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Abstract 

   Oil and gas development is moving into harsh and remote locations where the highest 

level of safety is required. A blowout is one of the most feared accidents in oil and gas 

developments projects, which is the result of uncontrolled flow of influx into the wellbore. 

Limited insights about the rapidly changing physical parameters during a blowout 

necessitates the exhaustive analysis of kick detection parameters. The risk of blowout 

consequences can be minimized by appropriate kick detection and well control techniques. 

This work presents a dynamic numerical simulation of kick detection and experimental 

studies to analyze hydrodynamic properties of drilling fluid to detect a kick. The 

experimental results are used to verify dynamic numerical simulation results. A three 

dimensional CFD simulation of a pressure cell which is a mimic of a scaled down version 

of a wellbore is performed using commercial CFD package ANSYS Fluent-15. The main 

objective of this simulation model is to analyze the pressure gradient, rising speed of a gas 

kick and volumetric behaviour of the gas kick with respect to time. Simulation results 

exhibit a sudden increase of pressure while the kick enters and volumetric expansion of gas 

as it flows upward. This improved understanding helps to develop effective well control 

strategies. The proposed numerical simulation model is validated by comparison with 

experimentally obtained downhole pressure during an influx into the pressure cell. This 

study confirms the feasibility and usability of an intelligent drill pipe as a tool to monitor 

well condition and develop blowout risk management strategies. Furthermore, to quantify 

the risk of blowout consequences, this work aims to test and validate a blowout risk 

assessment model using uniquely developed experimental results. Kick detection is a major 
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part of the blowout risk assessment model. The accuracy and timeliness of kick detection 

are dependent on the monitoring of multiple downhole parameters such as downhole 

pressure, fluid density, fluid conductivity and mass flow rate. In the present study these 

four parameters are considered in different logical combinations to assess the occurrence 

of kick and associated blowout risk. The assessed results are compared against the 

experimental observations. It is observed that simultaneous monitoring of mass flow rate 

combined with any one the three parameters provides most reliable detection of kick and 

potential blowout likelihood. This work confirms that a blowout risk model integrated with 

real time monitoring is a reliable and effective way of managing blowout risk. Upon success 

testing of this approach at the pilot and field levels, this approach could provide a paradigm 

shift in drilling safety. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RAKIB 2016  Page | iii 

 

Acknowledgements 

     I would like to express my deepest appreciation for my supervisors Dr Faisal Khan and 

Dr Ramchandran Venkatesan who throughout this work offered their guidance and 

conveyed a spirit of adventure in regard to this research. Without their persistent help and 

encouragement this thesis would not have been possible. In addition, I would like to express 

my special gratitude to Ayesha Anjuman Nayeem for developing and modeling the 

experimental setup, without which this work wouldn’t be initiated. Moreover, I gratefully 

acknowledge the financial support provided by Newfoundland & Labrador and Natural 

Science and Engineering Research Council (NSERC) of Canada, School of Graduate 

Studies (SGS). 

 

 

 

 

 

 

 

 

 

 

 

 

 



RAKIB 2016  Page | iv 

Table of Contents 

Nomenclature -------------------------------------------------------------------------------------- viii 

1 Introduction -------------------------------------------------------------------------------------1 

1.1 Why Risk Assessment? --------------------------------------------------------------------1 

1.2 Significance of Numerical Simulation --------------------------------------------------2 

1.3 Objectives -----------------------------------------------------------------------------------3 

1.4 Contributions--------------------------------------------------------------------------------4 

1.5 Thesis Outline ------------------------------------------------------------------------------5 

2 Literature Review ------------------------------------------------------------------------------7 

2.1 Brief Explanation of Blowout and Causes: ---------------------------------------------7 

2.1.1 Mechanism of Kick:---------------------------------------------------------------------8 

2.1.2 Kick Detection: ------------------------------------------------------------------------ 10 

2.1.3 Well Control Operations ------------------------------------------------------------- 11 

2.2 State of the Art of Numerical Simulation of Wellbore ----------------------------- 12 

2.3 Evolution of Risk Assessment Model for Blowout Consequences: -------------- 14 

2.4 Synopsis ----------------------------------------------------------------------------------- 17 

3 Experiment Design and Result Analysis ------------------------------------------------- 18 

3.1 Flow Diagram of Experimental Setup ------------------------------------------------- 18 

3.2 Assumptions ------------------------------------------------------------------------------ 20 

3.3 Experimental Procedure and Data Set for Numerical Simulation ----------------- 22 

3.4 Experimental Procedure for Risk Assessment Model ------------------------------ 23 

3.4.1 Analysis of Experimental Data ------------------------------------------------------ 25 

3.5 Synopsis ----------------------------------------------------------------------------------- 29 

4 Theoretical Model for Numerical Simulation and Risk Assessment -------------- 30 

4.1 Theoretical Framework to Develop Dynamic Numerical Model ----------------- 30 

4.1.1 Governing Equations ------------------------------------------------------------------ 32 

4.1.2 Turbulence Model --------------------------------------------------------------------- 33 

4.1.3 Multiphase Model --------------------------------------------------------------------- 34 

4.1.4 Compressible Flow -------------------------------------------------------------------- 34 

4.2 CFD Simulation Procedure ------------------------------------------------------------- 35 



RAKIB 2016  Page | v 

4.2.1 Steps of CFD Simulation ------------------------------------------------------------- 35 

4.2.2 Computational Fluid Domain and Meshing --------------------------------------- 36 

4.2.3 Boundary Conditions ----------------------------------------------------------------- 37 

4.3 Blowout Risk Assessment Model ------------------------------------------------------ 39 

4.3.1 Bowtie Model -------------------------------------------------------------------------- 39 

4.3.2 Evaluation of Blowout Phenomenon ----------------------------------------------- 39 

4.3.3 Key Indicator and Safety Barriers of Blowout ------------------------------------ 41 

4.3.4 Modelling of Blowout Risk Analysis Using Bowtie ----------------------------- 43 

4.3.4.1 Kick detection fault tree -------------------------------------------------------- 45 

4.3.4.2 Safety Barriers Event Tree ----------------------------------------------------- 48 

4.4 Synopsis ----------------------------------------------------------------------------------- 49 

5 Results & Discussion ------------------------------------------------------------------------- 50 

5.1 Analysis of CFD Simulation Results -------------------------------------------------- 50 

5.1.1 Flow Pattern Analysis in Computational Fluid Domain ------------------------- 50 

5.1.2 Validation of CFD simulation ------------------------------------------------------- 52 

5.1.3 Velocity Profile Characteristics ----------------------------------------------------- 55 

5.1.4 Volumetric Expansion and Rising Time ------------------------------------------- 56 

5.1.5 Discussion ------------------------------------------------------------------------------ 57 

5.2 Analysis of Risk Assessment Model -------------------------------------------------- 59 

5.2.1 Experimental Probability Calculation ---------------------------------------------- 59 

5.2.2 Probability Calculation of Downhole Parameters -------------------------------- 61 

5.2.3 Validation of Kick Detection -------------------------------------------------------- 63 

5.2.4 Sensitivity Analysis ------------------------------------------------------------------- 65 

5.2.5 Time Dependency Analysis of Kick Detection ----------------------------------- 66 

5.2.6 Blowout Risk Assessment ------------------------------------------------------------ 68 

5.2.7 Discussion ------------------------------------------------------------------------------ 70 

5.3 Synopsis ----------------------------------------------------------------------------------- 72 

6 Conclusion ------------------------------------------------------------------------------------- 73 

Appendix-A ----------------------------------------------------------------------------------------- 76 

Appendix-B ------------------------------------------------------------------------------------------ 77 

Appendix-C ----------------------------------------------------------------------------------------- 78 

Appendix-D ----------------------------------------------------------------------------------------- 82 

 --------------------------------------------------------------------------------------------------------- 82 



RAKIB 2016  Page | vi 

References ------------------------------------------------------------------------------------------- 85 

 

List of Figures 

Figure 2-1 Deepwater horizon blowout (image source: The Times Picayune (Greater New 

Orleans)) .............................................................................................................................. 7 

Figure 2-2 Offshore drilling rig and wellbore ...................................................................... 9 

Figure 3-1 Pressure cell (see Figure 4-2 for detailed dimension) ...................................... 18 

Figure 3-2 Flow diagram of experimental setup (see Reference 57 for detailed overview)

 ............................................................................................................................................ 21 

Figure 3-3 Change of downhole pressure with respect to kick .......................................... 22 

Figure 3-4 Change of mass flow rate at outlet during a kick. ............................................ 23 

Figure 3-5 Downhole parameters and airflow rate under normal operating condition ...... 26 

Figure 3-6 Downhole parameters and airflow rate while air influx into the pressure cell is 

introduced .......................................................................................................................... 28 

Figure 4-1 Framework of numerical simulation (transient state ........................................ 31 

Figure 4-2 Pressure cell and dimension of computational domain in inches..................... 36 

Figure 4-3 Structured hexahedral mesh of computational domain. (a) Isometric view. (b) 

Cut plane showing the conformal mesh. (c) Enlarged view showing the O-grid .............. 37 

Figure 4-4 Air flow rate during experimental study. (a)(left) Air flow rate during steady 

and transient part of the simulation. (b) (right)Air flow rate in lb/s for the 10 seconds of 

the transient simulation ...................................................................................................... 38 

Figure 4-5 Typical scenario of BHP margin [52] .............................................................. 41 

Figure 4-6 Bow Tie risk assessment model ....................................................................... 44 

Figure 4-7 Kick detection fault tree ................................................................................... 46 

Figure 5-1 (a) Air water volume fraction at mid plane. (b) Volume rendering of air 

volume fraction .................................................................................................................. 51 

Figure 5-2 Comparison of numerical and experimental results ......................................... 52 

Figure 5-3 Percentage of error in numerical prediction\ .................................................... 54 

Figure 5-4 Error in numerical prediction and experimental result. .................................... 54 

Figure 5-5 Velocity profile at outlet section ...................................................................... 55 

Figure 5-6 Volumetric expansion of air ............................................................................. 56 

Figure 5-7 Travelling time of air into the pressure cell. .................................................... 57 

Figure 5-8 Flow diagram showing generalized overview of data process for risk 

assessment model. .............................................................................................................. 59 

Figure 5-9 Cumulative distribution of air volume flow rate .............................................. 60 

Figure 5-10 Cumulative distribution of downhole parameters .......................................... 63 

Figure 5-11 Sensitivity analysis of downhole parameters ................................................. 66 

 



RAKIB 2016  Page | vii 

List of Tables 

Table 3-1 Normal Operating Condition of Primary Events ............................................... 27 

Table 4-1 Selected logical combinations for kick detection in Figure 4.7 ........................ 47 

Table 4-2 Category of blowout consequences ................................................................... 48 

Table 5-1 Experimental Probability of Kick ...................................................................... 61 

Table 5-2 Probability of downhole parameters .................................................................. 62 

Table 5-3 Analysis of selected scenarios of logical combinations for kick detection in 

Table 4.1 (Figure 4.6) ........................................................................................................ 64 

Table 5-4 Probability of failure of basic events in Fig 4.6 ................................................ 69 

Table 5-5 Barrier failures probability ................................................................................ 69 

Table 5-6 Quantitative analysis of consequences .............................................................. 70 

 

 

 

 

 

 

 

 

 

 

 

 



RAKIB 2016  Page | viii 

Nomenclature 

𝐶𝑒1, 𝐶𝑒2        Constant for intermittency equation 

𝐶𝑎1, 𝐶𝑎2       Constant for intermittency equation  

𝐹𝑙𝑒𝑛𝑔𝑡ℎ         Empirical correlation  

𝐹𝑜𝑛𝑠𝑒𝑡          Triggers the intermittency production 

𝐹𝑡𝑢𝑟𝑏           Term to disable destruction/relaminarization source  

E                 Total energy (J) 

𝑝                 Pressure (Pa) 

𝐼                  Unit tensor (1/s) 

𝑘𝑒𝑓𝑓            Effective conductivity (W/m k) 

𝑅                 Universal constant (J/mol k) 

𝑚𝑤             Molecular weight (kg/mol) 

𝑆                 Strain rate magnitude 

𝑆𝑐𝑎𝑣            Mass transfer between two phases 

𝑇                Temperature (k)  

𝑉                Volume (m3) 

Greek letters 

𝛼                 Volume fraction 

𝜇                 Dynamic viscosity (Pa s) 

�̿�                 Stress tensor (kg/ms2) 

𝜌                 Density of fluid (kg/m3) 

𝜆                 Bulk viscosity coefficient 

𝛾                 Intermittency 

Ω                Vorticity magnitude  

Vectors 

�⃗�                Force vector from source term (N) 



RAKIB 2016  Page | ix 

�⃗�                Overall velocity vector (m/s) 

�⃗�                Gravitational acceleration (m/s2) 

Operators 

∂

∂t
                 Partial time derivative (s-1) 

∇.                 Divergence operator (m-1) 

𝑇                   Transpose of a tensor  

Abbreviations 

SCFM……… Standard Cubic Feet per Minute 

BHP………... Bottom Hole Pressure 

CDF…………Cumulative Distribution Function 

CFD………… Computational Fluid Dynamics 

RANS………. Reynold Averaged Navier Stokes  

FVM……….. Finite Volume Method 

 

 



RAKIB 2016  Page | 1 

Chapter 1 

1 Introduction 

   The demand of rising energy is boosting oil exploration to harsh and remote environment. 

However, several safety issues are integrated during oil exploration and drilling in 

deepwater. Blowout is recognized as the most devastating consequence in deepwater 

drilling. An influx or kick into the wellbore is known as the initiating event of blowout 

consequences. The recent BP Deepwater Horizon accident significantly raised the concern 

about the safety and integrity of oil exploration in deepwater. The loss of life and 

consequences could have been avoided if timely and adequate preventions were taken. Risk 

based decision making and continuous risk assessment could have minimized the 

devastating consequences. Though the risk of blowout can be manageable upon proper 

detection of kick and well control techniques but the continuous campaign of drilling to the 

remotest and hostile environments is increasing the challenge of kick detection and well 

control techniques. 

1.1 Why Risk Assessment? 

   Risk assessment is the process of thorough investigation to identify the hazards for 

evaluating the risk associated with hazard. Determination of the appropriate control 

procedure to minimize the associated risk is also considered as a part of risk assessment. 

Risk assessment model is considered as an integral part of process design to determine 
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whether acceptable precaution is taken to minimize the risk. To develop a strategy for 

preventing accident and safety related decision making risk analysis is used as a tool. Most 

of the major accident that occur in oil and gas industry each year result from a series of 

unwanted events. Series of accidents can lead to deaths, environmental consequences and 

property destruction. These types of vulnerabilities and undesired events can be identified 

sequentially when a systematic and organized risk assessment tools and techniques are 

combined. Applying the rules of probability theory, probabilistic risk assessment can be 

carried out to mitigate or reduce the risk. Further progress on risk assessment model can be 

possible when other tools such as failure mode and effective analysis (FMEA) and fault 

tree analysis (FTA) are incorporated in design. FMEA is a proactive method where 

sequential analysis are performed to determine the modes of failure, the causes of failure 

and the effects of failure. The main purpose of FMEA is to take necessary action to 

eliminate the failure starting from the one with highest priority. Fault tree analysis is a 

systematic and logical safety analysis tool where the undesired event proceeds through the 

logical combinations to the root causes of that event. Logical operator OR and AND gates 

are used to link the undesired events to its root causes.  

1.2 Significance of Numerical Simulation 

   Computational fluid dynamics is a numerical method of solving the mathematical 

equations using high performance computer that defines the behaviour of fluid and gas 

flow. Computational fluid dynamics is embraced by researchers and industries to obtain 

measurable improvements in innovation. Based on this approach, diversified 
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hydrodynamic behaviour of fluid can be studied in a cost effective way. Furthermore, 

detailed insights into the system that may not be able to understand through experimentally, 

can be achieved and visualized by CFD simulations. To optimize the efficiency of a product 

or process, prediction and controlling of fluid flow is performed by using numerous 

commercial software. The usability of simulation studies are increasing because of the 

capacity to study a system under unlimited boundary conditions. Numerous commercial 

CFD software packages have been developed considering the level of requirement and 

complexity of model. Autodesk flow design is developed for simulation of simple model. 

Though this tool is quite renowned for simplicity in use but comes with the shortcomings 

of user defined solver methods and models. To analyze the complicated flow simulation 

such as fluid structure interaction, free surface flow, flowing of chemical solution through 

pores, ANSYS CFX, ANSYS Fluent and OpenFOAM are widely used. These software 

enable users to define several solver methods according to the requirement. Now a days the 

CFD tools are considered essential and necessary for tasks such as combustion research, 

multiphase flow simulation etc.   

1.3 Objectives 

   The key goals of this research work are described below: 

 To develop a numerical simulation model based on computational fluid dynamics. 

Commercial CFD package ANSYS Fluent-15 is used to develop the numerical 

model. 
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 Validation and comparison of the proposed numerical model with experimental 

results. The experimental observations are obtained by conducting experiment on a 

uniquely developed experimental setup   

 Analysis of the hydrodynamic property of drilling fluid such as pressure gradient, 

rising speed of gas kick and volumetric behaviour of gas kick with respect to time. 

Exhaustive analysis of simulation results are performed to study the hydrodynamic 

property. 

 To propose a blowout risk assessment model and methodology where experimental 

data will be taken in consideration for quantitative study of blowout consequences. 

Bowtie approach is adapted to develop the desired risk assessment model. Several 

runs of experiments are conducted using the pre-developed experimental setup. 

 To validate kick detection part of the risk assessment model. Experimental failure 

probability is calculated to validate the risk assessment model. 

 To integrate the validated model in risk assessment model for quantification of 

blowout risk. 

 Time dependency analysis of the proposed model to obtain real time assessment of 

risk. The experimental runs are segmented in different time windows to analyze the 

time dependency. 

1.4 Contributions 

   The main contributions of this thesis are listed below: 
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 A numerical simulation model based on commercial CFD package is proposed for 

exhaustive analysis of hydrodynamic behaviour of drilling fluid during a gas kick. 

 The proposed numerical model is validated and compared with experimentally 

obtained results. The validated numerical model can be further extended for 

studying the hydrodynamic behaviour of drilling fluid in full scale wellbore. 

 A blowout risk assessment model is proposed based on kick detection and 

consequences as a functions of incident and well control barriers. 

 The proposed risk assessment model is validated and tested with uniquely 

developed experimental results. The developed risk assessment model and 

methodology can be practically implemented for on time risk assessment and 

decision making. The visualization and real time quantification of risk is possible 

when the proposed model is logically coded and integrated with required software.  

1.5 Thesis Outline 

 Chapter 1: This chapter introduces the research topic and focuses on the motivation 

of the work. The key objectives and expected outcomes of this work are briefly 

explained in this chapter.  

 Chapter 2: This chapter illustrates a detailed overview on the causes of blowout 

and well control techniques. A survey on cutting edge research of well blowout risk 

assessment as well as numerical simulation of wellbore are described in this chapter. 
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 Chapter 3: Experimental design procedure for comparing and validating the 

numerical model and risk assessment model are elaborately explained in this 

chapter. The experimental observation and key findings are also presented 

sequentially. Experimental design and observations for numerical and risk 

assessment model are incorporated as a part of two separate journal publications.     

 Chapter 4: This chapter discusses the theoretical background and simulation 

procedure of computational fluid dynamics model (numerical simulation model). 

Modelling of risk assessment model is discussed exhaustively in this chapter. The 

sections for numerical model and risk assessment model in this chapter are 

integrated as a part of two distinct journal publications   

 Chapter 5: The results of numerical simulations are compared with experimental 

observations in this chapter. Further detailed analysis of numerical simulation 

results are incorporated in addition. Experimental validation of risk assessment 

model and results of risk assessment model are elaborated in this chapter.   

 Chapter 6: This chapter summarizes the outcome and impact of the work. Possible 

future studies as well as the practical implementation of this work are presented.in 

this chapter. 
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Chapter 2 

2 Literature Review 

2.1 Brief Explanation of Blowout and Causes: 

Blowout is considered as the continuation of uncontrolled flow of hydrocarbon from a 

wellbore as the consequence of kick and is considered the most severe incident in oil and 

gas industry. Especially in deepwater drilling, the consequences of blowout can be 

devastating because of oil spills and environmental impacts. The largest oil spill was       

 

Figure 2-1 Deepwater horizon blowout (image source: The Times Picayune (Greater New Orleans))  

Around 3.5 million barrels of oil had spilled into the gulf because of the SEDCO 135F 

IXTOC-I blowout which was experienced in 1979. The failure of blowout preventer to cut 
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the thicker drill collar allowed the oil and gas to flow to the surface. Figure 2.1 exhibits the 

aftermath of deepwater horizon blowout. The blowout incident was responsible for 11 

workers death and continuation of 87 days oil spill. According to the investigation report, 

a chain of events caused the devastating consequence. Poor cementing was the reason for 

influx into the wellbore. Failure of kick detection and blowout preventer caused the loss of 

well control which escalated the kick to blowout. 

2.1.1 Mechanism of Kick: 

   Kick is an unwanted or uncontrolled flow of formation fluid into the wellbore. Figure 2.2 

presents the offshore drilling rig (a) and enlarged view of wellbore on the right side (b). 

Fluctuation of drilling mud’s pressure below or above a certain range causes the influx into 

the wellbore [1]. Drilling mud is aimed at controlling the bottom hole pressure (BHP) in 

wellbore. Bottom hole pressure is composed of several components such as hydrostatic 

head, frictional pressure due to pumping, swabbing and surging pressure. Hydrostatic head 

is determined from the height of drilling mud column. Frictional pressure is created because 

of the fluid pumping through the drill string. The effect of swabbing is initiated when drill  

string is pulled out of the wellbore. Swabbing creates negative pressure. On contrary, 

surging is a positive pressure gradient, which is initiated when drill string is run into the 

wellbore. 
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Figure 2-2 Offshore drilling rig and wellbore 

To prevent the unwanted influx into the wellbore the bottom hole pressure is always 

maintained below the fracture pressure and above pore pressure. Pore pressure is the 

pressure exerted by the fluid inside pore of a rock. The BHP is greater than pore pressure 

to prevent the formation fluid to enter into the wellbore, which is known as overbalance 

situation. Pore pressure going above the BHP (underbalanced situation) initiates the influx 

into the wellbore. Loss circulation which is known as the flow of drilling fluid into the 

formation is observed when BHP is greater than fracture pressure [2]. Fracture pressure is 

the pressure that require to permanently deform the formation. 

Following listed causes are considered as liable for the fluctuation of BHP as well as kick: 
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 Weight of drilling mud: To implement an optimum drilling mud program, 

controlling the mud weight is a major concern. Drilled solids can adversely affect 

the mud properties. Adding flocculants, dilution with water, installing solid particle 

removing equipment are few commonly used methods for controlling mud weight. 

 Lost circulation: Continuation of drilling mud to flow from the wellbore to 

formation layer. Fractured formation or high permeability of formation layer causes 

the lost circulation. 

 Tripping: Unable to maintain the wellbore pressure while tripping. Tripping is the 

act of drilling pipe pulling upward and running it back to the wellbore to change the 

drill bit or damaged drill pipe. Tripping consist of swabbing and surging. 

 Swabbing: The sudden decrease of downhole pressure due to the drilling 

pipe pulling upward is considered as swabbing [2]. The pressure fall can be 

too much to make the well underbalanced. 

 Surging: The increase of downhole pressure due to the drilling pipe pushing 

downward. 

2.1.2 Kick Detection: 

   The escalation of kick into blowout depends on how quickly the mitigation measures or 

detection of kick are implemented. The well integrity is determined by continuous 

monitoring of drillstring torque, rate of penetration, volume of mud tanks, mud 

characteristics such as temperature and gas content. Rate of penetration is considered the 
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most noticeable drilling parameters to detect kick [3]. An increase in the rate of penetration 

indicates that the lower drilling margin has decreased due to the drop in BHP or rise in pore 

pressure. Similarly, irregular changes in the volume of drilling mud in mud tank and trip 

tank can be considered as a sign of kick. Decrease in the level of mud tank denotes the 

annular loss and increase in the volume of mud tank implies gas influx into the wellbore. 

A flow meter can be the most effective way to differentiate between the inflow rate and 

outflow rate of drilling mud. Besides those parameters, mud characteristics such as 

conductivity and density can be taken into account to detect kick. Furthermore, use of smart 

drilling pipe for direct monitoring of bottom hole pressure is the advanced way to detect 

early kick. 

2.1.3 Well Control Operations 

   Well control can be defined as the methods which are used to maintain the control of well 

during an influx or kick in wellbore. Typical method of stopping a kick is well shut in. Hard 

shut in and soft shut in are two methods that are implemented during well shut in. Soft shut 

in refers to stopping the pump, open well control choke, close blowout preventer and close 

the well control choke. Alternately, hard shut in is closing the blowout preventer on closed 

well control choke. The main purpose of well shut in is to raise bottom hole pressure above 

pore pressure so that influx into the wellbore stops. The procedure of circulating out the 

kick or influx from wellbore is continued once kick is stopped [4]. 

Constant bottom hole pressure technique is implemented either by the one circulation 

method or the two circulation method to control a well. In the one circulation method the 
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shut in drill pipe pressure is recorded at first. Necessary mud weight to balance the 

formation pressure is measured, prepared and pumped into the wellbore. The casing 

pressure is maintained at shut in pressure by adjusting the well control choke. The mud is 

weighted to kill density and pumped through the annulus simultaneously in one circulation 

method. In the two circulation method, casing pressure is maintained at shut in pressure by 

bringing the pump in desired flow rate at first circulation. Influx being displaced, weight of 

mud is increased in second circulation to kill the well [5]. 

2.2  State of the Art of Numerical Simulation of 

Wellbore 

   A kick is considered to be an initiating event of blowout consequences. Formation 

pressure exceeding wellbore pressure is one of the most dominant reasons for an influx or 

kick into the wellbore. Use of heavy drilling fluid to over pressurize can increase the risk 

of fracturing the formation which results in lost circulation. Maintaining the wellbore 

pressure in a subsurface environment is not only challenging but also crucial in order to 

narrow the pressure margin. The situation becomes more perilous when the formation fluid 

contain gas [6]. Gas tends to expand while rising through the annulus causing significant 

variations in wellbore pressure. Furthermore, the rising speed of a gas kick increases as it 

expands and flows upward [7].  Due to the compressed volumetric behaviour of gas at the 

downhole, detection of a gas kick is cumbersome using the conventional approach of kick 

indicators (e.g. increase in flow rate out of annulus, increase in pit gain volume and abrupt 

increase in drilling rate). Ability to investigate the hydrodynamic behaviour of drilling fluid 
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as well as pore pressure at the downhole during a gas kick can provide significant 

improvement in well control techniques. An uncontrolled gas kick can lead to hazardous 

consequences: loss of life, damage to the environment and financial loss. The minimization 

of devastating consequences of a blowout is possible using appropriate well control 

mechanisms. A significant improvement can be achieved in quick response to a gas kick 

with appropriate well control techniques, when an exhaustive analysis of pressure, 

volumetric expansion and rising speed of a gas kick is available at the downhole. 

    Due to the safety issues in well design and well control, investigation using mathematical 

kick simulation was started four decades earlier. The first mathematical model proposed in 

1968, assumed no pressure loss in the annulus and did not consider slippage speed between 

the drilling fluid and gas [8]. Further advancement in the mathematical modelling of a kick 

was achieved when it was incorporated with mass balance and momentum equations [9]. 

Empirical correlation between the gas speed and average speed of the mixture, restricted 

the realistic application of this model [10]. The evolution of kick simulation was continued 

by numerous researchers [11-15] who considered physical issues such as varied annulus 

geometry, two phase flow pattern, slip velocities between phases and gas solubility in 

drilling fluid [16].     

    To solve the transient two phase flow of liquid and gas in the wellbore, a finite difference 

formulation was adopted by Avelar [16]. Comparison of simulated and measured results 

was done by coupling the pressure loss computation and two-phase flow slippage [16]. A 

FORTRAN based one dimensional numerical code was proposed considering mass and 

momentum to study the blowing out process of a vertical wellbore [17]. Improvement of 
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one dimensional numerical method was achieved when compressed Navier-Stokes 

equations were solved incorporating numerous boundary conditions [18].  To reduce the 

numerical complexity of the two phase flow, a reduced drift flux model was proposed [19]. 

The drift flux method is also known as the mixture model, where a mixture of continuous 

and dispersed phases acts as a single fluid [20]. 

    A detailed three dimensional transient visualization and numerical modeling, as well as 

experimental validation of a gas kick (stratified flow) using a turbulence model, multiphase 

flow model and compressibility is still pending. Though CFD is computationally 

expensive, it is quite capable of realistic simulation of a compressible multiphase flow. To 

simulate the multiphase gas-liquid compressible flow during a kick, commercial CFD 

package ANSYS FLUENT-15 is used, where governing equations of fluid dynamics such 

as continuity, momentum and energy equations are solved. Besides these governing 

equations, the standard pressure based algorithm is extended to Euler-Euler Volume of 

Fluid (VOF) transport equations for capturing the moving surfaces between the fluid 

phases. For turbulence modelling, Reynolds-averaged Navier-Stokes : Transition SST  is 

used which combines the k- epsilon and k-omega model. The simulation model is 

simplified by considering air as an ideal gas for a compressible flow.   

2.3 Evolution of Risk Assessment Model for Blowout 

Consequences: 

    Interpretation and breakdown of blowout accidents using a single failure are nearly 

impossible since these events are the outcome of a complex interaction of different failures 



RAKIB 2016  Page | 15 

[32]. Numerous safety analysis methods have been proposed in the last 40 years for 

systematic and logical breakdown of complex multivariate processes [33]. In process 

system analysis, the qualitative and quantitative assessments of blowout risk are significant 

for maintaining the level of acceptable risk below the tolerance limit. Various blowout risk 

assessment methodologies have been reported in literature; for instance, fault tree analysis 

of a blowout starting from the causes of kick to the consequences [34] and a bowtie 

approach based on the case study of the Deep-water Horizon [35]. To overcome the 

circumscriptions of common causes of failure, Bayesian network approaches for 

quantitative analysis and through decomposition of blowout consequences have been 

thoroughly investigated [36], [37] and [38]. A barrier-based Swiss cheese method was 

proposed considering three level well controls. An additional barrier was established 

between reservoirs to prevent blowout events including the primary and secondary well 

control method [39]. 

The use of statistical and historical data often restricts the acceptability of blowout risk 

assessment methodologies [38], [40]. Due to the wide diversity of local parameters like 

weather conditions, formation pressure, temperature and porosity, the credibility of 

statistical data is always in question [36]. To overcome the challenge of unambiguous set 

of statistical data for specific types of wells and operating conditions, attempts have already 

been made, such as the SINTEFF database of enormous fields in study groups [41]. One of 

the major shortcomings of the SINTEFF database is not having any data for control systems 

and their reliability [42]. Significant strengthening of decision-making was achieved by 

developing a more realistic model based on the physical causal mechanism and extensive 
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use of expert evaluation, but this was characterized by the drawback of uncertainty of expert 

opinion [43]. To reduce the uncertainty of expert judgment a new approach was proposed 

based on Fuzzy Fault Tree Analysis [44]. The proposed methodology overcomes the 

weakness of conventional ETA but precise reflection of true conditions may not be possible 

due to the nature of data used [44]. 

Furthermore, in the risk assessment models developed by multifarious authors, kick 

detection is considered one of the crucial parts for the evaluation of blowout risk [45], [51]. 

On the basis of research carried out by the Bureau of Safety and Environment Enforcement 

(BSEE), it has been reported that about 50% of loss of well control events can be minimized 

or obviated by kick detection. Kick detection has become one of the major concerns since 

the Deepwater Horizon blowout on April 20, 2010. According to the investigative report 

of the Deepwater Horizon blowout, the changes of mud flowrate and pressure resulting 

from a kick were observed while the mud flowed through the riser [46], [36]. The loss of 

11 lives could have been avoided by accurate and unambiguous detection of kick before it 

flowed through the riser. However, kick detection using surface-based variables that are 

being used in current practice is still incomplete. 

Traditional or conventional kick detection methodology is based on the top side 

measurement which includes the pit volume totalizer, trip tank, pump pressure, drill pipe 

or stand pipe pressure. Insufficient weight of mud, tripping, swabbing, and lost circulation 

cause the fluctuation of hydrostatic pressure, which leads to a kick [47]. Pit volume totalizer 

has been widely used for kick detection but further extension of this methodology is 

restricted because of the time lag. To detect a kick by PVT the drilling mud needs to flow 
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all the way to the down-hole and then to return to the pit through the riser, which initiates 

the time lag [48]. Further improvement can be achieved by introducing a highly accurate 

flow meter that employs the Coriolis effect for electromagnetic sensing. A quicker and 

more precise comparison of the inlet and outlet flow rate of mud is possible since flow rate 

is measured just after the mud exits the riser. The detection of kick before the mud flows 

through the riser is still incomplete when introducing the flow meter just past riser until it 

is accompanied by down-hole parameters monitoring. This thesis is aimed at monitoring 

down-hole pressure combined with density, electrical conductivity and mass flow rate for 

quantitative risk assessment. 

2.4 Synopsis 

   To obtain an extensive insight about well control techniques the study of hydrodynamic 

property of drilling fluid in wellbore is inevitable. Numerous mathematical models have 

been developed and proposed by researchers to study the hydrodynamic property. A three 

dimensional analysis and visualization using turbulence model, multiphase model and 

compressibility is still pending, which motivates the current work. Furthermore, 

quantitative risk analysis is an effective way to maintain the blowout risk within acceptable 

limit. Though numerous models are available to quantify the risk but integration of an on 

time risk estimation of kick will add a new dimension. A new methodology of on time risk 

estimation is proposed in this work based on this inspiration.      
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Chapter 3 

3 Experiment Design and Result Analysis 

The drilling experiments are conducted at the facilities available in Drilling Technology 

Laboratory at Memorial University of Newfoundland. 

3.1 Flow Diagram of Experimental Setup 

The central part of the experimental setup is a pressure cell which is made of a steel 

structure (see Figure 3.1). Figure 3.2 depicts a detailed and planned flow diagram of the 

                                                

Figure 3-1 Pressure cell (see Figure 4-2 for detailed dimension) 

experimental setup [30]. The pressure cell mimics a scaled down version of a wellbore.  

The fluid body of the pressure cell is considered as the computational domain for the 

numerical study. A detailed geometry of the computational domain corresponding to the 

pressure cell is presented in Figure 4.2. Synthetic rock rigidly fitted inside the pressure cell 
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can be drilled through a circular channel at the top of the pressure cell (see Figure 4.2). A 

positive displacement pump connected to a tank is used to move the drilling fluid through 

the drill string to the pressure cell. The drilling fluid mixed with cuttings is discharged 

through the outlet section. The downhole assembly consists of a pressure transducer, 

separator attached with a thermocouple, Coriolis flow meter and back pressure control 

valves. These valves can be adjusted manually to control the backpressure. A Coriolis flow 

meter and conductivity sensor, located at the very end of the assembly, are used to check 

the flow rate, density and electrical conductivity at the outlet. A pressure sensor connected 

at the bottom of the pressure cell monitors the pressure at the downhole. A small diameter 

hole at the bottom of the pressure cell is used to connect the air injection setup with the 

entire system. The check valve fitted in front of the hole at the bottom of the pressure cell 

prevents the drilling fluid from flowing into the air injection setup. An air compressor 

connected to an air tank acts as the source of air. A pressure regulator is used to control the 

air pressure flowing into the setup. A solenoid valve connected with a timer is used for 

closing the airflow to the setup. A gas flow meter, pressure transducer and thermocouple 

read the flow rate, pressure and temperature of airflow, respectively. Sensors are wired to 

the data acquisition system for continuous monitoring and recording (see Reference 57 for 

detailed overview) 
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3.2 Assumptions 

   The present study involves an experimental and numerical study of a kick in a wellbore. 

For simplification of the experimental work and to reduce the computational time of 

numerical simulation, the following assumptions are made: 

 Water is considered as drilling fluid. 

 To simulate and study the gas kick behaviour, air is considered as a kick gas. 

 To analyze the compressibility effect, air is considered as an ideal gas. 

 To reduce the computational time involving moving mesh, rotation of the drill bit 

is not considered. 

 No heat transfer is considered between liquid and gaseous phases.  

 This experimental study is not conducted with the presence of cuttings in the drilling 

fluid; incorporating a third phase in simulation is computationally expensive. 

 Leaking of fluid is not considered for numerical simulation as it is a minor issue. 

  .
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Figure 3-2 Flow diagram of experimental setup (see Reference 57 for detailed overview)
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3.3 Experimental Procedure and Data Set for 

Numerical Simulation 

   Water is kept pumping at 3564 lb/hr from the storage tank at a constant rate through the 

drill bit as a drilling mud. To avoid the cuttings as a third phase in the numerical simulation, 

no synthetic rock is drilled while water is pumped from the storage tank. The drill string 

and drill bit are kept stationary during experimental study and during the artificial kick. Air  

                                 

Figure 3-3 Change of downhole pressure with respect to kick 

is used as a kick gas. An influx into the pressure cell is introduced by opening the solenoid 

valve for a certain period of time. The pressure sensor fitted at the bottom of the pressure 

cell reads the change in downhole pressure. Figure 3.3 depicts the change of downhole 

pressure while an artificial kick is introduced. The downhole pressure is 0 psi g at the very 

beginning of the experiment. The experiment is started from an empty pressure cell. The 

downhole pressure starts to increase as it fills up with water. After 20 seconds of run time, 
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the flow meter at the outlet is similar to the pumping rate. At 20 seconds, the downhole 

pressure becomes stabilized at almost 15 psi g. An intentional kick is introduced into the 

pressure at 30 seconds. Figure 3.3 depicts the increase of air flow rate as the solenoid valve 

opens. There is a leakage of air flow into the pressure cell before the solenoid valve is 

                    

Figure 3-4 Change of mass flow rate at outlet during a kick. 

opened. The leakage of air flow is considered as zero for this simulation purposes. The 

downhole pressure reaches the peak value at 40 seconds after the solenoid valve is opened. 

The mass flow rate at the outlet is measured by a Coriolis flow meter (see Figure 3.4). The 

change of outlet flow rate is significant while an artificial kick is introduced. 

3.4 Experimental Procedure for Risk Assessment Model 

   To obtain the normal operating conditions or critical thresholds of parameters for flow 

condition, the experimental runs are piloted in two distinct steps. In the first step, 

experiment runs are conducted without any air influx to find the safe operational limits. 
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Three experimental runs are conducted at different pump flow rates to capture the varied 

operational range of downhole parameters. 

 Experimental run 1: A window of total of 50 seconds of time is considered to obtain 

the normal operating condition of four downhole parameters and the airflow rate. 

To study kick detection based on the fluctuation of flow rate, pressure, density and 

conductivity, the entire experiment is simplified by considering water as a drilling 

fluid. To imitate the real case drilling scenario, water is kept pumping at a constant 

flow rate from the tank through the drill string into the pressure cell. Downhole 

parameters and airflow rate are recorded while the pump flow rate is maintained at 

around 3580 lb/hr. (see Section 3.4.1) 

 Experimental runs 2 & 3: Experimental run 1 is repeated twice considering the 

pump flow rate around 4652 lb/hr and 5597 lb/hr. 

In the second step, the above-mentioned three runs of the experiment are conducted 

including an air influx for a predetermined period of time. Water pump flow rates are kept 

almost identical to the three experimental runs in the first step. 

 Experimental run 4: To capture the transient state between single phase and 

multiphase a period of 161 seconds of time window is considered. The maximum 

air volume flow rate is 7 SCFM while pump flow rate is maintained at 3580 lb/hr. 

(see Section 3.4.1) 
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 Experimental run 5: Around 4 SCFM airflow rate is maintained for a time interval 

of 50 seconds. The total time window is 156 seconds while the pump flow rate is 

4652 lb/hr. 

 Experimental run 6:  Air pressure regulator is controlled to maintain the airflow rate 

of around 2.7 SCFM while water at 5597 lb/hr is kept pumping. 162 seconds of time 

exposure is considered. 

3.4.1 Analysis of Experimental Data 

   Experiments are conducted in two different steps using three distinct flow conditions (see 

Section .3.4.). In the first step, the entire experiment is conducted without air influx into 

the pressure cell. Recorded noisy downhole parameters and airflow rate are processed by 

the discrete Kalman filter method [62] for noise reduction. Figure 3.5 presents the detailed 

data set for downhole parameters in a normal operating condition. In Experimental run 1, 

under a normal operating condition, the mass flow rate at the outlet is 3580 lb/s, while the 

downhole pressure is approximately 10.85 psig. Density is around 60.75 lb/ft3 and electrical 

conductivity is 106 µS/cm. Normal operating conditions of downhole parameters and 

airflow rate for three diverse runs of the experiments are presented in Table 3.1. Mass flow 

rate at the outlet (see Figure 3.5 Mass flow rate) is almost identical to the water pump flow 

rate for Experimental runs 1, 2 & 3, which indicates a normal operating condition. 
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Figure 3-5 Downhole parameters and airflow rate under normal operating condition 

 

 



RAKIB 2016  Page | 27 

 

Although, air is not injected into the pressure cell during the first step of the experiment, 

the airflow rate in Figure 3 5 delineates the amount of air leaking into the pressure cell. The 

corresponding values of air leaking into the pressure cell are considered critical threshold 

limits or normal operating conditions. The average values of air leaking into the pressure 

cell for Experimental runs 1, 2 and 3 are 0.80 SCFM, 0.67 SCFM, 0.65 SCFM respectively 

(see Table 3.1). In the second step, air is injected into the pressure cell for three 

experimental runs in Table 3.1. Fluctuations in downhole parameters and airflow rate are 

recorded and processed by the discrete Kalman filtration method [58]. Figure 3.6 depicts 

that the downhole parameters and airflow rate have diverged from a normal operating 

condition because of air influx into the pressure cell. To capture the transient stage between  

 

Index  
 Parameters/Primary 

events 

Normal operating condition 

Experimental   

run 1 

Experimental 

run 2 

Experimental 

run 3 

1 Flow Rate  
3580.00 

lb/hr 

4652.00 

lb/hr 

5597.00  

lb/hr 

2 Downhole pressure 10.85 psi g 25.13 psi g 40.07 psi g 

3 Density 60.75 lb/ft3 61.86 lb/ft3 62.13 lb/ft3  

4 
Electrical 

conductivity 

106.00 

uS/cm 

108.00 

uS/cm 

108.00 

uS/cm 

5 Airflow rate 0.80 SCFM 0.67 SCFM 0.65 SCFM 

Table 3-1 Normal Operating Condition of Primary Events 
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Figure 3-6 Downhole parameters and airflow rate while air influx into the pressure cell is introduced 
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the single phase and multiphase, the time window for the second step is maintained at least 

150 seconds for each set of the experiment. Air influx is initiated approximately at 70 

seconds and terminated at 120 seconds for each set of the experiment. Airflow rate shown 

in Figure 3.6 describes the three non-identical airflow rates for each experimental run. 

Analogous changes are observed for the mass flow rate at the outlet and for the downhole 

pressure, density and electrical conductivity simultaneously.    

3.5 Synopsis 

Experimental design and results for numerical simulation (CFD) and risk analysis are based 

on the same experimental setup. Experiments are conducted separately for numerical 

simulation and risk analysis part. In order to simplify the experimental design few 

assumptions are considered. To obtain the safe operational limit for risk assessment, 

experiments are conducted in two separate step. At first step, experiment was conducted 

without having a kick and in second step air is injected into the pressure cell to mimic a gas 

kick. To study the repeatability, three experimental runs are conducted with three discrete 

pump flow rates. 
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Chapter 4 

4 Theoretical Model for Numerical 

Simulation and Risk Assessment 

4.1 Theoretical Framework to Develop Dynamic 

Numerical Model 

   Viscous properties of fluid flow can be derived by solving the continuity equations of 

momentum and mass, known as Navier-Stokes (NS) equations. NS equations are capable 

of defining the turbulent properties of fluid whereas extensive computational cost needs to 

be considered for analytical solutions. To consider the effect of turbulence with reduced 

computational cost, time averaging of NS equations is performed, known as Reynolds 

Averaged Navier-Stokes (RANS) equations [21].  Computational fluid dynamics methods 

are used to solve RANS equations where the standard finite volume method (FVM) is 

applied to discretize the computational domain. Non-linear algebraic conservation and 

transport equations are linearized by discretization. Grid generation or meshing creates the 

finite volume method to solve the linearized equations [22]. The present study incorporates 

ICEM CFD as a meshing tool and commercial CFD package ANSYS FLUENT-15 for the 

numerical solution 
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Figure 4-1 Framework of numerical simulation (transient state



RAKIB 2016  Page | 32 

 

4.1.1 Governing Equations 

   The governing conservation equations for unsteady, compressible flow are given by the 

following equations [23], [24], [25]. (See Appendix A for the scalar form of equation)  

Equation of conservation of mass: 

𝜕𝜌

𝜕𝑡
+ ∇. 𝜌�⃗� = 0                                                                                                                                (1) 

where, 𝜌 is the density and �⃗� is velocity vector of three dimension. 

Conservation of momentum: 

𝜕(𝜌�⃗�)

𝜕𝑡
+  ∇. (𝜌�⃗��⃗�) = −∇𝑝 + ∇. (�̿�) + 𝜌�⃗� + �⃗�                                                                                       (2) 

�̿� = 𝜇 [(∇�⃗� + ∇�⃗�𝑇) −
2

3
∇. �⃗�𝐼]                                                                                                                     (3) 

where 𝑝 is the static pressure,  𝜏̿ is the stress tensor, and 𝜌�⃗� and  �⃗� are the gravitational 

body forces in a vertical direction and the sum of external body forces. 𝜇 represents the 

dynamic viscosity and 𝐼 is the unit tensor.   

Energy equation: 

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇. [�⃗�(𝜌𝐸 + 𝑝)] = ∇. [𝑘𝑒𝑓𝑓∇𝑇 − ∑ ℎ𝑗𝐽𝑗

⃗⃗⃗

𝑗

+ (�̿�𝑒𝑓𝑓.�⃗�)] + 𝑆ℎ                                                  (4) 

𝐸 = ℎ −
𝑝

𝜌
+

𝑣2

2
                                                                                                                                              (5) 
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where 𝐸 is the total energy,  𝑘𝑒𝑓𝑓 is the effective conductivity and 𝑆ℎ is the source term 

which is neglected as there is no reaction. 

4.1.2 Turbulence Model 

   Time averaging NS equations, which are also known as RANS, are associated with an 

additional Reynolds stress term. Numerous turbulence models are available for modelling 

the mean quantities of Reynolds stress [26].  The 𝑘 − 𝜖 and 𝑘 − 𝜔 are two commonly used 

turbulence models based on Boussinesq approximations. Transition SST based on SST  𝑘 −

𝜔  and two other transport equations are comparatively accurate for turbulence modelling 

[21], [27]. Additional transport equations represent the intermittency and transition onset 

criteria in terms of the momentum-thickness Reynolds number [28], [23]. The intermittency 

equation is formulated as follows: 

𝜕(𝜌𝛾)

𝜕𝑡
+

𝜕(𝜌𝑈𝑗𝛾)

𝜕𝑥𝑗
= 𝑃𝛾1 − 𝐸𝛾1 + 𝑃𝛾2 − 𝐸𝛾2 +

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑡
)

𝜕𝛾

𝜕𝑥𝑗
]                                                 (6) 

 The transition source is defined as: 

𝑃𝛾1 = 𝐹𝑙𝑒𝑛𝑔𝑡ℎ𝜌𝑆[𝛾𝐹𝑜𝑛𝑠𝑒𝑡]𝐶𝑎1                                                                                                                        (7)    

𝐸𝛾1 = 𝐶𝑒1𝑃𝛾1𝛾                                                                                                                                                (8) 

The destruction / relaminarization sources are defined as follows: 

𝑃𝛾2 = 𝐶𝑎2𝜌Ω𝛾𝐹𝑡𝑢𝑟𝑏                                                                                                                                       (9)   

𝐸𝛾2 = 𝐶𝑒2𝑃𝛾2𝛾                                                                                                                                              (10) 

where Ω is the vorticity magnitude and  𝑆 is the strain rate magnitude.   𝐹𝑡𝑢𝑟𝑏 is used to 

disable the destruction/ relaminarization sources.  
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4.1.3 Multiphase Model 

   The present study incorporates the volume of fraction (VOF) model for the multiphase 

model. VOF model solves two immiscible fluids by solving a single set of momentum 

equations and tracking the volume fraction of each fluid throughout the domain. The VOF 

formulation relies on the fact that these two fluids are not interpenetrating [23].    The flow 

properties  𝜌 and 𝜇 are computed by the sum of partial densities and viscosities of liquid (l) 

and gas (g) [29]. 

𝜌 = 𝛼𝜌𝑔 + (1 − 𝛼)𝜌𝑙                                                                                                                                   (11)  

𝜇 = 𝛼𝜇𝑔 + (1 − 𝛼)𝜌𝑙                                                                                                                                  (12) 

where 𝛼 denotes the liquid gas volume fraction  

𝛼 =
𝑉𝑔

𝑉𝑔 + 𝑉𝑙
                                                                                                                                                   (13) 

The vapour volume fraction is computed by additional transport equations for the q phase 

as follows: 

𝜕𝛼𝑞

𝜕𝑡
+ ∇. (𝛼𝑞𝑣𝑞) = 𝑆𝑐𝑎𝑣                                                                                                                           (14) 

𝑆𝑐𝑎𝑣 represents the mass transfer between two phases which is considered zero for this 

study as there is no reaction or phase transfer. 

4.1.4 Compressible Flow 

   Standard continuity and momentum equations describe the compressible flow and 

solving the energy equation correctly incorporates the coupling between the flow velocity 
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and temperature.   For compressible flow air is considered as ideal gas for the present study.  

Ideal gas law can be written as follows [23]: 

𝜌 =
𝑝𝑜𝑝 + 𝑝

𝑅
𝑚𝑤

𝑇
                                                                                                                                                 (15) 

where 𝑝𝑜𝑝 is the operating pressure and 𝑝 is the local static pressure relative to the operating 

pressure.    

4.2 CFD Simulation Procedure 

4.2.1 Steps of CFD Simulation 

   Numerical simulation of the 130 seconds of experimental work is computationally time 

consuming (see Figures 3.3 and 3.4). Considering the computational expense, the CFD 

simulation work is performed for a specific period of time in two steps. In the first 30 

seconds of the time period of the experimental work, air is not injected into the pressure 

cell. In Figure 3.3, a small amount (0.73 SCFM) of air leakage is observed while the 

solenoid valve is closed. The leakage of air into the pressure cell is neglected and the first 

30 seconds of experimental work are considered as a single phase flow for simulation work. 

The downhole pressure reaches peak value at 40 seconds which is 10 seconds after the 

starting of an artificial kick into the pressure cell (see Figure 3.3).  Because the downhole 

pressure reaches the peak value at 40 seconds, the first 40 seconds of experimental work is 

selected for numerical simulation. The first 30 seconds of the experimental work is 

simulated as a steady state single phase flow, neglecting the air leakage into the pressure 

cell (see Figure 4.4 (a)). Simulation of 30-40 seconds of the experimental time window is 
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continued as a transient state two phase flow to capture the hydrodynamic behaviour of the 

air water mixture. The converged steady state simulation is continued as transient state. 

 

Figure 4-2 Pressure cell and dimension of computational domain in inches 

4.2.2 Computational Fluid Domain and Meshing 

   Numerical simulation is performed considering the fluid domain inside the pressure cell. 

The section at the top of pressure cell enables the drill string to flow the drilling fluid into 

the pressure cell (see Figure 4.2). Gas is injected into the pressure cell through the gas inlet 

section. The considered fluid domain is presented in Figure 4.2. The drilling fluid inlet 

section which is considered as the inlet of water into the pressure cell is 0.50 inches in 

diameter. The radius of the computational domain is 2.81 inches and 12 inches in length. 

A 0.44 inch diameter nozzle is attached at the lower part of the pressure cell where the 

pressure sensor is connected. A needle valve installed at the outlet of the pressure cell 

reduces the flow area through the outlet section. The diameter of the outlet section is 
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reduced to 0.32 inches while the experiment is conducted. The gas inlet section is 0.25 

inches in diameter. O-grid structured hexahedral meshing of the computational domain is 

presented in Figure 4.3. Blocking of the computational domain is performed strategically 

to maintain the conformal mesh between the main body and the sections such as the gas 

inlet, nozzle, outlet and drilling fluid inlet (see Figure 4.3 (b)). Blocking subdivides the 

computational domain into a configuration of a central block surrounded by radial blocks 

and the central block creates the O-grid that passes through the entire domain (see Figure 

4.3 (c)) 

 

Figure 4-3 Structured hexahedral mesh of computational domain. (a) Isometric view. (b) Cut plane showing the 
conformal mesh. (c) Enlarged view showing the O-grid 

4.2.3 Boundary Conditions 

   The steady and transient state part of the simulation is performed considering the mass 

flow rate of water at 0.99 lb/s (3564 lb/hr). As the leakage of air into the pressure cell is 
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neglected for the first 30 seconds of the experimental study, the mass flow rate of air into 

the pressure cell is considered zero for the steady state simulation (see Figure 4.4.a). The 

transient part of the simulation is continued for a 10 second time period which reflects the 

 

Figure 4-4 Air flow rate during experimental study. (a)(left) Air flow rate during steady and transient part of the 
simulation. (b) (right)Air flow rate in lb/s for the 10 seconds of the transient simulation 

experimental study from 30-40 seconds test time (see Figure 4.4 (a)). To deal with the 

compressibility during simulation, air is assumed to follow the ideal gas law and it is 

selected as the primary phase. Water is selected as the secondary phase for simulation 

purposes. Figure 4.4.b depicts the enlarged view of air flow rate for 10 seconds of 

simulation time. The air mass flow rate is 0 lb/s at 30 seconds (0 seconds in Figure 4.4.b). 

At 10 second the air mass flow rate reaches to 4.8 × 10−3 lb/s. Air flow rate into the 

pressure cell is time dependent and increases with the increase of time (Figure 4.4 (b)). To 

define the time dependent boundary condition of air mass flow rate, a user defined function 

is written using the C programming language. Appendix B presents the user defined 

function (only the beginning logic) for the air mass flow rate [31]. Line 7 in Appendix B 

defines the logic of the air mass flow rate as zero  
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4.3 Blowout Risk Assessment Model 

4.3.1 Bowtie Model 

   The bowtie model is considered one of the effective techniques of safety analysis of 

engineering systems. It enables the breakdown of the entire system, starting from the root 

causes and moving towards consequences. This model harmonizes the capabilities of the 

fault tree and event tree. The fault tree on the left hand side (see Figure 4.6) is an effective 

tool that proceeds deductively from the root causes to a top event (incident). The event tree 

on the right hand side (see Figure 4.6) depicts how failure of distinct safety barriers can 

lead to miscellaneous consequences. A typical bowtie model consists of basic events, 

intermediate events, top events, safety barriers and consequences. Though the bowtie 

model has many advantages, its use is limited in a complex system due to its limitation to 

model common cause failures and conditional dependencies [49]. Lack of a dynamic nature 

of this model also restricts the application of the bowtie model. The incapability of 

capturing evidence (new data) to update the probability of events is known as the static 

nature of the bowtie model [50]. A binary basic event in this model limits the further 

utilization of this model for a complex system. In this study, the bowtie model is used for 

graphical presentation and risk assessment of blowout consequences. 

4.3.2 Evaluation of Blowout Phenomenon 

   Kick is considered an initiating event of a blowout where kick is termed as an influx into 

the wellbore above a certain amount. An influx in a wellbore is observed while drilling if 
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the bottom hole pressure (BHP) is not maintained within a specific boundary of pore 

pressure and fracture pressure. Figure 4.5 presents a typical drilling operation where BHP 

is maintained below the fracture pressure and above pore pressure [52]. BHP greater than 

pore pressure prevents the formation fluid from flowing into the wellbore. On the other 

hand, BHP less than fracture pressure prevents the pressure drop in the wellbore due to lost 

circulation or drilling fluid flowing into the formation. BHP can be calculated from three 

major parameters known as hydrostatic head, frictional pressure loss and surge/swab 

pressure [43]. 

𝐵𝐻𝑃 = 𝐵𝐻𝑃ℎ𝑦𝑑𝑟𝑠𝑡 +  𝐵𝐻𝑃𝑓𝑟.𝑝𝑙 + 𝐵𝐻𝑃𝑠𝑟𝑔/𝑠𝑤𝑝                                                                                    (16) 

Considering Equation (42), the main causes of an influx into the wellbore (kick) can be 

identified by categorizing the entire drilling operation into three sub drilling operation, such 

as static 𝐵𝐻𝑃ℎ𝑦𝑑𝑟𝑠𝑡, circulating 𝐵𝐻𝑃𝑓𝑟.𝑝𝑙 and tripping 𝐵𝐻𝑃𝑠𝑟𝑔/𝑠𝑤𝑝. The product of density 

and vertical length the of mud column help to estimate the hydrostatic head. Density and 

the mud column are strongly influenced by the dilution of mud and lost circulation 

respectively, which are considered crucial parameters leading to the fluctuation of BHP and 

then kick. Density of mud is also affected by the gas influx which basically escalates the 

kick. 𝐵𝐻𝑃𝑓𝑟.𝑝𝑙 defines the frictional pressure loss as due to the drilling mud flowing through 

the drill string, and this is a direct function of drilling mud pump pressure. Swabbing occurs 

during the tripping operation, resulting in a reduction of BHP because of the drill string 

pulling upward. To the contrary, surging gives rise of BHP due to the drilling string moving 

downward. 
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Well control methods also known as well barriers [52] are initiated followed by a kick 

occurrence. According to NORSOK D-010 [53], well barriers are the amalgamation of one 

or multiple barriers dependent on each other based on the objective of preventing the 

uncontrolled flow of formation fluid through the well bore to the surface. Sequential 

classification of well control methods is done so that stepwise control operations can be 

carried out sequentially (see Section 4.3.3). Failure of sequential well barriers results in an 

uncontrolled flow of hydrocarbon from the formation layer to the drilling rig surfaces, 

escalating the chance of a catastrophic event, a blowout. 

 

Figure 4-5 Typical scenario of BHP margin [52] 

4.3.3 Key Indicator and Safety Barriers of Blowout 

   A kick in a wellbore is considered an initiating event in the blowout phenomenon, so the 

identification of parameters to detect kick is of utmost importance. Due to the time lag of 

the pit volume totalizer (PVT) to detect the kick [48], a Coriolis flow meter measuring the 

flow rate of drilling mud that is located right next to the riser is included. Density and 
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electrical conductivity of drilling mud are directly related to the influx in a wellbore. 

Downhole pressure is also taken into account for detection of kick. Based on these four 

parameters, an experimental setup established in Reference [57] is used in this study to 

simulate diversified flow conditions and monitor these four parameters. Safety barriers or 

well control barriers prevent the uncontrolled flow of formation fluid from the reservoir 

during kick. A barriers principle is followed in the UK and the US; the barriers are named 

the primary barrier and secondary barrier [39]. The hydrostatic head is referred to as the 

primary barrier, and topside equipment such as the BOP and the Christmas tree are 

considered secondary barriers [54]. Three level well control theory is a significant part of 

well control activities and blowout development stages [39]. The three phases of well 

control theory are primary well control, secondary well control and tertiary well control. 

The process carried out in the oil and gas industry to regain the well integrity and 

hydrostatic pressure between the pore pressure and fracture pressure after the occurrence 

of kick is defined as well control. The three level well control theory is more comprehensive 

compared to two-barrier principle. 

Primary well control refers to the maintaining of hydrostatic pressure of the drilling mud 

column. Since hydrostatic pressure is the function of the density and pump pressure of 

drilling mud, drillers can use kick detection as a sign to adjust the density and pump 

pressure to regain the hydrostatic pressure within a predefined pressure boundary. The 

secondary well control method is carried out when the primary well control method fails to 

maintain the hydrostatic pressure. Secondary well control starts with an immediate well 

shut in by closing the pipe ram in the BOP and stopping the drilling mud pump. A typical 
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shut in procedure is known as a “soft shut in’’, where keeping the choke valve open at first, 

the pump is turned off and the BOP is closed, and then gradually  the choke valve is closed 

[55]. To the contrary, closing the BOP and stopping the pump under the closed choke is 

known as a “hard shut in”. Upon successful completion of shut in, circulating the kick out 

from the well bore is done by the Drillers method or Engineers method. The Driller’s 

method consists of two circulations, named the first circulation and second circulation, 

while the Engineer’s method employs one circulation. Failure of the secondary well control 

method leads to the complete shutdown of the wellbore by disconnecting the drill pipe 

using a blind shear ram and closing the annulus by annular preventer. A severe incident 

could occur if the BOP fails to prevent the flow of unwanted influx to the surface. 

According to the three level well control theory, tertiary well control is a technology for 

recovering the control of a wellhead after the blowout [39]. Tertiary well control also refers 

to the partial or complete abandonment of a well. The barite plug and cement plug are two 

common features of tertiary well control. A cement plug involves pumping cement into the 

well but is associated with the risk of complete abandonment of a well. Barite plug is 

prepared by mixing a heavy slurry of barite in the water or diesel.  

4.3.4 Modelling of Blowout Risk Analysis Using Bowtie 

   To investigate the envisaged blowout consequences, a graphical presentation of an 

exhaustive blowout scenario has been provided using a bowtie model in Figure 4.6. The 

bowtie approach of blowout risk analysis embraces the fault tree for kick detection and the 

event tree for safety barriers. 
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Figure 4-6 Bow Tie risk assessment model 
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4.3.4.1 Kick detection fault tree 

   Kick indicators described in Section 4.3.3 for detection of kick can be combined by using 

numerous structures of logical combinations. Figure 4.7 presents few possible structures of 

logical combinations for kick detection parameters. Structure 1 in Figure 4.7 is considered 

as a fault tree for modeling the bow tie risk assessment model As described in section 4.3.3, 

downhole parameters such as flow rate, pressure, electrical conductivity and density are 

used to enumerate the probability of kick. Selected downhole parameters are statistically 

independent and binary in nature. Different plausible scenarios can be envisaged by 

amalgamating primary events or downhole parameters through different non-identical 

logical combinations. Table 4.1 delineates the selected scenarios of logical combinations 

for selected the logical structure 1. The main purpose of studying numerous non-identical 

logical combinations is to improve the reliability of kick detection and also reduce the false 

alarms of kick detection. Appropriateness of selected logical combinations is tested through 

a known experimental kick testing setup (see Section 5.2.3). 
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Figure 4-7 Kick detection fault tree 
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Table 4-1 Selected logical combinations for kick detection in Figure 4.7 

 

Index 
Primary events Logic gates 

1 2 3 4 1 2 3 

1 Flow rate 
Downhole 

Pressure 
Density 

Electrical 

Conductivity 
OR OR OR 

2 Flow rate 
Downhole 

Pressure 
Density 

Electrical 

Conductivity 
AND AND AND 

3 Flow rate 
Downhole 

Pressure 
Density 

Electrical 

Conductivity 
AND OR OR 

4 Flow rate 
Downhole 

Pressure 
Density 

Electrical 

Conductivity 
AND OR AND 

5 Flow rate 
Downhole 

Pressure 
Density 

Electrical 

Conductivity 
AND AND OR 

6 Flow rate 
Downhole 

Pressure 
Density 

Electrical 

Conductivity 
OR AND AND 

7 Flow rate 
Downhole 

Pressure 
Density 

Electrical 

Conductivity 
OR OR AND 

8 Flow rate 
Downhole 

Pressure 
Density 

Electrical 

Conductivity 
OR AND OR 

9 Flow rate 
Electrical 

Conductivity 

Downhole 

Pressure 
Density AND OR OR 

10 Flow rate 
Electrical 

Conductivity 

Downhole 

Pressure 
Density AND OR AND 

11 Flow rate 
Electrical 

Conductivity 

Downhole 

Pressure 
Density AND AND OR 

12 Flow rate 
Electrical 

Conductivity 

Downhole 

Pressure 
Density OR AND AND 

13 Flow rate 
Electrical 

Conductivity 

Downhole 

Pressure 
Density OR OR AND 

14 Flow rate 
Electrical 

Conductivity 

Downhole 

Pressure 
Density OR AND OR 

15 Flow rate Density 
Downhole 

Pressure 

Electrical 

Conductivity 
AND OR OR 

16 Flow rate Density 
Downhole 

Pressure 

Electrical 

Conductivity 
AND OR AND 

17 Flow rate Density 
Downhole 

Pressure 

Electrical 

Conductivity 
AND AND OR 

18 Flow rate Density 
Downhole 

Pressure 

Electrical 

Conductivity 
OR AND AND 

19 Flow rate Density 
Downhole 

Pressure 

Electrical 

Conductivity 
OR OR AND 

20 Flow rate Density 
Downhole 

Pressure 

Electrical 

Conductivity 
OR AND OR 
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4.3.4.2 Safety Barriers Event Tree 

   In addition to the fault tree for kick detection, an event tree (see Figure 4.6) including five 

safety barriers is considered in the bowtie risk analysis model. The consequences of the 

failure of independent safety barriers are classified according to the definition of abnormal 

events derived by Rathnayaka et al. [56]. Categorized consequences are presented in Table  

 

Index Consequences Description 

1 Near Miss 

Event that does not result 

in actual loss but has 

potential to do so. 

2 Mishap 

Event that causes minor 

health effects and/or 

minor effects to property 

and environment. 

3 Incident 
Event that can cause 

considerable harm or loss. 

4 Accident 

Event that may cause one 

or more fatalities or 

permanent major 

disabilities. 

5 Disaster 

Event that can cause 

multiple fatalities and 

extensive damage to the 

property, system and 

production. 

4.2. Casing is considered to be an indispensable and primary safety barrier as the failure of 

casing governs the failure of holding a kick inside casing. Failure of casing leads to the 

consecutive failures of primary well control, secondary well control, BOP and tertiary well 

Table 4-2 Category of blowout consequences 
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control. The consequence of casing failure is classified as disaster in Figure 4.6.  Disaster 

is also envisaged upon failure of secondary well control, BOP and tertiary well control 

followed by the success of casing.  Success of casing and primary well control leads to the 

consequence of a near miss. 

4.4 Synopsis 

Reynolds Averaged Navier Stokes equations are solved for the numerical simulation of 

multiphase flow. A time averaging term which is known as the Reynolds Stress terms are 

associated with the solution of the Reynolds Averaged Navier Stokes equations. Numerous 

methods are available for modelling the Reynolds Stress term. The mean quantities of 

Reynolds stress are defined by the Transition SST 𝑘 − 𝜔 turbulence model. Finite volume 

method is used for discretization. The numerical model incorporates the volume of fraction 

model for multiphase modeling. To quantify the blowout consequences, a risk assessment 

model is proposed based on the bowtie approach. Fault tree of the bow tie model is linked 

to the experimental setup where kick detection indicators are considered. Well control 

techniques are considered as safety barriers to model event tree of the bow tie risk 

assessment model. 
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Chapter 5 

5 Results & Discussion 

5.1 Analysis of CFD Simulation Results 

5.1.1 Flow Pattern Analysis in Computational Fluid 

Domain 

   To analyze the flow pattern and the turbulence of the two phase flow, an exhaustive 

analysis of the air water volume fraction is performed. In Figure 5.1 (a), the time dependent 

air volume fraction is presented. A plane is considered at the middle of the computational 

domain capturing the outlet section and the inlet section of air and water. The blue contour 

describes the zero volume fraction of air; in other words, the blue contour exhibits the 

presence of water. The red contour represents the volume fraction of air 1. At t=1.25 ×

10−2 seconds, the computational domain is filled with water, which is presented by the 

blue contour. A three dimensional illustration of air volume fraction is performed by 

volume rendering in Figure 5.1 (b). As the mass flow rate of air is zero at 1.25 × 10−2 

seconds, the presence of air is not observed in Figure 5.1 (b) at t=1.25 × 10−2 seconds. 

The air mass flow rate through the gas inlet section is observed at t=1.20 seconds (see 

Figure 5.1 (b)). The air volume fraction in the computational domain increases as time 

passes, from t=1.20 seconds to t= 9.52 seconds. Air starts to accumulate at the top of the 
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pressure cell and at t=4.5 seconds air starts to flow through the outlet section. In Figure 5.1 

(a), at t=4 seconds a straight blue streamline is observed from the inlet section of water, 

which exhibits the water flow through the drilling fluid inlet section of the computational 

domain. The streamline of water becomes clearly visible at t=7 and t=9.525 seconds  

 

Figure 5-1 (a) Air water volume fraction at mid plane. (b) Volume rendering of air volume fraction 

as the air starts to accumulate at the top of the pressure cell. Water flows through the middle 

of accumulated air at the top of the pressure cell. Furthermore, at the outlet section, air 
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flows through the upper portion of the pipe and water flows through the lower portion of 

pipe.     

5.1.2 Validation of CFD simulation 

 

Figure 5-2 Comparison of numerical and experimental results 

Numerical simulation results are compared with the experimental results in Figure 5.2. 

Downhole pressure recorded between the time periods of 30 to 40 seconds is compared 

with the 9.52 seconds of the simulation results. The first 30 seconds of experimental work 

are simulated as a steady state considering a single phase flow into the pressure cell. The 

converged steady state simulation is continued for 9.52 seconds as a transient state. The 

predicted downhole pressure by steady state simulation is 12.5 psi g. The downhole 

pressure observed before the influx into the pressure cell is 15 psi g (see Figure 3.3 and 

Figure 5.2). During the influx into the pressure cell, downhole pressure increases within 
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the time period of 30-40 seconds. Numerical simulation results also exhibit a similar trend 

to the experimentally observed result (Figure 5.2). In Figure 5.3, the percentage of error 

between the numerical and experimental results is plotted. At t=1 seconds, the maximum 

percentage of under prediction of downhole pressure is observed. The highest percentage 

of over prediction is observed at t=6 seconds. The percentage of error between the 

experimental and numerical results starts to decrease after 6 seconds of the simulation time.  

The flow pattern going into the pressure cell starts to stabilize after 6 seconds of simulation 

time. Similarly, in Figure 5-4 the difference between numerical and experimental result is 

presented. The maximum error between the experimental and numerical was observed at 

t=1 seconds. Likewise, in Figure 5-3 the Figure 5-4 represents the same trend which is the 

decrease in error when the flow gets stabilized.   In Figure 5.1 (b), an analogous flow pattern 

of air and water into the pressure cell is observed at 6.5, 7.5, 8.5 and 9.5 seconds. Stabilizing 

the flow pattern in the pressure cell reduces the percentage of error between the numerical 

and experimental results. The percentage of error fluctuates 0 to 20 in the time period of 7 

to 9 seconds, while the flow pattern in the pressure cell stabilizes. 
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Figure 5-3 Percentage of error in numerical prediction\ 

 

 

 

 

Figure 5-4 Error in numerical prediction and experimental result. 
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5.1.3 Velocity Profile Characteristics 

   The velocity volume rendering in Figure 5.4 exhibits the change in velocity gradient at 

the outlet pipe while an artificial kick is injected.  At t=1.25 × 10−2 seconds, the contour 

at the outlet section describes the velocity of the water flow rate through the outlet pipe. 

The velocity of water flow rate is below 49 m/s before the influx of air. The velocity profile 

drastically changes while air is introduced into the pressure cell and flows through the outlet 

section. The maximum velocity of 197 m/s is observed at the tip of the outlet pipe when t= 

9.52 seconds. The water and air are immiscible mixture and the gravitational force aids the 

air to flow through the upper portion of the outlet section (see Figure 5.1 (a)). The 

immiscible mixture of air and water flows at two different speeds through the outlet section. 

In Figure 5.4, the maximum velocity profile is observed for air flowing through the upper 

portion of the outlet section. 

 

Figure 5-5 Velocity profile at outlet section 
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5.1.4 Volumetric Expansion and Rising Time 

   To analyze the effect of compressibility, air is considered to follow the ideal gas law. 

Volume rendering of air volume fraction is studied considering a small time interval to 

analyze the volumetric expansion of air as it flows upward. Figure 5.5 depicts the volume 

fraction of air at 1.4 seconds and 1.6 seconds. The tip of the air is monitored between the 

time interval of 1.4 seconds and 1.6 seconds. A significant amount of expansion of air at 

1.6 seconds is observed compared to the air at 1.4 seconds (see Figure 5.5). The travelling 

time of air through the pressure cell can be determined by tracking the air volume fraction. 

Influx of air into the pressure cell is observed at t=1.075 seconds (see Figure 5.6). After 

travelling through the pressure cell, the air starts to flow through the outlet section at 

t=1.7375 seconds. A total of 0.73 seconds of travelling time is observed for the air from the 

gas inlet section to the outlet section.   

 

Figure 5-6 Volumetric expansion of air 
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Figure 5-7 Travelling time of air into the pressure cell. 

5.1.5 Discussion 

    The risk of casing failure due to a sudden increase of the downhole pressure due to a gas 

kick significantly escalates the underwater blowout risk. The simulation results of a gas 

kick in a scaled down version of a wellbore exhibit an increase of a considerable amount 

of downhole pressure. Discrete flow velocity of considered phases as an immiscible 

mixture is observed when the velocity profile at the outlet section is analyzed. Air flows 

comparatively faster than the water in the outlet section, which signifies the challenge of 

the quickest implementation of appropriate well control techniques. Analyzing the 

travelling time of a gas kick through a full scale wellbore can provide an improved insight 

on the quickest implementation of well control techniques. Furthermore, detection of a kick 

at the downhole becomes crucial when only the volume flow rate at the outlet is considered 

because of the observed volumetric expansion behaviour of the compressed air while 

flowing through the wellbore.  



RAKIB 2016  Page | 58 

This study describes a successful dynamic simulation of a gas kick in a scaled down version 

of a wellbore. Exhaustive analysis of hydrodynamic behaviour of drilling fluid in the 

annulus during an influx into the wellbore is possible using numerical simulation. 

Analyzing the results of the numerical simulation of a gas kick in a wellbore, the following 

conclusions can be summarized: 

 Validation of the numerical result with experimental results exhibits a close match 

in error ranging between 0 to 20 percentages, during the stabilized flow pattern. 

 Significant change in downhole pressure is observed during an artificial kick. 

Numerical results exhibit a similar trend of downhole pressure increase which is 

observed simultaneously during the experiment.  

 Discrete flow velocity is observed for air and water while flowing through the outlet 

section as an immiscible mixture. The high flow velocity of air compared to the 

water illustrates the challenge of fast response and quickest well control techniques. 

 Air remains compressed at the bottom of the pressure cell and starts to expand 

volumetrically as it flows upward. The compressibility of gas kick at downhole 

describes the importance of monitoring hydrodynamic properties such as density, 

electrical conductivity and pressure at the bottom of the wellbore.  

 0.73 seconds of travelling time is observed for air to flow from the gas inlet to the 

outlet section in a scaled down version of the wellbore. Full scale wellbore 

simulation during a kick can provide a realistic estimation of travelling time of a 

kick from the formation layer.      
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5.2 Analysis of Risk Assessment Model 

A generalized overview of data processing and incorporation of data set into the risk 

assesment model is presented in Figure 5.8. The data set for the primary events are 

monitored and recorded while the experiment is conducted. Kalman filtration method is 

used for noise reduction. The filtered data set for each primary event is used for developing 

the corresponding cumulative distribution function using Equation 7. Probability 

estimation for primary events are done using cumulative distribution function and threshold 

values for primary events and then used in risk assessment model. 

 

Figure 5-8 Flow diagram showing generalized overview of data process for risk assessment model. 

5.2.1 Experimental Probability Calculation 

   To validate the risk assessment model based on four parameters, the probability of kick 

or influx into the system is quantified experimentally. Quantification of the experimental 

probability of kick is done by a gas flow meter, which detects the airflow rate into the 

pressure cell adjusted by the pressure regulator. Any value of gas flow rate above a safe 

operational limit is considered as kick and can be directly measured by a gas flow meter. 

The gas flow meter detects the experimental kick occurrence. The cumulative distribution 
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of airflow rate for each set of the experiment run is calculated by using Equation 17, where 

𝑝 provides the probability of each observation (each reading of the airflow at a discrete 

time) from a normal distribution with standard distribution 𝜎 = √
1

𝑁−1
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1   and 

mean 𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 . 

 

Figure 5-9 Cumulative distribution of air volume flow rate 

𝑝 = 𝐹(𝑥|𝜇, 𝜎) =
1

𝜎√2𝜋
∫ 𝑒

−
(𝑡−𝜇)2

2𝜎2 𝑑𝑡
𝑥

−∝

                                                                                   (17) 

Figure 5.9 delineates the cumulative distribution of the airflow rate for three sets of the 

experiment in second step. Probability of an experimental kick (the condition violating the 

safe operational limit) is demonstrated in Table 5.1 for each experimental run. The 

cumulative distribution of airflow rate of Experimental run 4 in Figure 5.9 shows that the 

probability of an airflow rate greater than 0.8 SCFM is 0.73. Analogous probabilities of 

airflow rates crossing a safe operational limit for Experimental runs 5 and 6 are presented 
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in Table 5.1. Experimental probabilities of kick for Experimental runs 5 and 6 are 0.78 and 

0.80 respectively.  

 

 

Experiment 

Set Condition Probability 

4 

Pr (air flow 

rate > 0.80 

SCFM) 

0.730 

5 

Pr (air flow 

rate > 0.80 

SCFM) 

0.780 

6 

Pr (air flow 

rate > 0.80 

SCFM) 

0.800 

5.2.2 Probability Calculation of Downhole Parameters 

    This section discusses the probability calculation of downhole parameters or primary 

events 1, 2, 3 and 4 in the bowtie risk assessment model in Figure 4.6. The cumulative 

distribution of downhole parameters for three sets of experimental runs 4, 5 and 6 are 

plotted in Figure 5.8 using Equation 17. In Experiment run 4, the cumulative distribution 

of the mass flow rate ranges between 3000 lb/hr to 4500 lb/hr. Probability of a mass flow 

rate greater than the safe operational limit of 3580 lb/hr (see Table 5.2) is calculated from 

the corresponding cumulative distribution of Experimental run 4, which is 0.54. 

Probabilities of the mass flow rate crossing the safe operational limit in Experimental runs 

5 and 6 are measured from the corresponding cumulative distribution (Figure 5.9) and 

presented in Table 5.2. Cumulative distribution of pressure, density and electrical 

Table 5-1 Experimental Probability of Kick 
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conductivity for three runs of the experiments are also plotted in Figure 5.10. The 

cumulative distribution function in Figure 5.10 and safe operational limits of pressure, 

density and electrical conductivity presented in Table 3.1 are taken into account to assess 

the probability of downhole parameters violating the safe operational limit. Table 5.2 

describes the probability of primary events for each experimental run. The probabilities of 

downhole pressure for Experiment runs 4, 5 and 6 are 0.75, 0.79 and 0.79 respectively. The 

probability of density and electrical conductivity are also presented in Table 5.2 for three 

experimental runs. 

 

Index 
Primary 

Events 
Condition 

Probability 

Experimental 

run 4 

Experimental 

run 5 

Experimental 

run 6 

1 Flow rate 

Pr (Flow rate > 

Safe operational 

limit) 

0.540 0.650 0.600 

2 
Downhole 

Pressure 

Pr ( Downhole 

Pressure >  Safe 

operational limit) 

0.750 0.790 0.790 

3 Density 

Pr ( Density < 

Safe operational 

limit) 

0.730 0.780 0.800 

4 
Electrical 

Conductivity 

Pr ( Electrical 

Conductivity < 

Safe operational 

limit) 

0.700 0.800 0.820 

Table 5-2 Probability of downhole parameters 
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Figure 5-10 Cumulative distribution of downhole parameters 

5.2.3 Validation of Kick Detection 

   The probability of kick is quantified experimentally (Table 5.2) to validate the kick 

detection part in the blowout risk assessment model. The kick detection part or the fault 

tree in the bowtie risk assessment model (see Figure 4.6) can be arranged by numerous 

scenarios of logical combinations as described in Table 4.1. Each scenario represents a 

unique logical combination. For example, when four events are combined using only OR 

logic, it is considering the case where kick is detected whenever any of the four primary 

events occurs. Basing kick detection on any one of the primary events increases the chance 

of a Type I error (false positive); similarly, when four events are combined through only 

AND logic, this considers the case where kick is detected when all four primary events 

occur. Basing kick detection on such conditions increases changes in the Type II error (false 

positive). A range of scenarios is tested using probability of primary events in different 

experiment runs. Results are presented Tables 5 3.  
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In Scenario 1, any single parameter including mass flow rate, downhole pressure, density 

or the electrical conductivity crossing a safe operational limit estimates the highest 

probability (0.99) of kick detection. It is significantly higher compared to experimental 

probability of kick (0.73). This confirms that kick detection based on at least any one of the 

primary events occurring overestimates kick detection. Primary events are arranged using 

only the AND logical expression in Scenario 2. Scenario 2 provides exact opposite result 

of Scenario 1. 

 

Scenario 

Probability of kick 

Experimental run 4 Experimental run 5 Experimental run 6 

Numerical Experimental Numerical Experimental Numerical Experimental 

1 0.990 0.730 0.996 0.775 0.9969 0.805 

2 0.206 0.730 0.318 0.775 0.310 0.805 

3 0.813 0.730 0.885 0.775 0.883 0.805 

4 0.452 0.730 0.574 0.775 0.600 0.805 

5 0.372 0.730 0.49 0.775 0.456 0.805 

6 0.709 0.730 0.815 0.775 0.810 0.805 

7 0.940 0.730 0.972 0.775 0.971 0.805 

8 0.951 0.730 0.978 0.775 0.981 0.805 

9 0.803 0.730 0.886 0.775 0.889 0.805 

10 0.471 0.730 0.5693 0.775 0.586 0.805 

11 0.352 0.730 0.495 0.775 0.442 0.805 

12 0.718 0.730 0.814 0.775 0.813 0.805 

13 0.930 0.730 0.970 0.775 0.973 0.805 

14 0.953 0.730 0.977 0.775 0.978 0.805 

15 0.803 0.730 0.883 0.775 0.885 0.805 

16 0.459 0.730 0.582 0.775 0.595 0.805 

17 0.364 0.730 0.482 0.775 0.461 0.805 

18 0.712 0.730 0.817 0.775 0.816 0.805 

19 0.941 0.730 0.971 0.775 0.971 0.805 

20 0.950 0.730 0.979 0.775 0.980 0.805 

Table 5-3 Analysis of selected scenarios of logical combinations for kick detection in Table 4.1 (Figure 4.6) 
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To obviate the error estimation of kick, four parameters are selected and combined in 

numerous ways for the rest of the scenarios. From Scenario 3 to 8, mass flow rate and 

downhole pressure are coupled as primary events 1 and 2. Density and electrical 

conductivity are coupled as primary events 3 and 4. Numerical estimation of the probability 

of kick for Scenario 6 is 0.709 (Experimental run 4), which exhibits almost the same value 

as the experimentally observed probability of kick (0.730). In scenario 6, either any 

combinations of mass flow rate and downhole pressure or density or electrical conductivity 

violating the safe operational limit estimates the kick detection. Experimental runs 5 and 6 

demonstrate resemblance to Experimental run 4 for Scenario 6. Scenarios 6, 12 and 18 are 

the reverberation of similar logical combinations where almost analogous accuracy is 

observed. In Scenario 12, mass flow rate and electrical conductivity are combined and 

selected as primary events 1 and 2. Density and downhole pressure are coupled as primary 

events 3 and 4. For exhaustive analysis of kick detection 15 more logical combinations of 

kick detection parameters are analyzed and compared in Appendix C Table IV.  The 

comparison between numerical and experimental results in Appendix C Table IV presents 

that if density is monitored individually accurate estimation of kick is possible. 

5.2.4 Sensitivity Analysis 

   Determination of the primary events having the most crucial impact on kick detection can 

be done from the validated kick detection model. Scenario 12 in Table 5.3 is selected, as it 

provides the closest correspondence when compared to the experimental result. To 

determine the primary events having the most crucial impact, each primary event is 
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changed individually and separately at constant intervals (5%, 10%...) of percentage change 

to maintain uniformity of change. In Scenario 12, Pr (Flow Rate) and Pr (Electrical 

Conductivity) are combined through AND logic. 

 

Figure 5-11 Sensitivity analysis of downhole parameters 

As a result, the percentage change of kick corresponds to the percentage change of the Pr 

(Flow Rate) and the percentage change of Pr (Electrical Conductivity) merges. Similar 

scenario is observed in the case of Pr (Downhole Pressure) and Pr (Density). In Figure 5.11, 

percentage change in kick because of Pr (Flow Rate) and Pr (Electrical Conductivity) are 

presented by the same curve. Pr (Downhole Pressure) and Pr (Density) show comparatively 

higher impact on the percentage change of kick.  

5.2.5 Time Dependency Analysis of Kick Detection 

   To analyze the impact of the duration of the experiment on the probability of downhole 

parameters violating a safe operational limit, the total duration of Experiment run 4 is 

segmented in six different time windows.  In Appendix C Table I, variations on the 
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probability of downhole parameters crossing a safe operational limit according to the 

change of the window length are presented. As expected, the lowest probability of 

downhole parameters crossing a safe operational limit is observed between the time 

intervals of 0-60 seconds. The probability of downhole parameters starts to increase as soon 

as the influx is injected into the pressure cell. Probability of airflow rate or experimental 

probability of kick reaches a maximum of 0.764 at 0-140 seconds of the time window. 

Appendix C Table I exhibits that the response of kick by individual downhole parameters 

is unlikely to be similar and consistent with the experimental probability of kick. For 

exhaustive analysis of kick detection 11 new scenarios of logical combinations for 

downhole parameters are analyzed in Appendix C Table II. New scenarios and 

combinations are compared with experimental kick estimation. Combinations of any two, 

any three or all four parameters by AND logical expression are not likely to provide 

consistent accurate estimation of kick with the change of time windows. Possible scenarios 

of logical combinations listed in Table 4.1 are analyzed and compared with the 

experimental estimation of kick in Appendix C Table III. Combinations 6, 12 & 18 are 

likely to predict an almost accurate estimation of kick with the change of time intervals. 

Combination 6, 12 & 18 exhibit that any two of four parameters need to be combined and 

estimated together for almost accurate estimation of kick. The next accurate estimation of 

kick can be observed by using combinations 3, 9 and 15. The precise estimation of kick 

detection is observed through combinations 6, 12 & 18 for durations of 0-140 seconds.   
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5.2.6 Blowout Risk Assessment 

    Kick detection is considered most significant in the blowout risk assessment model 

described in Figure 4.6. To reduce the false alarm of blowout consequences, the validated 

kick detection pattern from Table 5.3 is adapted in the risk assessment model. The well 

barriers to control a kick are not included in the experimental setup, so failure probabilities 

of the basic events of  safety barriers in the event tree are adapted from literature 

[34],[36],[51]. Failure probabilities of the basic events of the event tree are listed in Table 

5.4. The categorized blowout consequences described in Table 4.2 are quantified on the 

basis of the experimentally validated kick detection model using adapted failure 

probabilities from literature. Barrier failure probabilities and a quantitative analysis of 

blowout consequences are presented in Table 5.5 and Table 5.6 respectively. The risk 

assessment of blowout consequences in Figure 4.6 depicts that ‘disaster’, having a 

probability of 1.03E-4, is the second most possible consequence. The probability of ‘near 

miss’ (7.05E-1) is highest compared to other consequences presented in Table 5.6. 
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Index Barrier 
Probability of 

failure 

1 Casing (assumed)  2.00E-04 

2 Primary well control 1.99E-04 

3 
secondary well 

control 
2.30E-03 

4 Blowout preventer 1.99E-04 

5 Tertiary well control 1.99E-04 

 

 

Table 5-4 Probability of failure of basic events in Fig 4.6 

Basic 

event Description  Probability 

5 

Failure in mixing right 

density 
2.00E-04 

6 Pump failure 4.00E-04 

7 Lower pipe ram 1.00E-04 

8 Upper pipe ram 1.00E-04 

9 Pump failure 4.00E-04 

10 Choke valve failure 2.50E-04 

11 

Failure in mixing right 

density 
2.00E-04 

12 Pump failure 4.00E-04 

13 

Failure in mixing right 

density 
2.00E-04 

14 Choke valve failure 2.50E-04 

15 Pump failure 4.00E-04 

16 Annular Preventer 1.00E-04 

17 Blind/shear ram 1.00E-04 

18 Barite plug (assumed) 1.00E-04 

19 Cement plug (assumed) 1.00E-04 

Table 5-5 Barrier failures probability 
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5.2.7 Discussion 

A comparison of the kick detection model (the fault tree of bowtie analysis) with 

experimental results illustrates that only a few specific scenarios of logical combinations 

can reduce a false alarm of kick detection as well as blowout consequences. Kick detection 

by any of four downhole parameters violating safe operational limits will provide 

maximum possibility of overestimation. Overestimation refers to the over prediction of 

kick by the risk analysis model compared to the experimentally estimated kick. Scenarios 

7, 8, 13, 14, 19 and 20 also overestimate the probability of kick, where one or two of four 

downhole parameters violating the safe operation limit will overestimate the probability of 

kick.   

The opposite tendency is observed when all four parameters are combined and considered 

to exceed the safe operational limit. The logical condition in Scenario 2 demonstrates that 

Table 5-6 Quantitative analysis of consequences 

Index Consequences BT 

1 Near Miss 
7.05E-

01 

2 Mishap 
4.24E-

04 

3 Incident 
9.77E-

07 

4 Accident 
1.95E-

10 

5 Disaster 
1.03E-

04 



RAKIB 2016  Page | 71 

kick detection by every single downhole parameter crossing the safe operational limit will 

underestimate the occurrence of kick. Underestimation indicates the under prediction of 

kick by risk analysis model compared to the experimentally estimated kick. 

Underestimation of kick detection is also observed for 8 distinct scenarios of logical 

combinations (Scenarios 4, 5, 10, 11, 16, 17). The analysis of Scenarios 4, 5, 10, 11, 16 and 

17 can be summarized as any three of four downhole parameters crossing the safe 

operational limit will underestimate the probability of kick. 

 In validated scenario 6, flow rate and downhole pressure are combined by the AND logical 

expression, while AND logical expression is used to combine electrical conductivity and 

density. Scenarios 12 and 18 depict analogous trends to Scenario 6. Similar logical 

conditions are repeated in Scenarios 12 and 18, where the primary events are alternated. A 

logical combination of Scenarios 6, 12 and 18 demonstrates that combined estimation of 

any two downhole parameters crossing the safe operational limit are likely to provide a 

reliable estimate of kick. A statement can be made that the false alarm in kick detection as 

well as blowout consequences are independent of the sequence of basic events but directly 

related to the sequence and combination of logic gates. Unlike Scenarios 6, 12 and 18, the 

next nearest accurate estimation of kick is observed for Scenarios 3, 9 and 15. The logical 

combination used in Scenarios 3, 9 and 15 demonstrates that any of those two downhole 

parameters crossing a safe operational limit are likely to provide an accurate estimation of 

kick. Accurate estimation of kick is also possible when density is monitored individually 

(Appendix C Table IV). Observing validated scenarios a statement can be made that if one 

kick detection parameter is to be monitored then density is the best choice to make, if 
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multiple parameters are to be monitored then logical combinations 6, 12 & 18 are best.  

Since the kick detection parameters act differently with the type of hydrocarbon as kick, so 

it is recommended to use multiple kick detection parameter to detect kick.  Furthermore, 

the sensitivity analysis of basic events depicts that the occurrence as well as timeliness of 

kick is somewhat prone to downhole pressure and density. 

 

5.3 Synopsis 

Comparison of numerical simulation (CFD) results with experimental observations and 

flow pattern analysis exhibits a close match. Significant change in downhole pressure and 

discrete velocity of air and water are observed. Volumetric expansion of gas is obvious as 

air tends to flow through the pressure cell. Validation and analysis of kick detection fault 

tree exhibits that an accurate estimation of kick compared to the experimental results is 

possible when multiple parameters are monitored and combined with specific logical 

scenarios. Furthermore, time dependency analysis exhibits an on time risk estimation of 

kick. The probability of kick predicted my risk estimation model changes with respect to 

time. 
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Chapter 6  

6 Conclusion 

 This thesis is focused on the numerical simulation of the change of hydrodynamic property 

during a kick prior to the blowout consequences. Furthermore, a risk assessment model of 

blowout consequences based on real time process data is developed. Both numerical model 

and risk assessment model are compared and validated with experimentally obtained 

results. The numerical simulation part of the work is submitted in the Journal of Petroleum 

Science and Engineering on the title of ‘Numerical Simulation and Experimental Validation 

of Kick to Analyze Well Blowout Risk’. The risk assessment part of the work is submitted 

in Reliability Engineering and Safety Science on the title of ‘Well Blowout Risk 

Assessment Model Testing and Validation’.  

   Numerical simulation results are compared and validated with experimental studies at 

first and then an exhaustive analysis of simulation results are done to examine the 

hydrodynamic property change during an influx. Obtained numerical results exhibit a quite 

a good match with experimental results having a maximum twenty percentage of error 

during stabilized condition. Volumetric expansion of gaseous phase while travelling 

upward as well as discrete flow velocity of two immiscible mixtures are obvious, which 

are analyzed through numerical simulation.  
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Blowout risk assessment model is proposed based on the bow tie approach where kick 

detection is considered as the key element. The kick detection part of the blowout risk 

assessment model is tested and validated using a downhole experimental setup. Around 35 

percent of an overestimation of kick detection may result when any one of the four 

parameters violating a safe operational limit is considered. On the contrary, 71 percent of 

underestimation of kick detection is observed when all four parameters are combined and 

all four parameters are considered as having crossed the safe operational limit. The study 

concludes that kick detection is reliably estimated while any two out of four parameters are 

combined and considered to violate a safe operational limit. In Scenarios 6, 12 & 18 mass 

flow rate is coupled with downhole pressure, electrical conductivity and density 

respectively.  In other words, reliable estimation is possible when mass flow rate is 

combined with any three parameters and is considered to have crossed safe operational 

limit. Analyzing the validated scenarios of logical combination, it is important to note that 

a false alarm of kick detection as well as blowout consequences are independent of the 

sequence of primary events but are directly related to the sequence and combination of 

logic gates.  The kick occurrence is used along with adopted data from previous studies to 

estimate the consequences of blowout risk analysis.  

This work can be further improved by overcoming the bowtie shortcomings such as the 

common cause of failure, causation dependence and also inability to update blowout 

prediction based on real time observation of well control barriers. A Bayesian network is 

highly recommended as a possible approach for risk analysis of these improvements. The 

Bayesian network model can be developed and integrated with real time monitoring of well 
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conditions. This will provide a reliable real time risk estimate. To model consequence, the 

loss function approach may be considered. On time risk estimation of kick and visualization 

as well as blowout consequences are possible when the proposed validated model is coded 

in Matlab and synchronized with Labview. Furthermore the validation of event tree part of 

the risk assessment model is possible depending upon the availability of experimental 

studies on well control techniques. The proposed numerical model can be further extended 

for full scale wellbore considering appropriate phase as an influx. Rotational motion of drill 

string as well as heat transfer between phases can be incorporated for more realistic and 

practical prediction of hydrodynamic property change in a wellbore during a kick.
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Appendix-A 

Scalar form of conservation equations: 

𝜕𝜌

𝜕𝑡
+ 

𝜕

𝜕𝑡
(𝜌𝑣𝑥) +  

𝜕

𝜕𝑡
(𝜌𝑣𝑦) + 

𝜕

𝜕𝑡
(𝜌𝑣𝑧) = 0     

Momentum equation in 𝑥 direction:  

𝜕

𝜕𝑡
(𝜌𝑣𝑥) +

𝜕

𝜕𝑥
(𝜌𝑣𝑥𝑣𝑥) +

𝜕

𝜕𝑦
(𝜌𝑣𝑦𝑣𝑥) +

𝜕

𝜕𝑧
(𝜌𝑣𝑧𝑣𝑥)

= − 
𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
[𝜆∇. �⃗� + 2𝜇

𝜕𝑣𝑥

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝜇(

𝜕𝑣𝑥

𝜕𝑦
+

𝜕𝑣𝑦

𝜕𝑥
] +

𝜕

𝜕𝑧
[𝜇(

𝜕𝑣𝑥

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑥
] + 𝜌𝑔𝑥 

Momentum equation in 𝑦 direction: 

𝜕

𝜕𝑡
(𝜌𝑣𝑦) +

𝜕

𝜕𝑥
(𝜌𝑣𝑥𝑣𝑦) +

𝜕

𝜕𝑦
(𝜌𝑣𝑦𝑣𝑦) +

𝜕

𝜕𝑧
(𝜌𝑣𝑧𝑣𝑦)

= − 
𝜕𝑝

𝜕𝑦
+

𝜕

𝜕𝑦
[𝜆∇. �⃗� + 2𝜇

𝜕𝑣𝑦

𝜕𝑦
] +

𝜕

𝜕𝑥
[𝜇(

𝜕𝑣𝑦

𝜕𝑥
+

𝜕𝑣𝑥

𝜕𝑦
] +

𝜕

𝜕𝑧
[𝜇(

𝜕𝑣𝑦

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑦
] + 𝜌𝑔𝑦 

Momentum equation in z direction: 

𝜕

𝜕𝑡
(𝜌𝑣𝑧) +

𝜕

𝜕𝑥
(𝜌𝑣𝑥𝑣𝑧) +

𝜕

𝜕𝑦
(𝜌𝑣𝑦𝑣𝑧) +

𝜕

𝜕𝑧
(𝜌𝑣𝑧𝑣𝑧)

= − 
𝜕𝑝
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𝜕

𝜕𝑧
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𝜕𝑣𝑧

𝜕𝑧
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𝜕
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𝜕𝑣𝑧

𝜕𝑥
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𝜕𝑣𝑥
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𝜕

𝜕𝑦
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𝜕𝑦
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𝜕𝑧
] + 𝜌𝑔𝑧 
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Appendix-B 
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Appendix-C 

 

 

 

 

 

 

Table I Time dependent probability of downhole parameters crossing safe operational limit 

Time Interval 

0-60 

seconds 0-80 seconds 0-100 seconds 0-120 seconds 0-140 seconds 0-161 seconds 

A | Flow Rate 0.325 0.490 0.646 0.707 0.666 0.540 

B | Downhole Pressure 0.272 0.536 0.677 0.745 0.739 0.750 

C | Density 0.532 0.509 0.664 0.739 0.750 0.730 

D | Electrical Conductivity 0.500 0.457 0.600 0.692 0.724 0.700 

E | Airflow Rate  

(Experimental) 
0.379 0.589 0.709 0.773 0.764 0.730 
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Table II Time dependency of logical scenarios for kick detection 

  Probability of kick 

Time 

Interval 0-60 seconds 0-80 seconds 0-100 seconds 0-120 seconds 0-140 seconds 0-161 seconds 

Combinatio

n 

Numeric

al  

Experiment

al 

Numeric

al  

Experiment

al 

Numeric

al  

Experiment

al 

Numeric

al  

Experiment

al 

Numeric

al  

Experiment

al 

Numeric

al  

Experiment

al 

AB 0.088 0.379 0.263 0.589 0.437 0.709 0.527 0.773 0.492 0.764 0.405 0.730 

AC 0.173 0.379 0.249 0.589 0.429 0.709 0.522 0.773 0.499 0.764 0.394 0.730 

AD 0.162 0.379 0.224 0.589 0.388 0.709 0.489 0.773 0.482 0.764 0.378 0.730 

BC 0.145 0.379 0.273 0.589 0.449 0.709 0.550 0.773 0.554 0.764 0.548 0.730 

BD 0.136 0.379 0.245 0.589 0.406 0.709 0.515 0.773 0.535 0.764 0.525 0.730 

CD 0.266 0.379 0.232 0.589 0.398 0.709 0.511 0.773 0.542 0.764 0.511 0.730 

ABC 0.047 0.379 0.134 0.589 0.290 0.709 0.389 0.773 0.369 0.764 0.296 0.730 

BCD 0.072 0.379 0.125 0.589 0.270 0.709 0.381 0.773 0.401 0.764 0.383 0.730 

ACD 0.086 0.379 0.114 0.589 0.257 0.709 0.362 0.773 0.361 0.764 0.276 0.730 

ABD 0.044 0.379 0.120 0.589 0.262 0.709 0.365 0.773 0.356 0.764 0.284 0.730 

ABCD 0.023 0.379 0.061 0.589 0.174 0.709 0.269 0.773 0.267 0.764 0.207 0.730 
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  Probability of kick 

Time 

Interval 0-60 seconds 0-80 seconds 0-100 seconds 0-120 seconds 0-140 seconds 0-161 seconds 

Index Numerical  Experimental Numerical  Experimental Numerical  Experimental Numerical  Experimental Numerical  Experimental Numerical  Experimental 

Comb-1 0.885 0.379 0.937 0.589 0.985 0.709 0.994 0.773 0.994 0.764 0.990 0.730 

Comb-2 0.023 0.379 0.061 0.589 0.174 0.709 0.269 0.773 0.267 0.764 0.206 0.730 

Comb-3 0.389 0.379 0.560 0.589 0.766 0.709 0.851 0.773 0.850 0.764 0.813 0.730 

Comb-4 0.135 0.379 0.177 0.589 0.353 0.709 0.473 0.773 0.495 0.764 0.452 0.730 

Comb-5 0.068 0.379 0.193 0.589 0.378 0.709 0.484 0.773 0.458 0.764 0.372 0.730 

Comb-6 0.331 0.379 0.434 0.589 0.661 0.709 0.769 0.773 0.768 0.764 0.709 0.730 

Comb-7 0.639 0.379 0.819 0.589 0.931 0.709 0.963 0.773 0.960 0.764 0.940 0.730 

Comb-8 0.786 0.379 0.803 0.589 0.924 0.709 0.962 0.773 0.965 0.764 0.951 0.730 

Comb-9 0.436 0.379 0.558 0.589 0.765 0.709 0.849 0.773 0.848 0.764 0.803 0.730 

Comb-10 0.096 0.379 0.197 0.589 0.386 0.709 0.501 0.773 0.503 0.764 0.471 0.730 

Comb-11 0.107 0.379 0.173 0.589 0.346 0.709 0.457 0.773 0.450 0.764 0.352 0.730 

Comb-12 0.283 0.379 0.436 0.589 0.663 0.709 0.770 0.773 0.769 0.764 0.718 0.730 

Comb-13 0.711 0.379 0.799 0.589 0.922 0.709 0.959 0.773 0.959 0.764 0.930 0.730 

Comb-14 0.714 0.379 0.823 0.589 0.933 0.709 0.966 0.773 0.966 0.764 0.953 0.730 

Comb-15 0.435 0.379 0.561 0.589 0.767 0.709 0.851 0.773 0.850 0.764 0.803 0.730 

Comb-16 0.093 0.379 0.184 0.589 0.358 0.709 0.476 0.773 0.490 0.764 0.459 0.730 

Comb-17 0.110 0.379 0.187 0.589 0.373 0.709 0.481 0.773 0.463 0.764 0.364 0.730 

Comb-18 0.285 0.379 0.433 0.589 0.661 0.709 0.769 0.773 0.767 0.764 0.712 0.730 

Comb-19 0.727 0.379 0.811 0.589 0.929 0.709 0.963 0.773 0.961 0.764 0.941 0.730 

Comb-20 0.699 0.379 0.811 0.589 0.926 0.709 0.962 0.773 0.964 0.764 0.950 0.730 

Table III Time dependency of logical scenarios (Table 4.1) for kick detection 
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Table IV Analysis of scenarios of logical combinations for kick detection 

A | Flow Rate 

B | Downhole Pressure 

C | Density 

D | Electrical Conductivity 

 

 

Scenari

o 

Probability of kick 

Experimental run 4 Experimental run 5 Experimental run 6 

Numeric

al 

Experiment

al 

Numeric

al 

Experiment

al 

Numeric

al 

Experiment

al 

A 0.540 0.730 0.650 0.775 0.600 0.805 

B 0.750 0.730 0.790 0.775 0.790 0.805 

C 0.730 0.730 0.780 0.775 0.800 0.805 

D 0.700 0.730 0.800 0.775 0.820 0.805 

AB 0.405 0.730 0.514 0.775 0.474 0.805 

AC 0.394 0.730 0.507 0.775 0.480 0.805 

AD 0.378 0.730 0.520 0.775 0.492 0.805 

BC 0.548 0.730 0.616 0.775 0.632 0.805 

BD 0.525 0.730 0.632 0.775 0.648 0.805 

CD 0.511 0.730 0.624 0.775 0.656 0.805 

ABC 0.296 0.730 0.401 0.775 0.379 0.805 

ACD 0.276 0.730 0.406 0.775 0.394 0.805 

ABD 0.284 0.730 0.411 0.775 0.389 0.805 

BCD 0.383 0.730 0.493 0.775 0.518 0.805 

ABCD 0.207 0.730 0.320 0.775 0.311 0.805 
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Appendix-D 

 

Figure I Change of downhole pressure (Prior Kalman filtration) 

 

Figure II Change of mass flow rate (Prior Kalman filtration) 
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Figure III Change of density (Prior Kalman filtration) 

 

 

 

 

 

Figure IV Change of conductivity (Prior Kalman filtration) 
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Figure V Change of air flow rate (Prior Kalman filtration) 
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