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Abstract 

 
 

The proton exchange membrane fuel cell (PEMFC) may be operated at the maximum 

power point (MPP) or maximum efficiency point (MEP). In this thesis, a complete user-

friendly Simulink model of the PEMFC is developed to implement the maximum power 

point tracking (MPPT) technique and maximum efficiency point tracking (MEPT) 

technique. A new tracking technique referred to as the midpoint tracking (MDT) technique, 

is proposed to overcome the limitations of the MPPT and MEPT techniques. A detailed 

analysis of the tracking techniques based on simulation results using the Ballard MK5-E 

PEMFC as reference is presented. Simulation results indicate that the midpoint tracking 

technique provides a trade-off operation with acceptable efficiency derating of 15%, high 

output power, and small size of the fuel cell when compared with the maximum efficiency 

point tracking technique. In order to analyse the effects of the tracking techniques on the 

PEMFC system economics, a detailed economic analysis for ten different cases of 

standalone PEMFC system is carried out. From the point of view of the economics of a 

standalone fuel cell generation system, it is found that the MPPT technique is suitable for 

low power applications (<50kW) and MDT technique is suitable for medium to high power 

applications. Finally, based on the particular requirements of stationary PEMFC 

application, suitable tracking techniques are suggested.  
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Chapter 1 

Introduction 

 Fuel cells (FCs) transform the chemical energy liberated during the electrochemical 

reaction to electrical energy. Fuel cells have the potential to operate as a primary energy 

source with high efficiency, quiet operation, high energy density, and low cost of electricity 

[1]. The fuel cell market is rapidly expanding and the megawatts of fuel cells shipped 

worldwide per year has increased from 65 MW in 2009 to 181 MW in 2014, which is a 

174% increase, as shown in Fig. 1.1 [2]. 

 

Fig. 1.1. Megawatts of fuel cells shipped worldwide based on the application [2] 

In the case of transportation applications, the Toyota automobile company has 

predicted a massive increase in the amount of fuel cells that will be produced for 
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transportation applications with the introduction of the Toyota Mirai PEMFC car in 2015, 

as shown in Fig. 1.2 [3]. On the other hand, the stationary power applications are also 

gaining momentum as the Dutch fuel cell company Nedstack is installing a first-of-its-kind 

2 MW PEMFC in China [4].  

 
Fig. 1.2. Megawatts of PEMFCs produced worldwide for transportation applications [3] 

 

Fig. 1.3. Number of portable fuel cells shipped worldwide [2] 
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As shown in Fig. 1.3, the number of portable fuel cells shipped worldwide is also 

increasing drastically [2]. The financial report of the Ballard power systems for the last 

quarter of 2015 indicates that 26% of its revenue is from portable fuel cell products, which 

shows that FCs in portable applications are also increasing in demand [5]. 

 The basic components required for FCs are similar to those required for batteries, 

such as the anode, cathode, and electrolytes. The output voltage obtained from the fuel cell 

is typically around 1.2 V (theoretically). The actual output voltage is less than 1.2 V due to 

several losses in the fuel cell. Therefore, single fuel cells are stacked in series or parallel to 

obtain the required voltage and current, respectively. FCs can be classified into two groups 

based on the type of fuel. The proton exchange membrane fuel cell (PEMFC), alkaline fuel 

cell (AFC), and phosphoric acid fuel cell (PAFC) are supplied with hydrogen (H2) as fuel 

to produce electricity and water (by-product). The solid oxide fuel cell (SOFC), direct 

methanol fuel cell (DMFC), and molten carbonate fuel cell (MCFC) are supplied with 

hydrocarbon fuels to produce electricity and carbon dioxide (by-product) [6]. 

 In order to generate green energy, hydrogen-based FCs are preferred over carbon-

fuel-based FCs. The specific energy of hydrogen is also high when compared to other types 

of fuels as shown in Fig. 1.4 [7]. Hence, fuel cells with hydrogen fuel are commonly used 

for stationary, transportation, and portable applications. AFCs have superior efficiency 

when compared with PEMFCs and PAFCs; however, they are highly sensitive to CO2, 

which reduces the durability of the AFCs. In the case of the PAFCs, the tolerance to 

impurities in the fuel and the operating temperature are high when compared with PEMFCs 

and AFCs. The efficiency of the PAFC can be increased to 80% with combined heat and 

power (CHP) configuration, but the electrical efficiency is very low (typically 37% - 42%). 
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On the other hand, PEMFCs are highly efficient and durable when compared with PAFCs 

and AFCs. PEMFCs also exhibit quick start up and moderate operating temperature. All of 

these above-mentioned advantages indicate that the PEMFC is a suitable FC for 

transportation, portable, and stationary power applications. Hence, the PEMFC is 

considered in this work to analyse the performance of the tracking techniques. 

 

Fig. 1.4. Specific energy of different fuels [7] 

 PEMFCs exhibit non-linear output characteristics, as shown in Fig. 1.5. There exist 

unique operating points, namely the maximum power point (MPP) at which the PEMFC 

produces maximum power; and the maximum efficiency point (MEP) at which the PEMFC 

operates at maximum efficiency. The lifetime of the PEMFC can be increased by operating 

at a constant load [8]. Hence, it is ideal to select the maximum power point (MPP) or the 

maximum efficiency point (MEP) as the constant operating point. The MPP and MEP are 

influenced by changes in the PEMFC operating and loading conditions. Therefore, a power 

management system is required to operate at the required operating point (MPP or MEP) 
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throughout the operation of the PEMFC. The power management system consists of a 

power converter with tracking controller to track the changes in the required operating 

point. It is connected in-between the load and the PEMFC. In order to analyse the 

performance and the economic impacts of the tracking techniques, several experimental 

runs are required, which are expensive due to high fuel cell cost. Hence, the development 

of an accurate simulation model of the PEMFC, power converter, tracking controller, and 

real-time load are required to effectively analyse the performance and economic impacts of 

the tracking techniques. 

 

Fig. 1.5. PEMFC characteristics 

1.1 Literature review 

 The rapid advancement in fuel cell technology and power electronics have become 

an added advantage to the growth of FC-based power systems. In [9], [10], the PEMFC 

Simulink model available in the MATLAB-Simulink® platform is used to represent the fuel 

cell model. However, the double-layer charge effect is neglected, parasitic power consumed 

by the auxiliary equipment is not taken into account, and ohmic (internal) resistance is set 

to a constant value, though in reality, it depends on membrane water content. Hence, a 
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complete versatile Simulink model of the PEMFC based on its electrical, electrochemical, 

and thermodynamic equations is required. The tracking control can be directly 

implemented in the PEMFC by controlling the inlet fuel flow, which in turn controls the 

stack current (ifc) to operate at the required operating point [9]. However, the direct control 

is sensitive to load variations. On the other hand, the tracking control can be implemented 

using a DC-DC converter that follows a reference signal generated by the tracking 

algorithm to avoid the problems associated with load variations  [11]–[13].  

Several economic analyses of the PEMFC system have been presented in the 

literature [14]–[18]. However, the effects of the tracking techniques on the economics of 

the PEMFC have not been analyzed. A detailed literature review of the required 

components for the analysis of tracking techniques and their impacts on the cost of 

electricity (COE) is presented in the following subsections. 

1.1.1  PEMFC Models  

 A detailed analysis of tracking techniques with a high degree of accuracy using 

simulation studies requires a complete and versatile model of the PEMFC. Literature on 

the PEMFC models can be found in [19]–[30]. In [22], the authors developed steady state 

and dynamic PEMFC models using the curve fitting method based on the experimental 

results obtained from a 5 kW PEMFC system. However, the developed model is not generic 

and therefore is not suitable for the analysis of the performance of the tracking techniques 

for a wide range of PEMFC systems with different ratings and configurations. To overcome 

this problem, several generic PEMFC models have been proposed using state space and 

partial differential equations based on the electrochemical, thermodynamic, and electrical 
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properties of the PEMFC [23]–[26]. However, the cathode and anode reactant flow models, 

which help in realising hydrogen and oxygen consumption rate and partial pressure for 

various operating conditions, are not taken into consideration. This problem has been 

addressed by developing reactant flow models to obtain more detailed information 

regarding hydrogen and oxygen utilization, which influences the performance of the 

PEMFC [27], [28]. Nevertheless, the concentration voltage drop was not taken into 

account, which makes the model incomplete. All the above-mentioned limitations are 

eliminated by developing a complete PEMFC model in [29], [30]. The stack efficiency of 

the PEMFC can be obtained using these models; however, calculating the PEMFC system 

efficiency, which requires the power consumed by the auxiliaries, is not possible.  

 Finally, the authors in [31] developed a complete model involving electrochemical 

and mechanical equations to accurately represent all the components of PEMFC with 

auxiliary equipment, such as air compressor, water management system, and heat 

exchanger system. The resulting model is very complex, although it provides an in-depth 

and accurate analysis of the behaviour of PEMFC for various operating and loading 

conditions.  

In this thesis, a net output power model using fast flexible space filling design [32] 

is proposed to obtain an accurate, model-independent, and less complex air compressor 

model. A PEMFC Simulink model is developed, which combines the relevant features of 

published models [25], [27]–[31], [33] that are associated with the stack design and reactant 

flow models to obtain a complete and versatile PEMFC model.   
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1.1.2  Power Converter 

In the case of indirect implementation of the tracking control, both the topology and 

the configuration of the power converter connected between the PEMFC and the load play 

a significant role. The output of the PEMFC is DC; hence, the DC-DC converter and DC-

AC converter are the possible converter configurations that can be implemented. The 

tracking technique can only be implemented using a Z-source inverter in the case of the 

DC-AC converter to achieve the voltage boost, as well as the tracking requirements [34]. 

However, the control becomes complex, and the speed of the tracking technique 

deteriorates.  

In the case of the DC-DC power conversion system, the coupled inductor Cuk 

converter is used to implement the MPPT technique based on nonlinear curve fitting and 

recursive least-squares estimation [35]. The major disadvantage of the DC-DC Cuk 

converter is the high number of reactive components and high current stress on the switch, 

diode, and capacitor. In general, DC-DC converters such as buck, boost, and buck-boost 

converters are commonly used to implement the tracking technique [36]. The buck-boost 

converter is used to implement the tracking control in [37]; however, it has limitations, such 

as negative output voltage for positive input voltage, no common ground, and requirement 

of p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET). In the case of 

the MPPT implementation using the buck converter [38], there is a possibility of the battery 

(load) discharging into the PEMFC due to the absence of a blocking diode. The DC-DC 

buck converter also reduces the output voltage, which is not suitable for FCs that require 

voltage boost to meet the application requirements. In general, the DC-DC boost converter 
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is preferred over the buck and buck-boost converter due to the presence of the blocking 

diode at the load end and its ability to provide the required voltage boost [36].  

1.1.3  Tracking Techniques 

 The main objective of the tracking technique is to find and operate at the maximum 

point, which may be the maximum power point (MPP) in the case of the maximum power 

point tracking (MPPT) technique or the maximum efficiency point (MEP) in the case of 

the maximum efficiency point tracking (MEPT) technique. The maximum point is affected 

by the changes in the operating conditions. Hence, the tracking technique should operate in 

such a way as to track all the changes to maintain the operation of PEMFC at the maximum 

point. The net output power (Pout) or efficiency (η) is given as input to the tracking 

technique to track MPP or MEP, respectively. The same tracking algorithm can be used to 

track MPP and MEP. Several tracking algorithms designed specifically for photovoltaic 

(PV) applications have been presented in the literature [39]–[45]. In this section, the 

tracking algorithms that are suitable for FCs are discussed.   

 The tracking algorithms were mainly developed to track the MPP of PV arrays. 

Later some of these algorithms were implemented to track the MPP of wind turbines and 

FCs. A brief description of the algorithms follows: 

• The incremental conductance (IncCond) algorithm compares the instantaneous 

conductance (I/V) to the incremental conductance (ΔI/ΔV) of the fuel cell to 

determine the peak point [40]. It has the ability to track the maximum point under 

rapidly varying operating conditions. However, the incremental conductance 
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algorithm is complex. The accuracy and tracking speed of the IncCond algorithm 

depends on the step size of the stack current [46].   

• The perturb and observe (P&O) algorithm is similar to hill climbing. The stack 

current increases step by step until the maximum point is reached. However, the 

P&O algorithm never operates at the maximum point; it always oscillates around it 

[39]. A large step size will result in rapid response; however, it decreases the 

accuracy of the P&O algorithm. On the other hand, a smaller step size results in low 

tracking speed, and the system may not reach a steady state [46].  

• The fuzzy logic control (FLC) algorithm eliminates the oscillation around the 

maximum point [41]. However, the fuzzy logic algorithm is model dependent, 

complex, and its accuracy is based on the knowledge of the user or control engineer 

in choosing the right error computation [39], [41], [42]. 

• The voltage and current based maximum point tracking algorithms are developed 

to reduce the complexity [43]. Nevertheless, they depend on the regression equation 

based on the current and voltage corresponding to the maximum point, which leads 

to a model-dependent algorithm.  

• The sliding mode control (SMC) algorithm is developed to overcome the problem 

of model-dependence [44]. This algorithm operates based on the principle that the 

value of the slope at the maximum point is zero. However, the implementation 

complexity of the algorithm is high.  

• In order to overcome all the above-mentioned limitations of the tracking algorithms, 

the extremum seeking control (ESC) algorithm is introduced [11]. The ESC 
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algorithm is model independent, fast, accurate, and less complex when compared 

with other tracking algorithms. 

In this thesis, the ESC, P&O, and SMC tracking algorithms are implemented to 

investigate the performance of the maximum power point tracking and maximum efficiency 

point tracking techniques.  

1.1.4  Economic Analysis 

The efficiency and economics of the PEMFC are interrelated [14].  The cost of 

electricity (COE) plays a significant role in selecting the energy source. Hence, a detailed 

economic analysis of the PEMFC is required.  Economic analysis of a hybrid system with 

PEMFC and PV arrays used to power a telecommunication tower is considered in [16]. The 

economic analysis was carried out using an optimization tool to find the low value of COE. 

However, most of the power required by the load in this system is supplied by the PV, 

which resulted in an incomplete economic analysis of the PEMFC. A similar hybrid system 

with wind turbines replacing the PV arrays is used to power a building in [17]. In this case, 

several locations and configurations of the wind turbine and PEMFC are considered. 

However, the wind turbine provides most of the power to the building and the economics 

of the PEMFC are not investigated in detail. In order to obtain a detailed economic analysis 

of the PEMFC, a standalone PEMFC system should be considered to overcome the above-

mentioned limitations. 

A detailed economic analysis of a standalone PEMFC is presented in [14], [15]. The 

impacts of the power density and efficiency of the PEMFC on the COE are discussed. 

However, real-time loads are not considered; instead, a load with step variation at specific 
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intervals is considered in the investigation. The efficiency calculation is also based on an 

expression that ignores the power consumed by the auxiliaries. Finally, to overcome the 

above-mentioned limitations, a real-time load profile of a residential building is considered 

in the investigation [18]. The PEMFC is supplied with hydrogen from the reformer and the 

cost of all the components involved in the system is taken into account to obtain an accurate 

value of the COE. Yet an accurate economic analysis of PEMFC generation system with 

different tracking techniques is lacking in the literature. 

1.1.5  Limitations of Previous PEMFC Systems with Tracking 

Control 

The number of PEMFCs with tracking techniques reported in the literature to date 

is very limited. The first attempt to track the MPP in a PEMFC was based on a curve fitting 

approach [45], which is model-dependent and undesirable. The ESC algorithm was directly 

implemented to track the MPP by controlling the fuel flow of the PEMFC [9], [47]. The 

inbuilt model available in the Simulink was used to represent the PEMFC. This reduced 

the number of accessible parameters required to evaluate the performance of the PEMFC 

for different operating conditions. This problem is resolved by using the PEMFC model 

based on electrochemical and electrical equations in [48]. Nevertheless, the direct 

implementation of the tracking technique is sensitive to load variations, which is a major 

disadvantage. The load sensitivity problem is resolved by introducing a DC-DC power 

converter with a tracking controller between the PEMFC and the load [49]–[51].  
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The efficiency of the PEMFC at the MPP is low due to its non-linear characteristics. 

The low efficiency operation leads to increased fuel consumption, which in turn increases 

the cost of fuel consumed [14].  

In order to solve the low efficiency problem, the MEPT technique is introduced to 

track the MEP of the PEMFC [52]. A complete model involving electrochemical and 

mechanical equations to accurately represent all of the components of the PEMFC is used 

to track the MEP based on the ESC algorithm [13].  The compressor model is based on a 

static motor equation that is not suitable for dynamic analysis. Finally, a dynamic 

compressor model based on the stack current (ifc) is developed to accurately calculate the 

efficiency in [31]. However, the developed model is highly complex. The low efficiency 

problem at the MPP is resolved, but the output power of the PEMFC at the MEP is very 

low (~28% of MPP). Hence, a bigger and more expensive PEMFC would be required to 

deliver high output power at high efficiency. This is a major disadvantage.  

An optimum operating point was proposed to achieve moderate efficiency and 

power [53]. Nevertheless, the selection of the optimum point is random and the variations 

in operating conditions are not taken into account.  For the above-mentioned reasons, it is 

necessary to develop an alternative tracking technique that can track all the variations in 

the desired operating point (trade-off point).  

1.2  Thesis Objectives 

The goal of the thesis is to develop a detailed economic analysis of the PEMFC, 

taking into account the impact of the tracking techniques on the COE. In order to achieve 

the proposed goal, a new technique, namely the midpoint tracking (MDT) technique, is 



14 
 
 

introduced. All the limitations associated with PEMFC models are also resolved by 

developing a versatile PEMFC Simulink model based on the electrical, electrochemical, 

double layer charge effect, reactant flow, and thermodynamic equations.  

The tracking technique used in the thesis employs a DC-DC converter to avoid the 

load sensitive problems discussed in the previous sections. The configuration of the entire 

system used to investigate the performance of the tracking technique is shown in Fig. 1.6.  

The components required for the PEMFC system with tracking controller will be discussed 

throughout the thesis.  

 

Fig. 1.6. System block diagram 

The complexity and model dependency of the compressor model is eliminated by 

developing a simple and generic net output power model. The limitations, such as 

incomplete PEMFC model, absence of real-time load, impacts of hydrogen infrastructure 

on the COE, and impacts of tracking techniques on the COE associated with the economic 

analysis of the PEMFC are addressed. A detailed economic analysis is carried out by 

considering real-time loads, the cost of hydrogen infrastructure, cost of operation, cost of 

maintenance, and cost of PEMFC for ten different cases.  
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Based on the simulation results obtained from the tracking techniques and the 

economic analysis, a detailed comparison of the tracking technique is presented. Finally, 

based on the conclusions from the comparison of the tracking techniques, a procedure is 

developed to select a suitable technique for standalone PEMFC generation system.  

1.3  Thesis Organization 

The development of the economic analysis of the PEMFC system with tracking 

techniques are organized into six chapters. The introduction, literature review, limitations 

of previous work, and thesis objectives are discussed in Chapter 1. 

In Chapter 2, the development of the PEMFC model based on the electrochemical, 

electrical, and thermodynamic equations is presented. The reactant flow models to 

represent the hydrogen and oxygen operating pressures are discussed. The development of 

the generic net output power model to obtain the net output power of the PEMFC and the 

power consumed by the auxiliaries is discussed. The results obtained from the developed 

Simulink model are compared with experimental results to validate the developed model. 

The selection of the tracking algorithms is discussed in Chapter 3. The DC-DC 

boost converter model required for the tracking technique is developed in this chapter. A 

detailed comparison of the tracking algorithms used to track the MPPT and MEPT is 

discussed. The selected tracking algorithm is used to track the MPP and MEP of the 

PEMFC. Finally, the results of the simulation-based investigation of the MPPT and MEPT 

techniques are discussed.  

The development of the MDT technique to overcome the limitations of the MPPT 

and MEPT techniques is presented in Chapter 4. The selection of a suitable operating point 



16 
 
 

for trade-off operation from several possible operating points is discussed. The 

development and validation of the midpoint tracking technique (MDT) based on the 

selected trade-off point are presented. The developed MDT technique is used to control the 

DC-DC converter and the results of the simulations are discussed. 

In Chapter 5, the economic analyses of the PEMFC with MPPT, MEPT, and MDT 

are discussed. The configuration of the system and the components used for the economic 

analysis are presented and discussed. In order to investigate the performance of the PEMFC 

system over a wide range of operating conditions, a detailed analysis of ten different cases; 

and their configurations are discussed. The simulation results obtained from the energy 

system analysis tool (HOMER) are presented and discussed. An algorithmic procedure, 

based on the outcomes of the comparison of the tracking techniques, is presented to select 

a suitable tracking technique for a particular requirement of the PEMFC application. 

 In Chapter 6, the conclusions of the work are summarized and the contributions and 

scope for future work are discussed. 
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Chapter 2 

 

Model of the Proton Exchange Membrane 

Fuel Cell 
 
 
 

A PEMFC transforms the chemical energy liberated during the electrochemical 

reaction of hydrogen and oxygen to electrical energy. PEMFCs operate at moderate 

temperatures (60˚C - 100˚C) with quick start up, zero carbon emission, and high energy 

density when compared to other types of FCs such as SOFC, DMFC, and MCFC [54].  The 

water produced as a by-product from the PEMFC can be supplied to an electrolyzer to 

produce hydrogen.   

A complete and versatile PEMFC model is required in order to evaluate the 

performance of the PEMFC under varying operating conditions. The model should be 

highly accurate to facilitate the investigation of the performance of tracking techniques. 

The advantages and limitations of previous PEMFC models discussed in the literature [11], 

[13], [23]–[27] are taken into consideration to develop a complete and versatile PEMFC 

model.  

In this chapter, the modelling of PEMFC in Simulink is developed using 

electrochemical, electrical, and thermodynamic equations. Initially, the working principle 
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of the PEMFC is analyzed to obtain the behaviour of the PEMFC. Then, the expressions 

required to develop the stack model of the PEMFC with various associated losses are 

discussed. In order to obtain the hydrogen flow rate, oxygen flow rate, hydrogen partial 

pressure, and oxygen partial pressure, anode and cathode reactant flow models are 

developed. The validation of the developed model with published experimental results is 

presented to demonstrate the accuracy of the developed model.  

Efficiency calculation of the PEMFC requires knowledge of the power consumed 

by the auxiliaries. Numerous parameters are required to develop a model to determine the 

parasitic power consumed, which increase the complexity of the system. In order to 

overcome this limitation, a generic model of an air compressor using fast flexible filling 

statistical design is developed and validated. Finally, the behaviour of the PEMFC under 

varying operating conditions is investigated using the developed model.  

2.1  Principle of Operation 

PEMFCs consist of three major components, the polymer electrolyte membrane 

(PEM), the cathode, and the anode, as shown in Fig. 2.1. The combination of these three 

components is referred to as the membrane electrode assembly (MEA). The PEM acts as 

the electrolyte in-between the anode and cathode, which is similar to a battery assembly. 

The anode and cathode electrodes are constructed with porous carbon fibre with flow 

channels embedded in the surface of electrodes. The PEM consists of a Nafion membrane 

with platinum catalyst. The selection of Nafion membrane thickness play a significant role 

in determining the energy density of the PEMFC [55]. The practical stack of the PEMFC 
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includes several other components other than the electrodes and electrolytes, as shown in 

Fig. 2.2. 

 

Fig. 2.1. Cross section of PEMFC 

 

Fig. 2.2. Typical stack assembly of PEMFC  
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A gas diffusion layer (GDL) is placed between the MEA to reduce the friction 

between the flow plates and MEA. The effective utilization of flow plates increases the 

performance of the PEMFC. Current collector plates are used to collect electrons produced 

from the electrochemical reaction to produce electricity.  

The hydrogen (fuel) is supplied to the anode side of the PEMFC and air is supplied 

at the cathode side of the PEMFC, as shown in Figs. 2.1 and 2.2. The PEM between the 

anode and cathode separates the protons and electrons of the supplied hydrogen by allowing 

the protons to pass through it and blocking the electrons. The blocked electrons pass 

through the external connection to produce electricity and enter the cathode side. The 

electrons entering the cathode side react with oxygen in the supplied air to form water. The 

energy from the chemical reaction which produces water is liberated as heat. The water 

produced is drained through the cathode outlet, as shown in Fig. 2.1. The unreacted or 

excess hydrogen in the anode side is circulated back to the hydrogen tank through the anode 

outlet. The process continues, and electricity is produced as long as the hydrogen is 

supplied. The equations of the electrochemical reaction are described as follows: 

 2Anode: 2 2H H e+ −→ +                                                   (2.1) 

 2 2 ( )
1Cathode: 2 22 lO H e H O+ −+ + →   (2.2) 

where (l) indicates liquid state. The overall reaction is described as 

 2 2 2 ( )
1Overall: 2 lH O H O Heat+ → +   (2.3) 
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 The PEMFC requires pressure regulator (PR) to maintain the pressure of hydrogen 

and oxygen at a certain level defined by the PEMFC control unit. The hydrogen storage 

tank supplies hydrogen to the PEMFC and is also used for storing hydrogen produced from 

the reformer or electrolyzer. The air compressor helps to supply the required amount of air 

with adequate pressure to the cathode. The pressure regulator is used to maintain a constant 

pressure inside the PEMFC stack. A heat exchanger is installed to take away the generated 

heat and maintain the required temperature levels described by the control unit. A general 

schematic of the PEMFC system is shown in Fig. 2.3. 

 In this thesis, the Ballard MK5-E PEMFC is considered for modelling the PEMFC 

in Simulink [11], [19], [56]. The Ballard MK5-E is a 5 kW PEMFC with 35 cells connected 

in series configuration. The unit is well researched and all the parameters required to 

develop an accurate PEMFC model in Simulink are available in the literature.  

 

Fig. 2.3. Schematic of a PEMFC system 
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2.2  PEMFC Stack Model 

 The theoretical output voltage obtained from a PEMFC is around 1.2 V as 

mentioned in the introduction. However, the practical output voltage is less than the 

theoretical output voltage due to several losses associated with the PEMFC, as shown in 

Fig. 2.4. The stack model and expressions for calculating the ohmic, activation, and 

concentration losses of the PEMFC are discussed in the following subsections.  

 

Fig. 2.4. I-V Polarization curve of PEMFC 

2.2.1  PEMFC Output Voltage  

 The modified Nernst equation used to calculate the reversible potential of the 

chemical reaction explained in (2.3) is given as [57] 

 ( )2 2

0.5

, ln ' '
2Nernst o cell H O
RTV V p p

F
 = +   

  (2.4) 

where, R is the gas constant (J mol-1 K-1); F is the Faraday constant (C mol-1); p’H2 is the 

partial pressure of hydrogen (atm); p’O2 is the partial pressure of oxygen (atm); T is the 
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stack temperature (K). The reference potential (Vo,cell) of each cell considering the variation 

of stack temperature can be expressed as [57] 

 ( ), ,' 298o cell o cellV V Tϕ= − −   (2.5) 

where, ϕ  is the temperature constant; V’o,cell  is the reference potential at standard test 

conditions (T = 298 K and pressure = 1atm). The generated current flows through the MEA 

assembly, which leads to ohmic and activation losses. 

2.2.2  Ohmic Voltage Drop 

The ohmic voltage drop is mainly due to the resistance offered to the flow of current 

by the electrodes and the PEM. However, accurate measurement of the ohmic resistance is 

generally difficult and an empirical approach is preferred, as discussed in [58]. The ohmic 

voltage drop in the PEMFC is represented by an internal resistance expressed in terms of 

the fuel cell stack current (ifc), stack temperature (T), effective cell area (A), membrane 

thickness (tm), and the membrane water content (λ) as [58] 

 m m
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r tV i
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  (2.7) 

The value of λ indicates the membrane water content of the PEMFC and it can vary 

between 0 and 23, which is equivalent to 0% and 182% saturation. The value of λ ranging 
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from 15 and 23 is referred to as the super saturated region and the range of λ between 0 and 

13 is called the sub saturated region. The stack is 100% humidified when the value of λ is 

14.  

The PEMFC can be operated in the super saturated region to improve its 

performance; however, the large quantity of water produced in this region floods the PEM, 

which leads to degradation of the membrane. In the case of the sub saturated region, the 

water production is low and hence, the flooding of the membrane is controlled, but the 

performance of the PEMFC is reduced. The mean value of λ is selected in many cases to 

simplify the analysis [11], [28]. In this thesis, the value of λ is varied between 10.5 and 

17.5, which represents 75% and 125% of saturation. This range of λ is adequate for the 

analysis of the performance of the tracking technique around 100% humidity conditions.  

The ohmic voltage drop of the Ballard MK5-E model developed in Simulink is shown in 

Fig. 2.5.  

 

Fig. 2.5. Ohmic voltage drop  
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The parameters associated with the output voltage and ohmic voltage drop are 

tabulated in Table 2.1. The equivalent resistance of the ohmic voltage drop (Rohm) is given 

as 

 ohm
ohm

fc

VR
i

=    (2.8) 

Table 2.1: PEMFC parameters for output voltage and ohmic voltage drop 

Symbol Parameter Value Unit 
R Gas constant 8.314 J mol-1 K-1 
F Faraday constant 96487 C mol-1 

V’o,cell Standard reference potential 1.229 V 
ϕ  Temperature constant 0.0085 - 
tm Membrane thickness of Nafion 117 0.0178 cm 
A Effective cell area 232 cm2 
n Number of cells 35 - 

 

2.2.3  Activation Voltage Drop 

 The activation voltage is mainly dependent on the stack temperature (T) and stack 

current (ifc). The process of oxygen reduction at the cathode is slow when compared with 

the process of hydrogen oxidation at the anode, which results in activation voltage loss. 

The activation voltage drop is mostly from the cathode reaction at the lower region of stack 

current. An empirical approach is used to calculate the activation voltage drop, which can 

be expressed as [58], [59] 

 ( ) ( )
21 2 3 4ln ' lnact O fcV T T c T iσ σ σ σ   = + + +      (2.9) 

where,  
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σ1 = -0.948 

σ2 = 0.00286 + 0.0002ln(A) + 4.3e-5ln(c’H2) 

σ3 = 0.000076 

σ4 = -0.000193 

The anode reactant concentration (c’H2) and cathode reactant concentration (c’O2) at the 

membrane can be determined by using Henry’s law, given by [28] 

 
2 2

1 498' 1.97 exp 'O Oc e p
T

−  =  
 

  (2.10) 

 
2 2

1 77' 9.17 exp 'H Hc e p
T

− − =  
 

  (2.11) 

The equivalent resistance of the activation voltage drop (Ract) is given by 

 act
act

fc

VR
i

=   (2.12) 

2.2.4  Concentration Voltage Drop 

 The concentration voltage drop is due to the mass diffusion from the gas channels. 

It is mostly attributed to the slow transportation of the reactants to the reaction site. The 

concentration voltage drop is predominant at high current densities [57]. The formation of 

water film at the anode and cathode also contributes to the concentration voltage drop. The 

concentration voltage drop is given as [57] 

 ln s
conc

b

SRTV
F Sα

 
=  

 
  (2.13) 
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where, α is the number of electrons participating in the reaction; Ss is the surface 

concentration of reaction sites; Sb is the bulk concentration in gas channels. The calculation 

of these concentrations are difficult. Hence, an alternative expression based on Fick’s and 

Faraday’s law is used, as given below [57] 

 ln 1 fc
conc

limit

iRTV
F iα

 
= − 

 
  (2.14) 

where, ilimit is the maximum current that the PEMFC can operate (A). 

The equivalent resistance of the concentration voltage drop (Rconc) can be expressed as 

 conc
conc

fc

VR
i

=   (2.15) 

A dynamic PEMFC model based on the electrical equivalent circuit is presented in 

[57]. There exists a capacitor across the equivalent resistance of the activation and 

concentration voltage drop as shown in Fig. 2.6.  

 

Fig. 2.6. Equivalent electrical circuit of PEMFC 
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The main cause of the capacitor across the Ract and Rconc and the expression to 

determine the voltage across the capacitor are discussed in the following subsection. 

2.2.5  Double Layer-Charge Effect 

 The PEM between the anode and cathode acts like a dielectric material and thus, 

two charged layers of opposite polarity are formed across the boundary between the cathode 

and anode. This acts like a super-capacitor (C), which can store energy [57]. The accurate 

model of this capacitance is required to analyze the dynamic behavior of the PEMFC. The 

voltage across the capacitance (Vc) is given as [57] 

 ( )c
c fc act conc

dVV i C R R
dt

 = − + 
 

  (2.16) 

where, C is the value of the capacitor which varies from 13 mF cm-2 to 42 mF cm-2 [56], 

[58]–[62]. Hence, an intermediate value is chosen, as shown in Table 2.2. The RC time 

constant determines the response time of the PEMFC for a sudden change in the operating 

conditions. The voltage drop across the capacitance of the Ballard MK5-E is shown in Fig. 

2.7.  

 

Fig. 2.7. Voltage drop across the capacitor 
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Table 2.2: PEMFC parameters for Vc  

Symbol Parameter Value Unit 

α Number of participating electrons 2 - 

ilimit Current limit 300 A 

C Capacitor value 35 mF cm-2 

Parameters associated with calculating the voltage across the capacitor are tabulated 

in Table 2.2. From Fig. 2.6, the effective output voltage (Vout) for n cells connected in series 

to obtain a stack can be obtained by using (2.17). In the case of parallel connected stacks, 

the effective voltage remains the same, but the output current will be multiplied with the 

number of fuel cells. 

 ( )= − −out nernst c ohmV n V V V   (2.17) 

 The effective output voltage (Vout) obtained from this dynamic model is generic. 

Hence, the effective output voltage of different PEMFCs can be obtained by simply 

changing values of the parameters, such as the area of the cross section, membrane 

thickness, hydrogen pressure, oxygen pressure, and the number of stacks according to the 

requirement of the specified PEMFC.  

2.3  Reactant Flow Model 

 The reactant flow model helps in calculating the flow and relative humidity of the 

reactants inside the PEMFC. The effective partial pressure of hydrogen and oxygen is 

obtained from the reactant flow models of the anode and cathode, respectively. The value 

of the partial pressure decreases as the stack current increases [28].  
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2.3.1  Cathode Flow Model 

 The airflow and the amount of air inside the PEMFC stack are represented using 

the cathode flow model. It is developed based on ideal gas law and molar conservation 

principles. The reactant pressure at any instance is expressed as [28] 

 2

2 2 2, , ,

'Occ
O in O out O used

dpV f f f
RT dt

= − −   (2.18) 

where, Vcc is the cathode volume (m3); fO2,in is the oxygen inlet flow rate (mol s-1); fO2,out is 

the oxygen outlet flow rate (mol s-1). The above equation can be modified based on the 

stack current and number of cells as follows [28]: 

 2

2 2, ,

'
4

O fccc
O in O out

dp niV f f
RT dt F

= − −   (2.19) 

The oxygen outlet flow can be obtained using the partial pressure of the oxygen 

inside the stack and the pressure of oxygen at the cathode outlet as [28] 

 ( )2 2, 'O out c O BPf f p p= −    (2.20) 

where, fc is the cathode flow constant (mol s-1atm-1); pBP is the regulated back pressure at 

the cathode outlet (atm). The partial pressure of oxygen can be obtained by substituting 

(2.20) in (2.19). As shown in Fig. 2.3, the cathode flow is controlled by a backpressure 

regulator (BPR) connected to the cathode outlet. This backpressure regulator helps in 

maintaining a constant pre-defined pressure from the FC control unit.  
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2.3.2  Anode Flow Model 

 The anode flow model helps to determine the flow rate and amount of hydrogen 

present inside the stack at any given instance. The anode reactant pressure can be found by 

using the same principle implemented for the cathode. The anode of the PEMFC is supplied 

with pure hydrogen (99.99%) from a storage tank. The reactant pressure at any instance 

can be expressed in terms of the volume of the anode (Va), hydrogen inlet flow rate (fH2,in),  

hydrogen outlet flow rate (fH2,out), and amount of hydrogen used (fH2,used) as [28] 

 2

2 2 2, , ,

'
= − −Ha

H in H out H used

dpV f f f
RT dt

  (2.21) 

The amount of hydrogen used inside the stack can be obtained using the number of 

cells and the stack current as [28] 

 
2 , 2

= fc
H used

ni
f

F
  (2.22) 

A pressure regulator regulates the hydrogen pressure at the input of the anode, as 

shown in Fig. 2.3, and circulates the excess hydrogen back to the anode. The hydrogen 

outlet rate can be obtained using the difference in hydrogen partial pressure and tank 

pressure as follows [28]: 

 
2 2, tank( ' , )= −H out a Hf f p p   (2.23) 

where, Va is the anode volume (m3); fa is the anode flow constant (mols-1atm-1); ptank is the 

regulated tank pressure (atm). The partial pressure of hydrogen at any instance can be 

obtained using (2.21). The output voltage based on (2.17) is shown in Fig. 2.8. 
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Fig. 2.8. I-V polarization curve 

The values of the parameters associated with the cathode and anode flow modelling 

are tabulated in Table 2.3 [28]. 

Table 2.3: Parameters for the PEMFC reactant flow models 

Symbol Parameter Value Unit 
Vcc Cathode volume 0.01 m3 
fc Cathode flow constant 0.065 mol s-1 atm-1 

pBP Cathode outlet pressure 3 atm 
Va Anode volume 0.005 m3 
fa Anode flow constant 0.065 mol s-1 atm-1 

pBank Anode inlet pressure 3 atm 
    

2.4  Validation of the PEMFC Model 

The PEMFC model developed in Simulink using (2.1 – 2.23) is compared with 

experimental results of the Ballard MK5-E to validate the accuracy of the developed model. 

The validation of the developed PEMFC model plays an important role in determining the 

reliability of subsequent simulation results for the investigation of different tracking 
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techniques. The stack current and stack temperature from experimental results are taken 

into consideration [63]. The stack voltage output for the corresponding stack current and 

stack temperature is obtained from the developed Simulink PEMFC model. The simulated 

voltage versus experimental voltage plot of the PEMFC is shown in Fig. 2.9. From the 

figure, it can be seen that the developed model is accurate and the R2 value for the stack 

voltage response is 0.98, which indicates a good fit. 

 

Fig. 2.9. Validation of developed PEMFC model 

2.5  Model of Auxiliary Components  

The PEMFC requires several auxiliary components to function properly, as shown 

in Fig. 2.3 [64]. The power consumed by auxiliaries is required for the accurate calculation 

of the net power (Pnet) produced by the PEMFC. The power consumed by the auxiliary 

components of a 2 kW PEMFC system is shown using the Sankey diagram in Fig. 2.10. 

From the figure, it can be seen that the power required for the air compressor represents the 

major part of the power consumed by the auxiliary components. The power consumed by 

the other auxiliary equipment is very small and can be assumed constant. In many cases the 
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power consumed by other auxiliaries is assumed to be 2.75% to 3.5% of the rated power of 

the PEMFC considered [13], [52].    

 

Fig. 2.10. Sankey diagram of a 2 kW PEMFC  

The power consumed by the compressor depends on the stack current of the PEMFC 

[31]. A detailed compressor model is required to obtain the power consumed by the 
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compressor for a particular value of the stack current. The parameters and limitations of 

compressor models proposed in the literature are discussed in the following subsection.  

2.5.1  Limitations of Air Compressor Models 

 The power consumed by the air compressor is obtained using a static motor 

equation, which is given by [13] 

 
( )cm cm v cp

compressor
cm

V V K
P

R
ω−

=   (2.24) 

where, Vcm  is the motor voltage (V); ωcp is the rotational speed of the motor (rad/s); and Kv 

and Rcm are motor constants. The power obtained using (2.24) is valid for static models. 

Several other parameters are required to obtain an accurate compressor model. The curve 

fitting approach can be used to develop the compressor model, but this approach is sensitive 

to variation in more than one operating conditions and it is model-dependent.  

To overcome this limitation, a complex compressor model has been developed 

using regression coefficients obtained from the compressor map [31]. This method involves 

detailed evaluation of the compressor parameters of a particular PEMFC and finding the 

required regression coefficients, which is highly complex and model-dependent. For all the 

above-mentioned reasons, a generic and simple compressor model is required to obtain the 

net power of the PEMFC. In this work, a generic compressor model using statistical design 

of experiment (DOE) methodology is developed.  
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2.5.2  Selection of a Statistical Design Methodology 

 The statistical design of experiment (DOE) methodology helps to identify the 

significant operating parameters to improve the performance of a system. The DOE 

methodology can also be used to build regression equations based on specified inputs. 

These regression equations are capable of representing the characteristics of a system with 

a high degree of accuracy. 

In view of the complex and nonlinear nature of modern computer models, the 

classical response surface methodology (RSM) approaches, such as the central composite 

design (CCD) and Box-Behnken design (BBD), do not provide adequate coverage of the 

experimental area to provide an accurate model [65].  

Space filling designs such as uniform design, Latin hypercube design, fast flexible 

filling design, and sphere packing design are able to generate a set of sample points that 

capture the maximum information between input-output relationships [65]. A review of 

different space filling designs presented in the literature shows that the fast flexible filling 

(FFF) design with maximum coverage of the design region, high accuracy, categorical 

factors, and constraints would be adequate for developing the net output power model [32]. 

2.5.3  Model of the PEMFC Net Power based on the Fast 

Flexible Filling Design   

The fast flexible filling method forms clusters from random points in the design 

space [32]. Design points for the FFF design are generated by using large number of random 

points within the specified design region. These points are then clustered using a fast ward 
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algorithm into a number of clusters that equals the number of runs that are specified. The 

complex nonlinear characteristics of the PEMFC and the compressor can be well analyzed 

by using the FFF in the JMP statistical discovery software [32]. 

In order to develop a model-independent net power model, the regression equation 

is determined as a function of four factors, namely the membrane water content (λ), stack 

temperature (T), stack current (ifc), and stack power (Ps). The levels of the factors 

considered in this FFF design are tabulated in Table 2.4. 

Table 2.4: Factors and levels for net power FFF design  

Factors Low level High level Unit 
T 323 (50˚C) 353 (80˚C) K 
λ 7 21 - 
ifc 0 300 A 
Ps 0 105 W 
 

Five thousand design points are used to accurately determine the net power 

equation.  Design points (T, λ, ifc) generated by the FFF design is considered as input to the 

PEMFC model in [31] to obtain the stack power (Ps). The stack power obtained for the 

corresponding combination of the design point is entered as the fourth factor in the net 

power FFF design. The scatter plot of the net power FFF design is shown in Fig. 2.11. 

From the figure, it can be seen that the design points generated by the FFF design 

covers the entire design space of the PEMFC. The analysis of variance (ANOVA) is carried 

out based on p-values less than the value of α = 0.01. The R2 value for the net power 

response is 0.999995, which indicates a good fit.  
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Fig. 2.11. Scatter plot matrix of the net power FFF design 

The net power equation obtained using the FFF design is as follows: 

( ) 2    
1 2 3 4 5 6 7

2 2 2 2
8 9 10 11 12 13

–

– – – –
net sn n n sn n n

sn n n n sn sn n n

Net  power P   a  a P   a I   a L  a T  a P I   a I

 a P L  a I L  a T  a I P  a P L  a I T

= + + + + −

+ +
 (2.25) 

The variables Psn, Tn, In, and L are the normalized values based on the median of factors, 

which are provided as input to the net power FFF design, which can be expressed as 

 
( )33

5
8

1n

T
T  

−
=     (2.26) 
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 scaling factor,  h  
Rated power of  the PEMFC 

=
75000   (2.30) 

The net power required for any PEMFC can be obtained using the following expression 

 1
netNet  power of  the require

h
d  PEMFC  P 

 
 

=   (2.31) 

The power consumed by the air compressor (Pcomp) and other auxiliary equipment (Paux) 

can be obtained using the following expressions:  

 ( )  –         comp stack netCompressor Power P   P  P=   (2.32) 

 ( ) 0.032othersOther auxiliary power P   rated  power= ∗   (2.33) 

The net output power (Pout) of the PEMFC can be obtained using the following 

expression 

 ( ) –=out net othersNet output power P   P  P   (2.34) 

The value of the constants (a1……a13) are given in Appendix A. Pothers is the power 

consumed by fans and other parasitic loads [5]. The actual net output power obtained form 
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the PEMFC model in [31] and the predicted net output power obtained from the regression 

equation (2.25) is shown in Fig. 2.12. 

 

Fig. 2.12. Actual net power vs. predicted net power 

The usefulness and versatility of the developed approach is that the net output power 

for any PEMFC can be obtained from (2.34) without knowing the parameters of the 

compressor. The net output power, stack power, and auxiliary power of Ballard MK5-E 

PEMFC obtained using the proposed approach are shown in Fig. 2.13. 

 

Fig. 2.13. Stack, auxiliary, and net output power of the PEMFC 
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2.6  PEMFC Efficiency Calculation 

 The efficiency of the FC is obtained by calculating the ratio between the electrical 

power and the supplied fuel power, which is given as [14] 

 s
Electrical power

Fuel  Power
η =   (2.35) 

 The electrical power of the PEMFC can be expressed as 

 fc outElectrical  power i V= ∗   (2.36) 

 The chemical power obtained from the consumed fuel (Pfuel,c) can be expressed in terms of 

stack current (ifc) and Faraday constant (F) as [13], [66] 

 , 2
fc

fuel c

Hni
P

F
∆

=   (2.37) 

where, ΔH is the low heating value of hydrogen, 241.98 (kJ mol−1). The efficiency obtained 

based on (2.35 – 2.37) denote the efficiency of the stack (ηs). The process of obtaining 

electrical efficiency of the PEMFC based on hydrogen utilization is complex. Hence, for 

simplicity, the electrical efficiency of the PEMFC (η) is expressed in terms of net output 

power (Pout) and consumed fuel power, as given below [13], [66] 

 
2

out

fc

P
Hni F

η =
∆

  (2.38) 

The stack and electrical efficiency of the PEMFC are shown in Fig. 2.14. From the figure, 

it can be seen that the electrical efficiency of the PEMFC is low when compared with the 

stack efficiency. The power consumed by the auxiliaries accounts for the difference 

between the stack efficiency and electrical efficiency.  
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Fig. 2.14. Stack and electrical efficiency of the PEMFC 

2.7  Performance of the PEMFC 

 The output of the PEMFC varies with changes in operating conditions, such as stack 

temperature (T), fuel flow, fuel pressure, and membrane water content (λ). The fuel pressure 

and fuel flow changes automatically in response to the stack current as discussed in 

previous sections. In this thesis, the performance of the PEMFC in terms of the stack 

voltage, output power, and electrical efficiency for changes in stack temperature and 

membrane water content are investigated using the developed model. 

2.7.1  Response of the PEMFC for Variations in Stack 

Temperature 

For this investigation, the value of membrane water content (λ) is set at 14 (100% 

humidified) and the stack temperature (T) is varied between 50˚C and 80˚C.  At higher 

stack temperatures, the conductivity of the membrane and the speed of the electrochemical 

reaction increases, which results in increased output voltage, as shown in Fig. 2.15. The net 
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output power (Pout) of the PEMFC for variations in the stack temperature is shown in Fig. 

2.16. 

 

Fig. 2.15. Output voltage of the PEMFC for variation in stack temperature (λ = 14) 

 

Fig. 2.16. Net output power of the PEMFC for variation in stack temperature (λ = 14) 

 From the figure, it can be seen that the net output power increases with increasing 

stack temperature. Hence, the efficiency (η) of the PEMFC also increases with increase in 

stack temperature, as shown in Fig. 2.17. 
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 Fig. 2.17. Efficiency of the PEMFC for variation in stack temperature (λ = 14)  

2.7.2 Response of the PEMFC for Variations in 

Membrane Water Content 

For this investigation, the stack temperature (T) is maintained at 80˚ C and the value 

of the membrane water content (λ) is varied between 10.5 and 17.5, which corresponds to 

75% and 125% of saturation, respectively. The proton conductivity of the PEMFC 

increases with increasing water content, which results in the reduction of ohmic losses in 

the PEMFC. This leads to the increase in the output voltage as shown in Fig. 2.18. However, 

high values of the membrane water content results in flooding, which degrades the life of 

the proton exchange membrane (PEM), while low values of membrane water content leads 

to dry PEM, which degrades the performance of the PEM. Hence, the membrane water 

content of the PEMFC should be maintained at an optimum value for proper operation of 

the PEM.  
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Fig. 2.18. Output voltage of the PEMFC for variation in λ (T = 80˚C) 

As expected, the net output power (Pout) and efficiency (η) of the PEMFC increase 

with increasing membrane water content, as shown in Figs. 2.19 and 2.20. 

 

Fig. 2.19. Net output power of the PEMFC for variation in λ (T = 80˚C) 

In order to obtain a relationship between the net output power (Pout) and efficiency 

(η) of the PEMFC for variations in λ and T, a surface plot is obtained, as shown in Fig. 2.21. 

From the figure, it can be seen that the maximum efficiency points and maximum power 

points occur at different regions of stack current. 
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Fig. 2.20. Efficiency of the PEMFC for variation in λ (T = 80˚C) 

   

 

Fig. 2.21. Surface plot of PEMFC characteristics 
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2.8  Summary 

 A complete and versatile PEMFC Simulink model is described and developed. The 

model takes into account the stack and reactant flow models. The developed PEMFC stack 

model is validated with published experimental results, which indicate accurate fit. The 

power consumed by the auxiliaries required to run the PEMFC is described and a generic 

model to determine the net output power and compressor power is developed. The 

developed model is used to determine stack efficiency and electrical efficiency of the 

PEMFC. Finally, the behaviour of the PEMFC for changes in stack temperature (T) and 

membrane water content (λ) is discussed based on the simulation results from the developed 

PEMFC Simulink model. The variations of the maximum power point and maximum 

efficiency point for changes in the stack temperature and membrane water content require 

tracking techniques to operate the PEMFC at the required operating point (MPP or MEP). 

The MEP occurs at the lower region of the stack currents and the MPP occurs at the higher 

region of stack currents. Hence, at any given instance the PEMFC can be operated at the 

maximum power point or the maximum efficiency point. The analyses of the MPP and 

MEP tracking techniques are discussed in the following chapter.  
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Chapter 3 

 
 

Tracking Techniques for the Proton Exchange 

Membrane Fuel Cell 
 
 
 

The operating point of the PEMFC is at the intersection of the fuel cell power curve 

and load power curve and it should be selected to enhance the performance of the PEMFC. 

It is ideal to operate the PEMFC at a constant operating point to realize longer lifetime [67]. 

There exist two unique operating points, namely the maximum power point (MPP) and the 

maximum efficiency point (MEP). The PEMFC produces its maximum power at MPP and 

operates at maximum efficiency at MEP [14]. The MPP and MEP operating points are 

affected by changes in operating conditions, such as stack temperature (T), membrane water 

content (λ), fuel pressure, and fuel flow. Hence, a tracking technique is required to track 

changes and operate the PEMFC at the required operating point (MPP or MEP).  

In this chapter, the maximum power point tracking (MPPT) and maximum 

efficiency point tracking (MEPT) techniques are presented and discussed. Several tracking 

algorithms are reported in the literature to track the maximum power point and maximum 

efficiency point [39]–[45]. The selection of a tracking algorithm is based on factors, such 
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as high tracking speed, high accuracy, and low complexity. The selected tracking algorithm 

should also satisfy the specific requirements of the PEMFC applications. The focus of this 

chapter is the selection of tracking algorithm to track the MPP and MEP for the simulation-

based investigation of PEMFC system. The development of the DC-DC boost converter 

and the current controller for tracking techniques are presented. The performance of the 

selected tracking algorithm to track the MPP and MEP of the PEMFC system is analysed. 

Finally, the limitations of the MPPT and MEPT tracking techniques are discussed. The 

work described in this chapter regarding the selection of a suitable tracking algorithm to 

meet particular requirements of different PEMFC applications was presented at the IEEE 

Newfoundland Electrical and Computer Engineering Conference (NECEC) in 2015 [68].  

3.1  Direct and Indirect Tracking Schemes 

 The tracking control of the maximum power point or maximum efficiency point of 

the PEMFC can be implemented directly in the PEMFC or indirectly by using a DC-DC 

power converter between the load and the PEMFC to track the required operating point. A 

comparison of the direct and indirect implementation of the tracking control scheme is 

shown in Table 3.1. The direct implementation of the tracking control scheme requires 

parameters, such as hydrogen pressure and oxygen pressure from the PEMFC model to 

track the required operating point. This approach leads to a model-dependent control [9], 

[47]. The direct tracking control scheme is also sensitive to load variations. An indirect 

control scheme implemented in a DC-DC power converter external to the PEMFC results 

in a model-independent tracking control.  
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In the indirect control scheme, the DC-DC power converter between the load and 

the PEMFC is controlled so as to maintain a constant value of equivalent resistance “seen” 

by the PEMFC, which corresponds to the operating point (MPP or MEP).  

Table 3.1: Characteristics of the direct and indirect control schemes 

Control 
Scheme 

Model 
based 

Sensitive to 
load 

variations 
Advantages Disadvantages 

Direct Yes Yes 

Simple control, 
prevents oxygen 
starvation and 

flooding 

Dynamic load changes 
affect the fuel cell system 

and requires energy 
storage device to maintain 
constant PEMFC output 

voltage. 

Indirect 
(with DC-
DC power 
converter) 

No No 

Dynamic Load 
control 

independent of 
the fuel cell 

model 

Requires energy storage 
device to maintain constant 

PEMFC output voltage 

 

   For all of the above-mentioned reasons, the indirect control scheme is preferred 

over the direct control scheme  [49]–[51], and it is therefore used in this thesis to implement 

the different tracking techniques.   

3.2  DC-DC Power Converter   

 The configuration of the power converter connected between the load and the 

PEMFC unit plays a significant role in enhancing the performance of the PEMFC unit. The 

operating point of the PEMFC is based on the load connected to the PEMFC. In order to 

operate the PEMFC at the required point (MPP or MEP), the load resistance corresponding 

to the operating point is required. This leads to the operation of the PEMFC at a constant 
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load. However, in real-time the loads are not always constant. One possible solution is to 

use the impedance matching capability of the DC-DC power converter to maintain the 

equivalent resistance “seen” by the source (PEMFC) at the required value [69].   

Several configurations of the DC-DC power converters have been presented in the 

literature [70], [71]. The selected power converter should have simple control to reduce 

complexity, less number of reactive elements to minimize cost, and less number of switches 

to minimize switching losses. In general, the buck, boost, and buck-boost DC-DC power 

converters are the most commonly used power converters to implement the tracking 

techniques [36]. However, the DC-DC buck-boost converter has limitations, such as 

negative output voltage for positive input voltage, absence of common ground, and 

requirement of opto-coupler for switching [37]. In the case of the DC-DC buck converter, 

the output voltage is less than the input voltage, which is not suitable for the PEMFC with 

low output voltage [38].  

On the other hand, the DC-DC boost converter with high output voltage and 

blocking diode at the load end is suitable for implementing the tracking techniques for the 

PEMFC. The output voltage of the DC-DC boost converter is always higher than the input 

voltage. The blocking diode helps to prevent a battery connected at the output of the 

converter (for storage purposes) to discharge into the PEMFC. This feature is an added 

advantage when compared with the buck and buck-boost converters [11]. In this thesis, the 

DC-DC boost converter is considered to develop and implement the different tracking 

techniques.   
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3.2.1  DC-DC Boost converter 

 

Fig. 3.1. DC-DC boost converter 

The circuit diagram of the DC-DC boost converter is shown in Fig. 3.1. The 

working principle of the boost converter is based on the status of the switch (S). During the 

on-state, the switch (S) is turned on (closed) and the current through the inductor increases 

linearly. In the meantime, the capacitor discharges into the load. During the off-state, the 

diode (D) becomes forward biased and the inductor discharges through the diode to the 

load and charges the capacitor.  

The DC-DC boost converter has the ability to control the resistance “seen” by the 

PEMFC (Vout), as shown in Fig. 3.2. From the figure, the equivalent resistance (Requiv) 

“seen” by the source, assuming a lossless DC-DC boost converter, can be expressed as 

 ( )21out
e quiv load

fc

VR d R
i

= = −   (3.1) 

where, ifc is the input current of the DC-DC boost converter and d is the duty ratio, which 

represents the fraction of the period during which the switch is turned on.  
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Fig. 3.2. Resistance matching of the DC-DC boost converter 

From (3.1) and Fig. 3.2, it can be seen that the operating point of the PEMFC can 

be controlled by varying the current flowing though the inductor. The current flowing 

through the DC-DC boost converter can be controlled by using current control techniques. 

Several current control techniques have been presented in the literature [72]–[74]. A 

detailed comparison of current control techniques with the DC-DC boost converter 

implemented for tracking techniques is presented in Appendix B. In this thesis, the 

hysteresis current controller with variable frequency and less complexity is used to control 

the DC-DC boost converter [72].  

3.2.2  Hysteresis Current Control 

 The hysteresis current control tracks the reference current generated by tracking 

algorithms within a hysteresis band [75]. The working principle of the hysteresis current 

controller is shown in Fig. 3.3.   
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Fig. 3.3. Hysteresis current controller 

If the current exceeds the upper limit (Δi+) of the hysteresis band, the switch (S) of 

the DC-DC boost converter is turned off. As a result, the current starts to decrease. When 

the current reaches the lower limit (Δi-) of the hysteresis band, the switch (S) is turned on 

and the current through the inductor increases. Hence, the actual current is forced to track 

the reference current within the hysteresis band, as shown in Fig. 3.3. The amplitude of the 

actual current oscillation around the reference current is based on the hysteresis band width. 

The hysteresis band width is defined by the term Δhys and is given by the equation 

 hys i i+ −∆ = ∆ −∆   (3.2) 

The hysteresis band width can be fixed to a constant value or to a fraction of the 

actual current. In this thesis, the hysteresis band width is set at 0.2iref.    
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3.3  Tracking Algorithms 

 The selected tracking algorithm should be model-independent so that it can be used 

to develop a generalized indirect tracking technique for any required rating of the PEMFC. 

A review of the different tracking algorithms for maximum power point tracking in 

photovoltaic systems shows that model-independent tracking algorithms such as perturb 

and observe (P&O), incremental conductance (IncCond), dV/dI feedback control, 

extremum seeking control (ESC), and sliding mode control (SMC) are widely used [39]. In 

this thesis, three of the algorithms used for maximum power point tracking in photovoltaic 

arrays, namely P&O, ESC, and SMC are considered in the analysis of the PEMFC for 

stationary power applications.  

3.3.1  Extremum Seeking Control 

The ESC uses a periodic signal referred to as “dither” or perturbation signal to track 

the operating point near the maximum power point of the fuel cell system characteristics. 

Several types of ESC have been proposed in the literature [9], [47], [48], [76] for 

photovoltaic systems.  

 

Fig. 3.4. Extremum seeking control algorithm for maximum power point tracking 
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A number of these techniques were analyzed and the technique with less complexity 

and good response, shown in Fig. 3.4, was selected and implemented in this thesis. The 

maximum point can be found by checking the sign of the gradient of the stack power (Ps) 

versus input current (I) characteristics. The gradient (ξ) is positive when the operating point 

is to the left of the MPP and the gradient is negative when the operating point is to the right 

of the MPP. At maximum point, the value of the gradient is zero.  The reference signal 

(Impp) corresponding to the MPP of the non-linear PEMFC system obtained from the ESC 

block can be expressed as [11] 

 0 2
mpp mpp

mpp s

k a
I I P ' t= +   (3.3) 

Equation (3.3) provides the position of the operating point. If the initial current (I0) is 

greater than Impp, the operating point is to the right of the MPP, and the current will decrease 

to move the operating point near the MPP, as shown in Fig. 3.5.  

 

Fig. 3.5. Operation of the extremum seeking control 

If I0 is less than Impp, the operating point is to the left of the MPP, and the current 

will increase to move the operating point to the MPP. The value of the current step used for 
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the increment and decrement of the reference current is based on the value of the second 

term in (3.3).  

The selection of the periodic sinusoidal perturbation signal frequency (ω), the high-

pass filter cut-off frequency (ωh) and the low-pass filter cut-off frequency (ωl) in Fig. 3.4 

influences the performance of the extremum seeking control. For example, a higher value 

of the periodic sinusoidal perturbation signal frequency can separate the dither signal from 

the response of the PEMFC system (Ps); however, a lower value of ω leads to low 

perturbation speed. Hence, the following criteria is taken into consideration in selecting the 

values of ω, ωh, and ωl [11] 

 h lω ω ω>> >>   (3.4) 

The value of the adaptation gain (kmpp) and the perturbation signal amplitude (ampp) 

have a significant effect on the system convergence speed. A small value of kmpp slows 

down the convergence speed. Increasing kmpp can improve the tracking speed; however, a 

high value of kmpp can result in an inaccurate system response. An increase in ampp will 

increase the convergence speed, but the system becomes more sensitive and may not track 

the MPP [11]. The major constraints considered for selecting the tuning parameters of the 

tracking algorithms are as follows: 

• The accuracy of the tracking algorithm should be maintained as high as possible.  

• The overshoot in the output should be maintained as minimum as possible.  

Optimum values of kmpp and ampp are selected from simulating the ESC MPPT for 

different combinations of kmpp and ampp. The optimum values selected are kmpp = 10 and ampp 
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= 6.5. The cut-off frequency of the low pass filter (ωl) and the high pass filter (ωh) are set 

to 5 rad/s and 30 rad/s respectively. The frequency of the perturbation signal (ω) is set to 

50 rad/s.  

It is observed that the extremum seeking control (ESC) is a real-time optimization 

algorithm that involves a nonlinear dynamic system with feedback and adaptation. The 

model-independent and self-regulating characteristics improves the effectiveness of the 

extremum seeking control algorithm. 

3.3.2  Perturb and Observe Algorithm 

Perturb and observe (P&O) or Hill climbing involves a perturbation in the duty ratio 

of the DC-DC boost converter. With the PEMFC connected to a DC-DC boost converter, 

the DC-DC boost converter perturbs the PEMFC current to move the operating point to the 

maximum power point. From Fig. 3.5, it can be seen that increasing the current increases 

the power when operating on the left of the MPP and decreases the power when on the right 

of the MPP. Therefore, if there is an increase in power, the subsequent perturbation should 

be kept the same in order to reach the MPP and if there is a decrease in power, the 

perturbation should be reversed [77]. The process is repeated periodically until the MPP is 

reached. The system then oscillates about the MPP. The oscillation can be minimized by 

reducing the perturbation step size (dI). However, a smaller perturbation size slows down 

the MPPT. Hence, there is a trade-off in choosing the step size of the perturbation. The 

P&O algorithm is summarized in the form of the flow chart shown in Fig. 3.6.  
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Fig. 3.6. Flowchart of the P&O algorithm 

where, Vb is the voltage of the battery (V); Vbmax is the battery voltage limit (V); Iold is the 

previous value of stack current (A); Vold is the previous value of stack voltage (V); Pold is 

the previous value of stack power (W); Iolddd is the stack current at the beginning of the 

perturbation (A). During rapidly changing conditions, the operating point diverges from the 
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maximum point [39]. Hence, P&O method is not suitable under rapidly changing 

conditions. In this thesis, the value of the current step (dI) is set at 0.01A.  

3.3.3  Sliding Mode Control  

In the siding mode control (SMC) method a sliding surface (ψ) is defined and is expressed 

as [44] 

 out
out fc

fc

VV I
I

ψ ∂
= +

∂
  (3.5) 

where Vout is the fuel cell voltage (V); Ifc is the fuel cell current (A).  

 

Fig. 3.7. Operation of the sliding mode control 

The switching function of the converter is based on the fact that dP/dI>0 indicates 

an operating point to the left of the MPP and dP/dI<0 indicates an operating point to the 

right of the MPP as shown in Fig. 3.7. The switching function is expressed as 

 
S = 0   for   ψ  0

S = 1   for   ψ  < 0

≥
  (3.6) 
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where S = 0 means the switch is open and S = 1 means the switch is closed. The SMC 

tracking algorithm works well under rapidly changing environment and operational 

conditions [44]. The DC-DC boost converter is controlled by using PWM technique. The 

SMC tracking algorithm varies the value of the duty ratio of the DC-DC boost converter in 

order to track the MPP.  

3.4  Simulation 

The PEMFC system consisting of the MATLAB/Simulink model of the fuel cell 

discussed in Chapter 2, the tracking algorithms (ESC, P&O, and SMC) discussed in the 

previous section, the DC-DC boost converter with hysteresis current controller, and a 

battery load is implemented in Simulink. In this simulation, the temperature of the fuel cell 

is set to 80˚C. The inductor and capacitor values used in the DC-DC boost converter are 40 

mH and 2000 μF, respectively. The battery load is rated at 200 V, 6.5 Ah. In order to 

compare the performance of the three MPPT algorithms, the simulation is carried out with 

varying membrane water content (λ) as shown in Fig. 3.8.  

 

Fig. 3.8. Variation of membrane water content 
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The maximum power points and the maximum power point currents corresponding 

to the variations in membrane water content are shown in Fig. 3.9 and Fig. 3.10.  

 

Fig. 3.9. Maximum power points for variation in membrane water content 

 

Fig. 3.10. Maximum power point currents for variation in membrane water content 

If the MPPT algorithm tracks the MPP for varying membrane water content then it 

will also track the MPP for varying stack temperature, fuel flow, and fuel pressure.  

3.4.1  Output Power of the Tracking Algorithms 

The ESC MPPT tracking trajectory near the MPP for different values of membrane 

water content is shown in Fig. 3.11. From the figure, it can be seen that the ESC tracking 
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algorithm tracks the MPP of the PEMFC accurately for varying membrane water content 

(λ). 

 

Fig. 3.11. MPP tracking using the ESC algorithm 

Similarly, the tracking trajectory of the P&O tracking algorithm is shown in Fig. 

3.12. From the figure, it can be seen that the P&O tracking trajectory tracks the MPP of the 

PEMFC, but it is associated with overshoots for random variations in membrane water 

content shown in Fig. 3.8. This is due to the oscillations associated with the P&O algorithm 

around the MPP.  

 

 

Fig. 3.12. MPP tracking using the P&O algorithm 
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In the case of the SMC tracking algorithm, the duty ratio of the DC-DC boost 

converter is controlled according to (3.6) until the stack current reaches the current 

corresponding to the maximum power point (impp). Once the required operating point (impp) 

is reached, the SMC algorithm will turn off the switch in the DC-DC boost converter as 

according to (3.6). This results in a decrease in current, which in turn reduces the power, 

causing the DC-DC boost converter to turn on to attain the MPP. This process continues, 

which results in the oscillation of the SMC tracking algorithm to the left of the MPP as 

shown in Fig. 3.13. 

 

Fig. 3.13. MPP tracking using the SMC algorithm 

3.5  Comparison of the Tracking Algorithms 

In this section, a detailed comparison of the characteristics of the ESC, P&O, and 

SMC tracking algorithms based on accuracy and convergence speed is presented. The 

objective is to select a suitable tracking algorithm for maximum power point tracking of a 

fuel cell generation system.  
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3.5.1  Accuracy of the MPP Tracking Algorithms 

 

Fig. 3.14. Accuracy of the MPP tracking algorithms 

The accuracy of the ESC, P&O, and SMC tracking algorithms for λ = 10.5 and T = 

80˚ C is shown in Fig. 3.14. From the PEMFC P-I polarization curve for these conditions, 

the MPP attainable from these conditions is 3713 W. From the figure, it can be seen that 

the ESC tracking algorithm is more accurate in tracking the MPP when compared to the 

P&O and SMC tracking algorithms.  

 

Fig. 3.15. Accuracy of the tracking algorithms 
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However, the accuracy of the P&O and SMC algorithm increases as the value of 

the membrane water content increases to 14, but the accuracy drops for values of membrane 

water content greater than 15 as shown in Fig. 3.15. This is due to the flat region of the 

MPP associated with the sub saturated region (λ < 13) and super saturated region (λ > 15) 

of the membrane water content. 

3.5.2  Convergence Speed of the MPPT Tracking Algorithms 

The convergence speed of the ESC, P&O, and ESC tracking algorithm is shown in 

Fig. 3.16. From the figure, it can be seen that the convergence speed of the SMC tracking 

algorithm is high compared with the ESC and P&O tracking algorithms, with the P&O 

algorithm being the most sluggish response. The convergence speed of the P&O can be 

increased by increasing the perturbation step size (dI). However, it increases the magnitude 

of oscillation around the MPP, which decreases the accuracy of the P&O algorithm.   

 

Fig. 3.16. Convergence speed of the MPPT tracking algorithms 

In case of the ESC MPPT, the convergence speed can be increased by increasing 

the adaptation gain (kmpp) and perturbation amplitude (ampp), but large value of kmpp and ampp 
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result in large oscillations around the MPP and the system will become sensitive to noise 

or ripple content. The characteristics of the ESC, P&O, and SMC tracking algorithms 

discussed are tabulated as shown in Table 3.2. 

Table 3.2: Characteristics of the tracking algorithms 

Tracking 
Algorithm 

Accuracy 
 

Convergence 
Speed 

ESC High Medium 
P&O Medium Low 
SMC Low High 

 

From the above-mentioned points and Table 3.2, it can be seen that the ESC 

algorithm with high accuracy, and medium tracking speed would be adequate for maximum 

power point tracking of a PEMFC generation system and it is considered for comparative 

study of the maximum power point tracking and maximum efficiency point tracking 

techniques.  

3.6  Maximum Power Point Tracking (MPPT) Technique 

In general, the stack power of the PEMFC is considered for tracking the MPP of the 

PEMFC [11], [44], [48]. However, the net output power (Pout) is always less than the stack 

power (Ps) due to the parasitic power consumed by the auxiliaries connected to the PEMFC 

as discussed in Chapter 2. In order to account for the effect of the parasitic power in the 

tracking techniques, the net output power (Pout) of the PEMFC is considered in the 

following discussions. The input of the ESC control algorithm is therefore changed from 

Ps to Pout. 
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Using the ESC algorithm, the maximum power point of the net output power (Pout) 

obtained from (2.34) is shown in Fig. 3.17. From the figure, it can be seen that the ESC 

algorithm effectively tracks the maximum point of the net output power (Pout). 

 

Fig. 3.17. Net output power of the MPPT technique with ESC algorithm 

3.6.1  Simulation 

The stack temperature of the PEMFC is maintained constant at 80˚C . The 

simulation is carried out with varying membrane water content (λ), as shown in Fig. 3.9 to 

investigate the performance of the system for the MPPT technique. 

3.6.1.1  Efficiency of the MPPT Technique 

The efficiency of the PEMFC for different values of membrane water content can 

be obtained using (2.38). The electrical efficiency (η) of the PEMFC with the MPPT 

technique is shown in Fig. 3.18.    

From the figure, it can be seen that the efficiency of the PEMFC corresponding to 

the MPP operation of the PEMFC is low. This is due to the operation of the PEMFC in the 

high current region. 
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Fig. 3.18. Efficiency of the MPPT technique with ESC algorithm 

3.6.1.2  Limitations of the MPPT Technique 

The efficiency as a function of the net output power and membrane water content 

is shown in Fig. 3.19.  

 

Fig. 3.19. Net output power and efficiency of the MPPT technique 
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It is observed that the efficiency of the PEMFC at the MPP is low (~35 to 40%). 

The low efficiency operation at the MPP leads to increased fuel consumption.  

3.7  Maximum Efficiency Point Tracking (MEPT) 

Technique 

 The MEPT technique is similar to the MPPT technique except the efficiency (η) of 

the PEMFC is given as input instead of the net output power (Pout) used in the MPPT 

technique. The development of the ESC MEPT technique is discussed below. 

3.7.1  MEPT Technique with Extremum Seeking Control  

The modified extremum seeking control algorithm for the maximum efficiency 

point tracking is shown in Fig. 3.20. The values of the adaptation gain and perturbation 

amplitude are different from that of the MPPT technique. A tuning process to determine 

optimum values for the MEPT algorithm is carried out, and the selected values for the ESC 

MEPT are kmep = 600, amep = 2, ωle = 3 rad/s, ωhe = 18 rad/s, and ωe = 30 rad/s. A hysteresis 

current controller with imep as the reference current is used to generate the switching pulses 

for the DC-DC boost converter.  

 

Fig. 3.20. Extremum seeking control based MEPT technique 
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3.7.2  Simulation 

The stack temperature of the PEMFC is maintained constant at 80˚C. The 

simulation is carried out with varying membrane water content (λ), as shown in Fig. 3.8 to 

investigate the performance of the system for the MEPT technique.   

3.7.2.1  Efficiency of the MEPT Technique 

The MEPT tracking trajectory near the maximum efficiency point of the PEMFC 

for different values of membrane water content is shown in Fig. 3.21. The variation of the 

MEP for different values of λ is small. From the figure, it can be seen that the ESC MEPT 

tracks the maximum efficiency point of the PEMFC accurately. It is observed that the 

maximum efficiency point occurs in the low current region, which requires fuel 

consumption. 

 

Fig. 3.21. Efficiency of the ESC MEPT technique 

3.7.2.2  Net Output Power of the MEPT Technique 

The net output power obtained using the PEMFC with MEP tracking technique is 

shown in Fig. 3.22. From the figure, it can be seen that the net output power of the PEMFC 
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corresponding to the MEP operation of the PEMFC is low. This is due to the operation of 

the PEMFC in the low current region. 

 

Fig. 3.22. Net output power of the ESC MEPT technique 

3.7.2.3  Limitations of the MEPT Technique 

 

Fig. 3.23. Net output power and efficiency of the MEPT technique 
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The fuel consumption rate is low at the MEP due to the operation of the PEMFC in 

the low current region. However, the net output power (Pout) of the PEMFC with the MEPT 

technique is very low, as shown in Fig. 3.23. The results obtained from the MPPT and 

MEPT techniques are considered for further investigation in the next chapter. 

3.8  Summary 

 Comparison of the different methods of implementing tracking control revealed 

that, the indirect method of tracking control is preferred because of the model-independent 

feature and load insensitivity. The DC-DC boost converter with hysteresis current control 

technique required for the power conditioning stage of the indirect control method was 

described and developed in Simulink. The working principle and development of three 

tracking algorithms, namely the extremum seeking control, the perturb and observe, and 

the sliding mode control used in photovoltaic systems, were presented with respect to their 

application in fuel cell systems. Simulation of a PEMFC system using the three tracking 

algorithms was carried out. A comparative analysis of the simulation results showed that 

the extremum seeking control algorithm accurately tracked the MPP of the PEMFC with 

high accuracy and high tracking speed. The extremum seeking control algorithm was 

selected for further comparative study of the maximum power point tracking and maximum 

efficiency point tracking techniques. The results confirmed the limitation of the MPPT 

technique, namely high fuel consumption rate (corresponding to high stack current) and 

low efficiency of the PEMFC at the MPP. On the other hand, the maximum efficiency point 

tracking technique was characterized by low fuel consumption (corresponding to low stack 

current) and low output power at the maximum efficiency point.  
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Chapter 4 

Midpoint Tracking Technique  

 
The PEMFC has the advantages of high power density and high efficiency when 

compared with internal combustion (IC) engines.  However, the efficiency and net output 

power of the PEMFC are inversely related, so operating at maximum efficiency results in 

low net output power and operating at maximum net output power results in low efficiency. 

In order to overcome these limitations, a new tracking technique called the midpoint 

tracking (MDT) technique, which tracks the trade-off operating point, is proposed in this 

chapter.  

The selection of a trade-off operating point plays a significant role in determining 

the effectiveness of the proposed tracking technique. The proposed tracking technique 

should satisfy the requirements, such as model-independency, high convergence speed, and 

high accuracy. Several possible methods to develop the midpoint tracking technique are 

discussed. The simulation-based investigations of the proposed tracking technique are 

carried out and the results are presented and discussed. A detailed comparison of the MPPT, 

MEPT, and MDT techniques for stationary PEMFC applications is presented. The work 

described in this chapter has been accepted for presentation at the IEEE Canadian 

Conference on Electrical Power and Energy Conference (EPEC) in October, 2016 [78]. 
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4.1  Trade-off Operating Point  

 The net output power-efficiency characteristics of the PEMFC for varying 

membrane water content (λ) is shown in Fig. 4.1. In the case of operating points to the right 

of the MPP, the efficiency and net output power of the PEMFC are low. Similarly, the net 

output power and efficiency are low for operating points to the left of the maximum 

efficiency point. Hence, the region of the characteristics between the maximum efficiency 

point and maximum power point (identified by the ellipse) is considered to provide the 

trade-off operating point.  

 

Fig. 4.1. PEMFC characteristics for the selection of trade-off operating point 

Several possible trade-off operating points, namely the median of the net output 

power (MP), the median of the efficiency (ME), and the median of the stack current (MI) 

can be considered within the region. The values of the net output power and efficiency 

corresponding to the above-mentioned operating points of the PEMFC are tabulated in 

Table 4.1.  
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Table 4.1: Net output power and efficiency of the PEMFC with different operating points 

at λ = 14  

Operating points MPP ME MI MP MEP 

Net output power, Pout (W) 3855.0 3365.0 3128.0 2477.5 1100.0 

% of MPP 100.0 86.9 81.3 64.7 29.5 

Efficiency, η (%) 36.4 46.9 49.0 53.3 57.4 

% of MEP 63.8 81.9 85.4 92.5 100.0 
 

For an operating corresponding to the median of efficiency (ME), the net output 

power is high (86.9% of MPP), but the efficiency is low (46.9%). In the case of an operating 

point corresponding to the median of power (MP), the efficiency is high (92.5% of MEP), 

but the net output power is low (64.7% of MPP). From the Table 4.1, it can be seen that the 

operating point corresponding to the median of current results in high net output power 

(81.3% of MPP), and high efficiency (85.4% of MEP). Hence, in this thesis, it is proposed 

to used the operating point corresponding to the median of current as the trade-off operating 

point (MD). The trade-off operating point varies with changes in the operating conditions, 

such as membrane water content, stack temperature, fuel pressure, and fuel flow. Hence, a 

tracking technique referred to as the midpoint tracking technique (MDT) is proposed to 

track changes in the trade-off operating point.  

4.2  Midpoint Tracking Technique  

The tracking algorithms reported in the literature are designed to track the 

maximum point (MPP or MEP) [39]–[45]. However, the objective of the midpoint tracking 

technique is to track the trade-off operating point, which occurs in the linear region of the 
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PEMFC characteristics shown in Fig. 4.2. The trade-off operating point depends on the 

maximum power point current (impp), and the maximum efficiency point current (imep). 

 

Fig. 4.2. Operating points of the PEMFC with the three tracking techniques  

One possible solution for tracking the trade-off operating point is to define the 

boundary conditions of current by providing the maximum power point current (impp) and 

maximum efficiency point current (imep) as inputs to the variation in operating conditions. 

However, this approach leads to a model-dependent control, and the accuracy of the control 

depends on the quality of inputs provided to define the boundary conditions (impp and imep).  

A simple curve fitting approach can also be used to track the trade-off operating 

point. However, this approach is sensitive to variations in more than one operating 

condition. This problem can be addressed by developing several regression equations 

incorporating the variations in operating conditions. However, this approach leads to a 

highly complex control technique with slow response.  

In order to develop a model-independent MDT technique, a model similar to the 

PEMFC Simulink model, which provides the trade-off operating point (imdt) based on the 

net output power (Pout) is required.  However, the development of the MDT model based 
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on this requirement is difficult due to the non-linear nature of the PEMFC. One possible 

solution is to employ statistical design approaches to develop the MDT technique. The 

statistical design approaches provide flexibility to add any number of inputs that influence 

the response. These approaches also lead to model-independent and accurate MDT 

technique. In this thesis, the MDT tracking algorithm based on the fast flexible filling (FFF) 

design [32] is proposed to track the trade-off operating point.  

4.2.1  Fast Flexible Filling Design for the Midpoint Tracking 

Technique 

The statistical response surface methodologies (RSM) can be used to develop the 

MD algorithm. However, the resulting algorithms would not be accurate due to the complex 

and non-linear nature of the PEMFC Simulink model. Space filling statistical designs are 

able to handle highly complex and nonlinear systems and is a suitable candidate for the 

development of the MD algorithm. Several statistical space filling designs have been 

reported in the literature [65]. As discussed in Chapter 2, the fast flexible filling (FFF) 

design generates design points based on the clusters from random points to cover the entire 

design space effectively when compared with other space filling designs [32].  Hence, the 

midpoint tracking algorithm based on the fast flexible space filling design using the JMP 

statistical discovery software is developed to track the trade-off operating point (imdt).  

In order to develop a generic midpoint tracking algorithm for the PEMFC, the stack 

temperature, stack power and stack current corresponding to the trade-off operating point, 
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along with membrane water content are given as inputs to the PEMFC Simulink model to 

obtain the net output power corresponding to the trade-off current. 

The stack temperature (T) and number of stacks (n) along with the net output power 

obtained in the previous step are considered as input factors in the MD FFF design to obtain 

the reference current (imdt). The levels of the factors considered for the MD FFF design are 

tabulated in Table 4.2. 

Table 4.2: Factors and levels for MD FFF design  

Factors Low level High level Unit 
Pout 0 5000 W 
T 323 (50˚C) 353 (80˚C) K 
n 1 35 - 

 

The analysis of variance (ANOVA) is carried out based on p-values less than the 

value of α = 0.01. The R2 value for the reference current is 0.99137, which indicates a good 

fit, as shown in Fig. 4.3. From the figure, it can be seen that the predicted stack current for 

the Ballard MK5-E obtained using the developed MD FFF is highly accurate.  

 

Fig. 4.3. Reference current actual vs. predicted 
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The regression equation obtained for the trade-off point reference current (imdt) is as 

follows: 

 
( ) 2

1 2 3 4 5

2 2 2
6 7 8 9 10 11

mdt on n on

on on n n on on

Reference current  i   b  b P –  b N  –  b T –  b P –
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+ + + +
  (4.1) 

The variables Pon, Tn, and N are the normalized values based on the median of the 

factors, which are provided as input to the MD FFF design, which can be expressed as 
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 The values of the constant (b1…. b11) are given in Appendix A. The reference 

current corresponding to the trade-off operating point for any required PEMFC can be 

obtained using (4.1). For example, the midpoint reference current (imdt) obtained using (4.1) 

for a 2.5 kW PEMFC is shown in Fig. 4.4. In order to obtain a 2.5 kW version from the 5 

kW PEMFC Simulink model discussed in Chapter 2, the area of cross section (A) is changed 

from 232 cm2 to 140 cm2. From the figure, it can be seen that the predicted current obtained 

using (4.1) for a 2.5 kW PEMFC is highly accurate. This confirms the generic property of 

the developed midpoint tracking algorithm.  
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Fig. 4.4. Reference current actual vs. predicted for a 2.5kW PEMFC 

4.3  Simulation 

 

Fig. 4.5. PEMFC system with the MDT technique 

In this simulation, the stack temperature of the fuel cell is maintained at 80˚C. The 

performance of the PEMFC system with the MDT technique is evaluated using the same 

range of variation of the membrane water content as in the analysis of the MPPT and MEPT 

techniques. The block diagram of the PEMFC system with MDT technique is shown in Fig. 

4.5. The reference current obtained from (4.1) is fed to the hysteresis current controller 

which controls the DC-DC boost converter to track the trade-off operating point. 
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4.3.1  Output Power and Efficiency of the MDT Technique 

The net output power and efficiency of the PEMFC with the MDT technique are 

shown in Fig. 4.6. From the figure, it can be seen that the developed MDT technique 

accurately tracks the net output power and efficiency corresponding to the trade-off 

operating points shown in Tables 4.1 and 4.2. The tracking speed of the MPPT and MEPT 

techniques can be varied by tuning the parameters associated with the tracking algorithm. 

However, the MD tracking algorithm does not have any tuning parameters to control the 

tracking speed. As a result, overshoot is observed in the tracking trajectory, as shown in 

Fig. 4.6.    

 

Fig. 4.6. Net output power and efficiency of the MDT technique 

4.4  Comparison of the Tracking Techniques 

A detailed comparison based on the simulation results obtained for the PEMFC with 

the MPPT and MEPT techniques using the ESC algorithm to track the maximum point, and 

the MDT technique to track the trade-off operating point is presented. The goal of the 
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comparison is to characterize three tracking techniques in relation to various operational 

requirements of stationary PEMFC applications. 

4.4.1  Output Power of the Tracking Techniques 

The tracking trajectories near the MPP, MEP, and MD for different values of 

membrane water content are shown in Fig. 4.7. From the figure, it can be seen that the 

developed tracking techniques accurately track the required operating points of the PEMFC 

(MPP or MEP or MD). As expected, the net output power of the MPPT technique is high 

when compared with the other tracking techniques. On the other hand, the net output power 

of the MEPT technique is very low due to the operation of the PEMFC in the lower stack 

current region. However, the MDT technique results in a trade-off operation with a 184% 

increase in output power when compared with the MEPT technique.  

 

Fig. 4.7. Net output power of the PEMFC with the three tracking techniques 
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4.4.2  Efficiency of the Tracking Techniques 

The efficiency of the PEMFC with the MPPT, MEPT, and MDT techniques is 

shown in Fig. 4.8. From the figure, it can be seen that the efficiency of the PEMFC with 

the MPPT technique is very low when compared with the other tracking techniques. The 

maximum power point of the PEMFC occurs in the higher stack current region with 

associated low efficiency. As expected, the MEPT technique tracks the maximum 

efficiency point, which ranges from 56.37% to 58.41% over a 60% change in membrane 

water content. However, the MDT technique tracks the trade-off operating point with a 

25% increase in efficiency when compared with the MPPT technique.  

 

Fig. 4.8. Efficiency of the PEMFC with the three tracking techniques 
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4.4.3  Specific Power Density of the Tracking Techniques 

One of the requirements of the stationary PEMFC applications is high specific 

power density (W/kg), and the tracking technique that meets this requirement is the 

preferred. In a PEMFC system, the humidifier and heat management system function to 

maintain the membrane water content and stack temperature at a constant predefined level. 

Hence, the membrane water content is assumed to be 100% humidified (λ=14) and the stack 

temperature is maintained at 80˚ C. The net output power of the tracking techniques 

corresponding to the specified operating conditions is considered in determining the 

specific power density. The specific power density of the PEMFC with the three tracking 

techniques is shown in Fig. 4.9.  

 

Fig. 4.9. Specific power density of the PEMFC with the three tracking techniques 

From the figure, it can be seen that the specific power density of the MPPT 

technique is high when compared with the MEPT and MDT techniques due to high net 

output power at the MPP. The low net output power associated with the MEPT technique 

leads to a low value of specific power density. Consequently, for MEPT technique to 
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achieve the same net output power as the MPPT technique, a bigger PEMFC with more 

number of stacks is required. On the other hand, the MDT technique with trade-off 

operation results in increased specific power density (184%) when compared with the 

MEPT technique.  

4.4.4  Stack Volume of the Tracking Techniques 

Stack volume plays a significant role in stationary PEMFC applications. A low 

stack volume results in a PEMFC unit that is compact with reduced weight and cost. 

Therefore, a tracking technique that meets the requirement of low stack volume is preferred. 

Considering the net output power of the MPPT technique as the target power, additional 

stacks are required to meet the target power for the MDT and MEPT techniques. The 

number of additional stacks required for the MDT and MEPT techniques can be obtained 

using the following expression. 

 MPPT

MEPT / MDT

PNumber of additional stacks = 
P

n
 
 
 

  (4.6) 

These additional stacks are considered in calculating the stack volume of the 

PEMFC with the three tracking techniques. The stack volume obtained after stack 

modification is shown in Fig. 4.10.  

From the figure, it can be seen that the stack volume of the MEPT technique is very 

high due to the low net output power at the MEP. On the other hand, the stack volume of 

the MPPT technique is low when compared with the other two tracking techniques. The 
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MDT technique operating at the trade-off operating point results in a 75% reduction in 

stack volume when compared with the MEPT technique. 

 

Fig. 4.10. Stack volume of the PEMFC with the three tracking techniques 

4.4.5  Duration of Operation of the Tracking Techniques 

The Ballard MK5-E PEMFC considered in this study is supplied with a 500 SL 

(standard litre) hydrogen tank. The duration of operation of the PEMFC with MPPT, MDT, 

and MEPT techniques is shown in Fig. 4.11.  

 

Fig. 4.11. Duration of operation of the PEMFC with the three tracking techniques 
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The duration of operation of the MEPT technique is very high because the PEMFC 

consumes less fuel when it operates at the maximum efficiency point. As discussed in 

previous sections, the efficiency of the MPPT technique is low, which contributes to 

increased fuel consumption. Hence, the duration of operation of the MPPT technique is 

short when compared with the other two tracking techniques, as shown in Fig. 4.11. The 

MDT technique with moderate efficiency results in an 80% increase in the duration of 

operation when compared with the MPPT technique.  

4.4.6  Cost of the PEMFC with the Tracking Techniques 

The cost of the PEMFC is calculated by taking the capital cost (Cc) of a 5 kW 

PEMFC system which is $22,000 [79] as the reference. The stack modification required for 

the MDT and MEPT techniques to meet the net output power of the MPPT technique is 

considered in calculating the cost of the PEMFC. The cost of the additional stacks 

(CMDT/MEPT) is calculated based on the following expression 

 c
MDT / MEPT MPPT

MEPT / MDT

CC P
P

=   (4.7) 

The cost of the PEMFC with the three tracking techniques is shown in Fig. 4.12. 

The MEPT technique results in high PEMFC cost due to the requirement of a large number 

of stacks to meet the Pout of the MPPT technique.  

From the figure, it can also be seen that the MPPT technique with less number of 

stacks results in low cost of the PEMFC. Although the MDT technique requires additional 
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stacks to meet the MPPT technique, the cost of the PEMFC for the MDT technique 

compared with that of the MEPT technique is low (35.2% of MEPT).  

 

Fig. 4.12. Cost of PEMFC with the three tracking techniques 

The characteristics of the three tracking techniques discussed above are summarized in 

Table 4.3 

Table 4.3: Characteristics of the tracking techniques  

Tracking Technique MPPT MDT MEPT 

Output Power Very high High Low 

Efficiency Low High Very high 

Specific power density Very high High Low 

Stack volume Very low Low High 

Duration of operation Very low Low High 

Cost of electricity Very low Low High 

 

From the above-mentioned points, it can be seen that the MDT technique results in 

reasonable high output power (81.3% of MPP), high efficiency (85.4% of MEP), high 
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specific energy density, small size, long duration of operation (180% of MPP), and low 

cost of electricity (35.2% of MEP). Hence, the MDT technique is the suitable technique to 

satisfy all the requirements of the stationary PEMFC applications.  

4.5  Summary 

 The limitations of the maximum power point tracking and the maximum efficiency 

point tracking techniques were discussed. In order to obtain reasonable high net output 

power and high efficiency from the PEMFC, the midpoint of the maximum power point 

current and maximum efficiency point current was proposed as the trade-off operating 

point. The requirements of the tracking algorithm to track the trade-off operating points 

were discussed. Several possible methods to develop the midpoint tracking technique were 

taken into consideration and discussed. In order to develop a generic and model-

independent midpoint tracking technique, the statistical fast flexible filling design was 

selected. The development of the midpoint fast flexible filling design to obtain the reference 

current corresponding to the trade-off operating point was presented. The reference current 

regression equation obtained from the developed design was implemented in Simulink to 

analyse the performance of the midpoint tracking technique. The simulation results showed 

that the developed midpoint tracking technique was effective in tracking the trade-off 

operating point for varying membrane water content. A detailed comparison of the 

performance of the MPPT, MEPT, and MDT techniques for various operational 

parameters, such as the net output power, efficiency, specific power density, stack volume, 

duration of operation, and cost of the PEMFC was presented and discussed. However, a 

detailed economic analysis to determine the effects of the tracking techniques on the cost 
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of electricity produced is required to select a suitable tracking technique for particular 

requirements of stationary PEMFC applications. A detailed economic analysis of the 

PEMFC system is presented in the following chapter.  
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Chapter 5 

Economic Analysis of a Standalone PEMFC 

Generation System with Different Tracking 

Techniques 
 

The PEMFC has the advantages of high power density, rapid start-up, moderate 

operating temperature, low maintenance cost, and zero carbon emission [54]. For all these 

reasons, PEMFCs are widely used in stationary, transportation, and portable applications 

[80]. Although PEMFCs have several advantages compared to conventional energy 

sources, the cost of electricity (COE) produced play a major role in determining the 

capability of PEMFCs to replace conventional energy sources. Yet accurate economic 

analysis to determine the cost of electricity of the PEMFC generation system is lacking in 

the literature.  

In this chapter, a complete economic analysis of a standalone PEMFC system is 

presented. The economic analysis takes into account the capital cost, replacement cost and 

maintenance cost of the PEMFC, cost of hydrogen infrastructure, cost of power converters, 

cost of storage technique (electrolyzer and hydrogen tank) used to store excess electricity, 

effects of tracking techniques, and real time variations in load conditions. In addition, ten 



93 
 
 

load configurations are considered in order to investigate the effects of system size (rating) 

and combined heat and power (CHP) capability of the PEMFC system on the COE. Finally, 

based on economic considerations, a procedure to select a suitable tracking technique for 

particular requirements of a standalone PEMFC generation system is proposed. The work 

described in this chapter is under review for publication in the IET Renewable Power 

Generation [81].  

5.1 System Configuration  

 In a PEMFC generation system, the heat management system and the humidifier 

system function to maintain the stack temperature (T) and membrane water content (λ) at a 

predefined constant level. In this economic analysis, the stack temperature is maintained 

constant at 80˚ C and the polymer electrolyte membrane is assumed to be 100% humidified 

(λ = 14). The net output power and efficiency values obtained for the maximum power 

point tracking, maximum efficiency point tracking, and midpoint tracking techniques as 

shown in Table 4.1 in Chapter 4 are considered as reference for configuring the systems 

considered for the economic analysis. In general, a standalone PEMFC system without a 

tracking technique consists of the PEMFC unit, power converter, hydrogen tank, and load. 

Incorporating tracking techniques to extract maximum power or operate at the maximum 

efficiency requires a storage technique to store the excess electrical energy produced by the 

PEMFC. This excess electricity is produced, when the operation of the PEMFC is at a 

constant operating point (MPP or MEP or MD), which results in higher output power than 

the load demand.  
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A review of different energy storage techniques presented in the literature shows 

that the modular, simple, and high energy density storage techniques, such as battery and 

hydrogen storage systems are widely used [82]–[84]. In this thesis, the hydrogen storage 

technique with less maintenance cost, low noise, and low CO2 emissions is used to store 

the excess electrical energy produced by the PEMFC [85]. The electrolyzer in the hydrogen 

storage technique, converts the excess electricity to hydrogen and stores it in a hydrogen 

storage tank. The configuration of the system with hydrogen storage technique is shown in 

Fig. 5.1.  

 

Fig. 5.1. System configuration  

The electrical efficiency of the PEMFC varies from 35% to 60% depending on the 

type of tracking technique (Fig. 4.2). The remaining energy from the fuel is dissipated as 

heat. This heat can be utilized in a combined heat and power (CHP) configuration to supply 

a thermal load, thereby increasing the total efficiency of the PEMFC. For example, with a 

50% heat recovery, the efficiency of the PEMFC unit can be increased from 67.5% (36.4% 

electrical efficiency + 31.1% thermal efficiency) to 80% (57.4% electrical efficiency + 
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22.6% thermal efficiency) depending on the type of tracking technique. In general, the heat 

recovery ratio varies from 40% to 60% [86]. Hence, an intermediate value of heat recovery 

ratio (50%) is chosen. The configuration of the system with CHP is shown in Fig. 5.2.  

 

Fig. 5.2. System configuration with thermal load  

5.2  Economic Terms  

Several economic terms are used in the economic analysis of the PEMFC system in 

this thesis to describe the impact of the tracking techniques on the cost of electricity (COE). 

Economic terms such as total net present cost (CNPC) and levelized cost of electricity 

(LCOE) are explained below.  

5.2.1  Total Net Present Cost 

The total net present cost (CNPC) of a system is based on the present value of the 

components in the system. The total net present worth is obtained from the total annualized 
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capital cost, operation and maintenance cost, cost of fuel, and cost of depreciation of the 

components over the lifetime of the system or project. The expression used to calculate the 

total net present cost of the system is given as [87] 

 
( )

( )( )
1

1 1

yr

yr

an,tot
NPC

N

N

C
C

i i

i

=
 + 
 + −
 

  (5.1) 

where Can,tot is the total annualized cost, which includes the total annual cost of the 

components in the system ($/yr); Nyr is the lifetime of the project; i is the annual real interest 

rate (%). In this thesis, the annual real interest rate is set at 6% and the project lifetime is 

set at 25 years. 

5.2.2  Levelized Cost of Electricity  

The levelized cost of electricity (LCOE) provides the net present unit cost of 

electricity ($/kWh) over the lifetime of the project. A good project should have a low 

levelized cost of electricity. In the case of combined heat and power (CHP) configuration, 

the cost of energy supplied to the thermal load is deducted from the total cost of the 

electrical energy produced per kWh to achieve a realistic value of LCOE. The expression 

for calculating the LCOE is given as [87]  

 an,tot b t

AC DC

C C E
LCOE

E E
−

=
+

  (5.2) 

where Can,tot is the total annualized cost of the system ($/yr); Cb is the marginal cost of the 

boiler ($/kWh); EAC is the AC load (kWh/yr); EDC is the total DC load (kWh/yr); Et is the 
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total supplied thermal load (kWh/yr). In the absence of a thermal load, the value of Et is set 

to zero. The LCOE can be used to determine the most suitable tracking technique for the 

PEMFC.  

5.3  Case Studies  

The cost of the PEMFC per kW decreases as the rating of the PEMFC increases 

[79]. In order to include this variation and its impact on the LCOE, ten different loads are 

considered. Table 5.1 shows the type and rating of the load. 

Table 5.1: Load configuration.  

Case No 
Electrical load 

Thermal load 
kWh/day Peak kW 

1 25 3.5 No 
2 158 22 No 
3 325 45 No 
4 650 90 No 
5 1300 180 No 
6 3420 450 No 
7 6840 900 No 
8 13000 1800 No 
9 6840 900 Yes 
10 13000 1800 Yes 

 

The configuration shown in Fig. 5.1 is used for the cases without thermal load (cases 

1-8) and the configuration shown in Fig. 5.2 is used for cases with thermal load (cases 9 

and 10).  
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5.3.1  Electrical Load Profile 

The load data from the Hybrid Optimization Model for Electrical Renewables 

(HOMER) example (Sicud village in the Philippines) is considered as reference for 

configuring the load used in the above-mentioned case studies [88]. The load profile used 

for all the case studies is shown in Fig. 5.3.  

 

Fig. 5.3. Load profile  

In order to include the seasonal and unexpected load variations, the random 

variability from day to day in a month is set at 10% and time step to time step (for every 

hour) variability is set at 20%. The load profile presented in Fig. 5.3 is considered as a 

reference and it can be scaled up or down according to the requirements of the load 

configuration in Table 5.1.  
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5.3.2  Thermal Load Profile  

The thermal load profile used to analyze the effect of CHP configuration on the 

economics of the PEMFC for cases 9 and 10 is shown in Fig. 5.4. The thermal load is 

considered maximum during the daytime and minimum during nighttime. The day and time 

random variability is set at 10% and 20%. The renewable fraction of the system is set at 

100%.  

 

Fig. 5.4. Thermal load profile  

HOMER includes the boiler running on diesel by default with the thermal load. The 

working schedule of the boiler is based on the cost of thermal energy supplied by the 

PEMFC (Ct,PEM) using combined heat and power configuration. In this thesis, the thermal 
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load supplied by the PEMFC is limited by the value of Ct,PEM to satisfy the following 

condition: 

 t ,PEM dieselC C<<   (5.3) 

where Cdiesel is the cost of thermal energy supplied using a boiler running on diesel ($/kWh). 

The cost of diesel is set at $1.2/liter, and the efficiency of the boiler connected in-between 

the thermal load and diesel fuel is set at 85%. 

5.4  Selection of Components  

The selection of the component ratings plays an important role in measuring the 

influence of the tracking techniques on the economics of the PEMFC. The major constraints 

considered in this economic analysis are as follows: 

• The system should be configured to meet the entire load demand (unmet load = 0) 

• The excess electricity should be as minimum as possible (% of excess electricity ~ 0) 

• The capacity shortage should be as minimum as possible (% of capacity shortage ~ 0) 

5.4.1  Proton Exchange Membrane Fuel Cell 

The load profile should be taken into consideration in determining the rating of the 

PEMFC to ensure that the maximum power required by the load (Pload) is always less than 

the rating of the PEMFC. The rating of the PEMFC also depends on the efficiency of the 

power converters connected between the load and the PEMFC. Hence, the following 

condition is used to determine the rating of the PEMFC to meet all the required conditions. 

 rating out loadP P P>> >>   (5.4) 
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In (5.4),  

 r ating out auxP P P= +   (5.5) 

 ( )( )100 100out load pP P η= + −   (5.6) 

where, ηp is the efficiency of the power converter. The fuel consumption curve for different 

ratings of the PEMFC [89] is used to determine a general relationship between the hydrogen 

consumption rate (kg/hr) and the net output power (Pout) of the PEMFC (kW) based on the 

curve fitting approach as shown in Fig. 5.5. 

  

Fig. 5.5. Hydrogen consumption rate per kW power of PEMFCs  

 The cost of PEMFCs for different ratings obtained from a fuel cell store [79] is used 

to determine a general relationship between the cost per kW ($/kW) and the rating of 

PEMFC (kW) based on curve fitting approach as shown in Fig. 5.6. 
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Fig. 5.6. Cost per kW rating of PEMFCs 

 The lifetime of the PEMFC is assumed to be 40000 hr (~4.566 yr) while the 

replacement cost is assumed to be 65% of the capital cost [8].  

5.4.2  Inverter  

The rating of the inverter (Pinverter) that supplies the AC load can also impact the 

value of the unmet electricity. The following condition is considered in order to keep the 

unmet load contributed by the inverter to zero. 

 inverter loadP P≥   (5.7) 

The capital cost and replacement cost for different ratings of an inverter are shown in Fig. 

5.7 [90]. From the figure, it can be seen that the capital and replacement cost of any required 

size of the inverter can be obtained. 
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Fig. 5.7. Capital and replacement cost of inverter 

In this economic analysis, the operational and maintenance (O&M) cost of the inverter is 

assumed to be $10/yr and the lifetime of the inverter is assumed to be 15 years. 

5.4.3  Electrolyzer  

The rating of the electrolyzer (Pelec) is selected so as to utilize the entire output 

power of the PEMFC in the case of very low load demand (~0), which occurs at short 

intervals. During these intervals, the PEMFC can be turned off, but frequent turn-off and 

turn-on will degrade the life of the membrane. It is therefore preferred to operate the 

PEMFC continuously and use the excess power to produce hydrogen for storage. The 

following condition is taken into consideration while selecting the rating of the electrolyzer.  

 elec outP P≤   (5.8) 

In this thesis, the net output power of the PEMFC is considered as the rating of the 

electrolyzer. The capital cost and replacement cost of an electrolyzer of different ratings 

are shown in Fig. 5.8 [91]. 
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Fig. 5.8. Capital and replacement cost of electrolyzer 

The operation and maintenance cost of the electrolyzer is assumed to be $10/yr and the 

lifetime of the electrolyzer is assumed to be 15 years. 

5.4.4  Hydrogen Tank 

Hydrogen storage tanks are included in the system to store the required amount of 

hydrogen for the PEMFC and to store the hydrogen produced by the electrolyzer. Using 

the capital cost of the hydrogen tanks corresponding to 2123 kg and 24733 kg hydrogen as 

reference [92], the capital cost of the hydrogen storage tank for different capacities is 

extrapolated and shown in Fig. 5.9. The replacement cost of the hydrogen tanks is assumed 

the same as the capital cost shown in Fig. 5.9. Initially, the hydrogen tank is considered to 

be at 100% of its capacity. At the beginning of every year, the cost of hydrogen refueling 

and transportation required for each configuration is added to the O&M cost of the 

corresponding hydrogen tank in that configuration. The quantity of hydrogen fuel (Hr) 

required by the PEMFC is determined based on the following expression:  

 r t pH H H= −   (5.9) 
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where, Ht is the quantity of hydrogen remaining in the tank at the beginning of the 

year (kg); Hp is the quantity of hydrogen produced by the electrolyzer at the beginning of 

the year (kg). The cost of hydrogen fuel considered in this analysis is $1.8/kg [93]. The 

transportation cost of hydrogen is assumed to be $500/yr.  

 

Fig. 5.9. Capital cost of hydrogen storage tank 

The O&M cost of the hydrogen storage tanks is assumed to be 10% of the capital 

cost and the lifetime of the hydrogen storage tanks is assumed to be 25 years. The net output 

powers and efficiencies used in this economic analysis are tabulated in Table 5.2. 

Table 5.2: Parameters considered for the economic analysis.  

Efficiency of the components Net output power (Pout) 

Component Efficiency (%) Net output power Value  

PEMFC with MPPT 36.4 PMPPT 77.04% of Prating 

PEMFC with MDT 49.0 PMDT 81.20% of PMPPT 

PEMFC with MEPT 57.4 PMEPT 28.55 % of PMPPT 

Inverter 90.0   

Electrolyzer 85.0   
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5.5  Simulation Results  

The configurations of the systems discussed in Figs. 5.1 and 5.2 are modelled in the 

HOMER energy analysis software to obtain a detailed economic analysis of the standalone 

PEMFC generation system. The simulation results obtained for ten different case studies 

are discussed in the following subsections.  

5.5.1  Total Net Present Cost of the Case Studies 

The total net present cost indicates the total cost required for the project including 

the predicted cash outflows and inflows. The total net present cost of the case studies 

considered in this analysis for the three tracking techniques are shown in Fig. 5.10.  

 

Fig. 5.10. Total net present cost 

The preferred tracking technique is the one that meets the requirement of low total 

net present cost. As expected, the total net present cost of the PEMFC system with MEPT 

technique is too high due to the high capital cost associated with the PEMFC unit. From 

the figure, it can be seen that the total net present cost of the MDT technique is low when 
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compared with the other tracking techniques. The low capital cost for the PEMFC unit and 

the hydrogen storage equipment when compared with the MEPT and MPPT techniques is 

the main contributing factor to the low net present cost for the MDT technique. The total 

net present cost for all three techniques remains almost the same for power ratings less than 

50 kW. From the point of view of the total net present cost, the MDT technique would be 

preferred for medium to high power applications.  

5.5.2  Levelized Cost of Electricity of the Case Studies 

The preferred tracking technique is the one that leads to a low value of levelized 

cost of electricity (LCOE). The value of LCOE for the case studies for three tracking 

techniques is shown in Fig. 5.11.  

 

Fig. 5.11. Levelized cost of electricity 

From the figure, it can be observed, that the LCOE decreases as the capacity of the 

system increases. Although the PEMFC with MEPT is highly efficient, its LCOE is about 

twice that of the MDT and MPPT for PEMFC ratings less than 100 kW. This is due to the 
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initial cost of the PEMFC, including the cost of the additional stacks required to meet the 

maximum power demand.  

Since a low value of LCOE is preferred, the MPPT and MDT techniques would be 

favored for low PEMFC rating (< 50 kW). For PEMFC ratings greater than 500 kW, the 

LCOE for all three tracking techniques level off with the MDT technique giving a slightly 

lower value of the LCOE. The leveling off is due to the increase in the cost of hydrogen 

infrastructure required for the MPPT technique and increase in the capital cost of the 

PEMFC unit for the MEPT technique.  

5.5.3  Hydrogen Consumption of the Case Studies 

The hydrogen consumptions of the case studies are shown in Fig. 5.12. The 

hydrogen consumption is directly proportional to the stack current of the PEMFC. Hence, 

the MPPT technique, which operates in the high stack current region consumes a large 

amount of fuel when compared with other tracking techniques as shown in Fig. 5.12.   

The MDT technique provides a trade-off operation by operating in the low current 

region when compared with the MPPT technique. As expected, the hydrogen consumption 

is low for the MEPT technique due to the operation of the PEMFC unit at high efficiency, 

which occurs in the low current region. However, the size and power density of the MEPT 

is low, and the MDT technique with reasonable fuel consumption rate, low capital cost, and 

small size would be preferred over the MEPT technique. The capacity of the hydrogen tank 

also follows the same trend as shown in Fig. 5.12.   
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Fig. 5.12. Hydrogen consumption 

5.5.4  Results of the Case Studies with Combined Heat and 

Power 

The heat recovery ratio for the PEMFC is set at 50%, which means half of the heat 

energy generated by the PEMFC is used to supply the thermal load connected to the system. 

The temperature of hydrogen fuel and the stack temperature are assumed to be constant at 

80˚C. The thermal load that the PEMFC can supply under different tracking techniques for 

case 9 and case 10 is tabulated in Table 5.3. 

Table 5.3: Results for the CHP configuration.  

Tracking 

Technique 

Thermal load supply capability 

(kWh/day) 
Efficiency (%) 

Case 9 Case 10 η ηther ηt 

MPPT 7800 15600 36.4 31.8 68.2 

MDT 4650 9300 49.0 25.5 74.5 

MEPT 3750 7500 57.4 21.3 78.7 
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where, ηther is the thermal efficiency of the system; ηt is the mean total efficiency of the 

system. From the table, it can be seen, that the electrical efficiency and thermal efficiency 

are inversely proportional. For example, with the MPPT technique the PEMFC converts 

36.4% of fuel energy into electricity and the remaining 63.6% of fuel energy is converted 

into heat (31.8% in this case due to 50% heat recovery ratio). Hence, the thermal load 

supplied by the PEMFC with MPPT technique is high when compared with the PEMFC 

with MEPT and MDT technique. With the efficiencies for case 9 and case 10 remaining 

the same and the heat recovery ratio for both cases set at 50%, the thermal load supplied in 

case 10 is doubled. The results of the system with and without thermal load are identical 

except for the levelized cost of electricity as shown in Fig. 5.13. 

 

Fig. 5.13. Comparison of levelized cost of electricity 

From the figure, it can be seen that the LCOE of the systems with thermal load is 

low when compared with systems without thermal load irrespective of the tracking 

technique. The MPPT technique is capable of supplying a large thermal load as shown in 

Table 5.3. This results in low LCOE for the MPPT technique when compared with other 

tracking techniques. The LCOE of the MEPT technique is very high due to the low thermal 
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efficiency and high capital cost associated with the PEMFC unit when compared with other 

tracking techniques. On the other hand, the MDT technique supplies a reasonable amount 

of thermal load with high electrical efficiency for the MPPT technique and low cost of 

electricity for the MEPT technique.  

5.5.5  Effect of Electrolyzer Rating 

The electrolyzer rating selected for the PEMFC system influences the levelized cost 

of electricity and the amount of excess electricity in the system. In order to study the effect 

of the electrolyzer rating, an electrolyzer ratio is used, which can be expressed as follows:  

 100
out

Rating  of electrolyzerElectrolyzer ratio = %
P  of PEMFC

  (5.10) 

The effect of the electrolyzer rating on excess electricity is shown in Fig. 5.14. The 

electrolyzer ratio is used to determine the required rating of the electrolyzer for a particular 

rating of the PEMFC to meet the requirements of excess electricity and LCOE.  

 

Fig. 5.14. Effect of electrolyzer rating 
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From the figure, it can be seen that the capital cost associated with the electrolyzer 

is directly influenced by LCOE. In order to achieve low LCOE, the rating of the electrolyzer 

should be kept at a minimum, which implies dumping excess electricity into a dump load.  

5.6  Selection of Suitable Tracking Technique  

Based on the simulation results discussed in the previous section, a flowchart for 

selecting a suitable tracking technique to achieve low levelized cost of electricity is 

presented in Fig. 5.15.  

 

Fig. 5.15. Selection of tracking technique 
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From the flowchart, it is observed that for high electrical efficiency requirements, 

the MEPT technique would be the preferred tracking technique. It should be pointed out 

that the MEPT technique is associated with high LCOE. The common requirements of 

stationary power applications are low cost of electricity ($/kW), high power density 

(W/cm2), and high durability [67], with the cost of electricity being the major 

consideration. Based on this requirement, Fig. 5.15 shows that for PEMFC ratings less than 

50 kW, MPPT would be the most suitable technique, while MDT would be preferred for 

PEMFC ratings higher than 50 kW. In the case of CHP configuration, the MPPT is expected 

to achieve low LCOE with high thermal efficiency. On the other hand, the MDT technique 

achieves low LCOE with high electrical and thermal efficiencies.  

5.7  Summary 

 The economic analysis of the standalone PEMFC with maximum power point 

tracking, maximum efficiency point tracking, and midpoint tacking techniques is 

investigated.  The configuration of the systems and the process of selecting required 

components for ten different load configurations were discussed. The assumptions and 

criteria considered for the economic analysis were presented and discussed.  A detailed 

comparison of the simulation-based results obtained for the economic analysis of the 

PEMFC system with three tracking techniques using HOMER energy analysis tool is 

discussed.  

It is found that the levelized cost of electricity of the PEMFC systems with 

combined heat and power is lower than that of the PEMFC systems without combined heat 

and power irrespective of the tracking techniques. Finally, based on the economic 
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considerations and simulation results, a procedure for determining a suitable tracking 

technique with low levelized cost of electricity for different power ratings of the PEMFC 

is developed and discussed. The results indicate that the MPPT technique is well suited for 

low power applications (<50 kW) and MDT technique would be preferred for medium and 

high power applications to achieve low levelized cost of electricity. 
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Chapter 6 

 

Conclusion  

 
The stationary fuel cell market for proton exchange membrane fuel cells is 

expanding rapidly. The cost of electricity produced, efficiency, and power density plays a 

significant role in determining the capability of PEMFCs in the stationary power generation 

industry. 

This thesis has presented the development of a proton exchange membrane fuel cell 

model based on the electrochemical, electrical, and empirical equations in Simulink 

environment. The working principle and various components required to develop a PEMFC 

model were analyzed and discussed. The simulation results of the developed PEMFC model 

were validated with published experimental results, which showed a good fit.  

The PEMFC requires several auxiliary components for proper operation, consume 

power and affects the net output power of the PEMFC stack. In order to obtain the net 

output power of the PEMFC, a simplified model based on the fast flexible filling statistical 

design was developed. The simulation results of the developed net output power model 

were validated to ensure high accuracy. In addition, an efficiency model was developed to 

obtain the electrical efficiency of the PEMFC. The simulation-based investigation 

confirmed the non-linear output characteristics of the PEMFC and the effect of the 
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operating parameters such as, stack temperature, membrane water content, fuel pressure, 

and fuel flow on the output characteristics.  

The development of the maximum power point tracking technique and maximum 

efficiency point tracking technique was discussed in Chapter 3. The tracking control 

schemes, namely the direct and indirect tracking control were presented and discussed. The 

indirect tracking control scheme was preferred over the direct tracking control scheme. 

Several published tracking algorithms were analysed. The model-independent tracking 

algorithms, namely the extremum seeking control, perturb and observe, and the sliding 

model control were implemented in Simulink to track the maximum power point of the 

PEMFC. A detailed comparison of the three tracking algorithms was presented. The 

simulation-based investigation showed that the extremum seeking control algorithm is the 

suitable tracking algorithm with high tracking speed, and high accuracy. The low efficiency 

limitation of the maximum power point tracking technique was discussed. The maximum 

efficiency point tracking technique was introduced to operate the PEMFC at maximum 

efficiency, but the simulation results showed that the net output power of the maximum 

efficiency point tracking was low. 

An alternative tracking technique referred to as the midpoint tracking technique was 

proposed in Chapter 4 to overcome the limitations of the maximum power point tracking 

and maximum efficiency point tracking techniques. The midpoint of the maximum power 

point current and maximum efficiency point current was selected as the operating point of 

the midpoint tracking technique. Several possible methods were considered to develop the 

midpoint tracking algorithm. The development of a generic and model-independent 

midpoint tracking algorithm based on the fast flexible filling (FFF) statistical design 
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approach was discussed. The simulation results of the developed midpoint tracking 

technique were validated, which resulted in a good fit. A detailed comparison of the 

tracking techniques based on the net output power, efficiency, power density, system size, 

fuel consumption, and cost per kW was presented. The simulation-based investigation 

showed that the midpoint tracking technique with high net output power, reasonably high 

efficiency, and smaller size compared with the maximum efficiency point tracking was the 

preferred technique for stationary applications of the PEMFC.    

In order to address the effects of the tracking techniques on the economics of the 

PEMFC, a detailed economic analysis was carried out in Chapter 5. Ten different cases 

were considered to obtain the impact of the tracking techniques. A PEMFC generation 

system with hydrogen storage technique was taken into consideration. The HOMER energy 

system software was used to obtain the economics of ten different cases of the PEMFC 

with the tracking techniques. The configurations of the electrical loads and thermal loads 

for ten different cases were discussed. The criteria for the selection of different components, 

namely PEMFC unit, inverter, and electrolyzer were presented and discussed. The 

simulation-based investigation showed that the maximum power point tracking was 

characterized with low levelized cost of electricity for low power applications (<50kW) 

and midpoint tracking technique was characterized with low levelized cost of electricity for 

medium to high power applications. In the case of the combined heat and power 

configuration, the maximum power point tracking technique resulted in low levelized cost 

of electricity. Finally, a selection procedure based on the simulation results to determine a 

suitable tracking technique was presented.  
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6.1  Contributions  

 The major contribution from this thesis was to provide a procedure to select a 

suitable tracking technique for a proton exchange membrane fuel cell generation system. 

Several investigations were carried out to support the results discussed in the previous 

section.  

A complete, versatile, and user-friendly PEMFC Simulink model with various 

components was developed in Chapter 2. A simple, accurate, and generic net output power 

model and efficiency model of a PEMFC were developed. The developed Simulink model 

can be used as a template for developing the model of a PEMFC of specified rating and 

configuration. 

Several comparative analyses of tracking algorithms have been presented in the 

literature for photovoltaic systems. Yet accurate comparison of the tracking algorithms 

used for fuel cell systems was lacking in the literature. In order to address this issue, a 

detailed comparison of the tracking algorithm for the stationary PEMFC application was 

presented in Chapter 3. A detailed analysis of the maximum power point tracking and 

maximum efficiency point tracking of the PEMFC was carried out and their limitations 

were presented. This analysis provides a better understanding of the relationship between 

the net output power and efficiency of the PEMFC. The results of the investigations in 

Chapter 3 were published at a local IEEE conference [68].   

 In Chapter 4, the midpoint tracking (MDT) technique was proposed to overcome 

the limitations of the MPPT and MEPT techniques. The proposed technique is generic, 

model-independent, and less complex. A comparative analysis of the MPPT and MEPT 
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technique for fuel cell applications was lacking in the literature, and in this chapter, a 

detailed comparison of the MPPT, MEPT, and MDT techniques based on several 

characteristics was presented for stationary PEMFC applications. The results of the 

comparative analysis were presented at a national IEEE conference [78].    

 Several economic analyses of PEMFC systems have been presented in the literature, 

but an accurate economic analysis of a standalone PEMFC system, including the impact of 

the tracking techniques on the economics of the PEMFC is lacking. In order to address 

these issues, a detailed economic analysis of a PEMFC generation system with three 

tracking techniques for ten different cases was presented in Chapter 5. A selection 

procedure based on the simulation results of the economic analysis was developed to obtain 

a suitable tracking technique for particular requirements of a project. A manuscript based 

on the investigation in this chapter is under review for publication in an international 

journal [81]. 

6.2  Future Analysis  

 The research work presented in this thesis provides a comprehensive analysis of the 

PEMFC with tracking techniques. Although the work undertaken represents a complete and 

focused investigation, some aspects of the work require further investigation as follows: 

1. Improved PEMFC model: 

The PEMFC model can be improved to incorporate the effects of membrane degradation 

and aging on the output voltage of the fuel cell. Such a model would provide accurate 

analysis of the tracking techniques. 
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2. Detailed model of the auxiliaries:  

Detailed analysis of the auxiliaries in a PEMFC system is required to develop a complete 

model to represent the power consumed by the control units, cooling fans, and heat 

exchanger pumps. An investigation of hardware implementations of a PEMFC with the 

auxiliaries for different applications (stationary, transportation, and portable) would be 

necessary. 

3. Complexity of the tracking techniques:  

It would be useful to investigate the complexity of the tracking algorithms for different 

tracking techniques. This study will add a new dimension or factor to the selection of 

tracking algorithm. The midpoint tracking technique reported in this thesis is based on the 

midpoint of the stack current, which resulted in the trade-off operation. However, it would 

be useful to study the optimum point operation of the PEMFC based on factors, such as 

output power, efficiency, stack volume, specific power density, and levelized cost of 

electricity. 

4. Experimental investigation of the PEMFC system with the tracking techniques: 

The results reported in this thesis are based on extensive simulation studies. Hardware 

implementation of the PEMFC system with the tracking techniques would be required to 

validate the approach presented in the thesis. The hardware implementation of the tracking 

algorithms would certainly help to identify new improvements and requirements.  
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5. Extension of the approach to other PEMFC systems: 

The work presented in this thesis focused on the effect of the tracking techniques on the 

economics of a standalone PEMFC generation system. The approach developed in the 

thesis can be extended to portable and transportation applications of the PEMFC, which 

could lead to a set of new challenges and new contributions. It would be useful to 

incorporate the PEMFC in a hybrid system and analyse the effects of the tracking 

techniques on the economics of the entire hybrid system. In this thesis, the hydrogen storage 

technique was considered for storing the excess electricity. A detailed analysis and 

performance of the PEMFC with different storage techniques and their economics would 

lead to a complete economic analysis of the PEMFC system. In addition, the analysis of 

the combined heat and power operation of PEMFC could be carried out to address any new 

requirements and improvements. The procedure used in this thesis to analyse the PEMFC 

system can be extended to other fuel cell systems such as, solid oxide fuel cell system and 

direct methanol fuel cell system. These analyses would help to identify the suitable fuel 

cell system for particular requirements of an application.   
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Appendix A 

FFF Design Constants 

In this appendix, the value of the constants (a1……. a13) obtained from the FFF design of 

the net output power (2.34) and the value of the constants (b1……. b11) obtained for the FFF 

design of the midpoint reference current (4.1) of the midpoint tracking algorithm are 

tabulated in Table A.1.  

Table A.1: Value of the constants for FFF design 

Constant Value Constant Value 

a1 47455.40 a13 33.12 

a2 52243.28 b1 219.85 

a3 7700.65 b2 208.96 

a4 239.48 b3 154.32 

a5 38.30 b4 2.81 

a6 842.12 b5 8.67 

a7 4719.44 b6 144.16 

a8 1195.66 b7 53.50 

a9 1091.14 b8 1.21 

a10 15.12 b9 0.62 

a11 913.27 b10 6.81 

a12 162.40 b11 49.77 
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Appendix B 

Current Control Techniques 

In this appendix, a detailed comparison of the current control techniques, namely the 

hysteresis current controller, sigma-delta (Σ-Δ) current controller [73], and natural 

switching surface (NSS) current controller [74] with the extremum seeking tracking 

algorithm based on accuracy and convergence speed is presented. For the simulation, the 

value of membrane water content (λ) is maintained at 14 and the stack temperature is set at 

80˚ C. The parameters of the extremum seeking control algorithm used for the maximum 

power point tracking technique is considered in the investigation of the different current 

controllers.  

B.1  Accuracy 

The accuracy of the three current control techniques used with the extremum seeking 

control algorithm for tracking the maximum power point tracking is shown in Fig. B.1. 

From the figure, it can be seen that the accuracy of the three current controllers is almost 

identical. However, the natural switching surface current controller is associated with small 

oscillations. Hence, it is preferred over the hysteresis current controller and sigma delta 

modulated current controller. 
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Fig. B.1. Accuracy of the tracking algorithm with three current controllers 

B.2  Convergence Speed  

The convergence speed of the extremum seeking control algorithm with three current 

controllers is shown in Fig. B.2.  

 

Fig. B.2. Convergence speed of the tracking algorithm with three current controllers 

From the figure, it can be seen that the convergence speed of the extremum seeking control 

algorithm with hysteresis current controller is high when compared with the natural 

switching surface current controller. The high complexity associated with the sigma-delta 

modulated current controller and natural switching surface current controller resulted in 
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low convergence speed. The characteristics of the current controllers with the ESC tracking 

algorithm are tabulated in Table B.1. 

Table B.1: Characteristics of the current controllers 

Current  
Controller 

Accuracy 
 

Convergence 
Speed 

Hysteresis High High 
NSS High  Low 
Σ-Δ High Medium 

 

 From the above-mentioned points, the hysteresis current controller is the preferred current 

control technique with high accuracy and high convergence speed. 
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Appendix C 

MATLAB-Simulink® Blocks 

In this appendix, MATLAB/Simulink block diagrams for the PEMFC system discussed in 

Chapter 2, DC-DC boost converter and tracking techniques discussed in Chapter 3 and 

Chapter 4 are presented.  

C.1  The PEMFC Generation System 

The Simulink model of the entire PEMFC generation system consisting of a PEMFC unit, 

DC-DC boost converter, load, and tracking controller is shown in Fig. C.1. 

 

Fig. C.1. PEMFC generation system 
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C.2  PEMFC Simulink Model 

The MATLAB/Simulink block diagrams of the PEMFC subsystems, namely stack model, 

reactant flow model, and net output power and efficiency model are presented in the 

following figures. 

 

Fig. C.2. PEMFC Simulink model 
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Fig. C.3. PEMFC stack model 

 
Fig. C.4. PEMFC Nernst output voltage model 
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Fig. C.5. Ohmic voltage drop model 

 

Fig. C.6. Activation voltage drop model 
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Fig. C.7. Concentration voltage drop 

 

Fig. C.8. Double layer charge capacitance model 

The reactant flow model consists of two subsystems, namely the cathode flow model and 

the anode flow model as shown in Fig. C.9.  
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Fig. C.9. Reactant flow model 

The Simulink block diagrams of the cathode and anode flow models are as follows: 

 

Fig. C.10. Cathode flow model 
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Fig. C.11. Anode flow model 

The net output power (Pout) model and efficiency model of the PEMFC unit are shown in 

the following figures. 

 

Fig. C.12. Net output power and efficiency model 

The net output power model is shown in Fig. C.13. 
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Fig. C.13. Net output power model 

 

Fig. C.14. Efficiency model 

C.3  DC-DC Boost Converter  

The Simulink model of the DC-DC boost converter is shown in Fig. C.15. 

 

Fig. C.15. DC-DC boost converter 
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C.4  Hysteresis Current Controller 

The Simulink diagram of the hysteresis current controller is shown in Fig. C.16. 

 

Fig. C.16. Hysteresis current controller 

C.5  Tracking algorithms 

The Simulink block diagrams of the extremum seeking control tracking algorithm and the 

perturb and observe tracking algorithm are presented in Fig. C.17 and Fig. C.18. 

 

Fig. C.17. Extremum seeking control 

 

Fig. C.18. Perturb and observe model 
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The MATLAB code of the perturb and observe tracking algorithm is as follows: 

function Ik  = PandO(V, I) 
persistent Iold Pold; 
dataType = 'double'; 
if isempty(Iold) 
    Iold=1; 
    Pold=0; 
end 
Ik=I; 
P= V; 
dI=0.0001; 
Ik=Iold+0.1; 
if (P>Pold)&&(I>Iold) 
            Ik=I+dI; 
else if (P<Pold)&&(I<Iold) 
        Ik=I+dI; 
    else if (P<Pold)&&(I>Iold) 
            Ik=I-dI; 
        else if (P>Pold)&&(I<Iold) 
                Ik=I-dI; 
            end 
        end 
    end 
end 
Iold=Ik; 
Pold=P; 
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The Simulink block diagrams of the sliding mode control algorithm and midpoint 

tracking algorithm are shown in Fig. C.19 and Fig. C.20. 

 

Fig. C.19. Sliding mode control  

 

Fig. C.20. Midpoint tracking algorithm 
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C.6  Load 

The Simulink diagram of the battery load connected to the DC-DC boost converter is 

shown in Fig. C.21.  

 

Fig. C.21. Load 
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