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Abstract

Brillouin Light Scattering has been used for the first time to probe surface and bullk

acoustic phonons in the transition metal dichalcogenides MoS2, MoSe2 and WS2.

Rayleigh surface and transverse bulk acoustic phonon velocities were obtained from

the Brillouin peak frequency shifts. Rayleigh velocities were 1690 ± 70 m/s, 1630 ±

40 m/s, and 1430 ± 50 m/s for MoS2, MoSe2, and WS2, respectively. The Rayleigh

surface phonon velocities are similar to those found for other transition metal dichalco-

genides. The transverse bulk acoustic modes propagating approximately along the z

direction, were observed for WS2 and for MoS2 and were calculated by measuring

the average value of the frequency shift. The transverse velocities were found to be

2430 ± 70 m/s and 3450 ± 100 m/s, respectively. The bulk transverse velocities for

MoS2, and WS2 were found to be ∼ 21 % and ∼ 44 % lower, respectively, than those

of single layer samples determined using first-principle calculations. Moreover, from

transverse acoustic phonon velocities the elastic constants, C44 was determined as 44

± 1 GPa and 60 ± 3 GPa for WS2, and MoS2, respectively. In general, obtained elastic

constants are higher than those obtained from other bulk and single layer studies.

Also, Brillouin peaks due to bulk modes were not seen for either sample of MoSe2

so it was not possible to obtain the bulk velocities and elastic constants for this

material. The extinction coefficient for MoSe2 is much larger than those for WS2 and

MoS2. This could be the reason why no bulk mode was observed in the Brillouin
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spectra of MoSe2.
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Chapter 1

Introduction

1.1 Transition Metal Dichalcogenides Overview

Transition-metal dichalcogenides (TMDCs) are materials that have attracted consid-

erable attention due to their unique structural, optical, elastic, and electronic proper-

ties. TMDCs are materials of the form of MX2 that have a transition metal M, such

as elements of groups IV (Ti, Zr, Hf), V (V, Nb, Ta) and VI ( Mo, W) of the periodic

table of the elements, and a chalcogen X (S, Se, Te), elements located in group XVI

of the periodic table [5]. TMDCs are composed of many layers in which a transition

metal layer is sandwiched between two chalcogen layers, and they are held together

by weak van der Waals forces [6]. Each layer has hexagonal lattice structure [5]. The

nature of the van der Waals forces makes it easy to cleave the planes [7]. However,

the atoms within each layer are held strongly together by ionic-covalent bonding [6].
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TMDCs exhibit packing polymorphism. In the bulk, TMDCs can be crystal-

lized with three different stacking structures. These structures are classified as: 1T,

tetragonal symmetry and octahedral coordination; 2H, hexagonal closed packing and

trigonal prismatic coordination; and 3R, rhombohedral symmetry (see Figure 1.1) [8].

Figure 1.1: Different structures of transition metal dichalcogenides.

Due to a very small band gap, TMDCs have become attractive materials in physics

like graphene and boron nitride [9]. Most semiconducting TMDCs have exhibited a

transition from an indirect band gap at the Γ point to a direct band gap at theK point

of the Brillouin zone when their thicknesses are reduced to a single layer. The band

gap in most semiconducting TMDCs, both in bulk and monolayer, are comparable

to the 1.1-eV gap for silicon [8]. Due to their interesting band gap transformation,

TMDCs are favorable for solar cells and many electronic applications, like nanoscale

field-effect transistors [10]. The ability of these materials to absorb and emit light are

strongly affected by the electronic band structures [8].

In 2D TMDCs layers, transport and scattering of the carriers are confined to the
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plane of the material. The mobility of carriers is affected by different scattering mech-

anisms, which are also seen in other semiconductors like graphene [11]. The carrier

mobility is dependent on the layer thickness, carrier density, temperature, effective

carrier mass, electronic band structure and phonon band structure [4]. Moreover, the

large Young’s modulus of single-layer and multi-layer dichalcogenides sheets make

them attractive semiconductors for flexible electronic and optoelectronic devices, as

well as for composite films [12].

The properties of TMDCs materials are unique and their applications are relatively

new, and it is expanding the area of research rapidly. In this work, we focused on

studying the elastic properties of the three TMDCs: molybdenum disulfide (MoS2),

molybdenum diselenide (MoSe2), and tungsten disulphide (WS2).

MoS2 is one of the interesting family members of TMDCs due to its distinctive

electronic, optical, and catalytic properties. For example, it can be used as a hy-

drodesulfurization catalyst, or a photocatalyst [13]. MoS2 is used in photovoltaic

cells, nanotribology, lithium batteries, and the dry lubrication industry [14]. MoS2

has two different structures. The first one is 2H-MoS2, while the second one is 3R-

MoS2. Both structures have the trigonal prismatic coordination [15]. The 3R-MoS2 is

less dominant and stable in nature; and it transforms to 2H-MoS2 upon heating [16].

Monolayer MoS2 is a direct band gap semiconductor and the photoluminescence in-

tensity increases drastically with decreasing number of layers to one [17].

MoSe2 has attracted lots of interest due to its layered lattice structure and its band

gap energy is well matched with the visible portion of the emission spectrum of the sun

(1-2 eV) [18]. The direct band gap of MoSe2 is 1.5 eV which is close to the optimum

bandgap value of single-junction solar cells and photoelechemical devices. Similar to

other TMDCs, MoSe2 has potential applications as a photodetector, transistor, and

chemical sensor [19].
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WS2 is a member of the TMDCs family [20] and is electronically similar to

MoS2 [21]. WS2 has potential use in low cost photovoltaic cells, solid lubricants,

and as a catalyst [22]. Monolayer WS2 has the highest photoluminescence yield of all

TMDCs studied to date with a very narrow spectral width [23].

1.2 Previous Studies of Elastic Properties of Tran-

sition Metal Dichalcogenides

As mentioned previously, MoSe2, MoS2 and WS2 have attracted ongoing interest

due to their remarkable optical, structural, and electronic properties. These prop-

erties have been increasingly subject to theoretical and experimental investigations

[14,24,25]. Theoretical studies of the elastic properties of TMDCs have also received

attention [26,27]. However, only a few experimental studies of the elastic properties of

these materials have been reported in the literature [28,29]. Since this thesis is mainly

concerned with the elastic properties of TMDCs, the following sections discuss some

of the theoretical and experimental investigations of these properties.

1.2.1 Theoretical Studies

There have been several theoretical methods used for the determination of the elastic

properties of TMDC [27,30,31]. Density functional theory (DFT) and first-principles

calculations are examples of the most common theoretical approaches used in such

determination. Duerloo et al. [26] calculated the band gaps, elastic constants, and

piezoelectric coefficients of monolayer of MoSe2, MoS2 and WS2 using DFT at the

generalized gradient approximation level of theory. Li et al. [32], studied the effcet

of pressure on the electronic structure and elastic properties of MoS2 using first prin-
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ciples calculations. They found that the band gap energy decreases as the pressure

increases. They also mentioned that the elastic constants, Cij, increase when the

pressure increases.

Tunghathaithip et al. [30] used DFT to calculate the lattice constant, energy gap,

and the elastic constants of MoSe2, MoS2 and WS2. In particular, they calculated the

elastic constants C11 and C12 of the aforementioned materials and found that their

DFT-calculated elastic constants were in good agreement with those reported by

Duerloo et al. [26] calculated with ab-initio approach. Peelaers et al. [33] measured

the bulk elastic constants of MoS2 theoretically by Hybrid-DFT. They compared

their elastic constants with those obtained from neutron scattering experiments. The

authors claimed that there was good agreement between C11, C33 and C44 from these

two methods, while some discrepancies were observed for C22. Zeng et al. [34] also

measured the band structure and elastic constants (i.e, C11, C12 and C44) in both

monolayer and bilayer structures of MoSe2, MoS2 and WS2 by first-principles study.

They found that WX2 compounds, (X = O, S, Se, Te) have greater elastic constants

values than those of MoX2 compounds.

Çakır et al. [27] performed first principles-based quasi-harmonic approximation

calculations to characterize the mechanical and thermal properties of MX2 monolay-

ers, where X = O, S, Se, Te. Similar to the results obtained by Peelaers et al. [33], the

elastic constants C11 and C12 were found to decrease as the number of chalcogenide

layers increases. They also found that in each chalcogenide group, the metal became

stiffer as the row number in the Periodic Table of the metal atom increases. The au-

thors also suggested that the desirable mechanical and thermal proprieties of TMDCs

materials indicate the potential of using such materials in nanoelectronic applications.

The elastic properties of 2H-and 3R-WS2 were investigated with first-principles

calculations while the pressure varied from 0 to 20 GPa by Feng et al. [35]. They found
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that both 2H- and 3R-WS2 at 0 GPa have large elastic anisotropy perpendicular and

parallel to the layers. Also, they found that the elastic anisotropies in compressibility

and shear became weak for both structures with increasing pressure. The elastic

properties of 2H-MoS2 was studied theoretically by [36]. They used periodic a Hartree-

Fock method to measure the lattice constants and C11, C33, C12, C13, and C44. Ref [37]

also used Hartree-Fock and DFTmethods to calculate the same parameters, the lattice

constants and C11, C33, C12, C13, and C44 of 2H-MoS2.

Acoustic phonons in TMDCs have also been studied theoretically. For example,

Gu et al. [1] used the first-principles-driven phonon Boltzmann transport equation ap-

proach to calculate the lattice constants and the sound velocities of the three lowest

phonon branches (longitudinal acoustic (LA), transverse acoustic (TA) and flexural

acoustic (ZA)) of single layer TMDCs including MoSe2, MoS2, and WS2. Kaasbjerg

et al. [4] used first principles studies and measured phonon-limited mobility, electron-

phonon interactions, deformation potentials, transverse (TA) and longitudinal (LA)

sound velocities of single-layer MoS2 above 100 K. Jin et al. [2] calculated drift ve-

locities of MX2 (M = Mo, W; X = S, Se) by a first-principles calculation of carrier-

phonon interaction combined with the full-band Boltzmann equation. The electronic

band structure and three acoustic and six optical modes of single layer MoSe2 were

obtained theoretically by Horzum et al. [3]. Phonon group velocities of MoSe2, MoS2,

and WS2 were calculated by Muratore et al. [38]. They studied the effect of domain

size on phonon scattering, thermal conductivity, and group velocity of the mentioned

materials. The acoustic velocities of MoSe2, MoS2, and WS2 were also measured by

full-potential local-orbital code [39].
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1.2.2 Experimental Studies

As stated previously, there have been only a few experimental studies of the elastic

properties of TMDCs. One of the experimental techniques for the measurement of the

in-plane stiffness and breaking strength of a suspended monolayer and bilayer of MoS2

is nanoindentation using an atomic force microscope (AFM). In the study reported by

Bertolazzi et al. [40] it was found that a monolayer MoS2 has exceptional mechanical

properties comparable to stainless steel. In-plane stiffness of monolayer and bilayer of

MoS2 were measured and found to be 180±60 Nm−1 and 270±70 Nm−1, respectively,

while the Young’s modulus was 270±100 GPa, close to the Young’s modulus of MoS2

nanotubes (230 GPa), bulk MoS2 (238 GPa), and steel (210 GPa). Feldman [41] used

neutron scattering and X-ray measurements of the linear compressibilities of 2H-MoS2

and 2H-NbSe2 to obtain the elastic constants of these materials. They compared their

results with results from model predictions of C33 and C44 and found good agreement

between theoretical and experimental data.

Skolnick et al. [28] reported ultrasonic measurements of the transverse and longi-

tudinal velocities of sound in 2H-NbSe2 and TaS2 at temperatures varying from 4 K

to 220 K. Bhatt et al. [42] demonstrated the use of Raman spectroscopy to investigate

the anharmonic nature of phonons in TMDCs and found that these materials do not

undergo phase transitions at high-pressure and low-temperature range.

Brillouin scattering has also been used in the investigation of the elastic properties

of TMDCs materials. This technique was used by Karanikas and Sooryakumar [43]

to measure the elastic constants of hafnium disulfide (HfS2). The six independent

elastic constants C11, C12, C13, C14, C33 and C44 were extracted from bulk phonon

velocities. Harley and Fleury [44] conducted Brillouin scattering studies to investigate

the velocities of surface and bulk acoustic waves in 2H-NbSe2 and TaS2. Brillouin

spectroscopy was also used by Akintola et al. [29] to study acoustic phonons in WSe2.
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The authors were able to obtain a Rayleigh surface phonon velocity for WSe2 of 1340

± 20 m/s.

1.3 Motivation

In this work the elastic properties of MoSe2, MoS2, and WS2 are, for this first time,

experimentally investigated using Brillouin light scattering. The main focus of this

work is the determination of the acoustic phonon velocities in MoSe2, MoS2, and

WS2 at room temperature which subsequently allows for the estimation of one elastic

constant. This work has been motivated by the fact that TMDCs materials, specif-

ically MoSe2, MoS2, and WS2, have outstanding physical properties, making such

materials to be widely considered in practical applications [45]. For example, Pu et

al. [46] demonstrated the use of atomically thin MoS2 in transistor applications which

is owing to its outstanding mechanical properties such as flexibility and stretchability.

Wang et al. [47] also discussed the possibility of using TMDCs materials in energy

conversion and storage fields. The applicability of these materials was also extended

to include sensors, catalysis and Li-ion batteries [48, 49]. In order for these mate-

rials to successfully compete with existing technologies, a deeper understanding of

their properties is necessary. In particular, knowledge of the elastic properties, from

which other mechanical properties such as Young’s modulus and compressibility can

be determined, is essential for the integration of TMDCs materials into electronic

and optomechanical device applications [50]. The results obtained in this work could

also be compared with the results obtained from other theoretical and experimental

studies of elastic properties of TMDCs. This comparison would be very helpful to

investigate the reliability and accuracy of theoretical models and other experimental

approaches for determination of elastic properties of TMDCs.
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1.4 Scope

As mentioned, this thesis is mainly concerned with employing the Brillouin light

scattering technique to investigate surface and bulk acoustic phonons in MoSe2, MoS2,

and WS2. Chapter 2 provides an introduction to elasticity theory and the theory of

Brillouin light scattering. In Chapter 3, the experimental techniques and sample

preparation are discussed in detail. Chapter 4 presents the results of the Brillouin

light scattering experiments on MoSe2, MoS2, and WS2. A detailed discussion of these

results is also given in this chapter. Finally, a summary of the work presented herein

and concluding remarks about the findings of this work are provided in Chapter 5.
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Chapter 2

Theory

2.1 Elasticity Theory

It is a well-established fact that solid materials undergo a change in volume or shape

(i.e. deformation) under the influence of applied force. This deformation alters the

state of equilibrium in which material molecules or atoms are arranged before defor-

mation. From a mathematical point view, this alteration results in the displacement

of a point ~r in a solid from its equilibrium position to a new position. The equilib-

rium and deformed state of a point in a solid body can be defined by the displacement

vector ~u [51]:

ui = Ri − ri (i = x, y, z) (2.1)

where ~R is a vector defining the new position of the deformed point and ~r is the

equilibrium position vector. For a given point in the medium where ~r is known,

determination of the displacement of this point is possible when the vector ~u is given.

In the case where a body experiences a rigid motion in which the relative displacement

of points in the solid is not observed, no strain would develop in the solid. This

indicates that the body was not deformed and thus it will not exhibit its elasticity [52].

10



The physical property termed elasticity is a description of the material’s response

to an applied force. Accordingly, materials are generally categorized into elastic and

inelastic materials. The former term refers to a material that returns to its original

shape and volume after the applied force has been removed. The latter type describes

materials which experience a change in shape even after the removal of the external

force.

The fundamental mathematical formula that relates the stress and strain of a

deformed material was established by Hooke and is written as:

σij = Cijklεkl (2.2)

where σij and εkl, respectively, represent the second rank stress and strain tensors, Cijkl

is the fourth rank elasticity tensor whose components are the elastic constants. Be-

cause both stress and strain are symmetric tensors (σij = σji and εkl=εlk) their matrix

components (3×3) can be reduced to a six element column matrix (6×1). Symmetry

considerations can also reduce the number of the elastic constants in the elastic ten-

sor from 81 into 36, allowing Hooke’s law to be written in a reduced matrix form as

follows



σ1

σ2

σ3

σ4

σ5

σ6



=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε1

ε2

ε3

ε4

ε5

ε6



(2.3)

where the Voigt notation (11→1, 22→2, 33→ 3, 23=32→4, 31=13→5, 12=21→6)
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has been used.

The number of elastic constants characterizing a material depends on its crystal

structure. Cubic crystals, for example, have three elastic constants (e.g. C11, C12, C44)

whereas hexagonal-structured materials are described by six elastic constants (C11,

C12, C13, C33, C44, and C66) . Of these constants, five elastic constants are independent

since C66= 1
2(C11-C12). For the materials used during the course of this thesis, which

are a family of transition-metal dichalcogenide materials, their hexagonal structure

make the number of the independent elastic constants five as mentioned above. In

this case, the elastic constants tensor takes the form [52]:

C =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66



(2.4)

In Brillouin scattering, the long wavelengths of surface and bulk acoustic waves

compared to the dimensions of the primitive cell make it possible to consider these

waves as sound waves in a continuous medium [51]. As a result, the equation of

motion for these waves can be expressed as:

ρ(d
2ui
dt2

) = Cijkl(
d2ui
dxjdxk

) (2.5)

where ρ is the material density and ui is the ith component of the displacement vector.
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Figure 2.1: Direction cosines of n̂.

For plane waves, this displacement vector is given by:

~ui = uie
i(~k·~r−wt) (2.6)

By substituting equation (2.6) into equation (2.5), the Christoffel equation from

which the phase velocities of all possible wave modes can be computed is obtained as

follows:

ρv2δij − Cijklnjnk = 0 (2.7)

where ρ is the material density, v is the phonon velocity, δij is the Kronecker delta, and
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n̂ is a unit vector that points in the direction of propagation. The elastic constants

of a crystal are related to the propagation velocities of the acoustic waves and can be

evaluated by solving the following equation :

det | Γij − ρv2δij |= 0 (2.8)

where Γij = Cijkl nj nk. This equation results in three real and positive eigenvalues

ρv2 for three different modes (i.e. two quasi-transverse and one quasi-longitudinal).

For a phonon propagating in an arbitrary direction ~n in a hexagonal anisotropic solid,

the Christoffel equation (2.8) can be expressed as :


C11n2

x+C66n2
y+C44n2

3−ρv2 (C12+C66)nxny (C13+C44)nxnz

(C12+C66)nxny C11n2
x+C66n2

y+C44n2
3−ρv2 (C13+C44)nynz

(C13+C44)nxnz (C13+C44)nynz C44n2
x+C44n2

y+C33n2
3−ρv2

 = 0 (2.9)

For propagation along z direction [001], where nx = ny = 0, the Christoffel equation

is expressed as [53]:


C44n

2
z − ρv2 0 0

0 C44n
2
z − ρv2 0

0 0 C33n
2
z − ρv2

 = 0. (2.10)

From Equation (2.10), it can be realized that there are only two elastic constants

C33 and C44. Along this direction, the first and second plane waves are transverse

polarized along x =[100] and y =[010] having the same velocity which is given by

vT =
√
C44

ρ
. (2.11)

The third wave is a longitudinal wave polarized along z =[001] with a velocity

14



vL =
√
C33

ρ
. (2.12)

2.2 Light Scattering

Brillouin light scattering (BLS) is the inelastic scattering of monochromatic laser

light by acoustic phonons in the GHz frequency range [54]. The main use of Brillouin

scattering is to determine acoustic phonon velocities and elastic properties of mate-

rials [55]. The scattering event can be described in terms of energy and momentum

conservation laws. The conservation equations may be written as:

~ωi ± ~ω = ~ωs (2.13)

~~ki ± ~~k = ~~ks (2.14)

where ωi, ωs, and ω are the angular frequencies of the incident and scattered photons

and acoustic phonons, respectively. ~ki, ~ks, and ~k are the wavevectors of incident and

scattered photons and acoustic phonons, respectively. From an energy point of view,

one can notice that the scattered light changes its angular frequency from ωi to ωs

by an inelastic interaction, in which a photon can be either created, known as Stokes

process, or annihilated, known as anti-Stokes process. In Stokes scattering, (subtrac-

tion in equations (2.13) and (2.14)) the photon creates a phonon by transferring the

momentum to atoms of the sample, therfore it loses momemtum and energy. In anti-

Stokes scattering, (addition in equations (2.13) and (2.14)) the photon annihilates an

existing phonon, hence its energy and momentum increase [56]. These processes are

shown in Figure (2.2).
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Figure 2.2: Schematic of the Stokes scattering (creation) and anti-Stokes scattering
(annihilation).

In a solid there are two different mechanisms by which the photon can be scattered

by acoustic waves, namely the bulk elasto-optic and the surface ripple mechanisms.

The former occurs in the bulk, while the later occurs at the surface. In the elasto-optic

mechanism, the coupling between the incident and scattered light occurs due to the

acoustic modulation of the dielectric constant of the sample [57]. In the surface ripple

effect, due to the dynamic acoustic deformation of the surface, only the wavevector

component that is parallel to the surface is conserved; and the light is scattered from

the surface. There are two types of acoustic modes named as bulk and surface modes,

detectable by Brillouin scattering [58]. In opaque materials, due to an increase in the

imaginary part of the refractive index (extinction coefficient), the contribution from

surface ripple effect dominates over the contribution from elasto-optic mechanism.

In general, the spectrum of the scattered light has information on both bulk and

surface acoustic phonons. In this work, experiments were conducted in 180◦ backscat-
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Figure 2.3: Schematic of Brillouin scattering geometry, where ~kr, ~ki, and ~ks are the
reflected, the incident and scattered photon wave vectors, θi and θs are the angles that
the wave vectors of the incident and scattered light make with the surface normal. ~qB
and ~qR are bulk and surface phonon wave vectors. In backscattering geometry θi '
θs .

tering geometry. This geometry is shown in Figure (2.3).
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2.2.1 Scattering from Bulk Modes

As can be seen in Figure (2.4), the magnitude of the bulk phonon wavevector ~qB can

be calculated by the following equation

q2
B = (2πν

v
)

2
= k2

i + k2
s − 2~ki · ~ks (2.15)

The phonon frequency, ν, is several orders of magnitude smaller than νi and νs. This

means that νi ≈ νs and therefore ki ≈ ks. Using the cosine rule equation (2.15) can

be written as

q2
B = 2ki2(1− cos θ) = 4k2

i sin2 θ

2 (2.16)

or

qB = 2ki sin
θ

2 (2.17)

where θ is the scattering angle (here equal to 180◦).

The angular frequency of a bulk phonon, ωB, is given by

ωB = 2πfB = vBqB, (2.18)

where fB is the phonon frequency and vB is a bulk acoustic phonon velocity (either

quasi-transverse or quasi-longitudinal). The magnitude of the incident light wavevec-

tor is given by ki = 2nπ
λi

and using equation (2.18), the frequency of the bulk modes

is written as

fB = 2nvB
λi

. (2.19)
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Figure 2.4: Relationship between incident light wave vector, ~ki, scattered light wave
vector, ~ks, and phonon wavevector, ~qB.

2.2.2 Scattering from Rayleigh Surface Modes

In scattering from surface modes, the perpendicular component of wavevector con-

servation condition is not valid anymore. The reason for that is because the phonon

amplitude decreases to zero at a short distance below the surface [59]. In this case

one should replace equations (2.13) and (2.14), with

qR = ki sin θi + ks sin θs = ki(sin θi + sin θs) (2.20)

where θi is the angle of the incidence and θs is the angle that the scattered light makes

with the normal to the surface (see Figure 2.3), and ki and ks are the wavevectors of the

incident and scattered light, respectively. Using the fact that in a 180◦ backscattering

geometry, θi ' θs, equation (2.20) may be written as :

qR = 2ki sin θi. (2.21)

Also, the angular frequency of the Rayleigh surface phonon, ωR, is given by
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ωR = 2πfR = vRqR (2.22)

where fR is the phonon frequency and vR is the surface acoustic phonon velocity. By

substituting ki = 2π
λi

in equation (2.21), equation (2.22) can be written as

fR = 2vR sin θi
λi

. (2.23)

Equation (2.23) gives the frequency of the Rayleigh surface phonon.

If incidenct light wavelength, λi, and the refractive index, n, are known then equa-

tions (2.19) and (2.23) can be used to determine acoustic mode velocities. Figure (2.5)

shows a schematic representation of a typical Brillouin spectrum. The peaks due to

the surface, or Rayleigh peaks, are labeled as R, where the frequency shift is depen-

dent on the angle of incidence according to Eq. (2.23). Also, the peaks from the bulk,

including two quasi-transverse and one quasi-longitudinal, are shown as QT and QL,

respectively. All the peaks are located symmetrically on both sides of the central

elastic peak, while the left and the right hand side peaks correspond to Stokes and

anti-Stokes processes, respectively. The velocity of the quasi-transverse mode and the

velocity of transverse mode are equal if they are travelling along z direction. Phonon

probed in this work at small θi within 10◦ in direction close to z direction.
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Figure 2.5: Schematic of a Brillouin spectrum. Peaks appear on both sides of the
central peak, corresponding to Stokes and anti-Stokes scattering. R : Rayleigh surface
mode peak, QT : quasi- transverse bulk mode peak,QL: quasi-longitudinal bulk mode
peak.
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Chapter 3

Experimental Details

3.1 Introduction

In this chapter the process used to synthesize the crystals of MoSe2, MoS2 and WS2

is presented. A detailed desciption of the optical system used for the Brillouin light

scattering experiments is also included.

3.2 Sample Fabrication

The samples of MoSe2, MoS2 and WS2 used in this work were made by the Keppens

research group at The University of Tennessee, Knoxville. In short, MX2 polycrys-

talline compounds were first synthesized from stoichiometric mixtures of tungsten

(99.999 %), molybdenum (99.999 %), selenium (99.999 %), and sulfur (99.9995 %)

powders. Each mixture was sealed in a silica tube under vacuum. The mixture was

then heated to 900◦C over the span of 4-5 days. It was then kept at room temperature

for 7 days to cool down.

A chemical vapor transport method was used to grow single crystals of the resulting

polycrystalline compounds using a transport agent of iodine. Silica tubes containing
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polycrystalline MX2 powder and roughly 17.5 mg of iodine were sealed under vacuum

and heated at a rate of 1◦ C/minute in a tube furnace to achieve a 50◦ C temperature

gradient from the hotter end of the tube (950-1050◦C) to the colder end where crystal

growth occurs (900-1000◦C). This temperature profile was maintained for 5-10 days,

at which point the tube was allowed to cool down and the samples removed. In this

work, two samples for each MoS2 and MoSe2 were used. There are no differences

between the two samples of the same material.

The samples were thin flakes approximately hundred micrometers thick and about

5 millimeter in diameter. They were silvery black in colour. The surface plane is the

basal plane of hexagonal crystal. Figure 3.1 shows photographs of the three material.

Figure 3.1: Photograph of MoSe2, MoS2 and WS2 crystals used in this study.

3.3 Optical System

Figures 3.2 and 3.3 show a schematic diagram and a photograph of the optical setup

used in this project, respectively. The light source was a Coherent Verdi-V2 diode

pumped Nd:YVO4 laser, operating on second harmonic with wavelength of 532 nm.

The bandwidth of the laser beam is ∼10 MHz and it is vertically polarized. For

the current work, the laser beam power was set to 60 mW. The laser beam first

passes through a variable neutral density filter (VNDF1). The VNDF filters prevent
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Figure 3.2: A: Schematic diagram of the experimental setup used for Brillouin light
Scattering where N d: YVO4 -laser, HWP-half wave plate, BSP- beam splitter, M-
mirror, F-filter,VNDF- variable neutral density filter, A-aperture, L-lens,P-prism, f-
foucsinglens, TFP-1-tandem Fabry-Perot interferometer.

damage to the sample by reducing the beam power. A half wave plate (HWP) was

used to rotate the plane of polarization from vertical to horizontal. The horizontally

polarized beam goes through a beam splitter (BSP) where a small fraction of its power

is reflected to mirror M2 and directed to the tandem Fabry-Perot interferometer TFP-

1. This beam is used as reference beam in order to maintain the mirror alignment for

both interferometers. Also, it is used to prevent the saturation of the photomultiplier

tube by means of a shutter system. It occurs by providing a beam to the FPI while

scanning over the region of the spectrum in which the elastic scattering happens nears

0 GHz frequency shift. The scattered light from the sample is very strong and it is

blocked by a shutter on the FPI entrance pinhole.

The light transmitted through the beam splitter (BSP) hits mirror M1 and is then

directed through filters and VNDF3 to the prism P. The beam then undergoes total

internal reflection in the prism to change its direction by 90◦ and finally, the light is
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Figure 3.3: Photograph of Brillouin Scattering System.

focused on the sample S using lens L1 with focal length of 5 cm. This lens also collects

scattered light from the sample at 180◦ with respect to the incident light. The lens L2,

with focal length 40 cm, is used to focus the scattered light on the adjustable entrance

pinhole of the Fabry-Perot interferometer. The pinhole size used in these experiments

was 450 µm. The scatted light then enters the tandem Fabry-Perot interferometer

TFP-1 to be frequency-analyzed.

In its basic form, a Fabry-Perot Interferometer is composed of two accurately

parallel and plane mirrors, one of which is fixed while the other one is movable.

These mirrors face each other and are separated by a distance L. The reflectivity

of these two mirrors is normally very high (90%). The incident beam on a Fabry-

Perot interferometer undergoes multiple internal reflections between the two mirrors.

Constructive interference for normal incidence occurs when the following condition is

25



satisfied:

mλ = 2L (3.1)

where m is an integer, and λ is the wavelength of the light inside the interferometer

[54]. The resonance frequencies νm of an interferometer are given by [60]

νm = m(c/2L) = mνF (3.2)

where c is the speed of light. νF is the difference between two successive resonant

frequencies and is called free spectral range (FSR) (as shown in Figure 3.4). It is typ-

ically chosen to include the range of frequency where Brillouin peaks due to acoustic

phonons appear. Brillouin shifts in this work are between 10 and 50 GHz and so the

FSR was set to values from 15 GHz to 150 GHz.

Another important quantity related to Fabry-Perot interferometer is the finesse.

The finesse is defined as the ratio of FSR to the full width at half maximum δF of

the central elastic peak:

F = FSR

δF
. (3.3)

The finesse is dependent on the reflectivity and flatness of the Fabry-Perot mirrors.

Finesse is not greater than 100 due to the limitations on the quality of the mirrors.

The higher the finesse, the better the resolution of the Fabry-Perot interferometer.

The Fabry-Perot interferometer used in these studies is a Sandercock type, 6-pass

tandem FPI (see Figure 3.5). In this instrument, two FPIs are operated in tandem to

increase the contrast which allows very weak signals to be observed. An increase in the

free spectral range at a fixed resolution [61] is also achieved using this configuration.

The two interferometers in this system are the same but with a slight difference in

mirror separation.

A slight change in spacing of both interferometers must fulfill the following equa-
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Figure 3.4: The spacing between two adjacent transmission maxima is the free spectral
range FSR.

tion
δL1

δL2
= L1

L2
= 1

cosψ (3.4)

L1 and L2 are the distances between the mirrors in the first and the second interfer-

ometer, respectively, and ψ is the angle between them (as shown in Figure 3.5). In

both interferometers, one mirror is fixed and the other one is movable. The movable

mirrors are positioned on the same platform and are moved simultaneously.

Figure 3.6 shows the path of the light inside the Fabry-Perot interferometer en-

closure. Upon entering the input aperture A1 the light is incident on the mirror M1.

The reflected light from mirror M1 is collected by lens L1 before hitting M2. The

reflected beam from mirror M2 is incident on the first Fabry-Perot Interferometer,

FPI1, and then passes through the aperture A2. The light passes through the second
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Figure 3.5: Schematic diagram of Tandem Fabry- Perot interferometer.

Fabry-Perot Interferometer, FPI2, after being reflected by mirror M3. The light hits

the prism P1 and then reflected toward M4 parallel to the original direction. Mirror

M4 reflects the light back for a third time through the system. This time the light

hits mirror M5, the prism P2, mirror M6, aperture A3 and finally the adjustable

output pinhole. The output pinhole size for this set of experiments was set to 700

µm. The light passes through the two FPIs three time before being transmitted to

the photodetector. The stabilizing control maintains both parallel alignment of the

mirrors as well as the spacing between them. This is carried out by control electronics.

Control electronics applies voltage to piezoelectric crystals to tilt the mirrors in order

to keep them parallel to one another. The FPI is isolated from extraneous vibration

by a vibration isolation unit.
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Figure 3.6: Schematic diagram of optic process inside the Fabry-Perot interferometers
where FPI1 and FPI2 are Fabry-Perot interferometers,P1and P2 are prisms, M1, M2,
M3, M4, M5, and M6 are mirrors, A- aperture, in-input pinhole, out-output pinhole.
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Chapter 4

Results and Discussion

4.1 Introduction

In this chapter, the experimental results obtained with the Brillouin scattering tech-

nique for WS2, MoSe2 and MoS2 are presented. These results of measured velocities

and calculated elastic constants are subsequently discussed in detail and compared

with theoretical and experimental data obtained with different techniques.

In this work, room temperature Brillouin scattering experiments were conducted

on the TMDCs materials at different incidence angles varying from 15◦ to 75◦. Each

spectrum took almost twenty-six hours to collect. For MoS2 and MoSe2, two samples

were investigated, while for WS2 only one sample was available for study. Two different

types of modes were observed by varying the free spectral range, namely the Rayleigh

mode and transverse bulk modes. While the peak due to Rayleigh mode can be

observed at lower free spectral range, the transverse bulk peaks can be found at higher

frequency shifts. Rayleigh surface and transverse bulk acoustic phonon velocities

were obtained from the Brillouin peak frequency shifts. Elastic constant C44 was also

estimated for MoS2 and WS2 from the transverse acoustic phonon velocities and the
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material densities.

Figure 4.1: Brillouin spectra collected from WS2. The free spectral range was set
to 15 GHz. The numbers on the right hand side of the each spectrum indicate the
incident angles.

4.2 Tungsten Disulphide WS2

Figure (4.1) shows Brillouin spectra collected from the sample of WS2 for angles of

incidence ranging from 15◦ to 70◦. The FSR was 15 GHz, corresponding to an in-

terferometer mirror spacing of 7.50 mm. A single Brillouin doublet (labeled R) was

observed for θi > 30◦. As can be seen, the frequency shift of this peak increases with

increasing angle of incidence. The values of the average frequency shift are summa-

rized in Table (4.1), and were measured by averaging the shifts of the Stokes and

anti-Stokes peaks. The uncertainties are estimated based on the difference between

the position of the peak and two channel displacement of the cursor which corresponds
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Figure 4.2: Brillouin spectra collected from WS2. The free spectral range was set
to 50 GHz. The numbers on the right hand side of the each spectrum indicate the
incident angles.

to approximately 0.1 GHz.

In an effort to observe bulk mode peaks at higher frequency shifts, the FSR was

increased to 50 GHz. No additional peaks were observed (see Figure 4.2). A further

increase of the FSR to 150 GHz revealed weak broad peaks at frequency shifts of ∼44

GHz (see Figure 4.3). The shifts of these peaks have only a weak dependence on the

angle of incidence and therefore cannot be due to surface modes. Due to the range

of angles used here was 20◦ to 70◦, the range of directions probed inside the material

was found by Snell’s law to be 3◦ to 9◦. This allows these peaks to be classiffed as

due to bulk modes. These spectra are also shown in Figure (4.4) in order to more

clearly show the bulk modes (labelled T). The values of the average frequency shift are

summarized in Table (4.1), and were measured by averaging the shifts of the Stokes

and anti-Stokes peaks.
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Figure 4.3: Brillouin spectra collected from WS2. The free spectral range was set to
150 GHz. It is obseved that peaks attributed to bulk modes (T) can be noticed.

Figure 4.4: Individual spectrum collected from WS2 at an angle of incident of 50◦

showing T peak. The free spectral range was set to 150 GHz.
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Figure 4.5: Average frequency shift versus sine of incident angle for R and T peaks
in Brillouin spectrum of WS2. The R solid line is the best fit of equation (2.23) to
experimental data. The slope of the line of best fit was used to calculate the Rayleigh
surface velocity for WS2

Using equation (2.19) and knowing the refractive index of WS2 (n = 4.8 at 532

nm [62]), and the frequency shift for θi = 20, ∼ 43.9 GHz, the velocity of this bulk

mode was found to be vT = 2430 ± 70 m/s. This velocity is larger than Rayleigh

velocity and the frequency shift of this mode did not change with the angle of inci-

dence. Also, this velocity is much smaller than any previously measured or calculated

longitudinal velocities found in references [2] [39]. This velocity therefore is likely

that of a transverse mode and it is somewhat comparable with the transverse velocity

found in reference [1], (vT = 3500 m).

Figure (4.5) shows the frequency shifts of the R and T peak versus the sine of the

incident angle for WS2. The frequency shift of the R peak depends linearly on sin θ

which is a characteristic of the Rayleigh surface mode. By calculating the slope of

the line of best fit and using equation (2.23), the velocity of this mode was found to
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be vR = 1430 ± 50 m/s.

Elastic constant C44 may be estimated from the transverse phonon velocity ob-

tained for smallest angle of incidence with respect to the z direction. The reason for

that is the range of angle of incidence, 20◦ to 70◦, results in a very small range of

probed directions inside the material 3◦ to 9◦, and these directions are close to the

z-axis. Using equation (2.11), and knowing the density of WS2 (ρ =7500 kg/m3) [63]

the C44 is calculated to be 44 ± 1 GPa.

4.3 Molybdenum Diselenide MoSe2

Figures (4.6) show Brillouin spectra collected from samples MoSe2-1 and MoSe2-2,

respectively. The FSR was 15 GHz, corresponding to a mirror spacing of 7.50 mm.

As can be seen in both sets of spectra, a single set of Brillouin peaks was observed in

nearly all spectra (labeled R) at θi ≥ 30◦. The frequency shift of these peaks increases

with increasing angle of incidence, which is a characteristic of the Rayleigh surface

mode. The average of the frequency shift for the R peak are measured and reported

in Tables (4.2) and (4.3) for MoSe2-1 and MoSe2-2, respectively.

The Brillouin peaks due to bulk modes are expected to appear at higher frequency

shifts as mentioned before. As a result, the FSR was increased to 50 GHz, correspond-

ing to a mirror spacing of 3 mm, as shown in Figure (4.7) for samples MoSe2-1 and

MoSe2-2, respectively. Even with larger values of FSR, no bulk peaks were observed.
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Figure 4.6: Brillouin spectra collected from MoSe2-1 and MoSe2-2, respectively. The
free spectral range was set to 15 GHz. The numbers on the right hand side of the
each spectrum indicate the incident angle.
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Table 4.2: Stokes (S), anti-Stokes (AS), and average (AVE) Brillouin frequency shift
for Rayleigh (R) mode peak of MoSe2 − 1.

FSR Material
Angle of
Incidence

(◦)

fSR
(±0.1 GHz)

fASR
(±0.1 GHz)

fAV ER

(±0.1 GHz)

15 MoSe2-1

75
70
65
60
55
50
45
40
35
30

5.7
5.6
5.4
5.3
4.9
4.4
4.3
4.1
3.7
3.5

5.8
5.6
5.5
5.3
5.2
4.6
4.5
4.2
3.9
3.5

5.7
5.6
5.5
5.3
5.1
4.5
4.4
4.1
3.5
3.5

50 MoSe2-1

70
65
60
55
50
45
40
35

5.8
5.5
5.5
5.1
4.9
4.6
4.1
3.7

5.6
5.7
5.5
5.2
5.0
4.8
4.0
3.8

5.7
5.6
5.5
5.2
4.9
4.7
4.1
3.8
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Table 4.3: Stokes (S), anti-Stokes (AS) and average (AVE) Brillouin frequency shift
for Rayleigh (R) mode peak of MoSe2 − 2.

FSR Material
Angle of
Incidence

(◦)

fSR
(±0.1 GHz)

fASR
(±0.1 GHz)

fAV ER

(±0.1 GHz)

15 MoSe2-2

70
60
50
40
30

5.2
4.8
4.0
4.0
3.6

5.6
4.7
4.4
4.0
3.7

5.4
4.8
4.2
4.0
3.7

30 MoSe2-2

70
60
50
40

5.3
5.0
5.0
4.3

5.5
4.7
4.7
4.0

5.4
4.9
4.9
4.2

50 MoSe2-2

70
60
50
30

5.3
4.7
4.3
3.9

5.5
4.8
4.1
3.7

5.4
4.8
4.2
3.8
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Figure 4.7: Brillouin spectra collected from MoSe2-1 and MoSe2-2, respectively. The
free spectral range was set to 50 GHz. The numbers on the right hand side of the
each spectrum indicate the incident angle.
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Figure 4.8: Brillouin spectra collected from MoSe2-1 show Rayleigh mode peak and a
second the surface related mode (S). The numbers on the right hand side of the each
spectrum indicate the incident angles.

In these spectra, however, in addition to the peaks due to the Rayleigh surface

mode, a second weak Brillouin doublet due to a surface-related mode was observed

over a shift range ∼18-14 GHz. Also, spectra is shown in Figure (4.8), in order to

more clearly show the surface related mode (labelled S). There appears to be two sets

of peaks in the spectra shown in Figs. 4.7 and 4.8. The feature that looks like a peak

at small frequency shifts is not really a peak at all, but is the shoulder of the central

elastic peak being cut off by the shutter. The average of the frequency shift for this

surface related mode were measured and are reported in Table (4.4).
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Figure 4.9: Brillouin spectra collected from MoSe2 − 2. The free spectral range was
set to 30 GHz. The numbers on the right hand side of the each spectrum indicate the
incident angle.

Table 4.4: Stokes (S), anti-Stokes (AS) and average (AVE) Brillouin frequency shift
for surface-related mode (S) of MoSe2 − 1.

FSR Material
Angle of
Incidence

(◦)

fSS
(±0.1 GHz)

fASS
(±0.1 GHz)

fAV ES

(±0.1 GHz)

50 MoSe2-1

65
55
50
45
40

18.3
17.3
16.0
15.3
14.3

18.3
17.6
16.8
15.7
14.2

18.3
17.5
16.4
15.5
14.3
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Figure (4.9) shows spectra collected from sample MoSe2 − 2 at different angles of

incidence from 20◦ to 70◦ with the FSR set to 30 GHz. The peaks due to the Rayleigh

surface mode was observed. The frequency shift of the Rayleigh surface mode as well

as a second surface-related mode increases linearly with the sine of the incident angle

as shown in Figure (4.10). The velocity of surface-related mode of MoSe2 − 1 was

found to be 5670 m/s.

In an attempt to observe peaks due to bulk modes, spectra were collected from

sample MoSe2-2 at different angles of incidence from 20◦ to 60◦ with the FSR set

to 150 GHz. These spectra are shown in Figure (4.11). Unfortunately, no Brillouin

peaks, other than those due to the Rayleigh mode already identified, were observed

in these spectra. This may be due to the fact that the extinction coefficient of MoSe2

is high (about 1.9) at 532 nm [62]. Also, in the spectrum collected at θi = 30◦ there

is another peak located only on one side of the central elastic peak. The fact that

this peak appears on only one side of the central elastic peak indicates that it could

be due to a Raman mode.
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Figure 4.10: Average frequency shifts versus sine of incident angle for Rayleigh surface
and surface related modes in Brillouin spectra of MoSe2− 1. The solid line is best fit
of equation (2.23) to experimental data. The slope of the line of best fit was used to
calculate the Rayleigh surface velocity for MoSe2-1.

Using the data in Tables (4.2) and (4.3) for MoSe2-1 and MoSe2-2, respectively, the

frequency shifts versus sin θ were plotted and shown in Figures (4.10) and (4.12) for

MoSe2-1 and MoSe2-2, respectively. The frequency shift of R peaks increases linearly

with the sine of the incident angle. The slope of the lines of best fit was used to

calculate the Rayleigh surface velocities for both samples of MoSe2. The Rayleigh

surface phonon velocities of the two samples of MoSe2 were 1660 ± 30 m/s and 1610

± 40 m/s, for MoSe2-1 and MoSe2-2, respectively. Clearly, there is good agreement

between the Rayleigh surface phonon velocities for both samples.

As mentioned above, no peaks due to bulk modes were observed in the spectra

of MoSe2. It was therefore not possible to determine any bulk modes velocities nor

elastic constants for this material.
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Figure 4.11: Brillouin spectra of MoSe2 − 2. The free spectral range was set to 150
GHz. The numbers on the right hand side of the each spectrum indicate the incident
angle.
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Figure 4.12: Average frequency shifts versus sine of incident angle for Rayleigh surface
peaks in Brillouin spectra of MoSe2-2. The solid line is best fit of equation (2.23) to
experimental data. The slope of the line of best fit was used to calculate the Rayleigh
surface velocity for MoSe2-2.
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4.4 Molybdenum Disulfide MoS2

The Brillouin spectra collected from sample MoS2-1 and MoS2-2 at different angles

of incidence varing from 15◦ to 75◦ with the FSR set to 15 GHz are shown in Figure

(4.13). The R peak appeared at low frequency shifts and increased when the angle of

incidence was increased, which is characteristic of the Rayleigh surface mode. There

are no other peaks due to bulk modes in these spectra collected with the FSR set to

15 GHz. The average of the frequency shifts for the R peak were measured and are

reported in Table (4.5) and (4.6) for MoS2-1 and MoS2-2, respectively.

Again, an attempt was made to observe peaks due to bulk modes in this material

by exploring the higher frequency shift regime using an FSR of 50 GHz for both

samples (see Figures 4.14). As can be seen in both sets of spectra, the R peaks were

still present but no bulk modes were observed. A further attempt was made to observe

peaks due to bulk modes in this material by exploring an even higher frequency shift

regime using an FSR of 150 GHz but for only MoS2-1 as shown in Figure (4.15). In

these spectra, the peaks due to bulk modes were observed at frequency shift about ∼

64 GHz, but they were extremely weak and wide, resulting in a large uncertainty in

peak frequency shift (0.5 GHz).
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Figure 4.13: Brillouin spectra of MoS2-1 and MoS2-2, respectively. The free spectral
range was set to 15 GHz. The numbers on the right hand side of the each spectrum
indicate the incident angle.
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Table 4.6: Stokes (S), anti-Stokes (AS) and average (AVE) Brillouin frequency shifts
for Rayleigh (R) mode peak of MoS2 − 2.

FSR Material
Angle of
Incidence

(◦)

fSR
(± 0.1 GHz)

fASR
(± 0.1 GHz)

fAV ER

(± 0.1 GHz)

15 MoS2-2

60
50
40
30

5.8
5.3
3.8
3.6

5.6
5.1
4.1
3.1

5.7
5.2
3.9
3.3

50 MoS2-2
60
50

5.7
5.1

5.7
5.1

5.7
5.1

Using the data in Tables (4.5) and (4.6), the frequency shift of Rayleigh surface

mode versus sin θ was plotted and is shown in Figures (4.16) and (4.17). The slopes

of the lines of best fit were used to calculate the Rayleigh surface velocities for both

samples of MoS2, which are 1750 ± 70m/s and 1630 ± 80m/s, for MoS2-1 and MoS2-

2, respectively. As for MoSe2, good agreement is obtained between the velocities for

these two samples.

The frequency shift of the peaks attributed to the T mode have only a weak

dependence on the angle of incidence and this is a characteristic of a bulk mode. The

transverse bulk mode peaks are labeled as T. The reason for that is the range of angle

of incidence, 20◦ to 70◦, results in a very small range of probed directions inside the

material 1.7◦ to 9◦ and close to the z-axis. The average of the frequency shifts for

these peaks were measured and reported in Table (4.5) and (4.6). Also, bulk velocities

was calculated by using Equation (2.19) and knowing the refractive index (n = 4.9 at

532 nm [64]), which is 3450 ± 100 m/s. Finally, it should be noted that some peaks in

these spectra are so weak that a reliable frequency shift value could not be obtained.
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Figure 4.14: Brillouin spectra collected from MoS2-1 and MoS2-2, respectively, at
various angles of incidence. The free spectral range was set to 50 GHz. The numbers
on the right hand side of the each spectrum indicate the incident angles.
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Figure 4.15: Brillouin spectra collected from MoS2-1 at various angles of incidence.
The free spectral range was set to 150 GHz. The numbers on the right hand side of
the each spectrum indicate the incident angles.
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Figure 4.16: Average frequency shift versus sine of incident angle for R and T peaks
in Brillouin spectra of MoS2-1. The R solid line is best fit of equation (2.23) to
experimental data. The slope of the line of best fit was used to calculate the Rayleigh
surface velocity for MoS2-1

Figure 4.17: Average frequency shift versus sine of incident angle for R peaks in Bril-
louin spectra of MoS2-2. The R solid line is best fit of equation (2.23) to experimental
data. The slope of the line of best fit was used to calculate the Rayleigh surface
velocity for MoS2-2
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Elastic constant C44 may be estimated from the transverse phonon velocity ob-

tained for smallest angle of incidence. Since the range of angles used here was from

20◦ to 70◦, the range of directions probed inside the material was found by Snell’s law

to be from 1.7◦ to 9◦. Using equation (2.11), and knowing the density of MoS2 (ρ =

5060 kg/m3 [63]), C44 was calculated to be 60 ± 3 GPa.

4.5 Discussion

In all spectra of three different materials the Rayleigh surface modes were observed

while the bulk transverse modes were only seen in WS2 and MoS2. Table (4.7) presents

the extinction coefficients and optical penetration depth for these three materials. The

extinction coefficients were caculated using the equation [65] k =
(√

ε21+ε22−ε1
2

)1/2
where

ε1, and ε2 are dielectric constants estimated from reflectivity spectra in reference

[62]. The penetration depth is calculated from d = 1
α

= λ
4πk where d, α, λ and k

are penetration depth, absorption coefficient, wavelength, and extinction coefficient,

respectively. As can be seen in the table (4.7), the extinction coefficient for MoSe2

is much larger than those for WS2 and MoS2. This could be the reason why no bulk

mode was observed in the Brillouin spectra of MoSe2. It is obvious that due to smaller

penetration depth for MoSe2 in comparison with WS2 and MoS2, not much light is

able to penetrate into the bulk of this material and thus the scattering volume would

be largely confined to the surface. Surprisingly, peaks due to bulk modes were also

not observed in BLS experiment on WSe2 [29] even though the optical penetration

depth is slightly larger than that for MoS2.
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Table 4.7: Extinction coefficients of WS2, MoS2 and MoSe2 at 532 nm.

Material Extinction
Coefficient Reference

Bulk Mode
Present in
Spectra?

Optical
Penetration

Depth
(nm)

WS2 0.62 [Present work] Yes 86
MoS2 1.12 [Present work] Yes 37
MoSe2 1.95 [Present work] No 21
WSe2 1.0 [29] No 42
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4.5.1 Acoustic Phonon Velocities

Table (4.8) shows the Rayleigh surface phonon velocities and the transverse acoustic

phonon velocities approximately along the z direction for all materials from the current

study. As can be seen, the Rayleigh surface velocity of MoSe2 is 12% higher than that

for WS2 and also 3% lower than that for MoS2. Moreover, the Rayleigh surface

velocity of MoS2 is higher than WS2. Due to the absence of related theoretical and

experimental studies of the Rayleigh surface velocity of MoSe2, MoSe2, and WS2 it

was not possible to compare our calculated Rayleigh surface phonon velocities with

other results. However, we compared our results of the Rayleigh surface velocity

with other transition metal dichalcogenides in Table (4.8). The study reported by

Harley and Fleury [44] conducted Brillouin scattering to investigate the velocities

of surface and bulk acoustic waves in 2H-NbSe2 and TaS2 at room temperature in

a backscattering geometry. As can be seen, the Rayleigh surface velocity of MoSe2

obtained in this work is similar ( within 3%) to the Rayleigh surface velocity of

2H−NbSe2 in reference [44]. Also, the Rayleigh surface velocity of WS2 is similar

with the study reported by Akintola et al. [29] on Brillouin Scattering study of WSe2

obtained at room temperature in a backscattering geometry, the difference being 6 %.

Table (4.8) also presents bulk acoustic phonon velocities approximately along the

z direction determined in the present work and in previous studies. As mentioned, no

peaks due to longitudinal bulk modes were observed in any of the collected spectra

in this study. Transverse bulk mode peaks were observed for WS2 and one sample of

MoS2, but were not seen in spectra collected from either sample of MoSe2. As can

be seen, the transverse bulk velocity of MoS2, 3450 ± 100 m/s, is higher than that

of WS2, 2430 ± 70 m/s. Due to the difference in atomic mass and bonding stiffness

the three acoustic branches of MoS2 are higher than WS2. As a result, the group

velocity of acoustic phonons in MoS2 are larger than WS2 [1] (the direction of phonon
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Figure 4.18: The transverse bulk acoustic phonon velocity of all materials mentioned
in Table (4.8) versus the molecular mass. 4- ref [1],◦-ref [2], � -ref [3] and + -ref [4]
and � - present work.

propagation is not presented in this ref [1]). Figure (4.18) shows the transverse bulk

acoustic phonon velocities of some of materials in Table (4.8) versus the molecular

mass. There is no obvious trend. Also, the results of the present work show a

decrease in velocity with increasing metal row number in the Periodic Table which is

not consistent with the results in reference [27].

Fortunately, in some theoretical works the transverse bulk acoustic phonon veloc-

ities have been calculated and so one can compare our results with previous studies.

The transverse velocity of WS2 obtained in this work shows a 44% difference from the

value given in reference [1], 3500 m/s. Also, the transverse velocity of MoS2 is in a

reasonable agreement with in-plane transverse velocity measurements by Gu et al. [1]

and Kaasbjerg et al. [4] (16 % and 19 %, respectively). The diference could arise

from the single layer of TMDCs material which they used in their study. Also, Harley

and Fleury [44], observed a weak bulk mode with velocity 5000 m/s in 2H-NbSe2 and
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TaS2. As been discussed no bulk mode was observed in either Brillouin spectra of

sample of MoSe2 in this study.

4.5.2 Elastic constant C44

Table (4.9) presents elastic constant C44 for WS2 and MoS2. This table also shows

some results from other theoretical and experimental studies. In this work the value

of C44 for WS2 was determined to be 44 ± 1 GPa. This value is considerably different

from that obtained by Raman scattering [66] (16 GPa) and also from first principles

calculation [34] (58.63GPa). It is likely that the reason for this large difference between

these studies and the present work is that the former were carried out on single layer

WS2. A first principles study done on bulk WS2 [35] also shows a relatively large

difference with the current results (C44 = 25 GPa). The reason for this is not clear.

The value of the elastic constant C44 is 60 ± 3 GPa for MoS2. The current elastic

constant value is consistent with the calculated value obtained value in reference [34]

(51.43 GPa). This is somewhat surprising become the first principles calculation of

reference [34] were done for a single layer sample of this material. It is worth noting,

however, that the value of C44 obtained for WS2 from reference [34] also shows the

best agreement with the present work. There is a big difference, however, between the

current results and that of reference [33] (18 GPa) and experimentally using neutron

scattering [41], (19 GPa), even though bulk samples of 2H-MoS2 were used. Another

theoretical study [32] reported C44 = 30 GPa for a bulk sample which is about half

of the value obtained in the present work. A theoretical study done by Valentin et

al. [36] used the periodic Hartree-Fock method with different degrees of freedom. Each

degree of freedom results in a different value of C44. The values obtained were 9.11

GPa, 8.74 GPa, and 14.89 GPa. All these values are much smaller than the value

obtained in the current study. The difference could be explained by the different
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number of layers, six or eight layers, used in that study which cannot be considered

as a bulk material. Another theoretical study [37] used the periodic Hartree-Fock and

two DFT different pseudo-potential methods to calculate C44 of MoS2. They found

that C44 is 30 GPa, 26 GPa, and 19 GPa for Hartree-Fock and two DFT pseudo-

potential methods, respectively. The calculations performed in this study where done

on few-layer MoS2 (4, 6, 8 layers) not bulk MoS2, which could again account for

the difference between these results and current study. The last two references, [36]

and [37], did not include the van-der Waalls interactions in their calculations, so that

could be one reason for observed discrepancy. Also, the results of the present work

show MoS2 has greater elastic constant value than the elastic constant value of WS2

which is not consistent with the results in reference [34].

As stated earlier, Brillouin peaks due to bulk modes were not seen for either sample

of MoSe2 so it was not possible to obtain the bulk velocities and elastic constants for

this material.
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Chapter 5

Conclusions

In this work, Brillouin light scattering spectroscopy has been used for the first time to

study surface and bulk acoustic modes of the transition metal dichalcogenides MoS2,

MoSe2, and WS2. Rayleigh surface and transverse bulk acoustic phonon velocities

were obtained from the frequency shifts of peaks observed in the Brillouin spectra.

Rayleigh velocities were calculated to be 1690 ±70 m/s, 1630 ±40 m/s, and 1430

±50 m/s for MoS2, MoSe2, and WS2, respectively. These are the first measurements

of Rayleigh surface phonon velocities in these materials. Peaks due to transverse

bulk acoustic modes were only observed for WS2 and MoS2 at frequency shifts of ∼

43 and ∼ 62 GHz, respectively. The corresponding velocities approximately along

z crystallographic axis were found to be 2430 ± 70 m/s and 3450 ± 100 m/s for

WS2 and MoS2, respectively. These velocities were compared to those obtained in

previous studies [1] and [4] ( 21%, and 44% for MoS2, and WS2, respectively). From

the transverse acoustic phonon velocities for WS2, and MoS2, elastic constant C44

was determined to be 44 ± 1 GPa, and 60 ± 3 GPa, respectively. These values were

compared with first-principles calculations [32, 34, 35], Hybrid-DFT [33], and Raman

scattering measurements [66]. References [34] and [66] were done on single layer
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samples and therefore cannot be directly compared with the results of the present work

on bulk crystals of these materials. However, the results from [32,33,35] and [41] also,

showed discrepancies although bulk sample were used. The reason for this difference is

not clear. The references, [36] and [37], did not include the van-der Walls interactions

in their calculations, so that could be one reason for obsreved discrepancy.

The results obtained in this work can be used to investigate the reliability and

accuracy of theoretical models and other experimental approaches for determination

of elastic properties of TMDCs. Understanding of acoustic wave propagation and the

mechanical properties of transition metal dichalcogenides are important for future use

of them in optoelectronic and acousto-optic device applications.

Future work could using Brillouin studies with different scattering geometry. This

would help the remaining elastic constants of these materials to be determined.
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