
i 
 

 HEPATITIS C VIRUS INFECTION CAUSES APOPTOSIS AND PYROPTOSIS 

IN BOTH INFECTED AND BYSTANDER CELLS 

 

By Hassan Kofahi  

A thesis submitted to the School of Graduate studies in partial fulfillment of the 

requirements for the degree of 

 

Doctor of Philosophy / Immunology and Infectious Diseases / Faculty of Medicine 

Memorial University 

 

May 2017 

St. John’s Newfoundland and Labrador 

 

  



ii 
 

Abstract 

Hepatitis C virus (HCV) infection is a global health challenge affecting 3% of the 

world’s population. Chronically infected individuals are at high risk of developing 

progressive liver diseases including cirrhosis and hepatocellular carcinoma (HCC).  

Apoptosis and pyroptosis are two forms of programmed cell death (PCD) that can cause 

different pathological outcomes. Studying the induction of these forms of PCD by HCV 

will help in understanding the development of liver complications and might be useful in 

designing new treatment. We used a tissue culture adapted strain of HCV (JFH1T) to 

study the effect of infection on the induction of these two forms of PCD in infected and 

bystander cells. We found that HCV infection reduces the proliferation rate and induces 

PCD in the infected cell population. Further analysis revealed that two forms of PCD are 

induced: apoptosis and pyroptosis, as we were able to detect the activation of both 

caspase-3 and caspase-1 and we confirmed their role in the induction of PCD. NLRP3 

inflammasome activation was found to play a role in the induction of pyroptosis. By 

performing a co-culture assay containing Huh-7.5 cells and HCV-non-permissive cell 

lines, we were able to detect the induction of both bystander apoptosis and bystander 

pyroptosis in the non-permissive cells. Bystander apoptosis, but not bystander pyroptosis, 

was found to require cell-cell contact between the infected and the bystander cell. In 

summary, we demonstrated that HCV infection can cause apoptosis and pyroptosis, and 

both of these forms of PCD can be induced in uninfected bystander cells. 
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Chapter 1: Introduction 

1.1 Overview. 

Hepatitis C is a blood-borne disease that is estimated to have originated and started to 

spread globally more than a 100 years ago [1]. The first use of the term “hepatitis C” goes 

back to 1974 when it was suggested to describe a post-transfusion hepatitis that could not 

be classified as either hepatitis B or hepatitis A, both of which were well-known at the 

time [2]. In later studies, the form of hepatitis that was non-reactive for hepatitis B and 

hepatitis A was referred to as “Non-A, Non-B hepatitis” (NANB) [3]. Subsequent studies 

confirmed that the agent responsible for the NANB hepatitis could be transmitted to 

chimpanzees by transfusion [4,5]. Despite these early findings, the actual virus that 

causes NANB hepatitis remained a mystery for more than a decade until it was 

discovered in 1989 and a specific assay for detecting viral antibodies was developed 

[6,7]. The newly discovered virus was referred to as Hepatitis C virus (HCV).  

Hepatitis C is one of the major health challenges in the modern world. It is estimated 

that 185 million are infected worldwide, which constitutes about 3% of the world’s 

population [8]. High prevalence of HCV infection is found in central and East Asia and 

North Africa/Middle East with more than 3.5% of that population infected. Lower 

prevalence is found in the industrialized world including North America [8]. The highest 

prevalence of HCV infection in the world is found in Egypt with 14.7% of population 

testing positive for HCV antibodies [9]. Here in Canada, it is estimated that 252,000 are 

infected with HCV as of 2013 (approximately 1% of the population) with a significant 
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variation among provinces from as low as 0.13% in Newfoundland and Labrador to as 

high as 3.9% in the Yukon [10,11]. More than half of these cases were found among 

former or current drug users, 20% of the cases are infected immigrants and 11% got the 

infection by contaminated blood products [12]. 

Acute HCV infection progresses to chronicity in 75%-85% of cases, and the 

remaining cases spontaneously clear the infection [13]. It is estimated that 5-20% of 

chronically infected individuals develop cirrhosis in a period of 20-30 years and 1-5% of 

the chronically infected develop hepatocellular carcinoma (HCC) [14]. 

Historically, HCV infection was treated with a combination of pegylated interferon-α 

(IFN-α) and ribavarin. However, the rates of the sustained virological response (SVR) 

associated with this treatment were low (50% or less) [15]. Furthermore, treatment with 

IFN results in many side effects that range from relatively mild, such as fever and fatigue, 

to more severe or even life threatening complications (reviewed in [16]). Fortunately, 

enormous progress was achieved in the past few years in developing new HCV 

treatments. Nowadays, a group of direct-acting antiviral agents (DAA) are available. 

These drugs show very high efficacy (SVR rate of 90-99%) and high tolerability. The 

currently available drugs are divided into three major categories: protease inhibitors (e.g. 

Simeprevir), NS5A inhibitors (e.g. Daclatasvir), and polymerase inhibitors (e.g. 

Sofosbuvir). The use of different regimens including single or combinations of these 

DAAs is replacing IFN-based treatments.  
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 Despite these advancements in the field, many challenges remain to be overcome in 

order to effectively cure or control HCV infection and its complications globally. These 

challenges include but are not limited to, the high cost of the treatment (approximately 

$60,000-$100,000 in North America), the emergence of DAA resistant mutations, and the 

fact that curing HCV infection reduces but does not eliminate the risk of development of 

HCC in these patients [17,18]. As such, research on the many aspects of HCV biology are 

still required, particularly in terms of pathogenesis and virus-host interactions. 

1.2 Hepatitis C Virus. 

1.2.1 Classification and diversity.  

HCV is a member of the hepacivirus genus that is part of the Flaviviridae family. The 

Flaviridae family contains four genera: pestivirus, flavivirus, pegivirus, and Hepacivirus. 

Pestiviruses are particularly important for the livestock agricultural industry, because they 

can cause serious diseases in cattle and pigs [19]. In contrast, flaviviruses are known to 

cause many human diseases. Some of the well-known human pathogens within this group 

are West Nile Virus (WNV), Dengue Virus (DENV) and yellow fever virus. Most of the 

flaviviruses transmit between arthropods and vertebrates. Human pathogens within this 

family transmit from either a mosquito (e.g. WNV) or a tick (e.g. tick-borne encephalitis 

virus) to humans [19]. The genus pegivirus was recently described [20,21]. This new 

genus contains Human Pegivirus (HPgV) (formerly known as hepatitis G virus/GB virus-

C). This is the most closely related human virus to HCV and it causes a persistent 

infection in human lymphocytes and NK cells [22-24]. Unlike HCV, HPgV seems to 

cause relatively mild pathogenicity with clinically important effect only observed in 
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patients who are co-infected with HIV. In these individuals HPgV infection affects the 

HIV prognosis significantly [25].  

Until recently, HCV was the only known member of the genus hepacivirus. However, 

development of deep sequencing technologies enabled the identification of a large 

number of hepaciviruses capable of infecting various species of animals [26]. The first 

non-primate hepacivirus (NPHV) was discovered in dogs [27]. However, in subsequent 

studies this virus was found to infect mainly horses [28]. More hepaciviruses were 

reported in later studies and the host range of hepaciviruses has expanded to include: 

dogs, horses, bats, cows, rodents, humans and non-human primates [29]. Cross-species 

transmission of hepaciviruses between horses and dogs has been reported before, which 

has raised the question as to whether HCV has a zoonotic origin [29]. 

HCV strains are classified into seven genotypes (1-7) and 67 subtypes based on 

phylogenetic analysis of genome sequences from available HCV sequences [30,31]. 

Strains that belong to the same genotype have 65-70% sequence identity at the nucleotide 

level, whereas subtypes have at least 85% sequence identity at the nucleotide level [30]. 

Genotype 1 is the most common worldwide (46% of all infections) and it is the most 

prevalent genotype in many regions of the world including North America. The second 

most prevalent genotype is genotype 3 (22%) and it dominates in South Asia and some 

parts of Scandinavia. Followed by Genotype 2 (13%), which dominates in West Africa, 

and Genotype 4 (13%), which dominates in Central and North Africa, including Egypt. 

Genotypes 5 and 6 have relatively low prevalence (2% and 1%, respectively). Genotype 5 

dominates in South Africa and most of the cases of Genotype 6 are found in South East 
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Asia [32,33]. Only one case of genotype 7 has been reported globally. This case was 

identified here in Canada where a virus was isolated from an immigrant who came from 

Central Africa [34,35].  

The final level of diversity for HCV occurs within the body of a single infected 

individual during the course of chronic infection and is termed the quasispecies. The 

quasispecies is a population of related but genetically distinct variants of virus within the 

host [36,37]. These variants are generated during genome replication because the viral 

RNA-dependent RNA polymerase lacks proofreading ability. These variants  are 

continuously selected on the bases of their fitness and by the pressure exerted on them by 

the immune system [38]. These variants are clustered around a few sequences of highest 

fitness that are known as master sequences [39,40]. 

1.2.2 Virus Structure, Genome and proteins. 

HCV virions are spherical and 30-65nm in diameter [41-44]. The density of 

circulating HCV particles varies widely and ranges between 1.06 and 1.25g/ml. The 

density was found to inversely correlate with the infectivity, with higher infectivity 

observed for lower density particles [45]. This can be attributed to the association of HCV 

particles with the lipoproteins in the plasma of infected individual. The virion is 

composed of a capsid, which is an icosahedral shell made of multiple copies of the same 

protein, which coat and protect the genome [46]. The capsid and the genome together 

comprise what is termed the nucleocapsid. HCV is an enveloped virus, i.e. it covers its 

nucleocapsid with a host cell-derived lipid bilayer, in which the viral envelope 

glycoproteins are anchored and exposed on the surface. 
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HCV is a positive-sense single-stranded RNA (ssRNA) virus. The genome of HCV is 

9.6kb in length and contains a 3000 amino acid open reading frame (ORF) flanked by 5′ 

and 3′ untranslated regions (UTRs). The 5′ UTR folds and forms a secondary structure 

that serves as an internal ribosomal entry site (IRES) and allows the binding of ribosomes 

and the initiation of translation of the ORF in the absence of a 5′ cap [47].  The 3′ UTR 

does not have a poly-A tail. Instead, it is composed of a variable region, a poly (U/UC) 

tract and a conserved region (also termed 3′X region) that contains 3 stem-loop structure 

[48-50]. The conserved region and the poly (U/UC) tract of the 3′ UTR was found to play 

a crucial role in RNA replication [51-53]. Poly-A tails are known to stimulate the 

translation of the capped messenger RNAs [54]. It is not clear whether the 3′ UTR plays a 

similar role in IRES-dependent translation as similar and apposing roles were reported by 

different groups [55-57]. Finally, the poly (U/UC) tract acts as a pathogen-associated 

molecular pattern (PAMP) that is recognized by the innate immunity [58,59]. 

During and after translation, the polyprotein is cleaved by viral and host proteases into 

10 proteins: three structural proteins (core, E1, and E2) and seven non-structural proteins 

(p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B). The structural proteins and p7 are 

cleaved by host signal peptidases [60]. Following the cleavage of the signal peptides 

between the core and E1 proteins, the C-terminus of core is further processed by signal 

peptide peptidase to cleave the hydrophobic region and release the core protein from the 

endoplasmic reticulum (ER) allowing it to traffic to cytosolic lipid droplets (cLDs) [61]. 

The non-structural proteins are cleaved by the activity of two viral proteases. The 

NS2/NS3 junction is cleaved by the cysteine protease activity of NS2, which requires the 
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N-terminus of NS3 as a cofactor [62]. The remaining cleavages downstream of NS3 

(NS3-4A, NS4A-4B, NS4B-5A and NS5A-5B junctions) are all carried out by NS3 and 

its cofactor NS4A, which has chemotrypsin-like serine protease activity [63]. 

Core protein is a highly basic protein and the main component of the nucleocapsid. 

Core is a dimeric protein that is composed of two domains. The N-terminal domain (D1) 

contains a large number of positively charged amino acids and is responsible for RNA 

binding [64]. The C-terminal domain is formed by two amphipathic α-helices and it is 

important for the association of the core protein to cLDs, an important step in the 

assembly of the nucleocapsid [65,66]. Besides its main function in nucleocapsid 

formation, the core protein was reported to have a variety of other roles in the HCV life 

cycle. In HCV core gene transgenic mouse models, core protein was reported to induce 

oxidative stress and liver steatosis, which can contribute to the development of HCC 

[67,68]. Core was also reported to cause insulin resistance that might lead to the 

development of type 2 diabetes [69,70]. Finally, core protein has been reported to have 

both pro-apoptotic and/or anti-apoptotic effects. The details of these contradicting results 

will be discussed in more detail in section 1.6. 

E1 and E2 are transmembrane glycoproteins that form the viral envelope. Both of 

these glycoproteins are composed of two domains: an N-terminal ectodomain and a 

conserved C-terminal transmembrane domain (TMD) that anchors these glycoproteins 

into the ER membrane [71,72]. During the post-translational modification of E1 and E2, 

they are heavily glycosylated. This glycosylation is important for many functions, i.e, it 

helps in properly folding the protein, and facilitates escape from the adaptive immune 
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responses [73]. E1 and E2 form a stable noncovalent heterodimeric complex that lies on 

the surface of the virion [74]. The main function of the E1 and E2 glycoproteins is to 

form a complex that is able to interact with the cellular receptors on the surface of target 

cells and mediate fusion with the cell membrane, which results in the entry of the virion 

into its target cell [75-77]. The cellular receptors for HCV will be discussed in section 

1.2.3. E2 has been better characterized than E1, and it was found to be responsible for cell 

receptor binding, and it is the target of neutralizing antibodies [78]. The exact functions of 

E1 are poorly understood; however, E1 has been reported to be important for the fusion of 

viral and cellular membranes [79,80].   

The p7 protein is a small protein that is composed of two trans-membrane domains 

connected by a short conserved loop [81,82]. p7 is not necessary for RNA replication but 

is essential for the infectivity of HCV and the production of infectious virus particles 

[83,84]. p7 homo-oligomerizes in artificial membranes to form hexa- or hepata-oligomers 

that can act as ion channels, which led to the classification of p7 as a member of the 

viroporin family of proteins [85-87]. In a recent study conducted in the Russell lab, p7 

was shown to protect E2 from premature degradation during virus production [88]. 

NS2 is a 24kDa protein that is composed of two domains: the N-terminal membrane-

binding domain, which contains three transmembrane segments, and a C-terminal 

globular cytosolic domain, which dimerizes to form the active site of the cysteine 

protease [89,90]. Besides its protease activity, NS2 is believed to play an important role 

in orchestrating the assembly of the new virions. This is achieved by interacting with and 

bringing together E1-E2 and p7, as well as NS3, which is part of the replicase complex 
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[91-94]. It was also shown that an interaction between NS2 and NS3-4A is essential for 

recruiting the core protein from cLDs to the site of assembly [95]. 

The NS3 protein contains two functional domains, a protease and a helicase domain 

[96]. It forms a heterodimer with NS4A that catalyzes the cleavage of most of the non-

structural proteins, as described above. The protease activity of NS3-4A is also important 

for suppressing the innate immune response to HCV. NS3-4A blocks the retinoic acid-

inducible gene I (RIG-I) signaling pathway by cleaving the Mitochondrial antiviral-

signaling protein (MAVS), which abolishes IFN-β expression [97-99]. TIR-domain-

containing adapter-inducing IFN-β (TRIF) is a second adaptor protein that is also a victim 

of cleavage by NS3-4A resulting in blocking toll-like receptor (TLR)-3 signaling [100]. 

The role of NS3-4A in evading innate immune responses will be discussed further in 

section 1.4.1. The helicase domain of NS3 is important for hydrolyzing ATP and the 

resultant energy is used to unwind the viral RNA [101-103]. 

NS4B is a membrane integral protein that is composed of two N-terminal amphipathic 

helices, a highly hydrophobic central core domain that contains four putative 

transmembrane segments, and a highly conserved C-terminal domain [104,105]. 

Expression of NS4B and the oligomerization of the NS4B molecules were found to cause 

rearrangement of ER membranes [106,107]. These results led to the belief that NS4B is 

solely responsible for the formation of the membranous web, the membranous structure in 

which replication takes place. However, more recent studies have shown that the 

expression of another non-structural protein (NS5A) is necessary for the formation of the 

double membrane vesicles (DMV), which are a constituent of the membranous web, 
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while only single membrane vesicles result from the expression of NS4B alone [108].  As 

such, it is now widely accepted that the formation of the membranous web requires the 

expression of multiple non-structural proteins. 

NS5A is a proline-rich phosphoprotein that is essential for RNA replication and virus 

assembly [109,110]. It was found to be capable of binding the 3ˈ end of the positive and 

negative strands of HCV RNA [111,112]. NS5A is comprised of an amphipathic helix at 

its N-terminus that is responsible for its interaction with the membranes, as well as three 

functional domains (DI, DII, and DIII) [113,114]. The structure of the first domain (DI) is 

well characterized, and it contains a motif that is capable of coordinating a zinc atom, 

which is essential for NS5A function within the replicase complex [114]. The structure of 

the other two domains is still not fully elucidated [115]. Nevertheless, there is strong 

evidence that the assembly function of NS5A is carried out mainly by DIII [116-118]. As 

discussed above, NS5A is the main viral protein that is able to induce the formation of 

DMVs [108]. NS5A was reported to achieve this by interacting with Phosphatidyl-

inositol-4-kinase IIIα (PI4KIIIα), which activates a pathway that ultimately results in 

cholesterol enrichment of the membranous web [119]. Furthermore, NS5A was found to 

interact with cyclophilin A (Cyp A) and this interaction is believed to be essential for 

HCV replication [120]. Inhibiting the interaction between NS5A and Cyp A 

pharmacologically was found to block de novo formation of DMVs [121]. 

NS5B is an RNA-dependent RNA polymerase (RdRp) that catalyses the replication of 

the HCV RNA. This replication takes place by first using the HCV genome to synthesize 

a complementary negative strand, which is subsequently used as a template for the 
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synthesis of additional positive strands. NS5B lacks proofreading ability and therefore is 

associated with a very high mutation rate of approximately 10−4 substitutions per site 

[122]. This lack of proofreading activity, in combination with the high rate of virus 

production, generates the viral quasispecies (discussed above), which contributes to virus 

persistence and helps establish chronic infection despite the presence of strong adaptive 

immune responses [123].  The NS5B protein is anchored through its C-terminus to ER-

derived membranes [124]. The crystal structure of the NS5B catalytic domain has been 

reported by several groups and was found to contain several features that are shared by 

other known RdRps including a GDD motif in the active site, and fingers, palm and 

thumb sub-domains [125-127]. 

1.2.3 Life cycle. 

The target cells for HCV are the hepatocytes. Nevertheless, the ability of the virus to 

cause extrahepatic infections in immune cells and central nervous system cells has been 

reported by some groups [128-132]. The target cells are determined largely by E2 and E1, 

and their ability to interact with receptors on the surface of susceptible cells. The low-

density lipoprotein (LDL) receptor was believed to be a good candidate for the initial 

attachment of the virus to its target cells due to the fact that HCV circulates in the blood 

of infected patients as a lipo-viro-particle (LVP), in which the virus is associated with the 

host LDL or very low density lipoprotein (VLDL) [133,134]. However, it was reported 

later that this receptor is not essential for infectious particle entry and it leads, at least in 

some cases, to non-productive entry that results in the degradation of the virus particle 

[135]. 
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To date, four receptors for HCV have been identified. The most important among 

them is CD81, which is a member of the tetraspanin family, a family of cell surface 

proteins with four transmembrane domains and two extracellular loops [136]. CD81 is 

expressed on the surface of hepatocytes, as well as many other cell types, and can bind to 

E2 [137]. Scavenger receptor class B type I (SR-BI) is an additional receptor for HCV 

that can also bind E2 and is necessary for HCV entry [138].  Later, two more receptors 

were found to be necessary for HCV entry, these are the tight junction components 

claudin-1 (CLDN-1) and occludin (OCLN) [139,140]. Interestingly, it was recently 

reported that the VLDL receptor may also serve as an HCV receptor, as it can mediate 

entry of HCV independent from the canonical CD81 pathway [141]. 

HCV entry starts with the interaction of the circulating lipoprotein-associated virus 

particles with surface receptors glycosaminoglycans (GAGs), SR-BI, CD81 and then, 

upon relocalization to tight junctions, with CLDN-1 (Fig. 1.1) [142]. The exact role of 

OCLN is not known but it also believed to work at late steps of entry [143]. Next, HCV is 

internalized by clatherin-dependent endocytosis, which internalizes the virus particle into 

an endosome [144]. The low pH inside the endosome stimulates the next step of the virus 

life cycle, which is fusion between the viral and endosomal membranes (Fig. 1.1) 

[77,145,146]. The exact mechanism for the fusion process is not fully known. However, 

according to the published data describing the structure of E2, it is unlikely that E2 is 

involved in the fusion process because it lacks any structural hallmarks of fusion proteins 

[137,147]. This fact, and the available computational analysis model for E1, has led to the 

suggestion that E1 alone or in combination with E2 is responsible for the fusion process 
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[79,80,148]. However, the available structural data for E1 contradicts this suggestion, but 

it is too limited to exclude the role of E1 in this process [149]. Membrane fusion results in 

the release of the nucleocapsid into the cytosol followed by uncoating, which releases the 

viral genome into the cytosol. Uncoating is the least understood step in HCV life cycle. 

Upon uncoating, the viral RNA is directly translated into the viral polyprotein that in 

turn is processed to generate the ten mature viral proteins (Fig. 1.1). Then, the non-

structural proteins (mainly NS4B and NS5A) alter the ER membranes to form the 

membranous web. Inside the membranous web, membrane-associated replication 

complexes form and the process of RNA replication takes place.  

Virus assembly is a very complex and poorly understood process. This process 

requires three different components: the core protein, envelope glycoproteins (E1 and E2) 

and the viral RNA. cLDs play a crucial role in assembly as newly synthesised core 

proteins are recruited to their surface [150,151]. It is assumed that sequesteration of core 

protein on the surface of cLDs prevents core from competing with the replicase proteins 

for the viral RNA [152]. NS5A is also recruited to the cLD and interacts with the core 

protein by the function of its DIII [116]. This interaction is crucial for virus particle 

production [153]. In infected cells, a large number of cLD are found in a close proximity 

to the membranes of the membranous web, and this is believed to create a suitable 

microenvironment for assembly [151].  

Besides core protein and NS5A, many other viral proteins have been reported to play 

a role in the assembly process. As mentioned previously, NS2 plays a central role in the 
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process. The NS3 helicase domain and the linker region are also important for the 

assembly, but it is not known whether the enzymatic activity of the helicase domain is 

required [154,155]. NS4B and NS5B have been also reported to contribute in the virus 

assembly [156,157]. According to the available complex data, it is hypothesized that the 

viral RNA is shuttled from the replicase site to the assembly space between the cLD and 

the ER membrane by NS3 and NS5A. Core proteins travel from the cLD membrane to the 

ER membrane, which contains E1 and E2 proteins. Then, core protein, in combination 

with the RNA, build the nucleocapsid while budding into the ER lumen [152,158]. 

Accumulating evidence suggests that the assembly process is tightly linked to the VLDL 

pathway [159-161]. Newly formed virions are then transported via the secretory pathway 

to the Golgi apparatus, were E1 and E2 undergo further modifications, before the virus 

particle is released through budding from the cell membrane (Fig. 1.1) [162,163]. 

 1.3 Studying hepatitis C virus. 

1.3.1 Cell culture models. 

After its discovery in 1989, the ability to study HCV was hampered by the lack of 

effective cell culture systems in which the virus could undergo its entire life cycle. Early 

studies reported success in infection of immortalized cell lines and primary hepatocytes 

from  
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human and chimpanzee by direct inoculation of serum from HCV infected patients [164-

170]. However, the replication reported by these studies was poor, variable, and hard to 

reproduce. Furthermore, viral proteins could not be detected using available assays, and 

viral RNA was only detectable by reverse transcription polymerase chain reaction 

(RT/PCR) [171,172]. This prompted the researcher community to design alternative 

systems to study certain parts of the HCV life cycle or even simply one or more viral 

proteins independently.  

The first breakthrough in this field was the development of the subgenomic replicon 

system by Lohmann et al. in 1999 [83]. This replicon system was generated by 

transfecting the human hepatoma cell line Huh-7,  with a bicistronic RNA construct 

composed of an HCV IRES followed by a selection gene (neomycin phosphotransferase), 

followed by a second cistrone containing the genomic region comprising the HCV non-

structural proteins NS3-NS5B as well as the viral 3’ UTR driven by an 

Encephalomyocarditis virus IRES. Drug selection for cells carrying the viral replicon 

RNA generated cell lines that were able to persistently replicate the replicon RNA. The 

replication efficiency of the first subgenomic HCV replicon was low and limited to a 

single strain of HCV, the genotype 1b Con-1 strain isolate. However, more efficient 

replicons and several other genotypes were later developed (reviewed in [173,174]). The 

main advantage provided by this system is the availability of different clones that 

encompass a wide range of HCV genotypes. The main disadvantage of this system is that 

it only allows the study of non-structural protein processing and RNA replication. 
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However, subgenomic replicons provided a significant contribution to the study of HCV 

and played an important role in the discovery of direct-acting antivirals. 

Studying the entry step continued to be a challenge because replicon systems were not 

able to recapitulate it. The first major breakthrough in studying this step was the 

development of HCV pseudoparticles (HCVpp) in 2003 [175,176]. HCVpp are generated 

by co-transfecting 293T cells with two or three plasmid combinations that include the 

HCV E1 and E2 genes, retroviral gag-pol genes from human immunodeficiency virus 

(HIV) or murine leukemia virus (MLV), and a reporter gene (Green fluorescent protein 

gene (GFP) or Luciferase gene). The transfected cells produce HCVpp, which are 

composed of HCV envelope glycoproteins and an HIV or MLV nucleocapsid and 

contains a reporter gene. These particles can be used to infect permissive cells, such as 

human hepatoma cells (i.e. the Huh-7 cell line and derivatives thereof). Since the entry 

step is mediated by HCV envelope proteins, and the infected cells can be easily identified 

by the expression of the reporter gene, this system provides a useful tool to study HCV 

entry [173,174]. The HCVpp system is also the main tool for studying neutralizing 

antibodies [177,178]. An HCVpp library, which is composed of 19 distinct variants of 

genotype 1 has been used to test for broadly neutralizing antibodies [179]. The main 

drawback of using this system is the fact that these particles are produced in 293T cells, 

which is a kidney cell line. This can result in differences in the glycosylation of the 

envelope proteins in HCVpp compared to the natural virus. Furthermore, since 293T cells 

are unable to produce lipoproteins, the resulting HCVpp are not associated with the 

lipoproteins in the same way HCV particles are under physiologic conditions. 
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In 2005, Wakita et al. described the first fully infectious HCV cell culture (HCVcc) 

system [41]. They used the full-length RNA of the JFH1 strain, which is a genotype 2a 

strain isolated from a Japanese patient with fulminant hepatitis [180]. When they 

transfected Huh-7 cells with this full-length RNA, virus particles were produced and were 

able to infect naïve cells, recapitulating the entire HCV life cycle in cell culture. The 

drawback in using this strain was the low titer of virus obtained. However, this system 

provided the basis for future optimization.  

Several approaches were used to improve the HCVcc system and to increase viral 

titers in cell culture. Firstly, infecting Huh-7.5 cell line, which is a cured clone of Huh-7 

cells harboring subgenomic HCV replicon, improved the titer, probably because of the 

defective RIG-I and higher levels of CD81 in Huh-7.5 cells [181-184]. Another group 

generated a chimeric virus composed of core-NS2 from the HCV J6 strain, which is also a 

genotype 2a strain, and NS3-NS5B from JFH1. This chimeric virus generated 

significantly higher titers than the wild-type JFH1 [181]. Additional intragenotypic and 

intergenotypic chimeras were generated later by Pietschmann and his colleagues [185]. 

To generate these chimeras they used a fusion point just after the first transmembrane 

domain of NS2. This allowed them to produce a more robust chimera of J6-JFH1, which 

became known as Jc-1. In addition, they were able to generate intergenotypic chimeras 

representing genotypes 1a, 1b, 2a, and 3b. However, with the exception of Jc-1, which is 

an intragenotypic chimera, these other chimeras all generated lower titers than wild-type 

JFH1.  In another study, passaging the virus for three weeks in Huh-7.5.1 cells (a 



19 
 

derivative of Huh-7.5 cells) resulted in the appearance of cell culture-adapted variants 

that gave a 200-fold increase in titer compared to JFH-1 [186].  

In 2008, Russell et al. reported three cell culture-adapted mutations in E2, p7, and 

NS2 (N417S, N765D and Q1012R, respectively). The adapted strain containing these 

three mutations, later called JFH1T, was reported to generate 1000-fold more infectious 

virus than wild-type JFH1 [187]. Since the replication rate of JFH1 is much lower than 

the levels observed in HCV-infected individuals, JFH1T may better represent natural 

HCV infection. For this reason, we use this strain to model for HCV infection herein. 

The latest progress in the field was published recently by Saeed et al. in which they 

reported the development of the first pan-genotypic cell culture system that allowed 

replication of different genotypes of virus including isolates from patient sera [188]. This 

was achieved by generating Huh-7.5 cells that express SEC14L2, which is suggested to 

sustain HCV replication by enhancing a vitamin E-mediated protection against lipid 

peroxidation. 

1.3.2 Animal Models. 

Chimpanzees can be infected with HCV and it was the first animal model to be used 

for studying this virus. The use of this model began about ten years before the discovery 

of HCV itself to confirm that NANB hepatitis could be transmitted to chimpanzees upon 

inoculation of serum from an infected human [4,5]. Since then, the use of this animal 

model added great contributions to the field, which began with the discovery of the virus, 

and continued with the understanding of many aspects regarding HCV biology, including 
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the pathogenic mechanisms, the cellular immune responses against the virus, as well as 

antiviral and vaccine efficacy studies [189-192]. However, unlike the natural course of 

infection in humans, the majority of infected chimpanzees rapidly cleared the infection, 

and even in the few that develop chronic infection, no signs of fibrosis have been 

observed and only one case of HCC has been reported [192,193]. Although the use of 

chimpanzees in HCV research was invaluable, these studies were limited due to the high 

cost and limited availability of facilities able to carry out this research. In 2013, the use of 

chimpanzee in research was banned due to ethical issues, with chimpanzee studies now 

limited to vaccine trials in most countries [173].   

Interestingly, besides humans and chimpanzees, the tree shrew (Tupaia belangeri) 

was found to be the only non-primate that is permissible for HCV infection [194]. 

Infection in tree shrews results in intermittent viremia during the acute phase, and 

evidence of chronic infection was observed and long-term histological analysis showed 

the development of HCV-induced liver disease in HCV-infected animals [195,196]. 

Despite these attractive features of this model, the use of tree shrew in HCV research is 

still very limited, probably due to the low and variable infection rates and the difficulties 

in breeding this animal in captivity [173,191,193]. 

In contrast, the mouse is a very attractive animal model for virological research. 

However, its use in HCV research was hampered by the fact that mice are not permissive 

to HCV infection.  In order to overcome this barrier, three approaches were followed to 

modify either the virus itself or the mouse in a way that supports infection (reviewed in 

[192,193]). The first approach was to allow the virus to adapt to mouse CD81 and mouse 
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OCLN, both of which cannot be utilized by HCV envelope proteins for entry [140]. The 

adaptation to mouse CD81 was achieved by passaging the virus for extended periods in 

the presence of mouse CD81 [197]. This adapted virus was reported to replicate and 

produce infectious particles in a mouse liver cell line defective in innate immune 

pathways [198].  

The second approach was to genetically manipulate the mouse in order to express 

human receptors such as CD81 and OCLN (humanized mouse model). This was achieved 

either by adenovirus delivery or by transgenic expression of the receptors. The mouse 

expressing human CD81 and OCLN was found to support HCV entry [199]. In a later 

report, the same group showed that blunting the innate antiviral response of transgenic 

mice expressing the four human HCV receptors (CD81, SR-B1, CLDN-1 and OCLN) 

supported virus production as viremia was detected in this mouse for several weeks, 

meaning the entire HCV life cycle was recapitulated in this model [200]. 

The third approach was to directly humanize the mouse liver by xenotransplanting 

human hepatocytes. In this model, severely immunosuppressed mice (e.g. Severe 

combined immunodeficiency [SCID] mice) were used to prevent the rejection of human 

liver cells by the mouse immune system [201]. Primary human hepatocytes (PHH) were 

injected intrasplenically where they will engraft in the liver and repopulate most of the 

mouse liver [202]. Cell injury was induced in the murine hepatocytes to provide a 

proliferation signal to the engrafted human hepatocytes and to give them a growth 

advantage over the murine hepatocytes [173]. The most commonly used way to induce 

cell injury in murine hepatocytes is by the transgenic expression of urokinase 
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plasminogen activator (uPA) [203,204]. The human liver chimeric mouse model 

contributed to better understanding of many aspects of HCV including the neutralizing 

antibodies and testing new antiviral drugs [205-209]. The main limitation of this model is 

the absence of an adaptive immune responses in the host. To overcome this limitation, an 

immunocompetent mouse model was recently developed by double humanizing the 

mouse with human immune progenitor cells (e.g. CD34+ human hematopoietic stem 

cells) and human hepatocyte progenitors [210-212].  

1.4 HCV immunology. 

1.4.1 Innate immune responses against HCV. 

The induction of type I and type III interferons (IFNs) is one of the first defence 

mechanisms that can restrict viral infection. Type I IFN includes IFN-β, which is encoded 

by a single gene, and IFN-α, which is encoded by a cluster of 13 genes. Type III IFNs 

include three subtypes of IFN-λ: IFN-λ1, IFN-λ2, and IFN-λ3 (also known as IL-29, IL-

28A, and IL-28B, respectively) [213,214]. Type I and Type III IFNs binds to different 

receptors on target cells, but they are believed to induce the same intracellular signaling 

pathway and stimulate the expression of the same genes [215,216]. 

In order for the IFN response to be initiated, the virus must be recognized by at least 

one of a group of receptors, known as the pathogen recognition receptors (PRRs). These 

receptors recognize specific characteristics of the virus, i.e., the PAMPs. The PRRs are 

classified into three classes, RIG-I-like receptors (RLRs), toll-like receptors (TLRs) and 

Nod-like receptors (NLRs). 
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RIG-I is the main PRR that recognizes HCV [182,217]. It is an RNA helicase that is 

composed of three domains: a C-terminal regulatory domain, a DExD/H box type RNA 

helicase domain in the centre and two tandem caspase activation and recruitment domains 

(CARDs) in the N-terminus [59,218-221]. The C-terminal regulatory domain and the 

RNA helicase domain are involved in the detection of viral RNA [221]. The ligands 

recognized by RIG-I are the cytosolic 5' triphosphate containing dsRNA and the 3' UTR 

that is rich in poly-U/UC [217,221,222]. Binding of HCV RNA to RIG-I induces 

conformational changes in RIG-I that leads to oligomerization and translocation of RIG-I 

from the cytosol into intracellular membranes, which results in the interaction of the 

activated RIG-I, through its CARD domains, with an adaptor protein called MAVS 

located on the mitochondria, peroxisomes and mitochondria-associated membranes 

(MAMs) of the endoplasmic reticulum [223-226]. This process requires the interaction of 

RIG-I with two proteins, the chaperone protein 14-3-3ε and the E3 ubiquitin ligase 

TRIM25 [227,228]. TRIM25 in turn requires another ubiquitin ligase, Riplet, to be able to 

associate with and activate RIG-I [229]. Interaction between RIG-I and MAVS results in 

the activation of a downstream cascade that results in the activation of two transcription 

factors: IFN regulatory factor 3 (IRF3) and nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB). Once activated by phosphorylation and dimerization, IRF3 is 

translocated to the nucleus where it plays a major role in activating the IFN-β promoter 

(reviewed in [230-232]). 

TLR3 is also able to sense HCV, but its exact role in the immunity against it is still 

not clear. TLR3 is an intraendosomal sensor that is composed of an ectodomain that 
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recognizes the RNA ligand, connected by a transmembrane region to a Toll/IL-1 receptor 

(TIR) domain, which is responsible for initiating the downstream signaling [233,234]. 

The HCV PAMP that is recognized by TLR3 is the dsRNA intermediate that accumulates 

in the cell during replication [235]. Binding of TLR3 to its ligand results in the 

dimerization of the TIR domains. This in turn recruits the adaptor protein TRIF and 

results in the activation of IRF-3 and NF-κB, which subsequently induces the expression 

of IFN-β (reviewed in [231,232,236]). 

Once expressed, IFN-β will bind to its cognate receptor in an autocrine and paracrine 

manner. This leads to the activation of a Janus kinase/signal transducers and activators of 

transcription (JAK/STAT) signaling pathway, which subsequently results in the 

expression of hundreds of genes collectively known as IFN-stimulated genes (ISGs). One 

of the known ISGs is IRF7, which is a transcription factor for IFN-α promoters, thus 

results in more type-I IFN production and the positive feedback amplification of the 

response [237,238]. Other ISGs encode several proteins with known antiviral activities, 

which restrict HCV accumulation and infection of neighbouring cells. In contrast, other 

ISGs, such as ISG15, have been reported to promote HCV activity [239].  

Interestingly, Protein kinase R (PKR), a protein known for its antiviral functions by 

inhibiting host mRNA translation, was identified later as a third PRR for HCV [240]. 

However, unlike the other two PRRs, PKR was reported to induce a pathway that 

supports HCV infection.  Binding of PKR to dsRNA was found to initiate, in a kinase-

independent way, a signaling pathway that involves MAVS and IRF3, but not RIG-I. This 

pathway results in the rapid induction of 49 genes, including ISG15. ISG15 inhibits RIG-I 
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at early stages of infection by blocking its TRIM25-mediated ubiquitination, thus 

preventing the induction of IFN-β [240]. 

Despite the early activation of the IFN response following HCV infection, this innate 

immune response fails to clear the majority of new infections [241,242]. This failure is 

the result of the development of multiple strategies by the virus to evade the innate 

immune responses. Different evasion strategies target each of the three steps of the IFN 

response by disrupting PRR signaling, inhibiting JAK/STAT signaling, and antagonizing 

the antiviral functions of the ISGs (reviewed in [59]). 

 The best-characterized and most important strategy followed by HCV to evade the 

induction of the IFN response is the cleavage of MAVS by NS3-4A protease activity. 

MAVS molecules are anchored in membranes and the cleavage of MAVS liberates them, 

resulting in a block in the RIG-I signaling pathway [99,243].  The HCV NS3-4A protein 

targets MAVS located on MAMs, which is sufficient to block RIG-I signaling, regardless 

of intact MAVS located on the mitochondrial membrane [225]. More recently, Riplet was 

reported to be a second cleavage victim of NS3-4A within the RIG-I pathway, cleavage 

of which abrogates the association between RIG-I and TRIM25 and inhibits the signaling 

pathway [229]. Furthermore, NS3-4A protease activity is also able to attenuate TLR3 

signaling by cleaving TRIF [100]. Since MAVS is also involved in PKR signaling, its 

cleavage by NS3-4A is also expected to inhibit this pathway [232]. 

 JAK/STAT signaling was also reported to be blocked by HCV. Core protein was 

reported to have a central role by inhibiting this pathway at different steps (reviewed in 
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[59,244]). Other HCV proteins have been reported to antagonize additional ISGs. For 

example, NS5A was reported to antagonize the antiviral function of 2′–5′ oligoadenylate 

synthetase (2–5 OAS), an ISG product that induces the degradation of viral RNA 

[245,246]. The kinase activity of PKR was reported to be inhibited by two viral proteins, 

E2 and NS5A [247,248]. This prevents PKR’s inhibitory effects on cellular mRNA 

translation, thus reducing the cellular factors necessary for virus replication. However, the 

exact effect of inhibiting the kinase activity of PKR on HCV infection is not clear.  

Natural killer (NK) cells form another important arm of innate immunity against viral 

infections. NK cells restrict viral infection by performing two important functions: killing 

virally infected cells and secreting cytokines (such as IFN-γ) that can control viral 

infection. Activation of NK cells is controlled by a balance between activating and 

inhibitory signals that result from the interactions between a variety of NK cell receptors 

and their ligands on the surface of target cells [249]. NK cells are enriched in the liver, 

accounting for 25%-40% of the lymphocytes present [250]. This has led many to believe 

that NK cells play a pivotal role in controlling HCV infection prior to the onset of 

adaptive immune responses. In line with this, NK cells are activated during acute HCV 

infection [251,252]. An epidemiological study reported that a specific NK cell receptor-

ligand combination is associated with the clearance of viral infection [253]. Furthermore, 

a strong line of evidence suggests that progress of HCV infection to chronicity is 

associated with changes in the NK cell subsets and receptor expression [254-258]. The 

interaction between CD81 on NK cells and the viral E2 protein was reported to inhibit 

NK cell functions [259,260]. In agreement with this, a recent publication from the Grant 
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lab showed that co-culturing NK cells with HCVcc-infected Huh-7.5 cells resulted in a 

downregulation of NKp30, an activating receptor of the natural cytotoxicity receptor 

family, and resulted in inhibiting NK cell cytotoxicity and cytokine secretion [261].  

1.4.2 Adaptive immune responses against HCV. 

Unlike innate immune responses, the adaptive immune response to HCV is active late 

after the primary infection, at approximately 6-8 weeks post-infection [262,263]. All of 

the components of the adaptive immune response, including both humoral and cellular 

responses (CD8+ and CD4+ T cells), have been shown to play a central role in 

determining the outcome of the infection and participate in HCV-pathogenesis [264,265].  

In most of the cases, acute HCV infection induces the production of antibodies 

directed against different epitopes located within the structural or the non-structural viral 

proteins [263]. Some of these antibodies have the ability to prevent virus binding, entry, 

or uncoating and are called neutralizing antibodies. For example, antibodies directed 

against the hypervariable region-1 (HVR-1) of the E2 protein have been found to be 

neutralizing [266,267]. However, the role of the neutralizing antibodies in determining 

the outcome of HCV infection is not clear as controversial findings have been reported by 

several groups. Some studies reported that the generation of neutralizing antibody is not 

associated with spontaneous clearance of HCV in chimpanzees and humans [268,269]. In 

contrast, a cohort study of a single source outbreak reported an association between early 

induction of neutralizing antibodies and viral clearance [270]. Moreover, a recent study 

reported that spontaneous clearance of viral infection is associated with the rapid 

development of a broadly neutralizing antibody response [179]. During chronic infection, 



28 
 

neutralizing antibodies apply a selection pressure on the existing HCV infection causing 

continuous generation of escape variants [177]. 

Unlike the humoral immune response, the important role of both CD8+ and CD4+ T 

cell responses in controlling HCV infection is well established. Antibody-mediated 

depletion of CD8+ T cells in a previously protected chimpanzee resulted in a persistent 

infection until the recovery of HCV-specific CD8+ T cells in the liver [271]. Similarly, 

antibody depletion of CD4+ T cells in a previously protected chimpanzee was also found 

to cause persistent infection [272]. Several other studies have shown a correlation 

between HCV-specific CD8+ T cell responses and viral clearance in humans [273-276]. 

Other groups also reported the importance of the CD4+ T cell response in controlling 

HCV infection. A strong, broad, and persistent CD4+ T cell response was found to 

associate with the resolution of the infection [277-280].  Furthermore, certain human 

leukocyte antigen (HLA) class I and class II alleles were found to associate with virus 

clearance, thereby emphasizing the roles of CD8+ and CD4+ T cells in controlling HCV 

infection [281].  

1.5 Programmed cell death. 

Historically, the term programmed cell death (PCD) was first used in 1965 to describe 

the organized death of certain larva muscle cells during the process of transformation into 

moths [282]. In 1972, the term apoptosis was first proposed by Kerr et al. to describe a 

morphologically distinct form of cell death [283]. Afterwards, cell demise was divided 

into two major forms: necrosis and apoptosis. Apoptosis was described as a programmed, 

energy dependent cell death, while necrosis was considered as an accidental, passive, and 
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unwanted form of cell death. However, under certain conditions, necrosis was found to be 

induced in a well-orchestrated manner as a backup mechanism for apoptosis [284,285]. 

This led many to reclassify necrosis as an additional form of programmed cell death 

(PCD). In addition, other forms of programmed cell death were characterized later, 

increasing the number of PCD pathways. In this section, the major forms of PCD will be 

described, with an emphasis on apoptosis and pyroptosis, the two forms of PCD related to 

the findings described herein.  

1.5.1 Apoptosis. 

Since its discovery, apoptosis has gained a lot of interest from different biological and 

medical fields. The induction of apoptosis was found to be an integral part of an 

enormous number of vital biological processes including fetal development, haemostasis, 

regulation of the immune system and defence against intracellular pathogens. Defects in 

this process lead to serious complications including autoimmunity and cancer [286]. 

1.5.1.1 Hallmarks of apoptosis. 

In tissues, apoptosis usually involves single cells or small clusters of cells [287]. One 

of the earliest morphological features of apoptosis is the compaction and segregation of 

nuclear chromatin to form fine granules that become marginated against the nuclear 

membrane followed by the condensation of the cell with preservation of the organelles 

[287-289]. As apoptosis proceeds, the plasma membrane blebs and forms fragments 

known as apoptotic bodies in a process called budding, and the nucleus becomes 

fragmented [287,288,290]. Apoptotic bodies are immediately engulfed by nearby 

phagocytic cells without inducing an inflammatory response.  
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One of the most important hallmarks of apoptosis is the fragmentation of cellular 

DNA. This process occurs as a result of the activation of DNA degradation enzymes, such 

as DNase, in the apoptotic signaling cascade. These enzymes cleave the cellular DNA at 

the linker regions between nucleosomes generating fragments of DNA each containing a 

single nucleosome or oligoneucleosomes [291]. However, as will be discussed later in 

this section, other forms of PCD can also induce DNA fragmentation.  

Another hallmark of apoptosis is the externalization of phosphatidyl serine (PS), 

which is normally sequestered to the inner leaflet of the plasma membrane, to the outer 

leaflet of the plasma membrane [292,293]. The exposed PS on the surface acts as the key 

“eat me” signal on the surface of the apoptotic cell, which facilitates its engulfment by 

phagocytic cells [294]. Since the externalization of PS occurs early in apoptosis, this 

provided the bases for assays designed to detect apoptosis [295]. 

The process of apoptosis is dependent on the activation of a group of proteolytic 

enzymes called cysteinyl aspartate specific proteases (caspases). Caspases are widely 

expressed in cells as inactive proenzymes, with different stimuli able to result in their 

cleavage and activation. Once activated, they cleave other caspases and initiate a cascade 

of events that leads to cell death. To date, 18 caspases has been identified in mammals but 

only few of them are involved in the apoptotic pathway [296]. The members of the 

caspase family are divided into upstream, or initiator caspases (caspases-1, -2, -8, -9, -10, 

-11 and -12), and downstream, or executioner caspases (caspases-3, -6, -7 and -14) 

(reviewed in [296,297]). Moreover, caspases can perform other, non-apoptotic functions 
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in the cell, including cell-cell communication, cytokine maturation, inflammatory 

responses, spermatogenesis, and neuronal differentiation [297,298]. 

1.5.1.2 Apoptotic pathways. 

Two pathways can induce apoptosis: the extrinsic (death receptor) pathway and the 

intrinsic (stress/mitochondrial) pathway. The two apoptotic pathways are depicted in Fig 

1.2. The extrinsic pathway is initiated by the interaction between a cell surface death 

receptor and its ligand. Known death receptors: tumor necrosis factor (TNF) receptor-1 

(TNFR-1), Fas (also known as APO-1/CD95), death receptor (DR) 3, TNF-related 

apoptosis inducing ligand-receptor 1 (TRAIL-R1), TRAIL-R2 and DR6 [286,299-301]. 

These receptors belong to the TNF receptor gene superfamily and contain a cysteine-rich 

extracellular domain that interacts with the death ligand, and a cytoplasmic domain called 

death domain (DD), which is responsible for the initiation of intracellular signaling 

[299,302,303]. The interaction of these receptors with their ligands results in their 

oligomerization (mostly trimerization). This will result in the recruitment of the DD-

containing adaptor proteins Fas-Associated protein with death domain (FADD) or Tumor 

necrosis factor receptor type 1-associated death domain protein (TRADD) through the 

homotypic interaction of the DDs on both molecules. FADD contains a second domain 

called the death effector domain (DED), which recruits other DED-containing proteins 

including procaspase-8 and procaspase-10 to form a death-inducing signaling complex 

(DISC) [303-305]. The DISC will then mediate the autocatalytic cleavage and activation  
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Figure 1.2 The intrinsic and the extrinsic apoptotic pathways. 

Schematic representation of the extrinsic and the intrinsic (stress/mitochondrial) apoptotic 

pathways. The interaction between the death ligand with its cell surface receptor result in 

the recruitment of the adaptor proteins FADD/TRADD and procaspase-8/10 to the 

cytoplasmic domain of the receptor forming DISC. This interaction results in the cleavage 

and activation of caspase-8. Active caspase-8 cleaves and activates caspase-3/6/7 and 

BH3 interacting-domain death agonist (BID). Activation of BID amplifies the signal by 

activating the mitochondrial pathway. The intrinsic pathway is initiated by disrupting the 

balance between the pro- and anti-apoptotic Bcl-2 family members. This leads to 

mitochondrial outer membrane permeabilization (MOMP) and release of cytochrome C to 

induce the oligomerization of APAF1 and the formation of the apoptosome, which 

activates caspase-3 and the other executioner caspases. 

  



33 
 

of caspase-8/ 10 [303]. The procaspase-8 molecule contains two DEDs and two catalytic 

subunits, p18 and p10. The activation of caspase-8 at the DISC occurs by the dimerization 

and several cleavages that eventually result in the formation of a heterotetramer 

(p10/p18)2 [306,307]. Unlike the other death receptors, TNFR1 and DR3 DDs recruit 

TRADD [308]. TRADD is another DD-containing adaptor protein that can form two 

types of complexes, complex I and complex II. Complex I results from the recruitment of 

RIP-1, TRAF2, cellular inhibitor of apoptosis (cIAP) 1 and cIAP 2. This complex initiates 

a signaling pathway that ends with the activation of NF-κB and the p38 and c-Jun N 

terminal kinase (JNK) MAPK pathways [301,309]. Complex II  is formed when TRADD 

recruits FADD, procaspase-8/10 and RIP-3. Complex II is a DISC that results in the 

cleavage and activation of caspase-8 [309,310]. The cell can control the activation of the 

extrinsic pathway by producing an inhibitory protein called cellular caspase-8/FADD-like 

IL-1β-converting enzyme (FLICE) inhibitory protein (c-FLIP). Like procaspase-8/10, this 

protein contains a DED domain, which allows it to interact with FADD, but it lacks the 

enzymatic activity found in caspase-8/10 [311,312].  

It is worth mentioning here that formation of complex I by the TNF-α-TNFR 

interaction can activate two different pathways, each of which results in a different 

outcome regarding the fate of the cell. Complex I can result in the activation of JNK, 

which in turn activates the transcription factor activator protein-1 (AP-1). Complex I can 

also activate the transcription factor NF-κB (JNK and NF-κB activation pathways by 

complex I are reviewed in [309]). Activation of the JNK pathway contributes to TNF-α-

induced cell death by activating E3 ubiquitin ligase Itch, which in turn ubiquitinates 
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cFLIP and targets it for proteasomal degradation [313]. Activation of NF-κB, on the other 

hand, results in the transcription of a group of genes including inflammatory chemokines 

and pro-survival proteins such as Bcl-xL, XIAP and cFLIP (reviewed in [314]).   

 Once activated, caspase-8/10 cleaves and activates the executioner caspases. In 

certain cell types (such as thymocytes), this signal by itself is enough to execute 

apoptosis. These cells are designated “type I”. In the cell types, amplification of the death 

signal by activation of the mitochondrial pathway is necessary for the induction of 

apoptosis [315,316]. These cell types are designated “type II” and include hepatocytes, 

which are the cell type of interest herein. Activated caspase-8 has the ability to initiate 

this second signal by inducing the cleavage of Bid (a Bcl-2 family protein). Truncated 

Bid (tBid) then translocates to the mitochondrial membrane and activates the 

mitochondrial apoptotic pathway [317].  

The mitochondrial (intrinsic/stress) pathway is initiated intracellularly by several 

stimuli such as radiation, hypoxia, viral infections or simply the withdrawal of important 

growth factors. These stimuli initiate a series of events that induces MOMP and results in 

the release of cytochrome C (Cyt C) and other apoptotic factors from the intermembrane  

space of the mitochondria into the cytosol (reviewed in [318,319]). A family of 25 

proteins, known as the B-cell lymphoma (Bcl)-2 family, controls the integrity of the outer 

mitochondrial membrane and the balance between them is what determines whether the 

cell will survive or undergo apoptosis (reviewed in [319,320]). Members of this family 

are divided into three subfamilies based on the function and the presence of some or all of 

the four conserved amphipathic regions called Bcl-2 homology (BH) 1-4 domains 
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[321,322]. The first subfamily contains pro-survival (anti-apoptotic) proteins that contain 

all of the four BH domains. Members of this subfamily includes Bcl-2, Bcl-2 like protein 

X (Bcl-xL), myeloid cell leukemia-1 (Mcl-1) [321]. The second subfamily contains a 

group of pro-apoptotic proteins that contain the first three BH domains (BH1-BH3), this 

subfamily includes Bcl-2-associated protein X (Bax) and Bcl-2 homologous antagonist 

killer (Bak) proteins. The last subfamily also contains pro-apoptotic proteins, but these 

contain only the BH3 domain, hence this group is designated the “BH3-only subfamily”. 

Members of the BH3-only subfamily include BH3 interacting domain death agonist (Bid), 

bcl-2 interacting mediator of cell death (Bim), Bcl-2-associated death promoter (Bad) , 

p53 upregulated modulator of apoptosis (Puma) [321,323]. 

Activation of Bax and Bak results in conformational changes that lead to the 

formation of a homo-oligomer that is inserted into the mitochondrial membrane that leads 

to the release of Cyt C into the cytosol [324-327]. The activation of Bax and Bak is 

tightly controlled by the balance between the pro-survival Bcl-2 subfamily proteins and 

the pro-apoptotic BH3-only subfamily proteins. The mechanism by which these different 

subfamilies interact to protect or permeabilize the mitochondrial membrane is still has not 

been fully elucidated. Letai et al proposed that different BH3-only proteins could initiate 

the mitochondrial apoptotic pathways by acting as either activators or sensitizers of 

Bax/Bak [328]. They reported that some BH3-only proteins, like Bid and Bim, could 

directly activate the oligomerization of Bax/Bak. Others, such as Bad and Bik, act 

indirectly by binding to the pro-survival Bcl-2 subfamily, which sensitizes Bax/Bak to 

activation by the other BH3-only proteins. However, later reports supported an alternative 
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model in which all of the BH3-only proteins bind exclusively to the pro-survival Bcl-2 

proteins. Bcl-2 proteins sequester Bax/Bak, and alternatively, Bax/Bak binding to BH3-

only proteins results in their release and activation [329-332]. 

Once in the cytosol, Cyt C interacts with a protein known as apoptotic protease 

activating factor-1 (APAF-1). This interaction induces the oligomerization of APAF-1 

which forms a wheel-like structure of seven APAF-1 molecules known as the 

“apoptosome”. The apoptosome binds to and activates caspase-9, the initiator caspase for 

the intrinsic pathway, which in turn cleaves and activates the executioner caspases 

(formation and role of the apoptosome is reviewed in [333]). 

Besides Cyt C, MOMP results in the release of several other apoptotic proteins. The 

first of these proteins is called Second mitochondria-derived activator of caspase (Smac), 

also known as direct inhibitor of apoptosis-binding protein with low pI (DIABLO). Once 

released into the cytosol, Smac/DIABLO interacts with and inhibits a group of proteins 

that belong to a family called inhibitor of apoptosis proteins (IAPs) [334]. Members of 

the IAP family, such as the x-linked IAP (XIAP) and the cellular IAPs (c-IAP1and c-

IAP2), strongly inhibit caspases-9, -3 and -7 [335-337]. The interaction of 

Smac/DIABLO with the IAPs prevents their inhibitory activity on caspases and sensitizes 

the cell to apoptosis. The same mechanism is used by the serine protease high-

temperature requirement A2 (HtrA2) that is also released from the mitochondria as a 

result of MOMP and is able to bind, cleave and inhibit XIAP [338,339]. Apoptosis-

inducing factor (AIF) is another apoptotic factor released as a result of MOMP. This 

protein contains two functional domains, an oxidoreductase enzymatic activity domain 
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that was shown to perform pro-survival functions and a DNA binding site that catalyzes 

large-scale DNA fragmentation and chromatin condensation (reviewed in [340]). Finally, 

Endonuclease G is another apoptotic factor that, once released from the mitochondria, 

induces caspase-independent nucleosomal DNA fragmentation [341,342].   

Activation of either the extrinsic or intrinsic pathways eventually results in the 

activation of the executioner caspases (caspases-3, -6 and -7) (reviewed in [287]). 

Following their activation, the executioner caspases cleave many substrates and cause the 

final events of cell death. Most of the execution functions are carried out by caspase-3, 

while caspases-6 and -7 play a less important role [343]. Active caspase-3 cleaves 

inhibitor of caspase-activated DNase (ICAD) to release the active caspase-activated 

DNase (CAD), which in turn causes DNA fragmentation and chromatin condensation 

[344]. Caspase-3 also cleaves and inactivates the DNA repair enzyme poly (ADP-ribose) 

polymerase (PARP) [345]. The Nuclear Mitotic Apparatus protein (NuMA) is another 

victim of caspase-3 whose cleavage results in nuclear disintegration [346,347]. 

Furthermore, caspase-3 cleaves gelsolin and the product of this cleavage, in turn, cleaves 

actin filaments causing severe morphological changes in the cell that can be easily 

observed in vitro, such as rounding up, detachment from the plate and fragmentation of 

the nucleus [348,349].  

1.5.2 Pyroptosis.  

Cookson and Brennan were the first to propose the term pyroptosis in 2001 to 

describe a caspase-1-dependent inflammatory form of programmed cell death that occurs 

in Salmonella-infected macrophages [350]. The name was derived from the Greek roots 
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pyro and ptosis (where pyro means fire or fever and ptosis means falling) to denote that 

this is an inflammatory form of death. The first observation of pyroptosis was in Shigella 

flexneri-infected macrophages returns back 1992, 9 years before the characterization of 

this form of cell death [351].  Other earlier studies revealed that these Shigella flexneri-

infected macrophages died by a distinctive, caspase-1-dependent programmed cell death 

[352,353]. This caspase-1-dependent form of cell death was also observed in the 

macrophages infected with Salmonella spp [354,355]. However, all of these early reports 

referred to this form of death as apoptosis, based on its dependence on a caspase, which at 

the time was considered an exclusive hallmark of apoptosis. In addition to Salmonella and 

Shigella, pyroptosis was reported in many other bacterial infections including, but not 

limited to, Listeria monocytogenes, Francisella tularensis and Yersinia spp [356-358].  

Pyroptosis is a pro-inflammatory form of cell death. Although they share some 

common features, pyroptosis has distinctive morphologic and mechanistic characteristics 

that differentiate it from apoptosis. As mentioned earlier, pyroptosis is dependent on the 

activation of caspase-1. The apoptotic caspases, caspases -3, -6 and -8 do not play any 

role in pyroptosis (reviewed in [359]). Pyroptotic cells are executed by formation of pores 

in the cell membrane, through which ions and water enter, resulting in cell swelling, and 

eventually cell lysis. This results in the release of their cellular contents into their 

surroundings [360]. Despite the fact that both pyroptosis and apoptosis share the ability to 

cause DNA fragmentation [358,361]. The mechanism of DNA fragmentation in 

pyroptotic cells is still not clear. Unlike apoptosis, pyroptosis does not cause the 

activation of ICAD/DFF45, and it does not cause MOMP or the release of AIF and 
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Endonuclease G from the mitochondria [356,358,360]. Finally, accumulating evidence 

suggests that active caspase-1 can cleave and activate caspase-7, providing a mechanism 

that links apoptotic and pyroptotic pathways [362,363].  

PARP cleavage is widely used as a specific marker for apoptosis. However, there are 

contradicting reports regarding PARP cleavage in pyroptotic cells have been published. 

One report suggests that PARP remains in its active, intact form during pyroptosis in 

Salmonella-infected macrophages and Inhibition of PARP by a specific inhibitor did not 

prevent Salmonella-infected macrophages from undergoing cell-lysis [360,361]. In 

contrast, at least one report has suggested caspase-1-mediated PARP cleavage in 

pyroptosis [364]. Furthermore, activation of caspase-1 was reported to induce the 

cleavage of PARP directly, or indirectly by cleaving caspase-7 first, which in turn can 

cleave PARP [362,363,365]. In light of these reports, the use of PARP cleavage as an 

apoptosis-specific marker should be reconsidered. For this reason, the results of PARP 

cleavage experiment herein were confirmed by testing for caspase-3 cleavage directly.   

Pyroptosis is initiated by the binding of several stimuli to a receptor. Unlike the 

extrinsic apoptosis pathway, pyroptosis is initiated by a group of PRRs that are located in 

the cytosol and belong to the NLR family. Different members of this family recognize 

different stimuli, but all result in the activation of caspase-1. The NLR family CARD 

domain-containing protein 4 (NLRC4/also known as Ipaf) was found to detect several 

bacterial components, such as flagellin of Salmonella typhimurium and of 

Legionella pneumophila, and the basal body rod component of the type III secretion 

apparatus of several gram negative bacteria (Salmonella typhimurium, Burkholderia 
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pseudomallei, Escherichia coli, Shigella flexneri, and Pseudomonas aeruginosa) [366-

368]. NACHT (NAIP, CIITA, HET-E, TP1), leucine rich repeat (LRR) and pyrin domain 

(PYD)-containing protein-1 (NLRP1/also known as NALP1) was reported to detect 

Bacillus anthracis lethal toxin and induces pyroptosis in the affected macrophages [369]. 

Absent in melanoma 2 (AIM2) is a member of the hematopoietic interferon-inducible 

nuclear antigens with 200 amino acid repeats (HIN-200) receptor family that detects 

foreign cytosolic DNA [370]. AIM2 was found to be responsible for the activation of 

caspase-1 in Francisella tularensis infections and to stimulate pyroptosis in Listeria 

monocytogenes-infected cells [371,372]. Finally, NLRP3 (also known as NALP3) can 

detect a wide range of PAMPs and DAMPs (danger-associated molecular patterns); these 

include toxins, extracellular ATP, uric acid, bacterial PAMPs, fungal PAMPs, and most 

importantly to this thesis, viral DNA and RNA including HCV RNA (reviewed in [359]). 

 Detection of the PAMPs or DAMPs by any of the previously mentioned receptors 

will result in their self-oligomerization and recruitment of caspase-1 and the adapter 

protein apoptosis-associated speck-like protein containing a CARD (ASC) to form a 

multiprotein complex known as the inflammasome [373-375]. The inflammasomes then 

act as a platform for caspase-1 activation and the maturation of the inflammatory cytokine 

IL-1β [373,376]. ASC is comprised of two domains: a PYRIN domain and a CARD 

domain. ASC and the receptor interact through their PYRIN domains, and ASC and 

caspase-1 interact through their CARD domains. [375]. The NLRC4 protein contains a 

CARD domain that allows it to interact directly with caspase-1 without the need for an 
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ASC molecule [377]. The assembly of any of these two forms of the inflammasome 

results in the activation of caspase-1. 

Caspase-1 is present in the cytosol as an inactive 45kDa precursor protein. This 

precursor can be processed in the inflammasome to give the active form, which is 

comprised of a tetramer of two 20kDa and two 10kDa polypeptides [378,379]. This active 

caspase-1 can perform a wide range of functions. In one study, 41 proteins involved in 

many vital pathways were identified as substrates for active caspase-1 [380]. Multiple 

steps of the glycolysis pathway are targeted and cleaved by caspase-1 (e.g. aldolase and 

glyceraldehyde-3-phosphate dehydrogenase). Caspase-1 also targets protein precursors 

that affect cytoskeletal architecture, translation, ATP metabolism and many chaperone 

proteins. As mentioned previously, active caspase-1 was also reported to target caspase-7 

[362]. Finally, the most well-known targets for active caspase-1 are a group of pro-

inflammatory proteins, including the inflammatory cytokines pro-IL-1β and pro-IL-18, as 

well as the autocleavage of caspase-1 [381]. Cleavage of pro-IL-1β and pro-IL-18 results 

in their maturation and secretion from the cell, which in turn results in the recruitment of 

inflammatory cells and increases the production of inflammatory cytokines [382]. 

Although the activation of pro-inflammatory cytokines is not required for the execution of 

pyroptosis; as pyroptosis was detected in IL-1β/IL-18 double knockout mice [383]. 

Caspase-1 performs a dual function in the pyroptotic pathway by acting as an initiator and 

an executioner caspase. However, the pathways downstream of caspase-1 activation that 

result in cell death are not completely understood. 
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Recent studies in mice reported that in addition to the previously described canonical 

inflammasomes, pyroptosis can also be induced by non-canonical inflammasomes. This 

pathway is activated by lipopolysaccharides (LPS) within the cytosol and relies on 

caspase-11 activation, rather than the activation of caspase-1 (reviewed in [384]). 

Interestingly, caspase-11 itself was reported to acts as a sensor for the detection of LPS in 

the cytosol and there are two homologs of caspase-11 in humans: caspase-4 and caspase-5 

[385]. Similarly to caspase-11, caspase-4 and caspase-5 were reported to regulate the 

activation of non-canonical inflammasomes in response to LPS alone [385,386]. 

1.5.3 Other forms of cell death. 

1.5.3.1 Autophagic cell death. 

Autophagy (self-eating) is a process in which the cell digests its cytosolic proteins and 

organelles by surrounding them with a double membrane to form a vesicle known as a 

phagosome. The phagosome then fuses with a lysosome that delivers the necessary 

enzymes to digest the contents of the phagosome (reviewed in [387]). Autophagy acts as 

a pro-survival mechanism under stress conditions, such as starvation. Conversely, 

autophagy was reported to cause autophagic cell death (or type II cell death, where type I 

is apoptosis), which is a cell death associated with the accumulation of autophagosomes 

in the dying cell [388,389]. Nevertheless, the role of autophagy in this form of cell death 

is controversial. While some studies have reported that autophagosomes are associated 

with, rather than the cause of, cell death [390,391]. Others have suggested that autophagy 

is indeed the cause of cell death as autophagic cell death, in certain animals, is not 

affected by inhibiting or mutating apoptotic caspases. These studies also demonstrated 
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that this form of cell death does not occure in animals with defective autophagy proteins 

[392,393]. 

1.5.3.2 Necrosis and necroptosis. 

Necrosis (type III cell death) has often been described as a passive, accidental, and 

uncontrollable form of cell death that occurs due to severe environmental stress, such as 

ischemia, physical trauma, or bacterial infections [394]. However, under certain 

conditions, necrosis can occur in a highly regulated manner. This form of cell death was 

termed “necroptosis” (reviewed in [391,394]). Necroptosis is induced in some cases as an 

alternative mechanism to trigger cell death during caspase inhibition. For example, 

interaction of Fas-FasL under the conditions of caspase inhibition results in the activation 

of the necrotic pathway [395]. Binding of TNF-α to its ligand can also induce necroptosis 

in the target cell. The necroptotic signaling pathway depends largely on proteins known 

as receptor interacting protein kinases 1 & 3 (RIPK1 & RIPK3). Binding of the TNF 

receptor to its ligand leads to the recruitment of TRADD, RIPK1 and RIPK3 to the 

cytoplasmic domain of the receptor. This leads to the interaction between RIPK1 and 

RIPK3 and subsequently results in the formation of a complex known as the necrosome 

(pathway is reviewed in [391,394]). It is still not clear how necroptosis executes the cell, 

but depletion of intracellular ATP was reported as a potential execution mechanism for 

necroptosis [396]. Furthermore, reactive oxygen species (ROS) were produced in RIPK3-

regulated TNF-induced necroptosis [397]. Morphologically, necrotic cells increase in 

volume, the organelles swell, and eventually the plasma membrane ruptures, releasing all 

of the cellular contents [398]. 
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1.5.3.3 Ferroptosis.  

Ferroptosis is a recently described form of cell death that is dependent on intracellular 

iron [399]. This form of cell death is caused by the iron-dependent accumulation of lethal 

lipid ROS. Morphologically, no cell membrane rupture or blebbing and no chromatin 

condensation or changes in nuclear size have been observed in ferroptosis. This form of 

cell death is characterized by morphological changes in the mitochondria, which includes 

mitochondrial shrinkage, an increase in the density of the mitochondrial membrane and 

the decrease or vanishing of the crista (reviewed in [400]). Ferroptosis can be induced by 

several molecules including erastin, acetamenophen and sulfasalazine (a drug used in the 

treatment of inflammatory diseases) [399,401,402]. 

1.6 HCV and apoptosis. 

The ability of HCV to modulate different apoptotic pathways has been studied 

extensively. However, the controversy among these reports is so extensive that it is 

difficult to draw conclusions from these reports. The reason for this controversy could be 

attributed in part to the use of different systems to test the effect of HCV on apoptotic 

pathways. These systems include liver biopsies obtained from HCV infected patients, 

expression of single HCV proteins in cell culture, the replicon system, transgenic mice, 

humanized mice and HCVcc. In addition, the various studies tested different apoptotic 

markers, each representing the activation of a single apoptotic pathway, or parts of it, but 

not the other pathways. Furthermore, some studies focused on testing the effect of HCV 

infection or HCV proteins on externally-induced apoptosis, i.e. apoptosis induced by 

different apoptotic ligand-apoptotic receptor interactions. Others tested the direct 
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induction or inhibition of apoptotic proteins or pathways by HCV. Overall, each 

individual HCV protein and the whole replicating virus were reported to have a both pro-

apoptotic and anti-apoptotic effects by various groups. This extensive controversy around 

the relationship between HCV infection and apoptosis was the justification for the work 

described in this thesis. To set the stage for this project, some of the key studies in this 

area will be reviewed. 

Testing the expression of apoptotic markers in liver biopsies obtained from 

chronically infected individuals was one of the earliest tools used to study HCV-induced 

apoptosis. However, the use of liver biopsies is limited by sample availability and the  

invasiveness of the procedure. In addition, the differentiation between immune system-

induced apoptosis and direct virus-induced effects are difficult to discern ex vivo. For 

these reasons, only a few groups have used this system to study HCV-induced apoptosis. 

In one such study, apoptosis was detected in the liver sections obtained from chronically 

HCV-infected patients, and the apoptotic index correlated with histological activity 

grading [403]. A second group detected activation of caspase-3 and -7 in liver biopsies 

samples obtained from chronically infected individuals [404]. This caspase activation 

correlated with the degree of inflammatory injury in the liver. Recently, another group 

reported apoptosis, autophagy and unfolded protein response (UPR)/ER stress in liver 

tissue obtained from biopsies performed on HCV-infected individuals [405]. In contrast, 

at least one report suggests a pro-survival effect during HCV infection where a decrease 

in the levels of Bid were observed in non-cirrhotic, HCV-linked tumor biopsies [406]. 

This mechanism might play a role in HCV-induced tumorigenesis.  
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Several groups have also used single protein expression as a tool to test the pro-/anti-

apoptotic effects of individual HCV proteins. The HCV core protein has been the most 

extensively studied with several groups reporting contradicting findings regarding its 

effect on apoptotic pathways. Expression of core protein caused ER stress and ER 

calcium depletion in Huh-7 and HepG2 cells [407]. ER stress stimulated the expression of 

a protein called C/EBP homologous protein (CHOP), which is a pro-apoptotic protein that 

activates the mitochondrial apoptotic pathway. In a second report, the expression of core 

protein in 293T cells triggered them to undergo apoptosis [408]. Analysing the 

mechanisms responsible for this induction revealed that the core protein interacts with a 

pro-survival protein called 14-3-3ε. This interaction was proposed to release Bax from the 

Bax/14-3-3ε complex, allowing it to induce the mitochondrial apoptotic pathway. 

Moreover, C-terminally truncated core was reported to translocate to the nucleus and 

induce PKR-dependent apoptosis in transfected PHH [409]. In addition, Core protein was 

reported to contain a BH3 domain through which core can interact with the pro-survival 

Mcl-1 protein, preventing it from inhibiting the pro-apoptotic Bad protein, thus inducing 

apoptosis [410]. Furthermore, in a stably transfected osteosarcoma cell line, HCV core 

protein was reported to induce caspase-independent apoptosis-like cell death [411].  

In contrast, the expression of genotype 3a HCV core protein caused pro-survival 

effects by downregulating a group of pro-apoptotic proteins including multiple caspases, 

cytochrome C, and p53 [412]. It also increased the level of phosphorylated-Akt (a pro-

survival protein) and increased the viability of transfected cells [412]. Likewise, 
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expression of genotype 1b core protein by Huh-7 or Hela cells inhibited ROS-induced 

apoptosis by increasing Bcl-xL and decreasing Bax levels [413]. 

The effect of HCV core expression on death ligand-induced apoptosis is also 

controversial. Expression of the core protein was reported to sensitize the cell to Fas-

mediated apoptosis without affecting the level of Fas expression [414]. Core protein was 

also reported to bind to the DD of TNF receptor 1 (TNFR1), sensitizing the cell to TNF-

induced apoptosis [415]. The core-induced sensitization to TNF-α was also reported to be 

attributed to the induction of ROS as a result of the interaction between core and the heat 

shock protein (Hsp60). This interaction is thought to impair the function of Hsp60 as a 

regulator of ROS production [416]. Finally, core protein sensitizes Huh-7 cells to TRAIL-

induced apoptosis by augmenting Bid cleavage by caspase-8, which activates the 

mitochondrial apoptotic pathway and amplifies the TRAIL-induced death signal [417]. In 

contrast, one group reported an anti-apoptotic effect of the core protein on death ligand-

induced apoptosis, and its expression in MCF-7 cells was also reported to inhibit TNF-

induced apoptosis [418]. In a second report for the same group, core protein was found to 

inhibit the TNF-induced apoptosis in HepG2 cells, and this inhibition was caused by the 

stimulation of c-FLIP expression in core-expressing cells [419]. 

The effect of E1, E2 and p7 on the induction of apoptosis has been studied less 

thoroughly than it has for the core protein. HCV E1 protein was shown to have pro-

apoptotic functions since the expression of full-length or the transmembrane domain of 

E1 induced apoptosis in a hepatoma cell line [420]. Expression of the E2 protein has been 

reported to have both pro-apoptotic and anti-apoptotic effects in different studies. 
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Expression of E2 in Huh-7 cells resulted in the activation of the mitochondrial apoptotic 

pathway [421]. On the other hand, E2-containing replicons conferred protection to the 

cell from TRAIL-induced apoptosis [422]. The inhibition of TRAIL-induced apoptosis by 

E2 was also reported by a second group, who found that E2 induced the expression of a 

chaperone protein known as glucose regulated protein 94 (GRP94) [423]. This protein 

stimulated the pro-survival NF-κB pathway (discussed earlier), which confers resistance 

to TRAIL-induced apoptosis. Finally, the expression of the p7 proteins (genotypes 1b and 

2a) in Huh-7.5 cells induced apoptosis; however this was not dependent on p7’s ion 

channel activity [424]. 

The effects of the several non-structural proteins on the apoptotic pathways has also 

been the focus of several studies. NS2 was reported to perform an anti-apoptotic function 

by inhibiting a pro-apoptotic protein known as cell death-inducing DNA fragmentation 

factor-alpha (DFFA)-like effector-B (CIDE-B) [425]. This protein plays a role in 

promoting the formation of VLDL particles and it induces apoptosis by activating the 

mitochondrial apoptotic pathway [425-427]. NS3 was reported to interact with caspase-8, 

and this interaction induced caspase-8 mediated apoptosis in NS3-exepressing 

mammalian cells [428]. The capability of NS3 to interact with caspase-8 was independent 

from both its protease and helicase activities. In contrast, two other groups reported anti-

apoptotic functions of NS3 [429,430]. The NS3 protein was reported to interact with the 

tumor suppressor protein p53, resulting in inhibition of  actinomycin D-induced apoptosis 

[429]. Furthermore, NS3/4A expression was reported to protect the cell from TNF-α-

induced apoptosis by inducing the expression of a mitochondrial receptor known as 
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translocase of outer mitochondrial membrane 70 (TOM70) [430]. TOM70 interacts with 

the pro-survival Bcl-2 family member protein Mcl-1, which targets Mcl-1 to the 

mitochondria [431]. While the expression of NS4A, in the absence of NS3, resulted in 

mitochondrial damage that induced apoptosis; Expression of both NS3 and NS4A was 

found to sensitize the cell to actinomycin D-induced apoptosis [432]. In addition, 

transfection of Huh-7 or 293T cells with NS4B resulted in the induction of the 

mitochondrial pathway of apoptosis and resulted in ER stress [433].  

The effect of NS5A protein on apoptotic pathways has been studied extensively. With 

the exception of one report, in which the expression of NS5A in dendritic cells had a pro-

apoptotic effect, NS5A has been reported to have multiple anti-apoptotic functions [434]. 

NS5A was reported to interact with p53 and its co-activator human TBP–associated 

factor (hTAF)II32, and this interaction inhibited the ability of p53 to induce apoptosis 

[435]. In addition, NS5A binds to the Src homology-3 domain (SH3) of the p85 subunit 

of phosphoinositide 3-kinase (PI3K). This binding activates PI3K, which in turn increases 

the phosphorylation and activation of the pro-survival enzyme Akt [436]. Akt in turn 

inhibits apoptosis by phosphorylating and inactivating the pro-apoptotic, Bcl-2 family 

member protein Bad [437]. Additionally, the SH3 binding motif of NS5A was reported to 

interact with the tumor suppressor bridging integrator 1 (Bin-1) to inhibit Bin-1-mediated 

apoptosis [438]. Furthermore, HCV NS5A was reported to interact with the 38kDa 

FK506-binding protein (FKBP38) [439]. The FKBP38 protein is known for its ability to 

interact with the pro-survival Bcl-2 family proteins, targeting them to the mitochondria 

and inhibiting apoptosis [440]. The interaction between NS5A and FKBP38 was reported 
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to increase the resistance of NS5A-expressing cells to drug-induced apoptosis [439]. 

NS5A expression was also reported to inhibit TNF-α-mediated apoptosis in Huh-7 cells 

by inhibiting a step upstream of caspase-8 activation [441]. Finally, only one study tested 

the effect of NS5B on the apoptotic pathways. In that study, NS5B was reported to have a 

pro-apoptotic effect by attenuating TNF-α-induced NF-κB activation and sensitizing the 

cell to TNF-α induced apoptosis [442]. 

The effects of HCV on apoptosis has also been studied in systems that include 

multiple HCV proteins. For example, in a cell line expressing a genotype 1a-derived 

replicon, it was found that HCV replication resulted in the upregulation of serine protease 

inhibitor Kazal (SPIK), which in turn rendered the cells more resistant to serine protease-

dependent apoptotic death [443]. A second group used the replicon system to test the 

effect of HCV replication on TRAIL-induced apoptosis and found that HCV replication 

sensitized the cells to TRAIL-induced apoptosis by upregulating TRAIL receptors (DR4 

and DR5) [444]. 

Mouse systems have also been used in studying the effect of HCV infection on 

apoptotic pathways.  The effect of HCV proteins on Fas-induced apoptosis was tested a 

transgenic mice expressing core, E1, E2 and NS2 [445]. They found that the expression 

of HCV proteins suppressed Fas-induced apoptosis. Mechanistic analysis revealed that 

this inhibition was due to the inhibition of cytochrome C release from the mitochondria. 

In a second study, the hepatocytes of transgenic mice expressing the HCV polyprotein 

were found to be resistant to Fas-induced apoptosis [446]. This resistance was associated 

with the reduction of Bid protein levels in these cells. Opposing results were reported by 
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Joyce et al. who used SCID/Alb-uPA mice with humanized livers that support HCV 

infection and replication [447]. Infecting these mice with HCV was found to induce 

oxidative and ER stress, and to downregulate pro-survival NF-κB and Bcl-xL proteins, 

which ultimately resulted in the induction of apoptosis in the human liver cells [447]. 

After the development of the HCVcc system, many groups used it to study the 

induction/or inhibition of apoptosis by HCV infection. Unlike single protein expression 

experiments, this system better represents the natural course of HCV infection. Most 

studies that have used the HCVcc system have reported pro-apoptotic effects resulting 

from HCV infection. However, there are some discrepancies regarding the mechanism of 

apoptosis induction. In contrast, several groups have reported anti-apoptotic effects of 

virus infection on certain apoptotic pathways by using HCVcc.   

Zhu et al. were the first to use the JFH1 strain to study apoptosis [448]. They 

developed a new human hepatoma cell line, LH86, which was more differentiated than 

the Huh-7.5 cell line. These cells supported JFH1 infection, but the efficiency of infection 

was low. Infection of these cell resulted in the induction of TRAIL and its receptors 

(DR4, DR5), which induced apoptosis. Mateu et al. also reported induction of apoptosis 

in Huh-7.5 cells infected with a chimeric virus containing the genome sequence from core 

to p7 of the J6 strain (a genotype 2a strain) and the reminder of the genome obtained from 

the JFH1 strain [449]. Furthermore, HCV-induced apoptosis was reported by Sekine-

Osajima et al. in Huh-7.5.1 ( a cell line derived from the Huh-7.5 GFP-HCV replicon cell 

line that is known to be highly permissive to HCV replication) infected with a tissue 

culture-adapted strain of JFH1 [450,451]. This adapted strain contained 9 amino acid 
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substitutions, 5 of which were located in the NS5B coding region. Apoptosis was caused 

by the induction of ER stress in these cells. In a second study, this group analysed the 

amino acid substitutions reported earlier and found that introduction of one or all of three 

mutations (C2441S, P2938S and R2985P located in NS5A and NS5B) into the parental 

JFH1 strain resulted in a higher replicative efficiency and resulted in increased cytopathic 

effects [452]. Furthermore, Deng L et al. reported an induction of apoptosis in Huh-7.5 

cells infected with J6/JFH1 virus [453]. The apoptosis was induced by Bax activation and 

the activation of the mitochondrial apoptotic pathway. In contrast to previous findings. 

Deng L et al. reported that HCV infection does not cause ER stress. In a follow-up study, 

this group reported that the HCV-induced Bax activation is caused by the upregulation of 

the pro-apoptotic Bcl-2 protein family member Bim [454]. This upregulation is stimulated 

by the oxidative stress, and it required the activation of JNK pathway. Apoptosis of 

J6/JFH1 infected Huh-7.5 was also reported by Walters et al. [455].  Analysis of the 

transcriptional response to HCV infection in Huh-7.5, and in liver biopsies obtained from 

HCV-infected patients, revealed that the HCV-induced apoptosis is caused by the 

induction of cell cycle arrest. Further analyses showed that cell cycle arrest occurs at the 

G1 phase of the cell cycle in infected cells. In agreement with this, Kannan  et al. also 

reported the induction of apoptosis in infected Huh-7.5 cells as a result of cell cycle arrest 

[456]. However, this group reported that the cell cycle arrest occurs at the interface of the 

G2 and mitosis phases of the cell cycle.  

The HCVcc system was also used to study the effect of HCV infection on death 

ligand-induced apoptosis. This is particularly important to understand how HCV infection 
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affects the efficiency of the immune cells-mediated killing of infected hepatocytes. Lan et 

al. reported that infecting Huh-7.5 cells or PHH with JFH1 sensitizes them to TRAIL-

induced apoptosis [457]. This sensitization was caspase-9 dependent and it was mediated 

by non-structural proteins. The same effect of HCV infection on TRAIL-induced 

apoptosis was also reported by Deng et al. who proposed that this effect was caused by 

the upregulation of TRAIL receptors DR4 and DR5 by a mitogen-activated protein kinase 

(MAPK)/ extracellular signal–regulated kinase (ERK) kinase 1 (MEK-1)-dependent 

pathway [444]. Finally, Park et al. reported that HCV infection sensitizes infected cells to 

TNF-α-induced apoptosis by inhibiting the pro-survival NF-κB pathway, which results in 

the downregulation of a group of pro-survival proteins including XIAP, Bcl-xL and 

cFLIP [442]. 

Anti-apoptotic effects of HCV infection have also been reported by using the HCVcc 

system. Liu et al. reported that HCV infection of Huh-7.5 cells caused a transient 

activation of the pro-survival PI3K-Akt pathway [458]. This activation was detectable 

only at the early stages of infection and resulted in enhancement of viral entry. 

Furthermore, HCV infection induced mitochondrial fission and mitophagy (the selective 

removal of defective mitochondria by autophagy) [459]. These two processes in turn 

protect the cell from undergoing apoptosis. Finally, Lee et al. demonestrated that 

infection with a luciferase gene-containing derivative of JFH-1 stimulated the expression 

of GRP94 in Huh-7 cells [423]. This resulted in activation of the pro-survival NF-κB 

pathway and inhibited TRAIL-induced apoptosis.  
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1.7 HCV pathogenesis and the possible role of programmed cell death. 

HCV infection progresses to chronicity in 75%-85% of the cases [13]. Those 

chronically infected patients are at risk of developing severe liver diseases including liver 

fibrosis, cirrhosis and HCC [460]. The mechanism by which these liver diseases develop 

is poorly understood. This limits our ability to develop new treatment strategies to prevent 

or reduce the risk of the progression of HCV-induced liver diseases. This is particularly, 

important in light of the fact that the accessibility to DAAs is still very limited and that 

this treatment does not eliminate the risk of development of HCC [461]. An accumulating 

body of evidence suggest that the induction of programmed cell death in the HCV-

infected liver plays a role in the pathogenic process. The proposed mechanisms by which 

apoptosis and pyroptosis contribute to the development of liver disease are discussed in 

more detail below and outlined in Fig. 1.3. 

Liver fibrosis occurs as a response to chronic liver injury. Such injuries can result 

from drugs, autoimmunity or infection. If untreated, continuous liver fibrosis progresses 

to cause liver cirrhosis [462]. Liver cirrhosis is an advanced stage of liver fibrosis that is 

characterized by deformation of the liver vasculature and can lead to fatal complications 

including liver failure, esophageal varices and HCC [462-464]. Hepatic stellate cells 

(HSC) are the main contributor to fibrosis. These cells present normally in a quiescent 

state and play a role in vitamin A storage [465]. Once activated, HSCs undergo several 

changes including: the transformation to a myofibroblast-like phenotype, losing vitamin 

A storage, enhancing the expression of the pro-fibrogenic proteins (collagens) and 

starting to proliferate [466]. The production of large amounts of collagen-rich  
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Figure 1.3 The proposed mechanisms for the role of apoptosis and pyroptosis in the 

development of progressive liver diseases. 

Schematic representation of the proposed mechanisms for the role of apoptosis and 

pyroptosis in the development of the progressive liver disease. Apoptotic cells form 

apoptotic bodies, which are engulfed by kupffer cells (KC) and HSCs. This results in KC 

and HSC production of TGF-β, which plays a central role in liver pathogeneses. TGF-β 

stimulates the expression of the pro-fibrogenic genes in HSCs and induces EMT. 

Continued unresolved fibrosis progresses to cirrhosis, and EMT contributes in the 

development of HCC. Pyroptosis of the hepatocytes participates in creating an 

inflammatory environment in the liver, which also contributes to the progression to 

cirrhosis and predispose the liver to HCC.  
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extracellular matrix (ECM) by the activated HSCs causes fibrosis of the affected liver 

tissue. 

Hepatocytes apoptosis can stimulate the liver fibrosis. As mentioned above (section 

1.5.1.1), at late stages of the apoptotic pathway, the cells dissociate by forming apoptotic 

bodies. Engulfment of these apoptotic bodies by resident macrophages or HSCs has been 

reported to activate these cells to produce TGF-β [467-469]. TGF-β in turn, plays a 

central role in the activation of several pathogenic pathways. TGF-β is considered the 

most pro-fibrotic cytokine. It acts in an autocrine or a paracrine manner on HSCs to 

activate them and promote their production and deposition of collagen and other ECM, 

which hastens liver fibrosis [470,471]. TGF-β was also reported to induce a biological 

process known as epithelial-mesenchymal transition (EMT) in which the cells gradually 

lose their epithelial and hepatic cell markers and gain mesenchymal cell markers instead 

[472]. It is still not clear whether the EMT of the hepatocytes can contribute to the 

fibrogenic process. Hepatocyte EMT was reported by some groups to contribute to the 

process of fibrosis [473-475]. However, other reports contradict these findings, 

demonestrating that EMT by hepatocytes has no contribution to fibrosis [476]. 

HCC is the fifth of the most common type of cancer and the third leading cause of 

cancer-related death globally [477]. HCV-related HCC was reported to be the fastest-

rising cause of cancer-related death in the USA [478]. Unlike the majority of other 

cancers, which develop in relatively healthy tissue, most of the HCV-related HCC cases 

develop in a background of advanced fibrosis and cirrhosis [477]. The mechanisms by 

which HCC develops in the HCV-infected liver are not understood. Persistent 
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inflammation and progressive fibrosis are believed to act in concert to create a pro-

carcinogenic environment in the HCV-infected liver (reviewed in [479]). The apoptosis-

induced TGF-β production in the HCV-infected liver can also play a role in HCC 

development. Apart from its pro-fibrogenic role, TGF-β was reported to have two 

opposing direct effects on cancer development at different stages of the disease. At the 

early stages, TGF-β acts as a tumor suppressor by causing cell cycle arrest and inducing 

apoptosis [472,480]. In contrast, at late stages, TGF-β-induced EMT increases cell 

survival and promotes invasiveness and metastasis of HCC [472,474,481]. 

Induction of pyroptosis could play a significant role in HCV-induced pathogenesis. 

The pro-inflammatory nature of this form of cell death contributes to HCV-induced 

chronic inflammation. DAMPs released from lysed pyroptotic cells can recruit immune 

cells and promote inflammation [482]. This chronic inflammation, in turn, is known to be 

an important driver for the pathogenic process in the HCV-infected liver. Activated 

inflammatory cells contribute to the generation of a pro-carcinogenic environment by the 

production of ROS and reactive nitrogen species, and cause lipid peroxidation [483]. 

Activation of the NF-κB pathway (a hallmark of the inflammatory response) can also be 

involved in fibrogenesis as well as in the initiation and progression of HCC in the 

chronically infected liver (reviewed in [484]). Several other reports showed an association 

between the degree of liver inflammation, and the development of HCC [477,485,486]. 

Besides that, inflammation and the release of ROS, inflammatory cytokines and 

chemokines by kupffer cells (KCs) are believed to induce the activation of HSCs, thus 

promoting fibrosis of the liver (reviewed in [487,488]). 
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1.8 Project design and research questions. 

As demonstrated in the previous sections, induction of different forms of programmed 

cell death by HCV infection could be an important factor for the development of the 

pathogenic changes in the infected liver. The induction of apoptosis by HCV has been 

studied extensively. However, as described in section 1.6, within the literature there is 

considerable discrepancy regarding the effects of HCV infection on induction of 

apoptotic pathways. Furthermore, the mechanism by which this apoptosis is induced is 

still vague. Some of this discrepancy is attributed to the use of minimal systems that 

either do not reflect the complete life cycle of the virus, or rely on virus replication that is 

too low to accurately reflect-physiological HCV infection. We believe that the use of the 

tissue culture adapted JFH1T strain will better represent the natural infection, as this strain 

is a non-chimeric virus that can replicate to high levels comparable to physiological 

infection.  

In the first part of this study, the ability of HCV to induce apoptosis, in the absence of 

any immune cells, was investigated by using an HCVcc system. Stocks of virus (JFH1T 

strain) were prepared and used to infect Huh-7.5 cells. The effect of HCV infection on 

several features related to apoptosis were tested, including viability, proliferation rate, 

DNA fragmentation and the cleavage/activation of caspase-3. The effect of caspase-3 

inhibition on HCV-induced cell death was tested to confirm that the observed cell death 

was indeed due to apoptosis. The effect of HCV infection on the activation caspase-8 and 

the effect of inhibiting caspase-8 specifically on the HCV-induced apoptosis were also 

tested to investigate whether HCV can induce the activation of the extrinsic pathway.  
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In the second part of the project, the ability of HCV to induce apoptosis in 

neighbouring uninfected cells (bystander apoptosis) was investigated. This concept had 

not been studied before in the context of HCV infection. Bystander apoptosis has been 

described before in the context of HIV infection, where it is found to be responsible for 

CD4+ T cell depletion [489,490]. mechanism of programmed cell death in HCV might 

contribute to the overall pathogenesis of the virus. HCV might stimulate the infected cells 

to express death ligands or to produce death-inducing soluble mediators in an attempt to 

avoid being killed by immune cells. Such a mechanism might also affect neighbouring 

uninfected hepatocytes. To study the possibility of the induction of bystander apoptosis, a 

co-culture system containing Huh-7.5 cells and HCV non-permissive cells was designed. 

In this system, induction of apoptosis in the non-permissive cells is indicative of 

bystander apoptosis. 

In the third part of this study we investigated the ability of HCV infection to induce 

pyroptosis in infected and neighbouring uninfected cells. Induction of the pro-

inflammatory pyroptosis could have a significant impact on the overall pathogenesis of 

HCV infection, but has not been studied in the context of HCV infection to date. 

However pyroptosis has been demonstrated in HIV infection as well as in the closely 

related Dengue virus [491,492]. Pyroptosis was found to be induced in the hepatocytes of 

constitutively activated NLRP3 knock-in mice, and the activation of this pathway 

increased inflammation and activated hepatic stellate cells (HSCs), thus hastening fibrosis 

in the liver of the mice [493].  In this project, we exploited our adapted HCVcc system to 

study the induction of pyroptosis in infected hepatocytes in the absence of any effect of 
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the immune cells. This was done by measuring the activation of caspase-1 and measuring 

the effect of caspase-1 inhibition on HCV-induced cell death. We also studied the ability 

of HCV to induce bystander pyroptosis using a co-culture system. 

1.9 Objectives. 

The objectives of this project are: 

1- To study the effect of HCV infection on the induction of apoptosis in infected cells in 

the absence of immune cells. 

2- To study the ability of HCV infection to induce apoptosis in neighbouring uninfected 

cells. 

3- To study the ability of HCV infection to induce pyroptosis in infected and 

neighbouring cells in the absence of immune cells. 

4- To analyze the effect of HCV infection on different PCD pathways underlying HCV-

induced apoptosis and/or pyroptosis. 
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Chapter 2: Materials and methods  

2.1 Cell culture. 

Infection, transfection and co-culture experiments were performed by using Huh-7.5, 

S29 and 293T cells [184,187]. All of these three types of cells were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Invitrogen). The medium was 

supplemented with 10% fetal bovine serum (FBS) (Invitrogen) and 1% 

penicillin/streptomycin (Invitrogen) and referred to as complete medium. The cells were 

cultured in 15 cm dishes and incubated at 37°C in a 5% CO2 incubator. Most of the 

infection, transfection, and co-culture experiments were carried out in 10 cm dishes. The 

10 cm dishes were seeded with 1,000,000 cells, 24 hours before the infection/transfection.  

The cells were split every 72 hours up to 30-35 passages. Splitting the cells was 

performed by aspirating the complete medium and washing the cells 1X with 3 ml of 

trypsin (Invitrogen). Seven ml of trypsin were then added to cover the cells and incubated 

at 37°C for 5-6 minutes. Following that, the trypsin was inactivated by adding 10 ml of 

the complete medium to the plate then harvesting the cells to a 50 ml tube. A second wash 

of the plate was done with another 10 ml of complete medium to collect the remaining 

cells in the plate. The cells were then centrifuged and re-suspended in 20 ml medium. 

Finally, the cells were counted and 2,000,000 cells were returned to a new 15 cm plate 

containing fresh complete medium.  
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2.2 Plasmid preparation and viral RNA transfection. 

Stock amounts of the JFH1T plasmid or the MLV-GFP plasmid were prepared by 

cloning into the commercially available DH-5α bacterial cells (Invitrogen) according to 

the manufacturer’s instructions.  The plasmids were then purified from the bacterial 

culture by using the commercially available Maxiprep Kit (Qiagen). JFH1T plasmid was 

linearized by the restriction enzyme XbaI (Invitrogen). HCV RNA was then generated by 

in-vitro transcribing the linearized plasmid by using the T7 Megascript kit (Ambion). The 

RNA was then transfected into Huh-7.5 cells grown on a 10 cm plates (prepared 24 hours 

in advance by seeding 1,000,000 Huh-7.5 cell/10 cm plate). The transfection was 

performed by using DMRIE-C reagent (Invitrogen) according to the manufacturer’s 

instructions.  

In the co-culture experiments, the MLV-GFP plasmid was transfected into S29 or 

293T cells grown on 24-well plates (200,000 cell/well, plated 24 hours in advance) by 

using Lipofectamine 2000 kit (Invitrogen). The protocol for the 24-well plate provided by 

the manufacturer was followed with doubling the amount of plasmid used. This was 

found to give better transfection efficiency. 

2.3 Generation of the virus stock, Infection and titer determination. 

For this study, we used JFH1T, a tissue culture-adapted strain of JFH-1 containing 

three adaptive mutations within E2, p7 and NS2 [187,494]. To generate virus stocks, 1 x 

106 Huh-7.5 cells were seeded in 10 cm culture dishes and cultured overnight. The 

following day, cells were transfected with in vitro-transcribed viral RNA representing cell 

culture-adapted JFH1T using DMRIE-C reagent (Invitrogen) as previously described. 
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Virus-containing medium from transfected cells was collected three days post-

transfection and virus titre was determined using a limiting dilution focus-forming assay 

described below [451]. Titred virus-containing medium was inoculated onto virus-naive 

Huh-7.5 cells for 3 hours at a multiplicity of infection (MOI) of 0.5. Following 

inoculation, culture medium was replaced with fresh complete medium and cells were 

cultured for three days. Virus-containing infection culture medium was then passaged on 

naïve Huh-7.5 for an additional round of infection in order to eliminate residual input 

RNA. Culture fluids were then harvested and clarified through Millex-HV 45μm filters 

(Millipore). 

Virus titre was determined by performing a 10-fold serial dilution of the virus stock 

followed by infection in 8-well chamber slides that had been seeded with 50,000 Huh-7.5 

cells/well on the previous day. Three days post-infection (p.i.), slides were stained with 

anti-HCV core antibody (B2, Anogen), followed by goat anti-mouse Alex Fluor® 488 

(Invitrogen), and the number of foci in the highest positive dilution were counted. From 

this number the titre was expressed as focus forming units per millilitre (FFU/ml).  

2.4 Immunostaining for indirect immunofluorescence. 

Medium was aspirated from the wells of the 8-chamber slides and cells were washed 

by immersing the slide in 1X phosphate-buffered saline (pH=7.4; PBS) for 2 minutes. 

The cells were then fixed and permeablized by immersing the slide in 100% acetone for 2 

minutes. For HCV core staining, the slides were covered with mouse monoclonal anti-

HCV core antibody (B2, Anogen) diluted 1:200 in 5% BSA in PBS for 20 minutes. Slides 

were washed in PBS for 5 minutes, then incubated for 20 minutes with the secondary 
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antibody (goat anti-mouse Alexa Fluor® 488; Invitrogen) diluted 1:100 in PBS. The 

slides were then washed and mounted with Vectashield Hard Set mounting medium 

containing DAPI (Vector Laboratories). The slides were examined at 10X and 20X 

magnifications on a Zeiss Axio Imager.M2 immunofluorescence microscope.   

In the cleaved caspase-8 experiment, the same protocol above was followed with the 

addition of an extra primary and an extra secondary antibody. The primary antibody 

solution contained two antibodies the HCV-core antibody described above and a rabbit 

monoclonal cleaved caspase-8 (Asp391) antibody (Cell Signaling) diluted at 1:100 in the 

primary antibody solution. In the secondary antibody step, a goat anti-rabbit Alexa 

Fluor® 594 IgG antibody (Invitrogen) was added diluted 1:200. The slides were 

examined at a 10X and 20X magnification on a Zeiss Axio Imager.M2 

immunofluorescence microscope. 

2.5 MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. 

In a 96-well plate, 5,000 Huh-7.5 cells were seeded in 100 μl of complete medium per 

well. The next day, cells were infected at different MOIs (1, 2, and 4) by aspirating the 

medium covering the cells and replacing it with 50 μl of the appropriate virus stock to 

give the desired MOI. A volume of 50 μl of complete medium was pipetted into the 

uninfected control wells. After 4 hours of incubation, the virus inocula were aspirated and 

replaced with 100 μl of fresh medium. The plates were then incubated at 37°C for 72 

hours until the day of MTT assay. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl 

tetrazolium bromide) was prepared at 5 mg/ml PBS and diluted 1:10 in complete medium 

to generate the MTT working stock. Medium was removed from wells and replaced with 
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100 μl of MTT working stock, then incubated for 4 hours at 37°C. Following incubation, 

liquid was removed from the wells carefully so as not to disturb the formazan crystals that 

had formed at the bottom of the wells. These crystals were then dissolved by adding 100 

μl of DMSO to each well and lightly shaking the plate for 10 minutes. The optical density 

of the solution in the wells was then read on a plate reader at 540 nm. 

2.6 CFSE (Carboxyfluorescein succinimidyl ester) assay. 

Huh-7.5 cells were seeded in 10 cm dishes at 1 x 106 cells/dish and infected on the 

next day at an MOI of 2 for 4 hours. The cells were then harvested and washed with 

complete medium, then incubated for 15 minutes in a pre-warmed (37°C) solution 

containing 10 μM Carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) in PBS. 

The CFDA-SE solution was then removed and replaced by complete medium. Cells were 

then incubated for 30 minutes at 37°C then harvested for time 0. Alternatively, one sixth 

of the total number of cells was transferred to each of the wells of a 6-well plate. The 

cells were incubated at 37°C and harvested every 24 hours until 5 days. Cells were 

examined daily by light microscopy to ensure that the cells were not confluent. At each 

time point, cells were harvested, fixed with 2% paraformaldehyde in PBS, and washed 

with PBS. Finally, the CFSE intensity in the cells was measured by flow cytometer in the 

FL1-H channel of a Becton Dickinson FACS Calibur.  

2.7 Propidium iodide (PI) staining and cell cycle analysis. 

Huh-7.5 cells were seeded in 10 cm dishes at 1 x 106 cells/dish and infected on the 

next day at an MOI of 1. The PI staining protocol used here was adapted with minor 

modifications from the standard method reported by Riccardi and Nicoletti [495]. Briefly, 
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cells were harvested and fixed by resuspending them in 0.5 ml of PBS then adding 4.5 ml 

of cold 70% ethanol slowly to each of the tubes while on ice, then stored at -20°C until all 

cells were ready to be stained. To prepare for PI staining, the cells were centrifuged at 

400 x g for 5 minutes and supernatants discarded. The cells were washed and resuspended 

in 0.5 ml of PBS, 0.5 ml of DNA extraction buffer was added, and incubated for 5 

minutes. Next, cells were pelleted as above, supernatants were removed, and the cells 

were resuspended in 1ml of DNA staining solution and incubated for 30 minutes at room 

temperature. The DNA extraction buffer and the DNA staining solution were prepared as 

described in [495]. The DNA extraction buffer was prepared by mixing 192 ml of 0.2 M 

of Na2HPO4 with 8 ml of 0.1% Triton X-100 (pH=7.8). The DNA staining solution was 

prepared immediately before use by dissolving 200 μg of PI in 10 ml of PBS containing 2 

mg of DNase-free RNase.  PI intensity in the stained cells was measured using a Becton 

Dickinson FACS Calibur. Cellular debris and doublets were gated out during the analysis. 

Cellular debris were gated out during the analysis by excluding the cells with low forward 

scatter values. Doublets were also gated-out by plotting the FL2-A vs. FL2-W on a linear 

scale. Following that, the hypodiploid cells with an intensity lower than that of the diploid 

cells (G1) were counted. 

2.8 DNA laddering assay. 

Huh-7.5 cells were infected at an MOI of 1 as previously described. The DNA 

laddering assay procedure was adapted from the protocol reported by Gong et al. with 

some modifications [496]. Briefly, cells were harvested at time 0 (immediately after 

infection) and every 24 hours for 5 days. The cells were resuspended in 1 ml of PBS and 
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transferred to 10 ml of ice-cold 70% ethanol (Cells could be stored following this step at -

20°C for weeks). Then, the ethanol-containing supernatants were removed by 

centrifugation and the cell pellets were resuspended in 40 μl of phosphate-citrate buffer 

(prepared by mixing 192 parts of 0.2M Na2HPO4 and 8 parts of 0.1 M citric acid, 

pH=7.8). The cells were incubated in the phosphate-citrate buffer for 30 minutes during 

which the tubes were vortexed every 10 minutes. The cells were then spin down at 1000 g 

and the supernatants were collected and transferred to new tubes. Three μl of 0.25 Nonide 

NP-40 and 3 μl of 1 mg/ml of RNase were added to each tube and incubated for 30 

minutes at 37°C. Following that, 5 μl of 1 mg/ml of proteinase K were added to each tube 

and incubated for another 30 minutes at 37°C. The solutions were then mixed with the 

loading buffer, loaded on a 2% agarose gel and run at 4 V/cm for 4 hours. The DNA 

laddering was detected by ethedium bromide staining under UV light. 

2.9 SDS-PAGE and western blotting. 

The cell lysates were harvested from the infected (MOI of 1) or control cells at the 

specific time point by using the passive lysis buffer (Promega) and according to the 

manufacturer’s instructions. Lysates was mixed at a 2:1 ratio with the 3X loading dye for 

SDS-PAGE. The lysates were run in 15% SDS-PAGE and then transferred onto 

nitrocellulose membranes using the western blotting system obtained from Bio-Rad® and 

according to the standard protocol. The membranes were incubated overnight with the 

specific dilution of the cleaved caspase-8 (Asp391)(18C8) rabbit monoclonal antibody 

(Cell Signaling) in TBS-T buffer. The specific dilution of the antibody recommended by 

the manufacturer was used. 
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2.10 Immunostaining for flow cytometry. 

Cleavage of PARP and caspase-3 were detected using primary antibodies specific for 

the cleaved forms of these proteins [Cleaved PARP (Asp214) (D64E10) Rabbit mAb and 

Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb] using the staining protocol 

recommended by the manufacturer (Cell Signaling Technology). Briefly, infected or 

control cells were harvested, washed with 5 ml of PBS, then fixed by resuspending the 

cell pellet in 4% paraformaldehyde at 37°C for 10 minutes. The tubes were then chilled 

on ice for 1 minute and permeabilized by resuspending the cell pellet in ice-cold 90% 

methanol for 30 minutes. The cells were incubated on ice in this solution for 30 minutes 

or alternatively can be stored in this solution at -20°C for up to 4 weeks. Cells were then 

washed twice with the incubation buffer (0.5% BSA in PBS) and incubated for 1 hour at 

room temperature in the presence of the recommended dilution of primary antibody 

(1:800 for both). Next, the cells were washed with 3 ml of incubation buffer, then 

incubated for 30 minutes with Alex Fluor® 647 anti-rabbit secondary antibody (Cell 

Signaling Technology) diluted at 1:400. Cells are then washed and resuspended in 0.5 ml 

of PBS, then analyzed by flow cytometry using the Becton Dickinson FACS Calibur.  

2.11 Caspase and NLRP3 inhibitors. 

All caspase inhibitors were dissolved in DMSO according to the manufacturer’s 

instructions (R&D Systems). The inhibitors used were Z-VAD-FMK (pan-caspase 

inhibitor), Z-IETD-FMK (caspase-8 inhibitor), Z-DEVD-FMK (caspase-3 inhibitor) and 

Z-WEHD-FMK (caspase-1 inhibitor). The NLRP3 inhibitor (MCC950; Cayman 

Chemical Company) was dissolved in DMSO to give a stock solution of 0.5 mg/ml. A 
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working stock of 0.1 μM was prepared fresh in complete medium on the day of the 

experiment. To ensure efficient inhibition over the extent of the four day experiment, at 

48 hours p.i., medium was removed and replaced with medium containing freshly 

prepared inhibitors. 

2.12 Measurement of active caspase-1. 

To measure the levels of active caspase-1, FAM-FLICATM Caspase-1 Assay Kits 

were used (ImmunoChemistry Technologies). Briefly, Huh-7.5 cells were seeded in 6-

well plates (150,000 cells/well) and infected at an MOI of 1. Four days later, the cells 

were harvested by trypsinization and stained with FAM-YVAD-FMK according to the 

manufacturer’s instructions. In co-culture experiments where GFP was included, the 

FLICA® 660 Caspase-1 Assay Kit, which employs a far-red fluorescent caspase-1 

inhibitor, was used. 

2.13 Double staining with PI and anti-HCV core. 

This protocol is a combination of the PI staining protocol described previously 

(section 2.7) and the HCV-core staining described by Kannan et al. with some 

modifications [456]. Briefly, infected (MOI of 1) or control cells were harvested by 

trypsinization and washed with PBS. The cells were fixed in ice-cold 70% ethanol then 

washed with PBS, then permeabilized using 0.2% Triton X-100. Next, the cells were 

resuspended in a solution containing mouse anti-HCV-core antibody (C7-50, Thermo 

scientific) diluted 1:400 in 1% BSA, 0.1% tween 20 in PBS and incubated for 1 hour. 

Following that, the cells were washed and reconstituted in the DNA extraction buffer for 

5 minutes (section 2.7). The cells were then washed and reconstituted in the secondary 
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antibody (goat anti-mouse Alexa Fluor® 647, Invitrogen) diluted 1:400 in 1% BSA in 

PBS. Next, the cells were washed twice with PBS and resuspended in DNA staining 

solution (section 2.7). Finally, the cells were analysed using a Becton Dickinson FACS 

Calibur flow cytometer. 

2.14 Co-culture assay. 

On the day before initiation of co-culture, 293T or S29 cells (both non-permissive) 

were seeded in antibiotic-free medium at 2 x 105 cells/well in a 24-well plate. In parallel, 

10 cm dishes were prepared each containing 1 x 106 Huh-7.5 cells (permissive). Next day, 

non-permissive cells were transfected with a GFP expression plasmid using 

Lipofectamine 2000 reagent (Invitrogen) and incubated for 4 hours. In parallel, 

permissive Huh-7.5 cells were infected with virus at an MOI of 1 and incubated for 3 

hours. Immediately following transfection/infection, GFP-transfected non-permissive 

S29/293T cells were trypsinized, washed thoroughly with complete medium, then 

combined with infected or uninfected Huh-7.5 cells at a ratio of 1:5 (S29/293T:Huh-7.5).  

After four days of co-culture, cells were harvested and stained with cleaved PARP-

specific antibody, cleaved caspase-3-specific antibody, or FAM-YVAD-FMK as 

described above. 

To analyze contact dependence of HCV-induced cell death, co-culture experiments 

were performed in 10 cm transwell plates containing an inserts with a diameter of 7.5 cm 

and pore size of 0.4 μm (Corning). Huh-7.5 cells were seeded at 1 x 106 cells/dish and 2 x 

105 S29 cells were placed in the insert. Huh-7.5 cells were infected at an MOI of 1 and 

then the S29-containing insert was placed in the dish. The cells were incubated for four 
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days, then the S29 cells were harvested and stained with either cleaved caspase-3-specific 

antibody or FAM-YVAD-FMK as described above. The schematic representation of the 

co-culture method is illustrated in (figure 2.1). 

2.15 Lactate dehydrogenase (LDH) assay. 

Huh-7.5 cells were seeded in 10 cm dishes at 1 x 106 cells/dish and infected on the 

next day at an MOI of 1. Four days later, 1 ml of the culture medium was collected and 

clarified. LDH activity was measured using the PierceTM LDH Cytotoxicity Assay Kit 

(ThermoFisher Scientific) according to the manufacturer’s instructions. 

2.16 Statistical analysis. 

The data was expressed as the mean +/- the standard deviation (SD). Statistical 

significance was analyzed using the paired Student’s t-test. A p value of less than 0.05 

was considered significant. 
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chematic representation of the co-culture method for detecting 

S29 or 293T cells were seeded in 24-well plates then transfected with a GFP 

plasmid. Simultaneously, Huh-7.5 cells were infected at MOI of 1. Following 

ransfection, the S29/293T cells were trypsinized and washed twice,

7.5 cells at a ratio of 1:5. Four days later, cells were harvested

and analysed by flow cytometry. Gating on the GFP positive cells 

specifically on the S29/293T cells. 

  

 

method for detecting 

tes then transfected with a GFP 

7.5 cells were infected at MOI of 1. Following 

twice, then co-cultured 

cells were harvested, 

. Gating on the GFP positive cells was used to 



73 
 

Chapter 3: Results - HCV infection induces apoptosis 

Some of the results described in this Chapter, along with additional data presented in 

Chapters 4 and 5, are included in a manuscript that is currently accepted pending 

revisions at Scientific Reports. 

3.1 HCV infection reduced the viability of the Huh-7.5 cells. 

We initially observed by microscopic examination that infecting Huh-7.5 cells with 

HCV (JFH1T strain) resulted in a reduction in the total number of cells growing in the 

dish (as the infected cells appeared less confluent). In addition, many of the cells in the 

dishes containing virus were floating in the medium instead of being attached to the plate 

as they are normally. These initial observations prompted us to investigate the reason for 

these observations and to test the cytopathic and/or cytostatic effects of HCV infection. 

To achieve this, we started our investigation by performing an MTT assay to test the 

effect of HCV infection on the total metabolic activity of the infected cell population, 

which reflects the total number of viable cells.  

An MTT assay was performed at two time points, on days three and four p.i. To 

confirm that the observed effect was virus-specific, we infected Huh-7.5 cells at three 

different MOIs: 1, 2, and 4. The results of this experiment (Fig. 3.1) showed that HCV 

infection significantly reduced the total number of viable cells, and a greater reduction 

was observed on day four compared to day 3 p.i. The reduction in viability was associated 

with the MOI used, where higher MOIs caused greater reductions in the viability. This 

association was more obvious on day 3 post infection. On day 4 p.i., there was no 

significant difference between the reduction caused by the high MOIs (2 and 4). This is  



74 
 

  

 

 

 

 

 

 

  

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

120

0 1 2 3 4

Ce
ll 

vi
ab

ili
ty

 (%
 o

f c
on

tr
ol

)

MOI

0

20

40

60

80

100

120

0 1 2 3 4

Ce
ll 

vi
ab

ili
ty

 (%
 o

f c
on

tr
ol

)

MOI

B 

A 
Three days p.i. 

Four days p.i. 



75 
 

Figure 3.1 HCV infection reduced the total viability of the infected cell population. 

Huh-7.5 cells were infected with JFH1T at MOIs of 1, 2 and 4. Three days p.i. (A) or four 

days p.i. (B) the total viability of the cells was tested by MTT assay. This data is 

representative of three independent experiments in (A) and two independent experiments 

in (B), and is expressed as mean cell viability compared to the uninfected control +/- SD 

from three replicates.  
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probably the result of achieving a very high percentage (close to 100%) of infected cells 

in advance of performing the MTT assay on day four, which could mask the effect of the 

differences between these very high MOIs. These lower levels of total cellular viability 

could result from either a reduction in the proliferation rate or increased cell death in the 

infected cell population. For this reason, both of these two possibilities were investigated 

independently. 

  3.2 HCV infection caused a reduction in the proliferation rate of the infected cells. 

The reduction in the proliferation rate and the cell cycle arrest of the HCV-infected 

cells was reported previously by using other versions of HCVcc [455,456]. The 

possibility that a similar effect is occurring in our system and that this could be 

responsible, at least partially, for the observed reduction in the viability was tested using a 

CFSE dilution assay. Huh-7.5 cells were infected at MOI of 2 or left uninfected and then 

stained with the CFSE. As mentioned in detail in section 2.6, CFSE is a dye that is 

sequestered inside the cell by covalent coupling to intracellular molecules. Cell division 

results in splitting the cellular CFSE content between the two daughter cells and each 

subsequent round of division results in higher dilution of the cellular content of CFSE. 

Hence, monitoring the intensity of this dye in the cell population is a very useful tool for 

tracking cellular proliferation [497].  

We investigated the effect of HCV infection on the proliferation rate by measuring the 

CFSE intensities in both the infected and uninfected cell populations at different time 

points. The time points chosen started from time zero (which is the mean intensity 

measured immediately after infection and labelling) and every 24 h for up to 5 days. We  
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Figure 3.2 HCV infection caused a reduction in the proliferation rate. 

Huh7.5 cells were infected at MOI of 2, then labelled with CFSE stain. Cells were 

harvested immediately after labelling (Day 0) and on each day for 5 days p.i. CFSE 

labelling intensity was measured by flow cytometry. (A) CFSE labelling intensity of 

infected and control cell populations on days 0, 1, 3 and 5. Data presented in this figure 

are representative of three independent repeats of this experiment (B) Mean CFSE 

intensities of the infected and control cell populations on day four p.i. Data is presented as 

the mean CFSE intensity of three independent repeats of the experiment, expressed as the 

percentage of CFSE intensity compared to the maximum intensity measured at time zero, 

+/- SD. * P < 0.05 (Student’s t-test). 
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observed higher CSFE intensities in the infected populations than the uninfected (Fig. 

3.2A). These differences became statistically significant on day four p.i. (Fig. 3.2B) when 

the mean CFSE intensity of the infected population was more than double that of the 

uninfected cell population. This result indicated that (on average) the infected cells had 

undergone one cycle of cell division less than did the control cells. This means that HCV 

infection causes a reduction in the proliferation rate, which is in agreement with previous 

reports [455,456]. 

3.3 HCV infection induced caspase-dependent, DNA fragmentation-inducing 

programmed cell death. 

Concurrently, we tested the possibility that HCV induces programmed cell death 

(PCD) in the infected cell population. This can also cause a reduction in the total number 

of viable cells detected by the MTT assay. To achieve this, two features of PCD were 

tested: caspase activation and DNA fragmentation.  

First, the role of caspase activation in the viability reduction seen in the HCV-infected 

population was tested. Apoptosis and pyroptosis are two types of PCD that are both 

dependent on activation of caspases. To test the possibility that the reduction in viability 

was caused by induction of one or both of these forms of PCD, we tested the effect of 

blocking the activation of caspases on the total viability of the HCV-infected Huh-7.5 cell 

population. Infected (MOIs of 1 and 2) or uninfected control cells were treated with the 

pan-caspase inhibitor Z-VAD-FMK.  The effect of this treatment on viability was then 

measured by MTT assay. The results of this experiment showed that the inhibition of 

caspases by Z-VAD-FMK increased the total viability of the HCV-infected population of 
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cells (Fig. 3.3A). This effect was specific for the reduction in the viability caused by HCV 

infection as treating the uninfected cells with Z-VAD-FMK did not increase their 

viability. This result indicated that caspase-dependent PCD was induced and contributed 

to the reduction in viability observed in response to HCV infection.  

To confirm that apoptosis or pyroptosis are induced by HCV infection, we tested a 

second feature of those two forms of programmed cell death, which is the induction of 

DNA fragmentation. As described previously (section 1.5.1.1), internucleosomal DNA 

fragmentation is one of the hallmarks of apoptosis. As a result of this, the DNA of 

apoptotic cells becomes fragmented into segments equivalent to the DNA content of one 

nucleosome (180 bp) or oligonuecleosomes. Running the DNA of apoptotic cells on 

agarose gel electrophoresis gives characteristic bands at multiples of 180 bp [498,499]. 

Aside from the classical laddering assay, DNA fragmentation during apoptosis provides 

the basis for many other apoptosis detection tests, including the detection of the 

hypodiploid cells in a cell cycle analysis [495,500]. Pyroptosis can also result in 

formation of hypodiploid cells as it is also known to cause DNA fragmentation (described 

in section 1.5.2). 

 DNA fragmentation in the HCV-infected cell population was tested first by the 

classical DNA laddering assay. The low molecular weight DNA was extracted from 

HCV-infected Huh-7.5 cells immediately after the infection (day 0) and every 24 hours 

up to day 5 p.i. The results of this assay showed a faint laddering appearing first on day 3 

p.i. The highest laddering intensity was seen on day 4 p.i. (Fig. 3.3B). Laddering was also 

detected on day 5 p.i., but the intensity of the bands were less than that seen on day 4 p.i.  
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Figure 3.3 HCV infection induced a caspase-dependent, DNA fragmenting PCD. 

(A) Huh-7.5 cells were infected at MOIs of 1 or 2 then incubated for 96 hours in complete 

medium containing either 20 μM of the pan-caspase inhibitor Z-VAD-FMK or an 

equivalent volume of DMSO as a control. Viability was measured on day 4 p.i. by MTT 

assay. The data presented in this figure is representative of two independent experiments 

in which each sample was tested in triplicate. The data is presented as the percentage of 

the viability compared to the uninfected control. (B) DNA laddering assay to detect DNA 

fragmentation. Huh-7.5 cells were infected at MOI of 1, low molecular weight DNA was 

extracted immediately after infection (day 0) and every 24 hours up to 5 days p.i. The 

data presented in this figure is representative of three independent experiments. Original 

gel image was spliced to remove an empty lane (C) & (D) Huh-7.5 cells were infected at 

MOI of 1 or left uninfected, the cells were harvested after 72 hours, or 96 hours p.i. Huh-

7.5 cells incubated in complete medium containing 50 ng/ml of actinomycin D for 48 

hours (due to potency) were used as a positive control. The harvested cells were 

permeabilized and stained with PI, then cell cycle analysis was performed and the 

percentage of hypodiploid cells was determined. The uninfected cell population presented 

in (C) was harvested 96 hours p.i. The data is presented in (D) as the mean percentage of 

the hypodiploid cells for four independent experiments +/- SD. ns: Not significant, * P < 

0.05 (Student’s t-test). 
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This is most probably due to the lower number of cells that remained intact until day 5 p.i 

due to the extensive cell death that occurred on day 4 p.i. No DNA laddering was detected 

in the uninfected cells even after 5 days of incubation (data not shown), meaning that this 

laddering is specifically induced by HCV infection. The induction of DNA fragmentation 

in HCV-infected cells was confirmed by analyzing the hypodiploid cells through cell 

cycle analysis. DNA fragmentation results in the formation of low molecular weight 

DNA fragments that can be extracted from fixed/permeabilized cells, leaving these cells 

with less DNA than a normal cell [495]. To test for DNA fragmentation, infected or 

uninfected cells were permeabilized and stained with propidium iodide (PI), which is a 

dye that binds to the DNA and gives fluorescence intensity that correlates with the DNA 

content of the nucleus. By performing a cell cycle analysis of these stained cells, the 

apoptotic/pyroptotic cells can be detected in the Sub-G1 region. 

 We were able to detect a slight increase in the number of hypodiploid cells in the 

infected Huh-7.5 population on day 3 p.i., however, this increase was not statistically 

significant (Fig. 3.3C & D). Significantly higher levels of hypodiploid cells were detected 

on day 4 p.i. in the infected, but not the uninfected, Huh-7.5 cells. This result confirmed 

that HCV infection induced DNA fragmentation in the HCV-infected population of cells. 

In summary, HCV infection was found to induce caspase-dependent, DNA 

fragmentation-inducing PCD. Both apoptosis and pyroptosis can be responsible for 

causing these effects. The ability of HCV infection to induce each one of these two forms 

of PCD was investigated separately and the results of this investigation will be presented 

in the next section and in Chapter 5. 
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3.4 HCV infection induced apoptosis. 

First, we tested the ability of HCV infection to induce apoptosis by performing 

apoptosis-specific assays. As discussed in more detail in section 1.5, one of the main 

characteristics that differentiate between apoptosis and pyroptosis is the type of caspase 

that is responsible for their induction. Regardless of the pathway that initiates apoptosis, 

caspase-3 and other executioner caspases are always activated in order to induce the final 

events that cause the demise of the cell. Pyroptosis, on the other hand, is a caspase-3-

independent form of PCD that depends solely on the activation of caspase-1 (reviewed in 

[359]). 

The activation of caspase-3 was tested first by measuring the cleavage of PARP, 

which is one of the main substrates of caspase-3 and its cleavage is commonly used as a 

marker for monitoring caspase-3 activation and apoptosis. Infected (MOI of 1) or 

uninfected control Huh-7.5 cells were harvested on day 4 p.i. and stained with an 

antibody that binds specifically to the cleaved form of PARP (cPARP), then analysed by 

flow cytometry. HCV infection was found to result in significantly higher numbers of 

cPARP-positive cells compared to the control (Fig 3.4A). However, and as discussed 

previously (section 1.5), some groups reported the possibility that caspase-1 activation 

can also cause the cleavage of PARP, which questions the specificity of this test for the 

detection of apoptosis. For this reason, caspase-3 activation was confirmed more 

specifically by staining cells with an antibody that binds to the active, cleaved form of 

caspase-3. In agreement with the cPARP analysis, HCV infection was found to result in 

significantly higher numbers of cleaved caspase-3-positive cells compared to uninfected 
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cells (Fig. 3.4B). These results suggested that HCV infection caused the induction of 

caspase-3 activation and apoptosis. 

To confirm the induction of apoptosis and the role of caspase-3 activation in HCV-

induced PCD (which in this case would be classified as apoptosis), we inhibited caspase-3 

specifically in HCV infected Huh-7.5 cells and monitored the effect of this inhibition on 

the percentage of the cells undergoing PCD. This was performed by treating HCV-

infected Huh-7.5 cells with Z-DEVD-FMK (a caspase-3-specific inhibitor) and 

monitoring the effect of this treatment on the number of hypodiploid cells present. The 

results of this experiment showed that the blockade of caspase-3 caused a small, but 

statistically significant reduction (~25%) in the percentage of hypodiploid cells contained 

within the target cell population (Fig. 3.4C). This result confirmed that apoptosis is 

induced in the HCV-infected population. 

 Finally, we also observed features of apoptosis in the target cell population by 

electron microscopy (EM) as cell condensation and plasma membrane blebbing were 

clearly evident (Fig 3.4D). However, plasma membrane disruption and cellular debris 

were also observed, indicative of a lytic form of cell death. These observations, in 

combination with the relatively moderate effect of inhibiting caspase-3 on reducing the 

number of hypodiploid cells prompted us to question whether HCV infection also causes 

pyroptosis, which is known to cause DNA fragmentation, but with lysis of affected cells 

[360,361]. 
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Figure 3.4 HCV infection induced apoptosis. 

 Huh-7.5 cells were infected at an MOI of 1 then harvested on day 4 p.i. The harvested 

cells were stained for cleaved PARP in (A) or cleaved caspase-3 in (B). (C) Infected cells 

were grown in medium containing 100 μM of the caspase-3 specific inhibitor  Z-DEVD-

FMK or an equivalent volume of DMSO for 4 days, then harvested and stained with PI. 

(D) EM images of control or infected Huh-7.5 cells showing apoptotic features such as 

plasma membrane blebbing indicated by the blue arrow. The red arrow indicates cellular 

debris from a cell that had undergone lysis. Data are presented in A, B & C as the mean 

of three independent experiments +/- SD. Data presented in C represent the percentage of 

the hypodiploid cells compared to the untreated control. *P < 0.05 (Student’s t-test). 
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3.5 HCV infection induced the activation of caspase-8, the initiator of the extrinsic 

pathway. 

After showing that HCV-infection induces apoptosis, we asked how this apoptosis is 

induced and what apoptotic pathways are involved in the induction of this form of cell 

death. The activation of the mitochondrial pathway was reported and analysed previously 

[453,454]. However, the effect of HCV on the extrinsic pathway has not been studied 

before in the context of a fully infectious HCV. To test this effect, Huh-7.5 cells were 

infected at an MOI of 1, and then the activation of caspase-8 was analyzed using a 

specific antibody that binds to the active, cleaved caspase-8. By examining the stained 

cells under the fluorescent microscope, we were able to visualize active caspase-8 in the 

infected cell population but not in the control on day 4 p.i. (Fig. 3.5A). The same 

antibody was used in Western blotting to study the activation of caspase-8 at different 

time points following the infection. Cell lysates were obtained from infected or 

uninfected cells every 24 hours for 4 days and the level of active caspase-8 was 

compared. We detected higher levels of active caspase-8 in infected cells than in the 

control cells as early as 24 hours following the infection (Fig. 3.5B), and continued to 

increase until day 4 p.i. To test whether caspase-8 activation was important for the 

induction of apoptosis in the HCV-infected cell population, we specifically inhibited 

caspase-8 using Z-IETD-FMK and monitored the effect of this inhibition on the 

percentage of hypodiploid cells. We found that this treatment caused a significant 

decrease in the percentage of hypodiploid cells in the infected cell population (Fig. 3.5C). 

These results confirmed that caspase-8 is activated following HCV infection and it plays 

a role in the HCV-induced apoptosis. 
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measuring the effect of this treatment on the percentage of hypodiploid cells

shown in the graph are the mean percentage of the hypodiploid cells compared to the 

infected untreated control. The data is presented as the mean of three

P < 0.005 (student’s t-test).  
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Chapter 4: Results - HCV infection induces a contact dependent bystander apoptosis 

In the previous chapter, we demonstrated that HCV infection induces apoptosis in the 

infected cell population. However, the data presented in the previous chapter cannot 

distinguish whether the apoptosis is occurring exclusively in the infected cells, or whether 

it also affects the neighbouring uninfected cells, i.e., “bystander apoptosis”. The concept 

of bystander apoptosis was reported previously in other viral infections. Bystander 

apoptosis is believed to be an important factor in the pathogenesis of cytomegalovirus 

retinitis [501,502]. Bystander apoptosis was also reported to be responsible for the CD4+ 

T cell decline in HIV-infected patients (reviewed in [503]). Furthermore, bystander 

apoptosis is induced in Ebola infection and causes massive lymphocyte death [504,505]. 

We are the first group to report the observation that HCV infection can induce bystander 

apoptosis, and the results of this investigation will be presented in this chapter.  

4.1 HCV infection induced programmed cell death in both core-positive and core-

negative cell populations. 

In this experiment, infected (MOI of 1) or control cells were double stained with anti-

HCV core antibody and PI to test whether high levels of intracellular core are required for 

the induction of apoptosis. The flow cytometric analyses of these cells showed a 

surprising result as hypodiploid cells were seen in both the core-positive and the core-

negative populations (Fig. 4.1). This result means that DNA fragmentation-causing PCD 

is induced in Huh-7.5 cells regardless of their level of core protein, i.e., both infected and 

uninfected “bystander” cells. This prompted us to ask whether this observed death in the 
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Figure 4.1 HCV infection induced DNA fragmenting PCD in neighbouring 

uninfected cells. 

Huh-7.5 cells were infected at an MOI of 1. Three days p.i., cells were harvested and 

stained with anti-HCV core and PI. FACS analysis was used to determine the percentage 

of hypodiploid cells in the HCV core-negative and core-positive populations. (A) 

Percentage of hypodiploid cells in the infected and control cells in the total population of 

cells. (B) Percentage of hypodiploid cells after gating on either core-negative or core-

positive sub-populations within the infected Huh-7.5 cells. The data presented in this 

figure is representative of three independent experiments. 
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core-negative cells is actually apoptosis and whether it can occur in the uninfected cells. 

4.2 HCV infection induced bystander apoptosis. 

To test for bystander apoptosis, we co-cultured Huh-7.5 cells with HCV-non-

permissive cell lines and then monitored the effect of infecting the Huh-7.5 cell on the 

neighbouring non-permissive cells. The co-culture was performed at a ratio of five Huh-

7.5 cells to one HCV-non-permissive cell. Firstly, we co-cultured Huh-7.5 cells with the 

closely related S29 cells. The S29 cell line is a sub-clone of Huh-7 cells that lacks CD81, 

the key receptor for HCV entry [187]. Unpublished data from our lab showed that CD81 

is required for HCV infection and that the S29 cell line cannot be infected efficiently with 

HCV unless it is transfected with a CD81 expression plasmid.  

To differentiate between the two types of cells in the co-culture, we first stained the 

harvested cells with CD81 antibody, then gated on the CD81-positive or CD81-negative 

cell lines. We were able to see higher percentage of cPARP-positive cells within the 

CD81-negative population when it was co-cultured with infected Huh-7.5 cells than when 

it was co-cultured with uninfected control Huh-7.5 cells (Fig. 4.2A & B). However, we 

also noticed that HCV infection caused a reduction in the levels of CD81 expression. This 

is likely a strategy used by the virus to prevent super-infection, or possibly the virus 

causes infected cells to reduce the overall cellular protein expression, including CD81, in 

order to focus the protein synthesis machinery on viral protein synthesis. Regardless of 

the reason behind it, this reduction questioned the separation between the infected Huh-

7.5 cells and the S29 cells based on the CD81 expression. To rule out the possibility that 

the reduction in CD81 expression was causing some of the infected Huh-7.5 cells to 
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appear in the CD81-negative gate and cause an increase in cPARP positive cells within 

this population we used a second approach to differentiate between the S29 cells and the 

Huh-7.5 cells in the co-culture. 

We labelled the S29 cells directly by transfecting them with a GFP-expressing 

plasmid. The transfected S29 cells were then co-cultured with either infected or control 

Huh-7.5 cells. At the end of the incubation period, the mixed population was harvested 

and stained with antibodies against cPARP or cleaved caspase-3 (see Fig. 2.1 for 

illustration of this strategy). Gating on the GFP-positive population provided us with a 

tool to detect caspase-3 activity specifically within the S29 cell population. Analysing the 

data obtained by this approach revealed that significantly higher percentage of cPARP-

positive and cleaved caspase-3-positive cells were detected in the S29 cell population 

when they were co-cultured with infected Huh-7.5 cells (Fig. 4.2C, D & E). These results 

suggested that HCV infection induced bystander apoptosis. 

 Next, we asked whether the observed bystander apoptosis was specifically induced in 

neighbouring hepatocytes or does this bystander effect also extend to other cell types. To 

answer this, we co-cultured infected or control Huh-7.5 cells with 293T cells. The 293T 

cells were originally obtained from human embryonic kidney and they do not express 

CLDN-1, which is another key receptor for HCV. These cells are not permissive to 

HCVcc infection, and only very low susceptibility (1000-fold less than Huh-7.5) were 

reported in these cells when they ectopically express CLDN-1 [139]. We observed that, 
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similar to S29 cells, co-culturing the 293T cells with infected Huh-7.5 cells induced a 

higher percentage of caspase-3 activity among them (Fig 4.2D & E). This suggested that 

bystander apoptosis was induced in the 293T cells that were co-cultured with infected 

Huh-7.5 cells. However, the degree of induction of bystander apoptosis in the 293T cells 

was lower than that observed in the S29 cells. The possible explanations for this weak 

induction will be discussed in Chapter 6. 

4.3 The induction of bystander apoptosis required cell-cell contact between the 

infected and the bystander cells. 

After showing that HCV infection induces bystander apoptosis, we were interested in 

the mechanism by which this bystander apoptosis was induced. The infected cell could 

induce the death of its neighbouring cells by expressing certain death ligands that could 

interact with their cognate receptors on the adjacent cell to induce the extrinsic apoptotic 

pathway. Alternatively, the death signal could be transmitted via soluble mediators or 

exosomes. In the first scenario, cell-cell contact would be necessary for the induction of 

apoptosis. However, in the case of soluble mediators/exosomes-dependent transmission, 

cell-cell contact would not be required and the death could be induced even in cells that 

are relatively distant from the infected cell. 

To determine which of these mechanisms is responsible for HCV-induced bystander 

apoptosis, we performed transwell assays. In these experiments, we prepared a co-culture 

of infected versus uninfected Huh-7.5 cells (lower chamber) with S29 cells (upper 

chamber) at the same ratio used in the previous section (5:1) as illustrated in (Fig. 4.3A). 

Inserts with a pore diameter of 0.4 μm were chosen to allow the exchange of soluble 
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material and exosomes, but prevent the movement of cells or even apoptotic bodies 

through them. Following a four day co-culture, the S29 cells were harvested and stained 

with an antibody specific for cleaved caspase-3 to detect apoptosis. Based on the very low 

levels of cleaved caspase-3-positive cells detected, the S29 cells did not undergo 

significant levels of apoptosis when co-cultured with infected or uninfected Huh-7.5 cells 

(Fig. 4.3B). The lack of induction of apoptosis in the bystander cells, despite the potential 

for passage of soluble molecules, viruses and exosomes, shows that cell-cell contact is 

required for the induction of bystander apoptosis. 
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Figure 4.3 Bystander apoptosis required cell-cell contact to be induced. 

(A) Infected or uninfected Huh-7.5 cells were co-cultured with S29 cells in a transwell 

plate at a ratio of 5:1 as illustrated. Four days p.i. S29 cells were harvested and stained 

with cleaved caspase-3 antibody. (B) The percentage of cleaved caspase-3-positive cells 

among the total S29 cells. The result is presented as the mean of three independent 

experiments +/- SD. n.s.:  Not significant (student’s t-test).  
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Chapter 5: Results - HCV infection induces pyroptosis and bystander pyroptosis 

In chapter 3, we presented evidence suggesting that HCV infection induces apoptosis. 

However, some of the findings indicated the possibility that a second form of PCD also is 

induced in the context of HCV infection. For example, the EM images showed some 

features of a lytic form of death. Furthermore, other features such as DNA fragmentation 

and caspase activation are not specific for apoptosis and could be caused by a second 

form of cell death known as pyroptosis (described in detail in section 1.5.2). This led us 

to ask whether HCV infection affects the cells in a more complex way than we originally 

expected and is able to stimulate the cell to undergo more than one form of PCD. For 

these reasons, the possibility that pyroptosis is induced as a second form of PCD in the 

HCV-infected population was investigated and the results of this investigation will be 

presented in this chapter.  

5.1 HCV infection caused cell lysis. 

As we described previously, one of the main morphological features of pyroptosis is 

loss of the integrity of the plasma membrane, which leads to cell lysis and the release of 

cellular contents to the surroundings. Lactate dehydrogenase (LDH) is an enzyme that is 

normally sequestered inside the cell and is released extracellularly only in the event of 

cell lysis [506]. Measuring the activity of LDH in the medium of the cultured cells is a 

useful tool for detecting lytic cell death, including pyroptosis [506].  

By measuring the activity of LDH in the medium of HCV-infected or uninfected Huh-

7.5 cells, we found that HCV infection resulted in a significant increase of the LDH  
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Figure 5.1 HCV infection increased the LDH activity in the supernatant

were infected at MOI of 1. The supernatants were collected fo

activities were measured in these supernatants. The absorbance

as the absorbance measured at 490 nm. Each bar represents the mean 

of three independent experiments (each measured in triplicate) +/

-test). 
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activity in the medium of infected Huh-7.5 cells (Fig. 5.1). However, it is important to 

point out here that the LDH release assay is not specific for pyroptosis. Other forms of 

lytic cell death, such as necrosis and necroptosis, can also result in an increase in the 

levels of LDH [507]. Moreover, during the late stages of apoptosis, and in the absence of 

scavenger cells, apoptotic cells undergo secondary necrosis, which also releases the 

cellular contents, including LDH, to the exterior of the cell [508]. These facts reduce the 

specificity of the LDH assay for the detection of pyroptosis. Despite this lack of 

specificity, LDH release is one of the predominant characteristics of cells undergoing 

pyroptosis, thereby supporting our theory that HCV infection induces pyroptosis. In the 

next sections, the results from more specific tests for pyroptosis will be presented. 

5.2 HCV infection induced pyroptosis. 

As we discussed previously, pyroptosis is a caspase-1-dependent form of PCD. The 

only exception for this role is LPS-induced pyroptosis, which can be induced under 

certain circumstances by a caspase-4/5-dependent pathway in human cells (discussed in 

more detail in section 1.5.2, the non-canonical inflammasomes). For this reason, we 

started our investigation by testing the effect of HCV infection on the activation of 

caspase-1. This was performed by infecting Huh-7.5 cells with HCV at an MOI of 1, then 

measuring the activity of caspase-1 in these cells four days p.i. The activity was measured 

by staining cells with FAM-YVAD-FMK FLICA probes. These fluorescent inhibitor-

based probes enter the cells and bind covalently to the active form of caspase-1. We 

found that HCV infection caused a significant increase in the proportion of active 

caspase-1-postive cells (~45% compared to ~5%; Fig. 5.2A). This high level of  
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Figure 5.2 HCV infection induced pyroptosis. 

(A) Huh-7.5 cells were infected at MOI of 1 or left uninfected. On day 4 p.i., cells were 

harvested and stained with FAM-YVAD-FMK FLICA then analysed by flow cytometry 

to detect active-caspase-1-positive cells. Each bar represents the mean of the percentage 

of active-caspase-1-positive cells of six independent experiments +/- SD. (B) Huh-7.5 

cells were infected at MOI of 1 or left uninfected then incubated in complete medium 

containing 100 μM of Z-WEHD-FMK or an equivalent volume of DMSO. Cells were 

harvested on day 4 p.i. and stained with PI. Cell cycle analysis was used to determine the 

percentage of hypodiploid cells in each of the populations. The results presented in this 

figure represent two independent experiments. 
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caspase-1 activation in combination with increased levels of LDH and the EM 

observations strongly suggested that HCV infection induces pyroptosis. 

 To further confirm the induction of pyroptosis by HCV infection, we tested whether 

this PCD could be specifically blocked by caspase-1 inhibition. This was done by treating 

the HCV-infected or control cells with the caspase-1-specific inhibitor Z-WEHD-FMK, 

and measuring the effect on the number of hypodiploid cells. Inhibiting caspase-1 rescued 

more than half of the cells undergoing HCV-induced PCD (Fig 5.2B), confirming that 

pyroptosis is induced in the HCV-infected cell population. 

 One of the major functions of the active form of caspase-1 is to induce the maturation 

of IL-1β by catalyzing the cleavage of its inactive cytoplasmic precursor (pro-IL-1β). We 

tested this function by measuring the levels of IL-1β in the supernatant of the infected cell 

population. Huh-7.5 cells were infected at MOI of 1, the supernatants were harvested on 

day 4 p.i. and the levels of IL-1β were measured by enzyme-linked  immunosorbent assay 

(ELISA). Surprisingly, we could not detect IL-1β in the supernatant of the infected cells. 

Similar results had been published before by two groups [509,510]. The possible 

explanation for this result will be discussed in Chapter 6. 

5.3 HCV infection induced pyroptosis through the activation of NLRP3 

inflammasomes. 

Caspase-1 can be activated by different types of inflammasomes depending on the 

nature of the stimuli that induce their activation (section 1.5.2). Viral RNA is known to 

induce the assembly and activation of NLRP3 inflammasomes [359]. This prompted us to  
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HCV induced pyroptosis through NLRP3 inflammasome activation.
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ask whether HCV-induced pyroptosis is stimulated through NLRP3 inflammasome 

activation. To address this question we treated HCV-infected Huh-7.5 cells with a 

specific inhibitor for NLRP3 inflammasome activation and monitored the effect of this 

treatment on induction of cell death. The inhibitor we used was MCC950, which is a 

recently developed potent, selective, small molecule inhibitor for NLRP3 [511]. The 

infected cells were incubated in complete medium containing 0.1 μM of MCC950 for 4 

days, and then harvested and stained with PI to detect the hypodiploid cells in the treated 

or the untreated populations. As expected, we found that inhibiting NLRP3 resulted in a 

significant decrease in the number of hypodiploid cells (Fig. 5.3). This inhibition 

confirms the role of NLRP3 inflammasome activation in HCV-induced pyroptosis. 

5.4 HCV infection induced pyroptosis in neighbouring uninfected cells (bystander 

pyroptosis). 

In the previous chapter, we presented evidence that HCV infection induces apoptosis 

in neighbouring uninfected cells. In section 4.1, we showed that hypodiploid cells can be 

detected in both the HCV-core positive and HCV-core negative populations (Figure 4.1). 

The presence of the hypodiploid cells within the HCV-core negative population can be 

the result of the bystander apoptosis. However, because pyroptosis can also cause DNA 

fragmentation and the formation of hypodiploid nuclei, it is possible that bystander 

pyroptosis is also induced in the HCV infected cell population. This might contribute to 

the total number of hypodiploid cells seen in the uninfected population. 
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Figure 5.4 HCV infection induced bystander pyroptosis. 

(A) Huh-7.5 cells were infected at MOI of 1 or left uninfected then co-cultured with GFP-

transfected S29 cells at a ratio of 5:1. On day 4 p.i., the cells were harvested and stained 

with FAM-YVAD-FMK FLICA, then analysed by flow cytometry. S29 cells were 

differentiated in the analysis by gating on the GFP-positive population. Data from one 

representative experiment is shown. (B) Summary of mean percentages of active-caspase-

1- positive cells among the S29 cell population of six independent experiments +/- SD. ** 

P < 0.005 (Student’s t-test).  
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To test more specifically whether bystander pyroptosis was induced in the HCV-

infected population, we co-cultured Huh-7.5 cells and GFP-transfected HCV-non-

permissive cells as described for the detection of bystander apoptosis (section 4.2 and 

illustrated in Fig. 2.1). However, instead of staining with cPARP or cleaved caspase-3 

antibody, the harvested cells were stained with FAM-YVAD-FMK FLICA to detect 

caspase-1 activity. By gating on GFP-positive cells, we found a significantly high 

percentage of active-caspase-1-positive cells in the S29 cell population that was co-

cultured with infected Huh-7.5 cells, but not when they were co-cultured with uninfected 

Huh-7.5 cells (Fig. 5.4A & B). This observation suggests that the induction of pyroptosis 

by HCV infection was not limited to the infected cells, but also could be induced in 

bystander cells. 

5.5 The induction of bystander pyroptosis did not require the cell-cell contact 

between the infected and the bystander cells. 

Finally, we asked whether HCV-induced pyroptosis requires cell-cell contact between 

the infected and the bystander cell in order to be activated. In the previous chapter, we 

demonstrated that HCV-induced bystander apoptosis required cell-cell contact. To test 

whether bystander pyroptosis has the same requirement, we co-cultured infected or 

uninfected Huh-7.5 cells with S29 cells in different chambers of transwell plates. These 

plates will allow the exchange of soluble mediators and very small particles, such as virus 

particles and exosomes, between the two chambers, but will block cell-cell interaction. 

Despite the inability to interact physically, we found that co-culturing the S29 cells with 

infected Huh-7.5 cells resulted in higher numbers of active-caspase-1-positive cells than 
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when they were co-cultured with uninfected control cells (Fig. 5.6). This result indicated 

that, unlike bystander apoptosis, cell-cell contact is not necessary for the induction of 

bystander pyroptosis. The possible mechanisms for the induction of the bystander 

pyroptosis will be discussed in Chapter 6. 
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Chapter 6: Discussion 

The gradual destruction of the liver that takes place in the context of HCV infection 

has been a matter of intense interest for many years. In this report, we investigated the 

possibility that HCV itself causes cytopathic effects in the absence of immune cells. We 

found that HCV infection indeed induced at least two forms of PCD, those being 

apoptosis and pyroptosis. We also demonstrated that both infected and neighboring 

uninfected (bystander) cells were induced to undergo each of these two forms of PCD. 

The bystander apoptosis we observed, but not the bystander pyroptosis, required direct 

contact between the infected and uninfected cells.  

Our study employed a cell culture-adapted strain of HCV JFH-1 (JFH1T) and human 

hepatoma-derived Huh-7.5 and related S29 cells. This system is one of the few non-

chimeric, highly replicating HCV culture systems that allows a dynamic range of 

measurement sufficient for studies such as we have performed here. However, cell culture 

systems such as ours inherently possess caveats and limitations. For example, unlike all 

other patient isolates of HCV, the JFH-1 strain can propagate autonomously in cell 

culture without adaptive mutations or modification of target cells. This fact has led many 

in the field to question whether this strain actually represents natural HCV infection in 

patients. Additionally, the Huh-7.5 cells used by us and many others are cancer cell-

derived and are known to have altered innate immune mechanisms. Given these caveats, 

any findings such as ours that might have pathogenic implications may not be directly 

extrapolated to persistent HCV infection of liver and should be confirmed in animal and 

infected human liver studies. 
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In a broader sense, it is important to consider whether or not the results presented here 

have relevance to the disease situation. Given the above-mentioned caveats of HCVcc 

systems, we cannot say at this point that apoptosis or pyroptosis is actually taking place in 

infected livers. However, apoptosis has been detected in the human liver cells of 

SCID/ALB-uPa humanized mice [447]. In human studies, a correlation between apoptotic 

index and histological grading in liver sections, and activation of caspase-3 and -7, has 

been demonstrated in liver biopsies from chronically infected individuals [403,404]. 

Based on these studies, it is possible that our results regarding apoptosis are 

physiologically relevant, but it will be important to revisit this topic in light of our new 

findings, and more importantly, the topic of pyroptosis has never been addressed in the 

context of HCV-infected individuals. It would be interesting now to test whether other 

subtypes/genotypes of HCV cause pyroptosis and bystander cell death because JFH-1 was 

originally isolated from a patient with fulminant hepatitis [180]. If these forms of PCD 

are specific to JFH-1 infection, one might speculate that perhaps only highly pathogenic 

strains of HCV can induce cell death by these mechanisms. 

The pathogenic pathways responsible for development of HCV-associated liver 

disease are poorly understood, but induction of PCD in the infected liver may play an 

important role in disease progression. For example, induction of apoptosis activates a pro-

fibrogenic pathway contributing to the overall pathogenesis associated with HCV 

infection [467,512]. Pyroptosis contributes to the creation of an inflammatory 

environment inside the infected liver, thereby promoting disease pathogenesis [477,482-

488]. Various components of the innate and adaptive immune systems are known to 
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induce apoptosis of infected cells as part of their role in host defence against HCV. 

However, despite general agreement regarding the immunopathogenesis of HCV, there is 

considerable discrepancy in the literature regarding the effect of HCV on its host cell, 

specifically whether it is directly cytopathic.  

In the pre-HCVcc era, many groups investigated effects of HCV infection on various 

apoptotic pathways using different approaches. However, contradictory findings within 

the published data make it difficult to discern the actual effect of HCV infection on 

programmed cell death. For example, almost every HCV protein has been reported to 

have both anti- and pro-apoptotic function depending on which study one reads 

(discussed in section 1.6). The reason for this controversy is most likely due to the use of 

different systems by different groups to test the pro- or anti-apoptotic effects of these 

proteins. Most of these reports relied on the expression of a single viral protein under the 

control of highly active promoters. This creates extremely high levels of that protein, far 

above their normal physiological levels. Furthermore, these systems failed to detect the 

effect of the interaction between the different viral proteins, which could also impact the 

pro- versus anti-apoptotic functions of different viral proteins. These facts make the 

relevance of these reports to the natural HCV infection highly questionable.  

Studies employing HCVcc systems to specifically analyze the effects of HCV 

infection on apoptotic pathways have generated relatively consistent findings. For 

example, our results here are in agreement with those of other studies demonstrating of 

pro-apoptotic effects of HCV infection [448-450,453]. Still, other reports described the 

activation of certain pro-survival pathways following HCV infection in the context of 
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HCVcc (discussed in section 1.6). However, this reported activation was transient, 

detected early in the course of infection or activates certain pro-survival pathways but did 

not block HCV-induced apoptosis of the cell. Actually, activation of these pro-survival 

pathways might be responsible for extending the survival period of the infected cell 

enough to support viral replication. 

The mechanism by which apoptosis is induced is still largely unclear. Different 

mechanisms were reported by different groups, as described in section 1.6. These 

discrepancies might be attributed to the use of different derivatives of the parental JFH-1 

virus in executing their experiments. The use of the parental JFH-1 is criticized due to its 

extremely low efficiency of replication in cell culture. Some groups overcame this low 

replication efficiency by using the J6-JFH1 derivative, but this is actually a chimeric virus 

that does not exist in nature. The virus strain used in our project (the JFH1T strain) has 

high replication efficiency and contains only three adaptive point mutations compared to 

the parental JFH-1, which was isolated from an infected patient. Because of these facts, 

we believe that our system is superior to the previously used HCVcc systems, as it better 

represents natural HCV infection under the physiological conditions. 

We presented here evidence that HCV infection reduces the proliferation rate of the 

infected cell population, which is in agreement with previous reports [455,456,513,514]. 

There was disagreement amongst these reports as to when in the cell cycle the arrest 

occurs. Some groups reported that the arrest occurs at the G1 phase [455,513], while 

others reported it at the G2/M phase [456]. An association between cell cycle arrest, P21 

levels, and severity of fibrosis was reported [513]. However, it is not clear whether this 
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correlation is a result of the direct effect of the cell cycle arrest, or if it is caused by other 

factors, including the induction of PCD. Cell cycle arrest was not our interest in this 

project and therefore was not investigated beyond the point of showing that it was 

induced. 

DNA fragmentation was tested by two different assays: DNA laddering assay and the 

detection of hypodiploid cells by cell cycle analysis of PI stained cells. Despite the fact 

that those two assays detect the same PCD hallmark, DNA fragmentation, they are 

actually different from each other by the feature used to detect the fragmentation. The 

DNA laddering assay detects the formation of low molecular weight fragments with sizes 

in multiples of 180 bp. These fragments result from the internucleosomal cleavage of the 

DNA because of caspase-3-mediated cleavage and activation of ICAD/DFF45 to release 

CAD/DFF40. This is an active DNase that catalyses the internucleosomal cleavage of 

DNA [344]. On the other hand, hypodiploid nuclei result from the loss of the low 

molecular weight fragments of DNA during the processing of the cell, regardless of the 

mechanism by which these low molecular fragments formed. Apoptosis is well-known to 

induce internucleosomal DNA fragmentation through caspase-3-mediated cleavage of the 

inhibitor ICAD/DFF45 [344]. As discussed earlier, pyroptosis is also known to induce 

DNA fragmentation. However, the DNase that is activated during pyroptosis is not 

known, and it is not clear whether it will cause internucleosomal cleavage and DNA 

laddering. One group reported that caspase-1 could cleave ICAD/DFF45, release the 

active DNase, and lead to DNA fragmentation in vitro [515]. In contrast, other groups 

could not detect any ICAD/DFF45 cleavage or DNA laddering in the macrophages 
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undergoing Salmonella-induced pyroptosis [355,360]. Since it is not clear whether the 

DNA laddering test is specific for the detection of apoptosis, we decided to be more 

cautious in interpreting the results of this test and we refrained from making apoptosis-

specific conclusions depending on the results of this test. Detection of the hypodiploid 

cells in PI stained cells can result from both apoptosis and pyroptosis, and we confirmed 

this by showing that inhibiting caspase-3, caspase-8, or caspase-1 specifically resulted in 

a significant reduction in the number of the hypodiploid cells in our system. 

As with the above-mentioned tests, many commonly used apoptosis detection assays 

should be revisited as they detect features shared with pyroptosis. DNA fragmentation-

dependent assays such as the TUNEL assay should not be used for the identification of 

apoptosis unless pyroptosis is ruled-out. Moreover, Annexin V staining results should 

also be interpreted with more caution as the stain might enter the pyroptotic-ruptured cells 

and bind to phosphatidyl serine molecules in the inner leaflet. Combining PI stain with 

annexin V will resolve this issue as pyroptotic cells will allow the entry of both of these 

two molecules. Finally, despite its wide use, the interpretation of PARP cleavage results 

as an apoptotic marker must be reconsidered in the light of relatively recent publications 

in which caspase-1 activation was reported to cause similar effects (discussed in detail in 

section 1.5.2). In this project, cleavage of PARP was always supported by detecting the 

cleavage of caspase-3 to specifically indicate the induction of apoptosis. 

We showed in section 3.5 that HCV infection induces the activation of caspase-8. This 

induction plays a role in the apoptotic pathway as inhibiting caspase-8 reduced the 

proportion of hypodiploid cells. Caspase-8 is the initiator caspase of the extrinsic 
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apoptotic pathway and is activated in the DISC following the binding of a death ligand to 

its cognate receptor (see section 1.5.1.2). However, an alternative pathway for the 

activation of caspase-8 was also reported. In this pathway, caspase-8 is processed and 

cleaved downstream of caspases-9, -3 and -6 [516,517]. Moreover, caspase-8 was 

reported to be activated by NLRP3 inflammasomes (more details regarding this pathway 

will be discussed below). For this reason, it is not clear to us which of these pathways are 

participating in the cleavage and activation of caspase-8 in our system and more 

investigation is needed to answer this question.  

In Chapter 4, we presented evidence that apoptosis is not limited to the infected cells, 

but also is induced in neighbouring uninfected cells. As discussed earlier, bystander 

apoptosis has been described previously in the context of other viral infections, such as 

HIV, Cytomegalovirus (CMV) and Ebola virus, and is believed to contribute to the 

pathogenesis related to these viral infections [501-505]. To the best of our knowledge, our 

data here provide the first evidence of bystander apoptosis in response to HCV infection. 

Induction of bystander apoptosis could exacerbate the pathogenic process in the HCV 

infected liver. Such a mechanism of elimination of uninfected cells could help explain the 

massive destruction observed in the liver despite the belief that only a minority of 

hepatocytes (7%-20%) are actually infected with HCV in chronically infected patients 

[518]. Induction of apoptosis in adjacent uninfected cells, could theoretically amplify the 

pathogenic effect of HCV infection.  

We presented evidence that the induction of bystander apoptosis requires cell-cell 

contact between the infected and the affected uninfected cells. The most attractive 
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candidate mechanism to explain this result is that the induction of bystander apoptosis 

occurs through the interaction between death ligands expressed on the surface of the 

infected cell and death receptors on the surface of neighbouring cells, which in turn 

causes the activation of the extrinsic apoptotic pathway in the neighbouring cell. This 

might be also the cause of the activation of caspase-8 observed in our system. The 

upregulation of death ligands such as Fas-ligand by HCV infection has been reported 

previously [519,520]. This upregulation of Fas-ligand induces apoptosis in activated 

CD4+ and CD8+ T lymphocytes [520]. Upregulation of Fas-ligand on the infected cell 

could be an evasion mechanism used by the virus to kill infiltrating activated 

lymphocytes. Consequently, this upregulation of death ligands could also induce 

apoptosis in neighbouring uninfected hepatocytes. Additionally, induction of death ligand 

expression might contribute to the development of HCC by providing transformed cells a 

tool to evade immune surveillance. Human hepatocytes are highly sensitive to Fas-ligand-

induced apoptosis [521], however, human hepatoma cell lines, including Huh-7 cells (the 

parental cell line for the S29 cells used here), were reported to be resistant to Fas-

mediated apoptosis [522]. Therefore, bystander cells would first need to be sensitized to 

Fas-induced apoptosis in order to be responsive to the Fas-ligand expressed on the 

neighbouring infected cells. It is plausible that such a mechanism may be at work in our 

system as in SCID/Alb-uPA mice, HCV infection causes an upregulation of Fas 

expression in both infected and neighbouring uninfected cells [447]. It is possible that a 

similar upregulation is occurring in our system leading to sensitization of neighbouring 

uninfected cells to FAS-induced apoptosis. 
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The expression of other death ligands by the infected cells might also be responsible 

for the induction of bystander apoptosis. For example, TRAIL expression was reported to 

increase significantly after HCV infection in a well-differentiated hepatoma cell line 

(LH86), and this increase was responsible for the induction of apoptosis in that system 

[448]. Treatment of Huh-7.5 cells with TRAIL induced apoptosis in these cells [457]. It is 

generally believed that TRAIL can induce cell death in cancer cells and spare most of the 

normal healthy cells. However, it has been reported that normal human, but not mouse, 

hepatocytes are actually sensitive to TRAIL-induced apoptosis [523,524].  

Membrane bound TNF-α is another possible inducer of bystander apoptosis in a cell-

cell contact-dependent manner. HCV infection results in an increase of serum levels of 

TNF-α. The major source of this cytokine in the liver is believed to be resident 

macrophages and T-cells [525]. However, TNF-α expression by hepatocytes was also 

observed in liver biopsies obtained from patients with chronic HCV infection [526]. 

Moreover, transfection of HepG2 cells with a full-length HCV DNA, or with HCV NS3 

induced them to express high-molecular-weight TNF-α [527]. As we discussed earlier, 

TNF-α activates both pro- and anti-apoptotic pathways in different target cells. 

Expression of the membrane bound TNF-α by the kupffer cells was reported to induce 

cell-cell contact-dependent apoptosis in hepatocytes [528]. The possibility that expression 

of TNF-α by infected hepatocytes plays a role in the induction of bystander apoptosis in 

our system cannot be excluded. In summary, bystander apoptosis is most likely the result 

of the overexpression of one or more of the previously described death ligands on the 

surface of the infected cell and the sensitization of the neighbouring uninfected cell to 
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death ligand-induced apoptosis. Further investigation needs to be performed to test this 

hypothesis. 

We tested the induction of bystander apoptosis in two different cell lines: S29 and 

293T cell lines. The S29 cell line is a hepatoma cell line, while 293T cells are derived 

from embryonic human kidney. The 293T cells were used in this experiment to test 

whether the induction of bystander apoptosis occurs specifically in neighbouring 

hepatocyte-like cells or whether it can also affect other types of cells that encounter the 

infected hepatocytes. We chose 293T cells because they can be easily transfected with 

GFP, and most importantly, because they lack CLDN-1, which is one of the main 

receptors for HCV entry [139]. Using the 293T cell line will rule out the possibility that 

the observed apoptosis is caused by low levels of HCV infection. Although the induction 

of HCV-induced bystander apoptosis was observed in both the S29 and the 293T cells, 

the degree of induction of bystander apoptosis in the 293T cells was low in comparison to 

that seen in the S29 cells. This could be explained by the moderate responsiveness of the 

293T cells to FAS-induced apoptosis and resistance to TRAIL-induced apoptosis 

[529,530]. Further reduction in the 293T cells responsiveness to the bystander apoptosis 

stimuli could be attributed to their reduced contact with the infected Huh-7.5 cells. This 

reduction in contact might be caused by the absence of CLDN-1, a tight junction protein, 

on the 293T cells. 

We found that HCV induced pyroptosis in the infected cell population as a second 

form of PCD. Pyroptosis induction might have a significant effect on the pathogenesis of 

HCV as it participates in creating an inflammatory environment in which liver cirrhosis 
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and HCC develop (more details presented in section 1.7). Induction of pyroptosis was 

reported in other viral infections (discussed in Section 1.5.2) and this played a role in the 

pathogenesis of these infections. To the best of our knowledge, we are the first to report 

the induction of pyroptosis in HCV infections. 

The production of mature IL-1β requires two signals: the first is delivered through 

recognition of the pathogen by PRRs, and leads to transcription of the pro-IL-1β gene; 

and the second is delivered by the induction of inflammasome assembly and results in 

cleaving pro-IL-1β and releasing the mature form [531]. Despite the clear activation of 

caspase-1 in infected and bystander cells, we could not detect IL-1β in the supernatant of 

these cells. Although surprising at first, this result is in agreement with previous reports in 

which three groups could not detect the induction of pro-IL-1β gene expression or 

secretion of mature IL-1β protein in response to HCV-infection of different hepatoma cell 

lines or immortalized PHH [509,510,532]. These groups showed that hepatic 

monocytes/macrophages are the only source of IL-1β in the infected liver. In contrast, a 

fourth group reported the detection of low levels of IL-1β in the supernatant of JFH-1-

infected Huh-7.5 cells [533]. Although the exact cause of this controversy is not clear, the 

different strains of virus and the different clones of cell lines (JFH-1 vs. JFH1T and Huh-

7.5 vs. Huh-7.5.1) might explain this discrepancy. The inability (or weak ability) of 

human hepatocytes to produce IL-1β is believed to be a regulatory mechanism aimed to 

prevent liver toxicity in response to the continuous exposure of hepatocytes to blood-

borne pathogens [510]. Furthermore, the lack (or weak) induction of the pro-IL-1β gene 

in HCV-infected cells might be the result of the blockade in RIG-I and TLR-3 signaling 
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pathways caused by the viral NS3-4A (described in section 1.4.1). This in turn blocks the 

activation of NF-κB and the transcription of pro-inflammatory cytokines genes, including 

the pro-IL-1β. 

Inhibiting the NLRP3 inflammasome rescued a significant number of cells from 

undergoing HCV-induced PCD. This result implicated the NLRP3 inflammasome in the 

induction of PCD in response to HCV infection. This result was not surprising to us since 

NLRP3 inflammasomes are known to be activated by many viruses, including both RNA 

and DNA viruses (reviewed in [534]). It was reported previously that HCV infection 

induces the activation of NLRP3 inflammasomes in hepatic macrophages/monocytes and 

hepatocytes [510,532,533]. In contrast, Chen et al. reported that there is no, or an 

extremely low, expression of NLRP3 in HCV-infected hepatocytes [532]. However, this 

group tested the expression of NLRP3 in JFH-1-infected Huh-7 cells. This system is 

known to have an extremely low infection efficiency in comparison to our system and 

natural HCV infection. To the best of our knowledge, we are the first group to report a 

role for the NLRP3 inflammasome activation pathway in HCV-induced cell death. 

As with apoptosis, pyroptosis was not limited to infected cells, but also occurred in 

neighbouring uninfected cells. The concept of bystander pyroptosis was described 

previously in the context of HIV infection and is believed to play a major role in the 

depletion of the CD4+ T cells (reviewed in [535]). However, unlike bystander apoptosis, 

bystander pyroptosis did not require cell-cell contact. In other words, bystander 

pyroptosis seems to be induced by soluble mediators and/or exosomes. The mechanism of 

bystander pyroptosis induction is not clear, but lysed pyroptotic cells would release a 
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number of DAMPs including: High-mobility group box 1 (HMGB1), heat shock proteins, 

ATP, DNA and RNA [536]. Many of these DAMPs can induce inflammasome activation 

in affected cells. For example, extracellular ATP binds to purinergic receptor P2X7 

(P2RX7), which opens ion channels leading to K+ efflux, resulting in inflammasome 

activation [536]. HMGB1 stimulates a signaling pathway through TLR4 and receptor for 

advanced glycation end products (RAGE) that activates NLRP3 inflammasomes and 

pyroptosis in hepatocytes [537]. It is also possible that the transfer of viral proteins or 

viral RNA from the infected cells to neighbouring cells, either by the exosomes or 

through a non-productive entry of viral particles, might cause the activation of 

inflammasomes and the induction of pyroptosis in neighbouring uninfected cells even in 

the absence of viral replication. Lipoprotein lipase-treated virus particles have been 

shown to enter cells through a low-density lipoprotein receptor (LDLR)-mediated non-

productive entry pathway [135]. This pathway leads to virus particle degradation and is 

likely responsible for the entry of Apo-E-depleted lipo-viro-particles in infected 

individuals. Abortive HIV infection was reported to cause bystander pyroptosis in CD4+ 

T cells [538]. A homologous mechanism in which the HCV RNA is detected in the 

cytosol leading to the activation of inflammasomes cannot be excluded.  

Until our current investigation, induction of apoptosis in HCV-infected cells received 

the exclusive attention of all PCD-related studies in the field. In this project, we moved 

the understanding of this process to a new level by showing that the cytopathic effect of 

HCV infection is actually more complex than has been suggested. We showed that HCV 

infection causes the induction of at least two forms of PCD and this effect is not limited 
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to the infected cells, but it extends to the surrounding uninfected cells. How HCV can 

induce two distinct forms of PCD simultaneously remains to be determined. It is possible 

that different viral components are independently detected by separate sensors, or that 

different steps of the viral life cycle induce distinct cellular responses ultimately resulting 

in the independent induction of each form of PCD. Alternatively, perhaps the HCV-

induced apoptotic and pyroptotic pathways share a common origin that activates both of 

them. Interestingly, recent evidence suggests that besides their classical role in activating 

caspase-1 and inducing pyroptosis, NLRP3 inflammasomes can also activate caspase-8, 

which in turn induces apoptosis [539-543]. This could be the case in HCV infection 

whereby activation of the NLRP3 inflammasome activates caspase-8 and caspase-1 to 

induce both apoptosis and pyroptosis, respectively. It is also possible that both apoptosis 

and pyroptosis are induced by the same cellular response to HCV infection. For example, 

in genetically obese mice, induction of ER stress in the hepatocytes was reported to 

activate NLRP3 and to induce both apoptosis and pyroptosis [544].  

It is not clear at this point whether apoptosis or pyroptosis of infected versus 

bystander cells is induced by the same or different mechanisms. Presumably, certain 

responses, such as ER stress, occur solely in the infected cells, logically causing the 

infected cells to be more prone to apoptosis/pyroptosis than the bystander cells. 

Furthermore, the foci of infected cells typically observed in HCVcc-infected Huh-7.5 

cells demonstrates that viral infection preferentially spreads to the closely neighbouring 

cells. This means that most infected cells are in close proximity to other infected cells and 

could, therefore, be easily affected by the same stimuli that induce the bystander 
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apoptosis/pyroptosis. Therefore, infected cells would be under higher pressure to undergo 

apoptosis/pyroptosis than the bystander cells. In support of this idea, regarding both 

apoptosis and pyroptosis, we observed generally higher levels of cell death in the overall 

population of cells than when we gated on only the uninfected cells. However, many 

viruses have evolved strategies for inhibiting cell death in its host in order to allow for the 

establishment and maintenance of virus replication (reviewed in [545]). HCV is no 

exception; almost every HCV protein has been reported to possess anti-apoptotic effects 

(section 1.6). We don’t typically detect apoptosis in HCV-infected cells until day four 

post-infection. So it is possible that HCV somehow initially blocks apoptosis, and if so, 

this capability would confer a survival advantage to infected cells over bystander cells. At 

this point we can only hypothesize that the balance between pro- and anti-

apoptotic/pyroptotic stimuli determines the fate of the infected/bystander cells. 

Induction of PCD in response to viral infection is a well-established mechanism for 

restricting viral infections. It is widely accepted that various immune cells can induce 

apoptosis in infected cells, but PCD might also be induced by intracellular innate immune 

responses. However, the induction of these PCD pathways can be circumvented by 

numerous inhibitory viral proteins (reviewed in [545]). These opposing forces place the 

host cell into a continuous competition with the infecting virus over control of these cell 

death pathways. The results described here demonstrate that HCV infection induces two 

distinct forms of PCD: apoptosis and pyroptosis. The simultaneous induction of multiple 

forms of PCD in HCV-infected hepatocytes could be one of the strategies used by the 

host cell to overcome the inhibitory effect of the viral proteins. In this regard, HCV must 
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overcome a higher barrier by inhibiting two different death pathways in order to maintain 

the survival of its host cell and maintain its replication. Nevertheless, it is clear that HCV 

is a highly evolved pathogen that is able to maintain control over these cell death 

pathways until it has completed its life cycle and released new viral progeny to infect 

naïve hepatocytes.  

 The induction of apoptosis and pyroptosis in the HCV-infected liver seems to act like 

a double-edged sword. In the short-term, it might play a role in restricting HCV infection. 

However, induction of these two forms of PCD could be one of the major drivers of the 

pathogenic process after many years of the chronic infection. As we described in more 

detail in section 1.7 and illustrated in fig. 1.3, each of these two forms of PCD might have 

distinct contributions to liver disease progression. Induction of apoptosis in hepatocytes 

results in increasing the levels of TGF-β in the infected liver, which hastens the fibrotic 

process and induces EMT, leading in the long-term to liver cirrhosis and HCC. Pyroptosis 

creates an inflammatory environment that also hastens fibrosis and participates in 

predisposing the cells to malignant transformation and development of HCC. Induction of 

these forms of PCD in neighbouring uninfected cells might also exacerbate the 

pathogenic process. Recently identified direct-acting antiviral agents have shown 

amazingly high cure rates, but studies have shown that HCC can still develop even after 

elimination of virus from an infected individual [461]. We believe that understanding the 

exact mechanisms by which the virus stimulates these two forms of PCD in infected and 

bystander cells might provide us with targets for the development of novel treatments and 
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eventually a comprehensive therapeutic regimen that can both eliminate virus and prevent 

progression of HCV-related liver disease in HCV-infected patients. 

In summary, the interaction between HCV and its host cell is complicated and results 

in stimulating multiple responses, many of which are capable of inducing PCD. As a 

result of this interaction, at least two forms of PCD are induced: apoptosis and pyroptosis. 

The exact mechanism by which HCV induces these two forms of PCD is not clear. 

Activation of NLRP3 inflammasomes plays a role in HCV-induced pyroptosis and 

possibly apoptosis. The induction of PCD is not limited to the infected cells, but also 

occurs in bystander cells. Bystander apoptosis, but not bystander pyroptosis, requires 

physical interaction between the infected and bystander cells in order to be induced. A 

schematic representation that summarizes our main findings is presented in Fig. 6.1.  

Future directions: 

This project reported for the first time the activation of multiple mechanisms of cell 

death during HCV infection. However, it also presented many questions that need more 

investigation. The induction of ER stress in HCV-infected cells has been reported 

previously [447,450]. However, the role of ER stress in the induction of each of those two 

forms of PCD needs to be studied further. This can be achieved by testing the effect of 

infection on the expression of a group of ER stress markers and testing the effect of 

inhibiting ER stress on the induction of apoptosis and pyroptosis. Inhibition of HCV-

induced ER stress might be achieved by treating the infected cells with 

tauroursodeoxycholic acid (TUDCA), which is a chemical chaperone that is known to 

reduce ER stress [546]. The effect of this treatment on the number of cells undergoing 
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PCD and on the activation of caspase-3 and caspase-1 will demonstrate the importance of 

ER stress in the induction of each of the two forms of PCD. 

 

Figure 6.1 Proposed model for the induction of multiple forms of PCD in response to 

HCV infection. 

Schematic representation of the proposed mechanisms for the induction of multiple 

forms of PCD in response to HCV infection. HCV infection induces at least two forms of 

programmed cell death in the infected cells: apoptosis and pyroptosis. Apoptosis is also 

induced in the neighbouring uninfected cells (bystander apoptosis). The induction of 

bystander apoptosis is cell-cell contact-dependent, and we propose that it is induced by an 

interaction between a death ligand expressed on the surface of the infected cell and a 
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death receptor expressed on the surface of the bystander cell. The induction of bystander 

pyroptosis does not depend on cell-cell contact. The exact mechanism by which bystander 

pyroptosis is induced is not yet known, but will be the focus of subsequent studies. 

More investigation is required in order to determine the mechanism by which 

bystander apoptosis is induced. Based on the observation that bystander apoptosis is cell-

cell contact-dependent, we hypothesize that bystander apoptosis is mediated by an 

interaction between a death ligand expressed on the surface of an infected cell and its 

receptor on the surface of a bystander cell. To confirm this mechanism of induction and to 

identify the responsible death ligand-receptor, the effect of HCV infection on the cell 

surface expression for each of the known death ligands could be tested, including Fas-

Ligand, TRAIL and membrane bound TNF-α. The role of each of these ligand-receptor 

interactions can be further confirmed by testing the effect of specifically blocking their 

interaction on the induction of bystander apoptosis. The interaction between the death 

ligand and its receptor can be blocked by treating the cells with commercially available 

blocking antibodies. An increase of the expression of a death ligand and the inhibition of 

bystander apoptosis following the treatment with its specific blocking antibody will 

confirm the involvement of that specific ligand-receptor interaction in the induction of 

bystander apoptosis. The result of this experiment might also provide us with information 

regarding the source of caspase-8 activation in the infected cell population. 

After showing that HCV induces pyroptosis as a second form of PCD in the infected 

cells, many questions emerged that warrant investigation. Firstly, what is the mechanism 

of induction of pyroptosis in the infected cells? Pyroptosis might be induced because of 
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direct recognition of viral RNA by NLRP3, or it could occur as a secondary response to 

the generation of DAMPs, or to other HCV-induced cellular responses. For example, 

HCV infection was reported to induce the production of ROS, which in turn have the 

capability to activate NLRP3 inflammasomes and pyroptosis [454,547]. Furthermore, and 

as we mentioned above, ER stress can induce NLRP3 inflammasome activation and 

pyroptosis. Further investigation is needed to answer this question. 

More investigation is also needed to understand the factors that determine the fate of 

the infected cell and whether it will undergo apoptosis or pyroptosis. Answering this 

question seems to be complicated in light of the many pathways that are activated in these 

cells. In a previous DNA transfection study, apoptosis was found to be induced at lower 

transfected DNA concentrations, while induction of pyroptosis required a higher DNA 

concentration [540]. A similar mechanism may be at play in our system whereby the 

infected cells with high HCV RNA content undergo pyroptosis, while the more recently 

infected cells with lower levels of RNA might undergo apoptosis. More investigation is 

also needed to test whether the apoptotic and pyroptotic pathways are induced 

simultaneously in the same cell or if different cells induce only one of these two PCD 

pathways. In this case, activation of one of the two PCD pathways might inhibit the 

activation of the other, or as we mentioned above, each of these two pathways might be 

activated under different conditions, dependent on the level of various viral components. 

The possible role of NLRP3 inflammasome activation in the activation of caspase-8 and 

the induction of apoptosis in infected cells must also be tested. This can be done by 
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specifically inhibiting NLRP3 and examining the effect of this inhibition on caspase-8 

and caspase-3 activation. 

Further investigation is also needed to determine the mechanism by which bystander 

pyroptosis is induced. As discussed earlier, bystander pyroptosis might be induced by 

DAMPs released from infected cells, or by the non-productive uptake of the virus or viral 

components by the bystander cell. Many experiments need to be done to address this 

question. For example, induction of pyroptosis could be monitored in S29 cells incubated 

with medium containing lysates from Huh-7.5 cells. The lysates can be obtained from 

either uninfected cells or infected cells to determine whether the induction of bystander 

pyroptosis is HCV-specific or occurs as a general response to the release of neighbouring 

cells’ contents into the microenvironment. It is also possible that the bystander 

pyroptosis-inducing factor is transferred by the exosomes from infected to neighbouring 

cells. The role of exosomes in the induction of bystander apoptosis might be tested by 

inhibiting exosome production in the infected cells by treating them with an exosome 

inhibitor such as GW4869. 

Finally, the ultimate goal should be to confirm our findings in chronically infected 

patients’ livers. Detecting the induction of apoptosis and pyroptosis as two forms of PCD 

occurring in hepatocytes in liver biopsies obtained from HCV-infected patients and 

showing that these forms of cell death occur in both the infected and neighbouring cells 

will be of great value and would represent a cutting edge finding in the field. 
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