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Abstract 

 Understanding the scale of connectivity and adaptation among marine populations 

can inform fisheries conservation and management. We used a combination of advanced 

genomic techniques and experimental methods to determine the scale of connectivity and 

adaptation in the sea scallop, Placopecten magellanicus. Restriction-site Associated DNA 

sequencing genotyped 7163 SNPs in 245 individuals across 12 populations in the 

Northwest Atlantic. Subsequent analysis of these data identified a strong separation 

between populations north and south of Nova Scotia and identified an association 

between population structure and the coldest temperatures experienced by scallop 

populations. Common garden experiments on a northern and southern populations found 

that larvae from the north grew more quickly overall, potentially an adaptive strategy to 

the northern winter. These observations contribute to growing evidence of fine-scale 

population structure and adaptation in marine systems and support the hypothesis that a 

combination of limited dispersal and adaptive differentiation drives sea scallop population 

structure. 
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Chapter 1: Introduction 

In any environment, an accurate understanding of population connectivity, 

dispersal, and adaptation can contribute significantly to successful species management 

and can help managers and harvesters ensure the continuation of sustainable management 

practices (Allendorf et al. 2010; Conover et al. 2006; Sale et al. 2005). The degree of 

connectivity between populations, influenced mainly by dispersal and the differential 

survival of dispersers resulting from adaptation, can affect population persistence, 

productivity, and response to exploitation (Cowen et al. 2006; Gaines et al. 2003; 

Hastings & Botsford 2006; Hellberg et al. 2002; Lowe & Allendorf 2010; Palumbi 2003; 

Waples 1998). In terrestrial systems, connectivity quantification methods include 

individual tracking and mark-recapture, but factors unique to the marine environment and 

to marine organisms complicate the measurement of connectivity. Many marine 

organisms, particularly sessile, benthic invertebrates, reproduce via broadcast spawning, 

releasing millions of larvae into the water column to disperse for varying periods of time 

before settling as juveniles. The high dispersal potential (Cowen & Sponaugle 2009; 

Hauser & Carvalho 2008; Neilsen & Kenchington 2001) that characterizes many marine 

organisms was thought to often produce a mixed pool of larvae that could easily migrate 

among different populations (Thorrold et al. 2002). These factors, along with a presumed 

lack of barriers to dispersal within the oceans, contributed to past assumptions of limited 

marine population structure and high levels of connectivity among all populations 

(Cowen et al. 2000).  
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Over the last few decades, however, accumulating phenotypic and genotypic 

evidence suggests that limited dispersal and low connectivity drive fine-scale population 

structure that may be more common than previously expected in marine environments 

(Hauser & Carvalho 2008; Hellberg 2009), potentially challenging current management 

paradigms in many exploited marine species. The scales at which this population 

structure exists may differ depending on the focal species or system. Studies suggest 

dispersal distances as low as 10 km per generation in some fish species (Buonaccorsi et 

al. 2004, Hauser & Carvalho 2008) although estimates can range widely. In some regions, 

dispersal and population structure on the scale of 1000s of kilometers is sufficient to 

contribute to significant genetic differentiation. Whether classified as large scale or fine 

scale, the most important conclusion from recent studies on marine population structure is 

that marine populations do not exhibit complete panmixia as previously assumed (Hauser 

& Carvalho 2008, Conover et al. 2006). 

1.1 Genomic data and studies of population connectivity 

In recent years, researchers have capitalized on improvements in technologies and 

methodologies for studying marine population structure and differentiation to enhance our 

understanding of marine population dynamics (Hauser & Carvalho 2008). Tracking the 

movement of individuals or groups of organisms in ocean systems is both challenging and 

time consuming, but key developments in genetic and genomic technologies have yielded 

much of the emerging evidence of limited dispersal and connectivity in marine species 

(Benestan et al. 2015; Bradbury & Bentzen 2007; Catchen et al. 2013; Hedgecock et al. 

2007; Kinlan & Gaines 2003; Milano et al. 2014; Reitzel et al. 2013; Sotka & Palumbi 
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2006). These technologies have also enabled the identification of barriers to dispersal in 

the marine environment, whether physical or environmental.  

High-throughput, next generation sequencing techniques in particular have 

dramatically altered marine population genomic inferences. They allow (relatively) 

inexpensive sequencing of loci across the entire genome of an organism in both coding and 

non-coding genomic regions. These techniques generate 1000s of markers for use in 

population and landscape genetics studies, even in species with limited existing data 

resources that made previous population genetic studies impossible. Past studies have 

demonstrated the effectiveness of one technique in particular, Restriction-site Associated 

DNA sequencing (RAD-seq) (Baird et al. 2008; Miller et al. 2007), in characterizing 

genetic diversity and differentiating marine species from fishes (Catchen et al. 2013; 

Hohenlohe et al. 2010) to invertebrates (Benestan et al. 2015; Reitzel et al. 2013).  

1.2 Environmental adaptation in the marine environment 

Another advantage of genomic studies (especially those using RAD-seq), apart 

from the generation of 1000s of markers in species with limited resources, is the detection 

of loci that may be under selection. This capacity allows researchers to target areas in the 

genome potentially associated with adaptive variation (Allendorf et al. 2010; Bradbury et 

al. 2010; Gagnaire et al. 2015; Hauser & Carvalho 2008; Jones et al. 2007). Large 

geographic ranges in some marine species expose different populations to multiple levels 

of environmental heterogeneity. This exposure, coupled with large population sizes, may 

lead to rapid divergence among populations and adaptation to particular environments. 

Putatively adaptive genetic loci have demonstrated genetic differentiation in a variety of 
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marine species (Bradbury et al. 2010; De Wit & Palumbi 2013; Lamichhaney et al. 

2012), and the combination of environmental and genetic variation in landscape genomics 

studies have identified significant associations between climate and genetic structure in a 

variety of marine and anadromous species (Berg et al. 2015; Bradbury et al. 2014b; 

Bradbury et al. 2010; Hecht et al. 2015; Limborg et al. 2012; Milano et al. 2014; Pespeni 

& Palumbi 2013). This association has allowed researchers to pinpoint potential 

mechanisms of selection among marine populations and may also help researchers predict 

how species may react to a changing ocean climate in the future. 

1.3 Experimental evidence for local adaptation 

Although genetic differentiation and environmental associations with population 

structure provide important lines of evidence when assessing population management and 

predicting future population changes, the inclusion of experimental evidence along with 

genetic evidence offers the best strategy for verifying adaptation among populations 

(Rellstab et al. 2015). In combination with results from studies identifying potentially 

important environmental stressors, common garden experiments can help to identify 

environmental selective forces among populations. By rearing larvae or juveniles from 

different populations under identical conditions, a reaction norm can be identified (the 

relationship between a phenotypic trait and an environmental pressure). Selective 

pressures on populations can lead to detectable differences in reaction norms and provide 

further evidence for local adaptation to environmental stressors (De Jong 2005). 

1.4 The sea scallop, Placopecten magellanicus 
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The sea scallop, Placopecten magellanicus, a dioecious bivalve mollusc, inhabits 

benthic environments in the Northwest Atlantic Ocean. The scallop reproduces via 

broadcast spawning through a multi-year life span (Posgay 1957), releasing eggs and 

sperm into the water column for external fertilization where scallop larvae live as free-

floating plankton until settling to the benthos and metamorphosing into juveniles. In 

general, spawning occurs during autumn with a smaller spring spawn in some populations 

(e.g. DuPaul et al. 1989; Giguere et al. 1994; Langton et al. 1987; Naidu 1970; Posgay & 

Norman 1958; Schmitzer et al. 1991). The particularly long pelagic larval period 

(approximately 30 days) in sea scallops creates potential for long-distance dispersal 

among scallop populations (Naidu & Robert 2006).  

Sea scallops span a large geographic range, from Newfoundland, Canada in the 

north to Cape Hatteras, USA in the south (Posgay 1957). A large gradient in temperature 

(resulting from the meeting of the cold Labrador Current and the warm Gulf Stream) and 

heterogeneity in other environmental factors characterizes this region of the Atlantic 

Ocean, and storm-related mixing along the coast and oceanographic properties of the 

major currents may influence all of these features (Townsend et al. 2006) and contribute 

to local adaptation among scallop populations. Several oceanographic barriers along the 

range may also influence larval movement and survival between populations (Townsend 

et al. 2006). 

The fishery for sea scallop, one of the more economically important marine 

species in both Canada and the USA, extends back over 100 years (DFO 2016; Naidu & 

Robert 2006; NOAA 2016). In 2014, landed value from the sea scallop fishery comprised 
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7.4% of the total landing value for all Atlantic coast fisheries in Canada (4th most 

valuable, approximately 177 million CAD) (DFO 2016) and 7.7% of the total landed 

value in the USA (NOAA 2016, approximately 424 million USD). 

Despite the high potential for population interconnectivity among sea scallop 

populations, past studies reported phenotypic differences among sea scallop populations 

over fine to moderate spatial scales (< 1000 km). When examining populations from St. 

Pierre Bank, the Bay of Fundy, and Georges Bank, Kenchington & Full (1994) identified 

significant differences in shell morphometry between some scallop beds, even when 

controlling for age and year class effects. Reproductive timing also varies. Populations in 

western Newfoundland spawn briefly in early summer followed by a protracted fall 

spawn, in contrast to a much more sudden fall spawn on Georges Bank, hundreds of 

kilometers to the south (Naidu 1970). Differences were also reported in the incidence of 

hermaphroditism, with greater occurrence in the northern Newfoundland populations than 

on Georges Bank (Naidu 1970). On a smaller scale, a study of shallow- and deep-water 

populations in the Gulf of Maine reported differences in fecundity, with fewer eggs 

released in deeper populations (although egg sizes were similar to those in the shallow 

population) (Barber et al. 1998). A small spring spawn was also observed in the shallow 

population, similar to that reported in western Newfoundland (Barber et al. 1998). 

Evidence of different larval behaviours has also been reported (Manuel et al. 1996b). As 

with many planktonic larvae, scallops exhibit diel vertical migration, however 

experimental evidence shows that larvae from different populations (both inshore and 

offshore) behave differently, potentially as a result of selective pressure caused by 
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different oceanographic environments at spawning locations. All of these reported 

differences are hypothesized to result from different environmental conditions across the 

species’ range. In addition to the documented physiological, morphological, and 

behavioural differences, genetic studies examining portions of the scallop range have also 

detected population differentiation and structuring. These studies have used both 

microsatellites (Kenchington et al. 2006) and AFLPs (Owen & Rawson 2013), however, 

no studies have used genomic sampling along the entire range of the species to quantify 

population structure, connectivity, and adaptation. 

1.5 Goals of this thesis 

The aim of this work was threefold. First, using RAD-seq derived SNPs, we 

wanted to use range-wide samples of sea scallops to detect any existing structure and 

differentiation among scallop populations, in particular comparing and contrasting neutral 

genetic structure with that of markers within the genome potentially under selection. This 

work also allowed us to estimate dispersal distances for larval scallops, providing 

information that may be useful to fisheries management of such an important cross-border 

species. The second objective built on the results of the first. Using a large environmental 

dataset with data from both DFO and NOAA, we aimed to use landscape genetic 

techniques to determine what (if any) environmental parameters may contribute to 

population structure within sea scallops, providing evidence for local adaptation within its 

geographic range. The final objective was to identify experimentally the presence of local 

adaptations between two sea scallop populations through a common-garden larval growth 

experiment. The results from this experiment could corroborate the results from the first 
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two objectives, providing valuable information to researchers attempting to ensure 

successful management of the species and predict future response of the species to a 

changing ocean environment. 

1.6 Thesis format 

Five chapters comprise this thesis, including this introduction (Chapter 1) and a 

conclusion chapter (Chapter 5). Chapters 2-4 were prepared in manuscript format in 

preparation for publication, resulting in some overlap among them. Chapter 2 has been 

submitted to the journal Evolutionary Applications, Chapter 3 has been submitted to 

Molecular Ecology, and Chapter 4 is in preparation for submission to an as yet 

undetermined journal. 
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Chapter 2: Identifying patterns of dispersal, connectivity, and selection in the sea 

scallop, Placopecten magellanicus, using RAD-seq derived SNPs 

2.1 Abstract 

Understanding patterns of dispersal and connectivity among marine populations can 

directly inform fisheries conservation and management. Advances in high-throughput 

sequencing offer new opportunities for estimating marine connectivity. We used 

Restriction-site Associated DNA sequencing to examine genetic structure among 

populations of the sea scallop Placopecten magellanicus, an economically important 

marine bivalve, and used this information to infer the role of dispersal, adaptation, and 

realized connectivity in their population dynamics. Based on 245 individuals sampled 

range-wide at 12 locations from Newfoundland to the Mid-Atlantic Bight we identified and 

genotyped 7163 Single Nucleotide Polymorphisms; 112 (1.6%) were identified as outliers 

potentially under directional selection. Bayesian clustering revealed a discontinuity 

between northern and southern samples and latitudinal clines in allele frequencies were 

observed in 42.9% of the outlier loci and in 24.6% of neutral loci. Dispersal estimates 

derived using these clines and estimates of linkage disequilibrium imply limited dispersal; 

373.1 ± 407.0 km (mean ± SD) for outlier loci and 641.0 ± 544.6 km (mean ± SD) for 

neutral loci. Our analysis suggests restricted dispersal compared to the species range 

(>2000 km) and that dispersal and effective connectivity (the survival and subsequent 

reproduction of dispersers) differ. These observations support the hypothesis that 

limitations in effective dispersal structure scallop populations along eastern North America 
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and can help refine the appropriate scale of management and conservation in this 

commercially valuable species.  

2.2 Introduction 

Successful species management and conservation require an accurate understanding 

of population connectivity, including interbreeding and dispersal among populations 

(Allendorf et al. 2010). The degree of connectivity among adjacent populations can affect 

population persistence, productivity, and response to exploitation (Cowen et al. 2006; 

Gaines et al. 2003; Hastings & Botsford 2006; Hellberg et al. 2002; Lowe & Allendorf 

2010; Palumbi 2003; Waples 1998). In terrestrial systems, connectivity quantification 

methods include individual tracking and mark-recapture, but many factors unique to the 

marine environment and to marine organisms complicate the measurement of connectivity. 

In many cases, the large effective sizes of temperate marine populations prevent genetic 

drift from promoting differentiation over short to moderate time-scales (10s to 1000s of 

generations), limiting the accumulation of neutral genomic divergence (Hauser & Carvalho 

2008). In addition, most marine invertebrates, especially sessile, benthic species, reproduce 

via broadcast spawning, releasing millions of larvae into the water column that disperse for 

weeks to months or more before settling as juveniles. High larval dispersal potential 

characterizes these types of organisms, (Cowen & Sponaugle 2009; Hauser & Carvalho 

2008; Neilsen & Kenchington 2001) potentially producing a mixed pool of larvae from 

different populations and from adults of different age cohorts (Thorrold et al. 2002), 

contributing to the assumption of limited marine population structure (Cowen et al. 2000). 

However, over the last few decades accumulating phenotypic and genetic evidence 
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suggests limited dispersal and low connectivity drive fine-scale population structure that 

may be more common than previously expected in marine environments (Hauser & 

Carvalho 2008; Hellberg 2009) potentially challenging current management paradigms in 

many exploited marine species. 

Advances in genetic and genomic techniques drive much of the emerging evidence 

of limited dispersal and connectivity in marine species (Benestan et al. 2015; Bradbury & 

Bentzen 2007; Catchen et al. 2013; Hedgecock et al. 2007; Kinlan & Gaines 2003; Milano 

et al. 2014; Reitzel et al. 2013; Sotka & Palumbi 2006). High-throughput, next generation 

sequencing techniques in particular have dramatically increased the number and type of 

genetic loci (coding and non-coding) available to study in marine species, especially non-

model species. The ability to survey genome-wide diversity and target loci possibly 

associated with adaptive variation has proven particularly informative in large marine 

populations where directional selection may drive rapid divergence and differentiation 

(Allendorf et al. 2010; Bradbury et al. 2010; Gagnaire et al. 2015; Hauser & Carvalho 

2008; Jones et al. 2007). Examination of outlier loci (those putatively under selection) 

consistently demonstrates small-scale genetic differentiation in a variety of marine taxa 

including Haliotis rufescens (red abalone) (De Wit & Palumbi 2013), Clupea harengus 

(Atlantic herring) (Lamichhaney et al. 2012), and Gadus morhua (Atlantic cod) (Bradbury 

et al. 2010). The separate examination of neutral and outlier loci can provide important 

insights into the causes of genetic differentiation among marine populations. Different 

hypotheses can be tested using neutral and outlier loci, and the comparisons of neutral and 

outlier population structure patterns allows researchers to differentiate between structural 
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patterns driven by dispersal limitation (visible in neutral loci) and selective pressure (often 

identified by outlier loci presumed to be under selection). In addition, because large 

population sizes common in marine species can prevent genetic drift and limit the 

accumulation of neutral divergence (Hauser & Carvalho 2008), highly differentiated outlier 

loci can be useful in identifying small-scale differentiation. Large populations may also 

show weak levels of differentiation even when significantly diverged (Allendorf et al. 

2010), and this divergent structure is often more detectable in loci under selection. The 

advent of Restriction-site Associated DNA sequencing (RAD-seq), (Baird et al. 2008; 

Miller et al. 2007) now permits genome-wide scans for outlier loci in model and non-model 

organisms and increases the characterization of genetic diversity and differentiating marine 

species from fishes (Catchen et al. 2013; Hohenlohe et al. 2010) to invertebrates (Benestan 

et al. 2015; Reitzel et al. 2013).  

Placopecten magellanicus (Gmelin) (sea scallop), a dioecious bivalve, inhabits 

benthic environments in the Northwest Atlantic Ocean from Newfoundland, Canada in the 

north to Cape Hatteras, North Carolina, USA in the south (Posgay 1957). Sea scallops 

typically occur along the continental shelf at depths from approximately 10-100 m but as 

deep as 384 m (Naidu & Robert 2006). The sea scallop fishery extends back over 100 years, 

and currently represents one of the most economically important fisheries in North America 

in landed value on the east coast of the United States and Canada (Naidu & Robert 2006), 

in 2014 comprising 7.4% of the total landing value for all Atlantic coast fisheries in Canada 

(4th most valuable fishery) (DFO 2016) and 7.7% of the total landed value in the United 

States (NOAA 2016). High fecundity, broadcast spawning, and a long planktonic larval 
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period (30-35 days) in sea scallops all contribute to long distance dispersal potential among 

populations (Naidu & Robert 2006). Despite this high potential for population 

interconnectivity, phenotypic differences among sea scallop populations over fine to 

moderate spatial scales have been observed including differences in reproductive timing 

(Naidu 1970), population-specific fecundity (Barber et al. 1988), shell morphometry 

(Kenchington & Full 1994), larval behaviour (Manuel et al. 1996b), and growth (Naidu & 

Robert 2006). Ultimately the scale of dispersal and connectivity in this species remains 

unresolved and this knowledge could directly inform fisheries management and 

conservation efforts. 

The objective of this study was to investigate sea scallop spatial population structure 

in the Northwest Atlantic using RAD-seq derived Single Nucleotide Polymorphisms 

(SNPs). We tested the alternate hypothesis that previously unidentified range-scale 

population structure exists in the sea scallop, and that the combined use of genome-wide 

neutral and outlier markers would provide a more powerful tool to detect finer structure 

than previous studies.  

The objectives were to: (1) describe the spatial population structure of sea scallop 

in the Northwest Atlantic using RAD-seq derived SNPs, (2) contrast the structure present 

at multiple spatial scales and with outlier and non-outlier loci, and (3) estimate average 

dispersal distances among populations using the isolation by distance (IBD) relationship 

and clines in allele frequency. This work builds directly on previous scallop studies using 

both microsatellites (Kenchington et al. 2006) and AFLPs (Owen & Rawson 2013) to 

explore population structure and oceanographic influences in this region as well as previous 
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work on Northwest Atlantic cod which reported latitudinal clines in allele frequency in 

outlier loci (Bradbury et al. 2014a; Bradbury et al. 2010; Bradbury et al. 2013). 

2.3 Methods 

2.3.1 Sample collection 

We collected 252 adult scallops by hand (SCUBA diving) or bottom trawl (both 

from commercial vessels and research cruises) from a total of 12 locations across the entire 

range of the species between 2011 and 2013 (Table 2.1, Figure 2.1). This sampling scheme 

yielded a minimum of 12 scallops per population (mean value ± SD of 20.4 ± 2.8 scallops), 

although we lacked age data. Tissue samples were collected and preserved in AllProtect 

(Qiagen, Toronto, ON, Canada) or 80% ethanol. DNA extraction and RAD-seq library 

preparation were performed by the Aquatic Biotechnology Lab at the Bedford Institute of 

Oceanography in Halifax, Nova Scotia. DNA was isolated from the tissue samples using 

DNeasy Blood and Tissue kit or DNeasy 96 Blood and Tissue kit (Qiagen) following the 

manufacturer’s protocol, including the optional RNase A treatment. All DNA samples were 

quantified using the Qubit dsDNA HS Assay Kit (Life Technologies, Burlington, ON, 

Canada) with assays read on a Qubit v2.0 (Life Technologies) or using the Quant-iT 

PicoGreen dsDNA Assay Kit (Life Technologies) with assays read on a FLUOStar 

OPTIMA fluorescence plate reader (BMG Labtech, Ortenberg, Germany). The DNA 

quality for all samples was verified by agarose gel electrophoresis of 100 ng of extracted 

DNA, visualized using SYBR Safe (Life Technologies), and documented using a Gel Logic 

200 (Kodak).  

2.3.2 RAD-seq analysis  
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One µg of DNA was used per individual for library preparation and sequencing. 

RAD-seq libraries were prepared as described by Etter et al. (2011b) (see also Etter et al. 

2011a) with modifications. DNA samples from 22 individuals from the same geographical 

location comprised each library (with the exception of the library for SUN which consisted 

of only 20 individuals) with a different in-line barcode in the P1 adapter for each individual 

sample. With the exception of SSB, GEO, and SUN the P1 adapter in-line barcodes were 

all 6bp in length. For the SSB, GEO, and SUN libraries the P1 adapter in-line barcodes all 

ranged from 5bp-9bp in length and were chosen to ensure equal distribution of all 

nucleotides at each base position (including those that overlap with the restriction site) and 

to maximize the edit distance (Faircloth & Glenn 2012). Based on edittags analysis 

(Faircloth & Glenn 2012), the variable length barcodes edit distance ranged from 2-8 with 

a modal edit distance of 6. Gel size selection performed after sonication and PCR 

amplification was done on a Pippin Prep (Sage Science, Beverly, MA, USA) using the 2% 

agarose gel cassette with ethidium bromide (Sage Science) and size selection range of 300-

500bp. PCR amplification used Q5 Hot Start Master Mix (New England Biolabs, Whitby, 

ON, Canada) for all libraries. Amplification cycles for all libraries were 98 °C for 30 

seconds; x cycles of 98 °C for 30 seconds, 65 °C for 30 seconds, 72 °C for 30 seconds; 1 

cycle of 72 °C for 5 minutes, where x was 18 for all libraries except for SSB, GEO, and 

SUN where x was 13. All libraries were sequenced on a HiSeq 2000 (Illumina) as 100bp 

paired end sequences with one library per lane. Sequencing was performed at the McGill 

University and Génome Québec Innovation Centre, Montréal, Canada. 
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SNPs were detected using the de novo pipeline in STACKS v.0.9999 (Catchen et 

al. 2011). Putative orthologous loci were assembled using ustacks with a minimum depth 

of coverage required to create a stack (m) of five and four maximum nucleotide mismatches 

(M) allowed between stacks. The catalog of loci was assembled using cstacks with a 

distance allowed between loci in the catalog (n) of six (several other parameter 

combinations were tested; see Table S1.1a). Using the populations module, only RADtags 

present in at least 75% of individuals were kept. The final dataset was filtered using PLINK 

v.1.07 (Purcell 2009; Purcell et al. 2007) to include SNPs present in at least 75% of 

individuals with a minor allele frequency greater than 5%. Furthermore, we excluded 

individuals with more than 20% missing loci from the analysis. Loci were filtered for 

Hardy-Weinberg Equilibrium using the program GENEPOP v.4 (Rousset 2008), excluding 

loci out of equilibrium in 6 or more populations from the analysis (<0.7% of all loci).  

2.3.3 Summary statistics and outliers  

We calculated allele frequencies and heterozygosities using the R (R Development 

Core Team 2012) package gstudio (Dyer 2014) and calculated locus specific FST using the 

program ARLEQUIN v.3.5 (Excoffier & Lischer 2010). To calculate pairwise linkage 

disequilibrium [r2
 (Hill & Robertson 1968)] between all loci, outlier loci, and neutral loci 

separately, we used PLINK v.1.07. Although a variety of methods have been developed to 

detect loci potentially under selection within a group of populations, individual methods 

vary in their ability to detect outliers (Narum & Hess 2011). We used a Bayesian method 

(Beaumont & Balding 2004) implemented in the program BAYESCAN v.2.1 (Foll & 

Gaggiotti 2008) and an island model implemented in the program ARLEQUIN v.3.5 to 



18 
 

determine a candidate list of outlier loci. We ran BAYESCAN with a burn-in period of 50 

000 followed by 100 000 iterations, subsequently identifying outliers in R with a false 

discovery rate of 0.05. In ARLEQUIN, we ran 100 000 permutations using 500 demes, 50 

groups, and a maximum expected heterozygosity of 0.5; ARLEQUIN outliers were 

determined with a p-value of 0.01.  

2.3.4 Spatial structure 

We examined population structure along the range of sea scallops using multiple 

methods. Hierarchical iterative clustering analysis was conducted using STRUCTURE 

v.2.2.4 (Pritchard et al. 2000) through the R package parallelStructure (Besnier & Glover 

2013). Results from preliminary BAYESCAN and STRUCTURE analyses guided 

subsequent analyses (see Results), after which we analysed nine separate datasets [all loci, 

neutral loci, and outlier loci for each major sample group separately (see Spatial Structure), 

(Table S1.2)] to determine major population groups as well as any minor clusters.  

We used Bayesian clustering in STRUCTURE to determine the number of distinct 

genetic clusters (K) present among the 12 sampled populations, running calculations with 

a burn-in period of either 50 000 repetitions followed by 200 000 repetitions, or 100 000 

repetitions followed by 500 000 repetitions, until algorithm convergence was confirmed. 

We repeated all runs 3 times for each K, running datasets 1-3 for K = 1-15, datasets 3-6 for 

K = 1-5, and datasets 7-9 for K = 1-10. In order to determine the optimal K for each dataset 

we used the delta K method (Evanno et al. 2005) and processed results using STRUCTURE 

HARVESTER (Earl & vonHoldt 2012); runs were grouped and visually displayed using 

CLUMPAK (Kopelman et al. 2015). We also completed an analysis of molecular variance 
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(AMOVA) using ARLEQUIN with 25 000 permutations, defining genetic structure 

following the results from the STRUCTURE analysis. We conducted principal components 

analysis (PCA) followed by k-means clustering using the R package adegenet (Jombart 

2008). This method determines the optimal number of clusters (k) in the PCA using the 

Bayesian Information Criterion (BIC). The lowest value of the BIC across each value of k 

indicates the number of clusters present in the data. Finally, we constructed neighbour-

joining trees using the programs POPULATIONS (Langella 1999) and TREEVIEW (Page 

1996) based on estimates of genetic distance among populations (Cavalli-Sforza and 

Edwards chord distance, Dc) with 1000 bootstrap replications on individuals.  

2.3.5 Estimates of dispersal and connectivity 

We explored two general approaches to estimate average per generation dispersal 

distance, both of which make different assumptions regarding the underlying model of gene 

flow. First, we used an IBD model which assumes a linear 1-dimensional stepping stone 

for gene flow (see Bradbury & Bentzen 2007). This approach used linear regression 

between pairwise population FST/(1-FST) and spatial distances based on two measures of 

geographic distance: approximate ocean distances following prevailing currents estimated 

in GOOGLE EARTH (Google 2013) following average current patterns in the Northwest 

Atlantic and least-cost geographic distance calculated using the R package marmap (Pante 

& Simon-Bouhet 2013), where distance was calculated excluding positive elevation (land). 

We calculated IBD separately using all loci, outlier loci, and neutral loci and for all sampled 

populations and each major sample group separately (see Spatial Structure). We performed 

Mantel tests to ascertain the significance of every IBD relationship using the R package 
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ade4 (Dray & Dufour 2007) and adjusted p-values for multiple comparisons using the 

Bonferroni method with p.adjust in R. Adult-offspring dispersal distance estimates were 

calculated following Rousset (1997) using the slope of the IBD relationship. We estimated 

adult density values required for the IBD methods from Mason et al. (2014), DuPaul & 

Rudders (2008), and Kelly (2007) for several areas within the study range and used them 

as density proxies along the entire species range. Furthermore, because census estimates of 

density likely differ from effective density, we explored the sensitivity of the dispersal 

estimate to a range of density values several orders of magnitude above and below the 

actual estimates used.  

The second approach employed a clinal model of gene flow following Bartonand 

Gale (1993), Lenormand et al. (1998), and Sotka & Palumbi (2006). Here, clines in allele 

frequency for outlier loci and a random subset of 500 neutral loci were estimated using the 

R package HZAR (Derryberry et al. 2014) using 100 000 iterations following a 10 000 

iteration burn-in period. We used population-specific allele frequencies for all loci tested, 

and estimated distances from the furthest north population (SUN) along a 1-dimensional 

transect that included all populations using GOOGLE EARTH (Google 2013). Four cline 

models and a null model were generated for each locus, and cline model selection used 

AICc criteria followed by a log-likelihood cutoff of -10. Models tested included fixed or 

free minimum and maximum allele frequency values and either no exponential cline tails 

or tails at both ends of the cline. We determined cline width from the best fit model and 

used cline width in estimates of adult-offspring dispersal distance. Here, adult-offspring 

dispersal distance estimates followed Sotka & Palumbi (2006) using cline width and 
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linkage disequilibrium to determine the standard deviation in parent-offspring distance. 

Differences between cline width and dispersal estimates in neutral and outlier loci were 

assessed using the Welch two-sample t-test. 

2.4 Results 

2.4.1 RAD-seq 

Following filtering and quality control steps, we included 245 individual scallop 

samples in our analysis (97.2% of sequenced individuals), 19672 RADtags (14.9% of initial 

RADtags), and 7216 SNPs (4.2% of Initial SNPs) (Table 2.2). Applying alternative 

parameters sets produced similar SNP numbers (Table S1.1b). The 7163 SNPs in HWE 

that met all quality control standards were used in all subsequent analyses.  

2.4.2 Summary statistics, differentiation, and linkage 

For the final dataset, minor allele frequency (MAF) averaged 0.1855 ± 0.1253 

(mean ± SD), expected heterozygosity averaged 0.2710 ± 0.1333 (mean ± SD), and locus-

specific FST averaged 0.0066 ± 0.0198 (mean ± SD) (Figure S1.1). Of the final 7163 SNPs, 

112 SNPs (1.6%) were identified as outliers by BAYESCAN, leaving 7051 (98.4%) in the 

neutral data set. Both approaches of outlier analysis yielded similar results with 91.1% of 

BAYESCAN-identified loci present in the outlier list produced via ARLEQUIN with the 

99% confidence interval, and 93.8% were present with the 95% confidence interval (Figure 

2.2, Table S1.3). Because the outlier lists were very similar, we focused on the 

BAYESCAN list from all subsequent analysis of outliers. Population specific FST 

calculated using ARLEQUIN was higher for outlier loci than either neutral loci or all loci 
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(Table S1.4). Using all loci, pairwise FST averaged 0.005 ± 0.006 (mean ± SD), with a 

maximum value of 0.018 between LTB and GEO and a minimum value of -0.004 between 

GMI and MDA. Using neutral loci, pair wise FST averaged 0.003 ± 0.005 (mean ± SD), 

with a maximum value of 0.014 between LTB and MDA and a minimum value of -0.004 

between NTS and BOF, SSB and GMI, and GMI and GEO. Using outlier loci, pair wise 

FST averaged 0.094 ± 0.070 (mean ± SD), with a maximum value of 0.253 between LTB 

and SSB and a minimum value of 0.003 between GMO and MDA. In all cases, pairs of 

populations containing one north and one south population (see Spatial Structure) yielded 

maximum values with the highest differentiation. Average pairwise r2 values indicating 

linkage disequilibrium were higher in outlier loci than neutral loci but even the outlier 

values remained low overall (outlier loci: 0.0258 ± 0.0829, neutral loci: 0.0044 ± 0.0098, 

all loci: 0.0044 ± 0.0098, mean ± SD). Within the outlier loci, a few small pockets of higher 

linkage seemed to drive the higher average r2 value (Figure S1.2). 

2.4.3 Spatial structure 

We explored different methods of determining population structure however they 

generally produced similar results (Table S1.5). Bayesian population structure analysis in 

STRUCTURE clearly split north and south groups using three datasets; K=2 was best 

supported for all loci, neutral loci, and outlier loci (Figure S1.3). The north group consisted 

of four samples from Newfoundland and the Gulf of St. Lawrence, whereas the south group 

contained the remaining eight samples from south of the Scotian Shelf (Figure 2.3, 4ABC). 

Further hierarchical structure analysis on the north group revealed a split into two sample 

groups, however, the pattern of structure differed among the outlier and neutral loci (K=2 



23 
 

in all cases, Figure S1.4). When using all loci and only neutral loci, LTB clustered 

separately from all other north populations (Figure 2.4DE). When using outlier loci, LTB 

and the SUN sample clustered together separate from the Gulf of St. Lawrence samples 

(MGD and NTS) (Figure 2.4F). Structure analysis of the eight south populations revealed 

no clear clustering or evidence of differences among samples (Figure 2.4ABC). AMOVA, 

to explore the amount of variation explained by this subdivision, showed that the split 

between north and south sample groups explained a small percentage of total genetic 

variance in all loci and neutral loci (all loci = 0.58%, neutral loci 0.40%). However, 

AMOVA results for outlier loci differed from the other datasets with 11.0% of all variation 

explained by the split between north and south sample groups (Table 2.3). 

In addition to the STRUCTURE analysis, we used principal components analysis 

(PCA) and Neighbour-joining trees (NJ) to explore spatial relationships in two dimensions. 

PCA on all sets of loci split north and south samples along the first principal component, 

similar to the division in the STRUCTURE analysis (Figure 2.5). This first principal 

component (PC) explained 0.97%, 0.78%, and 12.91% of the total variance explained by 

the analysis using all loci, neutral loci, and outlier loci, respectively (Figure S1.5). PCA 

using all loci and neutral loci further separated LTB from the other north populations along 

the second principal component, but this pattern was not seen in the outlier loci (comparable 

to the STRUCTURE results). K-means clustering only identified one genetic group when 

using all loci and the neutral loci (k=1), but with the outlier loci detected the same north-

south split seen in the STRUCTURE results as well as further structuring within the 

regional sample groups (k=4, Figure S1.6, Figure S1.7). Neighbour-joining trees showed 
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the same north-south split seen in other analysis, however, only the outlier loci supported 

the split (Figure 2.6) as indicated by a bootstrap support value of 84%. 

2.4.4 Estimates of dispersal and connectivity 

We examined IBD relationships using 18 different combinations of samples, loci, 

and population distance measures. These included: using all populations, north populations, 

or south populations; using all loci, neutral loci, or outlier loci; and using current based 

pairwise population distance or least-cost pairwise population distance. After Bonferroni 

correction for multiple comparisons, only two of these 18 IBD relationships were 

significant. When using the least-cost pairwise population distance, we found a significant 

IBD relationship when using all 12 populations and all loci (R2 = 0.2609, p = 0.018) or the 

outlier loci (R2 = 0.3363, p = 0.018) (Figure 2.7). However, as the spatial analysis above 

clearly indicated the presence of two dominant clusters driving the IBD relationship, this 

pattern was not consistent with a one dimensional stepping stone framework assumed by 

the Malécot’s lattice model (Malécot 1955) and the approach outlined by Rousset (1997) 

for estimating dispersal distance. As a result, dispersal estimates from IBD analysis were 

consistently unrealistically small (< 15km, Table S1.6) and not considered further.  

We also used evidence of clinal trends in allele frequency to estimate average per 

generation dispersal distance. Of the 112 outlier loci tested, 48 (42.9%) showed significant 

clines (non-null model and log-likelihood > -10) (Figure 2.8A). Of the 48 clinal loci, 16 

(33.3%) had fixed scaling and no exponential tails in allele frequencies and the remaining 

32 (66.7%) had free scaling and no exponential tails. Average outlier cline width was 

1157.0 ± 1268.6 (mean ± SD) km, with a minimum cline width of 14.4 km and a maximum 
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cline width of 4524.1 km. We next examined a randomly selected subset of 500 neutral loci 

for clinal patterns (7.09% of total neutral loci). Of these 500, 377 (75.4%) showed no cline 

in allele frequencies. Of the 123 loci showing clinal patterns, 68 (55.3%) had fixed scaling 

and no exponential tails, and 55 (44.7%) had free scaling and no exponential tails. Within 

these 123 loci (24.6% of the 500 tested), average cline width exceeded the outlier loci, at 

2523.8 ± 2144.1 km (mean ± SD), with a minimum cline width of 3.4 km and a maximum 

cline width of 4529.8 km. Cline widths were found to be significantly different between 

outlier and neutral loci (p < 0.001) (Figure 2.8B). The estimated standard deviation of 

parent-offspring distance when using clines from outlier loci was 373.1 ± 407.0 km (mean 

± SD). The estimated standard deviation of parent-offspring distance when using clines 

from neutral loci was higher than the outlier loci estimate, at 641.0 ± 544.6 km (mean ± 

SD). Both estimates are significantly lower than the maximum pairwise distance between 

our sample sites and are significantly different from one another (p = 0.0007). 

2.5 Discussion 

Successful management and conservation of exploited and threatened species 

requires an accurate understanding of population connectivity and dispersal patterns among 

populations and habitats (Allendorf et al. 2010). In marine species, estimates of dispersal 

and connectivity remain rare largely due to the difficulty in tracking relatively small pelagic 

larval stages to settlement (Bradbury et al. 2008c). Here we used RAD-seq derived SNPs 

to explore spatial patterns of connectivity and estimate dispersal in a commercially 

exploited marine bivalve, P. magellanicus. Our results show significant population 

differentiation and structure across the range of P. magellanicus despite high dispersal 
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potential during a pelagic larval stage. Our estimates of dispersal indicate geographically 

restricted connectivity, particularly when using outlier loci, suggesting a role for selection 

in determining realized connectivity and limiting gene flow. This work suggests significant 

cryptic intraspecific diversity in this species. Accurate knowledge of sources of larvae and 

dispersal patterns such as those revealed here can significantly influence population 

persistence into the future (Hastings & Botsford 2006); management strategies that 

incorporate results from studies mapping population structure and dispersal patterns may 

be among the most effective (Fogarty & Botsford 2007), and the use of genomic tools such 

as those used here can directly facilitate successful conservation and fisheries management 

(e.g. Miller et al. 2014; da Silva et al. 2015). 

2.5.1 RAD-seq and marine connectivity 

 The use of RAD-seq in marine species has provided unprecedented access to 

measures of genome wide variation with obvious applications for marine management and 

conservation. SNPs generated using RAD-seq techniques have been used to identify 

historical phylogeography and phylogenetics (Herrera et al. 2015), study evolution and 

adaptation among and within species (Hohenlohe et al. 2010), provide recommendations 

for species conservation (Gruenthal et al. 2014; Hohenlohe et al. 2013; Ogden et al. 2013), 

generate genetic resources for future studies (Gonen et al. 2014; Kruck et al. 2013; Pujolar 

et al. 2013), and resolve contemporary population structure (Benestan et al. 2015; Catchen 

et al. 2013; Chu et al. 2014; Corander et al. 2013; Guo et al. 2015; Hess et al. 2013; Reitzel 

et al. 2013). Our results (i.e. number of SNPs and outliers) are consistent with previous 

work using RAD-seq, providing further support for the view that RAD-seq based genome 
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scans can generate 1000s of SNPs in non-model marine species with direct application to 

management and conservation needs. Our dataset of 7163 filtered SNPs is within the range 

presented for other RAD-seq studies in marine species [approximately 300 to > 40 000, 

(Benestan et al. 2015; Catchen et al. 2013; Chu et al. 2014; Combosch & Vollmer 2015; 

Corander et al. 2013; Gruenthal et al. 2014; Guo et al. 2015; Herrera et al. 2015; Hess et 

al. 2013; Hohenlohe et al. 2010; Hohenlohe et al. 2013; Reitzel et al. 2013)] and the number 

of loci from these studies is one to several orders of magnitude larger than the number of 

loci used in studies utilizing other markers such as microsatellites and AFLPs. In P. 

magellanicus, for example, two previous population genetic studies both used less than 

10% of the loci used in our study [six microsatellites in Kenchington et al. (2006), 634 

AFLPs in Owen & Rawson (2013)]. The sheer number of markers generated using RAD-

seq, and their placement across the entire genome of an organism, are predicted to increase 

accuracy and power of statistical tests of differentiation and spatial patterns (Allendorf et 

al. 2010; Waples 1998).  

2.5.2 Detection and influences of selection 

The ability to detect loci potentially under directional selection offers a significant 

advantage to RAD-seq based genome scans over traditional approaches in marine 

population genetic studies (Gagnaire et al. 2015). Importantly, identifying markers 

potentially under selection can improve the accuracy of conclusions drawn from population 

genetic studies; failing to account for the effects of selection could lead to overestimation 

of neutral differentiation and underestimation of gene flow, highlighting the importance of 

separating neutral and outlier loci during analyses. Examining potential selection using 
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outlier loci may also increase spatial resolution (Hellberg 2009), providing opportunities to 

track individuals and predict adaptive differences (e.g. Therkildsen et al. 2013). Our 

separation of outlier and neutral loci allows us to disentangle the effects of selection and 

underlying neutral variation (and gene flow) within sea scallops, thereby generating a more 

complete picture of population connectivity in this species. Undoubtedly, each approach 

includes some identification error, but the combination of several outlier detection methods 

can help reduce rates of false positives (Gagnaire et al. 2015). We detected significant 

overlap in the loci identified as outliers using both BAYESCAN and ARLEQUIN, 

demonstrating that our list of outlier loci was largely robust to the assumptions of differing 

approaches and supporting the outlier status of these loci. In total we detected 112 outlier 

loci, representing approximately 1.6% of the loci examined. This value compares 

favourably with numbers of outlier loci detected and used in other studies of marine 

organisms Guo et al. (2015): 0.99% of identified SNPs; Milano et al. (2014): 4.59%; Hess 

et al. (2013): 3.65%; Bradbury et al. (2013): 5.2%; De Wit & Palumbi (2013): 3.2%; and 

Bourret et al. (2013b): 2.6%) and although low, still remains reasonably consistent with 

studies suggesting approximately 5-10% of a genome may show signatures of selection 

(Nosil et al. 2009; Strasburg et al. 2012). 

Not surprisingly, all of our analyses found stronger genetic differentiation and 

population structure signals in outlier loci than when examining neutral loci alone or all 

loci together (neutral and outlier). This observation is consistent with other studies that 

detected higher levels of structure and increases in the spatial resolution of population 

structure with outlier loci (Bradbury et al. 2010; Hemmer-Hansen et al. 2014; Milano et al. 
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2014, but see Moore et al. 2014 for an exception). Separate use of neutral and outlier loci 

also detected differences in structural patterns, primarily in the clustering results for the 

north regional group. The apparent isolation of LTB, particularly in neutral loci, could 

reflect local larval retention and increased genetic drift. Circulation patterns near LTB can 

retain larvae from local populations and limit larval dispersal out of Placentia Bay 

(Bradbury et al. 2008d; Bradbury et al. 2000). Other causes may also have contributed to 

this pattern, including rare events and the sampling of different age classes. Ultimately, 

differences in spatial patterns between putative outliers and neutral markers may reflect 

influences of differing structuring forces such as selection and drift but attributing spatial 

variation to these factors will require additional study.  

2.5.3 Spatial population structure 

Many RAD-seq studies of marine species report fine-scale geographic structure 

(Benestan et al. 2015; Catchen et al. 2013; Reitzel et al. 2013). We observed significant 

population structure along the range of P. magellanicus, separating sampling locations into 

two distinct groups – north and south of Nova Scotia, Canada. These results mirror 

population structure detected in other marine species in the Northwest Atlantic, including 

Homarus americanus (Benestan et al. 2015) and G. morhua (Bradbury et al. 2014a; 

Bradbury et al. 2010; Bradbury et al. 2013) and build on smaller-scale levels of 

differentiation reported among scallop populations (Kenchington et al. 2006; Owen & 

Rawson 2013). The discontinuity between northern and southern population clusters was 

evident in all loci tested, but strongest using outlier loci. Further examination of the north 

and south groups independently detected no further structuring in the south, but different 
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patterns of population structure in the north emerged when using outlier and neutral loci 

separately. The homogeneity of the south group of populations was somewhat surprising 

given documented differences in reproductive timing and fecundity among different 

populations (e.g. Naidu 1970; Barber et al. 1988; Beninger 1987; DuPaul et al. 1989; 

Kirkley & Dupaul 1991), however in the south our results may be indicative of plasticity 

due to environmental variation in these traits or the importance of loci not detected in our 

analysis. Between the north and the south groups, especially considering the strength of the 

genetic break in outlier loci, our results (and the documented differences in phenology) 

may be indicative of adaptation to regional environmental conditions. In general, our results 

confirm patterns of genetic structure detected by Kenchington et al. (2006), who used 

microsatellites to identify three regional clusters and a putative barrier to gene flow that 

separates some of the western Scotian Shelf, Newfoundland, and the Gulf of St. Lawrence 

from all samples further south. This pattern mirrors our clustering of Newfoundland and 

the Gulf of St. Lawrence from everything south of Cape Breton, NS, Canada, however our 

results indicate higher over-all levels of differentiation among sampling sites. Kenchington 

et al. (2006) found further differentiation of the US portion of George’s Bank as well as a 

sample from the Gaspé Peninsula, Canada, however modelling studies on George’s Bank 

found little support for this differentiation (Davies et al. 2015; Davies et al. 2014; Gilbert 

et al. 2010; Tian et al. 2009a, b). Overall, the variance explained by the three regions found 

in Kenchington et al. (2006) (1.21%) was low compared to our outliers (11.0%) but similar 

to the amount explained by all of our loci combined (0.58%). Using AFLPs, Owen & 

Rawson (2013) found similar values of differentiation to our SNP data, however they 

sampled a smaller region in the Gulf of Maine at a finer scale, in contrast to the low 
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differentiation and limited spatial structuring present in our dataset in that region. Owen & 

Rawson (2013) also found significant inter-annual variation in population structure and 

recommend sampling multiple years and age classes when making population genomic 

inferences; our samples were collected over three years and contained multiple age classes, 

reducing the potential influence of age structure on our results.  

Spatially, we observed significant isolation by distance in our samples (although 

the pattern was primarily driven by the north/south split rather than a true stepping-stone 

model), and clear latitudinal clines in allele frequency at both neutral and outlier loci. Our 

examination of IBD explored two estimates of pairwise distances between populations, the 

least-cost minimum distance between populations and an approximate ocean current based 

distance. Overall, the least-cost distance performed better than the ocean current distance 

supporting the hypothesis that dispersal alone is not the primary determinant of 

connectivity among sea scallop populations. Interestingly of the 18 IBD relationships 

tested, including different subsets of loci and locations (spatial subsets), only IBD 

relationships that included outlier loci were statistically significant. Furthermore, outlier 

loci produced much more pronounced clinal patterns in allele frequency than in neutral loci 

and outlier loci also produced lower average cline width than neutral loci. Processes other 

than selection can lead to the development of clinal patterns in loci (Vasemägi 2006), but 

the differences between clines seen in our outlier and neutral loci indicate that neutral forces 

are not the sole driver of clines among sea scallop populations. In light of these results, we 

conclude that the outlier loci used in our analyses predominantly drive observations of the 
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north/south split within sea scallops, comparable to patterns reported in Atlantic cod in the 

same locations (Bradbury et al. 2010; Bradbury et al. 2013).  

For marine species with planktonic larval stages, larval dispersal is expected to 

contribute significantly to spatial population structuring (Bradbury et al. 2008c; Bradbury 

& Snelgrove 2001) though patterns of resultant connectivity can be complex. Planktonic 

larval duration (PLD) can last up to 40 days in sea scallops and creates the potential for 

extreme long-distance dispersal. Past studies show, however, that PLD is not necessarily a 

good proxy for gene flow, and can substantially overestimate levels of population 

connectivity (Bradbury et al. 2008c; Selkoe & Toonen 2011). Scallop larvae, as with other 

marine larvae, are also unlikely to occur uniformly through the water column (Manuel et 

al. 1996a; Tremblay & Sinclair 1990a, b), and may therefore encounter a range of currents 

induced by vertical shear that could influence dispersal distances and directions (Metaxas 

2001). Similarly, changes in current patterns alter source populations of larvae (Kordos & 

Burton 1993). Geographic barriers in the Northwest Atlantic can also influence larval 

movement and survival; one barrier in particular, the deep Laurentian Channel, cuts 

between Newfoundland and Nova Scotia within the Cabot Strait (Townsend et al. 2006). 

Current outflow from the Gulf of St. Lawrence to the southeast may further hinder larval 

transit from Newfoundland southwards, contributing to the observed north/south sample 

split. Current patterns along the coast of the southern portion of the species range may also 

limit dispersal, given that the boundary between coastal currents and inshore waters could 

act as a barrier to larval movement (Tilburg et al. 2012). Scallop surveys show large scallop 

aggregations associated with particular habitat characteristics, including gravel substrate, 
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low predation, and a high proportion of filamentous organisms. These characteristics define 

appropriate settling substrate for scallop larvae with high settlement success and survival 

(Stokesbury & Himmelman 1995; Thouzeau et al. 1991); settlement of groups of larvae on 

different patches of appropriate habitat can further enhance genetic differentiation. The 

meeting of the cold Labrador Current and warm Gulf Stream off the coast of Nova Scotia, 

Canada, produces strong temperature gradients along the entire range of sea scallops 

(Townsend et al. 2006) and variation in temperature (and other environmental factors) 

between populations of sea scallops may contribute to adaptation within populations by 

way of within-generation selection (Pavey et al. 2015), further influencing the differential 

survival of dispersing and recently settled larvae as they presumably survive best in 

conditions for which they are adapted. 

2.5.4 Estimates of dispersal 

Estimating dispersal distance in marine species remains a significant challenge 

(Selkoe & Toonen 2011). Standard methods of estimating dispersal include (but are not 

limited to) drifter studies and biological-physical modelling, PLD, chemical tracking, direct 

observation, assignment tests, and use of natural or artificial markers (Bradbury et al. 

2008c; Cowen & Sponaugle 2009; Hedgecock et al. 2007; Levin 2006; Saenz-Agudelo et 

al. 2009; Selkoe & Toonen 2011; Thorrold et al. 2002; Thorrold et al. 2007). Our estimates 

of effective dispersal here ranged from approximately 300-600 km per generation. These 

distances compare directly with estimates for other marine invertebrates and fish in eastern 

North America (Bradbury et al. 2008d; Kinlan & Gaines 2003), and particularly P. 

magellanicus on George’s Bank and the Mid-Atlantic Bight where modelling studies of 
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scallop larvae identified some local retention and dispersal between adjacent populations 

(Davies et al. 2015; Davies et al. 2014; Gilbert et al. 2010; Tian et al. 2009a, b). Given a 

planktonic period of a month or more, some correlation with the direction and nature of 

coastal circulation patterns may be expected. In fact, previous work in sea scallops 

associated genetic structure with the dominant ocean currents, supporting larval dispersal 

as the main structuring agent. Kenchington et al. (2006) identified regional structure 

consistent with expected current patterns along the east coast of North America using a 

microsatellite panel and a simplified oceanographic model. Results indicated the potential 

for larval dispersal between populations on the Scotian Shelf and within the Gulf of Maine, 

however, patterns of larval movement differed based on the depth of model particles. Given 

larval P. magellanicus have been previously shown to exhibit diel behaviour (Tremblay & 

Sinclair 1990a), the assumption that surface currents approximate dispersal potential might 

be tenuous. Indeed, our observation that the least cost path distance was a better predictor 

of genetic spatial structure than current based geographic distance suggests our 

approximations of circulation may not capture the complexity of larval dispersal. This 

observation may also reflect the influence of variation in post-settlement processes (e.g. 

mortality) (Bradbury et al. 2008a; Clarke et al. 2010) associated with climatic variation 

expected across this range (Townsend et al. 2006) on the realized connectivity of the 

system. 

Genetic methods of estimating and inferring dispersal patterns, like those employed 

in this study, can be very effective. However, they reflect effective dispersal (that is, the 
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subsequent survival and reproduction of dispersers) rather than strict movement among 

populations.  

Comparison of dispersal estimates based on neutral and outlier loci may allow some 

inference of the roles that dispersal and selection play in regulating connectivity, because 

estimates from neutral loci may reflect absolute movement of larvae but those from outlier 

loci will reflect the survival and reproduction of dispersers. Our observation that the 

estimates of dispersal based on the outlier loci were smaller than those based on neutral 

loci supports a hypothesis that selection and differential survival may be important in 

limiting effective dispersal and connectivity. Other studies report similar observations for 

coastal fish species elsewhere, detecting genetic structure at smaller geographic scales than 

dispersal would suggest (Bradbury et al. 2008b; Clarke et al. 2010).  

Both methods of estimating dispersal make inherent assumptions, raising concerns 

about dispersal estimates in both cases. With the clinal method, concerns include errors in 

LD calculations, equations that assume selection/dispersal balance, and violation of 

assumptions by long distance dispersal (Sotka & Palumbi 2006). Previous work 

demonstrates that IBD itself is robust to deviations from some model assumptions (Leblois 

et al. 2003; Leblois et al. 2004) with clear successes in estimating local dispersal (Broquet 

et al. 2006; Rousset 1997; Sumner et al. 2001), however, as discussed previously, the use 

of IBD to estimate dispersal distance in sea scallops may be inappropriate for the patterns 

of population structure detected in the system. A steep cline primarily drives the structure 

we identified within scallops in contrast to the patterns assumed in a gradual island or 

stepping-stone model. In this case cline-based estimates likely produce more accurate 
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dispersal values as reflected in our results. The IBD-based method produces estimates less 

than 15 kilometers, a distance far too small to ensure any connectivity among our sampled 

populations (the smallest pairwise distance between our samples is approximately 70 km). 

The distances calculated using the clinal method appear much more realistic, falling within 

the range of pairwise distances between our populations. Nonetheless, they yield much 

smaller estimates than the maximum pairwise distance found between our populations, 

indicating that limited dispersal may add significantly to population structure within the 

sea scallop.  

2.5.5 Limitations 

Although genetic methods, and RAD-seq in particular, offer great potential for 

measuring marine connectivity (Gagnaire et al. 2015), many limitations and caveats must 

also be considered. RAD-seq itself raises concerns about use of non-random missing data 

that may affect population genetic inferences and conclusions (Arnold et al. 2013; Gautier 

et al. 2013), however Arnold et al. (2013) found FST to be relatively robust to missing data 

compared to other differentiation estimates. Arnold et al. (2013) also recommend complete 

trimming of loci with missing data; we trimmed our loci to maximum 20% missing data, 

however, loci with missing data comprised a very small proportion of our total loci and 

likely had no substantial influence on our results. Each of our populations was sequenced 

in a single library on a single lane, which could lead to lane effects manifesting as 

population effects and biasing our results. Our strict filtering, however, helped to combat 

missing data effects. We also observed similar trends across multiple populations, lending 

support that these trends were not artefacts. The differentiation in the neutral loci for LTB 
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is an exception;, however, given that previous studies have identified circulation patterns 

that limit larval dispersal out of Placentia Bay (Bradbury et al. 2000; Bradbury et al. 

2008d), we do not believe this result reflects a sequencing bias. 

As discussed previously, local adaptation and selection among different populations 

may influence the conclusions of population genetic studies by leading to an overestimation 

of the differentiation between populations. This may promote inaccurate estimates of 

migration and gene flow between populations if the possible influence of selection is not 

taken into consideration. We separated loci for analysis both to identify potential regions 

of local adaptation but also to generate a more conservative and potentially accurate pattern 

of dispersal and connectivity among sea scallop populations. We used a strong HWE filter 

when filtering our detected outlier and neutral loci. Although some outlier loci may have 

been expected to be out of HWE and thus removed during filtering, prioritizing true (and 

higher quality) loci furthered our aim for an accurate evaluation of population connectivity. 

Genetic methods characterize effective connectivity, or only the contributions of 

dispersers that survive and reproduce. This approach may miss instances of larval 

movement without subsequent reproduction within the new population. For marine 

management, however, the effective movement and survival of dispersers and the 

contribution of dispersers to population stability generally represents the most important 

measure. The prevalence of rare events adds another concern when trying to draw 

management conclusions from genetic population connectivity results. These events (e.g. 

unusual currents, storms) may create temporary channels of dispersal. Larvae transported 

during these events that survive and reproduce may leave their genetic signature in the 
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population for some time. Depending on the size of the group of atypical dispersers, 

researchers may misinterpret patterns of dispersal within a group of populations. Similarly, 

yearly deviations from an average map of connections add further variation, emphasizing 

the importance of including a wide range of sample ages when inferring population 

connectivity from genetic data. Despite somewhat limited availability of samples, we 

included scallops spanning a wide range of ages wherever possible. In addition, repeated 

sampling, more individuals per population, and more detailed age structure analyses could 

help confirm the stability of patterns of population structure over time.  

2.5.6 Conclusions 

Using RAD-seq derived SNPs, we describe range-level population structure in sea 

scallops, building on work that detected smaller-scale differentiation using microsatellites 

(Kenchington et al. 2006) and AFLPs (Owen & Rawson 2013). Significant genetic 

differentiation between the northern and southern regions of the species distribution 

mirrored patterns in other Northwest Atlantic species. Estimates of dispersal using genomic 

clines, likely the most appropriate approach for our system, indicate moderate potential 

dispersal within sea scallops, however, variables other than larval transport may also drive 

population structure. Patterns in population structure differed when using neutral and 

outlier loci, indicating that selection and local adaptation may play a role in sea scallop 

population dynamics. The major population structure identified, as well as the potential for 

adaptation, offers valuable information for management of this economically important 

species. In particular, the strong division between northern and southern populations 

indicates that separate management strategies are likely appropriate for these regions. 
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Furthermore, the potential isolation of LTB warrants special attention. The same factors 

that structure sea scallop populations presumably affect other species in the region with 

similar life histories, and comparison of these species with associated environmental and 

oceanographic variation in the area may provide significant insights into prevalent factors 

influencing regional population differentiation and adaptation. 
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2.6 Tables 

Table 2.1. Site name, site code, coordinates, and the number of sequenced P. magellanicus 
from each of 12 collection sites in the Northwest Atlantic Ocean. 

Site Name Site Code Latitude Longitude Number of  
scallops used in 

analysis 

Sunnyside, NL SUN 47.824108 -53.869456 20 

Little Bay, NL LTB 47.1545 -55.10416667 21 

Magdalen Islands MGD 47.1143 -62.0243 21 

Northumberland Strait NTS 46.13383333 -63.77283333 22 

Passamaquoddy Bay PSB 45.06473333 -67.01663333 12 

Bay of Fundy BOF 44.67615 -66.07181667 22 

Scotian Shelf - Middle SSM 44.52066667 -60.635 19 

Gulf of Maine Inshore GMI 44.52 -67.0319 20 

Browns Bank SSB 42.83716667 -66.13583333 22 

Gulf of Maine Offshore GMO 42.44 -70.3874 22 

George's Bank GEO 41.61266667 -66.36216667 22 

Mid Atlantic Bight* MDA 38.82265936 -73.59895436 22 
*several neighbouring sites sampled as one location   
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Table 2.2. Number of P. magellanicus individuals and number 
of SNP loci included in initial sequencing and final analysis 
following quality control (QC). 

Parameter Value 

Individuals sequenced 252 

Individuals following QC 245 
(97.2% of Individuals sequenced) 

Initial RAD tags 131897 

RAD tags following QC 19672  
(14.9% of Initial RAD tags) 

Initial SNPs 173482 

SNPs following QC 7216  
(4.2% of Initial SNPs) 

SNPs in HWE 7163  
(99.3% of SNPs following QC) 

 Outlier SNPs 112  
(1.6% of SNPS in HWE) 

 Neutral SNPs 7051  
(98.4% of SNPs in HWE) 
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Table 2.3. Analysis of molecular variance (AMOVA) among 12 populations of P. magellanicus, 
among regional groups of populations identified by Structure analysis, and among individuals 
within populations using (A) all loci, (B) neutral loci, and (C) outlier loci. 

(A)    

Source of variation df Proportion of variation p-value 

Among groups  1 0.58 < 0.001 

Among populations within groups  10 0.09 < 0.001 

Among individuals within populations  233 5.43 < 0.001 

Within individuals  245 93.9 < 0.001 

(B)    

Source of variation df Proportion of variation p-value 

Among groups  1 0.4 < 0.001 

Among populations within groups  10 0.02 < 0.001 

Among individuals within populations  233 5.5 < 0.001 

Within individuals  245 94.08 < 0.001 

(C)    

Source of variation df Proportion of variation p-value 

Among groups  1 11.0 < 0.001 

Among populations within groups  10 4.24 < 0.001 

Among individuals within populations  233 1.71 < 0.001 

Within individuals  245 83.06 < 0.001 

 

 

 

 

 

 

 

 

 



43 
 

2.7 Figures 

 

Figure 2.1. Map of 12 sea scallop (P. magellanicus) collection locations from the Northwest 
Atlantic. Site MDA (Mid-Atlantic Bight) represents the middle of several nearby 
collection locations grouped as one population. Population codes are defined in Table 2.1. 
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Figure 2.2. Results from (A) the Bayesian test for selection completed using the program 
BayeScan and (B) the hierarchical island model test for selection completed using the 
program Arlequin for 7163 loci sequenced in 12 populations of P. magellanicus. 
BayeScan outliers are defined as all loci with a q-value higher than 0.05 (highlighted in 
red). Arlequin outliers are defined as the loci that fall above the simulated 1% quantile of 
FST vs Heterozygosity (p <= 0.01, highlighted in red). 
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Figure 2.3. Map of the proportion of each of the 12 P. magellanicus populations assigned to two 
population groups (blue and red) identified in the program Structure using outlier loci and 
the ΔK method to select the optimal number of genetic clusters in the data. 
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Figure 2.5. Principal components analysis plots for (A) all loci, (B) neutral loci, and (C) outlier 
loci in 12 populations of P. magellanicus. 
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Figure 2.6. Neighbour joining trees for Cavalli–Sforza and Edwards chord distance (Dc) between 
12 populations of P. magellanicus for (A) neutral loci and (B) outlier loci. North 
populations are highlighted in grey, south populations in white, and bootstrap values 
greater than 50% are shown. 
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Figure 2.7. Isolation by distance plot of FST/1-FST vs. population pairwise distance for 12 
populations of P. magellanicus using least-cost distance for all loci (red squares), and 
outlier loci (blue triangles). 
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Figure 2.8. (A) Heat map of population specific standardized allele frequencies for 48 clinal 
outlier loci in 12 populations of P. magellanicus. (B) Plot of clines in allele frequency in 
12 populations of P. magellanicus as a function of the distance in kilometers from the 
furthest north population (SUN) for clinal neutral loci (n = 123, 24.6% of tested loci, 
grey) and clinal outlier loci (n = 48, 42.9% of tested loci, black). 



51 
 

Chapter 3: Oceanographic variation influences spatial genomic structure in the sea 

scallop, Placopecten magellanicus 

3.1 Abstract 

Environmental factors can influence diversity and population structure in marine 

species and an accurate understanding of this influence can both enhance fisheries 

management and help predict responses to environmental change. We used Restriction-Site 

Associated DNA sequencing to genotype 7163 SNPs in 245 individuals of the 

economically important sea scallop, Placopecten magellanicus to evaluate the correlations 

between oceanographic variation and a previously identified latitudinal genomic cline. Sea 

scallops span a broad latitudinal area (>10 degrees) and we hypothesized that climatic 

variation significantly drives clinal trends in allele frequency. Using a large environmental 

dataset, including temperature, salinity, chlorophyll a, and nutrient concentrations, we 

identified a suite of SNPs (285 - 621, depending on the analysis and environmental dataset) 

potentially under selection through correlations with environmental variation. Principal 

component analysis of the different outlier SNPs and environmental datasets revealed 

similar north and south clusters, with significant associations between the first axes of each 

(R2
adj = 0.66 – 0.79). Multivariate redundancy analysis of outlier SNPs and the 

environmental principal components indicated that environmental factors explained more 

than 32% of the variance. Similarly, multiple linear regressions and random-forest analysis 

identified winter average and minimum ocean temperatures as significant parameters in the 

link between genetic and environmental variation. This work indicates that oceanographic 

variation is associated with the observed genomic cline in this species and that specifically, 
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seasonal periods of extreme cold restrict gene flow along a latitudinal gradient in this 

marine benthic bivalve. Incorporating this knowledge into management may improve 

accuracy of management strategies and future predictions. 

3.2 Introduction 

The application of population genomic-based approaches to the study of marine 

population structure is increasingly revealing higher levels of genetic differentiation and 

population structure in multiple marine species than previously recognized (e.g. Benestan 

et al. 2015; Bradbury et al. 2013; Corander et al. 2013; Milano et al. 2014; Moura et al. 

2014). Recent observations of fine-scale differentiation are changing our view of marine 

connectivity and marine population dynamics (Hauser & Carvalho 2008). Limited dispersal 

may contribute to fine-scale population differentiation (e.g. Van Wyngaarden et al. 2017), 

but given large populations and large environmental gradients, selection may also 

contribute significantly to genetic differentiation among marine populations (Hauser & 

Carvalho 2008). As such, studies supporting a role for selection in regulating marine 

connectivity continue to accumulate (Bradbury et al. 2010; Clarke et al. 2010; Limborg et 

al. 2012; Milano et al. 2014; Sjöqvist et al. 2015). An accurate understanding of population 

structure and environmental influences can contribute to the identification of conservation 

units and allow prediction of a species’ response to climate change, particularly for 

economically important species (Allendorf et al. 2010; Conover et al. 2006; Sale et al. 

2005).  

Genomic studies increasingly highlight a role for selection in regulating marine 

population structure (Berg et al. 2015; Bradbury et al. 2014b; Bradbury et al. 2010; 
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Gagnaire et al. 2015; Gaither et al. 2015; Hellberg 2009). Loci identified as putatively 

under selection repeatedly reflect small-scale genetic differentiation in multiple marine 

species (Bradbury et al. 2010; De Wit & Palumbi 2013; Lamichhaney et al. 2012). Marine 

landscape genomic studies combining traditional landscape approaches with large genomic 

datasets have identified significant associations between climate and genetic structure 

(genetic-environmental associations, GEA) in numerous marine (and anadromous) species, 

including Atlantic herring (Clupea harengus) (Limborg et al. 2012), Atlantic cod (Gadus 

morhua) (Berg et al. 2015; Bradbury et al. 2010), purple sea urchin (Strongylocentrotus 

purpuratus) (Pespeni & Palumbi 2013), Atlantic salmon (Salmo salar) (Bradbury et al. 

2014b), European hake (Merluccius merluccius) (Milano et al. 2014), and Chinook salmon 

(Oncorhynchus tshawytscha) (Hecht et al. 2015). The pervasiveness of genetic-

environmental associations across taxa and life histories supports the hypothesis that 

environmental associated selection may structure marine populations. 

The sea scallop, Placopecten magellanicus (Gmelin) is an economically important 

benthic marine bivalve characterized by a planktonic period of development conducive 

with a potential for long distance dispersal among populations (Davies et al. 2014; Tian et 

al. 2009b). The scallop fishery in both the United States and Canada, one of the most 

economically important fisheries in the region, extends back over 100 years (DFO 2016; 

Naidu & Robert 2006; NOAA 2016). The sea scallop distribution extends from North 

Carolina, USA to Newfoundland, Canada (Posgay 1957). This region spans a vast 

latitudinal range where the cold Labrador Current meets the warm Gulf Stream, 

encompassing large gradients in ocean temperature and other environmental factors all of 
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which may be influenced by oceanographic properties of the major currents and storm-

related mixing along the coast (Townsend et al. 2006). Several oceanographic barriers 

along the range may also influence larval dispersal and survival among populations 

(Townsend et al. 2006). Previous studies detected significant population structure among 

scallop populations (Kenchington et al. 2006; Owen & Rawson 2013; Van Wyngaarden et 

al. 2017) driven primarily by outlier loci, indicating that both limited dispersal and 

adaptation may play a role in structuring of scallop populations, particularly given 

potentially strong selective pressures along the species’ range. 

In light of the unique oceanographic features in the region, the large latitudinal 

range of the species, and previously identified clinal population structure, we hypothesize 

that directional selection and local adaptation drive sea scallop population structure and 

that ocean temperature likely contributes significantly to adaptation of the species to its 

local environment. Our specific objectives were to: (1) explore spatial variation in 

environmental variables across the range of the sea scallop, (2) use environmental 

correlation-based outlier detection methods to pinpoint potential targets of environment 

based selection across the genome of the sea scallop, and (3) identify potentially important 

environmental drivers of population structure and adaptation in scallops. We build directly 

on a previous study identifying latitudinal clinal trends in allele frequency across the range 

using 7163 RAD-seq derived SNPs (Van Wyngaarden et al. 2017) and extend that work by 

identifying environmental associations and possible mechanisms. 

3.3 Methods 

3.3.1 Sample collection and RAD-seq 
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Van Wyngaarden et al. (2017) describe sampling procedures and RAD-seq 

genotyping in detail. In brief, 252 adult scallops were collected by divers or bottom trawl 

from a total of 12 locations across the entire species range between 2011 and 2013 (Table 

3.1, Figure 3.1) with a minimum of 12 scallops per population (mean value of 20.4 ± 2.8 

scallops). Tissue samples were collected and preserved in AllProtect (Qiagen) or 80% 

ethanol. DNA extraction and RAD-seq library preparation were performed at the Aquatic 

Biotechnology Lab, Bedford Institute of Oceanography in Dartmouth, Nova Scotia. RAD-

seq libraries were prepared as described by Etter et al. (2011b) (see also Etter et al. 2011a) 

with modifications. Sequencing was performed at the McGill University and Génome 

Québec Innovation Centre, Montréal, Canada. SNPs were detected using the de novo 

pipeline in STACKS v.0.9999 (Catchen et al. 2011). The final dataset was filtered using 

PLINK v.1.07 (Purcell 2009; Purcell et al. 2007) to include only RADtags present in 75% 

of individuals in SNP discovery and calling; all SNPs included in the analysis were present 

in 75% of individuals with a minor allele frequency greater than 5%. Furthermore, we 

excluded individuals with more than 20% missing loci from the analysis. Loci were filtered 

for Hardy-Weinberg Equilibrium using the program GENEPOP v.4 (Rousset 2008), 

excluding loci out of equilibrium in 6 or more populations from the analysis (<0.7% of all 

loci).  

3.3.2 Environmental data collection and processing 

We amalgamated environmental data from several databases; from Fisheries and 

Oceans Canada: Climate (Gregory 2004) (years 1970-2013), BioChem (DFO 2014) (years 

2009-2014), and AZMP (DFO 2015), and from the National Oceanographic and 
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Atmospheric Administration in the United States of America (NOAA, years 1990-2010), 

and the MODIS satellite database (NASA Goddard Space Flight Center Ocean Ecology 

Laboratory 2014) (years 2002-2013). Data was averaged over multiple years available to 

remove the signatures of short-term variation in the marine environment. Measured 

variables included water temperature, salinity, sigma-t, and chlorophyll A, SiO4
4-, NO3

-, 

NO2
-, and PO4

3-
 concentrations.  

We averaged data from all data sources within a bounding box of 1 square degree 

around each sample site to create site-specific averages for each data type used in the 

analysis. Data were separated into surface and depth values based on the collection depth 

for each sampling location. Where collection depth was unknown, we used Canadian 

Hydrographic Service charts, NOAA maps, and Google Earth to estimate depth based on 

collection GPS coordinates. Surface values encompassed depths between zero and 20 

meters except for collection sites less than 20 m depth, where 10 m was used as the surface 

cut-off. We averaged values from a cut-off of approximately ten meters above a given 

collection depth to the collection depth for depth profiled variables. In cases where multiple 

sample collection depths were provided, depth cut-off parameters were altered to include 

the entire range of collection depths (Table 3.2). 

Data validation and preparation were completed using R (R Development Core 

Team 2012). To address natural seasonal variation in the data, we calculated z-scores for 

each variable for each sample site per month and removed outliers where necessary. 

Variables with missing data for more than six sites were removed from subsequent 

analyses. For the remaining variables with missing data, we used single imputation using 
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neighbouring sites to estimate missing values (sites arranged by latitude, averaging sites 

directly north and south of the missing site). Following outlier removal and imputation, we 

standardized data to zero mean and unit variance by subtracting the mean and dividing by 

the standard deviation. We then identified site-specific maximum and minimum values as 

well as seasonal averages for each variable, basing seasons largely on equinoxes. Winter 

included January, February, and March, Spring included April, May, and June, Summer 

included July, August, and September, and Autumn included October, November, and 

December. The final dataset contained 90 variables spanning all available data types 

(hereby referred to as AllEnv). We repeated all analyses using only the temperature, 

salinity, and chlorophyll a variables (n=36 variables, henceforth CST), as we expected these 

to be the most likely associated with selection. 

3.3.3 Detection of outlier loci 

We used two separate methods to detect outlier loci using both environmental 

datasets (four tests in total). The first method used a Bayesian framework implemented in 

the program BAYENV2 (Coop et al. 2010; Guenther & Coop 2013). This method 

calculates a set of “standardized allele frequencies” which controls for population history 

and structure when detecting loci whose allele frequencies show significant associations 

with environmental variation. This method then calculates a Bayes Factor (BF), which 

measures the weight of evidence for a model in which the environmental variable affects 

the allele frequency of a locus versus a null model with no environmental variable effect. 

To calculate the “standardized allele frequencies”, we randomly selected 700 loci (9.8% of 

total loci) identified as neutral (not under selection) in Van Wyngaarden et al. (2017). The 
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null model correlation matrix was estimated from these loci in three repetitions of 100 000 

iterations. We visually compared correlation matrices from the final iterations of each run 

to each other and to an FST matrix of the neutral loci. The final matrix from the first run 

was selected as the neutral matrix for use in further analysis. The final analysis detected 

locus-specific deviations from the neutral allele frequencies using 100 000 iterations. BFs 

were calculated at every locus for each environmental variable separately. To assess the 

significance of each BF (and the likelihood of classifying a locus as an outlier), we created 

5 bins of loci based on the global minor allele frequency, as recommended in Coop et al. 

(2010) and implemented in Hancock et al. (2010) (Table S2.1). We selected loci with BFs 

in the top 5% of the range of BFs for each bin as outliers. 

Latent factor mixed models (LFMM) as described in Frichot et al. (2013) were 

implemented as the second method of outlier detection in the R package LEA (Frichot & 

François 2015). This method uses latent factors in a linear mixed model to control for 

population structure (the number of genetic clusters within a group of populations, K) while 

detecting correlations between environmental and genetic variation. Previous analysis 

using the program STRUCTURE v.2.2.4 (Pritchard et al. 2000) detected two genetic 

clusters (K=2), and the genomic inflation factor analysis (GIF) in LEA corroborated this 

result. The models were run for 3 repetitions, with a burn-in of 5000 followed by 15 000 

iterations. We combined Z-scores from the 3 repetitions using the median, calculated 

adjusted p-values to correct for multiple testing, and produced a list of candidate outlier 

loci for each environmental variable (FDR = 0.05) following Frichot et al. (2015). To 

ensure we included any loci potentially under selection, we combined the list of detected 
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outliers from each method to create our final outlier lists (AllEnvOutlier for AllEnv and 

CSTOutlier for CST). 

3.3.4 Association between environmental factors and genetic variation 

We conducted principal components analysis (PCA) using the AllEnvOutlier and 

CSTOutlier loci using the R package adegenet (Jombart 2008) to examine population 

structure among the sampled populations at outlier loci. To examine the relationship 

between environmental and genetic variation among our collection sites, we calculated 

population specific allele frequencies for AllEnvOutlier and CSTOutlier using the R 

package gstudio (Dyer 2014). Next, we ran PCA on population specific allele frequencies 

for AllEnvOutlier and CSTOutlier (AllEnvOutlierPCA and CSTOutlierPCA), and the 

population specific environmental data in AllEnv and CST (AllEnvPCA and CSTPCA) 

using the R package adegenet (Jombart 2008). Linear regression was then performed 

between the first principal component (PC) from AllEnvOutlierPCA (AllEnvOutlierPC1) 

and the first PC from the PCA on AllEnv (AllEnvPC1) as well as the first PC from 

CSTOutlierPCA (CSTOutlierPC1) and the first PC from the PCA on CST (CSTPC1). 

We then conducted redundancy analysis (RDA), a multivariate canonical 

correlation analysis, using the R package vegan (Oksanen et al. 2015) on population 

specific allele frequencies for AllEnvOutlier and CSTOutlier and selected PCs from 

AllEnvPCA and CSTPCA, respectively. Each PC that explained more than 5% of the total 

explainable variance in the AllEnvPCA (5 axes) and CSTPCA (4 axes) were selected as 

explanatory variables. Backwards stepwise variable selection using 1000 or 10000 

iterations selected the most valuable environmental PCs within the model. In order to 
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determine the proportion of model variation attributable to climate vs. geographic distance 

between populations vs. combined effects, we next performed partial RDA, conditioning 

the genetic matrix on the distances from the furthest north population (SUN) along a 1-

dimensional transect that included all populations [estimated using GOOGLE EARTH 

(2013)]. 

Multiple linear regressions quantified the direction and magnitude of the effect of 

environmental variables on genetic variation. We used results from RDA to select 

environmental variables used in the analyses. After examining weightings of the 

environmental variables on the important PCs selected during RDA, we selected the five 

most highly weighted variables from each PC for use as explanatory variables in linear 

mixed models. Based on results from the initial linear mixed models (see Results), we 

generated models focusing on measurements of water temperature at surface and at depth 

(Table 3.3). For each response variable (AllEnvOutlierPC1 and CSTOutlierPC1), we fitted 

a global multiple regression model with all selected environmental variables. We then used 

the R package MuMIn (Barton 2014) to run all possible configurations of the global model 

and pinpointed the best model fits with AICc model selection. We examined cumulative 

AICc model weights to rank each parameter in order of importance and estimated 

coefficients for each environmental parameter using model averaging (Arnold 2010). 

We also used non-linear random-forest analysis (RF) to identify important 

environmental variables and then compared key drivers with those identified using 

multiple linear regressions. RF is a powerful machine-learning model that has been 

widely used in many disciplines since its introduction in 2001 (Breiman 2001) however it 
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has only recently been applied to genomic adaptation analysis (Brieuc et al. 2015). This 

analysis can take into account interaction between predictor variables and may manage 

the covariation between environmental variables more effectively than the multiple linear 

regression approach (Brieuc et al. 2015). This ensemble approach benefits from growing 

a large group of decision trees to improve overall performance. One key attribute of 

random forests is its automatic computation of variable importance. We used a method 

based on weighted k nearest neighbours (KNN) called KNNcatImpute (Schwender 2012) 

to impute the missing genotypes in our genetic SNP data using the scrime package in R 

(Schwender & Fritsch 2013). After imputation, the individual genotypes at each outlier 

SNP were transformed to categorical data. SNPs are a bi-allelic genetic marker and only 

two alleles and three genotypes can be present at each SNP; the built RF is thus a three-

class classification model. Environmental variables were used as predictors of individual 

genotypes at each outlier SNP using 1,001 trees. We then used permutation importance, 

the variable importance function built in RF, to rank the relative roles of environmental 

variables. In order to obtain a reliable estimation of variable importance, we applied 10-

fold cross-validation, dividing the entire data set into 10 subsets. Nine subsets trained the 

RF model and the other subset was used for validation; this process was repeated 10 times 

for each SNP genotype. In each of the 10 runs, we calculated a permutation importance 

array for all environmental variables. Noting that importance values can be negative, we 

first computed the exponential values of the importance array and then averaged each 

importance value over the total importance sum of all environmental variables to generate 

an importance proportion array. The importance proportions were averaged over the 10 

runs to determine average importance proportions. For each SNP genotype output (621 
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for AllEnv and 285 for CST), an RF model was built to calculate an array of permutation 

importance proportions for all environmental variables. We calculated the overall average 

importance proportion for each environmental variable over all loci. All RF analyses were 

performed using randomForest package in R (Liaw & Wiener 2002). 

3.3.5 Gene ontology 

Using the full RADtags for all detected outlier loci, we performed gene ontology 

(GO) analysis and NCBI nucleotide BLAST searches on AllEnvOutlier and CSTOutlier in 

the program Blast2GO (Conesa et al. 2005) using the program default parameters and 

InterProScan to improve GO annotation quality.  

3.4 Results 

3.4.1 Sample collection and RAD-seq 

Following filtering and quality control steps, we included 245 individual scallop 

samples in our analysis (97.2% of sequenced individuals), 19672 RADtags (14.9% of initial 

RADtags), and 7216 SNPs (4.2% of Initial SNPs) (Table S2.2). The 7163 SNPs in HWE 

that met all quality control standards were used in all subsequent analyses. Van 

Wyngaarden et al. (2017) describe further sequencing results in detail. 

3.4.2 Detection of outlier loci 

 The neutral matrices calculated to generate “standardized allele frequencies” for 

BAYENV2 varied little within runs and when compared to the FST matrix calculated for 

the neutral loci; we therefore chose a single matrix for further calculations with BAYENV2. 

LFMM identified K=2 as the most supported number of clusters (and thus latent factors) 
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using GIF analysis, with values of 0.85 for AllEnv and 0.83 for CST [p-values calibrate 

correctly when GIF approaches 1 (Frichot & François 2015)]. 

Overall, LFMM identified more loci potentially under selection than BAYENV2. 

Combining the results from both programs, AllEnv identified 621 loci (8.7% of all loci) as 

under selection, whereas CST identified 285 loci (4.0% of all loci) as under selection. 250 

loci were shared between the two datasets (Table 3.4). Using AllEnv, BAYENV2 detected 

128 loci as putatively under selection (1.8% of total loci), whereas LFMM detected 511 

(7.1% of total loci). The two sets of loci shared only 18 loci. Using CST, BAYENV2 

detected 72 loci (1.0% of total loci) whereas LFMM detected 218 (3.0% of total loci), with 

only 5 loci shared between the two methods. Within the BAYENV2 results, the AllEnv 

outlier list and CST outlier list shared 37 loci (Table S2.3). The LFMM analysis of AllEnv 

and CST overlapped completely in loci identified (Table S2.4). 

3.4.3 Association between environmental factors and genetic variation 

 PCA of all individuals and sets of outlier loci detected using AllEnv and CST both 

split north and south populations along the first PC, separating the populations into two 

clusters as seen in the BAYENV2 results and in Van Wyngaarden et al. (2017) (Figure 

3.2). Using AllEnvOutlier, the first PC explained 2.38% of the total explainable variance 

in the model, and using CSTOutlier the first PC explained 3.33% of the total explainable 

variance. The PCA on the population specific allele frequencies for AllEnvOutlier and 

CSTOutlier (not shown) produced a similar clustering pattern, however, the first PC 

explained much more variance, with AllEnvOutlierPC1 explaining 26.47% of the total 

model variance and CSTOutlierPC1 explaining 31.93% of the total model variance. 
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The environmental data produced the same pattern of north/south population 

clustering for both datasets (AllEnv and CST, Figure 3.3). However, these PCAs further 

separated the southernmost population, Mid-Atlantic Bight (MDA), along the second PC. 

The first PC of the environmental data explained much more variance than in the genetic 

models, with AllEnvPC1 explaining 40.18% of the total model variance and CSTPC1 

explaining 51.35%. Linear regressions between genetic and environmental data (i.e. 

AllEnvOutlierPC1 and AllEnvPC1 as well as CSTOutlierPC1 and CSTPC1) showed a 

strong and significant relationship (Figure 3.4), with adjusted R2 values of 0.79 for AllEnv 

and 0.66 for CST, further indicating similar spatial patterns in genetic and environmental 

variation among our sample sites. The north/south population split can be seen in heat maps 

of standardized allele frequency and standardized values for environmental variables in 

AllEnv and AllEnvOutlier and CST and CSTOutlier (Figure 3.5), although only a subset 

of alleles show the strong clinal pattern driving the north/south split. 

 To examine the effects of climate vs. geography on the genetic variation within the 

outlier SNP loci, we selected 5 PCs from AllEnvPCA and 4 from CSTPCA for use as 

explanatory variables in RDA, each explaining more than 5% of the total variance in the 

PCA. In AllEnvPCA, the 5 selected axes explained 89.78% of the total model variance, 

and in CSTPCA, the 4 selected axes explained 88.96% of the total variance. Backwards 

stepwise variable selection on the RDA for AllEnv retained only AllEnvPC1 as an 

explanatory variable, whereas selection on the RDA for CST retained both CSTPC1 and 

CSTPC4 (Figure 3.6). Both models demonstrated significant relationships, despite low 

adjusted R2 values (AllEnv, R2
adj = 0.15, p = 0.001; CST, R2

adj = 0.23, p = 0.001). Variance 
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partitioning showed that climate explained a significant component of the model variation 

in both cases, explaining 32.36% of model variation in AllEnv (compared to 30.37% 

explained by geography and 37.28% explained as joint effects) and 41.34% of model 

variation in CST (compared to 21.27% explained by geography and 37.39% explained by 

joint effects). 

The RDAs for AllEnv and CST both separated north and south population groups. 

AllEnv retained only one environmental PC axis and we therefore show only one RDA axis 

in the plot (Figure 3.6A), however, this axis clearly divides the north and south populations. 

In CST, RDA1 divided north and south but added further division among sample sites along 

RDA2, including separation of populations from Newfoundland and the Gulf of St. 

Lawrence (Figure 3.6B). Partial RDA, following conditioning the genetic matrix on the 

distance between populations, no longer separated north and south populations once the 

effect of population separation distance was removed (Figure S2.1, AllEnv, R2
adj = 0.04, p 

= 0.06; CST, R2
adj = 0.07, p = 0.03). We expected this result given the strong relationship 

between environmental parameters and latitude in this region and the large latitudinal but 

small longitudinal span of the samples. 

 To choose environmental parameters to include in the multiple linear models, we 

examined variable weightings on the PC axes selected during RDA and retained the five 

most highly weighted variables from each axis. For all variables included in each global 

model we calculated cumulative Akaike Information Criterion weights and model-

averaged parameter estimates (Table 3.5). Model selection using CSTEnv and all 10 

selected environmental variables could not determine best fit models and provide accurate 
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estimates for parameter weights and coefficients because of overfitting of the model. Upon 

further examination of the RDA results, CSTPC1 appeared more important in driving the 

north/south population split. We repeated our multiple linear regressions and model 

averaging using only the five most highly weighted variables from CSTEnvPC1. In all 

cases, model weights averaged over all possible iterations of the models containing a 

particular variable indicated Surface Average Winter Temperature as the most important 

variable. Surface Minimum Temperature (occurred in winter) and Deep Average Winter 

Temperature also ranked highly, suggesting that the coldest temperatures encountered by 

both juvenile and adult scallops may play an important structuring role for scallop 

populations. Parameter estimates for all three variables were positive; increased minimum 

temperatures in the model corresponded to larger values of the first PC (higher PC values 

match the south population cluster). 

Using RF, we calculated the importance proportion for all environmental variables 

using both AllEnvOutlier and CST Outlier (Figure 3.7). Using AllEnvOutlier, Deep 

Average Summer Salinity, Deep Minimum Salinity (occurred in Spring), and Deep 

Maximum Salinity (occurred in Autumn) ranked as the most important environmental 

variables. Surface Average Autumn Temperature, Deep Average Winter Temperature, 

and Deep Minimum Temperature (occurred in Winter) were also selected as important 

variables. CSTOutlier once again ranked salinity-associated variables as most important, 

however, Deep Average Winter Temperature and Deep Minimum Temperature ranked 

highly and the importance proportions for CSTOutlier exceeded those from 

AllEnvOutlier. 
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3.4.4 Gene Ontology 

Blast2GO functionally annotated very few outlier loci. Using the CSTOutlier list, 

GO annotations were determined at only four loci (1.4% of loci), with a BLAST hit but no 

GO annotation at one further locus. In AllEnvOutlier only five loci (0.8% of total loci) were 

annotated, with a BLAST hit but no GO annotation in one further locus. The two lists of 

outliers shared three matches, with GO annotations split between molecular function 

(calcium ion and carbohydrate binding) and metabolic processes (regulation of 

transcription and steroid hormone mediated signalling). In the CSTOutlier list, GO 

annotation of the remaining locus identified a molecular function (oxidoreductase activity) 

and a metabolic process (oxidation-reduction process). In the AllEnvOutlier list, the GO 

annotations of the remaining two loci differed, one locus with molecular functions 

(oxidoreductase activity) and metabolic processes (oxidation-reduction process) and the 

other locus with several annotations (molecular function – catalytic activity, transferase 

activity, and folic acid binding, and metabolic processes – cellular metabolic processes) 

(Table S2.5). Examining the BLAST results for the outlier loci provided very little further 

information, with only two loci matching named genes in other bivalve species (the other 

loci only matched with predicted genes in a variety of species). Locus 12228_13 matched 

a retinoic acid reception mRNA from Lumnaea stagnalis (accession GU932671.1, 

similarity score of 44.2 with 75% matched nucleotides) with a role in embryonic 

development, while locus 20561_41 matched a CTL-9 mRNA from Argopecten irradians 

(accession JN166712.1, similarity score of 105 with 86% matches nucleotides) with a role 
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in cellular adhesion. The other loci only provided matches with predicted proteins in a 

variety of species. 

3.5 Discussion 

The identification of environmental factors regulating marine population structure 

can both inform fisheries management through the identification of management units and 

help predict species’ responses to environmental change. Here we applied a landscape 

genomics approach using 7163 RAD-seq derived SNPs and 90 environmental variables to 

identify oceanographic factors associated with a latitudinal genomic cline in sea scallops 

in eastern North America. Our results support the hypothesis that seasonal periods of 

extreme cold restrict gene flow and influence population structure in this species. This work 

builds on previous studies on population structure in P. magellanicus (Kenchington et al. 

2006; Owen & Rawson 2013), particularly the identification of a major genomic 

discontinuity separating the north and south of the species range (Van Wyngaarden et al. 

2017). Our multivariate analysis using the outlier loci and environmental variables 

identified minimum and average winter temperatures as the most important variables 

describing genetic variation among populations of the scallop, indicating that over-winter 

survival may strongly influence structure of these populations. Overall the observed 

genomic and environmental correlations support the hypothesis of latitudinal structuring, 

driven predominantly by ocean temperature. 

3.5.1 Environmental variables driving adaptation 

 Our results highlight ocean temperature as a critical environmental factor 

contributing to population structuring of the sea scallop. The sea scallop’s distribution 
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spans almost 10° latitude encompassing an extremely large range of environmental 

conditions (approximately 5-10 °C difference in temperatures year-round between the 

northern and southern extremes of the range), primarily caused by prevailing currents 

(Townsend et al. 2006). The Labrador Current, a cold Arctic current, flows south from the 

coasts of northern Canada and Greenland, splitting around Newfoundland and circulating 

through the Gulf of St. Lawrence (Townsend et al. 2006). In contrast, the warm Gulf Stream 

moves north from the Gulf of Mexico along the east coast of North America. These two 

currents meet and move roughly offshore around Nova Scotia, exposing scallop 

populations to large differences in water temperature (and other oceanographic variables) 

in different areas of their range (Townsend et al. 2006). Our PCA based on environmental 

data clearly illustrates this variation and separation between two sections of the species 

range and clearly separates the north sampling locations in Newfoundland and the Gulf of 

St. Lawrence (exposed to the Labrador Current) from all of the more southern sampling 

locations (generally exposed to the Gulf Stream or its branches). Temperature variables 

primarily drive this separation and, in particular, the coldest temperatures (winter and 

minimum) differ most between the regions. In addition to cold temperatures, RF analysis 

also identified salinity as an important environmental variable, likely driven by very low 

salinity values at NTS and MGD in the Gulf of St. Lawrence. While salinity may exert 

some effect on these particular sites, the overall pattern of salinity variation in the 

environmental data differed from the north/south pattern detected in the population genetic 

structure analysis. However, when analysing outlier loci using only the 4 northern 

populations, Van Wyngaarden et al. (2017) nonetheless found a separation between the 

Gulf of St. Lawrence and the Newfoundland populations. Our RF analyses used allele 
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frequencies across all populations, however, by handling covariation between 

environmental data RF may have been able to detect smaller-scale variation associated with 

salinity that was masked by the strong temperature associations in the multiple linear 

regression analysis. 

A strong genetic north and south discontinuity is supported here and in previous 

analysis (Van Wyngaarden et al. 2017). This split can clearly be seen in the first PC of the 

outlier PCAs, however, the first PC in both analyses explains little variance (2.38% and 

3.33%). Van Wyngaarden et al. (2017) also performed PCA on the same genetic data used 

in this study, however they used 112 outlier SNPs detected using the program BayeScan 

(Foll & Gaggiotti 2008). Their results identified the same pattern in population structure 

that was identified using PCAs in the current study separating northern and southern 

populations along the first PC, however their PCA attributed more variance to the first PC 

(12.91%) than the PCAs in the current study. This difference in explained variance among 

the genetic PCs is likely due to the method used to detect outlier loci. BayeScan uses an 

FST-based method to detect outliers and generally selects the most divergent loci. Since the 

strongest structure seen among our populations is the split between northern and southern 

groups, it is likely that the most divergent loci will be the ones that follow this pattern. In 

the PCA, these loci load highly on the first PC and contribute their variance to the total 

variance explained by the first PC. In comparison, both BayEnv2 and LFMM use 

environmental correlations to detect outlier loci. Although these methods may also identify 

highly divergent loci as outliers, if a highly divergent locus (likely to be detected by 

BayeScan) does not correlate with the environmental variation captured in our 
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environmental dataset, it would not be included in the final outlier list. If this is the case, 

some of the most divergent loci that would explain a high proportion of the variance within 

the genetic data may not be included in the AllEnvOutlier and CSTOutlier lists and thus do 

not contribute their variance to that explained by the first PC. Since out intention was to 

determine loci putatively linked to adaptive variation, we feel the environmental 

association methods are the most appropriate despite the differences in variance explained 

by the different outlier lists. 

The split between northern and southern populations can also be seen in the 

environmental PCAs, although the proportion of variance explained by the first PC in the 

environmental PCAs is much higher than that of the genetic PCAs (40.18% and 51.35% 

for AllEnv and CST, respectively). This is not surprising since the genetic data is inherently 

variable and each locus likely contributes a small amount to the total variation in the data 

(as expected in polygenic scenarios) rather than any one or a few loci solely driving the 

variation as opposed to the environmental data where a few variables (that load highly on 

the first PC) may be the sole drivers of the north/south discontinuity between populations. 

As may be expected by the similar patterns in the north/south discontinuity in both genetic 

and environmental data, we identified a strong relationship between spatial genetic and 

environmental variation. Previous analysis of the cline between northern and southern 

population groups (Van Wyngaarden et al. 2017) indicated that limited realized dispersal 

may be important in structuring sea scallop populations, however they also reported large 

differences in dispersal estimates calculated using outlier or neutral markers. This supports 

the hypothesis that selection and differential survival (evident in outlier loci) play a key 
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role in the genetic separation of north and south population groups. If selection and 

differential survival do play a role in structuring scallop populations, the patterns detected 

here may change with a changing ocean climate. 

 Increasingly the application of landscape genetic techniques in marine species 

provides evidence of local adaptation even with high levels of potential gene flow (Guo et 

al. 2015; Limborg et al. 2012; Sjöqvist et al. 2015). Studies consistently identify the 

importance of temperature to spatial structure and adaptive diversity. However, in many 

regions other environmental features often co-vary with temperature (e.g. salinity or ChlA) 

and in some analyses temperature may act as an unintentional proxy for the true selective 

force (a species may appear to adapt to temperature when in fact they are experiencing 

selection due to another variable such as ocean productivity). Although clear associations 

between genetic variation and temperature have been reported in several species, including 

Pacific invertebrates (Pespeni & Palumbi 2013), studies also demonstrate genomic 

adaptation to environmental gradients other than temperature, such as adaptation to salinity 

gradients in several Baltic Sea species (Berg et al. 2015; Limborg et al. 2012; Sjöqvist et 

al. 2015). In the North Atlantic, however, temperature variations (particularly with latitude) 

represent some of the strongest differences among regions (Townsend et al. 2006), and 

temperature may be the dominant selective force in this region. For example, strong 

correlations between genetic variation and ocean temperatures have been observed in many 

North Atlantic fish species including Atlantic cod, Atlantic herring, European hake, and 

Atlantic salmon (Berg et al. 2015; Bourret et al. 2013a; Bradbury et al. 2014b; Bradbury 

et al. 2010; Limborg et al. 2012)  
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3.5.2 Mechanisms of adaptation 

The genomic associations with ocean temperature during periods of extreme cold 

(i.e. winter) suggest temperature associated mortality may significantly structure sea 

scallop populations. Sea scallops reproduce via broadcast spawning, generally in the 

autumn, although timing varies along their range. Given that scallops tend to spawn in the 

warmest water (Thompson 1977), generally between August and October (Beninger 1987; 

Langton et al. 1987; Naidu 1970), and they likely settle before December (Naidu & Robert 

2006), a link between winter temperatures and larval mortality appears unlikely. Our 

analyses point to the overwinter survival of juvenile scallops as a potentially important 

structuring force limiting the effective dispersal of scallops between our northern and 

southern population groups, rather than selective mortality of planktonic larval scallops, 

and future experimental studies on larval and juvenile scallops may help to clarify this 

possibility. If true, this interpretation would point to the importance of bottom temperature, 

which is generally less readily available than surface temperature data. Although in some 

regions scallops may begin to spawn after their first winter (Naidu 1970), they may take a 

few seasons to reach reproductive maturity depending on food availability and other factors 

(Naidu & Robert 2006). Some evidence suggests that temperatures experienced by adults 

can help ensure a healthy larval year class (Dickie 1955; DuPaul et al. 1989; Kirkley & 

Dupaul 1991; Langton et al. 1987; Macdonald & Thompson 1985), further indicating that 

planktonic larval survival may not necessarily act as the main selective factor structuring 

sea scallop populations in the Northwest Atlantic. Interestingly, our study identified surface 

temperature rather than temperature at depth as the most important driver of selection, 
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contrary to expectations of juvenile scallop survival. One possible explanation is that deep 

temperature values are often estimated or provided as a range at collection sites, 

presumably reducing accuracy of those measurements relative to those for surface 

temperature. Our Blast2GO results identified possible genetic matches with several cellular 

processes which may highlight the potential mechanisms of thermal adaptation in the sea 

scallop. The lack of available genetic resources (i.e. reference genome) means these results 

are very preliminary and more study is needed before drawing conclusions from these 

results alone. However, as more genetic information becomes available for bivalves and 

scallops in particular, this may facilitate further detection of genes and pathways important 

to adaptation. 

Despite the clear association observed with ocean temperature and population 

structure, the driving mechanism is still unclear. As described in a review by Bierne et al. 

(2011), local adaptation alone may not explain the genetic structure detected among 

populations or the geographic location of the strong break between population clusters. 

Tension zones (caused by endogenous barriers to gene flow) may have arisen independent 

of selection caused by environmental variation along the range of the species, potentially 

influencing the separation of population groups between the north and south of the species 

range. These tension zones may associate with environmental clines, and a combination of 

both endogenous and exogenous barriers (tension zones and selection) could contribute to 

the detected structure. This scenario could also reinforce local adaptation associated with 

environmental adaptation (Sexton et al. 2014; Shafer & Wolf 2013), furthering 

differentiation between regions. From a fisheries and population management perspective, 
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however, the initial cause of the genetic clustering becomes less important. The key 

conclusions here help in understanding how environmental variation influences clines in 

genetic structure and how climate change and harvesting pressures may interact to 

influence population dynamics in the future. 

3.5.3 Challenges and limitations 

Our environmental dataset spanned several decades and used 90 variables, a 

particularly large dataset compared to others used in landscape genomics studies. By 

utilizing available government data from both Canada and the United States (DFO 2014; 

Gregory 2004; NASA Goddard Space Flight Center Ocean Ecology Laboratory 2014), we 

compiled a dataset encompassing the entire range of our sample sites and the full latitudinal 

range of P. magellanicus. This data set allowed us to average values over many years and 

determine climatological values, reducing the influence of inter-annual variation on our 

results and focusing instead on long-term population level differences among our sample 

sites. Missing data required that we use simple imputation as necessary to complete the 

dataset. Although the use of single imputation to infer missing data can be problematic 

(Plaia & Bondi 2006), the majority of our data (particularly temperature and salinity data 

used in the final multiple linear models) required few or no imputations thus supporting the 

findings reported here. 

This work identified outlier loci based on associations with environmental data 

using two techniques, BayEnv2 (Coop et al. 2010; Guenther & Coop 2013) and LFMM 

(Frichot & François 2015; Frichot et al. 2013). Both of these techniques account for neutral 

population structure when detecting outlier loci through environmental correlations, 
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however, the method differs between the two programs. BayEnv2 uses a subset of 

putatively neutral loci to first estimate neutral structure in the data, then tests for 

environmental correlations, whereas LFMM uses unobserved variables to account for 

population structure (due to population history and isolation-by-distance) within a mixed 

model. de Villemereuil et al. (2014) found that methods such as these that incorporate 

environmental data into outlier detection perform better than FST-based detection methods, 

and the number of loci detected by both methods (between 1.0% and 7.1%) is consistent 

with other studies examining putative selection on a genome wide scale (Nosil et al. 2009; 

Strasburg et al. 2012). In particular, de Villemereuil et al. (2014) found that BayEnv2 and 

LFMM performed better in highly structured hierarchical situations, however, in these 

situations BayEnv2 had low power to detect outliers compared to LFMM, especially when 

selection corresponded to an environmental gradient. Our results showed similarities to the 

de Villemereuil et al. (2014) analyses; LFMM detected more than twice as many loci as 

BayEnv2, potentially as a result of the putative lower power of BayEnv2. We also found 

little overlap in the results from both LFMM and BayEnv2, again mirroring the simulation 

results of de Villemereuil et al. (2014). Given the lack of overlap among approaches, we 

pooled outliers from both methods to increase our likelihood of detecting loci actually 

under selection. While this approach may decrease the power of some of our analyses to 

detect the strength of separation between the two population clusters, it increased the 

likelihood of capturing the important variables and genomic regions contributing to 

population structure in sea scallops. 
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Disentangling the influences of geography and climate remains a challenge in 

landscape genetics analyses, however strategies exist to help reduce this potential bias. 

Perhaps most importantly, many reviews on environmental association studies recommend 

removing the effects of neutral population structure to fully assess the effect of selection 

on population structure in natural systems (e.g. Rellstab et al. 2015). Previous researchers 

also recommended accounting for geographic distance and isolation-by-distance when 

examining potential isolation-by-ecology (e.g. Shafer & Wolf 2013). Because a single 

north/south population split characterizes our sample sites rather than a classic isolation-

by-distance pattern (Van Wyngaarden et al. 2017), geographic distance among populations 

may not influence our results the way it would in a system characterized by a classic 

stepping-stone pattern. Our samples also align along the north/south axis of the population 

range and thus provide few opportunities to examine the effects of distance between 

samples without also removing the effects of latitude. The variation in environmental data 

primarily by latitude further complicates the question. With this in mind, we still attempted 

several methods to minimize the potential bias of neutral population structure on our 

results. We focused our analysis solely on outlier loci potentially under selection in the 

genome and using only these outlier loci likely made our analyses less prone to the 

confounding effects of neutral population structure. We also compared the results of RDA 

and pRDA, which controls for geographic distance among populations. Even when 

controlling for geographic distance, our results nonetheless suggest that climate can be a 

significant population structuring force, and although much of the variation in the data was 

attributed to the joint effect of climate and geography, the patterns in population structure 

are robust to the bias of distance among populations. Although we believe our results to be 
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robust to complications of neutral population structure and geographic distance, additional 

sampling (especially from populations at the same latitude) will help to separate more 

thoroughly the joint effects of climate and geography on scallop population structure. 

Our analyses pinpointed potential environmental influences on sea scallop 

population structure, however, annotating the outlier SNPs of interest remains challenging. 

Although RAD-seq generates vast quantities of SNPs in organisms without reference 

genomes (Benestan et al. 2015; Catchen et al. 2013; Hohenlohe et al. 2012; Reitzel et al. 

2013), the lack of more detailed genetic resources makes inference on the causal 

mechanisms contributing to local adaptations in sea scallops difficult, as noted by our lack 

of GO matches. Fortunately, with continued development of resources for P. magellanicus 

and related species, future studies will likely identify and study the features most important 

in characterizing sea scallop population structure. Our results also provide an important 

starting point for future studies. If temperature drives variation in the reproductive rates of 

scallops, then increasing water temperatures associated with global warming may alter 

scallop reproductive cycles and subsequent recruitment (Robinson et al. 2007). Genetic and 

genomic studies to examine further effects of selection on population structure in scallops 

in tandem with experimental studies to identify adaptations among scallop populations may 

be critical to predicting how the species will react to future climate change and harvesting 

pressures.  

3.5.4 Conclusions 

Our results show that ocean climate plays a role in structuring populations of sea 

scallops, in particular the influence of the coldest temperatures experienced. The 
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association with coldest temperatures points to the over winter survival of juvenile scallops 

as a structuring force rather than survival of larval scallops, contrary to what might be 

expected for broadcast spawning marine species. This work and similar landscape (or 

seascape) genetic studies highlight the possibility that local adaptation and the differential 

survival of dispersers (rather than solely limited dispersal) may have greater impact on the 

population structure of marine species than previously hypothesized. Our results can be 

useful in the effective management of P. magellanicus by helping managers in both Canada 

and the United States accurately determine geographic sources of larvae for exploited 

populations and predict the potential reactions of this species to a changing ocean climate, 

particularly with changes to the location and strength of dominant currents. Additionally, 

access to further genetic resources will continue to improve identification of the genes and 

pathways involved in adaptation and population structuring among sea scallop populations. 
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3.6 Tables 

Table 3.1. Site name, site code, coordinates, and the number of sequenced P. magellanicus 
from each of 12 collection sites in the Northwest Atlantic Ocean. 

Site Name Site Code Latitude Longitude 
Number of  

scallops used in 
analysis 

Sunnyside, NL SUN 47.824108 -53.869456 20 

Little Bay, NL LTB 47.1545 -55.10416667 21 

Magdalen Islands MGD 47.1143 -62.0243 21 

Northumberland Strait NTS 46.13383333 -63.77283333 22 

Passamaquoddy Bay PSB 45.06473333 -67.01663333 12 

Bay of Fundy BOF 44.67615 -66.07181667 22 

Scotian Shelf - Middle SSM 44.52066667 -60.635 19 

Gulf of Maine Inshore GMI 44.52 -67.0319 20 

Browns Bank SSB 42.83716667 -66.13583333 22 

Gulf of Maine Offshore GMO 42.44 -70.3874 22 

George's Bank GEO 41.61266667 -66.36216667 22 

Mid Atlantic Bight* MDA 38.82265936 -73.59895436 22 
*several neighbouring sites sampled as one location   
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Table 3.4. (A) Matrix of the number of outlier loci detected in P. magellanicus 
out of 7163 total loci by the methods BayEnv2 and LFMM using two 
environmental datasets, AllEnv and CST. The number of loci shared between 
different environmental datasets and programs are italicized. (B) Combined 
total number of loci detected from two methods, BayEnv2 and LFMM, using 
two environmental datasets, AllEnv and CST. The number of loci shared 
between the different environmental datasets is italicized. 

(A)    

  BayEnv2 LFMM 

   AllEnv CST AllEnv CST 

BayEnv2 
AllEnv 128 37 18  

CST  72  5 

LFMM 
AllEnv   511 218 

CST    218 

      

(B)      

 AllEnv CST    

AllEnv 621 250    

CST  285    
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Table 3.5. Cumulative Akaike Information Criterion model weights (Σ ωi) and model-averaged 
parameter estimates (full: variables were assumed to be present in all models but with a 
coefficient of 0 in some cases; subset: variables were only present in models where the 
coefficient was not 0) in models predicting whether genetic variation in outlier loci among 
populations of P. magellanicus is a function of environmental variation. (A) Outlier loci were 
detected through correlations with an environmental dataset of 90 variables (AllEnv, n = 621 
loci). Environmental were selected following the results of principal components analysis and 
redundancy analysis. (B) Outlier loci were detected through correlations with an 
environmental dataset of 36 variables (CST, n = 285 loci). Environmental variables were 
selected following the results of principal components analysis and redundancy analysis. (C) 
Outlier loci were detected through correlations with an environmental dataset of 90 variables 
(AllEnv, n = 621 loci). Environmental variables were selected following the results from (A) 
and (B). (D) Outlier loci were detected through correlations with an environmental dataset 
containing a subset of all available environmental variables (CST, 36 variables, n=285 loci). 
Environmental were selected following the results from (A) and (B). 

     Model averaged parameter estimates 

 Parameter Σ ωi Full Subset 

(A) SurfAvWinTemp 0.426 0.6767452 1.5889694 
 SurfMinTemp 0.315 0.1673587 0.5337035 
 SurfAvAutSal 0.272 0.2465678 0.9065121 
 DepMinSiO4 0.256 0.2009489 0.7841225 
 DepAvAutSal 

 
0.152 

 
0.02467925 

 
0.16288929 

 
(B) SurfAvWinTemp 0.437 0.5586436 1.2785748 
 DepAvWinTemp 0.344 0.5687936 1.6505098 
 DepMaxSal 0.343 -0.4611794 -1.3452456 
 DepMinTemp 0.275 0.3441115 1.2523863 
 DepAvAutSal 

 
0.109 

 
-0.001612218 

 
-0.014871888 

 
(B) SurfAvWinTemp 0.643 1.031135 1.604291 
 DepAvWinTemp 0.282 0.04939479 0.17471122 
 SurfAvAutTemp 0.142 0.1584858 1.0963318 
 SurfAvSumTemp 0.141 -0.09856687 -0.69285742 
 DepAvSprTemp 0.103 0.04809931 0.45494143 
 DepAvAutTemp 0.095 0.04477454 0.46824153 
 DepAvSumTemp 0.083 0.01956854 0.23171602 
 SurfAvSprTemp 

 
0.080 

 
-0.01290984 

 
-0.1627252 
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(D) SurfAvWinTemp 0.587 0.6509583 1.10358 
 DepAvWinTemp 0.302 0.1932762 0.6457666 
 DepAvSprTemp 0.131 0.004951037 0.067160279 
 SurfAvAutTemp 0.121 0.08023971 0.5923327 
 SurfAvSumTemp 0.095 0.01497057 0.16543456 
 DepAvAutTemp 0.092 -0.02916119 -0.30036982 
 DepAvSumTemp 0.089 0.02933703 0.312122 
 SurfAvSprTemp 0.072 0.07923188 0.63938784 
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3.7 Figures 

 

Figure 3.1. Map of sea scallop collection locations from the Northwest Atlantic. Site 
MDA (Mid-Atlantic Bight) represents the middle of several nearby collection 
locations grouped as one population. Population codes are defined in Table 3.1. 

 

 

 

 

 



87 
 

  

Figure 3.2. Principal components analysis plots for loci detected as potentially under 
selection through environmental correlation with (a) AllEnv (90 environmental 
variables, n= 621 loci), (b) CST (36 environmental variables, n = 285 loci) in 12 
populations of P. magellanicus. 
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Figure 3.3. Principal components analysis plots for environmental variables used in the 
detection of adaptation among 12 populations of P. magellanicus. Environmental 
variables were separated into two datasets, (a) AllEnv (90 environmental 
variables) and (b) CST (36 environmental variables). 
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Figure 3.4. Linear regressions between the first principal component of PCA on 
population specific allele frequencies (Genetic PC1) and population specific 
environmental parameter values (Environmental PC1) for 12 populations of P. 
magellanicus for (a) AllEnv (90 environmental variables, 621 loci), and (b) CST 
(36 environmental variables, 285 loci). 
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Figure 3.5. Heat map of (A) standardized allele frequencies (AllEnvOutlier, 621 loci), (B) 
standardized environmental variable value (AllEnv, 90 variables), (C) 
standardized allele frequencies (CSTOutlier, 285 loci), and (D) standardized 
environmental variable value (CST, 36 variables) for 12 populations of P. 
magellanicus. Loci in (A) were selected as potentially under selection through 
correlation with environmental variables in (B). Loci in (C) were selected as 
potentially under selection through correlation with environmental variables in 
(D). SNPs in (A) and (C) are arrange in order of strongest to weakest 
differentiation pattern. 
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Figure 3.6. Redundancy analysis plots for loci detected as potentially under selection 
through environmental correlation with (a) AllEnv (90 environmental variables, 
n= 621 loci), (b) CST (36 environmental variables, n = 285 loci) in 12 populations 
of P. magellanicus. Explanatory variables were principal components axes from 
PCA on (a) AllEnv and (b) CST, retained following backwards stepwise variable 
selection. 
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Figure 3.7. Proportion of importance (average per variable importance / importance sum 
of all variables) for the top 15 environmental variables determined using Random 
Forest and (A) AllEnv and AllEnvOutlier, and (B) CST and CSTOutlier.  
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Chapter 4: Countergradient variation in larval growth may be an adaptive strategy 

for sea scallops, Placopecten magellanicus, from northern cold-water 

populations 

4.1 Abstract 

Environmental heterogeneity can drive adaptive divergence among populations. In 

the marine environment, large geographic ranges increase the potential for differences in 

population-specific environmental exposure. We performed common garden larval 

rearing experiments comparing two populations of the sea scallop Placopecten 

magellanicus, a broadcast spawning marine bivalve that spans a large geographic range. 

These populations span over 1200 km of ocean characterized by an approximately 2 °C 

difference in average annual bottom temperature. ANCOVA on growth and survival 

versus experimental temperature indicated a higher overall growth rate in cold-water 

scallops (P < 0.001) and warm-water scallops exhibited higher overall survival (P < 

0.001), however, we found no growth or survival responses to temperature in either 

population (P > 0.05). These results point to potential countergradient variation in 

response to cold winter temperatures experienced by the most northern population. This 

finding provides further support for previous studies of genomic differentiation in this 

species that found associations between genomic variation and ocean temperature. In 

conjunction with genomic data, these results provide evidence of temperature-associated 

adaptation over fine spatial scales between sea scallop populations and have implications 

for future management and conservation in sea scallops and other marine species. 

4.2 Introduction 
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Gradients in environmental parameters over latitude, distance, or time often 

expose populations along a species’ range to vastly different conditions, potentially 

leading to local adaptation. Environmental gradients can be especially prevalent in marine 

systems given the large geographic range of many marine species (Hauser & Carvalho 

2008). Historical perspectives on the marine environment assumed limited adaptive 

differentiation resulting from large population sizes that would prevent genetic drift from 

promoting differentiation and presumed high levels of gene flow between marine 

populations (Hauser & Carvalho 2008), however, studies increasingly show evidence of 

fine-scale (<100 km) local adaptation (e.g. Clarke et al. 2010; Hutchings et al. 2007; 

Limborg et al. 2012; Sjöqvist et al. 2015). Understanding the patterns of adaptation in the 

marine environment can be particularly important in exploited marine species (Allendorf 

et al. 2010; Conover et al. 2006; Sale et al. 2005). By identifying adaptive divergence and 

the environmental pressures driving this divergence, researchers and managers can make 

informed decisions regarding management plans and begin to predict species response to 

changing environmental pressures and continued exploitation. 

Recently, improvements in genetic and genomic technologies have enabled the 

detection of adaptation among populations through large-scale genetic and genomic 

studies, often utilizing landscape genetics techniques (Forester et al. 2015; Rellstab et al. 

2015). Landscape genetic analyses have demonstrated environmental associated 

adaptation in many species, including ectothermic marine organisms (Berg et al. 2015; 

Bradbury et al. 2014b; Bradbury et al. 2010; Hecht et al. 2015; Limborg et al. 2012; 

Milano et al. 2014; Pespeni & Palumbi 2013). Evidence of adaptive diversity supports the 
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prediction of more frequent adaptation than expected in marine populations assuming 

high levels of gene flow in the marine environment (Cowen et al. 2000; Hauser & 

Carvalho 2008; Thorrold et al. 2002). Studies of adaptation using genetic methods can 

provide insight into the adaptive dynamics of marine populations, however, Rellstab et al. 

(2015) (and others) suggest combining both landscape genetic and more traditional 

experimental approaches to detect adaptation. This combination offers a robust strategy to 

detect adaptation among populations and identify the sources of adaptive pressure that 

may lead to genetic and phenotypic divergence. 

Experimental methods of detecting adaptation focus on identifying population 

specific differences in reaction norms which can evolve in response to different selective 

influences (De Jong 2005). Experiments on reaction norms generally utilize common-

garden rearing protocols, which allow comparison of different populations and families 

reared under identical conditions. Studies of genetic variation among populations and the 

link between genetic variation and the slope and intercept of the reaction norm (Gutteling 

et al. 2007; Jensen et al. 2008; Van Asch et al. 2007; Winterhalter & Mousseau 2007) 

validate the presence of local adaptation. The logistical challenges of raising experimental 

populations, especially marine organisms with small larvae, has focused much of the 

work on reaction norm analysis using common garden experiments on terrestrial 

organisms such as Drosophila sp. (Liefting et al. 2009). The last decade, however, has 

seen increased analyses on experimental reaction norms in a variety of marine organisms 

(Conover & Present 1990; Hutchings et al. 2007; Jensen et al. 2008; Oomen & Hutchings 
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2015; Yamahira et al. 2007), providing unique insight into the scale of marine adaptation 

(Cowen et al. 2000; Hauser & Carvalho 2008; Thorrold et al. 2002).  

Among environmental variables, temperature often contributes significantly to 

local adaptation, particularly for ectothermic organisms in which temperature affects 

numerous morphological and developmental traits (Roff 2002) by influencing metabolic 

and physiological reactions at all levels (Yamahira et al. 2007). In marine systems, 

temperature variation with latitude often dominates environmental drivers, and the large 

ranges and population sizes of many species may result in different populations within the 

same species experiencing widely different environmental conditions (e.g. Bradbury et al. 

2010; Van Wyngaarden et al. in review). Here we explored the presence of temperature 

associated adaptive differences among northern and southern populations of the sea 

scallop, Placopecten magellanicus, using common-garden experiments with larvae.  

Previous work on populations from these regions identified two population 

clusters, one northern cluster (generally cold-water) and one southern cluster (generally 

warm-water) (Van Wyngaarden et al. 2017). Data on the temperature variation between 

these populations was collected for Van Wyngaarden et al. (in review) and demonstrates 

that although the yearly average temperature between our populations does not 

significantly differ, bottom temperatures vary more in our northern cluster population 

which also has a much colder winter depth temperature (roughly December to April). than 

the southern cluster population. Based on the genetic differences between scallop 

populations at the north and south of their range (Kenchington et al. 2006; Owen & 

Rawson 2013; Van Wyngaarden et al. 2017) , correlations between genetic differentiation 
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and environmental variation (Van Wyngaarden et al. in review), strong temperature 

gradients along the species range (Townsend et al. 2006), and the detection of thermal 

reaction-norm adaptation in other species in the same geographic region (Conover & 

Present 1990; Hutchings et al. 2007; Purchase & Brown 2000), we predicted population-

level differences in the growth and survival thermal reaction norms of larval sea scallops. 

4.3 Methods 

4.3.1 Study species 

The sea scallop occurs along the east coast of North America, from 

Newfoundland, Canada in the north to Cape Hatteras, USA in the south (Posgay 1957). It 

reproduces via broadcast spawning and, like many broadcast spawners, sea scallops 

exhibit extremely high early life mortality. The long planktonic larval stage 

(approximately 30 days) likely exacerbates mortality (Naidu & Robert 2006). Scallops 

typically begin spawning at approximately two years old, generally spawning when the 

water is warmest (Thompson 1977) between August and October (e.g. Beninger 1987; 

DiBacco et al. 1995; Langton et al. 1987; Naidu 1970; Posgay & Norman 1958), 

however, a smaller springtime spawning may also occur in several regions of the 

population range (Dadswell & Stokesbury 2007; Kirkley & Dupaul 1991; Macdonald & 

Thompson 1988; Schmitzer et al. 1991).  

4.3.2 Experimental conditions 

All experiments and algal culturing were completed at the Bedford Institute of 

Oceanography in Dartmouth, Nova Scotia, Canada between May and November 2014.We 
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conditioned all equipment in filtered seawater for several weeks prior to the beginning of 

the experiment. Prior to and during the experiment, all equipment was washed between 

uses with a 0.03% bleach solution, rinsed thoroughly with freshwater, and given a final 

rinse in filtered seawater before exposure to any animals to minimize contamination 

between experimental treatments and disease transmission between scallop families. 

Algae were cultured in sterile flasks (SF) and carboys (SC) as well as large, open-air, 

aerated tubes for larval and adult scallop consumption. Larval scallops were only fed 

algae from SF and SC in an effort to prevent contamination and disease transmission. We 

prepared and autoclaved filtered sea water with a mixture of required nutrients and 

silicates (for diatoms), in small and large flasks and carboys. In a clean fume hood using 

sterile pipettes, we transferred algae from an existing flask colony to a new SF or SC and 

grew them in a warm room with ample light and cropped them in log growth phase for 

feeding scallop larvae. The large open-air tubes were cropped daily to feed adult scallops 

during conditioning, and replenished with filtered, pasteurized seawater and nutrients. We 

verified algal cell concentration with a hemocytometer initially and then verified colour 

visually for subsequent feedings. 

4.3.3 Adult scallop collection and conditioning 

We collected adult sea scallops from the Northumberland Strait (NTS, June, 

northern population cluster) and the Bay of Fundy (BOF, July, southern population 

cluster) in the early summer of 2014 (Figure 4.1). Using data and following protocols 

from Van Wyngaarden et al. (in review), we estimated collection depths at approximately 

20 m for NTS and between 30 m and 140 m for BOF. Average annual temperature at 
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depth did not significantly differ between these sites, however, the temperature range was 

greater at NTS than BOF (approximately 16 °C annually at NTS and 9 °C annually at 

BOF) and the winter temperatures (December to April) were significantly colder at NTS 

(-0.7 °C) than BOF (5.0 °C) (Welch two-sample t-test, P < 0.001). 

Male and female scallops were identified and separated into 300L flow-through 

tanks supplied with filtered seawater from the Bedford Basin at ambient temperatures. 

We conditioned scallops over several weeks to prepare them for spawning, siphoning 

tanks every other day to remove feces and other detritus, monitoring temperature and 

salinity with a YSI 30 probe, and checking pH using a minilab pH meter. Temperature 

ranged from 4.0 to 11.9 °C, salinity ranged between 27.7 and 32.1 psu, and pH ranged 

between 7.6 and 8.2 over the course of conditioning for both populations (Figure 4.2). We 

adjusted the photoperiod for NTS scallops from the June average for the collection 

location (approximately 15h45m of daylight) to the late August average (approximately 

13h20m of daylight) over a period of three weeks because photoperiod has been shown to 

affect the sea scallop reproductive cycle and influence conditioning for reproduction 

(Couturier and Aiken 1989). Photoperiod for BOF scallops was changed from the July 

average (approximately 15h0m of daylight) to the late-August average (approximately 

13h20m of daylight) over one week (TheWeatherCompany 2016). Once scallops reached 

their final photoperiod, we held hours of daylight steady until spawning. Adult scallops 

were fed approximately 1L of Tetraselmis sp., Pavlova lutheri, and Chaetoceros muelleri 

algal culture/scallop/day at a concentration of approximately 300 000 algal cells/mL in 

the algal culture. Feeding took place over several sessions per day to allow scallops to 
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efficiently clear algal particles, with flow-through seawater temporarily stopped for 

approximately 30 minutes after algal addition. Overnight and on weekends, peristaltic 

pumps added algae to adult tanks at a constant rate. We filtered sea water for spawning 

and larval growth more thoroughly than for adult scallops by running incoming sea water 

through a series of filters (20µm, 5µm, and ceramic) and a UV sterilizer into a large 120 

L container bubbled with filtered air for one hour. After bubbling, we filled a clean 0.5 L 

container to test temperature, salinity, and pH of the further filtered seawater (FS). An 

aquarium heater adjusted temperature to ± 1 °C of the experimental temperature as 

necessary (10 °C, 13 °C, and 16 °C). 

4.3.4 Spawning 

We induced adult scallops to spawn once gonads appeared ripe [approximately 

stage VII in Naidu (1970)]. NTS scallops spawned between 8 July and 16 July 2014, and 

BOF scallops spawned between 17 September and 19 October 2014. Adults were 

removed from their conditioning tanks, cleaned, and exposed to air for 15 minutes. 

Following air exposure, scallops were placed in a clean 4 L bucket and alternated 

between 4 °C and 16 °C seawater every 15 minutes for two hours or until spawning. We 

allowed an individual to spawn freely for up to 30 minutes once it began spawning, at 

which point we removed the scallop from the bucket, labelled it, and set it aside for 

sampling. Eggs were rinsed in FS through a 40 µm screen into a clean container. After the 

eggs were mixed well, we sampled to determine egg concentration by counting eggs 

under a microscope. Eggs were then added to a clean 4 L bucket at a concentration of 

~500 eggs/mL. We strip spawned males that did not spawn naturally within 30 minutes 
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(strip spawning does not produce viable eggs in female scallops). Strip spawned sperm 

were allowed to activate in FS for 15 minutes, and we checked viability and counted 

sperm under a microscope. Sperm from one male was added to eggs from 1 female at a 

concentration of ~ 12:1 (Jones et al. 1996). Following fertilization, we split each family 

into three 4-L buckets and held them at 13 °C until day 3 post-spawn, the first appearance 

of D-stage larvae. Following spawning, adults were shucked to remove a small adductor 

muscle tissue sample for storage in 95% ethanol. 

4.3.5 Larval rearing 

At day 3 post-spawn, we confirmed the presence of D-stage larvae in all buckets. 

Larvae from a single family were then rinsed through a 40-µm sieve and combined into 

one container. Larvae were well mixed and then separated into three 4 L buckets, 

assigning each of these three buckets to a temperature treatment (10 °C, 13 °C, or 16 °C) 

and appropriate incubator, with each family replicated once in each temperature. We 

randomized bucket position on the incubator shelves, and placed quality control buckets 

on each shelf. Temperature, salinity, and pH were monitored daily from the quality 

control buckets which underwent the same cleaning and water changes as experimental 

buckets. Larval buckets alternated between a full clean and half clean every other day. To 

clean buckets, we filtered larvae from the bucket through an appropriately sized sieve 

(40-µm or 60-µm, depending on age and size of larvae) and placed the sieve in FS at the 

appropriate experimental temperature. The clean bucket was then refilled with 4 L of FS 

at the experimental temperature prior to gently rinsing in larvae. On half clean days, we 

removed only half of the water and refilled the bucket to 4 L with FS prior to gently 
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rinsing larvae back into the bucket from the sieve. Larvae were sampled every 2 days 

(every full clean day) for NTS and every 4 days (every other full clean day) for BOF. 

Once sieved from the bucket, larvae were rinsed into a clean 1 L container, and well 

mixed before we collected three 1 mL samples for each family and temperature treatment. 

Samples were fixed with buffered formalin on the day they were taken at a 9:1 

water:formalin ratio. After sampling, we gently rinsed the remaining larvae back into 

their cleaned 4 L bucket with FS. Following daily cleaning, we immediately fed scallop 

larvae Isochrysis galbana starting on day three until day 13, and a mixture of I. galbana 

and P. lutheri from day 14 until the end of the experiment. We estimated algal 

concentrations from algal culture colour (consistently within the log growth phase) and 

added approximately 15 mL of algal solution from day three until day nine, and 25 mL of 

algal solution from day 10 until the end of the experiment to all scallop larval containers.  

4.3.6 Larval sample analysis 

The 1mL larval samples from day 3 and day 21 were mixed well with a pipette 

and placed under a microscope with attached camera. We collected images of each larva 

in each sample to count the number of larvae per sample and measure larval height using 

ImageJ (Rasband 1997-2015) (height defined as length of the larva perpendicular to the 

straight edge of the shell, Figure 4.3). We averaged larval height and number of larvae per 

sample over triplicate samples for day 3 and day 21 and calculated total growth (shell 

height at day 21 – shell height at day 3) and percent survival [(density at day 21 / density 

at day 3)*100] for each temperature and family. Partial samples provided larval size 

measurements but not survival estimates. Larval growth values were log transformed to 



103 
 

reduce heteroscedasticity in the data. We generated linear models in R (R Development 

Core Team 2012) separately for growth and survival, with Log10Growth and Survival as 

response variables, and Temperature, Population, and the Temperature*Population 

interaction as fixed explanatory variables. 

4.4 Results 

All results are presented as mean ± standard deviation where available. During 

conditioning, we exposed adults from NTS to temperatures ranging from 4.0 to 10.4 °C 

(average 6.7 ± 1.3 °C), salinities ranging from 30.7 to 32.1 psu (average 31.3 ± 0.3 psu), 

and pH ranging from 7.6 to 8.2 (average 7.9 ± 0.2). Temperatures for BOF adults ranged 

from 5.8 to 11.9 °C (average 9.1 ± 1.5 °C), salinities from 27.7 to 31.7 psu (average 30.7 

± 0.6 psu), and pH from 7.7 to 7.9 (average 7.8 ± 0.1) (Figure 4.2). 

During the common garden-like experiment, we exposed NTS larvae in the 10 °C 

temperature trial to an average temperature of 10.2 ± 1.9 °C, an average salinity of 30.9 ± 

1.5 psu, and an average pH of 8.0 ± 0.1, whereas BOF larvae were exposed to 9.7 ± 1.2 

°C, 31.0 ± 0.3 psu, and a pH of 8.0 ± 0.1. In the 13 °C trial, we exposed NTS larvae to an 

average temperature of 13.9 ± 1.8 °C, an average salinity of 30.9 ± 1.1 psu, and an 

average pH of 8.1 ± 0.1, in contrast to exposing BOF larvae to 13.2 ± 0.2 °C, 31.0 ± 0.2 

psu, and a pH of 8.0 ± 0.1. In the 16 °C trial, we exposed NTS larvae to an average 

temperature of 16.2 ± 0.5 °C, an average salinity of 30.9 ± 1.4 psu, and an average pH of 

8.0 ± 0.1, whereas BOF larvae were exposed to 16.7 ± 0.7 °C, 31.3 ± 0.2 psu, and a pH of 

8.0 ± 0.1 (Table 4.1, Figure 4.4). 

4.4.1 Growth 
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Final analysis of growth included six families from NTS (2, 3, 5, 7, 8, 9) and eight 

families from BOF (1, 2, 4, 5, 6, 7, 8, 9).  The average number of larvae per sample 

measured was 12.9 ± 8.8. Average growth of BOF over the trial at 10 °C was 12.0 ± 7.1 

µm, 12.1 ± 6.0 µm at 13 °C, and 11.6 ± 4.0 µm at 16 °C. Average growth of NTS over 

the trial was 19.6 ± 4.5 µm at 10 °C, 22.6 ± 6.3 µm at 13 °C was, and 24.0 ± 6.2 µm at 16 

°C . ANOVA on the linear model of Log10Growth found significant Population level 

differences in overall growth (F = 37.93, P = < 0.001) but showed no significant 

Temperature*Population interaction (P > 0.05, Table 4.2). Population specific estimates 

of reaction norm slope and intercept were not significantly different between NTS 

(intercept: 1.14 ± 0.34, slope: 0.01 ± 0.03) and BOF (intercept: 1.00 ± 0.37, slope: 0.00 ± 

0.02) (Welch two-sample t-test, P > 0.05), and, in both cases, the slope estimate contained 

0, indicating a limited interactive effect of temperature on larval growth (Figure 4.5A).  

4.4.2 Survival 

 We could not analyze survival in several families that we analyzed for growth 

because of a sampling error, and therefore used six families from NTS (2, 3, 5, 6, 7, 8) 

and six from BOF (1, 5, 6, 7, 8, 9) in the final survival analysis. The average number of 

larvae per sample measured was 14.4 ± 9.4. Average survival of BOF over the trial was 

74.4 ± 16.3% at 10 °C, 65.0 ± 8.0%, at 13 °C and 72.4 ± 21.5% at 16 °C . Average 

survival of NTS over the trial was 35.0 ± 21.0% at 10°C, 41.8 ± 17.3%, at 13 °C and 43.1 

± 4.8% at 16 °C. ANOVA on the linear model of survival identified Population level 

differences (F = 17.34, P = < 0.001), but showed no significant Temperature*Population 

interaction (P > 0.05, Table 4.3). Population specific estimates of survival reaction norm 
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slope and intercept did not differ significantly between NTS (intercept: 0.02 ± 1.03, slope: 

0.03 ± 0.08) and BOF (intercept: 0.81 ± 0.66, slope: -0.01 ± 0.66) (Welch two-sample t-

test, P > 0.05) and, as observed with the growth results, both slope estimates contained 0 

indicating a limited effect of temperature on larval survival (Figure 4.5B). 

Overall, families within each population varied greatly in both growth and 

survival, as can be seen by the within-Population Sum of Squares and in Figure 4.6, likely 

contributing to the lack of population level differences in the slopes of the reaction norms. 

4.5 Discussion 

 Selection associated with variation in the environment experienced by different 

populations can drive local adaptation. Using sea scallops from populations previously 

shown to differ genetically (Van Wyngaarden et al. 2017), we performed a common-

garden experiment examining larval growth and survival in response to temperature. We 

found no effect of temperature on larval survival or growth in either population, however, 

the more northern population showed overall higher growth rates whereas the more 

southern population showed overall higher survival. Although larval life stages did not 

respond to temperature variation, these results suggest evidence of local adaptation 

through possible countergradient variation (Conover & Present 1990), where higher 

latitude populations (or those from colder habitats) grow faster than lower latitude 

populations. Although further study is required to detect adaptive variation in early larval 

stages of the sea scallop, our results considered in tandem with previously identified 

genetic differences between northern and southern scallop population groups (Van 

Wyngaarden et al. 2017) and the likely influence of winter temperatures on effective 
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connectivity among scallop populations (Van Wyngaarden et al. in review) suggests 

adaptive differentiation occurs among scallop populations and should be incorporated into 

management strategies. 

4.5.1 Adaptation in marine environments 

Genetic and experimental studies continue to accumulate evidence of fine-scale 

adaptation among marine populations (e.g. Guo et al. 2015; Haugen & Vøllestad 2000; 

Hutchings et al. 2007; Limborg et al. 2012; Sjöqvist et al. 2015). Many regions exert a 

selective force that influences many species [for example, salinity gradients in the Baltic 

Sea (Berg et al. 2015; Sjöqvist et al. 2015) and the Mediterranean Sea (Milano et al. 

2014)] and in the Northwest Atlantic, the dominant selective pressure appears to be 

temperature. Temperature varies particularly strongly with latitude in the Northwest 

Atlantic along the coast of the United States and Canada where the cold Labrador Current 

meets the warm Gulf Stream (Townsend et al. 2006). Many species ranges span this 

strong temperature gradient, and studies report both reaction norm variation (Conover & 

Present 1990; Hutchings et al. 2007; Purchase & Brown 2000) and genetic structure 

(Benestan et al. 2015; Bradbury et al. 2010; Van Wyngaarden et al. 2017) for species in 

the region. 

In ectothermic organisms, temperature can drive adaptation through effects on 

metabolic and physiological reactions (Yamahira et al. 2007). Many studies on marine 

ectotherms have focused on thermal reaction norms and found evidence of adaptive 

phenotypic plasticity among populations, particularly in larval growth rates and survival 

(Conover & Present 1990; Haugen & Vøllestad 2000; Hutchings et al. 2007; Jensen et al. 
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2008; Oomen & Hutchings 2015; Yamahira et al. 2007). These adaptations generally fall 

into two categories as described in Conover & Present (1990) and Yamahira et al. (2007): 

populations from cooler-water regions may experience a shift in a trait maximum to lower 

temperatures (i.e. maximum values for a trait such as growth may occur at a lower 

temperature), populations from cooler-water regions may increase in trait performance 

overall (populations may exhibit higher growth potential at all temperatures), or 

populations may show a combination of the two strategies.  

4.5.2 Thermal adaptation in the sea scallop 

 We found no evidence for variation in thermal response between NTS and BOF, 

however across all temperatures NTS had higher growth than BOF. This higher overall 

growth in NTS may exemplify countergradient variation (Conover & Present 1990) as an 

adaptive mechanism to compensate for shorter growing seasons (Yamahira et al. 2007) 

and a colder winter growth period in NTS than in BOF. Such patterns are reported in 

Atlantic silversides (Conover & Present 1990) and Atlantic cod (Purchase & Brown 

2000) in the northwest Atlantic and the Pacific silversides in the northeast Pacific 

(Baumann & Conover 2011). There is evidence that scallop growth rates vary among 

locations (Claereboudt & Himmelman 1996; Harris & Stokesbury 2006), and although 

Macdonald & Thompson (1988) found similar growth rates in adult growth rates across 

latitudes, limited work has focused on larval scallops. Although previous work on this 

region has reported similar average autumn temperatures in both NTS and BOF and 

planktonic larval scallops from NTS likely experience temperatures no colder than those 

from BOF, NTS nonetheless shows greater variation in autumn temperatures with both 
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higher maximum temperatures and lower minimum temperatures (DFO 2015; Gregory 

2004; Van Wyngaarden et al. in review). NTS also experiences much colder winter 

temperatures than BOF, so faster growth rate in larval scallops from NTS may represent a 

response to a short post-settlement pre-winter period rather than a colder growing season. 

Scallop larvae metamorphose and settle to the sea floor at approximately 200 µm 

(Culliney 1974), suggesting that a higher growth rate could shorten larval duration. A 

reduced larval duration at NTS may allow settled NTS scallops a longer period to build 

up energy stores to survive their first cold winter, compared to BOF scallops that 

experience less extreme winter temperatures. Alternatively, an earlier spawning season 

may allow NTS scallops a longer preparatory period, although reports on spawning time 

between scallop populations are conflicting likely due to high inter-annual variability 

(e.g. Beninger 1987; Macdonald & Thompson 1988). In other marine species in the 

Northwest Atlantic, over-winter mortality has been shown to vary with latitude, likely 

driven by salinity and temperature variations (Bauer & Miller 2010). Overall, these 

differences support recent landscape genetic studies on this species which highlighted 

winter temperatures as a possible structuring force in the strong split between northern 

and southern scallop populations (Van Wyngaarden et al. in review). 

As with growth, our results show no evidence of a response to temperature in 

larval survival. There are overall population level differences, however, with higher 

survival in BOF larvae at all temperatures. Like broadcast spawning species, scallops 

invest energy in producing large numbers of gametes, and massive mortality and loss of 

numbers characterize the subsequent larval period (Naidu & Robert 2006; Thorson 1950). 
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Growth may be favoured at the expense of early larval survival in NTS to ensure that 

larvae settle out of the water column to become juveniles as quickly as possible. In 

contrast, BOF scallop larvae may be less constrained to grow quickly and scallops that 

allocate more energy to survival at a young larval stage may nonetheless survive until 

reproductive age. The lack of GEI detected in early larval survival in our experiment 

suggests that post-settlement mortality may structure sea scallop populations more than 

early life mortality, although further evidence is needed. This may mirror size-dependent 

winter mortality commonly seen in marine fish populations (e.g. Beamish et al. 2004; 

Schultz et al. 1998), and previous studies identify post-settlement mortality as a selective 

force in several other broadcast spawning marine invertebrates in the context of 

adaptation to salinity in Mytilus edulis (blue mussel) (Koehn et al. 1976; Koehn et al. 

1980) and Semibalanus balanoides (acorn barnacle) (Schmidt et al. 2000). 

4.5.3 Limitations and implications 

High variability in growth rate among families clearly limited the power to detect 

differences among populations. Interestingly, we observed growth rates in two BOF 

families similar to those in NTS families, with greatly reduced growth rates in the 

remaining six BOF families. We also observed some overlap in the survival data, with 

survival rates in one NTS family similar to that of BOF, however, overall survival rates 

were more similar between NTS and BOF than growth rates. The variability observed 

suggests the possibility of experimental error in the analysis which can be seen in the 

large within population sum of squares in our ANOVA. Our experiment introduced 

several possible avenues for error. The experiment was logistically complicated, 
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particularly given the necessity of inducing natural spawning in conditioned females. 

Because of this constraint, the trials ran at slightly different times of the year. Although 

we made every effort to ensure stability in food and environmental conditions across 

adult conditioning and larval trials, our monitoring suggests slight variation during the 

trials. In addition, the effects of conditioning duration on adults, variation in collection 

time, and possible bacterial or parasitic infection of larval families may have also added 

sources of error. Other factors may also have contributed to the lack of GEI in both sea 

scallop populations. In the survival estimates in particular, the more frequent sampling of 

NTS than BOF may also have influenced results, although the small number of larvae 

removed during sampling procedures decreases the likelihood this factor influenced 

differences between survival estimates. Finally, previous landscape genetic work on sea 

scallops suggests that the coldest temperatures experienced by a population influence 

population structure (Van Wyngaarden et al. in review). If, as suggested here and 

elsewhere, winter temperatures are an important driving force in scallop population 

differentiation, the experimental temperatures used during our trials were potentially not 

low enough to elicit an effect in the scallop larvae. Temperatures were chosen within the 

range experienced in NTS and BOF during autumn, however, colder temperatures might 

have shown adaptive differences between the studied populations. 

 Even with experimental limitations, the results presented here provide further 

evidence of adaptive differentiation among sea scallop populations. Previous work on sea 

scallops showed differences in reproductive timing and fecundity among different 

populations (e.g. Barber et al. 1988; Beninger 1987; DuPaul et al. 1989; Naidu 1970, and 
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Kirkley & Dupaul 1991), evidence of genetic differentiation at large and small scales 

(Kenchington et al. 2006; Owen & Rawson 2013; Van Wyngaarden et al. 2017), and 

evidence of correlations between genetic structure and environmental differentiation (Van 

Wyngaarden et al. in review). Our results, building on previous experimental and 

observation examination of sea scallop populations, improve our understanding of the 

relationship between environmental variation, adaptation, and genetic population 

structure among Northwest Atlantic sea scallops. 

4.5.4 Conclusions 

Although we found no evidence of genotype-by-environment interaction in the 

reaction norms of larval growth and survival between the scallop populations studied, we 

nonetheless found evidence that countergradient variation occurs in the growth of larval 

sea scallops. NTS, our northern experimental population, experienced higher overall 

growth rates than our southern BOF population, which may indicate that NTS larvae are 

adapted for a shorter pelagic larval duration, possibly to allow settled scallops to prepare 

for the cold winters experienced by NTS. Experimental limitations may have prevented 

the detection of adaptive variation between sea scallop populations, however, the detected 

countergradient variation, in addition to previous work identifying adaptive genetic 

variation due to the coldest temperatures experienced by scallop populations (Van 

Wyngaarden et al. in review), suggests that post-settlement and overwinter mortality may 

play a stronger role than larval mortality in sea scallop population structure. These 

conclusions, and others from studies such as these, provide valuable information for 



112 
 

population management and can help managers effectively plan strategies and predict 

how species may respond to environmental change.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



113 
 

4.6 Tables 

Table 4.1. Minimum, maximum, and average temperature, salinity, and pH experienced by 
Placopecten magellanicus larvae from two populations during a 21-day common garden larval 
growth experiment (average ± standard deviation in parentheses). 

Population Trial Temperature (°C) Salinity (ppt) pH 

NTS 

10°C 2.6 - 12.2 (10.2 ± 1.9) 27.7 - 32.9 (30.9 ± 1.5) 7.9 - 8.3 (8.0 ± 0.1) 

13°C 12.9 - 21.0 (13.9 ± 1.8) 27.7 - 31.6 (30.9 ± 1.1) 7.9 - 8.4 (8.1 ± 0.1) 

16°C 14.3 - 16.8 (16.2 ± 0.5) 27.8 - 32.1 (30.9 ± 1.4) 7.9 - 8.3 (8.0 ± 0.1) 

     

BOF 

10°C 4.3 - 11.5 (9.7 ± 1.2) 30.4 - 31.5 (31.0 ± 0.3) 7.9 - 8.1 (8.0 ± 0.1) 

13°C 12.3 - 13.8 (13.2 ± 0.2) 30.5 - 32.0 (31.0 ± 0.2) 7.8 - 8.0 (8.0 ± 0.1) 

16°C 13.8 - 18.1 (16.7 ± 0.7) 30.8 - 32.0 (31.3 ± 0.2) 7.9 - 8.2 (8.0 ± 0.1) 
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Table 4.2. ANOVA table for a linear model examining the effects of temperature, population, 
and their interaction on the Log10Growth of larval P. magellanicus from two populations. 

Model Term DF Sum of Squares Mean of Squares F p-value 

Temperature 1 0.01605 0.01605 0.6917 0.4108 

Population 1 0.87979 0.87979 37.9283 < 0.001* 

Temperature x 

Population 1 0.0085 0.0085 0.3666 0.5485 

Residual 38 0.88145 0.0232   
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Table 4.3. ANOVA table for a linear model examining the effects of temperature, population, 
and their interaction on the survival of larval P. magellanicus from two populations. 

Model Term DF Sum of Squares Mean of Squares F p-value 

Temperature 1 0.00569 0.00569 0.2249 0.6386 

Population 1 0.84373 0.84373 33.3673 < 0.001 * 

Temperature x 

Population 

1 0.0153 0.0153 0.6051 0.4423 

Residual 32 0.80916 0.02529   
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4.7 Figures 

 

Figure 4.1. Map of collection locations for two populations of P. magellanicus used in the 
common-garden larval rearing experiment. 
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Figure 4.2. (A) Temperature, (B) salinity, and (C) pH experienced by adult P. 
magellanicus during conditioning. Horizontal lines indicate induced spawning 
periods for each population. 
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Figure 4.3. Example of typical D-stage scallop larval image indicating appropriate scale 
and shell height measurement. 
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Figure 4.4. (A, B, C) Temperature, (D, E, F) salinity, and (G, H, I) pH experienced by 
larvae in each temperature trial (10 °C – A, D, E; 13°C – B, E, H; 16 °C – C, F, I) 
over the duration of the three-week experiment. Dashed horizontal lines indicate 
the mean value over the duration of the trial. Solid horizontal line indicates 
duration of the experiment for each population; the timing of spawning for 
individual families within each population results in difference in length between 
NTS and BOF. Gaps are due to missing data. 
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Figure 4.5. (A) Average log growth ± SD of NTS (blue circles) and BOF (red triangles) 
over a three-week period at three different temperatures (10 °C, 13 °C, 16 °C). (B) 
Average survival ± SD of NTS (blue circles) and BOF (red triangles) over a three-
week period at three different temperatures (10 °C, 13 °C, 16 °C). 
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Figure 4.6. (A) Log growth for individual families within NTS (blue circles) and BOF 
(red triangles) over a three-week period at three different temperatures (10 °C, 13 
°C, 16 °C). (B) Survival for individual families within NTS (blue circles) and 
BOF (red triangles) over a three-week period at three different temperatures (10 
°C, 13 °C, 16 °C). 
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Chapter 5: Summary 

Given documented phenotypic differences among sea scallop populations (e.g. 

Barber et al. 1988; Manuel et al. 1996b; Naidu 1970; Naidu & Robert 2006), the large 

range spanned by the species (Posgay 1957), the economic importance of the species, and 

previous work identifying genetic differences (Kenchington et al. 2006; Owen & Rawson 

2013), we aimed to use modern genomic technologies and experimental approaches to 

determine range-wide population structure and potential drivers of adaptation in the sea 

scallop. RAD-seq genotyped 7163 SNPs in 245 individuals across 12 populations, and we 

used outlier analysis to identify approximately 1% of these SNPs putatively under 

selection in the scallop genome. Based on these markers and a complementary larval 

rearing experiment, our work identified previously unrecognized population structure, 

documented potential limited dispersal among populations, and highlighted the influence 

that environmental differences among populations may have on population structure and 

adaptation.  

5.1 Population Structure 

 In Chapter 2, we characterized strong range-wide population structure in the sea 

scallop, separating populations into north and south clusters with the split located around 

Nova Scotia, Canada. This work builds on previous work in sea scallops that detected 

smaller-scale differentiation using other genetic markers (Kenchington et al. 2006; Owen 

& Rawson 2013), however ours is the first study to examine the entire range of the sea 

scallop. Using outlier and neutral markers separately, we found different patterns of 

genetic population structure in the north cluster, with outlier loci separately the Gulf of St. 
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Lawrence from Newfoundland and neutral markers isolating LTB alone. These 

differences indicate that neutral processes (such as limited dispersal) and potentially 

selective processes (such as local adaptation) interact to structure sea scallop populations, 

particularly in the north of their range. In the south cluster we found no evidence of 

further population structure. Estimates of dispersal generated using genomic clines were 

smaller than the average pairwise distance between sampled populations and our results 

identify limited realized dispersal as an important contributor to sea scallop population 

structure, although the differences between outlier and neutral population structure 

patterns indicate that dispersal alone cannot explain the strong genetic break between 

north and south. 

5.2 Environmental adaptation 

 Building on the population structure detected in Chapter 2, Chapter 3 focused on 

the potential for adaptation among sea scallop populations and its potential effects on 

realized population structure. Using associations with environmental variation, we 

identified a subset of loci likely under environmental adaptation and used these loci to 

qualify the relationship between environmental and genomic differentiation among 

populations. Our analyses consistently identified cold winter temperatures as the most 

important variable in a model determining the environmental factors that contributed the 

most to patterns of genetic differentiation among scallop populations. Although larval 

scallops likely do not experience these temperatures, exposure to these extremes in 

overwintering juvenile scallops and the overwinter survival of young scallops may 

contribute to the population structure observed in Chapter 2. These results in particular 
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highlight the possibility that local adaptation and the differential of survival of dispersers 

may drive population connectivity of sea scallop populations in the Northwest Atlantic. 

5.3 Larval evidence of adaptation 

 Although genetic and genomic analyses are powerful tools for identifying 

population structure and adaptation, multiple researchers have emphasized that the 

combination of genomics and experimental studies offers the most robust strategy to 

identify local adaptation among populations (e.g. Rellstab et al. 2015). Following the 

detection of strong genetic separation between north and south population clusters, we 

spawned and raised larval scallops from the north cluster (NTS) and the south cluster 

(BOF) in a common garden-like environment to ascertain population specific responses to 

temperature in larval growth and survival. Although we found no evidence of a larval 

response to temperature, northern scallops grew faster overall whereas southern scallops 

exhibited higher survival. This pattern suggests that northern scallops may be adapted to 

grow more quickly in response to slower growing seasons and prepare for the cold 

winters experienced by the north population cluster. Further experiments exposing larvae 

to colder temperatures than those used in our experiment may identify growth responses 

to temperature in sea scallop larvae. 

5.4 Implications 

The sea scallop range straddles the Canada and United States border. Noting the 

great economic importance of the fishery for this species in both countries, this study 

provides valuable information that can help with cross-border management. Our 
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conclusions, and suggested future work, particularly along the border and in the southern 

population cluster, may facilitate the creation of specific fishing areas, cooperative 

management, and quotas based on the effective connectivity between neighbouring 

populations. 

The patterns of connectivity and putative adaptation detected in this research 

likely extend beyond sea scallops alone. Many species in the highly productive Northwest 

Atlantic share similar life histories as sea scallops. Recent work has begun to identify 

similar patterns of genetic connectivity and limited dispersal for other species elsewhere 

in the region (Benestan et al. 2015), with ongoing further exploration of many species in 

the Northwest Atlantic. Fishery management plans that work to incorporate this genetic 

connectivity for the sea scallop and other Northwest Atlantic species will promote 

sustainability of the species, individual populations, and fisheries. 

5.5 Conclusions 

The aim of this thesis and the work therein was to detect population structure 

among sea scallops and identify underlying causes, be it limited dispersal, adaptation and 

natural selection, or other causes. Our results show range-wide population structure in the 

sea scallop (separating north and south population clusters) caused by a combination of 

limited dispersal between populations and potential adaptation to cold winter 

temperatures in the north preventing the survival of maladapted dispersers. Noting the 

economic importance of the sea scallop in both Canada and the USA, integrating this 

evidence of local adaptation and limited dispersal into management decisions may help 

ensure this species continues to be a sustainable resource in the future. These results also 
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have implications for understanding response of sea scallop to future climate change; if 

the north cluster is indeed adapted to colder conditions, the geographic location of the 

separation between north and south clusters may shift in a warming ocean. Overall, our 

results provide further evidence for high levels of population structure in marine species, 

driven not only by oceanographic barriers to dispersal but also by adaptation to different 

local environments. Such knowledge can help guide the study and management of many 

marine species, particularly those in the Northwest Atlantic. 
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Appendices 

Appendix S1: Supporting Information for Chapter 2: Identifying patterns of dispersal, 

connectivity, and selection in the sea scallop, Placopecten magellanicus, using RAD-seq 

derived SNPs 
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Table S1.2. Ten datasets used in population structure analysis of 12 populations of P. 
magellanicus collected from the Northwest Atlantic. 

Dataset 
Number 

Dataset Name Loci Included Populations Included 

1 All loci, all All loci SUN, LTB, MGD, NTS, PSB, BOF,  
SSM, GMI, SSB, GMO, GEO, MDA 

 
2 Outlier loci, all Outlier loci SUN, LTB, MGD, NTS, PSB, BOF,  

SSM, GMI, SSB, GMO, GEO, MDA 
 

3 Neutral loci, all Neutral loci SUN, LTB, MGD, NTS, PSB, BOF,  
SSM, GMI, SSB, GMO, GEO, MDA 

 
4 All loci, North All loci SUN, LTB, MGD, NTS 

5 Outlier loci, 
North 

Outlier loci SUN, LTB, MGD, NTS 

6 Neutral loci, 
North 

Neutral loci SUN, LTB, MGD, NTS 

7 All loci, South All loci PSB, BOF, SSM, GMI, SSB, GMO, GEO, MDA 

8 Outlier loci, 
South 

Outlier loci PSB, BOF, SSM, GMI, SSB, GMO, GEO, MDA 

9 Neutral loci, 
South 

Neutral loci PSB, BOF, SSM, GMI, SSB, GMO, GEO, MDA 

10 High FST, South 100 highest FST PSB, BOF, SSM, GMI, SSB, GMO, GEO, MDA 
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Table S1.3. Comparison of outlier SNP 
loci from 12 populations of P. 
magellanicus determined using 
BAYESCAN (Bayesian method, 112 loci) 
and the 99% (157 loci) and 95% (184 loci) 
confidence intervals in ARLEQUIN (island 
model).  
* Loci not present in ARLEQUIN 99% 
¤ Loci not present in ARLEQUIN 95% 

Locus Name 

FDR = 0.05 p = 0.01 

BayeScan 
Arlequin 

99% 
Arlequin 

95% 

11_6 11_6 11_6 

18_69 18_69 18_69 

319_43 319_43 319_43 

979_75 523_39 523_39 

1089_23 523_83 523_83 

1299_57 979_75 979_75 

1467_19 1089_23 1089_23 

3299_78 1299_57 1299_57 

3350_55 1467_19 1467_19 

3350_66 1659_63 1659_63 

3497_39 2272_32 2272_32 

3498_66 2816_12 2816_12 

3619_79 3299_78 3286_90 

3834_87 3350_55 3299_78 

3929_9 3350_66 3350_55 

3969_43 3497_39 3350_66 

4484_19 3498_66 3497_39 

4668_81 3619_79 3498_66 

4847_58 3834_87 3619_79 

4975_9 3929_9 3834_87 

4975_23 3969_43 3929_9 

4975_68 4063_7 3969_43 

5246_66 4226_74 4063_7 

5252_37 4373_68 4226_74 

5439_27 4421_10 4373_68 

5515_42 4484_19 4421_10 

5750_64 4589_47 4484_19 

5791_60*¤ 4668_81 4589_47 

6948_62 4678_65 4668_81 
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7115_30* 4847_58 4678_65 

7115_35* 4975_9 4847_58 

7203_45 4975_23 4975_9 

7326_20 4975_68 4975_23 

7396_78 5246_66 4975_68 

7524_34 5252_37 5246_66 

7740_53 5439_27 5252_37 

8699_63 5515_42 5439_27 

8782_41 5750_64 5515_42 

9206_48 5924_59 5680_70 

9554_49 6234_40 5750_64 

9580_74 6234_86 5924_59 

9976_51 6948_62 6234_40 

9976_52 7203_45 6234_86 

9978_28 7326_20 6948_62 

10349_43 7396_78 7115_30 

10366_19 7524_34 7115_35 

10498_47 7740_53 7203_45 

10832_30 8053_41 7216_63 

10832_46 8699_63 7326_20 

10832_74 8782_41 7396_78 

10832_84 9114_34 7524_34 

10964_88*¤ 9206_48 7740_53 

10964_89*¤ 9554_49 7857_8 

10964_90*¤ 9580_74 8053_41 

10987_36 9653_59 8699_63 

10987_48 9653_60 8782_41 

11110_18*¤ 9976_51 9114_34 

11162_70 9976_52 9206_48 

11531_7 9978_28 9431_86 

12073_7 10349_43 9554_49 

12308_45 10366_19 9580_74 

12767_68 10498_47 9653_59 

13384_35 10832_30 9653_60 

13891_65 10832_46 9976_51 

14394_27 10832_74 9976_52 

14571_64 10832_84 9978_28 

14750_60 10893_84 10349_43 

15099_34 10987_36 10366_19 

15446_21 10987_48 10498_47 

15645_89 11162_70 10832_30 
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15660_9 11235_69 10832_46 

15821_29 11462_75 10832_74 

16110_74 11531_7 10832_84 

16228_63 11895_12 10863_83 

16229_44 11895_17 10893_84 

16309_22 11895_50 10987_36 

16478_29 12073_7 10987_48 

16894_73 12308_45 11162_70 

17085_50 12767_68 11235_69 

17567_80 12833_63 11462_75 

18135_35 13061_52 11531_7 

18391_26 13384_35 11718_14 

18669_56 13761_22 11851_23 

18848_34*¤ 13891_65 11895_12 

18848_38*¤ 14069_58 11895_17 

19165_26 14394_27 11895_50 

19165_90* 14557_41 12073_7 

20298_73 14571_64 12308_45 

20400_32 14750_60 12767_68 

20548_19 15099_34 12833_63 

20633_88 15127_80 13061_52 

20810_86 15245_72 13384_35 

21297_65 15245_73 13761_22 

21510_19 15446_21 13824_83 

22068_17 15645_89 13889_83 

22237_35 15660_9 13891_65 

23947_78 15752_28 14069_58 

24442_62 15821_29 14119_48 

25322_42 16110_74 14394_27 

25380_52 16228_63 14557_41 

25380_58 16229_44 14571_64 

25380_84 16309_22 14750_35 

25405_78 16478_29 14750_60 

25627_51 16794_23 15099_34 

25748_78 16891_32 15127_80 

25881_17 16894_73 15245_72 

25888_33 17081_17 15245_73 

25888_38 17085_50 15446_21 

25962_11 17567_80 15645_89 

26519_27 18135_35 15660_9 

26611_88 18391_26 15752_28 
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26726_84 18656_70 15821_29 

 18669_56 16110_74 

 19165_26 16228_63 

 19483_28 16229_44 

 19716_73 16309_22 

 20263_79 16363_34 

 20298_73 16478_29 

 20400_32 16794_23 

 20464_35 16891_32 

 20548_19 16894_73 

 20633_88 17081_17 

 20810_86 17085_50 

 21297_65 17567_80 

 21425_11 18135_35 

 21510_19 18391_26 

 21588_80 18656_70 

 21600_9 18669_56 

 21717_37 19165_26 

 22068_17 19165_90 

 22237_35 19483_28 

 23339_64 19716_73 

 23947_78 20263_79 

 24310_65 20298_27 

 24442_62 20298_73 

 24880_8 20400_32 

 25322_42 20464_35 

 25380_52 20548_19 

 25380_58 20633_88 

 25380_84 20810_86 

 25405_78 20942_64 

 25433_34 21297_65 

 25433_45 21311_7 

 25627_51 21425_11 

 25748_78 21510_19 

 25879_86 21588_80 

 25881_17 21600_9 

 25888_33 21717_37 

 25888_38 22066_26 

 25962_11 22068_17 

 25962_54 22237_35 

 25972_88 23339_64 
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 26519_27 23947_78 

 26588_15 24310_65 

 26611_88 24442_62 

 26726_84 24880_8 

 26781_56 25055_11 

  25322_42 

  25380_52 

  25380_58 

  25380_84 

  25405_78 

  25433_34 

  25433_45 

  25627_51 

  25748_78 

  25879_86 

  25881_17 

  25888_33 

  25888_38 

  25962_11 

  25962_54 

  25962_57 

  25972_88 

  26237_36 

  26237_82 

  26519_27 

  26588_15 

  26611_88 

  26726_84 

  26781_56 

  26984_6 

  27045_28 

  27045_45 
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Table S1.5. Optimal number of genetic clusters (K) in 12 populations of P. magellanicus found 
by several analytical methods using 10 datasets listed in Table 3. K clusters indicated by * 
were suggested by the analysis, but no clear clustering could be observed. 

Dataset 
Number Dataset Description Clustering Method 

Number of 
clusters 

1 All loci, all Bayesian clustering, Structure 2 

2 Outlier loci, all Bayesian clustering, Structure 2 

3 Neutral loci, all Bayesian clustering, Structure 2 

4 All loci, North Bayesian clustering, Structure 2 

5 Outlier loci, North Bayesian clustering, Structure 2 

6 Neutral loci, North Bayesian clustering, Structure 2 

7 All loci, South Bayesian clustering, Structure 6* 

8 Outlier loci, South Bayesian clustering, Structure 2* 

9 Neutral loci, South Bayesian clustering, Structure 4* 

10 High FST, South Bayesian clustering, Structure 2* 

1 All loci, all 
k-means clustering, Principal components 

analysis, adegenet 
1 

2 Outlier loci, all 
k-means clustering, Principal components 

analysis, adegenet 
4 

3 Neutral loci, all 
k-means clustering, Principal components 

analysis, adegenet 
1 
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Figure S1.1. Histogram of minor allele frequencies, observed heterozygosity, FST for 7163 SNP 
loci sequenced in 245 adult P. magellanicus. 
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Figure S1.2. Heatmap of pairwise linkage disequilibrium r2 values calculated for 112 outlier loci 
detected among 12 populations of P. magellanicus. 
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Figure S1.3. Delta K (solid line) and Ln(K) determined by Bayesian clustering implemented in the 
program Structure for 12 populations of P. magellanicus using (a) all loci, (b) neutral 
loci, and (c) outlier loci for K = 1-15. 
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Figure S1.4. Delta K (solid line) and Ln(K) determined by Bayesian clustering implemented in the 
program Structure for 4 north populations of P. magellanicus using (a) all loci, (b) neutral 
loci, and (c) outlier loci for K = 1-5. 
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Figure S1.5. Cumulative variance explained by the principal components of a principal 
components analysis of 12 populations of P. magellanicus using (a) all loci, (b) neutral 
loci, and (c) outlier loci. 
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Figure S1.6. Bayesian Information Criterion values generated from k-means clustering of 
principal components of 12 populations of P. magellanicus for (a) all loci, (b) neutral 
loci, and (c) outlier loci. 
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Figure S1.7. Plot showing the individual-specific membership of 12 P. magellanicus populations 
in each of 4 genetic clusters identified by k-means clustering on the principal components 
analysis of the outlier loci. Square size corresponds to the number of individuals from 
each population assigned to a particular cluster. 
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Appendix S2: Supporting Information for Chapter 3: Oceanographic variation influences 

spatial genomic structure in the sea scallop, Placopecten magellanicus 
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Table S2.1. Number of loci and minor 
allele frequency (MAF) range included 
in each of five bins (based on global 
minor allele frequency) used by the 
program BayEnv2 to detect loci 
potentially under selection among 12 
populations of P. magellanicus. 

Bin Number of Loci MAF range 

A 3566 0.05 - 0.139 

B 1390 0.14 - 0.229 

C 908 0.23 - 0.319 

D 691 0.32 - 0.409 

E 608 0.41 - 0.5 
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Table S2.2. Number of P. magellanicus individuals and number 
of SNP loci included in initial RAD-sequencing and final 
analysis following quality control (QC). 

Parameter Value 

Individuals sequenced 252 

Individuals following QC 245 
(97.2% of Individuals sequenced) 

Initial RAD tags 131897 

RAD tags following QC 19672  
(14.9% of Initial RAD tags) 

Initial SNPs 173482 

SNPs following QC 7216  
(4.2% of Initial SNPs) 

SNPs in HWE 7163  
(99.3% of SNPs following QC) 
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Table S2.3. Comparison of 
outlier SNP loci from 12 
populations of P. 
magellanicus determined 
using BayEnv2 and a dataset 
of 90 environmental variables 
(AllEnv, 128 loci) and a subset 
of 36 environmental variables 
(CST, 72 loci). Shared loci are 
italicized. 

AllEnv CST 

319_43 479_44 

479_15 545_13 

1089_23 1089_23 

1299_57 1299_57 

1320_61 1320_61 

2272_32 2272_32 

2966_52 2305_45 

3061_77 2694_52 

3069_13 3240_12 

3199_76 3240_55 

3240_12 3240_56 

3240_56 3929_9 

3299_78 4484_19 

3350_55 4668_81 

3420_33 4769_32 

3498_66 5062_61 

3619_79 5353_70 

3834_87 5439_27 

3929_9 6968_50 

4063_7 7115_35 

4383_42 7325_7 

4668_81 7326_20 

4847_58 8388_15 

4975_23 8664_7 

5045_48 9554_49 

5084_54 9881_90 

5084_64 10070_67 

5161_82 10832_84 

5247_15 11531_7 

5420_31 12021_80 
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5439_27 12155_52 

6805_6 12314_60 

7120_90 12767_68 

7203_45 13384_35 

7343_38 13561_17 

7361_21 13561_70 

7882_64 13761_22 

7997_36 13805_16 

8325_27 13824_83 

8655_19 13891_65 

8782_41 14003_84 

8922_62 14197_90 

9203_74 14394_27 

9431_86 15121_78 

9554_49 15446_21 

9653_60 15645_89 

9976_51 15821_29 

10070_67 16110_74 

10159_36 16229_44 

10366_19 17320_31 

10498_47 17856_41 

10529_34 18391_26 

10832_74 18439_32 

10832_84 18645_34 

10917_59 18669_56 

10987_36 19330_41 

11265_39 19880_7 

11531_7 20263_79 

11748_62 20298_27 

12014_82 20298_73 

12155_52 20311_14 

12314_60 20633_88 

12767_68 20810_86 

13260_51 21297_65 

13384_35 22123_81 

13438_71 22237_35 

13744_54 25114_12 

13824_83 25405_78 

13891_65 25627_51 

14076_10 25646_16 

14197_86 25748_78 
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14197_90 26519_27 

14394_27  

14421_56  

14557_41  

14571_64  

15171_47  

15245_72  

15459_62  

15645_89  

15660_9  

15722_73  

15821_29  

15876_15  

16110_74  

16161_6  

16206_40  

16309_22  

16393_64  

16517_82  

16943_74  

17480_65  

17720_35  

17853_46  

18135_35  

18238_55  

18391_26  

18439_32  

18669_56  

19353_39  

19487_24  

19960_23  

20047_88  

20263_79  

20298_27  

20298_73  

20548_19  

20596_34  

20910_86  

21297_65  

21600_62  

21679_27  
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21717_37  

22123_81  

22237_35  

23535_28  

23969_73  

24257_63  

24939_35  

25067_48  

25405_78  

25405_86  

25627_51  

25630_84  

25748_78  

26519_27  

26726_84  

27045_28  
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Table S2.4. Comparison of 
outlier SNP loci from 12 
populations of P. 
magellanicus determined 
using latent factor mixed 
models and a dataset of 90 
environmental variables 
(AllEnv, 511 loci) and a 
subset of 36 environmental 
variables (CST, 218 loci). 
Shared loci are italicized. 

AllEnv CST 

85_6 370_51 

367_35 370_60 

367_88 618_44 

370_51 620_25 

370_60 1115_68 

418_86 1122_21 

450_37 1463_75 

618_44 1463_88 

620_25 1471_75 

620_53 1484_21 

874_57 1714_38 

1115_23 1867_71 

1115_68 2450_62 

1122_21 2670_59 

1129_54 2809_37 

1143_46 3216_12 

1383_82 3303_73 

1459_43 3895_8 

1463_75 3895_88 

1463_88 4066_45 

1471_75 4186_46 

1484_21 4546_80 

1566_34 4613_35 

1683_20 4665_62 

1689_82 4668_42 

1714_38 4668_81 

1742_90 4844_25 

1743_28 4956_31 

1847_71 4970_90 

1856_80 4975_9 
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1856_82 4975_68 

1867_71 5170_73 

1974_44 5204_27 

2334_90 5354_34 

2395_23 5419_44 

2450_62 5522_80 

2670_59 5842_16 

2809_37 5978_53 

3000_6 6026_30 

3028_9 6026_53 

3124_7 6190_47 

3124_74 6491_67 

3124_8 6579_25 

3216_12 6591_67 

3286_90 6645_6 

3303_73 6688_49 

3381_74 6976_68 

3420_33 7042_35 

3895_8 7376_36 

3895_88 7408_7 

3922_74 7648_39 

3922_84 7724_27 

3936_13 7846_50 

3945_18 7941_58 

3975_33 7999_74 

4004_43 8380_74 

4066_45 8520_42 

4186_46 8575_6 

4320_27 8575_39 

4546_80 8794_9 

4613_35 8797_34 

4665_62 8836_15 

4667_77 8847_48 

4668_42 8849_28 

4668_66 9076_28 

4668_81 9076_54 

4729_44 9098_83 

4832_89 9169_48 

4844_25 9196_22 

4956_31 9196_23 

4970_90 9196_87 
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4975_23 9275_68 

4975_68 9275_76 

4975_9 9275_79 

5070_52 9275_81 

5170_73 9508_72 

5204_27 10464_33 

5298_76 10464_52 

5354_34 10681_10 

5363_56 10987_75 

5394_86 11131_89 

5419_44 11217_9 

5443_24 11315_68 

5443_32 11634_72 

5443_6 11909_85 

5443_67 11989_13 

5515_42 12014_82 

5522_80 12228_13 

5807_51 12236_9 

5842_16 12314_60 

5978_53 12363_39 

6026_30 12580_62 

6026_53 12639_88 

6186_46 12651_47 

6190_47 12680_26 

6191_10 12880_57 

6203_48 12884_30 

6228_45 13012_81 

6228_84 13075_87 

6236_60 14197_88 

6288_14 14197_90 

6346_68 14316_32 

6491_67 14326_62 

6579_25 14415_20 

6591_67 14532_68 

6604_68 14564_90 

6645_6 15508_47 

6688_49 15638_70 

6759_11 15759_32 

6810_7 15759_54 

6810_79 15903_58 

6887_79 16388_50 
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6888_15 16442_35 

6888_38 16442_83 

6945_90 16442_86 

6976_68 16470_49 

7042_35 16691_70 

7114_22 16771_68 

7318_31 16961_32 

7376_36 17189_71 

7408_7 17191_81 

7423_59 17259_54 

7423_71 17259_55 

7540_65 17369_30 

7626_32 17377_63 

7637_73 17406_14 

7648_39 17691_29 

7700_76 17793_42 

7724_27 17865_54 

7724_45 17939_43 

7737_36 18011_51 

7846_50 18013_68 

7857_24 18084_42 

7857_32 18084_67 

7857_74 18175_82 

7857_8 18180_41 

7941_58 18180_85 

7999_74 18180_90 

8380_74 18272_54 

8520_42 18286_51 

8540_90 18411_69 

8563_90 18473_63 

8575_39 18555_47 

8575_6 18669_56 

8635_12 18692_21 

8735_68 18692_22 

8741_86 18800_64 

8794_56 18832_29 

8794_9 18968_21 

8797_34 19146_65 

8797_89 19197_77 

8836_15 19256_31 

8847_48 19284_7 
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8849_28 19284_8 

9076_28 19478_77 

9076_31 19738_6 

9076_54 19738_49 

9098_83 19752_32 

9163_31 19844_50 

9169_48 20070_71 

9196_22 20140_47 

9196_23 20314_14 

9196_87 20314_46 

9211_22 20556_7 

9275_68 20556_14 

9275_76 20556_31 

9275_79 20559_46 

9275_81 20561_41 

9281_51 20721_17 

9387_50 20868_9 

9387_7 20868_67 

9431_43 20885_25 

9431_86 20933_88 

9471_77 21167_6 

9508_72 21362_67 

9996_36 21381_83 

10141_55 21413_20 

10156_85 21413_21 

10361_56 21413_48 

10464_33 21503_20 

10464_52 21696_25 

10485_37 22000_20 

10498_47 22000_86 

10527_56 22011_10 

10587_84 22011_82 

10681_10 23849_13 

10810_32 24019_69 

10832_30 24336_71 

10832_46 24406_47 

10832_74 24509_20 

10832_84 24636_63 

10873_33 24673_67 

10987_74 24892_12 

10987_75 24908_10 
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10987_8 25107_50 

10993_65 25246_11 

11126_44 25380_52 

11131_89 25380_84 

11217_9 25405_6 

11315_68 25405_9 

11407_80 25433_29 

11431_85 25433_34 

11634_72 25433_45 

11696_20 25433_82 

11696_43 25627_51 

11784_88 25993_87 

11810_49 26222_72 

11909_85 26293_14 

11966_39 26340_40 

11989_13 26431_8 

12014_82 26431_77 

12031_71 26625_75 

12041_65 26721_7 

12228_13 26721_89 

12236_9 26781_56 

12314_60 26880_82 

12363_39 26952_89 

12370_76 27011_89 

12370_81  

12377_67  

12419_58  

12580_62  

12639_88  

12651_47  

12651_75  

12674_8  

12680_26  

12880_57  

12884_30  

12936_75  

12969_14  

12969_15  

12969_59  

13012_81  

13020_90  
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13075_87  

13109_21  

13197_42  

13270_21  

13286_17  

13303_49  

13303_64  

13303_79  

13374_27  

13438_71  

13586_43  

13713_14  

13727_6  

13727_69  

13758_31  

13966_68  

13983_54  

14018_57  

14050_63  

14117_19  

14117_7  

14139_22  

14139_68  

14185_21  

14197_88  

14197_90  

14287_61  

14310_37  

14316_11  

14316_32  

14326_62  

14415_20  

14532_68  

14564_90  

14674_22  

14967_65  

15022_55  

15090_47  

15203_19  

15205_46  

15205_67  
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15261_65  

15301_34  

15508_47  

15638_54  

15638_70  

15687_33  

15759_32  

15759_54  

15900_50  

15903_35  

15903_58  

15903_76  

15903_78  

16087_68  

16161_58  

16161_6  

16161_63  

16161_64  

16232_32  

16232_64  

16300_20  

16339_61  

16356_41  

16388_50  

16396_57  

16442_35  

16442_83  

16442_86  

16466_34  

16470_49  

16691_70  

16771_68  

16809_40  

16837_37  

16869_84  

16891_32  

16961_32  

17189_71  

17191_81  

17259_54  

17259_55  
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17369_30  

17377_63  

17382_16  

17406_14  

17466_32  

17581_60  

17581_65  

17632_52  

17691_29  

17731_31  

17793_42  

17819_48  

17865_54  

17929_79  

17929_9  

17939_43  

17998_24  

18011_51  

18013_68  

18084_42  

18084_67  

18175_82  

18178_75  

18180_41  

18180_85  

18180_90  

18238_55  

18238_56  

18272_54  

18286_51  

18296_75  

18411_69  

18444_28  

18473_63  

18481_72  

18555_47  

18642_16  

18669_56  

18692_21  

18692_22  

18701_58  
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18701_60  

18701_83  

18800_64  

18832_29  

18865_67  

18968_21  

18972_74  

19146_65  

19197_77  

19218_80  

19252_8  

19256_31  

19284_24  

19284_32  

19284_7  

19284_8  

19302_50  

19330_39  

19478_77  

19654_11  

19738_49  

19738_6  

19752_32  

19819_35  

19844_50  

19898_23  

19898_6  

19898_61  

20015_23  

20047_71  

20047_79  

20047_87  

20062_71  

20070_71  

20106_11  

20117_82  

20140_47  

20314_14  

20314_46  

20527_29  

20556_14  
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20556_31  

20556_59  

20556_7  

20559_46  

20561_41  

20641_46  

20721_17  

20868_56  

20868_67  

20868_9  

20885_25  

20929_40  

20933_88  

20942_64  

20955_8  

21028_28  

21125_75  

21138_65  

21167_6  

21362_67  

21381_83  

21413_20  

21413_21  

21413_48  

21418_49  

21468_29  

21468_89  

21503_20  

21600_62  

21696_25  

21746_21  

21762_13  

21853_20  

22000_20  

22000_86  

22011_10  

22011_82  

22100_34  

22122_62  

23183_26  

23296_73  
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23306_43  

23346_81  

23361_35  

23849_13  

24019_69  

24230_82  

24336_71  

24373_14  

24380_74  

24384_24  

24406_47  

24509_20  

24587_47  

24636_63  

24673_67  

24804_65  

24882_77  

24892_12  

24892_33  

24908_10  

24949_72  

24954_38  

25064_55  

25107_50  

25246_11  

25310_43  

25310_48  

25366_26  

25380_52  

25380_58  

25380_84  

25405_6  

25405_86  

25405_9  

25433_29  

25433_34  

25433_45  

25433_82  

25464_47  

25562_55  

25580_62  
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25599_88  

25627_51  

25630_84  

25652_55  

25993_87  

26091_42  

26091_9  

26141_15  

26141_84  

26222_72  

26293_14  

26293_68  

26312_54  

26337_72  

26340_40  

26371_65  

26391_35  

26391_71  

26431_77  

26431_8  

26550_72  

26570_14  

26625_75  

26721_7  

26721_89  

26781_56  

26880_82  

26937_69  

26952_89  

27011_89  
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Table S2.5. Blast2GO functional annotation and BLAST gene matches for outlier SNP loci from 
12 populations of P. magellanicus. Outliers were detected through environmental correlations 
with 90 environmental variables (AllEnv, 621 loci) or a subset of 26 environmental variables 
(CST, 285 loci). 

Environmental 
Data 

Locus 
Name 

GO Name Best Gene Match 

AllEnv 16087_68 F: catalytic activity; 
P: metabolic process; 
F: transferase activity; 
F: folic acid binding; 
P: cellular metabolic processes 

Predicted 
formimidoyltransferase 
cyclodeaminase (various 
species) 

AllEnv 24384_24 F: oxidoreductase activity; 
P: metabolic process; 
P: oxidation-reduction process 

Predicted 2,4-dienoyl 
CoA reductase 1, 
mitochondrial (DECR1), 
mRNA (various species) 

AllEnv 
CST 

12228_13 P: regulation of transcription;  
P: steroid hormone mediated 
signaling pathway 

GU932671.1: Lymnaea 
stagnalis retinoic acid 
receptor (RAR) mRNA, 
complete cds 

AllEnv 
CST 

20561_41 F: carbohydrate binding JN166712.1: Argopecten 
irradians CTL-9 mRNA, 
complete cds 

AllEnv 
CST 

25748_78 F: calcium ion binding Various predicted 
scaffold proteins 
(various species) 

CST 15446_21 F: oxidoreductase activity, acting 
on paired donors, with 
incorporation or reduction of 
molecular oxygen, reduced 
pteridine as one donor, and 
incorporation of one atom of 
oxygen; 
P: oxidation-reduction process 

Various scaffold and 
other predicted proteins 
(various species) 
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Figure S2.1. Partial Redundancy analysis plots for loci detected as potentially under 
selection through environmental correlation with (a) AllEnv (90 environmental variables, 
n= 621 loci), (b) CST (36 environmental variables, n = 285 loci) in 12 populations of P. 
magellanicus. Explanatory variables used were principal components axes from PCA on 
(a) AllEnv and (b) CST, retained following backwards stepwise variable selection. The 
genetic matrix was conditioned on the distance between populations to reduce the effects 
of geographic separation between populations. 


