. The name of the objects should give a very short description of

them and words can be separated by an underscore . Once t he objects are known, the

names of the class and objects are placed into the get-object function. The purpose

of this function is to make sure th e proper routine(s) to initialize and compute the

142

object is called when the object is selected either from the input file or anothe r part

of the code. An example of an object name is SD_ST RETClI , the stretch second

derivat ive object .

Object informat ion can be used by other parts of the program by adding a

USE statement where the object information is needed and making a call to get.obj ect

with the part icular object name in single quotes as the argument , for example:

• Modules :

USE rom_parameters

call gecobject (' PARAMETERS:MM_CONTRIBUTIONS ,)

In the above example, the calling routine needs the molecular mechanics parameter

object, so the USE state ment is added at the top and the call to geLobject is then

done to cause the object to be created. From this point on, the object is available for

use anywhere a USE sta tement is placed.

0 .4 .2 New Atom T yp es

Addition of new at om types is also st raightforward as the only part of the code

which must be greatly modified is the parameter code. First, consider the addit ion of

oxygen. Oxygen contributes a set of its own parameters to the molecular mechanics

143

package in terms of bonds, angles, torsions , out-of-plane bends , van der Waals, elec­

trostatic, and stretch-bends. Hence, any parts of the code involving the selection of

these parameters will need to be modified.

The main difficulty in adding a new atom ty pe will be the computation of

case values. The computation of case values depends all several features which are

used in turn to dete rmine the molecular mechanics atom types for each atom in a

particular interaction . These include th.e atomic number, hybrid izat ion, t he size of

ring the atom belongs to, the bond types it part icipates in, and whether or not it is

part of an aromatic system.

Once t he case values are known, the routines to select parameters must be

built and added to t he file mu n_MM_fronst .f. In each routin e, a set of parameters

will be selected from a data module depending on the case number passed in. At this

point, the parameter selection routines are available for usc and the calls must be

added to the approp riate routine in mcd.mm.pcrcmeters.], This module contains the

routines for initializing the parts of the parame ter set based on atomic number. So the

addition of oxygen to , for example , the bond parameter selection code would involve

adding routines for parameter selection for all types of bonds contain ing oxygen.

Once the parameters are modified to incorporate the new atom and the

correspo nding types of interactions, the code should be able to function properly

with t he new atom.

144

B.4.3 Addi ng a N ew For ce Fie ld

Addit ion of a new force field has not been attemp ted up to this point , but is

possible. The force field could be designed in a similar manner to the way the current

molecular mechanics package has been designed and an opt ion added to the menu

to select 11 particular force field. For example, if another force field were added, the

option for the current force field ill the menu could be MMFF94. The only parts of

the code which would need to be designed specifically for the new force field are those

which are specific to that part icular force field.

8 .5 Summary

Addition and modificat ion of the molecular mechanics package is straig htforward

and two major additions needed at this point are new atom types and a new force

field. A simple menu system allows input files to be easily put together for both

geometr y optim izations and single point energies and debugging tools allow the user

to print intermediate results. Objects can also be selected for printing using the menu

system with the name of the class followedby the name of the object , separated by a

colon. The output of the final results is then given only for the information requested

by the user.

145

R eferences

[1] Ulrich Bur kert and Norm an L. Allinger. Molecular Mechanics. Amer ican Chem­

ica l Society, Washin gton , 1982.

[2J N. L. Allinger and J. P. Bowen. RemewB in Computational Chemistry , chap­

ter 2, pages 81- 97. VCH , 1991. Molecular Mechani cs: T he Art and Science of

Pa ra mete riza tion.

[31 Ira N. Levine. Quantum Chemistry: Fifth Edition. Prentice-Hall, Inc., Uppe r

Saddle River , 2000.

[4] Andr ew R. Leach. Molecular M odeling: Prin ciplc.'J and A pplicat ions. Add ison

Wesley Longman Limited , Essex, 1996.

[5J Ant hony K. Rapp e and Ca rla J. Casewit. MolecularMechanic3 Across Chem-

istry. Uni versit y Scien ce Books, Sausalito, 1997.

[6J Jon R. Maple. Encyclopedia of Computational Chemistry, chapter 2. John Wiley

and Sons Ltd ., 1998. Force Fields: A General Discussion.

146

[71 J. N. Murrell , S. Carter, S. C. Farantos, P. Huxley, and A. J. C. Verandas .

Molecular Potential Energy Funct ions. Jo hn Wiley and Sons Ltd , west Sussex,

1984.

[8] U. Dinur an d A. T. Hagler . Reviews in Computat ional Chemistry, chapter 2,

pages 99--164. VCH, 1991. New Approaches to Empirical Force Fields.

[91 Bruce R. Gclin . Computer Simulation of Biomolecular System s: Theoretical and

Experimental Application.'J, chapter 2, pages 127-1 46. ESCOM, 1993. Testing

and Compar ison of Empirical Force Fields: Techniques and Prob lems.

[10] P. Comba and Trevor W. Hambley. Molecular Modeling oj /llorg(mi c Compounds.

vcn, Weinhcim, 1995.

[t I] N. Trinajstic, S. Nikolic, J. V. Knop, w.R. Muller, and K. Szymanski. Computa­

tional Chemical Graph Theory: Characterization, Enumeration and Generation

of Chemical Structures by Computer Methods. Ellis Horwood Limited , West

Sussex, 1991.

[121 Nenad Trinaj stic. Chemical Graph Thoory: Second Edition. CRC Press, Boca

Raton, 1[192.

[131 Ludek Matyska. Fast Algorit hm for Ring Perception. J . Compo Chern., 9:455,

1988.

147

[14] E. Bright Wilson Jr., J. C. Decius, and Paul C. Cross. Molecular Vibrations: The

Theory of Infrared and Raman Vibrational Spectra. ~IcG raw-HiIl Book Company,

lnc., New York, 1955.

{IS] Tamar Schlick. Reviews in Computat ional ChemiBtry, chap ter 3. VCH, 1992.

Optim izat ion Meth ods in Computational Chemistry.

[16] H. Bernhard Schlegel. Opti mization of Equilibrium Geometries and Transition

Structures. Adv. Chem. Phys., 67:249, 1987.

[17] H. Bern hard Schegel. Encyclopedia of Computa tional Chemistry , chapter 2. John

Wiley and SOIlSLtd., 1998. Geometry Optimization: L

[18] Duane Hanselman and Bruce Littl efield. The Student Edition of MATLAR:

Version 5 Users Guide. Prent ice Hall, Inc., Upper Saddle River, 1997.

[19J Tamar Schlick. Encyclopedia of Computational Chemistry , chapter 2. John Wiley

and Sons Ltd., 1998. Geomet ry Opt imizat ion: 2.

[20] Stephen G. Nash and Jorge Nocedal. A Numerical Study of the Limit ed Memory

BFGS Metho d and the Tru nceted-Xeweon Method for Large Scale Optim ization .

SIAM J . Opt., 1:358, 1991.

[21] Pal Csaszar and Peter Pul ay. Geometry Optimization by Direct Inversion of the

Iterative Subspace. J. Mol. SIr ., 114:31, 1984.

148

[22] William C. Davido n. Optimally Cond itioned Optimization Algorithms Without

Line Searches . Math. Prog., 9:1, 1975.

[231 M. J. D. Powell. Numerical Methods for Nonline ar Algebraic Equations, chap­

ter 6. Gordon and Breach Science Publishers, 1970. A Hybrid Met hod for

Nonlinear Equations.

[24] Ca rl E. Pearson . Handbook of Applied Mathemati cs: Selected Results and Meth­

ods. Van Nostrand Reinhold Company, New York, 1974.

[251 P. P ulay and G. Fogarasi. Geometry Optimization in Redundant Internal Coo r­

dinates. J . Chern. Phys., 96:2856, 1992.

[26J Chunyang Peng, Philippe Y. Ayala , H. Bern hard Schlegel , and Michael J . Frisch

Using Redun dant Internal Coo rdinates to Optimize Equilibrium Geometries and

Trans ition States. J. Compo Chem ., 17:49, 1996.

[27} Peter P ulay, Geza Foga ras i, Frank Pang, and James E. Boggs. Systematic Ab Ini­

tio Gradient Calc ulation of Molecular Geometries, Force Constants, and Dipole

Moment Derivatives. J. Am. Chern. Soc., 101:2550, 1979.

[28] David S. Watkins. Fundame ntals of Matrix Computa tions. John Wile y and Sons ,

Inc., New York, 1991.

[29] B. Meyer. Object-Oriented Software Con..~truction. Prentice Hall, lnc., Eng lewood

Cliffs, 1988.

149

[30] G. Booch. Object-Oriented Design With Applications. Benjamin /Cumm ings

Publishing Company, Redwood City, 1991.

[31] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Obja:t­

Oriented Modeling and Design. Prentice Hall lnc., Englewood Cliffs, 1991.

[32J P. Coad and E. Yourdon. Object-Oriented Analys is. Yourdon Press, Englewood

Cliffs, 1991.

[33] G. Booch. Object Solutions: Managing the Object-Orient ed Project. Addison­

Wesley Publishing Company, Menlo Park , 1996.

[34] M. Katherine Holloway, Jenny M. Wai, Thomas A. Halgren, Paula M. D. Fitzger­

ald, Joseph P. Vacca, Bruce D. Dorsey, Rhonda B. Levin, \Vayne J . Thompson,

L. Jenny Chen, S. Jane deSolms, Neil Gaffin, Arun K. Ghosh, Elizabeth A. Giu­

liani, Samuel L. Graham , James P. Guare, Randall W. Hungate, Terry A. Lyle,

william M. Sanders, Thomas J. Tucker, Mark Wiggins, Cathert ne M. Wiscount,

Ott o W. Woltcrsdorf, Steven D. Young, Paul D. Larke, and Joan A. Zugay. A

Pr iori Prediction of Activity for HIV-l Protease Inhibitors Employing Energy

Minimizat ion in the Active Site . J . Med. Chern., 38:305, 1995.

[35] Viktor K. Deoyk, Charles D. Norton, and Boleslaw K. Szyman-

ski. Int roduct ion to object-oriented concepts using fortran 90.

ht tp: / /www.cs.rpi.edu/ -szymansk/OOF 90/F9 0_0bject s.html.

150

[361 Jeanne C. Adams , Walter S. Brainerd, Jea nne T. Martin , Brian T . Smith , and

Jerrold L. Wagener. Fortran 90 Handbook: Complete ANSI/ISO Reference.

McGraw-Hill Book Company, New York, 1992.

[37] John L. Volakis and David B. Davidson. Using FORTRAN 90 and Object­

Or iented Programming to Accelerate Code Development. IEEE Antennas and

Propagation Magazine, 41:85, 1999.

[38J Viktor K. Dccyk, Cha rles D. Norton , and Boleslaw K. Szymanski . How to Ex-

press C+ + Concepts in Fortran 90. Scient ific Programm ing, 6:363, 1997.

[39] F. Colonna, L-H Jolly, R. A. Poirier , J . G. Angyan, and G. Ja nsen. OSIPE · A

Tool for Scientific Programming in FORTRAN. Compo Phys. Comm., 81:293,

1994.

[40J Brian J . Dupee. Objec t Oriented Methods Using Fortran 90. ACM Foriraa

Forum, 13:21, 1994

[41] Joh n R. Cary, Svetla na G. Sheshar ina, J ulian C. Cummi ngs, John V. W. Hoyn­

dcrs, and Paul J . Hinker. Comparison of C+ + and Fortran 90 for Object ­

Oriented Scient ific Programming. Compo Phys. Comm., 105:20, 1997.

[42] Thomas A. Halgren. Merck Molecular Force Field. I. Basis, Form, Scope, Pa­

rameterization, and Performance of MMFF94. J. Compo Chem., 17:490, 1996.

151

[43] Thomas A, Halgren. Merck Molecular Force Field. II. MMFF94 van der Waals

and Electrostatic Parameters for Intermolec ular Inte ract ions. J. Camp. Chem. ,

17:520, 1996.

[44] Thomas A. Halgren . Merck Molecular Force Fie ld. III. Molecular Geometries

and Vibrational Frequencies for ~lMFF94. J. Camp. Chern., 17:553, 1996.

[45] T homas A. Halgren and Robert B. Nachbar. Merck Molecula r Force Field . IV.

Conformational Energies and Geometries for MMFF94 . J. Compo Chern., 17:587,

H196.

[46J T homas A. Halgren . Merck Molecular Force Field. V. Extension of M~lFF94

Using Experimental Data, Additio nal Computational Data, and Empirical Rules .

J. Camp. Chem., 17:616, 1996.

[47J T homas A. Halgren. Merck Molecular Force Field. VI. MMFF94s Option fOl

Energy Minimization Stu dies . J. Camp. Chern., 20:720, 1999.

[48] Thomas A. Halgren. Merck Molecular Force Field. VII. Characterization of

MMFF94, tl-IM FF94s , and Other Widely Available Force Fields for Conforma­

tio nal Energies and for Intermolecular Interaction Energies and Geomet ries. J.

Camp. Chern., 20:730, 1999.

[49] Warren J. Hehre, Leo Radom , Paul v.R. Schleyer, and John A. Pople. Ab Initio

Molecular Orbital Theory. John Wiley and Sons Ltd, West Sussex, 1986.

152

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Copyright Information
	0006_Title Page
	0007_Abstract
	0008_Acknowledgements
	0009_Table of Contents
	0010_Table of Contents iv
	0011_Table of Contents v
	0012_Table of Contents vi
	0013_Table of Contents vii
	0014_Table of Contents viii
	0015_List of Tables
	0016_List of Figures
	0017_List of Figures xi
	0018_List of Abbreviations
	0019_Chapter 1 - Page 1
	0020_Page 2
	0021_Page 3
	0022_Page 4
	0023_Chapter 2 - Page 5
	0024_Page 6
	0025_Page 7
	0026_Page 8
	0027_Page 9
	0028_Page 10
	0029_Page 11
	0030_Page 12
	0031_Page 13
	0032_Page 14
	0033_Page 15
	0034_Page 16
	0035_Page 17
	0036_Page 18
	0037_Page 19
	0038_Page 20
	0039_Page 21
	0040_Page 22
	0041_Page 23
	0042_Page 24
	0043_Page 25
	0044_Page 26
	0045_Page 27
	0046_Page 28
	0047_Page 29
	0048_Chapter 3 - Page 30
	0049_Page 31
	0050_Page 32
	0051_Page 33
	0052_Page 34
	0053_Page 35
	0054_Page 36
	0055_Page 37
	0056_Page 38
	0057_Page 39
	0058_Page 40
	0059_Page 41
	0060_Page 42
	0061_Page 43
	0062_Page 44
	0063_Page 45
	0064_Page 46
	0065_Page 47
	0066_Page 48
	0067_Page 49
	0068_Page 50
	0069_Page 51
	0070_Chapter 4 - Page 52
	0071_Page 53
	0072_Page 54
	0073_Page 55
	0074_Page 56
	0075_Page 57
	0076_Page 58
	0077_Page 59
	0078_Page 60
	0079_Page 61
	0080_Page 62
	0081_Page 63
	0082_Page 64
	0083_Page 65
	0084_Page 66
	0085_Page 67
	0086_Page 68
	0087_Page 69
	0088_Page 70
	0089_Page 71
	0090_Page 72
	0091_Page 73
	0092_Page 74
	0093_Page 75
	0094_Page 76
	0095_Page 77
	0096_Page 78
	0097_Page 79
	0098_Page 80
	0099_Page 81
	0100_Page 82
	0101_Page 83
	0102_Page 84
	0103_Page 85
	0104_Page 86
	0105_Page 87
	0106_Page 88
	0107_Page 89
	0108_Page 90
	0109_Page 91
	0110_Chapter 5 - Page 92
	0111_Page 93
	0112_Page 94
	0113_Page 95
	0114_Page 96
	0115_Page 97
	0116_Page 98
	0117_Page 99
	0118_Page 100
	0119_Page 101
	0120_Page 102
	0121_Page 103
	0122_Page 104
	0123_Page 105
	0124_Page 106
	0125_Page 107
	0126_Page 108
	0127_Page 109
	0128_Page 110
	0129_Page 111
	0130_Page 112
	0131_Page 113
	0132_Chapter 6 - Page 114
	0133_Page 115
	0134_Page 116
	0135_Page 117
	0136_Page 118
	0137_Page 119
	0138_Page 120
	0139_Page 121
	0140_Page 122
	0141_Page 123
	0142_Page 124
	0143_Page 125
	0144_Page 126
	0145_Page 127
	0146_Chapter 7 - Page 128
	0147_Page 129
	0148_Page 130
	0149_Appendix A
	0150_Page 132
	0151_Page 133
	0152_Appendix B
	0153_Page 135
	0154_Page 136
	0155_Page 137
	0156_Page 138
	0157_Page 139
	0158_Page 140
	0159_Page 141
	0160_Page 142
	0161_Page 143
	0162_Page 144
	0163_Page 145
	0164_References
	0165_Page 147
	0166_Page 148
	0167_Page 149
	0168_Page 150
	0169_Page 151
	0170_Page 152
	0171_Blank Page
	0172_Inside Back Cover
	0173_Back Cover

