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Abstract

The thesis emphasizes on the theoretical and numerical investigations of sandwich

structures, especially the web-core sandwich structure. A mathematical model is ap-

plied to estimate the manufacturing cost of a glass-fiber reinforced plastic web-core

sandwich hatch cover panel using the vacuum assisted resin transfer molding. The

advantages of the composite hatch cover panel compared to the convention steel one

are illustrated. The buckling of web-core sandwich structure is studied to reveal the

effects of webs and core material on the critical buckling loads. The variational it-

eration method is used and approved to be efficient and accurate as an approximate

method. The finite element analysis simulation using Abaqus is conducted to facili-

tate the research of sandwich wrinkling phenomenon. The sandwich structures with

both Aluminum and composites face-sheets are covered in the finite element analysis

simulations. The effects of boundary conditions and element types are demonstrated.

The finite element analysis results are compared with that of both analytical models

and testings, and the disparities are explained.
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Chapter 1

Introduction

With the improvement and optimization of manufacturing processes and the decrease

of cost, the application of composites material has expanded from military purposes

to various engineering areas because of their excellent advantages over conventional

metallic material, such as light weight (high strength to weight ratio), tailorable

mechanical properties, and good heat, fatigue and corrosion resistance.

The composites material comprises two or more constituent materials to provide

a desirable combination of mechanical performance. For glass-fiber reinforced plastic

(GFRP) or carbon-fiber reinforced plastic (CFRP), the main components are fibers

and matrix. Another widely used type of composites material is the sandwich struc-

ture, which consists of two face-sheets and a core. The face-sheets can be GFRP,

CFRP, aluminum, and other alloys. The core can be open and closed-cell foams, hon-

eycomb, balsa and cellular lattices. The face-sheets are boned to the core. The sand-

wich structure provides higher bending stiffness with reduced self-weight. Different

sandwich structure types, for instance, web-core sandwich panel and corrugated sand-
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wich panel, were developed to satisfy special requirements. The web-core sandwich

panel can be used in large ships as hatch covers, deck panels or ship super-structures.

However, concerns regarding the manufacturing cost and failure of composites sand-

wich structures are slowing down the further growth of the composites sandwich

application. The demand for research in terms of cost estimation of large composites

parts and failure prediction of different sandwich structures is urgent.

1.1 Cost estimation techniques

Since the 1970s, significant efforts have been taken by researchers to estimate the

manufacturing cost of composites parts. Numerous models and frameworks have been

proposed and almost all of them are developed for the manufacturing of aerospace

composites parts. Many models rely heavily on practical industry manufacturing

data. For the fabrication of the fiber-reinforced plastic (FRP), various fibers and ma-

trix combinations and many fabrication processes can be chosen, which complicates

the design and cost estimation. The selection of fabrication process and materials

is determined by design and quality requirements. Therefore, numerous cost analy-

sis models and techniques have been established for both design and manufacturing

stages. The production cost can be reduced by optimizing the design and choosing

suitable fabrication processes. It is worth noting that no models or techniques con-

cerning the cost estimation of web-core sandwich structure are found in the literature.
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1.2 Sandwich structure failure prediction

The failure modes of sandwich structures include the failure of face-sheets under

compressive and extensional loads, face-sheets indentation failure under concentrated

loads, core failure, debonding between face-sheets and core, global buckling and wrin-

kling. The failure modes are related to material properties, structure geometries and

the types of load applied. Besides, one failure mode may initiate other failures, which

makes the failure modes coupled and intricate. Numerous research was conducted to

investigate the failure modes and their interactions, and these research results and

theories are then used as design criteria in industries.

Wrinkling is a local buckling phenomenon of sandwich structure under compres-

sion loads, Figure 1.1. The wrinkling of sandwich structures has been investigated

theoretically, experimentally and numerically. Different theoretical models for both

isotropic and anisotropic face-sheets have been proposed and have been verified by

experiments or finite element analysis. Those models are based on different assump-

tions and methods to solve this problem. Therefore, different equations have been

derived to predict the critical wrinkling loads. Some of the explicit equations are

commonly adopted in industrial designs.

Figure 1.1: Three different wrinkling modes [3]
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1.3 The application of composites material in ship

structures

Nowadays, most large vessels are made of steel. The manufacturing and building tech-

nologies are quiet advanced and systematic. Compared with the steel vessel building,

the large composites ship structure manufacturing and application are still under-

developed. The application of composites material will play a significant role in the

innovation of ship structures. For instance, the fiber-reinforced plastic (FRP) can pro-

vide higher specific strength and stiffness with lower structure weight. Less structure

weight is required by warship to increase speed. The reduced structure weight also

means more cargo loads and less fuel consumptions for cargo ships and oil tankers.

Another unique advantage of fiber-reinforced plastic (FRP) is its non-magnetic prop-

erty, which is important for surface warships, especially the minesweepers.

The successful applications of composites in marine structures are limited to pas-

senger ferries, fishing and recreational boats and non-structural parts in large steels

ships, such as hatch covers of cargo ships, masts of destroyers and funnel on cruise

ships. The limitations of the wider application of composites in marine structures are

from two aspects: the economic aspect and technical aspect. The economic aspect

refers to manufacturing cost and maintenance cost while the technical aspect refers

to manufacturing techniques, joining techniques, structure failures and other aspects

of the mechanical performance in harsh sea environment. In some design, the priority

is given to the structural integrity to reduce joining between parts when a large com-

plex part is fabricated. The consideration of structural integrity and the challenge to

assure the quality of the large part complicate the composites manufacturing process.
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One of the manufacturing methods that can be used for large ship structures is the

vacuum assisted resin transfer molding (VARTM). VARTM is widely employed due

to its features of lower cost, room temperature manufacturing environment and ease

to scale to different sizes.

1.4 Thesis Outlines

As mentioned in the section above, both economic and technical feasibility are essen-

tial for the development of composites for large ship structures. The specific manufac-

turing cost estimation models for composites ship structures are demanded. Besides,

the failure modes should be investigated to achieve reliable mechanical performance.

The research presented in this thesis emphasizes the feasibility study of large web-

core composites sandwich structures, the theoretical modeling of web-core structure

buckling and the finite element analysis of regular composites sandwich structures.

Chapter 2 includes the literature review with respect to cost estimation models

and the wrinkling failure prediction of sandwich structures, respectively. Various

models and methods are compared and discussed.

Chapter 3 presents the feasibility study of web-core sandwich structures composed

of GFRP face-sheets and webs and foam core. This sandwich structure has the

potential to be used as hatch covers for large cargo ships. The method to estimate

the manufacturing cost is proposed and the estimated cost is compared to that of

conventional steel structures. The strength and stiffness are also compared between

the composites hatch cover and the steel one.

Chapter 4 emphasizes the buckling of web-core sandwich structures. The periodic
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unit of the web-core sandwich structure is modeled as column resting on the Pasternak

foundation with rotational end constraints. The effects of core and webs on the critical

buckling loads are investigated using the variational iteration method.

Chapter 5 illustrates the application of finite element analysis to analyze the sand-

wich wrinkling phenomenon. The effects of boundary conditions and element types

for face-sheets are studied. The finite element models are based on the specimens and

testing data documented in the literature. The accuracy and efficiency of the finite

element analysis simulation are demonstrated.

Chapter 6 concludes the thesis and suggests future research based on present

research results.
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Chapter 2

Literature Review

2.1 The application of sandwich structures in ship-

building

Numerous research papers regarding the application of composites and sandwich

structures to ship building industrial have been published. The design guides for

composite ship structures were suggested in [7]. The improvement of materials and

building practice were considered in the guides. Mouritz et al [8] reviewed the ad-

vanced composite structures for naval vessels and their potential applications to sub-

marines. The main benefits and drawbacks of using composite structures were dis-

cussed. In the aspects of sandwich structure design, inspection, repair and joining

technologies, practice guidelines were provided in [9] for marine application designers

and engineers. Kujala and Klanac [10] summarized the application of steel sandwich

panels in shipbuilding field. Main benefits and problems as well as related design

tools were discussed and a case study was provided as the demonstration. China
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Classification Society published guidelines for the application of steel sandwich panel

constructions to ship structures [11]. Detailed requirements were outlined for various

sandwich structure applications.

2.2 Cost estimation

In this section, the cost estimation methods and models are reviewed. The research

regarding cost optimization and the effects of uncertainty in cost estimation is dis-

cussed.

2.2.1 Cost estimation methods for the composites parts man-

ufacturing

In terms of cost analysis techniques and models for composites, Northrop Corporation

[12] developed an estimation model for the recurring cost in the Advanced Compos-

ite Cost Estimating Manual Program for the manufacturing of advanced composites

parts. The recurring cost comprised of indirect and direct cost, and the direct cost

was further divided into labor and material cost. The model was valid because it was

based on massive industrial data solicited during the program.

Gutowski et al [13] developed a general model, called ‘first-order dynamic model’

to estimate the composites fabrication time. The fundamental idea of the model was

to assume that each sub-processes was a first-order dynamic system. The v0, the

maximum velocity during the process step, and τ , the dynamic time constant, char-

acterize the process time estimation equation. The two constants were based on the

physical characteristics of the different processes and could be adjusted accordingly
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for different manufacturing processes. For the parts with complex shapes, the infor-

mation theory was introduced into the model to describe the complexity. The model

was validated by the results in [12].

A systematic framework for estimating the fabrication time of composites parts

was established by Neo [14] in his Ph.D dissertation. In the adaptive framework, every

process step was matched with an equation and relevant constants were provided.

Manufacturing techniques that were widely used in industries, such as hand layup

(HLU), automatic tow placement (ATP) and resin transfer molding (RTM) were

included in the framework. The cost drivers of different manufacturing technologies

were also identified. This framework was verified to be general, robust, easy to be

modified and relatively straight-forward. New fabrication processes can also be added

to the framework.

Haffner extended the research results of Gutowski and Neo and further provided a

more comprehensive framework in [6]. The relatively new manufacturing techniques,

i.e. pultrusion and double diaphragm forming (DDF), were covered in his research.

Furthermore, the investment cost for equipment and tooling was also considered. The

analysis and comparison of the effects of part complexities were elucidated.

Based on the work of Gutowski and Neo [13, 14], Ye et al [15] proposed a method

to estimate the cost of manufacturing composite waved beams. The total cost was

divided into equipment cost, tooling cost, labor cost and material cost. The authors

elaborated on the labor cost estimation. The autoclave cure method was used for the

fabrication and a detailed process flow was provided. The applicability and accuracy

of the model was verified by experiments. The effects of changing the values of model

parameters were demonstrated based on their experimental results.
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2.2.2 Cost optimization of composites products manufactur-

ing

Kassapoglou [16] optimized the structure weight, cost or the combination of both

weight and cost taking account of structural requirements and manufacturing con-

straints. Four different manufacturing methods, i.e. conventional sheet metal, high

speed machined metal, hand laid-up composites, and resin transfer molded compos-

ites, were compared. The manufacturing process constraints of each method were

translated to geometric limitations in design. The results of his research showed

that the resin transfer molding (RTM) process was in the lowest cost and weight

point when the frames were lightly loaded. However, the RTM yields only the lowest

weight design when the frames were highly loaded.

A new approach to optimize both cost and weight of aerospace structures was

provided in [17]. The parameter ∆$/∆Kg, which described the money increment

required to achieve the increments of weight reduction, was the primary design driver.

The methodology was applied to a simplified aileron structure and the Krueger flap.

The new approach was compared with the Pareto approach, the standard multi-

objective optimization method, to reveal its advantages.

Bernet et al [18] proposed a cost estimation model to assess the cost saving poten-

tial of a novel composites processing technique. In this model, the total manufacturing

cost was divided into material cost, labor cost and overhead cost. Analytically solv-

able equations were presented for every cost part correspondingly. Furthermore, the

processing time of each operation in the labor cost part was divided into the setup

time, run time, move time and wait time. The cost model was integrated with a
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validated consolidation model; therefore, the manufacturing cost depended on the re-

quired part quality and vice versa, because the cost, processing parameters and part

quality were coupled. The model was successfully used to investigate the production

of generic hooks.

A framework to minimize the direct operating cost (DOC) was developed in [19].

The non-destructive test cost was implemented into the framework as a part of the

DOC. The weighted sum of manufacturing cost, non-destructive in-production testing

cost, single in-service inspection cost and structure weight were included to develop

the objective function. A case study was carried out using a generic skin/stinger

element. It was found that the design and quality level of the laminates had direct

influence on manufacturing cost, testing cost and the structure weight.

2.2.3 Cost estimation with uncertainties

In practice, many decisions concerning cost need to be made even when future sit-

uations are not certain. In terms of production cost models with uncertainties, Jha

[20] developed a mathematical model based on the stochastic geometric program to

predict the range of production cost. The exact cost can also be determined using a

two stage stochastic geometric program when required. The model can help managers

make economic decisions in advance of the production.

For the cost estimation of flat plate processes, Jahan-Shahi et al [21] employed

a fuzzy set and probability distribution to tackle the uncertainties from imprecise

or subjective criteria and random factors. The investigation was conducted within

the Activity-Based Costing framework and a simple fuzzy approach was used. The
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method was shown to be flexible and reliable. An intelligent knowledge-based product

cost estimation system for early design stage was developed by Shehab and Abdalla

[22]. A fuzzy logic approach was implemented to guarantee the reliability of the

estimation. The system can be used to estimate the cost of material, mould and

processing. A case study was presented to validate the estimation system.

The stochastic nature in the shop floor production environment was also consid-

ered in the model presented in [23]. The integration of simulation results and opti-

mization were used as two main parts of the model. The estimation of the marginal

cost of new orders were enabled. The increase of effectiveness and efficiency of the

model were achieved.

2.3 Failure prediction of sandwich structures

As mentioned in section 1.2, failure modes of sandwich structure are complex and

coupled. The failure model emphasized in this paper is buckling and wrinkling phe-

nomenon. The previous research regarding sandwich buckling and wrinkling is divided

into theoretical modeling, testing and finite element modeling and are reviewed.

2.3.1 Theoretical molding

The wrinkling of sandwich structure was investigated in [24]. In the paper, eight cases

of the face-sheets and supporting medium combinations were studies theoretically.

In these combinations, the core thickness was assumed to be either finite or semi-

infinite. Another five assumptions were made, which include (1) the compression

was all carried by the skin, (2) the continuous supporting medium could be extended
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or compressed, (3) the longitudinal forces acting on the surface of the medium were

neglected when the skin thickness and deflection amplitudes were small compared with

wavelengths, (4) longitudinal movement of the surface of the medium was neglected

for the complete skin-medium adhesion situations and (5) no shear stress between

skin and medium for the non-adhesion situations. Four of the eight cases were tested.

Satisfactory agreements between theoretical and testing results were found.

Hoff and Mautner [25] presented buckling formulas for both symmetric and anti-

symmetric shapes based on the theory of minimum total potential energy. To make

the model more practical and accurate, the margin zone, which was the part of the

core affected by face wrinkling, was introduced in the derivation of the buckling

formulas. The formulas of the model (νc = 0.3) are shown as follows:

σcr = 0.91 3
√
EfEcGc, for symmetric wrinkling of thick sandwich (2.1a)

σcr = 0.577 3

√
EfEc

tf
tc

+ 0.33Gc
tc
tf
, for symmetric wrinkling of thin sandwich

(2.1b)

σcr = 0.51 3
√
EfEcGc + 0.66Gc

tc
tf
, for antisymmetric wrinkling of thick sandwich

(2.1c)

σcr = 0.417 3

√
EfEc

tf
tc

+ 0.773Gc
tc
tf
, for antisymmetric wrinkling of thin sandwich

(2.1d)

where σcr is the critical stress, Ef and tf is the elastic modulus and thickness of the

face-sheet, and Ec, Gc and tc is the elastic modulus, shear modulus and thickness

of the core, respectively. Besides, the symmetric wrinkling situation was also solved

using the elasticity theory [26]. Fifty-one specimens were tested and the results were
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compared with the theoretical values, and reasonable agreements were found.

Nardo [27] derived the exact solutions for the buckling of sandwich panel with

loaded edges clamped and unloaded edges simply supported. The problem was solved

in the elastic range. Shear deformation was included in the equations of equilibrium.

Numerical results were obtained and the effects of plate aspect ratio and the ratio of

core thickness to plate thickness were investigated.

The report [28] summarized the previous research results before 1961 and reaf-

firmed the results with experiments. The whole report was divided into three parts

including mathematic analysis, comparison between experimental results and theoret-

ical analysis, and the design criteria. The method presented in [24] was first reviewed

and related formulas were derived. Then, more complicated assumptions were used,

therefore, more sophisticated critical stress formulas were obtained. The irregulari-

ties of face sheets, which lower the critical wrinkling stresses, were considered in the

mathematical analysis. Four different failure modes which were possible to occur,

were tested in the second part of the report. Materials, specimen configurations, test

methods and testing results were documented in details. The testing results were

compared to corresponding theoretical ones and reasonable agreements were found

in the plots. Finally, design criteria and suggestion were given in the last part of the

report.

In Plantema’s model [29], an exponential decay of the core displacements in the

thickness direction of the sandwich structure was assumed, Equation 2.2:

wc = wf e
−kz = We−kz sin

nπx

l
(2.2)

where W is the wave amplitude, l is the length of the sandwich structure, n is the

14



number of half waves and k is the constant describing the exponential decay of dis-

placement. The subscripts c and f indicate the face-sheet and core. The assump-

tion implies that only transverse deformation was considered and the longitudinal

deformation was ignored. The theory of minimum total potential energy was also

implemented in his model. Plantema’s model assumed that the core was infinitely

thick and was valid for infinitely long plate. The critical wrinkling stress for the case

of νc = 0.3 was obtained as

σcr = 0.85 3
√
EfEcGc (2.3)

Despite the theories above, the general solution unifying global buckling and wrin-

kling is another approach, where global buckling is considered as a special case of

wrinkling. Banson and Mayers [30] presented a unified model to investigate global

buckling and wrinkling of sandwich column and plate simultaneously. In their model,

the sandwich structure was consisted of isotropic faces and orthotropic core. The

variational method was applied in the development of the model. Two cases, namely,

buckling analysis (anti-symmetric modes) of simply supported plates and column, and

buckling analysis (anti-symmetric and symmetric modes) of the plate with clamped

loaded edges and fully supported core, were studied. For both cases, the term stabil-

ity boundary, which separated general instability and face wrinkling (both symmetric

and anti-symmetric) was used, and the boundaries were plotted. The stability bound-

ary can be used as reference for sandwich structure designers. The unified buckling

theory for column with simply supported boundaries was compared with existing

theories, namely Euler theory, Timoshenko theory and the theory presented in [28].

For the plate with clamped-clamped boundary conditions, the Rayleigh-Ritz method
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was applied to derive the approximate expression. The approximation was further

compared with the results in [27] for validation.

Allen’s model [31] had the same geometric assumptions as that of Plantema. The

critical stress was derived by solving the governing equations with the assumption

that the core stress field satisfied the Airys stress function. The explicit expression

of the model is

σcr = B1
3

√
EfEc

2 (2.4a)

B1 = 3[12(3− νc)2(1 + νc)
2]−

1
3 (2.4b)

The critical stress for in-phase buckling based on anti-plane model was also presented

by Allen. The formula for the model is as following

σcr =
(tf + tc)

2Gc

2tf tc
(2.5)

Theoretical, numerical and experimental investigations of the face-sheet wrinkling

of sandwich shell subjected to uniaxial and biaxial compression were conducted by

Stiftinger and Rammerstorfer [32]. The critical wrinkling load of orthotropic face-

sheets was presented. The term, equivalent stiffness of core which was a parameter of

the critical load expression, was proposed and its expression was derived. The effect

of the orthotropy of face-sheets and core were investigated. It was concluded that

anti-symmetric wrinkling was critical for face sheet with isotropic core and symmetric

wrinkling was possible for face sheet with orthotropic core. The numerical results were

different from analytical ones for the combined loading condition, especially for thin

core structure, while good agreements were shown for thick core sandwich structure.

Besides, the effects of material properties (linear elastic face-sheets and linear elastic
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core, elastic-plastic face-sheets and linear elastic core, linear elastic face-sheets and

crushable core) on the post-buckling behavior were illustrated. Finally, specimens

consisted of high strength aluminum alloy face sheet and thick foam core were tested

to validate the analytical results. The experimental results were all lower than the

analytical results represented by the authors and higher than the results from the

expressions of Hoff and Mautner.

Niu and Talreja [33] presented a unified model to incorporate symmetric wrinkling

and anti-symmetric wrinkling. In their model, long and short wavelength was defined

by the ratio of wrinkling wavelength to core thickness. According to the authors,

the long wavelength wrinkling model was only valid for small ratios of core thickness

to face-sheet thickness. The Winkler model was modified and the two parameter

Pasternak model was evaluated in their paper. The critical stresses are shown below.

σcr =

√
tfEcEf

3tc(1− νc2)
+

(tc + tf )
2Ec

8tf tc(1 + νc)
+

(tc − 2tfνc)Ec
4tf (1− ν2c )

(
πtc
l0

6 1) (2.6)

σcr =(
3Ec

2(1 + νc)(3− νc)
)
2
3E

1
3
f +

(1− νc)Ec
(1 + νc)(3− νc)

+ (
Ec

2(1 + νc)(3− νc)
)
4
3 (

3Ef
2

)
1
3

(
πtc
l0

> 1) (2.7)

Hadi and Matthews [34] extended the unified model to sandwich column and plate

consisted of anisotropic face-sheets and orthotropic core. The effect of adhesive layer

was considered in their model. The unified model for sandwich column was compared

with the analytical and existing experimental results. Discrepancies were found be-

tween the results of this model and Hoff’s, Plantema’s and Allen’s models. The

sandwich plate model was validated by the results in the literature for both wrinkling

and global buckling phenomenon. Besides, the effect of lamina layup of composites
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face-sheet was investigated and the stacking sequence which yielded maximum overall

buckling load was found.

Ji and Waas [35] investigated the global and local buckling of a sandwich beam

using the classical elasticity theory. The sandwich beam was modeled as the 2D

linear elastic continuum. In the derivation of theoretical formulas, general equations

of equilibrium for a solid slightly deformed from an initial stress state have been

incorporated. Finite element analysis using Abaqus was used then to validate the

accuracy of their model. Linear elastic materials were assumed and eight-noded

quadratic plane strain elements were used for the face-sheets. The FEA results were

compared with the presented analytical results and previous theoretical and testing

results. It was found that Niu and Talreja’s model yields much lower critical local

stresses when stiffer core is used. The authors concluded that anti-symmetric buckling

was always dominant rather than symmetric buckling and the theoretical model was

applicable to a wide range of material and geometries.

Winkler’s elastic foundation approach was also used in the wrinkling prediction

of sandwich structures, as explained in [36]. The core was modeled as elastic spring

and the critical stress was derived by solving the governing differential equation. The

interaction between the elastic springs, i.e. the effect of shear, was ignored in the

approach. The drawback of the approach is that it cannot be used in anti-symmetric

wrinkling and is not accurate for the thick core, which were also discussed in [33].
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2.3.2 Sandwich structure wrinkling failure testing

Experimental investigations on wrinkling of sandwich column and plate were docu-

mented in [37] and [38]. Both global buckling and wrinkling loads were determined in

[37] for sandwich panel with carbon fiber reinforced plastic (CFRP ) face-sheets and

honeycomb core. Large disparities were found between testing and theoretical results

in [37] so that, as a deeper exploration and discussion, testings were carried out to

sandwich columns with CFRP face-sheets in [38]. Better agreements were found in

the latter and reasons for the improvement were explained.

Fleck and Sridhar [39] conducted experiments to investigate the failure mode

of sandwich columns comprising GFRP face-sheets and PVC foam core under end

compression. Euler macro-buckling, core shear macro-buckling, face sheet micro-

buckling and face sheet wrinkling were selected as possible failure modes. For the

face-sheet wrinkling failure, a modified Hoff’s model (the coefficient was reduced to

0.5) was used as theoretical solutions. The collapse mechanism maps were constructed

and weight optimization design was conducted according to the research results. It is

worth to note that face-sheet wrinkling was not found in the testings for the specimens

used in their research.

The wrinkling failure of sandwich column and beam was investigated in [40].

The sandwich beam consisted of unidirectional carbon/epoxy face-sheets and PVC

or honeycomb core. The stress-strain relations of the specimens were tested and

presented first. Then, the failures of specimens subjected to compression, three-

and four- points bending and end load (for cantilever beam) were investigated by

testings. The testing results were mainly compared with the research results of Hoff
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and Mautner. It was found Hoff and Mautner’s model was valid for long beam spans.

For short beam spans, core failure may occur first. When the core was degraded, Hoff

and Mautner’s model was suggested to be modified to take the core degradation effects

into account. The results also indicated that the wrinkling stress was dependent of

geometrical configurations, which were not included in model of Hoff and Mautner.

2.3.3 Wrinkling validation with finite element analysis (FEA)

Vonach and Rammerstorfer [41] presented an analytical model for wrinkling of thick

orthotropic sandwich plates on a transversely isotropic thick core. One of the novelties

of this work was the application of general load conditions. The limitation of the

model was the assumption of a thick core. Due to the lack of existing literature

regarding similar research, the 3D FEA simulation in ABAQUS was implemented to

validate the theoretical model. The core and face-sheets were modeled with solid and

shell elements, respectively. Two sets of periodic boundary conditions were used to

fulfill the periodicity nature of wrinkling failure.

Hadi [42] used finite element analysis to model sandwich column wrinkling and

compared FEA results with the existing analytical and testing results in [34, 37, 38].

In the FEA model, the face sheet was modeled by the 4 nodes quadrilateral element

based on Mindlin-Reisser shell formulation. The FEA simulation was executed within

the computer program UNA52. The mode shape was set up to 100 in order to achieve

the short wavelength requirement of wrinkling.

Fagerberg and Zenkert [43] investigated the reason of discrepancies between test-

ing and theoretical results found in [2]. They presented an imperfection induced
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wrinkling model, which included imperfections of the sinusoidal shape. The in-plane

compression strain and bending strain were both affected by the imperfections. As

a result, the model gave a relatively conservative prediction of panel strength com-

pared to traditional solutions. The imperfection induced model was proved to be

more reasonable and accurate based on their experimental results. The accuracy of

the theoretical model was validated by finite element simulation. The plane stress

2D FEA simulation was conducted in ABAQUS. Quadratic beam and membrane

elements were used to model face-sheets and core, respectively. Periodic boundary

conditions were implemented as [41]. It was concluded the model could be used to

select proper core materials to facilitate the sandwich structure design.

2.4 Conclusion remarks

The fabrication cost estimation and optimization of composites part have been a

popular topic. The focus of existing models and methods is advanced aerospace

parts and the research on marine composites structure is relatively limited. The

cost estimation research for the large marine composites structure fabrication with

the application of specific manufacturing methods, for instance, the vacuum assisted

resin transfer molding, is demanded.

Since the 1940s, various methods have been used to investigate the wrinkling

of sandwich structure theoretically and numerically. Some theoretical models are

simple close-form formula while others may be complex. Due to different assumptions

and methods applied, the theories predict the sandwich wrinkling loads discrepantly.

Some testings have been conducted to valid theoretical models. In some research, the
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testing results only match the theoretical predictions satisfactorily. To eliminate the

confusions, the analytical wrinkling models, FEA simulations and testings deserve

being studied comprehensively.
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Chapter 3

REVISITING THE FEASIBILITY

STUDY OF COMPOSITES FOR

CARGO SHIPS

Peng Yu, Sam Nakhla

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

St. John’s, Newfoundland, Canada

Keywords: feasibility study, composites, cargo ship.

Abstract: Nowadays, various kinds of composites have been applied by the marine

industry, especially in naval vessels and recreational boats. However, the use of com-

posites in cargo ship is still limited and the feasibility study of glass reinforced plastic

cargo ship doubted the application of composites for large cargo ships. Considering the
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development of composites manufacturing and design as well as the improvement of

composites properties, this paper revisits the feasibility study of composites for cargo

ships and investigates the effects of optimal design of composites on its cost effective-

ness. For example, the GRP hatch cover design used in [4] when analyzed is proved

to have higher strength and stiffness than the corresponding steel one. Therefore, be-

yond the weight saving attained using GRP, better structural aspects are accomplished.

Hence, the feasibility study on comparing GRP and steel covers is not accurate. The

current work is revisiting feasibility study of composite for cargo ships on basis of

comparing equivalent structure in terms of strength and stiffness.

A version of this paper has been published in the CANCOM2015 - CANADIAN

INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS. The lead au-

thor is Peng Yu and the co-authors is Dr. Sam Nakhla. Mr. Yu’s contribution to this

paper is as follows:

• Wrote the paper.

• Suggested manufacturing method and process steps in detail.

• Applied the existing cost estimation model to the present structure.

• Conducted the finite element analysis.

• Analyzed the results.

Dr. Nakhla initiated the research idea, provided technical guidance and editing

of the manuscript. In this chapter the manuscript is presented with altered figure

numbers, table numbers and reference formats in order to match the thesis formatting

guidelines set out by Memorial University.
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3.1 Introduction

Composites have been widely applied by marine industries, such as in naval vessels,

small commercial crafts, leisure yachts, sport boats and offshore applications, because

of its high specific strength and excellent corrosion resistance. Glass fiber reinforced

plastics (GFRP) is relatively cheap among composite materials, which makes it most

common in marine industries. The study [4] conducted in 1971 investigated the

feasibility of building large GFRP cargo vessels, container ships, bulk carriers and

their large structure components technically and economically. It is available in public

domain and is widely accepted by ship manufacturers.

Among large structure components, typical hatch cover sections, Figure 3.1, are

investigated as a sample in terms of design criteria, weights and construction cost.

The steel hatch cover consists of side girders and stiffeners while the composites hatch

cover is a web-core sandwich structure. The design of composites cover is based on

converting steel thickness to composite thickness and using the ratio between their

strength values. Hand layup of pre-preg is assumed as the manufacturing method.

The construction cost of the composites structure is $290,000, which is $20,000 higher

than that of the corresponding steel one. However, several concerns exist when con-

sidering the study in [4], namely (1) composites underwent many advances over the

past forty years, especially in introducing new and enhanced resin technologies, (2)

manufacturing method, such as vacuum-assisted resin transfer molding (VARTM),

is suitable for manufacturing the hatch cover, resulting in higher strength quality

without corresponding increase in cost [44, 45, 46], (3) the itemized cost analysis in

the study lacks essential detail on materials cost and labor cost, (4) no rigorous de-
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sign method is followed or clearly identified in the study, instead, simply converting

thickness based on ratio of moduli.

(a) steel hatch cover illustration (b) Composites hatch cover illustration

Figure 3.1: Comparison of steel and composites hatch cover [4]

Due to these concerns, the authors found it necessary to revisit the feasibility

study by considering the hatch cover as a sample structure with a major focus on

manufacturing and cost. The manufacturing time is estimated using the model and

framework presented in [6, 14]. The total construction time is then regenerated and

compared with the one presented in [4]. Moreover, composites and corresponding steel

structures are compared in terms of strength and stiffness to reveal further aspects

and potential of optimizing the cost and structure.

3.2 Literature Review on Cost Estimation

Due to limited application of composites to large commercial ships, no cost estimation

model or framework specially aiming at large marine composites has been established.

In contrast, significant efforts have been made to estimating and optimizing produc-
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tion cost in aerospace industries in the last decades. Numerous techniques and models

have been developed, many of them could be referred to by marine industries and

even be modified to be applicable in marine composites.

Northrop Corporation developed a method [12], Advanced Composite Cost Esti-

mating Manual (ACCEM), to estimate the recurring cost of composites fabrication.

In [12], the fabrication time is calculated by summing up the labor time of all steps

involved in the manufacturing process. The labor time of every step is estimated

using equations of production time based on the best-fit curves of historical cost

data from the U.S. government and industries. It is the first systematic methodol-

ogy for estimating manufacturing cost of composites and has been widely accepted

by industries. Gutowski et al developed a theoretical cost model for the composite

fabrication [13]. In this model, all sub-process steps are considered to be the first-

order system. The first-order dynamic models successfully explained the physical

nature of manufacturing processes. Moreover, information theories are incorporated

in their model to describe and handle part complexities. Fabrication time from the

estimation model shows great consistencies with actual data and those from ACCEM.

This model is general and has been verified by hand layup experiments. Based on

Gutowskis first-order dynamics model and other existing research results, Neo [14]

established a systematic framework for estimating the fabrication time of composites

parts in his dissertation. This framework is general, robust, easy to be modified and

relatively simple. In the adaptive framework, every process step is matched with

an equation and relevant constants are provided. The framework covers hand layup

(HLU), automatic tow placement (ATP) and resin transfer molding (RTM).When

new fabrication processes occur, they can be added to the framework. Cost drivers of
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different manufacturing technologies are also identified. Several years later, Haffner

summarized the research of Gutowski and Neo and further provided a comprehensive

analysis of cost [6]. His research includes all the common production technologies,

namely HLU, ATP, RTM, pultrusion and double diaphragm forming (DDF). It also

considers investment cost for equipment and tooling. The analysis and comparison

of the effects of part complexities are elaborate in his research. Their research results

regarding HLU and RTM are applicable to marine composites.

3.3 Cost Estimation of the Hatch Cover

3.3.1 Manufacturing method

The US Army has investigated the application of Seeman Composites Resin Infusion

Molding Process (SCRIMPTM) process to monocoque, single skin stiffened and sand-

wich configurations in 1994, and the results revealed that the mechanical properties

of these structures are satisfying with a relative low cost [44]. Nquyen et al [45] in

the US Navy evaluated four different low cost manufacturing processes: a vacuum

assisted resin transfer molding using ultra-violet resin system, a no-vacuum bag con-

solidation prepreg system using ultra-violet resin system, a no-vacuum bag without

autoclave consolidation of low temperature/energy prepreg system and a patented

vacuum assisted resin infusion process known as SCRIMPTM . The results demon-

strate that a structure manufactured by VARTM is of exceptional quality and the

associated cost per pound for manufacturing is lower than the average cost among

all four methods. Hence the current study is adopting VARTM as a cost effective
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manufacturing method for ship superstructures.

Reference [4] proposed manufacturing a composites hatch cover of a multiple cell

sandwich structure, shown in Figure 3.2, to replace the steel one. The multiple cells

sandwich panel consists of two face sheets, webs and cores. Top and bottom face sheets

and webs are GFRP and eight cores are foam. The dimensions of the composites hatch

cover are determined based on the steel one. The specific manufacturing method and

cost estimation method of the GFRP hatch cover are not provided.

Figure 3.2: Cross section illustration of the hatch cover

3.3.2 Manufacturing process

The manufacturing process of a foam-filled web core sandwich panel using VARTM

could be summarized as follows: mold preparation, hand lay-up dry fabrics, vacuum

bagging and application, resin infusion and curing, demolding and post curing. Two

specific approaches are available to manufacture the structure in Figure 3.2. One is

to use a “U” shape mold and the fiberglass fabrics are stacked in the order of “bottom

face sheetcoretop face sheet”; the other is to use a flat mold and the fiberglass fabrics
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are stacked in the order of “top face sheetcorebottom face sheet”, as is illustrated in

Figure 3.3. Comparing two methods, it is obvious that the “top face sheetcorebottom

face sheet” order provides cost saving by utilizing a simpler mold and simpler process.

Figure 3.3: Illustration of manufacturing setups

The core design configuration is illustrated in Figure 3.4 [5]. The rectangular foam

bars are wrapped by fiberglass fabrics. The core can be fabricated by either hand

layup or automated winding process. The top face sheet and bottom face sheet are

fabricated by laying up fiberglass fabric above and below the core beams. The fabri-

cation time cost presented in this section is associated to hand layup manufacturing

of the core.

3.3.3 Labor time estimation

Labor cost is a significant part of over-all manufacturing cost and it is directly related

to the labor time. As mentioned earlier, the labor time of manufacturing the com-

posite hatch cover is not provided in details. Therefore, the labor time is estimated

in this section.
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Figure 3.4: Illustration of core design [5]

3.3.3.1 Hand layup time estimation

Hand layup is one of the most time-consuming procedures. Meanwhile, it represents

the only valid option when no mass production is intended and hence automation

represents an unnecessary added cost. The hand layup procedure includes laying up

flat fabric on the mold, wrapping core foam beams with glass fiber fabric, and finally

laying up fabric over foam beams. To estimate time related to these steps, a model

is presented based on research results in [6, 14].

Based on the first order dynamics model presented by MIT, Gerry Mabson of

Boeing Commercial Aircraft Group developed the hyperbolic cost model shown in

Equation 3.1 [6, 14],

t = τ0

√
(
A

v0τ0
+ 1)2 − 1 (3.1)

where t is the layup time in minute for laying one layer of fiberglass fabric for flat

panels, τ0 is the dynamic system time constant, v0 is the steady-state velocity constant
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and A is the area in square meter of the flat part. The flat panel is shown in Figure

3.5a. The constant τ0 and v0 are determined by curve fitting the hyperbolic model to

ACCEM [12] benchmarks.

When taking the part complexity into consideration, the dynamic system time

constant, steady-state velocity constant or both need to be modified to reflect the

complexity. According to Haffners work [6], it is reasonable and accurate to modify

τ0 and keep v0 unchanged if the curvature is π/2, i.e. 90◦. The modified dynamic

time constant τ can be expressed as follows,

τ = τ0 + bnI (3.2)

I = ∆ΘLy (3.3)

where bn is a constant from empirical data, I is to represent the effect of curvature,

∆Θ is the angle change in radians compared to flat panel and Ly is the length of the

bend, as shown in Figure 3.5b. Accordingly, Equation 3.1 can be modified to estimate

the time required for wrapping one layer of fabric over the core material as

tbeam = (τ0 + 4bn∆ΘLy)

√
(

A

v0(τ0 + 4bn∆ΘLy)
+ 1)2 − 1 (3.4)

The above model is initially established based on pre-preg. In this research, the

easiness of laying up pre-preg and dry fabric is assumed to be the same. After

incorporating the adaptive framework, the time for wrapping the cores with fiberglass

fabric can be estimated using Equation 3.5,

Tbeam = tsetup +N1(tdelay + n1tbeam) (3.5)

where tsetup represents the time to set up equipment and to prepare for operations,

tdelay represents the delay time between successive parts after the equipment has been
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(a) Flat part illustration (b) Part with curvature illustration

Figure 3.5: Illustration of flat and curve part [6]

setup, N1 is the number of core beams and n1 is the number of layers wrapping the

core.

The layup time for one layer of fabric of the bottom sheet, tbottom, could be esti-

mated by Equation 3.4 and the total time for the bottom sheet could be estimated

by Equation 3.6,

Tbottom = tsetup + tdelay + n2tbottom (3.6)

where n2 is the number of fabric layers of the bottom face sheet.

The layup time for one layer of fabric of the top sheet, ttop, could also be estimated

by Equation 3.1 and the total time for the bottom sheet could be estimated using

Equation 3.7,

Ttop = tsetup + tdelay + n3ttop (3.7)

where n3 is the number of layers of the top face sheet.
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3.3.3.2 Resin infusion time estimation

Resin infusion significantly affects the time cost and part quality. The resin infusion

process of VARTM has been analyzed and modeled in many literature [47, 48, 49,

50, 51]. The resin infusion time for manufacturing the composites hatch cover is

estimated based on combining the models presented in [50, 51]. The idea of this

model is to estimate VARTM resin infiltration based on the RTM resin filling time

considering the use of highly permeable media. According to Darcys law, the resin

fill time of resin transfer molding can be obtained by Equation 3.8, which is

TRTM =
L2 ∗ Φµ

2pK
(3.8)

K = k
(1− Vf )3

Vf
2 (3.9)

Φ = 1− Vf (3.10)

where the resin infusion time of RTM is determined by part length L, preform perme-

ability K, and porosity Φ, resin viscosity µ and injection pressure p. The permeability

parameter K is determined by Equation 3.9, where k is the Kozeny coefficient and Vf

is the fiber volume fraction, and the porosity of a fiber preform is defined by Equation

3.10. The permeability and porosity have interactions; however, the coupling is not

considered in the present work to simplify the model as proposed in [47]. The filling of

VARTM is related to that of RTM by the VARTM-RTM mold infusion time ratio t∗,

which comes from the response surface method. When the fiberglass preform, highly

permeable media, resin and injection pressure are determined, the resin infusion time

of VARTM can be estimated using Equation 3.11:
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TV ARTM = t∗TRTM (3.11a)

t∗ =
1

a0 + a1h∗ + a2K∗ + a11h∗2 + a12h∗K∗
(3.11b)

K∗ =
KH

Kf

(3.11c)

h∗ =
hH
hf

(3.11d)

The coefficients a0, a1, a2, a11 and a12 are all from experiment. h∗ and K∗ are

dimensionless variables of thickness and permeability. The subscripts H and f stand

for the highly permeable media and fiber preform.

To reduce the resin infusion time and make sure all the fiberglass preforms are

wetted out, highly permeable medias are used in both top face sheet and bottom

face sheet. Resin injection lines are positioned along the longitudinal direction of the

hatch cover, as shown in Figure 3.3. The fill time is estimated by the time that flow

front takes to reach the vacuum line end. Parameters needed for fill time estimation

is provided in Table 3.1.

3.3.3.3 Time estimation of all steps

Labor time of other procedures, except hand layup and resin infusion, is all estimated

using the adaptive framework [14]. The whole manufacturing process procedures

needed to fabricate the sandwich hatch cover are listed in Table 3.2. Considering the

limitation imposed by the width of fiberglass fabric and the feasibility of practical

operations, the width of fiberglass fabric used is one meter and the foam is cut into

one-meter-long unit. The length of the hatch cover is 7.85 meters, so one long beam
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Table 3.1: Filling time estimation parameters

Parameters Values

Length 2.2 (m)

Porosity 0.45

viscosity 0.23 (Pa s)

Injection pressure 100× 103

Kozeny coefficient 71.8×10−12 [47]

Fiber volume fraction 0.55

Thickness of HPM 1 [51]

Permeability of Fiberglass perform 21.6×10−12

Permeability of HPM 1.08×−9

consists of 8 units (the extra length will be cut off after the whole structure is manu-

factured). After the foam units are wrapped by fiberglass fabric, they are positioned

to the mold. The resin rejection lines are aligned along the length direction to reduce

resin fill and vacuum time. Due to the lack of data, it is assumed the operations

(positioning and removing) on distribution media and peel ply takes the same time.

Also operations (positions and removing) on resin injection lines and vacuum lines

take the same time. The time for each single step is calculated, which adds up to a

total time of 6898 minutes.
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Table 3.2: Manufacturing process procedures and time

Process Process step Time (minute)

Mold setup

Cleaning mold 107.2

Applying mold release to mold 35.8

Positioning distribution media to the mold 56.7

Positioning peel ply layer above distribution media 56.7

Hand layup

Laying up fabrics on the mold 1248.5

Wrapping core foam beams with glass fiber fabrics 2989.5

Applying clamping force straps and positioning

beams (wrapped core foam) into mold

403.2

Laying up fabrics over beams 1153.5

Positioning peel ply layer 81.5

Positioning distribution media 81.5

Machine

setup &

applying

vacuum

Cleaning mold 107.2

Applying mold release to mold 35.8

Positioning distribution media to the mold 56.7

Positioning peel ply layer above distribution media 56.7

Injection &

cure

Injecting resin and monitoring the process 181

Curing the part in mold NA

Removing the vacuum bag 24.9

Demolding

Removing injection line 5.8

Removing vacuum lines 5.8

Continued on next page
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Table 3.2 – continued from previous page

Process Process step Time (minute)

Removing distribution media and peel ply 335.1

Post cure Part post cure NA

Few assumptions regarding the manufacturing process should be mentioned, which

include that the fiberglass fabrics (0.35 mm) and foam cores are prepared in advance,

curing the part in mold and post cure require no labor time, and when the vacuum

being pulled, the worker is performing other tasks.

3.3.4 Time cost comparison

The construction time of the basic structure of the composites hatch covers using

VARTM is 6898 minutes while the construction time using hand layup in [4] is calcu-

lated to be 7424 minutes. In comparison, VARTM achieves higher structure quality

and the construction time decease of about 7%.

3.4 Strength and stiffness comparison

Strength requirements are essential to protect the cargo beneath hatch covers. Both

steel and composites hatch covers are further analyzed in term of stiffness and strength

in ABAQUS. This analysis is intended to provide an insight on the method used to

design the hatch cover. The homogenized properties of GFRP, steel and foam proper-

ties are provided in Table 3.3. For the steel hatch cover, 88440 C3D8R brick elements
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are used. For composites hatch cover, 166400 S4R shell elements are used for compos-

ites skin. 153600 C3D8R brick elements and 437760 C3D6 wedge elements are used

for the cores. Both end faces and both side edges are simply supported. The weights

and maximum displacements of two hatch covers under self-weight is compared in

Table 3.4. The maximum normal stresses of steel and GFRP are compared with their

ultimate strength in Table 3.5.

Table 3.3: Material properties

Material Steel GFRP(homogenized) Core

Density (kg/m3) 7850 1800 32

Youngs modulus (GPa) 210 20 8.6×10−3

Poissons ratio 0.29 0.28 0.35

In table 3.4, a weight saving of 38.7% is achieved by the composites hatch cover.

The weight advantage will make opening and closing operation easier. The maximum

deflection of composite hatch cover is 32% less compared to the steel one. For GFRP,

the maximum normal stress to ultimate strength ratio is 0.005, much less than a

corresponding value of 0.062 for steel. It is obvious that the composite hatch cover

is stiffer. The design in [4] is not performed to optimize the composites hatch cover.

Hence both the material and labor costs are expected to be reduced by optimizing

the structure
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Table 3.4: Deflection and weight comparison of two hatch covers

Steel hatch cover Composites hatch cover

Weight (Kg) 1372.78 841.83

Max deflection (mm) 0.19 0.13

Table 3.5: Stress comparison of steel and GFRP

Steel GFRP

Ultimate strength (MPa) [4] 250 220

Maximum normal stress (MPa) 15.39 1.02

3.5 Conclusion

The labor cost of manufacturing a hatch cover with VARTM is estimated using a

modified cost model and framework. The construction time is then estimated using

the same criteria as in [4]. The results demonstrate that less construction time cost is

needed if VARTM is used for the manufacturing. Besides, comparison of strength and

stiffness illustrates that better structural aspects are accomplished with composites.

In conclusion, the composites hatch cover is over-designed and has the potential to

be optimized, as a results of which, both weigh and cost will be further reduced. The

feasibility of composite cargo ships deserves being reinvestigated carefully.
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Chapter 4

Buckling of column on Pasternak

foundation with rotational end

restraints: analytical solutions and

application

Peng Yu, Sam Nakhla

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

St. John’s, Newfoundland, Canada

Keywords: column buckling, rotational end constraints, Pasternak foundation.

Abstract: The web core sandwich structure subjected to compressive loads per-

pendicular to the webs has the susceptibility to buckling within a unit cell. The buck-
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ling behavior of the unit cell under compression loading can be modeled as the elastic

buckling of columns resting on the Pasternak foundation with rotational restraints

at two ends. In this paper, the effects of the Pasternak foundation and rotational

end restraints existing simultaneously on the critical buckling load are investigated.

An analytical approximation technique, variational iteration method (VIM) is ap-

plied. Based on solving the characteristic equation, exact solutions are also presented

to validate the VIM solutions. The results indicate the great significance of elastic

foundations in increasing the stability. The effects of boundary conditions on critical

buckling load are trivial only when stiff foundations are used. The determination of

foundation parameters are provided and evaluated. The importance of web-pitch to

face-sheet thickness ratio is found. Longer web-pitches are desired to increase critical

loads, which also help the structure weight optimization since fewer webs are needed

for a given total width. The novelties of current work include the application of

variational iteration algorithm to the problem, the investigations and comparisons of

combinational effects of elastic foundations and rotational restraints, the evaluations

of foundation parameters based on practical materials and suggestion on the structure

design.

A version of this paper is in preparation for publication. The lead author will be

Peng Yu and the co-authors will be Dr. Sam Nakhla. Mr. Yu’s contribution to this

paper is as follows:

• Initialized the research idea.

• Implemented the variational iteration method to solve the problem.

• Conducted numerical evaluations using MATLAB.
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• Analyzed the results.

• Wrote the paper.

Dr. Nakhla provided technical guidance, suggested improvement ideas and edited

the manuscript. In this chapter, the manuscript is presented with altered figure

numbers, table numbers and reference formats in order to match the thesis formatting

guidelines set out by Memorial University.
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4.1 Introduction

The buckling of columns on elastic foundations is drawing wide interests from many

researchers in various fields since it represents numerous practical applications [52,

53, 54, 55]. The exploration of column buckling has a long history and has been

systematically explained in well-known literatures [56, 26, 57]. After the Winkler

elastic foundation model first proposed [58], more sophisticated and practical founda-

tion models were presented [59, 60, 61, 62], one of which, the Pasternak model, was

demonstrated to be applicable to many problems.

Focusing on the column resting on elastic foundations, Sundararajan [63] studied

the stability problem of columns on elastic foundations subjected to conservative and

non-conservative forces. The Winkler’s model was used and the influences of the foun-

dation were investigated. A finite element method for the vibration of beam-column

on two-parameter elastic foundation was presented by Yokoyama [64]. The finite el-

ement method was shown to be effective, and comprehensive parameter studies were

then performed. Morfidis and Avramidis [65] proposed a generalized finite element

for the beam-column on elastic foundations. Effects of shear deformations, semi-rigid

connections, rigid offsets and axial forces could be included in the elements. A two-

parameter elastic foundation model was used in their research. Post-buckling analysis

of an elastic column on the Winkler foundation was performed with the employment

of an approximate analytic technique [66]. The responses of perfect and geometrically

imperfect columns were discussed.

For beams and plates on elastic foundations, Feng and Robert [67] suggested a

finite element method to analyze beams on two-parameter foundations. Two types of
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beam elements were formulated and compared. It was shown that elements based on

the exact displacement function predict the results more accurately and were com-

putationally cheaper. Levy [68] proposed a weight minimization method for beams

and plates on elastic foundations for given buckling loads and optimality criteria was

derived using the variational method. The buckling of simply supported laminates

on Pasternak foundations subjected to uniaxial and biaxial in-plane loads was in-

vestigated by Xiang et al [69]. The first-order shear deformation plate theory was

employed in their research. Calculus of variations was applied to minimize the total

potential energy functional and the characteristic eigenvalue equation was derived

based on the Navier method. Numerical results were obtained, based on which, com-

prehensive parameter studies were conducted. Lam et al [70] presented canonical

exact solutions for elastic bending, buckling and vibration of isotropic plates on two-

parameter foundations. Green’s functions were used in the paper and the plates were

limited to the Levy type. Web core sandwich panels under in-plane compression

were analyzed and optimized for the minimum weight considering instability failure

criteria in [71]. The web boundaries of each unit cell was assumed to be simple sup-

port to provide conservative results and the core was modeled as a one-parameter

elastic foundation, which was modeled as linear elastic spring. The effects of foun-

dations were clearly demonstrated. Similar research was carried out by Yu [72] for

Levy plates on a one-parameter foundation. Exact solutions were obtained for both

uniaxial and biaxial loads. Buckling of steel beam column on Pasternak foundations

with simply supported - simply supported and clamped-clamped boundary conditions

were investigated in [73]. The high order mode coupling was found and was symbol-

ically determined for the former boundary condition. In terms of the determination
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of foundation parameters, Sironic [74] reevaluated the foundation constants using the

Airy stress function with the plane strain assumption and the principle of minimum

total potential energy. Modified foundation parameters were suggested for deep and

shallow elastic foundations. Recently, Briscoe [75] examined the shear buckling of

isotropic plates on Pasternak foundations. A new model for the foundation parame-

ters was proposed with the application minimum total potential energy principle.

Variational iteration method (VIM) is powerful in solving problems related to

differential equations. The buckling of non-uniform column with rotational end re-

straints were investigated with the application of VIM [76], which was demonstrated

to be an efficient tool to solve differential equation and boundary value problems

[77, 78]. The same method was used in the research on the buckling of the Euler

column with continuous elastic restraints [79]. The continuous elastic restraints were

modeled as elastic linear springs and several combinations of boundary conditions

were investigated.

It can be seen from the literature review above that combinational effects of ro-

tational restraints and elastic foundations, which are common and realistic in engi-

neering structures, have not been investigated. In this paper, the buckling analysis of

columns on two-parameter Pasternak foundations with rotational end restraints are

performed. The characteristic eigenvalue equation for the present problem is derived.

The variational iteration method (VIM) is used to find the approximate solutions.

The exact solutions are also provided to verify the approximate solutions. The effects

of rotational spring stiffness, elastic foundation parameters and the combined effects

of both are demonstrated. Parameter studies on the foundation parameters are pre-

sented. Furthermore, the methods are applied to the buckling of web core sandwich
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panel subjected to compressive loads normal to webs.

4.2 Buckling model

K

K

kk

p

w

P P

x
y

Figure 4.1: Column on the elastic foundation with rotational end restraints

Consider an Euler beam column of length L and thickness t resting on a two-

parameter foundation with rotational springs of stiffness constants k, acting on two

ends, Figure 4.1. The elastic modulus of the column is E, the second moment of area

is I and the flexural rigidity is D = EI. The two foundation parameters are Kw, the

Winkler foundation parameter, which describes the foundations as a series of linear

elastic springs normal to the beam, and Kp which describes the interactions between

springs. The beam column is subjected to compressive force, P. According to [73, 80],

the deflection of the beam w̄(x̄) in the y direction is governed by

D
d4

dx̄4
w̄ (x̄) + P

d2

dx̄2
w̄ (x̄) +Kww̄ (x̄)−Kp

d2

dx̄2
w̄ (x̄) = 0 (4.1)

For computation ease and convenience, the equation above is rewritten in the non-

dimensional form as

d4

dx4
w (x) + π2 (p− κp)

d2

dx2
w (x) + π4κww (x) = 0 (4.2)
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where w is the function with respect to x (x = x̄/L). Other non-dimensional param-

eters shown in the equation above are

p =
PL2

π2D
κp =

KpL
2

π2D
κw =

KwL
4

π4D
(4.3)

For the non-dimensional differential equation, the boundary conditions at x = 0 are

d2

dx2
w (0) = κ

d

dx
w (0) , w(0) = 0 (4.4)

and the boundary conditions at x = 1 are

d2

dx2
w (1) = −κ d

dx
w (1) , w(1) = 0 (4.5)

The non-dimensional parameter κ in Equation 4.4 and 4.5 is

κ =
kL

D
(4.6)

According to [57], the general solution to equation 4.2 is

w (x) = C1 cos (β1x) + C2 sin (β1x) + C3 cos (β2x) + C4 sin (β2x) (4.7)

where

β1 =

√
α

2
−

√
α2

4
− ξ β2 =

√
α

2
+

√
α2

4
− ξ (4.8)

α = π2(p− κp) ξ = π4κw (4.9)

and C1, C2, C3 and C4 can be determined according to boundary conditions. Equa-

tion 4.8 holds when α2

4
− ξ > 0, which gives p > κp + 2

√
κw. Substituting the w(x)
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in Equation 4.4 and 4.5 with the w(x) form Equation 4.7 leads to the characteristic

equation for this problem.

4.3 Variational iteration method

VIM is an analytical approximation technique. It is widely used in solving nonlinear

differential equations with the advantages of effectiveness, accuracy and converging to

exact solutions rapidly [78]. Considering a homogeneous nonlinear differential system

as follows:

L[w(t)] +N [w(t)] = 0 (4.10)

where L is a linear operator and N is a nonlinear operator.

To solve the nonlinear differential equation above using VIM, a correction func-

tion should be constructed. According to He et al [78], three iteration formulas are

commonly used, including

wn+1(x) = wn(x) +

∫ x

0

λ(ζ)(L[wn(ζ)] +N [w̃n(ζ)])dζ (4.11)

wn+1(x) = w0(x) +

∫ x

0

λ(ζ)N [wn(ζ)]dζ (4.12)

wn+2(x) = wn+1(x) +

∫ x

0

λ(ζ)(N [wn+1 (ζ)]−N [wn(ζ)])dζ (4.13)

where λ is a general Lagrange multiplier that can be identified optimally via varia-

tional theory, w0 is the initial guess and wn is the n-th approximate solution and w̃n

denotes a restricted variation [77, 78]. Equation 4.11, 4.12 and 4.13 are variational

iteration algorithm I, II and III, respectively. The initial guess w0 in algorithm II
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is required to satisfy the boundary conditions, which is complicated in the present

problem due to the existence of the restraints at the ends. Thus, the simpler algo-

rithm I is chosen. For a four order differential equation, a simple Lagrange multiplier

is suggested in [76] as

λ(ζ) =
(ζ − x)3

6
(4.14)

With the Lagrange multiplier, the correction function for the present problem is

represented as

wn+1 (x) = wn (x) +

∫ x

0

(ζ − x)3

6
(
d4

dζ4
wn(ζ) + π2 (p− κp)

d2

dζ2
wn (ζ) + π4κwwn (ζ))dζ

(4.15)

The initial solution w0 of the deflection function of the beam can be freely selected

and unknown parameters can be contained in it. The initial solution is chosen to be

a polynomial, which is

w0(x) = Ax3 +Bx2 + Cx+D (4.16)

With the initial solution and the correction function, iterations can be conducted.

MATLAB is used to facilitate computations. After the nth iterations, an approximate

solution is obtained, which will be substituted into the boundary conditions, Equa-

tion 4.4 and 4.5. Correspondingly, four homogeneous equations are obtained from

the four boundary conditions and the characteristic equation is derived by making

the determinant of coefficient matrix of the four homogeneous equations zero. The

accuracy of VIM is related to iteration times.
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Finding the

buckling governing

equation and

boundary conditions

Determining the

general solution of

governing equation

Substituting the

general solution into

boundary conditions

Solving the

transedental

equation from

the previous step

(characteristic equa-

tion) and finding

the critical load

The determinant of

the matrix equal to

0 according to the

stability criterion

Expressing the

homogeneous equa-

tions obtained in

the previous step in

the form of matrix

Figure 4.2: Flow chart of finding exact solutions
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Finding the

buckling governing

equation and

boundary conditions

Using a polynomial

equation as the

initial guess

Determining the

approximate solu-

tion using the initial

guess and VIM

The determinant of

the matrix equal to

0 according to the

stability criterion

Expressing the

homogeneous equa-

tions obtained in

the previous step in

the form of matrix

Substituting the

approximate

solution into

boundary conditions

Solving the char-

acteristic equation

by MATLAB to

find the critical load

Figure 4.3: Flow chart of finding VIM solutions
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4.4 Numerical evaluations and discussion

Numerical evaluations of the characteristic equation from Section 4.2 and the char-

acteristic equation of the approximate solution from VIM are performed. The flow

charts for finding exact and VIM solutions are illustrated in 4.2 and 4.3, respectively.

The procedures in Figure 4.3 are implemented in MATLAB and the critical load is

easily found by MATLAB. As mentioned above, no literatures have been published

regarding this problem. A special case, i.e. column with rotational end restraints

without elastic foundation is evaluated and compared with the results in the liter-

ature. The numerical evaluation of the case is achieved by setting the foundation

parameters to zero. In this paper, the rotational restraints at two ends are made

equal, which is practical for most web core sandwich structures. Obviously, non-

equal restraints situations can also be calculated using the two method presented in

this paper.

It can be seen from Table 4.1 that the approximate analytical solutions after 10

iterations using VIM are close to the exact solutions with high degree of accuracy.

Then, approximate and exact buckling solutions of column on Winkler’s and Paster-

nak’s foundations are computed and the results are shown in Table 4.2 and 4.3. The

range of normalized stiffness constants of rotational restraints is from 0.1 to infinity

(109). Different ratios of two foundation parameters are chosen in Table 4.3. The

computation of 25 iterations is conducted in the VIM. The approximate solutions are

extremely close or identical to the exact solutions. The feasibility and accuracy of

VIM are further illustrated. The solutions provided in the two tables can be used as

benchmarks for other numerical methods for this problem.
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Table 4.1: Comparison of present exact and VIM solutions with those in literatures

κ VIM(n=10) Wang[57]†

0 1 1

0.5 1.1927 1.1928

1 1.3671 1.3670

2 1.6681 1.6681

4 2.1234 2.1234

10 2.8540 2.8540

∞ 3.9999 4

† Due to different method of

normalization, the values in the

table are obtained by dividing

the results in [57] by π2

4.4.1 Effects of rotational end restraints and elastic founda-

tion on buckling load

A parameter study on the normalized rotational spring constant κ is presented first.

For the sack of brevity, the elastic foundation is absent and the normalized critical

load is found for different normalized rotational spring constants, as illustrated in

Figure 4.4. To show the results explicitly, the lg(κ) scale is generated for the x axis.

Apparently, the normalized critical load increases slowly when κ exceeds 100 (lg(κ) =

2). When the normalized rotational spring constant is 10000, the normalized critical

load is almost 4 (3.9986 form the exact solution and 4.006 from VIM), which is the
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Normalized rotational spring constant on logarithmic scale lg(κ)
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Figure 4.4: Column without elastic foundations

normalized critical load for the clamped-clamped boundary condition. The critical

load merely increases when k exceeds 10000. In the later part of this paper, κ = 104 is

regarded as the clamped-clamped boundary condition to facilitate computations and

explanations. This will hold for both the columns with or without elastic foundations

with the assumption that the rigidity of rotational springs is not influenced by the

existence of core.

The combinational effects of rotational end restraints and foundation parameters

are demonstrated then. Normalized rotational spring constants from 1 to 10000 and

various foundation parameter ratios, i.e. κw/κp = 5, 15 and 25 with the range 0 to

300 of κw, are covered to achieve generalities. The numerical results are shown in

Figure 4.5, 4.6 and 4.6. Obviously, The incorporation of foundations increases the

critical buckling loads dramatically. The four lines representing different normalized
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Normalized foundation parameter κw
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Figure 4.5: Buckling of column on elastic foundations (κw/κp = 5)

rotational spring constants are close to each other, which is true for all the three

different foundation parameter ratios. The lines are approaching linear and parallel

to each other with the increase of foundations parameters. It implies that the effects of

foundation parameters are dominant when the foundations are strong, while rotational

restraints have more significant effects when the foundations are weaker. To further

demonstrate the effect of rotational springs for various foundation parameters, the

increasing percentage of critical load compared with column on elastic foundation with

pin-pin boundary conditions are shown in Figure 4.8. The increase of critical load is

significant, over 70%, for small foundation parameters (weak foundation) while that

for large foundation parameters (strong foundation) is neglectable since the maximum

increase is around 5%.
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Figure 4.6: Buckling of column on elastic foundations (κw/κp = 15)

4.5 Application to web core sandwich structure

The sandwich structure is extensively used in many engineering industries, such as

aerospace, ocean and building industry, due to the advantageous properties of high

stiffness, light weight and design effectiveness [81]. Web core sandwich structures

consist of two face-sheets connected and supported by interior webs, and core bonded

to the face-sheets and webs. Web core sandwich panel have been applied to large ship

structures and residential building roof to satisfy special requirements [53, 75, 82].

The improvement of shear property and fatigue life of web core sandwich structures

can be achieved with the use of core materials [83, 84].

From the analysis above, it can be seen that modeling the webs as simply-

supported or clamped boundary conditions can be simplistic and introduces sig-
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Figure 4.7: Buckling of column on elastic foundations (κw/κp = 25)

nificant errors. A practical method is to discrete webs and face-sheets and model

webs as rotational restraints. The effect of rotational restraints on the buckling be-

havior of plate and beam has drawn the attention of many researchers. Lundquist

and Stowell [85] obtained the exact and approximate solutions for the buckling of

isotropic plates subjected to uniaxial compression and rotationally constrained along

unloaded edges. Valuable data on critical buckling stresses are provided. Bleich [86]

investigated the buckling of box shape under compression. The formulas of rota-

tional constraint stiffness from the two sides of the box shape are presented. Explicit

solutions for the buckling of orthotropic plate with rotational restraints using Ritz

method are presented in [87, 88, 89]. The solution is applied to I section, C section,

and box section etc. The formula to determine constraint stiffness constant in [86]

is extended to orthotropic plates in their work. Significant effects of the rotational
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Normalized rotational spring constant on logarithmic scale lg(κ)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

In
cr
ea
se

o
f
cr
it
ic
a
l
lo
a
d
,
%

0

10

20

30

40

50

60

70

80

κw=3, κp=0.2

κw=75, κp=5

κw=200, κp=8

κw=300, κp=30

Figure 4.8: Illustration of the effect of rotational spring constants

face-sheet

web

foam core

Figure 4.9: Illustrate of web core panel

restraints on local bucking are found. Similar work on the buckling of rotational

restrained fiber reinforced plastic composite plates are conducted by Kollar [90, 91].

More details concerning local buckling with rotational constraints can also be found
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in [92]. Furthermore, the rotational constraints are considered for the laser-welded

web core sandwich plate [93]. The method to determine the rotational spring stiffness

is proposed for laser welding. Linear spring and rotational spring are combined to

model the general boundary conditions in [94]. Euler beam buckling with general

boundary conditions are examined using Galerkin method.

The web core panel subjected to compression and bending loads is susceptible to

local buckling [53], Figure 4.9. When a panel is subjected to uniformly distributed

compressive loads perpendicular to webs with unloaded edges free, the constrained

buckling of face-sheet, which is referred to as the buckling of face-sheets between

webs, may occur [53]. Due to the periodicity, the whole panel is represented by a unit

cell, Figure 4.10. The webs in the unit cell provide rotational restraints to the face-

sheet and the core acts as the elastic foundation. Hence, the constrained buckling of

web core sandwich panel resembles the buckling of column on elastic foundations with

rotational ends restraints. The column is of unit width and accounts for Poisson’s ratio

effects [95], which means the flexural rigidity should be modified as Dp = EI/(1−ν2).

two-parameter 

elastic foundation

rotational end restraints

unit

cell

tc
L

t

Figure 4.10: Cross section of web core sandwich panel and unit cell
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4.5.1 Evaluation of foundation parameters of typical core

material

The foundation parameters have significant effects on the critical buckling load.

Therefore, the foundation parameters are further evaluated to give a insight of them

and the evaluations are based on practical web core sandwich geometries. Research

on the determination of the two foundation parameters are available in [74, 96]. In

many web core sandwich panels, the thickness of core is relatively small compared to

the web-pitch, which means the core is shallow. For shallow foundations, the deter-

mination of parameters are provided in [97] and different equations are proposed in

[53]. The latter, as Equation 4.17, is used here because they have been validated by

finite element analysis. Normalized foundation parameters are expanded and expres-

sions with respect to the structure geometries and material properties are obtained,

Equation 4.18,

kw =
Ec
6tc

kp =
Gctc

3
(4.17)

κw =
2

π4
γχ3ηE κp =

4

π2
τχ2ηG (4.18)

where ηE is the ratio of core elastic modulus to column elastic modulus Ec/E, ηG is the

ratio of core shear modulus to column elastic modulus Gc/E, γ is the ratio of column

length to core thickness L/tc, τ is the ratio of core thickness to column thickness and

tc/t and χ is the ratio of column length to thickness L/t. The equation shows the

use of core material with higher elastic and shear modulus is advantageous. However,

stiffer material is usually denser, which will increase the structure weight. κw and κp

are proportional to the cubic and square of length to thickness ratio, respectively, so
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for a constant column thickness, increasing the column length (web-pitch) leads to

higher buckling loads.

The typical web-pitch length used in marine industries is 120 mm and the core

thickness is 40 mm. To explicitly demonstrate the effect of geometric parameters,

different pitch lengths and core thicknesses are evaluated. The pitch lengths include

120 mm, 160 mm and 200 mm and the core thickness include 30 mm, 40 mm and 50

mm. The thickness of the column remains 2 mm. In practice, the filling foam material

can be soft and light or rigid and dense. Various foams can be chosen according

to the requirements of different applications. Four foams with different densities

and mechanical properties are selected, which include rigid Polyurethane foam and

Divinycell H-grade foam H45, H100 and H250. The property parameters of the foams

are listed in Table 4.4. The normalized foundation parameters corresponding to

different foam and geometry combinations are obtained, Table 4.5.

Table 4.4: Foam core properties

property PU [75] H45 [83] H100 [83] H250 [83]

density [kg/m3] 32 45 100 250

elastic modulus [MPa] 5.17 45 115 240

shear modulus [MPa] 1.58 12 28 88

In Table 4.5, it can be seen that for the same pitch length, κw decreases with

the increase of core thickness while κp increase with the increase of core thickness for

all the foams. For the same core thickness, κw becomes dramatically large for long

pitch and κp also increase apparently. The results are identical with the predictions
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by Equation 4.18.

Based on the normalized foundation parameters, the critical buckling load of col-

umn with clamped-clamped boundary conditions (κ = 104) is evaluated, Table 4.6.

For the same pitch length, the critical loads are close for Rigid PU, H45 and H100

although the thickness are different, which means the effect of panel thickness is in-

significant in this range. The thickness has larger influences with the application

of the H250. This finding is desired for engineering design when the soft core is

used because the smaller thickness can be used to reduce the structural weight. It

is also found that for the same core thickness, the pitch length has significant effect.

The effect of foams properties are also evident. Some values concerning beam buck-

ling on soft and stiff core with SS and CC boundary conditions are listed in Table

4.7. For some conditions such as long pitch and stiffer core, the effect of bound-

ary conditions can be ignored due to their trivial influence. For example, when the

web-pitch of 200 mm and the core thickness of 30 mm and H250 are used as core

material, the critical load with pin-pin boundary conditions is 52.1120 while that of

clamped-clamped boundary conditions is 54.8823. The difference is less than 5%.

The rotational restraints can be treated as simply supported and the results will not

be too conservative. However, when short pitch and soft core is used, the rotational

boundary condition should be considered. The stiffness the webs provided should be

evaluated for the latter case. Within the restrictions of other design criteria, longer

pitch should be used to reduce the number of web used for a given total width of

panel to reduce the structure weight.
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Table 4.7: Example of buckling load with CC and SS boundary conditions

tc = 30, L=200 tc = 40, L=160 tc = 50, L=120

Rigid PU(5.17,1.58)
CC 6.9685 5.1875 4.4819

SS 4.9205 2.4603 1.5495

H250
CC 54.8823 39.8359 26.3473

SS 52.1120 36.7387 22.7730

4.6 Conclusion

Approximate and exact solutions are presented in the paper to obtain the buckling

solutions of columns resting on Pasternak foundations with rotational end restraints.

The variational iteration method is used for this problem to find the approximate

solution and is found convenient, efficient and accurate. The effects of rotational end

restraints and Pasternak foundation parameters are investigated simultaneously. Ro-

tational end restraints significantly increase critical buckling loads when weak foun-

dations (foams) are used and the effects are weakened when denser and stronger

foundations (foams) exists. Geometric and material properties are incorporated in

the normalized foundation parameters. Practical structural geometries and foam ma-

terials are used to further evaluate foundation parameters. For some cases where long

web-pitch and stiffer foams are used, the rotationally constrained boundary conditions

can be simplified as simply supported without introducing large errors.
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Chapter 5

Finite element analysis of sandwich

panel face-sheet wrinkling

Peng Yu, Sam Nakhla

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

St. John’s, Newfoundland, Canada

Keywords: sandwich structure, wrinkling, composites, finite element analysis.

Abstract: The wrinkling of sandwich structure is a significant failure mode and

should be considered in the design stage. The neglect of wrinkling may cause catas-

trophic failure because wrinkling can initiate other failures such as core failure and the

debonding of face-sheets and core. The analytical solution of face-sheet wrinkling is

proposed in the paper. The finite element analysis is employed using ABAQUS to in-

vestigate the wrinkling phenomenon. The finite element models are constructed based
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on the geometries and materials of the testing specimens in the literature. The effect

of boundary conditions on the wrinkling is revealed. The different types of elements

to represent the face-sheets are attempted, and the advantages and disadvantages of

different elements are discussed. It is concluded that the analytical solution presented

in the paper can only predict the critical wrinkling loads accurately for the sandwich

panel of specific face-sheet to core ratios. The finite element analysis is a reliable and

effective tool for the prediction of critical wrinkling loads.

A version of this paper is in preparation for publication. The lead author will be

Peng Yu and the co-authors will be Dr. Sam Nakhla. Mr. Yu’s contribution to this

paper is as follows:

• Conducted finite element analysis using ABAQUS.

• Analyzed the results.

• Wrote the paper.

Dr. Nakhla initialized the research idea, suggested the analytical solution, pro-

vided technical guidance, and is editing of the manuscript. In this chapter, the

manuscript is presented with altered figure numbers, table numbers and reference

formats in order to match the thesis formatting guidelines set out by Memorial Uni-

versity.
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5.1 Introduction

Sandwich structures are of great significance in engineering due to the high stiffness

to weight ratio, excellent corrosion resistance and tailorable mechanical properties

[81]. Typical sandwich structures comprise two face-sheets at sides and one core in

the middle. The face-sheets are bonded to the core, which plays the role of providing

support and stability to the face-sheets.

The sandwich failure is of interest to many researchers and engineer. The failure

modes of sandwich structures include the failure of face-sheets under compressive

and extensional loads,the face-sheet indentation failure under concentrated loads,

core failure, the debonding of face-sheets and core, global buckling and wrinkling.

Wrinkling is referred to as a face-sheet instability failure phenomenon where the

wavelength of the buckled form is short and is of the same order as the core thickness

[36]. It is commonly observed when compression loads are applied to the sandwich

structure. Wrinkling is essential because the wrinkled face-sheets may initiate many

other failure modes, such as the debonding of face-sheets and core, core failure and

face-sheet failure.

Single-sided wrinkling, symmetric wrinkling and anti-symmetric wrinkling, Figure

5.1, shows the three common wrinkling modes. The first mode usually happens

to sandwich structures subjected to bending loads or one face-sheet is much stiffer

than the other one, while symmetric and anti-symmetric wrinkling happen to in-

plane compression loading conditions. The occurrence of symmetric or antisymmetric

wrinkling mode is related to the material properties and geometries of the sandwich

structures.
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(a) Single-sided wrinkling

(b) Symmetric wrinkling

(c) Anti-symmetric wrinkling

Figure 5.1: Three different wrinkling modes

The wrinkling failure has been investigated since the 1940s analytically, exper-

imentally and numerically. Several famous wrinkling formulas based on different

methods and assumptions have been proposed. The analytical models need to be

validated by testings. However, it is not easy to conduct testing ideally due to the

constraints of geometric imperfections caused by the specimen manufacturing pro-

cess and the limitations from apparatus. Besides, complex failure modes and their

interactions make it difficult to find the critical wrinkling load. Hence, the finite

element analysis (FEA), as a simulation to the testings, provides a better solution

to this problem. In this paper, both analytical method and finite element analysis

are applied to investigate the wrinkling failure. The analytical solutions and FEA

results are compared with that of the classic wrinkling models and testing results in
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literature. The effects of boundary conditions and face-sheet element types are also

examined.

5.2 Literature review on wrinkling research

The wrinkling of sandwich structure was investigated in [24]. In the paper, eight

different combinations of face-sheets and supporting medium were studies analytically.

Hoff and Mautner [25] presented buckling formulas for both symmetric and anti-

symmetric modes based on the principle of minimum total potential energy. The

symmetric wrinkling mode was also solved using the elasticity theory in their paper.

Nardo [27] derived the exact solutions for the buckling of sandwich panel with loaded

edges clamped and unloaded edges simply supported. The report [28] summarized the

previous research before 1961 and reaffirmed the results with experiments. A paper

based on [28] was published in [1]. In Plantema’s model [29], an exponential decay

of the core displacements in the transverse direction was assumed. The principle of

minimum total potential energy was also applied in his model. Allen’s model [31]

had the same geometric assumptions as that of Plantema. The critical stress was

derived by solving the governing equation with the assumption that the core stress

field satisfied the Airys stress functions. Analytical, numerical and experimental

investigations of face-sheet wrinkling subjected to uniaxial and biaxial compression

in sandwich shell was conducted by Stiftinger and Rammerstorfer [32]. The effect of

the orthotropy of face-sheet and core were investigated and it was found that anti-

symmetric wrinkling was critical for face-sheets with isotropic core, and symmetric

wrinkling was possible for face-sheets with the orthotropic core. Niu and Talreja [33]
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presented a unified model to incorporate symmetric wrinkling and anti-symmetric

wrinkling. The Winklers model was modified according to their model and the two

parameter model was evaluated in their paper. The Winkler’s elastic foundation

approach can also be used in predicting the symmetric wrinkling load of sandwich

structure, as explained in [36]. The core was modeled as elastic spring and the critical

stress was derived by solving the differential governing equation. The interaction

between the elastic springs, i.e. the effect of shear stress, was ignored in the approach.

Vonach and Rammerstorfer [41] presented an analytical model for the wrinkling of

thick orthotropic sandwich plates boned to a transversely isotropic thick core. A 3D

finite element analysis simulation using ABAQUS was used to validate the analytical

model. Hadi [42] used finite element analysis to study sandwich column wrinkling and

compared FEA results with the existing analytical and experimental results in [34],

[37] and [38]. In the FE model, the face-sheet was modeled by 4 nodes quadrilateral

elements based on the Mindlin-Reisser shell formulation. Fagerberg and Zenkert [43]

investigated the reason of discrepancies between experimental and analytical results.

They presented an imperfection induced wrinkling model, which includes geometric

imperfections of the sinusoidal shape. The accuracy of the analytical model was also

validated by finite element analysis simulation. The plane stress 2D finite element

analysis simulation was conducted in ABAQUS. Periodic boundary conditions were

implemented as [41]. Ji and Waas [35] investigated the global and local buckling of

a sandwich beam using classical elasticity. Finite element analysis using Abaqus was

applied to validate the accuracy of their model. Fleck and Sridhar [39] conducted ex-

periments to investigate the failure mode of sandwich columns comprising of GFRP

face-sheet and PVC foam core under the end compression. For the face-sheet wrin-
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kling, modified Hoff’s model (the coefficient was reduced to 0.5) was used as analytical

solutions.

5.3 Analytical solutions

In the present paper, the wrinkling of the face-sheets is considered to resemble a beam

resting on Winkler elastic foundation with clamped-clamped boundary conditions. A

new face-sheet deformation function is presented, Equation 5.1, which satisfies the

boundary conditions at the two ends of the wrinkled part. In the equation, wf

represents the deformation in the transverse direction, A is a constant representing

the amplitude of wrinkling half-waves and l is the length of half-waves.

wf = A[1− cos(2πx

l
)] (5.1)

The principle of minimum total potential energy is employed to find the critical

wrinkling load. The total potential energy Π is composed of the strain energy of the

elastic foundation Uc, the strain energy associated with the bending of the face-sheet

Uf , and W , which is the work done by the compressive load, as following.

Π = Uf + Uc +W (5.2)

The expressions for each components of the total potential of the system is shown

in Equation 5.3, 5.4 and 5.5, respectively.

Uc =
k

2

∫ l

0

w2
f =

3A2kl

4
(5.3)

Uf =
EfIf

2

∫ l

0

(
∂2wf
∂x2

)2dx =
π4A2Ef tf

3

3l3
(5.4)
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W = −P
2

∫ l

0

(
∂wf
∂x

)2dx = −Pπ
2A2

4l
(5.5)

where Ef is the elastic modulus of the face-sheet material, k is the stiffness of the

elastic foundation, If = tf
3/12 is the second moment of area of the face-sheet cross-

section and P is the compressive load applied to the face-sheets. The stiffness constant

k of the elastic foundation is suggested as k = 2Ec/tc in [36].

According to the principle of minimum total potential energy, the differentiation

of the total potential energy with respect to the A, the non-zero amplitude, is set to

zero, and the load expression is found, Equation 5.6.

P =
4π4Ef t

3
f + 9l4k

12π2l2
(5.6)

The critical half wave-length, Equation 5.7 is obtained by differentiating Equa-

tion 5.6 with respect to l. The expression of critical half-wave length is substituted

back to Equation 5.6 and the critical stress is found, Equation 5.8.

lcr =

√
6π(Ef t

3
fk

3)
1
4

3k
(5.7)

σcr =

√
2EfEctf

tc
(5.8)

The same method but different deformation function was proposed by Mondal

and Nakhla [98].The polynomial deformation function and the corresponding critical

stress in their paper are

wf = A[(
x

l
)2 − 2(

x

l
)3 + (

x

l
)4] (5.9)
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σcr =

√
7EfEctf

3tc
(5.10)

The sinusoidal deformation function is used in [36]. The function is assumed to

be

wf = Asin(
x

l
) (5.11)

When the core is simplified as Winkler foundation, the corresponding critical stress

(Winkler model) provided in [36] is

σcr =

√
3

3

√
2EfEctf

tc
(5.12)

Comparing Equation 5.8, 5.10 and 5.12, it can be seen that the differences between

the three equations are constant for a given sandwich beam. The critical wrinkling

stress proposed in this paper is equal to
√

3 times of that in [36].

5.4 Finite element analysis

In this section, the two-dimension finite element analysis is employed using ABAQUS

to simulate the wrinkling of sandwich structures under in-plane compressions. The

material selections and specimen geometries are extracted from existing testings doc-

umented in literature. The FEA results are compared with that of analytical models

and testings in literature.

5.4.1 Description of the finite element model

In the two-dimension finite element model, the sandwich structure is discretized to

face-sheets and core. Four-node bilinear plane stress solid elements are used for the
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core. The face-sheet is modeled by either linear beam elements or four-node bilinear

plane stress solid elements. The advantage of using beam elements is that the model is

simplified and the computation time is therefore reduced, while the drawback induced

is that the beam elements are assigned to the nodes in the top and bottom surfaces

of the core to connect them to the core solid elements. Consequently, the distance

between the centerline of the face-sheet and the interface of core and face-sheets is

neglected. Considering the face-sheets thickness is much smaller compared to the

core thickness, the error introduced is trivial. In this scenario, the size of the beam

element is determined by the longitudinal size of the 2D plane stress solid elements

for the core.

When the isotropic material is used for face-sheets, both beam elements and plane

stress solid elements can be easily employed. However, for composite laminated face-

sheets, the mechanical properties of the laminate should be provided or calculated

before modeling it using beam elements. Otherwise, the laminate should be dis-

cretized according the stacking sequence of lamina, each layer of which is represented

by 2D solid elements.

5.4.2 Winkling of sandwich beam consisted of isotropic face-

sheets

The materials and geometries of the sandwich beam for the FEA model are from [1].

The 24ST clad aluminum alloy was used as the face-sheet and the Cork was used as

the foam material. The sandwich specimens were constructed by bonding the facings

to the core by means of a primary and a secondary glue [28]. The details of specimen
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geometries and material properties are listed in Table 5.1. The width of the specimen

is 2 inches.

Table 5.1: Geometrical parameters and material properties [1]

Geometries and properties Values

Total thickness of sandwich beam, H (in) 1.0392

Width of sandwich beam, B (in) 2.0

Thickness of facing, tf (in) 0.0196

Thickness of core, tc (in) 1.0

Length of sandwich, L (in) 3.63

Elastic modulus of Aluminum facing, Ef (ksi) 9500

Poisson’s ratio of Aluminum facing, νf 0.25

Elastic modulus of Cork core, Ec (ksi) 1.18

Poisson’s ratio of Cork core, νc 0.136

The convergence of the FEA model is first checked to find the proper element

size. The change of critical load with respect to the number of elements used in the

mesh is plotted to find the trend. According to the convergence trend, the number of

400 elements in the length direction and the number of 80 elements in the thickness

direction for the core are efficient for the simulation. The multi-point constraint

boundary conditions at two ends are created to make the end lines behave as a rigid

surface. The nodes at the end lines are allowed to move in the thickness direction but

are always constrained in the straight line connecting two extreme end nodes of the

core. The straight line can be stretched linearly and rotates around its central node.
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The translational freedoms of the node at the middle of the left end are constrained.

The compressive load in the length direction is applied to the node at the middle of the

right end, the thickness direction translational freedom of which is also constrained.

The illustration of multi-point constraints and boundary conditions is shown in Figure

5.2. The critical load is then evaluated based on the smallest eigenvalue yielded by

ABAQUS and the corresponding wrinkling mode can also be found.

Figure 5.2: Illustration of boundary conditions and load

5.4.2.1 Effect of different boundary conditions

When the multi-point constraints (MPC) are applied at the two ends, the wrinkling

mode of the sandwich specimen is shown below, Figure 5.3. In this scenario, the

rotational freedoms of the nodes at two ends are not constrained. It can be found

that the edge wrinkling phenomenon occurs. Comparing the FEA results with that

of testing, Table 5.2, a trivial error is found. This is because the failure mode in the

testing was actually edge wrinkling instead of wrinkling, which can be verified by the

observing the deformation profiles of the specimen provided in [1].

When the edge winkling modes are ignored, the wrinkling mode corresponding
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Figure 5.3: Edge Wrinkling (MPC, rotational freedoms of end nodes enabled)

Table 5.2: Comparison between FEA and testing results

FEA (MPC, rotational freedoms of end nodes enabled) Testing Error (%)

373.89 lb/in 385.67 lb/in 3.05

to the lowest compressive load from the same FEA model is shown in Figure 5.4.

The compressive load in this situation is 498.84 lb/in. If the rotational freedoms

of end nodes is disabled, the critical wrinkling mode is shown in Figure 5.5. The

corresponding load is 504.07 lb. The effect of the rotational freedom is illustrated by

comparing the two figures. The comparison of different critical loads using MPC is

provided in Table 5.3. It shows that when the MPC is applied and the end nodes

rotation is allowed, edge wrinkling is critical. The winkling loads with rotational

freedoms of end nodes disabled are higher. With the end nodes rotational freedoms

enabled, both edge wrinkling and wrinkling can be found.

The critical wrinkling load of the end nodes rotational freedoms enabled situation

is then compared with the analytical values in Table 5.4. The polynomial equation

represents the model proposed by Modal and Nakhla [98]. It is apparent that the
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FEA result is close to that of the classic models (Winkler, Allen, Plantema, Hoff

and Mautner, Niu and Talreja), and the present analytical solution and the polyno-

mial equation yield much higher predictions. The reason of the discrepancy will be

explained later.

Figure 5.4: Wrinkling mode with MPC (rotation abled)

Figure 5.5: Wrinkling mode with MPC (rotation disabled)

5.4.2.2 Effect of face-sheet element types

In this part, two different ways to model the face-sheets of the sandwich beam are

compared. The first method is to model the face-sheet using the beam element, as

the model in the previous section, while the second one is to use 2D solid elements.
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Table 5.3: Comparison of different critical loads using MPC

Edge wrinkling Wrinkling (rotation enabled) Wrinkling (rotation disabled)

373.89 lb/in 498.84 lb/in 504.07 lb/in

Table 5.4: Comparison of theoretical and FEA results

Method/Model Value (lb/in) Error(%)

Present analytical solution 821.74 64.73

Winkler 474.43 4.9

Allen 553.27 10.9

Plantema 515.32 3.3

Hoff and Mautner 551.70 10.60

Niu and Talreja 566.13 13.49

Polynomial equation 887.58 77.93

The number of elements in the thickness direction of face-sheets is four when the 2D

solid element is chosen.

Similar to the beam element scenario, both edge wrinkling and wrinkling are found

when the rotational freedoms of the end nodes are enabled, as shown in Figure 5.6.

When the rotational freedoms of the nodes at ends are constrained, the edge wrinkling

disappears and the critical wrinkling mode is shown in Figure 5.7.

The results from the FEA model using 2D solid elements for face-sheets are com-

pared with that from testings, and they are found close, Table 5.5. The critical loads

are also compared when MPC and 2D solid elements for face-sheets are used, Table
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(a) Edge wrinkling (b) Wrinkling

Figure 5.6: Illustration of edge wrinkling and wrinkling (2D solid elements for

face-sheet)

Figure 5.7: Wrinkling mode with MPC (2D solid elements for face-sheet, rotation

disabled)

5.6. Taking the value of winkling (rotation enabled) as a reference, the comparison

of FEA and analytical results are presented in Table 5.7.

In a summary, the element types of face-sheets have a very small effect on the

critical wrinkling load. Whether beam elements or 2D solid elements are used, the ef-

fect of boundary conditions is the same and significant. The edge wrinkling is critical

for both element types. When the rotational freedoms of the nodes at two ends are

disabled, the boundary conditions are actually clamp-clamp, so that the correspond-

ing critical load is the highest. When 2D solid elements are implemented, the FEA

result are more accurate because smaller errors are found when they are compared
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Table 5.5: Comparison of FEA with testing results (2D solid element for the

face-sheets)

FEA (MPC, rotational freedoms of end nodes enabled) testing Error (%)

384.38 lb/in 385.67 lb/in 0.33

Table 5.6: Comparison of different critical loads using MPC (2D solid element for

the face-sheets)

Edge wrinkling Wrinkling (rotation enabled) Wrinkling (rotation disabled)

384.38 lb/in 522.89 lb/in 526.88 lb/in

with analytical and testing ones. Ignoring the distance between the centerline of skins

and interface may be the reason why the beam element is less accurate.

5.4.3 Wrinkling of sandwich structure with laminated face-

sheets

Besides the sandwich structure with Aluminum face-sheets, sandwich panels with

carbon fibre vinylester face-sheets are chosen for the comparison between testing and

FEA results. The face-sheet was laminated using four unidirectional layers in the

stacking sequence [0/90]s, resulting in a total thickness of approximately 1 mm. The

material properties of the lamina are shown in Table 5.8. In the test, carbon fibre

laminate tabs of 2mm thick and 25mm wide were bonded to the two ends of the

specimen. The specimens were placed between two plates, one of which was fixed

and the other was allowed to move to compress the sandwich panel. Divinycell H-
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Table 5.7: Comparison of analytical and FEA results (2D solid element for the

face-sheets)

Method/Model Value (lb/in) Error(%)

Present analytical solution 821.74 57.15

Winkler 474.43 9.27

Allen 553.27 5.81

Plantema 515.32 1.45

Hoff and Mautner 551.70 5.51

Niu and Talreja 566.13 8.27

Polynomial equation 887.58 69.75

grade foams were used as core materials. The geometrical parameters of the chosen

specimen are demonstrated in Table 5.9 [2].

Table 5.8: Material properties of the carbon-vinylester lamina [2]

Properties Values

E1 (GPa) 107

E2 (GPa) 15

G12 (GPa) 4.3

ν12 0.3

ν21 0.043

tf (mm) 0.25
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Table 5.9: Geometrical parameters and material properties of the composites

sandwich panel

Geometries and properties Values

Total thickness of sandwich beam, H (mm) 52

Thickness of facing, tf (mm) 1

Thickness of core, tc (mm) 50

Length of sandwich, L (mm) 200

Elastic modulus of H30, Ec (MPa) 20

The 2D solid elements are used to model the laminate face-sheets. There are four

elements in the thickness direction of the face-sheet, and the properties of the lamina

are assigned to the four layers of elements according to the laminate stacking se-

quences. The finite element model resembles the test setups with least simplification.

The two tabs bonded in to the specimen in the experiment are also considered in the

FEA model. The plates used to compress the specimen in the test are modeled by

two rigid surfaces. The wrinkling mode from FEA is shown in Figure 5.8.

Figure 5.8: Sandwich panel with laminated composites face-sheet
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5.4.3.1 Comparison of analytical, FEA and testing results

The FEA result is compared with the testing result, as shown in Table 5.10. It

is found that the FEA model over predict the results by 23.94%. The error may

come from the simulation or the testings. To figure out the possible reasons for the

discrepancies, the FEA result is further compared with analytical ones, as shown in

Table 5.11. Except for the Winkler model, all the other models yield high wrinkling

loads than the testing result. It is worth to mention that Plantema’s model and the

model of Hoff and Mautner yield results very close to that of FEA.

Table 5.10: Comparison of FEA with testing results

FEA Testing Error (%)

219990 (N/M) 177500 (N/M) 23.94

Table 5.11: Comparison of analytical with FEA results

Method/Model Value (N/M) Error(%)

Prisent analytical solution 221700 0.78

Winkler 128000 41.82

Allen 183150 16.75

Plantema 214070 2.69

Hoff and Mautner 229180 4.18

Niu and Talreja 190180 13.55

Polynomial equation 239470 8.85
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In [2], the Plantema’s model was chosen as analytical criteria, and the testing

results were lower compared with that from Plantema’s model. The FEA model in

this paper and Plantema’s model have close results. It is safe to conclude that the

lower testing result was resulted by the geometrical imperfection of the sandwich

panel or other error from testings. Meanwhile, the FEA model is demonstrated to be

reliable in predicting the wrinkling load.

In the section 5.4.2, the Winkler model predicts the critical wrinkling load accu-

rately while the analytical solution presented in this paper is much higher. However,

in this section, the analytical solution presented in this paper is close to the FEA

result while the Winkler model yields much lower prediction. The reason for this dis-

crepancies is that the assumption of Winkler elastic foundation to represent the core

material is over-simplified. Winkler Model can only accurately predict the wrinkling

load for sandwich structure of specific face-sheet to core thickness ratios, as demon-

strated in a plot in [36]. As mentioned earlier, the critical wrinkling stress proposed

in this paper is equal to
√

3 times of that in [36], which means the present analytical

solution has the same limitation as the Winkler model.

5.5 Discussion and conclusion

The analytical solution and finite element analysis are applied to investigate the

wrinkling of sandwich structure. A new deformation function is proposed for the

wrinkling shape of face-sheets and corresponding critical wrinkling load is derived. In

the finite element simulation, the effect of boundary conditions and the element types

of face-sheets are considered and compared. For the finite element analysis, the face-
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sheets of sandwich structures could be isotropic material or laminated composites.

The proposed analytical solution and FEA results are compared with that of testings

and other classic analytical models.

It is found that the analytical solution presented in the paper cannot always

accurately predict the critical load. The accuracy is dependent of the geometries of

sandwich structures. The application of the Winkler elastic foundation to represent

the core is the reason for the limitation. For FEA, the rotational freedoms of end

nodes are significant in achieving accurate simulations. When the ends are allowed to

rotate freely, edge wrinkling is critical for that specimen. In the same model, critical

wrinkling loads can be found when the edge wrinkling is skipped. The wrinkling

can also be obtained by constraining the rotations of the two ends of the sandwich

structure. The FEA results are close to that from Allen’s, Plantema’s, Hoff and

Mautner’s, and Niu and Talreja’s models. Both beam and 2D elements are acceptable

to model face-sheets, yet 2D elements give more accurate results.

For the sandwich panel with laminated composites face-sheets, the FEA model

resembles the actual testing setups and the specimen used. Although the FEA result

is higher compared to the testing one, it is verified by the other well-known analyt-

ical models. The lower testing load comes from the geometric imperfections of the

sandwich structure or other sources of errors during the testing.
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Chapter 6

Conclusions

This section is divided into two parts. The first part reviews the problems solved in

the three papers and summarizes the methods and theories. The second part proposes

possible future work based on the research finished in the papers.

6.1 Summary

The thesis accomplished the feasibility study of composites sandwich structure, web-

core sandwich structure especially, for large ship structure. The cost estimation

method for composites structure manufacturing was proposed. The buckling phe-

nomenon of web-core sandwich structures was studied. The finite element analysis

simulation was implemented to facilitate the sandwich structure wrinkling research .
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6.1.1 Cost estimation of web-core sandwich structure manu-

facturing

The vacuum assisted resin transfer molding (VARTM) method was selected for the

manufacturing of large web-core sandwich structure. The specific process steps were

presented. The method and framework in [6, 13, 14] were used and extended in

the thesis. Due to the lack of ‘first order dynamic model’ constants for the resin

infusion time estimation, a method to estimate VRATM resin infiltration based on

resin transfer molding (RTM) was used to solve the problem. The manufacturing

cost, structure strength and stiffness were compared between the web-core composites

sandwich hatch cover and conventional steel hatch cover. The potentials of using

composites sandwich structures were revealed.

6.1.2 Buckling web-core sandwich structure

Different from the buckling of conventional sandwich beam or plate, the buckling

wave shape of web-core sandwich structures is usually non-sinusoidal because of the

effect of the web. The web was simplified as simply supported or clamped end in

some research such as [53, 71]. In the thesis, the web was represented as rotational

spring end and the core was represented as the Pasternak foundation. The variational

iteration method (VIM) was used to investigate the effects of web and core on the

critical buckling load. The approximation results from VIM was verified by the exact

results. The VIM was then used in the practical web-core ship structure and design

suggestion was provided.
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6.1.3 Finite element simulation for the wrinkling of sandwich

structure

Finite element simulation was implemented in the prediction of sandwich structure

wrinkling. The sandwich structures with both isotropic and composites face-sheets

were covered in the thesis. The effects of different boundary conditions were stud-

ied. The finite element analysis simulation results were compared with both existing

testing and theoretical results.

6.2 Future work

Mathematical models for the estimation of fabrication time of web-core sandwich

structure were presented in Chapter 3. The estimated time has not been validated

by experiments. As an extension of the work in Chapter 3, experiments to measure

the time of each fabrication step are needed. Further more, the web-core sandwich

structure built in the time measurement experiments can be used as specimen for

mechanical performance tests.

In Chapter 4, the two Pasternak parameters were cited from the work of [53]. The

two parameters were modified based on the finite element analysis simulation results.

Different expressions for the Pasternak foundation parameters can be found in liter-

ature. Therefore, special attention should be paid to choose the proper expressions.

Besides, more rigorous derivations of the parameter expressions are of significant, es-

pecially when the wrinkling shape is non-sinusoidal. Moreover, finite element analysis

simulation can be carried out to validate the analytical solutions in the chapter.
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For the finite element analysis simulation of sandwich structure wrinkling, the

effects of boundary conditions and face-sheets elements were investigated in Chap-

ter 5. Compared to the whole structure model, another method, the periodic model,

was used in the literature [41, 43]. It will be interesting to compare the methods

and their results. The available testing results regarding sandwich wrinkling are lim-

ited. Disparities are commonly found between theoretical and testing results. More

sophisticated testings are expected to be carried out.

To conclude, the wrinkling phenomenon is still an essential consideration in the

design of sandwich structure. The development of complex sandwich structure makes

it more difficult to predict the wrinkling failure. More efforts are needed for the new

theoretical modeling, advanced finite element analysis simulation and testing with

innovative devices and technologies.
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